
Marcello La Rosa · Peter Loos
Oscar Pastor (Eds.)

 123

LN
CS

 9
85

0

14th International Conference, BPM 2016
Rio de Janeiro, Brazil, September 18–22, 2016
Proceedings

Business Process
Management

Lecture Notes in Computer Science 9850

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Marcello La Rosa • Peter Loos
Oscar Pastor (Eds.)

Business Process
Management
14th International Conference, BPM 2016
Rio de Janeiro, Brazil, September 18–22, 2016
Proceedings

123

Editors
Marcello La Rosa
Queensland University of Technology
Brisbane, QLD
Australia

Peter Loos
DFKI
Universität des Saarlandes
Saarbrücken, Saarland
Germany

Oscar Pastor
Universidad Politècnica de Valencia
Valencia
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-45347-7 ISBN 978-3-319-45348-4 (eBook)
DOI 10.1007/978-3-319-45348-4

Library of Congress Control Number: 2015957799

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

The 14th International Conference on Business Process Management (BPM 2016)
provided a global forum for researchers, practitioners, and developers to meet and
exchange research insights and outcomes in business process management. BPM 2016
was hosted by the Federal University of the State of Rio de Janeiro, and took place
during September 18–22 in Rio de Janeiro, Brazil.

We received 128 full submissions. Each paper was reviewed by at least four
Program Committee (PC) members, and by one senior PC member who moderated the
discussion and wrote the meta-review. Overall, the review process involved 20 senior
PC members and 89 PC members. We accepted 22 papers (17.2 % acceptance rate).
A subset of these papers was first conditionally accepted and underwent a thorough
revision with subsequent review by a senior PC member. The rigorous review process
and the high quality of the papers published in this volume attest to the leading position
of the BPM Conference in this research discipline, globally.

In addition, we selected 13 papers from those that were not accepted, and invited
them to the “BPM Forum.” The BPM Forum is a new sub-track of the BPM Con-
ference that aims to host innovative yet not mature research with high potential of
stimulating discussions at the conference. These papers are published in a separate
volume in the Springer LNBIP series.

This year we explicitly encouraged papers that report on interdisciplinary aspects of
BPM and on research in emerging BPM areas, as well as papers that advance
knowledge in the areas of business process analysis and improvement. Out of the
submissions on these and on the traditional subject areas of BPM research, we selected
a range of papers focusing on automated discovery, conformance checking, modeling
foundations, understandability of process representations, runtime management, and
predictive monitoring. The topics selected by the authors demonstrate the increasing
interest of the research community in the area of process mining, resonated, these days,
by an equally fast-growing uptake of process mining by different industry sectors.

The scientific program was complemented by three keynotes, chosen to provide a
perspective from within the core BPM research community (Richard Hull, IBM T.
J. Watson Research Center), from the BPM industry (Bradford Power, CXcelerator/
FCB Partners), and from adjacent areas to the BPM research community (Giancarlo
Guizzardi, Federal University of Espírito Santo).

We would like to thank the PC and the broader reviewer community for their
dedicated commitment, and in particular the senior PC members for moderating the
review process and preparing recommendations to the PC chairs. We are most grateful
to all those who were involved in the realization of the conference, including the chairs
of the various tracks. We would also like to congratulate the authors of all submitted
and accepted papers for their high-quality work, and thank them for choosing BPM as
their outlet for publication.

Finally, we would like to thank the BPM 2016 Organizing Committee and in
particular the general chair, Flavia Maria Santoro, for their efforts in making this
conference possible. We also thank the sponsors, Bizagi, IBM, DCR, myInvenio,
UniRio, grupo A, Springer, ABPMP Brazil and SBC, for their generous support.

We hope that you will enjoy reading the papers in this volume and that you will be
inspired by them to contribute to the next editions of the BPM Conference.

September 2016 Marcello La Rosa
Peter Loos

Oscar Pastor

VI Preface

Organization

BPM 2016 was organized by the Federal University of the State of Rio de Janeiro, and
took place in Rio de Janeiro, Brazil.

Steering Committee

Wil van der Aalst (Chair) Eindhoven University of Technology, The Netherlands
Boualem Benatallah University of New South Wales, Australia
Jörg Desel University of Hagen, Germany
Schahram Dustdar Vienna University of Technology, Austria
Marlon Dumas University of Tartu, Estonia
Manfred Reichert University of Ulm, Germany
Stefanie Rinderle-Ma University of Vienna, Austria
Barbara Weber Technical University of Denmark, Denmark
Mathias Weske HPI, University of Potsdam, Germany
Michael zur Muehlen Stevens Institute of Technology, USA

Executive Committee

General Chair

Flavia Maria Santoro Federal University of the State of Rio de Janeiro, Brazil

Program Chairs

Marcello La Rosa Queensland University of Technology, Australia
Peter Loos DFKI/Saarland University, Germany
Oscar Pastor Universitat Politècnica de València, Spain

Industry Chairs

Claudia Cappelli Federal University of the State of Rio de Janeiro, Brazil
Silvia Inês Dallavalle

de Pádua
University of São Paulo, Brazil

André Macieira Elo Group, Brazil
Michael Rosemann Queensland University of Technology, Australia

Workshop Chairs

Marlon Dumas University of Tartu, Estonia
Marcelo Fantinato University of São Paulo, Brazil

Tutorial and Panel Chairs

Manfred Reichert University of Ulm, Germany
Lucinéia Heloisa Thom Federal University of Rio Grande do Sul, Brazil

Demonstration Chairs

Leonardo Azevedo IBM Research/Federal University of Rio de Janeiro
State, Brazil

Cristina Cabanillas Vienna University of Economics and Business, Austria

Doctoral Consortium Chairs

Fernanda Baião Federal University of the State of Rio de Janeiro, Brazil
Hajo A. Reijers VU University Amsterdam, The Netherlands

Latin-American BPM Workshop

Juliano Lopes de Oliveira Federal University of Goiás, Brazil
José Pino Universidad de Chile, Chile
Pablo D. Villarreal National Technological University, Argentina

BPM in Public Administration Panel Chair

Carina Frota Alves Federal University of Pernambuco, Brazil

Publicity Chairs

José Ricardo Cereja Federal University of the State of Rio de Janeiro, Brazil
Valdemar T.F. Confort Federal University of the State of Rio de Janeiro, Brazil
Kate Revoredo Federal University of the State of Rio de Janeiro, Brazil
Ricardo Seguel BPM LATAM S.A., Chile

Senior Program Committee

Josep Carmona Universitat Politècnica Catalunya, Spain
Florian Daniel Politecnico di Milano, Italy
Jörg Desel Fernuniversität in Hagen, Germany
Avigdor Gal Technion, Israel
Pericles Loucopoulos University of Manchester, UK
Heinrich C. Mayr Alpen-Adria-Universität Klagenfurt, Austria
Massimo Mecella SAPIENZA Università di Roma, Italy
Jan Mendling Vienna University of Economics and Business, Austria
Andreas Oberweis Universität Karlsruhe, Germany
Hajo A. Reijers VU University Amsterdam, The Netherlands
Stefanie Rinderle-Ma University of Vienna, Austria
Michael Rosemann Queensland University of Technology, Australia
Shazia Sadiq The University of Queensland, Australia
Pnina Soffer University of Haifa, Israel
Jianwen Su University of California at Santa Barbara, USA
Farouk Toumani LIMOS/Blaise Pascal University, France
Boudewijn van Dongen Eindhoven University of Technology, The Netherlands
Barbara Weber Technical University of Denmark, Denmark
Matthias Weidlich Humboldt-Universität zu Berlin, Germany
Mathias Weske HPI, University of Potsdam, Germany

VIII Organization

Program Committee

Mari Abe IBM Research, Japan
Ahmed Awad Cairo University, Egypt
Hyerim Bae Pusan National University, Republic of Korea
Bart Baesens KU Leuven, Belgium
Seyed-Mehdi-Reza Beheshti University of New South Wales, Australia
Boualem Benatallah University of New South Wales, Australia
Giorgio Bruno Politecnico di Torino, Italy
Fabio Casati University of Trento, Italy
Francisco Curbera IBM Research, USA
Massimiliano de Leoni Eindhoven University of Technology, The Netherlands
Jochen De Weerdt KU Leuven, Belgium
Patrick Delfmann ERCIS, Germany
Nirmit Desai IBM T.J. Watson Research Center, USA
Remco Dijkman Eindhoven University of Technology, The Netherlands
Marlon Dumas University of Tartu, Estonia
Schahram Dustdar TU Wien, Austria
Johann Eder Alpen Adria Universität Klagenfurt, Austria
Gregor Engels University of Paderborn, Germany
Joerg Evermann Memorial University of Newfoundland, Canada
Dirk Fahland Eindhoven University of Technology, The Netherlands
Marcelo Fantinato University of São Paulo, Brazil
Peter Fettke DFKI, Germany
Walid Gaaloul Télécom SudParis, France
Luciano García-Bañuelos University of Tartu, Estonia
Christian Gerth Osnabrück University of Applied Sciences, Germany
Chiara Ghidini FBK-irst, Italy
Guido Governatori Data61, Australia
Sven Graupner Hewlett-Packard Laboratories, USA
Gianluigi Greco University of Calabria, Italy
Daniela Grigori University of Paris-Dauphine, France
Thomas Hildebrandt IT University of Copenhagen, Denmark
Richard Hull IBM T.J. Watson Research Center, USA
Marta Indulska The University of Queensland, Australia
Stefan Jablonski University of Bayreuth, Germany
Gabriel Juhas Slovak University of Technology, Slovakia
Leonid Kalinichenko Russian Academy of Science, Russian Federation
Dimka Karastoyanova University of Stuttgart, Germany
Rania Khalaf IBM T.J. Watson Research Center, USA
Jana Koehler Hochschule Luzern, Switzerland
Agnes Koschmider Karlsruhe Institute of Technology, Germany
Jochen Kuester IBM Research, Switzerland
Akhil Kumar Penn State University, USA
Geetika Lakshmanan Audible, USA

Organization IX

Ralf Laue University of Applied Sciences Zwickau, Germany
Henrik Leopold VU University Amsterdam, The Netherlands
Chengfei Liu Swinburne University of Technology, Australia
Rong Liu IBM Research, USA
Irina Lomazova National Research University Higher School

of Economics, Russian Federation
Heiko Ludwig IBM Research, USA
Fabrizio Maria Maggi University of Tartu, Estonia
Marco Montali Free University of Bozen-Bolzano, Italy
Hamid Motahari IBM Research, USA
Juergen Muench University of Helsinki, Finland
John Mylopoulos University of Trento, Italy
Hye-Young Paik University of New South Wales, Australia
Dietmar Pfahl University of Tartu, Estonia
Artem Polyvyanyy Queensland University of Technology, Australia
Frank Puhlmann Bosch Software Innovations, Germany
Mu Qiao IBM Almaden Research Center, USA
Manfred Reichert University of Ulm, Germany
Manuel Resinas University of Seville, Spain
Gustavo Rossi LIFIA, National University of La Plata, Argentina
Maximilian Röglinger Universität Bayreuth, Germany
Theresa Schmiedel University of Liechtenstein, Liechtenstein
Heiko Schuldt University of Basel, Switzerland
Marcos Sepúlveda Pontificia Universidad Católica de Chile, Chile
Sergey Smirnov SAP Research, Germany
Minseok Song Ulsan National Institute of Science and Technology,

Republic of Korea
Alessandro Sperduti University of Padua, Italy
Stefan Strecker University of Hagen, Germany
Keith Swenson Fujitsu, USA
Samir Tata Telecom SudParis/CNRS Samovar Lab, France
Ernest Teniente Unversitat Politècnica de Catalunya, Spain
Arthur ter Hofstede Queensland University of Technology, Australia
Lucinéia Heloisa Thom Federal University of Rio Grande do Sul, Brazil
Peter Trkman University of Ljubljana, Slovenia
Roman Vaculin IBM T.J. Watson Research Center, USA
Wil van der Aalst Eindhoven University of Technology, The Netherlands
Amy Van Looy Ghent University, Belgium
Irene Vanderfeesten Eindhoven University of Technology, The Netherlands
Hagen Völzer IBM Research, Switzerland
Jianmin Wang Tsinghua University, China
Ingo Weber Data61, Australia
Lijie Wen Tsinghua University, China
Karsten Wolf University of Rostock, Germany

X Organization

Moe Wynn Queensland University of Technology, Australia
Eric Yu University of Toronto, Canada
Liang Zhang Fudan University, China
Michael zur Muehlen Stevens Institute of Technology, USA

Additional Reviewers

Kevin Andrews
Vasilios Andrikopoulos
Abel Armas Cervantes
Nour Assy
Vladimir Bashkin
Dina Bayomie
Khalid Belhajjame
Arne Bergmann
Mirela Madalina Botezatu
Federico Chesani
Jan Claes
Raffaele Conforti
Riccardo De Masellis
Johannes De Smedt
Adela Del Río Ortega
Claudio Di Ciccio
Chiara Di Francescomarino
Mortada El Bana
Jonnro Erasmus
Maria Fay
Valeria Fionda
Markus Fischer
Antonella Guzzo
Michael Hahn
Farideh Heidari
Iman Helal
Vatche Ishakian
Anna Kalenkova
Klaus Kammerer
Christopher Klinkmueller
Monika Klun
David Knuplesch
Julius Köpke
Sander Leemans
Patrick Lohmann
Xixi Lu

Annapaola Marconi
Alfonso Marquez-Chamorro
Alexey Mitsyuk
Jorge Munoz-Gama
Chun Ouyang
Jan Recker
Florian Rittmeier
Andrey Rivkin
Carlos Rodriguez
Kristina Rosenthal
Marco Roveri
Marc Schickler
Alexander Schmid
Johannes Schobel
Stefan Schönig
Simon Schwichtenberg
Zhe Shan
Tijs Slaats
Aleksander Slominski
Sebastian Steinau
Sergey Stupnikov
Alexander Teetz
Benjamin Ternes
Lucinéia Heloisa Thom
Sanja Tumbas
Han van der Aa
Sebastian Wagner
Andreas Weiß
Dennis Wolters
Xiwei Xu
Peifeng Yin
Sira Yongchareon
Jian Yu
Nesma Zaki
Jelena Zdravkovic

Organization XI

Sponsors

XII Organization

Abstract of Keynotes

Don’t Just Improve Work,
Innovate Continuously

Bradford Power1,2

1 CXcelerator, USA
2 FCB Partners, USA

bradfordpower@gmail.com

Abstract. Process improvement (10 % incremental improvement, operational
excellence, continuous improvement, the Toyota Production System, Six Sigma,
Lean, kaizen, local optimization) is a strategic competency needed by every
organization, but it isn’t sufficient in today’s competitive world. As the business
world shifts from competing with physical assets and people to data and soft-
ware, organizations become more and more dependent on process innovation
(10X innovation, radical change, design thinking, product and service disrup-
tion, incubation, end-to-end optimization). An example to show the evolution is
GE’s shift from Six Sigma to Lean Six Sigma to Lean Startup to competing on
software with Predix.
Historically, conventional wisdom said you could only be world class at one of

three value propositions: operational excellence, customer intimacy and product
leadership. Today, companies need all three to compete, particularly those that
are being disrupted by software startups and big software-based companies such
as Amazon, Facebook, and Google, which are in fact doing all three. How are
they doing it?
This keynote will discuss the major roadblocks to transitioning legacy orga-

nizations from continuous process improvement to continuous process innova-
tion, and shed light on how these roadblocks can be lifted.

Featured guest appearance: Gian Martinez, a startup leader using the Coca-Cola
Founders Platform, will show how Coca-Cola is innovating through the example
of Winnin – a social media site where young people submit recommendations
that compete with each other.

Rethinking BPM in a Cognitive World:
Transforming How We Learn and Perform

Business Processes

Richard Hull1 and Hamid R. Motahari Nezhad2

1 IBM T.J. Watson Research Center, New York, USA
hull@us.ibm.com

2 IBM Almaden Research Center, San Jose, USA
motahari@us.ibm.com

Abstract. If we are to believe the technology hype cycle, we are entering a new
era of Cognitive Computing, enabled by advances in natural language pro-
cessing, machine learning, and more broadly artificial intelligence. These
advances, combined with evolutionary progress in areas such as knowledge
representation, automated planning, user experience technologies, software-as-
a-service and crowdsourcing, have the potential to transform many industries. In
this paper, we discuss transformations of BPM that advances in the Cognitive
Computing will bring. We focus on three of the most signficant aspects of this
transformation, namely: (a) Cognitive Computing will enable “knowledge
acquisition at scale”, which will lead to a transformation in Knowledge-inten-
sive Processes (KiP’s); (b) We envision a new process meta-model will emerge
that is centered around a “Plan-Act-Learn” cycle; and (c) Cognitive Computing
can enable learning about processes from implicit descriptions (at both design-
and run-time), opening opportunities for new levels of automation and business
process support, for both traditional business processes and KiP’s. We use the
term cognitive BPM to refer to a new BPM paradigm encompassing all aspects
of BPM that are impacted and enabled by Cognitive Computing. We argue that
a fundamental understanding of cognitive BPM requires a new research framing
of the business process ecosystem. The paper presents a conceptual framework
for cognitive BPM, a brief survey of state of the art in emerging areas of
Cognitive BPM, and discussion of key directions for further research.

Ontological Considerations
About the Representation of Events
and Endurants in Business Models

Giancarlo Guizzardi1,2, Nicola Guarino2, and João Paulo A. Almeida1

1 Federal University of Espírito Santo, Vitória, Brazil
2 ISTC-CNR Laboratory for Applied Ontology, Trento, Italy

gguizzardi@inf.ufes.br,
nicola.guarino@cnr.it, jpalmeida@ieee.org

Abstract. Different disciplines have been established to deal with the repre-
sentation of entities of different ontological natures: the business process
modeling discipline focuses mostly on event-like entities, and, in contrast, the
(structural) conceptual modeling discipline focuses mostly on object-like entities
(known as endurants in the ontology literature). In this paper, we discuss the
impact of the event vs. endurant divide for conceptual models, showing that a
rich ontological account is required to bridge this divide. Accounting for the
ontological differences in events and endurants as well as their relations can lead
to a more comprehensive representation of business reality.

Contents

Keynotes

Rethinking BPM in a Cognitive World: Transforming How We Learn
and Perform Business Processes . 3

Richard Hull and Hamid R. Motahari Nezhad

Ontological Considerations About the Representation of Events
and Endurants in Business Models . 20

Giancarlo Guizzardi, Nicola Guarino, and João Paulo A. Almeida

Automated Discovery

A Unified Approach for Measuring Precision and Generalization Based
on Anti-alignments . 39

B.F. van Dongen, J. Carmona, and T. Chatain

A Stability Assessment Framework for Process Discovery Techniques 57
Pieter De Koninck and Jochen De Weerdt

Measuring the Quality of Models with Respect to the Underlying System:
An Empirical Study. 73

Gert Janssenswillen, Toon Jouck, Mathijs Creemers, and Benoît Depaire

Handling Duplicated Tasks in Process Discovery by Refining Event Labels . . . 90
Xixi Lu, Dirk Fahland, Frank J.H.M. van den Biggelaar,
and Wil M.P. van der Aalst

Discovering Duplicate Tasks in Transition Systems for the Simplification
of Process Models. 108

Javier de San Pedro and Jordi Cortadella

From Low-Level Events to Activities - A Pattern-Based Approach 125
Felix Mannhardt, Massimiliano de Leoni, Hajo A. Reijers,
Wil M.P. van der Aalst, and Pieter J. Toussaint

Discovering and Exploring State-Based Models for Multi-perspective
Processes . 142

Maikel L. van Eck, Natalia Sidorova, and Wil M.P. van der Aalst

Semantical Vacuity Detection in Declarative Process Mining 158
Fabrizio Maria Maggi, Marco Montali, Claudio Di Ciccio,
and Jan Mendling

http://dx.doi.org/10.1007/978-3-319-45348-4_1
http://dx.doi.org/10.1007/978-3-319-45348-4_1
http://dx.doi.org/10.1007/978-3-319-45348-4_2
http://dx.doi.org/10.1007/978-3-319-45348-4_2
http://dx.doi.org/10.1007/978-3-319-45348-4_3
http://dx.doi.org/10.1007/978-3-319-45348-4_3
http://dx.doi.org/10.1007/978-3-319-45348-4_4
http://dx.doi.org/10.1007/978-3-319-45348-4_5
http://dx.doi.org/10.1007/978-3-319-45348-4_5
http://dx.doi.org/10.1007/978-3-319-45348-4_6
http://dx.doi.org/10.1007/978-3-319-45348-4_7
http://dx.doi.org/10.1007/978-3-319-45348-4_7
http://dx.doi.org/10.1007/978-3-319-45348-4_8
http://dx.doi.org/10.1007/978-3-319-45348-4_9
http://dx.doi.org/10.1007/978-3-319-45348-4_9
http://dx.doi.org/10.1007/978-3-319-45348-4_10

Conformance Checking

In Log and Model We Trust? A Generalized Conformance Checking
Framework. 179

Andreas Rogge-Solti, Arik Senderovich, Matthias Weidlich,
Jan Mendling, and Avigdor Gal

A Recursive Paradigm for Aligning Observed Behavior of Large Structured
Process Models. 197

Farbod Taymouri and Josep Carmona

Modeling Foundations

Semantics and Analysis of DMN Decision Tables . 217
Diego Calvanese, Marlon Dumas, Ülari Laurson, Fabrizio M. Maggi,
Marco Montali, and Irene Teinemaa

Dynamic Skipping and Blocking and Dead Path Elimination for Cyclic
Workflows . 234

Dirk Fahland and Hagen Völzer

The Complexity of Deadline Analysis for Workflow Graphs with Multiple
Resources. 252

Mirela Botezatu, Hagen Völzer, and Lothar Thiele

Understandability of Process Representations

Dealing with Behavioral Ambiguity in Textual Process Descriptions 271
Han van der Aa, Henrik Leopold, and Hajo A. Reijers

The Effect of Modularity Representation and Presentation Medium
on the Understandability of Business Process Models in BPMN 289

Oktay Turetken, Tessa Rompen, Irene Vanderfeesten, Ahmet Dikici,
and Jan van Moll

Towards Quality-Aware Translations of Activity-Centric Processes
to Guard Stage Milestone. 308

Julius Köpke and Jianwen Su

Runtime Management

Untrusted Business Process Monitoring and Execution Using Blockchain. . . . 329
Ingo Weber, Xiwei Xu, Régis Riveret, Guido Governatori,
Alexander Ponomarev, and Jan Mendling

XX Contents

http://dx.doi.org/10.1007/978-3-319-45348-4_11
http://dx.doi.org/10.1007/978-3-319-45348-4_11
http://dx.doi.org/10.1007/978-3-319-45348-4_12
http://dx.doi.org/10.1007/978-3-319-45348-4_12
http://dx.doi.org/10.1007/978-3-319-45348-4_13
http://dx.doi.org/10.1007/978-3-319-45348-4_14
http://dx.doi.org/10.1007/978-3-319-45348-4_14
http://dx.doi.org/10.1007/978-3-319-45348-4_15
http://dx.doi.org/10.1007/978-3-319-45348-4_15
http://dx.doi.org/10.1007/978-3-319-45348-4_16
http://dx.doi.org/10.1007/978-3-319-45348-4_17
http://dx.doi.org/10.1007/978-3-319-45348-4_17
http://dx.doi.org/10.1007/978-3-319-45348-4_18
http://dx.doi.org/10.1007/978-3-319-45348-4_18
http://dx.doi.org/10.1007/978-3-319-45348-4_19

Classification and Formalization of Instance-Spanning Constraints
in Process-Driven Applications . 348

Walid Fdhila, Manuel Gall, Stefanie Rinderle-Ma, Juergen Mangler,
and Conrad Indiono

Value at Risk Within Business Processes: An Automated IT Risk
Governance Approach . 365

Oscar González-Rojas and Sebastian Lesmes

Prediction

PRISM – A Predictive Risk Monitoring Approach for Business Processes . . . 383
Raffaele Conforti, Sven Fink, Jonas Manderscheid,
and Maximilian Röglinger

Predictive Business Process Monitoring with Structured and Unstructured
Data . 401

Irene Teinemaa, Marlon Dumas, Fabrizio Maria Maggi,
and Chiara Di Francescomarino

P3-Folder: Optimal Model Simplification for Improving Accuracy
in Process Performance Prediction. 418

Arik Senderovich, Alexander Shleyfman, Matthias Weidlich,
Avigdor Gal, and Avishai Mandelbaum

Author Index . 437

Contents XXI

http://dx.doi.org/10.1007/978-3-319-45348-4_20
http://dx.doi.org/10.1007/978-3-319-45348-4_20
http://dx.doi.org/10.1007/978-3-319-45348-4_21
http://dx.doi.org/10.1007/978-3-319-45348-4_21
http://dx.doi.org/10.1007/978-3-319-45348-4_22
http://dx.doi.org/10.1007/978-3-319-45348-4_23
http://dx.doi.org/10.1007/978-3-319-45348-4_23
http://dx.doi.org/10.1007/978-3-319-45348-4_24
http://dx.doi.org/10.1007/978-3-319-45348-4_24
http://dx.doi.org/10.1007/978-3-319-45348-4_24

Keynotes

Rethinking BPM in a Cognitive World:
Transforming How We Learn and Perform

Business Processes

Richard Hull1(B) and Hamid R. Motahari Nezhad2

1 IBM T.J. Watson Research Center, New York, USA
hull@us.ibm.com

2 IBM Almaden Research Center, San Jose, USA
motahari@us.ibm.com

Abstract. If we are to believe the technology hype cycle, we are enter-
ing a new era of Cognitive Computing, enabled by advances in natural
language processing, machine learning, and more broadly artificial intel-
ligence. These advances, combined with evolutionary progress in areas
such as knowledge representation, automated planning, user experience
technologies, software-as-a-service and crowdsourcing, have the potential
to transform many industries. In this paper, we discuss transformations
of BPM that advances in the Cognitive Computing will bring. We focus
on three of the most signficant aspects of this transformation, namely:
(a) Cognitive Computing will enable “knowledge acquisition at scale”,
which will lead to a transformation in Knowledge-intensive Processes
(KiP’s); (b) We envision a new process meta-model will emerge that
is centered around a “Plan-Act-Learn” cycle; and (c) Cognitive Com-
puting can enable learning about processes from implicit descriptions
(at both design- and run-time), opening opportunities for new levels of
automation and business process support, for both traditional business
processes and KiP’s. We use the term cognitive BPM to refer to a new
BPM paradigm encompassing all aspects of BPM that are impacted and
enabled by Cognitive Computing. We argue that a fundamental under-
standing of cognitive BPM requires a new research framing of the busi-
ness process ecosystem. The paper presents a conceptual framework for
cognitive BPM, a brief survey of state of the art in emerging areas of
Cognitive BPM, and discussion of key directions for further research.

1 Introduction

Business Process Management (BPM) remains a central, foundational element
of running organizations today. This paper explores how BPM will be impacted
by advances in Cognitive Computing [3,8,10,12], an emerging family of technolo-
gies that include natural language processing (NLP), machine learning, and the
ability of systems to improve through experiential learning. We believe Cogni-
tive Computing, combined with evolutionary advances in other fields including
knowledge representation, automated planning, software-as-a-service, user expe-
rience technologies, and crowdsourcing, will transform the BPM ecosystem in
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 3–19, 2016.
DOI: 10.1007/978-3-319-45348-4 1

4 R. Hull and H.R. Motahari Nezhad

fundamental ways. Cognitive Computing will enable “knowledge acquisition at
scale” with the help of emerging methods for natural language understanding
and machine learning at scale. It will change the nature of Knowledge-intensive
Processes (KiP’s) [4], including a shift in their underlying process meta-model.
Advances in Cognitive Computing will enable new ways of learning and enacting
processes at both design- and run-time. It will open opportunities for new levels
of automation and business process support for all types of processes including
KiP’s.

Over the last decade BPM research has been expanded in many directions,
to support more flexible business process [18], process mining [22], case man-
agement applications [13,19,23], and social BPM [1]. There has been some work
around bringing AI planning into business process space [14,15] and processing
textual information related to processes [21]. However, most of this research has
remained close to the traditional BPM framework, with fairly clear separation
between process models (or “schemas”) and process instances. Less attention
has been given to laying a BPM foundation for bringing the benefits of process
automation over unstructured and semi-structured information, and contexts
where the separation between process model and process instance is blurred or
essentially non-existent. A key theme of this paper is to advance this discussion
towards Cognitive Process Enablement, that will enable a whole new level of
flexibility in business processing while nevertheless enabling traditional levels of
auditing, monitoring, reporting, provenance, and also learning from experience.
Important work in this direction is provided by recent exploration of KiP’s [4,6].
A pioneering work is also [16], that applies cognitive techniques to learn processes
as they progress, and help to guide and facilitate them along the way.

Another important, but largely unexplored, aspect of BPM is that of learn-
ing the business processes that are implicitly described in text or other forms
rather than explicitly modeled. In [17] these have been termed “descriptive
processes”, as opposed to “prescriptive processes”, to highlight the fact that there
is no formal process model specification. Instead these processes are described
by the process instances themselves, by “digital exhaust” such as communica-
tions between parties (e.g., emails, forums), and by purpose-built natural lan-
guage documents (e.g., processing guidelines, best practices, regulations, and
corporate policies). In the context of transaction-intensive processes that are
not automated, the emerging capability for Cognitive Process Learning can
enable a cost-effective approach for mapping the processes to formal process
models and then deploying them. Furthermore, we argue that Cognitive Process
Learning, together with a Plan-Act-Learn based meta-model, has the potential
of enabling the formal specification and automation of many semi-structured
and unstructured business processes that today are not formalized in process
models. This will rely on advances in NLP and Machine Learning that hold
the promise of extracting goals, best practices, actor intentions, commitments,
promises, process fragments and the like from implicit descriptions, including
those produced during run time.

Rethinking BPM in a Cognitive World 5

We use the term Cognitive BPM1, to refer to a new paradigm in BPM
which encompass all BPM contexts and aspects of the BPM ecosystem that
are impacted and enabled by the application of Cognitive Computing tech-
nologies. This paper provides a conceptual framework for Cognitive BPM in
general, introduces key modeling abstractions that will be used in Cognitive
BPM, discusses cognitive learning of business processes, and how Cognitive
Computing will enable a new style of KiP’s. We present the basis for a new
process meta-model, called Plan-Act-Learn, which can support the full range
from structured to unstructured processes in a seamless and systematic man-
ner. The paper describes recent research advances, and identifies key research
challenges going forward.

Organizationally, Sect. 2 provides the context for our discussion. Section 3 lays
out a framework for Cognitive Computing and BPM, and briefly surveys how Cog-
nitive Computing is already surfacing in the BPM marketplace. Sections 4, 5, 6
discuss, respectively, cognitive Process Model abstractions, Process Learning, and
Process Enablement. Section 7 provides a summary of the discussion.

2 The Context

This section describes an overall context in which we explore the impact of Cog-
nitive Computing on BPM. We identify three broad classes of Business Processes,
and briefly discuss the emerging trends in Cognitive Computing that are relevant
to BPM.

2.1 Three Classes of Business Process

Figure 1 identifies three broad types of Business Process, as follows.

Design
& Strategy

Support

Judgement-
Intensive

Processes

Transaction-
Intensive

Processes

Examples

• Build vs. Buy decisions
• Merger & Acquisition

decisions
• Business transformation

initiatives

• Complex sales initiatives
• On-boarding a client’s

data center

• Back-office processing
(e.g., payroll, mortgage
origination, …)

• Business Process
Outsourcing (BPO)

K
now

ledge-intensive P
rocesses

• Cognitively
rich
process
model

• Smaller
number
of cases

Lifecycle Paradigm

• Cognitively
simple
process
model

• Larger
number
of cases

Analyze

Monitor

Act

Plan Next Steps,
Adapt

Side-effect,
Interact

Probe,
Sense

Learn,
Discover

Cognitive
BPM

Process Classification
Pyramid

ExecuteMonitor

Optimize

Define

Model

. . .

Fig. 1. Workforce pyramid and alternative BPM lifecycles

1 The term was coined in our earlier work [17].

6 R. Hull and H.R. Motahari Nezhad

Transaction-intensive Processing, i.e., processes that are well-defined and are
executed many times. Typical examples include week-to-week payroll processing,
supply chain management, accounts receivables, etc., within the enterprise, and
typical on-line purchasing and self-help in the retail and service industries.

Judgement-intensive Processes, i.e., human-driven operational work requiring
many judgements involving complex information, organizations and systems.
Examples include processes such as managing new sales relationships, performing
project management for large scale IT or other on-boarding engagements, or
investigating fraudulent activities. Adaptive Case Management has emerged to
help support these kinds of operations, but in practice many of these processes
are still ad hoc, manual procedures managed using spreadsheets.

Design and Strategy Support Processes, that involve open-ended creative
collaborative work, including many decisions based on broad areas of knowledge
and analysis. Examples here include the early stages of merger and acquisition
explorations, of build vs. buy decisions, and also business model transformation
explorations. While these processes may follow a family of best practices, they
often have an unstructured and ad hoc nature, because of the many possible
directions that may need to be explored.

Processes in the second and third categories are often referred to as
“Knowledge-intensive Processes (KiP’s)” [4] because of the amount and com-
plexity of knowledge that is used, acquired, and manipulated as they progress.

Actually, most Transaction-Intensive Processes have some characteristics
related to KiP’s. In particular, there is a substantial amount of contextual knowl-
edge that is relevant to the effective operation of transactional processes (e.g., the
business motivations for the processes, how data flows into and out of the system,
and regulations and corporate). More concretely, there are typically ancillary
processes that are needed to ensure that the routine processes have appropriate
data to work with (e.g., in most applications there is exception handling, and
in Payroll processing there are ancillary processes for aspects such as incorpo-
rating new hires, processing terminated employees, etc.) While these ancillary
processes should be routine, a non-trivial percentage of the process instances end
up requiring judgements based on an experiential knowledge of the underlying
business context, organization policies and overall processing environment.

As suggested in Fig. 1, the three levels of Business Process range from “cog-
nitively simple” processes to “cognitively rich” processes. In today’s world most
of the cognitive aspects of these proceses are performed by humans, but over
time we expect more and more of the cognitive functions to be performed by
machines – often in the form of “cognitive agents” – with varying degrees of
human oversight. As suggested on the right side of Fig. 1, with increased reliance
on Cognitive Computing capabilities and automation we anticipate a shift in
the BPM lifecycle paradigm. Transaction-intensive processes will still rely on
a formal process model, and the now classical Define-Model-Execute-Monitor-
Optimize cycle. In contrast, as suggested in the Introduction, automation of
cognitively-rich KiP’s will rely on a new kind of BPM lifecycle, where the sep-
aration between process model and process instance is largely blurred or non-

Rethinking BPM in a Cognitive World 7

existant. As described in Sect. 4 below, relatively static process models will be
replaced by iterative planning; monitoring will occur continuously both within
individual instances and across larger families of them; and analysis will be used
for learning in a range of areas, including process refinements and also about the
application domain and the particular instance at hand.

2.2 Overview of Cognitive Computing

The area of Cognitive Computing is still emerging, and there is no widely
accepted definition. Many companies, including IBM [10], Hewlett Packard [8],
Deloitte [3], and KPMG [12], are offering visions for what Cognitive Computing
is and how it will impact industry and our world. Reference [10] states that
“[c]ognitive computing refers to systems that learn at scale, reason with purpose
and interact with humans naturally. Rather than being explicitly programmed,
they learn and reason from their interactions with us and from their experiences
with their environment.” This vision of Cognitive Computing is still coming into
reality, but Cognitive Computing techniques are already being considered in the
BPM context (see Subsect. 3.2).

For this paper, we are most interested in how key technologies considered
within the Cognitive Computing umbrella will enable extending automation of
traditional processes, and to support automation of less structured processes,
including Judgement-Intensive and Design and Strategy Support ones, that
are generally not supported by formal process models today. The technolo-
gies we focus on include: natural language understanding (both rules-based and
statistical), machine learning (especially in connection with text) knowledge rep-
resentation and reasoning about knowledge, planning, and experiential learning.
These capabilities are becoming available both as traditional in-house functional-
ities and as cloud-hosted Software-as-a-Service (SaaS). We anticipate that these
services will become widely available and relatively inexpensive in the coming
years, enabling “always-on Cognitive Computing”.

3 Towards a framework for cognitive BPM

This section provides a conceptual framework for understanding the key ways
that Cognitive Computing will transform BPM in the coming years. Also
included is a brief survey of emerging cognitive capabilities in the BPM industry.

3.1 Four Pillars

As shown in Fig. 2, the framework rests in part on the new kinds of informa-
tion that Cognitive Computing can make sense of, including unstructured data,
Internet of Things (IoT) data, new kinds of “smart” devices, and etc. Cognitive
Computing will leverage and improve on human-to-human collaboration because
of new capabilities to ingest and reason about natural language communication,

8 R. Hull and H.R. Motahari Nezhad

Fig. 2. A conceptual framework for cognitive BPM

and will improve on human-machine collaboration through better communica-
tion, and through machines being immensely better at understanding, reasoning
about, and carrying out human goals and intentions.

The next layer of Fig. 2 highlights the fact that Cognitive Computing will
be applicable in traditional BPM and Case Management contexts, and will also
call for and enable new classes of Business Process not supported by process
automation today. Cognitive Computing can accelerate the arrival of the next
generation in BPM, by enabling the development of a fundamentally new family
of process abstractions that will support much richer, more adaptive, more pro-
active, and more user-friendly styles of process coordination (see Sect. 4).

The four pillars across the top of Fig. 2 correspond to the primary ways
that businesses and users will experience the impacts of Cognitive Computing
on BPM.

Cognitive Decision Support: Many processes today, from structured to unstruc-
tured rely on human effort to make decisions based on deep experience and
with reference to large volumes of unstructured data. Cognitive Computing will
enable a mammoth increase in the quantity and breadth of such decisions.

Cognitive Interaction: Most human interaction with Business Process systems
today is confined to screens, and often relies on constrained sequencing of steps.
Advances in multi-modal human-computer interaction and in Cognitive Com-
puting offer a rich opportunity for dramatically improving these interactions by
supporting new interaction channels and devices. Importantly, these can enable
new styles of collaborative work, e.g., to support collaborative goal formula-
tion and collaborative decision making (with active participation from cognitive
agents).

Rethinking BPM in a Cognitive World 9

Cognitive Process Learning: Many processes are described only implicitly, in
purpose-built documents, digital exhaust, and system logs. Across the full spec-
trum from structured to unstructured processes, Cognitive Computing can help
to capture and codify process specifications, to enable much more automation
while still retaining the requisite flexibility.

Cognitive Process Enablement: The separation of process model and process
instance as found in classical BPM and Case Management is too confining for
cognitively rich KiP’s. The vision of Cognitive Process Enablement is to enable
a vastly different style of business process support that puts the users back in
charge. The underlying process model is highly event-driven, and focused on on-
going goal formation, learning of relevant knowledge including constraints, and
planning and decision making.

3.2 Cognitive in Today’s BPM Marketplace

KPMG’s report [11] provides insights into how the industry is incorporat-
ing automation into business operations. They use the overall term Robaotic
Process Automation to refer to three classes of automation. First is Basic Process
Automation which focuses on the automation of manual tasks through “screen
scraping” and application of rules engines on structured data. These capabili-
ties have been available to the industry for several years. Second is Enhanced
Process Automation, is essentially the Cognitive Decision Support pillar of Fig. 2.
These applications are becoming available and are still maturing. The third
stage is termed Autonomic/Cognitive; this is essentially the Process Learning
and Process Enablement pillars of Fig. 2. The report suggests that common
application of the Class 3 automation in industry is at least three to five years in
the future. The report also suggests that different industries will adopt Robotic
Process Automation in different time frames, with IT as the earliest adopter;
Sourcing/Procurement, Finance and Accounting, Human Resources, and Supply
chain/Logistics in a next wave of adoption, and Real Estate Financial Modeling
and Legal after that.

There are early-stage products and offerings in Class 3, the Cognitive Process
Learning and Enablement space. For example, the Amelia offering from IPsoft
[9] and the Ignio product from Digitate (and offshoot of Tata Consulting) [5]
apply machine learning and other Cognitive capabilities to increase automation
and optimization of IT services delivery. Also, the Holmes Cognitive System
from Wipro is applying cognitive computing capabilities in variety of enterprise
and business process management scenarios. The Wipro Holmes web site [24]
describes solutions that apply Cognitive Computing in areas such as IT Help
Desk, prescription fulfillment, retail purchasing assistance, and compliance.

4 Abstractions for Cognitively-Enabled BPM

As suggested in Sect. 2, a new BPM paradigm is needed to take full advan-
tage of Cognitive Computing. At the same time, Cognitive Computing will help

10 R. Hull and H.R. Motahari Nezhad

to enable this new paradigm. This section identifies some of the key building
blocks that are anticipated in the new paradigm. The abstractions described
here are most relevant to the Judgement-Intensive and Design and Strategy
Support processes discussed in Sect. 2. They may also become relevant to the
more knowledge-intensive portions of Transaction-Intensive Processes.

The abstractions needed for cognitively-enabled BPM have significant over-
lap with those discussed in the emerging field of Knowledge-intensive Processes
(KiP’s). Indeed, several of the key abstractions that we highlight below are
present in some form in the extensive survey of KiP requirements [4], in the KiP
ontology [6], and the discussions reported in [2]. There are two points of diver-
gence, however. The first is that Cognitive Computing brings the possibility of
“knowledge at scale”, because cognitive techniques can be used to automatically
sift through vast amounts of unstructured data and harvest correspondingly
large amounts of knowledge relevant to a process instance. The second is defin-
ing abstractions that enable systematic process support for the full spectrum
from structured to unstructured processes.

4.1 Key Building Blocks

The key building blocks for cognitively-enabled business processes include the
following.

Knowledge, Including Constraints: Knowledge at scale is the fundamentally new
element that Cognitive Computing brings to BPM. The possibility of knowl-
edge coming from virtually unlimited sources, and being applied to many differ-
ent aspects of an on-going process instance, dramatically increases the need for
highly flexible processing, that can react to unexpected new information quickly
and appropriately Constraints, rules and policies on the process form an impor-
tant aspect of the overall knowledge base. These may relate to costs, availability
of resources, timing, allowed limits and behavior, and many other factors. The
constraints may change over time, and impact decisions and planning.

Goals/Subgoals: A key concept in cognitively-enabled business processes is the
notion of goals. Initial top-level goals may be specified in advance, and additional
goals and sub-goals can be formulated dynamically, based on events in the envi-
ronment, the current context, new learnings, best practices, and a myriad of
other factors.

Agents (Human and Machine): Cognitively-enabled processes will be centered
around both human and (automated) cognitive agents. These agents will have
varying intentions, roles, and specialties. Collaboration between these agents will
be rich and on-going. Communications between the agents may be captured,
analyzed, and used in future aspects of a process.

Decisions: Agents will make decisions based on information and knowledge
acquired through the process. These decisions may lead to new goals or the
achieving of Goals, to Actions (see below), or to Plans (see below).

Rethinking BPM in a Cognitive World 11

Actions: An action is an atomic unit of work performed by the agent. The actions
in a cognitively-enabled process may side-effect the external environment and/or
may lead to new learning.

Plans: A plan (or an action plan) consists of one or more related actions and
is used to achieve goals, and may introduce sub-goals. The plans in cognitively-
enabled processes may be revised as new information comes in and/or new deci-
sions are made. Plans can be viewed as process model fragments, but their usage
is quite different: Plans may be created frequently, modified frequently, and will
generally be updated after taking action(s), within the plan, as a result of deci-
sions made.

Events: Most cognitively-enabled processes will be highly event-driven. This is
feasible in part because of the highly flexible process model (see below). It is also
feasible because automated cognitive agents will be able to rapidly analyze the
significance of most incoming events, thereby enabling (human or automated)
decisions about whether and how to respond to them. The events may come from
the external environment, from the results of information analysis or knowledge
acquisition, or from decisions made by agents.

4.2 Plan-Act-Learn Cycle for Cognitively-Enabled Processes

Cognitively-enabled BPM will require a highly flexible process model, that can
nevertheless support systematic monitoring and reporting, audits, provenance
and explanation, and repeatability. Similar to KiP’s [4], processing might range
from structured to unstructured, and all points in between.

We conjecture that an appropriate process meta-model for cognitively-
enabled BPM will be based on a Plan-Act-Learn cycle, as illustrated in Fig. 3.
One part of this triad is focused on the planning and deciding portions of the
process, which may be carried out by humans, by machines, or by a combina-
tion. The plans and decisions may lead to world side-effecting actions (e.g., using
resources, transferring funds or goods). The plans and decisions may also lead
to learning activities, e.g., the ingestion and analysis of relevant data. This will
feed into an ever-expanding knowledge base. Events from the environment, and
also environmental reactions to process actions, may contribute to the knowledge
base. Finally, the knowledge base will lead to further decisions, goals, and plans.

In terms of more conventional BPM systems, we anticipate that the Plan-Act-
Learn cycle can be supported by a kind of “universal” cognitive case management

Fig. 3. The Plan-Act-Learn cycle for next-generation cognitively-enabled BPs. (Dashed
lines indicate optional pathways.)

12 R. Hull and H.R. Motahari Nezhad

system that is integrated with a knowledge management system. In such a sys-
tem, case instances might be used to manage plans and plan fragments, and
also goals and sub-goals. These case instances could record progress of plans and
towards goals, and also information relevant for provenance and audits. Newly
arriving events could be processed by multiple of the case instances in parallel,
and might also lead to the creation of new case instances. Note that a traditional
BPM or Case Management process model can be supported in this framework,
in essence by including the process model in the knowledge base, and having
the plan-act steps repeatedly refer to that process model when deciding what to
do next.

The high variability of Plan-Act-Learn-based process instances will call for a
re-thinking of how to support traditional BPM capabilities such as monitoring,
auditing, and improvments through analytics on history. What remains fairly
constant across the highly variable ways that Plan-Act-Learn-based instances
might play out? A possible answer is to shift the focus of monitoring, etc.,
towards the higher-level goals and also “control points”, that is, business-relevant
observable actions (side-effects) that need to occur in all or a substantial per-
centage of the process instances.

4.3 Recent Initiatives Embodying Key Abstractions

This subsection surveys three recent research systems, each of which embodies
a subset of the key abstractions just described.

Citation [20] describes a system that supports the Plan-Act-Learn cycle by
using a form of “universal” case management system as advocated above. The
system is illustrated by using an example in city government, where advisors to a
mayor collaborate to make recommendations to the mayor about various propos-
als. For any given proposal there may be multiple processing steps and multiple
activities to gather information using a variety of (primarily manual) mecha-
nisms. The system is implemented on top of a Guard-Stage-Milestone (GSM)
business artifact system (a foundational element for modern Case Management
[13]); this provides the advantage of modeling both processing steps and data as
first-class citizens.

Reference [7] provides an important early step towards the rich goal-driven
style of process management that will be needed for cognitively-enabled BPM.
The focus of this paper is to dramatically simplify the job of business analysts
when designing a business process that is intended to achieve certain goals. This
research models goals as a collection of boolean conditions (in Conjuctive Normal
Form), models a library of tasks that include their effects modeled as boolean
conditions, and also models a set of constraints on how tasks can be sequenced.
The paper describes an algorithm based on successive refinements of the goals
into subgoals that yield an ontological match with capabilities of available tasks.

The SmartPM model and prototype system [14] provides on-going contex-
tual awareness and automated planning capabilities. The system uses BPMN to
provide a process model, but enables flexible adaptations to a process instance
as required by incoming events or new information. The adaptation may involve

Rethinking BPM in a Cognitive World 13

the creation of a new plan, which can thereby resolve exceptions that were not
designed into the original process. The family of tasks used by the system is
defined at design-time, and includes pre- and post-conditions expressed in terms
of data objects and attributes, also defined at design time. SmartPM provides
a very important demonstration of how on-going planning can be incorporated
into a buisness process system; extensions will be needed to support the incorpo-
ration of new data types and tasks during run-time, and to permit richer kinds
of data and knowledge in the planning.

5 Towards Cognitive Learning of Business Process

A significant impediment to the automation of business processes today stems
from the challenges of learning processes that are described only implicitly,
i.e. not explicitly specified and modeled. Cognitive Computing holds the promise
of automatically learning many aspects of such processes, thereby substantially
reducing the cost of automation. Furthermore, as discussed in Sect. 6, in the case
of Judgement-Intensive Processes and Design and Strategy Support Processes,
the learning can be interleaved with process enablement to provide recommen-
dations and guidance along the way.

Three dimensions of learning about process are considered: from structured
data, from purpose-built documents, and from (unstructured) “digital exhaust”.
The structured and unstructured cases are considered here separately, but in
practice they will be used in combination.

A variety of structured data sources may be available in connection with
an implicitly described process. For the ancillary processes around Transaction-
Intensive processes, system logs of the core processes can provide a wealth of
information. In particular, techniques from Process Mining [22] may be applied
to learn the process models that underly both the core processes, and also some
of the ancillary processes. For example, the steps that were taken to insert a new
hire into a payroll system might be identified by looking at log entries of tasks
that involve data about the new employee at times around when that employee
started work. While most process mining work is focused on process, it will be
important in cognitive learning to gain a holistic understanding of the overall
process, including data manipulation, and constraints on data and processing.

Similar techniques might be applied for Transaction-Intensive and Design
and Strategy Support Processes, although there may be less log data available,
logs may contain less- or semi-structured information and the available log data
may be harder to find and extract.

We turn now to learning from unstructured data. One kind of unstructured
data consists of purpose-built documents, that is documents that were created
specifically to describe aspects of a process. These include actual natural lan-
guage descriptions of (parts of) a process. These also include documents that give
high-level guidelines and/or constraints about a process, including best practice
descriptions, corporate policies and government regulations. The other kind of
unstructured data is called here digital exhaust, and consists of documents and

14 R. Hull and H.R. Motahari Nezhad

other digitally available records that are created during execution of process
instances. This can include emails between process participants (and hopefully,
live conversations between them), entries into process-relevant wikis or forums,
the contents of trouble tickets, calendar entries, and also informally structured
documents such as spreadsheets, powerpoints, etc.

Techniques are emerging for learning processes from both kinds of unstruc-
tured data. For example, [21] uses information extraction techniques to identify
tasks and their sequencing from textual process descriptions, to enable com-
parison the text description with a formal specification (e.g., in BPMN) of the
process. The text analytics is performed primarily using the Stanford Parser,
which provides a rich family of rules-based capabilities for text analytics. While
the approach of this paper assumes availability of a formal specification of a
process, it appears that the techniques could be expanded to learn a fair amount
about a process model from the text description alone.

An emerging sub-area that is gaining attention is to apply text analytics to
government regulations to extract rules and constraints on processes to ensure
compliance. A representative work in this area is [25]. This combines both sta-
tistical and rules-based approaches to NLP: first, statistically-based techniques
are used to classify sentences that are deemed to hold regulatory information;
second, these are processed using a rules-based approach, Rules relating to both
industry-specific terminologies and an industry-specific ontology are also used.

Techniques are also emerging for learning process from digital exhaust, pri-
marily email. The use of NLP techniques on email is a well-traveled field, with
several tools now available that analyze email to provide personal assistance
(e.g., Google Now, Microsoft Cortana, Amazon Echo). In contrast, there are
only a handful of papers focused on extracting process-relevant aspects from
emails, such as tasks and actions. We highlight here the eAssistant system [16],
which combines both statistical and linguistic, rule-based techniques key process
building blocks. The focus there is on actionable statements, which include both
promises and requests, and actions, which include adding to a “to-do” list, adding
to a “follow-up” list, responding to a question, scheduling a meeting, etc., and
action lists (i.e., process fragments). In addition to finding these, eAssistant
includes an adaptive component, that enables extensibility of feature sets being
looked for, and supports online, continuous trainability. (eAssistant can also help
to guide processes at runtime; see Sect. 6).

What about the accuracy of the information learned from the above tech-
niques? The use of NLP techniques to learn BPM-relevant information is in its
infancy, and so improvements will be on-going. Current techniques are essentially
classification-based, and it is typical to measure accuracy in terms of precision (of
the objects classifed as target what percentage are actually target objects) and
recall (what percentage of target objects are classified as being target). These
measures generally have an inverse relationship. Speaking broadly, automated
NLP techniques typically have precision and recall in the 70 % to 95 % range.
This highlights the importance of enabling humans to understand the outputs
of automated learning.

Rethinking BPM in a Cognitive World 15

6 Towards Cognitive Process Enablement

Cognitive Process Enablement refers to the ways that Cognitive Computing,
taken broadly, can enhance the actual processes that carry out business opera-
tions, considered at the level of process modeling. We are focused here on how
the processes themselves will be impacted by Cognitive Computing.

Cognitive Computing will impact both classical BPM (and Case Manage-
ment) processes, and also processes that follow the Plan-Act-Learn meta-model.
A central impact, relevant to both settings, is that Cognitive Computing will
lead to processing constructs that are at a semantic level higher than those
of conventional BPM – including goals, plans, policies/rules, and constraints.
These constructs, called here cognitive BPM constructs will be both human-
understandable and (directly or indirectly) machine-executable. A second key
impact, relevant mainly to the Plan-Act-Learn cycle, is that the Cognitive Com-
puting capabilities will be applied repeatedly and in near real time to provide
input into the Plan/Decide step.

Although not addressed here, knowledge of implicitly described processes and
the perspective provided by the cognitive BPM constructs can be used in other
ways, e.g., to verify compliance of a process with regulations, or to streamline
modifications of structured processes.

6.1 Classical BPM Setting

Suppose that automated learning as described in Sect. 5 is used on implicit
process information in order to build a deployable process model. Because NLP
techniques are generally not 100 % accurate, the learned process model will have
to be vetted and revised by humans, and will also need to be tested. There is also
the question of what kinds of job roles will be needed to vet, adjust, and test the
learned process models (and model fragments). Effort should be made to enable
Business Analysts to perform all or most of the process modeling adjustments,
so that the added cost and delay of bringing in IT specialists and software
engineers is minimized. It will be beneficial to present the model using both
standard process constructs and cognitive BPM constructs.

These requirements help to envision an overall framework and system for
cognitive enablement of the learning and deployment of classical BPM and Case
Management process models. A main component is for the learning, including
identification and ingestion of implicit process descriptions, logs, and etc. This
component will be akin to many Data Science application frameworks, with
a rich on-going combination of people and programs to learn and refine the
process model, and also to help with evolution over time. Key outputs from the
learning, in addition to actual process model constructs, will be explanations
of the constructs, including, e.g., how they relate to the implicit descriptions.
Another main component of the framework will be for testing and refinement.
This should be aimed at Business Analysts, and should include Cognitive Com-
puting capabilities to aid with identifying appropriate tests and process model
improvements.

16 R. Hull and H.R. Motahari Nezhad

6.2 Plan-Act-Learn Setting

In the grand vision of Cognitive Process Enablement, a family of (automated)
cognitive agents are used as smart, creative, and pro-active helpers that assist
the human in the enactment of processes, and learn the human users’ goals
for each initiative, and learn context, preferences, and best practices over time.
Cognitive agents should understand the capabilities of all resources available,
including the agents (both human and automated). Agents are supported in
launching new sub-activities, hypothetical explorations, trials, and conventional
processes in a free form way. The cognitive agent serves as a proactive project
manager, proactively suggesting ideas and approaches, providing expert advice
and decision support, analyzing many what-if?scenarios, proactively performing
investigations across structured and unstructured data on its own, identifying
resources (including personnel), keeping track of schedules, managing and guid-
ing collaborative activities, and recording decisions.

While this vision is some years off, there is a broad base of research to draw
from, including in knowledge representation, planning, and multi-agent systems.
As one illustration, the eAssistant system [16] mentioned above brings together
learning about inflight processes with knowledge representation to provide run-
time guidance and support for Judgement-Intensive processes. More broadly,
we anticipate that cognitively-enabled processes will be founded on a Plan-Act-
Learn cycle, so that they can quickly respond to new events and newly learned
knowledge.

We briefly mention several of the key near- and medium-term challenges in
the process management space raised by this grand vision. Advances in goal
identification and planning are clearly needed. Massive amounts of application-
specific knowledge acquisition creates a challenge in knowledge representation,
prioritization, and explanation, that is, enabling agents to take advantage of
knowledge that is relevant to a decision or task at hand, and ignore knowledge
that is irrelevant.

Advances are needed in process-specific knowledge acquisition. A specific chal-
lenge relates to event monitoring and triage, and in particular, tools that enable
appropriate response to incoming events, be they from the environment, from
agents, or from newly acquired knowledge.

Cognitive Computing holds the potential of automating large swathes of the
Project Management function, i.e., keeping track of the overall process, deadlines,
shifting requirements, etc., and to alert relevant stakeholders to new events,
trends, requirements, and delays.

Finally there is the challenge of trust. Mechanisms to encourage trust will
need to be built into all levels of cognitively-enabled processes; this includes the
services that can explain and support testing of essentially all of the automated
decisions and plans that are made.

Rethinking BPM in a Cognitive World 17

7 Summary and Key Steps for Cognitive BPM Research

This paper has laid out a framework for understanding how Cognitive Comput-
ing will impact the practice of BPM over the next several years, and focused
primarily on emerging perspectives for cognitive process abstractions, cogni-
tive process learning, and cognitive process enablement. Our findings are rele-
vant to the full spectrum of business processes, from Transaction-Intensive, to
Judegement-Intensive, to Design and Strategy Support.

This paper describes many of the research challenges that Cognitive Com-
puting brings to BPM. We conclude by reiterating the most important of the
research themes that are most central to the BPM community.

Automatic Learning about Business Process. This learning will be at “design
time” (e.g., from purpose-built documents, historical digital exhaust, and system
logs), and at “run time” (e.g., from asserted requirements and goals, fresh dig-
ital exhaust including human collaborations, and the process instance history).
The learning needs to be geared towards process automation and enhancement,
including semi-automated Project Management, pro-active knowledge acquisi-
tion, and guiding of human activities.
Embracing Flexibility: The Plan-Act-Learn cycle. A new kind of process meta-
model is needed for KiP’s in the context of “knowledge acquistion at scale”.
We have proposed to base this on the Plan-Act-Learn cycle. But there is a huge
distance between this high-level proposal and a robust framework and technology
base that can support benefits such as monitoring, provenance, auditability, and
ability to refine based on previous performance.
Trust: Explanation, Testing and Manual Adjustment. Trust is essential for
automation to be successful. Tools and techniques developed for cognitively-
enabled BPM must include confidence-building components at many levels.

Acknowledgements. The authors wish to than several IBM colleagues for numerous
inspirational discussions on the topics presented in this paper, including Currie Boyle,
Robert Farrell, Janet Hunter, Matthias Kloppmann Rong Liu, Mike Marin, Manoj
Mishra, Nirmal Mukhi, Jae-eun Park, Karthikeyan Ponnalagu, Michael Oland, Eniko
Rozsa, Stuart Strolin, and John Vergo. The authors also thank members of the working
group [2] on Knowledge-intensive Processes (KiP’s) at the Dagstuhl workshop on “Fresh
Approaches to Business Process Modeling” held in April, 2016, where the discussions
were very stimulating and informative.

References

1. Brambilla, M., Fraternali, P., Vaca, C.: BPMN and design patterns for engineering
social BPM solutions. In: Business Process Management Workshops, pp. 219–230
(2011)

2. Brucker, A., Gal, A., Herwix, A., Hull, R., Mecella, M., Nezhad, H.R.M.,
Santoro, F.M., Slaats, T., Wong, W.: Knowledge-intensive Processes. Unpublished
manuscript created by a working group during the Dagstuhl workshop on “Fresh
Approaches to Business Process Modeling”, 8 May 2016

18 R. Hull and H.R. Motahari Nezhad

3. Deloitte. Artificial intelligence, real results. http://www2.deloitte.com/content/
dam/Deloitte/global/Documents/About-Deloitte/gx-gr15-artificial-intelligence-
computing-capabilities.pdf. Accessed 01 July 2016

4. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: characteris-
tics, requirements and analysis of contemporary approaches. J. Data Semant. 4(1),
29–57 (2015)

5. Ignio: Neural automation system for enterprises. https://www.digitate.com.
Accessed 01 July 2016

6. dos Santos França, J.B., Netto, J.M., do E.S. Carvalho, J., Santoro, F.M., Baião,
F.A., Pimentel, M.G.: KIPO: the knowledge-intensive process ontology. Softw.
Syst. Model. 14(3), 1127–1157 (2015)

7. Ghose, A.K., Narendra, N.C., Ponnalagu, K., Panda, A., Gohad, A.: Goal-driven
business process derivation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R.
(eds.) Service Oriented Computing. LNCS, vol. 7084, pp. 467–476. Springer,
Heidelberg (2011)

8. Hewlett Packard. Augmented intelligence: Helping humans make smarter decisions.
http://www8.hp.com/tw/zh/software-solutions/asset/software-asset-viewer.
html?asset=2195447&module=1970414. Accessed 01 July 2016

9. IPSoft home page. http://www.ipsoft.com/. Accessed 01 July 2016
10. Kelley III, J.E.: Computing, cognition, and the future of knowing: how humans

andmachines are forging a new age of understanding. http://www.research.ibm.
com/software/IBMResearch/multimedia/Computing Cognition WhitePaper.pdf.
Accessed 01 July 2016

11. Robotic Revolution – separating hype from reality, 5 October 2015. https://
home.kpmg.com/xx/en/home/insights/2015/09/separating-hype-from-reality.
html. Accessed 01 July 2016

12. KPMG. Embracing the cognitive era, February 2016. https://assets.kpmg.com/
content/dam/kpmg/pdf/2016/03/embracing-the-cognitive-era.pdf. Accessed 01
July 2016

13. Marin, M., Hull, R., Vacuĺın, R.: Data-centric BPM the emerging Case manage-
ment standard: a short survey. In: Business Process Management Workshops, pp.
24–30 (2012)

14. Marrella, A., Mecella, M., Sardiña, S.: SmartPM: an adaptive process management
system through situationcalculus, indigolog, and classical planning. In: Proceedings
of Conference on Principles of Knowledge Representation and Reasoning KR (2014)

15. Marrella, A., Mecella, M., Sardiña, S.: An adaptive process management system
based on situation calculus, indigolog, and classical planning. In: Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI) (2016, to appear)

16. Nezhad, H.R.M.: Cognitive assistance at work. In: AAAI Fall Symposium Series.
AAAI Publications, November 2015

17. Nezhad, H.R.M., Akkiraju, R.: Towards cognitive BPM as the next generation
BPM platform for analytics-driven business processes. In: Business Process Man-
agement Workshops, pp. 158–164 (2014)

18. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems - Challenges, Methods, Technologies. Springer, Berlin (2012)

19. Swenson, K. (ed.): Mastering the Unpredictable: How Adaptive Case Management
Will Revolutionize The Way That Knowledge Workers Get Things Done. Meghan-
Kiffer Press, Tampa (2010)

20. Vacuĺın, R., Hull, R., Vukovic, M., Heath, T., Mills, N., Sun, Y.: Supporting col-
laborative decision processes. In: 2013 IEEE International Conference on Services
Computing, Santa Clara, CA, USA, June 28 - July 3, 2013, pp. 651–658 (2013)

http://www2.deloitte.com/content/dam/Deloitte/global/Documents/About-Deloitte/gx-gr15-artificial-intelligence-computing-capabilities.pdf
http://www2.deloitte.com/content/dam/Deloitte/global/Documents/About-Deloitte/gx-gr15-artificial-intelligence-computing-capabilities.pdf
http://www2.deloitte.com/content/dam/Deloitte/global/Documents/About-Deloitte/gx-gr15-artificial-intelligence-computing-capabilities.pdf
https://www.digitate.com
http://www8.hp.com/tw/zh/software-solutions/asset/software-asset-viewer.html?asset=2195447&module=1970414
http://www8.hp.com/tw/zh/software-solutions/asset/software-asset-viewer.html?asset=2195447&module=1970414
http://www.ipsoft.com/
http://www.research.ibm.com/software/IBMResearch/multimedia/Computing_Cognition_WhitePaper.pdf
http://www.research.ibm.com/software/IBMResearch/multimedia/Computing_Cognition_WhitePaper.pdf
https://home.kpmg.com/xx/en/home/insights/2015/09/separating-hype-from-reality.html
https://home.kpmg.com/xx/en/home/insights/2015/09/separating-hype-from-reality.html
https://home.kpmg.com/xx/en/home/insights/2015/09/separating-hype-from-reality.html
https://assets.kpmg.com/content/dam/kpmg/pdf/2016/03/embracing-the-cognitive-era.pdf
https://assets.kpmg.com/content/dam/kpmg/pdf/2016/03/embracing-the-cognitive-era.pdf

Rethinking BPM in a Cognitive World 19

21. van der Aa, H., Leopold, H., Reijers, H.A.: Detecting inconsistencies between
process models and textual descriptions. In: Proceedings of International Con-
ference on Business Process Management (BPM), pp. 90–105 (2015)

22. van der Aalst, W.M.P., et al.: Process mining manifesto. In: Business Process
Management Workshops, pp. 169–194 (2011)

23. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm
for business process support. Data Knowl. Eng. 53(2), 129–162 (2005)

24. Wipro Holmes web page. http://www.wipro.com/holmes/. Accessed 01 July 2016
25. Zhou, P., El-Gohary, N.: Ontology-based information extraction from environmen-

tal regulations for supporting environmental compliance checking. In: Computing
in Civil Engineering, pp. 190–198 (2015)

http://www.wipro.com/holmes/

Ontological Considerations About
the Representation of Events and Endurants

in Business Models

Giancarlo Guizzardi1,2(&), Nicola Guarino2,
and João Paulo A. Almeida1

1 Federal University of Espírito Santo, Vitória, Brazil
gguizzardi@inf.ufes.br, jpalmeida@ieee.org
2 ISTC-CNR Laboratory for Applied Ontology, Trento, Italy

nicola.guarino@cnr.it

Abstract. Different disciplines have been established to deal with the repre-
sentation of entities of different ontological natures: the business process
modeling discipline focuses mostly on event-like entities, and, in contrast, the
(structural) conceptual modeling discipline focuses mostly on object-like entities
(known as endurants in the ontology literature). In this paper, we discuss the
impact of the event vs. endurant divide for conceptual models, showing that a
rich ontological account is required to bridge this divide. Accounting for the
ontological differences in events and endurants as well as their relations can lead
to a more comprehensive representation of business reality.

Keywords: Events � Endurants � Reification � Conceptual modeling �
Ontology

1 Introduction

“Smiles, walks, dances, weddings, explosions, hiccups, hand-waves, arrivals and
departures, births and deaths, thunder and lightning: the variety of the world seems to
lie not only in the assortment of its ordinary citizens—animals and physical objects,
and perhaps minds, sets, abstract particulars—but also in the sort of things that happen
to or are performed by them” [1]. This variety is also evident in business reality, with
“processes”, “activities”, “tasks”, “events”, “occurrences”, “incidents” unfolding in
time, and “objects”, “actors” and “resources” persisting through time. In enterprise
architecture and modeling frameworks, the distinction between behavioral elements
and structural elements (“how” versus “what”) is often invoked to account for the
different nature of these elements [2, 3]. The distinction between these categories is
commonplace in philosophical literature, with the former broadly referred to as
“events” and the latter broadly referred to as “objects” [1].

Different disciplines have been established to deal with the representation of these
two ontological categories, each of which with a different focus: the business process
modeling discipline focuses on event-like entities, and, in contrast, the (structural)
conceptual modeling discipline focuses on object-like entities. In each of these

© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 20–36, 2016.
DOI: 10.1007/978-3-319-45348-4_2

disciplines, entities of one of these ontological categories are first-class citizens, while
the other category plays a marginal role (if any). Some notable exceptions in the
process discipline are the so-called business artifact-centric approaches [4–7], and in
the structural conceptual modeling discipline, the event reification approach [8].

In this paper we investigate the ontological nature of events and object-like entities
(which we will call here endurants in line with the philosophical literature). We discuss
the impact of the event vs. endurant divide in conceptual modeling. A modeling pattern
to capture events in structural conceptual models is proposed. The conceptual foun-
dations underlying this pattern serve as the basis for establishing a suitable semantic
foundation for business process models that incorporate reference to object-like enti-
ties, as well as for structural conceptual models that incorporate reference to events.

2 Ontology-Driven Modeling of Business Endurants
and Events

2.1 Endurants in Structural Conceptual Models

Suppose a Person named Mr. Anderson. Mr. Anderson can genuinely change in time in
a qualitative manner while still maintaining his numerical identity. For instance, sup-
pose that Mr. Anderson weighs 70 kg at t1 and 85 kg at t2. This qualitative change does
not alter the identity of Mr. Anderson. Moreover, Mr. Anderson can bear some modal
properties. For instance, Mr. Anderson is necessarily a person but only contingently a
computer hacker. In other words, while he instantiates the type person in all possible
situations that he exists, he can cease to be a computer hacker without this change
having an effect on his identity. Finally, we can perform counterfactual reasoning with
Mr. Anderson. For instance, we can ponder what if Mr. Anderson had decided to study
law as opposed to becoming a computer hacker? When doing this, we admit that
Mr. Anderson (that in a different world is a student of law) is the same individual as the
Mr. Anderson who in this world is a computer hacker. These are all commonly
accepted characteristics of what in ontology is termed an endurant [9, 10].

In ontology, endurants are entities that, whenever they exist, they are wholly
present, i.e., whenever they are present, they are present with all their parts. Moreover,
endurants have both essential properties (i.e., properties they must bear in all possible
situations) and accidental properties (properties they bear in some possible situations)
[9]. In other words, endurants can qualitatively change in certain respects while
maintaining their identity; they can (or could have been) different from what they
actually are with respect to their accidental properties. What defines the essential and
accidental properties of an individual is its kind. We mean here “kind” in a technical
sense [9]: a kind is a type instantiated by an individual that provides a principle of
identity, individuation and persistence for that individual; it defines the boundaries and
parts of that individual; it supports the judgment of whether that individual is identical
or not to another individual (including itself in a different situation); it provides a
criteria for what qualitative changes an individual can undergo and still be the same.
For instance, suppose that the kind Car provides the following criteria of identity for
the legal concept of a car: two cars are identical iff they have the same chassis number.

Ontological Considerations About the Representation of Events 21

So, for an individual c of kind Car, c can change all aspects (e.g., color, tires) and it will
be the same car as long as it has the same chassis number.

Mr. Anderson is of the kind Person. As it is always the case for kinds, Mr. Anderson
instantiates that kind necessarily, i.e., in all possible situations. This is fundamental
because a principle of identity must support identity judgments in all possible situations.
Thus, a principle of identity must be supplied by a type that is instantiated necessarily by
its instances. However, there are types that Mr. Anderson instantiate only contingently.
For example, he is now an Adult Man but he was once a Boy; he is an employee of
company X, but he could have been a student at university Y. Types such as Adult Man,
Boy, Employee or Student are contingent types, i.e., for all instances of those types,
these instances instantiate them only contingently. For example, an individual x can
enter or leave the extension of a type such as Boy or Student without ceasing to exist as
the very same individual.

There is a difference, however, between, on the one hand Adult Man and Boy and,
on the other hand, Student and Employee; namely, individuals enter or leave the
extension of the former sort of types due to a change in intrinsic properties (age, in this
case) while they enter or leave the extension of the latter sort of types due to a change
in their relational properties (the creation or termination of enrollments and employ-
ments, respectively, in this case). Types of the former sort (i.e., contingently and
relationally-independent types) are named phases and of the latter sorts (i.e., contin-
gently and relationally-dependent types) are named roles [9].

Furthermore, we can have that both Mr. Anderson and Company X can play the
roles of renter in a car rental. Types such as renter seem at first to be like a role since
they are: contingently instantiated by their instances (no renter is necessarily a renter);
relationally dependent (in order to be a renter someone needs to be connected to a
rental). However, a role (like a phase) is what is called a sortal: a type whose instances
are all of the same kind. In contrast, the type renter classifies entities that belong to
multiple kinds. These are termed dispersive types or mixins. A mixin that is contingent
and relationally dependent is termed a role mixin [9]. Finally, kinds, phases, roles and
role mixins (among others) are sorts of types that apply to endurants, not only to objects
like Mr. Anderson [11, 12]. For instance, the weight of Mr. Anderson is a quality (an
objectified property) of Mr. Anderson that can also change while maintaining its
identity. For instance, when we say: “the weight of Mr. Anderson is changing”, we
don’t mean that 70 kg are changing! There is an entity there, localized in time and
space, which can change in a qualitative way while maintaining its identity. Analo-
gously, the employment of Mr. Anderson can change: it can go from being a
non-tenured to a tenured employment (two phases of the employment); it can itself play
the role of a legally recognized employment in a given jurisdiction. In summary,
entities such as the weight, the hacking skills, the employment, the enrollment, the
eventual marriage, the car rental are also endurants. However, different from
Mr. Anderson himself, these are existentially dependent endurants, frequently called
qualities [11].

In Fig. 1, we have a model partially representing a domain such as the one just
described. In this domain there are only three kinds of objects (in dark grey), namely,
Person, Organization and Car. There is one single kind of relational endurant (i.e., a
relator), namely, Car Rental. These are the kinds of things that exist in this domain.

22 G. Guizzardi et al.

Everything else in the model is a representation of a type that these kinds of things can
instantiate contingently.

This model of Fig. 1 is represented in a conceptual modeling language termed
OntoUML [9]. This language has been design to reflect the ontological distinctions and
axiomatization put forth by the Unified Foundational Ontology (UFO) [9, 13]. In
particular, this language has as modeling primitives those that represent ontological
distinctions between all the aforementioned sorts of types (e.g., kinds, phase, roles, role
mixins, relators). Figure 1 represents the possibility of change, i.e., how things could
possibly be for the entities that are assumed to exist in this domain (i.e., people,
organizations, cars and car rentals). In this approach, the OntoUML model of Fig. 1
can be automatically translated to knowledge representation languages such as OWL to
support automated reasoning [13]. Moreover, as discussed in [13], the OntoUML
approach offers a support for model validation via visual simulation. In this approach,
the simulation of this model exposes its ontological commitment and allows us to find
the possible difference between the intended state of affairs of this domain and the valid
instances of this model. For instance, by simulating this model, one could find out that
there is a possible instance in which an organization rents a car to itself (i.e., the roles of
renter and renting organization are played by the very same entity).

One way to exclude these unintended modes is to enrich the model with formal
constraints. The idea is to provide an axiomatization for the model such that set of its
valid instances and the set of instances representing intended states of affairs of the
domain coincide [13]. Some of these constraints are temporal constraints dealing, for
example, with the life cycle of the endurants in the model. In particular, in the
OntoUML approach, one can include temporal constraints (in temporal OCL) pre-
scribing the permissible phase transitions in the model, for instance, from Child, to
Teenager and (only then) to Adult, or governing the more complex transitions involved
in the phases of a car rental [14].

2.2 Events in Business Process Models

As previously discussed, structural models such as in Fig. 1 represent what can pos-
sibility change and what has to remain the same in the properties of endurants, i.e.,
regarding matters of necessity and possibility. In the visual simulation support for the

Fig. 1. Representing the possibility of change for endurants

Ontological Considerations About the Representation of Events 23

OntoUML language, the modeler can appreciate how these endurants can possibly
change in a possible worlds structure showing: which properties can change, which
must remain the same; which worlds are accessible from other worlds and, hence,
which are the permissible order of phase transitioning and role playing. But what are
these changes? The answer is events.

In the philosophical literature, this aspect of events as changes is widely recog-
nized. For instance, in [15, 16], events are basically defined as relations between states
of affairs. In the UFO ontology [17], this is a fundamental aspect of events, i.e., events
are also mappings from and to situations in the world, in which endurants are char-
acterized by bearing certain properties (including relational ones). Among these
changes, events can bring about situations in which endurants (including qualities) are
brought into existence (i.e., are created), go out of existence (i.e., are destroyed),
change their properties (via the creation and destruction of their intrinsic and relational
qualities) or that they simply participate playing certain processual roles. For instance,
in the killing of Caesar by Brutus with the dagger, we have the participation of three
endurants (Caesar, Brutus, the dagger). However, their participations are of a com-
pletely different nature and it is the nature of these participations that induce their
playing certain roles (victim, killer and murder instrument) in that event.

In UFO, these aspects of (i) change promoted by events and of (ii) endurant par-
ticipation in events are only two among many aspects of events that receive an axio-
matic treatment there. The ontology defines a fully axiomatized mereology of events
(extensional mereology) prescribing how events relate to its parts. Moreover, it defines
a theory about temporal precedence involving events, whose axiomatization incorpo-
rate the well-known Allen Relations. Additionally, it contemplates a theory of causa-
tion connecting situations brought about by events, which, in turn, trigger the
occurrence of other events and so on, thus, making the world “tick”. As much as for the
case of endurants, events in UFO can be subject of predication. For instance, a con-
versation can be interesting or boring; a fight can be violent; a trip can be pleasant.
Events typically also have qualities representing temporal and spatial features.

Finally, in UFO, events are manifestations of properties, in particular, of particular
qualities and dispositions [17, 18]. So, for an event to unfold, the potentiality of that
unfolding must exist as a concrete property of an endurant. As consequence, events are
dependent on particularized properties (again, dispositions), which are in turn depen-
dent on endurants. Ergo, events are dependent on endurants. For instance, the event of
the heart pumping is the manifestation of the heart’s capacity to pump; the event of the
metal being attracted by the magnet is the manifestation of a number of dispositions of
these entities (including the magnet’s disposition to attract metallic material); Paul’s
Dengue Fever as a complex event is the manifestation of a number of complex dis-
positions that qualify that disease inhering in Paul; John & Mary’s marriage as a
process is the manifestation of a number of relational properties that constitute their
marriage as an endurant (e.g., commitments and claims, expectations, etc.). Disposi-
tions include propensities, capacities, capabilities, liabilities, etc. [18].

These aspects of UFO have been successfully used in the past to analyze and
provide ontological foundations for Business Process Modeling languages such as
ARIS [19], UML Activities Diagram [20] and BPMN [21], as well as Discrete Event
Simulation approaches [22]. The results of these analyses provide for well-grounded

24 G. Guizzardi et al.

representational mechanism that can be used to represent aspects of temporal ordering
and (at least partially) aspects of object participation in events playing certain pro-
cessual roles as well as aspects of event mereology. The notion of events as mani-
festation of dispositions inhering in certain endurants has been fundamental in our
ontological analysis of the notion of service [23] as well as the notion of capability in
enterprise architecture [24]. In this paper, this notion will play a key role in Sect. 3.4.

The aspect of events as changes can be represented by variations of state-machines
capturing how the occurrence of events in certain conditions can promote a transition of
an endurant to a different state [28]. For example, referring to model of Fig. 1, one can
represent all allowed transitions between the phases of Car Rental as well as the events
and conditions that promote these changes. Capturing this aspect of events is of
uttermost importance and, in particular, for the case of relators. This is because the
main goal of social reality (and, hence, of information systems) is to represent and
control: the life of social relators such as enrollments, employments, contracts, rentals,
allocations, presidential mandates, marriages; the social roles induced by them; and the
events (including speech acts) that constitute their lives. We should highlight that in
state-machine-like models such as in [7, 25], the events that can appear in these models
are events that exist in potentially as operations, functions or “services” of the
endurants that exist in that domain. This is conformant with a view that takes these
operations, functions or “services” as dispositions (capacities, capabilities) of these
endurants: they inhere in these endurants even if they are never manifested but all
events that occur are manifestation of these dispositions.

In a language such as OntoUML, the possibility of change is explicitly represented
in terms of contingent types such as phases and roles, and their relations. For instance,
in Fig. 1, we can represent that only when an adult, a person can play the role of a Car
Renter and only when a rental is ongoing we have a car associated to it. On the other
hand, an OntoUML model, such as the one in this figure, explicitly identifies phase
partitions as natural connection points for integrating behavioral models of changes
(e.g., state-machines) with structural models of possibilities. In other words, OntoUML
give us a clear methodological support for deciding for which types in a model of
endurants we should specify a behavioral model of changes.

As discussed in this section, one of the aspects of events is that of events as
changes. However, can we meaningfully talk about changes in events? This is a fun-
damental but often neglected topic in the literature of conceptual modeling. We shall
address it in the next sections.

3 Events in Structural Conceptual Models

Structural conceptual models, such as the one of Fig. 1, have traditionally focused on
the representation of endurants (e.g., objects, their intrinsic and relational properties,
the types they instantiate, the roles they play, their parts, etc.). In fact, in classical
conceptual modeling, events are rarely represented in these structural models as
first-classes citizens. As a result, we can rarely represent the qualities of events as well
as the underlying conceptual spaces from which these qualities can take their values.
Although the representation of events as first-class citizens in structural conceptual

Ontological Considerations About the Representation of Events 25

models is openly defended in the literature [8], there is still no foundation for guiding
their modeling with respect to a number of fundamental issues. Given that reference
conceptual models should provide conceptual clarification and explicit characterization
for notions comprising complex worldviews, and given that many of these notions refer
to events, we find ourselves in a problematic situation. In this section, we address one
of these fundamental issues, namely, the notion of identity, change and reference for
events, exploring the consequences for the representation of events in structural con-
ceptual models.

3.1 The Immutability of Events

Previously in this article, we talked about an endurant such as Mr. Anderson, who can:
bear essential and accidental properties; qualitatively change in certain aspects while
remaining the same; and, be the subject of counterfactual reasoning. Now, how shall
we answer these questions regarding events? Can events genuinely change their
properties while remaining the same? Can an event be the bearer of modal properties?
In particular, can an event exhibit properties contingently? Can an event be different
from what it is? Is there identity between events in different possible worlds?

If we look to all classical axiomatized ontologies of events, we would need to
answer ‘no’ to all these questions. According to these theories, an event is an exten-
sional entity defined by the sum of its parts [17, 26]. It can be seen as a succession of
changes in the world [15, 16], fully determined by participants, a temporal interval and
the properties that are exemplified by the manifestation of the event [27, 28]. As a
consequence, following these theories, an event could not been different from what it
is. Had it been different, it would have different parts, it would be a different succession
belonging to a different history and, hence, a different event. Furthermore, in the
traditional literature, a key difference between endurants and events is that in the case
of events there is nothing that endures, qualitatively changing while maintaining its
identity [10]. If a discussion is peaceful at t1 and litigious at t2, there are different
temporal parts of the discussion that bear these otherwise incompatible properties. In
this view, there is nothing that is entirely present throughout the duration of the
discussion. More precisely, take the branching-time possible worlds structure depicted
in Fig. 2(a). Each of these branches corresponds to a possible world as a possible
history. In these classical views, an event exists solely within one of these branches.
For instance, events E1, E2, E3 and E4 are temporal parts of E’. Suppose there is another
complex event E’’ composed by E1, E2, E3 and E5. In this case, E1, E2, E3 are
overlapping parts of both E’ and E’’. However, E’ and E’’ are distinct events.

Take, again, Mr. Anderson, our prototypical example of an endurant. While
Mr. Anderson exists, there is a complex event associated with him, namely,
Mr. Anderson’s life (see Fig. 2(b)). Mr. Anderson’s life can be seen as the successive
exemplification of a number of (intrinsic and relation) properties of his. However,
suppose that we are in a given point in time t1 in which Mr. Anderson has to decide to
either take the blue pill or take the red pill. If he takes the red pill, then in the moment
succeeding t1 (say, t1+1) Mr. Anderson’s life is a particular event E’ (that includes the
taking of the red pill). If instead, he takes the blue pill then, in the moment succeeding

26 G. Guizzardi et al.

that action, Mr. Anderson’s life will be a different event E’’ (including the event of
taking of the blue pill). Clearly, given all classical theories of events, E and E’ are
distinct individuals as they have different parts and incompatible properties.

3.2 The Role of Object Identifiers

In [29], Wieringa and de Jong report on a detailed study of the role of object identifiers
in conceptual modeling. According to them, an object identifier should work as a rigid
designator picking up the same individual in all possible worlds. For instance, they
state that “object identifiers (oids) are special kinds of proper names for denoting real-
world objects” and require an OID to refer in each state of the world to exactly one
object. They term this requirement singular reference and point out that this require-
ment also appears in authors such as Kent [30] (singular requirement for identifiers).
The authors also require for an OID to remain referring to the very same object across
different states of the world (in which they refer at all). They term the latter requirement
rigid reference. As another example, in UML, the extension of a class C in a class
diagram is a set of OIDs. These OIDs are supposed to trace the identity of the very
same individual across different states.

With these requirements in mind, we should analyze Fig. 2(b). In particular, we
should focus on the moment t1 in which Mr. Anderson is pondering whether to take the
red or the blue pill. As we have seen, “Mr. Anderson” should be a rigid designator, i.e.,
the referent of “Mr. Anderson” at a time t should be the same as the referent of
“Mr. Anderson” at any time t’. Now, at time t1, the referent of “Mr. Anderson” is the
individual deliberating on what he should do regarding the pills. Whatever he does, the
referent of “Mr. Anderson” at t1+1 is still Mr. Anderson. To see that, we can easily
imagine HIM regretting his decision in t1+1 and thinking what HIS life (i.e., the
alternative life of the SAME individual) would be like had he taken a different pill.

Now, a fundamental question is: can “Mr. Anderson’s life” work as a rigid des-
ignator at t1? If the referent of “Mr. Anderson’s life” is an event than the answer must
be negative, since: (i) if “Mr. Anderson’s life” at t1 refers to an individual, then it must
refer to the same individual in all possible worlds; (ii) in a possible world (in which he
takes the red pill), Mr. Anderson’s life at t1+1 refers to event E’ (the event that includes

(a) (b)

E1

E2

E3

E4

E5

E’

E1

E2

E3

E4 (Mr. Anderson
takes the Red Pill)

E5 (Mr. Anderson
takes the Blue Pill)

E’ (Mr. Anderson life 1)

E’ (Mr. Anderson life 2)

Fig. 2. (a) Events and their proper parts; (b) the life of an endurant as an event

Ontological Considerations About the Representation of Events 27

the taking of the red pill); (iii) in a different possible world (in which he takes the blue
pill), Mr. Anderson’s life at t1+1 refers to event E’’ (the event that includes the taking of
the blue pill); (iv) E’ is not identical to E’’. Ergo, “Mr. Anderson’s life” does not rigidly
designate at t1. In fact, and this is very important, if “Mr. Anderson’s life” cannot
rigidly designate at t1 then it cannot rigidly designate at any point (again, after taking
the red pill, there will be other points of branching). The only exception is when
Mr. Anderson’s life is over (i.e., when no other possibilities of branching exist).

“Mr. Anderson’s life” cannot even function as a definite description at t1, unless we
take it to refer to Mr. Anderson’s life up to that point. This definite description takes a
different referent at each time point picking up whatever event happens to be the
accumulation of temporal parts that is Mr. Anderson’s life up to that point and in that
particular world (as history). For instance, at t1+1 (supposing that Mr. Anderson takes
the red pill), we can refer to the event of taking the red pill in a determinate way as we
can refer to “Mr. Anderson’s life up to t1”, which is part of “Mr. Anderson’s life up to
t1+1”. In other words, when fixing a world, “Mr. Anderson’s life up to t1” is a rigid
designator picking up a determinate individual. In contrast, “Mr. Anderson’s life” is not
(except for when Mr. Anderson’s life is over). As a consequence, while the former can
serve as a candidate for an OID, the latter can’t.

3.3 Ongoing Events and Object Identifiers

In the previous sections, we have established two premises, namely that: (i) events
cannot change or bear modal properties; (ii) object identifiers are rigid designators.
Now, if we accept premise 1 (i.e., the classical ontological theories of events in which
events obey extensional mereology, cannot qualitatively change, cannot be bearer of
modal properties and are locked inside a history) and premise 2 (i.e., OIDs should work
as proper names obeying singular and rigid reference) then the inescapable conclusion
is: we can only have OIDs referring to events after the point in which there is no
possibility of branching, i.e., we can only have OIDs referring to historical events.

In summary, Mr. Anderson is not identical to any event that will culminate to be
Mr. Anderson’s life in a given world. In fact, it correlates to a set of possible lives or
possible unfoldings. That is, the proper name (or OID) “Mr. Anderson” can be used to
refer to the very same individual in the past and in the present and we can use it in
counterfactual reasoning (e.g., what if Mr. Anderson hadn’t taken that pill and con-
tinued to be a law-abiding computer programmer?; What if Mick Jagger hadn’t
dropped the London School of Economics and pursued a career as an economist?).
In contrast, “Mr. Anderson’s life at t1” could NOT have been different from what it is.
Although, the very SAME Mr. Anderson could have had a different life up to that
point.

To be the best of our knowledge, this problem has not been discussed in the
conceptual modeling literature up to now. When events are represented in structural
conceptual models, they are always assumed to be both instantaneous and atomic [8].
Now, if events are instantaneous and atomic, they are only instantiated when they are
over, i.e., all event instances are historical instances. For this reason, the aforemen-
tioned problem does not arise. However, frequently in structural conceptual models,

28 G. Guizzardi et al.

we want to represent and refer via an OID to ongoing events. We want to talk about the
conversation, the marriage, the employment, the presidential mandate, the football
game, and the car rental as on going events that seem to somehow “change”. For
instance, while referring to the marriage between John and Mary, we would like to refer
to it by a proper name, i.e., to use an OID that refers to something that can truly change
qualitatively while remaining the same (e.g., John and Mary’s marriage as a whole used
to be passionate and now it is cold and distant) and to something that could have been
different (e.g., John and Mary’s marriage would have lasted longer hadn’t they moved
to Australia).

There are two possible strategies one might consider to try to escape the afore-
mentioned consequences. As expected, they amount to denying at least one of the
premises (1) and (2). In any case, this leads to dire consequences. If we reject premise
(2), we need to replace it with a completely non-classical semantics for structural
conceptual models in which OIDs do not satisfy either singular reference or rigid
designation. If we reject premise (1), we need to come up with a completely
non-classical ontological theory of events. One that is at odds with the commonly
accepted view in linguistics [28] and in formal ontology in philosophy [26]. In par-
ticular, one that is at odds with the commonly shared view of events present in the
foundational ontologies that are most commonly employed in the foundations of
conceptual modeling [9, 10].

In the next section, we explore a modeling alternative that accepts both premises
(1) and (2), but that also allows for proper names such as “John & Mary’s marriage” or
“Paul’s Dengue Fever” to refer to entities that can change and that can be the bearers of
modal properties, namely, existentially dependent endurants.

3.4 Where Do Events Come from?

As previous discussed, we take events to be the manifestation of qualities and, in
particular, of dispositions [11, 17, 18]. So, for an event to unfold, the potentiality of that
unfolding must exist as a concrete property of an endurant. As consequence, events are
dependent on particularized properties (again, qualities and dispositions), which are in
turn dependent on endurants. Ergo, events are dependent on endurants. For instance,
the event of the heart pumping is the manifestation of the heart’s capacity to pump; the
event of the metal being attracted by the magnet is the manifestation of a number of
dispositions of these entities (including the magnet’s disposition to attract metallic
material); Paul’s Dengue Fever as a process is the manifestation of a number of
complex dispositions that qualify that disease inhering in Paul; John & Mary’s mar-
riage as a process is the manifestation of a number of relational properties that con-
stitute their marriage as an endurant (e.g., commitments and claims, intentions, desires,
expectations, etc.).

Since events are existentially dependent on endurants and are manifestations of
particular aspects of these endurants, whenever an event unfolds, these aspects (and the
endurants they inhere in) must be present. For this reason, we frequently use the same
term to refer both to the event and these underlying aspects. This is a case of systematic
polysemy [31], a phenomenon that occurs very frequently in language. Take, for

Ontological Considerations About the Representation of Events 29

instance, the sentences: (a) this duck in the backyard is common around Europe;
(b) this book is heavy to carry but easy to read; (c) we can meet in front of the bank
around the corner that specializes in sub-prime loans. In (a), we have a polysemic
reference to both an individual (that duck in the backyard) and a kind (ducks in
general); in (b) to a physical object (the bound volume) and an information content (the
book as literary work); in (c) to a physical space (the bank’s building) and to an
organization. In an analogous manner, when we use the term “John & Mary’s mar-
riage” or “Paul’s Dengue Fever”, we sometimes refer to the endurant (a complex of
particularized properties) and sometimes to the event that is the accumulated mani-
festation of this endurant up to a certain point, i.e., as a definite description. Given the
discussion in the previous section, we claim that whenever we refer to something that is
on going, that can qualitatively change and still maintain its identity, we are not
referring to an event but to the endurant underlying that event. So, when we say that
Paul’s Dengue Fever up to now has been composed of episodes of high fever, followed
by episodes of joint pain that lasted for days, we are referring to the event; when we say
that Paul’s Dengue Fever has changed and has become a case of Dengue Hemorrhagic
Fever now, we are referring to a complex of dispositions (an endurant). Given our
previous discussion, if we want to use “Paul’s Dengue Fever” as an OID, it must refer
to the latter endurant. That is why in Fig. 1, what is referred by the term “Car Rental” is
the endurant, the relator, which can change in time, go through phases, etc. Of course,
as a manifestation of the many dispositions (e.g., commitment, claims, liabilities,
capacities) constituting this car rental relator, we have, in a particular unfolding of the
world, a car rental complex event.

Fig. 3. A modeling pattern for representing events in structural business models

30 G. Guizzardi et al.

In the sequel, we propose a modeling pattern that captures the relation between
endurants and the events whose parts accumulate as their manifestations (Fig. 3).
In this pattern, endurants are created by creation events. As events, creation events
begin and end at certain time points. The creation moment of an endurant (created in
relation) is derived from the termination time point of its creation event. Endurants
have a causally active phase (e.g., a living person, an on-going disease, an active
enrollment). In this phase, the particularized properties (qualities and dispositions) of
this endurant are manifested through a number of events (events in the life of endurant)
that accumulate to constitute, at each point, a different process that represents the
current life of the endurant. Endurants also have a causally inactive phase (e.g., a
deceased person, a finished assignment, a legally terminated marriage). In this latter
phase, the properties of that endurant can no longer be manifested and, its qualities are
immutable regarding their values. Moreover, in that phase, we can refer to the final life
of the endurant as the total accumulation of all events in the life of the endurant.

As an example, suppose Peter makes an appointment with Jane (his supervisor) to
discuss his Ph.D. thesis in the subsequent week. After they have agreed to meet (an
event), the appointment does not yet exist as an event, but it does exist as an aggre-
gation of mutual commitments, individual goals, mutual expectations, etc. (again, an
endurant, more precisely, a relator). So, we take the agreement event as an atomic event
that creates the appointment. The appointment can change (they might decide to drop
of the topics of the agenda), it might be postponed, its manifestation (i.e., the
appointment as an event) might even not occur at all. While occurring, this appoint-
ment can be manifested through a number of events that will accumulate to be the “life
of the appointment”, a particular event in which Paul and Jane participate.

3.5 An Illustration

In [32], Olivé discusses the issue of relationship reification and elaborates on the
connection between reified relationships and their temporal properties. He discusses the
following example: suppose an employee works in a project. In that project, the
employee has a number of worked hours per daily time interval. Moreover, for each
convex time interval someone works in that project, he is connected to a single task and
has a single pre-fixed deadline. Moreover, for all the non-convex time intervals that are
periods in which he works in that project, the employee has the same role and the same
manager. Olivé then proposes three different types of temporal relationship reifications:
(1) per instant: a relationship r is reified into a different entity e for each time point in
which r holds. In this example, for each working day in a given project, we have a
different entity e which captures the worked hours in that day; (2) per interval: a
relationship r is reified into a different entity e’ for each temporal interval during which
r holds. In this example, e’ can then capture properties such as deadline and objective;
(3) per life span: a relationship r (instance of WorksIn) is reified into a single entity e,
which is the same during the whole life span of r. In this example, e’’ can then capture
properties such as assigned role and manager.

Given the analysis presented in this paper, the first question that comes to the mind
is: what kinds of entities are being represented in these examples? If we take (1), in the

Ontological Considerations About the Representation of Events 31

solution presented by Olivé in the paper, the reified entity is termed.Work Day having
properties such as HoursWorked and produced deliverable(s) (if any). Olivé highlights
two meta-properties of this entity: it is instantaneous and atomic. Given the chosen
name (and these meta-properties), a salient interpretation is that the reified entity
represents an event, individuated by a pre-fixed time-interval. If this is the case, then an
instance of this relationship corresponds to an event. An exemplar instance of Work
Day is the event in which John worked 10 h and produced deliverables d1 and d2 in
March 20th, 2013. Since events cannot change in a qualitative way, then both the
attribute HoursWorked and the relationship with the produced deliverable(s) are
immutable (and thus are marked as readOnly in UML).

Let us take now the case (2). In that case, Olivé’s solution produces an entity
termed Assignment connecting an Employee and a Project. An assignment, is con-
nected to a task and a deadline and is associated to a given time convex interval. Now,
in this second case, it is not obvious that Assignment is an event. Assignment can have
modal properties (e.g., it can fulfilled before the deadline, it can be delayed, it can be
fulfilled in time), an assignment can be manifested through a number of possible
processes (for instance, being constituted by a different number of actual WorkDay
instances), an assignment can change in a qualitative way (for instance, the number of
current worked hours can change). Moreover, although Olivé assumes that the deadline
is fixed, one can easily imagine a situation in which the deadline for an assignment can
be renegotiated and, hence, possible changed. In fact, an Assignment can even fail to
manifest at all (for example, if the employee fails to actually work in the project or to
deliver the object of the assignment goal). However, even if this is the case, the
Assignment (as a bundle of commitments and claims) holds for the entire time interval
(for example, between creation and deadline, fulfillment or abandonment of the
assignment) which is different from the time (sub)intervals in which the particularized
properties in this assignment are actually being manifested through events. Of course,
one can still assume here that what we have is a historical model that only models
assignment once their manifestations are finished. Again, what we would have here
would be the representation of a historical event. Once more, all properties of the
relationship would be immutable (e.g., the actual number of worked hours, if the task
was fulfilled or not, etc.). Finally, let us analyze case (3). In that case, Olivé’s solution
reifies the relationship by something (interestingly) termed Participation. Unlike in
cases (1) and (2), however, a Participation is not correlated to a convex time interval.
In other words, a Participation can be active or inactive being, hence, correlated with
multiple disconnected time intervals. Once more, in case we only look at participations
in hindsight, Participations can be thought as complex historical facts correlated to the
mereological sum of possibly several historical events (i.e., historical participations).
However, it seems that in this case the most salient interpretation is to have partici-
pation as a complex bundle of commitments (a better name could be Project Alloca-
tion) that can change qualitatively in many ways (e.g., the number of working hours
can change, the value paid by worked hour can change), can bear modal properties
(e.g., it can be active or not – I can be allocated to a project even if I am in a medical
leave) and can be manifested by a number of possible processes and, hence, it can
correspond to a number of possibly different participations (in the sense defended here).
In these different possible manifestations of John’s allocation to project P1, he can have

32 G. Guizzardi et al.

different task assignments, which can be fulfilled or not, with different performance
evaluations, in different dates with different amounts of effort, etc. In any case, in the
latter (arguably more realistic) interpretation, the lifetime of the Project Allocation is
potentially different from the sum of the time intervals in which this this relator is being
manifested, i.e., different from the lifetime of the participations in the corresponding
event.

Figure 4 shows a model for this scenario, revisiting Olivé’s example and containing
an instantiation of the pattern of Fig. 3. In this model, a Task Assignment is an endurant
that throughout its active life is manifested through a number of Work Day events,
which are events in the life of the Task Assignment. An instance of Work Day is also
possibly a creation event for another endurant, namely, a Deliverable. When a Task
Assignment is in a causally inactive phase (i.e., it has terminated), we have a complex
historical process (Task Assignment Process), which is the final life of the Task
Assignment, and is composed of all Work Day manifestations of it. As previously
discussed, since events are mereological sums of their parts, all Work Day events

Fig. 4. Olivé’s example revisited

Ontological Considerations About the Representation of Events 33

composing a Task Assignment Process are essential to it. Moreover, attributes such as
starting date and finalization date (for Project Allocation and Task Assignment) are
specializations of the general relations of created in and terminated in, respectively
(in Fig. 3). In this figure, we have the attribute day of reference in Work Day repre-
senting both the start and end time reference points for that event (since, by definition
of work day, they are the same). The start and actual finalization dates of the Task
Assignment Process are derived from the attributes of its constituent events, namely,
the date of references of the first and last of the Work Day events.

4 Final Considerations

Several approaches to enterprise modeling manage the complexity of an organization
by describing the organization from different perspectives. The need to relate various
partial descriptions of the organization is addressed in virtually all enterprise modeling
approaches and has been recognized in Zachman’s early work in 1987 [2]: “each of the
different descriptions has been prepared for a different reason, each stands alone, and
each is different from the others, even though all the descriptions may pertain to the
same object and therefore are inextricably related to one another.”

This need has led to the development of relations between architectural domains in
enterprise architecture and enterprise modeling approaches [3]. One of these domains,
namely that of organizational behavior, has received significant attention in the context
of business process modeling and management. Another important domain, that of
object-like entities (or “structure”) is strongly inter-related with the process domain.
While the process domain focuses on “how” the business process activities are
structured and performed, the structure domain focuses on “who” performs these
activities and “what” undergoes change.

We have shown in this paper that a rich ontological account is required to explain
the relation between both domains. This account enables us to understand how events
can be incorporated in a structural conceptual model. We have discussed a modeling
pattern that arises from dealing with the different nature of events and endurants; in this
pattern, endurants and related events coexist, complementing each other through
well-defined relations. The pattern extends the treatment of reified events that was
proposed in [8].

We believe that the conceptual foundations discussed here can serve to improve the
understanding of artifact-centric business process approaches [4–7] as well as case
handling [33]. Note that the focus here is not on “data objects” but rather on real-world
objects (including social objects, commitments, relationships) that are pervasive in the
business world; representing these objects and their relations to events is key to cap-
turing business reality accurately.

Acknowledgements. This research is partially funded by the Brazilian Research Funding
Agencies CNPq (grants # 311313/2014-0, 485368/2013-7, 312158/2015-7 and 461777/2014-2)
and FAPES (# 69382549). The authors would like to thank Roel Wieringa, Alex Borgida and
John Mylopoulos for comments and fruitful discussions on the topics of this article.

34 G. Guizzardi et al.

References

1. Casati, R., Varzi, A.: Events. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy
(2015). http://plato.stanford.edu/archives/win2015/entries/events/

2. Zachman, J.A.: A framework for information systems architecture. IBM Syst. J. 26(3), 276–
292 (1987)

3. Lankhorst, M., et al.: Enterprise Architecture at Work - Modelling, Communication, and
Analysis. Springer, Heidelberg (2005)

4. Meyer, A., Weske, M.: Activity-centric and artifact-centric process model roundtrip. In:
Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 167–181.
Springer, Heidelberg (2013)

5. Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling business contexture and behavior using
business artifacts. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES
2007. LNCS, vol. 4495, pp. 324–339. Springer, Heidelberg (2007)

6. Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational specification. IBM
Syst. J. 42(3), 428–445 (2003)

7. Cohn, D., Hull, R.: Business artifacts: a data-centric approach to modeling business
operations and processes. Bull. IEEE Comput. Soc. Tech. Committee Data Eng. 32(3), 3–9
(2009)

8. Olivé, A., Raventós, R.: Modeling events as entities in object-oriented conceptual modeling
languages. Data Knowl. Eng. 58, 243–262 (2006)

9. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models, Telematica
Instituut Fundamental Research Series No. 15, The Netherlands (2005). ISBN
90-75176-81-3

10. Borgo, S., Masolo, C.: Foundational choices in DOLCE. In: Staab, S. (ed.) Handbook on
Ontologies, pp. 361–381. Springer, Heidelberg (2009)

11. Guarino, N., Guizzardi, G.: Relationships and events: towards a general theory of reification
and truthmaking. In: 15th International Conference of the Italian Association for Artificial
Intelligence (2016, submitted)

12. Guarino, N., Guizzardi, G.: “We need to discuss the relationship”: revisiting relationships as
modeling constructs. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAISE 2015.
LNCS, vol. 9097, pp. 279–294. Springer, Heidelberg (2015)

13. Guizzardi, G., et al.: Towards ontological foundation for conceptual modeling: the unified
foundational ontology (UFO) story. Appl. Ontol. 10(3–4), 259–271 (2015). IOS Press

14. Guerson, J.: Representing dynamic invariants in ontologically well-founded conceptual
models. Master thesis, Computer Science Department, Federal University of Espírito, Santo,
Brazil (2005)

15. Lombard, L.B.: Events: A Metaphysical Study. Routledge, London (1986)
16. Bunge, M.: Treatise on Basic Philosophy the Furniture of the World Ontology I. Springer,

Heidelberg (1977)
17. Guizzardi, G., Wagner, G., de Almeida Falbo, R., Guizzardi, R.S., Almeida, J.P.A.: Towards

ontological foundations for the conceptual modeling of events. In: Ng, W., Storey, V.C.,
Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 327–341. Springer, Heidelberg (2013)

18. Molnar, G.: Powers: A Study in Metaphysics. Oxford University Press, Oxford (2006). Ed.
by Stephen Mumford

19. Santos Jr., P.S., Almeida, J.P.A., Guizzardi, G.: An ontology-based semantic foundation for
ARIS EPCs. In: 25th ACM Symposium on Applied Computing (ACM SAC 2010), Sierre,
Switzerland (2010)

Ontological Considerations About the Representation of Events 35

http://plato.stanford.edu/archives/win2015/entries/events/

20. Martins, A.F., et al.: Using a Foundational Ontology to Address Ambiguity in Business
Process Modeling. In: 7th Brazilian Symposium on Information Systems (SBSI 2011),
Salvador, Brazil (2011). (in Portuguese)

21. Guizzardi, G., Wagner, G.: Can BPMN be used for making simulation models? In: Barjis, J.,
Eldabi, T., Gupta, A. (eds.) EOMAS 2011. LNBIP, vol. 88, pp. 100–115. Springer,
Heidelberg (2011)

22. Guizzardi, G., Wagner, G.: Towards and ontological foundation of discrete event simulation.
In: 16th International Winter Simulation Conference, Baltimore, USA (2010)

23. Nardi, J., et al.: A Commitment-Based Reference Ontology for Services Information
Systems. Oxford University Press, Oxford (2015)

24. Azevedo, C., et al.: Modeling Resources and Capabilities in Enterprise Architecture:
A Well-Founded Ontology-Based Proposal for ArchiMate Information Systems. Oxford
University Press (OUP), Oxford (2015)

25. Estañol, M., Queralt, A., Sancho, M.R., Teniente, E.: Artifact-centric business process
models in UML. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132,
pp. 292–303. Springer, Heidelberg (2013)

26. Simons, P.M.: Parts. An Essay in Ontology. Clarendon Press, Oxford (1987)
27. Kim, J.: Events as property exemplifications. In: Action Theory, pp. 159–177. Reidel (1976)
28. Moltmann, F.: Events tropes and truthmaking. Philos. Stud. 134, 363–403 (2007)
29. Wieringa, R., de Jonge, W.: Object identifiers, keys, and surrogates: object identifiers

revisited. Theor. Pract. Object Syst. 1(2), 101–114 (1995)
30. Kent, W.: Data and Reality. Elsevier Science Ltd, Amsterdam (1978)
31. Ravin, Y., Leacock, C.: Polysemy: Theoretical and Computational Approaches. Oxford

University Press, Oxford (2002)
32. Olivé, À.: Relationship reification: a temporal view. In: Jarke, M., Oberweis, A. (eds.)

CAiSE 1999. LNCS, vol. 1626, pp. 396–410. Springer, Heidelberg (1999)
33. van der Aalst, W.M.P., Weske, M.: Case handling: a new paradigm for business process

support. Data Knowl. Eng. 53(2), 129–162 (2005)

36 G. Guizzardi et al.

Automated Discovery

A Unified Approach for Measuring Precision
and Generalization Based on Anti-alignments

B.F. van Dongen1(B), J. Carmona2, and T. Chatain3

1 Eindhoven University of Technology, Eindhoven, The Netherlands
b.f.v.dongen@tue.nl

2 Universitat Politècnica de Catalunya, Barcelona, Spain
jcarmona@cs.upc.edu

3 LSV, ENS Cachan, CNRS, INRIA, Universit Paris-Saclay, Cachan, France
chatain@lsv.ens-cachan.fr

Abstract. The holy grail in process mining is an algorithm that, given
an event log, produces fitting, precise, properly generalizing and sim-
ple process models. While there is consensus on the existence of solid
metrics for fitness and simplicity, current metrics for precision and gen-
eralization have important flaws, which hamper their applicability in
a general setting. In this paper, a novel approach to measure preci-
sion and generalization is presented, which relies on the notion of anti-
alignments. An anti-alignment describes highly deviating model traces
with respect to observed behavior. We propose metrics for precision
and generalization that resemble the leave-one-out cross-validation tech-
niques, where individual traces of the log are removed and the computed
anti-alignment assess the model’s capability to describe precisely or gen-
eralize the observed behavior. The metrics have been implemented in
ProM and tested on several examples.

1 Introduction

The goal of process mining is to gain insights into the behavior of operational
information systems by analyzing event logs. Often, process mining is considered
synonymous to process discovery, which aims at describing observed behavior of
a business process in the form of an (executable) process model. The behavior
used as input is considered to be given in the form of an event log [1].

Traditionally, event logs are considered to be accurate representations of the
behavior of a system in such as way that each event refers to an activity that
was executed in the context of a case. By deriving a process model from such an
event log, process discovery algorithms give insights into the underlying system.

There has been always a discussion on how to interpret process discovery
results, i.e. how does the produced model relate to the actual, but unknown,
system in four quality dimensions [2]:

Fitness quantifies how much of the observed behavior is captured by the model,
Generalization quantifies how well the model explains unobserved system

behavior,
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 39–56, 2016.
DOI: 10.1007/978-3-319-45348-4 3

40 B.F. van Dongen et al.

Precision quantifies how much behavior exists in the model that was not
observed, and

Simplicity quantifies the complexity of the model.

In recent years, many metrics have been developed to measure fitness, pre-
cision and generalization by comparing the event log with the generated model.
For fitness, the state-of-the-art is in alignments, a technique that given a trace
and a model produces the most likely explanation for that trace [3]. As the focus
of this paper is not on fitness, we assume our models to be perfectly fitting.
If a trace in an event log does not fit the model, we use the alignment-based
explanation of that trace instead.

Measuring precision is typically done by projecting the observed traces onto
the model and then count the number of ways to “escape” from the observed
behavior [4]. The more “escaping edges” there are, the lower the precision. The
downside of such an approach is that precision only considers the behavior of
the model that is very close to the event log.

For generalization, only few metrics exist [5,6]. Some of them are again based
on the projection of the log onto the model. For instance, the approach in [6]
considers “frequency of use”, where models are assumed to generalize if all parts
of the model are used equally frequently when reproducing the event log.

In this paper, we take a fresh look at precision and generalization by using the
concept of an anti-alignment [7]. An anti-alignment of a model with respect to a
log is an execution of a model which is as different as possible from the observed
log. We instruct and adapt cross-validation-based techniques in combination
with anti-alignments to derive solid metrics that show a better estimation with
respect to the state-of-the-art metrics. The following example illustrates this.

1.1 Motivating Example

Table 1. An example event log

Trace Frequency
〈A,B,D,E, I〉 1207
〈A,C,D,G,H, F, I〉 145
〈A,C,G,D,H, F, I〉 56
〈A,C,H,D, F, I〉 23
〈A,C,D,H, F, I〉 28

Throughout the paper, we use an exam-
ple of a log and several models. The
example we use is taken from page 64
of [8] and consists of the simple event
log shown in Table 1. The log consists of
only five different traces, with various fre-
quencies. The models in Figs. 1 through 4
are four examples of models often used to
show the differences between fitness, pre-
cision and generalization. The models in
Figs. 5, 6, 7 and 8 are models over the same set of activities with varying loop
and/or parallel constructs.

The model in Fig. 1 shows the “ideal” process discovery result, i.e. the model
that is fitting, fairly precise and properly generalizing. The other models are
chosen such that they score poorly on at least one of the dimensions fitness,
precision or generalization.

A Unified Approach for Measuring Precision and Generalization 41

Fig. 1. The ideal model. Fitting, fairly
precise and properly generalizing.

Fig. 2. Most frequent trace. Precise,
but not fitting or generalizing.

Fig. 3. The flower model. Fitting and
generalizing, but very imprecise.

Fig. 4. All traces separate. Fitting,
precise, but not generalizing.

Fig. 5. A model with G and H in
parallel.

Fig. 6. A model with G and H in self-
loops

Fig. 7. A model with D in a self-loop Fig. 8. A model with all transitions in
parallel.

42 B.F. van Dongen et al.

Table 2. Precision and generalization for all models

Model PET PET C Pa Ga Pne Gne F Pt Pl P Gt Gl G

Figure 1 Generating
model

0.992 0.994 0.982 0.585 0.995 0.594 1.000 0.886 0.857 0.871 0.270 0.143 0.206

Figure 2 Single trace 1.000 1.000 1.000 0.900 0.893 0.000 0.915 1.000 1.000 1.000 0.000 0.000 0.000

Figure 3 Flower model 0.136 0.119 0.142 0.903 0.117 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000

Figure 4 Separate traces 1.000 0.359 1.000 0.145 0.985 0.114 1.000 1.000 1.000 1.000 0.000 0.000 0.000

Figure 5 G,H in parallel 0.894 0.936 0.947 0.511 0.950 0.615 1.000 0.800 0.800 0.800 0.268 0.183 0.225

Figure 6 G,H as self-
loops

0.884 0.889 0.947 0.722 0,874 0.615 1.000 0.819 0.357 0.588 0.290 0.643 0.466

Figure 7 D as self-loop 0.763 0.760 0.797 0.728 0.720 0.619 1.000 0.688 0.357 0.523 0.485 0.643 0.564

Figure 8 All parallel 0.273 0.170 0.336 0.178 0.158 0.972 0.739 0.067 0.000 0.033 0.417 0.500 0.459

Figure 11 C,F equal loop 0.820 0.589 0.839 0.585 0.600 0.594 1.000 0.490 0.429 0.459 0.259 0.341 0.300

Figure 12 Round-robin 0.579 0.185 0.889 0.400 0.194 0.118 0.616 0.000 0.000 0.000 0.000 0.000 0.000

Table 2 compares some conformance metrics for the models in Figs. 1, 2, 3,
4, 5, 6, 7 and 8 with the metrics proposed in this paper: P (computed as the
average of two metrics Pt and Pl) and G (average of Gt and Gl)1. The fitness
value F is measured using the alignment based technique of [9] and from the
same author are the values of Pa and Ga which are defined in [3]. The precision
values in PET and PETC are defined in [10]. Finally, the values Pne and Gne

denote the precision and generalization metrics from [5], respectively. Clearly,
the existing metrics do not agree on all models and do not always agree with
the intuition behind precision and generalization. For example, the very precise
model of Fig. 4 is considered to have a precision of 0.359 by the PETC metric.
Furthermore, the model in Fig. 2 is considered to be very generalizing by the Ga

metric, while this model clearly does not generalize the observed behavior. Also,
the model of Fig. 6 scores very high in PET -PETC-Pa, although a trace with a
thousand G’s is possible in the model. One can see that the metrics presented
in this paper are free from the aforementioned problems.

The paper is structured as follows: in the next section a brief description
of related work is provided. Preliminaries are presented in Sect. 3. The core
of the paper is provided in Sects. 4 and 5, where techniques for precision and
generalization are presented, respectively. Evaluation with further examples and
tool support is reported in Sect. 6, and Sect. 7 concludes the paper.

2 Related Work

The seminal work in [2] was the first one in relating observed behavior (in form
of a set of traces), and a process model. In order to asses how far can the model
deviate from the log, the follows and precedes relations for both model and log
are computed, storing for each relation whereas it always holds or only some-
times. In case of the former, it means that there is more variability. Then, log and
model follows/precedes matrices are compared, and in those matrix cells where
the model has a sometimes relation whilst the log has an always relation indicate

1 Throughout the paper, we will use P and G letters to denote precision and general-
ization metrics, respectively.

A Unified Approach for Measuring Precision and Generalization 43

that the model allows for more behavior, i.e., a lack of precision. This technique
has important drawbacks: first, it is not general since in the presence of loops in the
model the characterization of the relations is not accurate [2]. Second, the method
requires a full state-space exploration of the model in order to compute the rela-
tions, a stringent limitation for models with large or even infinite state spaces.

In order to overcome the limitations of the aforementioned technique, a dif-
ferent approach was proposed in [4]. The idea is to find escaping arcs, denoting
those situations where the model starts to deviate from the log behavior, i.e.,
events allowed by the model not observed in the corresponding trace in the log.
The exploration of escaping arcs is restricted by the log behavior, and hence the
complexity of the method is always bounded. By counting how many escaping
arcs a pair (model, log) has, one can estimate the precision of a model. Although
being a practical and fast estimation for precision, it may underestimate preci-
sion when escaping arcs lead to highly deviating behavior.

In [5] the notion of weighted artificial negative events from a log is proposed.
Given a log L, an artificial negative event is a trace σ′ = σ · a where σ ∈ L, but
σ′ /∈ L. Algorithms are proposed to weight the confidence of an artificial negative
event, and they can be used to estimate the precision and generalization of a
process model by computing four sets of events: i) positive events which could
be replayed without error (TP), ii) negative events which could be replayed and
thus erroneously permitted by the process model (FP), iii) generalized events
(negative events with low confidence) which could be replayed without error
and confirm model’s ability to generalize (AG), and iv) generalized events which
could not be replayed by the process model (DG). The formula TP

TP+FP provides
a metric for precision, whilst AG

AG+DG provides a metric for generalization. Like
in [4], by only considering one step ahead of log/model’s behavior, these metrics
may underestimate precision/generalization considerably. For instance, the very
high generalization provided by this metric to the model of Fig. 8 (0.972, i.e.,
almost perfect generalization) contrast with the value provided by our metric
(0.459), the latter being more in line with the real generalization of this model
with respect to the log of Table 1. Furthermore, the model used to generate the
log is considered more precise (0.995) than a model that only allows for a single
trace (0.893), while a model with only one possible trace is as precise as it can be.

3 Preliminaries

In this paper we choose Petri nets as process modeling notation, although the
theory presented is valid for any other formalism that has replay semantics.

3.1 Petri Nets and Process Mining

Definition 1 ((Labeled) Petri net). A (labeled) Petri Net [11] is a tuple N =
〈P, T,F ,m0,mf , Σ, λ〉, where P is the set of places, T is the set of transitions
(with P ∩ T = ∅), F : (P × T) ∪ (T × P) → {0, 1} is the flow relation, m0 is the
initial marking, mf is the final marking,

44 B.F. van Dongen et al.

Σ is an alphabet of actions and λ : T → Σ labels every transition by an
action.

A marking is an assignment of a non-negative integer to each place. If k is
assigned to place p by marking m (denoted m(p) = k), we say that p is marked
with k tokens. Given a node x ∈ P ∪ T , its pre-set and post-set are denoted by
•x and x• respectively.

A transition t is enabled in a marking m when all places in •t are marked.
When a transition t is enabled, it can fire by removing a token from each place
in •t and putting a token to each place in t•. A marking m′ is reachable from m
if there is a sequence of firings t1t2 . . . tn that transforms m into m′, denoted by
m[t1t2 . . . tn〉m′. A sequence of actions a1a2 . . . an is a feasible sequence (or run)
if there exists a sequence of transitions t1t2 . . . tn firable from m0 and such that
for i = 1 . . . n, ai = λ(ti). Let L(N) be the set of feasible sequences of Petri net
N . The set of reachable markings from m0 is denoted by [m0〉, and form a graph
called reachability graph. Let Ln(N) ⊆ L(N) be the set of complete traces of N
with length n or shorter, i.e. Ln(N) = {σ ∈ L(N) | m0[σ〉mf ∧ |σ| ≤ n}.

An event log is a collection of traces, where a trace may appear more than
once. Formally:

Definition 2 (Event Log). An event log (L, φ) is a set of traces L ⊆ Σ∗ and
function denoting the occurrence frequency of each trace denoted by φ : L → N,
i.e. φ(t) = 1 implies that trace t was observed once in the log. If for all t ∈ L
holds φ(t) = 1, we omit φ from the notation. The number of traces in a log is
denoted by |L|.

Quality Dimensions. Process mining techniques aim at extracting from a
log L a process model N (e.g., a Petri net) with the goal to elicit the process
underlying in S. By relating the behaviors of L, L(N) and S, particular concepts
can be defined [6]. A model N fits log L if L ⊆ L(N). A model is precise in
describing a log L if L(N)\L is small. A model N represents a generalization of
log L with respect to system S if some behavior in S\L exists in L(N). Finally,
a model N is simple when it has the minimal complexity in representing L(N),
i.e., the well-known Occam’s razor principle.

3.2 Anti-alignments

Anti-alignments were introduced in [7]. An anti-alignment is a run of a model
which differs sufficiently from all the observed traces in a log. In order to measure
how much a run differs from an observed trace, one needs a notion of distance;
actually, a mapping d : Σ∗ × Σ∗ → [0..1] is sufficient to define anti-alignments:
the other axioms of distance functions (symmetry, triangle inequality, . . .) are
not required for the definition of anti-alignments. For a log L, we write d(σ,L) =
mint∈L d(σ, t). If L = ∅, then d(σ,L) = 1.

Definition 3 (Anti-alignment). A (n, δ)-anti-alignment of a model N w.r.t.
a log L and a distance function d is a run σ ∈ L(N) such that |σ| = n and
d(σ,L) ≥ δ.

A Unified Approach for Measuring Precision and Generalization 45

Choice of the Distance Function. A simple choice of a distance function,
used in [7], can be constructed using the Hamming distance after truncating or
padding γ to the length of σ, it simply counts the number of mismatches between
the actions in the two words, i.e. the number of indices i such that σi = γi

divided by the length of σi. But concerning the application to process mining,
Hamming distance is usually too rigid: indeed, every symbol σi is compared only
to the exact corresponding symbol γi. This puts for instance the word ababababab
at distance 1 from bababababa. In process mining techniques, other distances
are usually preferred (see for instance [3]), typically Levenshtein’s distance (or
edit distance) which counts how many replacements, deletions and insertions of
symbols are needed to obtain γ projected to labeled transitions starting from
σ, divided by the length of the longest trace. Unless explicitly stated otherwise,
all examples in this paper use the edit distance function with equal costs for
remove, replace and insert operations.

Example 1. Consider the Petri net shown in Fig. 1, and the log of Table 1.
The trace 〈A,C,G,H,D, F, I〉 is a (7, 1

7) anti-alignment when considering edit-
distance as a distance metric: it can be obtained by inserting G in the observed
trace 〈A,C,H,D, F, I〉; and the length of the longest trace is 7. Notice that for
δ > 1

7 there are no anti-alignments for this example. When considering Hamming
distance, the same trace is a (7, 2

7) anti-alignment.

Example 2. Consider the Petri net shown in Fig. 2, and the log of Table 1. The
trace 〈A,B〉 is a (2, 3

5) anti-alignment for this model when considering either
edit-distance or Hamming distance as a distance metric: in both case, the closest
observed trace is 〈A,B,D,E, I〉.
Example 3. Consider the Petri net shown in Fig. 3, and the log of Table 1. The
trace 〈A,B,D,E, I,A,A,A,A〉 is a (9, 4

9) anti-alignment for either edit or Ham-
ming distance. Given n = 9, the trace 〈τi, B,A,A,A,A,A,A,A,A, τf 〉 is a (9, 1)
anti-alignment when considering either edit-distance or Hamming distance as a
distance metric. Notice that for any 0 ≤ n and 0 ≤ δ ≤ 1 an (n, δ) anti-alignment
exists.

Example 4. Consider the Petri net shown in Fig. 4, and the log of Table 1. The
trace 〈A,C,D,G,H, F, I〉 is a (7, 0) anti-alignment when considering any dis-
tance metric.

In the context of process mining, discovered models typically consist of a
model and an initial and final marking (where the latter is often implicit), i.e.
each execution of the underlying system is assumed to be a sequence in the
model from the initial to the final marking. Therefore, we define the concept of
a maximal, complete anti-alignment as follows:

Definition 4 (Maximal, Complete Anti-alignments, Γ d,mx
n (N, L)). Let

N be a model. We define Γ d,mx
n (N,L) ⊆ Ln(N) as the set of maximal, complete

anti-alignments, such that for all σ ∈ Γ d,mx
n (N,L) holds that ∃σ′ ∈ Ln(N) \

Γ d,mx
n (N,L) with d(σ′, L) > d(σ,L).

46 B.F. van Dongen et al.

In the remainder of this paper, we write γd,mx
n (N,L) whenever we need an

arbitrary element from the set Γ d,mx
n (N,L).

Note that the set of maximal complete anti-alignments can be empty in
case there is no trace in the model with length less than n. Furthermore, in
this paper, we use a representative γd,mx

n (N,L) ∈ Γ d,mx
n (N,L) in case there

are more maximal complete anti-alignments. One could argue that an average
over the entire (by definition finite) set could be used as well. However, this is
computationally expensive and for the examples covered in this paper does not
add to the qualitative results.

4 Measuring Precision

As stated earlier, a model N is precise in describing a log L if L(N) \L is small,
i.e. if the language of the discovered model is not much larger than the observed
behavior. As the behavior of model N is often infinite (when loops are present
in the model) and the log L is by definition finite, directly comparing L(N) with
L is meaningless. Therefore, classical precision metrics [4] estimate precision
by analyzing so-called “escaping edges”, i.e. the points where the model allows
to deviate from observed behavior. The more deviation points there are, the
lower the precision. Existing metrics however rely on an abstraction mechanism
to decide how to count the deviation points and in [4] a number of abstrac-
tion mechanisms is presented, each with their own pro’s and cons. Each of the
abstraction mechanisms works well in one example, but not in the other and
vice versa.

In this paper, we suggest a fresh view on precision, using anti-alignments.
The intuition behind our metric is as follows. A very precise process model allows
for exactly the observed traces to be executed and not more. Hence, if one trace
is removed from the log, this trace becomes the anti-alignment for the remaining
log as it is the only execution of the model that is not in the log. We use this
property to estimate precision.

