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Preface 

Engineering mathematics including numerical methods and 
application is the essential part of key problem-solving skills for 
engineers and scientists. Modern engineering design and pro­
cess modelling require both mathematical analysis and com­
puter simulations. Vast literature exists on engineering math­
ematics, mathen1atical modelling and numerical methods. The 
topics in engineering mathematics are very diverse and the syl­
labus of mathematics itself is evolving. Therefore, there is a 
decision to select the topics and limit the number of chapters 
so that the book remains concise and yet comprehensive enough 
to include all the important mathematical methods and popu­
lar numerical methods. 

This book endeavors to strike a balance between mathemat­
ical and numerical coverage of a wide range of mathematical 
methods and numerical techniques. It strives to provide an 
introduction, especially for undergraduates and graduates, to 
engineering mathematics and its applications. Topics include 
advanced calculus, ordinary differential equations, partial dif­
ferential equations, vector and tensor analysis, calculus of varia­
tions, integral equations, the finite difference method, the finite 
volume method, the finite element method, reaction-diffusion 
system, and probability and statistics. The book also emph~ 
sizes the application of important mathematical methods with 
dozens of worked examples. The applied topics include elastic­
ity, harmonic motion, chaos, kinematics, pattern formation and 
hypothesis testing. The book can serve as a textbook in en­
gineering mathematics, mathematical modelling, and scientific 
computing. 

Xin-She Yang 
Cambridge, 2007 
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Chapter 1 

Calculus 

The prelin1inary requirements for this book are the pre-calculus 
foundation mathematics. We assume that the readers are fa­
miliar with these preliminaries, and readers can refer to any 
book that is dedicated to these topics. Therefore, we will only 
review some of the basic concepts of differentiation and inte­
gration. 

1.1 Differentiations 

1.1.1 Definition 

For a known function or a curve y = f ( x) as shown in Figure 
1.1, the slope or the gradient of the curve at the point P( x, y) 
is defined as 

dy = df(x) = !'(x) = lim f(x + ~x)- f(x), (1.1) 
dx dx .dx--+0 ~x 

on the condition that there exists such a limit at P. 
This gradient or limit is the first derivative of the function 

f ( x) at P. If the limit does not exist at a point P, then we 
say that the function is non-differentiable at P. By conven­
tion, the limit of the infinitesimal change ~x is denoted as the 
differential dx. Thus, the above definition can also be written 

1 



1.1 Differentiations Calculus 

as 
dl(x) 1 dy = dl = ~dx =I (x)dx, (1.2) 

which can be used to calculate the change indy caused by the 
small change of dx. The primed notation 1 and standard nota­
tion d~ can be used interchangeably, and the choice is purely 
out of convenience. 

Figure 1.1: Gradient of a curve 

The second derivative of l(x) is defined as the gradient of 
l 1(x), or 

d
2
y =I"( ) = dl(x) 

dx2- x dx · (1.3) 

The higher derivatives can be defined in a similar manner. 
Thus, 

d
3
y =I"'( ) = dl"(x) 

dx3 - x dx ' 
lf'ly dl(n-l) ... , - = l(n) = . 
dxn dx 

(1.4) 

1.1. 2 Differentiation Rules 

If a more complicated function I ( x) can be written as a prod­
uct of two simpler functions u(x) and v(x), we can derive a 
differentiation rule using the definition from the first princi-

2 



Calculus 1.1 Differentiations 

pies. Using 

f(x + ~x) - f(x) u(x + ~x)v(x + ~x) - u(x)v(x) 
= 

and subtracting and adding -u(x + ~x)v(x) + u(x + ~x)v(x) 
[= 0] terms, we have 

df d[u(x)v(x)] 
dx = dx 

I. [ ( A )v(x + ~x)- v(x) ( )u(x + ~x)- u(x)] 
1m ux+~x +vx ~ 
~~ ~ X 

dv du 
= u(x) dx + dx v(x), (1.5) 

which can be written in a contract form using primed notations 

J'(x) = (uv)' = u'v + uv'. (1.6) 

If we differentiate this equation again and again, we can gen­
eralize this rule, we finally get the Leibnitz's Theorem for dif­
ferentiations 

+ ... + uv(n), (1.7) 

where the coefficients are the same as the binomial coefficients 

nc = ( n) = nl 
r- r rl(n-r)!' (1.8) 

If a function f(x) [for example, f(x) = exn] can be written 
as a function of another function g(x), or f(x) = f[g(x)] [for 
example, f(x) = eg(x) and g(x) = xn], then we have 

! '( ) - I' ~~ ~g X- liD--
.6x-+O ~g ~X' 

(1.9) 

3 



1.1 Differentiations 

which leads to the following chain rule 

f 1(x) = df dg, 
dgdx 

or 
{f[g(x)]}1 

= J'[g(x)] · g1(x). 

In our example, we have f' ( x) = (ex")' = ex" nxn -l. 

Calculus 

(1.10) 

(1.11) 

If one use 1/v instead of v in the equation (1.6) and (1/v)' = 

-v1 fv 2 , we have the following differentiation rule for quotients: 

I I 
(!)I = u v - uv . 
v v2 (1.12) 

0 Example 1.1: The deriva.tive of f(x) = sin(x)e-cos(x) can be 
obtained using the combination of the above differentiation rules. 

f'(x) = [sin(x))'e-cos(x) + sin(x)[e-cos(x))' 

= cos(x)e- cos(x) + sin(x)e- cos(x)[- cos(x))' 

= cos(x )e- cos(x) + sin2(x )e- cos(x). 

The derivatives of various functions are listed in Table 1.1. 

1.1.3 Implicit Differentiation 

The above differentiation rules still apply in the case when there 
is no simple explicit function form y = f ( x) as a function of 
x only. For example, y + sin(x) exp(y) = 0. In this case, we 
can differentiate the equation tern1 by tern1 with respect to x 
so that we can obtain the derivative dyfdx which is in general 
a function of both x and y. 

0 Example 1. 2: Find the derivative ::; if y2 + sin( x )eY = cos( x). 
Differentiating term by term with respect to x, we have 

2y ~~ + cos(x)eY + sin(x)eY: = - sin(x), 

dy cos(x)eY + sin(x) 
dx - 2y + sin(x)eY · 

0 

4 



Calculus 1.2 Integrations 

Table 1.1: First Derivatives 

f(x) f'(x) 

xn nxn-1 
ex ex 

ax(a > 0) axlna 
lnx ! 

X 

logax 1 
xlna 

sinx cosx 
cosx -sinx 
tanx sec2 x 

sin-1 x 1 
~ 

cos- 1 x 1 
- v'1-x2 

tan-1 x 1 
1+x2 

sinhx coshx 
coshx sinhx 

1.2 Integrations 

1.2.1 Definition 

Integration can be viewed as the inverse of differentiation. The 
integration F( x) of a function f ( x) satisfies 

d~~x) = f(x), (1.13) 

or 
F(x) = 1x !(~)~, 

xo 
(1.14) 

where f ( x) is called the integrand, and the integration starts 
from xo (arbitrary) to x. In order to avoid any potential confu­
sion, it is conventional to use a dummy variable (say, ~) in the 
integrand. As we know, the geometrical meaning of the first 
derivative is the gradient of the function f ( x) at a point P, the 

5 



1.2 Integrations Calculus 

geometrical representation of an integral J: f(~)d~ (with lower 
integration limit a and upper integration limit b) is the area 
under the curve f(x) enclosed by x-a.xis in the region x E [a, b]. 
In this case, the integral is called a definite integral as the limits 
are given. For the definite integral, we have 

fb f(x)dx = 1b f(x)dx -1a f(x)dx = F(b)- F(a). (1.15) 
la xo xo 

The difference F (b) - F (a) is often written in a compact form 
Fl~ = F(b)- F(a). As F'(x) = f(x), we can also write the 
above equation as 

l f(x)dx = l F'(x)dx = F(b) - F(a). (1.16) 

Since the lower limit x0 is arbitrary, the change or shift 
of the lower limit will lead to an arbitrary constant c. When 
the lower limit is not explicitly given, the integral is called an 
indefinite integral 

I f(x)dx = F(x) + c, (1.17) 

where cis the constant of integration. 
The integrals of some of the con1mon functions are listed in 

Table 1.2. 

1.2.2 Integration by Parts 

From the differentiation rule ( uv )' = uv' + u' v, we have 

uv' = (uv)'- u'v. (1.18) 

Integrating both sides, we have 

u-dx = uv - -vdx I dv ldu 
dx dx ' 

(1.19) 

in the indefinite form. It can also be written in the definite 
form as 

1
b dv lb 1b du u-d dx = [uv] + v-d dx. 

a X a a X 
(1.20) 

6 



Calculus 1.2 Integrations 

Table 1.2: Integrals 

f(x) f f(x) 
xn(n tf -1) xn 

n+1 
1 lnlxl X 

ex ex 

sinx -cosx 
cosx sinx 

1 1 tan- 1 i!. 
a2tx2 a a 

1 In a+x 
a2-x2 2a a-x 

1 ..!..In~ x2-a2 2a x+a 
1 sin- 1 ~ 

v'a1-x1 a 
1 ln(x + v'x2 + a2) 
~ 

[or sinh-1 ~] 
1 ln(x + v'x2 - a2) 

Jx2-a2 

(or cosh-1 ~] 
sinhx coshx 
coshx sinhx 
tanhx lncoshx 

The integration by parts is a very powerful method for evalu­
ating integrals. 1\.fany complicated integrands can be rewritten 
as a product of two simpler functions so that their integrals can 
easily obtained using integration by parts. 

0 Example 1.9: The integral of I= J x lnx dx can be obtained 
by setting v' = x and u = lnx. Hence, v = x2

2 
and u' = ~· \-Ve now 

have 

I= xlnxdx = --- --dx J x
2

lnx J x 2 1 
2 2 X 

0 

7 



1.2 Integrations Calculus 

Other important methods of integration include the sub­
stitution and reduction methods. Readers can refer any book 
that is dedicated to advanced calculus. 

1.2.3 Taylor Series and Power Series 

From l f(x)dx = F(b) - F(a), 

and 1:£ = F' = f(x), we have 

1
xo+h 

/'(x)dx = f(xo +h)- f(xo), 
xo 

which means that 

1
xo+h 

f(xo +h) = f(xo) + f'(x)dx. 
xo 

(1.21) 

(1.22) 

(1.23) 

If h is not too large or f' ( x) does not vary dramatically, we can 
approximate the integral as 

1
xo 

f'(x)dx ~ !'(xo)h. 
xo 

(1.24) 

Thus, we have the first-order approximation to f ( xo + h) 

f(xo +h)~ f(xo) + hf'(xo). (1.25) 

This is equivalent to say, any change from xo to xo+h is approx­
imated by a linear term hf'(xo). If we repeat the procedure for 
f'(x), we have 

J'(xo +h)~ !'(xo) + hf"(xo), (1.26) 

which is a better approximation than f'(xo +h) ~ f'(x0 ). Fol­
lowing the same procedure for higher order derivatives. we can 
reach the n-th order approximation 

f(xo +h)= f(xo) + hf'(xo) + ~~ !"(xo) + ;~ !"'(xo) 

8 



Calculus 1.3 Partial Differentiation 

(1.27) 

where Rn+t (h) is the error of this approximation and the no­
tation means that the error is about the same order as n + 1-th 
term in the series. This is the well-known Taylor theorem and 
it has many applications. In deriving this formula, we have im­
plicitly assumed that all the derivatives l'(x), l"(x), ... , l(n)(x) 
exist. In almost all the applications we meet, this is indeed the 
case. For example, sin( x) and ex, all the orders of the deriva­
tives exist. If we continue the process to infinity, we then reach 
the infinite power series and the error limn-oo Rn+ 1 ---+ 0 if the 
series converges. The end results are the Maclaurin series. For 
example, 

and 

x3 xs 
sin x = x - - + - - ... , (x E 'R), 

3! 5! 
x2 x4 

cosx = 1--+-- ... , (x E 'R), 
2! 4! 

1.3 Partial Differentiation 

1.3.1 Partial Differentiation 

(1.28) 

(1.29) 

(1.30) 

The differentiation defined above is for function I ( x) which has 
only one independent variable x, and the gradient will generally 
depend on the location x. For functions I ( x, y) of two variables 
x andy, their gradient will depend on both x andy in general. 
In addition, the gradient or rate of change will also depend on 
the direction (along x-axis or y-axis or any other directions). 
For example, the function l(x, y) = xy shown in Figure 1.2 
has different gradients at ( 0, 0) along x-axis and y-axis. The 

9 



1.3 Partial Differentiation Calculus 

1 -1 

Figure 1.2: Variation of f(x, y) = xy. 

gradients along the positive x- and y- directions are called the 
partial derivatives respect to x and y, respectively. They are 
denoted as U and %, respectively. 

The partial derivative of f ( x, y) with respect to x can be 
calculated assuming that y =constant. Thus, we have 

af(x,y) = f = 8!1 
8x - x- 8x Y 

= lim 
f(x + ~x, y)- f(x, y) 

~X .6.x-O,y=const 

Similarly, we have 

af(x,y) = f = 8!1 
ay - y-ayx 

lim 
.6.y-O ,x=const 

f(x, y + ~y) - f(x, y) 
~y 

(1.32) 

(1.33) 

The notation fxly emphasizes the fact that y is held constant. 
The subscript notation fx (or /y) emphasizes the derivative is 
carried out with respect to x (or y). :Mathematicians like to 

10 



Calculus 1.3 Partial Differentiation 

use the subscript forms as they are simpler notations and can 
be easily generalized. For example, 

(1.34) 

Since flxfly = flyflx, we have fxy = !yx· 

0 Example 1.4: The first partial derivatives of f(x, y) = xy + 
sin(x)e-Y are 

8! 
fx = ax = y + Cos(x)e-Y, 

The second partial derivative of f(x, y) is 

fxx =- sin(x)e-Y, 

and 
fxy = fyx = 1- cos(x)e-Y. 

0 

For any small change Llf = f(x+flx, y+fly)- f(x, y) due 
to flx and fly, the total infinitesimal change df can be written 
as 

(1.35) 

If x and y are functions of another independent variable ~, then 
the above equation leads to the following chain rule 

df af dx af dy 
~ = 8xd~ + 8y~' (1.36) 

which is very useful in calculating the derivatives in parametric 
form or for change of variables. If a complicated function f ( x) 
can be written in terms of simpler functions u and v so that 
f(x) = g(x, u, v) where u(x) and v(x) are known functions of 
x, then we have the generalized chain rule 

dg ag ag du ag dv 
-=-+--+--dx ax au dx av dx. 

11 

(1.37) 



1.4 !v!ultiple Integrals Calculus 

The extension to functions of more than two variables is 
straightforward. For a function p(x, y, z, t) such as the pressure 
in a fluid, we have the total differential as 

df = op dt + op dx + op dy + 8P dz. (1.38) 
8t 8x oy 8z 

1.3.2 Differentiation of an Integral 

When differentiating an integral 

<11(x) = l <P(x, y)dy, (1.39) 

with fixed integration limits a and b, we have 

84>(x) = [b 8</J(x, y) dy. 
OX Ja OX 

(1.40) 

When differentiating the integrals with the limits being func­
tions of x, 

I(x) = ru(x) 1/J(x, T)dT = w[x, u(x)] - w[x, v(x)], 
lv(x) 

the following formula is useful: 

dl 1u(x) o'l/J du dv 
-d = -

8 
dT + [1/J(x, u(x))-d -1/J(x, v(x))-d ]. 

X v(x) X X X 

This formula can be derived using the chain rule 

dl ol ol du 8 I dv 
-=-+--+--dx 8x ou dx ov dx' 

where ~ = 1/J(x, u(x)) and §f = -1/J(x, v(x)). 

1.4 Multiple Integrals 

1.4.1 Multiple Integrals 

(1.41) 

(1.42) 

(1.43) 

As the integration of a function f ( x) corresponds to the area 
enclosed under the function between integration limits, this 

12 
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can extend to the double integral and multiple integrals. For a 
function f(x, y), the double integral is defined as 

F =In f(x, y)dA, (1.44) 

where dA is the infinitesin1al element of the area, and n is the 
region for integration. The simplest form of dA is dA = dxdy 
in Cartesian coordinates. In order to emphasize the double 
integral in this case, the integral is often written as 

I = J In f(x, y)dxdy. (1.45) 

0 Example 1. 5: The area moment of inertia of a thin rectangular 
plate, with the length 2a and the width 2b, is defined by 

I= J In y2
dS = J In y2

dxdy. 

The plate can be divided into four equal parts, and we have 

0 

1.4.2 Jacobian 

Sometimes it is necessary to change variables when evaluating 
an integral. For a simple one-dimensional integral, the change 
of variables from x to a new variable v (say) leads to x = x(v). 
This is relatively sin1ple as dv = ~~dv, and we have 

1xb 1b dv 
f(x)dx = f(x(v))----d dv, 

Xa a X 
(1.46) 

where the integration limits change so that x(a) Xa and 
x(b) = Xb. Here the extra factor dxjdv in the integrand is 
referred to as the Jacobian. 

13 



1.4 !v!ultiple Integrals Calculus 

For a double integral, it is more complicated. Assuming 
x = x(~, 17), y = y(~, 17), we have 

jj f(x, y)dxdy = j j !(~1J)IJid~d1J, (1.47) 

where J is the Jacobian. That is 

J = a(x, y) 
a(~,1J) 

I 
{)x {)x I I {)x §JL I - ~ "lJ7i - 0~ 0~ - §JL §JL - {)x {JiJ • 
0~ 0~ ~ "lJ7i 

(1.48) 

The notation a( x, y) /a(~, 1J) is just a useful shorthand. This 
equivalent to say that the change of the infinitesimal area dA = 

dxdy becomes 

d d = I a(x, y) 1,/Cd = I ax ay - ax ay 1,/Cd 
X y a(~, 1J) ~ 1J a~ a1] a1] a~ ~ 1]. (1.49) 

0 Example 1. 6: \Vhen transforming from ( x, y) to polar coordi­
nates (r, 8), we have the following relationships 

x = rcos8, y = rsin8. 

Thus, the Jacobian is 

J _ a( X, y) _ ax ay ax ay 
- a(r,8) - ar a8- ae ar 

= cos 8 x r cos() - ( -r sin 8) x sin 8 = r[cos2 8 + sin2 8) = r. 

Thus, an integral in (x, y) will be transformed into 

/! (j>(x,y)dxdy = J J 4>(rcos8,rsin8)rdrd(). 

0 

In a similar fashion, the change of variables in triple inte­
grals gives 

V = jjfn c/J(x,y,z)dxdydz = JL 1P(~,1J,()IJI~d1]d(, (1.50) 

14 
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and 
Ox Oy 0::: 

J = {)(X, y, Z) = ~ ~ ~ Ox 0::: (1.51) iJ1] F F - {)(~, 1J, () Ox 0~ 0~ 
0< 0< m: 

For cylindrical polar coordinates ( r, (jJ, z) as shown in Figure 
1.3, we have 

x = rcos(jJ, y = rsin¢, 

The Jacobian is therefore 

cos 4> sin¢ 0 
J = 0( X, y, Z) = 

8(r,(jJ,z) 
-rsin¢ rcos¢ 0 

0 0 1 

z 

Z =Z. 

=r. 

Figure 1.3: Cylindrical polar coordinates. 

(1.52) 

(1.53) 

For spherical polar coordinates (r, 8, 4>) as shown in Figure 
1.4, where 8 is the zenithal angle between the z-axis and the 
position vector r, and 4> is the azimuthal angle, we have 

x = rsin8cos¢, y = r sin 8 sin¢, z = r cos 8. (1.54) 

Therefore, the Jacobian is 

sin 8 cos 4> sin 8 sin 4J cos 8 
J = r cos 8 cos 4J r cos 8 sin 4> -r sin 8 = r 2 sin 8. (1.55) 

-r sin 8 sin 4J r sin 8 cos 4J 0 
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z 

Figure 1.4: Spherical polar coordinates. 

Thus, the volu1ne element change in the spherical systen1 is 

dxdydz = r 2 sin OdrdOdc/>. (1.56) 

0 Example 1. 7: The volume of a solid ball with a radius R is 
defined as 

V= !!In dV. 

Since the infinitesimal volume element dV = r2 sin( O)drdOd¢ in spher­
ical coordinates r ~ 0, 0 ~ () ~ 1r and 0 ~ ¢ ~ 21r, the ball can be 
divided into two equal parts so that 

{R {rr/2 {21r 
V = 2 Jo {}

0 
sin0[}

0 
d¢]dO}dr 

{R {rr/2 
= 2 Jo {27r Jo sin(O)dO}dr 

0 

1.5 Some Special Integrals 

Some integrals appear so frequently in engineering mathemat­
ics that they deserve special attention. l\1ost of these special 
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integrals are also called special functions as they have certain 
varying parameters or integral limits. We only discuss four of 
the n1ost common integrals here. 

1.5.1 Asymptotic Series 

Before we discuss any special functions, let us digress first to 
introduce the asymptotic series and order notations because 
they will be used to study the behaviours of special functions. 
Loosely speaking, for two functions f ( x) and g( x), if 

f(x) ---+ K 
g(x) ' 

X---+ XQ, 

where K is a finite, non-zero limit, we write 

f = O(g). 

(1.57) 

(1.58) 

The big 0 notation means that f is asymptotically equivalent 
to the order of g(x). If the limit is unity or K = 1, we say f(x) 
is order of g( x). In this special case, we write 

J~g, (1.59) 

which is equivalent to f fg ---+ 1 and gf f---+ 1 as x ---+ xo. Ob­
viously, x0 can be any value, including 0 and oo. The notation 
~ does not necessarily mean ~ in general, though they might 
give the same results, especially in the case when x ---+ 0 [for 
example, sin x ~ x and sin x ~ x if x ---+ 0]. 

When we say f is order of 100 (or f ~ 100), this does not 
mean f ~ 100, but it can mean that f is between about 50 to 
150. The small o notation is used if the limit tends to 0. That 
is 

f 
----+ 0, 
g 

X---+ XQ, (1.60) 

or 

f = o(g). (1.61) 
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If g > 0, f = o(g) is equivalent to f << g. For example, for 
Vx E 'R, we have ex~ 1 + x + O(x2

) ~ 1 + x + ~ + o(x). 
Another classical example is the Stirling's asymptotic series 

for factorials 

n >> 1. (1.62) 

In fact, it can be expanded into more terms 

. ~ n n 1 1 139 
nl 'V v ..::;1rn(;) (1 + 12n + 288n2 - 51480n3 - ... ). (1.63) 

This is a good example of asymptotic series. For standard 
power expansions, the error Rk(hk) --+ 0, but for an asymptotic 
series, the error of the truncated series Rk decreases and gets 
smaller con1pared with the leading term [here V21m(nfe)n]. 
However, Rn does not necessarily tend to zero. In fact, R2 = 
tin· V21m(nje)n is still very large as R2 --+ oo if n >> 1. For 
example, for n = 100, we have n! = 9.3326 x 10157 , while the 
leading approximation is V21m(nfe)n = 9.3248 x 10157 . The 
difference between these two values is 7. 77 40 x 10154 , which is 
still very large, though three orders smaller than the leading 
approximation. 

1.5.2 Gaussian Integrals 

The Gaussian integral appears in n1any situations in engineer­
ing mathematics and statistics. It can be defined by 

!00 2 
/(a) = -oo e-a:x dx. (1.64) 

In order to evaluate the integral, let us first evaluate / 2 . Since 
the Gaussian integral is a definite integral and must give a 
constant value, we can change the dummy variable as we wish. 
We have 

1
00 2 100 2 100 2 /

2 = [ -oo e-a:x dxf = -oo e-a:x dx -oo e-a:y dy 

18 



Calculus 1. 5 Some Special Integrals 

= i: i: e-o(x2+y2)dxdy. (1.65) 

Changing into the polar coordinates ( r, 0) and noticing r 2 = 
x2 + y2 and dxdy = rdrdO, we have 

roo [21r 2 

I2 = Jo dr Jo re-ar dO 

looo 1 -ar2d( 2) 7r = 21r -e ar = -. 
o a a 

(1.66) 

Therefore, 

( ) 1
00 

-ax2d ~ I a = e x = -. 
-oo a 

(1.67) 

Since a is a parameter, we can differentiate both sides of this 
equation with respect to a, and we have 

!
00 

2 -ox2d 1 ~ X e X=- -. 
-oo 2a a 

(1.68) 

By differentiating both sides of the Gaussian integral ( equa­
tion 1.67) n times with respect to a, and we get the generalized 
Gaussian integral In 

I 1
00 

2n -ox2 

n = X e 
-oo 

(1.69) 

where n > 0 is an integer. 
For a special case when a = ~ and n = 0, the equation 

v2u"" 
(1.67) can be rearranged as 

/

00

00 

f(x, a)dx = 1, (1.70) 

The function f(x, a) is a zero-mean Gaussian probability func­
tion. As a~ 0, f(x) ~ 8(x) where 8(x) is the Dirac 8-function 
which is defined by 

8(x) i= 0 (at x = 0), but 8(x) = 0, for xi= 0, (1.71) 
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and 

/00
00 

o(x)dx = 1. (1.72) 

It has an interesting property that 

J f(x)o(x- (3)dx = !((3), (1.73) 

where f(x) is a function. 

1.5.3 Error Functions 

The error function, which appears frequently in heat conduc­
tion and diffusion problems, is defined by 

2 rx 2 

erf(x) = v'i Jo e-11 d'f/. 

Its complementary error function is defined by 

2 100 

2 erfc(x) = 1- erf(x) = y'i x e-t dt. 

The error function is an odd function: erf( -x) 
Using the results from the Gaussian integral 

1
00 2 

e - 11 d'TJ = .;:i, 
-oo 

(1.74) 

(1.75) 

= -erf(x). 

(1.76) 

together with the basic definition, we have erf(O) 0, and 
erf( oo) = 1. Both the error function and its complementary 
function are shown in Figure 1.5. 

The error function cannot be easily evaluated in closed 
form. Using Taylor series for the integrand 

_112 - 2 1 4 1 6 
e - 1 - 'TJ + 2"' - 6"' + ... , (1.77) 

and integrating term by term, we have 

2 x3 x5 x7 

erf(x) = yli"[x- 3 + 10- 42 + ... ], (1.78) 
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or 

2.5r-------~------~------r=========~ 

2 ----------------

-
1.5 

1 

.!So. "t: 0.5 
CD 

0 

-0.5 

-1~-------------

-1.:.~o -5 0 
X 

Figure 1.5: Error functions. 

- erf(x) 
--- erfc(x) 

5 10 

2 oo ( -1) n x2n+ 1 
erf(x) = - L ----

1
-. (1.79) ...fi n=O 2n + 1 n. 

The integrals of the complementary function are defined by 

ierfc(x) = Loo erfc(TJ)dTJ, (1.80) 

and 
(1.81) 

Using integration by parts, we can prove the following asymp-
totic series 

e-x2 
erf(x) "-J 1- r-;;' (x----? oo). (1.82) 

Xy7r 

On the other hand, if we replace x in the error function by 
{3x, we have 

lim -
2
1 

[1 + erf(/3x)] ----? H(x), [3-oo (1.83) 

where H ( x) is a Heaviside function or a unit step function 
which is defined by 

H(x) = 1 (for x > 0), H(x) = 0 (for x < 0). (1.84) 
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At x = 0, it is discontinuous and it is convention to set H(O) = 

1/2. Its relationship with the Dirac 8-function is that 

d~~x) = 8(x). (1.85) 

1.5.4 Gamma Functions 

The special function is the gamma function which is defined by 

r(x) = fooo tx-le-tdt = fooo e-t+(x-l)lntdt. (1.86) 

Using integral by parts, we have 

r(x + 1) = fooo txe-tdt = -txe-tl: + fooo xtx-le-tdt 

= xr(x). (1.87) 

When x = 1, we have 

The variation of r(x) is shown in Figure 1.6. 
If X= n is an integer (n E JV), then r(n + 1) = n!. That is 

to say, 

n! = r(n + 1) = fooo enlnt-tdt. (1.89) 

The integrand f(n, t) = exp[n ln t-t] reaches a tnaximum value 
at 

af =O 
8t ' 

or t =n. (1.90) 

The maximum is !max = exp[n ln n- n). Thus, we now can set 
t = n + r = n(1 + () so that r = n( varies around n and ( 
around 0. For n >> 1, we have 

n! = /_: e{n lnln(l+()J-n(l+<)} dr 

= /_: e{(n In n-n)+nlln(l+()-<J} dr, (1.91) 
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-10 

-20 
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X 

Figure 1.6: Variation of f(x). 

5 

where we have used ln[n(l + ()] = Inn+ ln(l + (). The inte­
gration limits for r = n( (not () are from -oo to oo. Using 

(2 (3 
ln(l + () = (- 2" + "3 - ... , (1.92) 

we have 

(1.93) 

From the Gaussian integral with a= 1/(2n) 

100 2 ~ e-ar dr = - = -/2rn, 
-oo a 

(1.94) 

we now obtain the Stirling's asymptotic formula 

From the basic definition, it can be shown that 

r( 1 ) r,;; r(~2) = ..fi27r. 2 = y7r, (1.96) 

The standard gan1ma function can be decomposed into two 
incomplete functions: the lower incomplete gamma function 
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/'(0:, x) and the upper incomplete gamnla function r(a, x) so 
that r(x) = 'Y(O:, x) + r(a, x). 

The lower incomplete gamma function is defined by 

(1.97) 

while the upper incomplete gamma function is defined by 

r(a,x) = 100 

to:-le-tdt. (1.98) 

Obviously, l(o:,x) ~ r(a) as X~ 00. As r(!) = .Jif, we 
have 

1 1 2 
erf(x) = fi'Y( 2,x ). (1.99) 

Another related function is a beta function 

(1.100) 

From the definition, we know that the beta function is sym­
metric, B(x, y) = B(y, x). The beta function is linked to r 
function by 

B( ) 
= r(x)r(y) 

x,y r(x +Y). (1.101) 

1.5.5 Bessel Functions 

Bessel functions come from the solution of the Bessel's equation 

(1.102) 

which arises from heat conduction and diffusion problems as 
well as wave propagation problems. The solution (see later 
chapters in this book) can be expressed as Taylor's series, and 
the Bessel function associated with this equation can be defined 
by 

(1.103) 
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X 

Figure 1.7: Bessel functions. 

where A is a real paran1eter. These are the Bessel functions of 
the first kind. It can also be defined by the Bessel integral 

1 [27r 
J>..(x) = 

2
7r Jo cos[ At- x sin t]dt. (1.104) 

The Bessel functions of the second kind are related to J >.., and 
can be defined by 

y _ J>.. cos(A7r)- J_>.. 
>.. - sin(A7r) · (1.105) 

When A = k is an integer, they have the following properites 

The Bessel functions of the first kind are plotted in Figure 1. 7. 
With these fundamentals of preliminary mathematics, we 

are now ready to study a wide range of mathematical methods 
in engineering. 
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Chapter 2 

Vector Analysis 

1\tiany quantities such as force, velocity, and deformation in en­
gineering and sciences are vectors which have both a n1agnitude 
and a direction. The manipulation of vectors is often associated 
with matrices. In this chapter, we will introduce the basics of 
vectors and vector analysis. 

2.1 Vectors 

A vector x is a set of ordered numbers x = (xt, x2, ... , Xn), 
where its components x 1, x2, ... , Xn are real numbers. All these 
vectors form a n-dimensional vector space vn. To add two 
vectors x = (xb x2, ... , Xn) andy = (Yt, Y2, ... , Yn), we simply 
add their corresponding components, 

Z =X+ Y = (xt + Yt,X2 + Y2, ... ,Xn + Yn), (2.1) 

and the sum is also a vector. This follows the vector addition 
parallelogram as shown in Fig 2.1 

The addition of vectors has comn1utability (u + v = v + u) 
and associativity [(a+ b) + c = a+ (b +c)]. Zero vector 
0 is a special vector that all its components are zeros. The 
multiplication of a vector x with a scalar or constant a: is carried 
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out by the multiplication of each component, 

ay = (ay1, oy2, ... , ayn)· 

Vector Analysis 

(2.2) 

Thus, -y = ( -y~, -y2, ... , -Yn)· In addition, (a{3)y = a(f3y) 
and (a+ f3)y = ay + {3y. 

4 ......•...•... ~·········· 

')/ 
:" .· ... . · .: 

: 
: 

// 
.· .· : 

:· 

Figure 2.1: Vector addition. 

Two nonzero vectors a and b are said to be linearly inde­
pendent if aa + {3b = 0 implies that a= {3 = 0. If a, {3 are not 
all zeros, then these two vectors are linearly dependent. Two 
linearly dependent vectors are parallel ( a//b) to each other. 
Three linearly dependent vectors a, b, c are in the same plane. 

2.1.1 Dot Product and Norm 

The dot product or inner product of two vectors x and y is 
defined as 

n 

X· Y = XtYl + X2Y2 + ··· + XnYn = L XiYi, (2.3) 
i=l 

which is a real number. The length or norm of a vector x is 
the root of the dot product of the vector itself, 

lxl = llxll = VX:X= ~~xr (2.4) 
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When llxll = 1, then it is a unit vector. It is straightforward 
to check that the dot product has the following properties: 

X·Y = y ·X, X· (y+z) =x·y+x·z, (2.5) 

and 
(a:x) · (f3y) = (a:f3)x · y, (2.6) 

where a:, {3 are constants. 
If() is the angle between two vectors a and b, then the dot 

product can also be written 

a· b = llall llbll cos(8), 0 ::; () ::; 7r. (2.7) 

If the dot product of these two vectors is zero or cos(8) = 0 (i.e., 
() = 1r /2), then we say that these two vectors are orthogonal. 

Rearranging equation (2. 7), we obtain a formula to calcu­
late the angle () between two vectors 

a·b 
cos(()) = II all lib II (2.8) 

Since cos(8) ::; 1, then we get the useful Cauchy-Schwartz in­
equality: 

(2.9) 

Any vector a in a n-dimensional vector space vn can be 
written as a combination of a set of n independent basis vectors 
or orthogonal spanning vectors e1, e2, ... , en, so that 

n 

a= a:1e1 + a:2e2 + ... + O:nen = L O:iei, 
i=l 

(2.10) 

where the coefficients/scalars 0:1,0:2, ... , O:n are the components 
of a relative to the basis e1, e2 ... , en. The most common basis 
vectors are the orthogonal unit vectors. In a three-dimensional 
case, they are i = (1, 0, 0), j = (0, 1, 0, k = (0, 0, 1) for three 
x-, y-, z-axis, and thus x = x1i + x2.i + x3k. The three unit 
vectors satisfy i · j = j · k = k · i = 0. 
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2.1.2 Cross Product 

The dot product of two vectors is a scalar or a number. On the 
other hand, the cross product or outer product of two vectors 
is a new vector 

c=axb 

which is usually written as 

i j k 
a X b = Xt X2 X3 

Yt Y2 Y3 

= I :: :: li +I :: :: lj +I :: :: lk. (2.
12

) 

The angle between a and b can also be expressed as 

. lla x bll 
sin f) = llallllbll. (2.13) 

In fact, the norm lla x bll is the area of the parallelogram 
formed by a and b. The vector c =ax b is perpendicular to 
both a and b, following a right-hand rule. It is straightforward 
to check that the cross product has the following properties: 

xxy = -yxx, (x + y)xz = xxz + yxz, (2.14) 

and 
(ax)x (,By) = (a,B)xxy. (2.15) 

A very special case is axa = 0. For unit vectors, we have 

ixj = k, jxk = i, kxi = j. (2.16) 

0 Example 2.1: For two 3-D vectors a = (1, 1, 0) and b = 
(2, -1, 0), their dot product is 

a· b = 1 X 2 + 1 X ( -1) + 0 = 1. 
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As their moduli are 

we can calculate the angle(} between the two vectors. We have 

a·b 1 
cosO= llallllbll = J2J5' 

or 

(} -l 1 0 = cos 1'17\ ~ 71.56 . 
vlO 

Their cross product is 

V =a X b = (1 X 0-0 X (-1),0 X 1-1 X 0,1 X (-1)- 2 X 1) 

= (0,0, -3), 

which is a vector pointing in the negative z-axis direction. The vector 
v is perpendicular to both a and b because 

a · V = 1 X 0 + 1 X 0 + 0 X ( -3) = 0, 

and 

b · V = 2 X 0 + ( -1) X 0 + 0 X ( -3) = 0. 

0 

2.1.3 Vector Triple 

For two vectors, their product can be either a scalar (dot prod­
uct) or a vector (cross product). Similarly, the product of triple 
vectors a, b, c can be either a scalar 

ax ay a:: 
a· (b x c)= bx by b:: ' 

(2.17) 

Cy Cz 

or a vector 

ax (b x c)= (a· c)b- (a· b)c. (2.18) 
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As the dot product of two vectors is the area of a parallel­
ogram, the scalar triple product is the volume of the paral­
lelepiped formed by the three vectors. From the definitions, it 
is straightforward to prove that 

a· (b x c)= b · (c x a)= c ·(ax b)= -a· (c x b), (2.19) 

a X (b X c) #(a X b) XC, (2.20) 

and 

(ax b)· (c x d) =(a· c)(b ·d)- (a· d)(b ·c). (2.21) 

2.2 Vector Algebra 

2.2.1 Differentiation of Vectors 

The differentiation of a vector is carried out over each compo­
nent and treating each con1ponent as the usual differentiation 
of a scalar. Thus, for a position vector 

P(t) = x(t)i + y(t)j + z(t)k, (2.22) 

we can write its velocity as 

v = ~ = ±(t)i + y(t)j + z(t)k, (2.23) 

and acceleration as 

a= ~t~ = X(t)l + ij(t)j + Z(t)k, (2.24) 

where () = d()jdt. Conversely, the integral of vis 

P = J vdt+c, 

where cis a vector constant. 
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From the basic definition of differentiation, it is easy to 
check that the differentiation of vectors has the following prop­
erties: 

d(a:a) da d(a ·b) da b db 
~=0 dt~ dt = dt · +a·dt' (2.26) 

and 
d(axb) _ da b db 

dt - dt x + ax dt · (2.27) 

2.2.2 Kinematics 

As an application of vector algebra, let us study the motion 
along a curved path. In mechanics~ there are three coordinate 
systems which can be used to describe the motion uniquely. 
The first one is the Cartesian coordinates (x, y) with two unit 
vectors i (along positive x-axis) and j (along positive y-axis), 
and the second one is the polar coordinates (r, 0) with two unit 
vectors er and ee as shown in Figure 2.2. 

y 

Figure 2.2: Polar coordinates, their unit vectors and their re­
lationship with Cartesian coordinates. 

The position vector r = x(t)i + y(t)j at point P at any 
instance t in the Cartesian coordinates can be expressed as 
( r, 0). The velocity vector is 

(2.28) 
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and the acceleration is 
.2 .. . 

a= v = (f-rO )er + (rO + 2rO)eo. (2.29) 

The third coordinate system is the intrinsic coordinate sys­
tem (s, 'l/J) where sis the arc length from a reference point (say, 
point 0) and 'l/J is the angle of the tangent at the point P (see 
Figure 2.3). The two unit vectors for this systems are et along 
the tangent direction and en which is the unit normal of the 
curve. 

Figure 2.3: Intrinsic coordinates and their unit vectors. 

In the intrinsic coordinates, the position is uniquely deter­
mined by (s, 1/J), and the velocity is always along the tangent. 
Naturally, the velocity is simply 

(2.30) 

The acceleration becomes 

.. 82 
a= set+ -en, 

p 
(2.31) 

where pis the radius of the curvature at point P. 
For the circular n1otion such as a moving bicycle wheel as 

shown in Figure 2.4, the three coordinate systems are intercon­
nected. In a rotating reference frame with an angular velocity 
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y 

Figure 2.4: Three coordinate systems for a wheel in circular 
motion. 

w = Ok where k point to the z-axis, the velocity and accelera­
tion at any point (say) P can be calculated using another fixed 
point A on the rotating body (or wheel). The velocity is 

drl 
V p = VA + dt A + W X r, (2.32) 

and the acceleration is 

d
2rl dw 

ap = aA + dt2 A+ -;Jf X r + acor + acent, (2.33) 

where drl 
acor = 2w X dt A' (2.34) 

is the Coriolis acceleration, and 

acent = W X ( W X r), (2.35) 

is the centripetal acceleration. It is worth noting that the ve­
locity v A and acceleration aA is the velocity and acceleration 
in a non-rotating frame or an inertia frame. 

In addition, the differentiation of the unit vectors are con­
nected by 

(2.36) 
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and 

(2.37) 

In the intrinsic coordinates, we have s = R</> where R =constant 
is the radius of the wheel in circular motion. Thus, 8 = R~. 
The velocity for this circular motion is simply 

(2.38) 

Differentiating it with respect to time and using the relation­
ships of unit vectors, we have 

• .. '2 
a = v = R</>et + R</> en, (2.39) 

where the unit vectors are 

et =cos </>i +sin </>j, en = -sin </>i +cos </>j. (2.40) 

0 Example 2.2: A car is travelling rapidly along a curved path 
with a speed of 30 mjs at a given instance. The car is fitted with 
an accelerometer and it shows that the car is accelerating along the 
curved path at 2 m/~. The accelerometer also indicates that the 
component of the acceleration perpendicular to the travelling direc­
tion is 5 mjs2. lVhat is the direction of the total acceleration at this 
instance? lVhat is the radius of the curvature? Suppose the car has 
a height of 2 meters and a width of 1.6 meters, is there any danger 
of toppling over? 

Let () be the angle between the acceleration vector and the veloc­
ity vector, and let a be the magnitude of the total acceleration. In the 
intrinsic coordinates, the velocity is v =set= 30et. The accelera.tion 
is given by 

·2 

a= set+ ~en= a(cos8et + sin8en)· 
p 

Therefore, we have 

s2 302 

- = - = a sin() = 5, 
p p 
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or the instantaneous radius of curvature is p = 302/5 = 180m. \-Ve 
know that the magnitude of the acceleration is a = v22 + 52 = J29. 
The angle is 

5 
(} = tan- 1 '2 ~ 68.20°. 

In addition, we can assume that the centre of gravity is approx­
imately at its geometrical centre. Thus, the centre is 1m above the 
road surface and 0.8m from the edges of the outer wheels. If we take 
the moment about the axis through the two contact points of the 
outer wheels, we have the total moment 

v2 
1 X 1\t[-- 0.8Mg ~ -2.8A1 < 0, 

p 

where J\tl is the mass of the car. There is no danger of toppling over. 
However, if the car speeds up to v = 42 m/s (about 95 miles per 
hour), there is a danger of toppling over when the moment of the 
weight is just balanced by the moment of the centripetal force. 0 

2.2.3 Line Integral 

I 
ldy 
I ________ _. 

dx 

ds = Jdx'l + dy'l 

Figure 2.5: Arc length along a curve. 

An important class of integrals in this context is the line 
integral which integrates along a curve r(x, y, z) = xi+ yj + zk. 
For example, in order to calculate the arc length L of curve r 
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as shown in Figure 2.5, we have to use the line integral. 

L = [s ds = [s J dx2 + dy2 = 1x 
}~ ~0 xo 

(2.41) 

0 Example 2.9: The arc length of the parabola y(x) = tx2 from 
x = 0 to x = 1 is given by 

L = 1' v't + y'2dx = 1' v't + x2dx 

= ~[x~ + ln(x + ~>{ 
1 = 2 [V2 -ln(V2 -1)] ~ 1.14779. 

2.2.4 Three Basic Operators 

Three important operators commonly used in vector analysis, 
especially in fluid dynamics, are the gradient operator (grad or 
V), the divergence operator ( div or V ·) and the curl operator 
(curl or Vx). 

Sometimes, it is useful to calculate the directional derivative 
of a function ¢ at the point ( x, y, z) in the direction of n 

a¢ a¢ a¢ 8¢ 
an = n · V¢ = ax cos( a)+ ay cos(f3) + 8z cos( I), (2.42) 

where n = (cosa,cos{3,cos1) is a unit vector and o.,f3,1 are 
the directional angles. Generally speaking, the gradient of any 
scalar function¢ of x, y, z can be written in a sin1ilar way, 

(2.43) 

This is equivalent to applying the del operator V to the scalar 
function¢ 

r7 8. 8. 8k 
v = -1+-J+-. ax ay az 
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The direction of the gradient operator on a scalar field gives a 
vector field. The gradient operator has the following properties: 

\l(o:'l/J+/3¢) = o:\11/J+/3\1¢, \7(1/J¢) = 1/J\14>+¢\11/J, (2.45) 

where a, (3 are constants and 1/J, 4> are scalar functions. 
For a vector field 

u(x, y, z) = ut(x, y, z)i + u2(x, y, z)j + u3(x, y, z)k, (2.46) 

the application of the operator \1 can lead to either a scalar field 
or a vector field, depending on how the del operator applies to 
the vector field. The divergence of a vector field is the dot 
product of the del operator \1 and u 

d
. t"'7 8ut 8u2 8u3 
lVU= v ·U=-+-+-

8x oy oz' (2.47) 

and the curl of u is the cross product of the del operator and 
the vector field u 

i j k 
curl u = \1 x u = 

1:) 1:) {) 
(JX (JY IE (2.48) 

Ut u2 u3 

It is straightforward to verify the following useful identities 
associated with the \1 operator: 

\1 · \1 X U = 0, (2.49) 

\1 X \11/J = 0, (2.50) 

\1 X (1/Ju) = 1/J\1 Xu+ (\11/J) XU, (2.51) 

'V· (1/Ju) = 1/J\1· u + (\11/J) · u, (2.52) 

\1 x (\1 x u) = \1(\1 · u) - \72u. (2.53) 

One of the most common operators in engineering and sci­
ence is the Laplacian operator is 

2 82w 82w 82w 
\1 w = \1. ('Vw) = 8x2 + 8y2 + 8z2 , (2.54) 
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for Laplace's equation 

(2.55) 

In engineering mathematics, it is sometimes necessary to ex­
press the Laplace equation in other coordinates. In cylindrical 
polar coordinates (r, </>, z), we have 

\7. u = ~ 8(rur) + ~ 8ucp + 8u:: 
r 8r r 8</> 8z · 

(2.56) 

The Laplace equation becomes 

(2.57) 

In spherical polar coordinates (r, 8, ¢), we have 

\7. u = 1 82(r2
ur) + 1 8(sin8ue) + _1_8uct> (2.58) 

r2 8r2 r sin 8 88 r sin 8 8<1> · 

The Laplace equation can be written as 

(2.59) 

2.2.5 Some Important Theorems 

The Green theorem is an important theorem, especially in fluid 
dynamics and the finite element analysis. For a vector field 
Q = ui + vj in a 2-D region n with the boundary r and the unit 
outer normal nand unit tangent t. The theorems connect the 
integrals of divergence and curl with other integrals. Gauss's 
theorem states: 

Jjfn(v. Q)dn = Jfs Q. ndS, (2.60) 

which connects the volume integral to the surface integral. 
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Another important theorem is Stokes's theorem: 

Jfs(v x Q). kdS = £ Q. tdr = £ Q. dr, (2.61) 

which connects the surface integral to the corresponding line 
integral. 

In our simple 2-D case, this becomes 

f [ [ 8v 8u 
(udx + vdy) = J ln (

0
x- {)y)dxdy. (2.62) 

For any scalar functions 'l/J and ¢, the useful Green's first 
identity can be written as 

J 'l/JV</>dr = { (,PV2¢ + V'l/1 · V¢)d0., (2.63) !on ln 
where dO. = dxdydz. By using this identity twice, we get 
Green's second identity 

2.3 Applications 

In order to show the wide applications of vector analysis, let 
us apply them to study the mechanical and flow problems. 

2.3.1 Conservation of Mass 

The mass conservation in flow mechanics can be expressed in 
either integral form (weak form) or differential form (strong 
form). For any enclosed volume n, the total mass which leaves 
or enters the surface S is 

fspu · dA, 

where p(x, y, z, t) and u(x, y, z, t) are the density and the ve­
locity of the fluid, respectively. The rate of change of mass in 
n is 
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The n1ass conservation requires that the rate of loss of mass 
through the surface S is balanced by the rate of change in n. 
Therefore, we have 

Using Gauss's theorem for the surface integral, we have 

In V · (pu)dV + ! In pdV = 0. 

Interchange of the integration and differentiation in the second 
term, we have 

18p [- + V · (pu)]dV = 0. 
n 8t 

This is the integral form or weak form of the conservation of 
mass. This is true for any volume at any instance, and subse­
quently the only way that this is true for all possible choice of 
n is ap 

8t+V·(pu)=0, 

which is the differential form or strong form of mass conser­
vation. The integral form is more useful in numerical meth­
ods such as finite volume methods and finite element methods, 
while the differential form is more natural for mathmnatical 
analysis. 

2.3.2 Saturn's Rings 

We all know that Saturn's ring system ranks among the most 
spectacular phenomena in the solar system. The ring systen1 
has a diameter of 270,000 km, yet its thickness does not ex­
ceed 100 meters. The sizes of particles in the rings vary from 
centimeters to several meters, and this size distribution is con­
sistent with the distribution caused by repeated collision. The 
ring system has very complicated structures. One natural ques­
tion is why the formed structure is a ring system, why not a 
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spherical shell system? This is a challenging topic which has 
not yet fully understood. However, under some reasonable as­
sumptions, we can understand why the ring system is so. 