Definition 5 (Trace-Based Precision). Let (L, φ) be an event log and N a
model. We define trace-based precision as follows:

Pt(N,L) = 1 − 1
|L| ·

∑

σ∈L

d(σ, γd,mx
|σ| (N,L \ {σ})).

We assume a perfectly fitting log, i.e. σ ∈ L|σ|(N) and hence γd,mx
|σ| (N,L \ {σ})

exists.

For each trace σ in the log, we compute a maximal anti-alignment γ for the
model N and the log without that trace L\{σ}. This anti-alignment is guaranteed
to reach the final marking mf and hence represents an element of L(N). Then, we
compute the distance between σ and γ which we average over the log, not taking
into account the relative frequencies of the traces in the log. If the language of the

A Unified Approach for Measuring Precision and Generalization 47

model equals the log, then the anti-alignments γ will be equal to σ for every σ,
hence the precision is 1. If for every trace σ, an anti-alignment can be produced
which has maximal distance from σ, the precision is 0.

Frequencies of traces are not considered as the comparison is between the lan-
guage of the model and the observed traces. Observing one trace more frequently
than another should not influence the precision of the model as the amount of
unobserved behavior does not change. This contrasts with current metrics for
precision (e.g., [4]).

In trace-based precision, the length of the anti-alignment considered is
bounded by the length of the removed trace σ. This guarantees that an anti-
alignment exists in the log without trace σ, but also limits the possibility to see
imprecise executions of the model that are much longer than the lengths of the
observed traces. Therefore, we also define a log-based precision metric, which
uses an anti-alignment of the model with respect to the entire log of a much
greater length than the longest trace observed in the log.

Definition 6 (Log-Based Precision). Let (L, φ) be an event log and N a
model. We define Log-based precision as follows:

Pn
l (N,L) = 1 − d(γd,mx

n (N,L), L).

where n represents the maximal length of the anti-alignment, typically in the
order of several times the length of the longest trace in the log.

The log-based precision metric uses a single anti-alignment of considerable
maximum length to determine the amount of behavior allowed by the model,
but not observed in the event log. Our final precision metric is a weighted sum
of log- and trace-based precision.

Definition 7 (Precision). Let (L, φ) be an event log and N a model. We define
anti-alignment based precision as follows:

P (N,L) = αPt(N,L) + (1 − α)Pn
l (N,L)

This definition is parameterized by α and n. In the remainder of the paper,
we choose α = 0.5 and n = 2 · max

σ∈L
|σ|.

Our precision metric has two parameters, α, indicating the relative impor-
tance of the trace-based vs. the log-based part and n indicating the maximum
length of the log-based anti-alignment. In this paper, we use α = 0.5 and n
equal to twice the length of the longest observed trace. Allowing for longer anti-
alignments could lower the log-based precision if there are loops in the model
(in the limit, log-based precision in a model with loops goes to 0). Striking the
right balance between α and n in the context of real-life process discovery is
beyond the scope of this paper. Instead, we focus on the qualitative aspects of
our metrics more than the quantitative ones.

48 B.F. van Dongen et al.

Example 5. Let’s consider the Petri net shown in Fig. 1 again, with the log of
Table 1. Earlier, we identified the trace 〈A,C,G,H,D, F, I〉 as a (7, 1

7) anti-
alignment. Furthermore, when leaving one trace out, we get the following anti-
alignments2:

σ γd,mx
|σ| (N, L \ {σ}) γ projected d(γ, σ)

〈A, B, D, E, I〉 〈A, B, D, E, I〉 〈A, B, D, E, I〉 0
〈A, C, D, G, H, F, I〉 〈A, C, G, H, D, F, I〉 〈A, C, G, H, D, F, I〉 2

7〈A, C, G, D, H, F, I〉 〈A, C, G, H, D, F, I〉 〈A, C, G, H, D, F, I〉 2
7〈A, C, H, D, F, I〉 〈A, C, τ, H, D, F, I〉 〈A, C, H, D, F, I〉 0

〈A, C, D, H, F, I〉 〈A, C, τ, D, H, F, I〉 〈A, C, D, H, F, I〉 0

The trace-based precision Pt(N,L) =
1 + 5

7 + 5
7 + 1 + 1
5

= 31
35 = 0.886 and

the log-based precision is Pl(N,L) = 1 − 1
7 = 6

7 = 0.857, hence overall precision
with α = 0.5 for this model and log is P (N,L) = 0.5 · 31

35 + 0.5 · 6
7 = 0.871.

Besides precision, we can also use anti-alignments for measuring
generalization.

5 Measuring Generalization

In contrast to precision, which relates the log and the model, generalization
relates the system to the log and the model. Generalization aims to estimate
the extent to which unobserved, but likely possible behavior, is explained by
the model. In terms of process modeling, generalization is often obtained by
introducing parallel structures or loops into a model when the log suggests this
to be the case. Unfortunately, we do not have any knowledge of the system other
than that the log forms a representation of the most common behavior in it.

In order to quantify generalizations, we consider not only the sequential
behavior that is actually allowed by the model, but we also quantify how differ-
ent this behavior is when considering the state space of the model. (Structured)
loops and parallel structures which are most commonly used to achieve general-
ization when modeling a system have the tendency to allow for many different
sequential traces while introducing fewer states as for structured loops, the num-
ber of states does not increase with the number of executions of the loop, while
for parallel transitions, the number of states 2n grows slower than the number of
sequences (n!). Therefore, in our generalization metric, we consider the notion
of a recovery distance for an anti-alignment.

Definition 8 (Recovery Distance). Let (L, φ) be an event log and N a model.
Let γ = γmax

n (N,L) be an anti-alignment of length n. Let Mγ = 〈m0, . . . ,mn〉
be the sequence of states visited by γ, i.e. m0 is the initial marking of the model,
mn is the final marking of the model and for all 0 ≤ i < n holds mi[γi〉mi+1.

2 Note that for the edit distance between the anti-alignment and the removed trace,
the trace is first projected onto labeled elements, i.e. the τ transition is removed
first.

A Unified Approach for Measuring Precision and Generalization 49

Let S ⊆ [m0〉 = {m | ∃ σ · σ′ ∈ L s.t. m0[σ〉m} be the set of states reached by L.
The recovery distance is defined as:

drec(γ) =
1

|γ| − 1
· maxm∈Mγ

minσ∈Σ∗,m[σ〉s∈S |σ|

i.e. the recovery distance is the maximum distance between any of the states
reached in the anti-alignment and the states visited by the log.

Fig. 9. Positioning of exam-
ples for trace-based general-
ization.

Note that in a process mining setting, we
assume that there is a single reachable final mark-
ing and that the anti-alignment guarantees to reach
this final marking. Hence the length of the fir-
ing sequence to reach a previously visited mark-
ing is bounded by the length of the anti-alignment
minus 1. Using the recovery distance, we define a
generalization metric in a similar fashion as we did
for precision, i.e. we remove one trace from the log
and compute an anti-alignment for which we obtain
the minimum distance to the log and the maximum
recovery distance.

Fig. 10. Positioning of
examples for log-based
generalization.

Figures 9 and 10 show the positioning of the
models discussed earlier with respect to the anti-
alignment distance and the recovery distance, both
for the trace-based and log-based metric. Our gen-
eralization score is defined such that it favors only
models that have a high anti-alignment distance
and low recovery distance, i.e. models that intro-
duce new traces without introducing new states.
Recall that generalization typically occurs in struc-
tures that add fewer states than traces. If a model
is properly generalizing, it is likely that the behav-
ior observed in the log covers a significant part of
the state space introduced by the generalizing struc-
ture, hence a previously unobserved trace will not
introduce new states, but rather new paths between
existing states, even if the introduced trace is com-
pletely different from anything observed in the log.

Like for precision, we first consider trace-based generalization following the
same leave-one-out procedure. This way, the model is guaranteed to contain an
anti-alignment of some distance (i.e. the removed trace). Not using trace-based
generalization would lead us to consider all models non-generalizing if the log
equals the language of the model.

Definition 9 (Trace-Based Generalization). Let (L, φ) be an event log and
N a model. We define the trace-based generalization metric for each trace. First,
for every trace σ ∈ L, we define:

50 B.F. van Dongen et al.

Gσ
t (N, (L, φ), σ) = 1 − ||1 − d(γσ, L \ {σ}), drec(γσ)||,

where γσ = γd,mx
|σ| (N,L\{σ}) and ||a, b|| = min(1,

√
a2 + b2), i.e. the Euclid-

ean distance from (0, 0), bound by 1.
Second, we define trace-based generalization as the weighted average:

Gt(N, (L, φ)) =
1∑

σ∈L

φ(σ)
·
∑

σ∈L

φ(σ) · Gσ
t (N, (L, φ), σ).

Definition 9 uses the Euclidean distance from the perfectly generalizing model
to compute a generalization score, where the perfectly generalizing model has
maximally different anti-alignments without introducing new states, such as the
model in Fig. 3.

Similar to precision, we also define a log-based generalization metric which
identifies an anti-alignment much longer than the longest trace in the log in
order to detect if there is a part of the state space which can only be reached
through longer traces.

Definition 10 (Log-Based Generalization). Let (L, φ) be an event log and
N a model. Referring to Fig. 10, we define log-based generalization as follows:

Gn
l (N, (L, φ)) = 1 − ||1 − d(γ, L), drec(γ)||,

where γ = γd,mx
n (N,L) and n represents the maximal length of the anti-

alignment, typically in the order of several times the length of the longest trace
in the log. Again, we assume ||a, b|| = min(1,

√
a2 + b2)

Notice that both in the two previous definitions, the frequency of traces
in the log is considered. Finally, combining the trace-based and the log-based
generalization metric yields our final generalization metric:

Definition 11 (Generalization). Let (L, φ) be an event log and N a model.
We define anti-alignment based generalization as follows:

G(N, (L, φ)) = αGt(N, (L, φ)) + (1 − α)Gn
l (N, (L, φ)).

This definition is parameterized by α and n. In the remainder of the paper, we
choose α = 0.5 and n = 2 · max

σ∈L
|σ|.

Example 6. Let’s once again consider the Petri net shown in Fig. 1, with the log
of Table 1. Earlier, we identified the trace 〈A,C,G,H,D, F, I〉 as a (7, 1

7) anti-
alignment for the whole log and we measured precision to be P (N,L) = 0.871.
The recovery distance for the trace 〈A,C,G,H,D, F, I〉 is 0 as it does not visit
new states in the state space as this anti-alignment visits exactly the same set
of states as the trace 〈A,C, τ,H,D, F, I〉 which is in the log when correctly
aligning the log to the model. When leaving one trace out, we got the following
anti-alignments:

A Unified Approach for Measuring Precision and Generalization 51

σ freq. γd,mx
|σ| (N, L \ {σ}) d(γ, L \ {σ}) drec(γ)

〈A, B, D, E, I〉 1207 〈A, B, D, E, I〉 3
6

2
4〈A, C, D, G, H, F, I〉 145 〈A, C, G, H, D, F, I〉 1

7 0
〈A, C, G, D, H, F, I〉 56 〈A, C, G, H, D, F, I〉 1

7 0
〈A, C, H, D, F, I〉 23 〈A, C, τ, H, D, F, I〉 2

6
1
6〈A, C, D, H, F, I〉 28 〈A, C, τ, D, H, F, I〉 1

6 0

The trace-based generalization Gt(N, (L, φ)) = (1207 · (1−
√

9
36 + 4

16)+145 ·
(1 −

√
36
49) + 56 · (1 −

√
36
49) + 23 · (1 −

√
16
36 + 1

36) + 28 · (1 −
√

25
36))/1459 =

0.270. The log-based precision is Gl(N, (L, φ)) = 1−
√

36
49 = 0.143, hence overall

generalization with α = 0.5 for this model and log is G(n, (L, φ)) = 0.5 · 0.270 +
0.5 · 0.143 = 0.206.

Consider again our example. The model presented in Fig. 3 (the Flower
model) clearly generalizes as it allows for very different traces (high anti-
alignment distance), but all within the same state space (low recovery distance).

A model like Fig. 4 (separate traces) does not generalize. If we consider the
log as a whole, each anti-alignment will have distance 0 from the log and will
have recovery distance 0. If we remove one trace from the log, the maximal anti-
alignment found will be the removed trace, with some distance from the rest of
the log, but with maximal recovery distance.

Now consider the model in Fig. 11 (CF Equal loop). This model requires
transitions C and F to fire equally often in order to reach the intended final
marking of one token in the sink place. This model is similar to the original,
but will show a high recovery distance as the number of executions of C and F
determine the part of the state space which is visited by the anti-alignment, but
likely not by the rest of the log.

The models in Fig. 2 (Single trace) and Fig. 12 (Round-robin) show examples
of non-fitting models which also do not generalize. After making the log fit using
alignment techniques [9], Fig. 2 will have both minimal anti-alignment distance
and minimal recovery distance (both 0), while the model in Fig. 12 will have
maximal anti-alignment distance and maximal recovery distance. Both models
however are not generalizing.

6 Evaluation and Implementation

In this section, we first consider our example log of Table 1 and the models
presented in Figs. 1 through 8. Furthermore, we introduce two new models for
our example log of Table 1, depicted in Figs. 11 and 12.

Table 2 shows the fitness, precision and generalization values for all models.
For our precision and generalization metrics, we present both the trace-based
values as well as the log-based values. The trace-based values are computed
using the leave-one-out procedure presented earlier. The log-based values are
computed by taking a maximal anti-alignment given the model and the entire
log with maximum length equal to three times the length of the longest trace in
the log.

52 B.F. van Dongen et al.

Fig. 11. A model where C
and F are in a loop, but need
to be executed equally often
to reach the final marking.

For the models that are not fitting (Figs. 2, 8
and 12) the log is aligned to the model and then
the aligned event log is used for computing preci-
sion and generalization. In case of Fig. 2 this implies
that all traces in the log are equal as the model
only allows for one trace and therefore, the preci-
sion is always 1 and the generalization is always 0.
Figure 12 is more interesting, as this model has both
poor precision and poor generalization. No matter
which trace is removed from the log, there is always an anti-alignment that does
not look anything like the removed trace, hence precision is 0. Furthermore, as
each of the starting points of the loops generates a completely distinct subgraph
in the state space, the recovery distance for an anti-alignment is always very
high and hence generalization is poor, despite the fact that the model allows for
many different traces.

Fig. 12. Round-robin model.
The outer loop can be started
at any point and then exited
one transition before complet-
ing the loop.

The model of Fig. 1 has results as expected.
The fitness is 1, and precision is fairly high. Fur-
thermore, generalization is not so high as this
model does not actually allow for much more
behavior than observed. In fact, only the trace
〈A,C,G,H,D, F, I〉 is possible in the model, but
not observed in the log. Figures 2, 3 and 4 indeed
show extreme values for precision and/or general-
ization. As expected the self-loop model of Fig. 3
has precision 0 as it allows for many different
traces, but since the recovery distance is always 0
the generalization is maximal. Figure 4 is the oppo-
site as it does not allow for any trace not in the
log, and has a maximal recovery distance.

Now consider the models in Figs. 11 and 12. For
Fig. 11 we consider the relaxed-sound semantics of
this model as it was translated from a causal net as introduced in [12]. The
model is constructed in such a way that transitions C and F can be executed
multiple times, but equally often. This model should be considered fairly impre-
cise as there is a lot of behavior in the model that is not in the log. However,
the automaton-based metrics for precision are unable to capture this long-term
dependency and they will penalize for the fact that C can be executed multiple
times, but not for the fact that F may have to be executed multiple times.

Figure 12 is a model that allows for a loop over transitions A through I to
be started at any point. However, when starting the loop at a given point, the
model needs to terminate after executing 8+n×9 transitions. This model again
should be considered imprecise as the language of the model is very different
from the language of the (aligned) log. Only the PET captures this, the others
consider this model very precise.

A Unified Approach for Measuring Precision and Generalization 53

Some differences stand out between existing metrics and our anti-alignment
based metrics. Consider for example the model in Fig. 12. This model has min-
imal precision as it allows for much more behavior than observed in the log.
However, both the PET and the Pa metric are unable to capture this since these
metrics only consider behavior directly adjacent to the observed behavior with
respect to a specific abstraction. Interestingly, the PETC metric considers the
model of Fig. 4 to be imprecise, while this model allows for exactly the observed
behavior and nothing more. Again, the chosen abstraction causes this effect.

Due to the nice monotonicity property of anti-alignments shown in [7], our
precision metric is the only one that consistently ranks models in such a way
that a model with more possible traces (of a given maximal length) is always
considered less precise.

When comparing our generalization metric with the existing ones, we see a
big difference in the model of Fig. 2. The behavior of this model consists of a
single trace and is considered generalizing by the metric Ga since the aligned
event log (the event log where non-fitting traces have been adapted to fit the
model) shows great evidence of this model being the correct one for that log.
In our metric however, a model that allows for only one trace will always be
considered to have minimal generalization.

Interestingly, the model in Fig. 8 is considered more generalizing by our met-
ric than by most existing ones. This is due to the fact that we consider the recov-
ery distance as important. This model allows for more behavior than observed,
but does not introduce too many new states, i.e. the recovery distance is low
while the distance of the anti-alignment to the log is large. This is what we
consider to be generalization. The Gne metric finds this model to be almost per-
fectly generalizing since any label is allowed to appear at almost any position,
but this metric fails to recognize that labels can only appear once in each trace.

Again, consider Figs. 11 and 12. In both cases, the various parts of the lan-
guage of the models are represented by completely separated parts of the state
space. In Fig. 11, the number of tokens in the place between C and F determines
which part of the state space the middle part is executed, and in Fig. 12, the
initial decision where to start the loop does. In both cases, once a particular part
of the state space is reached which is not covered by traces observed in the log,
the recovery distance is maximal, i.e. only after emptying the place between C
and F in Fig. 11 or terminating the model in case of Fig. 12, a state is reached
which is covered by the observed log. Therefore, these models should not be
considered generalizing.

6.1 Models Found in Literature

Rather than only considering our example models, we used models found in
[6] for further comparison with our approach. In [6], several process mining
results are presented to illustrate the importance of fitness, precision, general-
ization and simplicity in process mining. The paper introduces a precision and
a generalization metric which are specific for process trees, or block-structured
process models. The precision metric is comparable to the Pa metric used earlier.

54 B.F. van Dongen et al.

The generalization metric however focuses on the frequency with which each
transition is executed in relation to the number of transitions in the model.
Generalization is considered low if some parts of the model are infrequent in
the log.

Fig. 13. Figure 9 from [6]

We compared our generalization and preci-
sion metrics with these models and there are
some interesting observations. One of the mod-
els, depicted in Fig. 13 contains an inclusive OR
block of three activities B, C and D, implying
that the model allows for 15 different traces. The
log used contains 10 different traces in which B,
C and D are executed in parallel, but D can be
skipped and in [6] the model with the OR block is considered to be the fairly
precise (precision 0.830). Our precision metric however identifies anti-alignments
that have maximum distance of 0.5 from the removed trace or the log and there-
fore, our precision metric yields 0.477, which is what you would expect from a
model that contains a large OR block to explain (almost) parallel behavior.

Fig. 14. Figure 5 from [6]

Another interesting model is model in Fig. 14
which removed the option to skip D. This model has
only one trace that is not observed in the original
log and this trace, when executed, does not visit any
new states compared to the rest of the log. Therefore,
both trace- and log-based generalization are consid-
ered low and hence our generalization metric is 0.172 while the metric used in
the paper reports a generalization of 0.889. A low generalization value is in line
with the intuition behind generalization, i.e. the ability of the model to predict
possible but unobserved behavior. As almost all behavior of this model has been
observed before, generalization should not be high.

6.2 Implementation

The authors of [7] have shown that the problem of finding a (n, δ)-anti-alignment
w.r.t. Hamming-distance is NP-complete. They have presented a way to convert
this problem into a SAT problem and implemented an efficient tool in OCaml,
available at http://www.lsv.ens-cachan.fr/∼chatain/darksider/).

But, as discussed in Sect. 3.2, concerning the application to process mining,
Hamming distance is usually too rigid. This is why, for the examples in this
paper, we have chosen Levenshtein’s edit distance, in spite of the higher com-
plexity of finding anti-alignments for this distance. We have used a brute-force,
depth-first search algorithm to find the anti-alignments. Since the maximum
length of the anti-alignment is bounded, the size of the search space is finite which
allows us to use a brute-force approach. This approach is implemented in the
ProM package “anti-alignments” which can be installed through the ProM pack-
age manager available on http://www.promtools.org/. The package is included
in the nightly build and in ProM 6.6.

http://www.lsv.ens-cachan.fr/~chatain/darksider/
http://www.promtools.org/

A Unified Approach for Measuring Precision and Generalization 55

In future work, we plan to improve the efficiency of the presented approach
using heuristic implementations. Furthermore, we plan to integrate more dis-
tance metrics.

7 Conclusions

In this paper, we presented new metrics for measuring precision and general-
ization of a process model with respect to an event log. Both metrics rely on
the concept of an anti-alignment, which is a trace of the model which is as
different as possible from the event log given a certain distance function. The
anti-alignments are applied using a cross-validation strategy to obtain measure-
ments fro precision. Furthermore, we introduce the notion of recovery distance
which is included in the generalization metric, basically expressing the ability of
the model to recover from any deviation.

We have compared both metrics with the state-of-the-art metrics for precision
and generalization on well-known examples, and the results clearly position the
proposal of this paper as a significant improvement in terms of the quality of the
estimations provided, albeit at the expense of a higher computational complexity.

Acknowledgments. This work has been partially supported by funds from the
Spanish Ministry for Economy and Competitiveness (MINECO), the European Union
(FEDER funds) under grant COMMAS (ref. TIN2013-46181-C2-1-R).

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, Berlin (2011)

2. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

3. Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Eindhoven
(2014)

4. Munoz-Gama, J.: Conformance checking and diagnosis in process mining. Ph.D.
thesis, Universitat Politecnica de Catalunya (2014)

5. vanden Broucke, S.K.L.M., Weerdt, J.D., Vanthienen, J., Baesens, B.: Determining
process model precision and generalization with weighted artificial negative events.
IEEE Trans. Knowl. Data Eng. 26(8), 1877–1889 (2014)

6. Buijs, J., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in process
discovery: the importance of fitness, precision, generalization and simplicity. Int.
J. Cooperative Inf. Syst. 23(1), 1440001 (2014)

7. Chatain, T., Carmona, J.: Anti-alignments in conformance checking – the dark side
of process models. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol.
9698, pp. 240–258. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39086-4 15

8. Rozinat, A.: Process mining: conformance and extension. Ph.D. thesis (2010)
9. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on

process models for conformance checking and performance analysis. Wiley Inter-
disc. Rev.: Data Min. Knowl. Disc. 2(2), 182–192 (2012)

http://dx.doi.org/10.1007/978-3-319-39086-4_15

56 B.F. van Dongen et al.

10. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Measuring precision of modeled behavior. Inf. Syst. E-Bus. Manag. 13(1),
37–67 (2015)

11. Murata, T.: Petri nets: Properties, analysis and applications. Proc. IEEE 77(4),
541–574 (1989)

12. van der Aalst, W., Adriansyah, A., van Dongen, B.: Causal nets: a modeling lan-
guage tailored towards process discovery. In: Katoen, J.-P., König, B. (eds.) CON-
CUR 2011. LNCS, vol. 6901, pp. 28–42. Springer, Heidelberg (2011)

A Stability Assessment Framework
for Process Discovery Techniques

Pieter De Koninck(B) and Jochen De Weerdt

Research Centre for Management Informatics Faculty of Economics and Business,
KU Leuven, Leuven, Belgium

{pieter.dekoninck,jochen.deweerdt}@kuleuven.be

Abstract. An extensive amount of work has addressed the evaluation
of process discovery techniques and the process models they discover
based on concepts like fitness, precision, generalization and simplicity.
In this paper, we claim that stability could be considered as an impor-
tant supplementary evaluation dimension for process discovery next to
accuracy and comprehensibility, with ties to the generalization concept.
As such, our core contribution is a new framework to measure stabil-
ity of process discovery techniques. In this paper, the design choices of
the different components of the framework are explained. Furthermore,
using an experimental evaluation involving both artificial and real-life
event logs, the appropriateness and relevance of the stability assessment
framework is demonstrated.

Keywords: Stability · Process discovery · Conformance checking ·
Validity · Log perturbation

1 Introduction

In unsupervised learning, where there is no straightforward way to evaluate dis-
covered solutions, an important question is whether or not a specific solution
is valid [12]. Common domains of unsupervised learning are clustering, latent
variable methods such as Gaussian Mixture Models, and certain neural network
models such as Self-Organizing Maps. Applications can be found in bioinfor-
matics, data mining and pattern recognition, among others. Process discovery,
i.e. the automated construction of process models from event logs, is essentially
an unsupervised learning task as well. Admittedly, discovered process models
can be evaluated structurally, e.g. on soundness [21], or based on the event log
through conformance checking (for an overview see [7]). Nonetheless, there is no
strict variable or label to predict, hence the discovery of a process model should
be considered an unsupervised learning task.

The importance of validity of unsupervised learning algorithms is addressed
in [12] as follows: ‘It is difficult to ascertain the validity of inferences drawn
from the output of most unsupervised learning algorithms. One must resort to
heuristic arguments not only for motivating the algorithms, as is often the case in
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 57–72, 2016.
DOI: 10.1007/978-3-319-45348-4 4

58 P. De Koninck and J. De Weerdt

supervised learning as well, but also for judgements as to the quality of the results.
This uncomfortable situation has led to heavy proliferation of proposed methods,
since effectiveness is a matter of opinion and cannot be verified directly.’.

While validity of process discovery techniques is partially addressed by the
whole plethora of conformance checking techniques, it is argued in this paper that
evaluation of process discovery algorithms lacks a thorough methodology to assess
the stability of these algorithms. In clustering research, a stability-based assess-
ment of validity has received plenty of attention [12,17]. It is argued in this paper
that this stability dimension is missing to a large extent and should complement
the already understood evaluation dimensions in process discovery, i.e. accuracy
(recall, precision, generalization) and comprehensibility (simplicity).

Conceptually, the stability of a process discovery technique can be defined
as the consistency of process discovery solutions obtained using this technique
from perturbed sets of input data or settings. This consistency is measured as
the similarity between the discovered process models for each of the perturbed
data sets or deviating settings. The different constructs will be elaborated on
in Sect. 2. Stability as a dimension could be further refined into different types,
for instance log perturbation stability or parameter stability, depending on the
method of perturbation (perturbing the event log versus perturbing the parame-
ter settings of the discovery technique). Most likely, there is an interdependency
between both: the same technique with different parameter settings could be
more stable with regards to log perturbations. Parameter sensitivity of process
discovery techniques has been partially addressed in [2], based on fitness and
precision rather than stability.

Observe that log-perturbation stability, as it is defined and constructed here,
is conceptually related to existing dimensions for the evaluation of discovered
process models, specifically generalization. Generalization is defined as measur-
ing the probability that, given an event log and a process model, a next batch
of process instances not in the original event log will invalidate a process model
[20]. For an overview and evaluation of existing generalization metrics, we refer
to [23]. The log-perturbation could be seen as a variation on this ’next batch’ of
behaviour, and similarity between the discovered process model could be seen
as a quantification of the validity of baseline process model.

In this paper, we propose a new framework for measuring the stability of
process discovery techniques through a stability index, inspired by the approach
in [15]. Although the framework could be adapted for measuring different types of
stability, we focus on log perturbation stability, which is a variant with regards to
repeatedly resampled or perturbed input data. The framework has been imple-
mented as a ProM-plugin1 and can be used by process miners to assess the
stability of different process discovery techniques, given an event log of their
interest.

Given this objective, the rest of this paper is structured as follows: in Sect. 2,
a general approach for assessing stability is proposed. In Sect. 3, the approach

1 The plugin, screenshots and additional information can be found at http://www.
processmining.be/PDStability/.

http://www.processmining.be/PDStability/
http://www.processmining.be/PDStability/

A Stability Assessment Framework for Process Discovery Techniques 59

is extensively evaluated considering two applications: evaluating the stability of
discovered process models with regards to correctness, and evaluating the stabil-
ity of process models with regards to completeness. Finally, in Sect. 4, conclusions
are formulated and an outlook to future adaptations is presented.

2 A Stability Assessment Framework

The approach proposed in this paper is based on a methodology for stability-
based validation of clustering solutions in [14], which was adapted for biclustering
solutions in [15]. As discussed in Sect. 1, clustering is one of the most well-
known unsupervised learning techniques. As such, it suffers from the same issues
regarding solution validity as other unsupervised learning techniques.

In [14,15], resampling/perturbation strategies, learning algorithms, and
solution similarity metrics are proposed that are specifically designed for
(bi)clustering problems. In this domain, stability was shown to be an effective
metric for assessing the validity of a clustering solution, e.g. with regards to
cluster size or clustering technique. An advantage of the clustering domain as
compared to process discovery is the existence of alternative validity indices,
such as entropy or gap statistics, which can be used as a reference for com-
paring a stability-based approach. In process discovery, solution validity is a
more complex construct, since it is already partially addressed by existing met-
rics. Specifically, our approach is related to the generalization sub-dimension of
accuracy, as explained in the previous section. Nonetheless, we claim that a sup-
plementary dimension to existing interpretations of process discovery validity
should be considered, i.e. stability.

As such, this paper contributes by proposing a stability assessment framework
for process discovery techniques. The framework is tailored to measure so-called
‘log perturbation stability’, however it can be reconfigured for assessing other
types of stability, such as parameter stability.

In Fig. 1, our stability assessment framework is depicted. Tailoring the frame-
work to process discovery entails the configuration of three main components, i.e.
the perturbation strategy (step 1), the solution similarity computation (step 3),
and a stability index calculation (step 4). In addition, a process discovery tech-
nique should be chosen (step 2).

The steps of our approach thus become:

1. Step 1: Given an event log L, and a log perturbation function P (), create n
perturbed versions of the event log: P1(L) to Pn(L).

2. Step 2: Discover a process model PM by applying a process discovery tech-
nique PD() to the original event log: PM = PD(L) and to the perturbed
event logs: PMi = PD(Pi(L)) with i ∈ {1..n}.

3. Step 3: Given a similarity index I(PMx, PMy), quantify the similarity
between the discovered process model on the original dataset and the dis-
covered process model on the perturbed dataset as I(PM,PMi).

60 P. De Koninck and J. De Weerdt

Event Log
L

PD(L)

P1(L)

P2(L)

...

PM

Step 1: Resample /
perturb the log

PD(P1(L))

PD(P2(L))

PD(Pn(L))

PM1

Step 2: Apply process
discovery technique

......

SIM(PM,PM1)

Step 3: Compute
similarity

STAB(PD)

...

AVERAGE

Step 4: Compute
stability index

Pn(L)

PM2

PMn

SIM(PM,PM2)

SIM(PM,PMn)

Fig. 1. A visualization of the proposed approach for calculating the stability of a
discovered process model, based on a similar diagram in [15].

4. Step 4: Average these similarity measures to create a stability metric for
event log L and discovery technique PD() as

SPD =
1
n

n∑

i=1

I(PM,PMi) (1)

Observe that a higher value for SPD indicates a better stability of the solution.
As such, this metric can be used for evaluating a process discovery outcome.
In the remainder of this section, we describe the three main components of our
framework: a perturbation strategy based on resampling and noise induction
(Sect. 2.1), computation of solution similarity based on process model similarity
metrics (Sect. 2.2), and calculation of the stability index based on a window-
based approach (Sect. 2.3).

2.1 Step 1: Log Perturbation Strategy

Perturbing event logs essentially boils down to three options: either some behav-
iour is removed, or some behaviour is added, or a combination of both. There
are many different ways to do this. Regarding the removal of behaviour, event
log perturbation can be approached through case-level resampling in a random
fashion, which is closely related to classical bootstrapping [5]. Note that case-
level bootstrapping an event log becomes trace-level bootstrapping. When deal-
ing with event logs, an important consideration is whether to bootstrap process
instances or distinct process instances (i.e. the effect of imbalance on the boot-
strap sample). An alternative to random resampling is systematic leave-one-out

A Stability Assessment Framework for Process Discovery Techniques 61

cross-validation. Cross-validation has been proposed briefly in [20], in the context
of generalization for process-mining techniques, where generalization is measured
by leave-one-out cross-validation as follows: leave out one process instance, and
count the percentage of instances that can still be replayed on the discovered
process model. Observe that our approach deliberately does not incorporate any
form of replay.

Secondly, regarding the addition of behaviour, small perturbations of event
logs strongly relates to the idea of adding noise to the log. In [18], four types of
noise were initially defined: remove head, remove tail, remove body, and swap
tasks. In [6], the removal of a single task was added as a noise induction scheme,
together with the combination of all previous noise types. These noise induction
types were already used to evaluate robustness of process discovery techniques,
for instance in [11]. However, in contrast to our paper, this work evaluated the
robustness to noise of process discovery techniques directly based on traditional
accuracy metrics. Here, we propose a framework for assessing the stability of
process discovery techniques that is independent from the actual accuracy or
comprehensibility of the outcome. As such, it is an orthogonal evaluation dimen-
sion that should be taken into account.

Taking these aspects into consideration, the log perturbation strategy under-
lying our stability assessment framework is as follows. First behaviour can be
removed through a resampling procedure, which is essentially undersampling
at the level of distinct process instances. However, to make the resampling a
bit less naive, the probability that a distinct process instance is removed, is
inversely proportional to the frequency with which this distinct process instance
is present in the event log. Secondly, behaviour can be added through noise
induction. Albeit the several noise types already available [18], we opt to include
three types of noise: remove a single event, swap two events, and add a random
single event (from the log activity alphabet) at a random place in the process
instance. Noise addition is performed at process instance level. For both removal
(undersampling at distinct process instance level) and addition (noise induction
at process instance level), a percentage of affected instances should be chosen.
Observe that in case both perturbation options are applied, the resampling is
performed first and the noise induction is applied second.

2.2 Step 3: Solution Similarity Computation

An extensive overview of similarity metrics for the pairwise comparison of busi-
ness process models is presented in [8]. Three distinct categories of similarity
metrics are proposed: first, node matching similarity, where similarity is based
on the labels and attributes attributed to the different elements of a process
model; secondly, structural similarity, where the labels of these elements are
compared as well as the topology of the process models; and thirdly, behav-
ioural similarity, where the labels of the elements are compared as well as causal
relations captured in the process model.

Given our context of process discovery from an event log, node match-
ing similarity is irrelevant. However, both structural as well as behavioural

62 P. De Koninck and J. De Weerdt

similarity metrics can be of use within the stability assessment framework.
Regarding structural similarity, a so-called graph edit distance similarity is
defined in [8], based on the amount of insertions and deletions that are nec-
essary to transform one process graph into the other. Other structural metrics
such as tree edit distance are available as well [1]. Looking at behavioural sim-
ilarity, a common approach relies on causal footprints [9,10], referred to as the
causal footprint similarity. Other options are transition adjacency-based simi-
larity [29], or behavioral profile-based similarity [13,24,25]. A final category of
process model similarity can be described as event-log based. Such metrics are
based on the principle that not all pathways in a process model are equally
important, and that behaviour that is more likely given the event log should be
represented as such in a similarity metrics. Examples can be found in [19].

The current stability assessment framework incorporates three similarity
metrics: (1) Graph-edit Distance (GED) [8], (2) causal footprint-based simi-
larity (CF) [9], and (3) behavioural profile-based similarity (BP) [24]. In Sect. 3,
the suitability of these metrics is assessed in an experimental evaluation.

2.3 Step 4: Stability Index Computation

Finally, in step 4 of our framework, the stability index is computed as an average
over a number of iterations, as detailed in Algorithm1. Hereto, three extra input
parameters are necessary: a minimal number of iterations rmin, a review window
Δr and a maximal stability error εS . Typical values for these parameters are 20,
10, and 0.005 respectively. This iterative approach serves a double purpose: on
the one hand, it ensures that the final stability is robust and sufficiently precise,
by enforcing an upper bound on the stability error; on the other hand, it prevents
unnecessary computation, by terminating once the stability error is sufficiently
small and the minimal number of iterations have been performed.

3 Experimental Evaluation

In this section, the configurations of the proposed stability assessment frame-
work are analyzed, together with an investigation of the effects of the level of
perturbation added and the specific characteristics of an event log. The objec-
tive is to show the appropriateness of the proposed constructs for the evaluation
of process discovery techniques. Therefore, this section is structured as follows:
first, in Sect. 3.1, the global setup of the evaluation is discussed, with regard
to the datasets, process discovery techniques, similarity metrics and perturba-
tion strategies used. Section 3.2 discusses the effect of the level of perturbation
to which the event log is exposed. Section 3.3 provides the global results, while
Sect. 3.4 takes a closer look at the effects of the characteristics of the event log
on the stability.

A Stability Assessment Framework for Process Discovery Techniques 63

Algorithm 1. Stability evaluation
Input: L := Event log, PD := Process discovery algorithm, P := Perturbation strategy, s := simi-

larity metric;
Input: rmin := 20, Δr := 10, εS := 0.005; % Configuration
Output: S := Stability measure for the combination of event log L and discovery algorithm PD

1: function Stability(L, PD, P , s,rmin, Δr, εS)
2: r := 1 % Iteration
3: PM := PD(L) % Baseline discovered process model
4: u() := {} % List of similarity results per iteration
5: w() := {} % List of stability results per iteration

6: while (r < rmin) ∨ [maxp,q|w(p) − w(q)| > εS ; ∀p, q : r − Δr < p < q ≤ r)] do
7: Lr := Pr(L) % Perturb the log
8: PMr := PD(Lr) % Discovered process model from perturbed log
9: u(r) := s(PM, PMr) % Calculate similarity with baseline model

10: w(r) :=
(r−1)∗w(r−1)+u(r)

r % Calculate stability
11: r := r + 1
12: end while
13: return S := w(r − 1)

14: end function

3.1 Setup

Five aspects of the experimental setup are of interest: the effect of character-
istics of the event log on stability, the differences regarding process discovery
techniques with regards to stability, the similarity metric used to compute the
stability, the chosen perturbation strategy, and the level of perturbation induced
by this strategy.

Firstly, the event log characteristics. We have set up experiments with 20
artificial event logs, as shown in Table 1. These datasets are taken from [3], to
make our results compatible with other findings in the process mining domain.
With regards to the characteristics of the event log, three measures are under
scrutiny: the number of distinct process instances, the number of distinct events
in the log, and the average number of events per process instance. The differ-
ent activity structures on the underlying process models leveraged to create the
artificial logs in [3], such as the presence loops of length 1 or 2, arbitrary or
structured loops, invisible tasks are not considered here, since we are not con-
cerned with rediscovering the artificial process model. As shown in Table 1, these
characteristics vary sufficiently across the different event logs. Furthermore, we
have repeated our setup on 5 real-life event logs [7], also listed in Table 1, to test
whether similar results can be found using realistic event logs.

Secondly, the 8 process discovery techniques that are included in our study are
the following, with default settings, and converted to Petri Nets where necessary:
(1) Alpha miner [21], (2) Alpha++ miner [27], (3) Fodina [22], (4) Heuristics
Miner [26], (5) ILPMiner [28], (6) Inductive Miner [16], (7) Flower miner, a
technique that produces an underfitting flower model; (8) Naive [22], a discovery
technique that naively models a connection between two transitions if they ever
follow each other directly in the event log, unless these events overlap in time,
in which case a connection is made to the closest non-overlappping transition.

Thirdly, three similarity metrics were used for comparing models discov-
ered from perturbed event logs to the baseline discovered model, as described

64 P. De Koninck and J. De Weerdt

Table 1. Characteristics of the artifical and real-life event logs used for the evaluation:
number of process instances (#PI), distinct process instances (#DPI), number of
different events (#EV) and average number of events per process instance (#EV

PI
).

Logname #PI #DPI #EV #EV/PI Artificial Real-life

grpd g22pi300 300 24 26 10.32 �
groupedFollowsl1l 500 500 29 8 11.79 �
grpd g19pi300 300 32 25 13.69 �
grpd g13pi300 300 35 24 16.69 �
grpd g12pi300 300 38 28 16.14 �
grpd g24pi300 300 46 23 13.77 �
grpd g4pi300 300 48 31 19.92 �
grouped g2pi300 300 65 24 15.00 �
grpd g5pi300 300 66 22 20.57 �
driveClass 700 700 87 13 21.00 �
grpd g6pi300 300 92 25 18.06 �
grpd g9pi300 300 102 28 18.93 �
groupedFollowsparallel5 700 700 109 12 12.00 �
grpd g10pi300 300 110 25 13.72 �
grpd g15pi300 300 135 27 13.26 �
herbstFig6p37 700 700 135 20 20.00 �
grpd g14pi300 300 157 26 37.80 �
grpd g20pi300 300 187 23 20.64 �
grpd g7pi300 300 231 31 48.17 �
grpd g3pi300 300 239 31 48.66 �
MOA 2004 71 49 6.20 �
KP2P 10487 76 23 9.33 �
ICP 6407 155 18 5.99 �
MCRM 956 212 22 11.73 �
KIM 1541 251 18 5.62 �

in Sect. 2.2: Graph-edit Distance [8], causal footprint based similarity [9], and
behavioural profile based similarity [24]. The latter is measured as a weighted
sum between exclusiveness similarity, order similarity, interleaving order simi-
larity, extended order similarity and extended interleaving similarity, as it was
implemented in JBPT -library.

Fourthly, three different strategies for generating perturbations are consid-
ered here. On the one hand, a resampling method, where p % distinct process
instances are randomly removed from the event log. The probability of removal is
the inverse of the frequency of that distinct process instance in the event log. On
the other hand, a noise induction method, where q % process instances have one
random event removed, added or two events swapped. One of these three per-
turbations is randomly chosen with equal probabilities. Finally, a third setting

A Stability Assessment Framework for Process Discovery Techniques 65

is included that combines both methods: first, p % distinct process instances are
removed; second, q % process instances have one random event removed, added
or two events swapped. Both strategies are tested with p and/or q equal to 10 %.

Finally, a small note on the specific calculations and environment of the
experiments: all experiments were run on a Intel XEon E5-2699 v3 processor of
a Windows Server 2012 R2. For the calculation of stability, 20 fixed iterations
where taken, rather than the adaptive strategy described in Algorithm 1. The
duration of 1 set of specifications (i.e. 20 iterations) was restricted to 10 min. Of
the 480 configurations on artificial logs that were evaluated using three differ-
ent similarity metrics, 62 did not finish the mining task within the time limit:
44 combinations with Alpha++, 16 combinations of ILP, 1 combination with
Fodina and 1 combination with Inductive miner. On the real-life datasets, 120
configurations were tested of which 9 resulted in a timeout: three configurations
with Alpha++ and two with Alpha, Fodina and ILP.

3.2 Effect of the Percentage of Perturbation

Figures 2 and 3 show the effects of varying percentages of noise, when using
Causal Footprint similarity as an underlying metric and, respectively, Heuristics
Miner and Alpha miner as process discovery algorithm. The points represent
average stability over 5 of the artificial event logs. A couple of observations can
be made from these figures. First, observe that, as expected, the average stability
declines as it is exposed to higher percentages of noise, all other things equal. The
same observation holds for resampling percentages, at least when combined with
a noise percentage smaller than 40 %. Secondly, remark that the stability appears
to be a lot more sensitive to the level of noise than the level of resampling. This
observation should be kept in mind regarding the results in Sect. 3.3, as the same
percentage of noise induction has a greater effect than the resampling. Thirdly,
observe that the curve for the results using Heuristics miner (Fig. 2) declines less
rapidly than the one using Alpha miner (Fig. 3). Finally, even at high levels of
noise induction, the resulting stability when using Heuristics miner lies around
0.85, whereas the resulting stability using Alpha miner performs significantly
worse, even at lower percentages of noise.

3.3 Results of the Experimental Evaluation

Before interpreting the results, a note should be made regarding the compatibil-
ity of the similarity metrics and some of the process discovery techniques. The
technique based on behavioural profiles, for example, requires that there are no
unconnected transitions. Some techniques, however, do not guarantee that no
unconnected transitions will be mined. Therefore, in some combinations with
BP, no result could be obtained. Specifically, for the artificial logs, this is the
case in 33 configurations with Alpha miner, 12 configurations with ILP, and
2 configurations with Alpha++. For the real-life logs, this was the case in 11
combinations of Alpha with BP.

66 P. De Koninck and J. De Weerdt

0.4

0.6

0.8

1.0

6.04.02.00.0
Noise Percentage

S
ta

bi
lit

y

0.0

0.2

0.4

0.6

resamplePercentage

Fig. 2. Scatterplot based on noise percentage of the average stability over 5 artificial
event logs using Heuristics Miner and a stability based on Causal Footprints, for resam-
pling and noise induction percentages equal to 0% or ranging from 5 to 75% with 10 %
intervals

0.4

0.6

0.8

1.0

6.04.02.00.0
Noise Percentage

S
ta

bi
lit

y

0.0

0.2

0.4

0.6

resamplePercentage

Fig. 3. Scatterplot based on noise percentage of the average stability over 5 artificial
event logs using Alpha Miner and a stability based on Causal Footprints, for resampling
and noise induction percentages equal to 0 % or ranging from 5 to 75 % with 10 %
intervals

A Stability Assessment Framework for Process Discovery Techniques 67

Fig. 4. Visualization of the average stability results when applying a noise induction
strategy. Averages over 20 artificial event logs.

Fig. 5. Visualization of the average stability results when applying a resampling-based
strategy. Averages over 20 artificial event logs.

The results can be found in Table 2. For a more intuitive representation of
the results of the approaches only based on noise and only based on resampling,
we refer to Figs. 4 and 5. Several observations can be made. First, it is clear
that the results of the combined approach and the approach that only uses noise
induction are highly similar. This was also touched upon in the previous section,
and is likely due to the different impact of a 10 % noise induction compared to a
10 % resampling. Secondly, when comparing similarity metrics in Figs. 4 and 5,
the ranges of the average stability appear to be similar across similarity metrics,

68 P. De Koninck and J. De Weerdt

Table 2. Average and standard deviation of stability over 20 artificial and 5 real-
life event logs, with a resampling and/or noise induction percentage of 10 %, where
stability is being calculated using Behavioural Profiles (BP), Causal Footprints (CF)
or Graph-edit Distance (GED).

Discovery

technique

Perturbation

strategy

Artificial stab(sd) Real-life stab(sd)

BP CF GED BP CF GED

Alpha Resampling 0.17(0.27) 0.99(0.02) 0.83(0) 0.16(0.36) 0.86(0.05) 0.8(0.01)

Alpha++ Resampling 0.65(0.41) 0.99(0.02) 0.55(0.06) 0.76(0.15) 0.69(0.05) 0.62(0.09)

Flower Resampling 0.98(0.1) 1(0) 0.83(0) 0.99(0.01) 0.99(0.01) 0.83(0)

Fodina Resampling 0.84(0.2) 0.95(0.06) 0.69(0.05) 0.84(0.07) 0.9(0.04) 0.64(0.02)

Heuristic Resampling 0.32(0.29) 0.99(0.02) 0.83(0) 0.72(0.16) 0.89(0.06) 0.78(0.04)

ILP Resampling 0.5(0.49) 0.97(0.07) 0.77(0.09) 0.61(0.12) 0.62(0.18) 0.64(0.06)

Inductive Resampling 0.7(0.15) 0.98(0.06) 0.51(0.06) 0.64(0.07) 0.91(0.1) 0.55(0.07)

Naive Resampling 0.2(0) 1(0) 0.52(0.02) 0.21(0) 1(0) 0.53(0.05)

Alpha Noise 0.04(0.06) 0.45(0.13) 0.56(0.05) 0(0) 0.35(0.19) 0.58(0.05)

Alpha++ Noise 0.05(0.08) 0(0.18) 0.39(0.05) 0.15(0.02) −0.1(0.12) 0.42(0.04)

Flower Noise 1(0) 1(0) 0.83(0) 0.83(0.05) 0.84(0.05) 0.83(0)

Fodina Noise 0.52(0.3) 0.82(0.1) 0.65(0.06) 0.45(0.12) 0.68(0.12) 0.6(0.03)

Heuristic Noise 0.3(0.27) 0.93(0.03) 0.81(0.01) 0.27(0.2) 0.59(0.17) 0.71(0.07)

ILP Noise 0.14(0.23) 0.01(0.17) 0.51(0.02) 0.13(0.04) −0.05(0.12) 0.56(0.05)

Inductive Noise 0.24(0.08) −0.03(0.13) 0.47(0.02) 0.35(0.1) 0(0.3) 0.51(0.02)

Naive Noise 0.2(0.01) 1(0) 0.45(0.03) 0.2(0) 1(0) 0.51(0.04)

Alpha Combined 0.03(0.06) 0.46(0.13) 0.56(0.05) 0(0) 0.33(0.17) 0.57(0.04)

Alpha++ Combined 0.08(0.08) 0(0.13) 0.38(0.05) 0.14(0.02) −0.1(0.1) 0.42(0.04)

Flower Combined 1(0) 1(0) 0.83(0) 0.82(0.04) 0.83(0.04) 0.83(0)

Fodina Combined 0.53(0.29) 0.8(0.11) 0.64(0.06) 0.43(0.1) 0.65(0.11) 0.6(0.02)

Heuristic Combined 0.3(0.27) 0.93(0.04) 0.81(0.01) 0.18(0.07) 0.57(0.17) 0.67(0.05)

ILP Combined 0.13(0.19) 0.01(0.17) 0.51(0.02) 0.13(0.04) −0.03(0.11) 0.57(0.04)

Inductive Combined 0.24(0.07) −0.02(0.13) 0.47(0.02) 0.34(0.11) 0.02(0.3) 0.51(0.02)

Naive Combined 0.2(0.01) 1(0) 0.45(0.03) 0.2(0) 1(0) 0.51(0.04)

except for the combination of a resampling-based perturbation strategy with an
underlying similarity metric based on causal footprints.

Regarding the different process discovery techniques, observe why we chose to
incorporate flower miner and naive miner. A flower model is the least restrictive
model one can imagine, where any activity can be executed in any order. It is
clear that such a discovery technique should be very stable with regards to noise
induction and resampling, and a very high stability is expected. Observe from
Table 2 that this is indeed the case on the artificial logs. The inverse is true
for the naive discovery technique, which naively incorporates any relationship
between two activities seen in the log as long as they do not overlap in time.
One would expect such a technique to score quite poorly on stability, which
is the case when calculating its stability using behavioural profiles or Graph-
edit Distance, but not using Causal Footprints. Apart from the results on the
naive discovery technique, the results of the noise induction strategy are within
expectations: techniques that were originally developed with robustness in mind,
such as Heuristics miner and Fodina, achieve higher stability than techniques
that are expected to be more sensitive to noise, such as ILP and Alpha.

A Stability Assessment Framework for Process Discovery Techniques 69

Furthermore, Table 2 includes the standard deviation of the stability, which
characterises the discrepancies across the 20 artificial and 5 real-life event logs,
respectively. In general, the pure resampling-based perturbation strategy leads
to more consistent results than the noise induction-approach. The stability based
on GED appears to be the most consistent across event logs when combined with
noise induction or a combined approach. When combined with resampling, the
stability based on Causal Footprints and the stability based on GED perform
equally consistent.

3.4 Effect of Log Characteristics

To show the effect of event log characteristics, we fit a number of regression mod-
els: a full and reduced one, for each perturbation strategy and each underlying
similarity metric. All data is taken at a 10 %-level of perturbation. The full fit-
ted models are of the form represented in Eq. 2, where xpd are dummy variables
indicating the process discovery technique and xdpi, xev, xtl are numerical vari-
ables representing the number of distinct process instances, number of distinct
events and average trace length of the event log under scrutiny. In the restricted
model (Eq. 3) the log characteristics are removed from the model. A lack-of-fit
test is performed to show whether these log characteristics can be removed with-
out substantial decrease in the fitness of the regression model. The results are
represented in Table 3.

Spd = β0 +
Naive∑

pd=Alpha

βpdxpd + βdpixdpi + βevxev + βtlxtl (2)

Spd = β0 +
Naive∑

pd=Alpha

βpdxpd (3)

Table 3. Fitness values and degrees of freedom for full and reduced linear model of
stability over 20 artificial event logs, with a resampling or noise induction percent-
age of 10 %, with similarity being calculated using Behavioural Profiles (BP), Causal
Footprints (CF) or Graph-edit Distance (GED). P values correspond to a chi-squared
likelihood-ratio test on 3 degrees of freedom, and indicate whether the full model has
a significantly higher goodness-of-fit than the reduced model.

Strategy BP CF GED

R2 LogLik df R2 LogLik df R2 LogLik df

Noise: full 0.82 66 123 0.95 125.6 123 0.96 269.7 123

Noise: red 0.77 48.8 126 0.95 125 126 0.96 263.7 126

LRT: p-value <0.001 0.80 0.008

R2 LogLik df R2 LogLik df R2 LogLik df

Resampling: full 0.70 26 137 0.18 230 137 0.90 251 137

Resampling: red 0.65 13 140 0.15 226.8 140 0.90 248.8 140

LRT: p-value <0.001 0.114 0.21

70 P. De Koninck and J. De Weerdt

From Table 3, it is clear that excluding all log characteristics leads to a sig-
nificant reduction in goodness-of-fit in the noise-induction case, except when
combining this perturbation with causal footprints. This does not mean that all
log characteristics are significantly related to the stability in all models: when
combining noise induction with GED as similarity metric, only the average trace
length is significantly related to the stability (p-value < 0.05), with a higher aver-
age trace length leading to lower stability. When combining noise induction or
resampling with BP, the number of distinct activities is the only variable that is
significant at a 5 %-level, with a higher number of activities leading to a lower
expected stability, all other things equal.

4 Discussion and Future Work

Overview. The purpose of this paper is to propose a new dimension for the
evaluation of process discovery techniques, stability, and a framework for its
assessment. Specifically, a log-perturbation stability framework based on model
similarity is extensively described, and its components are thoroughly evaluated
using both artificial and real-life event logs. Two resampling strategies, one based
on noise induction and one based on trace resampling, are proposed, and the
strategy based on noise induction is shown to lead to the highest discriminating
power, even at low percentages of noise induction. Three underlying similarity
metrics are proposed, one based on behavioural profiles, one based on causal
footprints, and one based on Graph-edit Distance.

Main Findings. Overall, there are three key takeaways from the experimen-
tal evaluation: (1) stability, as it was defined here, is a concept that can help
differentiate between different process discovery techniques. (2) Different con-
figurations of the stability framework lead to different results, however, making
general conclusions about the process discovery techniques difficult. Both the
type of perturbation and type of similarity metric influence these results. (3)
The stability results are influenced by the specific characteristics of the event
logs used, such as number of activities in this log, or the average trace length,
apart from the configurations with Causal Footprints.

Limitations. Several limitations exist with regard to our framework and its
evaluation, and these limitations should be addressed more thoroughly in future
work. First of all, there is the question of the desirability of certain types of
perturbation, especially noise induction. Although noise induction is shown to
lead to interesting results, it may not be an accurate representation of reality,
given that most information systems record events rather faithfully nowadays.
Secondly, a limitation exists regarding the evaluation of discovery algorithms:
since our approach requires a number of iterations in order to create valid
results, we disregarded discovery algorithms that don’t scale well (e.g. the genetic
approaches of [3,6]). Moreover, it should be noted that the results presented here
are valid only for the distinct configurations of the algorithms. Clearly, the results
would be different for Inductive miner, for example, given that a more inclusive
or exclusive configuration is be used. Therefore, ‘parameter stability’ and ‘log

A Stability Assessment Framework for Process Discovery Techniques 71

perturbation stability’ are interrelated concepts. Nonetheless, applying an eval-
uation on the default settings of an algorithm is justifiable, given that users of
these implementations rarely change the default settings [4]. Thirdly, the choice
of Petri nets as an underlying construct for discovered process models leads to
an inherent bias, especially with regards to the conversion of techniques that
produce results in an other modelling notation. Fourthly, the current implemen-
tation is limited to existing process similarity metrics. However, these metrics
were not conceived with discovered process models in mind. Therefore, future
work could look into the construction of a process similarity metric geared
specifically towards stability of process discovery techniques. An alternative to
this approach would be to quantify similarity in a more event-log driven way, by
incorporating conformance checking metrics into the similarity. An example of
this could be behavioural precision and recall as defined in [19].

Finally, two relationships should be quantified in continuing work: on the
one hand, the relationship between the stability results and specific behavioural
structures present in event logs, or the models used to generate these event logs,
such as loops of a certain length and invisible transitions; on the other hand, the
relationships between the proposed approach and related conformance checking
metrics for quality metrics like cross-validation-based generalization [20].

References

1. Bae, J., Caverlee, J., Liu, L., Yan, H.: Process mining by measuring process block
similarity. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103,
pp. 141–152. Springer, Heidelberg (2006)

2. Bolt, A., de Leoni, M., van der Aalst, W.M.P.: Scientific workflows for process min-
ing: building blocks, scenarios, and implementation. Int. J. Softw. Tools Technol.
Transf. 1–22 (2015). doi:10.1007/s10009-015-0399-5

3. Borja, V., Mucientes, M., Lama, M.: ProDiGen: mining complete, precise and
minimal structure process models with a genetic algorithm. Inf. Sci. Innov. Appl.
Artif. Neural Netw. Eng. 294, 315–333 (2015)

4. Claes, J., Poels, G.: Process mining and the ProM framework: an exploratory
survey. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132,
pp. 187–198. Springer, Heidelberg (2013)

5. Davison, A.C., Hinkley, D.V.: Bootstrap Methods and Their Application, vol. 1.
Cambridge University Press, Cambridge (1997)

6. De Medeiros, A.K.A., Weijters, A.J.M.M., Van Der Aalst, W.M.P.: Genetic process
mining: an experimental evaluation. Data Min. Knowl. Discov. 14(2), 245–304
(2007)

7. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional
quality assessment of state-of-the-art process discovery algorithms using real-life
event logs. Inf. Syst. 37(7), 654–676 (2012)

8. Dijkman, R., Dumas, M., Van Dongen, B., Krik, R., Mendling, J.: Similarity of
business process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)

9. van Dongen, B.F., Dijkman, R.M., Mendling, J.: Measuring similarity between
business process models. Adv. Inf. Syst. Eng. 5074, 450–464 (2008)

10. van Dongen, B.F., Mendling, J., van der Aalst, W.M.P.: Structural patterns for
soundness of business process models. In: 10th IEEE International Enterprise Dis-
tributed Object Computing Conference, pp. 116–128 (2006)

http://dx.doi.org/10.1007/s10009-015-0399-5

72 P. De Koninck and J. De Weerdt

11. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery
with artificial negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009)

12. Hastie, T., Tibshirani, R., Friedman, J.: Unsupervised learning. In: Hastie, T.,
Tibshirani, R., Friedman, J. (eds.) The Elements of Statistical Learning: Data
Mining, Inference Prediction, 2nd edn, pp. 485–585. Springer, New York (2009)

13. Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – a proper metric. In:
Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp.
166–181. Springer, Heidelberg (2011)

14. Lange, T., Roth, V., Braun, M.L., Buhmann, J.M.: Stability-based validation of
clustering solutions. Neural Comput. 16(6), 1299–1323 (2004)

15. Lee, Y., Lee, J., Jun, C.H.: Stability-based validation of bicluster solutions. Pattern
Recogn. 44(2), 252–264 (2011)

16. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013)

17. Levine, E., Domany, E.: Resampling method for unsupervised estimation of cluster
validity. Neural Comput. 13(11), 2573–2593 (2001)

18. Maruster, L.: A Machine Learning Approach To Understand Business Processes.
Eindhoven University of Technology, Eindhoven (2003)

19. de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, A.J.M.M.: Quantifying
process equivalence based on observed behavior. Data Knowl. Eng. 64(1), 55–74
(2008)

20. Van der Aalst, W., Adriansyah, A., Van Dongen, B.: Replaying history on process
models for conformance checking and performance analysis. Wiley Interdiscip. Rev.
Data Min. Knowl. Discov. 2(2), 182–192 (2012)

21. Van Der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

22. Vanden Broucke, S.K.L.M.: Artificial negative events and other techniques. Ph.D.
thesis, KU Leuven (2014)

23. Vanden Broucke, S.K.L.M., De Weerdt, J., Vanthienen, J., Baesens, B.: Determin-
ing process model precision and generalization with weighted artificial negative
events. IEEE Trans. Knowl. Data Eng. 26(8), 1877–1889 (2014)

24. Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process compli-
ance analysis based on behavioural profiles. Inf. Syst. 36(7), 1009–1025 (2011)

25. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Efficient computation of
causal behavioural profiles using structural decomposition. In: Lilius, J., Penczek,
W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 63–83. Springer, Heidelberg
(2010)

26. Weijters, A.J.M.M., van der Aalst, W.: Rediscovering workflow models from event-
based data using little thumb. Integr. Comput. Eng. 10, 151–162 (2003)

27. Wen, L., Van Der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with
non-free-choice constructs. Data Min. Knowl. Discov. 15(2), 145–180 (2007)

28. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.:
Process discovery using integer linear programming. In: van Hee, K.M., Valk, R.
(eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg
(2008)

29. Zha, H., Wang, J., Wen, L., Wang, C., Sun, J.: A workflow net similarity measure
based on transition adjacency relations. Comput. Ind. 61(5), 463–471 (2010)

Measuring the Quality of Models with Respect
to the Underlying System: An Empirical Study

Gert Janssenswillen1,2(B), Toon Jouck1, Mathijs Creemers1,
and Benôıt Depaire1

1 Hasselt University, Agoralaan Bldg D, 3590 Diepenbeek, Belgium
2 Research Foundation Flanders (FWO), Egmontstraat 5, 1060 Brussels, Belgium

{gert.janssenswillen,toon.jouck,mathijs.creemers,
benoit.depaire}@uhasselt.be

Abstract. Fitness and precision are two widely studied criteria to deter-
mine the quality of a discovered process model. These metrics measure
how well a model represents the log from which it is learned. However,
often the goal of discovery is not to represent the log, but the underlying
system. This paper discusses the need to explicitly distinguish between
a log and system perspective when interpreting the fitness and precision
of a model. An empirical analysis was conducted to investigate whether
the existing log-based fitness and precision measures are good estimators
for system-based metrics. The analysis reveals that incompleteness and
noisiness of event logs significantly impact fitness and precision measures.
This makes them biased estimators of a model’s ability to represent the
true underlying process.

Keywords: Conformance checking · Evaluation metrics · Process model
quality

1 Introduction

Due to the enormous growth of event data during the last decades, organizations
are dealing with the challenge of extracting useful knowledge from it, and exploit-
ing it to gain competitive advantages. Process mining provides ways to reach this
goal, by getting a better understanding of business processes and improving them
[1]. The origin of process mining dates back to the end of the previous century
[5,12], and focused on discovering the process control-flow from event logs which
contain recorded process behaviour. While the domain has grown much broader,
control flow discovery is the most mature research track within process mining.
For an overview of existing process discovery algorithms, witness [13]. In order to
quantify the quality of a discovered process model, different quality dimensions
have been defined [21], i.e. fitness, precision, generalization and simplicity. For
each of the dimensions, several metrics have been developed and implemented,
of which an overview can be found in [8].

Existing fitness and precision metrics typically measure the quality of a model
with respect to the event log it was learned from. They thereby do not take into
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 73–89, 2016.
DOI: 10.1007/978-3-319-45348-4 5

74 G. Janssenswillen et al.

account that the event log is a limited sample of the real unknown process and
possibly contains measurement errors. Since the underlying process is not known
in real-life settings, the quality of a discovered process model as a representation
of the underlying process cannot be determined directly. So far, little empirical
research has been done to analyse whether the existing fitness and precision
measures can be trusted as estimators of the behavioural similarity between the
discovered model and the underlying system.

In this paper, the need to explicitly distinguish between a log and system
perspective when interpreting the fitness and precision of a model, is highlighted.
Experiments are conducted to examine whether the quality of a model with
respect to the event log can be used as an unbiased estimator for the quality of
the model with respect to the underlying process. Both the metrics their ability
to estimated the quality of models unbiasedly, as their ability to unbiasedly rank
a given collection of models from worst to best will be investigated.

The next section introduces the evaluation framework. Section 3 describes
the experimental set-up. The results of this experiment are discussed in Sect. 4.
Section 5 discusses the role of generalization and its link with the proposed frame-
work. Finally, Sect. 6 provides an overview or related work and Sect. 7 concludes
the paper.

2 Different Perspectives in Measuring Model Quality

The four classical quality dimensions are fitness, precision, generalization and
simplicity [1]. Fitness, precision and generalization can be visualized using a Venn
diagram [9], as is shown in Fig. 1.1 In this figure, M , L and S refer to the process
behaviour which belongs to the model, event log and system, respectively. It
therefore abstracts from the representational language of the model. According
to the author [9], the system S refers to the context of the process, e.g., the
organization, rules, economy, etc.

Fig. 1. Venn diagram representing the behaviour in the process model (M), event log
(L) and system (S) [9].

In this paper, a slightly more tangible definition of system will be used. It
will refer to the behaviour which is real, i.e. the underlying process. This process,
1 In this paper, the simplicity dimension will not be taken into account, as it is not

directly related to the behaviour of the discovered model.

Measuring the Quality of Models with Respect to the Underlying System 75

generally unknown, defines the actual way in which work can be done. Note that
the system is broader than only a prescriptive model used for the configuration
of an information system, but can also include certain unwritten rules or cus-
toms. Everything which appears in the event log but is not part of the system is
regarded as noise. Examples are measurement errors resulting from system out-
ages. On the other hand, real though infrequent behaviour will not be perceived
as noise in this paper.

Figure 1 points out that a discrepancy exists between the system and the
event log. Process discovery tasks can thus be conducted using different objec-
tives. Firstly, business users might be interested in the relation between the
discovered model and the event log. In such a case, the objective will be to find
a model which perfectly mimics the behaviour in the event log. Secondly, one
might be interested in the relationship between the discovered model and the
true underlying system. To understand the way work is actually be done, the
objective will be to learn a model that exactly represents the system behaviour.

Following the well-known definitions of fitness and precision [10], it is evident
that both dimensions try to tell something about the relationship between event
log and model. Generalization, being defined in [9] as the likelihood of previously
unseen but allowed behaviour being supported by the process model, appears to
aim at assessing the relationship between the model and the system. However, the
effectiveness of existing measures in achieving these goals remains unexplored.

In the remainder of this section, we articulate four alternative quality dimen-
sions based on Fig. 1 and the work in [9]. Two of these dimensions measure
the distance between a model and an event log, and correspond to the classical
dimensions of fitness and precision. The other two quantify the distance between
a model and a system. The four dimensions will be defined conceptually in terms
of L, M and S, after some preliminary notations have been introduced.

2.1 Preliminaries

Definition 1 (Activity Sequences). We define A as the activity alphabet. A∗

is the set of all finite sequences over A, representing the universe of traces. A
trace σj ∈ A∗ is a finite sequence of activities.

Definition 2 (Event Log, Model, System). An event log L is a multiset of
traces, i.e. L ∈ B(A∗), where B(A∗) is the set of all mutlisets of A.

Definition 3 (Model, System). A model M and a system S are subsets of
the universe of traces, i.e. M ∈ P(A∗) and S ∈ P(A∗), where P(A∗) is the power
set of A∗. M and S represent the domain of all possible models and systems,
respectively, whereby M = S = P(A∗). L represents the domain of all possible
logs, whereby L = B(A∗).

2.2 Model-Log Distance

The fit between an event log and a process model is monitored by two ratios [9],
corresponding to the known concepts of fitness and precision. Given event log
L, the log-fitness and log-precision of a model M can be defined as follows.

76 G. Janssenswillen et al.

Definition 4 (Log-Fitness). Log-fitness is a function F : M × L → [0, 1],
which quantifies how much of the behaviour in the event log is captured by the
model. This can be defined as [9]:

F (M,L) =
|L ∩ M |

|L| (1)

Definition 5 (Log-Precision). Log-precision is a function P : M×L → [0, 1],
which quantifies how much of the behaviour in the model was observed in the
event log. This can be defined as [9]:

P (M,L) =
|L ∩ M |

|M | (2)

Only when both log-fitness and log-precision are equal to 1, then L = M , i.e. the
event log and the model represent exactly the same behaviour. These metrics
are orthogonal to each other, making it possible to construct models which score
poorly on one criterion and excellent on the other. Acting as complementary
forces, maximizing log-fitness and log-precision simultaneously maximizes the fit
between the model and the event log.

2.3 Model-System Distance

By drawing the analogy, it is evident that two similar dimensions are needed
to quantify the match between the model and the system. Firstly, there is a
need for a metric that ensures the selection of models that contain all possible
real behaviour. Secondly, a metric that favors the selection of models that only
contain real behaviour is needed. Therefore, given the system S, the system-
fitness and system-precision of a model M can be defined as:

Definition 6 (System-Fitness). System-fitness is a function F : M × S →
[0, 1], which quantifies how much of the behaviour in the system is captured by
the model. This can be defined as [9]:

F (M,S) =
|S ∩ M |

|S| (3)

Definition 7 (System-Precision). System-precision is a function P : M ×
S → [0, 1], which quantifies how much of the behaviour in the model is part of
the system. This can be defined as [9]:

P (M,S) =
|S ∩ M |

|M | (4)

When event logs are incomplete and contain noise, log-based and system-based
metrics will diverge. Depending on the goal, business users should then direct
their attention to one pair of metrics. Note that the above formulas are rather
coarse-grained. While in reality more fine-grained measures are preferred, these
formulas suffice to distinguish the different concepts.

Measuring the Quality of Models with Respect to the Underlying System 77

3 Experimental Analysis

3.1 Goal of the Experiments

The goal of the experiments conducted in this paper is twofold. Firstly, the goal
is to analyse whether existing metrics are unbiased estimators of the true system
fitness and precision. Secondly, the goal is to analyse whether the ranking of a
set of models, based on existing metrics, also represents the true ranking in
representing the underlying system.

Note that both abilities - estimation and ranking - have different impacts:
when the quality of models with respect to the system is consistently overesti-
mated, the ranking of the models will remain valid. However, when the biases
are highly variable among models, also the ranking of models will be perturbed.

Unbiased Estimation. For the first goal of the experiment the quality of a
set of models was measured both with respect to the event log it was learned
from and the underlying system that generated the event log. The fitness value
obtained from replaying event log L onto model M is represented as F (M,L) for
any fitness-measure. Conversely the fitness value obtained when comparing the
system S with model M is represented as F (M,S). Equivalently, we can compute
P (M,L) and P (M,S) for any precision metric. Note that F (M,L) and P (M,L)
represent log-fitness and log-precision, as defined in Eqs. 1 and 2, respectively,
while F (M,S) and P (M,S) represent system-fitness and system-precision as
expressed in Eqs. 3 and 4, respectively.

To investigate whether F (M,L) and P (M,L) are unbaised estimates of
F (M,S) and P (M,S), respectively, we define the difference between these values
for both fitness and precision as follows.

ΔF (M,L, S) = F (M,L) − F (M,S) (5)

ΔP (M,L, S) = P (M,L) − P (M,S) (6)

For example, F ab(M,L), the log-fitness as measured by the Alignment Based
Fitness metric will be an unbiased estimator of F ab(M,S), if E[ΔF ab] = 0.
When this value is positive, F ab(M,L) is said to overestimate F ab(M,S). Both
ΔF and ΔP will be analysed for logs with and without noise, and with varying
levels of completeness.

Unbiased Ranking. In order to examine whether the ranking which log-based
metrics define on a set of models represent the true ranking of these models
with respect to the underlying system, a second analysis will be done. Even
when existing metrics are biased estimators, if they still rank different models
accurately, they can still be used to compare the quality of models. In order
to investigate this, a limited set of discovered models will be compared with a
collection of event logs generated by the same system. These event logs will have
different levels of completeness and noise. The actual set up of the experiments
will be discussed in the following paragraph.

78 G. Janssenswillen et al.

3.2 Set up

The set up of the experiments was based on the framework for comparing process
mining algorithms in [22]. The design is explained in more detail below. Table 1
shows an overview of the key-characteristics of the experiment, including the
overall scale of the experiment.

1. Generate 10 systems, which will act as ground truth process models.
2. Estimate the number of different traces which can be generated by the sys-

tems, in order to target the completeness of the logs to be simulated.
3. Simulate the enactment of each system to produce artificial event logs with

different levels of noise and completeness. Furthermore, simulate a ground
truth event log for each system.

4. For each log, mine a set of process models using discovery algorithms.
5. Compute the quality of the models using the selected metrics

a. For each model, compute process quality metrics both in relation to the
log it was discovered from, and in relation to the ground truth event log.

b. For a set of randomly selected models for each system, compute the qual-
ity metrics in relation to all the event logs generated by that system.

Table 1. Experimental set up.

Characteristic Value

Number of systems 10

Completeness levels 100 %, 75%, 50 %, 25 %

Noise levels 0 %, 5%, 10 %, 15 %

Number of event logs for each combination 5

Discovery algorithms Heuristics [24]

Inductive [18]

ILP [10]

Fitness metrics Alignment based fitness [3] (ab)

Negative event recall [7] (ne)

Token-based fitness [20] (tb)

Precision metrics Alignment based precision [3] (ab)

Best align etc precision [4] (ba)

Negative event precision [7] (ne)

One align etc precision [4] (oa)

Generalization metrics Alignment based generalization [3] (ab)

Negative event generalization [7] (ne)

Total number of event logs 800 logs

Total number of models 2400 models

Measuring the Quality of Models with Respect to the Underlying System 79

Generation of Systems. In total 10 random models were artificially generated,
in order to be used as systems, using the methodology in [17]. The generated
systems were process trees. Each system has been generated according to its
own characteristics, i.e. the expected number of activities, the different types
of process operators (sequence, choice, parallel, etc.), the occurrence of silent
activities and the occurrence of duplicate tasks.

Determine Number of Paths. In order to target the completeness of event
logs during log simulation, the number of unique activity sequences in each
model was computed using the algorithm in [16]. In order to cope with loops, a
maximum number of iterations was taken into account for this calculation. This
can be justified by adapting a so-called fairness assumption, which states that
a task of a process cannot be postponed indefinitely. The assumption therefore
rules out infinite behaviours that are considered unrealistic [6].

Simulation of Event Logs. Each of the artificial systems was used to simulate
event logs with different levels of completeness and noise. Both the complete-
ness and noise level of the logs were controlled explicitly during the simulation.
The amount of noise as well as the amount of completeness has been defined
at the level of activity sequences. Four different levels were defined for each
characteristic, resulting in 16 different types of logs. For each type, 5 different
logs were simulated, amounting to a total of 80 logs per system. Next to these, a
ground truth event log, with perfect completeness and without noise is created
for each system.

The levels of completeness are 100 %, 75 %, 50 % and 25 %. A log of 100 %
completeness is obtained by simulating the system until the simulated event log
contains the same number of unique paths as calculated in the previous step,
say n. A log of 75 % is obtained by simulating the system until 0.75n different
paths have been seen, etc.

The levels of noise have been defined at 0 %, 5 %, 10 % and 15 %. A log with
5 % noise is created by taking 0.05/0.95 = 5.26% of the traces of a noise-free log.
To this subset of traces, different types of noise are added: missing head, missing
body, missing tail or missing activity [19]. These noisy traces are then added to
the original event log. The resulting event log consequently has n(1 + 0.0526)
traces, of which 0.0526n are noisy. The noise level will thus be 5 %.

Model Discovery. For each log, several process models are discovered using
process discovery algorithms. ProM 6.5 was used for the discovery of the process
models. Default values were used for all parameters.

Conformance Checking. Regarding the first goal of the experiment, the
quality of each of the discovered models was examined both with respect to the
event log from which the model was discovered, and with respect to the ground
truth event log. Furthermore, concerning the second goal, for a randomly selected

80 G. Janssenswillen et al.

set of 10 discovered models for each system, the quality with respect to all event
logs generated by that system was measured. Table 1 shows the measures that
were used in the analysis. Each measure was given a short label for simplicity.
All calculations were performed using the benchmarking framework CoBeFra [8].

4 Results

4.1 Estimation Biases

In order to visually analyse estimation biases of fitness metrics, Fig. 2 show the
distribution of ΔF as boxplots for the different fitness measures, conditioned on
the completeness and noisiness of the event logs. Note that, next to the ideal
levels of noise and completeness, only the 15 % noise level and 50 % completeness
level are depicted due to space limitations. Nevertheless, these levels of noise and
completeness seem to be representative for real-life event logs [19,25]. Note that
the asterisks represent the mean difference, while the middle horizontal lines of
the boxplots represent the median values.

0%−NOISE

100%−COMPLETE

0%−NOISE

50%−COMPLETE

15%−NOISE

100%−COMPLETE

15%−NOISE

50%−COMPLETE

* * * * * *
*

*
* * * *

−0.10

−0.05

0.00

0.05

ab ne tb ab ne tb ab ne tb ab ne tb
Measures

ΔF

Fig. 2. Distribution of ΔF for fitness measures

It can be observed that noise causes the average difference between log and
system-based measurement of fitness metrics to be negative, which means that
the fitness-measures generally underestimate the real system-fitness. In these
cases, models are presumably being punished because they cannot replay behav-
iour that is not even real. On the other hand, the incompleteness of event logs
does not seem to bias the fitness measures significantly, although for some mea-
sures it clearly decreases its precision as an estimator. Note that variability in the
case when completeness is 100 % and noise is 0 % is the mere result of sampling
variability in the composition of the event logs.

Figure 3 shows the same graph for precision metrics. In contrast to system-
fitness, system-precision appears to be slightly underestimated by most precision

Measuring the Quality of Models with Respect to the Underlying System 81

0%−NOISE

100%−COMPLETE

0%−NOISE

50%−COMPLETE

15%−NOISE

100%−COMPLETE

15%−NOISE

50%−COMPLETE

* * * * * * * *
* * * * * * * *

−0.1

0.0

0.1

0.2

0.3

0.4

ab ba ne oa ab ba ne oa ab ba ne oa ab ba ne oa
Measures

ΔP

Fig. 3. Distribution of ΔP z for precision measures

metrics when the event log is incomplete. Indeed, when event logs contain less
behaviour, each model’s log-precision will decrease, while the system-precision
is independent of log completeness. Furthermore, the presence of noise seems to
have an adverse effect.

In addition to the visual analysis, a Kruskal-Wallis test was done for each
fitness and precision metric, to see whether there are statistically significant
differences between ΔF or ΔP for different levels of noise and completeness. It
can be observed in Table 2 that for all the metrics, the hypothesis that there are
no significant differences among the groups, is rejected.

Table 2. Results of Kruskal-Wallis rank sum test by completeness and noise

Fitness metrics Kruskal-Wallis χ2 Precision metrics Kruskal-Wallis χ2

Alignment based fitness 120.7946∗∗∗ Alignment based
precision

1114.2523∗∗∗

Negative event recall 352.5966∗∗∗ Negative event
precision

1006.2333∗∗∗

Token-based fitness 320.5694∗∗∗ Best align precision 587.7634∗∗∗

One align precision 1276.3387∗∗∗

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

In order to further understand these differences, Tables 3 and 4 show the
average difference between log and system measures, for fitness and precision
metrics, respectively. The levels of statistical significance indicated in these table
reflect whether this mean is different from zero. Since the data suffers from non-
normality, the non-parametric Wilcoxon signed rank test was used.

Note that for each metric, 16 different tests were done. In order to limit the
family-wise error to 5 %,, the Bonferonni correction was applied. Therefore, aach

82 G. Janssenswillen et al.

Table 3. Mean ΔF for fitness metrics under differing noise and completeness levels.

Noise

Metric Completeness 0% 5% 10% 15%

Alignment based fitness 100% −0.0003∗∗ −0.0061+ −0.0124+ −0.0179+

75% −0.0017∗∗∗ −0.0072+ −0.0134+ −0.0185+

50% −0.0007 −0.0062+ −0.012+ −0.018+

25% 0.0000 −0.0059+ −0.013+ −0.0179+

Negative event recall 100% 0.0005 −0.0016+ −0.0039+ −0.0058+

75% 0.0000 −0.0018+ −0.0039+ −0.0058+

50% 0.0011∗∗ −0.0017+ −0.0035+ −0.0059+

25% 0.0017∗∗ −0.0001∗∗ −0.0043+ −0.0048+

Token-based fitness 100% 0.0004 −0.0048+ −0.0109+ −0.0161+

75% 0.0007∗ −0.0035+ −0.0078+ −0.0135+

50% 0.0009∗∗ −0.0028+ −0.0079+ −0.0115+

25% 0.0016 −0.0012+ −0.0044+ −0.0056+

Note: ∗p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01;+p< 0.0032
Based on Wilcoxon signed rank test with continuity correction

Table 4. Mean ΔP for precision metrics under differing noise and completeness levels.

Noise

Metric Completeness 0% 5% 10% 15%

Alignment based precision 100% −0.0004 0.0726+ 0.093+ 0.0989+

75% −0.0025+ 0.0539+ 0.0729+ 0.0895+

50% −0.008+ 0.0343+ 0.0617+ 0.0653+

25% −0.0195+ 0.0069 0.0162+ 0.0239+

Best align precision 100% 0.0004 0.064+ 0.0827+ 0.1008+

75% −0.004+ 0.0401+ 0.0508+ 0.0609+

50% −0.0098+ 0.0233+ 0.04+ 0.0446+

25% −0.0261+ −0.0042 0.0137 0.01

Negative event precision 100% −0.0009+ 0.0786+ 0.0887+ 0.1076+

75% −0.0056+ 0.0398+ 0.0637+ 0.0803+

50% −0.0102+ 0.0228+ 0.0392+ 0.0518+

25% −0.0255+ −0.0062+ −0.0074∗∗ 0.0082

One align precision 100% −0.0002∗∗ 0.0637+ 0.0873+ 0.0872+

75% −0.0036+ 0.0456+ 0.0615+ 0.0752+

50% −0.0111+ 0.0224+ 0.0485+ 0.0506+

25% −0.0286+ −0.0014 0.0079∗ 0.0174+

Note: ∗p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01;+p< 0.0032

Based on Wilcoxon signed rank test with continuity correction

Measuring the Quality of Models with Respect to the Underlying System 83

individual test has to be at a signficance level of 1 − 0.95(1/16) = 0.0032, anno-
tated with the + symbol in Tables 3 and 4. It can be seen that for fitness metrics,
there is indeed a bias for noisy logs. The bias for noise-free but incomplete logs
is less prevalent and not significant at a 0.32 % significance level. However, it
must be observed that this corrected significance level is very restrictive, as the
Kruskall-Wallis test already pointed out that biases do exist. Notwithstanding
the statistical significance, the real impact of the bias is limited.

For precision metrics, it is clear that both noisiness and incompleteness of
event log creates significant biases for the quality metrics. It is remarkable that
ΔP was found to be significantly different from zero for the Negative Event
Precision and One-Align Precision metrics under the condition of noise-free and
complete logs. Further experiments have to be conducted to see whether this
result is reproducible.

It is clear that precision measures, and to a lesser extent fitness measures, are
not always unbiased nor reliable estimators of the system-alignment, as they fail
to adequately estimate a model’s system-fitness and system-precision. However,
if these estimation errors are consistent among all models, the correct ranking of
models will be preserved. It is therefore essential to investigate how the effects
of noise and completeness differ among models.

4.2 Ranking Biases

In order to investigate ranking biases, 10 of the discovered models for each system
were randomly chosen. Subsequently, the quality of these models with respect
to all event logs generated from this system was measured. The relationship
between the value of these metrics and the level of noise and completeness were
subsequently analyzed. Figure 4 shows the relationship between the level of com-
pleteness and the fitness and precision values. Note that only noise-free logs were
considered in this graph, in order to isolate the effect of (in)completeness.

0.4

0.6

0.8

1.0

0.40.60.81.0
Amount of completeness

F
z

Model 1 to 10

Fitness measures for noise−free logs

0.0

0.1

0.2

0.3

0.4

0.5

0.40.60.81.0
Amount of completeness

P
z

Model 1 to 10

Precision measures for noise−free logs

Fig. 4. Relating fitness and precision measures to the completeness of logs

84 G. Janssenswillen et al.

Each line in this Figure represents one of the 10 models, and its height repre-
sents the average fitness (precision) value at a given level of completeness. These
values were averaged over all logs at the given completeness level and over all
fitness (precision) metrics. Since fitness (precision) metrics were largely corre-
lated, they are not longer individually distinguished from each other. Moreover,
the graphs for individual metrics were found to be similar. Note that the map-
ping between each of the lines and the models is irrelevant for our purpose. Also
observe that this figure only shows the results for one of the systems, though the
results for other systems were found to be similar.

When one would draw a vertical line at a certain level of completeness, the
intersections with the lines of the graph define a ranking on the models. The
intersection with the highest line refers to the model which is perceived the best,
while the lowest intersection will point out which model is the worst. Conse-
quently, when the lines of two different models cross one another, the ranking
between these two models will change. The intersections with the y-axis reflect
to correct ranking of the models with respect to the underlying system, as logs
are complete and noise-free at this point. Under such circumstances, metrics
are unbiased estimators of system-quality, as was demonstrated in Sect. 4.1. The
more cross-overs that take place between lines when moving rightwards, the more
the true ranking is distorted.

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15
Amount of noise

F
z

Model 1 to 10

Fitness measures for complete logs

0.0

0.1

0.2

0.3

0.4

0.5

0.00 0.05 0.10 0.15
Amount of noise

P
z

Model 1 to 10

Precision measures for complete logs

Fig. 5. Relating fitness and precision measures to the amount of noise

In can thus be seen that only a very limited number of cross-overs occur
concerning the ranking of both fitness and precision under increasing levels of
incompleteness. Thus, incomplete logs seem to induce only a minimal ranking
bias. The same analysis is done for the impact of noise in Fig. 5. Here it can be
seen that for both fitness and precision, several cross-overs occur, distorting the
ranking of models. Moreover, note that the fact that the best model is not always
impacted by the perturbations in the ranking, does not solve the problem. After
all, there is no guarantee that this best model will always be found.

Measuring the Quality of Models with Respect to the Underlying System 85

It can be concluded that the existence of noise impacts the measurement of
fitness and precision. Not only do they fail at estimating the quality of models
correctly under these circumstances, the impact varies greatly among different
models, which in turn significantly confuses their ranking. On the other hand,
incompleteness of event logs only slightly biases the existing fitness and precision
metrics when assessing a models quality with respect to the underlying system.

5 The Role of Generalization

It can be argued that the generalization quality dimension somewhat matches
the system-based perspective, in particular system-fitness. In order to conduct
a thorough analysis, we therefore also investigate the distance between the gen-
eralization measures ab and ne on the one hand, and both system-fitness and
system-precision on the other hand.

This distance, for each log and model is defined as ΔGF (M,L, S) =
G(M,L) − F ab(M,S) for system-fitness, and ΔGP (M,L, S) = G(M,L) −
P ab(M,S) for system-precision. For the sake of clarity, generalization measures
were only compared with one system-fitness and one system-precision mea-
sure, i.e. F ab and P ab. These measures where chosen because of their relatively
intuitive interpretations. The distribution of ΔGF and ΔGP can then be ana-
lyzed as before, for both the alignment based and negative event generalization
metrics. This was done in Fig. 6.

0%−NOISE

100%−COMPLETE

0%−NOISE

50%−COMPLETE

15%−NOISE

100%−COMPLETE

15%−NOISE

50%−COMPLETE

−0.5

0.0

0.5

ab ne ab ne ab ne ab ne
measures

Δ G
Fz

0%−NOISE

100%−COMPLETE

0%−NOISE

50%−COMPLETE

15%−NOISE

100%−COMPLETE

15%−NOISE

50%−COMPLETE

−0.5

0.0

0.5

1.0

ab ne ab ne ab ne ab ne
measures

ΔG
Pz

Fig. 6. Distribution of ΔGz
F and ΔGz

P

It can be observed that Gne is a relatively good estimator of system-fitness,
although it is biased when logs are both noisy and incomplete. On the other
hand, there does not seem to be any relationship with system-precision, as one
would expect based on the definition of generalization. However, Gab is not a
good predictor of system-fitness, nor system-precision. Moreover, it should be
noted that the generalization measures were hardly correlated (0.176), which
confirms the fact that generalization remains a vague and ambiguous concept,
both regarding its definition and its implementations.

86 G. Janssenswillen et al.

6 Related Work

Over time, many challenges within the field of process discovery, such as dealing
with duplicate tasks and non-free choice constructs have been tackled [13]. Con-
sequently, new process discovery algorithms increasingly focus on outperforming
existing algorithms rather than tackling new challenges. This shift in research
requires an agreed-upon and scientifically sound evaluation framework to com-
pare different process mining algorithms. Recently, first attempts towards the
development of an evaluation framework have been made [8,10,21]. The set of
evaluation measures is the area which has received most attention so far.

In [2], the author states that “process discovery and conformance checking
aim to tell something about the unknown real process rather than the example
traces in the event log”. The author therefore claims that, the one and only goal
of process discovery would be to represent the true underlying process. However,
existing quality metrics are mostly focussed on the relationship between the
model and the event log. Furthermore, little empirical evidence exists so far.

The problem of log incompleteness is well acknowledged in literature. In [25],
the authors defined different estimators of log completeness. The application of
these on several real-life data sets showed that the estimated coverage of event
logs is only about 50 %, bearing in mind that the estimators were even found to
be over-estimating the coverage when tested on artificial event logs.

Noise has been defined less unambiguously. According to [15], noise covers the
occurrence of errors, the incompleteness of the event log, as well as exceptional
behaviour. Other authors have equated noise only with exceptional behaviour [1].
Finally, some authors have defined noise as measurement errors [23]. The latter
definition has been adopted in this paper, as it matches the classical definition
of noise in the field of data mining.

Dealing with incomplete as well as noisy event logs has been tackled by
several process discovery algorithms, notably the Heuristics Miner [24] and the
Inductive Miner [18]. In the field of declarative process models, [14] systemat-
ically analysed the sensitivity of mined declarative constrains to noise. Using
similar types of noise as in this paper, the authors empirically confirmed which
types of declarative constraints are (not) resilient to certain types of noise.

Another approach towards handling noise in process discovery was proposed
in [11]. Here, handling of noise is regarded as a preprocessing step, i.e. cleaning
the log, before discovery algorithms are applied. While this view on managing
noise in event logs definitely has its merits, more research is needed on how to
distinguish noise in an event log, and how to do this in an automatic way.

Despite the efforts towards handling noise in process discovery, the concepts
of noise and log-incompleteness are not incorporated in most process quality
measures. As a result, one must be cautious to use the same quality measures
when the goal is rather to describe the underlying process. A notable exception
has been the work on artificial negative events [7]. The induction of negative
events explicitly supports the fact that event logs are not complete. The negative
events aim at delineating the system by defining its complement Sc. The related
quality metrics are thus expected to be more suitable for measuring a process

Measuring the Quality of Models with Respect to the Underlying System 87

model’s alignment with the system rather than the event log, although this is
not exactly clear from the analyses.

7 Conclusions and Future Work

This papers suggest that there are different objectives within process discovery.
To gain information on how work is done in a business process, the objective of
process discovery is to learn a model which provides a good representation of
the underlying process, i.e. the system. However, when process discovery is used
for auditing purposes, the mere objective might be to discover a model which is
limited to the behaviour described in the event log.

Although discovery algorithms have been able to tackle noisiness and incom-
pleteness of event logs, existing quality measures are predominantly focused on
the event log as the unmistaken truth. In order to examine whether these mea-
sures still perform well in case of noisy and incomplete event logs, their sensitivity
to these issues was investigate. The results show that both fitness and precision
measures are very sensitive to noise, which makes them biased estimators of
system-precision. Moreover, when event logs are incomplete, the variability of
the measurements increase. Under these circumstances, there is no guarantee
that the metrics will be able to correctly assess a models quality with respect
to the underlying system, and rank different models accordingly. Furthermore,
it is unclear what existing generalization measures quantify. Moreover, the two
generalization measures under consideration were found to be hardly correlated.

Ranking biases clearly need to be further investigated from a more statistical
point of view. Further research concerning the existing generalization measures
is also needed to uncover their added value. Moreover, it should be investigated
how existing measures can be corrected in order to remove their bias as estimator
for system-fitness and system-precision in the presence of noise and incomplete
event logs, which is especially needed for precision measures. Also, the need for
confidence intervals for quality metrics should be further investigated, in order
to assess the reliability of their results.

Acknowledgments. The computational resources and services used in this work for
both process discovery and process conformance tasks were provided by the VSC
(Flemish Supercomputer Center), funded by the Research Foundation - Flanders
(FWO) and the Flemish Government.

References

1. van der Aalst, W.M.P.: Process mining: discovery, conformance and enhancement
of business processes. Springer, Heidelberg (2011)

2. van der Aalst, W.M.P.: Mediating between modeled and observed behavior: the
quest for the Right process. In: IEEE Computing Society, pp. 31–43 (2013)

3. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on
process models for conformance checking and performance analysis. Wiley Inter-
disc. Rev.: Data Min. Knowl. Discov. 2(2), 182–192 (2012)

88 G. Janssenswillen et al.

4. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Alignment based precision checking. In: La Rosa, M., Soffer, P. (eds.)
BPM Workshops 2012. LNBIP, vol. 132, pp. 137–149. Springer, Heidelberg (2013)

5. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS,
vol. 1377, pp. 467–483. Springer, Heidelberg (1998)

6. Baier, C., Katoen, J.P., et al.: Principles of Model Checking, vol. 26202649. MIT
Press, Cambridge (2008)

7. vanden Broucke, S.K.L.M., De Weerdt, J., Vanthienen, J.B., Baesens, B.: Deter-
mining process model precision and generalization with weighted artificial negative
events. IEEE Trans. Knowl. Data Eng. 26(8), 1877–1889 (2014)

8. vanden Broucke, S.K.L.M., De Weerdt, J., Vanthienen, J., Baesens, B.: A Com-
prehensive Benchmarking Framework (CoBeFra) for conformance analysis between
procedural process models and event logs in ProM. In: 2013 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM), pp. 254–261. IEEE (2013)

9. Buijs, J.: Flexible evolutionary algorithms for mining structured process models.
Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven (2014)

10. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness,
precision, generalization and simplicity in process discovery. In: Meersman, R. (ed.)
OTM 2012, Part I. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012)

11. Cheng, H.J., Kumar, A.: Process mining on noisy logs can log sanitization help to
improve performance? Decis. Support Syst. 79, 138–149 (2015)

12. Cook, J.E., Wolf, A.L.: Software process validation: quantitatively measuring the
correspondence of a process to a model. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 8(2), 147–176 (1999)

13. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional
quality assessment of state-of-the-art process discovery algorithms using real-life
event logs. Inf. Syst. 37(7), 654–676 (2012)

14. Di Ciccio, C., Mecella, M., Mendling, J.: The effect of noise on mined declarative
constraints. In: Ceravolo, P., Accorsi, R., Cudre-Mauroux, P. (eds.) SIMPDA 2013.
LNBIP, vol. 203, pp. 1–24. Springer, Heidelberg (2015)

15. Folino, F., Greco, G., Guzzo, A., Pontieri, L.: Discovering expressive process mod-
els from noised log data. In: Proceedings of the 2009 International Database
Engineering and Applications Symposium, pp. 162–172. ACM (2009)

16. Janssenswillen, G., Depaire, B., Jouck, T.: Calculating the number of unique paths
in a block-structured process model. In: Algorithms and Theories for the Analysis
of Event Data (2016)

17. Jouck, T., Depaire, B.: Generating artificial data for empirical analysis of
process discovery algorithms: a process tree and log generator. Technical report,
Universiteit Hasselt, Universiteit Hasselt, March 2016

18. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann, N.,
Song, M., Wohed, P. (eds.) BPM 2013 Workshops. LNBIP, vol. 171, pp. 66–78.
Springer, Heidelberg (2014)

19. de Medeiros, A.K.A.: Genetic process mining. Ph.D. thesis, Technische Universiteit
Eindhoven, Eindhoven (2006)

20. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

21. Rozinat, A., De Medeiros, A.K.A., Günther, C.W., Weijters, A.J.M.M., van der
Aalst, W.M.P.: Towards an evaluation framework for process mining algorithms.
In: Beta, Research School for Operations Management and Logistics (2007)

Measuring the Quality of Models with Respect to the Underlying System 89

22. Weber, P., Bordbar, B., Tiňo, P., Majeed, B.: A framework for comparing process
mining algorithms. In: GCC Conference and Exhibition (GCC), 2011 IEEE, pp.
625–628. IEEE (2011)

23. Weijters, A., van der Aalst, W.M.P.: Rediscovering workflow models from event-
based data. In: Proceedings of the 11th Dutch-Belgian Conference on Machine
Learning (Benelearn 2001), pp. 93–100. Citeseer (2001)

24. Weijters, A., van der Aalst, W.M.P., De Medeiros, A.K.A.: Process mining with the
heuristics miner-algorithm. Technische Universiteit Eindhoven, Technical report
WP 166, pp. 1–34 (2006)

25. Yang, H., van Dongen, B., ter Hofstede, A., Wynn, M., Wang, J.: Estimating
completeness of event logs. BPM Center Report, 12 April 2012

Handling Duplicated Tasks in Process Discovery
by Refining Event Labels

Xixi Lu1(B), Dirk Fahland1, Frank J.H.M. van den Biggelaar2,
and Wil M.P. van der Aalst1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
{x.lu,d.fahland,w.m.p.v.d.aalst}@tue.nl

2 Maastricht University Medical Center, Maastricht, The Netherlands
f.vanden.biggelaar@mumc.nl

Abstract. Processes may require to execute the same activity in differ-
ent stages of the process. A human modeler can express this by creating
two different task nodes labeled with the same activity name (thus dupli-
cating the task). However, as events in an event log often are labeled with
the activity name, discovery algorithms that derive tasks based on labels
only cannot discover models with duplicate labels rendering the results
imprecise. For example, for a log where “payment” events occur at the
beginning and the end of a process, a modeler would create two differ-
ent “payment” tasks, whereas a discovery algorithm introduces a loop
around a single “payment” task. In this paper, we present a general app-
roach for refining labels of events based on their context in the event log
as a preprocessing step. The refined log can be input for any discovery
algorithm. The approach is implemented in ProM and was evaluated in
a controlled setting. We were able to improve the quality of up to 42% of
the models compared to using a log with imprecise labeling using default
parameters and up to 87% using adaptive parameters. Moreover, using
our refinement approach significantly increased the similarity of the dis-
covered model to the original process with duplicate labels allowing for
better rediscoverability. We also report on a case study conducted for a
Dutch hospital.

1 Introduction

Real-life processes may require that the same activity occurs at different stages
or branches of the process [1–4]. A human modeler would use different nodes in
a model (e.g., different transitions in a Petri net) labeled with the same activity
to express different occurrences of an activity in the process. We call each node
labeled with an activity a task. Thus, there could be many tasks referring to the
same activity, which are known as duplicated tasks. In a log, events are usually
labeled with activity names instead of tasks. As a result, two different events
with the same activity label may originate from the same task or from different
tasks, i.e., the labeling in the event log is imprecise.

Process discovery aims at creating an accurate representation of the real
process from an event log helping users to understand the executed process [3,5].
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 90–107, 2016.
DOI: 10.1007/978-3-319-45348-4 6

Handling Duplicated Tasks in Process Discovery by Refining Event Labels 91

Fig. 1. The imprecise label problem settings and the running example.

However, most existing discovery algorithms assume the labels of events to be
precise and consider for each label as one task represented by a single task node
in the model. In case of event logs with imprecise labels, these discovery algo-
rithms tend to return over-generalized models that allow much more behavior
than in the event log [2,3]. Such models may be misleading or even incorrect,
obstructing users to use the models for understanding the real processes or per-
forming accurate process analysis. A better solution would be to discover models
where two tasks carry the same label, i.e., duplicate tasks [1,2].

We exemplify the problem using an example shown in Fig. 1. The original
system (a) has five activities “r”, “d”, “c”, “b” and “x” and ten tasks; activities
“c”, “b” and “x” occur at multiple different tasks, which result in an imprecise log
(b), in which the events only refer to activities “c”, “b” and “x” rather than the
different tasks in the system. Using a standard discovery algorithm, we discover
for the imprecise log (b) an imprecise model (c) that states “b” could be skipped
and has a loop that allows “c” and “x” to be executed an arbitrary number of
times, even though every trace in the log has an event labeled “b” and only one
event labeled “x”. Overall, model (c) is imprecise as it contains many behaviors
neither seen in the log (b), nor in the original system (a). Refining the labels
of events could yield the refined log (d), from which a refined model (e) can
be discovered that corresponds to the original model (a) while using the same
discovery algorithm. However, the trivial refinement where each event gets its
own unique label is not desired as it would lead to models that overfit the event
log. Thus, our goal is to refine an imprecise log in such a way that a discovery
algorithm finds a better model which is more precise and closer to the original
model.

In this paper, we investigate the problem of imprecise labels of events for
process discovery and propose an approach to resolve the problem through log
preprocessing. In particular, we introduce an approach for refining labels and
relabeling events in the log such that any existing or future process discovery
algorithm can infer duplicated tasks from the refined labels. As the optimal
refined log or model may be unknown, our approach aims at adding more alter-
native representations of a process into the solution space of process discovery
algorithms to help users find better models systematically.

92 X. Lu et al.

Our approach has three steps: (1) identify one or multiple candidates
for imprecise event labels; then refine imprecise labels (2) across traces and
(3) within traces. Here, we leverage previous work on trace matching technique
which groups events based on similarities in their context [6]; dissimilar groups
of events are labeled differently.

The approach is implemented in ProM1 and has been evaluated in a con-
trolled setting and in a real life case study. In the controlled experiment, we
investigated how well our approach can detect and refine labels in imprecise
event logs generated from a large set of synthetic process models with duplicated
tasks. We analyzed model quality with respect to the event log and the similarity
to the original model. For 87 % of the processes having duplicated tasks outside
of loops, our approach automatically refined imprecise logs so that a discovery
algorithm returned a more precise model. For processes having duplicated tasks
in a loop, label refinement improved precision for 61 % of the imprecise logs.

In the remainder, we first discuss related work in Sect. 2. In Sect. 3, we recall
the concepts used for defining the problem, the measures used in the evalua-
tion, and the methods used in the approach. In Sect. 4, we formalize problems
and aims. Section 5 explains the proposed approach. The evaluation results are
presented in Sect. 6, and Sect. 7 concludes the paper.

2 Related Work

Process Model Elements Labeling or Relabeling. Many studies have inves-
tigated the problem of labeling or relabeling process elements (e.g., activities,
flow relations) in process models [7,8]. These works assume that a collection of
structurally correct process models is available and use additional domain knowl-
edge or other semantically correct labels to then suggest or revise the incorrect
labels of elements in these models. Here, we assume no models to be available
and operate solely on event logs, in order to discover structurally correct models.
One then may apply [7,8] on the discovered models to revise and improve their
labels.

Process Discovery and Duplicated Tasks. Process discovery algorithms
aim at discovering “good” models from an event log to help users to understand
real-life processes. Most existing discovery algorithms map each unique event
label to one task, making it impossible to discover processes with two tasks
with the same label. Some discovery algorithms can refine labels during model
construction to some extent [1,2,4,5,9]. However, these internal mechanism to
handle duplicated tasks can not be used in other discovery algorithms. Moreover,
these algorithms have other limitations such as they do not guarantee sound
models or fitting models. To be able to benefit from current and future progress
in process discovery techniques [10,11], we propose to refine labels in the event
log itself, which then can be used by any process discovery algorithm.

1
http://www.promtools.org/.

http://www.promtools.org/

Handling Duplicated Tasks in Process Discovery by Refining Event Labels 93

Trace Clustering and Clone Detection. As duplicated tasks may also man-
ifest themselves as multiple variants of executing a set of activities within the
same process, trace clustering was proposed as a way to distinguish these vari-
ants [12,13]. However, clustering techniques always consider entire traces and
thus also unnecessary duplicate tasks which are the same in all variants. In [14],
the authors proposed a top-down approach that clusters the traces, discovers
models for each cluster separately and uses clone detection to find tasks that are
the same in all variants, preventing unnecessary duplicating tasks [15]. However,
trace clustering techniques are unable to distinguish two events having the same
label within a trace or a variant [12]. In this paper, we aim at tackling both
problems.

Data Quality and Noise/Deviation Filtering. Imprecise labels could also
be seen as data quality problem, i.e., events having incorrect labels. To the best
of our knowledge, no existing work investigated this problem from this point of
view. Other existing work on log preprocessing such as noise/deviation filtering
would change input logs, both structurally and behaviorally, e.g., by removing
events [6]. Such changes would also affect fitness of the discovered model with
respect to the original log as a process discovery algorithm can only guarantee
fitness for the filtered log. In this paper, we propose to not change the event log
but only the labeling of events, which help us to preserve fitness if the discovery
algorithm has such a guarantee.

Model Quality of Discovered Models. Dozens criteria and measures have
been proposed for assessing the quality of discovered models, which may be
discussed in three categories. Measures that evaluate the quality of the model
using the input log often consider fitness, precision, and generalization [3,5]; we
use the fitness defined in [16] and precision in [17]. In the context of controlled
experiments, the quality of a discovered model can be evaluated against the
original system in terms of how much of the behavior of the system can be
reproduced by the discovered model and how precise the model describes the
system [18]. When evaluating the quality of model irrespective of the log, then
soundness and simplicity are often considered [5,19]. In the next section, we
further discuss the measures used in this paper.

3 Preliminaries

In this section, we present (1) the input for our approach, (2) the quality mea-
sures used, and (3) the key concepts of a technique for finding events with a
similar context.

Event, Label, and Event Log. Let E be the universe of unique events, i.e., the
set of all possible event identifiers. A trace σ ∈ E∗ is a finite sequence of events.
An event log C = {σ1, σ2, · · · , σn} ⊆ E∗ is a set of traces. Here we assume no
event appears twice in the same trace nor in different traces. We use EC for the
set of events in log C. Let A be a set of activities and C a log. A labeling function

94 X. Lu et al.

l : EC → A is surjective and assigns to each event e ∈ EC a label l(e) = a ∈ A.
We call L = (C, l) a labeled event log over activities A.

Process Discovery and Model Quality. Let L = (C, l) be a labeled log over
A. A discovery algorithm D returns a model M (i.e. D(L) = M) such that the
activities A(M) occurring in model M are A, i.e., A(M) = A. The quality of the
discovered model D(L) = M may be evaluated in two ways. First, with respect
to the input log L, the log fitness(L,M) and log precision(L,M) of the model
can be computed, for which we use the measures defined in [16,17], respectively.
Both return a value between 0 and 1: if log fitness(L,M) = 1, every trace in
the log can be replayed by the model perfectly. When log precision(L,M) is
close to 1, most (alternative) behavior allowed by the model is also observed in
the log.

In addition, we compare the discovered M = D(L) to the original system
in terms of system recall and system precision to evaluate the generalization
and discoverability of our approach. Let S be the system that generated L. The
system recall sys recall(S,M,L) and system precision sys precision(S,M,L) of
the discovered model are computed according to [18]. For example, in Fig. 1(b),
after executing events “r” and “x” in trace t2, tasks “b” and “c” are enabled in
the original system; in model (c), “b” and “c” but also “x” are enabled, which has
100 % recalled all enabled activities in the system but is less precise (an additional
“x” not enabled in the system); a trace model would only allow “b” (the next
event in the trace), which is precise but has bad recall. Note that the recall
with respect to system thus also captures the aforementioned generalization
quality [5]. Furthermore, note that the system precision is different from the log
precision, as the system could be imprecise with respect to the log (when the
log is incomplete), but system is always precise with respect to to itself.

Similar Events, Mapping, and Cost Function. We build on existing con-
cepts [6] to identify events that carry the same label but occur in different con-
texts. Let σ, σ′ be two traces. A mapping λ(σ,σ′) ⊆ Eσ × Eσ′ between σ and σ′

is a binary, injective relation; (e, e′) ∈ λ(σ,σ′) is a matched pair. We write λ(σ,σ′)

for the set of events having not match in λ(σ,σ′), i.e. λ(σ,σ′) = {e ∈ E | ¬∃e′ ∈
E′ : (e, e′) ∈ λ(σ,σ′)} ∪ {e′ ∈ E′ | ¬∃e ∈ E : (e, e′) ∈ λ(σ,σ′)}. In this paper, we
assume for all (e, e′) ∈ λ(σ,σ′), l(e) = l(e′).

cr dc xb

dr x cb

Neighbors
Distance = 4

Distance = 3 Similar = Matched
Dissimilar = No Match

e1 e2 e3 e4 e5 e6
e7 e8 e9 e11

e10

Fig. 2. An example of a map-
ping between two traces.

Given any two traces σ and σ′, there are
many possible mappings between them. An
optimal mapping that maximizes the pairs of
mapped events with large similarity in their con-
text can be selected using a cost function with
three weighted components: (1) the differences in
the (direct or indirect) neighbors of the matched
pairs (using costMatched), (2) the differences in
the distances between a matched pair (e, e′) and
other matched pairs (using costStruc), and (3)
the non-matched events e ∈ λ (using costNoMatch). Formally, cost(σ, σ′, λ) =
wM ∗ ∑

(e,e′)∈λ costMatched(e, e′, λ) + wS ∗ ∑
(e,e′)∈λ costStruc(e, e′, λ) + wN ∗

Handling Duplicated Tasks in Process Discovery by Refining Event Labels 95

∑
e∈λ costNoMatch(e), in which wM , wS , wN are the weights for the components.

Figure 2 shows an example of a mapping between traces t1 and t2 of log Llab of
Fig. 1 (see [6] for a detailed explanation). As the traces σ and σ′ are finite, one
may simply enumerate all possible mappings between two traces, compute the
cost of each mapping, and select the optimal ones. In [6], a greedy algorithm is
proposed to find a locally optimal mapping in polynomial time. The results of
this paper have been obtained with the greedy variant.

4 Problem Definition and Analysis

In this section, we first formally define our research problem and then discuss the
related complications and our design decisions. In essence, given an imprecisely
labeled log L = (C, lA) over the set of activities A, we would like to return a
more refined labeling function lB for the events EC in order to help a discovery
algorithm find better models.

Definition 1 (Refined Labeling Function). For a labeled log LA over the
set of labels A, the log LB over an arbitrary set of labels B is a refined log iff
(1) they have the same traces, i.e., LA = (C, lA), LB = (C, lB), and (2) for each
two events e, e′ ∈ Ec, e and e′ can only have the same label according to lB, if
they also have the same label by lA, i.e., (lB(e) = lB(e′)) ⇒ (lA(e) = lA(e′)).
We call lB a refined labeling function for LA.

Note that the model MB discovered from LB has a different set of activ-
ity labels (i.e., A(MB) = B) than the model MA discovered from LA (i.e.,
A(MA) = A). However, for comparing MA and MB w.r.t. various measures,
both models should have the same set of activities. To allow for this comparison,
we introduce some notions that allow replacing the refined labels B of MB with
the original labels in A. Each refined log LB = (C, lB) of LA = (C, lA) induces
the label abstraction function β : B → A with β =

⋃
e∈E{lB(e) 	→ lA(e)}.

The inverse β−1(a) = {b ∈ B|β(b) = a} gives the set of refined labels for
original label a ∈ A. Note that β(lB(e)) = lA(e) for all events e ∈ E.
For example, in Fig. 1, the refined log Lre of Llab induces the abstraction
β = {r → r, c1 → c, c2 → c, c3 → c, b1 → b, b2 → b, x1 → x, x2 → x, d → d},
label c is refined into the set β−1(c) = {c1, c2, c3}.

Using β, we can abstract model MB by replacing each label b in MB with
β(b). Let β(MB) denote the resulting model. Lemma 1 then follows immediately
from the definitions.

Lemma 1 (MB and β(MB) have the Same Behaviors). Let LA be an event
log and LB be a refined log of LA. Let MB be a model discovered from LB such
that each trace of LB is a trace of MB. Let β be the label abstraction induced by
LB. Then each trace of LA is a trace of β(MB).

Through β we can now compare models MA and β(MB) respectively dis-
covered from both original log LA and refined log LB and formally define our
problem.

96 X. Lu et al.

Problem Definition. Let Llab = (C, l) be an (imprecisely) labeled event log
over the set of activities A. Let S denote the system model that generated Llab

with A(S) = A. Given discovery algorithm D, let Mlab = D(Llab) be the model
discovered on the labeled log. We would like to find a refined labeling function l′ of
l that with induced label abstraction β such that for the refined log Lre = (C, l′)
and the discovered, abstracted model Mre = β(D(Lre)) over A, the following
properties hold:

(1) Fitness and precision of Mre improves over Mlab w.r.t. the given labeled log:
– log precision(Mre, Llab) ≥ log precision(Mlab, Llab) and
– log fitness(Mre, Llab) ≥ log fitness(Mlab, Llab)

(2) Recall and precision of behavior of Mre should be higher than Mlab w.r.t. S,
i.e.,
– sys precision(S,Mre, Llab) ≥ sys precision(S,Mlab, Llab) and
– sys recall(S,Mre, Llab) ≥ sys recall(S,Mlab, Llab)

When the system S is unknown, we consider our third aim as providing
different refined labeling functions that satisfy the first requirement which allows
users to explore different representations of the input log.

Related Issues and Design Decisions. We discuss three complications
related to the research problem to motivate our design decisions and assump-
tion. First, there is a large combinatorial number of possible solutions, since in
principle any label can be refined into an arbitrary number of refined labels. In
addition, we have no criteria nor metrics that define when a refinement is optimal
for the algorithm D. This depends on the discovery algorithm used. Furthermore,
when the system is unknown, the same process may have different equally good
representations depending on the stakeholder, the context, and decisions made
in the formalization of the model. Since one can not deduce the optimal log nor
the optimal model, we have to base the decisions for refining event labels on the
behavioral structure of the event log and some basic principles and heuristics we
discuss later.

The second complication is posed by the discovery algorithms and mea-
sures used for evaluation. Ideally, a more precise log would result in a more
precise model, independent of the discovery algorithm and the measures we
applied. However, this is not the case. A discovery algorithm may return a less
precise model while the log is more refined (for example to avoid overfitting).
Therefore, we decided to propose a backup plan. If log precision(Mre, Llab) <
log precision(Mlab, Llab), we simply return the log with its imprecise labeling.
This guarantees that at least using the refined log would not lead to discovering
a model worse than using the imprecise log.

Finally, in this paper, we assume the discovered model is sound and fitting
for the following reasons. Most state-of-art measures assume a fitting log when
evaluating the quality of a model. We observed in our own experiments that the
measures become rather unreliable and difficult to compare or to understand the
improvements when the models are not sound and fitting. Moreover, as fitness is
defined in terms of the number of events that can be replayed by a model and we

Handling Duplicated Tasks in Process Discovery by Refining Event Labels 97

are not adding or removing any events (which would have direct influence on the
fitness), changes in fitness are merely a quality of the discovery algorithms used.
For example, if the algorithm guarantees to return a fitting model, relabeling
events would not change this property.

5 Approach

We decompose the label refinement problem into three subproblems. First, we
identify one or multiple labels as candidates for imprecise labels. Then, we con-
sider a group of traces that have similar behavior to be a variant of the process
and refine the imprecise label candidates (horizontally) into different variants
and (vertically) within a variant. Figure 3 shows an overview of the three sub-
problems using an example.

5.1 Detecting Imprecise Labels

The first step is to identify one or multiple candidates for imprecise labels. This
step helps to limit the search scope to those events that have an imprecise label
and to avoid splitting non-duplicated tasks. Furthermore, it helps to consolidate
the context information of events with imprecise labels. One may also consider all
labels, however, this may unnecessarily complicate the label refinement process.

Formally, we define the problem as follows. Let L = (C, lA) be a labeled
event log and A the set of labels used. We would like to identify a subset of
labels A′ ⊆ A and consider them as candidates for imprecise labels. In other
words, the labels in A\A′ are precise labels, and there is no need to refine them,
i.e., for e ∈ EC and lA(e) = a ∈ A\A′, any refined labeling function lB of lA
with its β implies lB(e) = a, and β−1(a) = {a}.

There are many different ways to detect imprecise labels. We discuss two
methods (used in the evaluation) and consider other possibilities as future work.
The optimal case is to have an oracle that returns the truly imprecise labels
as candidates. For example, domain experts indicate a particular label to be
imprecise. In the remainder, we refer to this as Oracle Detection (OD).

Besides having an oracle, we propose an automated method that uses prop-
erties of Inductive Miner (IM) [11]. IM systematically parses an event log and

Fig. 3. The proposed approach for refining imprecise label as log preprocessing.

98 X. Lu et al.

finds a locally optimal “subprocess” recursively. If IM fails to find an accurate
subprocess, it returns a generic subprocess that can replay any trace over the
events in the corresponding sublog (i.e., a local “flower loop”). In this paper,
we consider this type of subprocess to be imprecise. We choose to select the
smallest imprecise subprocess (i.e., local “flower loop”) and return the activity
labels in the subprocess as imprecise label candidates. For instance, applying IM
on the running example, IM returns a process model of Fig. 1(c) containing a
flower loop with activity labels c, b and x, and this set {c, b, x} is returned as
candidates for imprecise labels. We use the IM Detection (IMD) to refer to this
method. In principle, any subprocess or multiple subprocesses can be selected.

5.2 Intermediate Step - Matching Events

After finding imprecise label candidates, we propose an intermediate step before
refining these labels. The objective of this intermediate step is to identify similar-
ities between events across traces. Similar events should carry the same refined
label whereas dissimilar events should carry a different label.

In essence, the procedure for computing the similarity of events of differ-
ent traces uses the existing trace matching technique of Sect. 3 and goes as
follows. Given a labeled log L = (C, l), for each two traces σ, σ′ ∈ C, we
find an optimal mapping λσ,σ′ ∈ Eσ × Eσ′ between their events for a given
cost function. This way we get the distance between any two traces σ and
σ′ as cost(σ, σ′, λσ,σ′). This distance can be normalized w.r.t. the highest cost
maxCost = maxσ,σ′∈C cost(σ, σ′, λσ,σ′).

To obtain the distance between any two events, we project the normalized
distance between traces onto the individual pairs of events. Formally, we con-
struct an undirected weighted graph G = (EC , R, l, w) where nodes EC are the
events of L = (C, l) with labeling l. For each pair (σ, σ′) of traces in L and a best
matching λσ,σ′ and for each pair (e, e′) ∈ λσ,σ′ of events, we add the edge (e, e′)
to R with weight w(e, e′) = cost(σ, σ′, λσ,σ′)/maxCost. Note that in G a single
event may have many weighted edges describing how close it is to the most sim-
ilar event in other traces. When mapping the costs from pairs of traces to pairs
of events in G, any edge between events with a precise label a (i.e., a /∈ A′) gets
cost 0. This way, we will enforce that these labels are not refined. The higher
the cost between two events, the more likely that they receive different labels.
Searching for a mapping with least cost ensures we group the most similar events
and give them together the same label during refinement. Figure 4(a) shows an
example of a weighted graph of events for an imprecise log that consists of four
traces. Note that the graph is incomplete; the mappings between t0 and t2, t1
and t3, and t0 and t3 are not shown for the sake of simplicity.

5.3 Refining Labels Horizontally Across Variants

We can now identify variants within a process by grouping events across traces
based on their similarity. The reason for distinguishing variants is the following.
If two very different variants of a part of the process are considered together, a

Handling Duplicated Tasks in Process Discovery by Refining Event Labels 99

cr dc xb

dr x cb

e6 e7 e8 e9 e10 e11

e12 e13 e14 e16e15

r dc xbe1 e2 e3 e4 e5

dr x bce17 e18 e19 e21e20

Trace t 0

Trace t 1

Trace t 2

Trace t 3

0.5 0.5 0.5

0.5 0.50.5

0 0

0

0

0

0 0.7 0.7 0.7

c2r dc2 x2b2

dr x1 c1b1

e6 e7 e8 e9 e10 e11

e12 e13 e14 e16e15

r dc2 x2b2e1 e2 e3 e4 e5

dr x1 b1c1e17 e18 e19 e21e20

0.5 0.5 0.5

0.5 0.50.5

0 0

0

0

0

0

Horizontal refinement zv = 0.6

c3r dc2 x2b2

dr x1 c1b1

e6 e7 e8 e9 e10 e11

e12 e13 e14 e16e15

r dc2 x2b2e1 e2 e3 e4 e5

dr x1 b1c1e17 e18 e19 e21e20

0.5 0.5 0.5

0.5 0.50.5

0 0

0

0

0

0

Vertical refinement zf = 0.4(a) (b) (c)

Fig. 4. A graph of labeled events with weighted edges denoting the dissimilarity (a),
for which the labels are refined horizontally (b) and then vertically (c).

discovery algorithm may return a more general structure than exists in reality.
Consider for example the two traces σ = 〈..., c, b, x, ...〉 and σ′ = 〈..., x, b, c, ...〉.
One may consider them a single variant and return for example a model with
activities b, c and x in parallel (i.e. can be executed in any order). However, an
alternative would be having a precise model that only allows these two variants.
The “optimal” model depends on the particular case. When the original model
for the system is unknown, we cannot claim one of them is better, therefore
we simply want to add the alternative with both variants to the solution space
of existing discovery algorithms allowing user to explore both representations.
Label refinement allows us to achieve this systematically.

The similarity measure enables us to be flexible when considering which
variants to split by introducing a variant threshold zv. We say, two traces
σ and σ′ are in the same variant, written σ ∼ σ′ iff their normalized
cost(σ, σ′, λσ,σ′)/maxCost ≤ zv or there exists σ′′ with σ ∼ σ′′ ∼ σ′. Note
that ∼ is an equivalence relation where two very dissimilar traces may become
equivalent if there is a “chain” of similar traces between them. Thus, two events
e ∈ σ, e′ ∈ σ′ that have imprecise labels (i.e., l(e), l(e′) ∈ A′) are in the same
variant iff σ ∼ σ′. In our graph G, we materialize (dis-)similarity by removing
any edge (e, e′) with weight w(e, e′) > zv. As all mappings between events of the
same two traces σ and σ′ carry the same weight, all events of a trace are kept in
the same variant. Note that edges between the events that carry precise labels
have weight 0 and are not split into multiple variants.

For example, setting the variant threshold for the event distance graph G
of Fig. 4(a) to 0.6 yields the graph G′ of Fig. 4(b) showing two variants in the
part of the process involving labels c, b, x. Labels r and d are not refined into
multiple variants.

5.4 Refining Labels Vertically Within Variant

After refining labels horizontally to distinguish different variants, there can still
be multiple events carrying the same label within a single variant indicating
either a loop or different tasks. Assuming in 50 % of cases activity c is executed

100 X. Lu et al.

once and in the other 50 % of the cases, c is executed twice, we could infer that
there are two c tasks (one optional), or just one c task in a loop. In the following,
we again use label refinement to add both alternatives to the solution space.

For refining labels within a single variant, we assume the following character-
istics of a proper loop: when the number of iterations increases, the probability
of executing this iteration decreases. For example, one may always execute the
first iteration, whereas the second iteration is only executed in 20 % of the cases.
In contrast, a duplicated task in a sequence would show similar numbers of
executions in all traces of the same variant.

Based on this assumption, we introduce an unfolding threshold parameter
zf . For each imprecise label candidate a ∈ A′, let G1

a, ..., Gm
a be the connected

components of G in which all events have label a. Gi
a and Gj

a are in the same
variant iff for any two events ei ∈ Gi

a and ej ∈ Gj
a, ei and ej are in the same

variant (see Sect. 5.3). For example, Fig. 4(c) highlights for imprecise label c
the three connected components G1

c = {e2, e7}, G2
c = {e10}, G3

c = {e15, e19}, in
which G1

c and G2
c in the same variant. Next, let #Gi

a denote the average position
of the events of #Gi

a in their respective traces. Let G1
a ... Gk

a be in the same
variant ordered by #Gi

a. Let maxSize = max1≤i≤k

∣∣Gi
a

∣∣ be the size of largest
component (w.r.t. its events). For 1 ≤ i ≤ k, if i = 1 or

∣∣Gi
a

∣∣ ≥ vf ∗ maxSize,
then all events in Gi

a get a new label, otherwise Gi
a get the label of the events

of Gi−1
a . For example, for imprecise label c, for the two connected components

G1
c = {e2, e7} and G2

c = {e10} that are in the same variant, #G1
c = 2, #G2

c = 5,
and maxSize = 2. Therefore, if the unfolding threshold vf is 0.6, then the events
in G2

c get the same label as the events in G1
c . If vf is 0.4, then both G1

c and G2
c

each get a new label.

6 Experimental Evaluation and Case Study

We implemented the techniques of Sect. 5 in the process mining toolkit ProM
and conducted controlled experiments and a real-life case study to evaluate our
approach. Plugins and experiments are available in the TraceMatching package
of ProM. We first explain the experimental setup and then discuss the result.

Experimental Setup. The experimental setup is shown in Fig. 5. We randomly
generated block structured models as systems with n number of visible tasks.
Each system has k tasks that have the same activity label (here we consider just
one duplicated label). For each system, we generate one imprecisely labeled log
Llab = (C, llab) of a 1000 cases each. From the imprecise log Llab, we discover
Mlab = D(Llab). For the same log, we also apply our approach of Sect. 5 to
obtain a refined log Lre = (C, lre) (note that β(Lre) = Llab), for which we dis-
cover model Mre. Two algorithms are used: IM [11], i.e., Mre,IM = β(DIM (Lre)),
and ILP [10], i.e., Mre,ILP = β(DILP (Lre)). The quality of each of the models is
compared with the corresponding model Mlab for evaluating to what extent our
aims has been achieved. In all experiments, the same cost configuration is used
for matching events. To speed up the experiments, the events that have precise

Handling Duplicated Tasks in Process Discovery by Refining Event Labels 101

Compute Model Qualities

Label
refinement

L_lab

Generator

System S,

in which k number of
transitions have

the same label

L_re
M _lab

M _re

D

D qualities of
M _lab (LB)

qualities of
M _re

D = IM , ILP
Model qualities = Log_fitness , Log_precision ,

Sys_fitness , Sys_precision

improved

For Sys_recall and Sys _precision

For Log_fitness and Log _precision

Fig. 5. An overview of the experimental design.