When the debris particles surrounding a planet will ulti­
mately settle into flat circular rings or disks, which are the 
natural consequence of energy dissipation in rotating systems. 
The interparticle collisions dissipate energy while conserving 
the total angular momentum. Laplace in 1802 showed that 
such rings could not be solid because the tensile strength of 
the known materials was too small to resist tidal forces from 
Saturn. Later, Niaxwell in 1890 showed that a fluid or gaseous 
ring was unstable, therefore, the rings must be particulate. 

Suppose the whole particulate system consists of N par­
ticles (i = 1, 2, ... , N). Its total angular momentum is h. By 
choosing a coordinate system so that ( x, y) plane coincides with 
the plane of the rings, and the z-axis (along k direction) is nor­
mal to this plane. If we now decompose the velocity of each 
particle into Vi = (vir, Vie, Viz), the total angular momentum is 
then 

N 

h = k · [L miri x vi] 
i=l 

N N N 

= L mi(ri X Viz)· k + L mi(ri x Vir)· k + L mi(ri x Vie)· k. 
i=l i=l i=l 

(2.65) 
The first two terms disappear because Viz is parallel to k and 
axial velocity does not contribute to the angular momentum. 
So only the tangential terms are non-zero, and we have 

N 

h = L mirivie· 
i=l 

The total mechanical energy is 
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where 1/J(ri) is the potential per unit mass due to Saturn's grav­
ity. The interparticle collisions will dissipate the energy, there­
fore, the system will evolve towards an energy minimum. From 
both expressions for h and E, we can see that the minimization 
of E while h is held constant requires that Viz ~ 0 and vie ~ 0. 
This means that the collisions dissipate energy while flattening 
the system into a disk or rings. 

Now let us see why the minimization of the rotational en­
ergy will also lead to the same conclusion of ring formation. 
Loosely speaking, we can assume that the angular velocity 
w = iJ is almost the same for all particles as t ~ oo (or any 
reasonable long time) so that collisions are no longer significant 
or the rate of energy dissipation is small. If there are differ­
ent angular velocities, one particle may move faster and ulti­
mately collides with other particles, subsequently redistribut­
ing or changing its angular velocity. If we further assume that 
the potential energy does not change significantly (this is true 
if the particles do not n1ove significantly along the radial di­
rection), thus the minimization of total energy leads to the 
minimization of the total rotational energy. 

This will essentially lead to a quasi-steady state. With these 
assumptions, we have Vie = TiW. Therefore, the angular mo­
mentum becomes 

h = :Lmirlw = Iw, 
i=l 

N 

I= :Lmirl, 
i=l 

where I the moment of inertia of the particulate system. The 
total rotational energy is 

1 N 2 1 2 1 h2 
T= 2 ~miriw = 2Iw = 2T ~ Tmin· 

l=l 

In order to minimize T, we have to maximize I because h is 
constant. For a disk with a radius a, a thickness t <<a and the 
total mass m, we have 

I= !v r 2dm = t foR r 2prdr fo2
" dO= 21ftp foR r3dr = 1ftp ~

4

. 
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Using the density p = mj(t1r R2 ), we have 

1 2 
/disk= 2mR. 

2.3 Applications 

If all the mass is concentrated at a ring, we have 

Similarly, for a solid ball with the same mass and same 
radius R, we have 

2 2 
!ball= 5mR. 

For a spherical shell, we have 

Therefore, we have 

2 2 
!sphere = 3mR · 

Iring > /disk > !sphere > !ball· 

This means that the total rotational energy is minimized if the 
particle system evolves into a ring or at least a disk. This is 
probably the main reason why the planetary system and rings 
are formed. 
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Chapter 3 

Matrix Algebra 

3.1 Matrix 

1\tiatrices are widely used in almost all engineering subjects. A 
matrix is a table or array of numbers or functions arranged in 
rows and columns. The elements or entries of a n1atrix A are 
often denoted as aii. A matrix A has m rows and n columns, 

(3.1) 

we say the size of A is m by n, or m x n. A is square if m = n. 
For example, 

( 1 2 3) 
A= 4 5 6 ' B= 

( 

ex 

-icosx 
sinx) 

eiO ' 
(3.2) 

and 

(3.3) 

where A is a 2 x 3 matrix, B is a 2 x 2 square matrix, and u is 
a 3 x 1 column matrix or column vector. 
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The sum of two matrices A and B is only possible if they 
have the same size m x n, and their sum, which is also m x n, is 
obtained by adding corresponding entries 

C=A+B, (3.4) 

where (i = 1, 2, ... , m;j = 1, 2, ... , n). We can multiply a matrix 
A by a scalar a: by multiplying each entry by a:. The product 
of two matrices is only possible if the number of columns of A 
is the same as the number of rows of B. That is to say, if A is 
mxn and B is nxr, then the product Cis mxr, 

n 

Ctj = (AB)ii = L aikbki· 
k=l 

(3.5) 

n 
~ 

If A is a square matrix, then we have An = AA ... A. The 
multiplications of matrices are generally not commutive, i.e., 
AB "# BA. However, the multiplication has associativity 
A(uv) = (Au)v and A(u + v) =Au+ Av. 

The transpose AT of A is obtained by switching the posi­
tion of rows and columns, and thus AT will be nxm if A is 
mxn, (aT)ij = aii,(i = 1,2, ... ,m;j = 1,2, ... ,n). In general, 
we have 

(3.6) 

The differentiation and integral of a matrix are done on 
each member element. For example, for a 2 x 2 matrix 

dA . ( dau da12 ) --A- dt dt dt - - da21 ~ ' 
(If'"" dt 

(3.7) 

and 

(3.8) 

A diagonal matrix A is a square matrix whose every entry 
off the main diagonal is zero ( aii = 0 if i "# j). Its diagonal 
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elements or entries may or n1ay not have zeros. For example, 
the matrix 

( 
1 0 0) 

I= 0 1 0 
0 0 1 

(3.9) 

is a 3 x 3 identity or unitary matrix. In general, we have 

AI=IA=A. (3.10) 

A zero or null matrix 0 is a matrix with all of its elements being 
zero. 

3.2 Determinant 

The determinant of a square matrix A is a number or scalar 
obtained by the following recursive formula or the cofactor or 
Laplace expansion by column or row. For example, expanding 
by row k, we have 

n 

det(A) = IAI = L(-1)k+iakjMkj' 
j=l 

(3.11) 

where Mij is the determinant of a minor matrix of A obtained 
by deleting row i and column j. For a simple 2 x 2 matrix, its 
determinant simply becomes 

(3.12) 

It is easy to verify that the determinant has the following prop­
erties: 

laAI =alAI, IABI = IAIIBI, (3.13) 

where A and Bare the same size (nxn). 
A nxn square matrix is singular if IAI = 0, and is nonsin­

gular if and only if IAI =/= 0. The trace of a square matrix tr(A) 
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is defined as the sum of the diagonal elements, 

n 

tr(A) = L~i = a11 + a22 + ... + G.nn· (3.14) 
i=l 

The rank of a matrix A is the number of linearly indepen­
dent vectors forming the tnatrix. Generally, the rank of A is 
rank( A) ~ min( m, n). For a n x n square matrix A, it is non­
singular if rank( A)= n. 

From the basic definitions, it is straightforward to prove the 
following 

(AB ... z)T = zT ... BT AT, (3.15) 

IAB .... ZI = IAIIBI ... IZI, (3.16) 

tr(A) = tr(AT), (3.17) 

tr(A +B) = tr(A) + tr(B), (3.18) 

tr(AB) = tr(BA), (3.19) 

-1 1 
det(A ) = det(Ar (3.20) 

det(AB) = det(A)det(B). (3.21) 

3.3 Inverse 

The inverse matrix A-t of a square matrix A is defined as 

A - 1 A = AA - 1 = I. (3.22) 

It is worth noting that the unit matrix I has the same size as 
A. The inverse of a square matrix exists if and only if A is 
nonsingular or det(A) =I= 0. From the basic definitions, it is 
straightforward to prove that the inverse of a matrix has the 
following properties 

(A -1)-1 =A, (3.23) 
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and 

(3.24) 

A simple useful formula for obtaining the inverse of a 2 x 2 
matrix is 

( 
a b ) -l 1 ( d 
c d =(ad-be) -c 

(3.25) 

0 Example 9.1: For two matrices 

A= ( ~1 i ~), B = ( ~ ~1 

) , 
3 2 2 1 7 

we have 

where 

V11 = 1 x 1 + 2 x 2 + 3 x 1 = 8, V12 = 1 x ( -1) + 2 x 3 + 3 x 7 = 26; 

V21 = -1 X 1 + 1 X 2 + 0 X 1 = 1, V22 = -1 X ( -1) + 1 X 3 + 0 X 7 = 4; 

V31 = 3 x 1 + 2 x 2 + 2 x 1 = 9, V32 = 3 x ( -1) + 2 x 3 + 2 x 7 = 17. 

Thus, 

( 
8 26) 

AB=V= 1 4 . 
9 17 

However, BA does not exist. The transpose matrices of A and B 
are 

AT= 0 ~1 ~). B T = ( 1 2 1 ) 
-1 3 7 . 

Similarly, we have 
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The inverse of A is 

and the determinant of A is 

detiAI = -9. 

The trace of A is 

tr(A) = A11 + A22 + Aaa = 1 + 1 + 2 = 4. 

0 

3.4 Matrix Exponential 

Sometimes, we need to calculate exp[A], where A is a square 
matrix. In this case, we have to deal with matrix exponentials. 
The exponential of a square matrix A is defined as 

A ~ 1 n 1 2 
e =L..,-A =I+A+-

2
A + .... 

n=O nJ 
(3.26) 

where I is a unity matrix with the same size as A, and A 2 = 

AA and so on. This (rather odd) definition in fact provides 
a n1ethod to calculate the matrix exponential. The matrix 
exponentials are very useful in solving systems of differential 
equations. 

0 Example 9.2: For a simple matrix 

A=U n. 
we have 

( e' eA-- 0 ~). 
For 

A=(: : ), 
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we have 
eA - ( ~(1 + e2t) ~(e2t- 1) ) 

- !(e2t- 1) !(1 + e2t) . 

For a slightly complicated matrix 

A= ( t -w )· w t . 

we have 
A= ( et cosw -et sinw ) 

e et sinw et cosw · 

0 

As you see, it is quite complicated but still straightforward 
to calculate the matrix exponentials. Fortunately, it can be eas­
ily done using a computer. By using the power expansions and 
the basic definition, we can prove the following useful identities 

tA ~ 1 n i
2 

2 
e = L- 1 (tA) =I+ tA + 2A + ... , 

n=O n. 

(if AB = BA), 

!!:_etA = AetA = etA A 
dt ' 

(eA)-1 = e-A, 

det( eA) = etrA. 

3.5 Hermitian and Quadratic Forms 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

The matrices we have discussed so far are real matrices because 
all their elements are real. In general, the entries or elements 
of a matrix can be complex numbers, and the matrix becomes 
a complex matrix. For a matrix A, its complex conjugate A* 
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is obtained by taking the complex conjugate of each of its ele­
ments. The Hermitian conjugate At is obtained by taking the 
transpose of its complex conjugate matrix. That is to say, for 

A = ( :~11, :~~· ::: ) , (3.33) 

we have 

=~~ :::), (3.34) 

and 

(3.35) 

A square matrix A is called orthogonal if and only if A - 1 = 
AT. If a square matrix A satisfies A* = A, it is said to be an 
Hermitian matrix. It is an anti-Hermitian matrix if A* =-A. 
If the Hermitian matrix of a square matrix A is equal to the in­
verse of the matrix (or At = A - 1), it is called a unitary matrix. 

0 Example 9. 9: For a matrix 

a = ( 2 ~ i 3 - 2i 1 ) 
e-t11' 0 1 - i1r ' 

its complex conjugate a• and Hermitian conjugate at are 

a· = ( 2 -:- i 3 + 2i 1 ) 
e1

11' 0 1 + i1r ' 

For the rotation matrix 

A = ( cos 9 sin 9 ) . 
- sin 9 cos 9 · 
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its inverse and transpose are 

-sin() ) 
cos() ' 

and 

Since cos2 () + sin2 
() = 1, we have AT = A -l. Therefore, the original 

matrix A is orthogonal. 0 

A very useful concept in engineering mathematics and com­
puting is quadratic forms. For a real vector qT = ( Q1, Q2, q3, ... , qn) 
and a real square matrix A, a quadratic form 'l,b(q) is a scalar 
function defined by 

'f,b(q) = qT Aq 

= ( Ql Q2 ••• 
( 

An 

Qn ) ~~~ 
Ant 

which can be written as 

n n 

1/J(q) = LL QiAijQj· 
i=l j=l 

) ( l:} 
(3.36) 

(3.37) 

Since 'l/J is a scalar, it should be independent of the coordi­
nates. In the case of a square matrix A, 'l,b might be more 
easily evaluated in certain intrinsic coordinates Qb Q2, ... Qn. 
An important result concerning the quadratic form is that it 
can always be written through appropriate transformations as 

n 

1/J(q) =I: AiQr = AtQI + A2Q~ + ... AnQ~. (3.38) 
i=l 

The natural extension of quadratic forms is the Hermitian form 
that is the quadratic form for complex Hermitian matrix A. 
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Furthermore, the matrix A can be linear operators and func­
tionals in addition to numbers. 

0 Example 9.4: For a vector q = (q1, q2) and the square matrix 

( 1 -2) 
A= -2 1 ' 

we have a quadratic form 

0 

3.6 Solution of linear systems 

A linear system of m equations for n unknowns 

(3.39) 

can be written in the compact form as 

(3.40) 

or simply 
Au=b. (3.41) 

In the case of m = n, we multiply both sides by A -l (this 
is only possible when m = n), 

A-1Au=A-1b, (3.42) 
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1\t/atrix Algebra 3.6 Solution of linear systems 

we obtain the solution 

u=A-1b. (3.43) 

A special case of the above equation is when b =Au, and 
this becomes an eigenvalue problem. An eigenvalue A and cor­
responding eigenvector v of a square matrix A satisfy 

Av = Av, (3.44) 

or 
(A- Al)v = 0. (3.45) 

Any nontrivial solution requires 

au- A at2 

=0, (3.46) 
a21 a22- A 

... ann- A 

which is equivalent to 

(3.47) 

In general, the characteristic equation has n solutions. Eigen­
values have the interesting connections with the matrix, 

n 

tr( A) = L B.ii = A 1 + A2 + ... + A0 • 

i=l 

(3.48) 

For a symmetric square matrix, the two eigenvectors for two 
distinct eigenvalues Ai and Aj are orthogonal vTv = 0. 

Some useful identities involving eigenvalues and inverse of 
matrices are as follows: 

(AB ... z)-1 = z-1 ... a-1 A - 1 , 

Ai = eig(A), 
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3.6 Solution of linear systems 

eig(AB) = eig(BA), 

tr(A) = L Aii = L Ai, 

0 Example 9.5: For a simple 2 x 2 matrix 

its eigenvalues can be determined by 

1

1- A 5 I 
2 4- A = O, 

or 
{1 - A)(4- A) - 2 X 5 = 0, 

which is equivalent to 

(A+ 1){A- 6) = 0. 

Matrix Algebra 

(3.51) 

(3.52) 

(3.53) 

Thus, the eigenvalues are At = -1 and A2 = 6. The trace of A is 
tr(A) =Au + A22 = 1 + 4 = 5 =At + A2. 

In order to obtain the eigenvector for each eigenvalue, we assume 

For the eigenvalue At = -1, we plug this into 

and we have 

or 

1-{-1) 
2 

IA-Allv = 0, 

5 I ( VV2t ) = 0, 4-{-1) 

I ; ~ I ( ~: ) = o, 
which is equivalent to 

or 
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1\t/atrix Algebra 3.6 Solution of linear systems 

This equation has infinite solutions, each corresponds to the vector 
parallel to the unit eigenvector. As the eigenvector should be normal­
ized so that its modulus is unity, this additional condition requires 

v~ + v~ = 1, 

which means 

( -5v2 )2 2- 1 -2- +v2- . 

We have VI = -5/v'29~ v2 = 2/v'29. Thus, we have the first set of 
eigenvalue and eigenvector 

Vt = ( --to ) . 
V29 

At= -1, (3.54) 

Similarly, the second eigenvalue .X2 = 6 gives 

1

1 - 6 5 I ( Vt ) = 0. 
2 4-6 v2 

Using the normalization condition v'f + v~ = 1, the above equation 
has the following solution 

For a linear system Au= b, the solution u =A-lb gen­
erally involves the inversion of a large matrix. The direct in­
version becomes impractical if the n1atrix is very large (say, if 
n > 1000). l\1any efficient algorithms have been developed for 
solving such systems. Gauss elimination and L U decomposition 
are just two examples. 
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Chapter 4 

Complex Variables 

Although all the quantities are real variables in the physical 
world, however, it is son1etimes easy or even necessary to use 
complex variables in mathematics and engineering. In fact, 
the techniques based on complex variables are among the most 
powerful methods for mathematical analysis and solutions of 
mathematical models. 

4.1 Complex Numbers and Functions 

lviathematically speaking, a complex number z is a generalized 
set or the order pair of two real numbers (a, b), written in the 
form of 

z =a+ ib, ·2 1 z =-' a, bE 'R, (4.1) 

which consists of the real part ~(z) =a and the imagery part 
SJ<( z) = b. It can also be written as the order pair of real nunl­
bers using the notation (a, b). The addition and substraction 
of two complex numbers are defined as 

(a+ ib) ± (c + id) =(a± c)+ i(b ±d). (4.2) 

The multiplication and division of two complex numbers are in 
the similar way as expanding polynon1ials 

(a+ ib) · (c + id) = (ac- bd) + i(ad +be), (4.3) 
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4.1 Complex Numbers and Functions Complex Variables 

and 
a + ib ac + bd . be - ad 
-c _+_i_d = c2 + d2 + z-:c2~+-d::::-2 · (4.4) 

Two complex numbers are equal a + ib = c + id if and only if 
a= c and b =d. The complex conjugate or simply conjugate 
z (also z*) of z =a+ ibis defined as 

z =a- ib. (4.5) 

The order pair (a, b), similar to a vector, implies that a 
geometrical representation of a complex number a + ib by the 
point in an ordinary Euclidean plane with x-axis being the 
real axis and y-axis being the imaginary axis (iy). This plane 
is called the complex plane. This representation is often called 
the Argand diagram (see Figure 4.1). The vector representation 
starts from (0, 0) to the point (a, b). The length of the vector 
is called the magnitude or modulus or the absolute value of the 
complex number 

r = lzl = v' a2 + b2. (4.6) 

Figure 4.1: Polar representation of a complex number. 

The angle () that the vector makes with the positive real 
axis is called the argument (see Fig 4.1), 

() = arg z. (4.7) 

In fact, we may replace () by () + 2n7r ( n E N). The value range 
-1r < () :::; 1r is called the principal argument of z, and it is 
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Complex Variables 4.1 Complex Numbers and Functions 

usually denoted as Argz. In the complex plane, the complex 
number can be written as 

z = rei() = r cos( 0) + ir sin( 0). (4.8) 

This polar form of z and its geometrical representation can 
result in the Euler's formula which is very useful in the complex 
analysis 

ei6 = cos(O) + isin(O). (4.9) 

The Euler formula can be proved using the power series. For 
any z E C, we have the power series 

z2 zn 
ez = 1 + z + 2f + ... + ~ + ... , 

and for a special case z = iO, we have 

ilJ 1 . 0 02 i03 
e = + z - 2! + 31 - ... , 

02 03 
= (1- 2f + ... ) + i(O- 3f + ... ). 

Using the power series 

and 

03 os 
sin 0 = 0 - - + - - ... , 

3! 51 

02 04 
cos 0 = 1 - - + - - ... , 

2! 4! 

(4.10) 

( 4.11) 

(4.12) 

(4.13) 

we get the well-know Euler's formula or Euler's equation 

e ilJ = cos 0 + i sin 0. (4.14) 

For 0 = 1r, this leads to a very interesting formula 

(4.15) 

If we replace 0 by -0, the Euler's formula becomes 

e -ilJ = cos( -0) + i sin( -0) = cos 0 - i sin 0. (4.16) 
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4.1 Complex Numbers and Functions Complex Variables 

Adding this equation to ( 4.14), we have 

ei0 + e-iO = 2 cos 8, ( 4.17) 

or 
eiO + e-iO 

cos8 = 
2 

(4.18) 

Similarly, by deducting (4.16) from (4.14), we get 

eiO- e-iO 
sin8 = 

2
i ( 4.19) 

For two complex numbers z1 = r 1 ei01 and z2 = r2ei02 , it is 
straightforward to show that 

ZJZ2 = r1r2ei(o 1+02
) = r1r2[cos(a1 + a2) + isin(at + a2)], 

( 4.20) 
which can easily be extended to get the well-known de l\1oivre's 
formula 

[cos( B)+ isin(8)r = cos(n8) + isin(n8). (4.21) 

0 Example 4.1: Find z4 if z = 1 + J3i. lVe can evaluate it by 
direct calculation 

z4 = (1 + J3i)4 = [(1 + J3i)2
)
2 = [1 - 3 + 2J3i) 2 

= 22
( -1 + v'3i)2 = 4(1 - 3- 2v'3) = -8- 8v'3i. 

lVe can also use Moivre's formula. The modulus of z is r = lzl = 

V12 + J3
2 = 2. The argument()= tan- 1 f = 7r/3 = 60°. Thus, 

z = 2e7rf3 . We now have 

z4 = 24e47r/J = 16(cos 411" + isin 411") 
3 3 

= 16( -~- v; i) = -8- 8v'3i, 

which is exactly the same result as we obtained earlier. The second 
method becomes much quicker if you want to evaluate (say) z 100 . 

0 
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Complex Variables 4.2 Hyperbolic Functions 

5~---,~----~----~----~----~----~ 
\ 

\ 
~ 

\ 
\ 

' ' ' ' ' ' ' ... 

>C -·-·---~-·-·-·- --~ 0 c 
u; 

--sinh 
--- cosh 
·-·- tanh 

-5 
-3 -2 -1 0 1 2 3 

X 

Figure 4.2: Hyperbolic functions. 

4.2 Hyperbolic Functions 

Hyperbolic functions occur in many applications and they can 
be thought as the complex analogues of trigonometric func­
tions. The fundamental definitions are 

and 

ex- e-x 
sinhx = 

2 

sinhx 
tanhx = --h-~ 

COS X 

ex+ e-x 
coshx = 

2 
, 

1 
coth x = --h-. 

tan x 

(4.22) 

(4.23) 

Figure 4.2 shows the variation of sinh, cosh, and tanh. If 
we replace x by ix and use Euler's formula, then we have 

eix _ e-ix 
sinh ix = 

2 

1 [( . . ) ( . . )] . . = 2 COSX + ZSlnX - COSX -ZSlnX = ZSlllX. (4.24) 
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4.2 Hyperbolic Functions Complex Variables 

Similarly, we have 

1 ° 0 

cosh ix = -(ezx + e-zx) 
2 

= ~[(cosx + isinx) + (cosx- isinx)] = cosx. 

In a similar fashion, we can also prove that 

cosix = coshx, sin ix = i sinh x. 

Some identities are as follows: 

cosh2 x- sinh2 x = 1, 

sinh 2x = 2 sinh x cosh x, 

and 
cosh 2x = sinh2 x + cosh2 x. 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

0 Example 4.2: Prove that cosh2 x- sinh2 x = 1. From the 
definitions, we have 

and 

Thus, we have 

1 
= 4[2- (-2)) = 1. 

0 

The inverses of hyperbolic functions are defined in a similar 
way as trigonometric functions. For example, y = cosh x, its 
inverse is defined as x = cosh -t y. From the basic definitions, 
we have 

sinhx + coshx =ex. (4.30) 
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Complex Variables 4.3 Analytic Functions 

Using sinhx = Vcosh2 x- 1, we have 

Vcosh2 x- 1 + coshx =ex, ( 4.31) 

or 

(4.32) 

which gives 

4.3 Analytic Functions 

Analytic Functions 

Any function of real variables can be extended to the function 
of complex variables in the same fonn while treating the real 
numbers x as x + iO. For example, f ( x) = x2 , x E 'R becomes 
f ( z) = z2 , z E C. Any complex function f ( z) can be written as 

f(z) = f(x + iy) = ~(f(z)) + ir;s(J(z)) 

= u(x, y) + iv(x, t), (4.34) 

where u(x, y) and v(x, y) are real-valued functions of two real 
variables. 

A function f ( z) is called analytic at z0 if f' ( z) exists for all z 
in smne €-neighborhood of zo, that is to say, it is differentiable 
in some open disk lz- z01 < f. If f(z) = u + iv is analytic at 
every point in a domain n, then u(x, y) and v(x, y) satisfying 
the Cauchy-Riemann equations 

8u 
8x 

8v 
8y' 

(4.35) 

Conversely, if u and v of f ( z) = u + iv satisfy the Cauchy­
Riemann equation at all points in a domain, then the complex 
function f(z) is analytic in the same domain. For example, the 
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4.3 Analytic Functions Complex Variables 

elementary power function w = zn, ( n > 1) is analytic on the 
whole plane, w = pei(j>, z = rei9 , then 

p = rn, 4> = n8. (4.36) 

The logarithm is also an elementary function w = In z 

In z =In lzl + i arg(z) =In r + i(8 + w1rk), ( 4.37) 

which has infinitely many values, due to the multiple values of 
8, with the difference of 21rik(k = 0, ±1, ±2, ... ). If we use the 
principal argument Argz, then we have the principal logarithm 
function 

Ln(z) =In lzl + Argz. (4.38) 

If we differentiate the Cauchy-Riemann equations, we have 
fJ2uj8x8y = 82uj8y8x. After some calculations, we can reach 
the following theoren1. For given analytic function f(z) 
u + iv, then both u and v satisfy the Laplace equations 

(4.39) 

This is to say, both real and imaginary parts of an analytic 
function are harmonic. 

A very interesting analytical function is the Riemann zeta­
function ((s), which is defined by 

00 1 
((s) = ~ -, L- ns 

n=l 

(4.40) 

where s is a complex number with its real part more than unity. 
That is s E C and ~(s) > 1. This function (infinite series) is 
analytic, and it can be extended for all complex numbers s =I= 1. 
For example, 

1 1 7r2 

((2) = 1 + 22 + 32 + ... = 6' ( 4.41) 

but 
1 1 1 

((1) = 1 + 2 + 3 + 4 + ... = 00. (4.42) 
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Complex Variables 4.3 Analytic Functions 

This ((s) function has trivial zeros s = -2, -4, -6, ... and it 
also has non-trivial zeros. 

There is a famous unsolved problem, called the Riemann 
hypothesis, related to this function. The Riemann hypothesis 
conjectured by Bernhard Reimann in 1859 states that all real 
parts of any non-trial zero of the Riemann zeta-function ((s) 
are !· That is to say, all the non-trivial zeros should lie on a 
straight lines= ! + iy. This is a-million-dollar open problem 
as the Clay Mathematical Institute in 2000 offered a million 
dollars to search for a proof, and yet it still remains unsolved. 

Laurent Series 

For an analytic function p(z), one of important properties is 
the singularity such as the pole. If p( z) can be written as 

q(z) 
p(z) = ( )n' z- zo 

(4.43) 

where n > 0 is a positive integer while q(z) =/= 0 is analytic 
everywhere in the neighbourhood containing z = zo, we say 
that p( z) has a pole of order n at z = z0 . The above definition 
is equivalent to say that the following limit is finite 

lim [p(z)(z- zot] = (, 
z-zo 

11(11 < oo, ( E C. (4.44) 

Any analytic function f ( z) can be expanded in terms of the 
Taylor series 

( 4.45) 

This expansion is valid inside the analytic region. However, 
if the function f ( z) has a pole of order n at z = zo and it is 
analytic everywhere except at the pole, we can then expand the 
function p(z) = (z-z0 )n f(z) in the standard Taylor expansion. 

69 



4.4 Complex Integrals Complex Variables 

This means that original function f ( z) can be written as a 
power series 

!( ) 
O_n O_t 

z=( ) + ... +( ) z-zon z-zo 

oo(z- zo) + ... + ok(z- zo)k + ... , (4.46) 

which is called a Laurent series, and it is an extension of the 
Taylor series. In this series, it is often assumed that O-n =F 0. 
The tern1s with the inverse powers a-n/(z-zo)n+ ... +a-t/(z­
zo) are called the principal part of the series, while the usual 
terms ao(z- zo) + ... + ok(z- zo)k + ... are called the analytic 
part. 

Furthermore, the most in1portant coefficient is probably 
O-t which is called the residue of f(z) at the pole z = zo. 
In general, the Laurent series can be written as 

00 

f(z) = L ok(z- zo)k, (4.47) 
k=-n 

where n may be extended to include an infinite number of terms 
n-+ -oo. 

4.4 Complex Integrals 

Given a function f ( z) that is continuous on a piecewise smooth 
curve r, then the integral over r, fr f(z)dz, is called a contour 
or line integral of f ( z). This integral has similar properties as 
the real integral 

frlof(z) + fig(z)]dz = o £ f(z)dz + .8£g(z)dz. (4.48) 

If F(z) is analytic and F'(z) = f(z) is continuous along a curve 
r, then 

l f(z)dz = F[z(b)]- F[z(a)]. (4.49) 
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Complex Variables 4.4 Complex Integrals 

Cauchy's Integral Theorem 

We say a path is simply closed if its end points and initial 
points coincide and the curve does not cross itself. For an 
analytic function f(z) = u(x, y) + iv(x, y), the integral on a 
sin1ply closed path 

I= lr f(z)dz = fr (u + iv)(dx + idy)] 

= fr (udx- vdy) + i fr (vdx + udy). (4.50) 

By using the Green theorem, this becomes 

[ 8u av . [ 8u 8v 
I = Jn (- ay - ax )dxdy + z Jn (ax - ay )dxdy. ( 4.51) 

Fron1 the Cauchy-Riemann equations, we know that both in­
tegrals are zero. Thus, we have Cauchy's Integral Theorem, 
which states that the integral of any analytic function f(z) on 
a simply closed path r in a simply connected domain n is zero. 
That is fr f(z)dz = 0. 

SS(z) 

Figure 4.3: Contours for Cauchy integrals. 

This theorem is very important as it has interesting conse­
quences. If the close path is decomposed into two paths with 
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4.4 Complex Integrals Complex Variables 

reverse directions r1 and r2 (see Figure 4.3), then r1 and -r2 
form a close path, which leads to 

{ f(z)dz = f f(z)dz. lr1 lr2 (4.52) 

That is to say that the integrals over any curve between two 
points are independent of path. This property becomes very 
useful for evaluation of integrals. In fact, this can be extended 
to the integrals over two closed paths r and -y such that -y is a 
very small circular path inside r. Using a small cut with two 
curves C1 and C2 so that these two curves combine with r and 
-y form a closed contour (see Figure 4.3), the Cauchy integral 
theorem implies that 

fr f(z)dz = L f(z)dz, (4.53) 

since the contribution from the cut is zero. 
For an analytic function with a pole, we can make the con­

tour -y sufficiently small to enclose just around the pole, and 
this makes the calculation of the integral much easier in some 
cases. 

For the integral of p( z) = f ( z) / ( z - zo) over any simply 
closed path r enclosing a point zo in the domain n, 

I= frp(z)dz, (4.54) 

we can use the Laurent series for p( z) 

a-1 ) ( k p(z) = ( ) +ao(z-zo + ... +ak z-zo) + ... , (4.55) z- zo 

so that the expansion can be integrated term by term around 
a path. The only non-zero contribution over a small circular 
contour is the residue a-1· We have 

I= f p(z)dz = 21ria-1 = 21ri Res[p(z)]j , k ~ 
(4.56) 
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which can be written in terms of f(z) as 

1 i f(z) -
2 

. --dz = f(zo). 
1rz r z- zo 

(4.57) 

Similarly, this can be extended for higher derivatives, and we 
have 

j f(z) dz = 21rij(n)(zo). 
Jr (z- zo)n+l nl 

-00 00 

Figure 4.4: Contour for the integral J(o, (3). 

Residue Theorem 

For any analytic f ( z) function in a domain n except isolated 
singularities at finite points Z1, z2, ... , ZN, the residue theorem 
states 

N i f(z)dz = 21fi L Resf(z)lzk' 
r k=t 

where r is a simple closed path enclosing all these isolated 
points. If f(z) has a pole of order Nat zo, the following forn1ula 
gives a quick way to calculate the residue 

_ 1 . dN-t [(z- zo)N f(z)] 
Resf(z)lzo - (N- 1)1 }.!...~o dzN-1 . (4.58) 

The residue theoren1 serves a powerful tool for calculating 
some real integrals and summation of series, especially when 
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the integrand is a function of sin and cos that can be changed 
into a complex integral. The real integral f~oo 1/J(x)dx becomes 
27ri multiplying the sun1 of the residues of 1/J(x) at the poles in 
the upper half-space. 

0 Example 4,.9: In order to evaluate the integral 

it is necessa1y to construct a contour (see Figure 4.4). As the function 
</> = ei

02< / (/34 + (2 ) has two poles ( = +i/32 and -i/32 and only one 
pole ( = +i/32 is in the upper half plane, we can construct a contour 
to encircle the pole at ( = i{J2 by adding an additional arc at the 
infinity (( --+ oo) on the upper half plane. Combining the arc with 
the horizontal line from the integral limits from -oo to oo along the 
(-axis, a contour is closed. Hence, we have 

eio2c; /(( + ij32) f(() 
4> = ( - i(32 = ( - ij32 ' 

where f(() = eio
2

c; /(( + i/32). Using the residue theorem, we have 

In a special case when o = 0, we have 

f oe 1 1r 

2 j34 d( = /l2. 
-00 ( + fJ 

Another important topic in complex variables is the confor­
mal mapping. The essence of a conformal mapping 

w = f(z), z,w EC, (4.59) 

is that this mapping preserves the angles between curves and 
their orientations. One of the widely used mappings is 1\tlobius 
linear fractional transformation 

az+f3 
W= ' 

"fZ + 8 
(4.60) 

74 



Complex Variables 4.4 Complex Integrals 

By choosing the appropriate coefficients o., (3, "/, {J E C, this 
mapping can include all major geometrical transformations such 
as translations, rotations, inversion, and expansions and con­
tractions. Conformal mappings are useful in solving steady­
state problems involving harmonic functions by transforming 
the problem from a complicated geon1etrical domain to a reg­
ular domain such as circles and rectangles, and subsequently 
the techniques based on conformal mapping are widely used in 
solving Laplace's equation in engineering. 
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Chapter 5 

Ordinary Differential 
Equations 

1viost n1athematical models in engineering are formulated in 
terms of differential equations. If the variables or quantities 
(such as velocity, temperature, pressure) change with other in­
dependent variables such as spatial coordinates and tin1e, their 
relationship can in general be written as a differential equation 
or even a set of differential equations. 

5.1 Introduction 

An ordinary differential equation (ODE) is a relationship be­
tween a function y( x) of an independent variable x and its 
derivatives y', y", ... , y(n). It can be written in a generic form 

,y,( I II (n)) _ Q 
';l' x,y,y,y , ... ,y - . (5.1) 

The solution of the equation is a function y = f ( x), satisfying 
the equation for all X in a given domain n. 

The order of the differential equation is equal to the order 
n of the highest derivative in the equation. Thus, the Riccati 
equation: 

y' + a(x)y2 + b(x)y = c(x), (5.2) 
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5.2 First Order ODEs Ordinary Differential Equations 

is a first order ODE, and the following equation of Euler-type 

(5.3) 

is a second order. The degree of the equation is defined as the 
power to which the highest derivative occurs. Therefore, both 
Riccati equation and Euler equation are of the first degree. An 
equation is called linear if it can be arranged into the form 

an(x)y(n) + ... + a1 (x)y' + ao(x)y = ¢(x), (5.4) 

where all the coefficients depend on x only, not on y or any 
derivatives. If any of the coefficients is a function of y or any 
of its derivatives, then the equation is nonlinear. If the right 
hand side is zero or ¢(x) = 0, the equation is homogeneous. It 
is called nonhomogeneous if ¢( x) =I= 0. 

The solution of an ordinary differential equation is not al­
ways straightforward, and it is usually very complicated for 
nonlinear equations. Even for linear equations, the solutions 
can only be obtained for a few simple types. The solution of 
a differential equation generally falls into three types: closed 
form, series form and integral form. A closed form solution is 
the type of solution that can be expressed in terms of elemen­
tary functions and some arbitrary constants. Series solutions 
are the ones that can be expressed in terms of a series when a 
closed-form is not possible for certain type of equations. The 
integral form of solutions or quadrature is sometimes the only 
form of solutions that are possible. If all these forms are not 
possible, the alternatives are to use approximate and numerical 
solutions. 

5.2 First Order ODEs 

5.2.1 Linear ODEs 

The general form of a first order linear differential equation can 
be written as 

y' + a(x)y = b(x). (5.5) 
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Ordinary Differential Equations 5.2 First Order ODEs 

This equation is always solvable using the integrating factor 
and it has a closed form solution. 

Multiplying both sides of the equation by explf a(x)dx], 
which is often called the integrating factor, we have 

y'ei a(x)dx + a(x)yei a(x)dx = b(x)ei a(x)dx, (5.6) 

which can be written as 

[yei a(x)dx]' = b(x)ei a(x)dx. (5.7) 

By simple integration, we have 

yei a(x)dx = J b(x)ei a(x)dxdx +C. (5.8) 

So its solution becomes 

y(x) = e- I a(x)dx j b(x)ei a(x)dxdx + ce- I a(x)dx, (5.9) 

where C is an integration constant. The integration constant 
can be determined if extra requirements are given, and these 
extra requirements are usually the initial condition when time 
is zero or boundary conditions at some given points which are 
at the domain boundary. However, the classification of condi­
tions may also depend on the meaning of the independent x. If 
xis spatial coordinate, then y(x = 0) =Yo is boundary condi­
tion at x = 0. However, if x = t means tilne, then y(t = 0) =Yo 
can be thought of as the initial condition at t = 0. Neverthe­
less, one integration constant usually requires one condition to 
determine it. 

0 Example 5.1: l-Ve now try to solve the ordina1y differential 
equation ~~ + ty(t) = -t with an initial condition y(O) = 0. As 
a(t) = t, b(t) = -t, its general solution is 

y(t) = e- I tdt j ( -t)ei tdtdt + ce- I tdt 
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t2 t2 t2 t2 
= -e"TeT +Ge-T= -1 +Ge-T. 

From the initial condition y(O) = 0 at t = 0, we have 

0 = -1 +C, or C=l. 

Thus, the solution becomes 

0 

5.2.2 Nonlinear ODEs 

For some nonlinear first order ordinary differential equations, 
sometimes a transform or change of variables can convert it into 
the standard first order linear equation (5.5). For example, the 
Bernoulli's equation can be written in the generic form 

y' + p(x)y = q(x)yn, (5.10) 

In the case of n = 1, it reduces to a standard first order linear 
ordinary differential equation. By dividing both sides by yn 
and using the change of variables 

we have 

1 
u(x) =-, yn-1 

1 (1- n)y' 
U= ' yn 

u' + (1- n)p(x)u = (1- n)q(x), 

(5.11) 

(5.12) 

which is a standard first order linear differential equation whose 
general solution is given earlier in this section. 

0 Example 5.2: To solve y'(x) + xy = y20 , we first use u(x) = 
1/y19

, and we u' = -19y' jy20 . The original equation becomes 

u'- 19xu = -19, 

whose general solution is 

u(x) = Ae19
x + 1. 
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Therefore, the solution to the original equation becomes 

19 1 
y = Ael9x + 1' or 

0 

5.3 Higher Order ODEs 

Higher order ODEs are more complicated to solve even for the 
linear equations. For the special case of higher-order ODEs 
where all the coefficients an, ... , at, ao are constants, 

any(n) + ... + aty' + aoy = f(x), (5.13) 

its general solution y( x) consists of two parts: the complemen­
tary function Yc( x) and the particular integral or particular 
solution y;(x). We have 

y(x) = Yc(x) + y;(x). (5.14) 

5.3.1 General Solution 

The complementary function is the solution of the linear homo­
geneous equation with constant coefficients and can be written 
in a generic form 

(n) + (n-1) + + I + - 0 anYc an-lYe ··· alYc ao - · (5.15) 

Assuming y = AeAx, we get the polynomial equation of char­
acteristics 

(5.16) 

which has n roots in general. Then, the solution can be ex­
pressed as the summation of various terms Yc(x) = Ek=l CkeAkx 
if the polynomial has n distinct zeros At, ... An. For complex 
roots, and complex roots always occur in pairs A= r ± iw, the 
corresponding linearly independent terms can then be replaced 
by erx[Acos(wx) + Bsin(wx)]. 
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The particular solution y;(x) is any y(x) that satisfies the 
original inhomogeneous equation (5.13). Depending on the 
form of the function f ( x), the particular solutions can take vari­
ous forms. For most of the combinations of basic functions such 
as sin x, cos x, ekx, and xn, the method of the undetermined c~ 
efficients is widely used. For f(x) = sin(ax) or cos(ax), then 
we can try y; = A sin ax+ B sin ax. We then substitute it into 
the original equation (5.13) so that the coefficients A and B can 
be determined. For a polynomial f(x) = xn(n = 0, 1, 2, .... , N), 
we then try y; = A+ Bx + Cx2 + ... + Qxn (polynomial). 
For f(x) = ekxxn, y; = (A+ Bx + Cx2 + ... Qxn)ekx. Sim­
ilarly, f ( x) = ekx sin ax or f ( x) = ekx cos ax, we can use 
y; = ekx (A sin ax + B cos ax). l\!Iore general cases and their 
particular solutions can be found in various textbooks. 

0 Example 5.9: In order to solve the equation y"'(x)- 2y"(x)­
y' ( x) + 2y( x) = sin x, we have to find its complementary function 
Yc(x) and its particular integral y*(x). we first tzy to solve its com­
plementary equation or homogeneous equation 

y"'(x)- 2y"(x)- y'(x) + 2y(x) = 0. 

Assuming that y = AeAx, we have the characteristic equation 

or 
(.X- 1)(.-\ + 1)(.-\- 2) = 0. 

Thus, three basic solutions are ex, e-x and e2x. The general comple­
mentazy function becomes 

As the function f ( x) = sin x, thus we can assume that the particular 
integral takes the form y*(x) = asinx + bcosx. Substituting this 
into the original equation, we have 

(-acosx + bsinx)- 2(-asinx- bcosx) 

-(acosx- bsinx) + 2(asinx + bcosx) = sinx, 
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or 

(b + 2a + b + 2a- 1) sinx + (-a+ 2b- a+ 2b) cosx = 0. 

Thus, we have 
4a + 2b = 1, - 2a + 4b = 0, 

whose solution becomes 

1 
a= 5' 

1 
b = 10' 

Now the particular integral becomes 

y*(x) = ~ sinx + 
1
1
0 

cosx. 

Finally, the general solution 

y = ~sinx + ..!:..cosx + Aex + Be-x + Ce2x. 
5 10 

0 

The methods for finding particular integrals work for most 
cases. However, there are some problems in the case when the 
right-hand side of the differential equation has the same form 
as part of the complementary function. In this case, the trial 
function should include one higher order term obtained by mul­
tiplying the standard trial function by the lowest integer power 
of x so that the product does not appear in any term of the 
complementary function. Let us see an example. 

0 Example 5.4: Consider the equation 

y"(x)- 3y'(x) + 2y(x) =ex. 

Usingy(x) = Ke>..x, we have the characteristic equation 

Its complementary function is 

As the right hand side f ( x) = ex is of the same form as the first term 
of Yc, then standard trial function aex cannot be a particular integral 
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as it automatically satisfies the homogenous equation y"(x)-3y'(x)+ 
2y(x) = 0. We have to tzy y; = (a+ bx)ex first, and we have 

Dividing both sides by ex, we have 

(a+ 2b + bx)- 3(a + b + bx) + 2(a + bx) = 1, 

or 

b = -1. 

As there is no constraint for a, thus we take it to be zero (a= 0 ). In 
fact, any non-zero aex can be absorbed into Aex. Thus, the general 
solution becomes 

0 

5.3.2 Differential Operator 

A very useful technique is to use the method of differential 
operator D. A differential operator D is defined as 

d 
D=­- dx· (5.17) 

Since we know that De>.x = Ae>.x and Dne>.x = Ane>.x, so they 
are equivalent to D .....-. A, and nn .....-. An. Thus, any polyno­
mial P(D) will map to P(A). On the other hand, the integral 
operator n-t = J dx is just the inverse of the differentiation. 
The beauty of using the differential operator form is that one 
can factorize it in the same way as for factorizing polynomials, 
then solve each factor separately. Thus, differential operators 
are very useful in finding out both the complementary func­
tions and particular integral. 

0 Example 5.5: To find the particular integral for the equation 

y""' + 2y = 17e2x, 
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we get 

or 
* 17 2x 

y = D5 +2e 

Since D 5 ~---+ ..\
5 = 25 , we have 

17e2x e2x 

y* = 25 +2 = 2" 
0 

This method also works for sin x, cos x, sinh x and others, 
and this is because they are related to e>.x via sin() = ~ ( ei9 -

e-ie) and coshx =(ex+ e-x)/2. 
Higher order differential equations can conveniently be writ­

ten as a system of differential equations. In fact, an nth-order 
linear equation can always be written as a linear system of n 
first-order differential equations. A linear system of ODEs is 
more suitable for mathematical analysis and numerical integra­
tion. 

5.4 Linear System 

For a linear n order equation (5.15), it can be always written 
as a linear system 

an(X)Y~-1 = -an-1(X)Yn-1 + ... + a1(x)y1 + ao(x)y + ¢(x), 
(5.18) 

which is a system for u = [y Y1 Y2 ... Yn-t]T. 
For a second-order differential equation, we can always write 

it in the following form 

du 
dx = f(u, v, x), 

dv 
dx = g(u, v, x). (5.19) 

If the independent variable x does not appear explicitly in f 
and g, then the system is said to be autonomous. Such a system 
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5.5 Sturm-Liouville Equation Ordinary Differential Equations 

has important properties. For simplicity and in keeping with 
the convention, we use t = x and u = dufdt in our following 
discussion. A general linear system of n-th order can be written 
as 

( ~~ l ( au a12 atn l ( Ut l u2 a21 a22 ... a2n u2 
. - . . . ' . . . . . . . . 

Un ant an2 ... ann Un 

(5.20) 

or 

ii =Au. (5.21) 

If u = vexp(At), then this becomes an eigenvalue problem for 
matrix A, 

(A- Al)v = 0, (5.22) 

which will have a non-trivial solution only if 

det(A -AI) = 0. (5.23) 

5.5 Sturm-Liouville Equation 

One of the commonly used second-order ordinary differential 
equation is the Sturm-Liouville equation in the interval x E 

[a, b] 
d dy 

dx [p(x) dx] + q(x)y + Ar(x)y = 0, (5.24) 

with the boundary conditions 

y(a) + ay'(a) = 0, y(b) + (3y'(b) = 0, (5.25) 

where the known function p( x) is differentiable, and the known 
functions q(x), r(x) are continuous. The para1neter A to be 
determined can only take certain values An, called the eigen­
values, if the problen1 has solutions. For the obvious reason, 
this problem is called the Sturm-Liouville eigenvalue problem. 
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For each eigenvalue An, there is a corresponding solution 
1/J>..n, called eigenfunctions. The Sturm-Liouville theory states 
that for two different eigenvalues Am =/= Am their eigenfunctions 
are orthogonal. That is 

l.P>.~(x)•h.(x)r(x)dx = 0. (5.26) 

or more generally 

ll/1>.~ (x)l/1>.. (x)r(x)dx = Omn· (5.27) 

It is possible to arrange the eigenvalues in an increasing order 

At < A2 < .... < An < ... --+ oo. (5.28) 

Sometimes, it is possible to transform a nonlinear equation 
into a standard linear equation. For example, the Riccati equa­
tion can be written in the generic form 

y' = p(x) + q(x)y + r(x)y2
, r(x) =/= 0. (5.29) 

If r(x) = 0, then it reduces to a first order linear ODE. By 
using the transform 

or 

we have 

where 

P(x) = 

y(x) = 
u'(x) 

r(x)u(x)' 

u(x) = e- J r(x)y(x)dx, 

u"- P(x)u' + Q(x)u = 0, 

r'(x) + r(x)q(x) 
r(x) 
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5.5.1 Bessel Equation 

The well-known Bessel equation 

(5.34) 

is in fact an eigenvalue problem as it can be written as 

l/2 
(xy')' + (x- -)y = 0. 