The refined models (c)(e) shows that the duplicated tasks were rediscovered
in their respective positions, but unable to identify the concurrency between
two consecutive duplicated tasks.

(a) System

(b)

Log_precision improved by 0.55
Sys_precision improved by 0.68
Syst_recall is 1

Log_precision improved by 0.58
Sys_precision improved by 0.51
Syst_recall is 1

(d)

(c)

(e)

B
B
B

B

B

B B B B

B
B B B

B

Fig. 6. Original model with duplicate tasks (a), results of IM on imprecise log (b) and
on refined log (c), same for ILP (d) and (e).

labels, i.e. l(e) = l(e′) /∈ A′, are matched naively based on their labels and order-
ing in their respective traces. All models, logs and results can be downloaded2.

(Exp. 1) When Imprecise Labels are not in a Loop, What are the
Improvements? In this experiment, we used the default parameters: the variant
threshold zv is 0.05 and the unfolding threshold zf is 0.60 for all models. We
generated for size n = [10, 15, 20] 200 models (600 models in total). For each
model, there are k = 4 transitions having the same label and that are not in a
loop.

We show two examples of the refined models compared to their imprecise
models in Figs. 6 and 7 to illustrate our results: Fig. 6 shows an improvement
in log precision of more than 0.50 and Fig. 7 an improvement of 0.10. In Fig. 6,
the original model (a) has four duplicated tasks labeled “B”; applying IM and
ILP on the imprecise log respectively results in discovering an imprecise model
(b), which has a flower subprocess consisting of 5 activities, or an imprecise
2 doi:10.4121/uuid:ea90c4be-64b6-4f4b-b27c-10ede28da6b6

or https://svn.win.tue.nl/repos/prom/Documentation/TraceMatching/BPM2016.zip.

http://dx.doi.org/10.4121/uuid:ea90c4be-64b6-4f4b-b27c-10ede28da6b6
https://svn.win.tue.nl/repos/prom/Documentation/TraceMatching/BPM2016.zip

102 X. Lu et al.

Log_precision improved by 0.10,
Sys_precisionimproved by 0.22, Sys_recall= 1

(a) System

(b)

The refined model (c) shows that the large
flower loop in (b) is unfolded by correctly
identifying the duplicated task t 1 , but
unable to completely rediscover t2 , t3 and t 4.

(c)

A
A

A
A

A

A A
A

Fig. 7. Original model (a), result of IM on imprecise log (b) and on refined log (c).

88
50 32

112
81

57

112
150 168

88
119

143

0

50

100

150

200

10 15 20 10 15 20

ILP IM

(a) Number of logs
refined (IMD)

TRUE FALSE

71

31 25 14 12 11 6

139

54
34 11 8 4

0

50

100

150

200

250

300

(0,
0.1]

(0.1,
0.2]

(0.2,
0.3]

(0.3,
0.4]

(0.4,
0.5]

(0.5,
0.6]

(0.6,
0.7]

(0.7,
0.8]

(0.8,
0.9]

(0.9,
1.0]

(b) Frequency of improvements in
Log_Precision (IMD)

ILP IM

1

91

151
123

49

51

35

76

104

132

72

0

50

100

150

200

[0,
0.5]

(0.5,
0.6]

(0.6,
0.7]

(0.7,
0.8]

(0.8,
0.9]

(0.9,
1.0)

[1.0]

(c) Shift in System F1-Score
(IMD)

#M_lab #M_re

Fig. 8. Number of refined log (a), frequency of improvements in log precision (b) and
shifts in system scores (c).

model (d), which has two unconnected activities; on the refined log, for both
ILP and IM, the refined models (c) and (e) shows that the four duplicated tasks
were correctly discovered in their respective positions in the process, however,
our approach is unable to identify the concurrency between two consecutive
duplicated tasks t2 and and t3 in (a).

Overall, Fig. 8(a) shows the number of systems for which our approach was
able to find a refinement for its log that leads to discovering a better model
with a higher log precision, while using automated detection of imprecise labels
(IMD). In general, in 35 % (420 of 1200) of the logs, we were able to find a
refinement with default parameters using IMD; using domain knowledge (OD)
increased this number by 3 %. For 42 % of the refined logs, IM discovered an
improved model, which is 14 % more than for ILP.

Figure 8(b) shows the histogram of frequencies of actual log precision
improvements using IMD. As can be seen, for both ILP and IM, our approach
is able to help discover models with significant improvements. For ILP, the app-
roach was able to find for 99 out of 600 models an improvement between 0.1 and
0.7 (using OD, this number increased by 9 %); similar for IM, 111 out of 600
refined models had such an improvement (using OD, this number is increased
by 20 %). The average log precision is increased by 0.15.

Handling Duplicated Tasks in Process Discovery by Refining Event Labels 103

Figure 8(c) shows the absolute F1-score (which is the harmony average of
sys precision and sys recall) for Mlab (discovered on imprecise logs) versus Mre

(discovered on the successfully refined logs using IM and ILP); our refinement
clearly shifts the F1-score towards 1. When using automated detection (IMD),
16 % (67 out of 420) of the improved logs were refined in such way that F1-
score becomes 1, which indicates that the resulting model have exactly the same
alternative behavior as the original system enabled by the log (using OD we
obtain 77 out of 516). Performance-wise, the average running time for computing
one refined log varies between 8 and 14 s. depending on the model size.

(Exp. 2) Influence of Our Parameters. Next, we investigated whether
adjusting parameters improves the quality of label refinement and whether such
parameters can be found automatically for each model. For this, we repeated the
above experiment for IM and OD and changed variant threshold (from 0.08 to
0.00 in steps of 0.01) and unfolding threshold (from 0.00 to 0.60 in steps of 0.10).
We stopped when getting a log where Mre had higher log precision than Mlab.
The average running time for computing one such refined log has increased to
between 53 and 111 sec. depending on the model size.

Figure 9(a) shows the number of imprecise logs improved, (b) shows the
actual improvements in log precision, and (c) shows the F1-scores of sys recall
and sys precision. It is worthwhile to note that, using the adaptive parameters,
for 87 % of the imprecise logs, we were able to refine the log helping IM discover
a better model. The average log precision is increased by 0.12. Compared to the

Fig. 9. The same types of result as Fig. 8 when using adaptive parameters.

Fig. 10. The same types of result as Fig. 8, if a duplicated task is found in a loop.

104 X. Lu et al.

46 % (when using default parameters and OD), the number is increased by more
than 89 %. Another notable result is that the number of Mre that has an increase
in log precision between 0.2 and 0.7 is also increased by 72.2 % compared to the
default parameter. This states for over one out of five logs, the adaptive app-
roach is able to find a rather significant improvement, if the imprecise labels are
not in a loop.

We manually inspected the models that could not be improved by using
adjusted parameters. We found that this mostly concerned models that either
have a large loop or have duplicated tasks concurrent to many other tasks. The
difference in the corresponding components (i.e. such loops increase the cost of
structure and such concurrency increases the cost of neighbors) becomes domi-
nant in the cost returned by trace matching, resulting in splitting the imprecise
labels wrongly even though the matching may be correct.

(Exp. 3) What if Imprecise Labels Appear in a Loop? We again generated
600 models, 200 for each n = 10, 15, 20. We used OD and set k = 2 transitions
that have imprecise label: one inside and one outside of a loop. We used adaptive
parameter selection and IM as discovery algorithm. Figure 10 shows the results.
In 60.5 % of the models, the approach could find an improvement (32 % less
compared to the results when no duplicated task is in a loop), which indicates
that the approach has more difficulties to distinguish imprecise labels in loops.
Another interesting result is that although the approach could improve fewer
logs, the improvements achieved were considerable in some cases; 20 models
have increased log precision by more than 0.5. Figure 11 shows an example of
the model discovered using the refined log, which rediscovered the original model
Fig. 11(a).

Inspecting the models, we observe that the approach is able to to distinguish
loops if an imprecise transition t outside of a loop is followed by an imprecise
transition inside of a loop. We found three patterns where our approach failed:
(1) distinguishing a second iteration of a loop from a choice for a duplicate
activity, (2) distinguishing a duplicate activity at the end of a loop body from
one immediately after the loop, (3) one duplicate activity is concurrent to another
duplicate activity within a loop. We plan to address these issues in our future
work.

Real-Life Case Study. We conducted a case study involving a healthcare
process. The log was provided by Maastricht University Medical Center
(MUMC+), a large academic hospital in the Netherlands. We used existing
approaches to filter the known deviating cases and events. The cleaned hospital log
contains 1039 cases and 6213 events having five distinct labels. Since the log still
contains imprecise labels and misses some events, applying the Inductive Visual
Miner (IvM) yields an imprecise model with two self loops, as shown in Fig. 12(a).
Using the default parameter, the approach was unable to refine the log. Therefore,
we took an iterative approach.

We first refined events labeled with “surgery”, i.e., the imprecise label can-
didate is “surgery”. In the second and third iteration we refined events labeled
with “consultation”. The resulting model shows the sequential behavior expected

Handling Duplicated Tasks in Process Discovery by Refining Event Labels 105

(a) = System

(b)The original model (a) has the second duplicate task in a loop.
Without refinement a large flower loop is discovered (b). Using
our approach refines labels so that model (a) is rediscovered.

Log_precisionimproved by 0.67,
Sys_precisionimproved by 0.79,
Sys_recall= 1

T

T

T

Fig. 11. Original model with duplicate tasks and rediscovered by IM on refined log
(a), result of IM on imprecise log (b).

by domain experts. An interesting result is that after refining the labels, the
discovered model is now suitable for computing performance. For example, a
domain expert stated that within 2 months after the measurements, the first
surgery should be executed, and the model shows on avg. 59 days. After the first
surgery, a post-surgery consultation should take place within a week, and the
model shows on avg. 8 days. If a second surgery should take place, then it should
be performed after two weeks, and the model shows on avg. 14 days. Note that
such performance diagnostics are difficult to obtain using the model discovered
from the imprecise log Fig. 12(a).

Iteration 1 :
refine “surgery” events

Iteration 2 :
refine “consultation” events

Iteration 3 :
refine “consultation” events

“1 st surgery” (~59 days
after the last
test or consultation)

3 types of measurements and measurement result consultation

“after surgery
consultation” (~8 days
after the surgery)

“2 nd surgery”
(~14 days after
1st surgery or last
consultation)

(a)

(b)

(c)

(d)

Fig. 12. Real-life log obtained from a Dutch hospital that was refined our approach;
the resulting model better reflects reality and can be used to diagnose performance.

106 X. Lu et al.

7 Discussion and Conclusion

In this paper, we investigated the problem of imprecise labels and proposed a
fresh look at the problem from a log preprocessing point of view. We used context
and structural information of events in a log to find dissimilar groups of events
that have the same label and refined their labels accordingly.

The results of our evaluation provide interesting insights. When imprecise
labels are not in a loop, our approach is able to improve logs by refining labels
in 35 % of the cases using a default parameter, which increased to 87 % if the
parameter is automatically adapted to the log and the discovery algorithm. If
one imprecise label is in a loop, we could still improve 61 % of the logs. The
case study demonstrated that the approach can be used iteratively (i.e., refining
labels in multiple steps) in practice to obtain more accurate and precise models.
Interestingly, such a model can be used to derive reliable performance diagnostic.
Future research aims at investigating and tackling the limitations of the approach
found during the experiments.

References

1. Herbst, J.: A machine learning approach to workflow management. In: Proceedings
11th European Conference on Machine Learning, pp. 183–194 (2000)

2. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler,
E., Günther, C.W.: Process mining: a two-step approach to balance between under-
fitting and overfitting. Soft. Syst. Model. 9(1), 87–111 (2010)

3. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional
quality assessment of state-of-the-art process discovery algorithms using real-life
event logs. Inf. Syst. 37(7), 654–676 (2012)

4. vanden Broucke, S.K.L.M.: Advances in process mining: artificial negative events
and other techniques. Ph.D. thesis, KU Leuven (2014)

5. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in
process discovery: the importance of fitness, precision, generalization and simplic-
ity. Int. J. Coop. Inf. Syst. 23(1), 1–39 (2014)

6. Lu, X., Fahland, D., van den Biggelaar, F.J.H.M., van der Aalst, W.M.P.: Detect-
ing deviating behaviors without models. In: Reichert, M., Reijers, H. (eds.) BPM
Workshops 2015. LNBIP, vol. 256, pp. 126–139. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-42887-1 11

7. Pittke, F., Richetti, P.H.P., Mendling, J., Baião, F.A.: Context-sensitive textual
recommendations for incomplete process model elements. In: BPM 2015, Proceed-
ings, pp. 189–197 (2015)

8. Koschmider, A., Ullrich, M., Heine, A., Oberweis, A.: Revising the vocabulary of
business process element labels. In: Zdravkovic, J., Kirikova, M., Johannesson, P.
(eds.) CAiSE 2015. LNCS, vol. 9097, pp. 69–83. Springer, Heidelberg (2015)

9. de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic process
mining: an experimental evaluation. Data Min. Knowl. Discov. 14(2), 245–304
(2007)

10. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: ILP-based process dis-
covery using hybrid regions. In: Proceedings of the International Workshop on
Algorithms and Theories for the Analysis of Event Data, ATAED 2015, pp. 47–61
(2015)

http://dx.doi.org/10.1007/978-3-319-42887-1_11
http://dx.doi.org/10.1007/978-3-319-42887-1_11

Handling Duplicated Tasks in Process Discovery by Refining Event Labels 107

11. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013)

12. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

13. De Weerdt, J., vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Active trace
clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12),
2708–2720 (2013)

14. Garćıa-Bañuelos, L., Dumas, M., La Rosa, M., De Weerdt, J., Ekanayake, C.C.:
Controlled automated discovery of collections of business process models. Inf. Syst.
46, 85–101 (2014)

15. La Rosa, M., Dumas, M., Ekanayake, C.C., Garćıa-Bañuelos, L., Recker, J.,
ter Hofstede, A.H.M.: Detecting approximate clones in business process model
repositories. Inf. Syst. 49, 102–125 (2015)

16. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. Wiley Inter-
disc. Rev.: Data Min. Knowl. Discov. 2(2), 182–192 (2012)

17. Munoz-Gama, J.: Conformance checking and diagnosis in process mining. Ph.D.
thesis, Universitat Politècnica de Catalunya (2014)

18. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.T.: Process equiv-
alence: comparing two process models based on observed behavior. In: Dustdar,
S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144.
Springer, Heidelberg (2006)

19. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification,
decidability, and analysis. Formal Aspects Comput. 23(3), 333–363 (2011)

Discovering Duplicate Tasks in Transition
Systems for the Simplification of Process Models

Javier de San Pedro(B) and Jordi Cortadella

Department of Computer Science, Universitat Politècnica de Catalunya,
Barcelona, Spain

jspedro@cs.upc.edu

Abstract. This work presents a set of methods to improve the under-
standability of process models. Traditionally, simplification methods
trade off quality metrics, such as fitness or precision. Conversely, the
methods proposed in this paper produce simplified models while preserv-
ing or even increasing fidelity metrics. The first problem addressed in the
paper is the discovery of duplicate tasks. A new method is proposed that
avoids overfitting by working on the transition system generated by the
log. The method is able to discover duplicate tasks even in the presence
of concurrency and choice. The second problem is the structural simpli-
fication of the model by identifying optional and repetitive tasks. The
tasks are substituted by annotated events that allow the removal of silent
tasks and reduce the complexity of the model. An important feature of
the methods proposed in this paper is that they are independent from
the actual miner used for process discovery.

1 Introduction

Many factors can reduce the usefulness of a process model. Good quality models
need to find a balance between all the common metrics by which a model can be
evaluated against a log: fitness, precision, simplicity and generalization [1]. For
example, an open problem in process mining is finding a middle point between
overfitting and underfitting models [2]. Overfitting models only allow the behav-
ior that has been observed, and thus may trade off simplicity and generaliza-
tion, while underfitting models allow for more behavior, sacrificing precision. An
unnecessarily overfit model may prevent the user from distilling more insight
about the behavior of the process.

This paper presents a set of techniques to explore the trade off between
simplicity and precision. More specifically, by introducing a small number of new
elements, the proposed techniques result in tangible improvements in precision.
They can work in combination with any existing discovery (mining) algorithm.
While some of the techniques can be applied to different formal models, this
work will focus on Petri nets.

The first technique enables the discovery of duplicate tasks in process models.
Duplicate tasks allow several nodes to refer to the same activity in the event log.
While this is not a new concept in Process Mining [3–6], our proposal is novel in
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 108–124, 2016.
DOI: 10.1007/978-3-319-45348-4 7

Discovering Duplicate Tasks in Transition Systems for the Simplification 109

a c d e a
a c d b a
a c b d b e b a
a c b b d b b e b b a

b b b e c d e a
b b b e c d b a
b b b e c b d b e b a
b b b e c b b d b b e b b a

(a) Subset of the example log.

a

e

c

τ

b

d

τ

τ

τ

(b) Model discovered by the Inductive Miner.

a1

τ

τ

b1

e1

c τ

d

e2

τ

τ

b2

τ

τ a2

(c) Model constructed after duplicate task discovery.

a1

τ

b1

e1

c
d

e2

τ

b2

a2

(d) Removal of unneeded silent transitions from (c).

a1

b∗
1 e1

c
d e2?

b∗
2

a2

(e) Using meta-transitions to simplify (d)

Fig. 1. Applying the method presented in this paper to a sample model discovered by
the Inductive Miner.

that the splitting criteria is based on properties of Labeled Transition Systems,
thus allowing more precision than other existing techniques.

The second technique performs structural simplifications that do not modify
the semantics of the model, thus preserving the quality metrics. We introduce
extensions to the formalism that allow single nodes to represent more complex
control-flow structures, such as loops or optional tasks.

1.1 Motivating Example

Figure 1 will be used to illustrate the main contributions of this paper. We start
from a simple log, a subset of which is shown in Fig. 1a. Figure 1b shows the
model discovered by the Inductive Miner [7]. This model is highly imprecise
(50 %): while it is not a pure flower model, almost all the words are recognized.

The reason many discovery algorithms generate such a low-precision model is
the presence of duplicate tasks in the original process. These may be introduced
if, for example, different tasks have been improperly tagged with the same label.

110 J. de San Pedro and J. Cortadella

Figure 1c shows the process model after the discovery of some duplicate tasks.
The original process had two different tasks for each of the labels a, b, and e.
This information is discovered automatically using the methods proposed in this
work. Duplicate tasks also allow the discovery of more precise models. In this
particular case, the new model has a precision of 90 % and the workflow structure
is clearer. However, the model has increased the total number of components,
including silent transitions, which unnecessarily increase cognitive load.

Many of the silent transitions in Fig. 1c can be removed without affecting
the semantics of the model, as shown in Fig. 1d. A method to remove silent
transitions will also be presented in this work.

By applying some structural transformations to Fig. 1d, further reductions
on the structure of the Petri net can be achieved. In this work, the alphabet
of labels is enhanced to incorporate meta-transitions, which represent control
flow patterns. For example, an e? meta-transition can replace a choice between
e and a silent transition, as in Fig. 1d. Similarly, a meta-transition b∗ can
sometimes replace a self-loop transition with label b. In this particular model,
meta-transitions allow the removal of all silent transitions without altering its
behavior.

The rest of this paper is structured as follows. Section 2 introduces the
required background of this work. Section 3 describes the first proposed tech-
nique: a method to discover discover duplicate tasks. The second technique, a
set of structural transformations to simplify a Petri net, is shown in Sect. 4. Both
techniques are evaluated in Sect. 5. Finally, Sect. 6 discusses the related work,
and Sect. 7 presents the conclusions.

2 Preliminaries

2.1 Process Mining

Let Σ be an alphabet of events. A trace is a word σ ∈ Σ∗ that represents a
finite sequence of events. An event log L ∈ B(Σ∗) is a multiset of traces1. Event
logs are the starting point to apply process mining techniques, guided towards
the discovery, analysis or extension of process models. Process discovery is an
important discipline in process mining, concerned with learning a process model
(e.g., a Petri net) from a log. Several discovery techniques are summarized in [1].

Process models are usually evaluated in four quality dimensions: replay fit-
ness, simplicity, precision, and generalization [1]. A model with perfect replay
fitness can replay all the traces in the log. On the other hand, a precise model
does not replay any trace other than those contained in the log.

Among the different formalisms for process models, Petri nets are perhaps
the most popular, due to its well-defined semantics. This paper focuses on Petri
nets, although the work may be adapted to other formalisms.

1 B(A) denotes the set of all multisets over A.

Discovering Duplicate Tasks in Transition Systems for the Simplification 111

2.2 Petri Nets

A labeled Petri Net [8] is a tuple N = 〈P,Σ, T,L,F ,m0〉, where P is the set
of places, Σ is the alphabet of labels (corresponding to events), T is the set of
transitions, L : T → Σ ∪ {τ} assigns a label (or the empty label τ) to every
transition, F : (P × T) ∪ (T × P) → {0, 1} is the flow relation, and m0 is the
initial marking. A marking m : P �→ N is an assignment of a non-negative integer
to each place. If m(p) = k, we say that p is marked with k tokens. Given a node
x ∈ P ∪ T , its pre-set and post-set are denoted by •x and x• respectively.

A transition t is enabled in a marking m when all places in •t are marked.
When t is enabled, it can fire by removing a token from each place in •t and
putting a token to each place in t•. A marking m′ is reachable from m if
there is a sequence of firings t1t2 . . . tn that transforms m into m′, denoted by
m[t1t2 . . . tn〉m′. A sequence t1t2 . . . tn is feasible if it is firable from m0. A trace
σ fits N if there exists a feasible sequence in N with the same labels.

A transition labeled with the empty label τ is called a silent transition. A
duplicate task is a transition with the same label as some other transitions in N .

2.3 Transition Systems

A finite labeled transition system is a tuple A = (S,Σ, T, s0) where S is a finite
set of states, Σ is the alphabet of labels, T ∈ S × Σ × S are the transition
relations between states, labeled with Σ, and s0 is the initial state.

We use s
e−→ s′ as a shorthand for the arc (s, e, s′) ∈ T . A trace σ =

e1e2 . . . en fits A if there exists s1, s2, . . . , sn ∈ S with s0
e1−→ s1

...−→ sn−1
en−→ sn.

An event e ∈ Σ is enabled in a state s1 ∈ S if there exists s2 ∈ S with s1
e−→ s2.

Given two states s1 and s2 with s1
e−→ s2 ∈ T , we say e triggers another

event f iff f is enabled in s2, but not in s1. In a sense, e triggering f implies a
causality relation between the two events.

Excitation Sets. For a given LTS A = (S,Σ, T, s0) and event e ∈ Σ, we
define the Excitation Set of e as the set of states in which e is enabled, i.e.,
ES(e) = {s ∈ S | ∃s′ ∈ S : s

e−→ s′}.
Figure 2b shows an LTS constructed from the process in Fig. 2a. Notice how

ES(a) contains the states in which the three duplicate tasks of a are enabled.
The concept of local excitation set distinguishes each such instance of a:

Definition 1 (Local Excitation Set). Given LTS A = (S,Σ, T, s0) and event
e ∈ Σ, the local excitation sets of e, LES(e)1, . . . ,LES(e)k are the maximally
connected subsets of ES(e) such that, ∀s1

e−→ s2 ∈ A, if s1 ∈ LES(e)i and
s2 ∈ LES(e)j , then i �= j.

Notice that the definition does not allow both the source and target states
of a transition with label e to be in the same LES(e)i. The set of LES of
an event can be efficiently computed with a simple algorithm, illustrated in
Fig. 2c for event a. The algorithm has the following steps: (1) calculate ES(a),
(2) remove the transitions with label a from the LTS, (3) identify all LES(a) as
the maximally connected subsets of ES(a) after the removal of the a-transitions.

112 J. de San Pedro and J. Cortadella

a

a

b

c

a

d

(a) Initial process.

a
a

b

c

b

a

b

c

a

a

c
d

(b) ES(a) in the LTS.

b

c

b

b

c

c
d

(c) The three LES(a) after
removal of a-transitions.

Fig. 2. Calculation of local excitation sets.

3 Discovering Duplicate Tasks

This section introduces a method that automatically discovers which events from
an event log correspond most likely to duplicate tasks, i.e. should be represented
by more than one task in order to enhance the quality of the model. The tech-
nique works with the LTS constructed from a log and can be combined with
any discovery algorithm. By adding new tasks, the method slightly increases the
element count of the model but results in tangible improvements in precision.

Given a log L, the goal of this procedure is to generate, for every activity
a ∈ L, a partition of all the events in L referring to a. When mining a process
model, every different partition will be represented by a different task. We will
generally refer to each task by a1, a2, . . . , an. A partition that, for every activity
a, maps all events into a single task a1 results in a model with no duplicate
tasks. Figure 3b shows an example partition for the log in Fig. 1a.

An overview of the proposed method is shown in Fig. 3a. At the core of
the proposal lies a clustering process that generates a small set of candidate
partitions. An existing mining algorithm is used to generate a process model for
each of these partitions, and the best model is selected out of these discovered
models. This way, the method adapts to the subtleties of the different mining

Clustering

Log

... Candidate splits

Log preprocessor

construction

Miner

... Candidate models

Select best Final model

LTS

LTS

(a) Overview of the flow.

a1 c d e2 a2

a1 c d b2 a2

a1 c b2 d b2 e2 b2 a2

a1 c b2 b2 d b2 b2 e2 b2 b2 a2

b1 b1 b1 e1 c d e2 a2

b1 b1 b1 e1 c d b2 a2

b1 b1 b1 e1 c b2 d b2 e2 b2 a2

b1 b1 b1 e1 c b2 b2 d b2 b2 e2 b2 b2 a2

(b) Split version of the log from Fig. 1a.

Fig. 3. Summary of the duplicate task discovery process.

Discovering Duplicate Tasks in Transition Systems for the Simplification 113

algorithms. Even for miners that automatically discover duplicate tasks, the
proposed method may help improving the results.

The clustering method uses a bottom-up (agglomerative) approach: starting
from the trivial partition which maps every event to a different task, the pro-
cedure iteratively selects pairs of similar events, grouping them into the same
task. To find similar events, the algorithm uses causality relationships between
events as discovered in a LTS, instead of using log information directly (e.g.
direct predecessors or successors of an event). An LTS can be built from the
log with a variety of methods [2]. Section 3.1 describes how the procedure finds
similar events in the LTS, while Sect. 3.2 details the actual clustering algorithm.

3.1 Partitioning Based on Excitation Sets

A significant difference between this proposal and previous approaches to dupli-
cate tasks is that the proposed method works at the Transition System level.
The log is firstly converted into an LTS, and the clustering procedure generates
a partition based on causality relationships between excitation sets in this LTS,
rather than directly using the preceding and successor events in the log. Because
of this, the approach is resilient to processes where duplicate tasks are combined
with concurrency and choice. The use of clustering-based methods [9] and simi-
larity metrics rather than looking for exact matches also allow the proposed flow
to gracefully handle noise and incompleteness in the log.

Let us use an example to show the benefits of using ESs. Figure 4a shows
the LTS constructed from the log in Fig. 1a, with no duplicate task detection

Fig. 4. Example excitation set graph of a subset of Fig. 1a (loops removed).

114 J. de San Pedro and J. Cortadella

performed. For simplicity, loops have been removed (allowing one iteration only).
As per the definition of LES, there are 3 LESs for activity b, shown in Fig. 4a.

Notice how the LESs of b provide an intuitive view of the correct partition
for activity b (as shown in Fig. 3b): LES(b)1 corresponds to the events of task b1,
while LES(b)2 ∪ LES(b)3 would correspond to b2. Our proposal classifies these
LES by their relationships with other LES. The excitation set graph represents
all the LES of a TS as well as the causality relationships between those:

Definition 2 (Excitation Set Graph). Given a Labeled Transition System
A = (S,Σ, T, s0), the excitation set graph of A is a graph ESG(A) where:

– The set of vertices V (ESG(A)) corresponds to the set of LES of A.
– For every pair (LES(a)i,LES(b)j) of A, with a, b ∈ Σ, there is an edge

(LES(a)i,LES(b)j) ∈ E(ESG(A)) iff for any s1 ∈ LES(a)i and s2 ∈ LES(b)j ,
s1

a−→ s2 triggers b.

Figure 4b shows the corresponding excitation set graph of the exam-
ple LTS, while Fig. 4c summarizes the immediate trigger relations. Notice
how this information allows us to trivially distinguish between LES(b)1 and
{LES(b)2,LES(b)3}, since LES(b)1 triggers a different set of events.

Compare this to using predecessor and successor information from the log
directly, without constructing an LTS first. It is difficult to distinguish events of
b by looking at the immediately following event. For example, an event b followed
by e may indicate an instance of task b1 as discovered in the previous section,
but it may also be caused by an instance of b2, since it is concurrent with e.
Thus, using log information only, it would be difficult to construct an accurate
partition for b. The use of excitation sets avoids this problem.

Even when using excitation sets, the combination of choice, loops and/or
incomplete logs may introduce LES that have related but slightly different sets
of predecessors/successors, yet should be mapped to the same task. For this
reason, the proposed flow includes a clustering method that combines similar
LES. This method is described in the following section.

3.2 Hierarchical Clustering Algorithm

This section describes the method used by our proposal to classify local excita-
tion sets into groups with similar causality relationships. The described cluster-
ing method is agglomerative [9], discovering clusters using a bottom up approach:
the algorithm starts by assuming every that, for every activity a, every LES(a)i
belongs to its own cluster. In this initial solution, each LES maps to its own
duplicate task. Then, the algorithm considers the pairwise similarity of all the
LES, and combines the two closest (LES(a)i,LES(a)j) (of the same activity a)
into the same task ai. The entire process iterates until no further clustering can
be performed. On every iteration, the algorithm explores a solution with exactly
one duplicate task less than the previous solution.

Discovering Duplicate Tasks in Transition Systems for the Simplification 115

Algorithm 1. Discovery flow with duplicate tasks
1: function DuplicateTaskDiscovery(L, M)

� L is the input log, M is a miner algorithm.
2: A ← ConstructLTS(L)
3: G ← ESG(A)
4: R ← M(Li) � Stores the best result (process model) discovered so far
5: while |V (G)| > |Activities(A)| do � While there is some duplicate task
6: vi, vj ← FindMostSimilarNodes(G)
7: merge vi, vj into single node in G
8: Li ← TagLog(L, G) � Tag events in the log according to current partition
9: Ni ← M(Li) � Discover a temporary model for evaluation

10: if Ni is better than R then
11: R ← Ni

12: return R

The full discovery algorithm can be seen in Algorithm 1. The input is a log L.
A is an LTS constructed from L (for example using the methods described in
[2]), while G is the initial ESG, constructed using the rules seen in Definition 2.
The output R is a process model with duplicate tasks.

In every iteration, procedure FindMostSimilarNodes selects two vertices
of G with the most similar context vectors, a numeric way to represent their
causality relations which will be explained in the following section. The selected
vertices are then merged into a single new vertex, representing the new cluster,
which inherits the causality relationships of the merged vertices. Note that only
vertices with the same activity label will be selected. The loop ends when there
is only vertex in G for every activity, i.e. there are no duplicate tasks.

To select which partition of tasks will be returned by our procedure, we
construct a temporary process model Ni at every iteration. The provided miner
is called using a log where events have been tagged according to the currently
evaluated partition. The details of how models are compared will be described
in a later section. Note that the total maximum number of models to evaluate
(i.e. the number of iterations in the procedure) is limited by the number of
excitation sets in the LTS. However, most processes contain only a few duplicate
tasks. Limiting to 4 or 5 tasks per activity reduces the number of models that
need to be evaluated to a few, depending on the number of different activities.

Figure 5 visualizes the clustering procedure. The initial solution, where every
LES is partitioned into its own duplicate task, is shown at the bottom row. The
following row represents one iteration of the clustering process, in which a2, a3

were the most similar LES and were merged. Thus, the number of duplicate
tasks, in the first column, is reduced by 1. The top row shows the result after all
nodes have been merged and thus there are no duplicate tasks left. Columns 2
and 3 show sample metrics of the evaluation model for each row: Petri net size
and precision. The selected model has the best precision and smallest size.

116 J. de San Pedro and J. Cortadella

a1 a2 a3 b1 b2 b3 c1 c2 d1 d2 e1 e2 e3

Dup. tasks |P | + |T | Precision

0 17 0.53

1 24 0.60

2 25 0.65

3 22 0.95

4 23 0.86

5 26 0.88

6 33 0.88

7 36 0.95

8 38 0.95

←

Fig. 5. Dendogram showing clustering of LTS in Fig. 4a.

Representing Excitation Set Relations in Vector Space. In order to
find the closest two groups of LES, a distance metric capable of evaluating the
similarity of the relationships of two LES is required. For this, we will first
provide a way to represent, as a numeric vector, the causality relationships of a
given vertex (representing a LES or cluster of LES) in a ESG.

This representation needs to satisfy several requirements: (a) it needs to be
normalized, allowing meaningful comparisons between different vertices, (b) it
needs to distinguish vertices by their immediate predecessors/successors, but
also more distant neighbors. Otherwise, duplicate tasks sharing the same set
of immediate predecessors or successors would not be distinguishable. However,
similarity of closer neighbors should have more weight than distant neighbors.

Definition 3 (Context Vector). Given LTS A, ESG(A), and a vertex v ∈
ESG(A), the forward context vector of v,

−→
Cv, is a function E �→ R that maps an

activity e ∈ Σ to

−→
Cv(e) =

|Succ(v, e)|
2|Succ(v)| +

∑
v′∈Succ(v)

−→
Cv′(e)

4|Succ(v)|
where Succ(v) is the set of immediate successors of v and Succ(v, e) is the set of
immediate successors of v of activities with label e. Similarly, we can define the
backwards context vector,

←−
Cv, using predecessors instead of successors.

For a given vertex v and event e, the value of
−→
Cv(e) depends on the number

of e-successors of v relative to the total number of successors of v. Notice the
function gives decreasing weight to more distant successors using the pattern
1
2 + 1

4 + 1
8 + Thus, the function is normalized between [0 . . . 1), allowing for

numeric comparisons between different vectors.
Imposing a limit k to the recursion depth, context vectors are easy to compute

with a single pass over the graph. As the weight of successors decreases with

Discovering Duplicate Tasks in Transition Systems for the Simplification 117

Table 1. Context vectors for the ESG in Fig. 4b.

LES Forward Backward

a b c d e a b c d e

a1 0 1/8 1/2 1/8 0 0 0 0 0 0

a2 0 0 0 0 0 0 1/4 0 1/8 + 1/8 1/4

a3 0 0 0 0 0 0 1/4 0 1/8 + 1/8 1/4

b1 0 0 1/4 0 1/2 0 0 0 0 0

b2 1/2 0 0 0 0 1/4 0 1/2 0 0

b3 1/2 0 0 0 0 0 0 1/2 0 1/4

c1 1/16 + 2/16 1/4 0 1/4 1/16 1/2 0 0 0 0

c2 1/16 + 2/16 1/4 0 1/4 1/16 0 1/4 0 0 1/2

distance, this limit does not impact the quality of the metric. An example list
of context vectors for the graph in Fig. 4b is shown in Table 1, assuming k = 2.

Distance Function. To measure the similarity (distance) between two vertices
v1, v2 ∈ ESG(A), the following formula is used, where d is the Euclidean distance:

dist(v1, v2) = min(d(
−→
Cv1 ,

−→
Cv2),d(

←−
Cv1 ,

←−
Cv2))

Using the minimal distance between the forward and backward vectors allows
proper detection of duplicate tasks in the first and last iterations of loops. For
tasks in a loop, several LESs may exist in the LTS for different iterations of the
same task. The causality relations of the LESs corresponding to the first and last
iterations will be different of those from inner iterations. For example, only the
LES corresponding to the last iteration will not trigger other LESs of the same
task. By centering on either the backward or forward context vector, depending
on which pair is the closest, these LESs will still be clustered into a single task.

Comparing Candidate Models. Traditional hierarchical clustering algo-
rithms use various criteria to determine which clustering solution is more suited
to the data, such as for example the elbow criteria [10]. However, the flow pro-
posed in this work produces more than one candidate model, allowing the explo-
ration of the trade-off between precision and simplicity. By limiting the maximum
number of allowed duplicate tasks, the set of candidate models can be kept under
manageable sizes. Therefore, conventional conformance checking strategies may
be used to accurately compare the candidate models, e.g. measuring fitness, pre-
cision, generalization or simplicity. Generally, a combination of these parameters
will be used, depending on user preference. For example, maximizing precision
while constraining the simplicity to a minimum threshold value.

Figure 5 shows that the precision increases with every duplicate task until
95 % with 3 duplicate tasks, and then decreases, revealing that more duplicate

118 J. de San Pedro and J. Cortadella

tasks introduce unnecessary choices and are not necessary for this process. The
result, with 3 duplicate tasks, exactly matches the model shown in Fig. 1c.

4 Structural Simplification

This section introduces the structural simplifications proposed in this
work:substituting common control flow patterns with special meta-tasks that
represent optional or iterative behavior.

The simplifications are especially suitable for Petri nets. They reduce the
complexity of the net while still allowing the expressiveness of Petri nets. In addi-
tion, the proposed simplifications exactly preserve the semantics of the models,
and thus, conformance metrics such as fitness and precision.

The simplifications center on two aspects. First, the removal of unnecessary
silent transitions. While silent transitions are a useful construct, many mining
algorithms or conversions from other modeling languages often generate silent
transitions that may be unnecessary [11]. Second, we introduce a series of meta-
transitions which extend the language of Petri nets and represent simple flow
control operations such as optional or iterative behavior.

Removal of Silent Transitions. Our proposal removes unnecessary silent
transitions by following the transformations shown in Fig. 6. The objective of
these transformations is to eliminate as many silent transitions as possible with-
out impacting the semantics of the Petri net, so that the set of traces fitting the
original net is identical to the traces fitting the transformed Petri net. The trans-
formations proposed are similar to the liveness and safeness-preserving transfor-
mations proposed in [8], that have been already used in previous work [11,12]

τ

(a) Fusion of series
places.

τ

(b) Fusion of series
places (only live or
sound nets).

τ

a

a

a

τ

a

(c) Fusion of series transitions.

a

b

a

b

(d) Parallel places.

τ τ τ

(e) Identical trans.

a a

(f) Identity place.

τ

(g) Identity trans.

Fig. 6. Reduction rules for behavior-preserving removal of silent transitions.

Discovering Duplicate Tasks in Transition Systems for the Simplification 119

a τ a?

(a) Optional task.

a a∗

(b) Loop.

aτ a+

(c) Loop with at least one iteration.

Fig. 7. Rules for transformation using meta-transitions.

also with the goal of removing silent transitions. However, the existing set of
transformations is not exhaustive. For example, it is not possible to remove all
the silent transitions from the model in Fig. 1c using only the rules defined in [8].

By centering on a commonly used structural type of Petri nets, sound work-
flow nets [13], we are able to introduce additional transformations covering the
removal of more silent transitions. For example, Fig. 6b proposes that fusion of
serial places can be performed even if the first place has other outgoing arcs.
However, this transformation does not fully preserve the behavior of general
Petri nets, as it may remove deadlocks present in the original Petri net. Full
preservation of behavior, including liveness, is only guaranteed in the case of live
Petri nets or nets with deadlocks only on specific states, such as sound workflow
nets. For the former subtype of Petri nets, deadlocks only appear in states where
the output sink place is marked [13], and the output place will never be modified
by the transformation rule.

Meta-Transitions. A meta-transition replaces common a Petri net substruc-
ture (e.g., a self-loop) with a single transition that is defined to have identical
behavior. By transforming a Petri net, replacing instances of these structures by
meta-transitions, the element count of a Petri net can be reduced while com-
pletely preserving its behavior. The transformed net will fit exactly the same
traces as the original net. In addition, the transformation may open the door to
further simplifications such as removal of additional silent transitions.

In Fig. 7 we show the proposed new meta-transitions, as well as the behavior
represented by each meta-transition. These specific patterns have been selected
because of their high frequency in real-life processes. In addition, the well-known
regular expression-like syntax used in the meta-transitions makes their meaning
familiar.

The first meta-transition, a?, models an optional event: it is equivalent to a
choice between the empty label τ and trace a. The other two meta-transitions
represent iterative behavior. a∗ is equivalent to a self-loop. Thus, it fits the empty
trace, but also {a, aa, aaa, . . .}. Meta-transition a+ similarly represents a loop
of a, but requires at least one iteration.

120 J. de San Pedro and J. Cortadella

5 Experimental Evaluation

The algorithms described in this work have been implemented using
PMLAB [14]. To construct an LTS from the input log, the multiset abstrac-
tion from [2] is used. Our implementation of the clustering procedure uses the
centroid linkage functionality of [10] to avoid recomputing context vectors on
every iteration.

For a set of benchmarks, we compare the quality metrics of the models
obtained with and without the proposed duplicate task discovery algorithm, as
well as the reduction in complexity after the structural simplifications and use
of meta-transitions. All benchmarks are available at http://www.cs.upc.edu/
∼jspedro/pnsimpl/. In order to demonstrate the ability of the proposal to work
with multiple miners, two different miners will be used: Inductive Miner [7] (IM)
and Petrify [15]. While the current version of the Inductive Miner does not
support duplicate tasks, Petrify contains some support for automatic discovery
of duplicate tasks [4]. Thus, models discovered by Petrify may already contain
duplicate task before the clustering method proposed in this article takes place.

Precision and generalization are measured using the available ProM plugins
[16,17]. To measure complexity, we will show the size of the Petri nets. For
non-workflow Petri nets, such as those generated by Petrify, we will also use
a complexity metric closely related to the concept of planarity: the minimal
number of crossings required to embed the graph on a plane. This number is
estimated using GraphViz [18].

The method used to select a model from the list of candidates produced by
the duplicate task discovery method depends on the miner used. When using
the IM, the smallest model (in terms of places and transitions) out of all models
with highest precision will be selected. When using Petrify, the model with lowest
number of crossings, out of those with highest precision, is used instead.

Artificial Benchmarks. To evaluate our duplicate task discovery workflow and
compare to the results presented by previous work, we reuse an existing dataset
comprising a combination of logs [5,6,19] whose source processes are well-known
and reproduce behavior commonly found in real-life. Because these benchmarks
have no noise, the miners were configured to generate perfectly fitting models.

Table 2 summarizes the results. For every benchmark, there are three different
runs: in the first one, the log is mined with the default miner configuration. In
the second run, the flow with duplicate task discovery as presented in this work
is used. In the third result, we apply structural simplifications (silent transition
elimination and meta-transitions) on top of the model discovered on the second
run. For each run, we evaluate the size of the model (number of places, transitions
and silent (τ) transitions) as well as its precision and generalization.

The proposed method significantly increases the precision on all the bench-
marks. In some examples, generalization is reduced, yet still shows that the
method results in models that are not overfitting. In tests with the Inductive
Miner, using duplicate tasks allows removing most of the silent transitions, and

http://www.cs.upc.edu/~jspedro/pnsimpl/
http://www.cs.upc.edu/~jspedro/pnsimpl/

Discovering Duplicate Tasks in Transition Systems for the Simplification 121

Table 2. Comparison using artificial benchmarks.

Inductive Miner With duplicate tasks After simpl.
|P | |T | |τ | Prec. Gen. |P | |T | |τ | Prec. Gen. |P | |T | |τ |

alpha 11 17 6 68% 100% 11 16 4 70% 100% 9 13 1
betaSimpl 14 21 8 62% 86% 14 16 1 94% 73% 14 15 0
Fig5p19 9 14 6 67% 89% 12 14 5 85% 76% 12 12 3
Fig5p1AND 9 8 3 83% 28% 10 8 2 100% 0% 9 7 1
Fig5p1OR 5 6 1 70% 33% 6 6 0 100% 0% 6 6 0
Fig6p10 15 24 13 63% 100% 19 25 10 77% 100% 18 19 4
Fig6p25 22 35 14 76% 100% 24 35 12 84% 100% 23 27 4
Fig6p31 6 10 1 63% 72% 9 11 0 100% 42% 9 11 0
Fig6p33 7 11 1 67% 70% 10 12 0 100% 38% 10 12 0
Fig6p34 17 24 12 58% 100% 19 20 4 93% 100% 17 18 2
Fig6p38 13 11 4 62% 84% 12 14 6 66% 87% 11 11 3
Fig6p39 12 12 5 90% 94% 12 12 5 90% 94% 10 9 2
Fig6p42 7 18 4 23% 100% 26 32 12 75% 96% 24 29 9
Fig6p9 10 15 8 67% 82% 9 12 3 83% 72% 9 9 0
flightCar 10 14 4 67% 64% 10 14 4 67% 64% 11 9 1
RelProc 21 28 12 71% 100% 21 28 11 74% 100% 19 21 4

Petrify With duplicate tasks After simpl.
|P | |T | Cros. Prec. Gen. |P | |T | Cros. Prec. Gen. |P | |T | Cros.

alpha 13 11 11 92% 100% 12 12 1 92% 100% 12 12 1
betaSimpl 11 13 1 80% 77% 14 15 0 97% 39% 15 15 0
Fig5p19 8 8 2 100% 74% 9 9 1 100% 58% 9 9 1
Fig5p1AND 8 5 0 100% 0% 7 6 0 100% 0% 7 6 0
Fig5p1OR 5 5 3 100% 0% 5 6 0 100% 0% 5 6 0
Fig6p10 7 11 1 39% 100% 13 15 1 91% 100% 13 15 1
Fig6p25 14 21 6 80% 100% 14 23 0 80% 100% 18 23 0
Fig6p31 7 9 12 100% 42% 8 11 0 100% 42% 8 11 0
Fig6p33 8 10 7 100% 38% 9 12 0 100% 38% 9 12 0
Fig6p34 9 12 4 39% 100% 14 16 0 89% 100% 14 16 0
Fig6p38 8 7 0 71% 85% 10 8 0 100% 64% 10 8 0
Fig6p39 6 7 0 72% 98% 7 8 1 86% 86% 8 8 0
Fig6p42 11 14 20 37% 98% 21 23 3 96% 94% 21 23 3
Fig6p9 9 7 9 100% 54% 8 9 0 100% 54% 8 9 0
flightCar 6 8 0 58% 72% 6 8 0 58% 72% 7 8 0
RelProc 16 16 11 87% 100% 15 17 2 87% 100% 15 17 2

thus the overall complexity of the model decreases. Using meta-transitions, addi-
tional silent tasks can be removed. On the other hand, when combining our dis-
covery flow with Petrify, the discovery of duplicate tasks allows for models with
fewer crossings. However, results after simplification are not as remarkable as
with the IM, since Petrify does not discover silent transitions.

For the majority of benchmarks, the partition of tasks discovered by the
proposed flow exactly matched the duplicate tasks in the original process. The
exceptions are marked with †. These cases are usually situations where, e.g.,
duplicate tasks are concurrent with themselves. Despite the fact that the parti-
tion is not exactly correct, the increase in quality metrics is still significant.

Logs with Noise. An additional experiment shows the resilience of the pro-
posed method to noise. We used Process Log Generator (PLG) [20] to generate
a set of 3 random processes using a process depth of 3 and uniform probabilities
for all control flow operators. Then, for each of these processes, we generated
10 logs containing 1000 traces each. In each log a different amount of random
control-flow noise was injected using PLG, ranging from 0 % to 10 %.

122 J. de San Pedro and J. Cortadella

0% 2% 4% 6% 8% 10%
0%

20%

40%

60%

80%

100%

Inserted noise

P
re

ci
si

o
n

Model 1

0% 2% 4% 6% 8% 10%
Inserted noise

Model 2

0% 2% 4% 6% 8% 10%
Inserted noise

Model 3

Inductive Miner - infrequent IMi with Duplicate Tasks

Fig. 8. Resilience of duplicate task discovery to different artificial noise levels.

Figure 8 compares the precision of the models obtained using the Inductive
Miner – infrequent [7] (IMi) miner, configured with a 20 % threshold, with the
models obtained by the combination of our duplicate task discovery flow and
the IMi. For the 3 evaluated processes, our flow can discover duplicate tasks and
thus increase the precision even when confronted with noise. The differences in
fitness were always smaller than 5 % between both versions.

On a Intel Core i5-2520m, our implementation of the clustering procedure
is able to provide a set of candidate partitions in less than 4 seconds, even
for the largest of these logs. The runtime of the miner, required to evaluate
each candidate, is usually much larger than the clustering process. However, the
number of candidates to be evaluated can be limited by setting an upper bound
to the number of allowed duplicate tasks per label.

6 Related Work

Several methods already exist for duplicate task detection. In [6], a set of heuris-
tics creates a candidate set of duplicate tasks, which is then explored by a
local search procedure working in tandem with an arbitrary mining algorithm.
The method produces high-quality results in combination with advanced miners.
However, since the miner influences the direction of the search, it is difficult to
predict the runtime of the discovery process. In this work, the miner algorithm
is only used to evaluate the set of candidate results. The number of results is
exactly bounded by the maximum number of allowed duplicate tasks per event.
The work in [5] proposes a clustering approach based on the context of events
similar to the one described in this work. Analogously, finding repeating patterns
in the log [21] may be used to discover potential duplicate tasks. However, our
work uses excitation sets to identify the context of events, which allows for more
accurate detection that using the log directly.

A different family of methods to perform duplicate task detection are tied
to specific mining technologies. For example, Fodina [22], Genetic Miner [3],
AGNEs [23], InWoLvE [19], region theory [4], α∗-algorithm [24]. The proposal

Discovering Duplicate Tasks in Transition Systems for the Simplification 123

in this work works with any mining algorithm, and does not require e.g. workflow
nets or other specific process models.

For the second proposal in this work, structural simplifications, a poten-
tial comparable work is the use of other process modeling notations, such as
BPMN [1]. The formalisms presented in this paper still allow the expressiveness
of Petri nets, yet hide the complexity of common flow control operators. Other
methods to simplify Petri nets do so at the cost of accuracy [25,26].

7 Conclusions

This work has presented methods for simplification of process models that
improve the quality of discovered models, in both simplicity and precision, while
using different mining algorithms.

As future work, we envision methods that work even in the presence of con-
current duplicate tasks, which are currently handled with unsatisfactory results.
In addition, the language of structural tasks can be extended, for example, to
allow simple regular expressions in nodes, e.g., (a|bc)∗.

Acknowledgments. This work has been partially supported by funds from the
Spanish Ministry for Economy and Competitiveness and the European Union (FEDER
funds) under grant TIN2013-46181-C2-1-R, and the Generalitat de Catalunya (2014
SGR 1034 and FI-DGR 2015).

References

1. van der Aalst, W.M.P.: Process Mining - Discovery: Conformance and Enhance-
ment of Business Processes. Springer, Heidelberg (2011)

2. van der Aalst, W., Rubin, V., Verbeek, H., van Dongen, B., Kindler, E., Gnther,
C.: Process mining: a two-step approach to balance between underfitting and over-
fitting. Softw. & Syst. Model. 9(1), 87–111 (2010)

3. de Medeiros, A.K.A.: Genetic process mining. Ph.D. thesis, Technische Universiteit
Eindhoven, Eindhoven, The Netherlands (2006)

4. Carmona, J.: The label splitting problem. In: Jensen, K., van der Aalst, W.M.,
Ajmone Marsan, M., Franceschinis, G., Kleijn, J., Kristensen, L.M. (eds.) Trans-
actions on Petri Nets and Other Models of Concurrency VI. LNCS, vol. 7400,
pp. 1–23. Springer, Heidelberg (2012)

5. Song, J.L., Luo, T.J., Chen, S., Liu, W.: A clustering based method to solve dupli-
cate tasks problem. J. Univ. Chin. Acad. Sci. 26(1), 107 (2009)

6. Vázquez-Barreiros, B., Mucientes, M., Lama, M.: Mining duplicate tasks from
discovered processes. In: Proceedings of Algorithms and Theories for the Analysis
of Event Data, vol. 1371, Brussels, Belgium, CEUR, pp. 78–82 June 2015

7. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.)
PETRI NETS 2014. LNCS, vol. 8489, pp. 91–110. Springer, Heidelberg (2014)

8. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–574 (1989)

124 J. de San Pedro and J. Cortadella

9. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254
(1967)

10. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for
Python (2001) . Accessed 18 Mar 2016

11. van der Aalst, W.M.P., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, E.: Con-
formance checking of service behavior. ACM Trans. Internet Technol. 8(3), 1–13
(2008)

12. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W.E., Weijters,
A.J.M.M.T., van der Aalst, W.M.P.: The ProM framework: a new era in process
mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS,
vol. 3536, pp. 444–454. Springer, Heidelberg (2005)

13. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification,
decidability, and analysis. Formal Aspects Comput. 23(3), 333–363 (2011)

14. Carmona, J., Sol, M.: PMLAB: an scripting environment for process mining. In:
Proceedings of the BPM Demo Sessions 2014, pp. 16–21 (2014)

15. Carmona, J.A., Cortadella, J., Kishinevsky, M.: A region-based algorithm for dis-
covering petri nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C.
(eds.) BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008)

16. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B., van der Aalst, W.:
Measuring precision of modeled behavior. Inf. Syst. e-Bus. Manag. 13(1), 37–67
(2015)

17. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness,
precision, generalization and simplicity in process discovery. In: Meersman, R.,
Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha,
A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 305–
322. Springer, Heidelberg (2012)

18. Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.: A technique for drawing
directed graphs. IEEE Trans. Softw. Eng. 19(3), 214–230 (1993)

19. Herbst, J., Karagiannis, D.: Workflow mining with InWoLvE. Comput. Ind. 53(3),
245–264 (2004). Process / Workflow Mining

20. Burattin, A., Sperduti, A.: PLG: a framework for the generation of business process
models and their execution logs. In: Muehlen, M., Su, J. (eds.) BPM 2010 Work-
shops. LNBIP, vol. 66, pp. 214–219. Springer, Heidelberg (2011)

21. Bose, R.: Process mining in the large: preprocessing, discovery, and diagnostics.
Ph.D. thesis, Technische Universiteit Eindhoven (2012)

22. van den Broucke, S.K.L.M.: Advances in Process Mining. Ph.D., Katholieke
Universiteit Leuven (2014)

23. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery
with artificial negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009)

24. Li, J., Liu, D., Yang, B.: Process mining: extending α-algorithm to mine duplicate
tasks in process logs. In: Chang, K.C.-C., Wang, W., Chen, L., Ellis, C.A., Hsu,
C.-H., Tsoi, A.C., Wang, H. (eds.) APWeb/WAIM 2007. LNCS, vol. 4537, pp.
396–407. Springer, Heidelberg (2007)

25. De San Pedro, J., Carmona, J., Cortadella, J.: Log-based simplification of process
models. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015.
LNCS, vol. 9253, pp. 457–474. Springer International Publishing, Heidelberg (2015)

26. Fahland, D., van der Aalst, W.M.P.: Simplifying discovered process models in a
controlled manner. Inf. Syst. 38(4), 585–605 (2013)

From Low-Level Events to Activities - A Pattern-Based
Approach

Felix Mannhardt1(B), Massimiliano de Leoni1, Hajo A. Reijers1,2,
Wil M.P. van der Aalst1, and Pieter J. Toussaint3

1 Eindhoven University of Technology, Eindhoven, The Netherlands
{f.mannhardt,m.d.leoni,h.a.reijers,w.m.p.v.d.aalst}@tue.nl

2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
3 Norwegian University of Science and Technology, Trondheim, Norway

pieter@idi.ntnu.no

Abstract. Process mining techniques analyze processes based on event data.
A crucial assumption for process analysis is that events correspond to occur-
rences of meaningful activities. Often, low-level events recorded by information
systems do not directly correspond to these. Abstraction methods, which provide
a mapping from the recorded events to activities recognizable by process work-
ers, are needed. Existing supervised abstraction methods require a full model
of the entire process as input and cannot handle noise. This paper proposes a
supervised abstraction method based on behavioral activity patterns that cap-
ture domain knowledge on the relation between activities and events. Through an
alignment between the activity patterns and the low-level event logs an abstracted
event log is obtained. Events in the abstracted event log correspond to instantia-
tions of recognizable activities. The method is evaluated with domain experts of a
Norwegian hospital using an event log from their digital whiteboard system. The
evaluation shows that state-of-the art process mining methods provide valuable
insights on the usage of the system when using the abstracted event log, but fail
when using the original lower level event log.

Keywords: Process mining · Supervised abstraction · Event log · Alignment

1 Introduction

Organizations use information systems to support their work. Often, information about
the usage of those systems by workers is recorded in event logs [1]. Process mining
techniques use such event data to analyze processes of organizations. It is assumed
that recorded events correspond to meaningful activities in instances of a process
(i.e., cases). This information about recorded executions of activities can then be used,
e.g., to discover models describing the observed behavior or to check conformance with
existing process documentation. The ability to identify executions of activities based on
events is crucial for any process mining technique. Events that do not directly corre-
spond to activities recognizable for process workers are unsuitable for process analyt-
ics since their semantics are not clear to domain experts. However, events recorded
c© Springer International Publishing Switzerland 2016

M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 125–141, 2016.
DOI: 10.1007/978-3-319-45348-4 8

126 F. Mannhardt et al.

by information systems often do not directly correspond to recognizable executions
of activities [2]. Generally, there can be an n:m-relation between recorded events and
activities [2,3], i.e., one higher level activity may create multiple low level events and
one such event possibly relates to multiple activities. There are proposals for unsuper-
vised abstraction methods that try to determine this relation based on identifying sub-
sequences and machine learning methods [2,4–7], as well as proposals for supervised
methods based on existing process documentation and constraint satisfaction [3,8–11].
Unsupervised abstraction methods, clearly, do not take existing knowledge into account
and may fail to provide meaningful labels for discovered event clusters. Existing super-
vised abstraction methods [3,8–11] assume knowledge about a single model for the
overall process. They resolve to clustering methods and heuristics when challenged with
event logs from processes that feature n:m event-activity relations, concurrent activities,
and noise (i.e., erroneous or missing events).

This paper proposes a supervised event abstraction method. We use behavioral
activity patterns to capture domain knowledge about the conjectured relation between
high-level activities and recorded low-level events. We align the behavior defined by
these activity patterns with the observed behavior in the event log. Our technique uses
alignment techniques, and, hence, is able to find an optimal mapping between low-level
events and activity patterns even for event logs that contain noise. In this way, we obtain
a reliable abstraction mapping from low-level events to activity patterns. This mapping
is used to create an abstracted event log. This log contains only high-level events at
the desired level of abstraction, which relate directly to executions of high-level activi-
ties. We applied the proposed method together with domain experts from a Norwegian
hospital to an event log retrieved from a digital whiteboard system at the observation
ward of the hospital. Through observation and interviews with people working at the
hospital we were able to identify activity patterns for 18 recognizable activities, which,
together, explained 91 % of the recorded behavior. Using the abstracted event log, we
were able to analyze how nurses use the digital whiteboard system in their daily work.
We obtained process models that relate to their actual work in a meaningful way.

The remainder of this paper is structured as follows. First, we describe the event
abstraction problem in more detail (Sect. 2). Then, we present the five main steps of
our abstraction method (Sect. 3). We evaluate the proposed method using the results
obtained for the digital whiteboard event log (Sect. 4), and conclude with a summary
and a sketch of future work (Sect. 5).

2 Problem Description

We start with a definition of event logs. An event log stores information about activities
that were recorded by one or more information systems while supporting the execution
of a process. Each execution of a process instance results in a sequence of events.

Definition 1 (Event Log). Given universes of attributes A and values U, we define an
event log as (E,Σ ,#,E) with:

– E is a set of unique event identifiers;
– Σ ⊆U is a set of activities;

From Low-Level Events to Activities - A Pattern-Based Approach 127

Table 1. Excerpt of a trace σL ∈ EL from a low-level event log with identifiers Id and attributes
Activity, Time, Instance, and Nurse. Symbol ⊥ denotes that the attribute was not recorded. The
last columns show those high-level activities, which caused the event.

Id Activity Time Instance Nurse High-level activity High-level instance

e12 NurseChanged 122 12 NurseA Shift 1

e13 CallSignal1 122 13 ⊥ Shift 1

e14 CallSignal0 124 14 ⊥ Shift 1

. .

e20 CallSignal4 185 20 ⊥ Alarm 2

e21 CallSignal1 197 21 ⊥ Alarm 2

. .

e29 NurseChanged 250 29 NurseB Handover 3

e30 CallSignal4 310 30 ⊥ Alarm 4

e31 CallSignal1 311 31 ⊥ Alarm 4

e32 NurseChanged 312 32 NurseC Handover 5

e33 CallSignal0 315 33 ⊥ Alarm 4

– # : E → (A �→U) is a function that obtains attribute values recorded for an event;
– E ⊆ E∗ is the set of traces over E. A trace σ ∈ E records the sequence of events for

one process instance. Each event identifier occurs only in a single trace.

Given an event e ∈ E in the event log E , we write #a(e) ∈ A �→U to obtain the value
u ∈ U recorded for attribute a ∈ A. Three mandatory attributes are recorded by each
event: #act(e)∈ Σ , the name of the activity that caused the event; #time(e)∈U , the time
when the event occurred; #ai(e) ∈ U , the activity instance, i.e., an identifier linking
multiple events, which are related to the same execution of a single activity.

Example 1. Table 1 shows an excerpt of a trace σL ∈ EL obtained from a low-level event
log (EL,ΣL,#L,EL) that is recorded by a digital whiteboard, which supports the work
of nurses in a hospital. Each row represents an unique event e ∈ EL together with the
produced data (i.e., attributes) created by a change in the system. For confidentiality
reasons, we show only some events of an artificial trace that resembles the real data.
The initial events are omitted. After 122 min low-level activity NurseChanged (NC)
occurs resulting in event e12. Attribute Nurse is recorded as #LNurse(e12) = NurseA.
Next, two low-level activities CallSignal1 (CS1) and CallSignal0 (CS0) are regis-
tered as events e13 and e14 by a call signal system, which is integrated with the white-
board. An hour later the call signal system records the activity CallSignal4 (CS4) as
event e20 and, again, activity CS1 as event e21. Some further low-level events follow.

Often, not all events e ∈ EL represent work at the same level of abstraction [1,4].
The execution of some high-level activities might result in multiple low-level events
being recorded during their execution. Those events only store the names of low-
level activities ΣL, i.e., #Lact(e) ∈ ΣL instead of names of recognizable high-level activ-
ities. Event abstraction can be seen as the problem of transforming such an event

128 F. Mannhardt et al.

Fig. 1. Overview of the proposed event abstraction method

log (EL,ΣL,#L,EL) at a lower or mixed level of abstraction, into a new event log
(EH ,ΣH ,#H ,EH) with events EH that record executions of activities ΣH at the desired,
higher level of abstraction. We need to determine how low-level events EL are related
to high-level events EH , i.e., we need to find an abstraction mapping π ⊆ EL ×EH .

Please note that determining a good abstraction mapping π (i.e., one that reflects
what really happened) is difficult for several reasons. Low-level events mapped to more
than one high-level activity, i.e., shared functionality [3] need to be disambiguated. It
is difficult to differentiate between reoccurring and concurrent activities [3]. Also, the
low-level event log might contain noise: Erroneous events that should not have been
recorded or missing events that should have been recorded.

Example 2. Event log EL shown in Table 1 contains low-level events. The various
CallSignal events do not directly correspond to high-level activities. Moreover,
depending on the context, those events correspond to different high-level activities. The
last two columns in Table 1 list the corresponding names of high-level activities that
caused the low-level events as well as an identifier uniquely identifying the execution
of the activity, i.e., the activity instance. For example, we know that in the context of
a shift change events CS1 and CS0 are recorded when the patient is visited in the nor-
mal routine, i.e., events e12,e13,e14 correspond to one execution (i.e., instance 1) of the
high-level activity Shift. This mapping between low-level events and high-level activ-
ity instances cannot be solely done on the activity names. For example, when CS1 and
CS0 are preceded by event CS4 they correspond to an alarm triggered by the patient,
i.e., events e30,e31,e33 were caused by instance 4 of high-level activity Alarm.

3 Pattern-Based Abstraction of Event Logs

We present a method that takes an event log (EL,ΣL,#L,EL) at a lower level of abstrac-
tion and transforms it to an event log (EH ,ΣH ,#H ,EH) at the desired level of abstraction.
We establish an abstraction mapping π from events EL to the events EH . Our method
can deal with noise, reoccurring and concurrent behavior, and shared functionality. The
proposed method consists of four steps (Fig. 1):

1. We encode the low-level behavior of activities in activity patterns (Sect. 3.1).
2. We compose activity patterns in an abstraction model (Sect. 3.2).
3. We align the behavior of the abstraction model and the low-level event log

(Sect. 3.3).
4. We create an abstracted event log using the alignment information (Sect. 3.4).

We describe these steps in the following sections. Note that activity patterns represent
domain knowledge on the behavior of high level activities in terms of low-level events.

From Low-Level Events to Activities - A Pattern-Based Approach 129

Fig. 2. Three activity patterns pa, pb, pc ∈ P for the example in DPN notation

3.1 Define Activity Patterns

In the reminder of this paper, we use process models to capture behavior. Generally, our
abstraction method is independent of the particular formalism (e.g., Petri nets, UML,
Declare, BPMN) used to model processes. We represent knowledge about the relation
between low-level events and given high-level activities ΣH in activity patterns. Each
activity pattern is a process model describing those events that are expected to be seen
in the event log for one instance of the corresponding high-level activity.

Definition 2 (Activity Pattern). Given a set of low-level activity names ΣL, process
moves ΣM, process attributes A and values U. Let S= (ΣM × (A �→U)) be the set of all
possible process steps. Let #name : ΣM → ΣL be a labeling function that returns the low-
level activity name of a process move. An activity pattern p ⊆ S∗ captures sequences
corresponding to an execution of one instance of a high-level activity. Steps s ∈ σ in
process traces σ ∈ p correspond to low-level activities executed as part of the high-level
activity. We denote with P= {p ⊆ S∗} the set of all activity patterns.

In the remainder, we require that process moves are not shared between activity
patterns, i.e., given two different patterns p1, p2 ∈ P and sequences σ1 ∈ p1,σ2 ∈ p2 we
require for any steps (m1,w1) ∈ σ1,(m2,w2) ∈ σ2 that m1 �= m2. Given a step, we can
uniquely identify to which pattern it belongs. However, process moves from different
patterns may be associated with the same activity name, i.e., #name(m1) = #name(m2).

Example 3. Fig. 2 shows three activity patterns pa, pb and pc defined for the event log
in Table 1, implemented as Data Petri Nets (DPNs) [12]. We implement activity patterns
by using DPN as notation with well-defined semantics, which can express the control-
flow as well as the data-, resource- and time-perspective of a pattern. We refer to [12]
for an introduction to DPNs. We use transitions of the DPN to model process moves.
We name transitions uniquely by using the abbreviated low-level activity name con-
catenated with the pattern name, e.g., transition CS1A models activity CallSignal1 in
pattern pa. Therefore, we can easily obtain the activity name (i.e., #name(x)) for each
transition x. The first pattern pa describes a shift change. First, the nurse responsi-
ble for the patient changes (NCA) and the name of the nurse is recorded (Na). Within
30 min (T ′

a −Ta ≤ 30), the responsible nurse visits the patient and the call signal system
records a button press (CS1A). Finally, the nurse leaves the room and another button
press is registered (CS0A) resetting the status. The second pattern pb describes a sim-
ilar sequence (i.e., transitions CS1B and CS0B), but represents a different high-level
activity: The patient is attended outside of the normal routine. Transition CS4B has to
be executed at most 10 min beforehand (i.e., T ′

b −Tb ≤ 10). The low-level activity cor-
responding to CS4B is an alarm triggered by the patient. The third pattern describes a

130 F. Mannhardt et al.

simple handover between nurses: Only the responsible nurse changes (NCC) without
any consultation of the patient. The corresponding low-level activity NurseChanged is
shared with a transition NCA of pattern pa. This is an example of shared functionality.

Using domain knowledge about the high-level activities of the process at hand we
define such an activity pattern for every activity of interest. Activity patterns represent
the knowledge about how high-level activities are reflected by low-level events in the
event log. Please note that we do not expect an activity pattern to be an exact repre-
sentations of every possible way a high-level activity manifests itself in the event log.
Later, in Sect. 3.3 we show that our method is able to deal with approximate matches.

3.2 Build an Composed Abstraction Model

With a set of activity patterns for the process under analysis at hand, we can compose
their behavior into an integrated abstraction model.

Definition 3 (Composition Function). A composition function f : 2P → P combines
the behavior activity patterns p1, . . . , pn into an (composite) activity pattern cp∈ P, i.e.,
f (p1, . . . , pn) = cp. We denote with F ⊆ 2P → P the set of all composition functions.

We provide the semantics for five basic composition functions: sequence, choice,
parallel, interleaving and cardinality. Our abstraction method is not restricted to these
functions. Further composition functions can be added. We introduce some necessary
notations for sequences. Given a sequence σ ∈ S∗ and a subset X ⊆ S, σ |X is the pro-
jection of σ on X . For example, 〈w,o,r,d〉|{o,r} = 〈o,r〉. σ1 ·σ2 ∈ S∗ concatenates two
sequences, e.g., 〈w,o〉 · 〈r,d〉 = 〈w,o,r,d〉. Given activity patterns pi ∈ P with pi ⊆ S∗

i
and i ∈ N, we define the following functions:

– Sequence composition � ∈ F :

p1 � p2 = {σ ∈ S∗ | σ1 ∈ p1 ∧σ2 ∈ p2 ∧σ = σ1 ·σ2}.

Binary operation � is associative. We write
⊙

1≤i≤n pi = p1 � p2 � . . .� pn to com-
pose ordered collections of patterns in sequence. We define

⊙
1≤i≤0 pi = {〈〉}.

– Choice composition ⊗ ∈ F :
p1 ⊗ p2 = p1 ∪ p2.

Binary operation ⊗ is commutative and associative. We write
⊗

1≤i≤n pi = p1 ⊗ p2 ⊗
. . .⊗ pn to compose sets of patterns in choice.

– Parallel composition � ∈ F :

p1 � p2 = {σ ∈ (S1 ∪S2)∗ : σ |S1 ∈ p1 ∧σ |S2 ∈ p2}.

Binary operation � is commutative and associative. We write �1≤i≤npi = p1 � p2 �
. . .� pn to compose sets of patterns in parallel.

From Low-Level Events to Activities - A Pattern-Based Approach 131

Fig. 3. Overview of the graphical notation of the supported composition functions and an example
of their usage in an composed pattern. Patterns are depicted as plain boxes for better legibility.

– Interleaving composition ↔ ∈ F with p(n) denoting the set of all permutations of
numbers {1, . . . ,n}:

↔ (p1, . . . , pn) =
⊗

(i1,...,in)∈p(n)

⊙

1≤k≤n

pik .

– Repetition composition [n,m] ∈ F with n ∈ N0,m ∈ N∪{∞}, and n ≤ m:

p[n,m]1 =
⊗

n≤i≤m

⊙

1≤k≤i

p1.

We build an overall abstraction model with a formula that contains all patterns of inter-
est. The resulting composed pattern cp ∈ S∗ should include the overall behavior that we
expect to observe for the execution of all high-level activities.

Example 4. Given the activity patterns pa, pb and pc shown in Fig. 2, we can com-

pose their behavior to cp = (↔ (p[0,∞]
a , p[0,∞]

b))[0,∞] � p[0,∞]
c . We allow indefinite repe-

tition of all activity patterns using the repetition composition. We allow the absence
of patterns using the repetition composition as the corresponding high-level activities
might not have been executed in every process instance. We restrict cp to only con-
tain the interleaving of patterns pa and pb as there is only one responsible nurse per
patient. Therefore, the activities expressed by pa and pb can occur in any order but
should not happen in parallel. We add pc using the parallel composition as handovers
can take place in parallel to pa and pb. In the remainder of this example, we omit
the attribute assignments w from steps (t,w) ∈ S for improved legibility. The result of
this composition is the abstraction model cp. Model cp corresponds to all behavior
that could be observed for executions of the three high-level activities. For example,
〈NCA,CS1A,NCC,CS0A〉 ∈ cp is expected, whereas 〈NCA,CS1A,CS4B,CS0A〉 /∈ cp
is not expected.

We designed a graphical representation for each composition function, which can
be used to design abstraction models in the implementation of our approach. Figure 3
shows the graphical notation for each of the composition functions. Moreover, the
graphical representation of the composition of activity patterns pa, pb, pc as defined
in Example 4 is shown. Because the repetition composition is unary, we attach its
graphical representation directly to patterns. Parallel composition is the least restric-
tive composition. Unless otherwise specified, we assume that patterns are composed in
parallel. We draw a box around composed patterns if necessary to clarify the prece-
dence of operations. For example, patterns pa and pb are first interleaved and then com-
posed in parallel with pc. We implemented the composition of activity patterns using

132 F. Mannhardt et al.

Fig. 4. DPN created by our implementation for the abstraction model cp. Activity patterns
pa, pb, pc are depicted as clouds with source places sa,sb,sc and sink places ea,eb,ec. Black
transitions are invisible routing transitions, which are not recorded in any event log.

Table 2. The top three rows show an alignment of the running example log trace and abstraction
model. Low-level events (L. Event) e are aligned to process moves (P. Move) m that relate to
the same low-level activity (L. Activity). Write operations are omitted for better legibility. One
process move could not be aligned to an event, symbol � is used in this case. The bottom five
rows show the high-level event returned by the abstraction method described in this paper.

L. Event (e) e12 e13 e14 . . . e20 e21 � . . . e29 e30 e31 e32 e33

L. Activity NC CS1 CS0 . . . CS4 CS1 . . . NC CS4 CS1 NC CS0

P. Move (m) NCA CS1A CS0A . . . CS4B CS1B CS0B . . . NCC CS4B CS1B NCC CS0B

H. Activity Shift Shift . . . Alarm Alarm . . . Handover Alarm Handover Alarm

Life-cycle Start Complete . . . Start Complete . . . Complete Start Complete Complete

Instance 3 3 . . . 6 6 . . . 10 11 12 11

Time 122 124 . . . 185 197 . . . 250 310 312 315

H. Event ê5 ê6 . . . ê11 ê12 . . . ê20 ê21 ê22 ê23

the DPN notation. To simplify the composition, we assume that the DPNs of activity
patterns have a single source place and a single sink place. Figure 3 shows the DPN

encoding of cp = (↔ (p[0,∞]
a , p[0,∞]

b))[0,∞] � p[0,∞]
c . The implementation of all composi-

tions using DPN is available in a technical report [13].

Example 5. Figure 4 depicts the DPN implementation of abstraction model cp. The
abstraction model starts with a single sink place sink and ends with a single source

place source. We model the parallel composition of p[0,∞]
c with ↔ (p[0,∞]

a , p[0,∞]
b)[0,∞]

by adding invisible transitions split and merge, which realize a parallel split and join.
Invisible transitions cannot be observed; they are only added for routing purposes. We
use place mutex to model the mutual exclusion constraint of the interleaving composi-

tion of patterns p[0,∞]
a and p[0,∞]

b . Place mutex guarantees that only either pa or pb can
be executed at the same time, yielding the interleaving of pa and pb. Each repetition
composition is implemented by adding two invisible transitions loop and skip, which
allow to repeat the pattern indefinitely or to skip its execution, respectively.

3.3 Alignment of Patterns Behavior and the Event Log

With an abstraction model at hand, we need to relate the behavior in the low-level event
log to process traces defined by the abstraction model. More specifically, we need to

From Low-Level Events to Activities - A Pattern-Based Approach 133

determine the mapping between low-level events in the event log and process steps
of the abstraction model. We use existing alignment techniques [12] that establish a
mapping between log traces and process traces. The top three rows of Table 2 show
such an alignment between the example log trace (Table 1) and a process trace of the
example abstraction model cp (Fig. 3). The alignment in Table 2 consists of moves
(e,s) ∈ (EL ∪{�})× (S∪{�}) that relate low-level events e to process steps s in the
abstraction model. Events e can only be mapped to process steps s = (m,w) that refer
to the same low-level activity, i.e., #act(e) = #name(m). It may not be possible to align
all events and process steps. These deviating events and process steps are mapped to
� (e.g., (�,(CS0B,w)) in Table 2). Alignments find an optimal mapping, which min-
imizes the number of such deviations. They return the most likely mapping between
events and process steps. Moreover, an alignment guarantees that its sequence of model
steps without �-steps is a process trace defined by the model. For example, the third
row in Table 2 is a process trace of abstraction model cp. Pattern pa is executed once,
i.e., 〈NCA,CS1A,CS0A〉 is a sub-sequence. Patterns pb and pc are both repeated twice,
i.e., there are two sub-sequences 〈CS4B,CS1B,CS0B〉 and two sub-sequences 〈NCC〉.
We can uniquely identify sub-sequences of initial activity pattern since we required that
process moves are unique among activity patterns.

3.4 Build the Abstracted Event Log Using the Alignment

We describe how to build the high-level event log (EH ,ΣH ,#H ,EH) and the abstraction
mapping π using an alignment of the low-level event log with the abstraction model.

The bottom four rows of Table 2 show how we obtain the high-level event log from
the information provided by the alignment. We align each trace of the low-level event
log with the abstraction model. Doing so, we obtain an alignment as shown in the first
three rows for each trace in the low-level log. Given the alignment, we use two mappings
to build the high-level log:

– μ : ΣM → ΣH , a mapping between process moves and high-level activities.
– λ : ΣM �→ L, a mapping between process moves and life-cycle transitions.

Mapping function μ can be obtained from the initially defined activity patterns. Each
activity patterns models exactly one high-level activity and each process move belongs
to exactly one activity patterns, thus, the corresponding high-level activity can be
uniquely determined for each process move. For example, we use μ(NCA) = Shi f t and
μ(NCC) = Handover. Mapping function λ defines which process moves correspond
to transitions in the life-cycle of activities. Mapping λ is motivated by the observation
that activities rarely happen instantaneously. Activities have life-cycles [1]. The set of
life-cycle transitions L and mapping function λ is specified by the user. In the case-
study we use L = {start,complete} and define λ such that the first process move of an
activity pattern is mapped to the start transition and the last process move is mapped to
the complete transition. The other process moves are not mapped, i.e., they are not in
the domain of λ . For example, we use λ (NCA) = start and λ (CS0A) = complete.

We add new high-level events eH to EH (i.e., EH = EH ∪{eH}) for those alignment
moves (e,s) for which process steps s = (m,w) are not mapped to � (i.e., s �=�) and

134 F. Mannhardt et al.

process move m is mapped to a life-cycle transition λ (m) (i.e., m ∈ dom(λ))1. In this
manner, we create a high-level trace in EH for each low-level trace in EL. We obtain
the high-level log (EH ,ΣH ,#H ,EH) and a mapping between low-level events e and the
new high-level events eH . We include (e,eH) in the abstraction mapping π when event
e is not mapped to � (i.e., e �=�). For example, events ê5 and ê6 in Table 2 are created
based on the alignment of low-level events e12 and e14 to process moves NCA and
CS0A, i.e., (e12, ê5) ∈ π and (e14, ê6) ∈ π . We assign event ê5 the activity name Shift
(i.e., #Hact(ê5) = Shift) and the life-cycle transition start (i.e., #Hcycle(ê5) = start). Event ê6

is assigned the same activity name Shift, but a different life-cycle transition: complete.
Then, the high-level events EH are enriched with additional information: activity

instance and timestamp. A unique instance identifier is added for each execution of
an activity pattern. For example, event ê21 and event ê23 are both assigned instance
identifier 11 (i.e., #Hai(ê21) = #Hai(ê23) = 11). Both are aligned to process steps in the
same execution of activity pattern pb (Alarm). Instance 11 of the activity Alarm was
started by event ê21 and completed by event ê23. Regarding the timestamp, there are
two cases depending on the alignment move (e,s): (1) The process step was aligned to
a low-level event e and (2) the process step was mapped to e =�. In the first case, we
use the timestamp of the aligned low-level event (e.g., #Htime(ê11) = #Htime(e20) = 185).
In the second case, we cannot directly obtain a timestamp. For example, event ê12 in
Table 2 is missing a low-level event: e =�. There are multiple methods to determine
the most likely timestamp for ê12. For the case study (Sect. 4), we use timestamps of
neighboring low-level events that are mapped to the same activity instance, e.g., we use
the timestamp from event e21 for the high-level event ê12 (i.e., #Htime(e21) = 197).

In general, there might be scenarios where one event could be mapped to sev-
eral activity instances. We simplified the discussion by assuming that events are only
mapped to single activity instances. This is not a limitation, as described by Baier
et al. [3]: Those events can be duplicated in a pre-processing step beforehand.

Finally, we define two quality measures for the abstraction mapping. First, we use
fitness as a measure for how well the entire event log matches the behavior imposed
by the abstraction model. In this context, a fitness measure such the one defined in [12]
for alignments of DPNs can be seen as measure for the quality of the used abstrac-
tion model. A low fitness indicates that there are many events that cannot be correctly
matched, thus, the abstraction model does not capture the whole process correctly. Sec-
ond, we define a matching error ε : ΣH → [0,1] on the level of each recognized high-
level activity. Some process steps in the alignment are not matched to an event in the
log, i.e., the event is missing. For example, in Table 2 one execution of process activity
CS0B is mapped to �. Given a high-level activity h ∈ ΣH (e.g., Alarm) and the sub-
set of process activities M ⊂ ΣM that are mapped to the activity pattern defined for the
high-level activity (e.g., CS4B, CS1B and CS0B). We determine the number of those
alignment moves (e,(m,w)) with process activities m ∈ M, for which the event is miss-
ing, i.e., e =�. The matching error ε(h) is the fraction of such erroneous alignment
moves over the total number of alignment moves with process move m. For example,
ε(Alarm) = 5

6 for the alignment in Table 2. The matching error can be used to exclude
unreliable matches, which exceed a certain ε-threshold.

1 dom(f) denotes the domain of a function f .

From Low-Level Events to Activities - A Pattern-Based Approach 135

4 Evaluation

We evaluate the proposed abstraction method by conducting a case study using event
data that was obtained from a digital whiteboard system2. The whiteboard supports the
daily work of nurses in the observation unit of a Norwegian hospital. Our method is
implemented as plug-in of the open-source process mining framework ProM3.

4.1 Case and Dataset

Digital whiteboard systems are used to improve health care processes by raising situa-
tion awareness among nurses and to support coordination of care [14]. In our case, the
whiteboard is used to manage information about admitted patients. The information is
displayed in a tabular manner, where each row shows information about a single patient.
The cells are used for various purposes, such as displaying logistical and medical infor-
mation about the patient. A call signal system, which allows patients to trigger an alarm,
is integrated with the whiteboard. Alarms are shown on the whiteboard. Generally, there
are few constraints on how the whiteboard is actually used.

We obtained an event log with 8,487 cases and 286,000 events recorded by the
whiteboard of the observation unit between 04/2014 and 12/2015. Each case records
events for the visit of a single patient. On average, traces contain 34 events. Events are
recorded for changes of single cells of the whiteboard. This very fine grained logging
leads to a low-level event log. Events in the log do not directly represent recognizable
activities. In total, there are 42 distinct low-level activity names in the log. Moreover,
varying work practices among nurses lead to different events being recorded for the
same high-level activity. The event log is unsuitable for any kind of process analytics
as the semantics of results are not clear to process workers.

Fig. 5. Abstraction model used in the case study. Most activities can only interleave as there is
only one nurse assigned to a patient.

We created an abstraction model with 18 activity patterns as shown in Fig. 5. The
activity patterns are based on information on the whiteboard system and interviews with
a domain expert from the hospital, who observed the actual work of nurses. In this case
study, we do not use all composition functions that our framework provides, as some do
not apply to the whiteboard system. However, we believe that the unused functions are
useful in many different settings. All 18 activity patterns are listed in Table 3 together
with the number of process activities and the name of the modeled high-level activity.
The examples introduced in Fig. 2 correspond to the activities Shift (pa), Alarm Normal
(pb) and Handover (pc) in the case study.

2 The used whiteboard system is Imatis Visi: http://www.imatis.com.
3 Plug-in Log Abstraction of the ProM package LogEnhancement: http://promtools.org.

http://www.imatis.com
http://promtools.org

136 F. Mannhardt et al.

4.2 Results and Discussion

We applied the proposed abstraction method to the event log and successfully obtained
a smaller abstracted event log with 206,054 high-level events for 103,027 activity
instances (i.e., each instance has a start and a complete event). The computation of
the abstracted event log took one hour and used 6 GB of memory. We decomposed the
DPN of the abstraction model into two smaller DPNs that did not share labels. The
overall fitness with regard to the log was 0.91, which indicates that most of the obser-
vations could be explained. Even though 9 % of the events did not match, this is a good
result for further analysis as we can expect the event log to contain noise, i.e., events
unrelated to any modeled high-level activity. The abstracted event log contains 25 high-
level activities: 18 activities were obtained through abstraction and 7 further activities
were already at the appropriate level of abstraction. Table 3 shows the resulting number
of activity instances that were matched, as well as the corresponding matching error.
It should be noted that the relatively high error for the activity Surgery stems from the
fact that this activity is sometimes recorded in a different manner, i.e., one event is
missing. Regarding the error for activity Alarm Assist we found that the assist button
can be pressed without a prior alarm by the patient, which is different from our initial
assumption.

Table 3. Activity patterns used in the digital whiteboard case study. For each pattern we list the
number of process activities, the number of low-level activity names shared with other patterns,
and the results of our method: the number of recognized activity instances and the matching error.

Activity name Transitions (shared) Matches Matching error (ε)

Announcement (Ann) 8 (6) 29 0.02

Change Room (CR) 5 (4) 662 0.09

Discharge (Dis) 7 (4) 8,054 0.0

Registration (Reg) 6 (6) 9,855 0.01

Transfer (Tra) 6 (6) 575 0.09

Update Report (UR) 4 (0) 6,912 0.0

Update Arrival (UA) 5 (1) 4,626 0.0

Handover (H) 1 (1) 24,228 0.0

Shift (S) 3 (3) 405 0.04

Call Nurse (CN) 2 (2) 12,416 0.08

Alarm Normal (AN) 3 (3) 8,842 0.02

Alarm Quick (AQ) 2 (2) 12,730 0.0

Alarm assist (AA) 5 (3) 32 0.17

CT 4 (2) 1,443 0.0

MRI 4 (2) 124 0.0

Surgery (Sur) 3 (3) 297 0.17

Ultrasound (Ult) 5 (3) 1,164 0.0

X-Ray 4 (2) 1,117 0.0

From Low-Level Events to Activities - A Pattern-Based Approach 137

Fig. 6. Dotted charts of events related to the activity Shift. Traces are shown on the y-axis and
sorted by the time of day of the first event in a trace. (Color figure online)

The activities under consideration can be grouped into three categories: (1) actions
related to patient logistics, (2) actions related to the call signal system and handover
between the nurses, and (3) actions related to ordered examinations and surgeries. Given
the absence of a perfectly abstracted event log as ground truth, we evaluate our method
by comparing the results obtained using three process analytics techniques with and
without the abstraction. Using the abstracted event log, we obtained several insights
into work practices of nurses in clinical processes. A domain expert from the hospital
stated that the analysis: “[... gives insight beyond the usual reports and analysis that
we have access to. It gives a fresh and “new” perspective on how we understand the
processes involved in running a ward or department.” By contrast, we show that using
the low-level event log directly does not lead to any insights for stakeholders, because
the semantics of low-level events are unclear. We used the ProM plug-ins Log Projection
(LP), Inductive Visual Miner (IVM), and Multi-perspective Explorer (MPE).

Log Projection (LP). Fig. 6 shows two dotted charts created with LP. Figure 6(a) is
created using the original event log. It shows the distribution of events NC, CS1 and CS0
over the course of a day. As expected, the NC event (i.e., the responsible nurse changed)
mostly occurs when a patient is admitted (i.e., on the blue diagonal) and during one of
the three shift changes (i.e., the three blue vertical lines). Still, the responsible nurse
also changes between those well-defined times. Yet, from Fig. 6(a) it is not evident
whether nurses use the call signal system when visiting a patient after their shift started.
Looking at Fig. 6(b), which shows only the event Shift (pa) from the abstracted event
log, it is clearly visible that our assumption was correct. Activity pattern pa captured
a meaningful high-level activity. Figure 6(b) shows that nurses do use the call signal
system to indicate their presence in the room of the patient after taking responsibility
for a patient. In contrast to the dotted chart in Fig. 6(a), event Shift only occurs after
admissions (dots on the main diagonal) and after shift changes (three vertical lines).
Still, by comparing the number of activity instances in Table 3 it is clear that activity

138 F. Mannhardt et al.

(a) Low-level log (b) Abstracted log

Fig. 7. Petri nets of the nurse handover and call signal system discovered by IVM

Shift (405 times) happens rarely in comparison to activity Handover (24,228 times).
Two likely reasons for this are that nurses do either not attend the patient after a shift
change, or that they do not use the system to indicate their presence. This is a valuable
insight on how the whiteboard system is used in practice. Notably, this could not be
concluded without the use of our abstraction method.

Inductive Visual Miner (IVM). We analyzed two parts of the whiteboard system by
discovering process models with IVM [15]. We used only those events from the origi-
nal event log that are used in the respective activity patterns. This indicates what results
could be obtained by only filtering the original log based on some knowledge about the
low-level events. Figure 7 shows Petri nets discovered using IVM for events related to
nurse handovers and the call signal system based on the original event log (Fig. 7(a)),
and the abstracted event log (Fig. 7(b)). The model in Fig. 7(a) gives little insights into
the usage of the call signal system. Most events can be repeated in any order, expect for
CallSignal3, Diagnose, and ReportChanged which may only occur once. The model
in Fig. 7(b), instead, contains recognizable activities that can be used to investigate the
usage of the call signal system further. The model indicates that activities Shift and
Alarm Assist occur together, recording a diagnose and updating the report cell (Update
Report) that is used to store medical information about patients. This finding deserves
further investigation. Regarding the other variants of using the call signal system (Alarm
Quick, Alarm Normal, and Call Nurse), no specific ordering among the high-level activ-
ities is discovered. This could be expected given the flexible nature of the whiteboard
system. Moreover, we compared models discovered for low-level and high-level events
related to examinations and patient logistics (Fig. 8). Again, the model that is discov-
ered from the low-level event log, shown in Fig. 8(a), does not offer insights into the
work at the observation unit. The only visible structure is that event TreatmentChanged,
which is related to some examination, is executed in parallel with the event Abdom.
Pain. Figure 8(b) shows the process model discovered by IVM with the abstracted event
log. The control-flow structure of this model is more specific than the model shown in
Fig. 8(a). It shows several interesting structures that could be used to investigate further
with people working in the hospital. For example, for multiple patients the planning and

From Low-Level Events to Activities - A Pattern-Based Approach 139

(a) Low-level log

(b) Abstracted log

Fig. 8. Petri nets of the examinations and patient logistics discovered by IVM

execution of surgeries and updating the diagnose occur together in parallel. One path
reveals that 300 patients with chest pain receive an X-Ray. Another path shows that for
1,300 patients with abdominal pain no examinations are ordered. By using activities on
the same abstraction level, the process model in Fig. 8(b) offers a better insight into the
process. Moreover, it allows to discuss the observations with process workers. Please
note that the high-level model in Fig. 8(b) contains more activities since the same event
is shared among multiple, high-level activities.

Multi-Perspective Explorer (MPE). Finally, we used the MPE to analyze differences
between the different ways nurses respond to patient-initiated call signals. It was found
that the assumed activities Alarm Normal (AN) and Alarm Quick (AQ), indeed, corre-
spond to different work practices by nurses. For activity AN the nurse first indicates
her presence in the room by using a button on the call signal system, after which she
attends the patient. However, within activity AQ nurses do not use this functionality. The
average service time for activity AN (7.3 min) is longer than for activity AQ (1.5 min).
A hypothesis is that nurses do not use the full functionality of the call signal system for
minor tasks, which may be important for the hospital to investigate further.

5 Conclusion

We presented a new method for supervised event abstraction using behavioral activ-
ity patterns. Activity patterns encode assumptions on how high-level activities mani-
fest themselves in terms of recorded low-level events. We obtain an abstracted event

140 F. Mannhardt et al.

log based on an alignment between activity patterns and the low-level event log. Two
quality measures (fitness, matching error) are defined that can be used to evaluate the
quality of the abstraction result. We used this method to analyze the work of nurses in a
Norwegian hospital. The case study shows that our abstraction method can be success-
fully applied in complex real-life environments. We obtained an abstracted event log
from a system, in which (1) multiple high-level activities share low-level events with
the same label, (2) high-level activities occur concurrently, and (3) erroneous events
(i.e., noise) are recorded. We applied state-of-the-art process mining tools on both the
original and the abstracted event log The results obtained from the abstracted even log
reveal insights that cannot be obtained when using the original event log. Moreover,
the results are more useful in the communication with stakeholders, since they refer to
recognizable activities. Future work may still be needed to address some limitations of
our method. At this point, if a sequence of events fits two activity patterns perfectly,
one of them will be chosen arbitrarily. A prioritization of activity patterns used dur-
ing the alignment computation could be introduced. Moreover, alignment techniques
require a lot of resources for event logs with very long traces. Work on decomposing
the alignment computation could help to alleviate this limitation.

Acknowledgments. We would like to thank Ivar Myrstad for his valuable insights on the digital
whiteboard and his help with the case study.

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer, Berlin (2011)

2. Günther, C.W., Rozinat, A., van der Aalst, W.M.P.: Activity mining by global trace segmen-
tation. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp.
128–139. Springer, Heidelberg (2010)

3. Baier, T., Mendling, J., Weske, M.: Bridging abstraction layers in process mining. Inf. Syst.
46, 123–139 (2014)

4. Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Abstractions in process mining: a
taxonomy of patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009.
LNCS, vol. 5701, pp. 159–175. Springer, Heidelberg (2009)

5. Cook, D.J., Krishnan, N.C., Rashidi, P.: Activity discovery and activity recognition: a new
partnership. IEEE Trans. Cybern. 43(3), 820–828 (2013)

6. Ferreira, D.R., Szimanski, F., Ralha, C.G.: Improving process models by mining mappings
of low-level events to high-level activities. J. Intell. Inf. Syst. 43(2), 379–407 (2014)

7. Folino, F., Guarascio, M., Pontieri, L.: Mining multi-variant process models from low-level
logs. In: Abramowicz, W. (ed.) BIS 2015. LNBIP, vol. 208, pp. 165–177. Springer, Heidel-
berg (2015)

8. Baier, T., Rogge-Solti, A., Mendling, J., Weske, M.: Matching of events and activities: an
approach based on behavioral constraint satisfaction. In: SAC, pp. 1225–1230. ACM (2015)

9. Ferreira, D.R., Szimanski, F., Ralha, C.G.: Mining the low-level behaviour of agents in high-
level business processes. IJBPIM 6(2), 146–166 (2013)

10. Fazzinga, B., Flesca, S., Furfaro, F., Masciari, E., Pontieri, L.: A probabilistic unified frame-
work for event abstraction and process detection from log data. In: Debruyne, C., Panetto,
H., Meersman, R., Dillon, T., Weichhart, G., An, Y., Ardagna, C.A. (eds.) OTM 2015 Con-
ferences. LNCS, vol. 9415, pp. 320–328. Springer, Heidelberg (2015)

From Low-Level Events to Activities - A Pattern-Based Approach 141

11. Baier, T.: Matching events and activities. Ph.D. thesis, Universität Potsdam (2015)
12. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-

perspective checking of process conformance. Computing 98(4), 407–437 (2016)
13. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint, P.J.: From low-

level events to activities - a pattern-based approach. Technical report, BPMcenter.org, BPM
Center Report BPM-02-06 (2016)

14. Wong, H.J., Caesar, M., Bandali, S., Agnew, J., Abrams, H.: Electronic inpatient white-
boards: improving multidisciplinary communication and coordination of care. Int. J. Med.
Inform. 78(4), 239–247 (2009)

15. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Using life cycle information in process
discovery. In: Reichert, M., Reijers, H. (eds.) BPM Workshops 2015. LNBIP, vol. 256, pp.
204–217. Springer, Heidelberg (2016)

Discovering and Exploring State-Based Models
for Multi-perspective Processes

Maikel L. van Eck(B), Natalia Sidorova, and Wil M.P. van der Aalst

Eindhoven University of Technology, Eindhoven, The Netherlands
{m.l.v.eck,n.sidorova,w.m.p.v.d.aalst}@tue.nl

Abstract. Process mining provides fact-based insights into process
behaviour captured in event data. In this work we aim to discover mod-
els for processes where different facets, or perspectives, of the process
can be identified. Instead of focussing on the events or activities that are
executed in the context of a particular process, we concentrate on the
states of the different perspectives and discover how they are related.
We present a formalisation of these relations and an approach to dis-
cover state-based models highlighting them. The approach has been
implemented using the process mining framework ProM and provides a
highly interactive visualisation of the multi-perspective state-based mod-
els. This tool has been evaluated on the BPI Challenge 2012 data of a
loan application process and on product user behaviour data gathered
by Philips during the development of a smart baby bottle equipped with
various sensors.

1 Introduction

The aim of process mining is to provide fact-based insights into the execution of
processes [1,11,13]. An important aspect of this is the discovery of process models
based on behaviour captured in event data. These models generally show the
activities that can be executed during the process and how they are ordered [15].

One of the most important aspects of process discovery is to deduce the
states of the operational process in the log [1]. Many mining algorithms only
have an implicit notion of state, i.e. the focus is on learning the ordering of
activities [11,16]. However, process state information may actually be present
explicitly in information systems. Examples of such explicit state information
are the diagnosis of a patient in a healthcare process or the status of an order in
a purchasing process. In this paper we focus on analysing such state information
instead of merely focussing on the activities that are executed during a process.

A single process can have different facets, or perspectives, each with their own
state space. For example, consider the homeostatic process in a person, parts of
which regulate sleep and nutrition. From the perspective of sleep the state of a

M.L. van Eck—This research was performed in the context of the IMPULS collabo-
ration project of Eindhoven University of Technology and Philips: “Mine your own
body”.

c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 142–157, 2016.
DOI: 10.1007/978-3-319-45348-4 9

Discovering and Exploring State-Based Models 143

Fig. 1. A model of a simple healthcare process M and its two perspectives P1 and P2.
Each state in the process is a combination of a state from each perspective.

person can be e.g. awake or asleep, while the state of the nutrition perspective
can be e.g. eating or sated. These perspectives have individual process cycles,
but there are interdependencies between states from different perspectives, e.g.
people are awake while eating. The state of a person is the composition of the
state of both perspectives, and we aim to study such multi-perspective processes.

In Fig. 1 we present a simple healthcare process, which we use as a running
example. This composite process M has two distinct perspectives: P1, related
to the status of the patient being treated, and P2, related to the status of lab
tests of the patient. The initial states are marked with an incoming arrow and
the final states are marked with an outgoing arrow.

The healthcare process starts when the patient is registered, after which a lab
test is planned to diagnose the patient. If the patient misses their appointment or
if the results are inconclusive then a new test is planned, but if the test results are
ready then the treatment can proceed. During the treatment additional tests may
be required, until the patient is healthy again and the process ends. Note that
the composite process is smaller than the Cartesian product of the perspectives
(4 × 5 = 20 states) because not all state combinations can be observed due to
interdependencies. For example, once the patient is healthy no extra lab tests are
needed. Such dependencies between perspectives can be interesting to analyse.

In this paper we present an approach to provide insights into processes that
can be considered from multiple state-based perspectives, like the ones described
above. The models of these processes quickly become complex as the number of
perspectives or the number of states per perspective increases, and it is difficult to
interpret the relations between states from different perspectives. Therefore, our
approach focusses on visualising and quantifying these relations and empowering
the user through interactive exploration of the discovered process models.

The structure of the paper is as follows. In Sect. 2 we formally define state-
based models for multi-perspective processes. In Sect. 3 we discuss operations
that simplify these models. In Sect. 4 we introduce metrics to quantify the rela-
tions between perspectives and we show how they can be visualised. In Sect. 5
we discuss an evaluation of the approach on two real-life data sets. Finally, we
present the related work in Sect. 6, and conclusions and future work in Sect. 7.

144 M.L. van Eck et al.

2 Composite State Machines

We model state-based processes such as the one in Fig. 1 as Composite State
Machines (CSMs). In this section we first formally describe CSMs and their
perspectives, based on the finite-state machine formalism [4,10]. We then define
how the state information of a process can be captured in a system execution log
and present a discovery algorithm to construct a CSM from such a log. Finally,
we define several behavioural relations between process perspectives.

Regarding notation, we write σi for the i-th element of a sequence σ ∈ S∗ of
elements from some set S, and |σ| denotes the length of σ. We write s ∈ σ if s =
σi for some i. Additionally, for an element s of a cartesian product S1 × . . .×Sn

we write s(i) for the value of the i-th component of s (i ∈ {1, . . . , n}).

2.1 State Machines and Perspectives

We define State Machines (SMs) as follows:

Definition 1. A State Machine M is a tuple (S, T, S0, SF) where S is the set
of states, T ⊆ S × S is the set of transitions, S0 ⊆ S is the set of initial states,
and SF ⊆ S is the set of final states. (s, s′) ∈ T is also denoted as (s → s′).

An execution sequence of a state machine is a sequence of states starting
from an initial state and ending in a final state such that every state change is
allowed by the transitions of the SM. The set of all valid execution sequences of
an SM represents the possible behaviour of the process modelled by that SM.

Definition 2. An execution sequence σ ∈ S∗ of an SM M = (S, T, S0, SF)
is a sequence of states such that σ1 ∈ S0, σ|σ| ∈ SF , and (σi, σi+1) ∈ T for
i ∈ {1, . . . , |σ| − 1}. The set ΣM is the set of all the execution sequences of M.

A CSM describes a process with a number of perspectives. A state of a CSM is
defined as the composition of the states of its perspectives, i.e. it is a vector of
states. The set S of all possible states of a CSM is a subset of the cartesian prod-
uct S1×. . .×Sn of the sets of states of its perspectives, as not all combinations of
perspective states are necessarily present. Each transition in a CSM represents
a change in the state of at least one perspective; therefore we do not consider
self loops. Formally:

Definition 3. A Composite State Machine M = (S, T, S0, SF) is a state
machine where S ⊆ (S1 × . . . × Sn), with S1, . . . , Sn being sets of perspective
states, and for all (s, s′) ∈ T it holds that s �= s′.

Perspectives of CSMs can be interpreted as projections of a CSM, as seen in
Fig. 1. Two states si, s

′
i of a perspective Pi are connected by a transition iff there

is a transition from some state s to a state s′ in the CSM that changes the value
of the i-th state component from si to s′

i. Again, self loops are not considered
because transitions represent state changes. Formally:

Discovering and Exploring State-Based Models 145

Fig. 2. Two CSMs M1 and M2 with S = {1, 2}×{A,B}, S0 = {(1, A)}, SF = {(1, B)}.
Both have the same two perspectives P1 and P2.

Definition 4. Perspective Pi (i ∈ {1, . . . , n}) of a CSM M = (S, T, S0, SF) with
S ⊆ (S1 × . . . × Sn) is a state machine Pi = (Si, Ti, Si0, SiF) with Si0 = {s(i)|s ∈
S0}, SiF = {s(i)|s ∈ SF }, and Ti ⊆ Si × Si such that: (si, s

′
i) ∈ Ti iff si �=

s′
i ∧ ∃(s, s′) ∈ T : s(i) = si ∧ s′(i) = s′

i.

Figure 2 shows two different CSMs, M1 and M2, both having identical per-
spectives. However, the possibility of changes of the states w.r.t. one perspective
of M1 depends on the state of the other perspective, while in M2 these changes
only depend on the state of a single perspective. E.g. the transition from state 1
to state 2 in perspective P1 is only possible when M1 is in state A in perspective
P2, while this transition is independent of perspective P2 in M2. This type of
dependency shows a relation between the states of different perspectives.

2.2 State Logs and CSM Discovery

The executions of the behaviour of a process can be recorded in a log [1,3–5]. A
state log describes a collection of sequences with each sequence consisting of the
points in time where a process entered a new state. Hence, a state entry in the
log indicates that the given process has a specific state from the corresponding
point in time onwards, until the next different state is entered.

Definition 5. A trace ∈ (S × T)∗ over the state set S is a timed sequence of
state entries with time domain T such that subsequent state entries differ in their
states. A state log L ∈ IN(S×T)∗

is a multiset of traces over S.

Given a state log of a process, with every state entry being the product of
the states of all perspectives, i.e. entries (s1 × . . . × sn × t), we can discover a
CSM describing the process behaviour. We interpret the sequence of state entries
in each trace in the log as an execution sequence of the SM being discovered.
Time is not used in the discovery of the model, only in the calculation of statistics
for the visualisation later. The discovery algorithm is defined as follows:

Definition 6. Discovery algorithm D(L) takes a state log L ∈ IN(S×T)∗
over

the set of states S = S1 × . . .×Sn and produces a CSM M = (Ŝ, T, S0, SF) such
that:

146 M.L. van Eck et al.

– Ŝ = {tracei(1)|trace ∈ L ∧ (i ∈ {1, . . . , |trace|})},
– T = {(tracei(1), tracei+1(1))|trace ∈ L ∧ (i ∈ {1, . . . , |trace| − 1})},
– S0 = {trace1(1)|trace ∈ L},
– SF = {trace|trace|(1)|trace ∈ L},
with tracei(1) denoting the i-th state entry of trace.

This means that each trace in the log is parsed and every state unseen before
is added to Ŝ, and every new pair of consecutive states are added to T . The first
state entry in every trace is added to S0 and the last state entry is added to SF .
The perspectives of the CSM discovered in this way are obtained by projecting
the sets of states and transitions, as defined above.

This discovery algorithm corresponds to the first step of the approach pre-
sented in [1]. The algorithm in [1] takes an event log as input and constructs a
transition system. Several different possible abstractions are described that can
be used to infer implicit states from the events recorded in the log. However, we
defined our state log to contain the explicit state information of our process, so
we do not need to use these abstractions. In fact, mining the log with a horizon
limited to single transitions produces a CSM like the algorithm above.

2.3 Behavioural Relations Between Perspectives

Once we have obtained a CSM, we can consider several types of behavioural
relations to analyse. Traditional process discovery primarily aims to discover
causal relations, i.e. which activity (eventually) follows another [11,16]. In that
context it is more difficult to analyse relations like the expected waiting time
between two activity occurrences because of the implicit state notion. However,
with an explicit state notion the calculation of time statistics is much easier,
while the causal relations are still expressed as transitions between states.

In addition, there are also specific insights that can be of interest related
to the interdependencies between perspectives in a multi-perspective process.
E.g. for the healthcare process in Fig. 1 one can compare the time required to
obtain a result when the patient is not yet diagnosed versus the time required
for that when the patient is already in treatment. To enable this, it is necessary
to know which states and transitions from different perspectives can be observed
to co-occur, for which additional statistics can then be calculated.

For a given state of a perspective we consider three relations defining with
which states and transitions of another perspective it can co-occur:

Definition 7. Let M = (S, T, S0, SF) be a CSM with S ⊆ S1 × . . . × Sn and
P1, . . . ,Pn its perspectives. For a state si ∈ Si of perspective Pi (i ∈ {1, . . . , n}),

– the co-occurring CSM states are CMSi(si) = {s ∈ S|s(i) = si}
– the co-occurring states of perspective Pj, j �= i are CPSij(si) = {sj ∈ Sj |∃s ∈

S : s(i) = si ∧ s(j) = sj}
– and the state’s co-occurring transitions of perspective Pj, j �= i are

SCPTij(si) = {(sj , s
′
j) ∈ Tj |∃(s, s′) ∈ T : s(i) = si ∧ s′(i) = si ∧ s(j) =

sj ∧ s′(j) = s′
j}.

Discovering and Exploring State-Based Models 147

The CMS and CPS relations show which combinations of states from dif-
ferent perspectives can be observed in a CSM. For the CSM M in Fig. 1,
e.g. CMS1(Diagnosed) = {(Diagnosed, Results ready)}, while the other P2

states do not occur together with the Diagnosed state. The SCPT rela-
tion similarly shows which transitions in a specific perspective can be
observed when in a given state of another perspective. E.g. SCPT21(Results
ready) = {(Registered→Diagnosed), (Diagnosed→In treatment), (In treat-
ment→Healthy)}, so all transitions of perspective P1 are possible when per-
spective P2 is in the Results ready state.

For a given transition of a perspective we consider three relations linking the
transitions of a perspective to the transitions of the CSM and to the states and
transitions of other perspectives:

Definition 8. Let M = (S, T, S0, SF) be a CSM with S ⊆ S1 × . . . × Sn and
P1, . . . ,Pn its perspectives. For a transition (si, s

′
i) ∈ Ti of perspective Pi (i ∈

{1, . . . , n}),

– the co-occurring CSM transitions are CMTi(si, s
′
i) = {(s, s′) ∈ T |s(i) = si ∧

s′(i) = s′
i},

– the co-occurring transitions of perspective Pj, j �= i are CPTij(si, s
′
i) =

{(sj , s
′
j) ∈ Tj |∃(s, s′) ∈ T : s(i) = si ∧ s′(i) = s′

i ∧ s(j) = sj ∧ s′(j) = s′
j}

– and the transition’s co-occurring states of perspective Pj, j �= i are
TCPSij(si, s

′
i) = {sj ∈ Sj |∃(s, s′) ∈ T : s(i) = si ∧ s′(i) = s′

i ∧ s(j) =
sj ∧ s′(j) = sj}.
The CMT relation gives the set of transitions that contain a specific state

change in a given perspective. E.g. in Fig. 1, CMT2((Test planned→New test
needed)) = {((Registered, Test planned)→(Registered, New test needed)), ((In
treatment, Test planned)→(In treatment, New test needed))}, so the transi-
tion from Test planned to New test needed is possible at two points in M.
The CPT relation gives the transitions that can be observed simultaneously.
So, CPT12((In treatment→Healthy)) = {(Waiting on result→Results ready)}.
Finally, the TCPS relation shows all the states in a perspective where it is
possible to observe a specific transition in another perspective. For example,
TCPS21((Test planned→New test needed)) = {Registered, In treatment}.

3 Creating Simplified Views for CSMs

The CSMs that are discovered on real life process can be quite complex. Thus
it can be desirable to simplify the model in order to focus the analysis on the
parts of interest. Therefore, we consider three different operations that create
a simplified view on a state machine, i.e. the CSM as a whole or one of the
perspectives. These operations take an SM and create a new SM, so multiple
operations can be applied in sequence to create a final view.

The first operation removes a given transition from a state machine.
This simplifies the model in the sense that the number of arcs is decreased.

148 M.L. van Eck et al.

(a) (b)

Fig. 3. Two views of M from Fig. 1. In view (a) the (Diagnosed, Results ready) state is
abstracted from and in view (b) (Registered, Results ready) and (Registered, New test
needed) are aggregated in addition.

When creating a view for a perspective of a CSM it is assumed that a similar
view is also created for the CSM as a whole. So, if a transition (si, s

′
i) is removed

from perspective Pi then all transitions from CMTi(si, s
′
i) are also removed.

Removing transitions from an SM affects its behaviour, i.e. the set of allowed
execution sequences is reduced. For example, removing the transition (Waiting
on result→New test needed) from perspective P2 in Fig. 1 implies that the result
of the test is never inconclusive. Note that the transitions ((Registered, Wait-
ing on result)→(Registered, New test needed)) and ((In treatment, Waiting on
result)→(In treatment, New test needed)) should also be removed from M in
Fig. 1 to keep P2 consistent with M.

The second operation abstracts from a given state in a state machine, sim-
plifying the model by decreasing the number of states. This means that the
state is removed, but other states that were connected by transitions through
this state should remain connected. In addition, if the abstracted state was an
initial or final state then the states that could directly follow or precede this
state respectively become initial or final states as well. As an example, Fig. 3a
shows the abstraction of the (Diagnosed, Results ready) state from M in Fig. 1.
In this view there is now a new transition from (Registered, Results ready) to
(In treatment, Results ready).

Abstracting from states is not guaranteed to simplify the model. If a state is
highly connected with many incoming and outgoing transitions then abstracting
from this state can result in the addition of many new transitions that make the
model more complex.

The third operation aggregates two given states into a single new state, sim-
plifying the model by decreasing both the number of states and transitions. The
two old states are removed from the model and a new state is added represent-
ing the combination of the two, so all the transitions to and from the old states
are also added to the new state (omitting self-loops). If either of the old states
was an initial or final state, then the new state is also an initial or final state,

Discovering and Exploring State-Based Models 149

Fig. 4. The interactive visualisation of a discovered CSM. The selected state is denoted
with a red box and its co-occurring states and transitions are highlighted in the other
perspectives and the overall view based on their confidence. Additional statistics are
displayed for the highlighted states and transitions.

respectively. In Fig. 3b the aggregation of the states (Registered, Results ready)
and (Registered, New test needed) from the CSM of Fig. 3a is shown.

Although no behaviour is removed during aggregation due to the preservation
of transitions, new behaviour may be added. For example, in the CSM in Fig. 3b
it is now possible to go from the state Registered to the state In treatment
without going through the state (Registered, Waiting on result), while this was
not possible before.

4 Exploring Composite State Machines

In this section we introduce the metrics of support, confidence and lift to quantify
the behavioural relations between perspectives. These metrics come from the
field of association rule learning [9] and they enable us to highlight relations of
potential interest. We also discuss the metric visualisation in the implementation
of our approach as a plug-in1 in the process mining framework ProM.

The visualisation of the discovered CSMs is shown in Fig. 4. The CSM is
shown on the left and its perspectives are displayed next to it. Initial states are
marked with a dashed border and final states with a double border. Statistics
such as the number of observations, are displayed at the bottom for the selected
state or transition. The operations from Sect. 3 can be applied to simplify the
discovered models. For example, the user can filter arcs based on the amount of
observations and iteratively select the states to abstract from or to aggregate.

The behavioural relations introduced in Sect. 2.3 are highlighted and quanti-
fied for the selected state or transition. These statistics are calculated from the

1 Contained in the CSMMiner package of the ProM 6 nightly build and the ProM 6.6
release, available at http://www.promtools.org/.

http://www.promtools.org/

150 M.L. van Eck et al.

observations in the state log that was used to discover the CSM. The reason
for the use of highlighting and an interactive display of statistics based on the
selected state or transition is to prevent an overload of information and to facil-
itate the exploration of scenario’s. For example, the user can select a specific
state in a perspective and evaluate what the occurrence of this state means for
the state of the rest of the process and which transitions may be enabled.

The states with the highest support are the most frequently observed states.
This metric is calculated as the number of observations of a state or transition in
the log divided by the total number of observations of states or transitions [9].
That is, if a state s has been observed 40 times and in total there were 100
state entries in the state log then Supp(s) = 40

100 . Similarly, support can also be
calculated as the time that was spent in a given state divided by the total time
covered by the log. For transitions the support is only defined over the number
of observations, as a transition is assumed to happen instantaneously.

The confidence metric is defined over pairs of state or transitions, expressing
the estimated conditional probability of the occurrence of one, given the occur-
rence of the other [9]. E.g. if a state si from perspective Pi co-occurs with two
states CPSij(si) = {sj , s

′
j} from perspective Pj , and if the co-occurrence of si

with sj is observed 30 times and the co-occurrence of si with s′
j is observed 10

times, then Conf (si, sj) = 30
40 and Conf (si, s

′
j) = 10

40 . Confidence for co-occurring
states can also be calculated based on the amount of time that was spent in the
related states. For pairs of transitions the computation is comparable.

We define the confidence metric slightly differently for the co-occurrence of
a state with a transition. For a given state’s co-occurring transitions the confi-
dence expresses the expected conditional probability of observing the transition,
given that the CSM is in this specific state and a transition occurs. For exam-
ple, a state si from perspective Pi co-occurs with two transitions SCPTij(si) =
{(sj , s

′
j), (sj , s

′′
j } from perspective Pj . Then the confidence Conf (si, (sj , s

′
j)) is

the estimated conditional probability of observing transition (sj , s
′
j), given that

the CSM is in si and sj and a transition occurs. That is, if (sj , s
′
j) has been

observed 8 times while in state si and (sj , s
′′
j) has been observed 2 times while

in state si then Conf (si, (sj , s
′
j)) = 8

10 and Conf (si, (sj , s
′′
j)) = 2

10 . The confi-
dence of observing a transition’s co-occurring state is the expected conditional
probability of being in that specific state, given that the transition is observed.

The lift metric is also defined over pairs of states or transitions and it
expresses how much the confidence differs from the expected confidence [9]. For
the co-occurrence of two states si and sj , given that the CSM is in state si in
perspective Pi, the lift is computed as the ratio of the confidence Conf (si, sj)
over the unconditional probability of being in sj in perspective Pj . E.g. if
Conf (si, sj) = 30

40 = 0.75 and the probability of being in sj in perspective Pj

(i.e. its support) is 40
100 = 0.4, then Lift(si, sj) = 0.75

0.4 = 1.875. This indicates
that the probability of being in state sj in perspective Pj is 1.875 times higher
than expected when in si in perspective Pi. In other words, the lift quantifies
whether being in si provides information on the likelihood of being in sj and
expresses whether the relation is unexpected and hence potentially interesting.

Discovering and Exploring State-Based Models 151

5 Evaluation

The tool introduced in Sect. 4 has been used to analyse two data sets recorded for
two real-life processes. One is the BPI Challange 2012 data of a loan application
process [6] and the other is product user behaviour data for a smart baby bottle
equipped with various sensors that was developed by Philips.

5.1 BPI Challenge 2012

The BPI Challenge 2012 data set (BPI 2012) is a real-life event log that was
obtained from a Dutch financial institute [6]. The log contains 262.200 events
distributed over 13.087 process instances. The process described in this log con-
cerns applications for a personal loan or overdraft at the financial institute. The
events recorded in this log are related to three interrelated sub-processes, which
we take as our perspectives. Artificial initial and final states were added to each
process instance in the log2 to ensure correct calculations of state sojourn times
for all three perspectives.

The first perspective concerns the state of the application (A-events), the
second relates to the work-items performed by the bank’s employees (W -
events), and the third concerns the state of the institute’s offers to the applicant
(O-events). Although the BPI 2012 log is presented as an event log, the A and
O-events actually specify changes in the state of the application or an offer. This
means that they can be interpreted as state entries in a state log as defined in
Sect. 2.2. On the other hand, the W -events are clearly identifiable as activities.
These activities are enabled at some point in the process, indicated with a single
schedule event, after which the start and completion of each instance of this
activity is recorded whenever it is performed. At most one activity is performed
per application at a time, so we study the process from the viewpoint that the
states of the work-item perspective indicate either the type of activity currently
being executed (i.e. indicated by a start event) or the type of activity that was
most recently completed (i.e. indicated by a complete event).

The interrelation of these three perspectives introduces complex behaviour
that makes it difficult for traditional process discovery algorithms to discover
informative models. Figure 5 shows a process model discovered by the Inductive
visual Miner (IvM) [11]. This flower model provides very little insights into the
application process and no relations between the three perspectives. On the
other hand, models such as the one shown in Fig. 6, discovered with the Flexible
Heuristics Miner (FHM) [16], do show these relations, but they provide little
structure and they are difficult to interpret.

Applying the CSM Miner on the BPI 2012 results in the models shown in
Fig. 4. The discovered CSM is shown as the leftmost model and, like the result
from the FHM, it is very difficult to interpret. However, the three models for the
individual perspectives are well structured and easy to comprehend. Mining such
structured models is also possible with traditional process discovery algorithms if

2 Available at http://svn.win.tue.nl/repos/prom/Packages/CSMMiner/Logs/.

http://svn.win.tue.nl/repos/prom/Packages/CSMMiner/Logs/

152 M.L. van Eck et al.

Fig. 5. The result of applying the IvM [11] on the BPI 2012 data. The relations between
the events from different perspectives are not visible in this model.

Fig. 6. The result of applying the FHM [16] on the BPI 2012 data. The general flow
of the process cannot easily be inferred from this model.

the log is filtered for a specific perspective. However, the resulting models would
not show any of the interrelations between the perspectives. The CSM Miner does
show these relations when the user explores the models interactively.

Another reason why the CSM Miner results are easier to interpret is that
they can be simplified using the transformation operations from Sect. 3. E.g. the
BPI 2012 process starts with the submission of the application, shown in Fig. 7a.
This is always immediately followed by a state indicating that the application is
not completed yet, i.e. partly submitted. Based on the fact that the time spent
in the first state is negligible, this state can be abstracted from.

Figure 7b also shows a transformation simplifying the application perspective.
It contains the end of the application process for successfully accepted applica-
tions, which are approved, registered and the loan is activated. The model struc-
ture and state statistics indicate that these states occur in arbitrary order and that
the process immediately ends afterwards (i.e. the state sojourn time is 0). Hence,
these states can be merged into a single one representing a successful application.

Exploring the discovered CSM provides several interesting insights. For
example, when inspecting the declined applications that co-occur with auto-
matic processing (Fig. 8a) and comparing them to the declined applications that

Discovering and Exploring State-Based Models 153

Fig. 7. Part of the application perspective with a submitted marked for abstraction,
and a registered, a activated and a approved marked for aggregation.

Fig. 8. The decline of applications by the institution, highlighted to show statistics for
the co-occurrence with automatic application submission (a), manual handling of leads
(b), and fraud detection (c).

co-occur with manual handling of the leads (Fig. 8b). These statistics show that
the rate of declined applications is very similar for both type of applications. So,
this suggests that perhaps the guidelines for declining applications are uniform,
but some applications may come in through a channel where it is not possible
to automatically evaluate them on the application.

Exploration of the CSM also shows that some applications are declined while
the institution is investigating potential fraud, shown in Fig. 8c. In the 75 cases
where fraud is investigated for applications that have not been validated, 57
were declined (76 %). However, after application validation there were also 33
cases where potential fraud was investigated, but none of these were declined.
Therefore, the validation appears to be successful at filtering out fraud and it
suggests that they only investigate applications that have not been validated for
which they already have a suspicion of possible fraud.

Finally, it is also possible that an application is declined after it has been
validated and the offer sent to the applicant. This appears to be related to
unresponsive applicants or incomplete applications. In Fig. 9a the co-occurrence
statistics are shown for the state where the client is called because of an incom-
plete application. While on the phone, only 86+193+127

1647 = 25% cases changed

154 M.L. van Eck et al.

Fig. 9. Status changes of the application after it is finalized, while the client is called
due to an incomplete application (a), or during application validation (b).

state, so most people cannot provide the required information right away. The
number of successfully registered applications at this point is also lower than for
the other applications that reach this point in the process, as shown in Fig. 9b.

Interestingly, exploration also revealed that on average 7 calls are made for
the cases where information is incomplete, suggesting that these clients are
not taking the effort to complete the application even after being contacted.
Therefore, the institution could investigate the trade-off between the value of
additional successful applications and the required effort for these incomplete
applications. To get more insights into this, it would also be useful to see the
acceptance rate for the applications that are incomplete. However, this informa-
tion cannot currently be obtained as the relations between the different perspec-
tives are limited to co-occurrence and do not show (long term) dependencies.

5.2 Smart Product User Behaviour

This data set was obtained from Philips during a study where Philips worked
on the design of a smart baby bottle equipped with various sensors. The goal
of the study was to investigate the characteristics of the data obtained during
the use of the bottle, and to explore potential product improvements or ideas
for related services based on analysis of this data.

The data set used during this evaluation concerns 358 instances of baby feed-
ings that resulted in 8369 state entries in a state log. There are two perspectives
used in the analysis: a temperature sensor and an accelerometer measuring bottle
movement. The states in this log correspond to the state of the sensor signals of
these two sensors and their product-specific interpretation. They were obtained
by clustering the sensor measurement values and labelling the cluster centroids.
The resulting CSM is shown in Fig. 10 The main challenge of analysing this sen-
sor data is the recognition of user behaviour and its effects on the measurements.

One of the basic assumptions on user behaviour for this smart bottle is
that a feeding is started soon after the bottle has been heated. Figure 11a
shows the bottle movement states, highlighted to indicate their co-occurrence
with the state of the bottle having just been heated. The high lift of the state

Discovering and Exploring State-Based Models 155

Fig. 10. The result of applying the CSM Miner on the Philips data set.

Fig. 11. States in the accelerometer perspective, highlighted for the co-occurrence with
the bottle heating (a), cooling (b), and small temperature increases (c).

Downward BigMove shows that the feedings are indeed generally started soon
after heating, as this state is an important indicator for the start of a feeding.

Similarly, Fig. 11b shows the co-occurrence of bottle movement states with
the transition from a warm bottle to a cold bottle through a big decrease in
temperature. Here the lift of the state Upright BigMove is high, indicating a
relation with this indicator of the feeding having ended. This shows that the
bottle is usually cleaned soon after a feeding has ended.

Interestingly, there is also a strong relation between a small temperature
increase and the Upright BigMove state, as shown in Fig. 11c. This occurs
because during the feeding the warm food was further away from the sensor
than when the bottle was in a stationary position, resulting in fluctuating tem-
peratures. The product designers inferred from this that the temperature sensor
was not in the correct position to measure the temperature accurately during
the feeding.

6 Related Work

The discovery of state-based models from logs of behavioural data is not a
recent idea [4,5]. Finite state machines have been found to be convenient to

156 M.L. van Eck et al.

model historical patterns of behaviour in different contexts, e.g. to understand
software behaviour [5,12] or to find successful proof strategies for interactive
theorem provers [8]. These approaches are similar to traditional process dis-
covery approaches that produce a single model describing the observed behav-
iour [1,11,16].

More recently, processes have been studied from the point of view of the
business objects or artifacts involved in a process [13–15],e.g. orders or invoices.
In this context, state machines have been traditionally used to model the indi-
vidual lifecycles of artifacts, although more specific formalisms have also been
developed [14]. While artifacts are generally defined to include both an informa-
tion model with all data related to the artifact and a lifecycle model describing
how events and activities affect the state of the artifact, a perspective is only a
collection of related states and the transitions that are possible between these
states in the context of a state-based process. To the best of our knowledge, there
is currently no publicly available implementation of an artifact-centric approach
that can discover the interactions between objects or artifacts [13,14].