X 
(5.35) 

Although v can be any real values, but we only focus on the 
case when the values of v are integers. In order to solve this 
equation, we assume that the solution can be written as a series 
expansion in the form 

00 00 

y(x) = xs I: anxn =I: anxn+s, ao =/= 0, (5.36) 
n=O n=O 

where s is a parameter to be determined. If a0 = 0, we can 
always change the value of s, so that the first term of an is not 
zero. Thus, we assume in general ao =/= 0. This method is often 
called the Frobenius method which is essentially an expansion 
in terms of a Laurant series. Thus, we have 

dy 00 

- = L an(n + s)xn+s-1' 
dx n=O 

(5.37) 

(5.38) 

Substituting these expression into the Bessel equation, we have 

00 00 

L(k + s)(k + s- l)anxn+s + L(n + s)anxn+s 
n=O n=O 

00 00 

+ L anxn+s+2 -l/2 L anxn+s = 0. (5.39) 
n=O n=O 
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Equating the coefficients of the same power xn(n = 0, 1, 2, ... ), 
we can get some recurrence relationships. For n = 0, we have 

Since a0 =F 0, we thus have 

s = ±v. 

From n = 1 terms, we have 

or 

at(2s + 1) = 0, 

1 
a1 = 0, (s =F - 2). 

For the rest of terms n = 2, 3, 4, ... , we have 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

an(n + s)(n + s- 1) + an(n + s) + an-2- v2an = 0, (5.44) 

or 
an-2 an-2 

(n + s)2 - v2 = n(n + 2v)' 
(5.45) 

Since we now know that a1 = 0, thus aa =as= a7 = ... = a1 = 
0. All the even terms contain the factor a0 , we finally have 

(5.46) 

where we have used n = 2k = 0, 2, 4, ... so that k = 0, 1, 2, 3, .... 
The function J v 

oo (-l)n 
J v = ~ ~22~n-n-l (~n-+.....;....v_) !-x2~n-+-v ' (5.47) 

is called the Bessel function of the order v. This is the Bessel 
function of the first kind. It has many interesting properties: 

(5.48) 
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00 

I: J, = 1, J-v(x) = ( -1)"' J,(x); (5.49) 
v=-oo 

and 

fox uJo(u)du = xJ1 (x). (5.50) 

There are other properties as well such as the orthogonality 

l xJv(ox)Jv(f3x)dx = 0, (a -:/= /3). (5.51) 

5.5.2 Euler Buckling 

As an example, let us look at the buckling of an Euler column 
which is essentially an elastic rod with one pin-jointed end and 
the applied axial load P at the other end. The column has a 
length of L. Its Young's modulus is E and its second moment 
of area is I= J y2dA =canst (for a given geon1etry). Let u(x) 
be the transverse displacement, the Euler bean1 theory gives 
the following governing equation 

or 
2 p 

a = EI' 

which is an eigenvalue problem. Its general solution is 

u = Asinax + Bcosax. 

(5.52) 

(5.53) 

(5.54) 

Applying the boundary conditions, we have at the fixed end 

(at x = 0), B=O, (5.55) 

and at the free end 

u=O, (at x = L), Asin(aL) = 0. (5.56) 
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Thus we have two kinds of solutions either A = 0 or sin( o.L) = 
0. For A = 0, we have u(x) = 0 which is a trivial solution. So 
the non-trivial solution requires that 

sin( o.L) = 0, (5.57) 

or 
o.L = 0 (trivial), 1r, 27r, ... , n1r, ... (5.58) 

Therefore, we have 

P - 2E/- n27r2EJ 
-a - £2 ' (n=1,2,3, ... ). (5.59) 

The solutions have fixed mode shapes (sine functions) at some 
critical values (eigenvalues Pn)· The lowest eigenvalue is 

7r2EJ 
p* = ----y;-' 

which is the Euler buckling load for an elastic rod. 

5.5.3 Nonlinear Second-Order ODEs 

(5.60) 

For higher-order nonlinear ordinary differential equations, there 
is no general solution technique. Even for relatively simple 
second-order ODEs, different equations will usually require dif­
ferent n1ethods, and there is no guarantee that you can find the 
solution. One of the best methods is the change of variables 
so that the nonlinear equation can be transformed into a lin­
ear ordinary differential equation or one that can be solved by 
other methods. This can be beautifully demonstrated by the 
solution process of finding the orbit of a satellite. 

As the satellite orbits the Earth, the force is purely radial in 
the polar coordinates, therefore, its total angular momentum L 
is conserved. L = mr2 !f/f = const, or r 2iJ = Lfm = h = const. 
The radial acceleration is ar = f- riJ. Using Newton's second 
law of motion and Newton's law of gravity, we have 

m[d
2
r _ r(d8)2 ] = _ GMm 

dt2 dt r2 ' 
(5.61) 
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where M and m are the masses of the Earth and the satellite, 
respectively. G is the universal constant of gravitation. Using 
the conservation of angular momentum so that 

we then have 

L 
h=-, 

m 
(5.62) 

d2r h2 GM 
dt2 - r3 + --;r = 0, (5.63) 

which is a nonlinear equation. By using the change of variables 
u = lfr, the conservation of angular momentum becomes 

(5.64) 

which is equivalent to dt = d(J / ( hu2) and this can be used to 
eliminate t. Then, we have 

dr _ _ _2 du _ -h du 
dt - u dt - d(J ' (5.65) 

and 
d

2
u = dr = -h ~u d(J = -h2u2 ~u 

dt2 dt d82 dt d82 . 
(5.66) 

Now the governing equation becomes 

(5.67) 

or 

(5.68) 

Since this is a second-order linear ordinary differential equation, 
it is straightforward to write down its solution 

u = S + Acos8 + Bcos8 = S[l + ecos(8 + 'l/7)], (5.69) 

where A and B are integration constants, which can be con­
verted into the eccentricity e and the initial phase 'l/J. The final 
solution is 

1 
r-~---~-~ - S[l+ecos(B+'l/1)]' 

(5.70) 
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which corresponds to an ellipse where e is the eccentricity of 
the orbit. If we set the polar coordinates in such a way that 
'l/J = 0 (say, along the n1ajor axis) and one focus at the origin, 
then the equation simply becomes 

h2 
r= ' GM[l + ecos8] 

(5.71) 

which is the orbit for satellites and planets. 
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Chapter 6 

Recurrence Equations 

6.1 Linear Difference Equations 

Differential equations always concern the quantities that vary 
continuously. However, some problems such as finance are con­
cerned with quantities (say, interest rate) that are discrete and 
do not vary continuously, and even the independent variables 
such as time are not continuously counted or measured (in sec­
onds or years). For this type of problem, we need the differ­
ence equation or the recurrence equation as the counterpart in 
differential equations. In fact, there many similarity between 
difference equations and differential equations, especially the 
linear ones. 

A linear difference equation of N-order can generally be 
written as 

aoYn + atYn-1 + a2Yn-2 + ... + aNYn-N = f(n), (6.1) 

where ai(i = 0, ... , 1V) are coefficients which are not functions of 
y. Yn [= y(n)] is the value of the variable y at n = 0, 1, 2, .... If 
f(n) = 0, we say that the difference equation is homogeneous. 
If all the coefficients ai are constant, the equation is called the 
linear equation with constant coefficients (as the counterpart 
in the differential equations). In this book, we only focus on 
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the second-order linear difference equation. Thus, we have 

ayn + bYn-1 + CYn-2 = f(n), (6.2) 

which can also be written as 

(6.3) 

where g(n) = f(n- 1). If f(n) = 0, we say the equation is 
homogeneous. The most fan1ous difference equation is probably 
the recurrence relation 

Yn = Yn-1 + Yn-2, (6.4) 

for the Fibonacci sequence (0, 1, 1, 2, 3, 5, 8, ... ). The recurrence 
equation is valid for n = 2, 3, ... and the initial conditions are 
y(O) = 0, y(1) = 1. 

Similar to the solution procedure of linear ordinary differ­
ential equations, the general solution of a difference equation 
Yn = Un + Pn where Un is the complementary solution to the 
homogeneous equation 

(6.5) 

while Pn is any particular solution of (6.2). 
In order to obtain un, we assume that Un = o:An (similar to 

Yc = Ae>.x for differential equations). Substituting into (6.5), 
we reach a characteristic equation 

aA2 + bA + c = 0. (6.6) 

It has two solutions A1 and A2 in general. Therefore, we have 

un = AA} + BA2. (6.7) 

0 Example 6.6: Find the solution of 

Yn + 3Yn-l + 2Yn-2 = 0. 
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This is a homogeneous equation, we assume Un = O'An, we have 

or (A+ 1){A + 2) = 0. 

Thus, we have A1 = -1 and A2 = -2. Therefore, tl1e general solution 
can be written as Yn = A(-1t + B(-2t. 0 

For given initial values, we can determine the constant in 
the general solution so that an exact expression can be ob­
tained. 

0 Example 6. 7: 
difference equation 

The Fibonacci sequence is governed by the 

Yn = Yn-1 + Yn-2, 

with initial conditions Yo = 0, y1 = 1. This is a homogeneous equa­
tion. The characteristic equation is 

A2
- A -1 = 0, 

whose solution is A= 1±
2
v's. The general solution is therefore 

In order to determine A and B, we first use Yo = 1, we get 

O=A+B. 

For n = 1, Y1 = 1 gives 

1 = A( 1 +2 y5) + B( 1 -2 y5 ). 

Now we have A = 1/ v'5, B = -1/ .;5. The general solution becomes 

= _1 ( 1 + v'5)n __ 1 ( 1 - y5)n 
Yn y'5 2 y'5 2 . 

0 

For finding a particular solution Pn, we can use the similar 
technique used in ordinary differential equations. For f ( n) = 
k = const, we try Pn =a. For f(n) = kn, we try Pn =a+ {3n 
where a and {3 will be determined. For f(n) = k1n, we try 
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Pn = O:')'n. Other forms such as polynomials can be done in a 
similar fashion. 

0 Example 6.8: For the equation 

Yn+t- Yn- 6Yn-t = n, 

its complementary equation is 

Yn+l - Yn - 6Yn-1 = 0, 

and the characteristic equation is 

..\
2

- .X- 6 = 0, or (.X+ 2)(..\- 3) = 0. 

The general complementary solution can now be written as 

Finding any pa.rticular solution requires that we t1y Pn = a+ bn. \-Ve 
now have 

a+ b(n + 1)- (a+ bn)- 6[a + b(n- 1)] = n, 

or 
-6a + 7b- 6bn = n. 

As for any n, this equation is valid, therefore we have a = ;
6

, and 
b = --k· Finally, the general solution is 

y(n) = A(-2)n + B3n- ~- ;
6

. 

6.2 Chaos and Dynamical Systems 

As you may have noticed that the above analysis is mainly 
about the linear equations, what happens to the nonlinear 
equations? The main problem with nonlinear equations is that 
there is no general solution techniques available for most cases. 
Even for the simplest case, the analysis is not easy. In addition, 
the behaviour of nonlinear equations is very complex, even for 
the simplest equations. Often, nonlinear equations may have 
chaotic behaviour under appropriate conditions. 
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Figure 6.1: Variations of Yn for v = 2 and v = 3. 

6.2.1 Bifurcations and Chaos 

In order to show this, we now briefly introduce the concept of 
chaos by studying the following nonlinear difference equation 

Yn+l = VYn(1- Yn), (6.8) 

where v is a constant parameter. This is the well-studied lo­
gistic map, which is essentially an iteration process because all 
the values Y2, Y3, ... can be determined for a given parameter v 
and an initial condition Yt· This is one of the simplest dynanl­
ical systems. This seemingly simple equation is in fact very 
complicated. If you try to use the method to solve the linear 
difference equations discussed earlier, it does not work. 

For a given value v = 2, we can use a computer or a pocket 
calculator to do these calculations. If the initial value Yt = 0 
or Yt = 1, then the system seems to be trapped in the state 
Yn = 0 (n=2,3, ... ). However, if we use a slight difference value 
(say) Yt = 0.01, then we have 

Yt = 0.01, Y2 = 0.0198, Y3 = 0.0388, Y4 = 0.0746, 

Ys = 0.1381, Y6 = 0.2381, Y7 = 0.3628, YB = 0.4623, 

y9 = 0.4972, y10 = 0.5000, y11 = 0.5000, .... (6.9) 
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Figure 6.2: Variations of Yn for v = 3.5 and v = 4. 

Then, the values are trapped or attracted to a single value or 
state Yoo = 0.5000. All the values are then plotted in a graph 
as shown in Figure 6.1. 

If we use a different parameter v = 3 and run the simula­
tions again from the same initial value YI = 0.01, the results 
are also plotted on the right in Figure 6.1. Now we have a dif­
ference phenomenon. The final values do not settle to a single 
value. Instead, they oscillate between two states or two final 
values Yoo = 0.6770 and Yoo* = 0.6560. The iteration system 
bifurcates into two states as the parameter v increases. If we 
do the same simulations again using a different value v = 3.5 
(shown in Figure 6.2), there are four final states. For v = 4, 
every values seems difference, the system is chaotic and the 
values looks like a randmn noise. 

Following exactly the same process but using different val­
ues of v ranging from v = 0.001 to v = 4.000, we can plot out 
the number of states (after 1V = 500 iterations) and then we get 
a bifurcation map shown in Figure 6.3. It gives a detailed map 
about how the system behaves. From the chaotic map, we see 
that for v < 1, the final state is zero (the system is attracted 
to a stable state Yoo = 0). For 1 < v < 3, the system settles 
(or attracts) to a single state. For 3 < v < 3.45, the system 
bifurcates into two states. It seems that the system is attracted 
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Figure 6.3: Bifurcation diagram and chaos . 
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Figure 6.4: Bifurcation and similarity. 

by these discrete states. For this reason, the map is also called 
the attractors of the dynamical system. The system becomes 
chaotic for v ;::: v* where v* ~ 3.57 is the critical value. 

It is a bit surprising for a seemingly determined system 
VYn ( 1 - Yn) --+ Yn+ 1 because you may try many times to simu­
late the same system at the same initial value Yo = 0.01 (say) 
and parameter v. Then, we should get the same set of values 
Yt, Y2, .... You are right. So where is the chaos anyway? The 
problem is that this system is very sensitive to the small vari­
ation in the initial value y0 . If there is a tiny different, say, 
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y0 = 0.01 ± 0.000000001 or even 10-1000 difference, then the 
set of values you get will be completely different, and there is 
no way of predicting the final values (say, Ysoo or Yt,ooo,ooo). 
Since there is always uncertainty in the real world, even the 
computer simulations can only use a finite number of digits, 
so the chaos is intrinsic for nonlinear dynamical systems. In 
fact, there is a famous 'butterfly effect'. It says that the wing 
flip of a butterfly in Africa can cause a tornado in America 
or anywhere. Obviously, this is exaggerated too much, but it 
does provide some vivid picture for the nature of chaos and 
sensitivity to the initial uncertainty in chaotic systems. 

If we study Figure 6.4 closely, we can see there is a sim­
ilarity between the whole map and its certain part (enclosed 
by a box) which is enlarged and plotted on the right in the 
same figure. In addition, the ratio between the lengths of the 
parameter intervals for two successive bifurcation approaches 
the Feigenbaum constant 8F = 4.669 ... , which is universal for 
the chaotic systen1s. 

This self-similarity is one of the typical behaviours of chaotic 
systems and it also occurs in other nonlinear systems such as 

and 
\ . 2 

Yn+l = ASlll Yn, 

which are plotted in Figure 6.5. 

6.2.2 Dynamic Reconstruction 

(6.10) 

(6.11) 

When a nonlinear system becomes chaotic, it seems that it is 
very difficult to understand the behaviour. However, there may 
be some regularity such as attractors and self-similarity as we 
have seen earlier. In some case, it is even possible to reconstruct 
the system itself. 

Suppose we do not know the exact form of the dynami­
cal system, but we do know it only depends on one parameter 
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Figure 6.5: Bifurcation for Yn+1 = A sin Yn and Yn+1 = 
.Xsin2 Yn· 

and we can observe the states Y1 , Y2, ... , Yn (to a certain de­
gree). From our observations, we can actually reconstruct the 
system using the sorted data and plotting Yn versus Yn- 1. If 
there are N observations, we have U = Y2, ... , YN as one set 
and V = Yb Y2, ... , Yn-1 as another set. We plot U versus V, 
then the system can be dynamically reconstructed. For exam­
ple, from the 100 data for the nonlinear system discussed in 
the previous section, the constructed system is a parabola as 
plotted in Figure 6.6. The parabola is essentially the original 
function y(1- y). The mapping is then y ~---+ y(1- y). With a 
free parameter v and discrete time n, we obtain the dynamical 
system 

Yn = VYn-1(1- Yn-1), or Yn+1 = VYn(l - Yn)· (6.12) 

We see that even a simple nonlinear equation in 1-D can 
show the rich complexity of dynan1ical behaviour. Now we 
briefly look at a Lorenz system as a classical example. 

6.2.3 Lorenz Attractor 

The Lorenz attractor was first discovered by Edward Lorenz 
when he studied the weather model in 1963. The Lorenz equa-
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Figure 6.6: Dynamic reconstruction of the nonlinear function. 

Figure 6.7: Lorenz strange attractor. 

tions are 
x = -f3x + yz, 

il = ~(z- y), 

z = ("Y- x)y- z, (6.13) 

where·= ft, and /3, ~' "Y are parameters. Specifically, ~ is the 
Prandtl number, and "Y is the Rayleigh number. 

For certain ranges of parameters, for example f3 = 8/3, ~ = 
10, "Y = 28, the system becomes chaotic. The system moves 
around in a curious orbit in 3-D as shown in Figure 6.7, and the 
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orbit is bounded, but not periodic or convergent. This strange 
characteristic gives the name 'strange' to the attractor, and 
thus the Lorenz strange at tractor. The chaotic map looks like 
a butterfly. 

6.3 Self-similarity and Fractals 

In the bifurcation map of chaotic systems, we have seen the 
self-similarity. This self-similarity is quite universal in many 
phenomena, and it is also linked with the concept of fractals. In 
fact, self-similarity and fractals occur frequently in nature. Two 
classical exa1nples are fern leaves and the pattern of lightening. 
This observation suggests that even if the system is chaotic, 
there is still some pattern or certain regularity in its behaviour, 
and thus chaos is very different from the random noise, even 
though they sometimes may look the same. 

In geometry, we know that a point is zero dimension and a 
line is one dimension. Shnilarly, the dimension for a plane is 
two and the dimension for a volume is three. All these dimen­
sions are integers (0, 1, 2, 3). But there are other possibilities in 
nature that the dimension can be a fraction or a real number. 
This is where the fractals arise. The basic idea of fractals can 
be demonstrated using the generation of the Koch curve (also 
called the Koch snowflake curve). The generator or seed of 
this curve is the four straight line segments as shown in Figure 
6.8. By starting with this generator (left) denoted as 81, and 
replacing each straight line segment by the generator itself, we 
get the second generation curve (middle, 82 ). If we continue 
this procedure many times, we get the Koch curve. A snapshot 
at generation 5 is shown on the right in Figure 6.8. The total 
length of the seed 81 is Lt = 4/3 since it has four segments 
and each segment has a length of 1/3, for the 82 curve, the 
total length is 42/32 . This is because there are 4 more seg­
ments added, but each segment is only 1/3 of the previous one 
in length. For the n-th generation, we have the total length 
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Figure 6.8: Generation of the Koch curve. 

( ~ )n with 4n segments in total. 
The fractal dimension can be defined by covering the curve 

using small balls (circles in a plane) and counting the number 
of balls with radius r = f > 0. For a curve r in a compact 
set of a metric space and for each f as the radius of the small 
balls, the smallest number N (f) of balls to cover the curve r 
will varies with f. The fractal dimension is defined by the limit 

d =-lim lnN(f). 
e--+0 In f 

(6.14) 

For the Koch curve, the minimum radius of the balls is f = 
1/3n, and the total number is N(f) = 4n. Hence, we have the 
fractal dimension of the Koch curve 

. ln4n ln4 
d= -hm-

1 3 
= -

1 3 
~ 1.2619. 

E--+0 n n n 
(6.15) 

Another famous example of fractals, which is related to the 
iterative dynamical systems, is the Mandelbrot set z = z2 + c, 
or 

- 2 Zn+l- Zn + C, (6.16) 

where z E C is in the complex plane, and c is a complex number 
to be tested. If you start with zo = 0 (say), the iterations 
continue until certain criteria are met. In this set, the stopping 
criterion is simply lzl 2:: 2. That is to say, for each given c, the 
magnitude of z during the iterations changes, it either stays 
small ( < 2) or it will eventually surpass two (> 2). If lzl < 2, 
we say that c belongs to the Mandelbrot set, otherwise, it is not 

106 



Recurrence Equations 6.3 Self-similarity and Fractals 

Figure 6.9: Fractal nature of the l\1andelbrot set: z = z2 +c. 

part of the l\1andelbrot set. The iterations will go on until the 
modulus of z reach 2, and the point cis marked on the complex 
plane (x, iy) if it is not part of the Mandelbrot set. Then, we 
change a different value of c, and follow the same iterative 
process again. After many iterations across a region of the 
complex plane, the results become the well-known picture of the 
1\!Iandelbrot set (shown in Figure 6.9). It is an usual practice 
to mark the points with colours depending on the number of 
iterations for each point to reach the modulus lzl = 2. This 
simple iterative system can produce beautiful patterns. You 
can view this system as a dynamical system, but it is a very 
complicated system. 

Vast literature exists on this subject, and it is still an active 
research area. 
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Chapter 7 

Vibration and 
Harmonic Motion 

After the studies of the complex numbers and ordinary dif­
ferential equations, it is time to see how they are applied to 
engineering problems. This chapter concerns the vibration and 
harn1onic motion of mechanical systems. 

7.1 Undamped Forced Oscillations 

The sin1ple system with a spring attached with a mass m is 
a good example of harmonic motion (see Figure 7.1). If the 
spring stiffness constant is k, then the governing equation of 
the oscillations is a second-order ordinary differential equation 
for undamped forced harn1onic motion, which can be written 
as 

y" + wfiy = f(t), (7.1) 

where wfi = kjm, and f(t) is the a known function oft. In the 
case of f(t) = acoswt, we have 

y" + w~y = acoswt, (7.2) 

where wo is the natural frequency of the system, and a is the 
amplitude of external forcing. 
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Figure 7.1: Undamped forced oscillations. 

The general solution y( t) = Yc + Yp consists of a comple­
mentary function Yc and a particular integral Yp· The comple­
mentary function Yc satisfies the hon1ogeneous equation 

y" +w~y = 0. (7.3) 

Its general solution is 

Yc(t) = A sin wot + B cos wot. (7.4) 

For the particular integral Yp, we have to consider two different 
cases w =I= wo and w = wo because for w = wo the standard 
particular a sin wt + b cos wt does not work. It needs some mod­
ifications. For w =I= wo, we assume that Yp = asinwt + bcoswt. 
We thus obtain 

Q' 

Yp = 2 2 coswt. (7.5) 
w0 -w 

Therefore, the general solution 
• Q' 

y( t) = A sin w0t + B cos w0 t + 2 2 cos wt. (7 .6) 
w0 -w 

If we further assume that the system is initially at rest when 
the force starts to act, we have the initial conditions y(O) = 0 
and y' (0) = 0. With these conditions, we have A = 0 and 
B = -aj(w~ - w2) in the general solution. We now have 

Q' 

y(t) = 2 2 (coswt- cosw0t). (7.7) 
w0 -w 
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Using 

we have 

where 

5 (l)=:(l) =2 
0 

5 10 
time (t) 
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Figure 7.2: Variation of an1plitude at w = wo. 
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. (C+D) . (C-D) cos - cos = - sm 

2 
s1n ....;...._-2-~, 

( ) 
2a . ( w - wo )t . ( w + wo) t 

y t = 2 2 sm 
2 

s1n 
2 w0 -w 

= A(t) sin (w +
2 
wo)t = A(t) sinwt, (7.8) 

A( ) 
_ 2a . (w- wo)t 

t - 2 2 sm 2 . w0 -w 
(7.9) 

As lw- wol < lw + wol, we can see that the oscillator oscillates 
with a major and fast frequency w = (w + wo)/2, while its 
amplitude or envelope slow oscillates with a frequent 8w = 

( w - wo) /2. This phenomenon is called beats. 
For the special case of w = wo, the complementary function 

is the same as before, but the particular solution should take 
the following form 

Yp = t(asinwt + bcoswt), (7.10) 
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which gives 
Q . 

Yp(t) = -
2 

t sm wot. 
wo 

The general solution is therefore 

(7.11) 

y(t) = Asinw0t + Bcosw0t + ~0 tsinw0t. (7.12) 

Similarly, the initial solution y(O) = y' (0) = 0 in1plies that 
A = B = 0. We now have 

y(t) = 
2
° tsinwot = A(t)sinwot, 
wo 

(7.13) 

where A(t) = atj(2wo). As the amplitude A(t) increases with 
time as shown in Figure 7.5, this phenomenon is called reso­
nance, and the external forcing cause the oscillations grow out 
of control when the forcing is acted at the natural frequency 
wo of the system. 