Systems composed of multiple state machines have also been studied in
the areas of model checking and software analysis [3,7]. The individual state
machines are generally assumed to either operate independently or interact using
messages [2,10]. Few approaches can discover models for such systems and they
model interaction through message passing instead of the relations we study [3].

The formalisms we introduce for CSMs are similar to notions from automata
theory [2], but while automata theory is centered on actions or activities, we
deviate from the dominating activity view in process mining and utilize available
state information explicitly. In automata theory notions of e.g. product automata
can be used to build up a system of multiple automata based on synchronised
transitions [2], which can be reduced to create a minimal automata, i.e. bottom-
up construction. However, a CSM cannot be built up from its perspectives as
there is no information in the data of individual perspectives to synchronise on.
This information is only available in the log of the entire process, which is mined
to directly create a composite model that is minimal by definition.

7 Conclusion

This paper presented an approach to discover state-based process models that
can be interactively explored. We first formally defined the notion of a Composite
State Machine as a way to model multi-perspective processes that can be learned
from event logs. As the resulting models can be quite complex, we provided three
different operations that can be used to create simplified views on state machines.

To explore the discovered models we have developed an interactive visualisa-
tion tool that is available as a plug-in for ProM. The tool highlights interesting
relations between states and transitions graphically and quantifies them in terms
of support, confidence and lift. This tool has been evaluated on two real-life data
sets, demonstrating that valuable and novel insights can be obtained.

Future work we plan to do in this area aims at improving practical usability.
For example, the view creation operations could be automatically evaluated to

Discovering and Exploring State-Based Models 157

provide the user with feedback on the changes in process model quality when
creating a new view. Based on the existing metrics or on concurrency detection
there could also be automatic suggestions for candidate transitions and states
for removal or aggregation. Finally, the approach should be extended to support
more types of behavioural relations between the perspectives. In addition to co-
occurrence, it is also interesting to look at the dependencies between perspectives
that occur before or after reaching a given state.

References

1. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler,
E., Günther, C.W.: Process mining: a two-step approach to balance between under-
fitting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010)

2. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
3. Beschastnikh, I., Brun, Y., Ernst, M.D., Krishnamurthy, A.: Inferring models of

concurrent systems from logs of their behavior with CSight. In: 36th International
Conference on Software Engineering, ICSE 2014, pp. 468–479 (2014)

4. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Trans. Comput. 21(6), 592–597 (1972)

5. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based
data. ACM Trans. Softw. Eng. Methodol. 7(3), 215–249 (1998)

6. van Dongen, B.F.: BPI Challenge 2012 (2012).
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

7. Fisler, K., Krishnamurthi, S.: Modular verification of collaboration-based software
designs. In: Proceedings of 8th European Software Engineering Conference 2001,
pp. 152–163 (2001)

8. Gransden, T., Walkinshaw, N., Raman, R.: Mining state-based models from proof
corpora. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.)
CICM 2014. LNCS, vol. 8543, pp. 282–297. Springer, Heidelberg (2014)

9. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference and Prediction. Springer, New York (2001)

10. Kam, T., Villa, T., Brayton, R.K., Sangiovanni-Vincentelli, A.: Synthesis of Finite
State Machines: Functional Optimization. Springer Science and Business Media,
New York (2013)

11. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Exploring processes and
deviations. In: Fournier, F., Mendling, J. (eds.) BPM 2014 Workshops. LNBIP,
vol. 202, pp. 304–316. Springer, Heidelberg (2015)

12. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: 30th International Conference on Software Engineering (ICSE 2008),
pp. 501–510 (2008)

13. Lu, X., Nagelkerke, M., van de Wiel, D., Fahland, D.: Discovering interacting
artifacts from ERP systems. IEEE Trans. Serv. Comput. 8(6), 861–873 (2015)

14. Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle discovery. Int. J. Coop. Inf.
Syst. 24(1), 144 (2015)

15. Ryndina, K., Küster, J.M., Gall, H.C.: Consistency of business process models and
object life cycles. In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 80–90.
Springer, Heidelberg (2007)

16. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: Proceed-
ings of IEEE Symposium on Computational Intelligence and Data Mining, CIDM
2011, pp. 310–317 (2011)

http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

Semantical Vacuity Detection in Declarative
Process Mining

Fabrizio Maria Maggi1, Marco Montali2, Claudio Di Ciccio3(B),
and Jan Mendling3

1 University of Tartu, Tartu, Estonia
f.m.maggi@ut.ee

2 Free University of Bozen-Bolzano, Bolzano, Italy
montali@inf.unibz.it

3 Vienna University of Economics and Business, Vienna, Austria
{claudio.di.ciccio,jan.mendling}@wu.ac.at

Abstract. A large share of the literature on process mining based
on declarative process modeling languages, like declare, relies on the
notion of constraint activation to distinguish between the case in which
a process execution recorded in event data “vacuously” satisfies a con-
straint, or satisfies the constraint in an “interesting way”. This fine-
grained indicator is then used to decide whether a candidate constraint
supported by the analyzed event log is indeed relevant or not. Unfortu-
nately, this notion of relevance has never been formally defined, and all
the proposals existing in the literature use ad-hoc definitions that are
only applicable to a pre-defined set of constraint patterns. This makes
existing declarative process mining technique inapplicable when the tar-
get constraint language is extensible and may contain formulae that go
beyond pre-defined patterns. In this paper, we tackle this hot, open chal-
lenge and show how the notion of constraint activation and vacuous satis-
faction can be captured semantically, in the case of constraints expressed
in arbitrary temporal logics over finite traces. We then extend the stan-
dard automata-based approach so as to incorporate relevance-related
information. We finally report on an implementation and experimenta-
tion of the approach that confirms the advantages and feasibility of our
solution.

Keywords: Vacuity detection · Declarative process mining · Constraint
activation

1 Introduction

The increasing availability of event data recorded by information systems, elec-
tronic devices, web services, and sensor networks provides detailed information
about the actual processes in systems and organizations. Process mining tech-
niques can use such event data to discover process models and check the confor-
mance of process executions. When a process works in a flexible and knowledge-
intensive setting, it is desirable to describe it in terms of a constraint-based
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 158–175, 2016.
DOI: 10.1007/978-3-319-45348-4 10

Semantical Vacuity Detection in Declarative Process Mining 159

Fig. 1. Response template and a possible instantiation

declarative process model rather than of a detailed procedural model. Consider,
for instance, a physician in a hospital confronted with a variety of patients that
need to be handled in a flexible manner but, at the same time, following some
general regulations and guidelines. In such cases, declarative process models are
more effective than procedural models [1,27,28]. Instead of explicitly specifying
all possible sequences of tasks in a process, declarative models implicitly specify
the allowed behavior of the process with constraints, i.e., rules that must be
followed during the process executions.

In [1,26], the authors introduce a declarative process modeling language
called declare. declare is characterized by a user-friendly graphical repre-
sentation with formal semantics grounded in ltl over finite traces (ltlf [8,9]).
For example, the response constraint in Fig. 1 means that every action eat food
must eventually be followed by action measure glucose, and this can be formal-
ized with the ltlf formula �(eat food → ♦measure glucose). declare has been
fruitfully applied in the context of process discovery [5,13,14,18,20,22] and com-
pliance/conformance checking [2,4,6,16,19,23,25]. In both tasks, when execu-
tion traces are analyzed so as to check whether they satisfy a given declare
constraint, it is not sufficient to obtain a yes/no answer, but it becomes crucial
to understand whether the trace is relevant, in the sense that it actively interacts
with the constraint.

For this reason, most of the existing process mining techniques based on
declare rely on the notion of constraint activation. This notion is, in general,
useful to assess the “degree of adherence” of a process execution with respect
to a constraint. In particular, in process discovery, it becomes crucial to define
interestingness metrics (like support and confidence [13,20]) to select the most
relevant constraints to be discovered among a set of candidates that can be,
in some cases, extremely large. In the context of conformance checking, con-
straint activations are useful to define a set of “health indicators” to measure
the healthiness of a process execution by evaluating the proportion of constraint
activations that lead to a violation and the proportion of constraint activations
that lead to a fulfillment [4,19,21,25]. This quantitative analysis would not be
possible without the notion of constraint activation.

In spite of the huge interest in this problem, the notion of constraint activa-
tion has never been formally defined, and all the papers so far have worked with
ad-hoc definitions, explicitly spelled out for each of the declare constraints.
This poses a twofold issue. On the one hand, the lack of a general, formal app-
roach to this problem makes it extremely difficult to understand whether ad-hoc
approaches are indeed correct, when the constraints under study go beyond sim-
ple patterns like the aforementioned response. On the other hand, ad-hoc and
pattern-based definitions of relevance make existing declarative process mining
technique inapplicable when the target constraint language is extensible and may
contain formulae that go beyond pre-defined patterns. The goal of this paper is

160 F.M. Maggi et al.

to overcome these issues, by proposing for the first time a general, systematic
characterization of relevance and activation for temporal constraints. Our app-
roach is formally-grounded, and at the same time it is by and large compatible
with the human intuition exploited in the previous literature.

The notion of constraint activation is related to the notion of vacuity detec-
tion in model checking. In the response example of Fig. 1, if eat food never occurs
in a trace, then the constraint is “vacuously” satisfied, that is, satisfied without
showing any form of interaction with the trace. However, existing techniques for
vacuity detection (i.e., for determining whether a given trace is a relevant, inter-
esting witness for the formula of interest) [3,17] present two key limitations in
our context. First, they focus on temporal formulae over infinite traces (standard
ltl in particular), whereas we are interested in finite traces only (as customary
in BPM). Second, they suffer from syntax sensitivity. This implies that express-
ing a constraint through two semantically equivalent but syntactically different
formulae could lead to a different judgement for the same trace.

By leveraging a finite-trace semantics for constraints, we move from a syntax-
dependent to a fully semantical characterization of constraint activation and, in
turn, vacuity detection. Our approach is grounded on the rv-ltl 4-valued seman-
tics [2], which is adapted to the finite-trace setting in accordance with existing
literature [7,21]. rv-ltl is exploited to provide a fine-grained characterization
of the “constraint activation state” in a given execution context. The relation-
ship between activation states is then explored to identify when the execution
of a given task results in a “relevant” transition. We abstractly formulate this
theory of relevance at the logical level, but then we concretize it by leveraging
the automata-theoretic approach for temporal logics over finite-traces. In par-
ticular, we show how the finite-state automaton characterizing the constraint
of interest can be enriched with activation-related information without affect-
ing the complexity of its construction. We finally report on implementation and
experimentation of our solution, confirming its advantages and feasibility.

The paper is structured as follows. In Sect. 2, we introduce some preliminary
notions. In Sect. 3, we describe the motivation behind our contribution. In Sect. 4,
we give the definition of constraint activation. Section 5 shows how to check
constraint activations using automata. In Sect. 7, we evaluate our approach on
two real-life logs. Section 7 concludes the paper and spells out directions for
future work.

2 Preliminaries

We start by introducing the necessary preliminary notions used in the rest of the
paper. We fix a finite set Σ of tasks, i.e., atomic units of work in the process. This
set provides the alphabet on top of which process execution traces are defined.

Definition 1 (Execution trace). An (execution) trace over Σ is a possi-
bly empty, finite sequence of tasks 〈t1, . . . , tn〉 belonging to the set Σ∗ of finite
sequences over Σ. We use ε to denote the empty trace.

Semantical Vacuity Detection in Declarative Process Mining 161

We use the standard concatenation operator over traces: given two traces τ1 =
〈t11, . . . , t1m〉 and τ2 = 〈t21, . . . , t2n〉, we have that a trace τ3 is the concatenation
of τ1 and τ2, written τ1 · τ2, if τ3 = 〈t11, . . . , t1m, t21, . . . , t

2
n〉. We also use notation

τ · t as a shortcut for τ · 〈t〉.
Intuitively, constraints are used to declaratively describe which traces are

considered compliant, and which instead are forbidden. Typically, this intuitive
notion of conformance is formally expressed using the notion of logical con-
sequence over temporal logics, whose models are indeed traces [24]. The most
widely used logic for declarative process modeling is ltl over finite traces (ltlf).
This logic is at the basis of concrete constraint modeling languages such as
declare. As pointed out in [7], the most widely adopted approach to rea-
son about and execute declarative process models is to leverage the automata-
theoretic approach for temporal logics, exploiting the well-known result that
every ltlf formula can be captured by a corresponding (deterministic) finite-
state automaton (fsa). However, fsas are actually richer than ltlf , and in fact
capture sophisticated constraints expressed in monadic second-order logic over
finite traces (msof), a logic that is expressively equivalent to regular expressions,
and also to linear-dynamic logic over finite traces (ldlf). Interestingly, ldlf has
been recently applied to monitor business constraints going beyond the typical
declare patterns [7]. To abstract away from the specific logic of interest, in this
paper we employ the generic term (business) constraint as a way to refer to a
(closed) formula in any of the logics mentioned above. We use ltlf in our exam-
ples just for presentation purposes. As pointed out above, all such logics can be
characterized using dfas. We call constraint automaton the dfa corresponding
to a constraint of interest.

Definition 2 (Constraint Automaton). Let ϕ be a constraint over Σ. The
constraint automaton Aϕ of ϕ is a dfa 〈Σ,S, s0, δ, F 〉, where: (i) Σ is the input
alphabet (which corresponds to the set of tasks); (ii) S is a finite set of states; (iii)
s0 ∈ S is the initial state; (iv) δ : S×Σ → S is the (task-labeled) state-transition
function; (v) F ⊆ S is the set of accepting states. Aϕ has the property of precisely
accepting those traces σ ∈ Σ∗ that satisfy ϕ. Without loss of generality we assume
that Aϕ is not trimmed, i.e., for every state s ∈ S and every task t ∈ Σ, δ(s, t)
is defined.

Examples of algorithms that produce the constraint automaton given a con-
straint expressed in ldlf or ltlf can be found in [7,9,15].

Given a constraint automaton A = 〈Σ,S, s0, δ, F 〉 and two states s1, s2 ∈ S,
we say that s2 is reachable from s1 in A, written δ∗(s1, s2), if s1 = s2 or there
exists a trace that leads from s1 to s2 according to δ. We say that A accepts a
trace τ , or equivalently that τ complies with A, if there exists a path that reaches
an accepting state starting from the initial state, such that for i ∈ {0, . . . , |τ |},
the i-th transition in the path matches with the i-th task in τ .

Figure 2 shows the constraint automata representing the following ltlf

declare templates, grounded on two tasks a and b:

162 F.M. Maggi et al.

– Precedence (ϕp = ¬bUa) - each b must be preceded by a;
– Response(ϕr = �(a → ♦b) - each a must be eventually followed by b;
– Succession (ϕp ∧ ϕr) - combination of precedence and response.

For compactness, in the figure, we graphically employ sophisticated labels as a
shortcut for multiple transitions connecting two states with different task-labels.
For example, a transition labeled with !a is a shortcut for a set of transitions
between the same two states, each one labeled with a task taken from Σ \ a.
A transition labeled with “−” is a shortcut for a set of transitions between the
same two states, one per task in Σ. Notably, this compact notation allows us
to use the same automaton regardless of Σ (assuming just that Σ contains the
tasks mentioned by the constraint, plus at least one additional, “other” task).
Following Definition 2, in Fig. 2, we do not trim the automata, i.e., we explicitly
maintain all states, even the trap states that cannot reach any accepting state
(like state 2 in Fig. 2(a) and 2(c)). Our approach seamlessly works for trimmed
automata as well.

Fig. 2. Automata for the precedence, response and succession declare constraints

3 Background and Motivation

When checking whether a process execution complies with a constraint, one
among two outcomes arises: the execution may violate the constraint, or it may
satisfy it. In the latter case, however, the reason for satisfaction may be twofold.
On the one hand, it could be the case that the trace interacts with the constraint,
ensuring that the constraint is satisfied at the time the trace is completed. On the
other hand, it could be the case that the constraint is trivially satisfied because
there is no interaction with the trace. Consider again the response constraint
in Fig. 1. This constraint is satisfied when food is eaten and then the glucose
is eventually measured; this is in fact an interesting situation. However, this
constraint is also satisfied by those traces where no food is ever eaten. In this
latter case, we say that the constraint is vacuously satisfied. Traces where a
constraint is non-vacuously satisfied are called interesting witnesses for that
constraint. As pointed out in the introduction, discriminating between these
two situations is crucial in a variety of (declarative) process mining tasks, such
as conformance checking and declarative process discovery. In this section, we
deepen the discussion provided in the introduction, by considering the two main
limitations of existing approaches when it comes to interesting witnesses: syntax-
dependence and ad-hoc definitions.

Semantical Vacuity Detection in Declarative Process Mining 163

3.1 Syntax-Dependent Vacuity Detection

In [17], the authors introduce an approach for vacuity detection in temporal
model checking for ltl (over infinite traces), so as to determine whether a given
trace is an interesting witness for an ltl formula; they provide a method for
extending an ltl formula ϕ to a new formula witness(ϕ) that, when satisfied,
ensures that the original formula ϕ is non-vacuously satisfied. In particular,
witness(ϕ) is generated by considering that a path π satisfies ϕ non-vacuously
(and then is an interesting witness for ϕ), if π satisfies ϕ and π satisfies a set of
additional conditions that guarantee that every subformula of ϕ does really affect
the truth value of ϕ in π. We call these conditions vacuity detection conditions
of ϕ. They correspond to the formulae ¬ϕ[ψ ← ⊥] where, for all the subformulae
ψ of ϕ, ϕ[ψ ← ⊥] is obtained from ϕ by replacing ψ by false or true, depending
on whether ψ is in the scope of an even or an odd number of negations. Then,
witness(ϕ) is the conjunction of ϕ and all the formulae ¬ϕ[ψ ← ⊥] with ψ
subformula of ϕ:

witness(ϕ) = ϕ ∧
∧

¬ϕ[ψ ← ⊥]. (1)

Consider, e.g., the response constraint �(eat food → ♦measure glucose). The
vacuity detection condition is ♦eat food, so that the interesting witnesses for
this constraint are all traces where �(eat food → ♦measure glucose) ∧ ♦eat food
is satisfied.

This approach was applied to declare in [22] for vacuity detection in the
context of process discovery. However, the algorithm introduced in [17] can gen-
erate different results for equivalent ltlf formulae. Consider, for instance, the
following equivalent formulae (expressing a declare alternate response con-
straint):

ϕ = �(a → ♦b) ∧ �(a → ©((¬aU b) ∨ �(¬b)))
ϕ′ = �(a → ©(¬aU b))

When we apply (1) to ϕ and ϕ′, we obtain that witness(ϕ) �= witness(ϕ′).
We focus on ϕ. Since ϕ = �(¬a∨ ♦b) ∧ �(¬a∨ ©((¬aU b) ∨ �(¬b))), one of

the subformulae of ϕ is ψ = �(¬b). Since ψ is in the scope of an even number
of negations, the corresponding vacuity detection condition is

¬(�(¬a∨♦b)∧�(¬a∨©((¬aU b)∨false))) ≡ ¬(�(¬a∨♦b)∨♦(a∧¬©(¬aU b))

Considering that ¬(�(¬a ∨ ♦b) and ♦(a ∧ ¬ © (¬aU b)) are always false in
conjunction with ϕ, this vacuity detection condition is always false in conjunction
with ϕ. This is sufficient to conclude that witness(ϕ) = false.

We now focus on ϕ′. Since ϕ′ = �(¬a ∨ ©(¬aU b)), its subformulae are

ψ′
1 = ϕ′ ψ′

2 = ¬a ∨ ©(¬aU b) ψ′
3 = a(1)

ψ′
4 = ©(¬aU b) ψ′

5 = ¬aU b ψ′
6 = a(2) ψ′

7 = b.

The corresponding vacuity detection conditions are: (i) true for ψ′
1 and ψ′

2; (ii)
¬(�(©(¬aU b))) ≡ ♦(¬ © (¬aU b)) for ψ′

3; (iii) ¬(�(¬a ∨ false)) ≡ ♦a for ψ′
4

and ψ′
5; (iv) ¬(�(¬a ∨ ©(false U b))) ≡ ♦(a ∧ ¬ © (b)) for ψ′

6.

164 F.M. Maggi et al.

Constraint-based declarative languages like declare are used to describe
requirements to the process behavior. In this case, each ltlf rule describes a
specific constraint with clear semantics. Therefore, we need a univocal, syntax-
independent and intuitive way to diagnose vacuously compliant behavior in
constraint-based processes.

3.2 Ad-Hoc Approaches

An alternative approach to the syntax-dependent vacuity detection recalled in
Sect. 3.1 is to restrict the constraint language, considering a pre-defined family of
constraint patterns rather than a full-fledged temporal logic. This is the case, e.g.,
of declare. [11,20] take advantage from this feature of declare, and provide
an ad-hoc definition of constraint activation and vacuity, explicitly handling
each templates. However, this approach fails when declare is extended with
new templates, a feature that has been deemed essential since the very first
seminal papers on this approach [26]. The following example introduces a quite
interesting template that cannot be expressed by using the core templates of
declare.

Example 1. We call progression of a tuple of tasks 〈t1, . . . , tn〉 a trace that con-
tains t1, . . . , tn in the proper order (possibly with other tasks in between), and
ends with tn. We use this notion to introduce a progression response constraint
that extends the declare response as follows: given two tuples U = 〈u1, . . . , uk〉
and V = 〈v1, . . . , vm〉 of source and target task tuples, the progression response
constraint states that, whenever a progression of the source U is observed, then
a progression of the target V must be observed in the future; if this happens,
the constraint goes back checking whether a new progression of the source is
observed. This constraint can be used, e.g., to specify that whenever an order
is finalized and then paid, the future course of execution must contain an order
delivery followed by the emission of a receipt. The ltlf formalization of this
constraint is overly complex. Given a tuple T = 〈t1, . . . , tn〉, we call progres-
sion formula the ltlf formula ΦT

prog = ♦ (t1 ∧ ♦ (t2 ∧ (· · · ∧ ♦tn))). With this
notion at hand, in the general case, the progression response from U to V can
be formally captured in ltlf as �

(
¬ΦU

prog ∨ Φ
〈U,V 〉
prog

)
, where 〈U, V 〉 is the tuple

of tasks that appends V after U . For example, by using tasks fin, pay, del, rec
to respectively denote the order finalization, its payment, its delivery, and the
emission of a receipt, the aforementioned progression response is formalized in
ltlf as:

� (¬♦(fin ∧ ♦pay) ∨ ♦(fin ∧ ♦(pay ∧ ♦(del ∧ ♦rec)))) �

The definition of vacuous satisfaction for such a constraint, and the corre-
sponding notion of constraint activation, cannot be easily hijacked from that of
declare patterns, nor it is easy to extract using human ingenuity. In contrast,
our goal is to provide a semantical, general treatment of vacuity and activation,
making it possible to seamlessly apply declarative process mining techniques

Semantical Vacuity Detection in Declarative Process Mining 165

also on new constraint patterns such as the progression response of Example 1,
without requiring human intervention.

4 Activation of Constraints

This section discusses the core contribution of this paper, i.e., how to determine
whether an execution trace activates a constraint or not. Our approach has
three distinctive features. (1) It is fully semantical, in the sense that it detects
when a trace is an interesting witness for a constraint, in a way that is completely
independent from the specific syntactic form of the constraint. (2) It is general, in
the sense that it does not focus on specific constraint languages such as declare,
but seamlessly work for all the temporal logics mentioned in Sect. 2, including
msof , ldlf , regular expressions, and ltlf . (3) It seamlessly applies at run-time
or a posteriori, i.e., it can also be used to assess relevance of running, evolving
traces.

Our approach consists of three steps. In the first step, we gain more details
about the different states in which a constraint can be, going beyond the coarse-
grained characterization of satisfied vs violated. In the second step, we leverage
these additional details to semantically characterize the notion of “interesting
witness”, which in turn constitutes the basis for understanding whether a con-
straint is activated by a trace or not. In the last step, we mirror this approach into
the automata-based characterization of the aforementioned logics, consequently
obtaining a concrete technique to check whether a trace activates a constraint
or not (this is subject of Sect. 5).

4.1 Activation States and Relevant Task Executions

To understand in details how a trace relates to a constraint, we leverage on
the four truth values provided by rv-ltl [2], which considers ltl in the light
of runtime verification. This approach has been already extensively adopted in
the recent past for conformance checking and monitoring of ltlf and ldlf

constraints [7,21,23]. rv-ltl brings two main advantages in the context of this
paper. On the one hand, it makes our approach working also in a monitoring
setting. On the other hand, it provides the basis to check whether an execution
trace actively interacts with the constraint or not.

Definition 3 (rv-ltl truth values). Given a constraint ϕ over Σ, and an
execution trace τ over Σ∗, we say that:

– τ permanently satisfies ϕ, written [τ |= ϕ]RV = ps, if ϕ the constraint is
satisfied by the current trace (i.e., τ |= ϕ in the standard logical sense), and
will remain satisfied for every possible continuation of the trace: for every τ ′

over Σ∗, we have τ · τ ′ |= ϕ;
– τ permanently violates ϕ, written [τ |= ϕ]RV = pv, if ϕ is violated by the

current trace (i.e., τ �|= ϕ in the standard logical sense), and will remain
violated for every possible continuation of the trace: for every τ ′ over Σ∗, we
have τ · τ ′ �|= ϕ;

166 F.M. Maggi et al.

– τ temporarily satisfies ϕ, written [τ |= ϕ]RV = ts, if ϕ is satisfied by the
current trace (i.e., τ |= ϕ), but there exists at least one continuation of the
trace leading to violation: there exists τ ′ over Σ∗ such that τ · τ ′ �|= ϕ;

– τ temporarily violates ϕ, written [τ |= ϕ]RV = tv, if ϕ is violated by the
current trace (i.e., τ �|= ϕ), but there exists at least one continuation of the
trace leading to satisfaction: there exists τ ′ over Σ∗ such that τ · τ ′ |= ϕ.

We also say that τ complies with ϕ if [τ |= ϕ]RV = ps or [τ |= ϕ]RV = ts.

Why do we care about such rv-ltl truth values? The intuition is that once
a constraint becomes permanently satisfied (ps) or permanently violated (pv),
then what happens next in the trace is irrelevant for the constraint, since such
truth values are indeed unmodifiable. Temporary states instead are those for
which interesting task executions may still happen.

The rv-ltl truth values can be used to identify, given an execution trace,
which tasks are permitted (or forbidden) next.

Definition 4 (Forbidden/permitted task). Let ϕ be a constraint over Σ,
and τ an execution trace over Σ∗. We say that task t is forbidden by ϕ after τ ,
if executing t next leads to a permanent violation state: [τ · t |= ϕ]RV = pv. If
this is not the case, then t is said to be permitted by ϕ after τ .

Notice that, by definition, if a constraint is permanently satisfied (respec-
tively, violated) by a trace, then every task is permitted (respectively, forbid-
den). Why do we care about permitted tasks? Intuitively, considering the set of
permitted tasks and how it evolves over time helps when the rv-ltl charac-
terization alone is not informative. Specifically, whenever a task execution does
not trigger any change in the rv-ltl truth value of a constraint, we can assess
relevance by checking whether it causes at least a relevant change in the set of
permitted tasks.

We now combine the notions of rv-ltl truth value and of permitted task so
as to identify when a task execution is relevant for a constraint. This combination
gives rise to the notion of activation state.

Definition 5 (Activation state). An activation state over Σ is a pair 〈V,Λ〉,
where V is one of the four truth values in RV-LTL, i.e., V ∈ {ps, pv, ts, tv},
and Λ ⊆ Σ is a set of permitted tasks.

Due to Definitions 3 and 4, not all activation states are meaningful. For example,
we know that if the current RV-LTL value is pv, then no task is permitted. We
systematize this notion by identifying those activation states that are “legal”.

Definition 6 (Legal activation state). An activation state over Σ is legal if
it is of one of the following forms:

– 〈ps, Σ〉 (every task is permitted if the constraint is permanently satisfied);
– 〈pv, ∅〉 (if the constraint is permanently violated, nothing is permitted);
– 〈ts, Λ〉, with ∅ ⊂ Λ ⊆ Σ (if the constraint is temporarily satisfied, there must

be at least one permitted task that triggers a change towards violation);

Semantical Vacuity Detection in Declarative Process Mining 167

– 〈tv, Λ〉, with ∅ ⊂ Λ ⊆ Σ (if the constraint is temporarily violated, there must
be at least one permitted task that triggers a change towards satisfaction).

We denote by SΣ the set of possible legal activation states over Σ.

Definition 7 (Trace activation state). Let ϕ be a constraint over Σ, and
τ an execution trace over Σ∗. The trace activation state of ϕ in τ , written
actStateϕ(τ), is the activation state 〈V,Λ〉, where: (1) V = v iff [τ |= ϕ]RV = v
(cf. Definition 3); (2) for every t ∈ Σ, we have t ∈ Λ iff t is permitted by ϕ after
τ (cf. Definition 4). The initial activation state is the activation state computed
for τ = ε.

Trace activation states enjoy the following property.

Lemma 1. For every constraint ϕ over Σ and every trace τ over Σ∗, the trace
activation state of ϕ in τ is legal, i.e., actStateϕ(τ) ∈ SΣ.

Proof. Immediate from the definitions of trace and legal activation states. ��
Example 2. Consider the declare response constraint ϕr = �(a → ♦b) over
Σ. The initial activation state of ϕr is 〈ts, Σ〉: all tasks are permitted, and ϕr

is temporarily satisfied, since there are traces culminating in the violation of the
constraint. Consider now the trace 〈a〉: we get actStateϕr

(a) = 〈tv, Σ〉. In fact,
all tasks are still permitted, but the constraint is temporarily violated because
it requires the future presence of b. �

The execution of a task induces a transition in the trace activation state. By
considering the combination of the current and next trace activation states, we
can understand whether the induced transition is relevant for the constraint or
not. This is done by formalizing the intuitions discussed in Sect. 4.1.

Definition 8 (Relevant task execution). Let ϕ be a constraint over Σ, t ∈ Σ
be a task, and τ an execution trace over Σ∗. Let 〈V,Λ〉 = actStateϕ(τ) and
〈V ′, Λ′〉 = actStateϕ(τ · t) respectively be the trace activation states of ϕ in τ and
the one obtained as the result of executing t after τ . We say that t is a relevant
execution for ϕ after τ (or equivalently that t is a relevant execution for ϕ in
actStateϕ(τ)) if V �= V ′ or Λ �= Λ′.

4.2 Interesting Witnesses, Activation and Vacuity

Definition 8 provides the basis to assess whether a task execution is relevant to a
constraint in a given execution context (characterized by the current activation
state). We now lift this notion to a trace as a whole.

Definition 9 (Activation/Interesting witness). A constraint ϕ over Σ is
activated by a trace τ over Σ∗ if there exists t ∈ Σ s.t.: (1) τ = τpre t τsuf ; (2)
t is a relevant execution for ϕ after τpre (cf. Definition 8). If so, we also say that
τ is an interesting witness for ϕ.

168 F.M. Maggi et al.

Example 3. Consider the response constraint of Example 2, and the execution
trace τ = 〈c, b, a, b, b, a, a, b〉. By making trace activation states along τ explicit,
we get:

〈ts, Σ〉 c 〈ts, Σ〉 b 〈ts, Σ〉 a 〈tv, Σ〉 b 〈ts, Σ〉 b 〈ts, Σ〉 a 〈tv, Σ〉 a 〈tv, Σ〉 b 〈ts, Σ〉
↑ ↑ ↑ ↑

Arrows indicate the relevant task executions. In fact, the first relevant task exe-
cution is a, because it is the one that leads to switch the rv-ltl truth value of
the constraint from temporarily satisfied to temporarily violated. The following
task b is also relevant, because it triggers the opposite change. The second fol-
lowing b, instead, is irrelevant, because it keeps the activation state unchanged.
A similar pattern can be recognized for the following two as: the first one is
relevant, the second one is not. Notice that τ complies with ϕr. Now, consider
the not coexistence constraint ϕnc = ¬(♦a ∧ ♦b), and the same execution trace
τ as before. We obtain:

〈ts, Σ〉 c 〈ts, Σ〉 b 〈ts, Σ \ {a}〉 a 〈pv, ∅〉 b 〈pv, ∅〉 b 〈pv, ∅〉 . . . 〈pv, ∅〉
↑ ↑

The constraint is in fact initially temporarily satisfied, and remains so until one
between a or b is executed. This happens in the second position of τ , where the
relevant execution of b introduces a restrictive change that does not affect the
truth value of the constraint, but reduces the set of permitted tasks. The conse-
quent execution of a is also relevant, because it causes a permanent violation of
the constraint. A permanent violation corresponds to an irreversible activation
state, and therefore independently on how the trace continues, all consequent
task executions are irrelevant. �

In Example 3, the same trace is an interesting witness for two constraints,
but for a very different reason. In one case, the trace contains relevant task exe-
cutions and satisfies the constraint, whereas in the second case the trace violates
the constraint. For “reasonable” constraints, i.e., constraints that admit at least
one satisfying trace, every trace that violates the constraint is an interesting
witness, since it necessarily contains one execution causing the trace activation
state to become 〈pv, ∅〉. In the case of satisfaction, two cases may arise: either
the trace satisfies the constraint and is relevant, or the trace satisfies the con-
straint without ever activating it. We systematize this intuition, obtaining a fully
semantical characterization of vacuity for temporal formulae over finite traces.

Definition 10 (Interesting/vacuous satisfaction). Let ϕ be a constraint
over Σ, and τ a trace over Σ∗ that complies with ϕ (cf. Definition 3). If τ
is an interesting witness for ϕ (cf. Definition 9), then τ interestingly satisfies ϕ,
otherwise τ vacuously satisfies ϕ.

Example 4. In Example 3, trace τ activates both the response (ϕr) and not
coexistence (ϕnc) constraints. Now consider the execution trace τ2 = 〈c, c, b, c, b〉.
Since τ2 contains b, it is an interesting witness for ϕnc: when the first occurrence
of b happens, the set of permitted tasks moves from the whole Σ to Σ \ a.
Furthermore, τ2 does not contain both a and b, and hence it complies with ϕnc.
Consequently, we have that τ2 interestingly satisfies ϕnc. As for the response

Semantical Vacuity Detection in Declarative Process Mining 169

constraint, since τ2 does not contain occurrences of a, it does not activate the
constraint. More specifically, τ2 never changes the initial activation state of ϕr,
which corresponds to 〈ts, Σ〉. This also shows that τ2 complies with ϕr and, in
turn, that τ2 vacuously satisfies ϕr. �

5 Checking Constraint Activation Using Automata

We now make the notion of activation operational, leveraging the automata-
theoretic approach for constraints expressed in msof or ldlf (which, recall,
are expressively equivalent and strictly subsume ltlf). We consider in partic-
ular ldlf , for which automata-based techniques have been extensively studied
[7,9]. Towards our goal, we exploit a combination of the automata construction
technique in [7] with the notion of colored automata [21]. Colored automata
augment fsas with state-labels that reflect the rv-ltl truth value of the corre-
sponding formulae. We further extend such automata in two directions. On the
one hand, each automaton state is also labeled with the set of permitted tasks,
thus obtaining full information about the corresponding activation states; on
the other hand, relevant executions are marked in the automaton by “coloring”
their corresponding transitions. We consequently obtain the following type of
automaton.

Definition 11 (Activation-Aware Automaton). The activation-aware
automaton Aact

ϕ of an ldlf formula ϕ over Σ is a tuple 〈Σ,S, s0, δ, F, α, ρ〉,
where:

– 〈Σ,S, s0, δ, F 〉 is the constraint automaton for ϕ (cf. Definition 2 and [7]);
– α : S −→ SΣ is the function that maps each state s ∈ S to the corresponding

activation state α(s) = 〈V,Λ〉, where:
• V = ts iff s ∈ F and there exists state s ∈ S s.t. δ∗(s, s′) and s′ �∈ F ;
• V = ps iff s ∈ F and for every state s′ ∈ S s.t. δ∗(s, s′), we have s′ ∈ F ;
• V = tv iff s �∈ F and there exists state s′ ∈ S s.t. δ∗(s, s′) and s′ ∈ F ;
• V = pv iff s �∈ F and for every state s′ ∈ S s.t. δ∗(s, s′), we have s′ �∈ F ;
• Λ contains task t ∈ Σ iff there exists s′ ∈ S s.t. s′ = δ(s, t) and α(s′) has

an RV-LTL truth value different from pv.
– ρ ⊆ Domain(δ) is the set of transitions in δ that are relevant for ϕ, i.e.:

ρ = {〈s, t〉 | 〈s, t〉 ∈ Domain(δ)and t is a relevant execution for ϕ in α(s)}
Notably, such an activation-aware automaton correctly reconstructs the

notions of activation and relevance as defined in Sect. 4.2.

Theorem 1. Let ϕ be an ldlf formula over Σ, and Aact
ϕ = 〈Σ,S, s0, δ, F, α, ρ〉

the activation-aware automaton for ϕ. Let τ = 〈t1 · · · tn〉 be a non-empty, finite
trace over Σ, and s0 · · · sn the sequence of states such that δ(si−1, ti) = si for
i ∈ {1, . . . , n}.1 Then, the following holds: (1) atrϕ(τ) = α(s0) · · · α(sn); (2) for
every i ∈ {1, . . . , n}, 〈si−1, ti〉 ∈ ρ if and only if ti is a relevant task execution
for ϕ after 〈t1, . . . , ti−1〉.
1 Recall that, since Aact

ϕ is not trimmed, then it can replay any trace from Σ∗.

170 F.M. Maggi et al.

Table 1. Extended constraint automata for some declare patterns

Proof. From the correctness of the constraint automaton construction
(cf. Definition 2 and [7]), we know that τ satisfies ϕ iff it is accepted by Aact

ϕ

(i.e., iff sn ∈ F). This corresponds to the notion of conformance in Defini-
tion 3. The proof of the first claim is then obtained by observing that all tests
in Definition 11, which characterize the rv-ltl values and permitted tasks of
the automaton states, perfectly mirror Definitions 3 and 4. In particular, notice
that the labeling of states with rv-ltl values agrees with the construction of
“local colored automata” in [21], proven to be correct in [7]. The second claim
immediately follows from the first one, by observing that Definition 11 define ρ by
directly employing the notion of relevance in a given activation state as defined in
Definition 8. ��

We close this section by observing that Definition 11 can be directly imple-
mented to build the activation-aware automaton of an ldlf formula ϕ. Notably,
such extended information does not impact on the computational complexity
of the automaton construction. This is done in three steps. (1) The constraint
automaton Aϕ for ϕ is built by applying the ldlf2nfa procedure of [7], and
then the standard determinization procedure for the obtained automaton (thus
getting a dfa). (2) Function α is constructed in two iterations. In the first iter-
ation, the rv-ltl truth value of each state in Aϕ is computed, by iterating once
through each state of the automaton, and checking whether it may reach a final
state or not. This can be done in pTime in the size of the automaton. The sec-
ond iteration goes over each state of Aϕ, and calculates the permitted tasks by
considering the rv-ltl value of the neighbor states. This can be done, again, in
pTime. (3) Function ρ is built in pTime by considering all pairs of states in Aϕ,
and by applying the explicit definition of relevant execution. Table 1 and Fig. 3
respectively list the activation-aware automata for some standard declare

Semantical Vacuity Detection in Declarative Process Mining 171

Fig. 3. Constraint automaton and activation-aware automaton for the progression
response constraint (with three sources and two targets)

patterns, and the activation-aware automaton for a progression response. State
colors reflect the rv-ltl truth value they are associated to. Dashed, gray tran-
sitions are irrelevant, whereas the black, solid ones are relevant in the sense of
Definition 8. Interestingly, relevant transitions for the progression response are
those that “close” a proper progression of the source or target tasks. This reflect
human intuition, but is obtained automatically from our semantical approach.

6 Evaluation

In order to validate our approach, we have embedded it into a prototype software
codified in Java for the discovery of constraints from an event log (based on
the algorithm presented in [22]).2 The approach has been run on two real-life
event logs taken from the collection of the IEEE Task Force on Process Mining,
i.e., the log used for the BPI challenge 20133 and a log pertaining to a road
traffic fines management process4. The tests have been conducted on a machine
equipped with an Intel Core processor i5-3320M, CPU at 2.60 GHz, quad-core,
Ubuntu Linux 12.04 operating system. In our experiments, for the discovery
task, we have considered four templates belonging to the repertoire of standard
declare, i.e., existence, alt. precedence, co-existence, and neg. chain succession,
and three variants of the progression response with numbers of sources and
targets respectively equal to 2 and 1, 2 and 2, and 3 and 2. In the remainder, we
call these templates prog.resp2:1, prog.resp2:2, and prog.resp3:2, respectively.

Figure 4 shows the trends of the number of progression response constraints
discovered from the BPI challenge 2013 log with respect to the number of traces
(vacuously and interestingly) satisfying them. Figs. 4(a)–4(c) relate to progres-
sion response templates with an increasing number of parameters. On the abscis-
sae of each plot lies the number of traces where the constraints are satisfied. The
number of discovered constraints lies on the ordinates. The analysis of the results
shows how crucial the strive for vacuity detection is, in order to avoid the business
analyst to be overwhelmed by a huge number of uninteresting constraints. The
discovery algorithm detected indeed that 66 prog.resp2:1, 139 prog.resp2:2, and

2 The tool is available at https://github.com/cdc08x/MINERful/blob/master/
run-MINERful-vacuityCheck.sh.

3 DOI: 10.4121/c2c3b154-ab26-4b31-a0e8-8f2350ddac11.
4 DOI: 10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.

https://github.com/cdc08x/MINERful/blob/master/run-MINERful-vacuityCheck.sh
https://github.com/cdc08x/MINERful/blob/master/run-MINERful-vacuityCheck.sh

172 F.M. Maggi et al.

Fig. 4. Trends of the number of the discovered constraints with respect to the number
of traces satisfying them

1, 272 prog.resp3:2 were vacuously satisfied in the entire log. The reason why
the number of irrelevant returned constraints is higher for prog.resp3:2 than
for prog.resp2:1 and prog.resp2:2 is twofold. On the one hand, this is because
the first one can only be activated when three different tasks occur sequen-
tially, whereas the second and the third one only require two tasks to occur one
after another to be activated. Another reason is that the implemented algorithm
checks the validity in the event log of a set of candidate constraints obtained
by instantiating each template with all the possible combinations of the tasks
available in the log. Therefore, the higher number of parameters of prog.resp3:2
leads to a higher number of candidate constraints. Figure 4(d) shows the same
trend when using the standard declare templates mentioned above for the dis-
covery. Overall, the computation took 9.442 s, out of which 426 ms were spent
to build the automata, and the remaining 9,016 ms to check the log.

We show that our technique is sound, by comparing the results obtained from
the road traffic fines management log using our implemented prototype with the
constraints discovered by the MINERful declarative miner [14] and the declare
Miner [22]. The comparison has been conducted using a minimum threshold of
100% of interesting witnesses in the log. The discovered constraints are:

Semantical Vacuity Detection in Declarative Process Mining 173

– Existence(Create Fine)
– Alt. precedence(Create Fine, Add penalty)
– Neg. chain succession(Create Fine, Add penalty)
– Alt. precedence(Create Fine, Appeal to Judge)
– Alt. precedence(Create Fine, Insert Date Appeal to Prefecture)
– Alt. precedence(Create Fine, Insert Fine Notification)
– Neg. chain succession(Create Fine, Insert Fine Notification)
– Alt. precedence(Create Fine, Notify Result Appeal to Offender)
– Neg. chain succession(Create Fine, Notify Result Appeal to Offender)
– Alt. precedence(Create Fine, Receive Result Appeal from Prefecture)
– Neg. chain succession(Create Fine, Receive Result Appeal from Prefecture)
– Alt. precedence(Create Fine, Send Appeal to Prefecture)
– Neg. chain succession(Create Fine, Send Appeal to Prefecture)
– Alt. precedence(Create Fine, Send Fine)
– Alt. precedence(Create Fine, Send for Credit Collection)
– Neg. chain succession(Create Fine, Send for Credit Collection)

Such constraints are a subset of the ones returned by MINERful using the same
templates, since MINERful has no vacuity detection mechanism, and coincide
with the ones returned by the declare Miner. The derived constraints suggest
that “Create fine” occurs in every trace and precedes many other activities. In
addition, some activities cannot directly follow “Create fine”. Also, we discovered
that the following progression response constraints are interestingly satisfied by
around 53 % of traces:

– Prog.resp2:1((Create Fine, Insert Fine Notification), Add penalty)
– Prog.resp2:1((Send Fine, Insert Fine Notification), Add penalty)
– Prog.resp2:1((Create Fine, Send Fine), Add penalty)
– Prog.resp2:1((Create Fine, Send Fine), Insert Fine Notification)
– Prog.resp2:2((Create Fine, Send Fine, Insert Fine Notification), Add penalty)

Although not always activated, the first two in the list are never violated. The
last three are instead violated by approximately 26 % of the traces. Similar results
cannot be obtained neither with MINERful that is not designed to discover non-
standard declare constraints nor with the declare Miner that offers such
facility, but only provides an ad-hoc mechanism for vacuity detection.

7 Conclusion

To the best of our knowledge, this paper presents the first semantical character-
ization of activation and relevance for declarative business constraints expressed
with temporal logics over finite traces. As a side result, we also obtain a seman-
tical notion of vacuous satisfaction for such logics. Our characterization comes
with a concrete approach to monitor and check activation and relevance on run-
ning or complete traces, achieved by suitably extending the standard automata-
theoretic approach for (finite trace) temporal logics. The carried experimental
evaluation confirms the benefits of our approach, and paves the way towards a
more extensive study on mining declarative constraints going (far) beyond the
declare patterns.

The presented solution generalizes the ad-hoc approaches previously pro-
posed in the literature to tackle conformance checking and discovery of declare
constraints [14,20,22]. However, it is also compatible with human intuition, in
the sense that it by and large agrees with such ad-hoc approaches when applied
to the declare patterns.

174 F.M. Maggi et al.

An interesting line of research is to extend our approach towards the possi-
bility of “counting” activations. This becomes crucial when declarative process
discovery is tuned so as to extract constraints that do not have full support
in the log. In this case, “relevance heuristics” must be devised so as to rank
candidate constraints, and these are typically based on various notions of acti-
vation counting [12]. However, providing a systematic theory of counting is far
from trivial. Our intuition is that this theory can be developed only by making
constraints data-aware, which in turn requires to adopt first-order variants of
temporal logics for their formalization [10]. In fact, data-aware constraints can
express task correlation [10,25], an essential feature towards counting.

References

1. van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: balancing
between flexibility and support. Comput. Sci. - R&D 23, 99–113 (2009)

2. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14 (2011)

3. Beer, I., Eisner, C.: Efficient detection of vacuity in temporal model checking.
Formal Meth. Syst. Des. 18(2), 141–163 (2001)

4. Burattin, A., Maggi, F.M., van der Aalst, W.M.P., Sperduti, A.: Techniques for a
posteriori analysis of declarative processes. In: Proceedings of EDOC. IEEE (2012)

5. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting
inductive logic programming techniques for declarative process mining. In: Jensen,
K., van der Alast, W.M.P. (eds.) Transactions on Petri Nets and Other Models of
Concurrency II. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009)

6. Damaggio, E., Deutsch, A., Hull, R., Vianu, V.: Automatic verification of data-
centric business processes. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM
2011. LNCS, vol. 6896, pp. 3–16. Springer, Heidelberg (2011)

7. De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F.M., Montali, M.: Monitor-
ing business metaconstraints based on LTL and LDL for finite traces. In: Sadiq,
S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 1–17. Springer,
Heidelberg (2014)

8. De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on finite traces:
insensitivity to infiniteness. In: Proceedings of AAAI (2014)

9. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: Proceedings of IJCAI. AAAI (2013)

10. De Masellis, R., Maggi, F.M., Montali, M.: Monitoring data-aware business con-
straints with finite state automata. In: Proceedings of ICSSP. ACM (2014)

11. Di Ciccio, C., Maggi, F.M., Mendling, J.: Efficient discovery of target-branched
declare constraints. Inf. Syst. 56, 258–283 (2016)

12. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Ensuring model consistency
in declarative process discovery. In: Motahari-Nezhad, H.R., Recker, J., Weidlich,
M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 144–159. Springer, Heidelberg (2015)

13. Di Ciccio, C., Mecella, M.: A two-step fast algorithm for the automated discovery
of declarative workflows. In: Proceedings of CIDM. IEEE (2013)

14. Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful
processes. ACM Trans. Manag. Inf. Syst. 5(4), 24 (2015)

15. Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal prop-
erties on running programs. In: Proceedings of ASE. IEEE (2001)

Semantical Vacuity Detection in Declarative Process Mining 175

16. Knuplesch, D., Ly, L.T., Rinderle-Ma, S., Pfeifer, H., Dadam, P.: On enabling
data-aware compliance checking of business process models. In: Parsons, J., Saeki,
M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 332–346.
Springer, Heidelberg (2010)

17. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Int.
J. Softw. Tools Technol. Transf. 4, 224–233 (2003)

18. Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative
logic-based models from labeled traces. In: Alonso, G., Dadam, P., Rosemann, M.
(eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007)

19. de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: An alignment-based framework
to check the conformance of declarative process models and to preprocess event-log
data. Inf. Syst. 47, 258–277 (2015)

20. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of under-
standable declarative process models from event logs. In: Ralyté, J., Franch, X.,
Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285.
Springer, Heidelberg (2012)

21. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitor-
ing business constraints with linear temporal logic: an approach based on colored
automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS,
vol. 6896, pp. 132–147. Springer, Heidelberg (2011)

22. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declar-
ative process models. In: Proceedings of CIDM (2011)

23. Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.P.: Runtime ver-
ification of LTL-based declarative process models. In: Khurshid, S., Sen, K. (eds.)
RV 2011. LNCS, vol. 7186, pp. 131–146. Springer, Heidelberg (2012)

24. Montali, M.: Declarative open interaction models. In: Montali, M. (ed.) Specifica-
tion and Verification of Declarative Open Interaction Models. LNBIP, vol. 56, pp.
11–45. Springer, Heidelberg (2010)

25. Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Monitor-
ing business constraints with the event calculus. ACM Trans. Intell. Syst. Technol.
5(1), 17 (2013)

26. Pesic, M., Schonenberg, H., van der Aalst, W.: DECLARE: full support for loosely-
structured processes. In: Proceedings of EDOC. IEEE (2007)

27. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Impera-
tive versus declarative process modeling languages: an empirical investigation. In:
Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP,
vol. 99, pp. 383–394. Springer, Heidelberg (2012)

28. Zugal, S., Pinggera, J., Weber, B.: The impact of testcases on the maintainability
of declarative process models. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P.,
Proper, E., Schmidt, R., Bider, I. (eds.) BPMDS 2011 and EMMSAD 2011. LNBIP,
vol. 81, pp. 163–177. Springer, Heidelberg (2011)

Conformance Checking

In Log and Model We Trust?
A Generalized Conformance Checking

Framework

Andreas Rogge-Solti1(B), Arik Senderovich2, Matthias Weidlich3,
Jan Mendling1, and Avigdor Gal2

1 Vienna University of Economics and Business, Vienna, Austria
{andreas.rogge-solti,jan.mendling}@wu.ac.at

2 Technion–Israel Institute of Technology, Haifa, Israel
sariks@tx.technion.ac.il, avigal@ie.technion.ac.il

3 Humboldt University zu Berlin, Berlin, Germany
matthias.weidlich@hu-berlin.de

Abstract. While models and event logs are readily available in modern
organizations, their quality can seldom be trusted. Raw event recordings
are often noisy, incomplete, and contain erroneous recordings. The qual-
ity of process models, both conceptual and data-driven, heavily depends
on the inputs and parameters that shape these models, such as domain
expertise of the modelers and the quality of execution data. The men-
tioned quality issues are specifically a challenge for conformance check-
ing. Conformance checking is the process mining task that aims at coping
with low model or log quality by comparing the model against the cor-
responding log, or vice versa. The prevalent assumption in the literature
is that at least one of the two can be fully trusted. In this work, we pro-
pose a generalized conformance checking framework that caters for the
common case, when one does neither fully trust the log nor the model.
In our experiments we show that our proposed framework balances the
trust in model and log as a generalization of state-of-the-art conformance
checking techniques.

Keywords: Process mining · Conformance checking · Model repair ·
Log repair

1 Introduction

Business process management plays an important role in modern organizations
that aim at improving the effectiveness and efficiency of their processes. To assist
in reaching this goal, the research area of process mining offers multitude of tech-
niques to analyze event logs that carry data from business processes. Such tech-
niques can be classified into process discovery that sheds light into the behavior
captured in event logs by searching for a model that best reflects the encountered
behavior [3], conformance checking that highlights differences between a given
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 179–196, 2016.
DOI: 10.1007/978-3-319-45348-4 11

180 A. Rogge-Solti et al.

process model and an event log [2,19], model repair that attempts to update
a process model by adding behavior that is between model and log [6,9], and
anomaly detection that identifies anomalies in event logs with respect to expected
behavior to locate sources of errors in business processes [17].

Process mining investigates the interplay among reality (system), its reported
observations (event log), and a corresponding process model [5]. While reality is
typically unknown, we are left with the need to reconcile the event log and the
process model, where evidence of a certain behavior may only be present in one
but not in the other.

Current conformance checking techniques are not capable of defining levels
of trust for model and log to cater for uncertainty. Therefore, in this paper we
consider the problem of optimally reconciling an event log with a process model,
given an input event log and a model (if such exist) and our degree of trust
in each. We outline that various process mining tasks can actually be regarded
as special cases of this generic problem formulation. Specifically, we define the
problem of generalized conformance checking (GenCon). It goes beyond locating
misalignments between a process model and an event log by providing explana-
tions of misalignments and categorizing them as one of (a) anomalies in an event
log, (b) modeling errors, and (c) unresolvable inconsistencies. This generalized
conformance checking problem can be seen as the unification of conformance
checking, model repair, and anomaly detection.

The contribution of this paper is threefold. First, we introduce a formaliza-
tion of generalized conformance checking, i.e., the GenCon problem. It is cast as
an optimization problem that incorporates distance measures for logs, for mod-
els, and for pairs of a log and a model. Second, to demonstrate our approach, we
consider a specific instantiation of this problem, using process trees as a formal-
ism to capture models along with distance measures based on (log or tree) edit
operations and alignments between a log and a model. For this problem instance,
we propose a divide-and-conquer approach that exploits heuristic search in the
model space to transform a given model-log pair into their improved counter-
parts. Third, we provide a thorough evaluation of the approach based on three
real-world datasets. Our experiments show that the GenCon problem setting has
an empirical grounding, and outline its potential to complement existing process
mining techniques.

The remainder of this paper is structured as follows. Section 2 motivates
and describes the general problem setting, formalizes the GenCon problem,
and relates it to common process mining tasks. In Sect. 3, we introduce the
required notation for a particular instantiation of this problem, i.e., event logs,
process trees, and related distance measures. Section 4 then presents a divide-
and-conquer approach to address this particular problem instance. Section 5
empirically evaluates our approach in comparison with alternative techniques.
Section 6 concludes the paper.

In Log and Model We Trust? 181

2 The Setting of Generalized Conformance Checking

Buijs et. al [5] define the truly executed business process as the system and
analyze logs and models with respect to it. An event log may be noisy, with
events that occurred in the system yet not recorded (missing events), and also
events that did not occur in real-life (log errors) [18]. Discovering models from
noisy event logs may result in under-fitting models with respect to the system,
or alternatively models that allow impossible behavior. In symmetry, an external
process model may allow excess behavior that cannot happen in the system, or
it can under-represent behavior that actually occur [5].

Such quality issues gave rise to two process mining tasks, namely model repair
and log repair. Model repair techniques consider the event log as the best evidence
a system may produce, and adjust the model accordingly [9]. In contrast, log
repair methods trust a given model from which the log deviates and repair the
log [18]. Orthogonal to tasks that aim at changing either the log or the model,
conformance checking compares models and logs to detect deviations between
the two [1]. For example, the alignment technique proposed in [2] receives an
event log and a process model, as well as costs of deviations in log and in model.
Based on the costs, the alignment finds an optimal mapping between traces and
possible paths through the model that minimizes the total deviation costs. An
alignment shows where the model and the log perform unsynchronized moves.
For each such move either the model or the log could be blamed and considered
for repair.

Generalized conformance checking unites the three tasks of model repair, log
repair, and conformance checking under a common roof. Specifically, it aims at
altering both model and log such that control-flow discrepancies, which are mea-
sured via standard conformance checking, are reduced. The underlying assump-
tion is that the log and the model are not ‘wrong’ for the same fragments of the
system, and their joint repair is beneficial. Under this assumption, generalized
conformance checking results in a pair of event log and model that are both bet-
ter representatives of the originating system, and are tightly aligned together.
The assumption on how beneficial it is to correct the model based on the log, or
vice versa, stems from trust levels, which are associated with the initial model
and log.

2.1 Formalization of the GenCon Problem

We now define generalized conformance checking by formalizing its primitives,
and formulating an optimization problem that result in a joint of model and
log. Let L be the universe of event logs, and let M be the universe of process
models. We are given an event log L ∈ L and a process model M ∈ M, as well
as their corresponding trust levels τL, τM ∈ [0, 1] (with 0 corresponding to zero
trust, and 1 being full trust). A trust level is predefined for both model and log.
Model trust can be related to the experience of the modeler, or the validity of a
discovery algorithm that was used to extract the model. Log trust corresponds to
the veracity of the data. For example, the data that we use for our experiments

182 A. Rogge-Solti et al.

in Sect. 5 comes from real-time locating system (RTLS) sensors. These sensors
typically come with a known error range, and measurement quality issues. The
latter can be used to construct a prior of trust.

We distinguish the following distance functions:

◦ the function δL2 : L×L → [0, 1] measures the distance between two event logs.
◦ the function δM2 : M×M → [0, 1] measures the distance between two models.
◦ the function δLM : L×M → [0, 1] measures the distance (alignment) between

an event log and a process model;

We are now ready to formulate the GenCon optimization problem.

Problem 1 (Generalized Conformance Checking (GenCon) Problem).
Given the input tuple 〈L,M, δL2 , δM2 , δLM, τL, τM 〉 of initial log, initial model,
the distance functions and the two trust levels, find a pair (L∗,M∗) ∈ L × M
such that

(L∗,M∗) = arg min
(L′,M ′)∈L×M

〈δL2(L,L′), δM2(M,M ′), δLM(L′,M ′)〉.

(subject to : δL2(L,L′) ≤ 1 − τL, and δM2(M,M ′) ≤ 1 − τM)
(1)

We aim at a pair (L∗,M∗) that is in a trust-based proximity to the original
pair of log and model, as well as aligned with each other. Note that the abstract
framing of the problem, rather than binding the concepts to specific distance
notions and specific process models, creates a framework that is general enough
to cover several process mining problems. To operationalize generalized confor-
mance checking, we require the definition of the functions δL2 , δM2 , and δLM,
based on suitable data structures. We later provide one such example, introduc-
ing distance measures over logs and models.

Fig. 1. Conceptual sketch of the problem setting.

Figure 1 illustrates the setting of generalized conformance checking. On the
left, the universe of logs L; on the right, the universe of models M is scetched.
Given are the input log L and input model M . We can mine a model from L, to

In Log and Model We Trust? 183

obtain a fitting M(L); and simulate M to get a fitting log L(M). Conceptually,
the optimal log L∗ can move closer to the image of the model, and also the
optimal model M∗ can be closer to the mined model. This depends on the
respective trust levels, indicated by the grayscale of the arrows (darker for more
trust, lighter for less). It is worth to highlight that the arrows labeled mine()
and simulate() do not specify functions, as there can be countable infinite sets
of simulated logs or mined models.

2.2 Related Work

Table 1 maps process mining tasks and respective techniques to the GenCon
problem. In a nutshell, previous work on process discovery and conformance
checking can be viewed as special cases of our approach. Regarding conformance
checking, setting τL = 1, and 0 < τM < 1, the GenCon problem corresponds to
model repair. For 0 < τL < 1, and τM = 1, we are facing log repair. When both
trust levels are 1, GenCon corresponds to standard conformance checking (e.g.,
model-log alignment). Hence, GenCon extends existing approaches for process

Table 1. Some process mining tasks cast as problem instances.

Process mining task Log trust Model trust

Classical Process Discovery finds a model that best fits to
the entire event log, e.g., the alpha algorithm [3]

πL = 1 πM = 0

Heuristic Process Discovery algorithms apply preprocessing
to the event log by discarding infrequent patterns [10,23]

0 < πL < 1 πM = 0

Model Repair fixes deficient models due to e.g., a change in
the system that is reflected in the log. For example [9]

πL = 1 0 < πM < 1

Conformance Checking. This task tries to find
misalignments between event log and model. Example works
include [2,19,20]

πL = 1 πM = 1

Log Repair. Given a trusted model and a noisy log, we modify
the log until it conforms to the model [17,18,21]

0 < πL < 1 πM = 1

“Happy Path” Simulation is complementary to heuristic
process discovery. It is a theoretical use case where we do not
trust infrequent parts of the model [15].

πL = 0 0 < πM < 1

Process Simulation is complementary to process discovery,
where we are given an untrustworthy empty log and a fully
trustworthy model

πL = 0 πM = 1

Garbage In, Garbage Out. When both the model and the
log are untrustworthy, the best log and model tuple that fits
them is any pair of model and log that fits each other,
including an empty log and an empty model

πL = 0 πM = 0

Generalized Conformance Checking is the focus of this
paper. Instead of only detecting the misalignments, as in
conformance checking, we also provide, where the model
would best be adopted, and where the log would best be
adopted for a better overall fit

0 < πL 0 < πM

184 A. Rogge-Solti et al.

discovery and conformance checking in that it not only finds the deviations
between a log and a model, but it also identifies if deviations between the two
stem from the log, or from the model.

Process discovery is yet another special case of our approach, where the model
trust is set to be zero. Recently proposed process discovery algorithms optimally
balance model quality measures such as fitness, precision, and generalization [1,
5]. Specifically, in [4] minimal values of those quality measures are used as inputs
for the evolutionary tree miner (ETM), which finds a model that balances all
quality measures. Similarly to our approach, a normative model can be assumed
as an input to the ETM, and the resulting model is guaranteed to be in proximity
to the normative model. However, since the ETM is an evolutionary approach, it
has no termination guarantees [24], and real-life log discovery takes a long time
to terminate, if at all [13]. Other discovery algorithms are based on log filtering
to balance the quality measures. These algorithms neither return an aligned log,
nor do they provide guarantees on the quality of the resulting model [10,13].
Therefore, generalized conformance checking extends process mining in that it
does not impose τM = 0, and returns both a process model and a repaired log.

3 Model

To give the necessary background for a specific instantiation of the GenCon
problem, this section recalls notions of event logs, process trees, and related
distance measures.
Event Logs. We adopt a common model of event logs that is grounded in
sequences of activity labels that denote the activity executions as part of a single
process instance (aka case). Let A be a universe of activity labels (activities for
short). A trace σ = 〈a1, . . . , an〉 ∈ A∗ is a finite sequence of activities with
a cardinality |σ| = n. The universe of traces is denoted by T . An event log
L : T → N is a multi-set of traces. A flattened representation L̄ of a log L
associates each trace with an identity such that L̄ ∈ T ∗ is a sequence of traces,
and each trace σ ∈ L is contained L(σ) times in L̄. The order of traces in L̄ is
arbitrary and |L̄| represents L̄’s cardinality.

For example, an event log L = {〈a, b, c〉3, 〈b, c〉1} of three traces 〈a, b, c〉 and
one trace 〈b, c〉 is flattened to L̄ = 〈〈a, b, c〉, 〈a, b, c〉, 〈a, b, c〉, 〈b, c〉〉 with four
distinct traces.
Process Trees. To represent process models, we adopt the notion of a process
tree [12]. A process tree is a rooted tree, in which the leaf nodes are activities
and all non-leaf nodes are control-flow operators. Common control-flow operators
include sequences of activities (→), exclusives choice (×), concurrent execution
(∧), and structured loops (�). Process trees are defined recursively, as follows.
Let Ψ = {→,×,∧,�} be a set of operators and τ /∈ A be the silent activity.
Then, a ∈ A ∪ {τ} is a process tree; and ψ(T1, . . . , Tn), n > 0, with T1, . . . , Tn

being process trees and ψ ∈ Ψ being an operator is a process tree (n > 1 if
ψ =�). The universe of process trees is denoted by MT .

In Log and Model We Trust? 185

The semantics of a process tree T is defined by a set of traces, which is also
constructed recursively: A function ι : MT → ℘(T) assigns a set of traces to a
process tree. Trivially, ι(a) = {〈a〉} for a ∈ A and ι(τ) = {〈〉}. The interpretation
of an operator ψ ∈ Ψ is grounded in a specific language join function ψl :
℘(T) × . . . × ℘(T) → ℘(T). Then, the semantics of a process tree ψ(T1, . . . , Tn)
is defined as ι(ψ(T1, . . . , Tn)) = ψl(ι(T1), . . . , ι(Tn)). For instance, the trace set
of the exclusive choice operator ×l(L1, . . . , Ln) is given by the union of the trace
sets of its children

⋃
1≤i≤n Li. See [12] for the formal execution semantics of all

operators in Ψ .
A fitting tree model to the example log L above would be T :

→

×
a τ

b c

Process tree T describes a sequence of a choice between a and a silent activity
τ , followed by activity b, and then c.
Distance of Logs. We quantify the distance of event logs based on the weighted,
normalized string edit distance of their traces. For two traces σ, σ′ ∈ A∗, we
first define their normalized distance as δt(σ, σ′) = d(σ,σ′)

max(|σ|,|σ′|) with d(σ, σ′) as
the string edit distance, i.e., the minimal number of atomic activity operations
(insert, delete, update) needed to transform one trace into another. Given two
event logs in their flattened representation L̄, L̄′, let L̄ε = L̄ ∪ {ε} and L̄′ε =
L̄′ ∪ {ε} with ε being the empty trace. Then, we define a mapping μ ⊆ L̄ε × L̄′ε,
requiring that it is left-total, right-total, injective, and surjective when ignoring
empty traces, i.e., for all x ∈ L̄ there exists y ∈ L̄′ε such that (x, y) ∈ μ; for all
y ∈ L̄′ there exists x ∈ L̄ε such that (x, y) ∈ μ; for all (x, x′), (y, y′) ∈ (μ∩(L̄×L̄))
it holds that x = y ⇔ x′ = y′.

The cost of such a mapping is defined as δm(μ) =
∑

(σ,σ′)∈μ δt(σ, σ′). Then,
the distance between two event logs L,L is defined based on the optimal mapping
between their flattened representations L̄, L̄′ as follows:

δL2(L, L′) = min
μ⊆L̄ε×L̄′ε

δm(μ).

Distance of Models. To quantify the distance of process models, we exploit the
fact that models are given as process trees and employ the tree edit distance [16].
Latter is, given two process trees T, T ′, the minimum cost sequence of node edit
operations that transforms T into T ′. Node edit operations are node deletion
(connecting its children to its a parent maintaining the order); node insertion
(between an existing node and a consecutive subsequence of its children); and
node relabeling. Each of these node edit operations is assigned a cost.

When applying node edit operations to process trees, insertion and relabeling
needs to respect the syntax of the model: inserted/relabeled nodes need to be
activities if the node is a leaf; and control-flow operators otherwise. Further, we

186 A. Rogge-Solti et al.

observe that the impact of node relabeling on the semantics of a process tree
depends on the position of the relabeled node in the tree—intuitively, the higher
the node is in the tree, the larger the effect on the language of the process tree
would be. We define a relabeling cost for a node of a process tree as the number
of leaf nodes of the subtree that is rooted in this node. Therefore, for a trivial
process tree a with a ∈ A ∪ {τ}, the node edit cost is c(a) = 1; for a process
tree ψ(T1, . . . , Tn), n > 0, the cost is c(ψ(T1, . . . , Tn)) =

∑
1≤i≤n c(Ti). For node

insertion and deletion, we employ unit costs.
Using this cost model, we define a normalized distance for process trees. As

a normalization factor, we take the sum of the tree sizes: the size |a| of a trivial
process tree is defined as |a| = 1; for a process tree ψ(T1, . . . , Tn), the size is
defined as |ψ(T1, . . . , Tn)| = 1 +

∑
1≤i≤n |Ti|. Given two process trees T, T ′, we

define the normalized distance as:

δM2(T, T ′) =
δd(T, T ′)
|T | + |T ′| , where δd(T, T ′) is the tree edit distance of T and T ′.

Distance of Log and Model. As a distance measure between a log and a
process model we consider different dimensions of the relation of logs and process
models [5]: fitness (can a model show the behavior of a log?), precision (does a
model allow for precisely the behavior of a log?), and generalization (does a
model generalise over the behavior of a log?). We employ measures that are
grounded in the notion of an alignment [2]. It is defined based on steps (x, y) ∈
A⊥ × A⊥, where A⊥ = A ∪ {⊥} is constructed from the universe of activities
and a symbol ⊥ /∈ A. A step (x, y) is legal if x ∈ A or y ∈ A and is interpreted
such that an alignment is said to ‘move in both’ traces ((x, y) ∈ A×A), ‘move in
first’ (y = ⊥), or ‘move in second’ (x = ⊥). Given two traces σ, σ′, an alignment
is a sequence of legal steps, such that the projection on the first step component
(modulo ⊥) yields σ and the projection on the second step component (modulo
⊥) yields σ′.

Each step is assigned a cost and a common cost model assigns unit cost if
either x = ⊥ or y = ⊥; zero cost if x = y; and infinite cost if x �= y. An alignment
is a sequence of steps and the alignment cost is the sum of the costs of its steps.
An alignment between two traces σ, σ′ is optimal if it has the smallest possible
cost.

Fitness is quantified by finding for each log trace σ ∈ dom(L), a trace σ′ ∈
ι(T) of model T for which the optimal alignment has minimal cost regarding all
traces in ι(T). We denote this alignment cost as δa(σ, T). Costs per log trace are
then aggregated, weighted by the trace frequency in the log, and normalized by
the maximal possible cost:

δfit(L, T) =
∑

σ∈dom(L)

L(σ)
δa(σ, T)

|σ| + min
σ′∈ι(T)

|σ′| .

To quantify precision, we apply the measure proposed by Buijs et. al [5]. It is
grounded in the transition system underlying the model T . Given an alignment

In Log and Model We Trust? 187

of a log L and model T , let state(L, T) be all states of this transition system that
are visited when replaying all alignment steps of all traces σ ∈ dom(L) (ignoring
steps with ⊥ for the component of the model trace). Further, let out(s) be the
number of outgoing transitions of state s ∈ state(L, T) and taken(s, L) the
number of these transitions that are taken during the replay of the log traces.
Then, precision quantifies the additional allowed behavior of model T as

δpre(L, T) =

∑

s∈state(L,T)

(out(s) − taken(s, L))

∑

s∈state(L,T)

out(s)
.

The replay of steps of an alignment is also used to quantify generalisation,
directly on the model structure. Such a measure can be based on how often a
node of a process tree is visited during replay [5]. Let N(T) be the set of all
nodes of a process tree T . Then, given L, let visit(n,L) be the number of visits
of node n ∈ N(T) during replay of all alignment steps of all traces σ ∈ dom(L).
Generalisation is defined as:

δgen(L, T) =
1

|T |
∑

n∈N(T)

(√
visit(n, L)

)−1

.

Taking into account the above dimensions, we define the distance between a log
L and a model T as follows:

δLM(L, T) =
1
3

(δfit(L, T) + δpre(L, T) + δgen(L, T)) .

4 A Divide-and-Conquer Approach for the GenCon
Problem

In this section, we propose a two-step divide-and-conquer approach for address-
ing Problem 1, when the problem is instantiated for the model introduced in
the previous section. The main idea of this approach is to avoid the inherent
complexity of the problem induced by the freedom to change the model or the
log by sequentialization: first identifying changes in the model, before turning to
changes applied to the log.

Our solution is outlined in Fig. 2. The first step consists of two parts, denoted
by 1a) and 1b). In 1a), we lift the problem into the model space (i.e., process
trees) by representing event logs as their discovered counterparts. Then, in 1b),
we approximate T ∗ by applying a greedy heuristic search. In the second step,
we use the approximation for T ∗ to transform L into the approximated L∗ via
an alignment-based technique. Specifically, we align the input log with the orig-
inating model, and make moves in L until an approximation of L∗ is reached.

188 A. Rogge-Solti et al.

Fig. 2. Conceptual sketch of the heuristic proposed to solve the problem.

4.1 A Quest for T ∗

Log Lifting. The formulation of Problem 1 involves a search for (L∗, T ∗) in
two spaces: space of logs and space of models. To ease the search for (L∗, T ∗)
we lift the log L to its model representation by applying process discovery. This
enables us to search for T ∗ in the model space without considering the log space.
This step is agnostic to the specific discovery technique used for obtaining TL.
Aiming at efficient discovery of fitting process trees, in this work, we rely on the
Inductive Miner [12].

Further, we denote the resulting process tree as TL, and approximate T ∗ by
an interpolation between T and TL (step 1b) in Fig. 2). To this end, we apply
a greedy heuristic that is based on the behavioral similarity of intermediate
models, T ′, and T ′

L.
Heuristic Search. We quantify the tree-edit distance between T and TL, which
results in a cost-minimal set of tree-edit operations E with a a corresponding total
tree-edit cost CE . Operating all edit operations in E to T transforms it into TL.
However, we do not always reach TL, since we have a (possibly) non-zero trust
in the originating model, and a (possibly) non-zero mistrust in the input log, L.
Thus, the number of allowed edit operations depends on τL and τM .

We define the proportion of the total mistrust in both M and L, as

γmistrust = min(1, 1 − τM + 1 − τL) = min(1, 2 − τM − τL).

Consequently, we allow the algorithm to repair a total cost proportion of the
model or the log that is at most γmistrust of the entire cost CE .

However, since in this step, we only move from T towards TL, we quantify
the number of allowed repair operations on T . Denote the proportion of model
repair operations out of the allowed γmistrust by γmodel. The latter is defined as:

γmodel =
1 − τM

2 − τM − τL
γmistrust.

Hence, the quest for T ∗ problem boils down to finding a set of edit operations
E ∈ 2E such that the total tree-edit cost of E is at most γmodelCE .

In Log and Model We Trust? 189

Our heuristic search contains the following steps. Initially, we consider E = ∅.
We search for a tree-edit operation on T , e ∈ E \ E that maximizes the behav-
ioral similarity of the resulting model TE and TL. The set must not violate the cost
bound of γmodelCE . In practice, we consider several behavioral similarity functions,
including behavioural profile-based similarity [11], and behavioural footprints [3].

If such e exists, we update E to be E ∪ {e} and consider further edit opera-
tions out of the remaining set, namely E \E. Selection of edit operations stops if
there are no further candidates to enter E. In other words, one of the following
condition holds: (1) the algorithm reached the mined model TL, or (2) applying
any repair operation in the set E \ E is beyond the allowed repair bound γmodel.
Operating all tree-edit operations in E transforms T into a process tree TE ,
which is our approximation of T ∗.

4.2 Approximating L∗

Once an approximation for T ∗ is obtained, we turn to search for L∗. In this
step, we assume that T ∗ is correct, and adjust the log to better fit T ∗. Here, we
rely on the alignment between log and model [2] that yields the minimal edit
operations per trace. Specifically, the edit operations can be: (1) move in model
(i.e., an activity in the model is missing an event counterpart in the trace),
(2) move in log (i.e., the event has no corresponding part in the model), and (3)
synchronous move (i.e., the event has a matching representation in the current
state of the model).

Based on the assumption that model T ∗ is optimal, we assume that all
remaining misalignments stem from the event log L. Analogously to the greedy
heuristic for finding T ∗, we greedily repair L towards a log that perfectly fits
T ∗. As before, we do not allow repairing the log beyond the trust level τL. To
this end, we sort the misaligned candidates according to their frequency in the
alignment result, and apply repair operations sequentially, until the distance of
the current log L′ to L is smaller than (1-τL). The result of this step is L∗.
Finally, we return the approximated optimal pair (L∗, T ∗).

The run-time complexity of the entire method is dominated by optimal align-
ments, which are in worst-case exponential in the length of the alignment [14].
The inductive miner that is used for discovery is polynomial in the number of
activities [13], and tree-edit distance using a greedy heuristic has worst-case
complexity of O(|T |2) with |T | being the size of the larger tree [16]. Last, the
heuristic search for T ∗ is also quadratic in the size of the tree, because the
behavioral footprint needs to be read from each candidate tree (linear) when
applying one operation, and there are maximum |T | operations. The heuristic
search for L∗ is dominated by the alignment, as the remaining steps are sorting
(O(n log n) where n is the number of activities in the model) and greedily pick-
ing the misalignment with the highest occurrence count (linear in the number
of misalignments).1

1 The approach has been implemented in the GeneralizedConformance plugin in
ProM. A screencast demonstrating the usage of the plugin is provided here:
http://andreas.solti.de/generalized-conformance-checking/.

http://andreas.solti.de/generalized-conformance-checking/

190 A. Rogge-Solti et al.

Note that the problem is symmetric by nature, and we could also approach
it the other way around. In that case, we would first align the input log L to the
input model T , and move the log toward a better fit with respect to τL. This
results in L∗ first. Based on this, we would mine a representation of L∗ in the
model space, i.e., discover TL∗ . And last, we would move the input model toward
the discovered model with respect to trust level τM , to derive T ∗.

5 Evaluation

We evaluated the benefits of generalized conformance checking in general, and
the proposed approach to address a specific instantiation of the GenCon problem,
by answering the following questions:

Effect of Trust (EoT): How do the trust levels τL and τM affect the quality of
the resulting log and model pair? We use this step to explore the range of
possible solutions.

Model Repair Quality (MRQ): Can the proposed solution compete with state-of-
the-art (specialized) model repair algorithms?

Log Repair Quality (LRQ): How does our technique affect the quality of models
when we repair the log?

Below, we first outline our experimental setup and present the event logs and
models used as inputs to the experiments. Then, we provide an overview of the
main results.

5.1 Experiment Setup

To evaluate our approach we consider event logs and process trees as detailed in
Sect. 3. For process tree discovery, we use the Inductive Miner [12]. For model
search (see Sect. 4.1), we consider the following greedy heuristics:

◦ Simple heuristic – prioritizes delete operations, then applies add operations,
and lastly renames nodes.

◦ Random heuristic – applies edit operations in random order.
◦ Footprints heuristic – uses a similarity measure based on behavioral footprints

(as in [3]) to select the next edit operation.
◦ Behavioral profiles heuristic – uses a similarity measure based on behavioral

profiles (as in [11]) to select the next edit operation.

Due to space limitation, we present the results for the heuristic that yielded the
best results, namely the footprints heuristic. In the remainder of the experimental
setup, we specify the controlled variables and the responses that we measure to
answer the three aforementioned questions.
Controlled Variables. The experiments vary on the trust levels (τL, τM).
First, for assessing the effect of trust (EoT) we vary for each event log and a
corresponding model, both trust levels. For the model repair quality (MRQ)

In Log and Model We Trust? 191

experiment, we fix the input trust in the log to τL = 1, and vary the trust in the
model τM between 0 and 1. Similarly, to evaluate the log repair quality (LRQ)
we fix τM = 1 and vary the trust in the log.
Response Variables. As our response in the EoT experiments we consider the
three-way similarity (TWS) as follows. For each of the experiments we calcu-
lated the inverts of the three quality measures that we consider in Problem 1,
namely 1 − δL2(L∗, L), 1 − δLM(L∗, T ∗) and 1 − δM2(T, T ∗), turning distances
into similarities. The TWS response is the average of these similarity measures.
For the MRQ and LRQ experiments we measured replay fitness, precision, and
generalization as presented in Sect. 3.

5.2 Input Logs and Models

Event Logs. We use the following sample of event logs to evaluate the approach:

(a) Real-World Data of DayHospital. DayHospital is an outpatient clinic located
in the United States. Approximately 250 patients arrive daily to receive treat-
ment from 300 healthcare providers. Patients stay in the hospital for an average
time of 4.4 h and typically go through vital signs collection performed by a Clin-
ical Assistant (CA) and an Infusion performed by an infusion nurse (InfRN).
The log contains 4, 281 traces with a total of 26, 286 events and 17 event classes
(single month of data). Traces are sequences of roles that correspond to the
aforementioned activity. The most frequent trace 〈Arrival , CA, InfRN , End〉
appears 943 times and represents 22% of the event log.

(b) Student data from an e-Learning platform. The second data set corresponds
to an event log from a university. The university records whenever students take
course exams. Specifically, students need to select two specializations (SBWLs).
Each of the SBWLs consists of five courses. Exams for these courses can be
taken individually (Courses I to V) or for multiple of the five at once (Exami-
nation) [22]. This event log contains 2, 777 traces with a total of 10, 590 events,
and 6 event types (one for each type of the courses). The most frequent trace is
Course I, Course V, Examination with 499 occurrences that amount to almost
18 % of the traces.

(c) The Loan Application Process BPIC 2012. This log is taken from the BPI
challenge of 2012 [8]. The log stems from a financial company handling a loan
application process. We only consider the top level process, i.e., we apply a
log filter to retain only the events whose labels start with “A ”. This results
in 13, 087 traces with a total of 60, 849 events, 10 distinct event types, and
15 trace variants. Further, most cases (43.7%) are declined and emit the trace
〈A−SUBMITTED , A−PARTLYSUBMITTED , A−DECLINED〉.
Corresponding Models. In all our experiments, the input models, T , are
constructed as follows. In order to avoid a fully aligned pair of model and log,
we set the input model to be the “happy path” model, that is, the process tree
capturing the sequence (→) of the events in the log that corresponds to the

192 A. Rogge-Solti et al.

Fig. 3. Depending on the different trust levels the weighted average score of log sim-
ilarity, model similarity and log-model alignment is shown on the vertical axis. The
controlled trust levels are presenting on the remaining two axes.

most frequent trace σ∗ = arg maxσ∈L L(σ). Note that these models correspond
to business process models as captured by process analysts in their first modeling
attempt.

5.3 Results

On the Effect of Trusts (EoT). Fig. 3 shows the three surfaces (one for
each log) that represent the TWS as function of the two trust levels. Each
point on the surface corresponds to two trust levels, and the resulting similarity
average. We observe that the best scores are achieved by assigning full trust levels
τL = τM = 1. Here, we start with small “happy path” models that represent the
most frequent behavior in the log. With full trusts in model and log, we return the
input log-model pair and therefore, δL2 and δM2 are zero. The distance between
a “happy path” model and the event log is also not high (although fitness is not
optimal, precision and generalization are high). Therefore, the result is a high
TWS score. Note that there is a general deterioration as the trust in the log
and the model decreases. This yields a new pair of model-log that may have any
similarity between 0 and 1, especially because any change to a small model is a
relatively costly.

An interesting result is depicted in Fig. 3b. One may expect a monotonic
decline of the TWS when going from full trust levels and no-trust levels. However,
in Fig. 3b we observe that when lowering trust levels in the model, we pass a
valley in quality to later reach again better results. Therefore, one may have to
move away from a current local optimal solution, through a set of sub-optimal
solutions to reach an optimum. This provides evidence in favor of the trust-
based setting that we propose in the GenCon problem, using trust levels to
parameterize our search for optimal log/model matching.
On Model Repair Quality (MRQ). Fig. 4 presents the model repair qual-
ity evaluation with respect to replay fitness, precision, generalization and their

In Log and Model We Trust? 193

Fig. 4. Model repair with different trust levels. The graphs show the resulting averages
for (left to right): (1) average of fitness, precision, generalization, (2) replay fitness,
and (3) precision. Dashed lines show competing results based on applying [9].

average. Specifically, it shows the results for setting trust in the log τL = 1 and
controlling only trust in the model τM between 1 to 0. We compare the quality
of our approach to a state-of-the-art model repair technique with default set-
tings as presented in [9]. The average quality (leftmost chart for all logs) is the
average of the three measures, namely fitness, precision, and generalization. We
also present fitness (middle) and precision (right). The generalization remained
steady at 1.0 for all models.

We see that the average quality is comparable to the model repair technique
from [9], with a slight deterioration for the hospital log as the trust in model

194 A. Rogge-Solti et al.

decreases. Unsurprisingly, replay fitness tends to improve when stepping away
from the initial model T towards TL, while precision declines as more behav-
iour is allowed (we always start with a simple model). Note however that some
intermediate steps worsen the results temporarily. For the loan application log
we observe that the best model results in the trust area of 0.5, which indicates
that one should neither mistrust the initial model (T) completely, nor trust it
to the full extent. An uninformative prior of τM = 0.5 yields the best result.
On Log Repair Quality (LRQ). Repairing the behavior of an event log cannot
be compared to any state-of-the-art algorithm. Figure 5 presents the average of
fitness, precision, and generalisation for model’s full trust τM = 1, while we vary
levels of log trust. For full log trust, we do not repair the log, and calculate
the three qualities based on the input model. Here, we see a smooth transition
between different trust levels, which shows that we can smoothly select the ratio
of traces which we mistrust and correct them according to the model.

Fig. 5. Log repair results. The x-
axis depicts the controlled vari-
able τL; the y-axis is the average
of fitness, precision, and general-
ization.

This result provides evidence for the con-
sistency of our approach by showing that the
resulting logs are in high proximity to the
input model (that is fully trusted), whenever
the log trust is less than 1.

6 Conclusion

In this work, we presented the task of gen-
eralized conformance checking and formalized
the GenCon problem. It strives for a balance
between two independent input parameters:
the trust in the log quality, and the trust in
the model quality. Specifically, when presented
with an event log and a process model, general-
ized conformance checking attempts at repair-
ing both according to the initial trust levels,
and returns an improved log-model pair. We instantiated the GenCon problem
with process trees, and with distance measures based on (log or tree) edit oper-
ations and alignments between a log and a process tree. Further, we proposed a
technique to obtain the improved log-model pair by first lifting the log into the
model space, and applying a greedy heuristic to search for the best model in the
model space. The improved event log is obtained by aligning it to the result-
ing best model. An evaluation with real-world datasets demonstrates evidence
in favor of the proposed trust-based approach. Further, generalized conformance
checking is comparable to state-of-the-art model repair techniques in model qual-
ity measures.

One limitation of our approach is that we use a sub-optimal search for the best
model. Although state-of-the-art techniques for optimal search are notorious for
their steep run-time costs, recent ideas in the direction of automated planning
demonstrate positive empirical results with respect to time complexity [7]. In

In Log and Model We Trust? 195

future work, we aim at applying these techniques to the model search problem.
Further, a key insight from our experiments is that process trees are overly
conservative in their allowed behavior. A more flexible model representation
might allow finer grained model repairs, even for high levels of model trust.
Therefore, we aim at addressing the GenCon problem for other model spaces,
e.g. workflow nets. Last, we plan to lift generalized conformance checking to
operational process models, such as Generalized Stochastic Petri Nets.

Acknowledgments. This work was partially supported by the European Union’s
Seventh Framework Programme (FP7/2007-2013) grant 612052 (SERAMIS) and the
German Research Foundation (DFG), grant WE 4891/1-1.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance Checking and
Enhancement of Business Processes. Springer Science & Business Media, Berlin
(2011)

2. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. WIREs. Data
Min. Knowl. Discov. 2, 182–192 (2012)

3. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

4. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm
for discovering process trees. In: Evolutionary Computation (CEC 2012), pp. 1–8.
IEEE (2012)

5. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in
process discovery: the importance of fitness, precision, generalization and simplic-
ity. Int. J. Coop. Inf. Syst. 23(01), 1440001 (2014)

6. Buijs, J.C.A.M., La Rosa, M., Reijers, H.A., van Dongen, B.F., van der
Aalst, W.M.P.: Improving business process models using observed behavior. In:
Cudre-Mauroux, P., Ceravolo, P., Gašević, D. (eds.) SIMPDA 2012. LNBIP, vol.
162, pp. 44–59. Springer, Heidelberg (2013)

7. Domshlak, C., Mirkis, V.: Deterministic oversubscription planning as heuristic
search: abstractions and reformulations. J. Artif. Intell. Res. (JAIR) 52, 97–169
(2015)

8. van Dongen, B.: BPI Challenge 2012 (2012). http://dx.doi.org/10.4121/uuid:
3926db30-f712-4394-aebc-75976070e91f

9. Fahland, D., van der Aalst, W.M.P.: Model repair — aligning process models to
reality. Inf. Syst. 47, 220–243 (2015)

10. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplifi-
cation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

11. Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – a proper metric. In:
Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp.
166–181. Springer, Heidelberg (2011)

12. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013)

http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

196 A. Rogge-Solti et al.

13. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann, N.,
Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer,
Heidelberg (2013)

14. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407–437 (2016)

15. Marquard, M., Shahzad, M., Slaats, T.: Web-based modelling and collabora-
tive simulation of declarative processes. In: Motahari-Nezhad, H.R., Recker, J.,
Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 209–225. Springer, Heidel-
berg (2015)

16. Pawlik, M., Augsten, N.: Tree edit distance: robust and memory-efficient. Inf. Syst.
56, 157–173 (2016)

17. Rogge-Solti, A., Kasneci, G.: Temporal anomaly detection in business processes.
In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 234–249.
Springer, Heidelberg (2014)

18. Rogge-Solti, A., Mans, R.S., van der Aalst, W.M.P., Weske, M.: Improving doc-
umentation by repairing event logs. In: Grabis, J., Kirikova, M., Zdravkovic, J.,
Stirna, J. (eds.) PoEM 2013. LNBIP, vol. 165, pp. 129–144. Springer, Heidelberg
(2013)

19. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

20. Senderovich, A., Weidlich, M., Yedidsion, L., Gal, A., Mandelbaum, A., Kadish, S.,
Bunnell, C.A.: Conformance checking and performance improvement in scheduled
processes: a queueing-network perspective. Inf. Syst. (2016, forthcoming)

21. Wang, J., Song, S., Lin, X., Zhu, X., Pei, J.: Cleaning structured event logs: a graph
repair approach. In: Data Engineering (ICDE 2015), pp. 30–41. IEEE (2015)

22. Weber, I., Farshchi, M., Mendling, J., Schneider, J.: Mining processes with multi-
instantiation. In: 30th Annual ACM Symposium on Applied Computing, pp. 1231–
1237 (2015)

23. Weijters, A., van der Aalst, W.M.P., De Medeiros, A.K.A.: Process mining with
the heuristics miner-algorithm. Technical report, 166. Technische Universiteit
Eindhoven (2006)

24. Whitley, D.: An overview of evolutionary algorithms: practical issues and common
pitfalls. Inf. Softw. Technol. 43(14), 817–831 (2001)

A Recursive Paradigm for Aligning Observed
Behavior of Large Structured Process Models

Farbod Taymouri(B) and Josep Carmona

Universitat Politècnica de Catalunya, Barcelona, Spain
{taymouri,jcarmona}@cs.upc.edu

Abstract. The alignment of observed and modeled behavior is a crucial
problem in process mining, since it opens the door for conformance check-
ing and enhancement of process models. The state of the art techniques
for the computation of alignments rely on a full exploration of the combi-
nation of the model state space and the observed behavior (an event log),
which hampers their applicability for large instances. This paper presents
a fresh view to the alignment problem: the computation of alignments is
casted as the resolution of Integer Linear Programming models, where
the user can decide the granularity of the alignment steps. Moreover, a
novel recursive strategy is used to split the problem into small pieces,
exponentially reducing the complexity of the ILP models to be solved.
The contributions of this paper represent a promising alternative to fight
the inherent complexity of computing alignments for large instances.

1 Introduction

As business processes become more complex and change frequently, companies
and organizations use information systems to handle the processing and execu-
tion of their business transactions. These systems generate event logs which are
the footprints left by process executions. Process mining is an emerging field that
focuses on analyzing these event logs with the purpose of extracting, analyzing
and enhancing evidence-based process models [13].

One of the current challenges for process mining techniques is the computa-
tion of an alignment of a process model with respect to observed behavior [1].
Intuitively, given a trace representing a real process execution, an optimal align-
ment provides the best trace the process model can provide to mimic the observed
behavior. Then observed and model traces are rendered in a two-row matrix
denoting the synchronous/asynchronous moves between individual activities of
model and log, respectively. Alignments are extremely important in the context
of process mining, since they open the door to evaluate the metrics that asses
the quality of a process model to represent observed behavior: fitness and gen-
eralization [1] and precision [2]. Additionally, alignments are a necessary step to
enhance the information provided in a process model [13].

Unfortunately, the current algorithmic support to compute alignments is
defined as search for a minimal path on the product of the state space of the

c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 197–214, 2016.
DOI: 10.1007/978-3-319-45348-4 12

198 F. Taymouri and J. Carmona

process model and the observed behavior, an object that is worst-case exponen-
tial with respect to the size of the model. This hampers the application of these
techniques for medium/large instances. Hence, in the process mining field we are
facing an interesting paradox: while the current research for process discovery
is capable to be applied to large inputs (e.g., [7]), the obtained models often
cannot be optimally aligned due to their size. Addressing this paradox is the
main motivation of the work presented in this paper.

This paper presents a technique to compute a particular type of alignments,
called approximate alignments. In an approximate alignment, the granularity of
the moves is user-defined (from singletons like in the original definition of align-
ments, to non-unitary sets of activities), thus allowing for an abstract view, in
terms of step-sequences, of the model capability of reproducing observed behav-
ior. The implications of generalizing the concept of alignment to non-singleton
steps are manifold: conformance checking techniques can be discretized to a
desired (time) granularity, e.g., when the ordering of activities in a period is not
important for the diagnosis. Also, other techniques like model repair [6] may be
guided to only repair coarse-grain deviating model parts. Finally, in domains
where a fine-grained ordering of activities is not needed approximate alignments
can play an important role (e.g., health care [9]).

We assume the input models to be specified as Petri nets. This is without
loss of generality, since there exist transformations from other notations to Petri
nets. Given a Petri net and a trace representing the observed behavior, we use
the structural theory of Petri nets [12] to find an approximate alignment. This
means that at the end we solve Integer Linear Programming (ILP) models whose
resolution provide a model firing sequence that mimics the observed behavior.
Importantly, these ILP models are extended with a cost function that guarantees
(under certain structural conditions on the process model) a global optimality
criteria: the obtained firing sequence is mostly similar to the observed trace
in terms of the number of firings of each transition. This optimality capability
represents one clear difference with respect to current distributed approaches for
conformance checking which focus on the decisional problem of checking fitness,
but not to compute optimal alignments [10,14].

Since ILP is NP-hard, casting the problem of computing approximate align-
ments as the resolution of ILP models is not sufficient for alleviating the com-
plexity of the problem. As the complexity of ILP is dominated by the number of
variables and constraints, we present a recursive framework to compute approx-
imate alignments that transforms the initial ILP encoding into several smaller
and bounded ILP encodings. This approach reduces drastically both the memory
and the CPU time required for computing approximate alignments. Remarkably,
it can be applied not only with the ILP encoding used in this paper, but also in
combination with current techniques for computing alignments.

The organization of this paper is as follow, related work is presented in Sect. 2.
Preliminaries will be presented in Sect. 3. The formalization of approximate align-
ments is described in Sect. 4. Section 5 describes the ILP encoding for computing
approximate alignments, while Sect. 6 presents the recursive framework. Experi-
ments, conclusions and future work are presented in Sects. 7 and 8 respectively.

A Recursive Paradigm for Aligning Observed Behavior 199

2 Related Work

The seminal work in [1] proposed the notion of alignment, and developed a
technique to compute optimal alignments for a particular class of process models.
For each trace σ in the log, the approach consists on exploring the synchronous
product of model’s state space and σ. In the exploration, the shortest path
is computed using the A∗ algorithm, once costs for model and log moves are
defined. The approach is implemented in ProM, and can be considered as the
state-of-the-art technique for computing alignments. Several optimizations have
been proposed to the basic approach: for instance, the use of ILP techniques on
each visited state to prune the search space [1]. In contrast to the technique of
this paper, these ILP techniques only alleviate the search space while in our case
they form the basis to compute an alignment. Alignment techniques from [1] have
been extended recently in [3] for the case of process trees, presenting techniques
for the state space reduction with stubborn sets1. Also, high-level deviations are
proposed in [1] in form of deviation patterns that, as the work in this paper, aim
at providing less detailed diagnostics.

Decompositional techniques have been presented [10,14] that instead of com-
puting optimal alignments, they focus on the decisional problem of whereas a
given trace fits or not a process model. The underlying idea is to split the model
into a particular set of transition-bordered fragments which satisfy certain condi-
tions, and local alignments can be computed for each one of the fragments, thus
providing a upper bound on the cost of an alignment. In contrast, the technique
presented in this paper does not split the model, hence enabling the computation
of alignments at a global (model) level.

Finally, the work in [8,9] focuses on dealing with partially ordered informa-
tion, a common situation in contexts like health care. The notion of partially
ordered alignment is introduced, and a variation of the techniques presented
in [1] described.

3 Preliminaries

3.1 Petri Nets, Process Mining and Step Sequences

A Petri Net [11] is a 3-tuple N = 〈P, T,F〉, where P is the set of places, T
is the set of transitions, P ∩ T = ∅, F : (P × T) ∪ (T × P) → {0, 1} is the
flow relation. A marking is an assignment of non-negative integers to places. If
k is assigned to place p by marking m (denoted m(p) = k), we say that p is
marked with k tokens. Given a node x ∈ P ∪ T , its pre-set and post-set (in
graph adjacency terms) are denoted by •x and x• respectively. A transition t is
enabled in a marking m when all places in •t are marked. When a transition t
is enabled, it can fire by removing a token from each place in •t and putting a
token to each place in t•. A marking m′ is reachable from m if there is a sequence

1 There is no fundamental difference between aligning Petri nets or process trees: only
the latter allows for a slightly better memory representation.

200 F. Taymouri and J. Carmona

of firings t1t2 . . . tn that transforms m into m′, denoted by m[t1t2 . . . tn〉m′. A
sequence of transitions t1t2 . . . tn is a feasible sequence if it is firable from the
initial marking m0.

Definition 1 (Trace, Event Log, Parikh vector). Given an alphabet of
events T = {t1, . . . , tn}, a trace is a word σ ∈ T ∗ that represents a finite sequence
of events. An event log L ∈ B(T ∗) is a multiset of traces2. |σ|a represents the
number of occurrences of a in σ. The Parikh vector of a sequence of events σ
is a function̂ : T ∗ → N

n defined as σ̂ = (|σ|t1 , . . . , |σ|tn
). For simplicity, we

will also represent |σ|ti
as σ̂(ti). The support of a Parikh vector σ̂, denoted by

supp(σ̂) is the set {ti|σ̂(ti) > 0}. Finally, given a multiset m, tr(m) provides a
trace σ such that supp(σ̂) = {x|m(x) > 0}.

Workflow processes can be represented in a simple way by using Workflow
Nets (WF-nets). A WF-net is a Petri net where there is a place start (denoting
the initial state of the system) with no incoming arcs and a place end (denoting
the final state of the system) with no outgoing arcs, and every other node is
within a path between start and end. The transitions in a WF-net represent
tasks. For the sake of simplicity, the techniques of this paper assume models are
specified with WF-nets3.

In this paper we are interested not only in sequential observations of a model,
but also in steps. A step is a sequence of multisets of activities. The following
definitions relate the classical semantics of models and its correspondence to step
semantics. Likewise, we lift the traditional notion of fitness to this context.

Definition 2 (System Net, Full Firing Sequences). A system net is a
tuple SN = (N,mstart,mend), where N is a WF-net and the two last ele-
ments define the initial and final marking of the net, respectively. The set
{σ | (N,mstart)[σ〉(N,mend)} denotes all the full firing sequences of SN .

Definition 3 (Full Model Step-Sequence). A step-sequence σ̄ is a sequence
of multisets of transitions. Formally, given an alphabet T : σ̄ = V1V2 . . . Vn, with
Vi ∈ B(T). Given a system net N = (〈P, T,F〉,mstart,mend), a full step-sequence
in N is a step-sequence V1V2 . . . Vn such that there exists a full firing sequence
σ1σ2 . . . σn in N such that σ̂i = Vi for 1 ≤ i ≤ n.

The main metric in this paper to asses the adequacy of a model in describing
a log is fitness [13], which is based on the reproducibility of a trace in a model:

Definition 4 (Fitting Trace). A trace σ ∈ T ∗ fits SN = (N,mstart,mend) if
σ coincides with a full firing sequence of SN , i.e.,(N,mstart)[σ〉(N,mend).

Definition 5 (Step-Fitting Trace). A trace σ1σ2 . . . σn ∈ T ∗ step-fits SN if
there exists full model step-sequence V1V2 . . . Vn of SN such that Vi = σ̂i for
1 ≤ i ≤ n.
2 B(A) denotes the set of all multisets of the set A.
3 The theory of this paper can deal with models having silent transitions. For the sake

of simplicity, we do not consider them in the formalization.

A Recursive Paradigm for Aligning Observed Behavior 201

3.2 Petri Nets and Linear Algebra

Let N = 〈P, T,F〉 be a Petri net with initial marking m0. Given a feasible
sequence m0

σ→ m, the number of tokens for a place p in m is equal to the
tokens of p in m0 plus the tokens added by the input transitions of p in σ minus
the tokens removed by the output transitions of p in σ:

m(p) = m0(p) +
∑

t∈•p

|σ|t F(t, p) −
∑

t∈ p•
|σ|t F(p, t)

The marking equations for all the places in the net can be written in the
following matrix form (see Fig. 1(c)): m = m0 + N · σ̂, where N ∈ Z

P×T is
the incidence matrix of the net: N(p, t) = F(t, p) − F(p, t). If a marking m is
reachable from m0, then there exists a sequence σ such that m0

σ→ m, and the
following system of equations has at least the solution X = σ̂

m = m0 + N · X (1)

If (1) is infeasible, then m is not reachable from m0. The inverse does not
hold in general: there are markings satisfying (1) which are not reachable. Those
markings (and the corresponding Parikh vectors) are said to be spurious [12].
Figure 1(a)-(c) presents an example of a net with spurious markings: the Parikh
vector σ̂ = (2, 1, 0, 0, 1, 0) and the marking m = (0, 0, 1, 1, 0) are a solution to
the marking equation, as is shown in Fig. 1(c). However, m is not reachable by
any feasible sequence. Figure 1(b) depicts the graph containing the reachable
markings and the spurious markings (shadowed). The numbers inside the states

Fig. 1. (a) Petri net, (b) Potential reachability graph, (c) Marking equation.

202 F. Taymouri and J. Carmona

represent the tokens at each place (p1, . . . , p5). This graph is called the potential
reachability graph. The initial marking is represented by the state (1, 0, 0, 0, 0).
The marking (0, 0, 1, 1, 0) is only reachable from the initial state by visiting a
negative marking through the sequence t1t2t5t1, as shown in Fig. 1(b). Therefore,
equation (1) provides only a sufficient condition for reachability of a marking and
replayability for a solution of (1).

For well-structured Petri nets classes equation (1) characterizes reachability.
The largest class is free-choice [11], live, bounded and reversible nets. For this
class, equation (1) together with a collection of sets of places (called traps) of
the system completely characterizes reachability [4]. For the rest of cases, the
problem of the spurious solutions can be palliated by the use of traps [5], or by the
addition of some special places named cutting implicit places [12] to the original
Petri net that remove spurious solutions from the original marking equation.

4 Approximate Alignment of Observed Behavior

Fig. 2. Process model

As outlined above, the fitness dimension
requires an alignment of trace and model,
i.e., transitions or events of the trace need
to be related to elements of the model and
vice versa. Such an alignment reveals how
the given trace can be replayed on the
process model. The classical notation of
aligning event log and process model was introduced by [1]. To achieve an align-
ment between process model and event log we need to relate moves in the trace
to moves in the model. It may be the case that some of the moves in the trace
can not be mimicked by the model and vice versa, i.e., it is impossible to have
synchronous moves by both of them. For instance, consider the model in Fig. 2
and the trace σ = t1t1t4t2; some possible alignments are:

γ1=
t1 t1 ⊥ t4 t2
t1 ⊥ t2 t4 ⊥ γ2=

t1 t1 ⊥ t4 t2
⊥ t1 t2 t4 ⊥ γ3=

t1 t1 t4 t2 ⊥
t1 ⊥ ⊥ t2 t4

γ4=
t1 t1 t4 t2 ⊥
⊥ t1 ⊥ t2 t4

The moves are represented in tabular form, where moves by trace log are at
the top and moves by model are at the bottom of the table. For example the first
move in γ2 is (t1,⊥) and it means that the log moves t1 while the model does
not make any move. Cost can be associated to alignments, with asynchronous
moves having greater cost than synchronous ones [1]. For instance, if unitary
costs are assigned to asynchronous moves and zero cost to synchronous moves,
alignment γ2 has cost 3.

In this paper we introduce a different notion of alignment. In our notion,
denoted as approximate alignment, moves are done on multisets of activities
(instead of singletons, as it is done for the traditional definition of align-
ment). Intuitively, this allows for observing step-moves at different granularities,
from the finest granularity (η = 1, i.e., singletons) to the coarse granularity
(η = |σ|, i.e., the Parikh vector of the model’s trace). To illustrate the notion

A Recursive Paradigm for Aligning Observed Behavior 203

of approximate alignment, consider again the process model in Fig. 2 and trace
σ = t1t1t4t2. Some possible approximate alignments with different level of gran-
ularities are:

α1=
{t1, t1, t4, t2}
{t2, t1, t4} α2=

t1 t1 {t4, t2}
t1 ⊥ {t4 ,t2} α3=

t1 t1 t4 t2 ⊥
⊥ t1 ⊥ t2 t4

For instance, approximate alignment α2 computes a step-sequence t1{t4, t2},
meaning that to reproduce σ, the model first fires t1 and then the step {t4, t2}
is computed, i.e., the order of the firings of the transitions of this step is not
specified.

Definition 6 (Approximate Alignment). Let AM and AL be the set of tran-
sitions in the model and the log, respectively, and ⊥ denote the empty multiset.

– (X,Y) is a synchronous move if X ∈ B(AL), Y ∈ B(AM) and Y = X
– (X,Y) is a move in log if X ∈ B(AL) and Y =⊥.
– (X,Y) is a move in model if X =⊥ and Y ∈ B(AM).
– (X,Y) is a approximate move if X ∈ B(AL), Y ∈ B(AM), X �=⊥, Y �=⊥,

X �= Y , and X ∩ Y �=⊥
– (X,Y) is an illegal move, otherwise.

The set of all legal moves is denoted as ALM . Given a trace σ, an approximate
alignment is a sequence α ∈ A∗

LM . The projection of the first element (ignoring
⊥ and reordering the transitions in each move as the ordering in σ) results in
the observed trace σ, and projecting the second element (ignoring ⊥) results in
a step-sequence.

Similar to the classical alignment, for a given trace different alignments can
be defined with respect to the level of agreement with the trace. Hence, a distance
function Ψ : B(AL) × B(AM) → N must be defined for this goal. We propose
the following implementation of the function: Ψ(X,Y) = |XΔY |, although other
possibilities could be considered4. For example Ψ(α2) = Ψ({t1}, {t1}) + Ψ({t1},
⊥) + Ψ({t2, t4}, {t2, t4}) = 0 + 1 + 0 = 1. For the other approximate alignments
Ψ(α1) = 0 and Ψ(α2) = 3. Notice that the optimality (according to the distance
function) of an approximate alignment depends on the granularity allowed.

Fig. 3. Schematic of ILP approach for computing approximate alignments.

4 XΔY = (X \ Y) ∪ (Y \ X).

204 F. Taymouri and J. Carmona

5 Structural Computation of Approximate Alignments

Given an observed trace σ, in this paper we will compute approximate alignments
using the structural theory introduced in Sect. 3.2. The technique will perform
the computation of approximate alignments in two pipelined phases, each phase
considering the resolution of an Integer Linear Programming (ILP) model con-
taining the marking equation of the net corresponding to the model. The overall
approach is described in Fig. 3. In the first ILP model (ILP Similarity) a solution
(the Parikh vector of a full firing sequence of the model) is computed that maxi-
mizes the similarity to σ̂. Elements in σ that cannot be replayed by the model in
the Parikh vector found are removed for the next ILP, resulting in the projected
sequence σ′. These elements are identified as moves on log cf. Definition 6, and
will be inserted in the approximate alignment computed α. In the second ILP
model (ILP Ordering), it is guaranteed that a feasible solution containing at
least the elements in σ′ exists. The goal of this second ILP model is to compute
the approximate alignment given a user-defined granularity: it can be computed
from the finest level (η = 1) to the most coarse level (η = |σ|).

5.1 ILP for Similarity: Seeking for an Optimal Parikh Vector

This stage will be centered on the marking equation of the input Petri net. Let
J = T ∩ supp(σ̂), the following ILP model computes a solution that is as similar
as possible with respect to the firing of the activities appearing in the observed
trace:

Minimize
∑

t∈J

Xs[t] −
∑

t∈J

X[t], Subject to:

mend = mstart + N.X (2)
∀t ∈ J : σ̂[t] = X[t] + Xs[t]

X,Xs ≥ 0

Hence, the model searches for a vector X that both is a solution to the mark-
ing equation and maximizes the similarity with respect to σ̂. Notice that the
ILP problem has an additional set of variables Xs ∈ N

|J|, and represents the
slack variables needed when a solution for a given activity cannot equal the
observed number of firings. By minimizing the variables Xs, and the variables
Xs (negated), solutions to (2) clearly try to both assign zeros as much as possi-
ble to the Xs variables, and the opposite for the X variables in J (i.e., variables
denoting activities appearing in σ).

Given an optimal solution X to (2), activities ai such that X[i] < σ̂(ai)
are removed from σ; in the simplest case, when X[i] = 0 and σ̂(ai) > 0, every
occurrence of ai in σ will not appear in σ′. However, if X[i] > 0 and X[i] < σ̂(ai),
all possibilities of removal should be checked when computing σ′5.

5 In our experiments, only the simplest cases were encountered.

A Recursive Paradigm for Aligning Observed Behavior 205

5.2 ILP for Ordering: Computing an Aligned Step-Sequence

The schematic view of the ILP model for the ordering step is shown in Fig. 4.
Given a granularity η, λ = � |σ′|

η � steps are required for a step-sequence in the
model that is aligned with σ′. Accordingly, the ILP model has variables X1 . . . Xλ

with Xi ∈ N
|T | to encode the λ steps of the marking equation, and variables

Xs
1 . . . Xs

λ, with Xs
i ∈ N

|J| and J = T ∩ supp(σ′), to encode situations where
the model cannot reproduce observed behavior in some of these steps. We now
describe the ILP model in detail.

Objective Function. The goal is to compute a step-sequence which resembles as
much as possible to σ′. Therefore transitions in supp(σ′) have cost 0 in each step
Xi whilst the rest have cost 1. Also, the slack variables Xs

i have cost 1.

Marking Equation Constraints. The computation of a model’s step-sequence
m0

X1→ m1
X2→ m2 . . . mλ−1

Xλ→ mend is enforced by using a chain of λ connected
marking equations.

Parikh Equality Constraints. To enforce the similarity of the Parikh vectors
X1 . . . Xλ with respect to σ̂′, this constraints require the sum of the assignments
to variables Xi and Xs

i for every variable t ∈ J should be greater or equal to
σ̂′(t). Given the cost function, solutions that minimize the assignment for the
Xs

i variables are preferred.

Fig. 4. ILP model schema for the ordering step of Fig. 3.

206 F. Taymouri and J. Carmona

Step Granularity Constraints. Require that the sum of model’s steps Xi and the
slack variables Xs

i is lower bounded by the given granularity η. Since the cost
of variables Xi is lesser than the cost of Xs

i variables, the solutions will tend to
assign as much as possible to Xi. Last step Xλ is not constrained in order to
ensure the feasibility of reaching the final marking mend.

Mimic Constraints. The input sequence σ′ is split into λ consecutive chunks,
i.e., σ′ = σ′

1σ
′
2 . . . σ′

λ, with |σ′
i| = η, for 1 ≤ i < λ. This set of constraints require

at each step that the multiset of observed transitions (Xi) must only happen if
it has happened in the corresponding chunk σ′

i. It is worth to note that events
with multiple occurrences are distinguished based on their positions.

Once the two steps of Fig. 3 are performed, the gathered information is suffi-
cient to obtain an approximate alignment: on the one hand, the removed activ-
ities from the ILP model (2) are inserted as “moves in the log”. On the other
hand, the solution obtained from the ILP model of Fig. 4 provide the steps that
can be appended to construct the final approximate alignment.

A Note on Completeness and Optimality. The global optimality guarantee
provided in the approach of this paper is with respect to the similarity between
the Parikh vectors of the computed and the observed trace. Informally, the tech-
nique searches for traces as similar as possible (c.f., ILP models (2)) and then com-
putes the ordering (with respect to a given granularity). However, as the reader
may have realized, by relying on the marking equation the approach presented in
this section may be sensible to the existence of spurious solutions (see Sect. 3.2).

Fig. 5. Schema of the recursive approach.

A Recursive Paradigm for Aligning Observed Behavior 207

This may have negative consequences since the marking computed may not be
possible in the model, and/or the Parikh vectors may not correspond to a real
model trace. For the former problem (marking reachability), in case of free-choice,
live, bounded and reversible nets, this problem does not exists since the struc-
tural theory completely characterizes reachability [12]. For non-structured process
models (e.g., spaghetti-like) or when the Parikh vector is spurious, the technique
of this paper may still be applied, if the results obtained are verified a-posteriori
by replaying the step-sequence computed. In Sect. 7 an evaluation over both well-
structured and unstructured process models is reported, showing the potentials
of the technique in practice for both situations.

6 The Recursive Algorithm

Section 5 shows how to compute approximate alignments using the structural
theory of Petri nets through the marking equation. The complexity of the app-
roach, which is NP-hard, can be measured by the size of the ILP formulation
in the minimization step, in terms of number of variables: given a trace σ and
a model with |T | transitions and |P | places, (|T | + |J | + |P |) · (|σ|/η) variables
are needed, where η is the desired granularity and J = T ∩ supp(σ̂). This poses
a problem for handling medium/large process models.

In this section we will present a way to fight the aforementioned complexity, by
using a recursive strategy that will alleviate significantly the approach presented
in the previous section. The first step will be done as before, so we will focus on
the second step (Ordering), and will assume that σ is the input sequence for this
step. The overall idea is, instead of solving a large ILP instance, solve several small
ILP instances that combined represent a feasible solution of the initial problem.
Figure 5 illustrates the recursive approach: given a trace σ, on the top level of the
recursion a couple of Parikh vectors X1, X2 are computed such that m0

X1→ m1
X2→

mend, by using the Ordering ILP strategy of the previous section with granularity
|σ|/2, with σ = σ1σ2. Some crucial observations can now be made:

1. X1 and X2 represent the optimal Parikh vectors for the model to mimic the
observed behavior in two steps.

2. Elements from X1 precede elements from X2, but no knowledge on the order-
ings within X1 or within X2 is known yet.

3. Marking m1 is the intermediate marking, being the final marking of X1, and
the initial marking of X2.

4. Elements in supp(X1) ∩ supp(σ̂1) denote those elements in σ1 that can be
reproduced by the model if one step of size |σ|/2 was considered.

5. Elements in S1 = X1 \ supp(σ1|supp(X1)), denote the additional transitions
in the net that are inserted to compute the final ordering. They will denote
skipped “model moves” in the final alignment.

6. Elements in supp(Xs
1) denote those elements in σ2 that the model needs to

fire in the first part (but they were observed in the second part). They will
denote asynchronous “model moves” in the final alignment.

7. 4, 5, and 6 hold symmetrically for X2, Xs
2 and σ2.

208 F. Taymouri and J. Carmona

The combination of these observations implies the independence between
the computation of an approximate alignment for σ1|supp(X1) ·tr(S1) ·tr(Xs

1) and
tr(Xs

2) · σ2|supp(X2) · tr(S2), if the intermediate marking m1 is used as connect-
ing marking between these two independent problems6. This gives rise to the
recursion step: each one of these two problems can be recursively divided into
two intermediate sequences, e.g., m0

X11→ m11
X12→ m1, and m1

X21→ m21
X22→ mend,

with X1 = X11 ∪ X12 and X2 = X21 ∪ X22. By consecutive recursive calls, more
precedence relations are computed, thus progressing towards finding the full step
sequence of the model.

Now the complexity analysis of the recursive approach can be measured: at
the top level of the recursion one ILP problem consisting of (|T | + |J1|) · 2 + |P |
variables is solved, with J1 = T ∩ supp(σ̂). In the second level, two ILP problems
consisting of at most (|T |+|J2|)·2+|P | variables, with J2 = max(T ∩ (supp(σ̂1)∪
X1∪Xs

1), T ∩ (supp(σ̂2))∪X2∪Xs
2). Hence as long as the recursion goes deeper,

the ILP models have less variables. The depth of the recursion is bounded by
log(|σ|), but in practice we limit the depth in order to solve instances that are
small enough.

Fig. 6. Example with loop

Let us show how the method works
step by step for an example. Consider
the model in Fig. 6 and a given non-
fitting trace like σ = t5t1t3t4t4t3t4t3.
On this trace ILP model (2) will not
remove any activity from σ. We then
concentrate on the recursive ordering
step. First at the top level of Fig. 5 the solutions X1, Xs

1 , X2 and Xs
2 will be

computed, with λ = 2.

α0=
σ1 = t5t1t3t4 σ2 = t4t3t4t3

X1 ∪ Xs
1 = {t1, t3, t4, t2} X2 ∪ Xs

2 = {t3, t3, t4, t
s
5, t2, t4}

Notice that when seeking for an optimal ordering, t5 does not appears in X1

since then its firing will empty the net, and hence it appears in Xs
2 (to guarantee

reaching the final marking). The intermediate marking computed is m1 = {P2}.
Accordingly, σ1|supp(X1) · tr(S1) · tr(Xs

1) = t1t3t4 · t2 · ∅, and σ2|supp(X2) · tr(S2) ·
tr(Xs

2) = t5 · t4t3t4t3 · t2. Let us assume the recursion stops with subtraces
of length less than 5, and then the ILP approach (with granularity 1 in this
example) is applied. The left part will then stop the recursion, providing the
optimal approximate alignment:

t5 t1 t3 t4 ⊥
⊥ t1 t3 t4 t2

6 Note the different way the traces are obtained, e.g., in the right part tr(Xs
2) is the

leftmost part since it denotes log moves that the model can produce on the left step.

A Recursive Paradigm for Aligning Observed Behavior 209

For the subtrace on the right part, i.e., t5t4t3t4t3t2 the recursion continues.
Applying again the ILP with two steps, with m1 = {P2} as initial marking,
results in the following optimal approximate alignment:

α1=
σ21 = t5t4t3 σ22 = t4t3t2

X21 ∪ Xs
21 = {t3, t4, t2} X22 ∪ Xs

22 = {t4, t3, t
s
5}

With m1 = {P2} as intermediate marking. Whenever the recursion goes deeper,
transitions are re-arranged accordingly in the solutions computed (e.g., t2 moves
to the left part of α1, whilst t5 moves to the right part). The new two subtraces
induced from α1 are t4t3t2 and t5t4t3. Since the length of both is less than 5, the
recursion stops and the ILP model with granularity 1 is applied for each one,
resulting in the solutions:

α31=
t4 t3 ⊥
⊥ {t3, t4} t2

α32=
t4 t3 ⊥
⊥ {t3, t4} t5

So the final optimal approximate alignment can be computed by concatenat-
ing the individual alignments found in preorder traversal:

α=
t5 t1 t3 t4 ⊥ t4 t3 ⊥ t4 t3 ⊥
⊥ t1 t3 t4 t2 ⊥ {t3, t4} t2 ⊥ {t3, t4} t5

which represents the step-sequence σ̄ = t1t3t4t2{t3, t4}t2{t3, t4}t5 from the
model of Fig. 6. Informally, the final approximate alignment reports that two
activities t2 were skipped in the trace, the ordering of two consecutive pair of
events (t4t3) was wrong, and transition t5 was observed in the wrong order.
Also, as mentioned in previous sections, the result of proposed method is an
approximation to the corresponding optimal alignment, since some moves have
non-singleton multisets (e.g., {t3, t4}). For these moves, the exact ordering is not
computed although the relative position is known.

7 Experiments

The techniques of this paper have been implemented in Python as prototype tool
that uses Gurobi for ILP resolution7. The tool has been evaluated over two dif-
ferent families of examples: on the one hand, large and well-structured synthetic
benchmarks used in [10] for the distributed evaluation of fitness (see Table 1).
On the other hand, a collection of large realistic examples from the literature has
been also considered, some of them very unstructured (see Table 2). We com-
pare our technique over η = 1 with the reference three approaches for computing
7 The experiments have been done on a desktop computer with Intel Core i7-2.20 GHz,

and 5GB of RAM. Source code and benchmarks can be provided by contacting the
first author.

210 F. Taymouri and J. Carmona

Table 1. BPM2013 artificial benchmark datasets

Model |P | |T | |Arc| Cases Fitting |σ|avg
prAm6 363 347 846 1200 No 31

prBm6 317 317 752 1200 Yes 43

prCm6 317 317 752 500 No 43

prDm6 529 429 1140 1200 No 248

prEm6 277 275 652 1200 No 98

prFm6 362 299 772 1200 No 240

prGm6 357 335 826 1200 No 143

Table 2. Real benchmark datasets

Model |P | |T | |Arc| Cases Fitting |σ|avg
Banktransfer 121 114 276 2000 No 58

Documentflow 334 447 2059 12391 No 5

Documentflow2 337 456 2025 12391 No 5

BPIC15 2 78 420 848 832 No 53

BPIC15 4 178 464 954 1053 No 44

BPIC15 5 45 277 558 1156 No 51

optimal alignments from [1]8: With or without ILP state space pruning, and the
swap+replacement aware9.

Comparison for Well-Structured and Synthetic Models. Figure 7 provides the
comparison in CPU time for the two families of approaches. One can see that
for event logs with many short traces the approach from [1] takes advantage of
the optimizations done in the implementation, e.g., caching and similar. Notice
that those optimizations can also be implemented in our setting. But clearly, in
large models and event logs with many long traces (prDm6, prFm6 and prGm6)
the three approaches from [1] either provide a solution in more than 12 hours or
crash due to memory problems (N/A in the figure), while the recursive technique
of this paper is able to find approximate alignments in a reasonable time. We
have monitored the memory usage: our techniques use an order of magnitude less

8 In spite of using η = 1, still the objects computed by our technique and the technique
from [1] are different, and hence this comparison is only meant to provide an esti-
mation on the speedup/memory/quality one can obtain by opting for approximate
alignments.

9 The plugin “Replay a log on Petri net for conformance analysis” from ProM with
parameters “A∗ cost-based fitness express with/without ILP and being/not being
swap+replacement aware”. We instructed the techniques from [1] to compute one-
optimal alignment.

A Recursive Paradigm for Aligning Observed Behavior 211

Fig. 7. Comparison of computation time for well-structured synthetic benchmarks.

memory than the techniques from [1]. Finally, for these well-structured bench-
marks, the approach presented in this technique never found spurious solutions.

Comparison for Realistic Benchmarks. Figure 8 provides the comparison for the
realistic examples from Table 2. The figure is split into structured and unstruc-
tured models10. Benchmark Banktransfer is taken from [15] and Documentflow
benchmarks are taken from [16]. Some event logs from the last edition of the BPI
Challenge were used, for which the models BPIC15 2, BPIC15 4, BPIC15 2
were generated using Inductive Miner plugin of ProM with noise threshold 0.99,
0.5 and 0.2, respectively. For the structural realistic models, the tendency of the
previous structured benchmarks is preserved. For the two unstructured bench-
marks, the technique of this paper is able to produce approximate alignments
in considerably less time than the family of A∗-based techniques. Moreover, for
the benchmarks from the BPI challenge, the A∗-based techniques crashes due
to memory problems, whilst our technique again can handle these instances.
The memory usage of our technique is again one order of magnitude less than
the compared A∗-based techniques, but for the unstructured models spurious
solutions were found.

Table 3. Quality comparison.

Model/ Case ED Jaccard MSE
prAm6 0.25 0 0.0002
prBm6 0 0 0
prCm6 2.99 0.01 0.0093
prEm6 0 0 0
Banktransfer 4.30 0.04 0.0400
Documentflow 3.16 0.27 0.0310
Documentflow2 3.17 0.29 0.0330

Quality of Approximate Alignments.
Table 3 reports the evaluation of the
quality of the results obtained by
the two approaches for the cases
where [1] provides a solution. We
considered two different comparisons:
(i) fine-grained comparison between
the sequences computed by [1] and
the step-sequences of our approach,
and (ii) coarse-grained comparison

10 Most of the realistic benchmarks in Table 2 have silent transitions.

212 F. Taymouri and J. Carmona

Fig. 8. Comparison of computation time for realistic benchmarks.

between the fitness value of the two approaches. For (i), we considered two
possibilities: using the Edit or Jaccard distances. For the first, given a trace σ
and a step-sequence γ̄, we simply take the minimal edit distance between σ and
any of the linearizations of γ̄. For the Jaccard distance, which measures simi-
larities between sets, we considered both objects as sets and used this metric
to measure their similarity. In the table, we provide the average of these two
metrics per trace, e.g. for prAm6 the two approaches are less than 1 edit opera-
tion (0.25) different on average. For measuring ii), the Mean Square Root (MSE)
over the fitness values provided by both metrics is reported. Overall, one can
see that both in fine-grained and coarse-grained comparisons, the approach of
this paper is very close to the optimal solutions computed by [1], specially for
well-structured models.

8 Conclusions and Future Work

Approximate alignments generalize the notion of alignment by allowing moves to
be non-unitary, thus providing a user-defined mechanism to decide the granular-
ity for observing deviations of a model with respect to observed behavior. A novel
technique for the computation of approximate alignments has been presented in
this paper, based on a divide-and-conquer strategy that uses ILP models both as
splitting criteria and for obtaining partial alignments. The technique has been
implemented as a prototype tool and the evaluation shows promising capabilities
to handle large instances.

As future work, we see many possibilities. On the one hand, a thorough
evaluation of the quality of the obtained results over a large set of benchmarks
will be carried out. Second, extending the current theory to deal with models
having duplicate transitions will be considered. Also, the incorporation of nat-
ural optimizations like parallelization and caching would have an strong impact.

A Recursive Paradigm for Aligning Observed Behavior 213

Finally, as the recursive method presented in this paper can be used as a high-
level strategy for partitioning the alignment computations, we plan to combine
it with the A∗ approach from [1] for computing partial alignments on the leafs
of the recursion.

Acknowledgments. This work was supported by the Spanish Ministry for Economy
and Competitiveness (MINECO) and the European Union (FEDER funds) under grant
COMMAS (ref. TIN2013-46181-C2-1-R).

References

1. Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Technische
Universiteit Eindhoven (2014)

2. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Measuring precision of modeled behavior. Inf. Syst. E-Bus. Manag. 13(1),
37–67 (2015)

3. Buijs, J.C.A.M.: Flexible evolutionary algorithms for mining structured process
models. Ph.D. thesis, Technische Universiteit Eindhoven (2014)

4. Desel, J., Esparza, J.: Reachability in cyclic extended free-choice systems. TCS
114, 93–118 (1993). Elsevier Science Publishers B.V

5. Esparza, J., Melzer, S.: Verification of safety properties using integer programming:
beyond the state equation. Formal Methods Syst. Des. 16, 159–189 (2000)

6. Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process models to
reality. Inf. Syst. 47, 220–243 (2015)

7. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
with guarantees. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q.
(eds.) BPMDS 2015 and EMMSAD 2015. LNBIP, vol. 214, pp. 85–101. Springer,
Heidelberg (2015)

8. Xixi, L., Fahland, D., van der Aalst, W.M.P.: Conformance checking based on
partially ordered event data. In: Business Process Management Workshops - BPM
2014 International Workshops, Eindhoven, The Netherlands, 7–8 September 2014,
Revised Papers, pp. 75–88 (2014)

9. Xixi, L., Mans, R., Fahland, D., van der Aalst, W.M.P.: Conformance checking in
healthcare based on partially ordered event data. In: Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation, ETFA 2014, Barcelona, Spain, 16–
19 September 2014, pp. 1–8 (2014)

10. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit
decomposed conformance checking. Inf. Syst. 46, 102–122 (2014)

11. Murata, T.: Petri nets: Properties, analysis and applications. Proc. IEEE 77(4),
541–574 (1989)

12. Silva, M., Teruel, E., Colom, J.M.: Linear algebraic and linear programming tech-
niques for the analysis of place/transition net systems. In: Reisig, W., Rozenberg,
G. (eds.) APN 1998. LNCS, vol. 1491. Springer, Heidelberg (1998)

13. van der Aalst, W.M.P.: Process Mining - Discovery: Conformance and Enhance-
ment of Business Processes. Springer, Heidelberg (2011)

14. van der Aalst, W.M.P.: Decomposing petri nets for process mining: a generic app-
roach. Distrib. Parallel Databases 31(4), 471–507 (2013)

214 F. Taymouri and J. Carmona

15. vanden Broucke, S.K.L.M., Munoz-Gama, J., Carmona, J., Baesens, B.,
Vanthienen, J.: Event-based real-time decomposed conformance analy-
sis. In: Meersman, R., Panetto, H., Dillon, T., Missikoff, M., Liu, L.,
Pastor, O., Cuzzocrea, A., Sellis, T. (eds.) OTM 2014. LNCS, vol. 8841,
pp. 345–363. Springer, Heidelberg (2014)

16. De Weerdt, J., vanden Broucke, K.L.M., Vanthienen, J., Baesens, B.: Active trace
clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12),
2708–2720 (2013)

Modeling Foundations

Semantics and Analysis of DMN Decision Tables

Diego Calvanese1, Marlon Dumas2, Ülari Laurson2, Fabrizio M. Maggi2(B),
Marco Montali1, and Irene Teinemaa2

1 Free University of Bozen-Bolzano, Bolzano, Italy
2 University of Tartu, Tartu, Estonia

f.m.maggi@ut.ee

Abstract. The Decision Model and Notation (DMN) is a standard nota-
tion to capture decision logic in business applications in general and
business processes in particular. A central construct in DMN is that of
a decision table. The increasing use of DMN decision tables to capture
critical business knowledge raises the need to support analysis tasks on
these tables such as correctness and completeness checking. This paper
provides a formal semantics for DMN tables, a formal definition of key
analysis tasks and scalable algorithms to tackle two such tasks, i.e., detec-
tion of overlapping rules and of missing rules. The algorithms are based
on a geometric interpretation of decision tables that can be used to sup-
port other analysis tasks by tapping into geometric algorithms. The algo-
rithms have been implemented in an open-source DMN editor and tested
on large decision tables derived from a credit lending dataset.

Keywords: Decision model and notation · Decision table · Sweep
algorithm

1 Introduction

Business process models often incorporate decision logic of varying complexity,
typically via conditional expressions attached either to outgoing flows of deci-
sion gateways or to conditional events. The need to separate this decision logic
from the control-flow logic [2] and to capture it at a higher level of abstraction
has motivated the emergence of the Decision Model and Notation (DMN) [8].
A central construct of DMN is that of a decision table, which stems from the
notion of decision table proposed in the context of program decision logic specifi-
cation in the 1960s [10]. A DMN decision table consists of columns representing
the inputs and outputs of a decision, and rows denoting rules. Each rule is a
conjunction of basic expressions captured in an expression language known as
S-FEEL (Simplified Friendly Enough Expression Language).

The use of DMN decision tables as a specification vehicle for critical business
decisions raises the question of ensuring the correctness of these tables, in par-
ticular the detection of inconsistent or incomplete DMN decision tables. Indeed,
detecting errors in DMN tables at specification time may prevent costly defects
down the road during business process implementation and execution.
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 217–233, 2016.
DOI: 10.1007/978-3-319-45348-4 13

218 D. Calvanese et al.

This paper provides a foundation for analyzing the correctness of DMN
tables. The contributions of the paper are: (i) a formal semantics of DMN tables;
(ii) a formalization of correctness criteria for DMN tables; and (iii) scalable algo-
rithms for two basic correctness checking tasks over DMN tables, i.e., detection
of overlapping rules and detection of missing rules (i.e., incompleteness). The
latter algorithms are based on a novel geometric interpretation of DMN tables,
wherein each rule in a table is mapped to an iso-oriented hyper-rectangle in an
N-dimensional space (where N is the number of columns). Accordingly, the prob-
lem of detecting overlapping rules is mapped to that of detecting overlapping
hyper-rectangles. Meanwhile, the problem of detecting missing rules is mapped to
that of computing the difference between the N-dimensional universe defined by
the domains of the N columns of a DMN table, and the set of hyper-rectangles
induced by its rules. Based on this geometric interpretation and inspired by
sweep-based spatial join algorithms [1], the paper presents scalable algorithms
for these two analysis tasks. The algorithms have been implemented atop the
dmn-js editor and evaluated over decision tables of varying sizes derived from a
credit lending dataset.

The rest of the paper is structured as follows. Section 2 introduces DMN
and discusses related work. Section 3 presents the formalization of DMN tables
and their associated correctness criteria. Section 4 presents the algorithms for
correctness analysis while Sect. 5 discusses their empirical evaluation. Finally,
Sect. 6 summarizes the contributions and outlines future work directions.

2 Background and Related Work

2.1 Overview of DMN Decision Tables

A DMN table consists of columns corresponding to input or output attributes,
and rows corresponding to rules. Each column has a type (e.g., a string, a num-
ber, or a date), and optionally to a more specific domain of possible values, which
we hereby call a facet. Each row has an identifier, one expression for each input
column (a.k.a. the input entries), and one specific value for each output column

Table 1. Sample decision table with its constitutive elements

Loan Grade
U C Annual Loan Grade

Income Size
≥ 0 ≥ 0 VG,G,F,P

A [0..1000] [0..1000] VG
B [250..750] [4000..5000] G
C [500..1500] [500..3000] F
D [2000..2500] [0..2000] P

Table name

Hit indicator

Completeness
indicator

Input attrs

Facet

Output attr

Rule

Priority
indicator

Input entries Output entry

Semantics and Analysis of DMN Decision Tables 219

(the output entries). For example, Table 1 shows a DMN table with two input
columns, one output column and four rules.

Given an input configuration consisting of a vector of values (one entry per
column), if every input entry of a row holds true for this input vector, then the
vector matches the row and the output entries of the row are evaluated. For
example, vector 〈500, 4230〉 matches rule B in Table 1, thus yielding G in the
output configuration. To specify how output configurations are computed from
input ones, a DMN table has a hit indicator and a completeness indicator. The
hit indicator specifies whether only one or multiple rows of the table may match
a given input, and if multiple rules match an input, how should the output
be computed. The completeness indicator specifies whether every input must
match at least one rule or potentially none. If an input configuration matches
multiple rules, this may contradict the hit policy. Similarly, if no rule matches an
input configuration, this may contradict the completeness indicator. The former
contradiction is called overlapping rules while the latter is called missing rule.

2.2 Analysis of DMN Decision Tables

The need to analyze decision tables from the perspective of completeness (i.e.,
detecting missing rules) as well as consistency and non-redundancy (i.e., detect-
ing overlapping rules) is widely recognized [3]. These two analysis tasks have been
tackled using rough sets [9]. However, this approach requires that the domains of
the input attributes are boolean or categorical. Numerical attributes need to be
previously discretized into intervals and in such a way that no two intervals over
any column overlap. For example, approaches based on rough sets cannot handle
situations where multiple overlapping intervals appear along the same attribute
(e.g., [151..300] and [200..250]). Instead, the table needs to be expanded so that
these intervals do not overlap (e.g., intervals [151..300] and [200..250] need to be
broken down into [151..200], [201..250] and [251..300]) and this expansion can in
the worst case increase the size of the table exponentially.

Prologa [11,12] is a tool for modeling and executing classical decision tables.
It supports the construction of decision tables in a way that prevents overlap-
ping or missing rules. It also supports the simplification of decision tables via
rule merging: two rules are merged when all but one of their input entries are
identical, and their output entries are also identical. However, Prologa has the
same intrinsic limitation as the rough set approach: it requires columns to have
categorical domains. Numerical domains need to be broken down into elementary
non-overlapping intervals as explained above. The same limitations hold in other
techniques for detecting overlapping and missing rules [7,13] and algorithms for
simplifying decision tables [6]. In other words, while the verification and sim-
plification of decision tables with discrete or discretized domains has received
much attention, the case where the columns have both discrete domains and
numeric domains with arbitrary interval expressions has not been considered in
the literature.

220 D. Calvanese et al.

Signavio’s DMN editor1 detects overlapping and missing rules without impos-
ing discretization of numeric domains. However, the employed techniques are
undisclosed and no empirical evaluation thereof has been reported. Also, the
diagnosis of overlapping and missing rules produced by Signavio is unnecessarily
large: it often reports the same rule overlap multiple times. This behavior will
be further explained in Sect. 5.

OpenRules2 uses constraint satisfaction techniques to analyze business rules,
in particular rules encoded in decision tables. While using a general solver to
analyze decision tables is an option (e.g., an SMT solver such as Z3 [4]), this
approach leads to a boolean output (is the set of rules satisfiable?), and cannot
natively highlight specific sets of rules that need to be added to a table (missing
rules), nor specific overlaps between pairs of rules that need to be resolved.

3 Formalization

In this section, we provide a formalization of DMN decision tables, unambigu-
ously defining their input/output semantics, and at the same time introducing
several analysis tasks focused on correctness checking. As a concrete specifica-
tion language for input entries, we consider the S-FEEL language introduced in
the DMN standard itself.

Our formalization is based on classical predicate logic extended with data
types, which are needed to capture conditions that employ domain-specific pred-
icates such as comparisons interpreted over the total order of natural numbers.
Such formalization is important per sè, as it defines a clear, unambiguous seman-
tics of decision tables, and also as an interlingua supporting the comparison of
different analysis techniques.

3.1 Data Types and S-FEEL Conditions

We first introduce the building blocks of decision tables, i.e., the types of the
modeled attributes, and conditions over such types expressed using the S-FEEL
language. A data type T is a tuple 〈ΔT , ΣT 〉, where ΔT is an object domain,
and ΣT = ΣP

T �ΣF
T is a signature, constituted by a set ΣP

T of predicate symbols,
and a set ΣF

T of function symbols (disjoint from ΣP
T). Each predicate symbol

R ∈ ΣP
T comes with its own arity n, and with an n-ary predicate RT ⊆ Δn

T that
rigidly defines its semantics. Each function symbol f ∈ ΣF

T comes with its own
arity m, and with a function Δm

T → ΔT that defines its semantics. To make the
arity explicit in predicate and function symbols, we use the standard notation
R/n and f/m. As usual, we assume that every data type is equipped equality
as a predefined, binary predicate interpreted as the identity on the underlying
domain. Hence, we will not explicitly mention equality in the signatures of data
types. In the following, we show some of the S-FEEL data types3:
1 http://www.signavio.com.
2 http://openrules.com/.
3 Date/time data types are also supported but can be considered as simple numeric

attributes.

http://www.signavio.com
http://openrules.com/

Semantics and Analysis of DMN Decision Tables 221

– TS = 〈S, ∅, ∅〉 – strings.
– TB = 〈{true, false}, ∅, ∅〉 – boolean attributes.
– TZ = 〈Z, {0/0,1/0, </2, >/2}, {+/2,−/2, ·/2,÷/2}〉 – integer numbers

equipped with the usual comparison predicates and binary operations;
– TR (defined as TZ by replacing the domain Z with R, and by reinterpreting all

predicates and functions accordingly) – real numbers equipped with the usual
comparison predicates and binary operations.

The set of all such types is denoted by T. Since decision tables do not support
conditions that combine multiple data types, we can assume that the object
domains of all types in T are pairwise disjoint.

S-FEEL allows one to formulate conditions over types. These conditions con-
stitute the basic building blocks for facets and rules, which in turn are the
core of decision tables. The syntax of an (S-FEEL) condition Q over type is:

Q ::= “−” | Term | “not(” Term “)” | Comparison | Interval | Q1,Q2

Comparison ::= COp Term
COp ::= “=” | “<” | “>” | “≤” | “≥”

Interval ::= (“(” | “[”) Term1 “..” Term2 (“)” | “]”)
Term ::= v | f(Term1, . . . ,Termm)

where v is an object and f is an m-ary function.
S-FEEL supports the following conditions on a given data type T =

〈ΔT , ΣT 〉: (i) “−” indicates any value, i.e., it holds for every object in ΔT .
(ii) “= Term” indicates a matching expression, which holds for the object in
ΔT that corresponds to the result denoted by term Term. A term, in turn,
corresponds either to a specific object in ΔT , or to the recursive application
of an m-ary function in ΣT to m terms. It is worth noting that, in the actual
S-FEEL standard, the symbol “ = ” is usually omitted, that is, when resolving
the scope symbol Q, Term is interpreted as a shortcut notation for “= Term”.
(iii) Comparison is only applicable when T is a numeric data type, and indi-
cates a comparison condition, which holds for all objects that are related via the
employed comparison predicate to the object resulting from expression Term.
(iv) Interval is only applicable when T is numeric, and allows the modeler to
capture membership conditions that tests whether an input object belongs to
the modeled interval. (v) “Q1,Q2” indicates an alternative condition, which holds
whenever one of the two conditions Q1 and Q2 holds.

Example 1. The fact that a risk category is either high, medium or low can be
expressed by the following condition over TS: “high, medium, low”. By using TZ

to denote the age of persons (in years), the group of people that are underage
or old (i.e., having at least 70 years) is captured by condition “[0..18], ≥ 70”. �

3.2 Decision Tables

We are now in the position of defining DMN decision tables. See Table 1
for a reference example. A decision table D is a tuple 〈T, I,O,Type,Facet,
R,Priority, C,H〉, where:

222 D. Calvanese et al.

– T is the table name.
– I and O are disjoint, finite sets of input and output attributes (represented

as strings).4

– Type : I � O → T is a typing function that associates each input/output
attribute to its corresponding data type.

– Facet is a facet function that associates each input/output attribute a ∈ I�O
to a condition over Type(a), defining the acceptable objects for that attribute.
Facet functions are depicted as “optional lists of values” in Table 1.

– R is a finite set of rules {r1, . . . , rp}. Each rule rk is a pair 〈Ifk,Thenk〉, where
Ifk is an input entry function that associates each input attribute ain ∈ I
to a condition over Type(ain), and Thenk is an output entry function that
associates each output attribute aout ∈ O an object in Type(aout).

– Priority : R → {1, . . . , |R|} is a priority function injectively mapping rules
in R to a corresponding rule number defining its priority. If no priority is
explicitly given, in accordance with the standard we assume that the priority
is implicitly defined by the graphical ordering in which rule entries appear
inside the decision table.

– C ∈ {c, i} is the completeness indicator, where c is the default value and
stands for complete table, while i stands for incomplete table.

– H ∈ {u, a, p, f} is the (single) hit indicator defining the policy for the rule
application, where: (i) u is the default value and stands for unique hit policy,
(ii) H = a stands for any hit policy, (iii) H = p stands for priority hit policy,
and (iv) H = f stands for first hit policy.

We now informally review the intuitive semantics of rules and of complete-
ness/hit indicators in DMN, moving to the formalization in Sect. 3.3.

Rule Semantics. Intuitively, rules follow the standard “if-then” interpretation.
Rules are matched against input configurations, which map the input attributes
to objects in such a way that each object (i) belongs to the type of the corre-
sponding input attribute, and (ii) satisfies the corresponding facet. If, for every
input attribute, the assigned object satisfies the condition imposed by the rule
on that type, then the rule triggers, and bounds the output attributes to the
actual objects mentioned by the rule.

Example 2. Consider the decision table in Table 1. The input configuration
where Income is 500 and Loan is 4230, triggers rule B. �

Completeness Indicator. When the table is declared to be complete, the
intention is that every possible input configuration must trigger at least one
rule. Incomplete tables, instead, have input configurations with no matching
rule.

4 These are called “expressions” in the DMN standard, but we prefer the term
“attribute” as it is less ambiguous.

Semantics and Analysis of DMN Decision Tables 223

Hit Policies. Hit policies specify how to handle the case where multiple rules
are triggered by an input configuration. In particular:

– “Unique hit” indicates that at most one rule can be triggered by a given input
configuration, thus avoiding the need of handling how to compute the output
objects in the case of multiple triggered rules.

– “Any hit” indicates that when multiple rules are triggered, they must agree
on the output objects, thus guaranteeing that the output is unambiguous.

– “Priority hit” indicates that whenever multiple rules trigger, then the output is
unambiguously computed by only considering the contribution of the triggered
rule that has highest priority.

– “First hit” can be understood as a variant of the priority hit, in which priority
is implicitly obtained from the ordering in which rules appear in the decision
table. Hence, this case is subsumed by that of priority hit.

– “Collect” implies that multiple rules can match an input configuration and
when this is the case, all matching rules are fired the resulting output con-
figurations are aggregated. Aggregation is orthogonal to correctness checking,
and thus we leave the “Collect” policy outside the scope of the formalization
below.

3.3 Formalization of Rule Semantics and of Analysis Tasks

We first define how conditions map to corresponding formulae. Since each con-
dition is applied to a single input attribute, the corresponding formula has a
single free variable corresponding to that attribute. Given a condition Q over
type T = 〈ΔT , ΣT 〉, the condition formula for Q, written ΦQ, is a formula using
predicates/functions in ΣT and objects from ΔT , and possibly mentioning a sin-
gle free variable, constructed as follows:

ΦQ �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true if Q = “−”
¬ΦTerm if Q = “not(Term)”
x = Term if Q = Term
x COp Term if Q = “COp Term”and COp ∈ {<,>,≤,≥}
x > ΦTerm1

∧ x < ΦTerm2
if Q = “(Term1..T erm2)”

x > ΦTerm1
∧ x ≤ ΦTerm2

if Q = “(Term1..T erm2]”
x ≥ ΦTerm1

∧ x < ΦTerm2
if Q = “[Term1..T erm2)”

x ≥ ΦTerm1
∧ x ≤ ΦTerm2

if Q = “[Term1..T erm2]”
ΦQ1x ∨ ΦQ2x if Q = “Q1,Q2”

As usual, we also use notation ΦQ(x) to explicitly mention the free variable of
the condition formula.

Example 3. Consider the S-FEEL conditions in Example 1. The condition over
the risk category is Risk = high ∨ Risk = medium ∨ Risk = low. The condition
formula person ages is instead: (Age ≥ 0 ∧ Age ≤ 18) ∨ Age ≥ 70. �

224 D. Calvanese et al.

With this notion at hand, we now formalize the notions of correctness of rule
specifications, semantics of rules, and semantics of completeness and hit indica-
tors. These notions are building blocks for an overall notion of table correctness.

Let D = 〈T, I,O,Type,Facet, R,Priority, C,H〉 be a decision table with m
input attributes I = {a1, . . . ,am}, n output attributes O = {b1, . . . ,bn},
and p rules R = {r1, . . . , rp}. We use variables x1, . . . , xm for objects match-
ing the input attributes, and variables y1, . . . , yn for those matching the output
attributes.

Facet Correctness. We first consider the Facet correctness of D, which intu-
itively amounts to check whether all the mentioned input conditions and out-
put objects are compatible with their corresponding attribute facets. Given an
attribute a ∈ I∪O and a corresponding input variable x, we can identify whether
a condition Q over a is compatible with a, i.e., whether the condition is specified
in such a way that can potentially trigger, or is instead contradictory with the
facet attached to a:

CompatibleQ
a � ∃x.ΦFacet(a)(x) ∧ ΦQ(x)

Rule Semantics. A rule r = 〈If,Then〉 ∈ R is triggered by a configuration
x1, . . . , xm of input objects whenever each such object matches with the corre-
sponding input condition:

TriggeredByr(x1, . . . , xm) �
∧

i∈{1,...,m}
Matches If(ai)

ai
(xi)

Two configurations �x and y1, . . . , yn of input and output objects are input-output
related by a rule r = 〈If,Then〉 ∈ R if the rule is triggered by the input configu-
ration, and binds the output as specified by the output configuration:

IORelr(�x, y1, . . . , yn) � TriggeredByr(�x) ∧
∧

j∈{1,...,n}
MatchesThen(bj)

bj
(yj)

Completeness. When declaring that a table is (in)complete, there is no guar-
antee that the specified rules guarantee this property. To check whether this is
indeed the case, we introduce a formula that holds whenever each possible input
configuration triggers at least one rule:

CompleteD � ∀x1, . . . , xm.
∨

k∈{1,...,p}
TriggeredByrk(x1, . . . , xm)

Hit Policies. We start with the unique hit policy, which requires that each
input configuration triggers at most one rule. This can be formalized as follows:

UniqueD � ∀�x.
∧

i∈{1,...,p}

⎛

⎝TriggeredByri(�x) →
∧

j∈{1,...,p}\{i}
¬TriggeredByrj (�x)

⎞

⎠

Semantics and Analysis of DMN Decision Tables 225

We then continue with the any hit policy. Here multiple rules may be trig-
gered by the same input configuration, but if so, then they must agree on the
output. This can be formalized as follows:

AgreesOnOutputD �
∧

i,j∈{1,...,p},i �=j

(∀�x∀�y.TriggeredByri(�x)
∧ TriggeredByrj (�x) → IORelri(�x, �y)

∧ IORelrj (�x, �y)
)

We now consider the case of priority hit policy. This requires to reformulate
the rule semantics, so as to consider the whole decision table and the priority of
the rules. In particular, with this hit policy a rule r ∈ R is triggered with priority
by an input configuration �x if it is triggered by �x in the sense specified above,
and no rule of higher priority is triggered by the same input �x:

TriggeredWithPriorityByr(�x) � TriggeredByr(�x) ∧
∧

rh∈{r′|r′∈R and Priority(r′)>Priority(r)}
¬TriggeredByr′(�x)

Finally, we observe that the priority hit policy may create a situation in which
some rules are never triggered. This happens when other rules of higher priority
have more general input conditions. We formalize this notion by introducing a
formula dedicated to check when a rule r1 ∈ R is masked by another rule r2 ∈ R:

MaskedByr2
r1

� Priority(r2) > Priority(r1) ∧ ∀�x.TriggeredByr1
(�x) → TriggeredByr2

(�x)

Correctness Formula. We now combine the previously defined formulae into
a single formula that captures the overall correctness of a decision table.

We say that D is correct if the following conditions hold:

1. Every table cell, i.e., every input condition or output object, is legal for the
corresponding attribute (considering the attribute type and facet).

2. The completeness indicator corresponds to c iff the table is indeed complete.
3. The rules are compatible with the hit policy indicator:

(a) if the hit policy is u, each input configuration triggers at most one rule;
(b) if the hit policy is a, all overlapping rules (i.e., rules that could simulta-

neously trigger) have the same output;
(c) if the hit policy is p, all rules are “useful”, i.e., no rule is masked by a

rule with higher priority.

Based on the previously introduced formulae, we formalize correctness as:

CorrectD �
∧

〈If,Then〉∈R

(
∧

a∈I

Compatible If(a)a ∧
∧

b∈O

CompatibleThen(b)b

)

∧ (
(C = c) ↔ CompleteD

)

∧ (
(H = u) → UniqueD

)

∧ (
(H = a) → AgreesOnOutputD

)

∧
(
(H = p) →

∧

r1,r2∈R

¬MaskedByr2
r1

)

226 D. Calvanese et al.

Global Input-Output Formula. We combine the previously defined formulae
into a single formula that captures the overall input-output relation induced by
D. This is done by exploiting the notion of input-output related configurations
by a rule, so as to cover the entire table. Specifically we say that an input
configuration �x and an output configuration �y are input-output related by D if:

1. The hit policy is either u or a, and there exists a rule that relates �x to �y (in
the case of any hit policy, there could be many, but they establish the same
input-output relation, so it is sufficient to pick one of them);

2. The hit policy is p, and there exists a rule relating �x to �y without any other
rule of higher priority that is triggered by �x (if such a rule exists, then it is
such rule that has to be selected to relate input-output).

This is formalized as follows:

IORelD(�x, �y) �
(
(H = u ∨ H = a) →

∨

r∈R

IORelr(�x, �y)
)

∧

⎛

⎜⎝(H = p) → ∨
r=〈If,Then〉∈RTriggeredWithPriorityByr(�x)

∧∧
j∈{1,...,n} MatchesThen(bj)

bj
(yj)

⎞

⎟⎠

4 Algorithms

We now introduce algorithms to handle the two main analysis tasks introduced
in the previous section: detecting overlapping rules and (in)completeness. The
proposed algorithms rely on a geometric interpretation of a DMN table. Every
rule in a table is seen as an iso-oriented hyper-rectangle in an N-dimensional
space (where N is a number of columns). Indeed, an input entry in a rule can
be seen a constraint over one of the columns (i.e., dimensions). In the case of
a numerical column, an input entry is an interval (potentially with an infinite
upper or lower bound) and thus it defines a segment or line over the dimension
corresponding to that column. In the case of a categorical column, we can map
each value of the column’s domain to a disjoint interval – e.g., “Refinancing”
to [0..1), “Card payoff” to [1..2), “Car leasing” to [2..3), etc. – and we can see
an input entry under this column as defining a segment (or set of segments)
over the dimension corresponding to the column in question. The conjunction
of the entries of a row hence defines a hyper-rectangle, or potentially multi-
ple hyper-rectangles in the case of a multi-valued categorical input entry (e.g.,
{“Refinancing”, “Car leasing”}). The hyper-rectangles are iso-oriented because
only constraints of the form “attribute operator literal” are allowed in S-FEEL
and such constraints define iso-oriented lines or segments.

For example, the geometric interpretation of Table 1 is shown in Fig. 1.5 The
two dimensions, x and y, represent the two input columns (Annual income and

5 For simplicity, the figure is purely schematic and does not preserve the scale along
the axes.

Semantics and Analysis of DMN Decision Tables 227

Loan size) respectively. The table contains 4 rules: A, B, C, and D. Some of them
are overlapping. For example, rule A overlaps with rule C. Their intersection is
the rectangle [500, 1000] × [500, 1000]. The table also contains missing values.
For example, vector 〈200, 2000〉 does not match any rule in Table 1.

Fig. 1. Geometric representation of the DMN table shown in Table 1

The algorithms are presented for numeric columns. Minor adaptations (not
discussed here) allow these algorithms to handle categorical columns as well.

4.1 Finding Overlapping Rules

Algorithm 1 finds overlapping rules in a DMN table. This algorithm is an exten-
sion of line-sweep algorithm for two-dimensional spatial joins proposed in [1]. The
idea of this latter algorithm is to pick one dimension (e.g., x-axis), project all
hyper-rectangles into this dimension, and then sweep an imaginary line orthog-
onal to this axis (i.e., parallel to the y-axis). The line stops at every point in
the x-axis where either an hyper-rectangle starts or ends. When the line makes
a “stop”, we gather all hyper-rectangles that intersect the line (the active list).
These hyper-rectangles overlap along their x-axis projection. In [1], it is then
checked if the hyper-rectangles also overlap in the y-axis, and if so they are
added to the result set (i.e., the hyper-rectangles overlap). Algorithm 1 extends
this idea to N dimensions. The algorithm takes as input:

1. ruleList, containing all rules of the input DMN table;
2. i, containing the index of the column under scrutiny;
3. N, representing the total number of columns;
4. OverlappingRuleList, storing the rules that overlap.

The algorithm starts analyzing the first column of the table (axis x). All rules
are projected over this column. Note that the projection of a rule on a column
is an interval. We indicate the projection of rule K over axes x and y with
IxK and IyK respectively. All the intervals are represented in terms of upper and
lower bounds. The bounds are sorted in ascending order (line 7). The algorithm

228 D. Calvanese et al.

iterates over the list of sorted bounds (line 8). In the case of Fig. 1, the rules
projected over the x axis correspond are:

A

B

C

Dlower bound upper bound

Considering the rules above, the algorithm first analyzes the lower bound of
IxA. Therefore, IxA is added to an active list of intervals for the first column x,
Lx, since the bound processed is a lower bound (line 13). Next, the algorithm
processes the lower bound of IxB and IxB is added to Lx. Then, the lower bound
of IxC is processed and IxC is added to Lx. Finally, the algorithm processes the
upper bound of IxB. Every time an upper bound of an interval is processed (line
9), the following column of the table is analyzed (in this case y) by invoking
findOverlappingRules recursively (line 10).

All the interval projections on y of the rules corresponding to intervals con-
tained in Lx (in our example A, B, and C) are represented in terms of upper
bounds and lower bounds as depicted below:

A

B

C

The bounds are sorted in ascending order. The algorithm iterates over the list
of sorted bounds. Considering the intervals above, the algorithm first encounters
the lower bound of IyA. Therefore, IyA is added to the active list of intervals for the
second column y, Ly. Next, the algorithm processes the lower bound of IyC and
adds IyC to Ly. Then, the upper bound of IyC is processed. Since there is no other
column in the table, this means that all the rules corresponding to the intervals
in Ly overlap. At the end of each recursion, the interval corresponding to the
current bound is removed from the current active list (line 11). In addition,
when the last column of the table is processed (line 1), the algorithm checks
whether the identified set of overlapping rules is contained in one of the other
sets produced in a previous recursion (lines 3). If this is not the case, the new
set of overlapping rules is added to the output list overlappingRuleList (line 4).
In this way, the procedure outputs maximal sets of overlapping rules having a
non-empty intersection stored in overlappingRuleList (line 14).

4.2 Finding Missing Rules

Algorithm 2 describes the procedure for finding missing rules, which is also based
on the line-sweep principle. The algorithm takes as inputs 5 parameters:

1. ruleList, containing all rules of the input DMN table;
2. missingIntervals, storing the current missing intervals;
3. i, containing the index of the column under scrutiny;
4. N, representing the total number of columns;
5. MissingRuleList, storing the missing rules.

Semantics and Analysis of DMN Decision Tables 229

Algorithm 1. Procedure findOverlappingRules.
Input: ruleList; i; N ; overlappingRuleList.

1 if i == N then
2 define current overlap currentOverlapRules; /* it contains the list of rules that overlap

up to the current point */ ;
3 if !overlappingRuleList.includes(currentOverlapRules) then
4 overlappingRuleList.put(currentOverlapRules);

5 else
6 define the current list of bounds Lxi

;

7 sortedListAllBounds = ruleList.sort(i);

8 foreach currentBound ∈ sortedListAllBoundaries do
9 if !currentBound.isLower() then

10 findOverlappingRules(Lxi
,i +1, N , overlappingRuleList); /* recursive call */

11 Lxi
.delete(currentBound);

12 else
13 Lxi

.put(currentBound);

14 return overlappingRuleList;

The algorithm starts analyzing the first column of the table (axis x). Consider
again the projection of the table in Fig. 1 on x:

A

B

C

D

Upper and lower bounds of each interval are sorted in ascending order (line 3).
The algorithm iterates over the list of sorted bounds (line 5).

Considering the rules above, the algorithm first analyzes the lower bound of
IxA. Therefore, IxA is added to an active list of intervals for the first column x, Lx.
An interval is added to the active list only if its lower bound is processed (line
16). If the upper bound of an interval is processed, the interval is removed from
the list (line 18). Next, the algorithm processes the lower bound of IxB . Since Lx

is not empty, IxB is not added to Lx yet (line 12). Starting from the interval IA,B
(line 13) having the lower bound of IxA as lower bound and the lower bound of
IxB as upper bound, the following column of the table is analyzed (in this case y)
by invoking findMissingRules recursively (line 14). All the interval projections
on y of the rules corresponding to intervals contained in Lx (in our example only
A) are represented in terms of upper and lower bounds, obtaining in this case
the following simple situation:

A

The bounds are sorted in ascending order. The algorithm iterates over the list of
sorted bounds. The first bound taken into consideration is the lower bound of IyA
so that IyA is added to Ly (since Ly is empty). Since this bound corresponds to the
minimum possible value for y, there are no missing values between the minimum
possible value for y and the lower bound of IyA (line 6). Next, the algorithm
processes the second bound in Ly that is the upper bound of IyA. Considering
that the upper bound of IyA is the last one in Ly, the algorithm checks if this

230 D. Calvanese et al.

value corresponds to the maximum possible value for y (line 6). Since this is not
the case, this means that there are missing values in the area between the upper
bound of IyA and the next bound over the same column (in this case area 1). The
algorithm checks if the identified area is contiguous to an area of missing values
previously found (line 8). If this is the case the two areas are merged (line 9). If
this is not the case, the area is added to a list of missing value areas (line 11). In
our case, area 1 is added to a list of missing value areas. Note that the algorithm
merges two areas of missing values only when the intervals corresponding to one
column are contiguous and the ones corresponding to all the other columns are
exactly the same. In the example in Fig. 1, areas 4 and 6 are merged.

At this point, the recursion ends and the algorithm proceeds analyzing the
intervals in the projection along the x axis. The last bound processed was the
lower bound of IxB , so that IxB is added to Lx. Next, the algorithm processes the
lower bound of IxC (since Lx is not empty, IxC is not added to Lx yet). Starting
from the interval IB,C having the lower bound of IxB as lower bound and the
lower bound of IxC as upper bound, the following column of the table is analyzed
(in this case y) again through recursion.

All intervals projections on y of the rules corresponding to intervals contained
in Lx (in this case A and B) are represented in terms of upper and lower bounds:

A B

The bounds are sorted in ascending order. The algorithm iterates over the list
of sorted bounds. Considering the rules above, the algorithm first processes the
lower bound of IyA so that IyA is added to Ly (Ly is empty). Then, the upper
bound of IyA is processed. When the algorithm reaches the upper bound of an
interval in a certain column the interval is removed from the corresponding
active list. Therefore, IyA is removed from Ly. Next, the lower bound of IyB is
processed. Since Ly is empty, the algorithm checks if the previous processed
bound is contiguous with the current one (line 6). Since this is not the case, this
means that there are missing values in the area between the upper bound of IyA
and the next bound over the same column (in this case area 2). The algorithm
checks if the identified area is contiguous to an area of missing values previously
found. If this is the case, the two areas are merged. If this is not the case, the
area is added to a list of missing value areas (in our case area 2 is added to a
list of missing value areas). The list of missing areas stored in missingRuleList
is returned by the algorithm (line 20).

5 Evaluation

We implemented the algorithms on top of dmn-js: an open-source rendering and
editing toolkit for DMN tables.6 In it current version, dmn-js does not support
correctness verification. Our dmn-js extension with verification features can be
found at https://github.com/ulaurson/dmn-js and a deployed version is avail-
able for testing at http://dmn.cs.ut.ee.

6 https://github.com/bpmn-io/dmn-js.

https://github.com/ulaurson/dmn-js
http://dmn.cs.ut.ee
https://github.com/bpmn-io/dmn-js

Semantics and Analysis of DMN Decision Tables 231

Algorithm 2. Procedure findMissingRules.
Input: ruleList; missingIntervals; i; N ; missingRuleList.

1 if i > N then
2 define the current list of boundaries Lxi

;

3 sortedListAllBoundaries = ruleList.sort(i);
4 lastBound = 0;
5 foreach currentBound ∈ sortedListAllBoundaries do
6 if !areContiguous(lastBound, currentBound) then
7 missingIntervals[i] = constructInterval(lastBound, currentBound);
8 if missingRuleList.canBeMerged(missingIntervals); then
9 missingRuleList.merge(missingIntervals);

10 else
11 missingRuleList.add(missingIntervals);

12 if !Lxi
.isEmpty()) then

13 missingIntervals [i] = constructInterval(lastBound, currentBound);
14 findMissingRules(Lxi

,missingIntervals,i +1, N , missingRuleList); /*

recursive invocation */

15 if currentBound.isLower() then
16 Lxi

.put(currentBound);

17 else
18 Lxi

.delete(currentBound);

19 lastBound = currentBound;

20 return missingRuleList;

For the evaluation, we created decision tables from a loan dataset of Lend-
ingClub – a peer-to-peer lending marketplace.7 The employed dataset contains
data about all loans issued in 2013–2014 (23 5629 loans). For each loan, there are
attributes of the loan itself (e.g., amount, purpose), of the lender (e.g., income,
family status, property ownership), and a credit grade (A, B, C, D, E, F, G).

Using Weka [5], we trained decision trees to classify the grade of each loan
from a subset of the loan attributes. We then translated each trained decision
tree into a DMN table by mapping each path from the root to a leaf of the
tree into a rule. Using different attributes and pruning parameters in the deci-
sion tree discovery, we generated DMN tables containing approx. 500, 1000 and
1500 rules and 3, 5 and 7 columns (nine tables in total). The 3-dimensional
(i.e., 3-column) tables have one categorical and two numerical input columns; the
5-dimensional tables have two categorical and three numerical input columns, and
the 7-dimensional tables has two categorical and five numerical input columns.

By construction, the generated tables do not contain overlapping or missing
rules. To introduce missing rules in a table, we selected 10% of the rules. For
each of them, we then randomly selected one column, and we injected noise into
the input entry in the cell in the selected column by decreasing its lower bound
and increasing its upper bound in the case of a numerical domain (e.g., interval
[3..6] becomes [2..7]) and by adding one value in the case of a categorical domain
(e.g., { Refinancing, CreditCardPayoff } becomes { Refinancing, CreditCard-
Payoff, Leasing }). These modifications make it that the rule will overlap others.
Conversely, to introduce missing rule errors, we selected 10% of the rules, picked
a random column for each row and “shrank” the corresponding input entry.
7 https://www.lendingclub.com/info/download-data.action.

https://www.lendingclub.com/info/download-data.action

232 D. Calvanese et al.

We checked each generated table both for missing and incomplete rules and
measured execution times averaged over 5 runs on a single core of a 64-bit
2.2 GHz Intel Core i5-5200U processor with 16 GB of RAM. The results are
shown in Table 2. Execution times for missing rules detection are under 2 s,
except for the 7-columns tables with 1000–1500 rules. The detection of over-
lapping rules leads to higher execution times, due to the need to detect sets of
overlapping rules and ensure maximality. The execution times for overlapping
rules detection on the 3-columns tables is higher than on the 5-columns tables
because the 5-columns tables have less rule overlaps, which in turn is due to the
fact that the 5-columns tables have proportionally less categorical columns than
the 3-columns ones.

In addition to implementing our algorithms, we implemented algorithms
designed to produce the same output as Signavio. In Signavio, if multiple rules
have a joint intersection (e.g., rules {r1, r2, r3}) the output contains an over-
lap entry for the triplet {r1, r2, r3} but also for the pairs {r1, r2}, {r2, r3}
and {r1, r3} (i.e., subsets of the overlapping set). Furthermore, the overlap of
pair {r1, r2} may be reported multiple times if r3 breaks r1 ∩ r2 into multiple
hyper-rectangles (and same for {r2, r3} and {r1, r3}). Meanwhile, our approach
produces only maximal sets of overlapping rules with a non-empty intersection.

Table 3 shows the number of sets of overlapping rules and the number of
missing rules identified by our approachvs. Signavio’s one. In all runs, both the
number of overlapping and missing rules is drastically lower in our approach.

Table 2. Execution times (in milliseconds)

3 columns 5 columns 7 columns

#rules 499 998 1 492 505 1 000 1 506 502 1 019 1 496

Overlapping

time

297ms 6 475ms 24 530ms 200ms 1 621ms 5 374ms 5 715ms 6 793ms 30 736ms

Missing time 160ms 611ms 1 672ms 163ms 820ms 1 942ms 2 173ms 7 029ms 18 263ms

Table 3. Number of reported errors of type “overlapping rules” and “missing rule”

3 columns 5 columns 7 columns

#rules 499 998 1 492 505 1 000 1 506 502 1 019 1 496

#overlapping

rule sets

Our approach 131 447 812 110 225 378 139 227 371

Signavio 1 226 10 920 23 115 679 3 692 8 921 23 175 22 002 62 217

#missing rules Our approach 117 330 726 136 254 462 134 322 518

Signavio 668 2 655 5 386 563 2 022 4 832 5 201 18 076 43 552

6 Conclusion and Future Work

This paper presented a formal semantics of DMN decision tables, a notion of
DMN table correctness, and algorithms that operationalize two core elements of

Semantics and Analysis of DMN Decision Tables 233

this correctness notion: the detection of overlapping rules and of missing rules.
The algorithms have been implemented atop the DMN toolkit dmn-js. An empir-
ical evaluation on large decision tables has shown the potential for scalability of
the proposed algorithms and their ability to generate non-redundant feedback
that is more concise than the one generated by the Signavio DMN editor.

The proposed algorithms rely on a geometric interpretation of rules in deci-
sion tables, which we foresee could be used to tackle other analysis problems. In
particular, we foresee that the problem of simplification of decision tables (rule
merging) could be approached from a geometric standpoint. Indeed, if we see the
rules as hyperrectangles, the problem of table simplification can be mapped to
one of finding an optimal way of merging hyperrectangles with respect to some
optimality notion. Another direction for future work is to extend the proposed
formal semantics to encompass other aspects of the DMN standard, such as the
concept of Decision Requirements Graphs (DRGs), which allow multiple decision
tables to be linked in various ways.

Acknowledgement. This research was partly funded by an Institutional Grant of
the Estonian Research Council.

References

1. Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.S.: Scalable sweeping-
based spatial join. In: VLDB (1998)

2. Batoulis, K., Meyer, A., Bazhenova, E., Decker, G., Weske, M.: Extracting decision
logic from process models. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.)
CAiSE 2015. LNCS, vol. 9097, pp. 349–366. Springer, Heidelberg (2015)

3. CODASYL Decision Table Task Group: A modern appraisal of decision tables: a
CODASYL report. ACM (1982)

4. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

5. Hall, M.A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18
(2009)

6. Hewett, R., Leuchner, J.: Restructuring decision tables for elucidation of knowl-
edge. Data Knowl. Eng. 46(3), 271–290 (2003)

7. Hoover, D.N., Chen, Z.: Tablewise, a decision table tool. In: Proceedings of COM-
PASS, pp. 97–108 (1995)

8. Object Management Group: Decision Model and Notation (DMN) 1.0 (2015)
9. Pawlak, Z.: Decision tables - a rough set approach. Bull. EATCS 33, 85–95 (1987)

10. Pooch, U.W.: Translation of decision tables. Compt. Surv. 6(2), 125–151 (1974)
11. Vanthienen, J., Dries, E.: Illustration of a decision table tool for specifying and

implementing knowledge based systems. Int. J. Artif. Intell. Tools 3(2), 267–288
(1994)

12. Vanthienen, J., Mues, C., Aerts, A.: An illustration of verification and validation
in the modelling phase of KBS development. Data Knowl. Eng. 27(3), 337–352
(1998)

13. Zaidi, A.K., Levis, A.H.: Validation and verification of decision making rules. Auto-
matica 33(2), 155–169 (1997)

Dynamic Skipping and Blocking and Dead Path
Elimination for Cyclic Workflows

Dirk Fahland1(B) and Hagen Völzer2

1 Eindhoven University of Technology, Eindhoven, The Netherlands
d.fahland@tue.nl

2 IBM Research - Zurich, Zurich, Switzerland
hvo@ibm.zurich.com

Abstract. We propose and study dynamic versions of the classical flexi-
bility constructs skip and block and motivate and define a formal semantics
for them. We show that our semantics for dynamic blocking is a generaliza-
tion of classical dead-path-elimination and solves the long-standing open
problem to define dead-path elimination for cyclic workflows. This gives
rise to a simple and fully local semantics for inclusive gateways.

1 Introduction

One of the challenges in process management is striking a balance between the
clarity of a process model on one hand and its ability to support a large variety
of process flows on the other hand (also called process flexibility). A model can
express flexibility in different ways: by design, by deviation, by underspecification,
and by change [13,14]. Flexibility by design faces the above challenge directly:
including many different possible paths in a model tends to increase its complexity.

Fig. 1. Model of a flexible process
(Color figure online)

A public service process from a Dutch
municipality [3] illustrates the problem; the
process model (Fig. 1) has 80 process steps
(white) and 20 routing constructs (grey).
As 65 % of the process steps are optional
under some condition, the model also con-
tains 52 explicit paths for skipping 38 single
process steps (black) or 13 segments of mul-
tiple process steps (red). Paths for skipping
are not mutually exclusive but overlap as indi-
cated by the highlighted segment in the middle
of Fig. 1. The complex routing logic is relevant:
in 481 cases over a period of over 1 year, each
case required steps to be skipped, amounting
to 3087 skipped steps for 11846 executed steps
(26 %). Other municipalities running the same
process face similar dynamics [3], their share
of optional process steps ranges between 50 %
and 63 % to allow for 516/5363 to 1574/7684
skips in 1 year. Creating, understanding, and
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 234–251, 2016.
DOI: 10.1007/978-3-319-45348-4 14

Dynamic Skipping and Blocking and Dead Path Elimination 235

maintaining models for such flexible processes with explicit design constructs is
tedious.

The classical concepts to skip tasks and to block a path can be used to express
flexibility by design. They have been used predominantly for static flexibility,
i.e., to remove tasks or paths from the model before deployment through process
model configuration [7]. However, in many processes, skipping and blocking
dynamically depend on user input or dynamically computed data, e.g., Fig. 1 [3].
Such dynamic skipping and blocking can be expressed to some extent in WS-
BPEL by setting the status of a link through a combination of transition con-
ditions, join conditions, suppressing join failure, and dead path elimination -
however, mapping classical skip and block to their implementation in BPEL
is not straight-forward. Furthermore, the link status can carry only the values
‘true’ or ‘false’, but this binary value can have many different causes, which
merges the concepts of flexibility through data conditions, flexibility through
alternate joining of paths, join failure, elimination of paths that were deliber-
ately not taken in the process logic, and elimination of paths that are blocked
through activity failure. This prevents the free combination of these concepts
and can create unintended side effects [15,18]. Moreover, BPEL restricts these
constructs to acyclic control-flow graphs.

In this paper, we study dynamic skipping and blocking in the context of
BPMN with the following contributions:

1. We define dynamic skipping and blocking for BPMN-like languages, each with
a dedicated local semantics, such that they can be used independently from
each other or freely combined. We define the semantics for general control-flow
graphs, including cyclic graphs.

2. We show that the proposed dynamic blocking generalizes the Dead-Path-
Elimination (DPE) concept [18], which so far was limited to acyclic control
flow.

3. We show that dynamic blocking is equivalent to having no control-flow on
the edge. This allows a modeler to comprehend the semantics of ‘block’ flows
as their intended concept: absence of flow. Therefore, dynamic blocking is
closely related with the semantics of inclusive gateways (aka synchronizing
merge pattern, OR-join semantics). Our generalization of DPE to cyclic flow
graphs gives rise to a purely local semantics for inclusive joins. As a result,
our semantics does not entail semantic anomalies such as ‘vicious cycles’ (see,
e.g. [9]). In comparison with existing semantics, it can be enacted faster, i.e.,
in constant time, it is compositional for more models and therefore easier to
understand and use, and it permits more refactoring operations for process
models.

We start by discussing concepts for dynamic skipping and blocking based
on literature for static skipping and blocking in Sect. 2. In Sect. 3, we generalize
dead path elimination to all sound workflow graphs. The resulting local semantics
for inclusive gateways is discussed in Sect. 4 in the context of the larger body
of literature on inclusive join semantics. We conclude in Sect. 5 where we also
compare conceptual and subtle differences of our approach to the literature.

236 D. Fahland and H. Völzer

2 Dynamic Skipping and Blocking

In this section, we present dynamic versions of task skipping and path blocking
together with modeling examples. These constructs are inspired by their well-
known static counterparts. For example, the approach by Gottschalk et al. [7]
allows to make a model configurable by adding visual annotations for ‘execute’,
‘hide’, and ‘block’ to tasks and to inputs and outputs of control-flow nodes.
‘Execute’ leaves the task as is, ‘hide’ removes the task, whereas ‘block’ removes
the task and the entire flow after it until the next flow merge.

Our exposition is partially based on the view that a process is a synchroniza-
tion of state machines. We start by explaining that view.

2.1 Workflow Graphs as Synchronized State Machines

We work with workflow graphs [5] as the model of the core constructs of business
process models. Other modeling elements, e.g., BPMN events, can be added
orthogonally and are out of scope of this paper. We use the following definitions.

A two-terminal graph is a directed graph (multiple edges between a pair of
nodes are allowed) such that (i) there is a unique source and a unique sink and
(ii) every node is on a path from the source to the sink. A workflow graph is
a two-terminal graph with four types of nodes: task, exclusive gateway, parallel
gateway, and dummy such that (i) the source and the sink are exactly the dummy
nodes such that the source has a unique outgoing edge, called the source edge
and the sink has a unique incoming edge, called the sink edge and (ii) each task
has at most one input and at most one output edge. Further, each outgoing edge
e of an exclusive gateway has a guarding expression γ(e). We use the BPMN
[11] semantics and visualization for workflow graphs. We will restrict to sound
workflow graphs, which are defined in Sect. 3.3.

A natural way to understand a workflow graph is to view it as a synchroniza-
tion of state machines, or threads, also called S-components or P-components in
Petri net theory. An S-components represents purely sequential behavior, e.g.,
the lifecycle of a business object such as a purchase order or a payment document.
Multiple objects may be completely synchronized, i.e., have exactly the same life
cycle represented by the same S-component. Otherwise, different S-components
are synchronized through parallel gateways. For example, Fig. 2 shows a decom-
position of a simple workflow graph into two S-components A and B, which are
synchronized in the black part. A more complex example is shown in Fig. 8.

Request
payment info

Request
delivery type

Charge
Credit Card

Receive
order

Credit
Card?

y

Pick
goods

Send
Invoice

Receive
Payment

n

Ship
goods

A

B

A+B

Fig. 2. A workflow graph with two S-components A (red and black) and B (blue and
black) (Color figure online)

Dynamic Skipping and Blocking and Dead Path Elimination 237

More formally, a subgraph G′ of a workflow graph G is said to be sequential
if for every parallel gateway, at most one incoming and at most one outgoing
edge belongs to G′. G′ is an S-component of G if (i) G′ contains the source and
the sink of G and in G′, every node is on a path from the source to the sink, and
(ii) every exclusive gateway has all its incoming and all its outgoing edges in G′.
A set of S-components of G is called a state machine decomposition of G if the
union of all S-components yields G. Note that every sound workflow graph has
a state machine decomposition, which can be computed in cubic time [8]. An
important property of S-components is that each S-component is always marked
with exactly one token.

2.2 Dynamic Skip

Both constructs that we define, i.e., the dynamic skip and the dynamic block,
allow the control flow of a process to skip one or more activities on its path
depending on the evaluation of a dynamic data condition. More precisely,
a data expression is a Boolean-valued expression that may contain variables
that represent data objects of the business process, e.g., amount > 1000,
isGoldCustomer(client). A guard is a data expression associated with a point of
the control flow of the workflow graph, which we model as a separate node with
a single incoming and a single outgoing edge, depicted as a mini-diamond, cf.
the grey mini-diamonds in Fig. 3. This is similar to the data conditions (white
mini-diamonds) in BPMN [11].

A token flowing through a guard triggers the evaluation of the guard. Only
if the guard evaluates to true, then the subsequent activities in the scope of the
guard will be executed. Hence the guard can be considered as a precondition for
the activities in scope. Informally, the scope of a skip guard g is from g until the
next guard (of any type) in the S-component.

A simple application of a skip guard (grey mini-diamond) is shown in
Fig. 3(a), where two activities are skipped when the data condition amount >
1000 evaluates to false. This is of course equivalent to the graph fragment shown
in Fig. 3(b), however Fig. 3(a) represents the same behavior more compactly
while still indicating the two cases of the flow graphically. This allows a mod-
eler to represent more complex behavior more succinctly. The first guard can
‘switch off’ the corresponding S-component, the second guard switches it back
on in order to make sure that the third activity ‘Inform customer’ is executed
in any case.

amount > 1000 Manual credit
approval

Sign by
mananger

Inform
customer

amount > 1000
Manual credit

approval
Sign by

mananger
Inform

customer

true

(a) (b)

Fig. 3. (a) A simple example for skip guards. (b) Its corresponding explicit represen-
tation.

238 D. Fahland and H. Völzer

Receive
Order

GoldCustomer?

Compute
Discount

Create
Invoice

true

Add
Gift

Add
Card

Ship
true

Update
Record

Fig. 4. A workflow graph with three skip guards, a grey and a black token.

A more complex example for skip guards is shown in Fig. 4, which models
a part of an order fulfillment process. There are two S-components which split
up in the center – the upper is concerned with the invoice whereas the lower is
concerned with the physical items to be shipped. Both of these two components
behave differently in case the item is shipped to a gold customer. Hence the
guard is placed already before the parallel split. If the customer is not a gold
customer, then the activities ‘Compute discount’, ‘Add gift’ and ‘Add card’ are
skipped.

We formalize the effect of guards using token colors. The normal token color
is black. The workflow starts with a single black token on the source. A black
token flowing through a skip guard remains black if the guard evaluates to true
and turns into a grey token otherwise. Similarly, a grey token flowing through a
skip guard turns black if the guard evaluates to true and remains grey otherwise.
A black token flowing through an activity executes the activity, a grey token skips
the activity. An activity does not change the color of a token flowing through it.
Likewise, the token color does not change through split gateways and exclusive
joins. A parallel join emits a black token iff at least one of its inputs is black, oth-
erwise it emits a grey token. Hence, a skip guard evaluating to false switches off
the S-component until it is switched on again by another skip guard or by synchro-
nizing with another S-component that is switched on. Figure 4 shows a reachable
marking of the corresponding graph with one black and one grey token.

2.3 Dynamic Block

A skip guard can switch on or off an S-component repeatedly. In contrast,
a block guard blocks an S-component persistently, i.e., after a blocking, the
S-component cannot be switched on again by another guard. Thus any activity
on the S-component is skipped until the S-component synchronizes with another
S-component that is still active. This behavior is known from the synchroniz-
ing split/merge control-flow pattern, which is also known as the inclusive split
and join, cf. Fig. 5(a). Each of the branches, i.e., S-components is either persis-
tently switched on or off after execution of the inclusive split. The active and
inactive branches are finally synchronized through the inclusive join gateway.
Figure 5(b) shows the same behavior in an alternative BPMN notation using
white mini-diamonds to represent the data-based blocking of the corresponding
branch. Hence we use the BPMN white mini-diamond to represent a block guard
as shown in Fig. 5(c).

Dynamic Skipping and Blocking and Dead Path Elimination 239

flight? Reserve
flight

(a) (b)

Select
option

hotel?
Reserve

hotel

Select
option

Reserve
flight

Reserve
hotel

flight?

hotel?

flight?
Reserve

flight
(c)

Select
option

hotel?

Reserve
hotel

Fig. 5. (a) Inclusive split and -join, (b) Inclusive split with BPMN mini-diamond,
(c) Proposed notation with block guards

Figure 6 shows a more elaborate example for the use of block guards. Similarly
to Fig. 5, a subset of the branches can be activated. However, the upper branch
is always taken, which does not need any guard. The lower branch is also always
taken, and hence the activity ‘Add standard travel insurance’ is always executed -
however this branch, i.e., S-component, is switched off subsequently by the block
guard whenever an optional emergency insurance is not selected, which means that
all remaining activities before the parallel join will be skipped. Since all those activ-
ities are skipped whenever a preceding block guard evaluates to false, the guard can
again be viewed as a precondition to those activities.

Select
Options

Car?

Add standard
travel insurace

Select
class

Corporate?

Reserve
flight

Get
quote

Confirm

Book
Reserve

car
Add extra
insurance

Emergency
Insurance?

Add emergency
insurance

Select other
supplier

Rejected?

Fig. 6. A more complex example for a block guard

To formalize block guards, we introduce white tokens. A black or grey token
entering a block guard g turns white when g evaluates to false, otherwise it
retains its color. A white token flowing through a block guard, skip guard, or an
exclusive gateway always retains its color, hence the guard does not need to be
evaluated in that case. If a white token flows through an activity, the activity is
not executed and the color of the token does not change. Likewise, a white token
entering a parallel split produces only white tokens on the outgoing edges of the
parallel split. A parallel split emits a black token iff at least one of its inputs is
black, it emits a grey token iff none of its inputs is black but at least one is grey,
and it emits a white token iff all its inputs are white.

Note that, so far, the difference between a skip and a block guard is merely
that blocking is more permanent than skipping, i.e., a grey token can easily be
turned into a black one whereas a white token cannot. However, we will introduce
another crucial difference in Sect. 3.2.

240 D. Fahland and H. Völzer

3 Dead Path Elimination for Cyclic Workflows

In this section, we define the routing of grey and white tokens in exclusive splits,
and we present dead-path elimination for cyclic workflow graphs.

3.1 Grey Tokens in Exclusive Splits

How should we route a grey or white token in an exclusive split? Both token
colors represent inactive S-components – recall that all incoming and outgoing
edges of an exclusive gateway belong to the same S-components. However, while
a white token cannot execute any activity on any of the outgoing branches of the
exclusive split since it cannot become black, a grey token can become black, and
it will in general execute different activities on different outgoing branches just
as a black token can. Therefore, it matters how we route a grey token and we
route it as a black token, i.e., according to the evaluation of the data expression
in the exclusive split – firmly controlled by the modeler.

This requires care since the data variables that the exclusive split refers to
must be in an expected state, in particular must be defined at all. This is not
trivial since some activities (this is where data is set) have been skipped by
the grey token. Consider for example the exclusive split in Fig. 6, labeled with
‘Rejected?’. This decision refers to a Boolean variable rejected which is set in the
preceding task ‘Confirm’. However, this task is skipped if the preceding guard
‘Emergency insurance selected’ evaluates to false. Therefore the decision value in
the exclusive split is not well defined if ‘Confirm’ is not executed (and that’s why
we cannot use a skip guard but must use a block guard–as we will see later–in
the lower branch of Fig. 6). Likewise, this explicit routing of grey tokens in an
exclusive split must be carefully designed by the modeler if the split represents
the exit condition of a loop to make sure that the process eventually exits the
loop to be able to terminate.

This extra care will not be necessary when using white tokens as we show
below. On the other hand, grey tokens, i.e., skip guards, provide greater flex-
ibility than block guards. In particular, the explicit control of routing grey
tokens in exclusive splits can be leveraged to model different skipping behav-
ior in different branches of the S-component. For example, Fig. 7 models that all
GoldCustomers receive an immediate prioritization of picking their goods; the
upper alternative branch is taken for members living in an area where delivery
via drone is offered, but only GoldCustomers get their picked goods scheduled
for delivery via drone (for non-GoldCustomers this activity is still skipped);
for any customer (Gold or regular) living in a different area the lower branch
is taken and a flyer about alternative rapid delivery options is added to their
shipment.

3.2 White Tokens in Exclusive Splits and Dead Path Elimination

In contrast to the explicit routing of grey tokens, we can route a white token
implicitly at an exclusive split. Intuitively, the routing of a white token does not

Dynamic Skipping and Blocking and Dead Path Elimination 241

GoldCustomer?

Schedule for
drone delivery

Add rapid delivery
flyer to shipment

Ship
Prioritize
picking

Drone
Area?

y

n

true

true

Fig. 7. Flexible skipping in different branches of an S-component

matter, because the S-component is dead anyway – neither of the branches can
be executed because a white token remains white, hence all activities on each
of the branches are skipped. In particular, we do not need to evaluate the data
condition at an exclusive split if a white token arrives at it, which is important,
because it may not be well defined – as we have seen in Fig. 6.

Still we have to make sure that a white token arrives at the next synchroniza-
tion point, i.e., ‘eliminates the dead path’, even or in particular in the presence
of cycles as in Fig. 6, where we have to make sure that the white token is not
following a cycle infinitely often and prevents termination of the process. We
can do that by implicitly ‘flushing out’ the white tokens, i.e., route them auto-
matically towards the sink, thereby providing a form of dead path elimination
for cyclic workflow graphs. We operationalize such a behavior by help of an exit
allocation.

Definition 1. Call any outgoing edge of an exclusive split a choice edge of the
workflow graph. An exit allocation is a mapping φ that assigns to each exclusive
split v one of its choice edges φ(v), called the exit edge, such that, for each edge
e of the workflow graph there exists a path from e to the sink such that each
choice edge on the path is an exit edge.

The intuition behind Definition 1 is that white tokens will get flushed out of
the graph by routing them via exit edges. The exit edges are statically fixed and
can be considered as ‘providing a compass’ to the sink. To justify this definition,
we first observe:

Theorem 1. An exit allocation exists for each workflow graph and it can be
computed in time O(|E| + |V | · log |V |).
Proof. Note that a workflow graph is equivalent to a corresponding isomorphic
free-choice Petri net [5]. Therefore, we can directly apply the theory of free-choice
Petri nets to workflow graphs. An exit allocation is an allocation pointing to the
sink in the sense of [1, Definition 6.4]. Existence follows from [1, Lemma 6.5 (1)].
We can use Dijkstras algorithm to compute, for each node the shortest path to
the sink. We allocate a choice edge of an exclusive split v as exit edge if it starts
the shortest path from v to the sink. It follows that, for each edge e, every choice
edge on the shortest path from e to the sink is an exit edge.

242 D. Fahland and H. Völzer

d3

d2

d1

A B
C

B+C
A+B+C

j2

g1

g2

j1

Fig. 8. A workflow graph decomposed into three S-
components A (red and black), B (orange, green, and
black) and C (blue, green, and black). An exit allo-
cation is shown in bold. (Color figure online)

Figure 8 shows an exam-
ple of an exit allocation
where the exit edges are
shown in bold. A white
token produced by the block
guard g1 will be routed at
the exclusive splits d1 and
d2 towards the parallel join
j2, where it is joined with
either a black token or a
white token produced by
block guard g2. A white
token arriving at d3 is routed
directly to the sink. Note that an exit allocation for the graph in Fig. 8 is not
unique. We could have chosen also the other choice edge of d1 (but not for d2
or d3).

An exit allocation defines the routing of white and only white tokens at
an exclusive split and it does not need to be defined by the modeler – it is
implicitly there, i.e., the compiler or execution engine provides the dead path
elimination automatically. However, since an exit allocation is not unique and
the modeler does not choose it, how does the modeler understand and control the
behavior of the workflow graph? To this end, we prove that the particular choice
of the exit allocation does not matter, i.e., all exit allocations and even more
general, all fair routings of white tokens produce essentially the same behavior.
Therefore any exit allocation operationalizes the same abstract behavior of dead
path elimination.

Before we formally prove this, we have to formalize our extended model of
workflow graphs and their semantics.

3.3 Multipolar Workflow Graphs

In this section, we present the formal concepts for our model, which we named
multipolar workflow graph based on the bipolar synchronization schemes of [6]
which introduced true/false tokens for graphs without choices; see [4, Appen-
dix A] for a rigorous formalization of our model.

A multipolar workflow graph G consists of a workflow graph with two addi-
tional nodes types skip guard (small grey diamond) and block guard (small
white diamond); ◦v and v◦ denote the input and output edges of node v,
respectively. Each guard v has one incoming and one outgoing edge and is
annotated with an expression γ(v) over some data variables, where the data
is accessed during process and updated during task execution. A marking m
assigns to each edge a nonnegative number of tokens, where each token has a
color c ∈ C = {black, grey,white}. We write m[e, c] for the number of tokens of
color c ∈ C on e and m[e] =

∑
c∈C m[e, c] for the number of all tokens of any

color in m on e; m is safe iff m[e] ≤ 1 for each edge e. The marking with exactly
one black token on the source edge and no token elsewhere is called the initial

Dynamic Skipping and Blocking and Dead Path Elimination 243

true

A

A

A

any color

true

true

true

false

false

false

true

true

true

false

false

false

true

*
*
*

**

*

*
*

Fig. 9. Possible transitions of nodes in a multipolar workflow graph.

marking of G. A marking that has a single token of any color on the sink edge
and no token elsewhere is called a final marking of G.

Nodes are enabled as in classical workflow graphs: a task, exclusive gateway,
or guard v needs a token (of any color) on some edge e− ∈ ◦v; a parallel gateway
v needs a token on each edge e− ∈ ◦v. Each node v defines several transitions t
that distinguish the possible colors of input tokens consumed and output tokens
produced in a step m

t→ m′ as illustrated in Fig. 9; see [4, Appendix A] for the
formalization.

A step m
t→ m′ of G is called an elimination step, denoted m

t��� m′ if all
tokens consumed (and produced) by t are white, otherwise it is a normal step.
If m′ can be reached from m through zero or more elimination steps, we write
m

∗��� m′. We write m
max��� m∗ if m

∗��� m∗ and m∗ does not enable any further
elimination step. Given an exit allocation φ for G, we say that an elimination
step m

t��� m′ complies with φ if the white token is produced on e+ = φ(v)
whenever t is a step of an exclusive split v.

A trace of G is a sequence σ = m0, t1,m1, . . . of markings and transitions s.t.
m0 is the initial marking of G and mi

ti+1→ mi+1 for each i ≥ 0; σ is maximal if
it is either infinite or ends in a marking mn such that no transition is enabled
in mn. A trace σ is fair with respect to a choice edge e of an exclusive split v of
G if the following holds: If v is executed infinitely often in σ, then e is marked
infinitely often in σ.

A node v (edge e) is dead in m if no marking reachable from m enables v
(marks e). A node or edge x is live in m if x is not dead in each marking reachable
from m. A local deadlock is a marking in which a node v other than the sink is
dead and an edge e ∈ ◦v is marked. G is live if no marking reachable from the
initial marking m0 is a local deadlock. G is safe if each marking reachable from
m0 is safe. G is sound if G is safe and live. Equivalently, G is sound iff G is safe,
the sink edge is live in m0 and only a final marking is a reachable marking that
marks the sink edge. Soundness guarantees that each maximal and fair trace of
G terminates in a final marking of G.

244 D. Fahland and H. Völzer

3.4 Justification of Exit Allocations

In this section, we justify the use of exit allocations as implementation of dead
path elimination. Let G be henceforth a sound multipolar graph. We first observe
that an exit allocation implements fair behavior:

Proposition 1. Every sequence of elimination steps that complies with an exit
allocation φ is finite.

Proof. The claim follows from [1, Lemma 6.5, (2)]: The free-choice workflow net
that corresponds to the workflow graph, cf. [5], is slightly modified by adding a
transition, called the return transition, that consumes a token from the sink and
produces a token on the source. This version is called the connected version. It is
strongly connected and the exit allocation points to the return transition in the
sense of [1]. Furthermore, each reachable marking of a sound workflow graph is
bounded. [1, Lemma 6.5, (2)] now implies that an infinite elimination sequence
implies infinitely many firings of the return transition, which implies the claim.

In the following, we will prove that all exit allocations generate essentially
the same behavior. We prove first that two maximal elimination sequences that
comply with the same exit allocation end in the same marking:

Lemma 1. Let m0 be a reachable marking, φ be an exit allocation and m0
max���

m1 and m0
max��� m2 be two maximal elimination sequences that comply with φ.

Then we have m1 = m2.

Proof. Every elimination step that is enabled in m0 will be executed in a maximal
elimination sequence because it cannot be disabled by another elimination step.
Therefore, it can be shown by induction that each maximal elimination sequence
contains the same steps, i.e., one maximal sequence is a permutation of the other.
The marking equation for Petri nets (cf. [1]) implies that both sequences end in
the same marking.

As a result, we can consider two elimination sequences both starting in m0 and
ending in m1 = m2 to be equivalent, as neither executes any activities. An even
stronger result holds: any two fair, maximal elimination sequences starting in m0

necessarily reach the same marking even if they do not comply with a particular
exit allocation.

Lemma 2. Let m0 be a reachable marking, m0
max��� m1 and m0

max��� m2 be two
fair maximal elimination sequences. Then we have m1 = m2.

Proof (Sketch). In the state-machine decomposition of the sound WFG, any
S-component contains exactly one token. During elimination steps, the single
white token only travels edges of ‘its’ S-component until reaching a parallel join.
Two different sequences reaching two different markings m1 �= m2 would reach
different parallel joins. But then one would cause either a local deadlock or an
improper termination, i.e., a reachable marking that has a token on the sink edge
and another token elsewhere. Both cases contradict soundness of the WFG. The
detailed proof is given in [4, Appendix B]

Dynamic Skipping and Blocking and Dead Path Elimination 245

We can now prove that the behavior of the WFG does not depend on the choice
of a particular exit allocation, and hence the behavior of the WFG does not
depend on the routing of white tokens. In other words, routing white tokens in
exclusive splits in a fair but otherwise nondeterministic way suffices to reach
a unique marking after finite elimination steps. We do not prove the result in
full generality, i.e., for the most general behavioral equivalence possible, as the
necessary technical overhead would not justify the additional insight within the
scope of this paper. In a technically simplified form, we assume that the WFG
is executed with eager elimination, i.e., after each normal step, we execute a
sequence of maximal elimination steps before we execute the next normal step.

Theorem 2. Let σ and σ′ be two eager traces of a sound multipolar WFG, i.e.,
they are of the form m0

t1→ m1
max��� m2

t2→ . . . where m0 is the initial marking of
the WFG, and

1. ti, i > 0 are normal steps such that for any two markings mi,mj of σ and σ′,
we have mi = mj implies ti+1 = tj+1, i.e. the program behaves deterministi-
cally from a given marking, and

2. mi
max��� mi+1 are fair and maximal elimination sequences.

Then, σ and σ′ have the same sequence of normal steps and in particular the
same sequence of executed activities.

Proof. The theorem follows directly from Lemma 2.

Note that the proof of Theorem 2 rests on the essential property of white tokes,
i.e., that a white token always remains white. This property allows us to route
them automatically.

We have shown that a modeler can abstract from the behavior of white
tokens and consider block guards as a means to disable control-flow along the
subsequent path as if no token is present. As any fair routing of white tokens
is permissible, the compiler or execution engine can choose an exit allocation
that optimizes some cost measure, e.g., the average number of elimination steps,
to implement the fair routing. Control-flow will consistently and predictably re-
emerge at parallel joins with black tokens. Next, we show that this property
allows us to give inclusive gateways a simple and fully local semantics.

4 Dynamic Blocking as Inclusive Gateway Semantics

We have argued already in Sect. 2.3 that parallel gateways in combination with
block guards with their semantics of white tokens and dead path elimination
provide a generalization of inclusive gateways. This allows us to propose to use
the semantics proposed above as an inclusive join semantics. Since we only use
the existing constructs of parallel gateways and white mini-diamonds, the new
semantics would allow us to use inclusive gateways merely as syntactic sugar
for parallel gateways with block guards or to abolish the inclusive gateways
altogether. Next, we discuss such a proposal in more detail.

246 D. Fahland and H. Völzer

Many papers on the inclusive join semantics (aka Or-join semantics) prob-
lem have been published, for a survey see [17]. In this section, we compare
our proposal with existing semantics from the literature with respect to various
properties.

Enactment. Existing semantics that do not restrict to a subset of workflow
graphs are non-local, i.e., the enablement of an inclusive join there depends not
only on the tokens of the incoming edges of the join but also on the presence
of tokens on other edges of the graph. Two kinds of non-local semantics have
been proposed: In the first, the enablement can depend on the entire state space
of the workflow graph, e.g., [9]. Therefore, enactment takes exponential time.
In the second kind of non-local semantics, which includes the current BPMN
semantics [11], the enablement depends on the existence of paths from other
tokens in the graph to the inclusive join [2,17]. It can be determined in linear [17]
or quadratic time [2] respectively whether a particular inclusive join is enabled.
The run time can be reduced in both cases by trading time for space, i.e., by
creating data structures of quadratic size.

The local semantics presented in this paper has a small constant overhead
for storing the additional token colors. It can be determined in constant time
whether a particular inclusive join is enabled under the assumption that the
in-degree of nodes is bounded by a constant.

Compositionality. A process model can be better understood if it is composed
out of simpler patterns or modules. However this is only the case when the simple
module can be understood in isolation, i.e., independent from the context it will
be embedded in. Note that many textbooks explain the semantics of BPMN
gateways, in particular the inclusive gateway by help of simple patterns.

One of the simplest and most popular notions of module is a single-entry-
single-exit fragment, cf. e.g. [16]. Figure 10 shows such a fragment (shaded)
nested in another fragment. Considered in isolation, each fragment has the
expected intuitive and sound behavior in the BPMN semantics, cf. [11,17]. How-
ever, if we compose them in the way shown, the composed workflow graph has a
deadlock (the marking shown in Fig. 10) in the BPMN semantics. This is due to
the non-local semantics of the inclusive join in BPMN where the synchronization
behavior can depend on tokens outside the containing fragment.

In our local semantics, the behavior of any subgraph G depends only on
the tokens it exchanges at its border, i.e., the behavior of a composed graph is

j1

j2

Fig. 10. The current BPMN semantics for inclusive joins is not fully compositional
w.r.t. single-entry-single-exit fragments.

Dynamic Skipping and Blocking and Dead Path Elimination 247

(d)

(c)

s1

j1

j2 s2

(a)

B

A C

D

E

j1

j2''s1 s2

B

(b)
j2'

A

b

d

e
!e

c

b

d

c EC

D

e
!e

Fig. 11. The BPMN inclusive join semantics is not robust under node splitting (a) and
(b). The corresponding refactoring rule (c) is valid in our semantics (d).

the composition of the behaviors of its constituent graphs. Even the non-local
property of soundness is compositional for single-entry-single-exit-fragments in
the local semantics, i.e., a composition is sound if and only if all its constituent
fragments are sound [16]. The example in Fig. 10 shows that the non-local BPMN
semantics [11,17] is not compositional in general in this sense.

Refactoring. Compositionality supports refactoring, i.e., maintenance of a
process model. A fragment can be extracted from a process model, outsourced
into a separate process and then called from different places without changing the
behavior. There are other well-known refactoring operations that preserve the
local semantics, viz. various structural transformation rules originally stated for
Petri nets [10], but which apply to workflow graphs as well. For example, the two
patterns shown in Fig. 11(d) are equivalent in any context in our local semantics
as this is a well-known rule for parallel gateways. Note that the combination
of colors in a parallel join can be seen as a form of disjunction or maximum
operation. In particular, it is commutative and associative. However, the cor-
responding rule for the non-local semantics for inclusive gateways in BPMN is
not valid (Fig. 11(c)). As a counterexample, we consider the model Fig. 11(b)
that is obtained by applying the rule for inclusive joins from Fig. 11(c) on join
j2 of the model of Fig. 11(a). The workflow graph in Fig. 11(b) is not sound –
the marking shown is a deadlock in the non-local semantics of BPMN, whereas
the workflow graph of Fig. 11(a) is sound. Therefore, for that semantics, the
rule in Fig. 11(c) is not a valid refactoring rule. Whether a deadlock occurs or
not depends in our local semantics only on whether all incoming edges are live
(a black, grey, or white token will eventually arrive) or whether one edge is dead
(there may no token arrive). Transformation rules such as the one of Fig. 11(d)
preserve whether an edge is live or dead, and hence can be applied in any situa-
tion. How to express the model of Fig. 11(a) in our semantics is discussed next;
Fig. 13 shows the result.

248 D. Fahland and H. Völzer

(a)

B
D

A

Ca

!a

(b)

B
D

A

Ca

!a

(c)

B
D

A

C
a

!a

(d)

B
D

A

Ca

!a
!a

D
a

Fig. 12. An acyclic workflow graph with inclusive joins (a) and its equivalent models
(b–d)

Expressiveness. A semantics is preferable to another if it can model more (real-
istic) process behaviors than the other in a concise way. The best documented
modeling use case for inclusive gateways is the structured synchronizing merge
pattern, cf. Fig. 5(a). Figure 5(c) already showed that this case can be modeled
isomorphically with parallel gateways and block guards.

Another well-understood context for the use of inclusive joins are acyclic
workflow graphs. There is little debate what semantics inclusive joins should
have in acyclic graphs, only how to express that semantics such that it gener-
alizes to a semantics for general workflow graphs. Figure 12(a) shows a para-
digmatic example, where a task D is executed after concurrent tasks A and B,
but B is executed only when the condition a is false. Often, but not always, all
inclusive joins can be replaced by parallel joins [5], at the price of introducing
additional auxiliary paths called bridges, cf. Fig. 12(b). However, each acyclic
graph in BPMN semantics is equivalent when each inclusive and exclusive split
is replaced with a parallel split with block guards and each exclusive and inclu-
sive join is replaced with a parallel join, which follows from [17, Theorem 2]. The
resulting workflow graph is a BPEL flow with DPE semantics. For the graph in
Fig. 12(a), the resulting graph is shown Fig. 12(c). Note that we can also re-
model the graph in Fig. 12(a) into a well-structured graph, i.e., a graph where
the gateways are matching pairs of split and join, cf. Fig. 12(d). We do this by
using skip guards at the expense of duplicating the conditions a and !a and the
task D.

Acyclic workflow graphs can be composed by single-entry-single-exit nesting
with arbitrary sequential workflow graphs. For the resulting workflow graphs,
the BPMN semantics and our local semantics here agree, which follows from the
theorems in [17]. Only for workflow graphs that cannot be obtained in this way,
the two semantics disagree. A few such graphs with sound behavior have been
documented for technical discussion [2,17]; the model of Fig. 11(a) is an example.
We have verified that these workflow graphs documented there can be easily
equivalently modeled with our local semantics, again by adding bridges. Figure 13
shows the model of Fig. 11(a) in our semantics. The bridges producing white

Dynamic Skipping and Blocking and Dead Path Elimination 249

s1

j1

j2 s2

b

d

e

!e

c

B

A C

D

E

falsefalse

Fig. 13. Representation of the unstructured loop with inclusive gateways of Fig. 11(a)
in our semantics.

tokens (by the ‘false’ block guards) can be merged anywhere along the c and
d branches. In summary, the rare modeling cases where concurrency and loops
cannot be separated by single-entry-single-exit decomposition can still easily be
supported by the local semantics at the expense of extra bridges. The extra
bridges for rare models are a small price to pay for faster execution across all
models and the other advantages of the local semantics discussed above.

Note that the default outgoing edge of inclusive splits as defined in
BPMN [11] to ensure a token in the sink upon termination is not necessary
in the local semantics, because the white tokens that are sent take care of these
issues.

5 Conclusion

We have defined dynamic versions of task skipping and path blocking together
with a local semantics which supports efficient execution. Dynamic path blocking
comes with dead path elimination, which we have generalized to work for all
sound workflow graphs. We argued that when inclusive gateways in BPMN are
semantically replaced with parallel gateways with block guards, the advantages
outweigh the disadvantages. Note also that workflow graphs with a fully local
semantics can be easier and more naturally mapped to Petri nets where a wealth
of tools and algorithms is available for their analysis. In particular, verifying
soundness can be done in polynomial time for the local semantics, whereas no
polynomial-time algorithm is known to verify soundness under the non-local
BPMN semantics for inclusive joins.

Further related work. We already discussed in Sect. 2 how our semantics for
dynamic skipping and blocking originates from ideas of configurable process
models, e.g. [7]. In Sect. 4 we extensively discussed our semantics wrt. works
on the inclusive join semantics. Another way to support dynamic skipping and
blocking is to give each task an explicit activation condition (over process data
and control-flow) that, when evaluated to false, leads to skipping of the activ-
ity [20]; the modeler can choose to further propagate ‘true’ or ‘false’ control-flow
values by a corresponding start condition [19, p. 55]. This model was restricted
to acylic processes, but can be generalized to models where ‘false’ flows are

250 D. Fahland and H. Völzer

contained in a block-structured loop [12]. In these models, an exclusive choice
evaluates one outgoing arc to true and all other outgoing arcs to false. However,
the modeler has to ensure consistent propagation of ‘false’ to skip downstream
activities of paths that should not be taken. Automated propagation of ‘false’
edges, i.e., dead path elimination (DPE) as provided by BPEL was discussed in
Sect. 1. Where existing DPE proposals suffer from only distinguishing ‘false’ and
‘true’ as analyzed in [15,18], our semantics provides different token colors to dis-
tinguish skipping and blocking. Moreover, as we showed in Sect. 3, the ability to
also route skipping and blocking flow across exclusive choices (rather than prop-
agating ‘false’), makes our approach applicable to any model, including cyclic
ones.

Additional remarks. We have assumed a unique sink only for simplicity of the
presentation. Multiple sinks can be easily admitted as they are equivalent to
an implicit inclusive join that merges all sinks into one. The use of blocking
for paths that lead to a sink is compatible with that view and our definition of
blocking.

References

1. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press,
New York (1995)

2. Dumas, M., Grosskopf, A., Hettel, T., Wynn, M.T.: Semantics of standard process
models with OR-joins. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS,
vol. 4803, pp. 41–58. Springer, Heidelberg (2007)

3. Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process models to
reality. Inf. Syst. 47, 220–243 (2015)

4. Fahland, D., Völzer, H.: Dynamic Skipping and Blocking and Dead Path Elimina-
tion for Cyclic Workflows (Ext. Version). BPM Center Report BPM-16-05 (2016).
http://bpmcenter.org

5. Favre, C., Fahland, D., Völzer, H.: The relationship between workflow graphs and
free-choice workflow nets. Inf. Syst. 47, 197–219 (2015)

6. Genrich, H.J., Thiagarajan, P.S.: A theory of bipolar synchronization schemes.
Theor. Comput. Sci. 30, 241–318 (1984)

7. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., La Rosa, M.: Con-
figurable workflow models. Int. J. Coop. Inf. Syst. 17(2), 177–221 (2008)

8. Kemper, P., Bause, F.: An efficient polynomial-time algorithm to decide liveness
and boundedness of free-choice nets. In: Jensen, K. (ed.) ICATPN 1992. LNCS,
vol. 616, pp. 263–278. Springer, Heidelberg (1992)

9. Kindler, E.: On the semantics of EPCs: resolving the vicious circle. Data Knowl.
Eng. 56(1), 23–40 (2006)

10. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

11. OMG: Business process model and notation (BPMN) version 2.0, OMG document
number dtc/2010-05-03. Technical report (2010)

12. Reichert, M., Dadam, P.: ADEPTflex-supporting dynamic changes of workflows
without losing control. J. Intell. Inf. Syst. 10(2), 93–129 (1998)

http://bpmcenter.org

Dynamic Skipping and Blocking and Dead Path Elimination 251

13. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems - Challenges, Methods, Technologies. Springer, Heidelberg (2012)

14. La Rosa, M., van der Aalst, W.M.P., Dumas, M., Milani, F.P.: Business process
variability modeling: a survey. QUT e-Print 61842, QUT, Australia (2013)

15. van Breugel, F., Koshkina, M.: Dead-path-elimination in BPEL4WS. In: Fifth
International Conference on Application of Concurrency to System Design (ACSD
2005), 6–9 June 2005, St. Malo, France, pp. 192–201. IEEE Computer Society
(2005)

16. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analy-
sis for business process models through SESE decomposition. In: Krämer, B.J., Lin,
K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer,
Heidelberg (2007)

17. Völzer, H.: A new semantics for the inclusive converging gateway in safe processes.
In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 294–309.
Springer, Heidelberg (2010)

18. Weidlich, M., Großkopf, A., Barros, A.P.: Realising dead path elimination in
BPMN. In: 2009 IEEE Conference on Commerce and Enterprise Computing, CEC
2009, Vienna, Austria, 20–23 July 2009, pp. 345–352. IEEE Computer Society
(2009)

19. Weske, M.: Workflow management systems: formal foundation, conceptual design,
implementation aspects. Habilitationsschrift Fachbereich Mathematik und Infor-
matik, Universität Münster (2000)

20. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in
a workflow management system. In: 34th Annual Hawaii International Conference
on System Sciences (HICSS-34), 3–6 January 2001, Maui, Hawaii, USA. IEEE
Computer Society (2001)

The Complexity of Deadline Analysis
for Workflow Graphs with Multiple Resources

Mirela Botezatu1,2(B), Hagen Völzer1, and Lothar Thiele2

1 IBM Research, Zürich, Switzerland
mirela.botezatu@gmail.com
2 ETH, Zürich, Switzerland

Abstract. We study whether the executions of a time-annotated sound
workflow graph (WFG) meet a given deadline when an unbounded number
of resources (i.e., executing agents) is available. We present polynomial-
time algorithms and NP-hardness results for different cases. In partic-
ular, we show that it can be decided in polynomial time whether some
executions of a sound workflow graph meet the deadline. For acyclic sound
workflow graphs, it can be decided in linear time whether some or all exe-
cutions meet the deadline. Furthermore, we show that it is NP-hard to
compute the expected duration of a sound workflow graph for unbounded
resources, which is contrasting the earlier result that the expected dura-
tion of a workflow graph executed by a single resource can be computed
in cubic time. We also propose an algorithm for computing the maximum
concurrency of the workflow graph, which helps to determine the optimal
number of resources needed to execute the workflow graph.

1 Introduction

A workflow graph can capture the main control flow of processes modeled in
languages such as BPMN, UML-Activity Diagrams, and Event Process Chains,
cf. [11]. That is, the core routing constructs of these languages can be mapped
to the routing constructs of workflow graphs, which are alternative choice and
merge, and concurrent fork and join. Figure 1 shows an example of a workflow
graph modeling a ticket resolution workflow. After a task to categorize the ticket
(“Label ticket”), there is a choice s1 whether the ticket documents a database
issue (DB) or a disk issue (HDD). Following the case of HDD, there is a prelim-
inary step to fetch the disk logs followed by a fork f2 that spawns two concur-
rent threads. One thread follows “Consistency check”, the other thread follows
“Analyze HDD logs”. Then each thread is merged with the corresponding thread
of the case DB through the merge gateways m1 and m2. After merging, there are
some additional tasks “Identify error” and “Report usage pattern”, before the
threads are synchronized at the join j1. Finally there are some wrap-up tasks,
common to both cases.

A workflow graph is equivalent to a two-terminal free-choice Petri net i.e., a
connected net with a unique source and sink, which is also called a free-choice
workflow net [6]. A workflow graph can be seen as a compact representation of
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 252–268, 2016.
DOI: 10.1007/978-3-319-45348-4 15

The Complexity of Deadline Analysis for Workflow Graphs 253

Fig. 1. An example of a workflow graph and one of its executions (red) (Color figure
online)

the corresponding free-choice net. Therefore, the theory of free-choice Petri nets
directly applies to workflow graphs.

A workflow graph may contain a local deadlock or exhibit lack of synchro-
nization. The latter corresponds to unsafeness in Petri nets. The absence of local
deadlock and lack of synchronization has been termed soundness, which can be
decided in cubic time by help of the rank theorem for free-choice Petri nets [5],
also cf. [1].

In this paper, we analyze whether the executions of a sound workflow graph
meet a given deadline, where tasks, or, equivalently, edges are annotated with
execution times. We are not aware of any similar work for the model class we
investigate. In our previous work [3], we considered the case where the work-
flow graph is executed by a single resource (i.e., executing agent). In this work,
we provide results for the case where the workflow graph is executed by an
unbounded number of resources. We also discuss the case of a fixed number
n > 1 of resources in Sect. 6.

General workflow graphs can of course be analyzed for timing behavior in
terms of their reachability graph, and there are various techniques and tools that
support this [9,10,18]. This holds also for non-Petri-net like models, e.g., timed
automata where the minimum cost reachability problem is addressed through
exponential branch-and-bound based algorithms [13]. Since the construction of
the reachability graph incurs an exponential blowup, these techniques do not
run in polynomial time in the size of the workflow graph. In this paper, we show
that some deadline analysis problems for workflow graphs can nevertheless be
solved in polynomial time.

Table 1. Overview of results; new contributions in bold

1. All

executions

2. Some

execution

3. Probability

of transgression

4. Expected

duration

5. Min. nr.

resources

A. Sound WFG NP-hard O(|V ||E|) NP-hard NP-hard Opena

B. Acyclic sound WFG O(|V | + |E|) O(|V | + |E|) NP-hard NP-hard Opena

C. Regular WFG O(|V | + |E|) O(|V | + |E|) NP-hard NP-hard O(|V | + |E|)
aWe give a heuristic for this in Sect. 5

254 M. Botezatu et al.

Table 1 shows the results for deadline analysis of sound workflow graphs with
unbounded resources, where our new contributions in this paper are written in
bold.

First, we ask whether all executions of a workflow graph finish before a given
deadline. This is a question that arises when the choices made in the process at
runtime are not under our control. This corresponds to Column 1 in Table 1. For
the general case (Cell A.1), loops in the graph are constrained by a termination
order. The complexity result for this case follows directly from Theorem2 in our
previous paper [3]. For acyclic workflow graphs, this question can be answered
in linear time (Cell B.1) and we provide an algorithm for this in Sect. 3. For
regular graphs, which are workflow graphs that can be generated by a regular
expression, i.e., every split corresponds to a join of the same logic (see Fig. 3
for an example), the solutions consist of simple recursive algorithms that run in
linear time (Cell C.1).

Next, we assume we have control over the choices made in the process at
runtime. Therefore, we ask the question whether there exists an instantiation of
the process – an execution – that meets a given deadline. This corresponds to
Column 2 in Table 1. In particular, as one of our main contributions, we show
that for general sound workflow graphs, finding the minimum duration over all
executions can be solved in polynomial time (Cell A.2). When restricting to
acyclic workflow graphs (Cell B.2, similarly as for Cell B.1), the problem can be
solved in linear time. As above, for regular graphs, the minimum duration of an
execution can be computed recursively in linear time.

Suppose not all executions meet a given deadline but only some. We can
then ask whether the probability of a deadline transgression exceeds a given
threshold - Column 3 in Table 1. Results carry over from our previous work [3]
where we have proven that computing whether the probability of an execution
with a single resource terminating before the deadline exceeds a given threshold
is NP-hard (Cells A.3, B.3 and C.3).

Also in the probabilistic framework, another valuable information is the
expected duration of an execution of a given workflow graph. The results related
to this question map to Column 4 in Table 1. We show that computing the
expected duration is NP-hard even for regular graphs. This is in contrast to the
execution with a single resource where, the expected duration can be computed
in cubic time for general sound workflow graphs [3].

Finally, we ask what is the optimal number of resources for the workflow
graph where optimal means the minimum number k of resources such that each
execution achieves its minimal execution time under k resources (Column 5 in
Table 1). We propose an algorithm for computing the maximum concurrency of
a workflow graph in Sect. 5, which is an upper bound for the optimal number of
resources.

2 Preliminaries

In this section, we define the necessary fundamental notions, which include work-
flow graphs and their semantics.

The Complexity of Deadline Analysis for Workflow Graphs 255

A weighted, directed multi-graph G = (V,E, c, w) consists of a set of nodes V ,
a set of edges E, a mapping c : E → V × V that maps each edge to an ordered
pair of nodes and a mapping w : E → N that maps each edge to a nonnegative
integer, called its weight or duration. For each edge e with c(e) = (v, z), we
assume v �= z for simplicity throughout the paper.

A workflow graph Γ = (V,E, c, l, w), is a weighted multi-graph G =
(V,E, c, w) with distinct and unique source and sink nodes, denoted vsource and
vsink , respectively, equipped with an additional mapping l : V \{vsource , vsink} →
{XOR,AND} that associates a branching logic with every node, except for the
source and the sink. Furthermore, we assume that every node is on a path from
the source to the sink, that the source has a unique outgoing edge, called the
source edge (esource), and that the sink has a unique incoming edge, called the
sink edge (esink). For each node v, we define the pre-set of v, •v = {e ∈ E | ∃ z ∈
V : c(e) = (z, v)} and the post-set of v, v• = {e ∈ E | ∃ z ∈ V : c(e) = (v, z)}.
A node with a single incoming edge and multiple outgoing edges is called a split .
A node with multiple incoming edges and a single outgoing edge is called a join.
We don’t allow nodes that have multiple incoming edges as well as multiple out-
going edges. Note that this is not restrictive as such a node can be converted
into a join followed by a split without changing the semantics.

Figure 1 shows a workflow graph in BPMN notation: An XOR gateway is
depicted as a diamond, an AND gateway as a diamond decorated with a plus
sign. Source and sink are depicted as circles. A node that is neither a join,
split, nor source or sink is usually called a task. A task is shown as a rounded
rectangle in Fig. 1. It is natural to assign durations to tasks. Tasks are executed
by resources: non-preemptive, identical agents, and we assume an unbounded
number of these. We will henceforth omit tasks for simplicity and annotate each
edge with a duration w(e) as formalized above.

Let A be a set. A multi-set over A is a mapping m : A → N. For two multi-
sets m1, m2, and each x ∈ A, we have: (m1 + m2)(x) = m1(x) + m2(x) and
(m1 − m2)(x) = m1(x) − m2(x).

A marking m : E → N of a workflow graph is a multi-set over E. If m(e) = i,
we say that there are i tokens on edge e. The marking with exactly one token on
the source edge and no token elsewhere is called the initial marking, denoted by
ms. The marking with exactly one token on the sink edge and no token elsewhere
is called the final marking of the workflow graph, denoted by mf .

The semantics of workflow graphs is defined as a token game as it is in Petri
nets. A comprehensive analysis of the relationship between workflow graphs and
free-choice workflow nets (a subclass of Petri nets) can be found in [6]. The
execution of a node with an AND-logic removes one token from each of its
incoming edges and adds one token to each of the outgoing edges. The execution
of a node with a XOR-logic removes non-deterministically a token from one of
its incoming edges that has a token, then non-deterministically adds one token
to one of the outgoing edges. Although we omit tasks, we allow nodes with just
one incoming and one outgoing edge for technical reasons. For such nodes, XOR-
and AND-logic behave the same.

256 M. Botezatu et al.

A triple T = (E1, v, E2) is called a transition of Γ if v ∈ V , E1 ⊆ •v, and
E2 ⊆ v•. A transition (E1, v, E2) is enabled in a marking m if for each edge
e ∈ E1 we have m(e) > 0 and any of the following propositions:

– l(v) = AND, E1 = •v, and E2 = v•, or
– l(v) = XOR, there exists an edge e such that E1 = {e}, and there exists an

edge e′ such that E2 = {e′}.

We will use •T to denote E1 and T • to denote E2.
A transition T can be executed in a marking m if T is enabled in m. When

T is executed in m, a marking m′ results such that m′ = m−E1 +E2. We write
m −→ m′ if there exists a transition T , enabled in a marking m and its execution
results in a marking m′. We write m

T−→ m′ when the transition T is enabled in
a marking m and its execution results in the marking m′. We use ∗−→ to denote
the transitive and reflexive closure of −→. We say m′ is reachable from a marking
m if m

∗−→ m′. We say m′ is a reachable marking of Γ if ms
∗−→ m′.

An execution of Γ is an alternate sequence σ = 〈ms, T0,m1, T1, · · · 〉 of mark-
ings mi of Γ and transitions Ti such that mi

Ti−→ mi+1, for each i ≥ 0. We will
be using also the shorter notation σ = 〈ms,m1, · · · 〉 to denote an execution.

An execution σ is maximal if either σ is of infinite length or σ ends in a
marking from which no other marking can be reached.

We say an edge e is taken at i if ∃ Ti such that e ∈ T •
i .

A maximal execution is fair if for each XOR-split v, that is executed infinitely
often in σ, each edge e ∈ v• is taken infinitely often in σ.

If σ = 〈m0, T0,m1, T1, · · · , Tn,mn+1〉 is an execution, then τσ =
〈T0, T1, · · · , Tn〉 is a transition sequence leading from m0 to mn+1 and we write
m0

τσ−→ mn+1.
A reachable marking m is a local deadlock if m has a token on an incoming

edge e of an AND-join such that each marking reachable from m also contains a
token on e. A reachable marking m is unsafe or exhibits lack of synchronization
if one edge has more than one token in m. A workflow graph is said to be sound if
it has no local deadlock and no unsafe reachable marking. Soundness guarantees
that every fair execution terminates in the final marking of Γ . Soundness has
various equivalent characterizations and can be decided in polynomial time [1,5].

We now equip each token with an integer-valued clock initialized to zero.
Then the state of the workflow graph is given by the tuple (m, c) where m is the
marking and c : m → N (note that for safe workflow graphs, m : E → {0, 1},
hence m is a subset of E). We carry over the token-game semantics for clocks
and we set (m, c) T−→ (m′, c′), when m

T−→ m′ and c′(e) = c(e) for e ∈ m′ \ T •

and c′(e) = w(e) + max{ c(e′) | e′ ∈ •T} for e ∈ T •.
In the initial marking, the state of the workflow graph is given by (ms, cs),

where cs(esource) = w(esource). Similarly, in the final marking, the state of the
workflow graph is given by (mf , cf). We then define the duration of an execution
σ as cf (esink), where σ ends in the final marking mf .

Let Γ be a WFG; Γ is sequential if it contains no AND-split and no -join. It
is acyclic if the underlying graph has no cycles. A regular workflow graph is a

The Complexity of Deadline Analysis for Workflow Graphs 257

Fig. 2. Regular patterns Fig. 3. Regular graph

workflow graph that can be generated from a regular expression as follows. Let ε
be a constant symbolizing an edge and X,Y variables for workflow graphs. Then
a regular workflow graph expression is the smallest set such that ε is a regular
workflow graph, and if X and Y are regular workflow graphs, then X ; Y ,
X AND Y , X XOR Y , and X LOOP Y are also regular workflow graphs. From
each regular workflow graph expression, we can generate a workflow graph, where
each expression type corresponds to one of the graph fragment patterns shown
in Fig. 2 and composition is done by replacing an edge labeled with a variable
by another pattern. For example, the expression ((ε; ε) AND (ε LOOP ε))
generates the graph shown in Fig. 3. Note that the loop construct has two loop
bodies. It can be viewed as a combination of a while and a repeat loop, one
loop body before the loop condition one after it. It can be decided in linear
time whether a workflow graph is a regular workflow graph using graph parsing
techniques [14].

3 Workflow Graphs with Nondeterministic Choice

In this section, we present our first main contribution, a polynomial time algo-
rithm that computes the minimum execution time of a workflow graph, which
can be used to determine whether some fair execution of a time annotated work-
flow graph with an unbounded number of resources meets the deadline.

3.1 The Minimum Duration of a Workflow Graph

We start by presenting several preliminary notions that are necessary for the
algorithm. We introduce the accumulated cost associated with an edge in a fair
execution. Based on our definition of the accumulated cost associated with an
edge, the cost accumulated on the source edge represents the cost of a fair execu-
tion. Next, we present an algorithm to compute the minimum cost accumulated
on the source edge, this equals the minimum cost of a fair execution of a given
workflow graph and prove its correctness.

In the following, let Γ be a sound workflow graph.
To facilitate the computation of the cost accumulated on an edge in a fair

execution σ, we express the execution as the sequence of edges that get marked
in σ. To introduce an unambiguous representation, we use τσ = 〈T0, T1, · · · , Tn〉,
the transition sequence that corresponds to σ. The sequence of edges that get
marked in σ is given by 〈esource , T •

0 , T •
1 , · · · , T •

n〉, where each set T •
k such that

258 M. Botezatu et al.

Fig. 4. Workflow graph with edge
weights

Fig. 5. Minimum duration execution
and the accumulated costs

|T •
k | > 1 is ordered in a fixed predefined order (e.g., alphabetic). We use the

notation σ = 〈esource , · · · , ei, · · · , esink 〉. Since we are interested in fair executions
(and we assume soundness), the sequence of edges is finite and ends with esink .

Having the sequence of edges that are marked in σ, we traverse the sequence
backwards, from the last to the first edge in the sequence and update the cost of
an edge e ∈ •v at position i in the sequence based on the cost already computed
for the edges in the sequence that belong to v•.

As an example, consider the workflow graph in Fig. 4. In Fig. 4, edges are
labeled (e.g. e8; 2) with an edge name (e8) and a duration (2). Figure 5 represents
the workflow graph restricted to the elements that are contained in the fair
execution with minimum duration, i.e., it is a representation of the minimum
duration execution. Each edge in Fig. 5 is labeled with the accumulated cost for
reaching the sink in that execution.

For e11, the accumulated cost to reach the sink is: w(e11) to which we add
the cost of esink therefore, 6 + 3 = 9. Based on our update rule for AND-join
nodes, the cost associated to e9 becomes w(e9) plus the cost of e11 and we obtain
14 and the cost associated to e8 becomes w(e8) plus the cost of e11, and we get
2 + 9 = 11. For edges e5 and e1, we update the cost by adding the edge weight
to the accumulated cost on the outgoing edge of the XOR-split, and we obtain
costs 16 (11 + 5) for e1 and 16 (14 + 2) for e5. We apply the same rule for e4
and we obtain an accumulated cost of 19 (16+3) and subsequently also for e2
and we obtain 22 (19 + 3). Now we can compute the cost of the execution. Note
that the AND-join we are about to process spawns two threads. The cost of the
execution is decided by the longest thread (in terms of duration). Therefore, we
update the cost accumulated on esource to be equal to w(esource) + max(16, 22)
which equals 24 and this equals the cost of the execution.

Now we present formally how to compute the accumulated cost associated
with an edge for a given execution. Let ei be the edge at position i in the sequence
of edges that get marked in the execution.

Since we update based on the edges in v•, for the XOR nodes, we define a
function nextσ(ei) such that for the edge at position i, ei ∈ •v, it returns the
edge in v• that get marked next after ei gets marked.

The Complexity of Deadline Analysis for Workflow Graphs 259

For each position i in the sequence of edges that get marked in the execution,
starting from the last index, we update the cost of the edge ei, which we denote
by dσ(ei):

dσ(ei) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w(ei) if ei = esink

w(ei) + dσ(nextσ(ei)) if l(v) = XOR
w(ei) + max{dσ(e′) | e′ ∈ v•} if l(v) = AND and |v•| > 1
w(ei) + dσ(e′) if l(v) = AND and {e′} = v•

Note that this procedure may update the cost of an edge e multiple times
in case the execution is cyclic, i.e. executes an edge multiple times. As the final
accumulated cost associated with the edge e in σ, we take the value of dσ(e)
after the last update.

Since esource is always the first edge in the sequence of edges that get marked
in a fair execution, it follows that e0 = esource and dσ(e0) = dσ(esource). Since
the computation of dσ(e) follows the semantics of workflow graphs, it is easy to
see that dσ(esource) = c(σ), the duration of the execution σ.

The algorithm for computing the minimum duration of a fair execution of a
workflow graph with an unbounded number of resources, Algorithm1, is given
below. It works on a weighted workflow graph, and for each node v, and each edge
e ∈ •v, it updates a value δ(e) that represents the currently known minimum
cost to reach the sink from e based on relaxation rules specific to each node
type (see Algorithm 3). All edge costs are updated at most |V | times for a cyclic
workflow graph (see Algorithm 1) and only once for an acyclic workflow graph
(see Algorithm 2). Upon termination of our algorithm, the value associated to
esource , δ(esource), represents the duration of the minimum duration execution.

The outer loop of the algorithm is similar to the Bellman-Ford algorithm
[2] for sequential graphs, but the parallel constructs entail a different relaxation
procedure to reflect the semantics of sound workflow graphs. In addition, the cor-
rectness proofs are more complex due to the characteristics of workflow graphs.

Next, we will show the correctness of the algorithm. For this we introduce
the definition of the minimum cost that can be accumulated on an edge. This
is necessary for the proofs, as we will demonstrate that the algorithm computes
the minimum cost accumulated on the source edge.

Let e be an edge of Γ and v a node of Γ such that e ∈ •v. We define the
edge enabling marking me, as the reachable marking for which me(e) = 1, v is
enabled in me and no other node is enabled in me. It has been shown [8] that
for a sound workflow graph, the edge enabling marking is unique.

We define d∗(e), the minimum cost downstream from e, as follows:

d∗(e) = min{dσ(e) | σ is a fair execution that starts in me}. (1)

Because Γ is sound, note that since me is a reachable marking, it holds that
me

∗−→ mf .
Since dσ(esource) represents the cost of a fair execution σ, d∗(esource) repre-

sents the duration of the minimum duration execution.

260 M. Botezatu et al.

Algorithm 1. Minimum duration
1: function WFGMin(V, E)
2: for e ∈ E \ {esink} do

3: δ(e) ← ∞
4: end for

5: δ(esink) ← w(esink)

6: for i = 1 : |V | do

7: for all e ∈ E do

8: u, v ← nodes s.t. e = c(u, v)

9: Relax(e,v)
10: end for

11: end for

12: end function

Algorithm 2. Min duration, acyclic
1: function AcyclicWFGMin(V, E)
2: for e ∈ E \ {esink} do

3: δ(e) ← ∞
4: end for

5: δ(esink) ← w(esink)

6: TopologicalSort(Γ)
7: while V �= ∅ do

8: Select v ∈ V s.t. v is maximal
with respect to the topological sort

9: V ← {V \ v}
10: for all e ∈ •v do

11: Relax(e,v)
12: end for

13: end while

14: end function

Algorithm 3. Relaxation of an edge
e ∈ •v
1: function Relax(e,v)
2: if l(v) = XOR and {e′} = v• then

3: if δ(e) > w(e) + δ(e′) then

4: δ(e) ← w(e) + δ(e′)

5: end if

6: end if

7: if l(v) = XOR and |v•| > 1 then

8: if δ(e) > w(e) + mine′∈v• (δ(e′))

then

9: δ(e) ← w(e) + mine′∈v• (δ(e′))

10: end if

11: end if

12: if l(v) = AND and {e′} = v• then

13: if δ(e) > w(e) + δ(e′) then

14: δ(e) ← w(e) + δ(e′)

15: end if

16: end if

17: if l(v)= AND and |v•| > 1 then

18: if δ(e) > w(e) + max{δ(e′) | e′ ∈
v•} then

19: δ(e) ← w(e) +max{δ(e′) | e′ ∈
v•}

20: end if

21: end if

22: end function

Lemma 1. Let e be an edge and v a node such that e ∈ •v. We always have
δ(e) ≥ d∗(e).

The proof of Lemma 1 is presented in [4].

Lemma 2. Let e be an edge. Let σ be a fair execution such that dσ(e) = d∗(e).
Let S = 〈ei−1, · · · , esink 〉 be the sequence edges that get marked after e gets
marked for the last time in σ. Each sequence of calls of Relax(e, v) that has the
property that edges esink , · · · , ei−1, e have been relaxed in this order, after the
sequence of calls to Relax(e, v) we have δ(e) = d∗(e).

The proof of Lemma 2 is presented in [4].

Definition 1. A fair execution σ of Γ , is a loop-free execution if no node is
executed more than once in σ, and therefore no edge is marked more than once
in σ.

Lemma 3. Some fair execution of Γ with minimum duration is loop-free.

The Complexity of Deadline Analysis for Workflow Graphs 261

The proof of Lemma 3 is presented in [4].
For a workflow graph Γ and a fair, loop-free execution σ of Γ , we define Γσ

as the workflow graph Γ restricted to σ such that it contains only the nodes
of Γ that are executed in σ and the edges of Γ such that σ(e) = 1. For a fair,
loop-free execution σ of Γ , it follows that Γσ is an acyclic workflow graph.

The elements of an acyclic workflow graph are in a partial order defined by
the flow of the graph: Let G = (V,E, c) be an acyclic multi-graph. If x1, x2 are
two elements in V ∪ E such that there is a path from x1 to x2, then we say that
x1 precedes x2, denoted x1 � x2, and x2 follows x1.

Lemma 4. For a sound workflow graph, after running the Algorithm1, it holds
that δ(esource) = d∗(esource).

Proof: Lemma 3 states that some fair execution of Γ , with minimum duration,
is loop-free (i). Recall that for a given fair execution σ, dσ(esource) represents the
duration of execution of σ (ii). From (i) and (ii) it follows that some execution
that minimizes dσ(esource) is loop-free (iii).

Note that ms is the edge enabling marking for esource .
Using (iii) and the definition for d∗(e) instantiated to esource , we obtain:
d∗(esource) = min{dσ(esource) | σ is a fair execution that starts in ms }. It

follows that some σ∗ for which dσ∗(esource) = d∗(esource), is a fair, loop-free
execution.

Since σ∗ is loop-free, it means that at most |V | nodes are executed in σ∗. In
each complete relaxation step (one iteration of the loop in line 6 in Algorithm1),
we relax all the edges. Therefore, at the |V |-th iteration we have relaxed all the
edges, in decreasing order with respect to the partial order on the edges of Γσ∗ .
It means that at the |V |-th iteration, we will have relaxed all the edges that get
marked after e gets marked in σ∗. Therefore, from Lemma 2, δ(e) = d∗(e).

Therefore, we computed the duration of the minimum duration execution of
the workflow graph, which is d∗(esource).

For Algorithm 1, the initialization of the edge costs takes O(|V |) time and
each of the |V | iterations over the edges of the workflow graph is performed in
O(|E|) time. The cost update is performed in constant time. Hence, we have
proven the following:

Theorem 1. The minimum duration execution of a sound workflow graph with
unbounded number of resources can be computed in time O(|V ||E|).

3.2 Regular and Acyclic Workflow Graphs

In the following, we briefly present the ideas for computing the maximum dura-
tion of execution for regular and acyclic workflow graphs.

As presented in [3], for a regular workflow graph with a structured cycle, i.e.,
a while or repeat loop, or more general, of the form X LOOP Y , the computation
of the maximum duration requires the specification of the maximal number of
iterations for each loop. If we assume that the backedge of each loop (i.e., edge
“x” in Fig. 2) of the regular graph is annotated with a positive integer k that

262 M. Botezatu et al.

represents the maximum number of times the backedge can be traversed, then
the maximum duration of X LOOP Y is (k + 1) · dX + k · dY where dX denotes
the maximum duration of the loop body X, and dY represents the maximal
duration associated to reentering the loop. For computing the minimum duration
we take k = 0 and the minimum duration of the loop body. We still obtain the
minimum/maximum duration of such an annotated regular workflow graph in
linear time (Cell C.1, C.2 of Table 1).

For acyclic workflow graphs, we can use the algorithm for the cyclic case but
without the need to perform |V | iterations. Instead we exploit the fact that the
elements of an acyclic workflow graph are in a partial order defined by the flow of
the graph. Therefore, in order to make sure that the edges are relaxed respecting
the partial order, first, the graph is sorted topologically - O(|V |+ |E|). Secondly,
the edges are relaxed in descending order with respect to the topological sorting
in O(|E|) time. The algorithm that formalizes this idea is Algorithm2.

Theorem 2. The minimum duration execution of a sound acyclic workflow
graph with unbounded number of resources can be computed in time O(|V |+ |E|).
Note that, in the acyclic case, for computing the maximum duration execution,
one only needs to select the maximum instead of the minimum in the Relax (e, v)
procedure when l(v) = XOR and |v•| > 1.

4 Workflow Graphs with Probabilistic Choice

If not all fair executions of a workflow graph meet the deadline, we could ask
whether at least a large portion of the fair executions does. We approach this
question by assuming that decisions are resolved through a coin flip, i.e., each
XOR-node v is assigned a distribution μ : v• → [0, 1] such that μ(e) > 0 for each
e ∈ v• and

∑
e∈v• = 1. Although some fair executions may not terminate, their

probability1 is zero. We can then take the duration of an execution as a random
variable and ask whether the probability of an execution terminating before the
deadline exceeds a given threshold.

4.1 Expected Duration

In the following, we will present our result for the complexity of computing the
expected duration of a workflow graph.
1 We do not explicitly construct the probability space here on which the development

of this chapter is formally based on. As workflow graphs contain concurrency, we
need to consider maximal partial-order executions to obtain a single probability
space and to avoid the notion of an adversary as in Markov decision processes.
Note that a probabilistic workflow graph does not contain real non-determinism,
just concurrency. The construction of such a probability space is provided elsewhere
[16,17], e.g. for Petri nets and in fact rests on the assumption that the Petri net is
free-choice. In this paper, we are only concerned with the duration of an execution,
which is independent of the interleaving, i.e., the ordering of concurrent events.

The Complexity of Deadline Analysis for Workflow Graphs 263

Theorem 3. Given a regular, acyclic probabilistic workflow graph Γ , computing
the expected duration of Γ executed by an unbounded set of resources is NP-hard.

The proof consists of a reduction from the subset sum problem which is the
problem: given a set D = {d1, · · · , dn} of integers and an integer S, to determine
whether any non-empty subset D′ ⊆ D sums up to exactly S. This problem is
known to be NP-hard. This is equivalent to solving a problem where all the values
d1, · · · , dn, S are multiples of 4 (this statement will be used in the proof later
on). For the proof, we use the class of (regular, acyclic) probabilistic workflow
graphs Γε,n in Fig. 6, where each decision outcome has probability 0.5.

Fig. 6. A probabilistic workflow graph

Proof. Let X,Y be random variables that denote the duration of each of the
two parallel flows of Γε,n. The expected duration of the workflow graph Γε,n is:

E(Γε,n) = E(max (X,Y))
E(Γε,n) = 1

2E(max (S − ε, Y)) + 1
2E(max (S + ε, Y))

Let f be the probability distribution of Y . We rewrite the terms of E(Γε,n)
as follows:

E(max (Y, S − ε)) = (S − ε) Pr(Y ≤ S − ε) +
∑

y>S−ε

yf(y) (2)

E(max (Y, S + ε)) = (S + ε) Pr(Y ≤ S + ε) +
∑

y>S+ε

yf(y) (3)

By using Eqs. (2), (3) we obtain the following expression for E(Γε,n):

E(Γε,n) =
1

2

[
(S+ε) Pr(Y ≤ S+ε)+

∑

y>S+ε

yf(y)+(S−ε) Pr(Y ≤ S−ε)+
∑

y>S−ε

yf(y)
]
.

Let us choose ε > 0 such that no subset of {d1, · · · , dn} has sum in [S − ε, S)
nor in (S, S + ε]. Note that the sum, can still potentially equal exactly S. Such ε
is easy to find. It is enough to choose ε = 2 as all the numbers d1, · · · , dn, S are
multiples of 4.

264 M. Botezatu et al.

We will show that E(Γε,n) = E(Γ ε
2
) if there is no non-empty subset of

{d1, · · · , dn} that sums up to exactly S (i), and E(Γε,n) �= E(Γ ε
2
) otherwise (ii).

If we can compute the expected duration of a workflow graph with unbounded
resources in polynomial time we can solve the subset sum problem in polyno-
mial time. Note that both ε and ε/2 are integers, so we are always considering
workflow graphs with integer weights.

(i) There is no non-empty subset of {d1, · · · , dn} that sums up to exactly S.
In this case, it holds that Pr(Y ≤ S − ε) = Pr(Y ≤ S + ε). Therefore we
update the equation for E(Γε,n)):

E(Γε,n) = 1
2

[
Pr(Y ≤ S + ε)(S + ε + S − ε) +

∑

y>S−ε

yf(y) +
∑

y>S+ε

yf(y)
]
.

E(Γε,n) = 1
2

[
2S Pr(Y ≤ S + ε) +

∑

y>S−ε

yf(y) +
∑

y>S+ε

yf(y)
]
. One can easily

observe that E(Γε,n) = E(Γ ε
2
).

(ii) There exists a non-empty subset of {d1, · · · , dn} that sums up to exactly S.
In this case, Pr(Y ≤ S − ε) �= Pr(Y ≤ S + ε). Therefore,
E(Γε,n) =

1
2

[
(S + ε) Pr(Y ≤ S + ε)+ (S − ε) Pr(Y ≤ S − ε)+

∑
y>S−ε

yf(y)+
∑

y>S+ε

yf(y)
]
.

E(Γε,n) =
1
2

[
(S + ε)(Pr(Y ≤ S − ε) + Pr(Y = S)) + (S − ε) Pr(Y ≤ S − ε) +

∑
y>S−ε

yf(y)

+
∑

y>S+ε

yf(y)
]
.

E(Γε,n) =
1
2

[
2S Pr(Y ≤ S − ε)︸ ︷︷ ︸

T1

+(S + ε) Pr(Y = S)︸ ︷︷ ︸
T2

+
∑

y>S−ε

yf(y) +
∑

y>S+ε

yf(y)
]

︸ ︷︷ ︸
T3

.

Please note that term T2 has different value for E(Γε,n) and E(Γ ε
2
), while T1

and T3 have the same value for E(Γε,n) and E(Γ ε
2
). Therefore, E(Γε,n) �= E(Γ ε

2
).

5 Minimum Number of Resources

In this section, we compute the maximum degree of concurrency of Γ , i.e., the
maximum number of tokens that can exist in the graph in a reachable mark-
ing. This can help in answering a natural question that arises in the quanti-
tative timing analysis of a business process. What is the minimum number k∗

of resources one needs, such that each execution achieves its minimal execution
time? This means there does not exist any execution for which the duration
could be decreased by having more than k∗ resources. The maximum number
of tokens that can exist in the graph is an upper bound for k∗. There are cases
where tighter bounds can be given, as illustrated in Fig. 7 where the maximum
number of tokens is 3, obtained in the marking that marks edges e2, e3 and e4
but 2 resources would suffice for reaching the minimum duration, i.e., 15.

Before presenting the algorithm we need to introduce one more subclass of
workflow graphs.

The Complexity of Deadline Analysis for Workflow Graphs 265

Fig. 7. Tighter bound example

A workflow graph Γ is a marked graph if
any node v ∈ Γ \ {vsource, vsink} is either
an AND-node or an XOR-node with a single
incoming and a single outgoing edge.

There is an EXPTIME algorithm for com-
puting the maximum degree of concurrency for
general worklfow graphs. It is based on com-
puting the reachability graph of Γ , which is the
transition relation → restricted to its reachable markings. Note that for sound
workflow graphs the reachability graph is finite, but exponential in the size of Γ .
Each reachable marking is visited to compute the maximum concurrency degree.

However, efficient algorithms are known for subclasses such as marked graphs,
regular or sequential worklfow graphs. Therefore, we propose to leverage this fact
and tackle the problem through a divide and conquer strategy. This approach
has the potential of speeding up the computation of the maximum degree of
concurrency of a work in practice.

In order to divide the problem into smaller parts, we compute the Refined
Process Structure Tree (RPST) [14] of the workflow graph. The RPST represents
a decomposition of a workflow graph into a hierarchy of sub-workflows that
are subgraphs with a single entry and a single exit of control called fragments
(see e.g., Fig. 8(a)). The decomposition results in a parse tree which reflects the
containment relationship of the fragments.

The algorithm for computing the maximum degree of concurrency works as
follows: (1) divide the problem of computing the maximum degree of concurrency
to subproblems by decomposing the workflow graph into its fragments. These
fragments are labeled with their corresponding subclass (e.g., marked graph).
(2) conquer the problem by computing the maximum degree of concurrency of
the workflow graph based on the maximum degree of concurrency computed for
its fragments. Note that we omit here trivial fragments consisting of a single
edge.

The complexity of the algorithm depends on the subclass of the fragment
f , as follows. It runs in linear time for sequential workflow graphs, where the
returned value is the maximum weight of an edge of this fragment. Similarly
it runs in linear time for regular fragments. For regular fragments modeling
concurrency (cf. Fig. 2c) the maximum degree of concurrency is the sum of the
weights of the edges. For regular fragments modeling choice (cf. Fig. 2b, d, e) the
maximum degree of concurrency is the maximum of the weights of the edges.
The computation of the concurrency degree runs in polynomial time for marked
graphs and in exponential time for the complex fragments – the fragments which
are not regular nor marked-graphs nor state-machines.

An example for how our algorithm works is provided in Fig. 8. In Fig. 8,
edge weights represent the concurrency degree. The root fragment is Sequence
Fragment 2 and the tree has one leaf – the Marked Graph Fragment, Fig. 8(a).
After computing the concurrency degree of the marked graph (value 3) the work
is updated as shown in Fig. 8(b). In the next iteration, the wor is reduced to the e

266 M. Botezatu et al.

wo composed of a regular fragment contained in a sequence fragment, as shown
in Fig. 8(c). The concurrency degree of the regular fragment is computed (we
obtain 3 + 1 = 4), we update the he w and we are left with a sequence fragment
Fig. 8(d). The maximum degree of concurrency of the is the concurrency degree
of this fragment (4).

Fig. 8. An example of a work decomposition into its fragments and its corresponding
RPST (a), the wor and RPST after computing the concurrency degree for the Marked
Graph Fragment (b) the e wo and RPST after computing the concurrency degree for
Sequence Fragment 1 (c) the he w and RPST before the algorithm ends (d)

In the following, we present the approaches for computing the maximum
degree of concurrency for marked graphs and for complex fragments.

Let w denote a |E|×1 column vector representing the degree of concurrency
associated with each edge of Γ . Finding the maximum degree of concurrency of
a marked graph Γ , deg(Γ), can be formulated as:

deg(Γ) = max{m · w | m is a marking reachable from m0} (4)

The solution we propose for computing deg(Γ) in a marked graph is identical
to the computation of the maximum weighted sum of tokens in [12]. In [12]
the author formulates this problem as an integer programming (IP) problem
with integer data and totally unimodular constraint matrix. Note that any IP
problem with integer data and totally unimodular constraint matrix is solvable
in polynomial time.

The complexity of the algorithm is therefore dominated by complex frag-
ments, for which we resort to the EXPTIME algorithm. Since complex fragments
are rare in practice, this approach can be efficient in computing the maximum
degree of concurrency. In a previous study documented in [15] on 645 industrial

The Complexity of Deadline Analysis for Workflow Graphs 267

business process which were translated to workflow graphs, only about 4 % of
the total of their corresponding fragments were complex with an average number
of edges between 21 and 32.

6 Conclusion

We presented new results on the deadline analysis of workflow graphs with an
unbounded number of resources.

Fig. 9. Regular WFG with n
parallel threads

The same questions can be asked in settings with
a fixed number n > 1 of resources. This constraint
leads to problems that can not be solved in polyno-
mial time. The probability of deadline transgression
and the expected duration remain NP-hard which
is easy to see from our justifications in the current
work. For the maximum duration – the worst case
execution time is attained when we require all the
tasks to be executed by a single resource, which we have studied in [3]. What is
different, is the fact that computing the minimum duration of execution becomes
NP-hard for a fixed number n > 1 of resources. For example, for a simple
workflow graph as the one in Fig. 9, let’s assume we need to complete n tasks
T1, · · · , Tn and we have k identical agents to solve them. Finding an assignment
of the tasks to the agents such that the duration of execution (makespan) is
minimized is NP-hard as one can reduce 2-PARTITION to finding the minimum
duration when there are exactly two resources available [7].

In future work, we would like to investigate further whether computing the
maximum degree of concurrency of a WFG is NP-hard or a polynomial time
algorithm exists.