7.2 Damped Forced Oscillations 

k y~ 

m I Ty(t) 

Figure 7.3: Damped harmonic motion. 

As all the real systems have a certain degree of friction, 
thus damping should be included. An example of damping is 
shown in Figure 7.3. With damping, the equation of forced 
oscillations becomes 

y"(t) + 2-Xy'(t) + w5y(t) = acoswt, (7.14) 
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where A is the damping coefficient. In principle, one can try 
to solve this equation using the standard method, but it may 
become a little awkward as it involves complex numbers. In 
fact, there is quite an elegant method using the complex vari­
ables. In order to do this, we write the companion equation for 
equation (7.14) with a different forcing term 

rl'(t) + 2Ar,'(t) + w51J(t) = asinwt. (7.15) 

Since eiwt = coswt + isinwt, we can multiply (7.15) by i, and 
add it to (7.14), and we have 

z"(t) + 2Az + w5z = aezwt, (7.16) 

where z(t) = y(t) + i17(t). By solving this equation, we essen­
tially solve both equations (7.14) and (7.15) at the same time 
if we can separate the real and imaginary parts. The comple­
mentary function corresponds to the transient part while the 
particular function corresponds to the steady state. For the 
transient part, the characteristic equation gives 

(7.17) 

or 
J-l = -A ± J A2 - wfi. (7.18) 

If A2 ~ w5, then J-l < 0. If A2 < w5, then fl.= -A+ iJwfi- A2 

and ~(1-l) < 0. In both cases ~(fl.) < 0, thus the solution 
Zc oc e-~(J.t)t --+ 0. In engineering, it is conventional to define 
a case of critical damping when { = Ajwo = 1. The quality 
factor Q = 2~ is also commonly used. We now have 

fl.= wo(-{ ± FI). (7.19) 

For ~ = 0, we have fl. = iwo, which corresponds to the harmonic 
oscillations without damping. For { = 1, J-l = -wo, it is critical 
damping as the imaginary term is zero. The amplitude de­
creases exponentially at just the slowest possible manner with­
out any oscillations. For~< 1, we get J-l = -w0{ +iwo~-
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1r-----~----~~----~----~------. 

10 15 20 25 
time (t) 

Figure 7.4: Critical damping(~= 1), under-damping(~= 0.1), 
and over-damping (~ = 1.5). 

The real part corresponds to the exponential decrease of the 
amplitude and the imaginary part corresponds to oscillations. 
For this reason, it is called under-damped. Finally, ~ > 1 leads 
to 1-L = wo( -~ ± ~) < 0. The imaginary part is zero (no 
oscillation). As the an1plitude decreases much faster than that 
at the critical damping, this case is thus called over-damped. 
Figure 7.4 shows the characteristics of these three cases. 

If time is long enough ( t >> 1), the transient part Yc will 
becomes negligible as t increases. Therefore, we only need to 
find the particular solution Zp· 

If we try the particular solution in the form z = zoeiwt, we 
have 

z" + 2-Xz' + wfi = P( iw )z, (7.20) 

and 

P(iw) = (iw)2 + 2-X(iw) + w5 = (w5- w2) + 2-Xwi, (7.21) 

which is essentially the characteristic polynomial. The general 
solution becomes 

Q Q . t 
z(t) = P(iw) ezwt = [(wfi- w2) + 2i.Xw] ezw . (7.22) 
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Figure 7.5: Variations of amplitude with frequency w and 
damping coefficient .X. 

It is conventional to call H(iw) = 1/ P(iw) the transfer func­
tion. We can always write the general solution z = Aei(wt+<l>), 

where A= lzl is the modulus and¢ is the phase shift. There-
fore, we have 

z = Aei(wt+<l>)' (7.23) 

where 
(7.24) 

and 
_ 1 -2-Xw 

¢=tan 2 2 . 
w0 -w 

(7.25) 

As the amplitude of the forcing is a, the gain G(w) of the 
oscillation is 

A 1 
G(w) =- = , 

a J (w5 - w2)2 + 4.X2w2 
(7.26) 

which is shown in Figure 7.5. 
Finally, the solution of the original equation (7.14) is the 

real part. That is 

y(t) = Acos(wt + ¢). (7.27) 
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Some special cases where w--+ 0 and w--+ oo are very interest­
ing. For w << wo, the driving force is at very low frequency, we 
have 

That is 

</>--+ 0. 

a 
y(t) ~, coswt. 

wo 

The system is in the same phase with the forcing. 

(7.28) 

(7.29) 

If w >> wo, the forcing is at very high frequency. We have 

</>--+ -7r. (7.30) 

The oscillator is completely out of phase with the forcing. 
If w ~ wo, we have 

and 

a 
A--+ 2Awo' 

y(t) = 
2
:

0 
sinwot. 

(7.31) 

(7.32) 

At resonance frequency w; = w~- 2A2 , the amplitude of the 
oscillations increases dramatically. 

7.3 Normal Modes 

In the above harmonic oscillations, we know wo is the natural 
frequency of the concerned system, which is relatively simple. 
In general, there may be many natural frequencies or modes in 
a system, and the natural frequencies are in fact determined 
from the eigenvalue problem resulting from the system. Now 
let us study a more complicated system with three mass blocks 
attached in by two springs as shown in Figure 7.6. This system 
can be thought of as a car attached to two caravans on a flat 
road. 

Let u 1, u2, u3 be the displacement of the three mass blocks 
m 1, m 2 , m 3 , respectively. Then, their accelerations will be ii.1 , 
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u2, ih where ii. = d2uj dt2 • From the balance of forces and 
Newton's law, we have 

mtii.t =kt(u2-ul), (7.33) 

m2u2 = k2(u3- u2)- kt(U2- Ut), (7.34) 

ffi3U3 = -k2(u3- u2). (7.35) 

These equations can be written in a matrix form as 

(I 0 
0 ) ( Ut ) m2 0 ii.2 

0 m3 u3 

( kt 
-kt 

~:2)(::)=(~} + -;1 kt + k2 
-k2 

or 
Mii+Ku = 0, 

where uT = (ut, u2, u3). The mass matrix is 

0 

and the stiffness matrix is 

(7.36) 

(7.37) 

(7.38) 

Equation (7.37) is a second-order ordinary differential equa­
tion in terms of matrices. This homogeneous equation can be 
solved by substituting Ui = Ui cos(wt) where Ui(i = 1, 2, 3) are 
constants and w2 can have several values which correspond to 
the natural frequencies. Now we have 

-w[MUi cos(wt) + KUi cos(wt) = 0, (7.40) 
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~1 ~3 

Figure 7.6: Harmonic vibrations. 

where i = 1, 2, 3. Dividing both sides by cos(wt), we have 

(7.41) 

This is essentially an eigenvalue problem because any non­
trivial solutions for ui require 

(7.42) 

Therefore, the eigenvalues of this equation give the natural fre­
quencies. 

0 Example 7.1: For the simplest case when m 1 = m 2 = m 3 = m 
and k1 = k2 = k, we have 

=0, 

or 
-w2(k- w2m)(3km- w2m 2 ) = 0. 

This is a. cubic equation in terms of w2 , and it has three solutions. 
Therefore, the three natural frequencies are 

w~ = 0, 
2 3k 

w3 = -:;;· 

For w~ = 0, we have (U1 , U2 : U3 ) = *(1, 1, 1), which is the rigid 
body motion. For w2 = k/m, the eigenvector is determined by 

-k 
k 
-k 
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which leads to U2 = 0, and U1 = U3 . \-Vritten in normalized form, it 
becomes (U1 , U2 , U3 ) = ~(1,0, -1). This means that block 1 moves 
in the opposite direction away from block 3, and block 2 remains 
stationary. For wi = 3k/m, we have (U1 , U2, U3 ) = "*(1, -2, 1). 
That is to say, block 2 moves in the different direction from block 3 
which is at the same pace with block 1. 0 

7.4 Small Amplitude Oscillations 

For a mechanically conservative system, its total energy E = 
T + V is conserved, where Tis its total kinetic energy and V 
is its total potential energy. The configuration of the mechan­
ical system can be described by its general coordinates q = 

( q1, q2, ... , qn). The general coordinates can be distance and an­
gles. Thus, the velocities of the system will be q = 41, ti2, ... , tin­
If we consider the system consists of many small particles or 
even imaginary parts, then the total kinetic energy T is a func­
tion of q and sometimes q, but the potential energy V is mainly 
a function of q only. As we are only concerned with small am­
plitude oscillations near equilibrium Vmin = V(O) = Vo, we can 
always take q = 0 at the equilibrium so that we can expand V 
in terms of q as a Taylor series 

V(q) = Vmin +I: ~~ q; +I: I; K;iq;qi + ... , 
l l J 

(7.43) 

where the stiffness matrix is 

K .. _ ~ 8
2
Vo I 

lJ- . 2 8qi8qj qi=O,qj=O 
(7.44) 

Since potential energy is always relative to an arbitrary refer­
ence point, we can thus take the potential energy at equilibrium 
V min to be zero. In addition, the equilibrium or the minimum 
value of V requires ~ = 0 at the equilibrium point qi = 0, 
and the force Fi = g~ shall be zero. This is correct because 
the resultant force must be zero at equilibrium, otherwise, the 
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systen1 will be driven away by the resultant force. The com­
ponent of the resultant force along the general coordinate qi 

should also be zero. Therefore, the total potential energy is 
now simplified as 

v = L L qiKijqj = qTKq, 
j 

which is a quadratic form. 

(7.45) 

For any small oscillation, the velocity is linear in terms of 
Qi, and thus the corresponding kinetic energy is ~mql. The 
total kinetic energy is the sum of all the components over all 
particles or parts, forming a quadratic form. That is to say, 

T """' """' . . . TM . = L- L- ffiijqiqj = q q, (7.46) 
i j 

where M = [mij] is the mass matrix. 
For a conservative system, the total mechanical energy E = 

T +Vis conserved, and thus time-independent. So we have 

d(T + V) = !!:_ [ . T M . TK ] = 0 
dt dt q q + q q . (7.47) 

Since M and K are symmetric matrices, this above equation 
becomes 

Mq+Kq=O. (7.48) 

This is a second order ordinary differential equation for matri­
ces. Assuming the solution in the form qT = ( q1, q2 , ... , qn) = 
(Ut coswt, U2 coswt, ... , Un coswt) and substituting it into the 
above equation, we have 

(7.49) 

which is an eigenvalue problem. 
As an application, let us solve the same system of three 

mass blocks discussed earlier as shown in Figure 7.6. The total 
potential energy T is the sum of each mass block 
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0 
(7.50) 

which can be written as a quadratic form 

T ·TM· =U U, (7.51) 

0 
(7.52) 

We see that M is a symmetric matrix. 
For a spring, the force is f = kx, thus the potential energy 

stored in a spring is 

(7.53) 

Therefore, the total potential energy of the two-spring system 
is 

(7.54) 

Since interchange of u 1 and u2 does not change V, it is thus 
symmetric in terms of u1, u2 etc, which implies that Kij should 
be symmetric as well. 

The stiffness matrix K = [Kij] can be calculated using 

(7.55) 

For example, 

(7.56) 

and 
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1 {) kt 
= 2 {)ul [kt (u2- ut) + k2(u3- u2)] = - 2 . (7.57) 

Following the similar calculations, we have 

(7.58) 

which is exactly 1/2 multiplying the stiffness matrix we ob­
tained earlier in equation (7.39). Thus, the equation for small 
amplitude oscillation is 

Mii+Ku= 0. (7.59) 

For the special case of mt = m2 = m3 = m and kt = k2 = k, 
its eigenvalues are determined by 

=0, (7.60) 

which is exactly the problem we solved in the previous section 
(see example 7.1). 

For a simple system such as a pendulum, equation (7.39) is 
equivalent to the following simple formula for calculating the 
natural frequency 

w= 
V"(q) 
M(q)' 

(7.61) 

where V" > 0 because the potential energy at equilibrium is 
minimum. 

0 Example 7.2: A simple pendulum with a mass m is hanged 
vertically from a ceiling with a distance L from the fixed point. Let 
8 be the small angle from its equilibrium, then the kinetic energy is 
T = !mv2 = !m£2 (0)2 • The potential energy is 

V = mgL(1- cosO). 
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Vibration and Harmonic 1\lfotion 7.4 Small Amplitude Oscillations 

Therefore, the stiffness is K = !V"(8) = !mgLcos8le=O = mgL/2. 
The equivalent mass is 1\tf ( 8) = !mL2 • The governing equation be-
comes 

or 

1 2 .. 1 
2mL 8 + 2mgL8, 

.. L 
8+ -8 = 0. 

g 

The natural frequency for small oscillations is 

The period of this pendulum is 

T = 
2

1r = 21r !I.. 
w y; 
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Chapter 8 

Integral Transforms 

The mathematical transform is a method of changing one kind 
of functions and equations into another kind, often simpler or 

solvable one. In general, the transform is essentially a math­
ematical operator that produces a new function F( s) by inte­

grating the product of an existing function f(t) and a kernel 
function K(t, s) between suitable limits 

F(s) = J K(t, s)f(t)dt. (8.1) 

In the Laplace transform, the kernel is simply exp( -st) and 
integration limits are from 0 to oo. In the Fourier transform, 

the kernel is exp(±ist) with a normalized factor 1/../2-ff. 

The Fourier transform maps the time domain of a time­

dependent series such as a signal into a frequency domain, 
which is common practice in signal processing. The Laplace 

transform is a very powerful tool in solving differential equa­
tions. In this chapter, we will focus on the three major trans­

forms: Fourier, Laplace and Wavelet transforms. They are 
commonly encountered in engineering and computational sci­
ences. 
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8.1 Fourier Transform Integral Transforms 

8.1 Fourier Transform 

8.1.1 Fourier Series 

For a function f ( t) on an interval t E [-T, T], the Fourier series 
is defined as 

where 11T ao = T -T f(t)dt, (8.3) 

and 11T n1rt 
an = T -T f(t) cos( T )dt, (8.4) 

11T . n1rt bn =- f(T) s1n(-)dt, (n = 1, 2, ... ). 
T -T T 

(8.5) 

Here an and bn are the Fourier coefficients of f ( t) on [-T, T]. 
The function f ( t) can be continuous or piecewise continuous 
with a jump discontinuity. For a jump discontinuity at t =to, 
if !'(to-) and !'(to+) both exist, but !(to-) f f(to+ ), then 
the Fourier series converges to [!(to-)+ !(to+ )]/2. The Fourier 
series in general tends to converge slowly. 

From the coefficients an and bn, one can easily see that bn = 
0 for an even function f( -t) = f(t). Similarly, ao = an = 0 
for an odd function f (-t) = - f ( t). In both cases, only one­
side [0, T] of the integration can be used due to the symmetry. 
Thus, for an even function f ( t), we have the Fourier cosine 
series on [0, T] 

(8.6) 

For an odd function f ( t), we have the Fourier sine series 

00 n1rt 
f(t) = L sin( T ). 

n=l 

(8.7) 
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Integral Transforms 8.1 Fourier Transform 

f 

t 

-4 -2 0 2 4 

Figure 8.1: Triangular wave with a period of 2. 

0 Example 8.1: The triangular wave is defined by f(t) = ltl for 
t E [-1~ 1] with a period of2 or f(t+2) = f(t). Using the coefficients 
of the Fourier series, we have 

111 110 11 1 ao = 2 ltldt = 2[ ( -t)dt + tdtJ = 2· 
-1 -1 0 

Since both It I and cos(n1rt) are even functions, we have for any n ~ 1, 

an = {
1 

ltl cos(n7rt)dt = 21
1 

t cos(n7rt)dt 
}_1 0 

= 2-t-sin(n1rt)l

1

- ~ {

1 

sin(n1rt)dt = 
2

2 
2 

[cos(n1r) -1]. n1r 
0 

n1r }0 n 7r 

Because ltl sin(n1rt) is an odd function, we have 

bn = /
1 

ltl sin(n1rt)dt = 0. 
-1 

Hence, the Fourier series for the triangular wave can be written as 

1 ~ cos(n1r)- 1 
f(t) = 2 + 2 L- n 21r2 cos(n1rt). 

n=O 

0 

The n-term of the Fourier series, that is an cos(n1rtjT) + 
bn sin(n1rtjT), is called the n-th harmonic. The energy of the 
n harmonic is defined by A~ = a~ + b~. The sequence of An 
forms the energy or power spectrum of the Fourier series. The 
energy spectrum of the triangular wave is shown in Figure 8.2. 
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8.1 Fourier Transform Integral Transforms 

0.2 

0.15 

i;; ! 0.1 

0.05 

Figure 8.2: Energy spectrum of the triangular wave. 

8.1.2 Fourier Integral 

For the Fourier coefficients of a function defined on the whole 
real axis [-oo, oo], we can take the limits 

and 

a(wn) = /_: f(t) cos(wnt)dt, 

n1f' 
Wn=T' 

as the limits T --+ oo and Wn --+ 0. We have ao --+ 0 if 

(8.8) 

(8.9) 

In this case, the Fourier series becomes the Fourier integral 

f(t) = fooo [a(w) cos(wt) + b(w) sin(wt)dw, (8.10) 

where 
1 !00 a(w) = ; -oo f(t) cos(wt)dt, (8.11) 

1 !00 b(w) =- f(t) sin(wt)dt. 
1f' -oo (8.12) 
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Integral Transforms 8.1 Fourier Transform 

Following the similar discussion for even and odd functions, we 
know that even functions lead to Fourier cosine integrals and 
odd functions lead to Fourier sine integrals. 

8.1.3 Fourier Transform 

The Fourier transform .1"[/ ( t)] of f ( t) is defined as 

F(w) = .1"[/(t)] = . !:: Joo f(t)e-iwtdt, (8.13) 
V 27r -co 

and the inverse Fourier transform can be written as 

f(t) = .r-l [F(w)] = . !:: Joe F(w)eiwtliv, (8.14) 
V 27r -oo 

where exp[iwt] = cos(wt) + i sin(wt). The Fourier transform 
is a linear operator, and it has most of the properties of the 
differential operator and the integral operator. Hence, it is 
straightforward to prove that it has the following properties: 

F[f(t) + g(t)] = .1"[/(t)] + .F(g(t)], (8.15) 

F[of(t)] = o.1"[f(t)], (8.16) 

.1"[( -it)n f(t)] = 
dnF(w) 

(8.17) dwn ' 
and 

.1"[/(n)(t)] = (iwt F(w), (8.18) 

if f(t ---+ ±oo) = f'(t ---+ ±oo) = ... = f(n-l)(t ---+ ±oo) ---+ 0. 
The transform can have different variations such as the Fourier 
sine transforn1 and the Fourier cosine transform. The Fourier 
transforms of some common functions are listed in the follow­
ing table 8.1. 

D Example 8.2: For the triangle function f(t) = 1-ltl for (It I ~ 1) 
and f ( t) = 0 for It I > 1, its Fourier transform is 

\1'21rF(w) = /_: (1- ltl)e-iwtdt 
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8.1 Fourier Ti·ansform Integral Transforms 

0 1 
= f {1 + t)e-iwtdt + r (1- t)e-iwtdt. 

-t lo 
Integrating by parts and using 

. 2( /2) 1 - cosw 
Sill W = 

2 
, 

we have 

rn=F( ) = iw+ 1- eiw _ e-tW + iw -1 = 2{1- cosw) 
v £.1f w 2 2 2 . w w w 

Hence, we have 

1 sin2 (w/2) 1 . 2 
F(w) = .j2; (w/2)2 = .j2;smc (w/2). 

Table 8.1: Fourier Transforms 

f(t) 
f(t- to) 

j(t)e-iw0 t 

8(t) 
1 

sign(t) 
e-oltl 

e-(at)2 (a > 0) 

f(at) 
1 

a2+t2 

cos(wot) 

sin(wo) 

sinxax (a > 0) 

F(w) = F[f(t)] 
F(w)e-twto 
F(w- wo) 

1/v"Fi 
v"Fi8(w) 

.1. tw 
2o 

a2+w2 
w2 

1 -7:'2" ""'7'f!r"e 4a 
v:.::o 

! F(~) 
@e-alwl vt· a 

J1[8(w- wo) + 8(w + wo)] 

i ;[8(w + wo)- 8(w- wo)] 

~' (lwl < a); 0, (lwl > a) 

0 

The most useful Fourier transform for engineering and com­
putational science is probably the discrete form, especially in 
digital signal processing. The discrete Fourier transform (DFT), 
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Integral Transforms 8.2 Laplace Transforms 

for a periodic discrete function or signal x( n) with a period N, 
is defined by 

N-1 

X[k] = L x[n]e-i 2~;", (8.19) 
n=O 

and the inverse transform, also called the signal reconstruction, 
is defined by 

1 N-1 

x[n] =- L X[k]ei~. 
N k=O 

(8.20) 

A periodic signal x( n + N) = x( n) has a periodic spectrum 
X[k + N] = X[k]. The discrete Fourier transform consists 
of N multiplications and N- 1 additions for each X[k], thus 
for N values of k, the computational complexity is of O(N2). 

However, if N =2m (mE JV), many of the DFT calculations 
are not necessary. In fact, by rearranging the formula, one can 
get the complexity of O(N log2 N). This type of algorithms 
is called Fast Fourier Transform (FFT). Vast literature exists 
on the signal processing such as FFT, filter design and signal 
reconstruction. 

8.2 Laplace Transforms 

The Laplace transform .C [f ( t)] of a function f ( t) is defined as 

F(8) = .C[f(t)] =loco f(t)e-stdt, (8.21) 

where 8 > 0. The inverse Laplace transform .c-1(F(8)] is f(t) 
or f(t) = .c-1 [F(8)]. The Laplace transforms of most simple 
functions can be obtained by direct integration. For simple 
functions t and eo:t, we have 

loco loco 1 [ t l 00 

1 .C(t] = te-stdt = -e-stdt + --e-st = -. 
o o 8 8 o 8

2 

.C(eo:t] = {oo eo:te-stdt = [--1-e-<s-o:)tl oo = _I __ 
lo 8 -a o 8- a 
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8.2 Laplace Transforms Integral Transforms 

Conversely .c-1 [ 1 ] = t .c-1 [-1-] = eat. For the Dirac ' ST ' s-o 
<5'-function, we have its Laplace transform 

.C[d'(t)] = rX) d'(t)e-stdt = e-stl = 1. (8.22) lo t=O 

However, the inverse of a Laplace transfonn is usually more 
complicated. It often involves the partial fractions of polynomi­
als and usage of different rules of Laplace transforn1s. From the 
basic definition, it is straightforward to prove that the Laplace 
transform has the following properties: 

.C[af(t) + fjg(t)] = a.C[f(t)] + /3.C[g(t)], 

.C[e0 t f(t)] = F(s- a), s >a, 

.C[f(t- a)] = e-os .C[f(t)], 

.C[f' (t)] = s.C[f(t)] - f(O), 

.C[ ft f( r)dr] = .!..c[j], 
lo s 

(8.23) 

(8.24) 

(8.25) 

(8.26) 

(8.27) 

The Laplace transform pairs of common functions are listed 
below in table 8.2. 

0 Example 8.9: In order to obtain the Laplace transform of 
f(t) = coswt, we shall first write 

1 . t . t 
f(t) = coswt = '2(e1w + e-zw ). 

Then, we have 

= ~[ [
00 

e<-s+iw)tdt + foe e-s-iw)tdt) 
2 Jo lo 

1 1 1 s 
= 2[s- iw + s + iw] = s2 +w2 

0 
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Integral Transforms 8.2 Laplace Transforms 

Table 8.2: Laplace Transform 

Function f(t) 
1 

8(t) 
tn,n > 0 
cos( at) 
sin( at) 

eat 
t1/2 

t-1/2 

tn f(t) 

cos( at+ !3) 
sinh(ot) 
cosh( at) 

erfc( 2~) 
a2 

_1_e--:rr 
..;:;; 
sinoVt 

1-~-at (a> 0) 
a~ J3 (eat _ ePt) ( 0 =f= /3) 

Laplace Transform F( s) 

-s 
1 

n! 
sn+T 

s 
s:l+a:l 

a 
s:l+a:l 

1 
s-a 

1 ( 11" ) 1/2 
'2'S3' 

~ 
( -1)ndnF(s) 

dsn 
s cos(~)-a sin(~) 

s2+a2 
a 

s1-a:l 
s 

s2-a2 
le-avs 
s 

Both Fourier and Laplace transforms follow the convolution 
theorem. For two functions f and g, their convolution f * g 
obeys 

(8.28) 

and their Laplace transforms follow 

.C[f(t) * g(t)] = F(s)G(s), (8.29) 

C 1[F(s)G(s)] = fo' f(t- a)g(a)do:. (8.30) 
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8.3 lVa.velet Integral Transforms 

The Fourier transform has the similar properties 

f(t) * g(t) = /_: f(t)g(t- u)du, 

F[j(t) * g(t)] = F(w)G(w). 