References

1. van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W.E.: An alternative way to
analyze workflow graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T.
(eds.) CAiSE 2002. LNCS, vol. 2348, pp. 535–552. Springer, Heidelberg (2002)

2. Bellman, R.: On a routing problem. Q. Appl. Math. 16, 87–90 (1958)
3. Botezatu, M., Völzer, H., Thiele, L.: The complexity of deadline analysis for work-

flow graphs with a single resource. In: Proceedings of the 20th IEEE ICECCS
Conference, December 2015

4. Botezatu, M., Völzer, H., Thiele, L.: The complexity of deadline analysis for work-
flow graphs with multiple resources. Technical report RZ3896, IBM (2016)

5. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, New
York (1995)

6. Favre, C., Fahland, D., Völzer, H.: The relationship between workflow graphs and
free-choice workflow nets. Inf. Syst. 47, 197–219 (2015)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

268 M. Botezatu et al.

8. Gaujal, B., Haar, S., Mairesse, J.: Blocking a transition in a free choice net and
what it tells about its throughput. J. Comput. Syst. Sci. 66(3), 515–548 (2003)

9. Hansson, H., Jonsson, B.: A framework for reasoning about time and reliability. In:
Proceedings of the Real Time Systems Symposium, 1989, pp. 102–111, December
1989

10. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

11. Mili, H., Tremblay, G., Jaoude, G., Lefebvre, É., Elabed, L., El Boussaidi, G.:
Business process modeling languages: sorting through the alphabet soup. ACM
Comput. Surv. 43(1), 4:1–4:56 (2010)

12. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

13. Popova-Zeugmann, L., Heiner, M.: Worst-case analysis of concurrent systems with
duration interval petri nets. In: BTU COTTBUS, pp. 162–179 (1996)

14. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data
Knowl. Eng. 68(9), 793–818 (2009)

15. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analy-
sis for business process models through SESE decomposition. In: Krämer, B.J., Lin,
K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer,
Heidelberg (2007)

16. Varacca, D., Völzer, H., Winskel, G.: Probabilistic event structures and domains.
Theor. Comput. Sci. 358(2–3), 173–199 (2006)

17. Völzer, H.: Randomized non-sequential processes. In: Larsen, K.G., Nielsen, M.
(eds.) CONCUR 2001. LNCS, vol. 2154, pp. 184–201. Springer, Heidelberg (2001)

18. Wan, M., Ciardo, G.: Symbolic reachability analysis of integer timed Petri nets. In:
Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F.
(eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 595–608. Springer, Heidelberg (2009)

Understandability of Process
Representations

Dealing with Behavioral Ambiguity in Textual
Process Descriptions

Han van der Aa1(B), Henrik Leopold1, and Hajo A. Reijers1,2

1 Department of Computer Sciences, VU University Amsterdam,
Amsterdam, The Netherlands

{j.h.vander.aa,h.leopold}@vu.nl
2 Department of Mathematics and Computer Science,

Eindhoven University of Technology, Eindhoven, The Netherlands
h.a.reijers@vu.nl

Abstract. Textual process descriptions are widely used in organizations
since they can be created and understood by virtually everyone. The
inherent ambiguity of natural language, however, impedes the automated
analysis of textual process descriptions. While human readers can use
their context knowledge to correctly understand statements with mul-
tiple possible interpretations, automated analysis techniques currently
have to make assumptions about the correct meaning. As a result, auto-
mated analysis techniques are prone to draw incorrect conclusions about
the correct execution of a process. To overcome this issue, we introduce
the concept of a behavioral space as a means to deal with behavioral
ambiguity in textual process descriptions. A behavioral space captures
all possible interpretations of a textual process description in a system-
atic manner. Thus, it avoids the problem of focusing on a single interpre-
tation. We use a compliance checking scenario and a quantitative eval-
uation with a set of 47 textual process descriptions to demonstrate the
usefulness of a behavioral space for reasoning about a process described
by a text. Our evaluation demonstrates that a behavioral space strikes
a balance between ignoring ambiguous statements and imposing fixed
interpretations on them.

1 Introduction

Automated techniques for the analysis of business processes provide a wide range
of valuable opportunities for organizations. Among others, they allow to check for
business process compliance [12], to identify redundant activities within an orga-
nization [11], and to identify operational overlap between two business processes
[5]. What all these techniques have in common is that they rely on process models
as input. That is, they build on the formally specified relationships between the
activities of process models to perform their analyses. Thus, these techniques
cannot be applied to less structured forms of process documentation such as
textual process descriptions.

The relevance and widespread use of textual process descriptions as source
for process analysis has been emphasized in various contexts [1,6,10,18]. How-
ever, the inherent ambiguity of textual process descriptions is a challenge to
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 271–288, 2016.
DOI: 10.1007/978-3-319-45348-4 16

272 H. van der Aa et al.

their utilization for analysis purposes. A simple natural language statement such
as “in parallel to the latter steps” leaves considerable room for interpretation.
Whether the word “latter” refers to the preceding two, three, or even more activ-
ities mentioned in the textual description is, in many cases, impossible to infer
with certainty. While human readers can use their context knowledge to make
sense of such statements, it is hardly possible for automated analysis approaches
to resolve such cases. In prior work, techniques for automatically extracting
process models from textual process descriptions circumvented this problem by
introducing interpretation heuristics [6,8,19]. In this way, they obtained a single
process-oriented interpretation of the text. This interpretation, however, con-
tains assumptions on the correct interpretation of undecidable ambiguity issues.
So, there is always the risk that the derived interpretation conflicts with the
proper way to execute the process. As a result, the focus on a single interpre-
tation can lead to incorrect outcomes when reasoning about a business process,
e.g. incorrect assessments on its compliance to regulations or expectations.

To provide a rigorous solution for these reasoning problems, we introduce
a novel concept we refer to as behavioral space. A behavioral space formally
captures all possible behavioral interpretations of a textual process description.
The behavioral space clearly defines which behavior is within and which behavior
is outside the reasonable bounds of interpretation. Therefore, it allows us to
reason about, for example, compliance without the need to impose assumptions
on the correct interpretation of a text.

The remainder of the paper is structured as follows. Section 2 motivates the
problem of reasoning under behavioral ambiguity in textual process descriptions.
Section 3 introduces the notion of a behavioral space to capture behavioral ambi-
guity and Sect. 4 describes how these can be obtained from a text. Section 5
illustrates the usage of behavioral spaces for compliance checking. In Sect. 6 we
demonstrate the importance of behavioral spaces through a quantitative evalua-
tion. Section 7 discusses streams of related work. Finally, we conclude the paper
and discuss directions for future research in Sect. 8.

2 Behavioral Ambiguity in Textual Process Descriptions

In this section, we illustrate the problem of reasoning about business processes
based on textual process descriptions. The key challenge in this context is the
ambiguity of textual process descriptions, in particular with respect to how the
text describes the ordering relations between activities. In the remainder, we
refer to such ambiguity as behavioral ambiguity. Figure 1 illustrates the problem
of behavioral ambiguity by showing a simplified description of a claims handling
process. The description uses typical patterns to describe ordering relations, as
observed in process descriptions obtained from practice and research [6].

At first glance, the description from Fig. 1 appears to be clear. However, on
closer inspection, it turn outs that the description does not provide conclusive
answers to several questions regarding the proper execution of the described
process. For instance:

Dealing with Behavioral Ambiguity in Textual Process Descriptions 273

Fig. 1. Exemplary description of a claims handling process.

Q1. Is it allowed that the claims officer records the claim information before
reviewing the request?

Q2. Which steps must be repeated upon receipt of additional information from
the claimant?

Q3. When can the financial department start taking care of the payment?

Based on the information provided in the textual description, these ques-
tions are not clearly decidable. This lack of decidability results from two forms
of behavioral ambiguity: type ambiguity and scope ambiguity. Type ambiguity
occurs when a textual description does not clearly specify the type of order rela-
tionship between two activities. For instance, the relation between the “review
request” and “record claim information” activities in the first sentence is unclear.
The term “and” simply does not allow us to determine whether these activ-
ities must be executed sequentially or can be executed in an arbitrary order.
Scope ambiguity occurs when statements in a textual description underspecify
to which activity or activities they precisely refer. This type of ambiguity par-
ticularly relates to repetitions and parallelism. For instance, the statement that
“the previous steps must be repeated” does not clearly specify which activities
must be performed again. Similarly, the expression“in the meantime” does not
define when the financial department can start performing its activities.

As a result of such ambiguities, there are different views on how to properly
carry out the described process. When deriving a single structured interpreta-
tion from a textual process description, as is done by process model generation
techniques (cf. [6,8,19]), there is thus always the risk that a derived interpreta-
tion conflicts with the proper way to execute the process. The focus on a single
interpretation can, therefore, lead to wrong conclusions when reasoning about
a business process. This can, for instance, result in a loss of efficiency by not
allowing for parallel execution where possible (Q3). Furthermore, it can even
result in noncompliance to regulations, for example, by failing to impose nec-
essary ordering restrictions (Q1) or by not repeating the required steps when
dealing with the receipt of new claim information (Q2).

To avoid the problems associated with fixed interpretations, automated rea-
soning techniques should take into account all reasonable interpretations of a
textual process description. For this reason, we use this paper to introduce the

274 H. van der Aa et al.

concept of a behavioral space. A behavioral space allows us to capture the full
range of semantics possibly implied by textual descriptions in a structured man-
ner. As such, it provides the basis to safely reason about described processes.

3 Capturing Behavioral Ambiguity Using Behavioral
Spaces

In this section, we introduce and define the concept of a behavioral space. The
notion of a behavioral space provides the foundation to reason about properties
such as conformance and similarity for behaviorally ambiguous process descrip-
tions. The general idea of the notion is to represent the causes and effects of
behavioral ambiguity in a structured manner. Behavioral ambiguity leads to
different views on how to properly execute a business process. To capture these
views, we first conceptualize a single view or interpretation of the process behav-
ior described in a text. For the purposes of this paper, we express this behavior
using the behavioral profile relations from [22].

Behavioral profile relations capture the ordering restrictions that are in effect
between activities. Three different behavioral profile relations can exist for an
activity pair (ai, aj). The strict order relation ai � aj is used to express that
activity ai cannot be executed after the execution of activity aj . The exclusive-
ness relation ai+aj denotes that either activity ai or activity aj can be executed
in a single process instance. Finally, the interleaving order relation ai || aj states
that ai and aj can be executed in an arbitrary order. Based on these behav-
ioral profile relations, we define a behavioral interpretation of a textual process
description as follows:

Definition 1 (Behavioral Interpretation). Given a textual process descrip-
tion T and the set of behavioral profile relations R = {�,+, ||}, we define a
behavioral interpretation as a tuple BI = (AT , BP), with:

– AT : the set of activities described in the textual process description T ;
– BP : AT ×AT � R: a partial function that assigns a behavioral profile relation

from R to a pair of activities from AT , if any.

Multiple behavioral interpretations for the same textual process descrip-
tion occur when the text contains statements about behavioral relations that
can be interpreted in different ways. We refer to such statements as behavioral
statements. Each behavioral statement consists of a single or several words and
describes pair-wise relations between one or more activity pairs. An ambiguous
relational statement can result in multiple, conflicting sets of pair-wise relations.
For instance, the statement “a claim officer reviews the request and records the
claim information”, results in two different interpretations because it is unclear
whether this statement implies a strict order or an interleaving order between
the two described activities. Using the activity identifiers specified in Table 1,
this results in two sets of behavioral relations, namely {a2 � a3} and {a2 || a3}.
Given the set ST of the behavioral statements in a text T , the set of possible

Dealing with Behavioral Ambiguity in Textual Process Descriptions 275

Table 1. Activities in the running example

ID Activity ID Activity

a1 Receive claim a8 Reject claim

a2 Review request a9 Accept claim

a3 Record claim information a10 Receive requested information

a4 Validate documents a11 Calculate payable amount

a5 Write settlement recommendation a12 Record settlement information

a6 Check recommendation a13 Archive claim

a7 Request further information a14 Arrange payment

behavioral interpretations BIT , follows naturally as the set of possible combina-
tions of interpretations of statements in ST . This results in a three-dimensional
view on the behavioral relations that exist between activities, as visualized in
Fig. 2.

Fig. 2. A behavioral space as a collection of m behavioral interpretations

The behavioral space captures this spectrum of possible behavioral interpre-
tations for a textual process description, as given by Definition 2.

Definition 2 (Behavioral Space). Given a textual process description T and
the behavioral profile relations R = {�,+, ||}, we define a behavioral space as
a tuple ST = (AT , ST ,BI, δ), with:

– AT : the set of activities described in the textual process description T ;
– ST : the set of behavioral statements contained in the textual process descrip-

tion T ;
– BI: the set of behavioral interpretations of a textual process description T ;
– δ : AT × AT → P(ST × R), as a function that links the behavioral profile

relations that can exist between activity pairs to sets of behavioral statements.

276 H. van der Aa et al.

In Definition 2, the function δ provides traceability between behavioral state-
ments and the behavioral profile relations included in the behavioral interpre-
tations for activities. This traceability can be used to provide diagnostic infor-
mation when reasoning about compliance. We furthermore use R(ai, aj) ⊆ R
as a short-hand to refer to the set of behavioral profile relations that can exist
between activities ai and aj , e.g. R(a2, a3) = {�, ||}.

4 Obtaining Behavioral Spaces

The procedure to obtain a behavioral space from a textual process description
consists of three main steps, as visualized in Fig. 3. First, we identify the process
activities described in the text T . This results in an activity set AT , as shown
in Table 1 for the claims handling example. Second, we identify the behavioral
relations that exist among these activities. This step involves both the extrac-
tion of behavioral relations for unambiguous behavioral statements, as well as the
extraction of sets of possible behavioral relations for ambiguous behavioral state-
ments. Third, we combine the different interpretations of individual ambiguous
statements into a collection of behavioral interpretations BI in order to obtain
a behavioral space.

Approaches that generate process models from texts, cf. [6], address the chal-
lenges related to the identification of activities (step 1) and to the extraction of
behavioral relations for unambiguous behavioral statements (part of step 2).
Therefore, we focus here on the yet unaddressed challenges related to dealing
with behavioral ambiguity, that is, obtaining sets of possible behavioral rela-
tions for ambiguous statements (Sect. 4.1) and combining these into behavioral
interpretations of a described process (Sect. 4.2).

Fig. 3. Steps involved to obtain a behavioral space from a textual description

4.1 Computing Possible Behavioral Relations

Approaches that generate process models from textual descriptions use
heuristics-based techniques to identify and analyze behavioral statements in a
text. These techniques mainly build on predefined sets of indicators that pin-
point the different types of relations, e.g. “then” as well as “afterwards” for
strict order relations and “while” as well as“meanwhile” for parallel or interleav-
ing order relations. To identify ambiguous behavioral statements, we isolated a

Dealing with Behavioral Ambiguity in Textual Process Descriptions 277

subset of these indicators that result or can result in behaviorally ambiguous
statements. For example, the usage of “meanwhile” or “in the meantime” to
indicate interleaving order relations results in statements with scope ambiguity.
By contrast, this is not the case for “while” because this indicator is naturally
accompanied by a scope specifier, e.g. “while the claim is being archived”. Once
a statement with behavioral ambiguity has been identified, we generate possible
interpretations for these statements. Here, we treat statements with type and
with scope ambiguity differently, since they result in different sets of behavioral
relations.

Statements with Type Ambiguity. A behavioral statement with type ambi-
guity describes that there exists a relation among a specific set of activities, but
does not clearly state the type of relationship. For example, the first sentence
of the running example does not clearly specify whether the order is important
when executing the activities a2 and a3. To capture these different possibilities
in the behavioral space, we generate an interpretation of this statement for each
of the possible relation types, i.e. strict order and interleaving order. This results
in two sets of relations that are linked to the ambiguous behavioral statement
s1: {a2 � a3} and {a2 || a3}.

Statements with Scope Ambiguity. Dealing with behavioral statements
with scope ambiguity is more complex. These statements describe the exis-
tence of a relation, but do not specify between which activities this relationship
holds. For example, the statement “the previous steps must be repeated, once
the requested information arrives”, which we shall refer to as s2, does not state
which activities should be repeated. Though such statements are highly problem-
atic, we do not have to be completely unaware about their meaning, i.e. about
the possible sets of activities that the statements can refer to. In particular,
we can utilize the notion that statements such as “the previous steps” and “in
the meantime” relate to distinct parts of a process. This means that the set of
activities to which these statements refer cannot be any arbitrary combination
of activities. The activities in the set must rather have something in common,
such as activities that are all executed by the same person.

For this reason, we generate interpretations for statements with scope ambi-
guity based on sets of activities that have a certain commonality. In particular,
given a textual process description, we can identify sets of subsequently described
activities that are (i) performed by the same resource, (ii) performed on or with
the same (business) object, or (iii) are part of the same discourse statement
(i.e. a choice in the process). Based on this, we can recognize that “the previous
steps” in s2, can refer to either:

1. The activities performed by the senior claims officer, i.e. {a6, a7, a8, a9};
2. The activities related to the settlement recommendation, i.e. {a5, a6};
3. All previous activities of the process, i.e. {a1, a2, a3, a4, a5, a6, a7, a8, a9}.

278 H. van der Aa et al.

These three possibilities result in three sets of relations that can follow from
the same behavioral statement. In the same way, we can obtain different inter-
pretations for the statement s3: “In the meantime, the financial department takes
care of the payment”. This statement can refer to the following sets of activities:

1. The activities performed by the claims officer, after a senior claims officer
has accepted the claim, i.e. {a11, a12, a13};

2. The activities related to the claim object, i.e. {a13};
3. The last mentioned activity before the statement, i.e. {a13}.

The last interpretation here differs from the third interpretation of statement
s2 because, unlike for s2, statement s3 can also refer to a single activity. In that
case, “in the meantime” is interpreted to simply refer to the preceding activity.
Recognizing that the two latter interpretations of statement s3 encompass the
same set of activities, this results in two instead of three possible interpretations
of s3.

4.2 Generating Behavioral Interpretations

Based on the relations extracted from unambiguous behavioral statements and
the sets of possible relations for ambiguous behavioral statements, we can gen-
erate a set of behavioral interpretations BI for the entire textual description. As
considered in the previous section, the claims handling process contains three
ambiguous statements with, respectively, two, three, and two possible interpreta-
tions. We obtain behavioral interpretations by combining the interpretations of
individual statements in all possible manners. For the claims handling process,
this results in a behavioral space with 12 (2 × 3 × 2) possible interpretations
in BI. To complete the full behavioral profile relations for a behavioral inter-
pretation, we make use of the transitivity of the strict order and interleaving
order relations [20]. In this way, we can obtain relations beyond those pair-wise
relations that we extracted from a textual description. For example, if a text
specifies that activity ai is followed by aj and aj is followed by ak, i.e. ai � aj

and aj � ak, then ai is also followed by ak, i.e. ai � ak.
Once the behavioral interpretations have been constructed, the behavioral

space is complete. Table 2 visualizes the possible behavioral relations for a

Table 2. Possible behavioral relations for activities of the claims handling process.

a9 a10 a11 a12 a13 a14

a9 + � � � � �
a10 || � � � �
a11 + � � ||/�

a12 + � ||/�

a13 + ||
a14 +

Dealing with Behavioral Ambiguity in Textual Process Descriptions 279

fraction of the activities in the running example. The table illustrates that many
of the relations are known with certainty. Still, due to the ambiguous behavioral
statement s3, the relations between, on the one hand, activities a11 and a12, and,
on the other, activity a14 can be both strict orders or interleaving orders. Finally,
it is interesting to note that although the relation between a13 and a14 is affected
by the ambiguous statement s3, its relation type is known with certainty. This
is because all possible interpretations of s3 include the relation a13 || a14.

5 Reasoning Using Behavioral Spaces

By capturing behavioral ambiguity in a structured manner, behavioral spaces
allow us to reason about behavioral properties without the need to arbitrar-
ily settle ambiguity. Similar to behavioral profiles and process models, suitable
reasoning tasks include similarity analysis, matching, and compliance checking.
In this section, we show the usefulness of behavioral spaces for such reasoning
tasks. To achieve this, we describe the specific use case of checking the compli-
ance between a behavioral space and an execution trace.

The goal of compliance checking is to determine whether the behavior cap-
tured in an execution trace is allowed by the behavioral specification of a business
process. The key difference between traditional compliance checking and compli-
ance checking using behavioral spaces lies in the potential outcomes of a check. In
traditional compliance checking, a trace is either compliant or it is non-compliant
with a business process. By contrast, due to the behavioral ambiguity captured
in behavioral spaces, a trace can be either compliant, non-compliant, but also
potentially compliant with a behavioral space. The latter outcome occurs for
traces that comply with one or more behavioral interpretations in a behavioral
space, but not to all of them.

5.1 Behavioral Interpretation Compliance

Compliance checking of a trace t against a behavioral space S builds on the
compliance checking of t against individual behavioral interpretations in BIS .
This is equal to the compliance check of a trace and a behavioral profile, as
obtained from a process model (see [23]). This check builds on a comparison
of the behavioral profile of a trace BPt to the behavioral profile relations of
behavioral interpretation BI. The behavioral profile BPt captures the strict
order and interleaving order relations for the set of activities At in a trace t.
Given an activity pair (ai, aj) ∈ (At ×At), BPt contains the strict order relation
ai �t aj iff at least one occurrence of activity ai precedes an occurrence of
activity aj in t, and no occurrence of aj precedes an occurrence of ai in t. BPt

contains the interleaving order relation ai || aj iff at least one occurrence of ai

precedes an occurrence of aj in t, and at least one occurrence of aj precedes an
occurrence of ai in t.

Given a behavioral profile of a trace BPt and a behavioral interpretation
BI, we can determine if t is compliant to BI by checking if the relations in

280 H. van der Aa et al.

BPt do not violate the behavioral relations in BI. Specifically, t is compliant
to BI if all relations in BPt are subsumed by the relations in BI. A relation
type R ∈ R is subsumed by relation type R′ ∈ R if the relation types are equal,
i.e. R = R′, or if R′ is less restrictive than R. The latter captures the notion that
when an activity pair (ai, aj) is in a strict order or reverse strict order relation
in Bt, this does not violate an interleaving order relation in BI . In other words,
ai � aj ∈ BPt is subsumed by the relation ai || aj ∈ BI.

Based on the notion of subsumption, we define compliance between a trace
and a behavioral interpretation in Definition 3. Here, for brevity we say that an
activity pair (ai, aj) is in reverse strict order, denoted by ai �−1

t aj , if and only
if aj �t ai.

Definition 3 (Trace to Behavioral Interpretation Compliance). Let
t = e1, . . . , em be a trace with an activity set At and BI ∈ BIS a behavioral
interpretation in the behavioral space S, with At ⊆ AS .

– For an activity pair (x, y) ∈ (At × At), the relation xRy ∈ Bt ∪ {�−1
t } is

subsumed by relation xR′y ∈ BI ∪ {�−1
I }, i.e. the subsumption predicate

sub(R,R′) is satisfied, iff R = R′ or R′ = ||.
– Trace t complies to behavioral interpretation BI if for each activity pair (x, y) ∈

(At ×At) the relation in t is subsumed by the relation in BI, i.e. the compliance
predicate compl(t, BI) is satisfied, iff ∀R ∈ Bt ∪ {�−1

t },BI ∪ {�−1
I }, it holds

(xRy ∧ xR′y) =⇒ sub(R,R′).

5.2 Behavioral Space Compliance

Based on the compliance check between a trace and individual behavioral inter-
pretations, we can determine the compliance of a trace to the full behavioral
space. In particular, we can quantify the support of the behavioral space for a
trace and extract the conditions under which this trace complies to the textual
process description. We define the support of a behavioral space S for a trace t
as the ratio between the number of interpretations to which t is compliant and
the total number of interpretations in BIS :

supp(t,S) =
|{BI ∈ BIS | compl(t, BI)}|

|BIS | (1)

The support metric quantifies the fraction of interpretations that allow for
a trace to occur. A support value of 1.0 indicates that a trace is without any
doubt compliant to the behavioral space, i.e. independent of the chosen inter-
pretation. A support of 0.0 shows that there is no interpretation under which a
trace complies to the behavioral space. Therefore, it can be said with certainty
that the trace is non-compliant to S. Finally, any trace t with a support value
0.0 < supp(t,S) < 1.0 is potentially compliant to S. This implies that there are
certain interpretations of the textual description to which the trace complies.
To illustrate the usefulness of the support metric and the additional compliance
information that behavioral spaces can provide, consider the following three par-
tial execution traces of the running example:

Dealing with Behavioral Ambiguity in Textual Process Descriptions 281

– Trace t1 =< a1, a2, a3, a4, a5 >;
– Trace t2 =< a1, a3, a2, a4, a5 >;
– Trace t3 =< a11, a14, a12, a13 >.

The traces t1 and t2 both describe an execution sequence for the first part
of the claim handling process. The difference between the two is that in t1
activity a2 occurs before a3, whereas these are executed in reverse order in
t2, i.e. a2 � a3 ∈ BPt1 and a2 �−1 a3 ∈ BPt2 . Furthermore, recall that
the behavioral relation between these two activities is given by the ambiguous
behavioral statement s2. Depending on the interpretation of s2, there either
exists a strict order or an interleaving order relation between a2 and a3, i.e.
R(a2, a3) = {�, ||}. The relation a2 �t1 a3 from t1 is subsumed by both possible
interpretations included in the behavioral space, since sub(�,�) and sub(�, ||)
are both satisfied. Therefore, t1 is compliant to all interpretations in BI and,
thus, has a support value of 1.0. By contrast, while a2 �−1

t2 a3 in trace t2
is subsumed by relation a2 || a3, this relation is not subsumed by a2 � a3.
Therefore, t2 does not comply to half of the behavioral interpretations in BI.
This results in supp(t2,S) = 0.5.

Aside from providing information on the (fraction of) behavioral interpreta-
tions to which a trace is compliant, behavioral spaces allow us to obtain further
diagnostic information from this compliance check. In particular, we can utilize
the function δ, which relates behavioral statements to relations, to gain insights
into the conditions under which a trace is compliant to a process description. For
example, we can learn under which interpretations of the statement s3, “In the
meantime, the financial department takes care of the payment”, trace t3 is com-
pliant. In t3, the financial department pays the settlement amount (a14) before
the claims officer records the settlement information (a12). This complies with
one of two interpretations of statement s3 and, therefore, results in a support
value of 0.5. Furthermore, we know that this trace is compliant, if and only if
“in the meantime” means “while the claims officer is performing its tasks” and
not “while the claims officer is archiving the claim”. Such diagnostic information
can be useful when interpreting the support values for a trace or when aiming
to resolve the ambiguity contained in a textual description.

6 Evaluation

To demonstrate the importance of behavioral spaces for automated reasoning
about textual process descriptions, we conduct a quantitative evaluation that
assesses the impact of behavioral ambiguity on compliance checking. The goal of
this evaluation is to learn how well behavioral spaces provide a balance between
loose and restricted ways of dealing with behavioral ambiguity. In Sect. 6.1, we
introduce the test collection used for the evaluation. Section 6.2 describes the
details of the evaluation setup. Finally, we present and discuss the evaluation
results in Sect. 6.3.

282 H. van der Aa et al.

6.1 Test Collection

To perform the evaluation, we use the collection of textual process descriptions
from the evaluation of the text to process model generation approach by Friedrich
et al [6]. The collection contains 47 process descriptions obtained from various
industrial and scholarly sources. The included texts differ greatly in size, ranging
from 3 to 40 sentences. Furthermore, they differ in the average length of sentences
and in terms of how explicitly and unambiguously they describe process behavior.
Among others, this results from the variety of authors that created the textual
descriptions. Hence, we believe that the collection is well-suited for achieving a
high external validity of the results.

6.2 Setup

To conduct the evaluation, we implemented a prototype to generate behavioral
spaces from textual process descriptions. To achieve this, we build on the state-
of-the-art text to process model generation approach by Friedrich et al. [6]. In
particular, the Java prototype builds on a library that is part of the RefMod-
Miner1, which implements a process model generation approach in a stand-alone
tool. We use the library to automatically identify activities and extract behav-
ioral profile relations that exist between the activities. Subsequently, we identify
and remove those behavioral relations that result from ambiguous behavioral
statements. Instead, we replace these relations by generating a behavioral space
with the different possible interpretations, following the approach described in
Sect. 4.

To demonstrate the importance of behavioral spaces, we compare the behav-
ior they capture to two alternative ways of dealing with behavioral ambiguity.
On the one end of the spectrum, instead of capturing behavioral ambiguity, a
possibility is to focus only on the behavioral relations that can be extracted with
certainty. For unclear behavioral relations, we take the least restrictive relation,
i.e. the interleaving order. We shall refer to the behavioral profile that imple-
ments this way of dealing with behavioral ambiguity as a minimally restricted
behavioral model. On the opposite end, it is possible to impose assumptions
on ambiguous statements, resulting in a single interpretation of the described
behavior. This is the approach that text-to-process-model generation techniques
use to deal with behavioral ambiguity. We refer to this as a fully interpreted
behavioral model. Together with a behavioral space, we therefore generate three
behavioral models for each of 47 textual process descriptions:

1. Minimally restricted behavioral profile: This behavioral profile only
captures the behavioral relations that can be extracted with certainty from
the textual process description, i.e. we removed all behavioral relations
obtained by the process model generation algorithm from [6] that result from
ambiguous behavioral statements. We refer to the minimally restricted behav-
ioral profile of a text T as BPmin

T .
1 http://refmod-miner.dfki.de.

http://refmod-miner.dfki.de

Dealing with Behavioral Ambiguity in Textual Process Descriptions 283

2. Fully interpreted behavioral profile: The behavioral profile that is
extracted from the process model generated by the process model genera-
tion approach from [6]. We refer to the fully interpreted behavioral profile of
a text T with BP full

T .
3. Behavioral space: The behavioral space generated for the textual descrip-

tion in accordance with the interpretation generation method described in
Sect. 4. We refer to the behavioral space of a text T as ST .

The goal of the evaluation is to show that a behavioral space provides a
balance between the minimally restricted model BPmin

T , which takes an agnostic
view on ambiguous statements, and a fully restricted behavioral profile BP full

T ,
obtained by imposing assumptions to arbitrarily settle behavioral ambiguity. We
illustrate this by comparing the size of the sets of traces that are (potentially)
compliant with the three behavioral models, in accordance to the definitions
provided in Sect. 5.2 Using C(BM) to refer to the collection of traces that are
compliant or potentially compliant to a behavioral model BM , we quantify the
differences using for a textual description T using the following two metrics:

R1(T) =
| C(ST) |

| C(BP full
T) | (2)

R2(T) =
| C(BPmin

T) |
| C(ST) | (3)

R1 quantifies the ratio between the number of traces allowed by a behav-
ioral space and a minimally restricted behavioral profile. Its purpose is to illus-
trate how much behavior that certainly does not conform to the business process
description, is allowed by a model that ignores statements with behavioral ambi-
guity. R2 quantifies the ratio between the number of traces allowed by a behav-
ioral space and those allowed by a fully interpreted behavioral profile. Its purpose
is to illustrate how much behavior that is not unequivocally non-compliant to a
process specification, is removed from consideration when imposing assumptions
on the interpretation of a textual process description.

6.3 Results

Table 3 summarizes the evaluation results for the textual process descriptions
with behavioral ambiguity. The first interesting thing to note is how common
textual process descriptions with behavioral ambiguity are. In total, 32 of the 47
textual process descriptions (70 %) contained one or more ambiguous phrases.
The majority, 28 cases, included just phrases with type ambiguity. Four cases
contain statements with scope ambiguity, 3 of which also contain behavioral
statements with type ambiguity.

For processes with just type ambiguity in their descriptions, there is a clear
difference between the behavior allowed by fully interpreted behavioral profiles

2 For processes that contain loops, we only include traces with at most one repetition.

284 H. van der Aa et al.

Table 3. Evaluation results

Collection P Stype Sscope A |BI| R1 R2

Only type ambiguity 28 64 0 19.6 11.0 100.0 % 37.8 %

With scope ambiguity 4 13 4 24.0 76.5 16.4 % 0.5 %

Total 32 77 4 20.2 19.1 89.5 % 33.7 %

Legend: P = number of processes, Stype = statements with
type ambiguity, Sscope = statements with scope ambiguity, A =
extracted activities per process (avg.), |BI| = interpretations per
behavioral space.

C(BP full) and the behavior allowed by behavioral spaces C(S). As indicated
by metric R2, the fully interpreted behavioral profiles allow for only 37.8% of
the behavior allowed by the behavioral space. The remaining 62.2% represent
traces for which it cannot be said with certainty that these do not comply to
the process described in the text. This difference results from ordering restric-
tions that the text-to-model generation algorithm imposes on activities, even
when these ordering restrictions may not exist. Behavioral spaces do not impose
such restrictions and, thus, mark traces that exhibit such execution flexibility
as potentially compliant. Though these cases already illustrate the impact of
imposing assumptions on the interpretation of textual process descriptions, this
impact is much more severe for cases that also contain statements with scope
ambiguity.

Fig. 4. Visualization of three sets of compliant traces for cases with scope ambiguity.

The behavioral models for the 4 cases with scope ambiguity show consider-
able differences among the behavior they allow. We visualize the relative sizes
of the three sets of compliant traces in Fig. 4. There, the light-gray area denotes
the set of traces compliant with BPmin, i.e. the set of traces that remain when
treating ambiguous statements as undecidable. The behavior allowed by the
behavioral space, represented by the dark-gray area, is considerably smaller, as
also indicated by the R1 score of 16.4%. This number reveals that 83.6% of the
traces in C(BPmin) represent traces that are not compliant with any reasonable

Dealing with Behavioral Ambiguity in Textual Process Descriptions 285

interpretation of the statements with scope ambiguity. For instance, for the run-
ning example, this set would include traces where the financial department pays
a settlement for an insurance claim, before the claim has been accepted. Figure 4
also shows the considerable impact that the usage of single interpretations has
on the number of compliant traces. The tiny black area in the figure and the R2

score of 0.5% indicate that, for the cases with scope ambiguity, the fully inter-
preted behavior profiles allow for only a very small fraction of the behavior that
is (potentially) compliant to a behavioral space. Again, the remaining 99.5%
represent traces that do not with certainty conflict with behavior specified in a
textual process description.

The evaluation results show the impact both of ignoring ambiguous state-
ments and of imposing single interpretations on them. As visualized by Fig. 4,
behavioral spaces provide a balance between these loosely restricted and too
restricted behavioral models. In summary, behavioral spaces exclude a large
number of nonsensical traces that can be excluded by generating proper inter-
pretations for ambiguous statements. Still, they allow for much more traces than
the restricted models obtained by imposing assumptions on the ambiguous state-
ments in textual descriptions.

A point to consider for these evaluations results is that some of the statements
with type ambiguity are ambiguous to automated approaches, but not for human
interpreters. For instance, the meaning of the phrase “sign and send contract”
can be inferred by human readers, because of the implicit order that exists
between signing and sending of a document. Nevertheless, the decision to treat
such statements as ambiguous for automated approaches is justified, because
state-of-the-art automated approaches do not succeed in making such inferences.

7 Related Work

The work presented in this paper primarily relates to two major research streams:
the analysis of textual process descriptions and the representation of data uncer-
tainty.

The majority of works that consider the analysis of textual process models
and other texts related to business processes, focus on the automated deriva-
tion of process models from natural language texts. Such techniques have been
designed for textual process descriptions [6,7], group stories [8], use case descrip-
tions [19] and textual methodologies [21]. Out of these, the text-to-process-model
generation techniques by Friedrich et al. [6], on which we build our prototype
and use as benchmark in our evaluation, is recognized as the state-of-the-art [16].
Although these works do not mention the problem of behavioral ambiguity
explicitly, all of the presented techniques impose assumptions on the interpreta-
tion of ambiguous behavioral statements. This results in a single interpretation,
i.e. a process model, for a text. However, as shown in the evaluation, this comes at
the great disadvantage that the behavior allowed by this representation is much
more strict than the behavior specified in the textual description. Our earlier
work on the comparison of textual process descriptions to process models [2],
faces similar issues when reasoning about the consistency of the two artifacts.

286 H. van der Aa et al.

Similar to behavioral ambiguity inherent to natural language descriptions,
uncertain data is also inherent to other application contexts. In the cases, uncer-
tainty can be caused by, among others, data randomness, incompleteness, and
limitations of measuring equipment [13]. This has created a need for algorithms
and applications for uncertain data managements [4]. As a result, the modeling
of uncertain data has been studied extensively, cf. [3,9,14,17]. Our notion of
a behavioral space builds on concepts related to those used in uncertain data
models. For instance, similar to the behavioral interpretations captured in a
behavioral space, the model presented by Das Sarma et al. [17] uses a set of
possible instances to represent the spectrum of possible interpretations for an
uncertain relation. Furthermore, the model described in [3] uses conditions to
capture dependencies between uncertain values. This notion has the same result
as the sets of behavioral relations we derive from uncertain behavioral state-
ments and convert into different behavioral interpretations. Still, the technical
aspects and application contexts of these uncertain data models, mostly query-
ing and data integration [4], differ considerably from the process-oriented view
of behavioral spaces.

8 Conclusions

In this paper, we introduced the concept of a behavioral space to deal with the
ambiguity in textual process descriptions. A behavioral space captures all pos-
sible interpretations of a textual process description and thus avoids the issue
of focusing on a single process-oriented interpretation of a text. We demon-
strated that a behavioral space is a useful concept for reasoning about a process
described by a text. In particular, we used a quantitative evaluation with a set
of 47 textual process descriptions and a compliance checking setting to illustrate
that a behavioral space strikes a reasonable balance between ignoring ambiguous
statements and imposing fixed interpretations on them.

While we defined the behavioral space concept based on textual process
descriptions, we would like to point out that its use is not limited to texts.
A behavioral space can help to capture the full behavior of different types of
process descriptions that contain (ambiguous) natural language text. Consider,
for instance, process models containing activities that describe several streams
of actions by using ambiguous behavioral statements such as “and”. It has been
found that such non-atomic activities can result in different interpretations of
how to properly execute the process [15]. A behavioral space is also useful for
application scenarios beyond compliance checking. Among others, it can serve
as a basis for computing process similarity and conducting process matching.

In future work, we set out to explore these usage scenarios of behavioral
spaces in more detail. What is more, we plan to investigate how we can prune a
behavioral space in a systematic fashion.

Dealing with Behavioral Ambiguity in Textual Process Descriptions 287

References

1. Van der Aa, H., Leopold, H., Mannhardt, F., Reijers, H.A.: On the fragmentation
of process information: challenges, solutions, and outlook. In: Gaaloul, K., Schmidt,
R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) BPMDS 2015 and EMMSAD 2015.
LNBIP, vol. 214, pp. 3–18. Springer, Heidelberg (2015)

2. Van der Aa, H., Leopold, H., Reijers, H.A.: Detecting inconsistencies between
process models and textual descriptions. In: Motahari-Nezhad, H.R., Recker, J.,
Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 90–105. Springer, Heidelberg
(2015)

3. Abiteboul, S., Kanellakis, P., Grahne, G.: On the representation and querying of
sets of possible worlds, vol. 16. ACM (1987)

4. Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applications.
IEEE Trans. Knowl. Data Eng. 21(5), 609–623 (2009)

5. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L.: Graph matching algorithms for
business process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Rei-
jers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg
(2009)

6. Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural
language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741,
pp. 482–496. Springer, Heidelberg (2011)

7. Ghose, A., Koliadis, G., Chueng, A.: Process discovery from model and text arte-
facts. In: 2007 IEEE Congress on Services, pp. 167–174. IEEE (2007)

8. de AR Gonçalves, J.C., Santoro, F.M., Baiao, F.A.: Business process mining from
group stories. In: 13th International Conference on Computer Supported Cooper-
ative Work in Design, CSCWD 2009, pp. 161–166. IEEE (2009)

9. Imieliński, T., Lipski Jr., W.: Incomplete information in relational databases. J.
ACM (JACM) 31(4), 761–791 (1984)

10. Leopold, H., Mendling, J., Polyvyanyy, A.: Supporting process model validation
through natural language generation. IEEE Trans. Software Eng. 40(8), 818–840
(2014)

11. Leopold, H., Pittke, F., Mendling, J.: Automatic service derivation from business
process model repositories via semantic technology. J. Syst. Softw. 108, 134–147
(2015)

12. Liu, Y., Muller, S., Xu, K.: A static compliance-checking framework for business
process models. IBM Syst. J. 46(2), 335–361 (2007)

13. Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data. In:
Proceedings of the 33rd International Conference on Very Large Data Bases, pp.
15–26 (2007)

14. Peng, L., Diao, Y.: Supporting data uncertainty in array databases. In: ACM SIG-
MOD International Conference on Management of Data, pp. 545–560. ACM (2015)

15. Pittke, F., Leopold, H., Mendling, J.: When language meets language: anti patterns
resulting from mixing natural and modeling language. In: Fournier, F., Mendling,
J. (eds.) BPM 2014 Workshops. LNBIP, vol. 202, pp. 118–129. Springer, Heidelberg
(2015)

16. Riefer, M., Ternis, S.F., Thaler, T.: Mining process models from natural language
text: a state-of-the-art analysis. In: Multikonferenz Wirtschaftsinformatik (MKWI-
16), March 9–11, Illmenau, Germany. Universität Illmenau (2016)

17. Sarma, A.D., Benjelloun, O., Halevy, A., Widom, J.: Working models for uncertain
data. In: 22nd International Conference on Data Engineering, p. 7. IEEE (2006)

288 H. van der Aa et al.

18. Selway, M., Grossmann, G., Mayer, W., Stumptner, M.: Formalising natural lan-
guage specifications using a cognitive linguistic/configuration based approach. Inf.
Syst. 54, 191–208 (2015)

19. Sinha, A., Paradkar, A.: Use cases to process specifications in Business Process
Modeling Notation. In: IEEE International Conference on Web Services, pp. 473–
480 (2010)

20. Smirnov, S., Weidlich, M., Mendling, J.: Business process model abstraction based
on behavioral profiles. In: Weske, M., Yang, J., Fantinato, M., Maglio, P.P. (eds.)
ICSOC 2010. LNCS, vol. 6470, pp. 1–16. Springer, Heidelberg (2010)

21. Viorica Epure, E., Martin-Rodilla, P., Hug, C., Deneckere, R., Salinesi, C.: Auto-
matic process model discovery from textual methodologies. In: 2015 IEEE 9th
International Conference on Research Challenges in Information Science (RCIS),
pp. 19–30. IEEE (2015)

22. Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based on
behavioral profiles of process models. IEEE Trans. Software Eng. 37(3), 410–429
(2011)

23. Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process compli-
ance analysis based on behavioural profiles. Inf. Syst. 36(7), 1009–1025 (2011)

The Effect of Modularity Representation
and Presentation Medium

on the Understandability of Business Process
Models in BPMN

Oktay Turetken1(&), Tessa Rompen2, Irene Vanderfeesten1,
Ahmet Dikici3, and Jan van Moll2

1 Eindhoven University of Technology,
Eindhoven, The Netherlands

{o.turetken,i.t.p.vanderfeesten}@tue.nl
2 Philips Health Tech, Best, The Netherlands

{tessa.rompen,jan.van.moll}@philips.com
3 TÜBİTAK BİLGEM Software Technologies Research Institute,

Ankara, Turkey
ahmet.dikici@tubitak.gov.tr

Abstract. Many factors influence the creation of understandable business
process models for an appropriate audience. Understandability of process
models becomes critical particularly when a process is complex and its model is
large in structure. Using modularization to represent such models hierarchically
(e.g. using sub-processes) is considered to contribute to the understandability of
these models. To investigate this assumption, we conducted an experiment that
involved 2 large-scale real-life business process models that were modeled using
BPMN v2.0 (Business Process Model and Notation). Each process was modeled
in 3 modularity forms: fully-flattened, flattened where activities are clustered
using BPMN groups, and modularized using separately viewed BPMN
sub-processes. The objective is to investigate if and how different forms of
modularity representation in BPMN collaboration diagrams influence the
understandability of process models. In addition to the forms of modularity
representation, we also looked into the presentation medium (paper vs. com-
puter) as a factor that potentially influences model comprehension. Sixty busi-
ness practitioners from a large organization participated in the experiment. The
results of our experiment indicate that for business practitioners, to optimally
understand a BPMN model in the form of a collaboration diagram, it is best to
present the model in a ‘fully-flattened’ fashion (without using collapsed
sub-processes in BPMN) in the ‘paper’ format.

Keywords: Business process model � Understandability � Comprehension �
Modularity � BPMN � Sub-process � Group

© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 289–307, 2016.
DOI: 10.1007/978-3-319-45348-4_17

1 Introduction

Business process modeling is an essential component of successful business process
management (BPM). It is a fundamental activity to understand and communicate
process information, and often a prerequisite for conducting process analysis, redesign
and automation [1]. However, in order for process models to successfully serve for
their potential uses, they should be perceived as understandable by their audience.

Process model understandability (or comprehension) can be defined as the degree to
which information contained in a process model can be easily understood by a reader of
that model [2]. It is typically associated with the ease of use and the effort required for
reading and correctly interpreting a process model [3].

The increasing complexity of real-life processes leads to an increase also in size and
complexity of the models that represent them. These two factors are known to impair
understandability [4, 5]. Hierarchy through the use of sub-processes has widely been
considered as a practical means to deal with the size and complexity of models [6, 7].
Many modeling languages allow for the design of hierarchical structures (e.g.
sub-processes in BPMN and EPCs). Hiding less relevant information in sub-models is
expected to decrease the mental effort (cognitive load) needed to understand the model
[8], whereas fragmentation due to modularization increases the mental effort by forcing
the reader to switch attention between different fragments (so called the split attention
effect [6]). In consequence, the discussions about the proper way of using modularity
and its implications on the understandability of models are not conclusive [6, 9, 10].
This also leads to a lack of theoretically grounded guidelines for modularizing process
models into sub-processes. In particular, the influence of using different forms of
modularization in BPMN v2.0 (e.g. sub-processes, groups) on the understandability of
process models has not been investigated.

Another factor that has not been addressed in the literature is the medium used to
present the models to their audience. Although the paper is usually the preferred means
for interacting with model readers in practice [7], the models are typically designed
using software applications (particularly when the objective is process automation), and
communicated through an online environment (e.g. web portal, company intranet)
across the organization and beyond. Therefore, it is important to explore if using paper
or a computer environment has any effect on model understandability.

Accordingly, the objective of this study is to investigate the influence of using
different forms of modularity and presentation medium on the understandability of
processes modeled in BPMN. To this end, we conducted an experiment with the
participation of 60 practitioners working in a large organization. For the experiment,
we used models of two business processes of the organization, which are of similar size
and structure, and can be considered large in scale.

The remainder of the paper is structured as follows. Section 2 discusses briefly the
related work on the effect of modularity on process model understandability. Section 3
presents the research design including the research model that we tested, and the setup
of the experiment. In Sect. 4, we report and discuss the results of our analyses. Finally,
Sect. 5 presents our conclusions and future research directions.

290 O. Turetken et al.

2 Related Work

Although modularity in business process models is considered to have benefits in
various dimensions, such as increased reuse, maintainability and scalability [11, 12], its
influence on the understandability is not well understood [9, 13, 14]. The findings of
empirical studies that investigate the effect of modularization (decomposition, or
structuring in a hierarchy) on the understandability hardly converge into a validated set
of practical guidelines for applying modularization in process modeling.

The works by Reijers et al. [7, 9] test the influence of using sub-processes on the
understandability of two real-life processes that are modeled using Workflow Nets in
two forms: modular and flattened. The participants (28 consultants) were asked to
answer a set of (control-flow related) understandability questions regarding these
models (to measure effectiveness). For the first process model, the experiment did not
result in a significant difference between the modular and flattened versions, but a
positive influence of modularity on understandability was found for the second model.
The authors attribute this to the difference in the degree of modularization applied in
these models. As the second model had more sub-processes, they sparingly conclude
that ‘modularity appears to have a positive connection with process understanding’.

Zugal et al. [6] tests the effect of modularization on the understandability of
declarative process models. Four processes were modeled in two forms (modular and
flattened) using a declarative language ConDec. The understandability is measured using
the number of correct answers given for the questions (all related to process activities and
their ordering/control flow), and the (perceived) mental effort. The results suggest that
modularization decreases perceived mental effort but has no influence with respect to the
number of correct answers. The limited number of participants (9 respondents) is reported
as a threat to the validity of the findings.

The technique used for modularizing process models also plays a role in the effect
of modularity on understandability [9]. Applying different modularization methods
could yield different structures, in turn different levels of influence on comprehension.
The study by Johannsen et al. [15] uses eEPC process models and tests the use of Wand
and Weber’s five decomposition conditions [16], which are considered to yield
well-decomposed models. The models are modularized in three forms with respect to
their level of adherence to these conditions. The results indicate that models that are
structured in full adherence to these conditions are more understandable than those that
violate them. However, the study does not compare the performance of modularized
models against their flattened counterparts.

The study by Figl et al. [10] uses expert evaluation approach (with 15 process
modeling experts) to determine whether some visualization strategies provide a better
fit for representing process model hierarchies than others. Accordingly, the experts
prefer to navigate in the hierarchy with the help of an overview + detail strategy (where
sub-processes are shown as separate models detached from the context of the higher
level model) instead of a focus + context strategy (where sub-processes are expanded
in the higher-level model directly within their context). The ‘overview + detail’ view
was considered to simplify the design and provide undistorted views on focus and
context.

The Effect of Modularity Representation and Presentation Medium 291

In a closely relevant domain of software modeling, Cruz-Lemus et al. [17] presents
a family of experiments investigating the effect of hierarchy on the understandability of
UML statechart diagrams (which are used not only to model software but also business
processes). The results indicate insignificant or varied effects of hierarchy on under-
standability. Moreover, the understandability worsens with the increase of the nesting
level (depth of hierarchy).

This diversity in the results can be attributed to the outcome of two opposing effects
of modularization: abstraction (information hiding) and split-attention effect (browsing
costs) [9, 18]. Using sub-processes might increase reader’s understanding of a complex
model by abstracting away less relevant information (and thereby reducing complex-
ity). However, additional cost (increased cognitive load) incurred in browsing through
and integrating fragmented pieces of models can counter-balance this gain [10].

The existing research as discussed above calls for further empirical studies to
contribute to a better understanding of the impact of modularization. In particular, there
is a lack of studies on the effect of modularity that involve BPMN - de-facto process
modeling notation in practice [19]. BPMN v2.0 has specific elements and techniques
for representing modularity (e.g. collapsed/expanded sub-processes, groups) which
have not been addressed in the research concerning process model understandability. In
addition, to the best of our knowledge, no empirical work has studied the effect of the
presentation medium on the understandability of process models.

3 Research Design

We used a between-groups design for our experiment where separate groups of par-
ticipants for each of the different conditions in the experiment were tested once only
[20]. Aligned with our research question, there are two main independent variables:
modularity representation (in 3 forms) and presentation medium (paper vs. computer).
We describe these variables in detail later in this section. In addition, we asked par-
ticipants about their experience in process modeling (following [21]), knowledge on
process modeling and BPMN, and familiarity with the domain to investigate the
potential effects of these personal factors.

We used two process models as the objects of our experiment. These processes are
taking place in a large corporation headquartered in The Netherlands (which employs
more than 115,000 employees and operates in over 100 countries worldwide). The
experiment took place in a division in the headquarters in June 2015.

Figure 1 presents the research model that we tested in our experiment. The model
proposes that the understandability of process models (in terms of understandability
task effectiveness and efficiency, and perceived usefulness and ease of understanding)
is influenced by the modularity technique applied in modeling the process and the
medium used for its presentation. Accordingly, we can draw two groups of hypotheses:

• H1. The form of modularity representation has a significant influence on the
understandability factors, i.e.: (a) understandability task effectiveness, (b) under-
standability task efficiency, (c) perceived usefulness for understandability, and (d)
perceived ease of understanding.

292 O. Turetken et al.

• H2. The medium used for presenting process models has a significant influence on
the understandability factors (as listed above).

In the sections that follow, we explain the details regarding the process models and
forms of modularity representations used, dependent and independent variables as well
as their operationalization, and the design of the experiment.

3.1 Process Models Used for the Experiment

Among several processes in the quality management system of the company, two
processes of similar size and nature were selected by the company representatives
taking into account their criticality in the business domain in which the company
operates. The processes can be considered as large and rich in terms of the interaction
taking place between different departments and divisions of the company. The selected
processes were initially modelled in BPMN v2.0 using sub-processes where applicable
(based on existing process documentation, and interviews with process owners and
participants). The resulting models were BPMN collaboration diagrams, where the
interaction between process participants was explicitly modeled using message flows.
(Signavio.com was used for modeling processes, however only static images of models
were used for the experiment, as explained in Sect. 3.3.)

The models were subsequently reviewed by process modeling experts for syntac-
tical correctness, and validated for their correctness (including the choice of modu-
larization) by the domain experts in the company, who were also knowledgeable about
process modeling. The basic metrics used to measure the structural properties of
process models show that these models are comparable in terms of size and complexity
(see Table 1).

Fig. 1. Research model.

The Effect of Modularity Representation and Presentation Medium 293

3.2 Forms of Modularity Representation

The verified and validated models were subsequently re-structured into two other forms
using different modularity representations in BPMN v2.0, leading to three forms of
representation to be tested. Figure 2 illustrates these forms. The first form (Repr1) is the
fully-flattened representation of the process models. This type acts as the reference model
which offers the possibility to draw conclusions about whether the use of any modularity
technique has an influence on the understandability. (Note that, re-structuring models
does not affect the business logic in a semantic sense, but may influence the extent of
information provided in the models. For instance, the sub-process information disappears
in the fully-flattened models.)

The second form of representation (Repr2) combines the fully-flattened form with
groups that informally cluster a logically related set of activities.We used groups in away
similar to the use of ‘expanded sub-processes’ in BPMN (but without the use of additional
start/end events for each sub-process). This form shows some characteristics of a ‘fo-
cus + context’ view (as in Figl et al. [10]), which is considered to require less cognitive
load of the user, who usually has to integrate model parts again when sub-processes are

Table 1. Comparing the structural properties of process model A and B.

Metric Process model A Process model B

#Nodes 133 122
#Activity
nodes

47 46

#Sub-processes 15 14
#Pools 5 5
#Gateways 34 (8 AND split/join; 22 XOR

splits/joins; 4 Event-based)
38 (8 AND split/join; 27 XOR
splits/joins; 3 Event-based)

a) Repr1: Fully-flattened

b) Repr2: Flattened view with ‘groups’
(similar to expanded sub-processes)

c) Repr3: Sub-processes collapsed and
shown in separate models

Fig. 2. Three modularity representations: (a) Fully-flattened [Repr1], (b) Flattened view with
groups [Repr2], and (c) Sub-processes collapsed and shown in separate models [Repr3].

294 O. Turetken et al.

extracted from the main model as separate models (i.e. in ‘overview + detail’ view).
However, in this form, the complexity of the full-flattened model is inherited and
amplified by the additional information on process groupings.

The third form (Repr3) is the initial representation, which addresses the size and
complexity with the use of collapsed sub-processes in BPMN. The sub-processes are
hidden in the higher level (main) process model, but can be accessed as a separate
model whenever the user is interested in the information it contains.

Figure 3 shows example models of the processes A and B in two representation
forms (Repr2 and Repr3), respectively. (Note that the figure is provided to give an

a)

b)

c)

Fig. 3. The process models in two forms of modularity representation: (a) Process A in Repr2
(flattened with groups of activities), (b) Process B in Repr3 (with collapsed sub-processes),
(c) Few of the sub-process models of Process B in Repr3. (The process models and the
questionnaire used for the experiment are available online at: https://goo.gl/0mUOFc.

The Effect of Modularity Representation and Presentation Medium 295

https://goo.gl/0mUOFc

indication of the size and structure of the models, and labels of all process elements that
existed in the experiment are removed here.)

3.3 Presentation Medium for the Process Models

We experimented with two alternative presentation mediums: paper and computer. Half
of the participants were provided with the models on A3 size papers, which allowed for
adequate readability. The sub-processes in Repr3 were also printed on separate A3 size
papers with 6 sub-processes on each.

The other half of the participants received the models on the computer environment
through an online website developed for the experiment (see also Sect. 3.7). The
models with Repr1 and Repr2 (fully-flattened, and flattened with groups) were dis-
played as images, which can be zoomed and navigated in all directions. For the models
with Repr3 (with separate sub-process models), the sub-process models pop-up when
the mouse pointer hoovers on the collapsed sub-process element in the main model.
The potential effect of using computer environment with different size and resolutions
was reduced, as the participants performed the experiment in their business settings
where they were provided with standard computer facilities.

3.4 Understandability Questions

In order to evaluate participants’ level of understanding of the processes, we developed
9 questions for each process by following an iterative approach with the domain
experts employed in the company. This was to make sure that each question can be
used as a representative and valid way to assess someone’s understanding of the
processes.

Since the quality of these questions has significant influence on the validity of the
findings [22], we paid particular attention on developing a set of questions that is
balanced in relation to different process perspectives (i.e. control flow, resource, and
information/data), and scope (i.e. global and local). Accordingly, a local question can
be answered within the scope of a single sub-process, while information available in
the modularized (high-level) model is sufficient to answer a global question. The third
type is the global-local questions which require information available not only in the
modularized model but also in one or more sub-processes. Availability of these three
types of questions is important particularly for the investigation of the potential
influence of modularity [9]. Out of 9 questions (for each process), there were 3 global,
3 local, and 3 global-local questions.

The distribution of questions with regard to process perspectives is as follows: For
Process A, out of 9 questions, 3 relates to all process perspectives, 2 only to the control
flow, 1 both to the control flow and resource, and 3 both to the resource and infor-
mation perspectives. A very similar configuration is maintained also for Process B.

Each question has a multiple-choice design, where respondents are provided with 5
choices – the last one always being ‘I don’t know’ (i.e. unable to tell). An example

296 O. Turetken et al.

question for Process A is given below. For instance, this question is a local question
that relates to all three perspectives: control-flow (cnt), resource (res), information (inf).

Q: Who will know that the AB Request is accepted after a positive opinion of the
Review Board?
a) Only AB Manager b) Only AB Owner c) Only Requester
d) Both AB Manager and Requester e) I don’t know (unable to tell)

3.5 Dependent Variables

As illustrated in our research model (in Fig. 1), we identified four dependent variables
concerning process model understandability. The first two relate to the (objectively
measurable) level of understanding that the participants can demonstrate with respect to
each model [14, 9]. These are as follows:

• Understandability Task Effectiveness is operationalized by the understandability test
score, i.e. the number of correctly answered understandability questions.

• Understandability Task Efficiency indicates the degree of cognitive resources spent
by the reader in understanding the model [21]. It is operationalized by dividing the
test score to the total time spent by a participant for the questions that he/she
correctly answered.

The remaining two variables are based on the two constructs of the Technology
Acceptance Model (TAM) [23] (i.e. perceived usefulness and perceived ease of use)
and concern users’ perception of the models in terms of their usefulness for under-
standability and ease of understanding:

• Perceived Usefulness for Understandability (PUU) indicates users’ perception on
the utility of a process model structured in a particular form in providing gains to
the user in terms of understandability.

• Perceived Ease of Understanding (PEU) indicates the degree to which a person
believes that understanding a model is free from mental effort (as also in [14]).

TAM and its derivatives (e.g. [24]) are the commonly referred theories that predict
and explain the acceptance and use of design artefacts, such as IS methods and models
[25, 26]. In TAM, the two constructs (perceived usefulness and ease of use) are
believed to be strong determinants of users’ intentions to use a design artefact. For the
experiment, the variables that are adopted are operationalized using multiple indicators
(scale items), which have been evaluated for reliability and validity in previous
research [23, 25]. Following [24], we used 4 items for each construct, where the
wording of the items was modified to accommodate this research. Below are two
example items:

• PUU-1: Using this type of process models would make it more easy to communicate
business processes to end-users.

• PUE-1: I found the way the process is represented as clear and easy to understand.

The Effect of Modularity Representation and Presentation Medium 297

The participants expressed their level of agreement with each statement on a
7-point Likert scale, ranging from 1 (strongly disagree) to 7 (strongly agree).

3.6 Experiment Blocks

The experiment was designed to have six blocks (as shown in Table 2). Each partic-
ipant went through a single block, where he/she was given two process models (A and
B) in sequence. In each block, the models were shown using different forms of
modularity representation but either on paper or in a computer environment.

3.7 Questionnaire

The questionnaire for the experiment was provided through an online web environ-
ment, which was developed using a software application available for creating online
surveys (Sawtooth Software SSI WEB 8.4.6). The questionnaire consisted of 5 parts.
The first part involved questions related to the personal factors, where participants were
asked to give their opinion about their experience and knowledge on process modeling
and BPMN, and familiarity with the process and its domain. In the second part, the
participants were given Process A in a particular form and on a medium depending on
the experiment block that they were assigned to. They were expected to answer 9
understandability questions (each placed on a separate online webpage in sequence). In
the blocks where computers were used, the process models were embedded in the
questionnaire environment in such a way that the question and model were presented
on the same page. The third part gathers users’ perceptions on the particular repre-
sentation form and medium used to represent the model for Process A. The fourth and
the fifth parts of the questionnaire had the same structure as the second and third parts,
but this time for Process B.

All participants (whether they received the models on paper or on computer)
received the questions through the online environment. This was particularly necessary
for accurately tracking the time it took for participants to answer each understandability
question, and for computing metrics regarding the understandability task efficiency.
The participants were informed upfront that they were time-tracked.

Table 2. Experimental block-design

Exp. Representation Presentation

Block Process A Process B Medium
1 Repr1 Repr2 Paper
2 Repr1 Repr3 Computer
3 Repr2 Repr1 Computer
4 Repr2 Repr3 Paper
5 Repr3 Repr1 Paper
6 Repr3 Repr2 Computer

298 O. Turetken et al.

Before the actual experiment took place, the questionnaire was pre-tested as a final
step by 6 people (4 graduate students, and 2 PhD students). This also gave an indication
about the required time-frame for the experiment. As a result of the pre-test, several
ambiguities and minor mistakes were corrected in the final version.

3.8 Participants

The company representatives initially selected 74 employees working in 13 depart-
ments of the division (where the experiment took place), who had already taken or
might potentially take part in the execution of one of these processes. Ultimately, 60
employees participated in the experiment, leading to a response rate of around 81 %.
All participants have at least a university degree - majority with an engineering
background. Out of 60, 26 employees had previously taken part in the execution of one
of these processes or were moderately familiar with their execution.

The participants were randomly assigned to each experiment block with the
exception of the 26 employees that had certain degree of familiarity with the domain
and process models. These were evenly assigned to the blocks (4 or 5 participants per
experiment block). Each participant was sent an invitation with practical guidelines on
accessing the online experiment site, including a username which also determined the
experimental block that the participant was assigned to.

4 Results and Discussions

Figure 4 presents the distribution of participants based on their opinion about how
frequently they encounter process models in practice, and what their level of knowl-
edge on process modeling and BPMN is. Accordingly, around half of the participants
encountered process models less than once a month, while the majority of the rest
(33 % in total) encountered process models more than once a month. About 72 % of
the participants stated that they are knowledgeable or somewhat knowledgeable about
process modeling. However, they had no or limited knowledge about BPMN. In the
overall, we can consider majority of the participants to be fairly novice in terms of
general BPM skills and capabilities.

As each participant tested two process models in different forms, the experiment led
to 120 observations distributed largely in a uniform way over different modularity

Fig. 4. Participants’ background information about process modeling.

The Effect of Modularity Representation and Presentation Medium 299

Table 3. Descriptive statistics.

Independent
variable/levels

N Unders. task
effectiveness
(Scale: 0–9)a

Unders. task
efficiency (in
Score/Hour)

Perceived
usefulness
(Scale: 4–28)b

Perceived
ease of und.ing
(Scale: 4–28)b

Mean S.Dev. Mean S.Dev. Mean S.Dev. Mean S.Dev.
Repr1 (fully-flattened) 39 6.2 1.5 33.2 21.0 20.7 5.6 23.2 5.1
Repr2 (flat with groups) 41 5.9 1.5 33.1 12.9 18.3 6.0 20.1 5.6
Repr3 (with
sub-processes)

40 5.3 1.6 40.5 24.9 15.8 6.2 18.6 6.3

Paper 62 6.0 1.5 38.4 24.2 20.0 5.4 21.6 5.8
Computer 58 5.6 1.6 32.6 14.9 16.3 6.5 19.6 5.9
aEach correctly answered question counts for 1 point for the Score, totaling to 9 points max for 9
questions.
bFour items to be answered in a 7-point Likert scale, totaling to a min value of 4, max value of
28 (4 � 7).

Fig. 5. Boxplot diagrams for dependent variables over independent variables.

300 O. Turetken et al.

representations and presentation mediums. Table 3 presents the descriptive statistics for
the variables tested in the experiment. The boxplot diagrams for the dependent vari-
ables over the modularity representation and presentation medium are shown in Fig. 5.

To test our hypotheses, we first analyzed the data for conformance with the
assumptions of the statistical tests that can be used. The results of our initial analysis
showed that there are clear deviations from normality for the measures of all dependent
variables over independent variables (Kolmogorov–Smirnov test of normality, all with
p < 0.02). Therefore, we forewent the predictive power of parametric tests and applied
their non-parametric counterparts, in particular the Kruskal-Wallis test (with stepwise
step-down multiple comparison) [27] to evaluate our hypotheses (using SPSS v.23).

4.1 Testing the Hypotheses on the Forms of Modularity Representation

We argued in our first group of hypotheses that different forms of modularity repre-
sentation in BPMN significantly influences process understandability. Table 4 shows
the results of our tests regarding this set of hypotheses. Accordingly, modularity rep-
resentation has significant impact on three of the four understandability factors.

Understandability Task Effectiveness. The results of the Kruskal-Wallis tests indi-
cate that the understandability task effectiveness measured by the score achieved from
the understandability questions, is influenced by the modularity form [H(2): 8.49,
p = 0.014]. According to stepwise multiple comparison, the scores attained with
fully-flattened models (Repr1) and with models where BPMN groups are used (Repr2)
are significantly higher than the score with models where sub-processes (Repr3) are
used. The scores with Repr1 and Repr2 do not differ significantly. Hence, the flattened
models (with or without the use of groups) lead to a higher effectiveness than the
models where sub-processes are used.

We performed further tests to investigate if the scores obtained from questions
regarding different process perspectives (cnt/res/inf) and scope (global/local) show any
major difference. The results indicate that, the scores concerning different process per-
spectives do not differ significantly. However, in line with the results obtained with the
overall score values, the scores from local questions (which involve information only
about sub-processes) are significantly higher in Repr1 and Repr2 than in Repr3
[H(2): 10.32, p = 0.006]. For the global questions (where answering requires information

Table 4. Results of the Kruskal-Wallis statistical tests.

Independent variables Unders. task
effectiveness

Unders.
task
efficiency

Perceived
usefulness

Perceived
ease of und.
ing

H p H p H p H p
Modularity representation 8.49 0.014* 9.67 0.208 13.12 0.001* 13.59 0.001*
Presentation medium 1.89 0.169 2.24 0.134 9.54 0.002* 4.32 0.038*

The Effect of Modularity Representation and Presentation Medium 301

only about the main/modularized model) and global-local questions (where answering
requires information about both modularized model and one or more sub-processes), the
differences in the scores for each form of modularity representation are not significant
(p = 0.757 and p = 0.459, respectively).

Based on these results, we can infer that for local questions, modularization
degrades effectiveness when overview + detail strategy is used (as in Repr3, where
sub-processes are shown separately, detached from their context). This is likely due to
the increased browsing costs (split-attention effect) in Repr3 and insignificant cost of
complexity in flattened models (Repr1) even with the group information (Repr2). This
may further indicate that the context -where a sub-process takes place, plays an
important role in understanding (sub-)process information. On the other hand, the use
of modularization in which the sub-processes are displayed directly within the context
of the higher level model (as in Repr2) doesn’t offer any advantage for effectiveness.

For global and global-local questions, the modularization does not have significant
effect on effectiveness. This implies that the understandability gain acquired in
abstracting away less relevant information through modularization is insignificant in
these types of process models.

Understandability Task Efficiency. Although the average understandability task
efficiency (i.e. the number of correctly answered questions divided by the time spent for
answering them) is higher for Repr3, our statistical analysis does not indicate a sig-
nificant difference for the three forms of modularity representations [H(2): 9.67,
p = 0.208]. A relatively high dispersion of the efficiency values for Repr3 is also worth
mentioning. The results are in line also with respect to the efficiency obtained for
questions concerning different process perspectives and scope (i.e. there is no signif-
icant difference with respect to the forms of modularity representation).

Perceived Usefulness for Understandability. Participant’s view on the usefulness of
three modularity representation forms differs significantly [H(2): 13.12, p = 0.001].
Although the stepwise multiple comparisons indicate no statistically significant dif-
ference between Repr1 and Repr2, and Rep2 and Repr3, the difference between Repr1
and Repr3 is significant. Accordingly, participants found Repr1 significantly more
useful in fostering understandability than Repr3. Hence, fully flattened models in
BPMN (collaboration) diagrams are considered more useful in providing gains to the
user in terms of understandability in comparison with the models with sub-processes.

Perceived Ease of Understanding. Similar to usefulness, the attitude on the ease of
understanding also differs significantly with respect to the forms of modularity repre-
sentation [H(2): 13.59, p = 0.001]. However, in this case, Repr1 is considered easier to
understand than both modular forms, i.e. Repr2 and Repr3. This indicates that, fully
flattened models are regarded as easier to understand than any of their modularized
form. Given that the only difference between Repr1 and Repr2 is the grouping infor-
mation, we can deduce that any additional information on the process model can be
perceived to increase the difficulty of understanding.

302 O. Turetken et al.

4.2 Testing the Hypotheses on the Presentation Medium

The second group of hypotheses argued for the influence of the medium used to present
process models on the understandability. The results of the tests regarding this set of
hypotheses are shown in Table 4 (second row). The results indicate that the presen-
tation medium does not have significant influence on the understandability task
effectiveness or efficiency, but is regarded as critical from users’ point of view.

Understandability Task Effectiveness and Efficiency. The statistical tests indicate
that the use of paper or computer for presenting process models does not lead to a
significant difference on the understandability task effectiveness or efficiency [H(1):
1.89, p = 0.169] and [H(1): 2.24, p = 0.134], respectively. Similarly, the results of the
analyses on the scores gained from questions concerning different process perspectives
and scope (local/global) do not show any significant difference.

Perceived Usefulness for Understandability and Ease of Understanding. The
participants consider models presented on paper easier to understand and more useful
(from understandability’s point of view) than the ones presented on the computer
[H(1): 4.32, p = 0.038] and [H(1): 9.54, p = 0.002], respectively.

The analysis on the effect of presentation medium indicates that using paper or
computer influences only the perceived understandability when it comes to the models
of this type, structure and complexity. We observed that the participants that received
models on paper studied them using their fingers, which can be more difficult on the
screen. However, very few of the participants took notes directly on the printed models.

4.3 Testing the Influence of Personal Factors and Using Different Process
Models

As mentioned, we gathered information about participants’ experience and level of
knowledge in process modeling and BPMN, as well as their familiarity with the pro-
cesses. We used this information to test the direct or moderating effects of these factors
on the understandability. Our statistical analyses did not yield any significant effect of
these factors. Additional research is required to better operationalize these factors and
investigate their influence.

As we used different sets of understandability questions for the two process models
we used in our experiment, it would not be plausible to compare the average score and
efficiency values regarding these models. However, we checked the perceived under-
standability variables (PUU, PEU) and were not able to find a significant difference
between the results obtained for these two models. Separate results for these two
models are in line with the general findings discussed above.

5 Conclusions

Business process models are important elements at various phases of the BPM life-
cycle. As such, their understandability for their intended audience is crucial. In this
paper, we have described the design and conduct of an experimental study to

The Effect of Modularity Representation and Presentation Medium 303

investigate two factors that potentially influence process model understandability. We
have examined if and how different forms of modularity representation and the medium
used for the presentation influence the understandability of process models that are in
the form of BPMN collaboration diagrams. To contribute to the generalizability of our
findings, we used two real-life processes as the objects of our experiment and 60
practitioners as our participants. The participants were employees of a large organi-
zation and potential audience of the models tested. The majority had some degree of
BPM knowledge but relatively limited familiarity with the BPMN.

Table 5 summarizes our hypotheses and findings. Overall, we found that using
sub-processes in BPMN (where sub-processes are shown as separate models) nega-
tively influences understandability effectiveness without any contribution to efficiency
(when compared with models that are flattened or modularized using groups).
Fully-flattened models are considered to better facilitate understanding and to be easier
to comprehend than models with sub-processes. These models are regarded as easier to
understand even than models that show additional modularization information in flat
models using BPMN groups. If modularization is necessary (due to practical reasons),
displaying sub-processes within their context rather than as separate models should be
preferred.

Table 5. Summary of hypotheses tests.

Hypothesis Result Description

H1- Forms of modularity representation has a significant influence on:
(a) Understandability
task effectiveness

Supported Effectiveness is higher with flattened BPMN
models (with or without groups) than with
modularized models with sub-processes

(b) Understandability
task efficiency

Not
supported

Efficiency is not different with models in any form
(flattened or modularized using
groups/sub-processes)

(c) Perceived
usefulness for
understandability

Supported Fully-flattened models are considered more useful
(in terms of facilitating understanding) than
models with sub-processes

(d) Perceived ease of
understanding

Supported Fully-flattened models are perceived easier to
understand than models that are modularized
(using groups or sub-processes)

H2- Presentation medium has a significant influence on:
(a) Understandability
task effectiveness

Not
supported

Presenting models on paper or on computer does
not influence effectiveness

(b) Understandability
task efficiency

Not
supported

Medium (paper, computer) does not influence
efficiency significantly

(c) Perceived
usefulness for
understandability

Supported Paper is considered more useful (in terms of
facilitating understanding) as a presentation
medium

(d) Perceived ease of
understanding

Supported The models on paper are considered easier to
understand than models on computer

304 O. Turetken et al.

As for the presentation medium, although using paper or computer does not
influence the objectively measured understandability (effectiveness and efficiency),
paper is practitioners’ preferred choice of medium in terms of the degree it facilitates
understandability and ease of understanding.

Our work has a number of limitations from which several possible directions for
future research emerge. Experimenting with real-life processes and business practi-
tioners has a positive effect on the external validity of our study. This allows us to
better generalize the results towards practical implications. However, having partici-
pants from a single enterprise reduces this effect. Future research should consider
involving practitioners working in diverse business environments.

The specific choice for the modularization of two processes can also be regarded as
a further threat to the validity of our findings. It is difficult to verify that the choices for
the parts that are structured as sub-processes are optimal (but not arbitrary, which may
lead to a flawed modularization [9]). We addressed this risk by requesting domain
experts (who also act as process modelers/owners in the case organization) to validate
the models including their modularity structures. Yet, future research should experi-
ment the effect of modularity when other (theoretical) modularization approaches (such
as Wand & Weber’s [16] as in [15]) are employed.

Our experiment was not able to identify any influence of process modeling expe-
rience or level of knowledge on understandability (based on the self-reported levels by
the participants). Future research should consider using other methods to more
objectively operationalize such factors (e.g. in the form of tests to quantify the level of
theoretical knowledge on process modeling and notation).

Following a rigorous method in developing, verifying and validating the under-
standability questions contributes to the accuracy by which the understandability fac-
tors are operationalized. This reinforces the construct validity of our work. However,
our findings are valid only for BPMN collaboration diagrams, where a number of pools
are used (each with a single control-flow). To understand the potential effect of using
this type of BPMN models, future work should consider experimenting also with
BPMN models where a single main control-flow is present (i.e. a single pool poten-
tially with multiple lanes). Future works should also use processes of different size,
complexity, and applied level of modularity to better understand the interplay between
these factors and contribute to the development of guidelines for applying modular-
ization in business process modeling.

References

1. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management. Springer, Heidelberg (2013)

2. Reijers, H.A., Mendling, J.: A study into the factors that influence the understandability of
business process models. IEEE Trans. Syst. Man Cybern. - Part A Syst. Hum. 41, 449–462
(2011)

3. Houy, C., Fettke, P., Loos, P.: On the theoretical foundations of research into the
understandability of business process models. In: ECIS 2014, pp. 1–38 (2014)

The Effect of Modularity Representation and Presentation Medium 305

4. Recker, J.: Empirical investigation of the usefulness of Gateway constructs in process
models. Eur. J. Inf. Syst. 22, 673–689 (2012)

5. Sanchez-Gonzalez, L., Garcia, F., Ruiz, F., Mendling, J.: Quality indicators for business
process models from a gateway complexity perspective. Inf. Softw. Technol. 54, 1159–1174
(2012)

6. Zugal, S., et al.: Investigating expressiveness and understandability of hierarchy in
declarative business process models. Softw. Syst. Model. 14, 1081–1103 (2013)

7. Reijers, H.A., Mendling, J.: Modularity in process models: review and effects. In: Dumas,
M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 20–35. Springer,
Heidelberg (2008)

8. Moody, D.L.: Cognitive load effects on end user understanding of conceptual models: an
experimental analysis. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004.
LNCS, vol. 3255, pp. 129–143. Springer, Heidelberg (2004)

9. Reijers, H.A., Mendling, J., Dijkman, R.M.: Human and automatic modularizations of
process models to enhance their comprehension. Inf. Syst. 36, 881–897 (2011)

10. Figl, K., Koschmider, A., Kriglstein, S.: Visualising process model hierarchies. In: ECIS
2013, p. 180 (2013)

11. Leymann, F., Roller, D.: Workflow-based applications. IBM Syst. J. 36, 102–123 (1997)
12. van der Aalst, W., van Hee, K.: Workflow Management: Models, Methods, and Systems.

MIT Press, Cambridge (2002)
13. Zugal, S., Pinggera, J., Weber, B., Mendling, J., Reijers, H.A.: Assessing the impact of

hierarchy on model understandability – a cognitive perspective. In: Kienzle, J. (ed.)
MODELS 2011 Workshops. LNCS, vol. 7167, pp. 123–133. Springer, Heidelberg (2012)

14. Houy, C., Fettke, P., Loos, P.: Understanding understandability of conceptual models – what
are we actually talking about? In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012 Main
Conference 2012. LNCS, vol. 7532, pp. 64–77. Springer, Heidelberg (2012)

15. Johannsen, F., Leist, S., Braunnagel, D.: Testing the impact of wand and weber’s
decomposition model on process model understandability. In: ICIS 2014, pp. 1–13 (2014)

16. Wand, Y., Weber, R.: A model of systems decomposition. In: ICIS 1989 (1989)
17. Cruz-Lemus, J.A., Genero, M., Manso, M.E., Morasca, S., Piattini, M.: Assessing the

understandability of UML statechart diagrams with composite states—A family of empirical
studies. Empir. Softw. Eng. 14, 685–719 (2009)

18. Zugal, S., Soffer, P., Pinggera, J., Weber, B.: Expressiveness and understandability
considerations of hierarchy in declarative business process models. In: Bider, I., Halpin, T.,
Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Wrycza, S. (eds.) EMMSAD
2012 and BPMDS 2012. LNBIP, vol. 113, pp. 167–181. Springer, Heidelberg (2012)

19. Wolf, C., Harmon, P.: The State of Business Process Management. BP Trends, Newton
(2014)

20. Field, A., Hole, G.: How to Design and Report Experiments. SAGE Publications Ltd.,
Los Angeles (2003)

21. Mendling, J., Strembeck, M., Recker, J.: Factors of process model comprehension—findings
from a series of experiments. Decis. Support Syst. 53, 195–206 (2012)

22. Melcher, J., Mendling, J., Reijers, H.A., Seese, D., Laue, R., Gadatsch, A.: Measuring the
understandability of business process models - are we asking the right questions? In:
Muehlen, M., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp. 37–48. Springer,
Heidelberg (2011)

23. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information
technology. MIS Q. 13, 319–340 (1989)

24. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information
technology: toward a unified view. MIS Q. 27, 425–478 (2003)

306 O. Turetken et al.

25. Moody, D.L.: The method evaluation model: a theoretical model for validating information
systems design methods. In: ECIS 2003 Proceedings, Paper 79 (2003)

26. Recker, J., Rosemann, M., Green, P., Indulska, M.: Do ontological deficiencies in modeling
grammars matter? MIS Q. 35, 57–79 (2011)

27. Field, A.: Discovering Statistics Using IBM SPSS Statistics. SAGE Publications Ltd.,
Los Angeles (2013)

The Effect of Modularity Representation and Presentation Medium 307

Towards Quality-Aware Translations
of Activity-Centric Processes to Guard Stage

Milestone

Julius Köpke1,2(B) and Jianwen Su1

1 Department of Computer Science, UC Santa Barbara, Santa Barbara, USA
su@cs.ucsb.edu

2 Alpen-Adria Universität, Klagenfurt, Austria
julius.koepke@aau.at

Abstract. Current translation approaches from activity-centric process
models to artifact-centric Guard Stage Milestone (GSM) models operate
on the syntactic level. While such translations allow equivalent traces
(behaviors) of executions, we argue that they generate poor GSM mod-
els for the intended audience (including business managers and process
modelers). A specific deficiency of these translations is their inability
to relate to relevant domain knowledge, especially groupings of activi-
ties to achieve well-known business goals cannot be obtained by syntac-
tic translations. Ironically, this is a main principle of GSM models. We
developed an initial ontology based translation framework [14] that incor-
porates the missing knowledge for improved translations. In this paper
we further extend this framework with two metrics for the assessment of
quality aspects of resulting GSM translations with domain knowledge,
propose a novel semantic rewriting algorithm that enhances the quality
of GSM translations, and provide an evaluation of the achievable qual-
ity for different classes of input processes. Our evaluation shows that
maximum quality scores are achievable if semantics and structure of the
input processes are well aligned. Given poorly aligned input processes, a
translation method can optimize one of the metrics but not both.

Keywords: Process translation · Artifact-centric BPM · Guard Stage
Milestone · GSM · Quality metrics

1 Introduction

In contrast to the predominant activity-centric modeling methods (e.g. BPMN)
that concentrate on the control-flow between activities, Guard Stage Milestone
(GSM) [12] is artifact-centric and defines business processes based on data enti-
ties and their declarative life-cycles. With the growing adaption of the artifact-
centric modeling paradigm, the need for translations between activity-centric

J. Köpke—Research conducted while visiting UCSB and supported by the Austrian
Science Fund (FWF) under grant J-3609-N15.

c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 308–325, 2016.
DOI: 10.1007/978-3-319-45348-4 18

Towards Quality-Aware Translations of Activity-Centric Processes 309

Note: The syntactic translation algorithm creates a stage L′ representing the loop (L). The loop is controlled with an
additional control-stage L′′ that evaluates the loop condition L.exp.

Fig. 1. (a) Input process (b) Syntactic translation (c) Translation of domain expert [14]

and artifact-centric process models gains importance. The fact that GSM pro-
vides the basis for the new OMG Case Management Standard (CMMN1) further
extends its importance. Especially for inter-organizational cooperations, transla-
tions between both paradigms become vital. Translation of activity-centric mod-
els to artifact-centric models has been studied [7,17]. However, these approaches
remain on the syntactic level and create completely flat GSM models not follow-
ing the basic principles and guidelines of GSM.

Guard Stage Milestone (GSM). We highlight the relevant essentials of GSM here
and refer the reader to [5,12] for details. A process is modeled in the form of
artifacts, where each artifact has a data schema with data attributes and state
attributes, and a life-cycle definition. GSM life-cycles are based on guards, stages,
and milestones. In the graphical representation (Fig. 1(b) and (c)), guards are
depicted as diamonds, stages as rounded boxes with optional labels, and mile-
stones as circles. A guard defines when a particular stage becomes active, a
milestone defines when a stage is completed (e.g. a business goal is reached).
Stages can be atomic or composite. Every atomic stage contains a service that
is executed when the stage becomes active. A composite stage contains other
stages. The idea of composite stages is to group stages that are executed in

1 http://www.omg.org/spec/CMMN/.

http://www.omg.org/spec/CMMN/

310 J. Köpke and J. Su

order to achieve a common goal collectively, i.e. to reach the milestone(s) of
their parent stage. Guards and milestones may have labels and are specified
as sentries. Sentries are defined in the form of Event Condition (over the data
schema) Action (ECA) rules of the form “on event if condition ”, “on event”, or
“if condition”. Events may be internal (e.g. achieving of a milestone) or external
such as the completion event of a service call. Achieving events of sentries are
denoted by the prefix “+” and their invalidation by the prefix “−”, respectively.

Weaknesses of Syntactic Translations. We discuss weaknesses of syntactic trans-
lations with an example. For the activity-centric input process shown in Fig. 1(a),
part (b) shows the GSM translation based on a purely syntactic translation algo-
rithm [14]. Part (c) shows a GSM version of (a) potentially created by a domain
expert from scratch. The syntactic translation (b) has a number of disadvantages
in comparison to (c):

1. Milestones and guards are defined on a solely technical level not relating to
any agreed real-world states of data objects nor business goals. For example,
the milestone of Pay in Fig. 1(b) is defined by the completion of the Pay task.
In contrast, the domain expert has modeled a stage PayInvoice with the
milestone paid in Fig. 1(c), where paid is a well-known state of order objects
in the domain and PayInvoice is a known activity in the domain.

2. The syntactic translation is mostly flat and lacks nesting of stages based on
business goals. In contrast, the domain expert uses nested stages to structure
the process based on business goals of the domain. In Fig. 1(c) the activity
stages are nested inside the upper-level stages Shop, Checkout, ProcessOrder,
and SalesProcessing.

The model in Fig. 1(c) not only has advantages for stake-holders, by present-
ing structured models referring to agreed terms, but also facilitates advanced
process monitoring based on abstract stages and business goals of the domain.

From a general perspective, the model in Fig. 1(c) has a higher “quality”
[9,16] than that in Fig. 1(b). A main cause of this quality difference is the dif-
ferent expressiveness of the activity-centric model and the GSM model in the
following sense. While GSM allows to define business goals and hierarchies of
stages to achieve them, this information is missing in the source models. Conse-
quently, it cannot be added through a purely syntactic translation.

Quality of models [9,16] depends on many aspects, some of which may not
have technical formulations. In many application domains, a large part of domain
knowledge exists in documents or even with semi-formal languages. Examples
include housing management [8], travel industry (e.g. http://www.opentravel.
org), the financial/accounting domain [15] and of course the medical domain [2].
For applications in these domains, focusing on ontology “alignment” can improve
learning/training of process models, as well as monitoring of key performance
indicators.

In our earlier work [14] an architecture to tackle this problem was developed.
The general idea is to provide the missing domain knowledge for meaningful

http://www.opentravel.org
http://www.opentravel.org

Towards Quality-Aware Translations of Activity-Centric Processes 311

translations in form of an ontology representing the states of business documents
and a taxonomy of state changing actions defining typical part of relations of
actions in the domain.

Contributions of this paper. We extend our earlier framework with the following
specific contributions:

– Quality metrics for assessing the semantic alignment (Sect. 2) and control-flow
complexity (Sect. 3) of GSM translations.

– A rewrite algorithm (Sect. 4) for improving the semantic alignment of a
translation.

– Our findings based on the evaluation (Sect. 5) are: Maximum quality metrics
of translations are achievable for both metrics if input processes are fully
aligned with the domain taxonomy. Having poorly aligned input processes,
either semantic alignment or control-flow complexity can be optimized but
not both at the same time.

Fig. 2. An example taxonomy of actions [14]

2 Semantic Alignment of a GSM Translation

A core element of our translation framework [14] is a taxonomy of actions T
that defines relationships between actions in the domain. The key idea was to
automatically or manually map activities in an input process to the taxonomy
T to allow GSM translations with semantic stage nesting. While [14] focused on
how an existing process can be matched with the taxonomy, in this paper we
assume such a matching given. We first review the taxonomy from [14] and then
present a mapping formalism between activity-centric input processes and the
taxonomy. Based on the mapping and the taxonomy, we define a novel quality
metric for the semantic alignment of GSM translations.

312 J. Köpke and J. Su

2.1 Taxonomy of Actions

A taxonomy of actions T describes abstract, well agreed actions that result in
state changes (e.g. the achievement of business goals) of business entities. The
actions are organized in a rooted tree (whose root node is root) representing a
part of hierarchy. The semantics of T is the following: If an action b is defined as
a child-action of some action a where a �= root, then b is considered as potentially
contributing to achieving the goal of action a (in GSM reaching a milestone).
Action b can be used to achieve the goal of a, but it is not required to use b
to achieve a in every process or instance. Therefore, T can be considered as
a general glossary of actions that can be reused for different processes of the
domain. As described in [14] each node in T is additionally annotated with
OWL expressions defining pre- and post-states of each action. The annotations
are primarily used for matching activities and actions and are out of scope of this
paper. An example taxonomy for our previous example is shown in Fig. 2. We
assume that the taxonomy is provided as input. It may be created by employing
domain ontologies [2,8,15], or it could be derived from GSM process repositories
or goal models [4,13].

2.2 Mapping of Activities and Taxonomy of Actions

A mapping between an activity-centric input process G and the taxonomy of
actions T is defined by the tuple (M1,M2) that is defined below:

Fig. 3. Taxonomy alignment - correct alignment examples

Definition 1 (Realizes Mapping). M1 is a set of pairs of the form (s, a), where
s ∈ G.activitySteps, a ∈ T.actions, T.actions is the set of actions in the taxonomy
T and G.activitySteps refers to the set of activities in the input process. A tuple
in M1 defines that the activity s realizes the action a. Each activity can realize
zero or one action in T and each action in T can be realized by zero or one
activity (partial bijection).

Not requiring a 1:1 mapping is based on the assumption that the taxonomy
is not necessarily complete and should be generic to be applicable for different
processes. Definition 1 forbids to map more than one activity in the process model
to one action that occurs in the same context (same parent) in the taxonomy.
However, this limitation can be lifted by extending the taxonomy with additional
actions or parent actions.

Towards Quality-Aware Translations of Activity-Centric Processes 313

Definition 2 (Contributes to Mapping). The mapping M2 is also a set of pairs
(s, a), where s∈G.activitySteps and a∈T.actions, and specifies that a specific
activity contributes to the achievement of some action in T . Every activity that
realizes an action also contributes to it (M1⊆M2). M2 further satisfies the fol-
lowing (quantifiers omitted):

– Activities can only contribute to actions they realize or to ancestors thereof:
(s, a)∈M2 ⇒ (s, a) ∈ M1 ∨ ∃(s, a′) ∈ M1, where a is an ancestor of a′.

– Activities must contribute to common ancestors: {(a, a′), (b, b′), (a, a′′)} ⊆ M2

⇒ (b, a′′) ∈ M2 if a′′ is a common ancestor of a′ and b′.
– No skipping of levels in T : {(a, a′), (a, a′′′)} ⊆ M2 ⇒ (a, a′′) ∈ M2, if a′′ ∈

T.actions, a′′ is a descendent of a′′′ and an ancestor of a′.

Definition 3 (Taxonomy Projection). For each taxonomy T and each mapping
M2, let project(T,M2) denote a rooted taxonomy (with root as the root node)
obtained by projecting T onto M2. A node t of T is also a node of project(T,M2),
if ∃ (x, t) ∈ M2 for any x. The relative hierarchical order of T is preserved in
the projection.

2.3 Assessing Taxonomy Alignment of a Translation

Given a GSM translation of some activity-centric input process with a mapping
to a taxonomy of actions, we want to assess how well the stage nesting in the
translation corresponds to the taxonomy projection.

General Idea of the Taxonomy Alignment Metric. Figure 3 shows four
different GSM translations G1–G4 of some activity-centric input process (not
shown). The taxonomy T and the taxonomy projection TP are shown on the
left. Elements of T that are not in TP are depicted in grey.

Fig. 4. Taxonomy alignment - contradictions

Translation G1 provides the same nesting as defined in TP . We consider this
as a perfect alignment. G1 should get the maximum score of 1. G3 does not
provide any grouping of atomic stages and should get the minimum score of
0. We do not give credits for the existence of mapped activities since they are
trivially part of the translation.

314 J. Köpke and J. Su

G2 and G4 are partially aligned but parent actions of TP are missing in the
translations. G4 perfectly describes the contribution of B. We therefore assign a
credit of 1 for B in G4. However, the contributions of D and E are only partially
described. We assign a credit of 0.5 for the description of D and of E because
only 1 of two abstractions is present in G4. G2 does not describe the contribution
of B at all (no credit for B) and the contributions of D and E are only partially
modeled (credits 0.5 for D and for E). We argue that G4 should be considered as
superior to G2 because the contribution of the atomic stages is better described
in G4. Following this principle we calculate the overall metrics by the average
credit for each atomic stage: The metrics of G4 is 0.5+0.5+1

3 = 2
3 and that of G2

is 0.5+0.5+0
3 = 1

3 .
While the previous example only addressed missing hierarchy levels, Fig. 4

shows example translations, where the nesting in the process model contradicts
with the one in the taxonomy projection. In process G5 the hierarchy is inverted,
where C is a child of A in the taxonomy, A is a child of C in the translation.
In G6, B is nested under C but it should be nested under A. In G7, a mapped
atomic stage is missing. Stage E contributes to the achievement of C in the
taxonomy but this is not reflected in the process model. We consider this as
incorrect since the goal of C may never be achieved without executing E. While
credits are assigned separately for each atomic stage, contradictions influence
the contributions of multiple atomic stages. We assign a credit of 0 to all atomic
stages that are nested in a stage that contains contradictions.

Calculating Alignment Metrics. We first provide preliminary definitions:
Corresponding Taxonomy Action of an Atomic Stage: Let G′ be a GSM trans-
lation of an activity-centric process G with a mapping M = (M1,M2) to a
taxonomy T . Let s be an atomic stage in G′ implementing an activity a of G. If
(a, t) ∈ M1, then t is the corresponding action of s. The corresponding taxonomy
action of a composite stage is defined by equivalent stage labels and labels of the
actions in the taxonomy. Taxonomy Tree of a GSM translation G′, tree(G′), is
a taxonomy tree representing the stage nesting of G′. The nodes of tree(G′) are
the corresponding actions of the stages union additional nodes for non-mapped
stages of G′. The hierarchy in tree(G′) equals the hierarchy in G′. The Hierarchy
Path hp(n, T) of a node n in a tree T is a sequence of nodes defined by the path
from n to the root, excluding n and the root node. The projection of a hierarchy
path a and a hierarchy path b, projectP(a, b) denotes a hierarchy path a′, where
a′ only contains the elements of b while the relative order of elements in a is
preserved.

Definition 4 (Correct Nesting of a mapped atomic stage s in a GSM trans-
lation G′ under T and M=(M1,M2)). Let t be the corresponding taxonomy
node of the atomic stage s and TP the taxonomy projection of T under M2. The
atomic stage s is correctly nested into parent stages if ∀ action a ∈ hp(t, tree(G′))
where a is an action in TP ⇒ a is an action in hp(t, TP) and the relative order
of actions is equivalent in both paths.

Towards Quality-Aware Translations of Activity-Centric Processes 315

Definition 5 (Contradiction of composite stages in G′ with the taxonomy pro-
jection). A composite stage s1 contradicts with a taxonomy projection if it
contains incorrectly nested atomic stage (Definition 4) or if atomic stages are
missing: Let t1 ∈ project(T,M2) be the corresp. taxonomy node of s1. An atomic
stage is missing in s1 if there exists a descendent t2 of t1 ∈ project(T,M2), a
tuple (x, t2)∈M1 for some x, but �s2 as a substage of s1 in G′ such that t2 is
the corresp. taxonomy node of s2.

For calculating the taxonomy alignment score of a (mapped) atomic stage,
we assign the value of 0 if the atomic stage is part of a contradicting composite
stage. Otherwise, the score is based on the fraction of existing parents in the
translation and the number of parents in the taxonomy projection:

Definition 6 (Taxonomy Alignment of an atomic stage s). Let G′ be a GSM
translation of an activity-centric process G and t the corresponding action of
s in T under the mapping M2. If s is part of a composite stage that does not
contradict with the taxonomy projection (Definition 5), the score is the frac-
tion of the number of existing mapped abstractions of t in tree(G′) and the
number of abstractions of t in the taxonomy projection: SemMetricAtomic(s) =
| projectP(hp(t, tree(G′)), hp(t, project(T,M2)))|

| hp(t, project(T,M2))| otherwise, the score is 0.

Definition 7 (Taxonomy Alignment of a GSM translation). The taxonomy
alignment metrics of a translation is the mean of the metrics scores of all mapped
atomic stages.

Example Calculating the taxonomy alignment for D of G4 in Fig. 3:
hp(D′, tree(G4)) = 〈A〉, hp(D′, project(T,M2)) = 〈C,A〉
projectP(〈A〉, 〈A,B〉) = 〈A〉 → SemMetricAtomic(D) = |〈A〉|

|〈A,B〉| = 1
2 .

In analogy to D: SemMetricAtomic(E) = 1
2 , SemMetricAtomic(B) = 1

1 = 1.
The taxonomy alignment score of G4 is: (12 + 1

2 + 1
1)/3 = 2

3 .

Properties of the Metrics: The purpose of the taxonomy alignment metrics
is to compare translations of the same input process. The metrics is based on
assessing the degree of alignment of each atomic stage. When a translation a
achieves better average taxonomy alignment scores for all atomic stages than
another translation b, then a gets a better score than b. When the taxonomy
projection is balanced this metrics is equivalent to an alternative metrics, which
is the number of all provided abstractions of atomic stages divided by the number
of possible abstractions of all atomic stages. The result of the alternative app-
roach is different for unbalanced taxonomy projections because atomic stages
that are deeper nested have stronger positive or negative impact on the overall
alignment score. This behavior should be considered when the metrics is applied
to unbalanced taxonomy projections. Which metrics better describes the desired
alignment depends on the usage scenario.

We define the quality of a stage nesting (unordered tree) relative to the
taxonomy projection (unordered tree). This also makes general tree similarity

316 J. Köpke and J. Su

Fig. 5. GSM translation G′ for input processes G1 and G2

approaches such as the tree edit distance (e.g. [1]) possible candidates for met-
rics. However, beside the problem that the calculation of the minimal tree edit
distance is NP-hard for unordered trees, it does not directly produce the desired
results: In the example in Fig. 3, the non-weighted tree edit distance between
the taxonomy and G2 and between the taxonomy and G4 are both 1 (adding
one node). However, G4 better matches the desired stage nesting. Therefore, the
edit operations would still need to be weighted based on the number of affected
atomic stages and potential contradictions (see Definition 5).

3 Control-Flow Complexity

The previous metrics assesses the existence of stage nestings relative to a tax-
onomy while ignoring the control-flow between composite stages. However, the
control-flow may limit the usefulness of a given stage nesting: frequent switches
between sub-processes negatively impact on the understandability of (behaviors
of) process models [23,24]. Additionally, the utility of translation for monitor-
ing purposes is limited because numerous stages remain opened at the same
time without actually performing tasks in parallel. In GSM switching between
sub-processes (composite stages) exists if there is control-flow between atomic
stages of different (active) composite stages. To address this, we introduce a
“control-flow complexity” metrics of translations. It is based on the usual fan-in
and fan-out [11] of modules (stages). We are specifically interested in fan-out
of composite stages that are not linked to their closing (non-exit fan-out) and
fan-in into already opened composite stages (non-entry fan-in).

Example Figure 5 shows a GSM stage hierarchy G′ perfectly aligned with the
taxonomy projection on the left. If G′ is the result of a translation of G1, the
control-flow is completely in-line with the stage progression of G′ (solid arrows
in the top part of G′ in Fig. 5). The composite stages C, F , and L are executed in
a sequence. There is no non-entry fan-in nor non-exit fan-out control-flow. (For
the sake of simplicity the example does not contain control-blocks.) If G2 is the
input for G′, the control-flow (dashed arrows in the bottom part of G′ in Fig. 5)
is scattered over multiple composite stages that are open in parallel without
actually executing tasks in parallel. We denote the parent stage of an atomic
stage in subscript. C is opened and (DC , GF) opens F not closing C. (GF , JL)

Towards Quality-Aware Translations of Activity-Centric Processes 317

opens L not closing F . (JL, IC) resumes C. (IC ,HF) resumes F not closing
C. (HF ,KL) closes F and resumes L. Finally, (KL, EC) resumes C and closes
L. For stage C as one example this leads to the non-entry fan-in control-flows
(Jl, IC), (KL, EC) and the non-exit fan-out control-flows (DC , GF), (IC ,HF).

Control-Flow Complexity for GSM. We define fan-in and fan-out of a stage
based on the control-flow graph of the activity-centric input process G. A control-
flow from an activity a to another b exists if a is a predecessor of b in the graph
representation of G and there exists a path from a to b that does not contain
any other activity.

Definition 8 (Non-Entry Fan-In of a Stage S). Let G′ be the GSM translation
of an activity-centric process G and S be a composite stage of G′. A fan-in of
S is a control-flow (a, b), where a corresponds to an atomic stage /∈ S and b
corresponds to an atomic stage ∈ S. A fan-in (a, b) of S is a non-entry if for all
permissible instantiation of G some activity ∈ S is executed before a. The set
of all non-entry fan-ins of S is denoted NonEntryFanIn(S). Fan-out of S and
NonExitFanOut(S) are defined correspondingly.

AvgNonEntryFanIn(G′) is the arithmetic mean of |NonEntryFanIn(S)| of all
composite stages S ∈ G′. AvgNonExitFanOut(G′) is defined similarly. The cal-
culation of the control-flow complexity is realized in analogy to coupling metrics
[6]. The values are in the interval of [≥ 0, < 1], where 0 indicates no unwanted
switching between active composite stages, near 1 indicates very high numbers
of switches on average.

Definition 9 (Control-Flow Complexity of a GSM translation G′).
controlComplex(G′) = 1 − 2

1+AvgNonEntryFanIn(G′)+1+AvgNonExitFanOut(G′)

Example In the example in Sect. 3, when considering G2 as the input process
of G′: The non-entry-fan-in of C in G′ is |{(J, I), (K,E)}| = 2, for F and L, we
get 1. The non-exit-fan-out of C in G′ is |{(D,G), (I,H)}| = 2, for F and L,
we get 1. This leads to an average non-entry-fan-in and non-exit fan-out of 4

3 .
Thus, controlComplex(G′) = 1 − 2/(1 + 4

3 + 1 + 4
3) = 0.572.

When G1 is the input we have controlComplex(G′) = 1 − 2
1+0+1+0 = 0.

Properties of the Metrics: The purpose of the control-flow complexity metrics
is to compare translations with different stage nestings of the same input process
regarding unwanted dependencies between active composite stages. Therefore,
higher total numbers of non-entry fan-in and non-exit fan-out relative to the
number of composite stages must lead to higher complexity values of the metrics.
This is guaranteed. The metrics does not assess the control-flow complexity [3,10]
of the input process. However, control-blocks in the input process have impact
on the potential fan-in and fan-out of composite stages in the translation.

A control-flow is considered non-entry if the stage has certainly been opened
before. A more pessimistic and more complex approach would be to calculate

318 J. Köpke and J. Su

Algorithm 1 . Semantic Rewrite of a GSM Translation
1: Method rewriteTranslation
Input: TaxonomyNode node
2: if (node is not root node) then
3: GsmStage commonAncest = getCommonAncestor(

getMappedAtomicStages(node));
4: for all (GsmStage s ∈ getMappedAtomicStages(node)) do
5: topStageBefore = ancestorBefore(s,commonAncest);
6: nestingCandidates � topStageBefore;
7: checkAtomic � topStageBefore.getAllAtomicStages();
8: end for
9: if (allNestable(checkAtomic,getMappedAtomicStages(node)) then

10: nestStages(nestingCandidates,node,commonAncest);
11: end if
12: end if
13: for all (TaxonomyNode n ∈ node.getChildren()) do
14: rewriteTranslation(node);
15: end for

non-entry fan-in based on the probability that some stage has already been
opened before and to compute non-exit fan-out correspondingly. However, what
metrics better describes problematic control-flows still needs to be decided based
on a user-study.

4 Semantic Rewrite Algorithm

Based on the taxonomy alignment metrics, we present an algorithm that rewrites
a syntactic translation of an activity-centric input process to enhance its metrics
score. The algorithm takes as input an activity-centric process G, a (possibly
nested) syntactic translation G′ of G, a taxonomy of actions T , and a contributes-
to mapping M2.

The core method rewriteTranslation(TaxonomyNode) is shown as Algorithm 1.
It is first called with the root node of the taxonomy projection and visits the
nodes of the taxonomy projection in a depth-first traversal. Unless the current
node is the (virtual) root node of the projection it retrieves the common ancestor
commonAncest stage of all atomic stages that are mapped to the current node of
the projection in G′. It then creates the sets nestingCandidates and checkAtomic,
where nestingCandidates contains the top-level ancestor stage of each atomic-
stage below commonAncest and checkAtomic contains all atomic stages nested
into each stage in nestingCandidates. The set checkAtomic is used to check if a
nesting is possible.

According to the alignment metrics, a nesting is correct if it contains all
required atomic stages and it does not contain atomic stages that are not mapped
to the current node but to other taxonomy nodes. This check is realized by the
Boolean method nestable(). If nestable returns true, a new stage with the label

Towards Quality-Aware Translations of Activity-Centric Processes 319

of the current taxonomy node is created as a child stage of the common ancestor
and all nodes in nestingCandidates are assigned as child stages of the new stage.
Finally, guards and milestones are generated for the new stage.

Example Applying Algorithm1 on G3 in Fig. 3, rewriteTranslation
(project(T,M2)) → rewriteTranslation(A′): CommonAncestor of D, E, and B
is G3 itself. The loop in lines 4 to 8 produces the sets nestingCandidates =
{D,E,B} and checkAtomic = {D,E,B}, allnestable({D,E,B}, {D,E,B})
returns true. The new stage A′ is created under the common ancestor G3. The
nestingCandidates, {D,E,B}, are set as its child stages. Next, rewriteTransla-
tion(C ′) is called and processed in analogy to A′. Finally, G3 equals G1 in Fig. 3.

Fig. 6. Metrics scores vs. alignment of input processes. Left: App. A, Right: App. B

Setting Guards and Milestones. Since the rewrite algorithm must not change
the permitted traces of executions it should guarantee that every stage that could
be opened before the new stage was introduced can still be opened after the new
stage is introduced. In GSM, a child stage cannot be opened if the parent stage
is closed. Therefore, the new stage must be opened before any of the potentially
first executed nested atomic stages may get opened. In principle, we could add
a copy of the guards of each potentially first opened stage to the new stage.

When taking a block-structured syntactic translation from [14] as input,
control-blocks (xor, par, loops) of the activity-centric input process are rep-
resented as composite stages and in a block-structured activity-centric process
there is always one block that is evaluated first. Therefore, we use the sentry
expression of the substage that represents the first block as the (single) guard
sentry expression of the new stage.

For milestones, we apply a similar strategy. In principle, the new stage is
completed, e.g. some milestone of it is reached, when no atomic stage within
the new stage is open and no atomic stage within the new stage can get opened
anymore. However, this may depend on future decisions during the runtime of
the process, resulting in potentially complex milestone expressions. In contrast
when using the nested syntactic translation of [14] as input there is always one
last stage. We use the achievement sentry expression of its milestone as the
sentry expression of the new stage’s milestone.

320 J. Köpke and J. Su

Finally, we beautify the generated guards and milestones by rewriting equiv-
alent expressions of child and parent guards/milestones. If a child stage has the
exact sentry expression for guards as its parent stage, we update the sentry of
the guard to the opening event of the parent stage. If a parent milestone has
the exact same sentry condition as a milestone of a child stage, we rewrite the
parent milestones sentry to the achieving event of the child milestone.

5 Evaluation

We present an evaluation of achievable metrics scores of the rewrite algorithm
(Sect. 4) to assess (1) the influence of existing hierarchy on taxonomy align-
ment, (2) the influence of rewriting on control-flow complexity, and (3) the bal-
ance between control-flow complexity and semantic alignment. We conducted
experiments with the rewrite algorithm having two different syntactic transla-
tion approaches as input. The combination of our block-based translation app-
roach [14] with the semantic rewrite algorithm is referred to as “Approach A”.
The combination of the semantic rewrite approach with a simple flat translation
is referred to as “Approach B”. While Approach A creates complete and poten-
tially enactable translations, Approach B generates partial translations discard-
ing guards and milestones. This is sufficient for the assessment of the achievable
quality since the control-flow metrics is based on the control-flow defined in the
input processes. Potentially enactable implementations can be based on existing
flat translation approaches such as [17,18].

Fig. 7. Left: #control-blocks vs. metrics scores, Right: %-random vs. metrics scores

For our experiments, we have generated semantically aligned block-
structured processes and taxonomy mappings based on the Food Products
Chapter of the well balanced UN Central Product Classifications Taxonomy.2

A block structured input process G is aligned with a taxonomy when each
control-block (par, xor, loop) c that contains mapped activities only contains
2 CPC Ver.2.1 http://unstats.un.org/unsd/cr/registry/regdnld.asp?Lg=1.

http://unstats.un.org/unsd/cr/registry/regdnld.asp?Lg=1

Towards Quality-Aware Translations of Activity-Centric Processes 321

mapped activities if all are mapped to the same most specific common ancestor
action a in the taxonomy (recursively) and only brothers or descendants of c
may also contain activities mapped to a.

Experiment 1. We assess the influence of taxonomy alignment of the input
process and the achievable metrics scores for Approaches A and B. We have
conducted experiments with varied number of misaligned activities by repeat-
edly swapping two random activities. For each number of swaps (0 to 96 =
completely random), we randomly generated 50 fully semantically aligned ini-
tial processes with mappings and applied the swaps. Each process contains 183
activities and on average 19 control-blocks (par, xor, loop). The average metrics
scores of 50 processes in relation to the number of swaps for Approach A (on
the left) and Approach B (on the right) are shown in Fig. 6.

Experiment 2. In the second experiment we investigate the influence of control-
blocks in the input processes on taxonomy alignment and control-flow complexity
scores. We generated input processes with 183 activities, 0 control-blocks (only
sequences) to 183 activities, 59 control-blocks (par, xor, loop). For each number
of control-blocks we generated 50 processes with 10 swapped activities (approx.
20 changed activities or 10 % of the activities are not aligned with the taxonomy).
The average metrics scores of 50 processes in relation to the number of control-
blocks are shown on the left side of Fig. 7.

5.1 Findings

Finding 1: Maximum taxonomy alignment scores are achievable
Both approaches can achieve maximum taxonomy alignment scores. Approach
A achieves an alignment score of one, if the input processes are fully aligned with
the taxonomy (see 0 swaps at left side of Fig. 6) or if the input processes only
contain sequences (see left side of Fig. 7). Approach B constantly produces the
maximum alignment score of 1 (see right side of Fig. 6 and left side of Fig. 7).
In contrast to Approach A, the non-nested GSM translation used as input for
Approach B does not impose any restrictions on the required nesting.

Finding 2: Optimizing taxonomy alignment scores increases control-flow com-
plexity
When input processes are not aligned with the taxonomy, Approach B still pro-
duces perfect taxonomy alignment scores of 1 (right side of Fig. 6 and left side
of Fig. 7). However, the semantic grouping results in an increase of control-flow
complexity. As shown on the right side of Fig. 6, the control-flow complexity of
the translation results of Approach B grows logarithmical with the percentage
of misaligned activities in the input processes. A rough estimate for the control-
flow complexity is complex = 0.1936 ln(x) + 0.1074, where x is the percentage of
misaligned activities in the input processes. This behavior of increased control-
flow complexity score due to semantic nesting also applies for Approach A if the
processes contain (mostly) of sequences (left side of Fig. 7). The reason is that
nested syntactic translation approach does not perform nesting for sequences.

322 J. Köpke and J. Su

Another interesting behavior is that the control-flow complexity given a fixed
number of swapped activities decreases, when the number of control-blocks grows
in the processes (left side of Fig. 7, dotted line). The reason for this behavior is
that the number of non-entry fan-in and non-exit fan-out decreases, when more
(potential) entry fan-ins and exit fan-outs exists due to conditions.

Finding 3: Optimizing control-flow complexity decreases taxonomy alignment
scores
Where Approach B produces constantly perfect taxonomy alignment scores,
Approach A produces very low control-flow complexity scores (left side of Fig. 6).
By not modifying existing nestings of the syntactic translation that translates
control-blocks to single-entry, single-exit composite stages, the control-flow com-
plexity stays at a very low level (dotted line in Fig. 6). However, near opti-
mal control-flow complexity comes with strongly reduced taxonomy alignment
scores of Approach A, if randomness is added to the input processes. The tax-
onomy alignment scores decrease potentially with a rough estimation of score
= 0.8081x−0.299, where x is the percentage of misaligned activities in the input
processes. This exponential decrease is induced by the growing misalignment of
two trees: The nesting of the syntactic translation and the best-case semantic
nesting defined by the taxonomy projection.

By combining Findings 2 and 3 we conclude that given non-perfectly aligned
input processes, a translation approach producing control-flow preserving trans-
lations (e.g. permitting the same traces of executions) can either optimize tax-
onomy alignment scores (as approach B) or minimize control-flow complexity
scores but cannot achieve both at the same time.

5.2 Input Processes that Achieve Acceptable Alignment/Complexity
Scores

We assume that for real-world applications, a process will mostly follow the
domain taxonomy. The right side of Fig. 7 shows the average taxonomy align-
ment scores for approach A and the average control-flow complexity scores for
approach B depending on the percentage of randomly assigned activities in the
processes (data from Exp. 1). 2.2 %3 randomly assigned activities results in a
still very good taxonomy alignment score of 0.77 for approach A and in a very
low control-flow complexity score of 0.15 for approach B. 6.5 % random activities
results in a still reasonable score of 0.55 for A and 0.35 for B. When 10 % of the
activities are randomly assigned, the metrics score is 0.47 for both approaches.
To conclude, both approaches still provide good scores (>0.5 for taxonomy align-
ment and <0.5 for control-flow complexity) when less than approx. 8% activities
in the input processes are not aligned with the taxonomy. We suspect that this
class covers a wide range of real-world processes since it is very likely that activ-
ities that belong semantically together are also structurally related in the input
processes. However, the assumption of acceptable scores (>0.5 / <0.5) requires
further empirical validation with experts or practitioners.
3 2.2 % corresponds to 2 swaps resulting in 4 misaligned activities out of 183 in Fig. 6.

Towards Quality-Aware Translations of Activity-Centric Processes 323

We have created variants of the taxonomy with deeper and flatter hierarchies.
Our experiments show, that all findings also apply for these variants. Only the
classes of acceptable quality are influenced by the taxonomy depth.

6 Related Work

Translations of activity-centric processes to declarative GSM models have been
studied [7,14,17,18]. The approach in [7] generates from UML activity diagrams
with data objects and state information as input state machines for data objects,
and then translates the state machines into flat GSM models. The translation of
Petri nets to GSM was addressed in [17] and applied to mining GSM processes
in [18]. The approach is based on calculating pre-condition sets for each activity
in order to generate guards of atomic stages. The resulting GSM models are
completely flat. To the best of our knowledge, the syntactic translation approach
in [14] is the only approach that generates nested GSM models, with nesting
based on the block structure of the input process.

A key component of our work is the mapping between input processes and
taxonomies. Such a mapping could be obtained by matching pre- and and post-
conditions of activities [14]. As an alternative approach to obtain a mapping,
processes are matched with a taxonomy based on label similarity [20]. However,
this would not take into account (explicit) business goals, which is a key idea of
abstractions in GSM. Approaches combining activity-centric modeling and goal
modeling such as [4,13] lead to richer input models, which potentially allow to
derive the taxonomy and mapping.

The broader context of our quality metrics is framed by the work on qual-
ity of conceptual models in general [9,16] and quality of business process models
[10,21] in particular. Metrics for business process models were inspired by metrics
from software engineering [6,11], namely coupling, cohesion, complexity, modu-
larity and size. Coupling and cohesion in the context of business processes were
addressed in [19], where the major goal is to find a proper granularity of activ-
ities. The control-flow complexity (CFC) of activity-centric models was studied
in [3], where the complexity is measured based on different gateway types and
the potential number of states.

There are no quality metrics for GSM processes. We have made a first step
with our taxonomy alignment metrics following the basic principles of stage
nesting in GSM. The metrics is accompanied with a control-flow complexity
metrics to assess unwanted communications between active composite stages.
However, in contrast to [3,10] our control-flow complexity metrics does no assess
the control-flow complexity of the input process. The core of both metrics devel-
oped here is counting existing abstractions or unwanted control-flow between
composite stages. This naturally satisfies all 9 properties of Weyuker measures
[22] for software programs. The normalized metrics are in-line with all relevant
properties of Weyuker measures given that their purpose is to compare different
translations of the same input process.

324 J. Köpke and J. Su

7 Conclusions and Future Work

GSM models allow to group stages based on the fulfillment of business goals.
The absence of goals in activity-centric models leads to undesirable syntactic
translations. We presented two novel metrics for GSM translations assessing the
quality of stage nesting relative to domain taxonomies and assessing the control-
flow complexity induced by stage nesting. We developed a semantic rewrite
algorithm to enhance the taxonomy alignment metrics of syntactic translations.
Experiments show that rewritten translations can achieve reasonable to perfect
metrics scores if input processes are well aligned with the domain taxonomies.
When input processes are poorly aligned a translation can either achieve optimal
alignment scores or low complexity scores but not both.

While we argue that adding semantics nestings to GSM translations will
also enhance understandability of the models, this hypothesis still needs to be
addressed in further evaluations with end-users. Such a study could also reveal
details on the interpretation of the metrics values: What values can be considered
good? At which scores do processes actually get uncomprehensible?

Other fields of future work include the study of translations of process models
that already partially include (typically structural) groupings (e.g. BPMN sub-
processes). Given such models, the taxonomy and mapping creation process may
exploit existing groupings. The translation itself can be realized as presented in
this paper. Finally, we suppose that processes, where the translations have high
control-flow complexity might already have deficits in their activity-centric rep-
resentation. On the one hand they might themselves by hardly understandable,
on the other hand the control-flow may still have room for optimizations. Both
questions are interesting future work.

References

1. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci.
337(13), 217–239 (2005)

2. Bodenreider, O.: Biomedical ontologies in action: role in knowledge management,
data integration and decision support. Yearb. Med. Inf. 67–79 (2008)

3. Cardoso, J.: Control-flow complexity measurement of processes, Weyuker’s prop-
erties. Int. J. Math. Comput. Phys. Electr. Comp Eng. 1(8), 366–371 (2007)

4. Cortes-Cornax, M., Matei, A., Dupuy-Chessa, S., et al.: Using intentional frag-
ments to bridge the gap between organizational and intentional levels. Inf. Softw.
Tech. 58, 1–19 (2015)

5. Damaggio, E., Hull, R., Vacuĺın, R.: On the equivalence of incremental and fixpoint
semantics for business artifacts with guard-stage-milestone lifecycles. Inform. Syst.
38(4), 561–584 (2013)

6. Dhama, H.: Quantitative models of cohesion, coupling in software. J. Syst. Soft.
29(1), 65–74 (1995). Oregon Metric Workshop

7. Eshuis, R., Van Gorp, P.: Synthesizing data-centric models from business process
models. Computing 98, 345–373 (2015)

8. City Office for Property Management of Hangzhou: 2014 rental subsidies for low
income families: processing guidelines, July 2014 (in Chinese)

Towards Quality-Aware Translations of Activity-Centric Processes 325

9. Gemino, A., Wand, Y.: A framework for empirical evaluation of conceptual mod-
eling techniques. Requirements Eng. 9(4), 248–260 (2004)

10. Gruhn, V., Laue, R.: Complexity metrics for business process models. In: Interna-
tional Conference on Business Information Systems - BIS, vol. 85, pp. 1–12 (2006)

11. Henry, S., Kafura, D.: Software structure metrics based on information flow. IEEE
Trans. Softw. Eng. SE–7(5), 510–518 (1981)

12. Hull, R., Damaggio, E., De Masellis, R., et al.: Business artifacts with guard-stage-
milestone lifecycles: managing artifact interactions with conditions and events. In:
Proceedings of DEBS, pp. 51–62. ACM (2011)

13. Koliadis, G., Ghose, A.K.: Relating business process models to goal-oriented
requirements models in KAOS. In: Hoffmann, A., Kang, B.-H., Richards, D.,
Tsumoto, S. (eds.) PKAW 2006. LNCS (LNAI), vol. 4303, pp. 25–39. Springer,
Heidelberg (2006)

14. Köpke, J., Su, J.: Towards ontology guided translation of activity-centric processes
to GSM. In: Reichert, M., Reijers, H. (eds.) BPM Workshops 2015. LNBIP, vol.
256, pp. 364–375. Springer, Heidelberg (2016). doi:10.1007/978-3-319-42887-1 30

15. McCarthy, W.E.: The REA accounting model: a generalized framework for account-
ing systems in a shared data environment. Acc. Rev. 57(3), 554–578 (1982)

16. Moody, D.L.: Theoretical and practical issues in evaluating the quality of concep-
tual models: current state and future directions. Data Knowl. Eng. 55(3), 243–276
(2005)

17. Popova, V., Dumas, M.: From petri nets to guard-stage-milestone models. In: La
Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 340–351.
Springer, Heidelberg (2013)

18. Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle discovery. Int. J. Coop. Inf.
Syst. 24, 44 (2015). http://dx.doi.org/10.1142/S021884301550001X. 1550001

19. Reijers, H.A., Vanderfeesten, I.T.P.: Cohesion and coupling metrics for workflow
process design. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol.
3080, pp. 290–305. Springer, Heidelberg (2004)

20. Smirnov, S., Dijkman, R., Mendling, J., Weske, M.: Meronymy-based aggregation
of activities in business process models. In: Parsons, J., Saeki, M., Shoval, P., Woo,
C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 1–14. Springer, Heidelberg
(2010)

21. Vanderfeesten, I., Cardoso, J., Mendling, J., Reijers, H., van der Aalst, W.M.P.:
BPM and workflow handbook, chapter quality metrics for business process models,
p. 179 (2007)

22. Weyuker, E.J.: Evaluating software complexity measures. IEEE Trans. Softw. Eng.
14(9), 1357–1365 (1988)

23. Zugal, S., Pinggera, J., Weber, B., Mendling, J., Reijers, H.A.: Assessing the impact
of hierarchy on model understandability – a cognitive perspective. In: Kienzle, J.
(ed.) MODELS 2011. LNCS, vol. 7167, pp. 123–133. Springer, Heidelberg (2012)

24. Zugal, S., Soffer, P., Haisjackl, C., et al.: Investigating expressiveness and under-
standability of hierarchy in declarative business process models. Softw. Sys. Model.
14(3), 1081–1103 (2013)

http://dx.doi.org/10.1007/978-3-319-42887-1_30
http://dx.doi.org/10.1142/S021884301550001X

Runtime Management

Untrusted Business Process Monitoring
and Execution Using Blockchain

Ingo Weber1,2(B), Xiwei Xu1,2, Régis Riveret3, Guido Governatori3,
Alexander Ponomarev1, and Jan Mendling4

1 Data61, CSIRO, Eveleigh, NSW, Australia
{Ingo.Weber,Xiwei.Xu,Alexander.Ponomarev}@data61.csiro.au

2 School of Computer Science and Engineering, UNSW, Sydney, Australia
3 Data61, CSIRO, Spring Hill, QLD, Australia

{Regis.Riveret,Guido.Governatori}@data61.csiro.au
4 Wirtschaftsuniversität Wien, Vienna, Austria

jan.mendling@wu.ac.at

Abstract. The integration of business processes across organizations is
typically beneficial for all involved parties. However, the lack of trust
is often a roadblock. Blockchain is an emerging technology for decen-
tralized and transactional data sharing across a network of untrusted
participants. It can be used to find agreement about the shared state of
collaborating parties without trusting a central authority or any particu-
lar participant. Some blockchain networks also provide a computational
infrastructure to run autonomous programs called smart contracts. In
this paper, we address the fundamental problem of trust in collaborative
process execution using blockchain. We develop a technique to integrate
blockchain into the choreography of processes in such a way that no cen-
tral authority is needed, but trust maintained. Our solution comprises
the combination of an intricate set of components, which allow monitor-
ing or coordination of business processes. We implemented our solution
and demonstrate its feasibility by applying it to three use case processes.
Our evaluation includes the creation of more than 500 smart contracts
and the execution over 8,000 blockchain transactions.

Keywords: Business process · Blockchain · Choreography ·
Orchestration

1 Introduction

The integration of business processes, e.g., along the supply chain, has been
found to contribute both to better operational and business performance [4,10].
A lack of trust, however, may hamper the innovativeness of further developing
the collaborative process and its performance altogether [13]. Once service-level
agreements are in place, it becomes a highly delicate question which partner
should serve as a hub for controlling the collaborative process of several parties,
or where a mediator process is hosted. While control asymmetries can be avoided
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 329–347, 2016.
DOI: 10.1007/978-3-319-45348-4 19

330 I. Weber et al.

by a decentralized choreography instead of central orchestration, it does not solve
the general problem of trust in controlling the collaborative business process.

The described lack-of-trust problem can be addressed with novel blockchain
technology. Instead of agreeing on one trusted party, participants share trans-
actional data across a large network of untrusted nodes (i.e., machines). This is
achieved using a timestamped list of blocks which record, share, and aggregate
data about transactions that have ever occurred within the blockchain network.
Cryptographic proofs make this data storage immutable. As long as a majority
share of the blockchain is not compromised, transactions can only be inserted;
updating or deleting existing transactions is prohibitively expensive, making
the blockchain tamper-proof. Blockchain also provides a global computational
infrastructure, which can run programs: so-called smart contracts [12] execute
across the blockchain network and automatically enforce the conditions defined
in the transactions to enable, for example, conditional payment.

In this paper, we adopt blockchain technology to address the lack-of-trust
problem in collaborative business processes. More specifically, we develop an
approach to map a business process onto a peer-to-peer execution infrastructure
that stores transactions in a blockchain, offering the following benefits. First,
we provide a monitoring facility that integrates an automatic and immutable
transaction history. Second, smart contracts can be used as a direct implemen-
tation of the mediator process control logic. Third, we obtain an audit trail for
the complete collaborative business processes, for which payments, escrow, and
conflict resolution can be enforced automatically. Our contribution is the first
approach and implementation that leverages blockchain for collaborative process
execution and monitoring. We evaluate our approach for feasibility by prototyp-
ing three use case processes on top of it. To this end, we ran of more than 500
process instances by creating as many smart contracts, and executed over 8,000
blockchain transactions that interact with the smart contracts.

The paper proceeds with a discussion of the research problem, related
work, and blockchain technology in Sect. 2. Section 3 presents the details of
our approach. Section 4 evaluates our approach using several real-world busi-
ness scenarios, and Sect. 5 concludes. Technical details and evaluation use cases
are described in a technical report (TR) [23]. Finally, a screencast video is
available.1

2 Background

This section discusses the research problem we address, related work, and the
background of blockchain technology as a solution.

2.1 Challenges of Collaborative Business Process Execution

We illustrate challenges of executing collaborative business processes by the help
of a supply chain scenario reported in [3] that we simplify in Fig. 1. The process
1 https://youtu.be/1SNn9c5HHQs.

https://youtu.be/1SNn9c5HHQs

Untrusted Business Process Monitoring and Execution Using Blockchain 331

Fig. 1. Supply chain scenario from [3] (simplified)

starts with the Bulk Buyer placing an order with the Manufacturer. The latter
calculates the demand and places an order for materials via a Middleman. This
Middleman forwards the order to a Supplier and arranges transportation by a
Special Carrier. Once the materials are produced, the Carrier picks them up
at the Supplier site and delivers them to the Manufacturer. The Manufacturer
produces the goods and delivers to the Bulk Buyer. The process is a choreogra-
phy since there is no party that sees all messages. If all messages were sent and
received by the Manufacturer, it would be an orchestration with the Manufac-
turer serving as a mediator [7].

Conflict Example. This simple scenario already involves five participants who
would likely blame each other in case of delays and errors. Consider the case
that the Manufacturer receives the materials three days later than agreed, with
eight pallets being delivered instead of ten. The Supplier might argue that this
is exactly in line with what was ordered by the Middleman while the Middleman
would claim the fault to be on the side of the Supplier. The situation is delicate
for the Carrier since the Manufacturer refuses to accept the delivery. The Carrier
is now eligible for a compensation by the Supplier or the Middleman depending
on who is responsible for the fault.

2.2 Prior Research on Collaborative Business Processes

Prior research on collaborative business processes has intensively investigated
different notions of compatibility between the local processes of different partners
and between local processes and a global process. Such compatibility can be

332 I. Weber et al.

achieved by design, for instance using a P2P approach [20], transformations
from a global choreography [7,22], or interaction modeling [2].

Business processes involve different trust issues (see e.g. [21] for a summary)
which can be addressed in different ways. For example, [1] relaxed the assumption
that the broker hosting the process engine has to be trusted: using selective
encryption, data access for both the broker and the service partners can be
restricted. [8] designed a trust service for cross-company collaboration based on
a hybrid architecture mixing a trusted centralized control with untrusted peer-
to-peer components. [6] put forward an agent-based architecture that can remove
the scalability bottleneck of a centralized orchestration engine, and provides more
efficiencies by executing portions of processes close to the data they operate
on. In virtual organizations, [15] proposed to select partners on the basis of
disclosure policies and credentials (i.e. identity attributes issued by a “Credential
Authority”).

Various important concepts such as conformance [19], reliability [16] and
quality of services [24] have been investigated for centrally controlled business
process execution. However, these works do not solve the trust issue: a collabo-
rating party might have corrupted their historic files to their advantage. Tech-
nologies such as shared data stores provide solutions via consensus protocols to
synchronize replicas [5] in a fully trusted environment. In this paper, we build
our approach on blockchain technology for reasons explained next.

2.3 Blockchain Technology

Blockchain is the technology that supports Bitcoin [9]. The Bitcoin blockchain
is a public ledger, which stores all transactions of the Bitcoin network. This
concept has been generalized to distributed ledger systems that verify and store
any transactions without coins or tokens [17]. A key feature of a blockchain-based
system is that it does not rely on any central trusted authority, like traditional
banking or payment systems. Instead, trust is achieved as an emergent property
from the interactions between nodes within the network.

The blockchain data structure is an ordered list of blocks. Blocks are contain-
ers aggregating transactions. Every block is identifiable and linked to the pre-
vious block in the chain. Transactions are identifiable data packages that store
parameters (such as monetary value in case of Bitcoin) and results of function
calls in smart contracts. The integrity is ensured by cryptographic techniques.
Once created, a transaction is signed with the signature of the transaction’s ini-
tiator, which indicates e.g. the authorization to spend the money, create a smart
contract, or pass the data parameters associated with the transactions.

If the signed transaction is properly formed, valid and complete, it is sent to
a few other nodes on the blockchain network, which will further validate it and
send it to their peers until it reaches every node in the network. This flooding
approach guarantees that a valid transaction will reach all the connected nodes
in the network within a few seconds. The senders do not need to trust the nodes
they use to broadcast the transactions, as long as they use more than one to
ensure that it propagates. The recipient nodes do not need to trust the sender

Untrusted Business Process Monitoring and Execution Using Blockchain 333

either because the transaction is signed. When a transaction reaches a mining
node, it is verified and included in a block. Blockchain networks rely on miners to
aggregate transactions into blocks and append them to the blockchain. Once the
transaction is confirmed by a sufficient number of blocks, it becomes a permanent
part of the ledger and is accepted as valid by all nodes.

A smart contract is a user-defined program executed on the blockchain net-
work [12]. It can be used to reach agreement and solve common problems.
Smart contracts can be enforced as part of transactions, and are executed
across the blockchain network by all connected nodes. The blockchain platform
Ethereum views smart contract as a first-class element, and offers a built-in
Turing-complete scripting language for writing smart contracts, called Solidity.
Its execution environment, the Ethereum Virtual Machine (EVM), comprises all
full nodes on the network and executes bytecode compiled from Solidity scripts.
Trust in the correct execution of smart contracts extends directly from regu-
lar transactions, since (i) they are deployed as data in a transaction, and hence
immutable; (ii) all their inputs are through transactions; and (iii) their execution
is deterministic. Deployed contracts should be tested. Whether the bytecode can
be trusted is a separate matter, which we discuss for our approach in Sect. 4.5.

3 Blockchain-Based Collaborative Process Execution

In the following, we propose a blockchain-based system to address the lack-of-
trust problem in collaborative business processes. A number of technical chal-
lenges arise during the adoption of blockchain for this purpose. For example,
since transactions, computation, and data storage in blockchain platforms are
not cost-free, not all aspects of collaborative processes should be dealt with inside
smart contracts. However, smart contracts cannot call external APIs outside the
blockchain environment or directly create blockchain transactions. This section
presents our approach and how it addresses the challenges encountered.

3.1 Overview of the Approach

An overview of our approach is shown in Fig. 2. We use blockchain to facilitate
the collaborative processes in either of two ways:

(i) As a choreography monitor, it stores the process execution status across
all involved participants by observing the message exchanges. In this setting,
blockchain serves as an immutable data storage to share the process execution
status and create an audit trail. Smart contracts check if interactions are con-
forming to the choreography model. In addition, a choreography monitor can be
used to manage automated payment points and escrow.

(ii) As an active mediator among the participants, it coordinates the col-
laborative process execution. This includes all the above as well as using smart
contracts to drive the process and implement data transformation or calcula-
tions.

These options are supported by the following main components:

334 I. Weber et al.

– At design time, a translator derives from a process specification described
in, e.g., Business Process Model and Notation (BPMN), a smart contract in a
script language (such as Solidity). The generated smart contract is a factory
for mediators or choreography monitors.

– For Option (i), a Choreography monitor or C-Monitor uses smart con-
tracts to monitor the collaborative business processes. The C-Monitor is split
into a factory and case-specific instance C-Monitors. The factory instantiates
the case-specific monitors as needed, and contains the blueprint for instance
C-Monitors. The C-Monitor instance tracks the interactions of a choreography
instance and combines them into a consolidated view of the current state of
the execution. Optionally, it can trigger automatic conditional payment from
escrow, when certain points in the choreography are reached.

– For Option (ii), an active mediator uses a smart contract to implement the
collaborative business processes. As with the C-Monitor, it is split between a
factory and a set of instances and offers a consolidated view of the process
state. In contrast to the C-Monitor, the mediator always plays an active role,
receiving and sending messages according to the business logic defined in the
process model. It also may transform data or execute other computations.

– Interfaces or triggers connect the process executing on blockchain and the
external world. Because smart contracts cannot directly interact with the
world outside the blockchain, a trigger plays the role of an organization’s agent.
It holds confidential information and runs on a full blockchain node, keeping
track of the execution context and status of running business processes. The
trigger calls external APIs if needed, receives API calls from external com-
ponents, and updates the process state in the blockchain based on external
observations. It further keeps track of data payload in API calls and keeps the
data in an external database when appropriate.

By the help of these components, we achieve that (i) participants can execute
collaborative processes over a network of untrusted nodes, (ii) only conforming
messages advance the state of the process, (iii) payments and escrow can be
coded into the process, and (iv) an immutable ledger keeps a log of all transac-
tions, successful or not. Next, we explain the above components in more detail.
Additional details are available in a technical report [23].

3.2 Design Time: Translator

The translator is used at design time: it takes an existing business process speci-
fication as input and generates smart contracts. These implement the C-Monitor
or mediator and can be deployed and executed on the blockchain.

In a collaborative process, this functionality must be split and distributed
between the smart contract and the triggers. The translator creates the artifacts
in such a way that the triggers and the smart contract can collaborate directly
with each other over the blockchain network.

When the translator is called, it may not be known which participants will
play which roles. Therefore, the translator outputs only a factory contract,

Untrusted Business Process Monitoring and Execution Using Blockchain 335

Fig. 2. Overview of our approach

which in turn contains all information needed for instantiating the process. The
factory contract includes the methods for instantiation and two types of artifacts:
(i) an interface specification per role (e.g., buyer, manufacturer, and shipper) in
a collaborative process, to be distributed to the respective triggers, and (ii) a
process instance contract, which is deployed to the blockchain when the process
is instantiated. The process instance contract contains the implementation of
the business logic and takes the form of a C-Monitor or mediator, depending on
the content of the original process specification.

The overall translation algorithm has two phases. First, the translator parses
the input process model and iterates through all its elements, where it generates
two lists per element in the process model: one list of previous elements and one
of next elements. Then, the translator translates each element with its respective
links, generating Solidity code based on the translation rules for different types
of elements as detailed in the TR [23]. Note that, in the current implementation,
only some combinations of consecutive gateways can be connected to each other
without tasks in between. The previous element list is used by the translator to
determine which other elements need to be deactivated when the current element
is executed; the next element list specifies which elements need to be activated
after the current element is executed.

The selection methods for the two lists are shown in Algorithm 1.
NextElements of an element includes all the tasks that directly follow the ele-
ment, or the outgoing edge if the target of that edge is an AND-Join. If a next
element is a Split or XOR-Join gateway, the tasks / edges that connect to it
are added into NextElements through a recursive call. PreviousElements of

336 I. Weber et al.

an element includes the element itself. If an XOR-Split gateway Spliti precedes
the current element, the tasks that follow it are added to PreviousElements.
In the case of an AND-Join gateway, all incoming edges are added to
PreviousElements.

Algorithm 1. Calculating PreviousElements and NextElements.
1: function SelectNextElements(Element, NextElements[])
2: for all Edgej ∈ outgoingEdges[Element] do
3: if Edgej .targetElement is Task then
4: NextElements ← Edgej .targetElement
5: else if Edgej .targetElement is AND-Join gateway then
6: NextElements ← Edgej
7: else if Edgej .targetElement is Split or XOR-Join gateway then
8: SelectNextElements(Edgej .targetElement,NextElements[])
9: end if

10: end for
11: end function
12:
13: function SelectPreviousElements(Element, PrevElements[])
14: PrevElements ← Element
15: if Element is Task then
16: for all Edgei ∈ incomingEdges[Element] do
17: if Edgei.sourceElement is XOR-Split gateway then
18: SelectNextElements(Edgei.sourceElement, PrevElements[])
19: end if
20: end for
21: else if Element is AND-Join gateway then
22: for all Edgei ∈ incomingEdges[Element] do
23: PrevElements ← Edgei
24: end for
25: end if
26: end function

The generator is based on the workflow patterns [18]. Some patterns can be
directly translated, some have to be supported off-chain, and other are unnec-
essary in our case. Our focus is not on supporting all elements of BPMN, but
we start from the 5 basic control flow patterns [18], which are among the most
frequently used elements in process models [25]. For brevity, we give an overview
of the translation rules in Table 1. These make use of the two lists derived above,
for activation / deactivation. After generating the smart contracts, the transla-
tor also calculates the cost range for executing the resulting smart contract. This
serves as an indication of how much crypto-coins have to be spent in order to
execute process instances over the blockchain.

Untrusted Business Process Monitoring and Execution Using Blockchain 337

Table 1. Translation rule summary. During traversal of the process model, when the
translator encounters a pattern (left column), it inserts code according to the right
column into the smart contract code. Scope concerns which variants the pattern applies
to (M: mediator; CME: C-Monitor with escrow)

BPMN element Scope Solidity code summary

All patterns All On execution, deactivates itself and
activates the subsequent element.

Parallel-Split All Executes on activation, activates all
subsequent elements.

Parallel-Join All Executes on activation of all incoming
edges.

XOR-Split All Executes on activation, conditionally
activates all subsequent elements. If one
of them is executed, it deactivates all
others.

XOR-Join All Executes on activation of one incoming
edge.

Choreography Task All Executes when the respective message is
received (as blockchain transaction), and
if the task is activated (message conforms
with process). If conforming, the message
is forwarded (as smart contract log entry);
else, an alert is broadcasted.

Task: Payment M, CME Execution and conformance check as above.
If conforming, payment into or from
escrow is processed. Incoming payment is
through a transaction, which has the
desired effect already. Outgoing payment
is sent to the account of the specified
role.

Task: Data Transformation M Execution and conformance check as above.
Mediator-internal logic on data
transformation, to be handled on-chain
by the mediator or off-chain by a
designated trigger.

3.3 Runtime Environment: Executing Processes as Smart Contracts

The translator generates all artifacts needed for runtime execution. We start by
describing C-Monitors, which allow passive monitoring of choreographies and
optionally escrow. Active mediators can be seen as an extension of C-Monitors,
and the additions are explained subsequently. The third important concept for
runtime, the triggers, and the interaction between triggers and smart contracts
are covered afterwards. Finally, we describe how technical challenges like key
distribution are handled.

338 I. Weber et al.

Fig. 3. BPMN choreography diagram of the process in Fig. 1

Choreography Monitor. The first way of facilitating collaborative processes is
to use a smart contract as C-Monitor, with optional escrow and conditional pay-
ment at certain points of the processes. For a new process instance, an instance
contract is generated from the factory contract. Initialization includes register-
ing participants and their public keys to roles. The C-Monitor instance contract
contains variables for storing the role assignment and for the process execution
status. During execution, the involved participants do not interact with each
other directly. Instead, they use the monitor to exchange their input/output
data payload and, by doing so, advance the state of the collaborative process.
Consider the choreography in Fig. 3, which is another representation of the col-
laborative process from Fig. 1. All tasks are communication tasks between roles.
By exchanging the messages through the C-Monitor, it can check conformance
with the choreography and track the status. In this way, conformance checking
is done implicitly by the C-Monitor, and all transactions (successful or not) are
logged in the blockchain. The handling of escrow is described below.

Mediator. Similar to the C-Monitor, the mediator is implemented as a smart
contract, which is generated from the factory contract. It uses the same compo-
nents as the C-Monitor. It also implements active components, among others to
transform data and receive and send messages and payments.

Triggers. The Blockchain is a closed environment, where the deployed smart
contracts cannot call external APIs. In our approach, a trigger (or blockchain
interface) connects the participants’ internal processes with the blockchain. It
monitors the process execution status, logically receives messages from smart
contracts and calls external APIs, or receives API calls and logically sends mes-
sages to smart contracts accordingly.

Triggers are programs running on full nodes of the blockchain network. In the
typical setup, every participant operates its own trigger deployed on a node it

Untrusted Business Process Monitoring and Execution Using Blockchain 339

Fig. 4. Sequence diagram for the first two tasks in Fig. 3

controls, and the participant’s systems only communicate with its own trigger.
We assume that this situation is given. Since the trigger is required to hold
private keys for all participants on whose behalf it operates, a high degree of
trust into the individual trigger is required.

When a new process instance is created, the participants register their roles
and public keys. The public key corresponds to the account address of a partici-
pant. All keys and role assignments are passed to all triggers associated with the
process instance, so everyone knows which role is played by whom and can verify
messages accordingly. With the private key it holds, the trigger can encrypt or
sign a message, allowing the contract and the other participants to verify its
messages. In this fashion, it can also create payment transactions.

During the process execution, the trigger is receptive to API calls from its
owner, as well as to logical messages from the process instance contract. The
interaction between internal process implementations, triggers, and the process
instance smart contract is shown in simplified form in Fig. 4. When a trigger’s
API is called from its owner, the trigger translates the received message into a
blockchain transaction, and sends the transaction to the instance contract. When
the trigger receives a logical message from the instance contract, it updates its
local state and calls an external API from the private process implementation.

Finally, the trigger takes care of sizable data payloads. For incoming API
calls, it moves the data to secure storage, hashes it, and attaches a URI and the
hash to the outgoing transaction. For incoming messages from the blockchain,
it retrieves the data via its URI, checks if the hash matches, and sends it on to
the internal process implementation.

Encryption and Key Distribution. All the information on the blockchain
is publicly accessible to all nodes within the network. We store two types of
information on blockchain, namely the process execution status and the data
payload (or its URI/hash). To preserve the privacy of the involved participants,
we have the option to encrypt the data payload before inserting it into the

340 I. Weber et al.

blockchain. However, the process execution status is not encrypted because the
C-Monitors and mediators need to process this information. Encrypting the data
payload means that mediators cannot perform data transformation at all, but
can resort to the source participant’s trigger for this task.

We assume the involved participants exchange their public keys off-chain.
Encrypting data payload for all process participants can be achieved as follows.
One participant creates a secret key for the process instance, and distributes
it during initial key exchange. When a participant adds data payload to the
blockchain, it first symmetrically encrypts this information using the secret key.
Thus, the publicly accessible information on blockchain is encrypted, i.e., useless
to anyone who has no access to the secret key. The participants involved in the
process instance have the secret key and can decrypt the information. Encrypting
data payload between two process participants, in contrast, may be desired if
two participants want to exchange information privately through the process
instance. For this case, the sender can asymmetrically encrypt the information
using the receiver’s public key; only the receiver can decrypt it with its private
key.

Escrow. The C-Monitor or mediator can also work as an escrow for conditional
payment at designated points. Similar to an escrow agent, e.g., in real estate
transactions, the smart contract receives money from one or more parties, and
only releases the money to other parties once certain criteria are met. For the
receivers this has the benefit that they can observe that the money is actually
there before doing work; and the sender does not have to pay upfront, trusting
it will eventually receive the goods or service in return.

In the running example process, the Manufacturer (Mf) needs to pay the
Middleman (Mm), Supplier (S) and Carrier (C) when it receives the goods. But
S is unwilling to send the goods without some guarantees that it will get paid.
Therefore, Mf puts the money in escrow, namely an account held by the process
instance contract, when ordering the goods. Later, both C and Mf confirm
the delivery of the goods, which triggers automatic payment from the escrow
account to Mm, S, and C. The smart contract defines under what conditions
the money can be transferred and how the money should be transferred. Thus,
when a payment function is triggered, the smart contract automatically checks
the defined conditions, and transfers the money according to the defined rules. It
is, however, of high importance to specify rules that cover all possible scenarios
and the respective outcomes: e.g., what shall happen with money in escrow if
Mf and C disagree about the delivery of the goods or their condition?

Gas Money. The computation, data storage, and creation of smart contracts
on the blockchain costs crypto-coins. That represents the cost for using the
blockchain network, since it is used to pay the miners that execute the smart
contracts. Each function call is thus accompanied by cost, but contract creation
is relatively much more expensive than a regular function call. For fairness, the

Untrusted Business Process Monitoring and Execution Using Blockchain 341

participants in a collaborative process may want to decide on a different split of
who pays how much, rather than the implicit split from the process.

4 Evaluation

4.1 Evaluation Method, Implementation, and Setup

The goal of our evaluation is to assess the feasibility of the approach. To this end,
we implemented proof-of-concept prototypes for the translator and the trigger.
The translator, written in Java, accepts BPMN 2.0 XML files, which we parse
using the source code of the JBoss BPMN2 Modeller (jbpm-bpmn2 6.3.0). The
translator’s output are files that comply with the Solidity scripting language,
version 0.2.0. Our smart contracts are running on go-ethereum 1.3.5, which is
the official Golang implementation of the Ethereum protocol. The trigger is
written as a Node.js web application, in JavaScript.

We picked three use case processes of different size, two from the litera-
ture and one from an industrial prototype. All three could be used directly as
C-Monitor, and we extended one to cover the other options, i.e., C-Monitor with
escrow and mediator. The key functionality of the blockchain is to accurately
record the shared history of the choreography processes. Therefore, we derived
the set of permissible execution traces for each process model, which we called
the set of conforming traces. Furthermore, we randomly modified these traces
to obtain a larger set of not conforming traces with the following manipulation
operators: (i) add an event, (ii) remove an event, or (iii) switch the order of two
events, such that the modified trace was different from all correct traces. Then
we tested the ability of the smart contracts to discriminate between correct and
incorrect traces. For escrow and the mediator data transformation, we ran a
smaller number of experiments where we manually verified the effects.

Finally, during the above experiments we collected data that allows us to
analyze important qualities. We focused particularly on cost and latency of using
the blockchain in our setting, since these are the two non-functional properties
that differ most from traditional approaches, such as trusted third parties. We
ran experiments on a private blockchain and the public Ethereum blockchain,
which allowed us to compare the effects of different options on these qualities.

4.2 Use Case Processes

For our evaluation, we used the following three processes.

1. Supply chain choreography: This process is discussed throughout this paper
as a running example, see Fig. 3, and adapted from [3]. This process has ten
tasks, two gateways and two conforming traces. From the 2 possible con-
forming traces, we generated 60 randomly manipulated traces. Out of these,
3 were conforming (switched order of parallel tasks) and 57 not.

342 I. Weber et al.

2. Incident management choreography: This process stems from [11, p.18]. This
process has nine tasks, six gateways and four conforming traces. We generated
120 not conforming traces. We implemented it with and without (i) a payment
option and (ii) data manipulation in a mediator.

3. Insurance claim handling: This process is taken from the industrial prototype
Regorous2. Choreographies tend to result in a simplified view of a collab-
orative process, as can be seen when comparing Figs. 1 and 3. To test the
conformance checking feature with a more complex process, we added a third
use case which was originally not a choreography. This process has 13 tasks,
eight gateways and nine conforming traces. We generated 17 correct and 262
not conforming traces.

4.3 Identification of Not Conforming Traces

For this part of the evaluation, we investigate if our implementation accurately
identifies the not conforming traces that have been generated for each of the
models. The results are shown in Table 2. All log traces were correctly classified.
This was our expectation: any other outcome would have pointed at severe issues
with our approach or implementation.

Table 2. Process use case characteristics and conformance checking results

Process Tasks Gateways Trace type Traces Correctness

Supply chain process
of Fig. 3

10 2 Conforming 5 100 %

Not conforming 57 100 %

Incident management 9 6 Conforming 4 100 %

Not conforming 120 100 %

Incident management
with payment

9 6 Conforming 4 100 %

Not conforming 19 100 %

Incident mgmt. with
data transformation

9 6 Calculation 10 100 %

String manipulation 10 100 %

Insurance claim 13 8 Conforming 17 100 %

Not conforming 262 100 %

4.4 Analysis of Cost and Latency

In this part of the evaluation, we investigate the cost and latency of involving the
blockchain in the process execution, since these are the non-functional properties
that are most different from solutions currently used in practice.

2 http://www.regorous.com/. A subset of the authors is involved in this project.

http://www.regorous.com/

Untrusted Business Process Monitoring and Execution Using Blockchain 343

Cost. In our experiments on the private blockchain, we executed a total of 7923
transactions, at zero cost. On the public Ethereum blockchain, we ran 32 process
instances with a total of 256 transactions. The deployment of the factory con-
tract cost 0.032 Ether, and each run of the Incident Management process, with
automatic payments and data transformations, cost on average 0.0347 Ether, or
approx. US$ 0.40 at the time of writing. The data (transactions and contract
effects) of the experiment on the public blockchain is publicly viewable from the
factory contract’s address, e.g. via Etherscan.3

Latency. We measure latency as the time taken from when the trigger receives
an API call until it sends the response with conformance outcome, transaction
hash, block number, etc. A test script iterates over the events in a trace and
synchronously calls the trigger for each event. Therefore, the test script sends
the next request very soon after receiving a response. This distorts the latency
measurement to a degree, since the trigger adds the next transaction to the
transaction pool just after the previous block has been mined, and it needs
to wait there until mining for the block after the current one is started. Our
measurements should thus be regarded as an upper bound, rather than the
typical case. A more detailed explanation is given in the technical report [23].

An overview of the latency measurements is shown in Fig. 54. The duration
for a block to be mined comes from the complexity of the mining task, which
is deliberately designed to be computationally hard. On the public Ethereum
blockchain, the target median time between blocks at the time of writing is set to
around 13 s, with the actual time measured at 14.4 s. On our private blockchain,
we can control the complexity mechanism to increase mining time (shown as Pri-
vate fast in Fig. 5) or leave the default implementation in place (Private uncon-
trolled). As can be seen, the variance is high. On the public Ethereum blockchain,
the median latency was 23.0 s. In our private fast setting we achieved a median
latency of 2.8 s, which should be sufficient for many practical deployments. For
any application, this tradeoff needs to be considered: public blockchains offer
much higher trustworthiness in return for higher cost and latency.

4.5 Discussion

Conflict Resolution. Following up on the conflict example from Sect. 2.1, we
discuss how conflict resolution can be implemented in our approach. Recall that
there was disagreement about the amount of supplies ordered. The blockchain
inherently provides an immutable audit trail, thus it is trivial to review the
original order and waybill messages – the culprit can be identified through such
inspection. Say, the Supplier was at fault, but the Manufacturer paid crypto-coins

3 https://etherscan.io/address/0x09890f52cdd5d0743c7d13abe481e705a2706384.
4 Note that, instead of the typical error bars with min and max in box plots, we

here show the 1st and the 99th percentile, to reduce the effect of the worst outliers.
For Private uncontrolled, the max was 183 s – almost twice as much as the 99th
percentile.

https://etherscan.io/address/0x09890f52cdd5d0743c7d13abe481e705a2706384

344 I. Weber et al.

Fig. 5. Latency in seconds, using private blockchain with/without speed modification,
and public Ethereum blockchain (box plot)

into escrow – how does it get its money back? The conditions for reimbursement
from escrow need to be specified in the smart contract, but then they can be
invoked at a later time. For instance, the participants may agree upfront that
the Manufacturer gets reimbursed only if the Middleman agrees to that; then
the Middleman sends a transaction to that effect, and the Manufacturer’s money
is transferred back to its account.

Trust. Blockchain provides a trustworthy environment, without requiring trust
in any single entity. In contrast, in the traditional model participants who do
not trust each other need to agree on a third party which is trusted by all.
Blockchain can replace this trusted third party. This is of particular interest in
cases of coopetition. If multiple parties come together to achieve a joint business
goal, but some of the organizations are in coopetition, it is important that the
entity which executes the joint business process is neutral. Say, Org1, Org2, and
Org3 are in coopetition, but want to have a joint process to achieve some business
goal. However, Org1 would not accept Org2 or Org3 to control the process, and
neither of those would accept Org1. Using our approach, the blockchain can be
used, enabling trustless collaboration as it is not controlled by a single entity. Our
translator allows the deployment of business processes on blockchain network
without the need to manually implement the corresponding smart contract. Trust
in the deployed bytecode for a process is established as follows: each participant
has access to the process model, translates it to Solidity with our translator, and
uses an agreed-upon Solidity compiler. This results in the same bytecode, and
each participant can verify that the deployed bytecode has not been manipulated.
Finally, the trigger allows for seamless integration into service-based message

Untrusted Business Process Monitoring and Execution Using Blockchain 345

exchanges. However, each trigger is a fully trusted party, and by default we
assume each organization hosts their own trigger.

Privacy. Public blockchains do not guarantee any data privacy: anyone can
join a public blockchain network without permission, and information on the
blockchain is public. Thus, for scenarios like collaborative process execution, a
permissioned blockchain may be more appropriate: joining it requires explicit
permission. Even with permission management, the information on blockchain
is still available to all the participants of the blockchain network. While we
propose a method to encrypt the data payload of messages, the process status
information is publicly available. As such, if Org1 ’s competitor, Org4, knows
which account address belongs to which participant, it can infer with whom
Org1 is doing business and how frequently. This can be mitigated by creating a
new account address for each process instance: the space of addresses is huge, and
account creation trivial. However, this method prevents building a reputation,
at least on the blockchain.

Off-Chain Data Store. For large data payloads, we propose to store only meta-
data with a URI on-chain, and to keep the actual payload off-chain – accessible
with the URI. Due to size limits for data storage on current blockchains [14] and
associated costs, this solution can be highly advantageous. There are existing
solutions that provide a data layer on top of blockchains, such as Factom [14].
Distributed data storage, like IPFS, DHT (Distributed Hash Table), or AWS
S3, can also be used in combination with the blockchain to build decentralized
applications.

Threats to Validity. There are several limitations to our study. To start, we
made some assumptions when implementing our evaluation scenario, which bear
threats to validity. First, we considered a supply chain scenario in which seconds
of latency are typically not an issue. We expect that scenarios in other indus-
tries, such as automatic financial trading, would have stronger requirements in
terms of latency, which could limit the applicability of our technique. Second,
we worked with a network of limited size. A global network might have stronger
requirements in terms of minimal block-to-block latency to ensure correct repli-
cation. These threats emphasize the need to conduct further application stud-
ies in different settings. Furthermore, there are open questions regarding tech-
nology acceptance, including management perception and legal issues of using
blockchain technology.

5 Conclusion

Collaborative process execution is problematic if the participants involved have a
lack of trust in each other. In this paper, we propose the use of blockchain and its
smart contracts to circumvent the traditional need for a centralized trusted party

346 I. Weber et al.

in a collaborative process execution. First, we devise a translator to translate
process specifications into smart contracts that can be executed on a blockchain.
Second, we utilize the computational infrastructure of blockchain to coordi-
nate business processes. Third, to connect the smart contracts on blockchain
with external world, we propose and implement the concept of triggers. A trig-
ger converts API calls to blockchain transactions directed at a smart contract,
and receives status updates from the contract that it converts to API calls.
Triggers can thus act as a bridge between the blockchain and an organiza-
tion’s private process implementations. We ran a large number of experiments
to demonstrate the feasibility of this approach, using a private as well as a pub-
lic blockchain. While latency is low on a private, customized blockchain, the
latency on the public blockchain may be considered too high for fast-paced sce-
narios. Additional benefits of our approach include the option to build escrow
and automated payments into the process, and that the blockchain transactions
from process executions form an immutable audit trail.

Acknowledgments. We thank Chao Li for integrating the trigger prototype with
POD-Viz and recording the screencast video.

References

1. Carminati, B., Ferrari, E., Tran, N.H.: Secure web service composition with
untrusted broker. In: IEEE ICWS, pp. 137–144. IEEE (2014)

2. Decker, G., Weske, M.: Interaction-centric modeling of process choreographies. Inf.
Syst. 36(2), 292–312 (2011)

3. Fdhila, W., Rinderle-Ma, S., Knuplesch, D., Reichert, M.: Change and compliance
in collaborative processes. In: IEEE SCC, pp. 162–169 (2015)

4. Flynn, B.B., Huo, B., Zhao, X.: The impact of supply chain integration on perfor-
mance: a contingency and configuration approach. J. Oper. Manag. 28(1), 58–71
(2010)

5. Kemme, B., Alonso, G.: Database replication: a tale of research across communities.
Proc. VLDB Endow. 3(1–2), 5–12 (2010)

6. Li, G., Muthusamy, V., Jacobsen, H.A.: A distributed service-oriented architecture
for business process execution. ACM TWEB 4(1), 2 (2010)

7. Mendling, J., Hafner, M.: From WS-CDL choreography to BPEL process orches-
tration. J. Enterp. Inf. Manag. 21(5), 525–542 (2008)

8. Mont, M.C., Tomasi, L.: A distributed service, adaptive to trust assessment, based
on peer-to-peer e-records replication and storage. In: IEEE FTDCS (2001)

9. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.org/
bitcoin.pdf. Accessed 19 July 2015

10. Narayanan, S., Jayaraman, V., Luo, Y., Swaminathan, J.M.: The antecedents of
process integration in business process outsourcing and its effect on firm perfor-
mance. J. Oper. Manag. 29(1), 3–16 (2011)

11. Object Management Group, June 2010. BPMN 2.0 by Example. www.omg.org/
spec/BPMN/20100601/10-06-02.pdf. Version 1.0. Accessed 10 Mar 2016

12. Omohundro, S.: Cryptocurrencies, smart contracts, and artificial intelligence. AI
Matters 1(2), 19–21 (2014)

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
www.omg.org/spec/BPMN/20100601/10-06-02.pdf
www.omg.org/spec/BPMN/20100601/10-06-02.pdf

Untrusted Business Process Monitoring and Execution Using Blockchain 347

13. Panayides, P.M., Lun, Y.V.: The impact of trust on innovativeness and supply
chain performance. J. Prod. Econ. 122(1), 35–46 (2009)

14. Snow, P., Deery, B., Lu, J., Johnston, D., Kirby, P.: Business processes secured by
immutable audit trails on the blockchain (2014)

15. Squicciarini, A., Paci, F., Bertino, E.: Trust establishment in the formation of
virtual organizations. In: ICDE Workshops, IEEE Computer Society (2008)

16. Subramanian, S., Thiran, P., Narendra, N., Mostéfaoui, G., Maamar, Z.: On the
enhancement of BPEL engines for self-healing composite web services. In: Proceed-
ings of SAINT Symposium, pp. 33–39 (2008)

17. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decen-
tralized digital currencies. IACR Cryptology ePrint Archive, 2015, 464 (2015)

18. van der Aalst, W., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

19. van der Aalst, W.M.P., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, E.: Con-
formance checking of service behavior. ACM Trans. Internet Technol. 8(3) (2008)

20. van der Aalst, W.M.P., Weske, M.: The P2P approach to interorganizational work-
flows. In: Dittrich, K.R., Geppert, A., Norrie, M. (eds.) CAiSE 2001. LNCS, vol.
2068, pp. 140–159. Springer, Heidelberg (2001)

21. Viriyasitavat, W., Martin, A.: In the relation of workflow and trust characteristics,
and requirements in service workflows. In: Abd Manaf, A., Zeki, A., Zamani, M.,
Chuprat, S., El-Qawasmeh, E. (eds.) ICIEIS 2011, Part I. CCIS, vol. 251, pp.
492–506. Springer, Heidelberg (2011)

22. Weber, I., Haller, J., Mülle, J.: Automated derivation of executable business
processes from choreograpies in virtual organizations. Int. J. Bus. Process Integr.
Manag. (IJBPIM) 3(2), 85–95 (2008)

23. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.:
Using blockchain to enable untrusted business process monitoring and execution.
Technical report UNSW-CSE-TR-09, University of New South Wales (2016)

24. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QOS-
aware middleware for web services composition. IEEE TSE 30(5), 311–327 (2004)

25. Muehlen, M., Recker, J.: How much language is enough? Theoretical and practical
use of the business process modeling notation. In: Bellahsène, Z., Léonard, M.
(eds.) CAiSE 2008. LNCS, vol. 5074, pp. 465–479. Springer, Heidelberg (2008)

Classification and Formalization
of Instance-Spanning Constraints
in Process-Driven Applications

Walid Fdhila(B), Manuel Gall, Stefanie Rinderle-Ma, Juergen Mangler,
and Conrad Indiono

Faculty of Computer Science, University of Vienna, Vienna, Austria
{walid.fdhila,manuel.gall,stefanie.rinderle-Ma,
juergen.mangler,conrad.indiono}@univie.ac.at

Abstract. In process-driven applications, typically, instances share
human, computer, and physical resources and hence cannot be exe-
cuted independently of each other. This necessitates the definition, ver-
ification, and enforcement of restrictions and conditions across multiple
instances by so called instance-spanning constraints (ISC). ISC might
refer to instances of one or several process types or variants. While real-
world applications from, e.g., the logistics, manufacturing, and energy
domain crave for the support of ISC, only partial solutions can be found.
This work provides a systematic ISC classification and formalization that
enables the verification of ISC during design and runtime. Based on a
collection of 114 ISC from different domains and sources the relevance
and feasibility of the presented concepts is shown.

Keywords: Instance-spanning constraints · Compliance ·
Process-Aware Information Systems

1 Introduction

Checking and enforcing constraints such as regulations or security policies is
the key concern of business process compliance [29]. Enterprises have to invest
significantly into compliance projects, e.g., for large companies $4.6 million only
for the management of internal controls [31]. BPM research has provided sev-
eral solutions for compliance at design time, e.g., [6] and runtime (cf. survey
in [15]). Despite these large efforts, an important type of constraints has not
been paid sufficient attention to, i.e., Instance-Spanning Constraints (ISC). ISC
are constraints that refer to more than one instance of one or several process
types. Logistics is a domain where ISC play a crucial role for the bundling or
rebundling of cargo over several transport processes [4]. Other domains crav-
ing for ISC support are health care [7] and security [33]. Specifically, in highly
adaptive process-driven applications where processes dynamically evolve during
runtime [10] ISC provide the means for ensuring a certain level of control.

c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 348–364, 2016.
DOI: 10.1007/978-3-319-45348-4 20

Classification and Formalization of Instance-Spanning Constraints 349

ISC support is scattered over a few approaches [7,13,17,18,27,33], but a
comprehensive support for ISC formalization, verification, and enforcement is
missing. Here, the property comprehensive refers to the context of ISC such as
multiple instances or processes, the expressiveness, e.g., ISC referring to data
or time, and the process life cycle phase the ISC is referring to. For a sufficient
understanding of these requirements, a systematic classification of ISC is needed.
An ISC formalization can then be chosen based on the ISC classification and
additional requirements such as complexity of the verification. The following
research questions address these needs:

1. How to systematically classify ISC?
2. How to formalize ISC based on ISC classification?
3. Do ISC classification and formalization meet real-world ISC requirements?

Questions 1–3 will be tackled following the milestones set out in Fig. 1. At
first, objectives are harvested from literature that must be met by an ISC clas-
sification (Question 1) and formalization (Question 2). The ISC classification
will be created as new artifact. The ISC formalization choice (Question 2) is
based on an analysis of existing languages. Based on an ISC collection of 114
examples from practice, literature, and experience, relevance and feasibility of
the ISC classification are evaluated (Question 3). Moreover, the ISC formaliza-
tion will be validated by formalizing and implementing representatives along the
provided ISC classification (Question 3). In summary, this work provides an ISC
classification and formalization as well as an evaluation based on an extensive
meta study on ISC examples (cf. [26] for a complete description and all 114 ISC
examples).

Fig. 1. Milestones following the research methodology in [22]

Section 2 provides ISC objectives and the ISC classification. Section 3 dis-
cusses alternatives for formalization languages. In Sect. 4, relevance and feasibil-
ity of the ISC classification is evaluated. ISC representatives are formalized and
implemented in Sect. 5. Section 6 discusses related approaches and Sect. 7 closes
with a summary.

350 W. Fdhila et al.

2 ISC Classification

Following the milestones set out in Fig. 1, a collection of objectives on the ISC
classification and formalization is harvested from literature. ISC have a strong
runtime focus [33] and can thus be estimated as related to compliance monitor-
ing in business processes. In [15], objectives on compliance monitoring have been
selected and evaluated as Compliance Monitoring Functionalities (CMF). The
CMFs are grouped along modeling, execution, and user requirements. For the
ISC classification the focus is at the moment on modeling and execution require-
ments. User requirements will play an important role later on when investigating
feedback options and handling of ISC violations and conflicts. According to [15],
modeling and execution requirements are CMF 1: Constraints referring to time,
CMF 2: Constraints referring to data, CMF 3: Constraints referring to resources,
CMF 4: Supporting non-atomic activities, CMF 5: Supporting activity life cycles,
CMF 6: Supporting multiple instances constraints.

Although CMF 6 suggests the use of CMFs for ISC, the CMF framework does
not deal with ISC, but rather with multiple activity instantiations. Hence, we
complement the elicitation of objectives by including requirements stated in liter-
ature on ISC, i.e., [7,13,17,18,27,33]. These works partly confirm CMF 1–CMF
6 and extend it by the context of a constraint [13,17,18], i.e., whether it refers
to a single/multiple processes and/or single/multiple instances. An example for
an ISC spanning multiple instances of a single process is a security constraint
restricting the loan sum granted by one employee over all her customers [33]. An
example for an ISC spanning single instances of multiple processes is imposing
an order between two activities of different treatment processes [7].

Concluding, we state as objectives for ISC classification and formalization:

Objective 1: coverage and support of CMF 1–CMF 3 (modeling)
Objective 2: coverage and support of CMF 4–CMF 6 (execution)
Objective 3: coverage and support of context single/multiple instances for sin-

gle/multiple processes
Objective 4: support during design/runtime

Regarding Objective 4: ISC might not only become effective during runtime,
but also during design time, e.g., imposing restrictions on different process vari-
ants and their instances that can be checked during design time, such as static
information about roles in a process spanning separation of duty scenario. Thus,
support of ISC during design time is added to the objectives.

Figure 2 depicts the proposed ISC classification designed along Objective 1–
4 . Objective 1 suggests a classification along the modeling requirements time,
data and resource. Here, the classification of an ISC into several requirements is
conceivable. ISC A user is not allowed to do t2 if the total loan amount per day
exceeds $1M [33], for example, can be classified as time and data. For a selective
classification, ISC should not fit into multiple categories, but be assigned to
exactly one category. For this reason, the modeling requirements are grouped
into single and multiple requirements. Multiple modeling requirements describe
ISC for which more than one modeling requirement is existing such as in the

Classification and Formalization of Instance-Spanning Constraints 351

example above. An ISC is classified as single modeling requirement if none or
one modeling requirement is present. Objective 2 is not considered for the ISC
classification. In turn, the underlying CMFs are relevant for the formalization
and for the interplay with a process execution engine which manages task states
and multiple instances of a task.

Fig. 2. ISC classification according to objectives.

Objective 3 requires to extend the classification by the spanning property
of constraints, e.g., imposing a restriction that must hold across several process
instances. In the iUPC logical description [13,17,18,27], for example, the span-
ning part is described as context. ISC can span over processes and/or instances.
An ISC is considered single spanning if the constraint spans over processes or
instances and multi spanning when the constraint spans across both.

ISC can be enforced during design and run time (Objective 4). The pro-
posed ISC classification considers both, but due to the strong runtime focus of
ISC design-time will be a single group and run-time is divided into the four clas-
sifications provided by modeling requirements and context. A more extensive
discussion on design and runtime support of ISC is provided in Sect. 3.1.

3 Analysis of Existing Formalisms for ISC Support

In Sect. 2, we have identified 4 objectives primordial for the classification and
formalization of ISC. In the following, we use these 4 objectives to evaluate a
list of existing formalisms and compare them to ISC requirements.

3.1 ISC Support During Design and Runtime

We start with a discussion of ISC requirements on verification at design time
and runtime (cf. Objective 4).

Design time checking aims at verifying the process model compliability
with respect to the defined ISC, detecting and resolving conflicts between mul-
tiple ISC, and checking the reachable states of the instances with respect to the
defined ISC. This might imply generating and combining possible traces to be
checked against the ISC. One of the techniques used at design time is model
checking. This technique suffers from well known problem of state explosion and
is not well suited for checking constraints that refer to runtime data.

352 W. Fdhila et al.

Runtime checking becomes necessary as soon as ISC refer to execution
data, time, or resources. Moreover, at runtime it is possible to deviate from the
original process model, and therefore a monitoring approach to check possible
violations becomes primordial. In contrast to design time checking, the process
models are not used in the monitoring of constraints (unless for conformance
checking), but the runtime events instead. At runtime, we differentiate between
two checking possibilities: (i) using partial traces, where events are analyzed
against the constraints when they arrive, and (ii) post checking, i.e., using com-
plete traces, which assume that the analyzed instances have completed. ISC span
multiple instances. Hence, the fact that an instance or a set of instances satisfy
an ISC at the time of their completion does not necessarily ensure that this ISC
will not be violated by the executing of future instances, i.e., combined with the
completed ones. Consequently, it becomes crucial for ISC monitoring to define
correctly the window for analyzing the instances against the constraints.

3.2 Analysis of Formal Languages

In this section, we have analyzed the commonly used formalisms in the areas of
business process compliance and concurrent systems as follows.

Event-B is a specification language that describes how the system is allowed
to evolve. In particular, it specifies the properties that the system must fulfill [1].
Event-B is mainly used for distributed systems, using artifacts; i.e. blueprints,
to reason about the behavior and the constraints of the future system. The main
advantage of Event-B is that it allows different level of abstractions through step-
wise refinement. Event-B is based on events, expresses the constraints between
them, and supports modality; i.e. time operators (CMF 1). In the context of
business processes, Event-B has been used for verifying cloud resource alloca-
tion and consumption [3] (CMF 2–3).

TLA+ is a syntactic extension of TLA (Temporal logic of Action), a spec-
ification language for describing and reasoning about asynchronous, nondeter-
ministic concurrent systems [9]. TLA+ combines temporal logic with logic of
action, is suited for reasoning about protocols, and can be used to specify safety
and liveness properties. Similarly to Event-B, TLA+ allows different levels of
abstraction through refinement.

Both TLA+ and Event-B can be appropriate for specifying and checking
ISC at design time. In particular, structural parts of ISC might checked before
runtime to detect inconsistencies or incorrect specifications. Both formalisms
are very expressive, support time, data and resources (Objective 1), and can
ensure properties such as liveness, fairness or safety at design time. However,
this does not prevent deviations from the specified model at run time. To our
knowledge, TLA+ and Event-B are meant to be used for specifying correct and
compliant models, but not for monitoring the system properties at run-time; i.e.
they does not satisfy Objective 4. Both languages are used for distributed and
concurrent systems and can support Objective 3.

LTL (Linear Temporal Logic) is a formal language, introduced by Pnueli
[24], referring to the temporal modality (CMF 1), and used for reactive and

Classification and Formalization of Instance-Spanning Constraints 353

concurrent systems. LTL is an extension of propositional logic, and expresses
properties of computation traces; i.e., is interpreted over execution traces.
Recently, LTL has been used for modeling and checking compliance constraints
of business processes at both design and run-time [2,16] (Objective 4). While
most of the approaches for design time verification would use a Kripke Struc-
ture for model checking LTL properties, some monitoring approaches rely on a
transformation of the constraints to a monitor (automata) that evaluates the
runtime events. Several extensions of LTL have been proposed to cover other
aspects not originally considered. For example, DLTL (Dynamic Linear Tem-
poral Logic) strengthen the UNTIL modality with regular expression of the
propositional dynamic logic. Similarly, RTL (Regular Temporal Logic) extends
LTL with semi-extended regular expressions, and MLTL extends it with metrics.

CTL (Computation Tree Logic), is a branching time logic that, in contrast
to LTL, expresses constraints on dynamic evolution of states rather than traces.
Unlike LTL, in CTL the evolution of time is nondeterministic, and every instant
of time has several successors, rather than, exactly one [32]. While LTL reasons
about events along a single computation path, CTL quantifies over paths that are
possible from a given state, through a computation tree. LTL and CTL are not
really comparable and have different expressive powers; i.e., there are formula
that can be expressed in CTL but not in LTL, and inversely. The strong fairness
property, which guarantee a fair behavior between concurrent instances cannot
be expressed in CTL. While LTL is better in expressiveness, the problem of
model-checking CTL formulae of a Kripke structure is of polynomial complexity
[32]. Several extensions of CTL has been proposed; e.g. CTRL extends it with
regular expressions [19].

CTL* can express all formulae of both LTL and CTL [32]. However, the
problem of model checking becomes P-space complete. While LTL can be used
for monitoring, CTL and CTL* are mostly used for model checking at design
time (Objective 4).

PDL is a dynamic logic with several modalities that extends modal logic
by associating action to the operators; i.e.; multimodal logic [5]. It particularly
expresses formulae of the form: after executing an action, it is necessary or pos-
sible that the proposition holds. PDL can also express nondeterministic behavior
through regular expressions and compound actions. The complexity of PDL
decidability is proved to be in deterministic exponential time which makes it not
appropriate for monitoring (Objective 4).

µ-Calculus is an extension of modal logic with two operators µ and v cor-
responding to the least and greatest fixpoints operators [14]. µ-Calculus is a
superset of CTL* and PDL, and is also used for the formal verification of con-
current systems. Despite its expressive power, the complexity of model checking
systems specified with µ-Calculus is considerably high.

Although CTL* and µ-Calculus are powerful branching-time logics, both of
which subsume CTL and LTL (µ-Calculus subsumes PDL as well), they are
complex to understand and to use by non-experts [19]. ISC can be conveniently
and concisely formulated in terms of regular expressions that are not provided

354 W. Fdhila et al.

by standard temporal logics such as CTL and LTL [13,18]. Besides, LTL, CTL*
and µ-calculus adopt an inherent qualitative notion of time but when it comes
to quantitative time or metrics they become insufficient (CMF 1) [15]. LTL is
also not suitable for constraints that deal with data and resources (CMF 2–3),
or mult-instances (CMF 6), which are aligned with Objectives 1–2 of ISC.

EC (Event Calculus) is a general logic programming treatment of time and
change [12]. Event calculus is based on first order predicate logic FOL and
expresses properties in terms of Fluents. A Fluent is a time-varying property
whose valuation is changing according to effect axioms defined in the theory of
the problem domain. The time in EC is linear rather than the branching time
used in other logics, where time is a tree. Accordingly, Fluent valuation is rel-
ative to time points instead of successive situations. EC provides an inherent
support for concurrent events [12], where events occurring in overlapping time
intervals, from different sources can be deduced (Objective 3). EC has bene-
fited enormously from several extensions; e.g. for expressing different properties
such as non deterministic actions, gradual changes, compound events, indirect
effects, actions with duration or actions with delayed effects [21]. There exist a
multitude of reasoners or solvers for EC; e.g. Discrete Event Calculus reasoner,
F2LP [21]. EC supports abductive reasoning to generate hypothetical events.
In other words, it permits constructing a rule based on the observed events. In
the context of business processes, EC has been widely used for either formalizing
process models, process choreographies (process interactions) [28], or obligations
and compliance rules [20]. As already mentioned in [15,20], EC adopts an explicit
representation of qualitative and quantitative time (CMF 1), and supports the
CMF 2–6 that we pointed as relevant for ISC checking. Moreover EC supports
checking at both design and runtime (Objective 4).

Other Languages: In particular, SQL-like languages such as PQL or
APQL [8] as declarative languages based upon temporal logic seem to be good
candidates for expressing complex constraints and querying instance events at
runtime. In contrast to the logic based reasoning, they are data-centric and can
deal with the CMFs that we have defined. Currently, PQL is used for query-
ing process model instances. Also eCRG (extended Compliance Rule Graph)
is a visual monitoring language for business process compliance which sup-
ports control and data flow including time and resource perspectives [11] (CMF
2–3). eCRG is based on FOL and can be used at both, design and runtime
(Objective 4).

ISC checking at design-time is not always decidable due to loops or quan-
tification over infinite sets (e.g., time, integer, arbitrary data objects). While
the assumption of finite sets is made implicit for LTL and CTL, and there-
fore they are considered as decidable at design time, it does not hold for more
expressive language such as EC. The expressive power of EC precludes its decid-
ability at design time, but meanwhile can cope with most ISC specifications.
Since temporal logic properties are decidable over finite-state models, adopting
this assumption makes EC also decidable at design time. LTL, CTL, PDL, EC,
eCRG and SQL-like languages are all decidable at runtime (monitoring) since
they check over traces. However, they have different complexity.

Classification and Formalization of Instance-Spanning Constraints 355

Table 1 elaborates on the above discussion and classifies the studied languages
with respect to Objectives 1–4. eCRG, SQL-like languages, and EC seem to
be good candidates for ISC formalization. SQL-like languages are more data-
centric, but remain as a good alternative to support ISC. Overall, EC is adopted
for ISC formalization and used as basis for design time checking and runtime
monitoring.

Table 1. Evaluation of formalisms with respect to Objectives 1–4

TLA+ Event B LTL CTL PDL µ-Calculus eCRG SQL-Like EC

Objective 1 + + +/− +/− +/− +/− + + +

Objective 2 + + +/− +/− +/− + + + +

Objective 3 + + + + + + + + +

Objecjtive 4 Design + + + + +/− +/− +/− +/− +/−
Runtime − − + +/− +/− +/− + + +

Caption: (Full support (+), Not Supported (−), Partly supported (+/−))

4 Relevance and Feasibility of ISC Classification

114 ISC examples were collected during a meta study described in [26]. Manu-
facturing, logistics/transport, health care, security and energy/smart grid were
identified as relevant application domains which were complemented by other
domains such as teaching and insurance during the study. Altogether, 42 % of
the ISC examples stem from the energy domain, 16 % from automotive and man-
ufacturing, 10 % from security, 9 % from logistics and transport, 7 % from health
care, and 16 % from other domains. Among the analyzed sources were EU and
WWTF projects (16 %), regulatory documents (42 %), industry papers (15 %),
literature (9 %), as well as ISC examples from experiences; i.e., own working
projects (18 %). The complete collection of ISC examples is provided in [26].

In order to show the relevance and feasibility of the ISC classification (cf.
Fig. 2), the ISC were manually categorized with respect to the following aspects1.

– Application: design/runtime
– Context: single/multiple processes/instances
– Modeling requirements: structure, data, time, resource, execution data

Regarding application, it can be observed that all examples refer to runtime
(except those in category undef). Hence, the classification into design time and
runtime is not reflected by the examples. Nonetheless, ISC examples for design
time can be envisaged (e.g., static role assignment), however, the emphasis seems
to be ISC support during runtime. Execution data [18] can be observed as addi-
tional modeling requirement when compared to the CMFs in [15]. Structure is
present in every ISC (as implicitly also the case for the CMF framework [15]).
1 Note that ISC for which no categorization was possible without further information

were categorized as undef. The reason behind is that the ISC in many cases did not
have a specified connected process model.

356 W. Fdhila et al.

Fig. 3. Distribution of classification

The distribution of the examples with respect to context and modeling
requirements is depicted in Fig. 3. About 20 % of the examples can be classi-
fied as spanning multiple processes, instances, and modeling requirements. 11 %
span multiple context and are categorized to fit a single modeling requirement.
In total, 53 % of the ISC are classified as single context spanning either processes
or instances. 25 % of the ISC in category single context are further categorized as
referring to multiple modeling requirements and 28 % as single modeling require-
ment. 16 % of the examples are not considered due to unclear context (12 %) or
missing modeling requirements (4 %). For this data set, each ISC fits exactly one
of the classification categories.

To learn more about the modeling requirements, they were plotted against
the domain and the source (cf. Fig. 4). Structure is a modeling requirement
present in every domain (cf. Fig. 4(a)) ranging from about 35 % to 45 %. There
are differences for modeling requirements data. Specifically, data is not present
at all for domain energy whereas for the other domains the amount of ISC
referring to data ranges from about 20 % to 32 %. Time plays some role for all
domains, but seems to be especially represented for the energy domain (about
38 %) compared to a range from about 6 % to 20 % for all other domains. Look-
ing into the energy examples, many ISC refer to a certain time frame (Service
Level Agreements (SLA)). Resource is present throughout all domains, again
the energy domain shows less ISC referring to resources (about 1 %) than the
other domains (about 14 % to 29 %). All ISC referring to execution data fall into
domain energy. Resources seem to play a particularly important role in manu-
facturing and automotive as well as in security. The latter is not very surprising
as the assignment of resources is an essential security measure.

For analyzing modeling requirements along source (cf. Fig. 4(b)), it was
decided to aggregate sources into categories practice (covering projects and reg-
ulatory documents), experience, and literature (covering literature and industry
papers) in order to compare practice and research. Industry papers could have
also been categorized under practice as these paper mostly describe real-world
use cases. Figure 4(b) shows that practice has more emphasis on time as litera-
ture, whereas literature emphasizes on resources. Literature also contains more
examples with modeling requirement data then the practical examples. Expe-
rience seems to balance out modeling requirements from practice, e.g., time,
and literature, e.g., data. Only practice refers to example with execution data.
One can interpret this as follows: category practice is dominated by the energy

Classification and Formalization of Instance-Spanning Constraints 357

(a) domain (b) source

Fig. 4. Modeling requirements for domain and source (normalized, grouped barcharts)

domain where time plays an important role. Nonetheless, the rather marginal
coverage of time by literature in contrast to practice is interesting to look into.
Also the practice category introduces execution data which has not been consid-
ered by literature at all. The experience examples intentionally try to resemble
a balanced coverage of all modeling requirements.

To round off the explorative analysis of the ISC collection, the usage of the
ISC examples was analyzed. [18,27] distinguish categories compliance, attribut-
ion, behavior, and meta where compliance refers to checking certain properties,
attribution to, for example, runtime assignments, behavior to enforcement of
certain actions during runtime such as synchronization, and meta to constraints
defined on other constraints. Figure 5 shows the distribution of ISC example
usage for the different domains. For automotive and manufacturing, compliance
and behavior are present with an emphasis on compliance. Energy refers to
compliance, but no other category (except undef). For health care and security

Fig. 5. Usage of ISC examples along domain (normalized, grouped barchart)

358 W. Fdhila et al.

compliance and behavior are equally presented, where for health care also some
undef cases are present. Logistics, security, and others exhibit also examples for
attribution. For logistics the category with highest presence is behavior. Trying
an interpretation, automotive and manufacturing show a similar distribution of
usage, i.e., compliance and behavior with an emphasis on compliance. For the
energy domain, only compliance is present. This can be explained by the sole
existence of SLAs in the respective regulatory document which are to be checked
rather than to be enforced. For health care and security behavior seems to play
an equally important role as compliance because certain regulations are to be
enforced or synchronization plays an important role. Security also demands for
attribution, e.g., for assignment of roles. Logistics has more demand for behavior
(e.g., synchronizing deliveries) and a relatively high demand for attribution.

5 Formalization of ISC Representatives

Preliminaries: As aforementioned, EC is a temporal formalism that can specify
properties of dynamic systems in terms of events and the effects of their occur-
rence on predefined fluents (properties). While fluents are conditions regarding
the state of a system, events are occurrence of actions that might change the
state of the system and consequently the valuation of the fluents. A typical flu-
ent would indicate that a process variable holds a specific value at a given time.
EC mainly defines a set of domain independent predicates, which can be aug-
mented by a domain related predicate. Figure 6 describes a subset of the basic
predefined predicates of EC [21]. Specifically, the occurrence of an event e at a
time t is represented by the predicate Happens(e, t). This can influence a fluent
f by terminating its old valuation that holds until point in time t, and initiating
it with a new valuation that holds after t (through the predicates Terminates
and Initiates respectively). The reader can refer to [21] for the complete set of
domain independent fluents.

As evaluation of the applicability of EC in the context of ISC, we have for-
malized 4 representative scenarios derived from the ISC classification and imple-
mented them with a reasoner. The scenarios are described in Fig. 7 and refer to
the following categories of the ISC classification (cf. Fig. 2): Scenario 1: single
context/multi modeling; Scenario 2: single context/single modeling; Scenario
3: multi context/single modeling; Scenario 4: multi context/multi modeling.

Fig. 6. A subset of EC predicates (cf. [21])

Classification and Formalization of Instance-Spanning Constraints 359

Type: [Multi / Multi]

"Print similar jobs together."

EVENTS FLUENTS
 PrintStart(printer, queuetype) Printing(printer, queuetype)
 PrintEnd(printer, queuetype) PrintQueue(printer, queuetype,
integer)

STATEMENTS
 printer, queuetype
 InitiallyP(PrintQueue(printer, queuetype, 0))
 InitiallyN(Printing(printer, queuetype));

 printer, queuetype1, queuetype2, integer, time
 Happens(PrintStart(printer, queuetype1), time)
 HoldsAt(Printing(printer, queuetype1), time)
 HoldsAt(Printing(printer, queuetype2), time)
 (queuetype1 != queuetype2) =>
 HoldsAt(PrintQueue(printer, queuetype1, integer), time) =>
 Initiates(PrintStart(printer, queuetype1), Printing(printer,
queuetype1), time)
 Initiates(PrintStart(printer, queuetype1), PrintQueue(printer,
queuetype1, integer + 1), time);

 printer, queuetype1, queuetype2, integer, time
 Happens(PrintStart(printer, queuetype1), time)

HoldsAt(Printing(printer, queuetype1), time)
 HoldsAt(Printing(printer, queuetype2), time)
 (queuetype1 != queuetype2) =>
 HoldsAt(PrintQueue(printer, queuetype1, integer), time) =>
 Initiates(PrintStart(printer, queuetype1), PrintQueue(printer,
queuetype1, integer + 1), time);

printer, queuetype, integer, time
Happens(PrintStart(printer, queuetype), time)
HoldsAt(Printing(printer, queuetype), time)
HoldsAt(PrintQueue(printer, queuetype, integer), time) =>
Terminates(PrintStart(printer, queuetype), PrintQueue(printer,
queuetype, integer), time)
Initiates(PrintStart(printer, queuetype), PrintQueue(printer, queuetype,
integer + 1), time);

printer, queuetype, integer, time
Happens(PrintEnd(printer, queuetype), time)
HoldsAt(Printing(printer, queuetype), time)
HoldsAt(PrintQueue(printer, queuetype, integer), time) =>
Initiates(PrintEnd(printer, queuetype), PrintQueue(printer, queuetype,
integer - 1), time);

printer, queuetype1, queuetype2, integer, time
Happens(PrintEnd(printer, queuetype1), time)
HoldsAt(Printing(printer, queuetype1), time)

HoldsAt(Printing(printer, queuetype2), time)
(queuetype1 != queuetype2)
HoldsAt(PrintQueue(printer, queuetype1, 0), time)
HoldsAt(PrintQueue(printer, queuetype2, integer), time)
(integer > 0) =>
Terminates(PrintEnd(printer, queuetype1), Printing(printer,
queuetype1), time)
Initiates(PrintEnd(printer, queuetype1), Printing(printer, queuetype2),
time);

Terminates(TaskStart(user, task), TaskCount(user, value), time)
 Initiates(TaskStart(user, task), TaskCount(user, value + 1), time);

user, task, value, day, time
Happens(TaskStart(user, task), time)

HoldsAt(LastTaskDay(user, day), time) =>
Initiates(TaskStart(user, task), LastTaskDay(user, getday(time), time)
Terminates(TaskStart(user, task), TaskCount(user, value), time)
Initiates(TaskStart(user, task), TaskCount(user, value + 1), time);

user, task, value, day, time
Happens(TaskStart(user, task), time)
HoldsAt(LastTaskDay(user, day), time) (day < getday(time)) =>
Terminates(TaskStart(user, task), LastTaskDay(user, day), time)
Initiates(TaskStart(user, task), LastTaskDay(user, getday(time), time)
Terminates(TaskStart(user, task), TaskCount(user, value), time)
Initiates(TaskStart(user, task), TaskCount(user, 0), time);

Type: [Multi / Single]

"A user is not allowed to
execute more than 100 tasks

EVENTS FLUENTS
 TaskStart(user, task) TaskCount(user, value)
 TaskEnd(user, task) LastTaskDay(user, day)

FUNCTIONS
 getday(time) : Day

STATEMENTS
 user
 InitiallyP(TaskCount(user,0));

 user, task, value, time
 Happens(TaskStart(user, task), time) =>
 HoldsAt(TaskCount(user, value), time) (value < n);

 user, task, value, day, time
 Happens(TaskStart(user, task), time)
 HoldsAt(LastTaskDay(user, day), time) (day = getday(time)) =>

time1, time2, meter, data, counter,value
Happens(GlobalReadoutStart(), time1)
Happens(ReadoutEnd(meter, data), time2)
 (time2 > time1) (time2 < time1 + 6) => (data <= X)
Terminates(ReadoutEnd(meter, data), Value(counter, value), time2)
 Initiates(ReadoutEnd(meter, data), Value(counter,value+1), time2)
 Initiates(ReadoutEnd(meter, data), ReadoutFinished(meter), time2);

time, counter, value
Happens(GlobalReadoutStart(), time) =>
HoldsAt(Value(counter, value), time+6) (value = n)

FORMULA

time, meter, counter,value1
Happens(ReadoutEnd(meter), time)
HoldsAt(Value(counter, value1), time) (value1 modulo N > 0) =>
Terminates(ReadoutEnd(meter), Value(counter, value1), time2)
Initiates(ReadoutEnd(meter), Value(counter,value1+1), time2);

time1,time2, meter, counter , violations ,value1, value2
Happens(ReadoutEnd(meter), time2)
Happens(ReadoutStart(meter), time1) (time2-time1 > 5)
HoldsAt(Value(counter, value1), time) (value modulo N = 0) =>
HoldsAt(Value(violations,value2), time2))
(value 2 +1 < (99*N/100))
Terminates(ReadoutEnd(meter), Value(violations, value2), time2)
Initiates(ReadoutEnd(meter), Value(violations,value2+1), time2);

time1,time2, meter, counter , violations ,value1, value2
Happens(ReadoutEnd(meter), time2)
Happens(ReadoutStart(meter), time1) (time2-time1 <= 5)
HoldsAt(Value(counter, value1), time) (value modulo N = 0) =>
HoldsAt(Value(violations,value2), time2))
(value 2 < (99*N/100))
Terminates(ReadoutEnd(meter), Value(violations, value2), time2)
Initiates(ReadoutEnd(meter), Value(violations,value2+1), time2);

EVENTS FLUENTS
 GlobalReadoutStart() ReadoutFinished(meter)
 ReadoutEnd(meter) Value(counter, value)

STATEMENTS
 InitiallyP(Value(counter,0))
 InitiallyP(Value(violations,0))

 meter, time
 Happens(ReadoutStart(meter), time) =>
 Terminates(ReadoutStart(meter), ReadoutFinished(meter), time);

 meter, time2
 Happens(ReadoutEnd(meter), time2) =>
 time1 Happens(ReadoutStart(meter), time1) (time2 > time1);

 meter, time1, time2, counter, violations, value1, value2
 Happens(ReadoutEnd(meter), time2)
 Happens(ReadoutStart(meter), time1) (time2-time1 > 5)
 HoldsAt(Value(counter, value1), time)
 (value1 modulo N > 0) =>
 Initiates(ReadoutEnd(meter), ReadoutViolation(meter), time2)
 Terminates(ReadoutEnd(meter),Value(violations, value2),time2)
 Initiates(ReadoutEnd(meter), Value(violations,value2+1), time2);

Type: [Single / Single]

"For 100 (simultaneous) ad
hoc readouts of end
devices/"activate/deactivate
customer interface" readouts/
meter checks, 99 % <= 5
min is required."

SCENARIOS EVENT CALCULUS

EVENTS FLUENTS
 GlobalReadoutStart() ReadoutFinished(meter)
 ReadoutEnd(meter, data) Value(counter, value)

STATEMENTS
 meter, time, counter, value
 Happens(GlobalReadoutStart(), time) =>
 Terminates(GlobalReadoutStart(), ReadoutFinished(meter), time)
 Initiates(GlobalReadoutStart(), Value(counter, 0), time)
 Terminates(GlobalReadoutStart(), Value(counter, value), time)

(value = 0);

Type: [Single / Multi]

"When starting the read-out
operation at time t, 99% of
all meter readouts should be
read out within 6 hours and
the read out value does not
exceed X."

Fig. 7. ISC scenarios based on [26] and formalized using EC

360 W. Fdhila et al.

Scenario 1: The scenario is taken from the energy domain and adapted
from the engergy domain, and states that when starting the readout oper-
ation at time t, 99 % of all meter readouts should be read within 6 h and
the readout values not exceeding X. The ISC includes time as well as data
and concerns all instances of the same meter readout process (Single/Multi).
First, we define the events that have to be caught by the ISC checker, which
are the starting action for launching meter readouts and an event related
to each meter readout that finished. Note that the readouts of the different
meters are simultaneous. If we assume n as the number of all meters, then
the checker needs to wait for all instances to complete until 6 h from the
start time, in order to check whether the condition of 99% is met. The sta-
tus of each meter is represented by the fluent ReadoutF inish(meter), whose
value is set to true if the readout is finished and false otherwise. The fluent
V alue(counter, value) is used to check the value of the counter; i.e., number
of finished readouts, after 6 h. Each event of type ReadoutF inish(meter); i.e.
Happens(ReadoutEnd(meter, data), time2), increments the value of the counter
by terminating the old valuation of the fluent V alue(counter, oldvalue) to false;
i.e., Terminates(ReadoutEnd(meter, data), V alue(counter, value), time2), and
initiating the fluent V alue(counter, oldvalue + 1) to true:

Initiates(ReadoutEnd(meter, data), V alue(counter, value + 1), time2).

Scenario 2: The second scenario (Single/Single) removes the data constraint
from the first one but extends it by limiting the constraint to each 100 finished
instances, which requires to reinitialize the counter after each 100 readouts. For
each group of 100 finished readouts, 99% of the instances should have finished
within 5 min. This makes the constraint selective, since it selects the first 100
completed readouts first, than applies the deadline constraint. To this endeavor,
we have added a violation counter that increments each time a readout takes
more than 5 min to finish. We use the modulo function to reinitialize the number
of violations after 100 readouts. If the number of violations exceeds 99%, the last
statement will evaluate to false. It is possible to consider another fluent for each
meter to express if its readout exceeded 5 min; e.g., Readoutviolation(meter).

Scenario 3 is of type Multi/Single and states that a user is not allowed to
execute more than 100 tasks of the same or different workflows in the same day.
The ISC clearly spans multiple processes, but here we assume that a user can
instantiate each process only once. For the formalization (cf. Fig. 7), we use a
predefined function getday(time) that extracts the day as an integer value from
the given discrete time. At each new day, the counter is reset allowing the user to
execute more tasks for the day. A simple counter is incremented on the execution
of a task.

Scenario 4: is of type Multi/Multi and states that similar jobs of differ-
ent processes are printed together (cf. Fig. 7). The modeling requirements are
resource for the printers as well as data for the print job type. Scenario 4 can be
interpreted in various ways. For this simple implementation, we have opted to

Classification and Formalization of Instance-Spanning Constraints 361

represent a queuing system, incremented as new print jobs of the same type are
added. Each job type is added to an associated queue. Only the currently active
job type represented in the Printing(printer, queuetype) fluent are worked on by
the limiting resource. Jobs are finished in batches and printing jobs are switched
as the queue empties at a PrintEnd(printer, queuetype) event. To improve the
queuing system, an additional time-based counter could be added.

model 1:
0
Count(Counter1, 0).
Happens(GlobalReadoutStart(), 0).
1
Happens(ReadoutEnd(Meter1), 1).
2
+Count(Counter1, 1).
+ReadoutFinished(Meter1).
Happens(ReadoutEnd(Meter2), 2).

5
+Count(Counter1, 4).
+ReadoutFinished(Meter4).
Happens(ReadoutEnd(Meter5), 5).

6
-ReadoutInProgress(Meter5).
+Count(Counter1, 5).
+ReadoutFinished(Meter5).
+ThresholdSuccess(Counter1).
P

4
+Count(Counter1, 3).
+ReadoutFinished(Meter3).
Happens(ReadoutEnd(Meter4), 4).

3
+Count(Counter1, 2).
+ReadoutFinished(Meter2).
Happens(ReadoutEnd(Meter3), 3).

Fig. 8. ISC scenarios checking results with Decreasoner

Implementation. Each of the representative scenarios has been formalized
with EC, and implemented and simulated with Decreasoner (Discrete Event
Calculus Reasoner)2. Decreasoner uses discrete time representation, and trans-
forms the problem into a satisfiability problem (SAT). Since the examples have
been taken from the aforementioned domains; e.g., energy or healthcare, where
no processes were provided, we have simulated the generation of the events in
a separate module. These events are represented as Happens(event(..), time).
statements, applicable for each scenario. We specified event occurrences at dif-
ferent times and with different data. This replaces the simulation using a replay
of the process models or logs. Checking results of the first scenario are depicted
in Fig. 8. In particular, it shows the trace for one model, where it shows the
valuations of the fluents as well as events occurrence at different time points.
A fluent preceded by a “+” means that the fluent is evaluated to true, while a
fluent preceded by “−” means that it is evaluated to false.

6 Related Work

A multitude of approaches for business process compliance exist that can be
mainly categorized into design time, e.g., [6,29] and runtime approaches (see,
for example, the survey on compliance monitoring approaches in [15]). However,
there are only a few approaches that directly deal with ISC. Heinlein [7] addresses
ISC at structural level only, i.e., offering means to define constraints on process
activities between different instances. Other approaches focus on certain usage
scenarios for ISC in Process-Aware Information Systems (PAIS) such as access
control [33], batching [25], and queuing [23,30]. These usage scenarios provide

2 http://decreasoner.sourceforge.net.

http://decreasoner.sourceforge.net

362 W. Fdhila et al.

valuable input for the objectives and evaluation of a comprehensive approach
for ISC support in PAIS.

The iUPC approaches [13,17,18,27] provide a comprehensive logical descrip-
tion for constraints in general, i.e., the iUPC framework. Moreover, the design
and enactment of ISC in PAIS are preliminarily addressed in [13]. A special kind
of ISC usage, i.e., for synchronization is formalized and implemented in [17].
However, a systematic and integrated approach for formalizing, verifying, and
implementing ISC in PAIS fulfilling the ISC objectives is missing.

7 Conclusion and Outlook

ISC are the means to define restrictions and behavior across multiple instances of
the same or different process types. This enables a required level of control, even
for ultra-dynamic process-driven applications for which each instance evolves in a
different way. This work provides the fundament for comprehensive ISC support
in process-driven applications by an ISC classification and a corresponding ISC
formalization based on Event Calculus. The feasibility is evaluated based on a
collection of 114 ISC examples from different domains and resources. It could
be observed that ISC requirements exist for many domains from manufacturing
to health care and can be harvested from different sources such as regulatory
documents or project deliverables. Future work will include user requirements
in ISC support as well as an integration with existing process engines.

Acknowledgment. This work has been funded by the Vienna Science and Technology
Fund (WWTF) through project ICT15-072.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

2. Awad, A., Weidlich, M., Weske, M.: Consistency checking of compliance rules.
In: Abramowicz, W., Tolksdorf, R. (eds.) BIS 2010. LNBIP, vol. 47, pp. 106–118.
Springer, Heidelberg (2010)

3. Boubaker, S., Gaaloul, W., Graiet, M., Hadj-Alouane, N.B.: Event-b based app-
roach for verifying cloud resource allocation in business process. In: International
Conference on Services Computing, pp. 538–545 (2015)

4. Cabanillas, C., Baumgrass, A., Mendling, J., Rogetzer, P., Bellovoda, B.: Towards
the enhancement of business process monitoring for complex logistics chains. In:
Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013 Workshops. LNBIP, vol. 171,
pp. 305–317. Springer, Heidelberg (2014)

5. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

6. Ghose, A., Koliadis, G.: Auditing business process compliance. In: International
Conference on Service-Oriented Computing, pp. 169–180 (2007)

7. Heinlein, C.: Workflow and process synchronization with interaction expressions
and graphs. In: International Conference on Data Engineering, pp. 243–252 (2001)

Classification and Formalization of Instance-Spanning Constraints 363

8. ter Hofstede, A.H.M., Ouyang, C., La Rosa, M., Song, L., Wang, J., Polyvyanyy,
A.: APQL: a process-model query language. In: Song, M., Wynn, M.T., Liu, J.
(eds.) AP-BPM 2013. LNBIP, vol. 159, pp. 23–38. Springer, Heidelberg (2013)

9. Joshi, R., Lamport, L., Matthews, J., Tasiran, S., Tuttle, M., Yu, Y.: Checking
cache-coherence protocols with TLA+. Form. Methods Syst. Des. 22(2), 125–131
(2003)

10. Kaes, G., RinderleMa, S., Vigne, R., Mangler, J.: Flexibility requirements in real-
world process scenarios and prototypical realization in the care domain. In: OTM
Workshops, pp. 55–64 (2014)

11. Knuplesch, D., Reichert, M., Kumar, A.: Visually monitoring multiple perspectives
of business process compliance. In: International Conference on Business Process
Management, pp. 263–279 (2015)

12. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gener. Comput.
4(1), 67–95

13. Leitner, M., Mangler, J., Rinderle-Ma, S.: Definition and enactment of instance-
spanning process constraints. In: International Conference on Web Information
Systems Engineering, pp. 652–658 (2012)

14. Lenzi, G.: The modal µ-calculus: a survey. Task Q. 9(3), 293–316 (2005)
15. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.:

Compliance monitoring in business processes: functionalities, application, and tool-
support. Inf. Syst. 54, 209–234 (2015)

16. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.: Monitoring business
constraints with linear temporal logic: an approach based on colored automata. In:
Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp.
132–147. Springer, Heidelberg (2011)

17. Mangler, J., Rinderle-Ma, S.: Rule-based synchronization of process activities. In:
Commerce and Enterprise Computing, pp. 121–128 (2011)

18. Mangler, J., Rinderle-Ma, S.: IUPC: identification and unification of process con-
straints. CoRR abs/1104.3609 (2011). http://arxiv.org/abs/1104.3609

19. Mateescu, R., Monteiro, P.T., Dumas, E., de Jong, H.: Ctrl: extension of CTL with
regular expressions and fairness operators to verify genetic regulatory networks.
Theoret. Comput. Sci. 412(26), 2854–2883 (2011)

20. Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Monitor-
ing business constraints with the event calculus. ACM Trans. Intell. Syst. Technol.
5(1), 1–30 (2014)

21. Mueller, E.T.: Commonsense Reasoning: An Event Calculus Based Approach. Mor-
gan Kaufmann, Burlington (2006)

22. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science
research methodology for information systems research. J. Manag. Inf. Syst. 24(3),
45–77 (2007)

23. Pflug, J., Rinderle-Ma, S.: Dynamic instance queuing in process-aware information
systems. In: Symposium on Applied Computing, pp. 1426–1433 (2013)

24. Pnueli, A.: The temporal logic of programs. In: Annual Symposium on Foundations
of Computer Science, pp. 46–57 (1977)

25. Pufahl, L., Herzberg, N., Meyer, A., Weske, M.: Flexible batch configuration in
business processes based on events. In: Franch, X., Ghose, A.K., Lewis, G.A.,
Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 63–78. Springer, Heidelberg
(2014)

26. Rinderle-Ma, S., Gall, M., Fdhila, W., Mangler, J., Indiono, C.: Collecting examples
for instance-spanning constraints. Technical report, arXiv:1603.01523 (2016)

http://arxiv.org/abs/1104.3609
http://arxiv.org/abs/1603.01523

364 W. Fdhila et al.

27. Rinderle-Ma, S., Mangler, J.: Integration of process constraints from heteroge-
neous sources in process-aware information systems. In: International Workshop
on Enterprise Modelling and Information Systems Architectures, pp. 51–64 (2011)

28. Rouached, M., Fdhila, W., Godart, C.: A semantical framework to engineering
WSBPEL processes. Inf. Syst. e-Bus. Manag. 7(2), 223–250 (2008)

29. Sadiq, W., Governatori, G., Namiri, K.: Modeling control objectives for business
process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

30. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining – predict-
ing delays in service processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland,
C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol.
8484, pp. 42–57. Springer, Heidelberg (2014)

31. Ulfelder, S.: Building a compliance framework. Compt. World 38(27), 34–35 (2014)
32. Vardi, M.Y.: Branching vs. linear time: final showdown. In: Margaria, T., Yi, W.

(eds.) TACAS 2001. LNCS, vol. 2031, p. 1. Springer, Heidelberg (2001)
33. Warner, J., Atluri, V.: Inter-instance authorization constraints for secure workflow

management. In: Symposium on Access Control Models and Technologies, pp. 190–
199 (2006)

Value at Risk Within Business Processes:
An Automated IT Risk Governance Approach

Oscar González-Rojas(B) and Sebastian Lesmes

Systems and Computing Engineering Department, School of Engineering,
Universidad de los Andes, Bogotá, Colombia
{o-gonza1,s.lesmes798}@uniandes.edu.co

Abstract. Business processes are core operational assets to control
firms’ efficiency in value generation. However, the execution and control
of business processes is increasingly dependent on Information Technol-
ogy (IT). Therefore, the risks that arise from relying on IT in business
processes must be quantified. This paper proposes the adaptation of the
Value at Risk (VaR) financial technique to measure the level of risk
within a process portfolio. This is done by quantifying the impact result-
ing from changes in the performance of IT services. The probability of
IT risks is measured daily in order to model the volatility of IT services,
especially when they are flexible and changeable. The proposed method
enables predicting and estimating the losses of IT risks and their effect
on dependent business processes over a time horizon. The incorporation
of risk management mechanisms enriches business processes with orga-
nizational management capabilities.

Keywords: Risk analysis · Process portfolio · IT assets · Value at risk

1 Introduction

Business processes are core operational assets to control firms’ efficiency in value
generation. However, they are also carriers of operational risks, particularly when
their execution and control is highly dependent on Information Technology (IT).
The inherent volatility of IT services generates volatility and continuous changes
in the value delivered by business processes. Therefore, IT risks quantification
becomes a critical mechanism to manage operational risks [12].

We have identified a gap on tools for monitoring and forecasting the value of
business processes when analyzing IT-related operational risks. Seddon et al. [15]
discuss different methods used for valuating the impact of IT on business con-
cerns (e.g. net present value, probability of project completion). Despite this,
we have not found mechanisms that allow quantifying IT risks by considering:
(1) their occurrence probability, and (2) the impact of IT failures taking into
account different time horizons (i.e. daily, n-day) and confidence levels. More-
over, a mechanism to explicitly link IT risks to value delivery within business
processes is missing. Suriadi et al. [17] present two main research gaps on Risk-
aware Business Process Management (R-BPM): the limited capabilities for risk
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 365–380, 2016.
DOI: 10.1007/978-3-319-45348-4 21

366 O. González-Rojas and S. Lesmes

analysis at runtime and post-execution process stages to detect, quantify and
manage risk events; and, the need to apply existing risk analysis techniques to
perform a richer formal analysis on the impact of process risks.

This paper presents the specialization of the Value at Risk (VaR) financial
technique [10] to measure and forecast the level of risk within a process portfolio.
The proposed method is named BP-VAR and is composed of three algorithms
that navigate among dependencies of process and IT service architectures to
quantify risks. The first algorithm quantifies the current value of a particular
business process by measuring changes on the performance of the leveraging IT
services. The current value of an IT service for a process portfolio is already
quantified in terms of the expected incomes of business processes, losses caused
by the materialization of threats, service level agreement losses, and income
affectation due to service degradation [6]. The second algorithm quantifies the
value at risk (expected value) of process and IT assets by modeling the para-
meters required to quantify the VaR metric (i.e. a mathematical distribution,
deviations, confidence levels, and historic values). The third algorithm forecasts
the losses of IT risks and their effect on dependent business processes over a
given time horizon and by considering multiple pessimistic and optimistic risk
scenarios. This is done by measuring and analyzing the daily IT risk probabil-
ity that results from the inherent volatility of IT services. Measuring the value
at risk within a process portfolio allows decision makers to define strategies to
control risks in business processes.

The organization of this paper is as follows. Section 2 introduces the core ter-
minology, a case study to motivate the need for our business processes valuation
approach, and the methodological approach. Section 3 gives a brief overview of
the general VAR approach and the proposed specialization within process and IT
portfolios. It also describes the proposed algorithms and tool support to quan-
tify value at risk. Section 4 shows the results of applying the proposed BP-VAR
method to the presented case study. Section 5 introduces multiple approaches for
managing risks on business processes in order to position the research presented
in this work. Lastly, conclusions and future work are presented in Sect. 6.

2 Background and Motivation

The main concepts involved in the business processes valuation approach are
process architecture, IT services architecture, risk quantification, and IT gover-
nance. An architecture is defined as “the fundamental organization of a system
embodied in its components, their relationships to each other, and to the environ-
ment” [9]. Therefore, a Business Process Architecture (BPA) involves elements
such as value chain activities, process specifications, and tasks. An IT services
architecture links software and hardware components, data structures, etc.

We refer to risk quantification (e.g. value at risk metric) as the total loss
exposure of business processes that is generated by risk events on leveraging IT
services. The inherent volatility of IT services can be caused by the materializa-
tion of threats, the variable costs on service providers, the degradation of quality

Value at Risk Within Business Processes 367

attributes, among others. Weill and Ross define IT Governance as “specifying
the decision rights and accountability framework to encourage desirable behavior
in the use of IT” [19]. IT Risk Governance (ITRG) is a wealth-protecting form
that seeks to prevent IT-related disasters or to minimize their consequences for
the business [12]. The remainder of this article deals with monitoring and con-
trolling operational mechanisms defined to ensure accountability for the ITRG’s
commitments on both process and IT assets.

2.1 Requirements for the Valuation of Risks in Business Processes

We use the following case study throughout the paper to present our risk
quantification approach. Figure 1 illustrates a simplified process portfolio of a
Latin American University. Both business processes (i.e. Admission, Course
inscription) were selected because they are critical for the organization due to
their impact on business strategies, amount of incomes, losses volume, number of
affected users, and the amount of dependent business processes. This figure also
illustrates a simplified IT services architecture, and the dependencies between
the aforementioned business processes and critical IT services supporting them
(i.e. banner system, database manager, and authentication system).

Fig. 1. Dependencies between a process portfolio and IT services.

Both business processes are highly dependent on IT services for their exe-
cution and control (i.e. 11 application services are supported by 26 software
components). The high volatility associated to these services (e.g. 10 identified

368 O. González-Rojas and S. Lesmes

threats with 120 materializations) generates volatility within business processes.
We identified the following requirements to valuate business processes.

– R1. Quantify the risk of a business process. This requires quantifying the
level of financial risk associated with each IT service supporting the business
process. Performing this quantification will allow answering common organi-
zational questions: Is the business process able to operate properly without
IT services?, Which IT services are critical to the business processes?.

– R2. Quantify the risk of an IT service for a process portfolio. This requires
measuring the expected incomes of business processes, the probability for IT
threats, and the changes on the performance of its quality attributes.

– R3. Forecast the expected value for business processes. Besides analyzing the
current affectation of IT risks, this requires analyzing historic events to quan-
tify the impact of IT failures depending on different time horizons (i.e. daily,
n-day) and confidence levels (occurrence probability).

Measuring the value at risk within process portfolios allows decision makers
to define strategies to control risks during business process execution.

2.2 Methodology

The main research question of this paper is: How to understand the behavior
of the value delivered within business processes by taking into account the risks
and the changeable performance of IT assets?.

First, we analyzed different approaches for analyzing risks within the depen-
dency between business processes and IT services. We found that existing
frameworks to support IT risk governance [6,12] are targeted to establish and
quantify IT-business dependencies, however, they do not intend to quantify the
risk. Suriadi et al. [17] present different stages for risk analysis within a R-BPM
system. We found that design-time approaches [1,5,8,16] lack mechanisms to
avoid the subjective value estimation of process and IT assets (cf. R1 and R2).
Runtime approaches [2,3,11] lack capabilities for monitoring the impact of risk
events and for the identification of IT risks [17] (cf. R1 and R2). Post-execution
approaches [4,14,20] lack capabilities to use historical data to predict and quan-
tify possible risk events [17] (cf. R3). Section 5 presents a complete discussion of
related work and a comparison to our approach.

Second, we analyzed the risk metrics that are available to support the risk
analysis stage of a risk management process (cf. identification, analysis, eval-
uation, treatment). Risk analysis guides decision-making on risk management.
Rainer et al. [13] discuss different methods that can be used to quantify IT risks
(i.e. annualized loss expectancy, Courtney, Livermore, stochastic dominance).
Within the stochastic dominance, the value of an IT asset can be considered
as a stochastic event where the impacts of IT risks on the organizational ele-
ments that are liable to losses are analyzed over time. We decided to analyze
the impacts of IT risks on business processes by considering them the integrator
asset of all organizational elements (e.g. incomes, customers, costs, products and
services, resources).

Value at Risk Within Business Processes 369

We selected the VAR financial technique [10] since it allows a stochastic
analysis to quantify a daily loss, but also due to its additional characteris-
tics to fulfill the identified requirements for the valuation of business processes
(cf. Sect. 2). In particular, the VAR specialization (from financial risk within
a firm to operational risk within process and IT portfolios) allows organiza-
tions (i) to quantify the total value of IT services leveraging a process port-
folio (i.e. involving the occurrence of multiple event losses), (ii) to model the
daily volatility of IT assets as a continuous distribution of independent events
to quantify a risk closer to reality and with higher accuracy (cf. deterministic
probabilities within risk metrics), and (iii) to forecast the value of process and IT
assets and to quantify a loss amount within a time horizon higher than one day
and with a given confidence level (i.e. under a probabilistic distribution). VAR
integrates different methods to calculate the potential loss of an asset portfolio
(i.e. historical, variance, and Monte Carlo).

Risk metrics must reach a consensus regarding the value of analyzed assets
and probability estimates. Therefore, we defined concrete algorithms to measure
the value of process and IT assets in order to avoid subjectivity for risk-based
decision-making (cf. Delphi technique), and to forecast the value at risk for these
assets (cf. Sect. 3). The adopted quantitative technique is used to improve the
accuracy of the results of a risk analysis.

The process and IT services architectures for the aforementioned case study
were modeled by using an existing method that supports the quantification
of dependencies [6]. We took the models that were created for these architec-
tures as the initial dataset to perform our business process valuation approach.
We focused on the dependencies that were quantified between critical busi-
ness processes and IT services. This dataset contains approximately 13500 ele-
ments among which are business architecture elements, IT architecture elements,
dependencies, and analysis data associated with IT assets (i.e. costs, threat
materialization, agreement losses, criticallity, degradation of quality attributes).
This dataset also contained one year of historic data related to the behavior of
critical IT services in terms of performance, integrity, availability, and capacity.
Additional historic data of the value of IT services and processes was gath-
ered during six months in order to analyze the results of applying the BP-VAR
method.

3 BP-VAR: Value at Risk for Process and IT Portfolios

The VAR (Value At Risk) methodology is explained in general terms as
“a measure of the maximum potential change in value of a portfolio of finan-
cial instruments with a given probability over a pre-set horizon” [10]. The VAR
principle is based on the Market Risk concept defined as the uncertainty in
the movement of the diverse market variables. The Market Risk brings a high
volatility over enterprise incomes, and which may in turn result in significant
losses (Downside Risk) or winnings (Upside Risk) over time. The position of an
enterprise financial asset is measured through an estimation of its own volatility,
based on a series of discrete events (i.e. the daily stock price).

370 O. González-Rojas and S. Lesmes

Figure 2 illustrates the specialization of the main elements of the VAR for
process and IT assets. If the asset is in the day t0 (Date0) with a value v0 (Cur-
rent value), the variance on this value will depend on the available information
regarding disruptive events. Therefore, the asset value (Expected value) for the
day t0+1 (Date+1) may vary according to the area under the curve of a normal
distribution that is assumed as the confidence level, plus an error ε0+1, with
mean v0 and variance σ2, making v0 the most probable value for the next day.

Fig. 2. Value and expected value within business processes.

The following definitions scope the specialization performed to the VAR:

1. An Operational Asset is an IT Service and its monetary value, or a business
process and its monetary value (cf. financial asset).

2. Operational Risk, which is increasingly related to IT risk for digital organi-
zations, is the group of external events (cf. Market Risk) able to generate
volatility over the value of operational assets. For example, an increase in IT
operation costs may be originated by exchange rate fluctuations or by a reg-
ulation for information protection, changes in IT services may originate from
new IT tendencies or lower prices from market suppliers, degradation in IT
service provision may be originated by late support from suppliers, and so on.
Moreover, the risks that are internal to the organization but external to the
business unit that is accountable for the business process are also considered
as external events (e.g. management decisions on investment and security
policies). The uncertainty in the changing environment causes volatility in
the enterprise’s IT assets, and therefore potential losses (e.g. costs, incomes
per downtime) or winnings (e.g. incomes per efficiency) on business processes
over time. Internal and external IT risks are treated as equal since both of
them generate volatility on business processes.

3. The Downside risk on business processes is analyzed in terms of the expected
value of leveraging IT services, whereas the upside is related to the increasing
support of IT to business processes. The downside risk on IT services is

Value at Risk Within Business Processes 371

analyzed through the levels reached regarding quality attributes, service level
agreements, costs, and process incomes. For example, the non-compliance
with an agreed service level for an IT service (e.g. 0.99 on availability) will
degrade the process value in terms of the expected incomes, penalties applied
on service level agreements, and financial impacts on threat materialization.

4. Discrete Events refer to the continuous (at least daily) monitoring, simulation
and storing of the relevant information related to service/process monetary
values. The series of discrete events allows modeling the continuous behavior
of the operational assets. Therefore, this historical data is used to improve
the prediction of expected values.

3.1 Quantification of Current and Expected Value Within Processes

Calculate the Process Value. This algorithm computes the current value of a
business process (pV) by adding a portion of the current value of each IT service
that supports process execution. We implemented the algorithm as follows:

pV =
n∑

i=1

(sVi ∗ cri) (1)

• sVi represents the value of an IT service i, which is computed by using the
algorithm described in [6] in terms of: expected incomes of supported business
processes, income affectation due to quality attributes degradation, costs of
threat materialization, and losses for penalties on service level agreements.
The impact of these variables is dependent on a degradation factor computed
by considering the non-compliance with levels agreed for the IT service’s qual-
ity attributes (i.e. availability, capacity, performance, integrity). The value of
an IT service is computed for a process portfolio for which dependency infor-
mation (e.g. incomes, risks) was gathered.

• cri represents the criticality of service i against process p (a percentage from
0 to 100). This criticality is automatically calculated from the dependencies
previously established among architectures. The portion taken of an IT service
value is relative to its support and criticality to the entire process portfolio
(cf. current value in Fig. 2).

Calculate Process VAR. The expected value of a business process (V AR− p
in Eq. 2a) is computed from an aggregation of the expected value of leveraging
IT services (V AR − it in Eq. 2b). We implemented the algorithm as follows:

V AR − p =
n∑

i=1

(V AR − iti ∗ cri) (2a)

V AR − itvt
= [N−1(0, σITs) ∗ σITs] ∗ vt

σITs = 2

√√√√
n∑

i=1

(muQai
∗ QaiW ∗ σ2

Qai
)2

(2b)

372 O. González-Rojas and S. Lesmes

• cri represents the criticality of service i against process p.
• n is the number of services that support process p.
• V AR− iti represents the projection of values for service i in a time horizon of

1-day (dt+1) from the date dt and their corresponding probabilities of occur-
rence (cf. VAR in Fig. 2). This projection is based on the service value vt in
the date dt, and on a set of historical data for the same service.

• N−1(0, σITs) represents the inverse function of the normal distribution for the
service (ITs), with a given confidence interval. We took standard deviations
given by the most statistically relevant confidence intervals (e.g. 99.7 %, 99 %,
95 %, 68 %) For example, adding and subtracting n times the standard devia-
tion (e.g. n = 2, 326342 to calculate the confidence level of 99 %) to a normal
distribution with mean (μ = 0) and deviation (σ), will result in the area under
the curve representing a 99 % probability of occurrence of the future value to
fit within the deviation interval (cf. confidence level in Fig. 2).

• σITs represents the weighted deviation of the service value from the mean
value. A comparative factor QaiW given by the mean between the mean of the
historical service values (μITs) and the mean of the historical values of a qual-
ity attribute i (μQai

) represents the possible impact of the quality attribute
on the service (a value from 0 to 1). This comparative factor is used to cal-
culate the relative deviation ((muQai

∗ QaiW ∗ σ2
Qai

)) of the service against
the selected quality attribute i. σ2

Qai
represents the variance of the normalized

historical values of quality attribute i. Finally, the total deviation of the IT
service σITs must include all the quality attributes related to the service. Since
the relative deviations are not linear measures, but dispersion measures over
the mean, all the deviations were squared to calculate the variance (a linear
measure that can be added normally calculating a total variance). This way
of quantifying the deviation is important to understand the deviation of the
values that historically generate the IT service’s volatility.

The continuous calculation, monitoring and storing of service values (at least
daily) is crucial to generate accurate historical data that serves as an input to
calculate the expected values for process and IT assets.

Calculate the N-Day VAR. This algorithm is used to extrapolate the
expected value to a desired number of days (n) higher than 1. As the weighted
deviation used to calculate the 1-day V AR − p is not a linear measure, it can-
not be added or multiplied normally, so the algorithm needs to be adjusted as
follows:

N − Day − V AR = (V AR − p) ∗ 2
√

n (3)

Nevertheless, the results will always be more accurate whenever n is closer
to 1, because a long term estimation does not incorporate the daily updated
scores in the values of the quality attributes related to the service.

Value at Risk Within Business Processes 373

3.2 Automated Implementation

Currently, all the algorithms and calculations presented in this work are com-
pletely implemented within a web application. These algorithms run on existing
process and IT service models. Some of the main features provided by the appli-
cation are the following:

– Service Volatility Simulation: Based on a set of values for each of the quality
attributes related to a given service, a simulation can be performed to calculate
a new service value based on the changes defined by the user. This can be
useful, for example, to simulate service quality scenarios, generate historical
data, or document real operational scenarios, while always keeping the service
value records updated.

– Projection-Value Analysis: Based on historical data, value-graphs can be gen-
erated from different periods of time, summarizing services, processes or a
combination of both (service-value graphs discriminated by processes, and
process-value graphs discriminated by services). This can be useful, for exam-
ple, to continue monitoring the performance of IT services, and to assess the
convenience or risks associated with a strong dependency between elements
(e.g. a process that depends a 95 % on 1 particular service).

The following section illustrates these features in terms of the enterprise
modeling dataset presented as a case study.

4 Application of the BP-VAR to the Case Study

4.1 Results of Quantifying Risk for Process and IT Assets

This section discusses the results of quantifying risk for the Undergraduate
Admission process and its dependent IT services (cf. case study in Sect. 2.1). We
analyzed three types of risk behaviours: a stable scenario, where the process value
was constant over time; an upside risk scenario, where the process value increased
over time; and a downside risk scenario, where the process value decreased over
time. Pessimistic and optimistic estimations are analyzed for each of these sce-
narios. Having almost a thousand records of quality attributes (i.e. availability,
integrity, capacity, and performance) for each related IT service (corresponding
to 18 months of business operation with almost a daily monitoring), the BP-VAR
was calculated with accurate results and projected continuously.

Figure 3a illustrates the evolution of the current value of the Undergraduate
Admission process throughout a 15-day time horizon. This process value is dis-
criminated by service (adding up the relative values contributed by the process
to all of the services that support it). The stable and pessimistic risk scenarios
are also illustrated in the current value for the ninth and twelfth dates. Figure 3b
presents the projection of the process value, calculated on a particular date (the
ninth day was selected from Fig. 3a), and with a confidence level of 65 %. The
area under the curve delimited by the point marked in the graph, represents
the probability of occurrence of the process increasing/decreasing its value to a
value within the range delimited by this area.

374 O. González-Rojas and S. Lesmes

(a) Historic values of a business process discriminated by values of IT services

(b) BP-VAR estimation with a confidence level of 65%

Fig. 3. Risk quantification for the undergraduate admission process.

BP-VAR Results for a Stable Scenario. We analyzed a stable scenario of
operation taking into account four days, from 2015-04-20 to 2015-04-23. During
that short period of time the set of recorded values of the process experienced a
low variation, mainly produced by the constant behaviour of the quality attributes

Value at Risk Within Business Processes 375

levels. Figure 3 illustrates a 1-day VAR projection from 2015-04-22 with a confi-
dence value of 65 %. The VAR was estimated within the range from 238.422 USD
to 249.539 USD, whereas the current value stored at 2015-05-23 was 249.003 USD.
This results in 95.7 % accuracy for downside risk and 99.7 % accuracy for upside
risk estimations. The downside risk for a pessimistic scenario (given by a confidence
level of 99 %) is estimated in 243.620 USD (97.8 % accuracy).

BP-VAR Results for a Downside Risk Scenario. We analyzed an oper-
ation scenario with a negative variation on process value for two days, from
2015-04-24 to 2015-04-25. During that short period of time the process experi-
enced a great decreasing variation, due to the degradation of a leveraging IT
service (Banner System). The variation on the quality attribute capacity (from
89 % to 67 %) generated value affectations in terms of service degradation and
costs due to SLA’s penalties. The value of the service decreased 25 % of its own
value, an abrupt change for a day-to-day evolution. On 2015-04-24, the BP-VAR
projected a future value within the range from 249.001 USD to 260.538 USD,
with a confidence value of 65 % (an optimistic scenario). However, the current
stored value was 238.171 USD, which generates a deviation of 4,54 % from the
projection limits. However, the downside risk for a pessimistic scenario (given
by a confidence level of 99 %) was estimated in 219.797 USD (92 % of accuracy).

BP-VAR Results for an Upside Risk Scenario. We analyzed an operation
scenario with a positive variation on process value for two days, from 2015-04-16
to 2015-04-17. During that period of time, process value experienced a great
increasing variation, mainly produced by the stable value of its three underlying
services. At this time, the quality attributes of these services were within the
expected agreements (e.g. the availability of the service increase from 94.9 % to
97.3 %); therefore there was lower affectation through service degradation and
the avoidance of SLA’s penalties. The services’ value increased between 8–10 %,
an important non-constant change for a day-to-day evolution. On 2015-04-17, the
BP-VAR projected a future value within the range from 237.056 USD to 248.154
USD, with a confidence value of 65 %. The current stored value was 255.895 USD
thus generating a deviation of 3,02 % from the limits of the projected value.
However, the upside risk for an optimistic scenario with confidence level of 99 %
was estimated in 276.133 USD (92.6 % of accuracy).

We observe that in scenarios with a great variation (positive and negative)
of values, the BP-VAR accuracy can be compromised for optimistic estimations
and close to the limits for pessimistic estimations. Nevertheless, the calculated
percentage deviation was not significant at all and, taking into account that
abrupt events (like the one treated in this scenario) are not as frequent inside
organizations, the model behavior remains within an adequate accuracy level.

N-Day BP-VAR Results for a Process Portfolio. The values of the service
Banner System evidence a continuous degradation for the first 6-days thus gen-
erating volatility for the Undergraduate Admission process (cf. a decrease of the

376 O. González-Rojas and S. Lesmes

service value from 83.535 USD to 73.035 USD in Fig. 3a). This service represents
a 50 % criticality for this process from the prioritized IT service portfolio (the
service value decreased from 167.070 USD to 146.070 USD). Then, we performed
an N-Day VAR calculation (with a confidence interval of 80 % and a time-horizon
of 6 days from the beginning of the degradation) to compare the results among
real and predicted values. The results show that the N-Day VAR behavior is
not as expected, given the fact that the real value was stored as 73.035 USD,
and the predicted value was calculated as 43.473 USD. The variation from the
real value was important (40,47 %), explicitly showing the main failure of this
calculation: the need of continuously monitoring and storing the series of values
to guarantee that the daily-occurred events affecting the service value are taken
into account. However, we highlight the decreasing trend calculated through the
N-Day VAR which, although highly accelerated, was properly identified.

4.2 Limitations

To guarantee a higher level of accuracy for risk analysis, the BP-VAR should
be replicated for all business processes within the process portfolio and for all
critical IT services within the IT portfolio. The BP-VAR quantifies the value
at risk for a business process without considering the loss impacts generated by
other interconnected business processes. Therefore, further research is required
to examine how the VAR flows through a business portfolio. This can be done by
integrating the BP-VAR with existing approaches for modeling spillover effects
of alignment between business processes [18] and also for quantifying the level
at which alignment assets create value [7].

We assumed a 1-day recovery time from the occurrence of an IT risk by consid-
ering regular threats to IT assets (e.g. low performance), but not catastrophes on
them (e.g. loss of a datacenter). Accordingly, temporal restrictions can be incor-
porated to the BP-VAR to support a non lineal analysis. Moreover, since BP-VAR
averages regular events, the loss associated with major disasters exceeds the VAR
and is not quantified.

5 Related Work

This section discusses related work within the following stages of the lifecycle of
an R-BPM system as presented by [17]: design-time analysis, runtime analysis,
post-execution analysis. The proposed BP-VAR presents an approach to support
risk analysis at these stages and also deals with its automation.

Table 1 summarizes specific gaps for risk analysis at these stages and presents
a comparison of related work with the proposed approach.

Risk Analysis at Design-Time. At this stage, business processes are ana-
lyzed to identify opportunities for improvement. The authors in [1] use two risk
metrics (VAR and Conditional VaR) to quantify risks based on the financial con-
sequences of data error propagation in the information flows and to compute the
optimal distribution of control procedures (minimizing risks and costs) along the

Value at Risk Within Business Processes 377

Table 1. Specific gaps on R-BPM systems tackled by the BP-VAR approach.

Stage/approaches Specific gaps BP-VAR approach

Design-time analysis

Bai et al. [1]
Fill [5]
Han et al. [8]
Suh and Han [16]

– Lack of a formal
estimation of assets’
value

– Low degree of
implementation
semantics and tools

– Software implementation of risk quan-
tification (It supports the three stages)

– Quantification algorithms to valuate
process and IT assets

Runtime analysis

Caron et al. [2]
Kang et al. [11]
Conforti et al. [3]

– Limited support to
quantify risks

– Limited identification of
risks not identified in the
design stage

– Lack of IT risk analysis

– Measurement of process value on IT per-
formance variations

– Formalization of process risk semantics
– Simulation on disruptive events
– Analysis of consequences of risk events
– Identification of new risks

Post-execution analysis

Conforti et al. [4]
Wickboldt et al. [20]
Sackmann and
Syring [14]

– Few support to analyze
risks using historical
data and with existing
risk metrics

– Formal method to quantify risk (VAR)
– Continuous distribution of events to

model IT assets volatility
– Traceability on risk events

process’ activities. Despite the formal approach to quantify value, there is a gap
for defining and implementing the semantics of the proposed analysis perspec-
tives (processes, control procedures, and risks). The propagation of events can be
used to extend the BP-VAR capabilities to analyze process value at the different
stages. The author in [5] uses inference rules for the risk annotations defined
in process models to create process configurations with an expected return and
variance. The authors in [8] present a framework to design and evaluate delega-
tion policies (based on measurable risks) to establish a risk level to assess the
hypothetical role delegation at any stage of a workflow system. These annota-
tions and policies can be formalized by the BP-VAR to enrich the capabilities
of quantifying value not only with IT risk but also with process-specific risks
(e.g. participants, control flows). The authors in [16] calculate the annual loss
expectancy for information systems with a relative importance on the assets
(e.g. processes) supporting business functions. The BP-VAR complements this
approach of quantifying IT assets by daily monitoring the performance of IT ser-
vices in terms of their quality attributes. In contrast to other approaches where
the value of assets is defined by subjective estimations (e.g. Delphi), the selection
of IT services to support business processes is guided by current information on
service performance and also from past information on service volatility. Addi-
tional security-aware processes and IT investments required to protect process
and IT assets should be considered for risk analysis.

Risk Analysis at Runtime. At this stage, potential problems that were not
identified during design-time can be identified and handled accordingly dur-

378 O. González-Rojas and S. Lesmes

ing the processes’ execution. Caron et al. [2] use process mining to evaluate,
monitor, and respond to risks by checking the compliance with process execu-
tion rules (functional, control flow, organizational, and data). Kang et al. [11]
propose a runtime risk monitoring technique to estimate the probability of a
process instance to reach a nonexpected termination state. Conforti et al. [3]
propose an executable language to annotate process models with risk conditions
(organizational, structural, data), which are monitored during process execution
to estimate the occurrence probability of risk events and to generate risk alerts.
In contrast to the BP-VAR, these approaches do not analyze IT risks, they do
not quantify the impact of the risk nor the variance in the value of process and
IT assets. Additionally, the BP-VAR defines new constructs to compute the cur-
rent value of an IT service, the current value of a business process, and the value
at risk of IT and process assets. The semantics of these constructs is defined
by a set of algorithms that take as input the variations on quality attributes
performance for each IT service. The quantification of risks can be improved by
combining the runtime information of IT services with runtime information of
process instances to evaluate the risks of running process instances. Although the
BP-VAR does not respond to risks automatically, the values of these constructs
can be graphically analyzed within the software tool through real or simulated
risk events (associated with a particular activity through an IT service affecta-
tion). Therefore, the process risks and their consequences can be identified in
order to plan how to deal with them in the present moment and in the future.

Risk Analysis at Post-execution. At this stage, historical data generated
from the execution of the business processes is analyzed to understand their
behaviour over time. Conforti et al. [4] present a recommendation system for pre-
dicting the most likely progression (with lower risk-level) based on historical logs
of process executions (e.g. involved resources, task durations). The authors in
[20] compare past workflow executions from predefined risk constructs to classify
and quantify risks for future executions. Sackmann and Syring [14] model differ-
ent cause-effect relationships between IT risks and a business process instance
within a historical loss database. Changes in these relationships are continuously
stored within an adjusted loss database to analyze risks when they are assessed
for an automated business process. Our process valuation approach can be used
to complement those approaches with a formal risk analysis technique to fore-
cast the value of IT and process assets, based on their historical analysis. This
facilitates a precise and unambiguous way of analyzing risk with a continuous
distribution of events that impacts process volatility. The use of current and his-
torical information obtained from process-specific systems can enrich the data
obtained from the execution of IT services. In contrast to the event-type raw data
these approaches use for risk analysis, the BP-VAR uses IT risks (i.e. IT threats,
degradation on IT services quality attributes, costs, criticality dependencies) to
quantify and forecast the value at risk on process and IT assets.

Value at Risk Within Business Processes 379

6 Conclusions and Future Work

The incorporation of a mathematical technique that is highly used for financial
analysis on firm investments is a novel approach within both, business process
management and IT risk governance disciplines. The proposed method contains
formal mechanisms and tool support to understand the behavior of the current
and expected values delivered within business processes over time and according
to the behavior of IT assets. These measures help the process management team
to identify specific business processes that are most susceptible to operational
risks. Therefore, process managers avoid spending greater time and attention on
broad IT issues for the complete process portfolio. A high level of accuracy was
obtained when comparing the expected value of assets estimated by the BP-VAR
and the actual value obtained in subsequent days.

Generating simulation scenarios on IT services performance shows process
management teams where operational problems are likely to occur. Executing
these scenarios will graphically demonstrate the value at risk within business
process assets. Although the expected value can help process managers to pro-
mote contingency plans, they have to be aware that the quantitative analysis
cannot define them. The governance of the IT services leveraging these processes
is an effective way to reduce risk and to create stable process value.

The BP-VAR process valuation method is expected to be used in combi-
nation with enterprise modeling approaches. The main reason for this is the
wide amount of process and IT assets, as well as the large amount of analysis
information within their dependencies (e.g. (risks, costs, incomes)) that must be
modeled before quantifying the value of business processes.

Multiple improvements of the presented approach are considered for fur-
ther research. First, risk quantification on IT services must compute the loss
on service degradation by considering different weights to combine the value
deviations generated for each quality attribute (e.g. integrity, availability). We
plan to estimate these weights by using a correlation analysis among quality
attributes levels and IT service values. Second, additional risk metrics such as
the conditional VAR have to be integrated with the BP-VAR to quantify losses
that are beyond a certain threshold. Finally, further investigation is required
to support the correlation analysis of VAR among assets that have an implicit
interconnection between them (process-process, process-IT service, IT service-IT
service).

Acknowledgments. The authors would like to thank Fabian Arias who collaborated
in the validation of this work.

References

1. Bai, X., Krishnan, R., Padman, R., Wang, H.J.: On risk management with infor-
mation flows in business processes. Inform. Syst. Res. 24, 731–749 (2013)

2. Caron, F., Vanthienen, J., Baesens, B.: Comprehensive rule-based compliance
checking and risk management with process mining. Decis. Support Syst. 54(3),
1357–1369 (2013)

380 O. González-Rojas and S. Lesmes

3. Conforti, R., Fortino, G., La Rosa, M., ter Hofstede, A.H.M.: History-aware, real-
time risk detection in business processes. In: Meersman, R. (ed.) OTM 2011, Part
I. LNCS, vol. 7044, pp. 100–118. Springer, Heidelberg (2011)

4. Conforti, R., de Leoni, M., Rosa, M.L., van der Aalst, W.M., ter Hofstede, A.H.:
A recommendation system for predicting risks across multiple business process
instances. Decis. Support Syst. 69, 1–19 (2015)

5. Fill, H.G.: An approach for analyzing the effects of risks on business processes using
semantic annotations. In: ECIS 2012 Proceedings, p. Paper 111. ESADE/AIS,
Barcelona (2012)

6. González Rojas, O.: Governing IT services for quantifying business impact. In:
Matulevičius, R., Dumas, M. (eds.) BIR 2015. LNBIP, vol. 229, pp. 97–112.
Springer, Heidelberg (2015)

7. González-Rojas, O., Ochoa-Venegas, L., Molina-León, G.: Information security
governance: valuation of dependencies between IT solution architectures. In: Repa,
V., Bruckner, T. (eds.) BIR 2016. LNBIP, vol. 261. Springer, Heidelberg (2016, in
Press)

8. Han, W., Ni, Q., Chen, H.: Apply measurable risk to strengthen security of a role-
based delegation supporting workflow system. In: IEEE International Symposium
on POLICY 2009, pp. 45–52. IEEE, London (2009)

9. IEEE Architecture Working Group: Std 1471-2000. Recommended practice for
architectural description of software-intensive systems. Technical report, IEEE
(2000)

10. J.P. Morgan and Reuters: RiskMetrics - technical document. Technical report, 4th
edn. JP Morgan and Reuters, New York, December 1996

11. Kang, B., Cho, N.W., Kang, S.H.: Real-time risk measurement for business activity
monitoring (BAM). Int. J. Innov. Comput. I 5(11), 3647–3657 (2009)

12. Parent, M., Reich, B.H.: Governing information technology risk. Calif. Manag. Rev.
51(3), 134–152 (2009)

13. Rainer Jr., R.K., Snyder, C.A., Carr, H.H.: Risk analysis for information technol-
ogy. J. Manag. Inform. Syst. 8(1), 129–147 (1991)

14. Sackmann, S., Syring, A.: Adapted loss database - a new approach to assess IT
risk in automated business processes. In: Santana, M., Luftman, J.N., Vinze, A.S.
(eds.) AMCIS 2010 Proceedings, p. Paper 374. AIS, Lima (2010)

15. Seddon, P.B., Graeser, V., Willcocks, L.P.: Measuring organizational IS effective-
ness: an overview and update of senior management perspectives. SIGMIS Data-
base 33(2), 11–28 (2002)

16. Suh, B., Han, I.: The IS risk analysis based on a business model. Inf. Manag. 41(2),
149–158 (2003)

17. Suriadi, S., Wei, B., Winkelmann, A., ter Hofstede, A., Adams, M., Conforti, R.,
Fidge, C., La Rosa, M., Ouyang, C., Pika, A., Rosemann, M., Wynn, M.: Current
research in risk-aware business process management-overview, comparison, and gap
analysis. Commun. ACM 34(1), 933–984 (2014)

18. Tallon, P.P.: Value chain linkages and the spillover effects of strategic information
technology alignment: a process-level view. J. Manag. Inf. Syst. 28(3), 9–44 (2011)

19. Weill, P., Ross, J.: IT Governance: How Top Performers Manage IT Decision Rights
for Superior Results. Harvard Business School Press, Boston (2004)

20. Wickboldt, J.A., Bianchin, L.A., Lunardi, R.C., Granville, L.Z., Gaspary, L.P.,
Bartolini, C.: A framework for risk assessment based on analysis of historical infor-
mation of workflow execution in IT systems. Comput. Netw. 55(13), 2954–2975
(2011)

Prediction

PRISM – A Predictive Risk Monitoring
Approach for Business Processes

Raffaele Conforti1, Sven Fink2, Jonas Manderscheid2(&),
and Maximilian Röglinger3

1 Queensland University of Technology, Brisbane, Australia
raffaele.conforti@qut.edu.au

2 FIM Research Center, University of Augsburg, Augsburg, Germany
sven.fink@student.uni-augsburg.de,

jonas.manderscheid@fim-rc.de
3 FIM Research Center, University of Bayreuth, Bayreuth, Germany

maximilian.roeglinger@fim-rc.de

Abstract. Nowadays, organizations face severe operational risks when exe-
cuting their business processes. Some reasons are the ever more complex and
dynamic business environment as well as the organic nature of business pro-
cesses. Taking a risk perspective on the business process management
(BPM) lifecycle has thus been recognized as an essential research stream. Despite
profound knowledge on risk-aware BPM with a focus on process design, existing
approaches for real-time risk monitoring treat instances as isolated when
detecting risks. They do not propagate risk information to other instances in order
to support early risk detection. To address this gap, we propose an approach for
predictive risk monitoring (PRISM). This approach automatically propagates risk
information, which has been detected via risk sensors, across similar running
instances of the same process in real-time. We demonstrate PRISM’s capability
of predictive risk monitoring by applying it in the context of a real-world
scenario.

Keywords: Business process management � Risk-aware BPM � Risk
propagation � Predictive risk monitoring

1 Introduction

The pressing need for organizations to increase productivity, to achieve operational
excellence, and to save costs has been and still is one of the driving forces for the
adoption of business process management (BPM) methods and technologies [1]. Due to
an increasingly complex and dynamic business environment as well as the organic
nature of processes, organizations are exposed to severe operational risks (e.g., the
violation of the four-eye principle or a payment default of a customer engaged in
multiple instances) when executing their business processes [2, 3].

In the attempt of solving this problem, industry and academia have proposed
several solutions. From an industry perspective, there are legislative initiatives such as
Basel II [4] and Sarbanes-Oxley Act [5]. In the academic world, previous research

© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 383–400, 2016.
DOI: 10.1007/978-3-319-45348-4_22

recognized the importance of incorporating a risk perspective in all activities of the
BPM lifecycle [3, 6, 7]. A detailed analysis of research conducted in the area of
risk-aware BPM is presented by Suriadi et al. [8]. Accordingly, the effort of the
academic world shows a bias toward the process design phase of the BPM lifecycle [9].
Beyond risk-aware process design, there are also works that take a risk perspective
when valuating and comparing process models [10, 11]. Therefore, Suriadi et al. [8]
particularly highlight the need for research on risk-informed process execution. This
need is supported by Recker and Mendling [12], who point to a lack of research on
real-time process monitoring and controlling. Although recent studies attempt to
address this gap regarding risk-informed process execution and monitoring via
approaches for real-time risk or deviance monitoring [13, 14], risk mitigation [15], and
the avoidance of risk during runtime [16], the timely detection of process risks still is
an open challenge.

Current approaches to real-time risk detection monitor running instances via sen-
sors [13]. Such sensors operate at the level of process instances, using information
about running instances and log data from completed process instances. Although risk
eventuation in process instances is not necessarily affected by other running instances,
external factors (e.g., customer behavior, characteristics of process inputs) play an
influential role for the eventuation of risks. Due to such factors, risk monitoring at
process instance-level may not be sufficient when instances are considered in isolation
[17]. To the best of our knowledge, there are no approaches that share risk information
across multiple process instances for the predictive monitoring and early detection of
risks.

Against this background, we propose an approach for predictive risk monitoring
(PRISM), which builds on and extends the work of Conforti et al. [13]. The PRISM
approach aims at supporting early risk detection by automatically propagating risk
information, which has been detected by sensors, across similar running instances of
the same process in real-time. To do so, the PRISM approach uses a
similarity-weighted process instance graph (PING) and a risk propagation algorithm.

The remainder of this paper is organized as follows: Sect. 2 discusses related work
in the areas of risk-aware BPM and process similarity. Section 3 presents the PRISM
approach, elaborating on the PING and the risk propagation algorithm. Section 4
illustrates PRISM’s effectiveness when used in the context of a real-life scenario.
Section 5 concludes the paper, discusses limitations and future work.

2 Theoretical Background and Preliminaries

In this section, we compile theoretical background on risk-aware BPM and on previous
work related to process similarity.

2.1 Risk-Aware Business Process Management

Risk management techniques found their way into many different fields. At the
strategic level, risk management standards prescribe general guidelines for identifying,

384 R. Conforti et al.

analyzing, evaluating, and handling risks [18, 19]. Though being of great importance,
such guidelines are mostly meta-models, sketchy, and fail to provide specific guidance
on how to operationalize risk management strategies in business processes. Conforti
et al. [13, 15, 16] thus proposed to enrich the traditional BPM lifecycle [9] with
elements of risk management. This enables the four phases of the BPM lifecycle, i.e.,
process design, process implementation, process enactment, and process analysis, to
become risk-aware. The resulting risk-aware BPM lifecycle is shown in Fig. 1.

The risk-aware BPM lifecycle starts with the risk identification phase. In this phase,
risks that may eventuate during the execution of a business process are identified. The
output of this phase is a set of risks, expressed as risk conditions, which are then
mapped to process model-specific aspects in the process design phase. This mapping
results in risk-annotated process models. In the process implementation phase, a more
detailed assignment of risks and faults to specific aspects of a process model, e.g., the
content of data variables and resource states, is conducted. A risk-aware process engine
then executes this process model in the process enactment phase. Finally, based on the
input of current and historical process data, risk conditions are analyzed in the process
diagnosis phase, leading to risk-related improvements.

Considering the risk-aware BPM lifecycle, most approaches proposed for risk-aware
BPM fall into the design phase. Among these approaches, we can distinguish between
approaches that focus on the analysis and modeling of process risks via new risk
constructs [3, 20–22] or based on the use of existing risk analysis methods [6, 23–25].
We refer to the work of Suriadi et al. [8] for a comprehensive discussion. Regarding the
process diagnosis phase, we find the works of Pika et al. [26] and Suriadi et al. [27], who
analyze process data to retrieve risk information. Pika et al. [26] propose an approach
that uses statistical analysis to predict overtime risks, whereas Suriadi et al. [27] use
classification algorithms to conduct a root cause analysis of risks.

In light of the need for research on risk-informed process execution/enactment [8],
it is important to focus on risks that can be identified within the boundaries of a
process. Thereby, a process risk is the chance of something happening that will impact
the objectives of a process and is measured in terms of likelihood and consequence
[28]. The work of Conforti et al. [13] focuses on real-time risk detection. The approach,
which is based on sensors, detects risks via real-time monitoring of risk conditions.

Fig. 1. Risk-aware BPM lifecycle [16]

PRISM – A Predictive Risk Monitoring Approach 385

Though being capable of monitoring a process instance using current and historical
information, sensors consider process instances as independent. This limits the capa-
bilities of the approach since it is unable to detect the eventuation of process risks based
on information about process risks that eventuate in other instances. Nonetheless, it
offers a good starting point for addressing the problem.

2.2 Similarity Measures in BPM

For the purpose of the PRISM approach, we compare process instances in order to
determine whether and how strongly a risk, which has been detected in one instance,
influences other running instances of the same process. To compare process instances,
it is necessary to measure the similarity of instances. In the literature, several
approaches have been proposed and, in the area of BPM, we must distinguish between
measuring similarities among process models [29–33] and process logs [34].

Similarities among process models can be categorized in structural similarities [29]
and behavioral similarities [30, 31]. Approaches referring to structural similarities
compare two process models at structural level. This is achieved by determining the
number of structural changes required (e.g., flows, gateways, and tasks) for two process
models to match. Approaches that deal with the behavioral similarity of process models
require more advanced techniques. Two process models are compared regarding the set
of possible executions that can be generated using these models. A similar approach is
used by similarity measurement that operates on process logs [35], while in this case
the set of possible executions is already contained in the log. For these forms of
similarity, two characteristics need to be kept in mind: first, instances belonging to the
same process model make structural similarity pointless and, second, multiple com-
pleted instances are required in order to reasonably compare logs.

As an approach for measuring the similarity of process logs, Song et al. [34] rely on
trace profiles. Trace profiles are vectors, containing several items that describe the trace
from a specific perspective (e.g., case attributes or involved tasks). Trace profiles build
on historical data from process logs in order to obtain their information. In light of their
multi-perspective vectorial representation, trace profiles can be easily compared using
string similarity techniques [36, 37]. Song et al. [34] show how a similarity measure
based on trace profiles enhances discovering process models. This is why the PRISM
approach builds on the work of Song et al. [34].

3 The Predictive Risk Monitoring Approach

We now present the PRISM approach that builds on and extends the work of Conforti
et al. [13]. The approach encompasses a similarity-weighted PING and a risk propa-
gation algorithm. For the sake of completeness, we first sketch the approach of Conforti
et al. [13].

386 R. Conforti et al.

3.1 The Sensor-Based Approach to Risk Detection

In the sensor-based approach of Conforti et al. [13], a fault is an undesired state of a
process (e.g., a process violating a service level agreement). In order to minimize the
negative effects of faults, it is important to detect the risk of a fault as early as possible.
Conforti et al. [13] achieve this through the use of digital risk sensors. However, the
approach would also be suitable in the case of physical sensors [38].

Sensors are defined at design time on top of an executable process model. Each
sensor is associated with a risk condition that captures the situation in which the risk
related to a distinct fault may occur. A risk condition combines a risk likelihood
(henceforth referred to as risk ri tð Þ in instance i at a given point in time t), i.e., the
probability of the fault to occur, and a threshold TRE, i.e., a risk value that an orga-
nization is willing to tolerate. As process models can contain several sensors referring
to different faults with individual risk conditions, each sensor must be treated
separately.

At execution time, when a new instance is created, the sensors associated with the
process model are enabled. The sensors monitor the process instance by evaluating the
associated risk condition. A risk condition is evaluated either based on a given sam-
pling rate or on the occurrence of a specific event by looking into historical and current
process execution data. Finally, whenever a risk is detected the system automatically
triggers a notification to the process administrator, who will act accordingly.

The PRISM approach builds on top of and extends the work of Conforti et al. [13].
It is based on the idea that similar process instances feature a similar risk exposure. We
thus assume that identical instances have the same risk exposure. As other approaches
(e.g., case-based reasoning or adaptive case management) rely on similarity measures
to determine similar instances [39, 40], we adopted similarity as a proxy to estimate the
risk exposure of other currently running instances. On this assumption, we use the
sensor-based detection of a risk in a distinct instance as a trigger for checking whether
the risk is likely to eventuate in similar process instances, too. This is achieved by
propagating information about the detected risk from the process instance for which the
risk has been detected to other currently running instances. To determine to which
instances a detected risk should be propagated and how strongly the related effect
should be, the PRISM approach compares different instances regarding their similarity.
The risk propagation triggers a manual evaluation of the corresponding sensor from the
receiving instance, taking the propagated risk as well as the similarity between the
source and the receiving instance as input for evaluating the risk condition.

Figure 2 illustrates the idea behind the PRISM approach for two running instances
using a single sensor as example. In this example, the sensor is monitoring an unful-
fillment risk. This sensor relates to a situation where a process instance executes a
distinct task too many times, with the related risk condition checking for loops. We
assume that both instances here have a high risk exposure and are similar. In the
following, we refer to instance 1 as source. Accordingly, the source’s unfulfillment risk
sensor detects a risk that exceeds the given threshold at time t ¼ 2. This calculation is
based on available historical data (i.e., already executed log traces), enabling to analyze
past executions of the process in focus. In Fig. 2, the bold dashed line from the source
to instance 2 visualizes the risk propagation, triggered by the detection of the

PRISM – A Predictive Risk Monitoring Approach 387

unfulfillment risk. The propagation leads to rechecking the risk conditions in instance
2. In our example, the unfulfillment risk is detected in instance 2 triggered by the risk
propagation. PRISM therefore enables detecting the unfulfillment risk in instance 2
earlier, i.e., in t ¼ 2 instead of t ¼ 3, than the sensors of instance 2 would have done
without risk propagation.