8.3 Wavelet 

(8.31) 

(8.32) 

The Fourier transform is an ideal tool for studying the sta­
tionary time signal whose properties are statistically invariant 
over time. In the Fourier transform, the stationary signal is 
decomposed into linear combinations of sine and cosine waves 

. ~' ~ cos(nt), ~sin(nt), (n = 1, 2, ... ). 
v2~ v~ v~ 

(8.33) 

The Fourier transform is very useful to analyse stationary 
signals where a stationary signal means that the frequencies of 
the signal do not change with time. For non-stationary sig­
nals whose frequencies f = w /2~ vary with time (see Figure 
8.3), the Fourier transform does not work well. In addition, 
in the Fourier transform there is a tradeoff between frequency 
resolution and time resolution, 

1 
~w~t ~ 2, (8.34) 

which is similar to the Heisenberg uncertainty principle for spa­
tial and velocity intervals. The wavelet transform is an alter­
native approach to the Fourier transform to overcome the res­
olution problen1 using the Ivlother wavelet 1/J or prototype for 
generating the other windows functions, and all the used win­
dows are in the form of either dilated/compressed or shifted. As 
a result, the wavelet transform is very powerful in dealing with 
non-stationary signals because the Fourier transforn1 is not 
suitable for such signals. In the wavelet transform, a transient 
signal is decomposed into elementary components of wavelets 
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>- 1 ... as s 0 = as u; 
-1 

0 

2 4 6 8 
f:ro/21t varies with time (t) 

8.3 Wavelet 

10 

10 

Figure 8.3: A stationary signal with two fixed frequencies 
(ft = 0.5 Hz and /2 =2Hz) and a non-stationary signal whose 
frequency varies with time. 

or wavelet packets. There are three major type of wavelets: 
Grossmann-l\1orlet wavelets, Daubechies wavelets and Gabor­
Ivlalvar wavelets. 

Wavelets are defined as a real-valued function 'ljJ(t) (t E 
'R) in terms of the generator wavelet or n1other wavelet. The 
function 'l/J is both well localized, decreasing rapidly as t ---.. oo 
and oscillating in a wavery manner. To generate other wavelets, 
'l/J( a, (3, t) is used by translating in time and change of scales. 

Grossmann-Ivlorlet wavelets are of the form 

1 t-(3 
-'l/1(--), Q > 0, 
Q Q 

a,b E 'R, (8.35) 

where 'l/J a generator wavelet. The Daubechies wavelets have 
the form 

m,nEZ. (8.36) 
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8.3 lVa.velet Integral Transforms 

The Gabor-lVIalvar wavelets are in the form 

1 
w(t- m) cos[1r(n + '2 )(t- m)), mE Z,n EN. (8.37) 

The continuous wavelet transform can be defined by 

1 J t-T \II J(T, s) = JJST f(t) · 1/J(-
8
-)dt, (8.38) 

where T is the translation of the location of the window and s 
is the scale where s = 1 is for the most compressed wavelet. 

Wavelet analysis has vast literature and it is still an active 
research area in signal processing. Readers can search the latest 
research journals to follow the latest developments. 
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Chapter 9 

Partial Differential 
Equations 

Partial differential equations are much more complicated com­
pared with the ordinary differential equations. There is no 
universal solution technique for nonlinear equations, even the 
numerical simulations are usually not straightforward. Thus, 
we will mainly focus on the linear partial differential equations 
and the equations of special interests in engineering and com­
putational sciences. A partial differential equation (PDE) is a 
relationship containing one or more partial derivatives. Simi­
lar to the ordinary differential equation, the highest nth partial 
derivative is referred to as the order n of the partial differential 
equation. The general form of a partial differential equation 
can be written as 

8u 8u 82u 82u 82u 
1/J(x, y, ... , 8x' ay' 8x2' ay2' 8xay' ... ) = O. (9·1) 

where u is the dependent variable and x, y, ... are the indepen­
dent variables. 

A simple example of partial differential equations is the lin­
ear first order partial differential equation, which can be written 
as 

8u 8u 
a(x, y) 8x + b(x, y) ay = f(x, y). (9.2) 
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9.1 First Order PDE Partial Differential Equations 

for two independent variables and one dependent variable u. 
If the right hand side is zero or simply f(x, y) = 0, then the 
equation is said to be homogeneous. The equation is said to be 
linear if a, b and f are functions of x, y only, not u itself. 

For simplicity in notations in the studies of partial differ­
ential equations, compact subscript forms are often used in the 
literature. They are 

{)2u {]2u 
Uyy = {)y2 ' Uxy = 8x8y' (9.3) 

and thus we can write (9.2) as 

aux +buy= f. (9.4) 

In the rest of the chapters in this book, we will use these nota­
tions whenever no confusion occurs. 

9.1 First Order PDE 

The first order partial differential equation of linear type can 
be written as 

a(x, y)ux + b(x, y)uy = f(x, y), (9.5) 

which can be solved using the method of characteristics 

(9.6) 

This is equivalent to the following equation in terms of param-
eter s 

(9.7) 

which essentially forms a system of first-order ordinary differ­
ential equations. 
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Partial Differential Equations 9.2 Classification 

The simplest example of a first order linear partial differ­
ential equation is the first order hyperbolic equation 

Ut +cux = 0, (9.8) 

where cis a constant. It has a general solution of 

u = ,P(x- ct), (9.9) 

which is a travelling wave along x-axis with a constant speed c. 
If the initial shape is u(x,O) = 1/J(x), then u(x, t) = 1/J(x-ct) at 
timet, therefore the shape of the wave does not change though 
its position is constantly changing. 

9.2 Classification 

A linear second-order partial differential equation can be writ­
ten in the generic form in terms of two independent variables 
x andy, 

auxx + buxy + CUyy + gux + huy + ku = /, (9.10) 

where a, b, c, g, h, k and f are functions of x and y only. If 
f ( x, y, u) is also a function of u, then we say that this equation 
is quasi-linear. 

If ~ = b2 - 4ac < 0, the equation is elliptic. One famous 
example is the Laplace equation Uxx + Uyy = 0. 

If~ > 0, it is hyperbolic. One example is the wave equation 
Utt = c2Uxx· 

If ~ = 0, it is parabolic. Diffusion and heat conduction 
equations are of the parabolic type Ut = KUxx· 

9.3 Classic PDEs 

Iviany physical processes in engineering are governed by three 
classic partial differential equations so they are widely used in 
a vast range of applications. 
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9.3 Classic PDEs Partial Differential Equations 

Laplace's and Poisson's Equation 

In heat transfer problems, the steady state of heat conduction 
with a source is governed by the Poison equation 

(x,y)En, (9.11) 

or 
Uxx + Uyy = q(x, y, t), (9.12) 

for two independent variables x and y. Here k is the thermal 
diffusivity and f(x, y, t) is the heat source. If there is no heat 
source (q = 0), this becomes the Laplace equation. The so­
lution or a function is said to be harmonic if it satisfies the 
Laplace equation. 

Heat Conduction Equation 

Time-dependent problems, such as diffusion and transient heat 
conduction, are governed by parabolic equations. The heat 
conduction equation 

Ut = kuxx, (9.13) 

is a famous example. For diffusion problem, k is replaced by 
the diffusion coefficient D. 

Wave Equation 

The vibrations of strings and travelling sound waves are gov­
erned by the hyperbolic wave equation. The 1-D wave equation 
in its simplest form is 

2 
Utt = C Uxx, (9.14) 

where cis the speed of the wave. 
There are other equations that occur frequently in mathe­

matical physics, engineering and computational sciences. We 
will give a brief description of some of these equations in later 
chapters. 
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Chapter 10 

Techniques for Solving 
PDEs 

Different types of equations usually require different solution 
techniques. However, there are some methods that work for 
most of the linearly partial differential equations with appro­
priate boundary conditions on a regular domain. These meth­
ods include separation of variables, series expansions, similarity 
solutions, hybrid methods, and integral transform methods. 

10.1 Separation of Variables 

The separation of variables attempts a solution of the forn1 

u = X(x)Y(y)T(t), (10.1) 

where X(x), Y(y), T(t) are functions of x, y, t, respectively. In 
order to determine these functions, they have to satisfy the 
partial differential equation and the required boundary condi­
tions. As a result, the partial differential equation is usually 
transformed into two or three ordinary differential equations 
(ODEs), and these ordinary differential equations often appear 
as eigenvalue problems. The final solution is then obtained by 
solving these ODEs. As a classic example, we now try to solve 
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10.1 Separation of Variables Techniques for Solving PDEs 

the 1-D heat conduction equation in the domain x E [0, L] and 
t>O 

(10.2) 

with the initial value and boundary conditions 

u(O, t) = u(L, t) = 0, u(x, 0) = 1/J. (10.3) 

Letting u(x, t) = X(x)T(t), we have 

X"(x) T'(t) 
---y- = kT. (10.4) 

As the left hand side depends only on x and the right hand 
side only depends on t, therefore, both sides must be equal 
to the same constant, and the constant can taken to be as 
-A2. The negative sign is just for convenience because we 
will see below that the finiteness of the solution T(t) requires 
that eigenvalues A2 > 0 or A are real. Hence, we now get two 
ordinary differential equations 

X"(x) + A2 X(x) = 0, T'(t) + kA2T(t) = 0, (10.5) 

where A is the eigenvalue. The solution for T(t) is 

(10.6) 

The solution for X(x) is in a generic form 

X(t) =a cos Ax+ ,BsinAx. (10. 7) 

From the boundary condition u(O, t) = 0, we have a = 0. From 
u(L, t) = 0, we have 

sinAL= 0, (10.8) 

which requires that AL = n1r. Please note that n f 0 be­
cause the solution is trivial if n = 0. Therefore, A cannot be 
continuous, and it only takes an infinite number of discrete val­
ues, called eigenvalues. Each eigenvalue A = An = n1r / L, ( n = 
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1, 2, ... )has a corresponding eigenfunction Xn = sin(.Xnx). Sub­
stituting into the solution for T(t), we have 

(10.9) 

By superimposing Un = XnTn and expanding the initial condi­
tion into a Fourier series so as to determine the coefficients, we 
have 

00 

u(x, t) = L:: an sin( n~x )e-< nz >2
kt, 

n=l 

2 [L . n1rd~ 
an = L Jo 1/;(x) s1n( --y-)~. (10.10) 

10.2 Transform Methods 

Laplace Transform 

The basic idea of the integral transform method is to reduce 
the number of the independent variables. For the 1-D time­
dependent heat conduction, it transforms the partial differen­
tial equation into an ordinary differential equation. By solving 
the ordinary differential equation, the solution to the original 
problem is obtained by inverting back from the Laplace trans­
form. As an example, we now solve the 1-D heat conduction in 
semi-infinite interval [0, oo ), 

(10.11) 

with the boundary conditions 

T(x, 0) = 0, T(O, t) = T0 . (10.12) 

Let T(x, s) = f0
00 T(x, t)e-stdt be the Laplace transform of 

T(x, t), the equation then becon1es 

(10.13) 
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and the boundary condition at x = 0 becomes f'x=O = To/ s. 
The general solution to the ordinary differential equation can 
be written as 

- IBx · 1'Fx T=Ae-v"f· +BeV"f·. 

The finiteness of the solution as x --+ oo requires that B = 0, 
and the boundary conditions lead to 

T- To - lEx = -e V"k'. 
s 

By the inversion of the Laplace transform, we have 

X 
T = Toerfc( . /U), 

2vkt 

where erfc( x) is the complementary error function. 

Fourier Transform 

Fourier transform works in the similar manner as the Laplace 
transform. The famous example is the classical wave equation 

2 
Utt = V Uxx' (10.14) 

with the initial conditions u(x, 0) = 1/;(x) = exp[-(x - a)2], 

and Ut(x, 0) = 0. Let u(w, t) = Jk:- f~oo u(x, t)eiwxdx be the 
Fourier transform of u(x, t). This transforms the PDE problem 
into an ODE 

d2-
u 2 2-

dt2 = -v w u, (10.15) 

with 
__ ,.T.( ) du(w, 0) _ 0 U-tpW, dt -. (10.16) 

The general solution in tenns of the parameter w is 

u(w, t) = ijj(w) cos(vwt). 

By using the inverse Fourier transform, we finally have 

1 !00 - . u(x, t) = . !7C 1/;(w) cos(vwt)e-zwxdw 
V 27r -oo 
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1 
= 2[1P(x + vt) + 'l/1(x- vt)] 

_ 1 [ -(x-a+vt)2 + -(x-a-vt)2] - 2 e e , (10.17) 

which implies two travelling waves: one travels along the x-axis 
and the other along the negative x-axis direction. 

10.3 Similarity Solution 

The essence of similarity solution is to use the so-called sinli­
larity variable ~ = xjtf3 so as to reduce the partial differential 
equation to an ordinary differential equation. For example, the 
diffusion equation 

{10.18) 

can be solved by using the similarity method by defining a 
similar variable 

or 
X 

(=­#" 

{10.19) 

(10.20) 

In general, we can assume that the solution to the equation has 
the form 

U = {Kt)
0 
j[ {K~)f3]. (10.21) 

By substituting it into the diffusion equation, the coefficients 
a and f3 can be detern1ined. For most applications, one can 
assume a= 0 so that u = f(() (see the following example for 
details). In this case, we have 

{10.22) 

or 
f" = -(f',B(Kt)2/3-l, (10.23) 
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where !' = df I d(. In deriving this equation, we have used the 
chain rules of differentiations fx = *: ~ and £ = & ~ so that 

au =- {3kf'(()x = -{3(J'(()(~t)-1 
8t (~t)f3t , (10.24) 

and 

(10.25) 

Since the original equation does not have time-dependent 
terms explicitly, this means that all the exponents for any t­
terms must be zero. Therefore, we have 2{3 = 1, or {3 = ! . 
Now, the diffusion equation becomes 

!"(() = -~f', (10.26) 

Using (ln !')' = !"If' and integrating the above equation once, 
we get 

or (10.27) 

Integrating it again and using the ( 2 = 4{2 , we obtain 

1
~ ·2 X 

u =A e-t; ~ = Cerf( . .1'7'::7) + D, 
t;o v4~t 

(10.28) 

where C and D are constants that can be determined from 
appropriate boundary conditions. For the same problem as 
(10.12), the boundary condition as x---+ oo implies that C+D = 

0, while u(O, t) =To means that D = -C =To. Therefore, we 
finally have 

X X 
u = T0[1- erf( .;;w)] = T0erfc( .;;w)· (10.29) 

0 Example 10.1: For the similarity solution of the diffusion 
equation Ut = KUxx' we assume u = (Kt)o: !(,.})13 • Now we want to 
know why a = 0. Since 
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the diffusion equation becomes 

The requirement that no explicit (time t) appears in the equation 
leads to 

Q' = 0, Q' - 2,8 + 1 = 0. 

Thus, 

Q' = 0, 

You may think that why not divide both sides of the above 
equation by ( Kt )o:, then we do not impose any requirement on 
a, thus f3 = ~- This non-zero a indeed appears in some 
nonlinear diffusions equations where the diffusion coefficient is 
not a constant and K{ u) may depend on u itself. 

10.4 Travelling Wave Solution 

The travelling wave technique can be demonstrated using the 
famous Korteweg-de Vries (KdV) equation 

(10.30) 

or 

(10.31) 

which is a third-order nonlinear partial differential equation. 
The interesting feature of this equation is that it has a solitary 
wave solution or soliton. The soliton phenomenon was first 
observed by John Russell in 1834 when he travelled along the 
Union canal in Scotland. Nowadays, telecommunications use 
solitons to carry signals in optical fibres. 

Now we seek the travelling wave solution in the form 

u = <f>(x- vt), (10.32) 
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where v is the speed of the travelling wave. By substituting 
into the KdV equation, we have 

¢"' + 6c/>c/>1
- v¢ = 0. (10.33) 

Using ( ¢2 /2)' = c/>c/>1 and integrating the above equation once, 
we have 

¢" + 3¢2 
- vel> = A, (10.34) 

where A is an integration constant. The requirement of c/>, cl>', 
¢" --+ 0 at far field x --+ ±oo leads to A = 0. Let '1/J = cl>', we 
get 

d'lj; 2 
'1/J d¢ + 3¢ - v¢ = 0. (10.35) 

Integrating with respect to¢, we get 

~'l/J2 = -¢3 + ~v¢2. (10.36) 

Integrating it again and substituting back to u, we have the 
travelling wave solution 

v 2[~ ] u = 2sech T ( x - vt - <5) , (10.37) 

where <5 is a constant and v /2 is the amplitude of the wave. We 
can see that the speed of the wave depends on the amplitude or 
height of the wave. That is to say, big waves travel faster than 
smaller waves. For linear wave equations, waves can travel in 
both directions, but here it is only possible for the soliton to 
travel in one direction, that is along x-axis direction in this 
scenario. 

10.5 Green's Function 

The method of Green's function is very powerful in solving 
elliptic equations. A Green's function inside the domain n is 
defined as 

(10.38) 
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where 8(x) is the Dirac delta function. It usually requires that 
G = 0 on the boundary surface r. Generally speaking, G = 

G(x, y, z; ~, 17, (). 
For the hyperbolic equations such as the wave equation, we 

can define the Green's function as 

Gtt - c2 ~G = 8(x- ~)8(y- 17)8(z- ()8(t- r). (10.39) 

The fundamental Green's function for this case is 

1 r 
G(x,y,z,t;~,1J,(,T) = -

4 2 8[(t- r)- -]. 
1rc r c 

(10.40) 

The Green's function method is very complicated, but it can 
be very neat in obtaining solutions. Readers can refer to the 
literature listed at the end of the book. 

10.6 Hybrid Method 

Some differential equations can be solved using one of the meth­
ods described above, but often a single method simply does 
not work. In this case, a hybrid method that combines several 
methods is needed. For example, the Crank's diffusion problem 
in an infinite cylinder is governed by the following equation: 

8u 18 8u 
{)t =; 8r [rll: 8r], (10.41) 

where ll: is the diffusion coefficient, and r is the distance in the 
polar coordinates. u(r, t) can be concentration or any other 
quantity. Now we want to solve this equation with the following 
boundary conditions: 

u(r, t) = 0, r =a, (10.42) 

and 
u(r, 0) = 1/J(r), r E (O,a). (10.43) 

First, we use the separation of variables, we have 

(10.44) 
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then we have the equation for v( r) 

1 
v" + -v' + A2v = 0, 

r 
(10.45) 

where v' = dv / dr and A is a parameter to be determined. This 
equation is essentially the Bessel equation of the zero-order 
v = 0. Thus, we can now assume that the general solution for 
u(r, t) has the following form 

00 

u(r, t) = L DiJo(Air)e--\rKt, 
i=l 

(10.46) 

where Di are undetermined coefficients. The boundary condi­
tion [u(r =a) = 0] requires that 

(10.47) 

which means that paratneter Ai are the roots of the Bessel func­
tion J0 ( Aia) = 0. The initial condition gives 

00 

1/J(r) = L DiJo(Air). 
i=l 

Using the basic properties of the Bessel functions 

and 

loa rJo(Air)dr = ;i Jt(aAi), 

the general solution can be written as 

2 ~ Jo(rAi) --\~Kt Ina u(r, t) = 2 L- J 2 ( A·) e • r'l/J(r)Jo(rAi)dr. 
a i=l 1 a z o 
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The solution procedure shows that it requires a combination of 
separation of variables, Bessel functions, and power series. 

0 Example 10.2: If we now want to solve the same diffusion 
equation in the cylindrical coordinates with slight different boundary 
conditions: 

u(r =a, t) = uo = const, u(r, 0) = ¢(r), 

we have to make a transformation u = w + uo. Both u and w satisfy 
the same diffusion equation, but now the boundary conditions for w 

become 

w(r =a, t) = 0, w(r, 0) = ¢(r) - uo = 1/J(r), 

which is the problem we have just solved. By substituting u = w + uo 
and 1/J(r) = ¢(r) - uo and using the properties of Bessel functions, 
we finally obtain 

where hi = foa r¢(r)Jo(r>..i)dr. For a very special case when </>(r) = 
0, we have 

There are other important methods for solving partial dif­
ferential equations. These include series methods, asymptotic 
methods, approximate methods, perturbation n1ethods and nat­
urally the numerical methods. 
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Chapter 11 

Integral Equations 

The calculus of variations is important in many optin1ization 
problems and computational sciences, especially the formula­
tion of the finite element methods. On the other hand, integral 
equations are a different type of equation and they frequently 
occur in applied mathematics and natural sciences. In this 
chapter, we will briefly touch these topics. 

11.1 Calculus of Variations 

The main aim of the calculus of variations is to find a function 
that makes the integral stationary, making the value of the 
integral a local maximum or minin1um. For example, in me­
chanics we may want to find the shape y( x) of a rope or chain 
when suspended under its own weight from two fixed points. 
In this case, the calculus of variations provides a method for 
finding the function y(x) so that the curve y(x) minimizes the 
gravitational potential energy of the hanging rope system. 

11.1.1 Curvature 

Before we proceed to the calculus of variations, let us first dis­
cuss an important concept, namely the curvature of a curve. 
In general, a curve y(x) can be described in a parametric form 
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in terms of a vector r( s) with a parameter s which is the arc 
length along the curve measured from a fixed point. The cur­
vature K of a curve is defined as the rate at which the unit 
tangent t changes with respect to s. The change of arc length 
is 

(11.1) 

We have the curvature 

dt 1 
- =Kn= -n. ds p · 

(11.2) 

where p is the radius of the curvature, and n is the principal 
normal. As the direction of the tangent is defined by the angle 
8 made with the x-axis by t, we have tan() = y'. Hence, the 
curvature becomes 

d() dO dx 
K=-=--

ds dx ds · 
(11.3) 

Fron1 () = tan-1 y'(x), we have 

dO [ _1 ( ')]' y" 
dx = tan y = ( 1 + yl2 r (11.4) 

Using the expression for dsjdx, the curvature can be written 
in terms of y(x), and we get 

(11.5) 

11.1.2 Euler-Lagrange Equation 

Since the calculus of variations is always related to some min­
imization or maximization, we can in general assume that the 
integrand 1/J of the integral is a function of the shape or curve 
y( x) (shown in Figure 11.1), its derivative y' ( x) and the spatial 
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coordinate x (or time t, depending on the context). For the 
integral 

I = l '1/;(x, y, y')dx, (11.6) 

where a and bare fixed, the aim is to find the solution of the 
curve y( x) such that it makes the value of I stationary. In this 
sense, I[y(x)] is a function of the function y(x), and thus it is 
referred to as the functional. 

y 

a 

'-----------__,. X 

Figure 11.1: Variations in the path y(x). 

Here, stationary n1eans that the small change of the first 
order in y( x) will only lead to the second-order changes in val­
ues of I[y(x)], and subsequently, the change 8I of I should be 
virtually zero due to the small variation in the function y(x). 
'Iranslating this into the 1nathematical language, we suppose 
that y(x) has a small change of magnitude off so that 

y(x) ---+ y(x) + f((x), (11.7) 

where ( ( x) is an arbitrary function. The requirement of I to 
be stationary means that 

or more accurately, 

di 
df 'E=0 = 0, 

8I = 0, 

for all ((x). 
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Thus I becomes 

I(y, <) = t ,P(x, y + <(, y1 + <(')dx 

= [ 1/J(x,y,y')dx+ [[<((: +(':Jdx+0(<2
). (11.10) 

The first derivative of I should be zero, and we have 

(11.11) 

which is exactly what we mean that the change ~I (or the first 
order variation) in the value of I should be zero. Integrating 
this equation by parts, we have 

(11.12) 

If we require that y(a) and y(b) are known at the fixed points 
x = a and x = b, then these requirements naturally lead to 
((a) =((b)= 0. This means that the above right hand side of 
the equation is zero. That is, 

[ 81/J] b 
( 8y' a= O, (11.13) 

which gives 

1b [81/J- ~ 81/J](dx = 0. 
a 8y dx 8y' 

(11.14) 

As this equation holds for all ( ( x), the integrand must be zero. 
Therefore, we have the well-known Euler-Lagrange equation 

(11.15) 

It is worth pointing out that this equation is very special in the 
sense that 1/J is known and the unknown is y(x). It has many 
applications in mathematics, natural sciences and engineering. 