As there usually is more than one running instance of the same process, the PRISM
approach propagates risk information among these instances to enable early risk
detection. In order to perform the risk propagation, the PRISM approach uses a
similarity-weighted PING and a risk propagation algorithm whenever a sensor detects a
risk. We introduce both concepts below.

3.2 Similarity-Weighted Process Instance Graph

To propagate risk information among running instances of a process, we rely on a
similarity-weighted PING. The PING virtually links instances using their similarity as
edge weights. The PING can be interpreted as a temporal snapshot of all process
instances, which we use to determine whether and how strongly a risk detected in the
source instance influences other instances of the same process.

Formally, the PING is a graph PING ¼ V ;Eð Þ, where V ¼ 1; . . .; nð Þ is the index
set of all running instances with index 1 representing the source, i.e., the instance that
triggers the creation of the PING. Further, EðtÞ 2 R

n�n is the triangular adjacency
matrix that captures the similarity si;j tð Þ of two instances at a distinct point in time. The
adjacency matrix relates to a distinct point in time as the similarity of instances may
change over time when their execution is progressing. Each time a PING is created, the
process instances receive a new index. As running instances terminate and new
instances begin, EðtÞ’s dimensionality changes constantly. By assigning new indexes,
we ensure that, for a distinct point in time, only running instances are considered and
that no unnecessarily large data structures must be handled in real-time.

Fig. 2. Example of time advantage through the PRISM approach with two instances

388 R. Conforti et al.

EðtÞ ¼
s1;1 tð Þ � � � s1;n tð Þ

..

. . .
. ..

.

sn;1 tð Þ � � � sn;n tð Þ

0
B@

1
CA; si;j tð Þ 2 ½0; 1 ð1Þ

The adjacency matrix EðtÞ is symmetric except for those elements that contain the
source, i.e., si;j tð Þ ¼ sj;i tð Þ8i; j 2 Vnf1g. The source instance only propagates risk
information, i.e., si;1ðtÞ ¼ 0. The source needs not receive any risk information as one
of its sensors has initially detected the risk that triggered the creation of the PING. For
the same reason, all other instances do not propagate risk information to themselves,
i.e., si;iðtÞ ¼ 0. In all other cases, si;j ¼ 0 if two instances are absolutely different and
si;j ¼ 1 if the instances are perfectly equal according the similarity measure.

In the PRISM approach, we calculate the similarity of instances in line with Song
et al. [34], i.e., based on trace profiles (Sect. 2.2). We build trace profiles based on
explicit information (e.g., names of tasks) and on derived information (e.g., number of
events in a trace). Each instance can be characterized by multiple profiles. A profile is
an n-dimensional vector where n indicates the number of items extracted from a log.
A profile cp;i refers to a vector ai;1; ai;2; . . .; ai;n

� �
, where ai;k denotes the amount of item

k’s appearances in instance i for profile p. For each profile p, the similarity of two
instances sp;i;j tð Þ is calculated as shown in Eq. (2).

sp;i;j tð Þ ¼ 1 � d cp;i tð Þ; cp;j tð Þ� � � dmin

dmax tð Þ � dmin
¼ 1 �

ffiPn
k¼1 ai;kðtÞ � aj;kðtÞ

�� ��2
q

max
j2V

ffiPn
k¼1 ai;k tð Þ � aj;k tð Þ�� ��2

q� 	 ð2Þ

To determine the similarity of instances i and j for profile p, the respective nor-
malized distance is subtracted from 1. We assume dmin to be 0 as instances can be
identical. As an increasing value is needed to capture more similarity, we subtract the
normalized distance from 1. In order to calculate the distance, it is possible to apply
different distance measures (e.g., Euclidean, Hamming, or Jaccard) as shown by Song
et al. [34]. We decided in favour of the Euclidean distance, which led to good results
when used for trace clustering [34]. As the focus of this paper is not on the identifi-
cation of the best similarity measures, other distance could have been used as well. We
will get back to this issue in the critical reflection. To normalize the distance between
two instances, an operation necessary to compare the distance between any pair of
instances, we divide the distance of the respective trace vectors by the maximum
distance available.

To derive a single value that represents the similarity of two instances across all
trace profiles in focus, we determine an overall similarity by calculating the weighted
average of all profiles that relate to the involved instances. We thus integrate the
similarity of all profiles based on their relative importance for the estimation of risks. In
Eq. (3), wp represent the weights of all profiles p with

P
p2P wp ¼ 1.

PRISM – A Predictive Risk Monitoring Approach 389

si;j tð Þ ¼
X
p2P

wp � sp;i;j tð Þ ð3Þ

3.3 Risk Propagation Algorithm

In case a sensor in a distinct instance detects a risk (i.e., the risk condition evaluates to
true because the risk probability exceeds the threshold), the risk propagation algorithm
cascades this information across all currently running instances. To do so, the risk
propagation algorithm builds on the PING and estimates the eventuation probability
(i.e., the probability that the risk condition of the other instances also evaluates to true)
of the detected risk in other instances using similarities, inspired by the signal/collect
programming model [41]. The risk propagation algorithm follows a two-phase
approach, i.e., initial propagation and re-propagation. If a propagation is successful, we
refer to the state of the respective instance as “at risk.”

In the initial propagation phase, the source propagates the detected risk (i.e., a risk
likelihood that exceeds a given threshold) to all other instances (see black solid lines in
Fig. 3a). The propagation accounts for the source’s similarity with other running
instances. Acting on the assumption of a proportional relationship between similarity
and risk exposure, we estimate the risk of a receiving instance rj tð Þ at a distinct point in
time according to Eq. (4).

rj tð Þ ¼ si;j tð Þ � riðtÞ
0

ifsi;j tð Þ � riðtÞ[TRE
else

�
ð4Þ

If the risk multiplied with the similarity of the propagating instance (i.e., the source
instance in the initial propagation phase) and the receiving instance exceeds the
threshold pre-defined for a sensor, the respective product is assigned to the receiving
instance in terms of a signal/collect procedure. If the threshold is not exceeded, the
product is 0. As instances typically are different and thus do not feature the same risk
exposure, not all instances receive the same propagated risk. As we look at pairwise
similarity, we do not cumulate received risk values in an instance during propagation,
as this would result in an overestimation. In Figs. 3 and 4, the results of the initial
propagation are written into the table below the graph (even if the threshold is not
exceeded) to illustrate the risk received in an instance. Figure 3a shows the situation
when the source detects risk and propagates the risk value to all other running instances
(see black solid lines). As not for all instances the propagated risk (i.e., similarity times
risk of the source) exceeds the threshold, only instances 3 and 5 reach the “at risk” state
(Fig. 3b).

For all instances whose product of risk and similarity exceeds the sensor’s
threshold, the iterative re-propagation phase is triggered (Fig. 4). This phase and the
iterative character are necessary as a process instance can get into the “at risk” state by
receiving risk transitively propagated from the source (e.g., the similarity between the

390 R. Conforti et al.

source and instance 4 is rather low, but much higher between instances 5 and 4). As the
risk is getting smaller with each re-propagation (i.e., sij\1), we account for “paths”
from the source to other nodes with a maximum length of 2. Using longer “paths” for
risk propagation than assumed is possible and provides experts with the ability to
customize the PRISM approach to their needs.

In the re-propagation phase, all instances that have been classified as “at risk” in the
initial propagation or a previous re-propagation are sorted according to their risk
exposure. We start with the instance that has the highest risk exposure. From the initial
propagation (Fig. 3) to the re-propagation (Fig. 4), we can see that instance 5 with the
highest received risk is considered first. The instance’s received risk is used for the first
re-propagation to all instances that have not yet been classified as “at risk”. As, for
example, the re-propagation from instance 5 to 4 exceeds the threshold of instance 4,
instance 4 is classified as “at risk” after the re-propagation (Fig. 4d). The sorting of the
instances “at risk” is not mandatory. However, starting with the highest risk, the
algorithm terminates faster. All instances that went into the “at risk” state due to the
current re-propagation are then added to the set of instances to be considered in the next
re-propagation (e.g., instance 4 after the re-propagation of instance 5). Instances that
already re-propagated need not be considered further (e.g., instance 5). This iterative
procedure continues until there are no more “at risk” instances that have not yet
re-propagated or until the specified maximum number of re-propagations is reached.

Although, in Fig. 4, instance 4 is added to the relevant instances for re-propagation,
instance 3 still has the highest risk of the remaining “at risk” instances. Thus, the
algorithm starts the second re-propagation with instance 3 (Fig. 4e). As no further
instance exceeds the threshold based on the re-propagation, the algorithm terminates
after the re-propagation of instance 4 (Fig. 4f). As result, the PRISM approach clas-
sifies four out of five instances as “at risk”.

Fig. 3. Visualization of the initial propagation phase

PRISM – A Predictive Risk Monitoring Approach 391

4 Demonstration

To demonstrate its effectiveness, we apply the PRISM approach to a process for a
personal loan or overdraft application in the context of a real-world scenario from a
Dutch financial institute. The corresponding log data was released as part of the BPI
Challenge held in conjunction with the 8th International Workshop on Business Pro-
cess Intelligence 2012 [42]. As a prerequisite for our demonstration, we implemented
the PRISM approach as an extension of the workflow management system Camunda.1

Below, we first present the process model and data from process execution. After that,
we outline how we operationalized the sensors and similarity measures. Finally, we
compare the results of the PRISM approach with the sensor-based approach by Con-
forti et al. [13].

4.1 Demonstration Design and Data Set

The application process for a personal loan or overdraft (Fig. 5) starts with the sub-
mission of an application. The financial institute may already decline the application at
this point in time, a decision that will bring the process to a quick end. The financial
institute may pre-accept the application for further processing. In this case, one of the
financial institute’s employees first adds missing information until the application is
completed. The employee then selects and creates an offer, sends the offer to the
customer, and adds this information to the application. After that, the employee calls
the customer periodically. After the customer made her decision, the application will be
finally assessed while adding still missing information.

Fig. 4. Visualization of the re-propagation phase

1 http://www.camunda.com/. The authors are happy to provide the source code upon request.

392 R. Conforti et al.

http://www.camunda.com/

The corresponding log contains traces with events that cover a period of six
months, i.e., from October 2011 to March 2012. Each line of the log corresponds to an
executed task that relates to a distinct instance. The log also includes the resource that
executed the task, the timestamp of task completion as well as the loan or overdraft
amount requested by the customer. As an example, Table 1 shows the trace of the
process instance with the CaseID 175585 with a requested amount of 22,000 EUR.

To improve its quality, we pre-processed the log via a two-phase filtering approach.
In the first phase, we removed infrequent labels, applying the “Filter Log using Simple
Heuristics” plugin of ProM with a boundary of 90 %. In the second phase, we removed
infrequent behavior from the log based on the approach by Conforti et al. [43]. The
pre-processed log contained 11 unique tasks and 9,350 instances resulting in 91,500
events. Having pre-processed the log, we extracted the process model used for our
demonstration (Fig. 5).

Fig. 5. Filtered process model of the personal loan and overdraft application process

Table 1. Log trace for CaseID 175585

Task Resource Complete_Timestamp

1 START artificial 2011/10/08
14:50:02.113

2 A_SUBMITTED 112 2011/10/08
14:50:02.113

3 A_PARTLYSUBMITTED 112 2011/10/08
14:50:02.243

4 A_PREACCEPTED 112 2011/10/08
14:50:42.639

5 O_SELECTED 11000 2011/10/08
14:56:37.300

6 O_CREATED 11000 2011/10/08
14:56:39.224

7 O_SENT 11000 2011/10/08
14:56:39.271

8 W_Filling in information for the application 11000 2011/10/08
14:56:41.605

9 W_Calling after sent offers 11000 2011/10/08
14:57:16.346

(Continued)

PRISM – A Predictive Risk Monitoring Approach 393

In our demonstration, we measured how often the PRISM approach was capable of
predicting the eventuation of a risk measured by a sensor. To substantiate the advantage
gained by applying PRISM, we determined how long before the risk’s eventuation the
prediction was made. Additionally, we measured how often PRISM was unable to
predict a risk detected by a sensor or produced an erroneous prediction where no risk
has been detected before. To perform the demonstration and to ensure its replicability,
we replayed the execution of process instances according to the log data.

4.2 Operationalization for PRISM Demonstration

Before starting the replay, we implemented one sensor in the application process. This
sensor monitors the unfulfillment risk as introduced in Conforti et al. [13]. This risk
occurs if an instance executes a task too often, a situation that occurs in loops. To avoid
slowdowns and livelocks during execution, a task is assigned a maximum amount of
executions per instance (MAE), which may be defined as part of an internal regulation
or service level agreement. In our demonstration, we monitor the unfulfillment risk
with respect to the “W_Calling after sent offers” task with MAE ¼ 10. As the process
log did not come with any additional information on a defined maximum time or
maximum amount of executions, we had to estimate a sensible value. We expected that
not more than 10 % of the instances are faulty and set MAE ¼ 10, as it represents the
92 % quantile of the MAE distribution contained in the log. The instance from Table 1,
for example, reached this amount as the task “W_Calling after sent offers” is executed
10 times. The unfulfillment risk sensor monitors the risk according to the risk condition
shown in Eq. (5), whenever an instance executes the “W_Calling after sent offers” task.

min
#instances�MAE

#instances� current amount of task execution
; 1

� 	
[TRE ð5Þ

Table 1. (Continued)

Task Resource Complete_Timestamp

… W_Calling after sent offers … …

18 W_Calling after sent offers 11049 2011/10/24
12:20:18.377

19 W_Assessing the application 10629 2011/10/27
13:35:15.895

20 W_Calling to add missing information to the
application

10939 2011/10/27
18:42:05.333

21 W_Assessing the application 10629 2011/10/28
08:38:08.642

22 END Artificial 2011/10/28
08:38:08.643

394 R. Conforti et al.

Accordingly, we divide the amount of instances that executed the task at least as
often as the defined MAE by the amount of instances that executed the task at least as
often as the instance that triggered the sensor calculation. In case an instance already
executed the task more often than the defined MAE, the left value of the risk condition
must not exceed 1, as it reflects the probability that the instance exceeds the specified
maximum amount of executions. Whenever the probability exceeds the defined
threshold TRE, the PING is created and the risk propagation algorithm is triggered. We
chose TRE ¼ 0:6 to capture a risk-neutral setting. The threshold can also be adapted to
reflect more risk-averse or risk-seeking settings. As the sensor calculates the risk based
on the already executed instances of a process, we had to ensure that a sufficient
amount of instances has already been executed before the first risk propagation is
triggered. We thus started 40 instances of the log in order not to perform the sensor’s
calculation on an empty database. This amount of instances shaped up as sufficient in
some scenarios.

To derive the similarity values used for risk propagation, we used two profiles. The
first profile builds on case attributes from the log, the second considers the amount of
executed tasks of a distinct instance. However, the log only offers two attributes, i.e.,
the requested amount of money and resource executing a task, whereby the resource is
missing for many tasks. We decided to calculate the distance vector of the first profile
with just one element, i.e., the difference of the requested amounts of money. For the
second profile, we used the amount of executions per task. For both profiles, the
maximum distance vector was determined based on instances in the snapshot (e.g.,
instances that were currently running when the risk was detected, as explained for the
PING in Sect. 3.2). The maximum distance vector we choose for normalizing the
distance values must not exceed the average distance from the snapshot by 80 %. We
decided for this assumption to minimize the effect of outliers, which would cause many
false positives. To further reduce the number of false positive risk propagations, we
limited the amount of instances taken into consideration for propagation. We reduced
the running instances by those who have already passed the task our sensor is attached
to. Instances that proceeded to the task “W_Assessing the application” cannot be faulty
anymore. At least the sensor related to their instance would have had to indicate
potential risk.

The calculation of both profiles is performed according to Eq. (2). We take the
profiles’ result and their weights in order to derive a similarity for two distinct instances
(Eq. 3). As the log contained almost no case attributes, we selected the task profile as
the leading profile. We thus assigned a weight of 0.6 to the task profile and 0.4 to the
attribute profile as shown in Eq. (6).

si;j tð Þ ¼
X

p2P wp � sp;i;j tð Þ ¼ 0:4 � sattribute;i;j tð Þ þ 0:6 � stask;i;j tð Þ ð6Þ

4.3 Results of the Replay and Discussion

To show a successful implementation and validate the PRISM approach, we selected
instances that started between October 1st and 11th 2011. This set of instances captures
an average workload per week from the process log, including a sufficiently large

PRISM – A Predictive Risk Monitoring Approach 395

number of instances to train the PRISM approach. As declined loan requests would
lead to negligible similarity values and receive no risk propagation, we only looked at
instances with accepted loan requests. With the replay of the resulting 241 instances,
we gained the results as illustrated in Table 2.

In this setting, the PRISM approach predicted with an accuracy of 86.72 % (209
out of 241 instances). In the used log data, the sensor detected a risk for 14 instances.
Out of these instances, 13 where correctly identified as being “at risk” before the
respective instances’ own sensors detected the risk. The instance with the missing
prediction appeared due to propagation algorithm. The algorithm triggers the risk
propagation upon the detection of risk in a sensor. Thus, the first instance that runs into
a risk and triggers the first propagation cannot receive any information from an earlier
propagation.

When we look into details, the time saved by the PRISM approaches averages 4
days 18 h compared to a risk detection without risk propagation among similar
instances. The average execution time of the covered 241 instances amounted to 65
days 12 h. For our example trace (i.e., CaseID 175585) in Table 1, the unfulfillment
risk was identified in task 16 with the 8th execution of task “W_Calling after sent
offers” and caused a time advantage of 5 days 20 h.

Finally, we critically reflect on the results of the demonstration, as we made some
assumptions when operationalizing the PRISM approach (e.g., similarity measure,
normalization of the distance vectors). The different profiles of a process allow for
different perspectives on similarity and provide high flexibility. The process log we
used for the replay, however, only contained very few attributes we could use for
building profiles. Thus, it needs to be checked how the availability of more attributes
influences the demonstration results. Further, the relation of missing to false predictions
is influenced by the risk conditions, thresholds, and the maximum number of
re-propagations. These properties can be adapted according to a process manager’s risk
attitude. Nevertheless, we were able to demonstrate the effectiveness of the PRISM
approach as we gained good results based on limited information. In addition, we only
analyzed instances that started in a limited time period. Although this set of instances
represented an average work week, it covers only a subset of the log data. We delib-
erately restricted the demonstration to a smaller subset to better understand what is
happing during risk propagation. Thus, a next step would be to further develop the
prototype and to apply the PRISM approach to the entire log.

Table 2. Contingency table for predicting risk with PRISM

Sensor detected risk Sensor detected no risk

PRISM risk predicted 13/14 = 92.86 % 31/227 = 13.66 %
PRISM no risk predicted 1/14 = 7.14 % 196/227 = 86.34 %

396 R. Conforti et al.

5 Conclusion and Critical Discussion

In this paper, we proposed the predictive risk monitoring (PRISM) approach that
automatically propagates risk information, detected by risk sensors, across similar
instances of the same process in real-time. On the assumption that similar process
instances have a similar risk exposure, the PRISM approach uses a similarity-weighted
process instance graph (PING) that can be interpreted as a snapshot of all currently
running instances. The PING virtually links all currently running instances and uses the
similarity of these instances as edge weights. Based on the PING, a risk propagation
algorithm then determines whether and how strongly a detected risk influences other
instances. The PRISM approach intends to detect risks earlier than approaches without
risk propagation. In the context of a real-world scenario, we demonstrated that the
similarity assumption holds true and that the PRISM approach is indeed able to detect
risks earlier than the approach of Conforti et al. [13].

Although we were able to demonstrate the effectiveness of the PRISM approach
and the feasibility of the underlying assumptions based on real-world data, the
approach is beset with limitations that stimulate future research. First, the PRISM
approach is based on a distinct similarity measure as well as on the assumption of a
proportional relation between similarity and risk exposure. Future research should
analyze whether other similarity measures and other relation types help achieve better
risk prediction results. Second, it is time-consuming to parameterize the PRISM
approach. Currently, the parameterization needs to be strongly geared toward the
properties of the process log at hand. Future research should explore into methods that
help parameterize the PRISM approach. Third, the information we use as input for the
PRISM approach grounds on risk information triggered by risk sensors. We do not
consider other input than log data. It might be useful to account for information from
outside the process such as the context in which the process is executed (e.g., market
fluctuations) or organizational risks (e.g., dependencies on third parties) to enhance
predictive risk detection. Ideas may be derived from risk monitoring approaches
applied in other domains as well as from more sophisticated propagation algorithms
(e.g., belief propagation). This can help overcome current shortcomings of the PRISM
approach (e.g., the re-propagation sequence and the termination rule). Likewise, the
PRISM approach would benefit from further evaluation by means of sensitivity anal-
yses, robustness tests, and case studies. Case studies would also help gain experience
with estimating the needed parameters.

Acknowledgements. This research is partially funded by the ARC Discovery Project
DP150103356 and was partially carried out in the context of the Project Group Business and
Information Systems Engineering of the Fraunhofer Institute for Applied Information
Technology FIT.

PRISM – A Predictive Risk Monitoring Approach 397

References

1. van der Aalst, W.M.P.: Business process management: a comprehensive survey. ISRN
Softw. Eng. 2013, 1–37 (2013)

2. Beverungen, D.: Exploring the interplay of the design and emergence of business processes
as organizational routines. Bus. Inf. Syst. Eng. 6, 191–202 (2014)

3. zur Muehlen, M., Rosemann, M.: Integrating risks in business process models. In: 16th
Australasian Conference on Information Systems, pp. 62–72. Association of Information
Systems (2005)

4. Basel Committee on Banking Supervision: Basel II: International Convergence of Capital
Measurement and Capital Standards (2006)

5. Oxley, M.G., Sarbanes, P.: Sarbanes Oxley Act of 2002, 745–810 (2002)
6. Mock, R., Corvo, M.: Risk analysis of information systems by event process chains. Int.

J. Crit. Infrastruct. 1, 247–257 (2005)
7. Betz, S., Hickl, S., Oberweis, A.: Risk-aware business process modeling and simulation

using XML nets. In: 13th Conference on Commerce and Enterprise Computing, pp. 349–
356. IEEE (2011)

8. Suriadi, S., Weiß, B., Winkelmann, A., ter Hofstede, A.H.M., Adams, M., Conforti, R.,
Fidge, C.J., La Rosa, M., Ouyang, C., Pika, A., Rosemann, M., Wynn, M.: Current research
in risk-aware business process management - overview, comparison, and gap analysis.
Commun. Assoc. Inf. Syst. 34, 933–984 (2014)

9. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management. Springer, Heidelberg (2013)

10. Bolsinger, M.: Bringing value-based business process management to the operational
process level. Inf. Syst. E-bus. Manag. 13, 355–398 (2015)

11. Buhl, H.U., Röglinger, M., Stöckl, S., Braunwarth, K.S.: Value orientation in process
management. Bus. Inf. Syst. Eng. 3, 163–172 (2011)

12. Recker, J., Mendling, J.: The state of the art of business process management research as
published in the BPM conference. Bus. Inf. Syst. Eng. 58, 55–72 (2016)

13. Conforti, R., La Rosa, M., Fortino, G., ter Hofstede, A.H.M., Recker, J., Adams, M.:
Real-time risk monitoring in business processes: a sensor-based approach. J. Syst. Softw. 86,
2939–2965 (2013)

14. Manderscheid, J., Reißner, D., Röglinger, M.: Inspection coming due! How to determine the
service interval of your processes! In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M.
(eds.) BPM 2015. LNCS, vol. 9253, pp. 19–34. Springer, Heidelberg (2015)

15. Conforti, R., ter Hofstede, A.H., La Rosa, M., Adams, M.: Automated risk mitigation in
business processes. In: Meersman, R., et al. (eds.) OTM 2012, Part I. LNCS, vol. 7565,
pp. 212–231. Springer, Heidelberg (2012)

16. Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.:
A recommendation system for predicting risks across multiple business process instances.
Decis. Support Syst. 69, 1–19 (2015)

17. Krumeich, J., Werth, D., Loos, P.: Prescriptive control of business processes. Bus. Inf. Syst.
Eng. 7, 1–40 (2015)

18. Association Information Systems Audit and Control: COBIT 5: A Business Framework for
the Governance and Management of Enterprise IT (2013)

19. AXELOS: Information Technology Infrastructure Library. https://www.axelos.com/best-
practice-solutions/itil

398 R. Conforti et al.

https://www.axelos.com/best-practice-solutions/itil
https://www.axelos.com/best-practice-solutions/itil

20. Jakoubi, S., Goluch, G., Tjoa, S., Quirchmayr, G.: Deriving resource requirements applying
risk-aware business process modeling and simulation. In: 16th European Conference on
Information Systems, pp. 1542–1554. AIS (2008)

21. Sienou, A., Karduck, A.P., Lamine, E., Pingaud, H.: Business process and risk models
enrichment: considerations for business intelligence. In: 2008 IEEE International Conference
on e-Business Engineering, pp. 732–735. IEEE (2008)

22. Singh, P., Gelgi, F., Davulcu, H., Yau, S.S., Mukhopadhyay, S.: A risk reduction framework
for dynamic workflows. In: 2008 IEEE International Conference on Services Computing,
pp. 381–388. IEEE (2008)

23. Rotaru, K., Wilkin, C., Churilov, L., Neiger, D., Ceglowski, A.: Formalizing process-based
risk with value-focused process engineering. Inf. Syst. E-Bus. Manag. 9, 447–474 (2011)

24. Karagiannis, D., Mylopoulos, J., Schwab, M.: Business process-based regulation
compliance: the case of the Sarbanes-Oxley Act. In: 15th IEEE International
Requirements Engineering Conference, pp. 315–321. IEEE (2007)

25. Lambert, J.H., Jennings, R.K., Joshi, N.N.: Integration of risk identification with business
process models. Syst. Eng. 9, 187–198 (2006)

26. Pika, A., van der Aalst, W.M., Fidge, C.J., ter Hofstede, A.H., Wynn, M.T.: Predicting
deadline transgressions using event logs. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops
2012. LNBIP, vol. 132, pp. 211–216. Springer, Heidelberg (2013)

27. Suriadi, S., Ouyang, C., van der Aalst, W.M., ter Hofstede, A.H.: Root cause analysis with
enriched process logs. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol.
132, pp. 174–186. Springer, Heidelberg (2013)

28. Standards Australia and Standards New Zealand: ISO 31000:2009, Risk Management —
Principles and Guidelines (2009)

29. van Dongen, B.F., Dijkman, R., Mendling, J.: Measuring similarity between business
process models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074,
pp. 450–464. Springer, Heidelberg (2008)

30. Armas-Cervantes, A., Baldan, P., Dumas, M., García-Bañuelos, L.: Diagnosing behavioral
differences between business process models: an approach based on event structures. Inf.
Syst. 56, 304–325 (2016)

31. Polyvyanyy, A., Weidlich, M., Weske, M.: Isotactics as a foundation for alignment and
abstraction of behavioral models. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012.
LNCS, vol. 7481, pp. 335–351. Springer, Heidelberg (2012)

32. Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity of
business process models: metrics and evaluation. Inf. Syst. 36, 498–516 (2011)

33. Beheshti, S.-M.-R., Benatallah, B., Sakr, S., Grigori, D., Motahari-Nezhad, H.R., Barukh,
M.C., Gater, A., Ryu, S.H.: Process Analytics - Concepts and Techniques for Querying and
Analyzing Process Data. Springer International Publishing, Switzerland (2016)

34. Song, M., Günther, C.W., van der Aalst, W.M.: Trace clustering in process mining. In:
Ardagna, D., Mecella, M., Yang, J. (eds.) Business Process Management Workshops.
LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009)

35. van Beest, N.R.T.P., Dumas, M., García-Bañuelos, L., La Rosa, M.: Log delta analysis:
interpretable differencing of business process event logs. In: Motahari-Nezhad, H.R.,
Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 386–405. Springer,
Heidelberg (2015)

36. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147–160
(1950)

37. Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11, 37–50 (1912)

PRISM – A Predictive Risk Monitoring Approach 399

38. Daniel, F., Eriksson, J., Finne, N., Fuchs, H., Karnouskos, S., Montero, P.M., Mottola, L.,
Oertel, N., Oppermann, F.J., Picco, G. Pietro, Römer, K., Spieß, P., Tranquillini, S., Voigt,
T.: makeSense: real-world business processes through wireless sensor networks. In: 4th
International Workshop on Networks of Cooperating Objects for Smart Cities,
CONET/UBICITEC, pp. 58–72 (2013)

39. Minor, M., Bergmann, R., Görg, S.: Case-based adaptation of workflows. Inf. Syst. 40, 142–
152 (2014)

40. Motahari-Nezhad, H.R., Bartolini, C.: Next best step and expert recommendation for
collaborative processes in IT service management. In: Rinderle-Ma, S., Toumani, F., Wolf,
K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 50–61. Springer, Heidelberg (2011)

41. Stutz, P., Bernstein, A., Cohen, W.: Signal/collect: graph algorithms for the (semantic) web.
In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I.,
Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 764–780. Springer, Heidelberg
(2010)

42. van Dongen, B.F.: BPI Challenge 2012.xes.gz. http://data.3tu.nl/repository/uuid:3926db30-
f712-4394-aebc-75976070e91f

43. Conforti, R., La Rosa, M., ter Hofstede, A.H.M.: Filtering out Infrequent Behavior from
Process Event Logs (2015)

400 R. Conforti et al.

http://data.3tu.nl/repository/uuid:3926db30-f712-4394-aebc-75976070e91f
http://data.3tu.nl/repository/uuid:3926db30-f712-4394-aebc-75976070e91f

Predictive Business Process Monitoring
with Structured and Unstructured Data

Irene Teinemaa1,2(B), Marlon Dumas1, Fabrizio Maria Maggi1,
and Chiara Di Francescomarino3

1 University of Tartu, Tartu, Estonia
{irheta,marlon.dumas,f.m.maggi}@ut.ee

2 STACC, Tartu, Estonia
irene.teinemaa@gmail.com
3 FBK-IRST, Trento, Italy

dfmchiara@fbk.eu

Abstract. Predictive business process monitoring is concerned with
continuously analyzing the events produced by the execution of a busi-
ness process in order to predict as early as possible the outcome of each
ongoing case thereof. Previous work has approached the problem of pre-
dictive process monitoring when the observed events carry structured
data payloads consisting of attribute-value pairs. In practice, structured
data often comes in conjunction with unstructured (textual) data such as
emails or comments. This paper presents a predictive process monitoring
framework that combines text mining with sequence classification tech-
niques so as to handle both structured and unstructured event payloads.
The framework has been evaluated with respect to accuracy, prediction
earliness and efficiency on two real-life datasets.

Keywords: Process monitoring · Predictive monitoring · Text mining

1 Introduction

Business process monitoring is concerned with the analysis of events produced
during the execution of a process in order to assess the fulfillment of its com-
pliance requirements and performance objectives [7]. Monitoring can take place
offline (e.g., based on periodically produced reports) or online via dashboards
displaying the performance of currently running cases of a process [3].

Predictive business process monitoring [15] refers to a family of online process
monitoring methods that seek to predict as early as possible the outcome of each
case given its current (incomplete) execution trace and given a set of traces of
previously completed cases. In this context, an outcome may be the fulfillment of
a compliance rule, a performance objective (e.g., maximum allowed cycle time)
or business goal, or any other characteristic of a case that can be determined
upon its completion. For example, in a sales process, a possible outcome is the
placement of a purchase order by a potential customer, whereas in a debt recov-
ery process, a possible outcome is the receipt of a debt repayment.
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 401–417, 2016.
DOI: 10.1007/978-3-319-45348-4 23

402 I. Teinemaa et al.

Existing approaches to predictive process monitoring [5,13,15,16] consider
that a trace consists of a sequence of events with a structured data payload,
such as a payload consisting of attribute-value pairs. For example, in a loan
application process, one event could be the receipt of a new loan application.
This event may carry structured data such as the name, date of birth and other
personal details of the applicant, the type of loan requested, and the requested
amount and valuation of the collateral. Each subsequent event in this process
may then carry additional or updated data such as the credit score assigned to
the applicant, the maximum loan amount allowed, the interest rate, etc.

In practice, not all data generated during the execution of a process is struc-
tured. For example, in said loan application process, the customer may include
a free-text description of the purpose of the loan. Later, a customer service
representative may attach to the case the text of an email exchanged with the
customer regarding her employment details, while a credit officer may add a
comment to the loan application following a conversation with the customer.
Comments like these ones are common for example in application-to-approval
processes, issue-to-resolution and claim-to-settlement processes, where the exe-
cution of the process involves unstructured interactions with the customer.

This paper studies the problem of jointly exploiting unstructured (free-text)
and structured data for predictive process monitoring. The contribution is a
predictive process monitoring framework that combines text mining techniques
to extract features from textual payload, with (early) sequence classification
techniques for structured data. The proposed framework is evaluated on two real-
life datasets: a debt recovery process, where the outcomes are either a (partial)
repayment or the referral of the case to an external agency for encashment, and
a lead-to-contract process, where the outcome conveys whether or not a sales
contract is signed with a potential customer.

The rest of the paper is structured as follows. Section 2 introduces the text
mining techniques upon which our proposal builds. Section 3 presents the pre-
dictive process monitoring framework, while Sect. 4 presents the evaluation.
Section 5 discusses related work while Sect. 6 summarizes the contribution and
outlines future work directions.

2 Background: Text Mining

The central object in text mining is a document — a unit of textual data such
as a comment or an e-mail. Natural language processing can be used to derive
representative feature vectors for individual documents, which can thereupon be
used in various (predictive) data mining tasks. In order to construct reasonable
representations, the textual data should be preprocessed. Firstly, the text needs
to be tokenized — segmented into meaningful pieces. In the simplest approach,
text is split into tokens on the white space character. More sophisticated tok-
enization techniques can be used to obtain multi-word tokens (e.g., “New York”)
or to separate words such as “it’s” into two tokens “it” and “is”.

Tokens can also be normalized so that tokens with small differences (e.g.,
“e-mail” and “email”) are equated. In addition, inflected forms of words can be

Predictive Monitoring with Structured and Unstructured Data 403

grouped together using stemming or lemmatization. For instance, lemmatization
can group words “good”, “better”, and “best” under a single lemma.

A document can be represented by using frequencies of single words as fea-
tures. For example, the document “The fox jumps over the dog” is represented
as {“the”:2, “fox”:1, “jumps”:1, “over”:1, “dog”:1}. This representation ignores
the order of words – a limitation that can be overcome by using sequences of
two (bigrams), three (trigrams), or n (n-grams) contiguous words instead of or
in addition to single words (unigrams). The bigrams in the above document are:
{“the fox”:1, “fox jumps”:1, “jumps over”:1, “over the”:1, “the dog”:1}. Fea-
tures that are constructed based on words that occur in the document are called
terms, while the corresponding representation is called bag-of-n-grams (BoNG).

Terms that occur frequently in a document collection are not representative
of a particular document, yet they receive misleadingly high values in the basic
BoNG model. This problem can be addressed by normalizing the term frequen-
cies (tf) with the inverse document frequencies (idf) — the number of all docu-
ments divided by the number of documents that contain the term, scaled loga-
rithmically. Thus, rare terms receive higher weights, while frequent words (like
“with” or “the”) receive lower weights. In text classification scenarios, weighing
the term frequencies with Naive Bayes (NB) log count ratios may improve the
accuracy of the predictions [19]. The BoNG model also suffers from high dimen-
sionality, as each document is represented by as many features as the number of
terms in the vocabulary (the set of all terms in the document collection). Com-
mon practice is to apply feature selection techniques, such as mutual information
or Chi-square test, and retain only the most relevant terms.

Alternative approaches to the BoNG model are continuous representations
of documents. These techniques represent text with real-valued low-dimensional
feature vectors, where each feature is typically a latent variable — inferred from
the observed variables. One such approach is topic modeling, which extracts
abstract topics from a collection of documents. The most widely used topic
modeling technique, Latent Dirichlet Allocation (LDA) [1], is a generative sta-
tistical model, which assumes that each document entails a mixture of topics
and each word in the document is drawn from one of the underlying topics.

Continuous representations of words using neural network-based language
models have also shown high performance in natural language processing tasks.
These language models are trained to predict a missing word, given its con-
text — words in the proximity of the word to be predicted. Techniques have
been proposed that extend these approaches from word-level to sentence-, or
document-level. For instance, Paragraph Vector (PV) [12] generates fixed-length
feature representations for documents of variable length.

3 Framework

The proposed framework takes as input a set of traces and a labeling function
that assigns a label (e.g., positive vs.negative) to each trace. Given this labeled
set of traces, and the incomplete trace of a running case, it returns as output a

404 I. Teinemaa et al.

prediction on the outcome (label) of the running case. Each trace consists of a
sequence of events carrying a payload consisting of structured and unstructured
data. For example, the following is a possible event (Call) in a debt collection
process, carrying structured data (revenue and debt sum) and unstructured data
(the associated textual description).

Call {revenue : 34555, debt sum : 500} {Please send a warning. 1234567: “Gave

extension of 5 days and issued a warning about sending it to encashment.

An encashment warning letter sent on the 06/10, 11:10 deadline.”}
(1)

The framework embodies two different components. An offline component uses
historical traces to train classifiers that are used to make predictions about
running cases through an online component. The following subsections explain
each of these components in more detail.

3.1 Offline Component

Figure 1 illustrates the offline component of our proposed predictive monitor-
ing framework. At the core of the framework, there are text models and classi-
fiers. Both are trained using prefixes of historical cases. In particular, one text
model and one classifier is trained for each possible prefix length (from 1 to m).
From all prefixes of a certain length, unstructured sequences (sequences of events
with their associated textual description) and structured sequences (sequences
of events with their structured data payload) are extracted (Extract sequences
in Fig. 1). A textual model is trained by using the unstructured data (Construct
text model in Fig. 1). The purpose of a textual model is to transform a variable
length textual description associated to an event into a fixed length numerical
feature vector. Each textual description extracted from the considered prefixes
is translated into a feature vector (Extract textual features in Fig. 1). A classifier
is then trained by encoding each prefix as a complex sequence, combining (i) con-
trol flow, (ii) structured data payload, and (iii) features extracted from textual
data. Therefore, the number of features depends on the prefix length k (from 1
to m) and thus different classifiers need to be trained for different prefix lengths.
We now describe in more detail the main phases in the offline component.

Fig. 1. The offline component of the proposed framework

Predictive Monitoring with Structured and Unstructured Data 405

Construct Text Models and Extract Textual Features: In the proposed
framework, the text associated to each event is considered as a document and
a feature vector is extracted from it. We compare 4 different techniques for
extracting feature vectors from text: BoNG model with and without NB log
count ratios, LDA topic modeling, and PV.

Before feature extraction, some preprocessing is done on the unstructured
data. We start with tokenizing the documents, using simple white space tok-
enization. In the case of the running example (1), the tokenization produces
a vector of tokens, e.g., “Please”, “send”, “a”, “warning”, Moreover, we
generate equivalence classes for different types of numerals by replacing them
with a corresponding tag (phone number, date, or other). For example, in (1),
token “1234567” would be replaced by token “phone number”, token “06/10”
by “date” and token “11:10” by “time”. Lastly, we lemmatize the text, i.e., we
group together different inflected forms of a word and we refer to such a group
with its base form or lemma. For example, in our running example, tokens
“send”, “sent” and “sending” will be clustered together into a “send” cluster
(where “send” is the lemma), whereas “deadlin” is the base form of “deadline”
and “deadlines”.

In the following paragraphs, we illustrate in detail the techniques for extract-
ing feature vectors from text we use in this paper.

Bag-of-n-grams (n, idf): This method is based on the BoNG model and takes
as inputs two parameters: n, which is the maximum size of the n-grams; and
idf , that is a boolean variable specifying whether the BoNG model is normalized
with idf. In this method, the documents from historical prefixes are used to build
a vocabulary of n-grams, V (n). Given a vocabulary V (n) of size |V (n)| = v, a
document j is represented as a vector d(j) = (g(j)t1 , g

(j)
t2 , ..., g

(j)
tv), where:

g
(j)
ti =

{
tfidf(ti(j)) if idf

f
(j)
ti otherwise

f
(j)
ti represents the frequency of n-gram ti in document d(j), i.e., f

(j)
ti = tf(ti(j)).

For instance, in our running example (1), if n = 1, idf = false and the vocab-
ulary is V (1) = {about, agenc, collect, commun, date, deadlin, encash, extens,
gave, issu, letter, number, phonenumb, pleas, send, time,warn,warning}, the
vector encoding the textual description would be:

d(j̄) = (1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3) (2)

where the word “send” (and its variations) occur three times in the document,
the word “about” occurs once and the word “agency” does not occur.

Naive Bayes log count ratios (n, α): In this method, features are still based
on the BoNG model, but they are weighted with NB log count ratios, d(j) =
(f (j)

t1 · r1, f
(j)
t2 · r2, ..., f

(j)
tv · rv). The parameter α is a smoothing parameter for

the weights [19], while n is, as in BoNG, the maximum size of the n-grams. For
instance, if the vocabulary (and hence the term frequency) is the same as the

406 I. Teinemaa et al.

one in (2) and the NB log count ratios vector is r = (0.85, 1.02, 0.76, 0.76, 1.52,
2.03, 1.19, 1.02, 0.45, 0.89, 1.02, 1.4, 1.39, 0.41, 1.02, 1.38, 1.27, 1.83), d(j̄) would
be:

d(j̄)
= (0.85, 0, 0, 0, 1.52, 2.03, 1.19, 1.02, 0.45, 0.89, 1.02, 1.4, 1.39, 0.41, 3.06, 1.38, 1.27, 5.49) (3)

Latent Dirichlet Allocation topic modeling (num topics, idf): In this method, the
text model is represented by topics covered by the documents. The method takes
as input the number of topics to be obtained and, similarly to BoNG, a boolean
parameter idf that determines whether the term frequencies should be weighted
with idf before applying topic modeling. A topic is expressed as a probability
distribution over words, where words that are characteristic to a particular topic
possess higher values. Each document is represented as a probability vector over
topics, d(j) = (p(j)1 , p

(j)
2 , ..., p

(j)
c), where c is the number of topics and p

(j)
i is

the probability that document j concerns topic pi. For instance, if the three
following topics have been identified by applying topic modeling to the textual
descriptions of the historical unstructured data:

topic1 :(immediately : 0.4, phone : 0.2, pay : 0.1, ...) (immediate payment)

topic2 :(mobile : 0.3, answer : 0.2, switched : 0.15, off : 0.15, ...) (not accessible by phone)

topic3 :(send : 0.35, letter : 0.2, warning : 0.1, ...) (warning letter sent)

(each topic can be abstracted by using textual descriptions like the ones reported
on the right-hand side of the list of topics), the textual description in (1) will be
represented as a vector of three items. Each item corresponds to the probability
that the document concerns topic1, topic2 and topic3, respectively. In particular,
the document is not very related to topic1, a bit more to topic2 and closer to
the warning letter scenario. The resulting vector is:

d(j̄) = (0.1, 0.2, 0.7) (4)

Paragraph Vector (vector size, window size): In this method, not only terms
but also the sequence of terms are exploited for the construction of the model.
Namely, the method slides a window of size window size over the documents,
using each of such windows of words as the context. Once trained, the model is
able to provide for each document a vector of features of a fixed length (specified
by vector size).

For the methods based on the BoNG model with and without NB log count
ratios, before the textual features can be used for the complex sequence encoding,
a feature selection step is required to reduce the number of features extracted.
In particular, for the method based on the basic BoNG model the Chi-square
test is used, while for the method based on the BoNG model with NB log count
ratios the most discriminative features (i.e., the terms that achieve the top lowest
and top highest NB log ratio scores) are selected. Both these feature selection
techniques take as input the number of features to select, so that BoNG and NB
also require such a number as additional input parameter.

Predictive Monitoring with Structured and Unstructured Data 407

Encode as Feature Vector: Our approach utilizes the index-based encoding
for complex sequences [13]. This encoding scheme differentiates between static
and dynamic (structured) data. Case attributes are static since they do not
change as the case progresses. On the other hand, dynamic attributes may take
new values during the execution of a case. Event attributes can hence be con-
sidered either as static (only the most recent value is used) or dynamic (the
sequence of values up to a given point is used). Given a sequence σi of length k,
with u static features s1i , ..., s

u
i , and r dynamic features h1

i , ..., h
r
i , the index-based

feature vector gi of σi is:

gi = (s1i , ..., s
u
i , eventi1, ..., eventik, h

1
i1, ..., h

1
ik, ..., h

r
i1, ..., h

r
ik).

We enhance the index-based encoding with textual features by concatenating
them to the feature vector. Textual data can be of both static and dynamic
nature. When text contains static information, the derived v features t1i , ..., t

v
i

are added to the feature vector of σi as follows:

gi = (s1i , ..., s
u
i , eventi1, ..., eventik, h

1
i1, ..., h

1
ik, ..., h

r
i1, ..., h

r
ik, t

1
i , ..., t

v
i).

On the other hand, if textual data changes throughout the case, it should be
handled in the same way as dynamic structured data:

gi = (s
1
i , ..., s

u
i , eventi1, ..., eventik, h

1
i1, ..., h

1
ik, ..., h

r
i1, ..., h

r
ik, t

1
i1, ..., t

1
ik, ..., t

v
i1, ..., t

v
ik).

For instance, if the case containing the event in the example (1) does not
contain any static structured and unstructured data, using the topic model vector
in (4), the complex sequence would be:

g
i
= (..., call, ..., 34555, 500, ..., 0.1, 0.2, 0.7, ...) (5)

Train Classifier: We use random forest [2] and logistic regression [9] to build
the classifiers. Random forest has been shown to be a solid classifier in various
problem settings, including credit scoring applications [14]. On the other hand,
logistic regression, one among the most popular linear classifiers in text classifi-
cation tasks, suites well to cases in which data are very sparse (this is the case
when the BoNG model is used).

3.2 Online Component

The structure of the online component of our predictive monitoring framework
is presented in Fig. 2. When predicting the outcome for a running case of prefix
length k, the pre-built textual model and classifier for length k are retrieved and
applied to the running case at hand. If the prefix length of the running case is
larger than the maximum prefix length m used in the training process, only the
first m events of the running case are used.

Threshold minConf is an input parameter of the framework. If the classifier
returns a probability higher than minConf for the positive class, the framework
outputs a positive prediction. If the probability is lower than the threshold, no

408 I. Teinemaa et al.

Fig. 2. The online component of the proposed framework

prediction is made and the framework continues to monitor the case. When the
observed event is a terminal event, the final prediction is negative.

This setting, where the framework focuses only on making positive predic-
tions, follows closely most real-life scenarios. Indeed, it is important for the
stakeholders to filter the cases that may become deviant in the future, so that
preventive actions can be taken. On the other hand, in cases that will likely have
a normal outcome, no specific action is taken and they are allowed to continue
in their own path. Still, our framework is easily extensible to early prediction of
both positive and negative outcomes.

4 Evaluation

We have implemented the proposed methods in Python1 and evaluated their per-
formance on two datasets using an existing technique for predictive process mon-
itoring with structured data as a baseline [13]. Below we describe the datasets,
evaluation method and findings.

4.1 Datasets

We evaluated our framework on two real-life datasets pertaining to: (i) the debt
recovery (DR) process of an Estonian company that provides credit management
service for its customers (creditors), and (ii) the lead-to-contract (LtC) process
of a due diligence service provider in Estonia.

The debt recovery process starts when the creditor transfers a delinquent debt
to the company. This means that the debtor has already defaulted — failed to
repay the debt to the creditor in due time. Usually, the collection specialist makes
a phone call to the debtor. If the phone is not answered, an inquiry/reminder
letter is sent. If the phone is answered, the debtor may provide an expected pay-
ment date, in which case no additional action is taken during the present week.
Alternatively, the specialist and the debtor can agree on a payment schedule
that outlines the repayments over a longer time period. If the collection special-
ist considers the case to be irreparable, she makes a suggestion to the creditor

1 Scripts available at https://github.com/irhete/PredictiveMonitoringWithText.

https://github.com/irhete/PredictiveMonitoringWithText

Predictive Monitoring with Structured and Unstructured Data 409

about forwarding the debt to an outside debt collection agency (send to encash-
ment) or about sending a warning letter to the debtor on the same matter. The
final decision about issuing an encashment warning to the debtor and/or send-
ing the debt to encashment is made by the creditor. If there is no advancement
in collecting the debt after 7 days (e.g., the payment was not received on the
provided date or the debtor has neither answered the phone nor the reminder
letter), the procedure is repeated.

It is in the interest of the creditor to discover, as early as possible, cases
that will not lead to any payment in a reasonable timeframe. The earlier the
debt is recovered, the more value it entails for the creditor. Moreover, such
cases are likely irreparable and could be sent to encashment without further
delay. Therefore, our prediction goal is to determine cases where no payment is
received within 8 weeks after the beginning of the debt recovery process.

The lead-to-contract process is logged through a customer relationship man-
agement system (CRM). The process begins when the sales manager selects
companies as “cold leads” and loads them into CRM. Based on personal expe-
rience, the sales manager selects leads that qualify for an opportunity, or alter-
natively, makes a phonecall to the company in order to determine qualification.
Then, when a case is in the qualification stage, a phonecall is initiated with the
purpose of scheduling a meeting with the potential customer’s representatives.
If a meeting is scheduled, the opportunity enters the presentation stage. The
goal of a sales person is to get the contract signed during the presentation. If she
succeeds, the opportunity is marked as won and the case terminates. If the offer
made during the meeting was acceptable, but the signing of the contract is post-
poned, the opportunity enters the contract stage. If the offer was not accepted
during the meeting, an offer is sent via e-mail, and the opportunity moves to the
offer stage. Any time during the process additional phonecalls can be made and
follow-up meetings scheduled. When it becomes clear that the company is not
interested in collaboration, the opportunity is marked as lost.

The number of potential customers is very high and it is not feasible for the
sales people to deeply explore all of the possible leads. Thus, the process would
benefit from a support system that estimates if an opportunity will likely end
with a signed contract (opportunity won) or not (opportunity lost). If an oppor-
tunity is likely to be lost, the sales person can close it at an early stage (or assign
it a lower priority), becoming able to focus on other leads with higher potential.
Given this motivation, in the following experiments we aim at predicting, as
early as possible, if an opportunity will be lost.

Table 1. Evaluation datasets

Data # Normal cases # Deviant cases Avg. # words/doc # Lemmas

DR 13608 417 11 11822

LtC 385 390 8 2588

410 I. Teinemaa et al.

In the debt recovery dataset, events are not explicitly logged. Instead, this
information is captured in the collector’s notes, which are written down in
unstructured textual format. The collector’s notes constitute a dynamic feature,
which may describe the activity taken by the collection specialist, as well as the
answer of the debtor and the assessment of the specialist. In the second dataset,
the phonecall summaries are written down in unstructured format. The text in
both datasets is written in Estonian language. Statistics about both datasets are
given in Table 1.

Based on the structured data available, we identify 8 static and 69 dynamic
features in the debt recovery dataset, and 3 static and 65 dynamic features in
the lead-to-contract dataset. The static features are general statistics about the
company, for instance, the size of equity, the net profit, and field of activity. The
dynamic features in the first dataset are mostly related to the debt, e.g., the
number of days past due, the expected repayment amount until the next 7 days,
and the sum of other debts of the debtor. In the second dataset, the dynamic
features include activity name, resource, and expected revenue. For both datasets,
we use dynamic features that reflect the company’s (either the debtor’s or the
potential customer’s) risk score, calculated at 6 different months prior to the
given event. Moreover, as the first dataset contains a considerable amount of
missing values, additional 16 (static) features are added that express whether
the value of a particular feature is present or missing. In the given datasets, we
decide to use unstructured data as static information, i.e., to encode only the
last available text, given a specific prefix length.

4.2 Research Questions and Evaluation Measures

In our evaluation, we address the following three research questions:

RQ1 Do the features derived from textual data (using different methods)
increase the prediction accuracy of index-based sequence encoding?

RQ2 Do the features derived from textual data (using different methods)
increase the prediction earliness of index-based sequence encoding?

RQ3 Is the proposed predictive monitoring framework efficient?

For evaluating prediction accuracy (RQ1) of our framework, we use precision,
recall, and F-score, as suggested in [16]. We do not use accuracy, as it can lead to
misleading results in case of imbalanced data [18]. Also, we do not report about
specificity, as our main goal is to predict the positive class as accurately as pos-
sible. All metrics are based on the possible combinations of actual and predicted
outcomes. True positives (TP) are positive cases, which are correctly predicted as
positive. True negatives (TN) are negative cases, which are correctly predicted as
negative. False positives (FP) are negative cases, which are incorrectly predicted
as positives. False negatives (FN) are positive cases, which are incorrectly pre-
dicted as negatives. Given these notions, precision is defined as TP/(TP +FP),
recall as TP/(TP +FN), and F-score as 2·precision·recall/(precision+recall).

To answer RQ2, we measure the earliness of predictions [6]. Earliness is
calculated for cases that are predicted as positive, as the ratio of length of the

Predictive Monitoring with Structured and Unstructured Data 411

case when the final prediction was made/total length of the case. For instance, if
the case was predicted as positive after 2 events, while the actual total length of
the case was 8 events, earliness = 0.25. Low earliness values are better, as the
aim of predictive monitoring is to provide predictions as early as possible.

Finally, the computation time is measured in order to estimate the efficiency
of the framework (RQ3). For evaluating the offline component of the framework,
we differentiate between the time for data processing (text model construction,
textual feature extraction, and sequence encoding) and classifier training. Times
are summed up over all prefix lengths, in order to evaluate the total time that
is needed to set up the framework. For evaluating the online component, we
combine the time for encoding the running case as a feature vector and the time
for prediction. Times are averaged over the total number of processed events.

4.3 Evaluation Procedure

We split each dataset randomly in two parts, so that 4/5 of it is used for training
the offline component, while the remaining 1/5 is used for testing the online com-
ponent. For tuning the parameters of the text modeling methods, we perform a
grid-search over all combinations of selected parameter values using 5-fold cross-
validation on the training set. In the DC dataset, where only 3 % of cases are
deviant, we use oversampling on the training data in order to alleviate the imbal-
ance problem. The final Paragraph Vector models are trained for 10 epochs. The
optimal parameters are chosen based on F-score, for each combination of text
modeling method, classification method, and confidence threshold. The com-
putation times are calculated as the average of 10 equivalent executions with
minConf = 0.6. The probability estimates returned by the classifier are used as
confidence values.

The optimal parameters found when using random forest and logistic regres-
sion are different. However, in the following, we discuss the values obtained using
random forest only, since random forest performs better than logistic regression
in all cases. We optimize the parameters described in Sect. 3 and use the default
values for all the parameters not mentioned.

For the method based on the basic BoNG model, we explore 43 parameter
settings (varying maximum n-gram size, idf , and number of selected features).
In most cases, tf-idf weights perform slightly better than simple tf. Moreover,
bigrams and trigrams gain similar performance, while both are better than uni-
grams. The best number of selected features stays between 100 and 1000. In the
DR dataset, only 100 features are often sufficient to gain a good accuracy, while
more features are needed in the LtC dataset (usually 750 or 1000).

For the method based on the BoNG model with NB log count ratios, we try
84 combinations of parameters (varying α, maximum n-gram size and number
of selected features). Changing the α value has almost no effect on the results,
usually a small value (either 0.01 or 0.1) is chosen. The best number of selected
features tends to be higher than in the BoNG case, usually between 250 and
1000 features in the DR dataset and between 1000 and 5000 in the LtC dataset.
In most cases, trigrams outperform bi- and unigrams.

412 I. Teinemaa et al.

In case of LDA (we vary the number of topics and idf), we try 6 different
numbers of topics (12 combinations in total). In general, the larger the confi-
dence, the higher the number of topics that achieves the best results. In the DR
dataset, idf normalization does not improve the outcome, while changing the
parameters has very little effect on the results in the LtC dataset.

For PV, we explore 91 combinations, varying the size of the feature vector and
the window size. The best results are obtained with a small 10- or 25-dimensional
vector. The optimal window size varies a lot across the experiments, but stays
between 5 and 9, in general.

Experiments were run in Python 3.5 using scikit-learn (BoNG and classifiers),
gensim (LDA and PV) and estnltk (lemmatization) libraries on a single core of
a 64-bit 2.3 GHz AMD Opteron Processor 6376 with 378 GB of RAM.

4.4 Results

The F-scores of the random forest classifiers are shown in Fig. 3a (debt recovery
dataset) and c (lead-to-contract dataset). We observe that in both datasets, the
methods that utilize unstructured data almost always outperform the baseline.
In the DR dataset, BoNG and NB achieve considerably better results than the
other methods, while in the LtC dataset, the best results are produced by LDA.
Although the proportion of unstructured vs. structured data in the LtC dataset
is much smaller than in the DR dataset, the improvement of the results is still
substantial. The highest F-score in the DR dataset (0.791) is achieved by NB with
minConf = 0.55, while LDA achieves F-score of 0.753 with minConf = 0.65 in
the LtC dataset.

Figure 3b and d show the prediction earliness achieved with random forest.
The model with the best F-score in the DR dataset tends to make predictions
when 59 % of a case has finished, while the best model in the LtC dataset is
predicted after 40 % of a case has been seen.

In order to further explore the importance of unstructured data in making
predictions, we performed additional experiments using unstructured data only.
In the DR dataset, the NB model achieves F-score of 0.66 (instead of 0.791 as
in Fig. 3a), while in the LtC dataset, the LDA model reaches F-score of 0.70
(instead of 0.75 as in Fig. 3c). In both datasets, the model trained with only
structured data (the baseline) outperforms all unstructured data models in terms
of precision, while falls behind in terms of recall. Thus, unstructured features
have some predictive power on their own, but in order to get the most out of
the data, they should be combined with structured data. In addition, we observe
that using the best model (NB, conf = 0.55) of the DR dataset, 3 out of the
top 5 features ranked according to Gini impurity are derived from textual data.
On the other hand, in the LtC dataset (LDA, conf = 0.65), the first 9 features
according to importance are structured features. This implies that in best model
of the LtC dataset, textual features are less relevant than structured features.

Table 2 reports the computation time required by the offline component for
data processing and for classification, as well as the computation time required
by the online component for providing a prediction with a minimum confidence

Predictive Monitoring with Structured and Unstructured Data 413

(a) F-score in DR dataset (b) Earliness in DR dataset

(c) F-score in LtC dataset (d) Earliness in LtC dataset

Fig. 3. Predictive monitoring results with random forest

of 0.6. The most expensive technique, in terms of computation time for setting
up the offline component, is LDA, which requires more than 4 min for data
processing in the DR dataset and 28 s in the LtC dataset (Table 2). The difference
between the time required by the two datasets is likely due to their different size.
In case of PV, the processing time of the offline component depends highly on the
number of epochs used for training the paragraph vectors. In our experiments,
we used 10 epochs, which results in relatively high processing time. BoNG is the
most efficient method, taking only little over a second in the smaller dataset and
over 5 s in the larger one. On the other hand, the current implementation of NB
does not scale well as the size of the data increases.

Classifier training times remain between 24 and 83 s, depending on the
dataset size and number of features. In the online component, all the meth-
ods are extremely fast in processing a running case (in the order of milliseconds
per event). The slowest is LDA which takes 7 ms on average in the DR dataset.

Depending on the application, some additional time may be needed to pre-
pare the data into a suitable format. Preprocessing the entire dataset took
2.3 min in case of DR and 14 s in case of LtC. The most time-consuming proce-
dure was lemmatization that took 1.5 min in DR (12 s in LtC).

414 I. Teinemaa et al.

Table 2. Computation times, minConf = 0.6

total proc offline (s) total cls offline (s) avg online (ms)

Data Base BoNG NB LDA PV Base BoNG NB LDA PV Base BoNG NB LDA PV

DR 0.5 5.1 54.0 262 212 41.3 50.0 53.9 83.6 61.3 0.1 0.4 2.9 7.0 2.0

LtC 0.5 1.4 1.7 28.0 14.7 28.1 29.9 35.2 24.5 27.3 0.3 0.4 0.5 0.7 0.5

We also ran the same experiments with logistic regression instead of random
forest. We omit these results since logistic regression performed worse in all cases.
A possible explanation is that the dataset contains both sparse (textual features
in case of BoNG and NB) and dense features (structured data payload), and the
dense features carry substantial predictive power. Logistic regression is generally
more suitable for sparse data.

4.5 Discussion

According to our results, BoNG performs well on both datasets over all confi-
dence thresholds. This indicates that there exists a set of n-grams that carry
enough information to classify cases. NB is able to outperform BoNG in a few
cases, but the implementation is not as scalable.

In the LtC dataset, the best results are produced by LDA. The reason for
this might be that LDA combines the information captured in textual data into
topics, instead of using specific words. Thus, it is able to perform well even in
the case of few available textual data, which is the case in the LtC dataset.
Also, supported by previous studies where topic modeling methods have shown
to perform well on short texts, such as tweets [10], LDA is less affected by the
fact that individual notes in the LtC data set contain only 8 words on average.

A possible reason for PV performing worse than the other methods is that
PV computes the feature vector for an unseen document via inference. Therefore,
in order to produce reliable results, it requires a fairly large document collection
for training. Moreover, the benefits of PV become more evident in heterogenous
datasets, where a variety of words is used to express similar concepts.

One limitation of our evaluation is its low generalizability. While the eval-
uation datasets come from two real-life processes with different deviant case
ratios (balanced vs. imbalanced), the textual notes in both datasets are written
by members of a small team of debt recovery specialists and salespeople respec-
tively. The observations might be different if these notes were written by a larger
team or if they included emails sent by customers (higher heterogeneity). Also,
the results may be affected by the amount of textual data available. Another
limitation is the reduced set of classification algorithms employed (random for-
est and logistic regression). While these algorithms are representative and widely
used in text mining, other classifiers might be equally or more suitable.

Predictive Monitoring with Structured and Unstructured Data 415

5 Related Work

Predictive monitoring is relevant in a range of domains where actors are inter-
ested in understanding the future performance of a system in order to take
preventive measures. Predictive monitoring applications can be found in a wide
range of settings, including for example industrial processes [11] and medical
diagnosis [4]. One recurrent task addressed in this field is that of failure predic-
tion [18] – i.e., detecting that a given type of failure will occur in the near-term.

While the predictive monitoring problems addressed in the above fields share
common traits with the problem addressed in this paper, business process event
logs have a specific characteristics that call for specialized predictive monitoring
methods, chiefly: (i) business process event logs are structured into cases and
each case can have a different outcome; hence, the problem is that of monitoring
multiple concurrent streams of events rather than one; (ii) every event in a case
refers to a given activity or external stimulus; (iii) every event has a payload;
(iv) the payload may contain both structured data and text, and the structured
part of the data includes both discrete and numerical attributes. In contrast,
in other application domains [4,11,18], events in a given stream are generally
of homogeneous types and carry numerical attributes (e.g., measurements taken
by a device), this requiring a different type of techniques compared to predictive
business process monitoring.

A range of methods have been proposed in the literature to deal with this
specific combination of characteristics. These methods differ in terms of the
object of prediction, the type of data employed, and the approach used for feature
encoding. With respect to the former, some approaches focus on predicting time
or other performance measures. For example, [17] uses stochastic Petri nets to
predict the remaining execution time of a case, while [16] addresses the problem
of predicting process performance violations in general and deadline violations in
particular. Other approaches focus on predicting the outcome of a process, such
as predicting failures or other types of negative outcomes (a.k.a. deviance). For
example, [5] presents a technique to predict risks, while [15] focuses on predicting
binary outcomes (normal vs. deviant cases).

Predictive process monitoring approaches also differ depending on the type
of data they use. Some approaches only use control-flow data [16,17], others use
control-flow and structured data [5,8,13,15]. When building predictive process
monitoring models that take into account both control-flow and data payloads,
a key issue is how to encode a given trace in the log (or a prefix thereof) as
a feature vector. In this respect, a comparison feature encoding approaches is
given in [13], which empirically shows that an index-based encoding approach
provides higher performance.

None of the above studies have taken into account textual data. Yet, textual
data is generated in a range of customer-facing processes and as shown in this
paper, can enhance the performance of predictive process monitoring models.

416 I. Teinemaa et al.

6 Conclusion

We outlined a framework for predictive process monitoring that combines
text mining methods to extract features from textual documents, with (early)
sequence classification techniques designed for structured data. We studied dif-
ferent combinations of text mining and classification techniques and evaluated
them on two datasets pertaining to a debt recovery process and a sales process.

In the reported evaluation, BoNG and NB, in combination with random for-
est, outperform other techniques when the amount of textual data is sufficiently
large. In the presence of a smaller document collection, LDA exhibits better
performance. An avenue for future work is to further validate these observations
on other datasets exhibiting different characteristics, for example, datasets con-
taining longer or more heterogeneous documents. Another future work avenue is
to produce interpretable explanations of the predictions made, so that process
workers and analysts can understand the reasons why a given case is likely to
end up with a given outcome. Last but not least, we are planning to integrate
our tool in the operational support of the process mining tool ProM to provide
predictions starting from an online stream of events.

Acknowledgments. This research is funded by the EU FP7 Programme (project
SO-PC-Pro) and by the Estonian Research Council and by ERDF via the Software
Technology and Applications Competence Centre (STACC).

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
3. Castellanos, M., Casati, F., Dayal, U., Shan, M.: A comprehensive and auto-

mated approach to intelligent business processes execution analysis. Distrib. Par-
allel Databases 16(3), 239–273 (2004)

4. Clifton, L.A., Clifton, D.A., Pimentel, M.A.F., Watkinson, P., Tarassenko, L.: Pre-
dictive monitoring of mobile patients by combining clinical observations with data
from wearable sensors. IEEE J. Biomed. Health Inf. 18(3), 722–730 (2014)

5. Conforti, R., de Leoni, M., Rosa, M.L., van der Aalst, W.M.P., ter Hofstede,
A.H.M.: A recommendation system for predicting risks across multiple business
process instances. Decis. Support Syst. 69, 1–19 (2015)

6. Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-Based
Predictive Process Monitoring. arXiv preprint (2015)

7. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013)

8. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for pre-
dicting business process performances. In: Meersman, R., Panetto, H., Dillon, T.,
Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi,
S., Cruz, I.F. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 287–304. Springer,
Heidelberg (2012)

9. Freedman, D.: Statistical Models: Theory and Practice. Cambridge University
Press, Cambridge (2005)

Predictive Monitoring with Structured and Unstructured Data 417

10. Hong, L., Davison, B.D.: Empirical study of topic modeling in Twitter. In: Pro-
ceedings of the First Workshop on Social Media Analytics, pp. 80–88. ACM (2010)

11. Juriceka, B.C., Seborga, D.E., Larimore, W.E.: Predictive monitoring for abnormal
situation management. J. Process Control 11(2), 111–128 (2001)

12. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents.
arXiv preprint arXiv:1405.4053 (2014)

13. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.:
Complex symbolic sequence encodings for predictive monitoring of business
processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015.
LNCS, vol. 9253, pp. 297–313. Springer, Switzerland (2015)

14. Lessmann, S., Baesens, B., Seow, H.V., Thomas, L.C.: Benchmarking state-of-the-
art classification algorithms for credit scoring: an update of research. Eur. J. Oper.
Res. 247(1), 124–136 (2015)

15. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive moni-
toring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C.,
Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484,
pp. 457–472. Springer, Heidelberg (2014)

16. Metzger, A., Leitner, P., Ivanovic, D., Schmieders, E., Franklin, R., Carro, M.,
Dustdar, S., Pohl, K.: Comparing and combining predictive business process mon-
itoring techniques. IEEE Trans. SMC 45(2), 276–290 (2015)

17. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using
stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang,
L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg
(2013)

18. Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods.
ACM Comput. Surv. (CSUR) 42(3), 10 (2010)

19. Wang, S., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic
classification. In: Annual Meeting of the Association for Computational Linguistics,
pp. 90–94 (2012)

http://arxiv.org/abs/1405.4053

P3-Folder: Optimal Model Simplification
for Improving Accuracy in Process Performance

Prediction

Arik Senderovich1, Alexander Shleyfman1, Matthias Weidlich2(B),
Avigdor Gal1, and Avishai Mandelbaum1

1 Technion–Israel Institute of Technology, Haifa, Israel
{sariks,alesh}@tx.technion.ac.il,
{avigal,avim}@ie.technion.ac.il

2 Humboldt-Universität zu Berlin, Berlin, Germany
matthias.weidlich@hu-berlin.de

Abstract. Operational process models such as generalised stochastic
Petri nets (GSPNs) are useful when answering performance queries on
business processes (e.g. ‘how long will it take for a case to finish?’).
Recently, methods for process mining have been developed to discover
and enrich operational models based on a log of recorded executions
of processes, which enables evidence-based process analysis. To avoid a
bias due to infrequent execution paths, discovery algorithms strive for a
balance between over-fitting and under-fitting regarding the originating
log. However, state-of-the-art discovery algorithms address this balance
solely for the control-flow dimension, neglecting possible over-fitting in
terms of performance annotations. In this work, we thus offer a technique
for performance-driven model reduction of GSPNs, using structural sim-
plification rules. Each rule induces an error in performance estimates
with respect to the original model. However, we show that this error is
bounded and that the reduction in model parameters incurred by the
simplification rules increases the accuracy of process performance pre-
diction. We further show how to find an optimal sequence of applying
simplification rules to obtain a minimal model under a given error bud-
get for the performance estimates. We evaluate the approach with a real-
world case in the healthcare domain, showing that model simplification
indeed yields significant improvements in time prediction accuracy.

1 Introduction

Performance analysis is an important pillar of business process management ini-
tiatives in diverse domains, reaching from telecommunication, through health-
care, to finance. Taking healthcare as an example, it involves the ability to answer
questions such as ‘how long will it take for a patient to get treatment?’, and
‘how many nurses do we need to staff to accommodate the incoming demand?’.
Answers to these questions are key in running an organization successfully and
deliver value to its clients [1].
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 418–436, 2016.
DOI: 10.1007/978-3-319-45348-4 24

P3-Folder: Optimal Model Simplification for Improving Accuracy 419

Operational process models such as generalised stochastic Petri nets and
queueing networks are useful in answering the aforementioned performance ques-
tions [2,3]. In particular, these models enable testing of re-design and improve-
ment initiatives with respect to the as-is model. For instance, by changing staffing
levels and altering the control-flow, the impact of operational changes on the per-
formance characteristics of the process can be explored.

Process mining enables automatic discovery and enrichment of operational
process models from logs, which record process executions [4]. Data-driven
model discovery improves beyond the manual model elicitation in its ability
to reflect the process as it is actually executed. However, automatically discov-
ered models tend to incorporate infrequent process executions, which may result
in over-fitting with respect to the originating log. Recently proposed discovery
algorithms attempt to balance between over-fitting and under-fitting in the
control-flow dimension [5–7,35]. Yet, the question of how to avoid over-fitting in
terms of performance annotations of operational models has not been addressed
in the literature.

This work approaches the problem of over-fitting of operational process mod-
els with P3 − Folder, a method for automated simplification of generalised sto-
chastic Petri nets (GSPNs) for process performance prediction. Starting with an
over-fitting GSPN discovered from a log, the idea behind P3 −Folder is that sim-
plification reduces the number of model parameters. This, in turn, increases the
accuracy of performance estimates, even though simplification generalises the
model by introducing an estimation error regarding the original model. More
specifically, our contribution is twofold. As a first step, P3 − Folder defines a
set of structural simplification rules for GSPNs, referred to as foldings. Unlike
existing proposals for model simplification [8], these rules are local (affecting
only a subnet of the GSPN), come with formal bounds regarding the introduced
estimation error, and their applicability is identified automatically by structural
decomposition of the GSPN. Second, P3−Folder formulates model simplification
as an optimization problem that aims at attaining a minimal model for a given
budget for the introduced estimation error. This problem is cast as an Integer
Linear Programming (ILP) problem, which enables efficient computation of the
optimal sequence of folding operations.

We evaluate P3 − Folder with a case in the healthcare domain. Our exper-
iments show that simplification of a GSPN discovered from a real-world log
yields a significant improvement in time prediction accuracy compared to the
original GSPN.

The remainder of the paper is structured as follows. The next section dis-
cusses the methods and challenges in performance-oriented process mining.
Section 3 recalls the GSPN formalism. Foldings of GSPNs are introduced in
Sect. 4. The model simplification problem and its encoding as an ILP program is
proposed in Sect. 5. Evaluation results are presented in Sect. 6. Section 7 reviews
related work, before Sect. 8 concludes the paper.

420 A. Senderovich et al.

2 Background: Performance-Oriented Process Mining

Process Mining for Operational Analysis. We consider a setting in which
a log L of recorded process executions is given and analysis questions regarding
the performance of process execution shall be answered. Specifically, let Y be a
performance measure, e.g., the total runtime of a process instance. Further, let
q(Y) be a performance query over Y , e.g., the expected value of Y , which we
aim at answering based on L. In general, we distinguish two types of process
mining techniques to quantify q(Y).

First, machine learning (ML) techniques may be exploited. That is, process
executions (including their data) are encoded as a feature vector X. Common
ML methods such as regression or decision trees are used to construct an esti-
mator q̂(Y) conditioned on X. Examples for such methods are found in [9–11].
While such an approach is often accurate in predicting q(Y), it has two major
drawbacks. Given a performance measure Z that is not directly observable in the
log, one needs to quantify q(Z), since ML methods require labelled observations
of q(Z) in the training phase. For instance, Z may be the waiting time for a
specific resource. If it is not recorded in the log, q(Z) must be estimated. This
estimation procedure may introduce an error, which will reduce the accuracy
of the learning technique. In addition, exploring to-be processes and sensitivity
analysis of current process parameters is impossible due to lack of data that
describes the effect of X on Y under the new terms.

A second angle to answer performance question is to use operational process
models. Given the log L, operational models such as GSPNs can automatically
be discovered and enriched with performance information [12,13]. To quantify
q(Y), a corresponding query qM (Y) is evaluated over the model, e.g., with the
help of simulation [13] or queueing theory approximations [3,8]. A model-based
approach overcomes the aforementioned limitations. It supports queries for mea-
sures that were not directly recorded in the log and enables to-be performance
analyses and sensitivity analysis (e.g., by changing the control-flow and altering
activity durations).

However, a model-based approach also suffers from a major drawback, namely
over-fitting of the estimated q(Y) with respect to L [8]. ML-based methods
balance over-fitting of q̂ to L by means of regularization methods (e.g., pruning
the regression tree [10]). A model-based approach for regularizing, in turn, does
not exist.

We illustrate this problem with two models that were discovered from a
real-world case in the healthcare domain (see our evaluation results for details).
Figure 1 depicts the two process models discovered using the Inductive Miner [14]
with different noise thresholds: 0% for model (a) and 20% for model (b). We
observe that noise filtering balances over- and under-fitting of the control-flow
regarding the log, yielding a more sequential model when filtering more noise
events. However, the trade-off between over- and under-fitting is not addressed
for the performance perspective. Enriching both models with performance infor-
mation based on [12] and testing them against a month of operational data not

P3-Folder: Optimal Model Simplification for Improving Accuracy 421

(a) 0% noise filter. (b) 20% noise filter.

Fig. 1. Automatically discovered model of a hospital process.

used in model construction shows that model (b) is only slightly more accurate
than model (a). As we later demonstrate experimentally, a principled approach
based on model simplification, in turn, alleviates over-fitting in the performance
dimension, thereby significantly improving prediction accuracy.
Resolving Performance Overfitting by Model Simplification. The idea
followed in this work is to avoid over-fitting in the performance dimension by
model simplification. We balance model size (number of model parameters) and
proximity of the performance estimates of the simplified model to those of the
original model (and thus the log).

To explain this idea in more detail, we adopt a statistical perspective on
discovery and enrichment of operational process models. We assume that the
performance measure Y is governed by a (parametric and stochastic) process
model M , i.e., Y ∼ M . Then, an estimation of q(Y) translates into an estimation
of q(M). Hence, it is sufficient to estimate the model M to obtain q(Y).

Common process discovery and enrichment techniques yield an initial model
M0 of the model parameters. Then, our P3 − Folder method applies a sequence
of simplification rules to M0, each introducing an estimation error with respect
to q(Y). What prevents the model from collapsing into a single node is an error
budget B. P3 − Folder generates a model M∗ as the most simple one in terms
of size that is still with the specified error bound from M0 with respect to q(Y).
Tuning the error budget B for a specific measure Y is performed via a cross-
validation procedure on L. The resulting model M∗ ‘enjoys’ the benefits of a
model-based performance analysis, while being more general compared to M0. As
such, P3−Folder can be viewed as a regularization of process models, transferring
the analogy of machine learning into the world of model-based performance
analysis.

422 A. Senderovich et al.

3 Performance Analysis with Generalised Stochastic
Petri Nets

GSPN Syntax and Semantics. Generalised Stochastic Petri Nets
(GSPNs) [15] are a class of Petri nets that incorporate stochastic information
on time behaviour: transitions are either immediate, representing atomic logi-
cal actions, or timed, representing units of work. Below, we recall a notion of
GSPNs that includes weights of immediate transitions, and resource capacities
and expected durations of timed transitions.

Definition 1 (GSPN). A GSPN is a tuple G = 〈P, T, F, γ, δ, ω〉 where:

• P is the set of places,
• T = Ti ∪Tt is the set of transitions consisting of immediate transitions Ti and

timed transitions Tt, respectively,
• F ⊆ (P × T) ∪ (T × P) is the flow relation,
• γ : Tt → R

+
0 assigns capacities to timed transitions (work units per time unit).

• δ : Tt → R
+
0 assigns expected durations to timed transitions.

• ω : Ti → [0, 1] assigns weights to immediate transitions.

We refer to the tuple 〈P, T, F 〉 as the structure of the GSPN, and to 〈γ, δ, ω〉
as its functional component. The set X = P ∪ T denotes all nodes and the size
of a GSPN is defined as |X|. For a node x, •x = {y ∈ X | (y, x) ∈ F} and
x• = {y ∈ X | (x, y) ∈ F} denote its preset and postset, respectively. Further,
F ∗ is the transitive closure of F .

Semantics of a GSPN are defined as a ‘token game’: A marking M : P → N0

assigns to each place a number of tokens, thereby representing a GSPN state.
A transition t ∈ T is enabled in M , if all places in its preset are marked, i.e.,
∀ p ∈ •t : M(p) > 0.

An immediate transition that is enabled, can fire. Firing of a timed transition
t depends on its capacity and expected duration: Once it is enabled, a single
exponential clock with rate λ(t) = γ(t)

δ(t) is started and the transition can fire
when the clock is elapsed. That is, we assume a single-server semantics: there is
one exponential clock per enabling.

Firing a transition t in a marking M yields a marking M ′, such that
M ′(p) = M(p) − 1 for all p ∈ •t \ t•; M ′(p) = M(p) + 1 for all p ∈ t • \ • t;
and M ′(p) = M(p) otherwise. Although tokens are indistinguishable, for perfor-
mance analysis, we shall assume that the tokens that enable a timed transition
are selected on a First-Come First-Served (FCFS) policy. Since first-order per-
formance measures (e.g., average waiting times and average number of tokens in
a place) are indifferent to the selection policy [15], the assumed FCFS policy is
indeed plausible.

Semantics of a GSPN further depend on types of transitions and their
assigned rates (capacity over expected duration) and weights as follows.
Let t1, ..., tk ∈ T be transitions that are enabled in a marking M , i.e., they
compete for firing. If transitions t1, ..., tk are either all immediate or all timed,

P3-Folder: Optimal Model Simplification for Improving Accuracy 423

the assigned rates or weights determine the likelihood of each of the transitions
being fired. This likelihood is defined for transition tj , 1 ≤ j ≤ k, as λ(tj)∑k

i=1 λ(ti)

(only timed transitions) or ω(tj)∑k
i=1 ω(ti)

(only immediate transitions), respectively.
If some transitions are immediate and some are timed, the immediate transi-
tions have priority and the likelihood model is applied only to the immediate
transitions.
Process Performance Analysis. A business process is described by an open
GSPN, which is a GSPN G = 〈P, T, F, γ, δ, ω〉 that has a dedicated timed tran-
sition τ0 ∈ Tt, called arrival transition, which represents external arrivals into
the system [16]. Specifically, it holds that •τ0 = ∅ (and for all t ∈ Tt \ {τ0} it
holds •t �= ∅), γ(τ0) = 1, and δ(τ0) = 1

β0
, so that β0 represents the arrival rate

of the open GSPN. In the remainder, we assume all GSPNs to be open GSPNs.
The arrival transition τ0 is enabled in any marking and thus, also in the empty

marking M0 with M0(p) = 0 for all p ∈ P , which serves as the initial marking.
Then, the reachability graph of G is a graph comprising all reachable markings,
denoted R(M0), i.e., markings that can be obtained by firing of transitions of G,
starting in M0 (here, the empty marking). To perform steady-state analysis, it
was shown that the reachability graph of a GSPN is isomorphic (after reduction)
to a Continuous-Time Markov Chain (CTMC) [15]. The transition rates between
the CTMC states correspond to the rates λ(t) = γ(t)

δ(t) assigned to the respective
timed transitions in the GSPN. Exploiting this transformation, performance
analysis of a GSPN is based on techniques of CTMC analysis: global balance
equations of the CTMC are solved or, to alleviate the complexity of solving
these equations, queueing theory approximations can be used. In this work, we
use such an approximation technique presented in [17].

4 Foldings of GSPN

P3 − Folder employs folding operations (aka foldings) to simplify GSPNs. We
first elaborate on the general notion of foldings, before providing a detailed
discussion of an exemplary folding. Finally, we show how to identify applicable
foldings based on structural decomposition of a GSPN.

4.1 The Notion of a Folding

A folding operation is a contraction of a GSPN, which yields a GSPN that is
equal or smaller in size. Yet, not all contractions are reasonable when aiming
at improved accuracy of performance prediction. It is important that foldings
preserve stability to ensure that the resulting model has a finite expected waiting
time value. In GSPN terminology, a timed transition t ∈ Tt of a GSPN G =
〈P, T, F, γ, δ, ω〉 is stable, if the marking Mh(p) = 0 ,∀ p ∈ •t is a home marking
for M0 in G, i.e., ∀ M ′ ∈ R(M0) : Mh ∈ R(M ′). We call G stable, if all its timed
transitions Tt are stable.

424 A. Senderovich et al.

Let G be the universe of GSPNs. Then, we define foldings as follows:

Definition 2 (Folding). A folding is a function ψ : G → G, such that for all
G ∈ G it holds that |ψ(G)| ≤ |G|. A folding ψ is called proper, if for all G ∈ G it
holds that G being stable implies that ψ(G) is stable.

The preservation of stability, termed properness, can be seen as a correctness
criterion for the definition of foldings. Aiming at a contraction of the original
GSPN, however, most foldings are actually abstractions that imply a certain
bias in any performance analysis done with the resulting model. To control the
application of foldings, therefore, we assign each folding a cost that bounds the
possible estimation error. Clearly, this cost is specific to a particular performance
measure and, thus, the type of performance analysis that shall be conducted with
the folded model. As a prominent example measure, we consider the sojourn time
of a GSPN: the total time it takes for the tokens produced by a single firing of
the arrival transition τ0 to reach a deadlocking marking (a marking in which no
transition is enabled).

Let G be a GSPN and G′ = ψ(G) for some folding ψ. Let S and S′ be random
variables for the sojourn times of G, and G′, respectively. The cost of applying
folding ψ to G is defined as the absolute deviation in expectation between the
sojourn times: c(G,ψ) = |ES′ − ES|. Note that, since firing delays are given
in the GSPN, the main challenge in evaluating sojourn times is obtaining good
estimates for waiting times.

In this work, we consider five foldings: (1) sequence-folding, (2) race-folding
(3) XOR-folding, (4) AND-folding, and (5) loop-folding. These foldings relate to
common behavioural structures in business process models [18]. Each of them
yields a simple GSPN comprising the arrival transition and a second timed tran-
sitions, as illustrated in Fig. 2. Note that the race-folding and XOR-folding relate
to different semantic concepts: the former folds a net that represents resources
working in parallel on jobs that arrive as tokens in the respective place. The
XOR-folding, in turn, relates to probabilistic selection of activities, i.e., a prob-
abilistic selection among different timed transitions.

All the five foldings are proper and their costs can be computed by exploiting
results from queueing theory. Due to space limitations, however, we limit the
discussion of properness and costs in this work to XOR-folding.

4.2 The XOR-folding

The XOR-folding, denoted by ψX , takes as input a GSPN G = 〈P, T, F, γ, δ, ω〉
of the structure visualised in Fig. 2(D): it comprises the τ0 transition (with rate
β0), a single place pi with •pi = {τ0} and a single place po with po• = ∅ that are
connected by sequential structures, each comprising two immediate transitions
and a timed transition.

Applying the folding yields a GSPN G′ = ψX(G) = 〈P ′, T ′, F ′, γ′, δ′, ω′〉,
where the structure 〈P ′, T ′, F ′〉 is a trivial net comprising the τ0 transition
(γ′(τ0) = γ(τ0) and δ′(τ0) = δ(τ0)), and two places that are connected via a
timed transition, t, see Fig. 2.

P3-Folder: Optimal Model Simplification for Improving Accuracy 425

Fig. 2. Overview of foldings.

The functional part of G′, that is 〈γ′, δ′, ω′〉, is constructed as follows. First,
weights (ω′) become irrelevant, since G′ does not contain immediate transitions.
The capacity (γ) and expected duration (δ) of the timed transition t of G′ are
set as:

• γ′(t) =
∑

tt∈Tt\{τ0} γ(tt), i.e., the new transition is allocated the total capac-
ity of the internal timed transitions in G;

• δ′(t) =
∑

tt∈Tt\{τ0},ti∈Ti,(ti,tt)∈F ∗ w(ti)δ(tt), i.e., the new transition is
assigned an expected duration that is the weighted average of the durations
of the timed transitions in G, where the weights stem from the respective
immediate transitions.

Theorem 1 ascertains the XOR-folding properness.

Theorem 1 If G is stable, then ψX(G) is stable.

Proof By [19], the stability condition for G is that for all tt ∈ Tt \ {τ0} it holds
that β0w(ti) < γ(tt)

δ(tt)
with ti ∈ Ti such that (ti, tt) ∈ F ∗. Hence, the sum of these

inequalities yields β0 <
∑

tt∈Tt\{τ0}
γ(tt)
δ(tt)

. Due to

n∑

i=1

ai

bi
<

∑n
i=1 ai∑n
i=1 bi

,

for ai, bi > 0, we arrive at

∑

tt∈Tt

γ(tt)
δ(tt)

<

∑
tt∈Tt\{τ0} γ(tt)∑

tt∈Tt\{τ0},ti∈Ti,(ti,tt)∈F ∗ w(ti)δ(tt)
,

which proves stability of G′. �

426 A. Senderovich et al.

To calculate the cost of the XOR-folding, we compute the expected sojourn
times, SX in G, and S′

X in G′ = ψX(G). Since arrivals into the systems (by firing
the arrival transition τ0) are Poisson arrivals, the arrival of timed transitions
tt ∈ Tt \ {τ0} in G are also Poisson (due to the ‘Poisson splitting’ property [26]).
The arrival rate for tt ∈ Tt \ {τ0} is given as w(ti)β0 with ti ∈ Ti such that
(ti, tt) ∈ F ∗. Note that for GSPNs showing concurrency, the ‘Poisson splitting’
property does not hold true and a refinement of the above approximation can
be made by using Eq. (24) in [17].

The firing delays for each of the timed transitions, tt ∈ Tt \{τ0} are assumed
to be independent of the arrival process, and have exponential durations. These
assumptions enable the use of the M/M/1 formula for each timed transition to
calculate the sojourn times [16]. We write the expected value of SX as:

ESX =
∑

tt∈Tt\{τ0},ti∈Ti,(ti,tt)∈F ∗
w(ti)EStt

X , (1)

Since it is known that

EStt
X =

1
λ(tt) − w(ti)β0

=
δ(tt)

γ(tt) − β0w(ti)δ(tt)
, (2)

for tt ∈ Tt \ {τ0}, ti ∈ Ti, (ti, tt) ∈ F ∗, see [16], the sojourn time is given by:

ESX =
∑

tt∈Tt\{τ0},ti∈Ti,(ti,tt)∈F ∗

w(ti)δ(tt)
γ(tt) − β0w(ti)δ(tt)

. (3)

We now turn to the calculation of the sojourn time S′
X for G′ = ψX(G):

ES′
X =

1
λ′(t) − β0

, (4)

with λ′(t) = γ′(t)
δ′(t) . In primitives of G, the expected sojourn time is given as:

ES′
X =

∑
tt∈Tt\{τ0},ti∈Ti,(ti,tt)∈F ∗ w(ti)δ(tt)∑

tt∈Tt\{τ0},ti∈Ti,(ti,tt)∈F ∗ γ(tt) − β0w(ti)δ(tt)
. (5)

The resulting cost for the XOR-folding is: c(G,ψ) = |ES′
X −ESX |, which is easy

to compute as it comprises only of primitives of G, the originating GSPN.

4.3 Finding Foldings by GSPN Decomposition

So far, we discussed the foldings shown in Fig. 2 as a transformation of a complete
GSPN of the according structure. However, P3 − Folder employs foldings also to
transform parts (aka subnets) of a GSPN, which may enable iterative application
of foldings. This holds in particular, as the foldings can be applied to any part of
a GSPN that has one of the structures shown in Fig. 2, when removing the arrival
transitions τ0. The reason is that the rate of token arrival into the structures, as
encoded by the arrival transitions, can be precomputed by solving the (linear)

P3-Folder: Optimal Model Simplification for Improving Accuracy 427

‘traffic equations’ [17,20], which tie the external arrival rate of the entire GSPN
to the internal arrival rates of places of the GSPN.

Observing that the structures in Fig. 2, once the arrival transitions have
been removed, correspond to common single-entry/single-exit (SESE) con-
trolflow structures, P3 − Folder employs structural decomposition of the GSPN
to identify applicable foldings. Specifically, the Refined Process Structure Tree
(RPST) [21,22] is used to parse a GSPN into a hierarchy of SESE fragments.
Then, the RPST is a containment hierarchy of canonical fragments of the graph,
which is unique and can be computed in linear time [22]. Fragments can be clas-
sified to one out of four structural classes: trivial fragments consists of a single
edge; polygons (P) that are sequences of fragments; bonds (B) that are collec-
tions of fragments that share entry and exit nodes; and rigids representing any
other structure.

To identify which of the foldings outlined in Fig. 2 can be applied to a given
GSPN, we rely on the RPST of the GSPN as follows:

Sequence-Folding: The folding can be applied to any polygon fragment that
has only trivial fragments as children and comprises at least two timed transi-
tions. Assuming that the GSPN has been normalised (immediate transitions
may occur only as the first child, as they are redundant at any other position
in a polygon), the folding applies to the maximal sequence of timed transi-
tions.
Race-Folding/XOR-Folding/AND-Folding: The foldings apply to place-
bordered (Race, XOR) or transition-bordered (AND) bond fragments that
contain only polygons of single timed transitions (Race, AND) or polygons of

Fig. 3. Example for the decomposition of a GSPN using the RPST.

428 A. Senderovich et al.

three children, a timed transitions that is preceded and succeeded by imme-
diate transitions (XOR).
Loop-Folding: The folding applies to place-bordered bonds that are cyclic
and part of a polygon. The bonds needs to be followed by an immediate
transition in the parent polygon and show the structure visualised in Fig. 2.
That is, the children of the bond are polygons of single transitions that are
either immediate (if flows in the child lead from the bond entry to the bond
exit) or timed (otherwise).

The above rules identify foldings iteratively: whenever an applicable folding
was found, the respective part of the GSPN is replaced by a timed transition
and the rules are checked again. This way, given a GSPN, P3 − Folder obtains
a set of folding instantiations F = {f1, . . . , fn}, each being defined by a folding
and the GSPN that is folded. Further, a precedence function ν : F → (℘(F)∪∅)
defines, given f ∈ F , the set of all folding instantiations that must be applied
before f , to generate the GSPN on which f is applied.

We illustrate this approach with a GSPN derived by annotating the model of
Fig. 1b. Figure 3a shows an excerpt of this model. The RPST of the highlighted
part is depicted in Fig. 3b. Here, loop-foldings can be applied to all the bond frag-
ments B3-B6, since they comprise polygons of single transitions of the required
types. Applying the loop-folding to bond B4 yields the net partially shown in
Fig. 3c. Once loop-foldings have been applied to bonds B3-B6, an XOR-folding
can be applied to bond B2, which now comprises polygons, each built of an
immediate transition followed by a timed transition.

5 Optimal Simplification of GSPN

Using the foldings proposed above, this section shows how P3 − Folder identifies
the cost-optimal sequence of foldings to simplify a given GSPN. To this end, we
define the problem of optimal folding simplification, show how it is encoded as
an Integer Linear Program, and elaborate on a method to select an appropriate
cost budget.
Optimal Folding Simplification. Let G be a GSPN, F be a set of folding
instantiations, and ν the respective precedence function. The cost of every folding
instantiation fi ∈ F is denoted ci, calculated as described in Sect. 4. Further,
P3 − Folder works with a real-valued budget, B ∈ R

+, which corresponds to the
cumulative error (sum of all costs) that is incurred by the foldings with respect
to some performance query q(Y), e.g., the total sojourn time. Last, the utility
of every folding instantiation fi ∈ F , denoted by ui, is defined as the difference
in the number of transitions before and after folding.

The Optimal Folding Simplification (OFS) problem involves finding a
sequence of folding instantiations of F that respects ν, such that the utility
is maximised (the GSPN size is minimised) and the total cost of these foldings
does not exceed B.

P3-Folder: Optimal Model Simplification for Improving Accuracy 429

ILP Encoding. OSF is a tree-knapsack problem, a generalised 0-1 knapsack
problem, that is known to be NP-complete. In this problem all items are sub-
jected to a partial ordering represented by a rooted tree [23]. In our case, this
partial ordering is induced by the precedence function defined over the folding
instantiations.

In what follows, we show a simple reduction from the tree-knapsack problem
to an Integer Linear Program (ILP). The ILP problem is well-studied and many
tools exist for its solution. We instantiate the ILP as follows. Let xi be a decision
variable that receives 1 if the folding instantiation fi is applied to G, and 0
otherwise. Then, the ILP representation of the OSF problem is:

maximize
xi

n∑

i=1

uixi

subject to:

n∑

i=1

cixi ≤ B ∧ ∀ i, j ∈ {1, . . . , n}, fj ∈ ν(fi) : xi ≥ xj .

Here, the score function ensures that total utility is maximized, while the con-
straints ensure that folding errors do not exceed budget B and that the prece-
dence ν is respected.
Budget Selection. The only input of the OSF problem that is not based on
the originating model, G, is the budget B. The budget can be interpreted as the
amount of trust in G: B should be small if trust is high, and vice versa.

When applying P3−Folder to a model G that was constructed based on some
event log L, the budget can be set in the spirit of model selection techniques
that are often used in machine-learning [24]. Specifically, one may elicit the ‘best’
budget for a given log via K-fold cross-validation [24, Ch. 7]: The event log is
partitioned into K parts, and the budget is determined based on random K−1

K
parts that are treated as training logs, and tested on the remaining part. All
budgets between 0 (no folding) and

∑n
i=1 ci (unlimited folding) are considered

and the budget that yields the most accurate answer to the performance query
q(Y) under a certain criteria (e.g., sampled root-mean squared error) is selected
for the OSF problem.

6 Evaluation

We evaluated P3 − Folder with a real-world case from the healthcare domain.
P3 − Folder 1 is implemented in the Python programming language, and uses
Gurobi [36], for solving the ILP. The input is a process model (GSPN), and an
event log; the method produces a folded GSPN model. Our results indicate that
our simplification technique helps to avoid over-fitting of GSPN. P3−Folder yields
up-to a 15% improvement in accuracy when predicting the total sojourn times,
with respect to a GSPN discovered from log data using state-of-the-art mining
algorithms.
1 https://github.com/ArikSenderovich/P3Folding/.

https://github.com/ArikSenderovich/P3Folding/

430 A. Senderovich et al.

6.1 Datasets and Setup

Our experiments were based on five months (April–August, 2014) of real-world
operational data stemming from the treatment process of a large outpatient
hospital in the United States. The hospital treats approximately 1000 patients
a day, with patients arriving and leaving on the same day. The average length-
of-stay per visit is 4.4 h (standard deviation of 2 h) with the highest number of
patients arriving between 8:00 and 11:00 in the morning. The dataset includes
the following attributes: case identifier, activity start time, activity end time,
and resource performing the activity.

We selected April as our training set for discovering a GSPN and enriching
it with data, as well as for the error budget selection (outlined in Sect. 5). The
other four months were used as separate test sets, to validate the results.

To discover an initial Petri net, we applied the Inductive Miner [14] on the
training set, with resources being treated as activities and a 20% noise thresh-
old (see Fig. 1b). We enriched the model based on the training set using the
techniques described in [12], thus turning it into the initial GSPN.

As the performance query q(Y), we selected the determination of total sojour
times. To estimate q(Y) for a given GSPN, we implemented a GSPN-to-queueing
networks transformation and used the queueing network analyzer [17].

We focused on three evaluation aspects: (1) We explored the impact of the
error budget on the accuracy of the resulting models. To this end, we varied
the budget between 0 (no folding) and

∑n
i=1 ci (unlimited folding). (2) We

studied the sensitivity of the approach to patient volumes, i.e., exploring the
improvement in prediction accuracy caused by foldings as a function of time-
of-day. We varied the time periods for which the original GSPN was obtained
and then selected the best budget with respect to the training set by cross-
validation (Sect. 5). (3) We considered the interplay of methods to over-fitting in
the control-flow dimension (i.e., noise filtering in the initial GSPN discovery) and
our approach. We altered the noise filtering threshold in the Inductive Miner,
and estimated the prediction accuracy of an unfolded model. We compared the
obtained results to those achieved with a folded model.

To quantify the accuracy of models, we used the sample root-mean squared
error (sRMSE), which is a standard statistical accuracy measure, defined as
follows. Let {Yk}K

k=1 be the sample of K total sojourn times as observed in the
log (training or test). Then, the sRMSE is defined as:

sRMSE =

√√√√ 1
K

K∑

i=1

[q̂(Y) − Yk]2.

As a baseline method, we used the historical average, which is an unbiased
estimator. For the total sojourn time query q(Y), it is the standard deviation
of the length of stay, 120 min for the entire five months. In sum, controlled
variables in our experiments were the budget, the time-of-day, and the noise
filtering threshold of the Inductive Miner, while the sRMSE is the response
variable.

P3-Folder: Optimal Model Simplification for Improving Accuracy 431

(a) All-day. (b) 9:00-10:00 in the morning.

Fig. 4. sRMSE in relation to the error budget used for folding.

6.2 Results

First, even though the tree-knapsack problem is known to be NP-complete [23],
modern ILP solvers enable efficient reasoning on the OFS problem. Specifically,
the run-time of P3 − Folder when considering the entire days of the training
data and all budget configurations, turned out to be 152 s. This run-time is in
the same range as the model discovery, which demonstrates feasibility of the
approach.

Next, we turn to the evaluation of the accuracy improvement achieved by
P3 − Folder . Figure 4 shows the sRMSE as a function of the error budget for
two time frames, namely all-day and 9:00–10:00 in the morning. Here, the solid
blue line corresponds to the training data (April) and the dashed red line to one
of the test datasets (May). We demonstrate a single test month, since for fixed
time-of-day intervals we did not observe a difference in sRMSE shape or value
for all four months used as test datasets. The two additional flat lines correspond
to the irreducible sRMSE (i-sRMSE) for the training and test sets, respectively.
The irreducible error represents a bound for the prediction as it is essentially
the noise, the variance of the total sojourn time in the data. Consequently,
one cannot improve the sRMSE beyond the i-sRMSE without adding additional
predictive features to the model (e.g. number of patients in the system or patient
attributes).

We observe that the shape of sRMSE as a function of budget differs for
the different time frames. For the all-day scenario, we observe that while low-
budget folding improves the sRMSE, high budget folding causes the accuracy
to deteriorate. On the other hand, for the busy period of 9:00–10:00, we notice
a monotone improvement in the sRMSE as the budget grows and more folding
is allowed (with 15% improvement for the maximal budget). Furthermore, for
the busy period, our method is able to approach the irreducible error. Lastly, we
see that the model trained on the April data has a higher accuracy for the May
data, which indicates that P3 − Folder does not suffer from over-fitting the log.

432 A. Senderovich et al.

(a) Absolute sRMSE. (b) Improvement over original model.

Fig. 5. sRMSE in relation to time-of-day.

Further, we select the error budget by cross-validation using the training
dataset and explore the sensitivity to patient volumes. Figure 5a depicts the
sRMSE as a function of the time-of-day. Figure 5b shows the absolute improve-
ment in sRMSE, i.e., the difference (in %) between the sRMSE of the original
and the folded model. The sRMSE changes over the day. Specifically, Fig. 5b
illustrates that our technique is most effective during the morning hours, where
the load is highest. This can be the result of our queueing approximation tech-
nique [17], as it has accuracy guarantees for heavy-traffic periods.

Finally, we explore the impact of noise filtering in the initial discovery (bal-
ancing over-fitting and under-fitting in control-flow) on our method. We alter
the noise threshold for the Inductive Miner between 15% and 40% and com-
pute the sRMSE of its unfolded prediction for the 9:00–10:00 interval, and
compare the result to the sRMSE of the model obtained by P3−Folder when fold-
ing the 20% noise model. Figure 6 illustrates that the sRMSE for the unfolded

Fig. 6. sRMSE in relation to noise filtering threshold in initial model discovery.

P3-Folder: Optimal Model Simplification for Improving Accuracy 433

model improves and deteriorates, while the sRMSE of the model obtained
by P3 − Folder (Best Model) remains constant. Hence, P3 − Folder finds the
optimal level of generalisation for answering the respective performance query.

7 Related Work

Previous work on business process simplification (synonymous to abstraction),
considers manual ad-hoc rules that simplify the model while preserving similarity
to the originating model [25]. Works on automated model simplification proposed
to aggregate and eliminate components according to user-defined rules [27].
These rules were concerned mainly with visualization, and preserving behav-
ioural relations between the various components. In [28], process abstraction is
consistent, automatic, and preserves behavioural similarities, while in [35] the
authors rely on Petri net unfolding into branching processes to balance behav-
ioural over-fitting and under-fitting of a discovered model. However, none of
these works considered performance preserving simplifications. Another related
approach is to filter the data, prior to applying automated discovery, therefore
creating simple models based on partial set of the data [14].

Existing performance-oriented model simplification techniques approximate
typical process patterns (e.g., sequence, choice) via queueing theory, and guaran-
teed certain notion of equivalence between the original model and the resulting
simplifications [29,30]. However, these techniques did not propose a method of
locating typical patterns, and thus were not automated. Moreover, these works
did not suggest how to order the simplifying operations, and some of the pro-
posed performance bounds are not well-grounded [30].

Manual simplification of GSPN models has been considered before. In [31],
GSPNs are simplified by using ad-hoc rules, not providing any error bounds.
A simplification technique that provides bounds for specific performance mea-
sures between the original model and the resulting simple model includes decom-
position and aggregation of the GSPN [32,33]. The first step (decomposition)
refers to partitioning the GSPN into subnets, such that the subnets are weakly
dependent. Every subnet can then be efficiently analysed without unfolding the
underlying CTMC [30,34]. The second step (aggregation) aggregates the subnet
according to performance-preserving rules.

Our approach takes up the ideas of model aggregation based on folding
steps [8]. However, the steps in [8] incorporate ad-hoc assumptions and violat-
ing them may yield an unbounded estimation error with respect to the original
model. In this work, we formulate an optimization problem aiming at a maxi-
mal number of folding instantiations, subject to guarantees regarding an error
budget. This enables us to balance performance fitness and generalization of the
resulting model in a principled manner.

8 Conclusion

In this work, we presented P3 − Folder as a novel technique for automated sim-
plification of models that aim at improving performance analysis of business

434 A. Senderovich et al.

processes. Specifically, we proposed foldings of GSPNs and showed how to find
an optimal sequence of applying them to obtain a minimal model under a given
error budget for the performance estimates. This results in a model that gener-
alises in the performance dimension, while preserving the process perspective of
the original model. The evaluation of our technique showed a significant increase
in the model’s predictive power, with respect to the unfolded model that was
discovered from a real-world event log. The proposed technique can be viewed
as regularization method for process models, in analogy to pruning and other
model selection methods in machine learning.

In future work, we aim at integrating behavioural fitness and performance
fitness. Specifically, optimal simplification can be modified to include both
the control-flow and time perspective. We further aim at testing the accuracy
improvements achieved by our technique on other queries, such as outcome pre-
diction and resource utilisation.

Acknowledgments. This work was partially supported by the German Research
Foundation (DFG), grant WE 4891/1-1.

References

1. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013)

2. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using
stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang,
L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg
(2013)

3. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining – predict-
ing delays in service processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland,
C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol.
8484, pp. 42–57. Springer, Heidelberg (2014)

4. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Heidelberg (2011)

5. van der Aalst, W.M.P., Rubin, V., Verbeek, H., van Dongen, B.F., Kindler, E.,
Günther, C.W.: Process mining: a two-step approach to balance between underfit-
ting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010)

6. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness,
precision, generalization and simplicity in process discovery. In: Meersman, R.,
Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha,
A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 305–
322. Springer, Heidelberg (2012)

7. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Avoiding over-fitting in
ILP-based process discovery. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M.
(eds.) BPM. LNCS, vol. 9253, pp. 163–171. Springer, Heidelberg (2015)

8. Senderovich, A., Rogge-Solti, A., Gal, A., Mendling, J., Mandelbaum, A., Kadish,
S., Bunnell, C.A.: Data-driven performance analysis of scheduled processes. In:
Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM. LNCS, vol. 9253,
pp. 35–52. Springer, Heidelberg (2015)

P3-Folder: Optimal Model Simplification for Improving Accuracy 435

9. van der Aalst, W.M.P., Schonenberg, M., Song, M.: Time prediction based on
process mining. Inf. Syst. 36(2), 450–475 (2011)

10. de Leoni, M., van der Aalst, W.M., Dees, M.: A general process mining framework
for correlating, predicting and clustering dynamic behavior based on event logs.
Inf. Syst. 56, 235–257 (2016)

11. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.:
Complex symbolic sequence encodings for predictive monitoring of business
processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM, vol.
9253, pp. 297–313. Springer, Heidelberg (2015)

12. Rogge-Solti, A., van der Aalst, W.M., Weske, M.: Discovering stochastic petri nets
with arbitrary delay distributions from event logs. In: Lohmann, N., Song, M.,
Wohed, P. (eds.) BPM 2013, vol. 171, pp. 15–27. Springer, Heidelberg (2013)

13. Rozinat, A., Mans, R., Song, M., van der Aalst, W.M.P.: Discovering simulation
models. Inf. Syst. 34(3), 305–327 (2009)

14. Leemans, S.J., Fahland, D., van der Aalst, W.M.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann,
N., Song, M., Wohed, P. (eds.) BPM Workshops, vol. 171, pp. 66–78. Springer,
Heidelberg (2014)

15. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling
with Generalized Stochastic Petri Nets. Wiley, Hoboken (1994)

16. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains - Modeling and Performance Evaluation with Computer Science Applica-
tions. Wiley, Hoboken (2006)

17. Whitt, W.: The queueing network analyzer. Bell Syst. Tech. J. 62(9), 2779–2815
(1983)

18. van der Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

19. Hall, R.W.: Queueing methods for services and manufacturing (1990)
20. Balsamo, S., Marin, A.: Composition of product-form generalized stochastic petri

nets: a modular approach. In: Proceedings of the ESM, pp. 26–28 (2009)
21. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data

Knowl. Eng. (DKE) 68(9), 793–818 (2009)
22. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and general-

ization of the refined process structure tree. In: Bravetti, M. (ed.) WS-FM 2010.
LNCS, vol. 6551, pp. 25–41. Springer, Heidelberg (2011)

23. Shaw, D.X., Cho, G.: The critical-item, upper bounds, and a branch-and-bound
algorithm for the tree knapsack problem. Networks 31(4), 205–216 (1998)

24. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., New York (2001)

25. Smirnov, S., Reijers, H.A., Weske, M., Nugteren, T.: Business process model
abstraction: a definition, catalog, and survey. Distrib. Parallel Databases 30(1),
63–99 (2012)

26. Resnick, S.I.: Adventures in Stochastic Processes. Springer Science & Business
Media, New York (2013)

27. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplifi-
cation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

28. Mafazi, S., Grossmann, G., Mayer, W., Schrefl, M., Stumptner, M.: Consistent
abstraction of business processes based on constraints. J. Data Semant. 4(1), 59–
78 (2014)

436 A. Senderovich et al.

29. Zerguini, L.: On the estimation of the response time of the business process. In:
17th UK Performance Engineering Workshop, University of Leeds. Citeseer (2001)

30. Zerguini, L., van Hee, K.M.: A new reduction method for the analysis of large
workflow models. In: Promise, pp. 188–201 (2002)

31. Balbo, G., Bruell, S.C., Ghanta, S.: Combining queueing networks and generalized
stochastic petri nets for the solution of complex models of system behavior. IEEE
Trans. Comput. 37(10), 1251–1268 (1988)

32. Ciardo, G., Trivedi, K.S.: A decomposition approach for stochastic petri net mod-
els. In: Petri Nets and Performance Models, pp. 74–83. IEEE (1991)

33. Woodside, C.M., Li, Y.: Performance petri net analysis of communications protocol
software by delay-equivalent aggregation. In: Petri Nets and Performance Models,
pp. 64–73. IEEE (1991)

34. Freiheit, J., Billington, J.: New developments in closed-form computation for GSPN
aggregation. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS, vol. 2885,
pp. 471–490. Springer, Heidelberg (2003)

35. Fahland, D., Van Der Aalst, W.M.P.: Simplifying discovered process models in a
controlled manner. Inf. Syst. 38(4), 585–605 (2013)

36. Gurobi Optimization Inc: Gurobi Optimizer Reference Manual (2015). http://
www.gurobi.com

http://www.gurobi.com
http://www.gurobi.com

Author Index

Almeida, João Paulo A. 20

Botezatu, Mirela 252

Calvanese, Diego 217
Carmona, J. 39
Carmona, Josep 197
Chatain, T. 39
Conforti, Raffaele 383
Cortadella, Jordi 108
Creemers, Mathijs 73

De Koninck, Pieter 57
de Leoni, Massimiliano 125
de San Pedro, Javier 108
De Weerdt, Jochen 57
Depaire, Benoît 73
Di Ciccio, Claudio 158
Di Francescomarino, Chiara 401
Dikici, Ahmet 289
Dumas, Marlon 217, 401

Fahland, Dirk 90, 234
Fdhila, Walid 348
Fink, Sven 383

Gal, Avigdor 179, 418
Gall, Manuel 348
González-Rojas, Oscar 365
Governatori, Guido 329
Guarino, Nicola 20
Guizzardi, Giancarlo 20

Hull, Richard 3

Indiono, Conrad 348

Janssenswillen, Gert 73
Jouck, Toon 73

Köpke, Julius 308

Laurson, Ülari 217
Leopold, Henrik 271
Lesmes, Sebastian 365
Lu, Xixi 90

Maggi, Fabrizio Maria 158, 217, 401
Mandelbaum, Avishai 418
Manderscheid, Jonas 383
Mangler, Juergen 348
Mannhardt, Felix 125
Mendling, Jan 158, 179, 329
Montali, Marco 158, 217
Motahari Nezhad, Hamid R. 3

Ponomarev, Alexander 329

Reijers, Hajo A. 125, 271
Rinderle-Ma, Stefanie 348
Riveret, Régis 329
Rogge-Solti, Andreas 179
Röglinger, Maximilian 383
Rompen, Tessa 289

Senderovich, Arik 179, 418
Shleyfman, Alexander 418
Sidorova, Natalia 142
Su, Jianwen 308

Taymouri, Farbod 197
Teinemaa, Irene 217, 401
Thiele, Lothar 252
Toussaint, Pieter J. 125
Turetken, Oktay 289

van den Biggelaar, Frank J.H.M. 90
van der Aa, Han 271
van der Aalst, Wil M.P. 90, 125, 142
van Dongen, B.F. 39

van Eck, Maikel L. 142
van Moll, Jan 289
Vanderfeesten, Irene 289
Völzer, Hagen 234, 252

Weber, Ingo 329
Weidlich, Matthias 179, 418

Xu, Xiwei 329

438 Author Index

	Preface
	Organization
	Abstract of Keynotes
	Don’t Just Improve Work, Innovate Continuously
	Rethinking BPM in a Cognitive World: Transforming How We Learn and Perform Business Processes
	Ontological Considerations About the Representation of Events and Endurants in Business Models
	Contents
	Keynotes
	Rethinking BPM in a Cognitive World: Transforming How We Learn and Perform Business Processes
	1 Introduction
	2 The Context
	2.1 Three Classes of Business Process
	2.2 Overview of Cognitive Computing

	3 Towards a framework for cognitive BPM
	3.1 Four Pillars
	3.2 Cognitive in Today's BPM Marketplace

	4 Abstractions for Cognitively-Enabled BPM
	4.1 Key Building Blocks
	4.2 Plan-Act-Learn Cycle for Cognitively-Enabled Processes
	4.3 Recent Initiatives Embodying Key Abstractions

	5 Towards Cognitive Learning of Business Process
	6 Towards Cognitive Process Enablement
	6.1 Classical BPM Setting
	6.2 Plan-Act-Learn Setting

	7 Summary and Key Steps for Cognitive BPM Research
	References

	Ontological Considerations About the Representation of Events and Endurants in Business Models
	Abstract
	1 Introduction
	2 Ontology-Driven Modeling of Business Endurants and Events
	2.1 Endurants in Structural Conceptual Models
	2.2 Events in Business Process Models

	3 Events in Structural Conceptual Models
	3.1 The Immutability of Events
	3.2 The Role of Object Identifiers
	3.3 Ongoing Events and Object Identifiers
	3.4 Where Do Events Come from?
	3.5 An Illustration

	4 Final Considerations
	Acknowledgements
	References

	Automated Discovery
	A Unified Approach for Measuring Precision and Generalization Based on Anti-alignments
	1 Introduction
	1.1 Motivating Example

	2 Related Work
	3 Preliminaries
	3.1 Petri Nets and Process Mining
	3.2 Anti-alignments

	4 Measuring Precision
	5 Measuring Generalization
	6 Evaluation and Implementation
	6.1 Models Found in Literature
	6.2 Implementation

	7 Conclusions
	References

	A Stability Assessment Framework for Process Discovery Techniques
	1 Introduction
	2 A Stability Assessment Framework
	2.1 Step 1: Log Perturbation Strategy
	2.2 Step 3: Solution Similarity Computation
	2.3 Step 4: Stability Index Computation

	3 Experimental Evaluation
	3.1 Setup
	3.2 Effect of the Percentage of Perturbation
	3.3 Results of the Experimental Evaluation
	3.4 Effect of Log Characteristics

	4 Discussion and Future Work
	References

	Measuring the Quality of Models with Respect to the Underlying System: An Empirical Study
	1 Introduction
	2 Different Perspectives in Measuring Model Quality
	2.1 Preliminaries
	2.2 Model-Log Distance
	2.3 Model-System Distance

	3 Experimental Analysis
	3.1 Goal of the Experiments
	3.2 Set up

	4 Results
	4.1 Estimation Biases
	4.2 Ranking Biases

	5 The Role of Generalization
	6 Related Work
	7 Conclusions and Future Work
	References

	Handling Duplicated Tasks in Process Discovery by Refining Event Labels
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Problem Definition and Analysis
	5 Approach
	5.1 Detecting Imprecise Labels
	5.2 Intermediate Step - Matching Events
	5.3 Refining Labels Horizontally Across Variants
	5.4 Refining Labels Vertically Within Variant

	6 Experimental Evaluation and Case Study
	7 Discussion and Conclusion
	References

	Discovering Duplicate Tasks in Transition Systems for the Simplification of Process Models
	1 Introduction
	1.1 Motivating Example

	2 Preliminaries
	2.1 Process Mining
	2.2 Petri Nets
	2.3 Transition Systems

	3 Discovering Duplicate Tasks
	3.1 Partitioning Based on Excitation Sets
	3.2 Hierarchical Clustering Algorithm

	4 Structural Simplification
	5 Experimental Evaluation
	6 Related Work
	7 Conclusions
	References

	From Low-Level Events to Activities - A Pattern-Based Approach
	1 Introduction
	2 Problem Description
	3 Pattern-Based Abstraction of Event Logs
	3.1 Define Activity Patterns
	3.2 Build an Composed Abstraction Model
	3.3 Alignment of Patterns Behavior and the Event Log
	3.4 Build the Abstracted Event Log Using the Alignment

	4 Evaluation
	4.1 Case and Dataset
	4.2 Results and Discussion

	5 Conclusion
	References

	Discovering and Exploring State-Based Models for Multi-perspective Processes
	1 Introduction
	2 Composite State Machines
	2.1 State Machines and Perspectives
	2.2 State Logs and CSM Discovery
	2.3 Behavioural Relations Between Perspectives

	3 Creating Simplified Views for CSMs
	4 Exploring Composite State Machines
	5 Evaluation
	5.1 BPI Challenge 2012
	5.2 Smart Product User Behaviour

	6 Related Work
	7 Conclusion
	References

	Semantical Vacuity Detection in Declarative Process Mining
	1 Introduction
	2 Preliminaries
	3 Background and Motivation
	3.1 Syntax-Dependent Vacuity Detection
	3.2 Ad-Hoc Approaches

	4 Activation of Constraints
	4.1 Activation States and Relevant Task Executions
	4.2 Interesting Witnesses, Activation and Vacuity

	5 Checking Constraint Activation Using Automata
	6 Evaluation
	7 Conclusion
	References

	Conformance Checking
	In Log and Model We Trust? A Generalized Conformance Checking Framework
	1 Introduction
	2 The Setting of Generalized Conformance Checking
	2.1 Formalization of the GenCon Problem
	2.2 Related Work

	3 Model
	4 A Divide-and-Conquer Approach for the GenCon Problem
	4.1 A Quest for T *
	4.2 Approximating L *

	5 Evaluation
	5.1 Experiment Setup
	5.2 Input Logs and Models
	5.3 Results

	6 Conclusion
	References

	A Recursive Paradigm for Aligning Observed Behavior of Large Structured Process Models
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Petri Nets, Process Mining and Step Sequences
	3.2 Petri Nets and Linear Algebra

	4 Approximate Alignment of Observed Behavior
	5 Structural Computation of Approximate Alignments
	5.1 ILP for Similarity: Seeking for an Optimal Parikh Vector
	5.2 ILP for Ordering: Computing an Aligned Step-Sequence

	6 The Recursive Algorithm
	7 Experiments
	8 Conclusions and Future Work
	References

	Modeling Foundations
	Semantics and Analysis of DMN Decision Tables
	1 Introduction
	2 Background and Related Work
	2.1 Overview of DMN Decision Tables
	2.2 Analysis of DMN Decision Tables

	3 Formalization
	3.1 Data Types and S-FEEL Conditions
	3.2 Decision Tables
	3.3 Formalization of Rule Semantics and of Analysis Tasks

	4 Algorithms
	4.1 Finding Overlapping Rules
	4.2 Finding Missing Rules

	5 Evaluation
	6 Conclusion and Future Work
	References

	Dynamic Skipping and Blocking and Dead Path Elimination for Cyclic Workflows
	1 Introduction
	2 Dynamic Skipping and Blocking
	2.1 Workflow Graphs as Synchronized State Machines
	2.2 Dynamic Skip
	2.3 Dynamic Block

	3 Dead Path Elimination for Cyclic Workflows
	3.1 Grey Tokens in Exclusive Splits
	3.2 White Tokens in Exclusive Splits and Dead Path Elimination
	3.3 Multipolar Workflow Graphs
	3.4 Justification of Exit Allocations

	4 Dynamic Blocking as Inclusive Gateway Semantics
	5 Conclusion
	References

	The Complexity of Deadline Analysis for Workflow Graphs with Multiple Resources
	1 Introduction
	2 Preliminaries
	3 Workflow Graphs with Nondeterministic Choice
	3.1 The Minimum Duration of a Workflow Graph
	3.2 Regular and Acyclic Workflow Graphs

	4 Workflow Graphs with Probabilistic Choice
	4.1 Expected Duration

	5 Minimum Number of Resources
	6 Conclusion
	References

	Understandability of Process Representations
	Dealing with Behavioral Ambiguity in Textual Process Descriptions
	1 Introduction
	2 Behavioral Ambiguity in Textual Process Descriptions
	3 Capturing Behavioral Ambiguity Using Behavioral Spaces
	4 Obtaining Behavioral Spaces
	4.1 Computing Possible Behavioral Relations
	4.2 Generating Behavioral Interpretations

	5 Reasoning Using Behavioral Spaces
	5.1 Behavioral Interpretation Compliance
	5.2 Behavioral Space Compliance

	6 Evaluation
	6.1 Test Collection
	6.2 Setup
	6.3 Results

	7 Related Work
	8 Conclusions
	References

	The Effect of Modularity Representation and Presentation Medium on the Understandability of Business Process Models in BPMN
	Abstract
	1 Introduction
	2 Related Work
	3 Research Design
	3.1 Process Models Used for the Experiment
	3.2 Forms of Modularity Representation
	3.3 Presentation Medium for the Process Models
	3.4 Understandability Questions
	3.5 Dependent Variables
	3.6 Experiment Blocks
	3.7 Questionnaire
	3.8 Participants

	4 Results and Discussions
	4.1 Testing the Hypotheses on the Forms of Modularity Representation
	4.2 Testing the Hypotheses on the Presentation Medium
	4.3 Testing the Influence of Personal Factors and Using Different Process Models

	5 Conclusions
	References

	Towards Quality-Aware Translations of Activity-Centric Processes to Guard Stage Milestone
	1 Introduction
	2 Semantic Alignment of a GSM Translation
	2.1 Taxonomy of Actions
	2.2 Mapping of Activities and Taxonomy of Actions
	2.3 Assessing Taxonomy Alignment of a Translation

	3 Control-Flow Complexity
	4 Semantic Rewrite Algorithm
	5 Evaluation
	5.1 Findings
	5.2 Input Processes that Achieve Acceptable Alignment/Complexity Scores

	6 Related Work
	7 Conclusions and Future Work
	References

	Runtime Management
	Untrusted Business Process Monitoring and Execution Using Blockchain
	1 Introduction
	2 Background
	2.1 Challenges of Collaborative Business Process Execution
	2.2 Prior Research on Collaborative Business Processes
	2.3 Blockchain Technology

	3 Blockchain-Based Collaborative Process Execution
	3.1 Overview of the Approach
	3.2 Design Time: Translator
	3.3 Runtime Environment: Executing Processes as Smart Contracts

	4 Evaluation
	4.1 Evaluation Method, Implementation, and Setup
	4.2 Use Case Processes
	4.3 Identification of Not Conforming Traces
	4.4 Analysis of Cost and Latency
	4.5 Discussion

	5 Conclusion
	References

	Classification and Formalization of Instance-Spanning Constraints in Process-Driven Applications
	1 Introduction
	2 ISC Classification
	3 Analysis of Existing Formalisms for ISC Support
	3.1 ISC Support During Design and Runtime
	3.2 Analysis of Formal Languages

	4 Relevance and Feasibility of ISC Classification
	5 Formalization of ISC Representatives
	6 Related Work
	7 Conclusion and Outlook
	References

	Value at Risk Within Business Processes: An Automated IT Risk Governance Approach
	1 Introduction
	2 Background and Motivation
	2.1 Requirements for the Valuation of Risks in Business Processes
	2.2 Methodology

	3 BP-VAR: Value at Risk for Process and IT Portfolios
	3.1 Quantification of Current and Expected Value Within Processes
	3.2 Automated Implementation

	4 Application of the BP-VAR to the Case Study
	4.1 Results of Quantifying Risk for Process and IT Assets
	4.2 Limitations

	5 Related Work
	6 Conclusions and Future Work
	References

	Prediction
	PRISM – A Predictive Risk Monitoring Approach for Business Processes
	Abstract
	1 Introduction
	2 Theoretical Background and Preliminaries
	2.1 Risk-Aware Business Process Management
	2.2 Similarity Measures in BPM

	3 The Predictive Risk Monitoring Approach
	3.1 The Sensor-Based Approach to Risk Detection
	3.2 Similarity-Weighted Process Instance Graph
	3.3 Risk Propagation Algorithm

	4 Demonstration
	4.1 Demonstration Design and Data Set
	4.2 Operationalization for PRISM Demonstration
	4.3 Results of the Replay and Discussion

	5 Conclusion and Critical Discussion
	Acknowledgements
	References

	Predictive Business Process Monitoring with Structured and Unstructured Data
	1 Introduction
	2 Background: Text Mining
	3 Framework
	3.1 Offline Component
	3.2 Online Component

	4 Evaluation
	4.1 Datasets
	4.2 Research Questions and Evaluation Measures
	4.3 Evaluation Procedure
	4.4 Results
	4.5 Discussion

	5 Related Work
	6 Conclusion
	References

	P3-Folder: Optimal Model Simplification for Improving Accuracy in Process Performance Prediction
	1 Introduction
	2 Background: Performance-Oriented Process Mining
	3 Performance Analysis with Generalised Stochastic Petri Nets
	4 Foldings of GSPN
	4.1 The Notion of a Folding
	4.2 The XOR-folding
	4.3 Finding Foldings by GSPN Decomposition

	5 Optimal Simplification of GSPN
	6 Evaluation
	6.1 Datasets and Setup
	6.2 Results

	7 Related Work
	8 Conclusion
	References

	Author Index