156 



Integral Equations 11.1 Calculus of Variations 

The simplest and classical example is to find the shortest 
path on a plane joining two points, say, (0,0) and (1, 1). We 
know that the total length along a curve y( x) is 

L= l J!+y'2dx. (11.16) 

Since '1/J = J1 + y'2 does not contain y, thus~= 0. Fron1 the 
Euler-Lagrange equation, we have 

(11.17) 

its integration is 

8'1/J y' 
ay' = v1 + yn = A. (11.18) 

Rearranging it as 

'2 A2 
y = 1- A2 ' 

or I A 
y = v'1- A2 ' 

(11.19) 

and integrating again, we have 

y = kx +c, k- A 
- v'1- A2• 

(11.20) 

This is a straight line. That is exactly what we expect from 
the plane geometry. 

D Example 11.1: The Euler-Lagrange equation is very general 
and includes many physical laws if the appropriate form of 1/J is used. 
For a point mass m following under the Earth's gravity g, the action 
(see below) is defined as 

1/J = ~mv2 - mgy = ~m(y)2 
- mgy, 

where y(t) is the path, and now x is replaced by t. v = y is the 
velocity. The Euler-Lagrange equation becomes 

81/J d 81/J 
8y = dt ( 8v ), 
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or 
d 

-mg = dt (mv), 

which is essentially the Newton's second law F = ma because the 
right hand side is the rate of change of the momentum mv, and the 
left hand side is the force. 

Well, you may say, this is trivial and there is nothing new 
about it. This example is indeed too simple. Let us now study 
a more complicated case so as to demonstrate the wide appli­
cations of the Euler-Lagrange equation. In mechanics, there is 
a Hamilton's principle which states that the configuration of 
a mechanical system is such that the action integral I of the 
Lagrangian .C = T - V is stationary with respect to the varia­
tions in the path. That is to say that the configuration can be 
uniquely defined by its coordinates qi and timet~ when moving 
from one configuration at time t0 to another time t = t* 

I = fo'• .C(t, q;, tj;)dt, i = 1,2~ ... ,N, (11.21) 

where T is the total kinetic energy (usually, a function of Qi), 
and V is the potential energy (usually, a function of q). Here 
Qi means 

. 8qi 
qi = m· (11.22) 

In analytical mechanics and engineering, the Lagrangian .C 
(=Kinetic energy - Potential energy) is often called the action, 
thus this principle is also called the principle of least action. 
The physical configuration or the path of movement follows 
such a path that makes the action integral stationary. 

In the special case, x -+ t, the Euler-Lagrange equation 
becomes 

(11.23) 

which is the well-known Lagrange's equation. This seems too 
abstract. Now let us look at a classic example. 
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Figure 11.2: A simple pendulum. 

0 Example 11.2: For a simple pendulum shown in Figure 11.2, 
we now try to derive its equation of oscillations. We know the kinetic 
energy T and the potential energy V are 

V = mgh = mgl(l -cos 8). 

Using C, = T - V, q = 8 and q = iJ, we have 

which becomes 
d . 

-mgl sin 0 - dt ( ml20) = 0. 

Therefore, we have the pendulum equation 

This is a nonlinear equation. If the angle is very small (8 << 1 ), 
sin 8 ~ 8, we then have the standard equation for the linear harmonic 
motion 

0 
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11.1.3 Variations with Constraints 

Although the stationary requirement in the calculus of varia­
tions leads to the minimization of the integral itself, there is 
no additional constraint. In this sense, the calculus of varia­
tion discussed up to now is unconstrained. However, sometimes 
these variations have certain additional constraints, for exam­
ple, the sliding of a bead on a hanging string. Now we want to 
make the integral I stationary under another constraint inte­
gral Q that is constant. We have 

I= t 1/J(x,y,y')dx, (11.24) 

subjected to the constraint 

Q = t cf>(x, y, y')dx. (11.25) 

As for most optimization problems under additional constraints, 
the method of Lagrange multipliers can transform the con­
strained problem into an unconstrained one by using a com­
bined functional J = I + >..Q or 

J = t[,P + >.¢]dx, (11.26) 

where ).. is the undetermined Lagrange multiplier. Replacing 
1/J by [1/J + >..<P] in the Euler-Lagrange equation or following the 
same procedure of the derivations, we have 

(11.27) 

Now we can come back to our example of the hanging rope 
problem with two fixed points. The total length of the rope is 
L, and it hangs frmn two fixed points ( -d, 0) and (d, 0). From 
the geometric consideration, it requires that 2d < L. In order 
to find the shape of the hanging rope under gravity, we now 
define its gravitational potential energy EP as 

Ep = j_:[pgy(x)ds] = pg j_:yJl + y12dx. 
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The additional constraint is that the total length of the rope is 
a constant ( L). Thus, 

Q = Jd J1 +y12dx = L. 
-d 

(11.29) 

By using the Lagrange multiplier A, we have J = Ep + ,\Q, or 

J = Jd [pgy +-X] VI+ y'2dx. 
-d 

(11.30) 

Since \II = [pgy + -X] vi + y'2 does not contain X explicitly, or 
~! = 0, then the Euler-Lagrange equation can be reduced into 
a simpler form in this special case. Using 

d\11 8\11 ow dy ow dy' 
-=-+--+-­dx 8x 8y dx oy' dx 

,ow ,ow 
= 0 + y oy + y oy'' (11.31) 

and the Euler-Lagrange equation~= fx(~ ), we have 

(11.32) 

which can again be written as 

d ,8\11 
dx[w- Y 8y'] = o. (11.33) 

The integration of this equation gives 

,8\11 
\II - y 

8
y' = A = const. (11.34) 

Substituting the expression of \II into the above equation, the 
stationary values of J requires 

(11.35) 
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Multiplying both sides by vf1 + y''l and using the substitution 
A cosh(= pgy +A, we have 

(11.36) 

whose solution is 

h-t[PYY +A]= xpg + K cos A A . (11.37) 

Using the boundary conditions at x = ±d and the constraint 
Q = L, we have K = 0 and in1plicit equation for A 

. h(pgd) _ pgL 
SlllA-2A. (11.38) 

Finally, the curve for the hanging rope becomes the following 
catenary 

A pgx pgd 
y(x) = pg[cosh(A)- cosh(-y)]. (11.39) 

0 Example 11.9: For the hanging rope problem, what happens 
if we only fix one end at (a, 0), while allowing the free end of the 
hanging rope to slide on a vertical pole? lVell, this forms a variation 
problem with variable end-point(s). We assume that free end is at 
(0, y) where y acts like a free parameter to be determined. Now the 
boundazy condition at the free end is different. Since the variation 
of 81 = 0, we have 

l b 8\J! d 8\J! 8\J! 
8J = [-- -(-)](dx + [(-]b = 0. 

a 8y dx 8y' oy' a 

As the variation ( is now non-zero at the free end point, we then have 

8\J! 
oy' = o. 

From J = Ep + >..Q, we have \J! = (pgy + >..) J 1 + y'2 • Thus, we get 

a 
8y' [(pgy + >..)vfl + y'2 ] = 0, 
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or 
y'(pgy + >..)/ Jt + y'2 = 0, or y' = 0. 

In other words, the slope is zero at the free end. 0 

Such a boundary condition of y' = 0 has the real physical 
meaning because any non-zero gradient at the free end would 
have a non-zero vertical component, thus causing the vertical 
slip along the rope due to the tension in the rope. The zero­
gradient leads to the static equilibrium. Thus, the whole curve 
of the hanging rope with one free end forms half the catenary. 

0 Example 11.4: Dido's problem concerns the strategy to enclose 
a maximum area with a fixed length circumference. Legend says 
that Dido was promised a piece of land on the condition that it was 
enclosed by an oxl1ide. She had to cover as much as land as possible 
using the given oxhide. She cut the oxhide into narrow strips with 
ends joined, and a whole region of a hill was enclosed. 

Suppose the total length of the oxhide strip is L. The enclosed 
area A to be maximized is 

1
xb 

A= y(x)dx, 
X a 

where X a and xb are two end points (of course they can be the same 
points). \rVe also ha.ve the additional constraint 

1
Xb 

Jl + y 12dx = L = const. 
X a 

This forms an isoperimetric variation problem. As L is fixed, thus 
the maximization of A is equivalent to make I = A + >..L stationary. 
That is 

I= A+ AL = {' [y + A.jl +ifl)dx. 

Using the Euler-Lagrange equation, we have 

or 
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which becomes 

1 - >.. .!!._ ( y' ) = 0 
dx Jt + y'2 · 

Integrating it once, we get 

>..y' 
--====x+K, Jt + y'2 

Integral Equations 

where K is the integration constant. By rearranging, we have 

y' = ± X+ K 
J>..2- (x + K)2 

Integrating this equation again, we get 

y(x) = =F)>..2 - (x + K)2 + B, 

where B is another integration constant. This is equivalent to 

which is essentially the standard equation for a circle with the centre 
at (-K, B) and a radius >... Therefore, the most area that can be 
enclosed by a fixed length is a circle. 0 

An interesting application is the design of the slides in play­
grounds. Suppose we want to design a sn1ooth (frictionless) 
slide, what is the best curve/shape the slide should take so 
that a child can slide down in a quickest way? This problem is 
related to the brachistochrone problem, also called the short­
est time problem or steepest descent problem, which initiated 
the development of the calculus of variations. In 1696, Johann 
Bernoulli posed a problem to find the curve that n1inimizes the 
time for a bead attached to a wire to slide from a point (0, h) 
to a lower point (a, 0). It was believed that Newton solved it 
within a few hours after receiving it. From the conservation 
of energy, we can determine the speed of the bead from the 
equation ~mv2 + mgy = mgh, and we have 

v = J2g(h- y). (11.40) 
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So the total time taken to travel from (0, h) to (a, 0) is 

lo
a 1 loa )1 + y'2 

t = -ds = dx. 
0 v 0 J2g(h - y) 

(11.41) 

Using the simplified Euler-Lagrange equation (11.34) because 
the integrand \ll = )1 + yrl / J2g(h- y) does not contain x 
explicitly, we have 

(1 + y12 ) I 8 (1 + y12) 
y [ ] -A 

2g(h- y) - 8y' 2g(h- y) - . 
(11.42) 

By differentiation and some rearrangements, we have 

'2 B-h+y 
y = ' h-y 

1 
B = 2gA2. (11.43) 

By changing of variables TJ = h- y = ~(1 -cos 0) and inte­
grating, we have 

x = ~ [0 - sin 0] + k, (11.44) 

where 0 < 1r and k is an integration constant. As the curve 
must pass the point (0, h), we get k = 0. So the parametric 
equations for the curve become 

x = ~ ( 0 - sin 0), 
B 

y = h- "2(1- cosO). (11.45) 

This is a cycloid, not a straight line, which seems a bit surpris­
ing, or at least it is rather counter-intuitive. The bead travels 
a longer distance, thus has a higher average velocity and sub­
sequently falls quicker than traveling in a straight line. 

11.1.4 Variations for Multiple Variables 

What we have discussed so far mainly concerns the variations in 
2-D, and subsequently the variations are in terms y(x) or curves 
only. What happens if we want to study a surface in the full 3-
D configuration? The principle in the previous sections can be 
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extended to any dimensions with multiple variables, however, 
we will focus on the minimization of a surface here. Suppose 
we want to study the shape of a soap bubble, the principle of 
least action leads to the minimal surface problem. The surface 
integral of a soap bubble should be stationary. Now we assume 
that the shape of the bubble is u( x, y), then the total surface 
area is 

where 

W= {)u au v 1 + (-)2 + (-)2 = 1 + u2 + u2. ax {)y X y 
(11.47) 

In this case, the extended Euler-Lagrangian equation for two 
variables x and y becomes 

(11.48) 

Substituting w into the above equation and using ~! = w u = 0 
since w does not contain u explicitly, we get 

(11.49) 

or 

(1 + u~)Uxx- 2uxUy + (1 + u;)uyy = 0. (11.50) 

This is a nonlinear equation and its solution is out of the scope 
of this book. This nonlinear equation has been one of the active 
research topics for more than a century. It has been proved that 
the fundamental solution to this equation is a sphere, and in 
fact we know that all bubbles are spherical. For some problems, 
we can approximately assume that Ux and uy are small, thus 
the above equation becomes Laplace's equation 

Uxx + Uyy = 0. (11.51) 
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The calculus of variations has many applications. The other 
classical examples include Fermat's principle in optics, Sturm­
Liouville problem, surface shape minimization, the action prin­
ciple, and of course the finite element analysis. 

11.2 Integral Equations 

From the calculus of variations, we know that the unknown 
y( x) to be optimized is inside the integrand of I. In certain 
sense, this is an integral equation. In fact, many physical 
processes and laws of conservation are expressed in terms of 
integral forms rather than their differentiation counterparts. 
Naturally, one of the ways of constructing an integral equa­
tion is to integrate from a differential equation. Integral equa­
tions are much more complicated compared with the differential 
equations. There is no universal solution technique for nonlin­
ear equations, even the numerical simulations are usually not 
straightforward. Thus, we will mainly focus on the simplest 
types of integral equations. 

11.2.1 Linear Integral Equations 

Fredholm Integral Equations 

A linear integral equation for y( x) can be written in the follow­
ing generic fonn 

u(x) +A l K(x, TJ)Y(TJ)dTJ = v(x)y(x), (11.52) 

where K(x, rJ) is referred to as the kernel of the integral equa­
tion. The parameter A is a known constant. If the function 
u( x) = 0, the equation is then called homogeneous. If u( x) =/= 0, 
the equation is inhomogeneous. 

If the function v( x) = 0, then the unknown y( x) appears 
only once in the integral equation, and it is under the integral 
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sign only. This is called the linear integral equation of the first 
kind 

u(x) +At K(x, 1/)Y('I)d'l = 0. (11.53) 

On the other hand, if v(x) = 1, equation (11.52) becomes the 
integral equation of the second kind 

u(x) +A l K(x, 1/)Y('I)d'l = y(x). (11.54) 

An integral equation with the fixed integration limits a and b, 
is called a Fredholm equation. If the upper integration limit 
b is not fixed, then the equation becomes a Volterra equation. 
The integral equation becomes singular and at least one of its 
integration limits approaches infinite. 

Volterra Integral Equation 

In general, the Volterra integral equation can be written as 

u(x) +A lx K(x, TJ)Y(TJ)dTJ = v(x)y(x). (11.55) 

The first kind [or v(x) = 0] and second kind [or v(x) = 1] are 
defined in the similar manner. 

The kernel is said to be separable or degenerate if it can be 
written in the finite sum form 

N 

K(x, TJ) = L, fi(x)gi(TJ), (11.56) 
i=l 

where fi(x) and gi(TJ) are functions of x and TJ, respectively. A 
kernel is called a displacen1ent kernel if it can be written as a 
function of the difference ( x - TJ) of its two arguments 

K(x, TJ) = K(x- TJ). (11.57) 

168 



Integral Equations 11.3 Solution of Integral Equations 

11.3 Solution of Integral Equations 

Iviost integral equations do not have closed-form solutions. For 
linear integral equations, the closed-form solutions are only pos­
sible for the special cases of separable and displacement kernels. 

11.3.1 Separable Kernels 

For a Fredholm integral equation of the second kind with sep­
arable kernels, we can substitute the kernel (11.56) into the 
equation and we have 

b N 

u(x) +A J. tr J;(x)g;(17)d1J = y(x), (11.58) 

which becomes 

N b 

u(x) +A tr /;(x) J. g;(17)d17 = y(x). (11.59) 

Because the integration limits are fixed, the integrals over 1J 
should be constants that are to be determined. By defining 

<>; = t g;(1J)Y(1J)d1J, 

we now have the solution in the form 

N 

y(x) = u(x) +A L aifi(x), 
i=l 

where the N coefficients Oi are determined by 

(11.60) 

(11.61) 

(11.62) 

fori= 1, 2, ... , N. Only for a few special cases, these coefficients 
can be written as simple explicit expressions. 
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11.3.2 Displacement Kernels 

For a singular integral equation with a displacement kernel, the 
equation can be solved by Fourier transforms if both integration 
limits of the integral are infinite. In this case, we have 

u(x) +A/_: K(x -1J)Y(1J)d1J = Y(1J). (11.63) 

Using the Fourier transforms and the convolution theorem, we 
have 

U(w) + Av'2?fK(w)Y(w) = Y(w), (11.64) 

which is an algebraic equation for Y(w). Its solution is simply 

Y(w) = U(w) . 
1 - Av'2-iK(w) 

(11.65) 

The solution y( x) can be obtained using the inverse Fourier 
transform 

y(x) = _1_ roo V(w) eiwxdw. 
y'2-i 1-oo [1- Av'2-iK(w)] 

(11.66) 

11.3.3 Volterra Equation 

A Volterra equation with separable kernels may be solved by 
transforming into a differential equation via direct differentia­
tion. In the case of a simple degenerate kernel 

K(x, 17) = f(x)g(1J), (11.67) 

we have 

y(x) = u(x) +A fox f(x)g(1J)Y(1J)d1J, (11.68) 

which becomes 

y(x) = u(x) + Aj(x) fox g(1J)Y(1J)d1J. (11.69) 
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If f ( x) -=/= 0, it can be written as 

y(x) u(x) rx 
f(x) = f(x) +A lo g(TJ)Y(TJ)dTJ. (11.70) 

Putting ¢(x) = u(x)/ f(x) and differentiating it, we have 

~~~:~]' = 4>'(x) + Ag(x)y(x). (11.71) 

By letting W = y(x)j f(x), we have 

w'(x)- .Xf(x)g(x)\ll(x) = ¢'(x), (11.72) 

which is a first-order ordinary differential equation for W ( x). 
This is equivalent to the standard form 

w' + P(x)\ll = Q(x), (11.73) 

and 

P(x) = -.Xf(x)g(x), Q(x) = ~~~:~]'. (11.74) 

We can use the standard technique by n1ultiplying the integrat­
ing factor exp[J P(x)dx] to obtain the solution. We get 

y(x) = f(x)[e- J P(x)dx]{j [Q(x)ef P(x)dx]dx }. (11.75) 

With appropriate boundary conditions, the exact form of the 
solution can be obtained. 

0 Example 11.5: Let us tzy to solve the integral equa.tion of 
Volterra type 

y(x) =ex+ lax ex sin(()y(()d(. 

First, we divide both sides by ex, we get 

y(x) = 1 + rx sin(()y(()d(, 
ex Jo 
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whose differentiation with respect to x leads to 

y(x) ' . [&] = y(x)sm(xL 

or 
..!..y'(x)- y(x)e-x = y(x) sin(x). 
ex 

Divide both sides by y(x) and using [Iny(x)]' = y'(x)fy(x), we have 

[In y(x)]' =ex sin x + 1. 

By direct integration, we have 

lny(x) = x- ~ex cosx +~ex sinx. 

Thus, we finally obtain 

ex 
y(x) = exp[x- 2 (cosx- sinx)]. 

0 

There are other n1ethods and techniques of solving integral 
equations such as the operator method, series method and the 
Fredholm theory. However, most integral equations do not have 
closed-form solutions. In this case, numerical methods are the 
best alternative. 
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Chapter 12 

Tensor Analysis 

Ivlany physical quantities such as stresses and strains are ten­
sors. Vectors are essentially first-order tensors. Tensors are the 
extension of vectors, and they can have any number of dimen­
sions and any orders, though most commonly used tensors are 
second order tensors. 

12.1 Notations 

In tensor analysis, the Einstein sun1mation convention or Ein­
stein notations 1 and notations for subscripts are widely used. 
Any lowercase subscript that appears exactly twice in any term 
of an expression means that sum is over its all possible values 
of the subscript. For example, in the three-dimensional case, 
we have 

3 

GiXi = L aiXi = GtXt + a2x2 + G3X3. (12.1) 
i=l 

3 

~jBjk = L AijBjk = AitBlk + Ai2B2k + Ai3B3k· (12.2) 
j=l 

1This notation convention was introduced by Albert Einstein in 1916 
when formulating the theory of General Relativity. 
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OUi = \7 . u = OUt + OU2 + OU3 (12.3) 
8xi - OXt 8x2 8x3 · 

The Kronecker delta 8ij which is a unity tensor (like the unity 
matrix I in matrix analysis), is defined as 

{ 
1 (if i = j), 

8
ij = 0 (if i i= j). (12.4) 

For a tensor with three subscripts sin1ilar to 8ij, the Levi-Civita 
symbol or tensor is defined as 

{ 

+1 if (i,j, k) is an even permutation of (1, 2, 3), 
Eijk = -1 if (i,j, k) is an odd permutation of (1, 2, 3), 

0 (otherwise). 
(12.5) 

The tensors 8ij and Eijk are related by 

fijkfkpq = 8ip8jq - 8iq8jp· (12.6) 

Using the summation conventions, the matrix equation 

Ax=b, (12.7) 

can alternatively be written as 

(i=1,2, ... ,n). (12.8) 

12.2 Tensors 

When changing the bases from the standard Cartesian e1 = i, 
e2 = j, e3 = k to a new set of bases ei, e~, e~, a position vector 
x = (x1, x2, x3 ) in the old bases is related to the new vector 
x' = ( x!, x~, x~) in the new bases by a coefficient matrix Sij. 
Sij can be the rotation, translation, enlargement or any of their 
combinations. For example, the matrix for a simple rotation, 
with an angle of () around a fixed axis, Sij becomes 

Sij= ( ~:o ~: D· (12.9) 
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The orthogonality of Sij requires that ssT= sTs =I or 

(12.10) 

If the components ui of any variable u are transformed to the 
components u~ in the new bases in the same manner as 

(12.11) 

then ui(i = 1, 2, 3) are said to form a first-order Cartesian 
tensor (or vector in this case). If components of a variable such 
as strains aij are transformed as 

(12.12) 

we say these components form a second-order tensor. 
The order of a tensor is also called its rank. Scalars have 

rank zero, vectors have rank 1, and second-order tensors have 
rank 2. In engineering and computing, the rank is associated 
with the number of indices to describe a tensor in terms of a 
multidimensional array. In this sense, a second-order tensor is 
equivalent to a two-dimensional array or a matrix. 

In a similar fashion, higher-order tensors can be defined, 
and for each order increase, then there is one Sij extra in the 
product for transforming, but no subscripts are allowed to ap­
pear more than twice 

(12.13) 

and 
(12.14) 

12.3 Tensor Analysis 

Tensors in Cartesian Coordinates 

One of the main advantages of tensors is that a tensor is in­
dependent of any chosen frame of reference. Therefore, any 
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physical laws or equations that are formulated in terms of ten­
sors should be independent of frame of reference. For example, 
the stress -strain relation in linear elasticity is independent of 
frame of reference (for details see next chapter) 

(12.15) 

where aij and Cij are the stress tensor and strain tensor, r& 
spectively. J.l and A are Lame constants. 

In the similar way as n1ulti-dimensional arrays or matri­
ces, two tensors can be added or subtracted component-by­
component if and only if they are the tensors of the same order. 
For second-order tensors, a tensor Tij is said to be symmetric 
if Tij = Tji, and antisymmetric if Tij = -Tji· An interesting 
property of a tensor Tij is that it can always be written as a 
sum of a symmetric tensor and an antisymmetric tensor 

Tij = ~(Tij + Tji)[sym.] + ~(Tij- Tji)[antisym.]. (12.16) 

All the formulas in vector analysis can be rewritten in the 
tensor forms using the summation convention and notations 

\121/J = {)21/J = Oij {)1/J 
8xi8Xi 8xi8Xj' 

8uq 
\7 X (\7 X u)i = fijkfkpq-

8
--. 
XjXp 

(12.17) 

(12.18) 

(12.19) 

Similarly, the divergence theorem can be rewritten as the fol-
lowing form 

f 8
8

ui dV = J uinidS. 
lv xi !s (12.20) 

The tensor forn1s are sometimes useful to the proof of the com­
plex relationship among vectors and tensors. They also become 
handy for the implementation of numerical algorithms. 
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Using the tensor notations, we have the identity oiiAi = Ai· 
The cross product Ax B can be expressed as 

(12.21) 

Another way of denoting the derivatives of tensors a and v 
is to use following notations 

a a 
ai=~, 

' UXi 
(12.22) 

where the index of the spatial component Xi is denoted by a 
comma to avoid any potential confusion with other indices. 
With these notations, the important operators involving the 
V' -operator can be written as 

and 

grad¢ = ¢, i = V' ¢, 

Y'2¢ = ¢,ii = ~¢, 

82u1 82u2 82u3 
V'.v = Vi,i = !i""""2 + '£l"2 + -8 2 · 

UXl UX2 X3 

A very special case is that 

(12.23) 

(12.24) 

(12.25) 

(12.26) 

0 Example 12.1: Let us now use the tensor notations to prove 
ax (b x c) = b(a ·c) - c(a ·b). Fl·om above expressions for cross 
products, we know that 

a X (b X c) = Eijkaj(Ekpqbpcq) = EijkEkpqajbpCq 

= (8ip8jq- 8iq8jp)ajbpcq = 8ipbp(8iqajcq)- 8iqcq(8iPaibp)· 

Using 8ipbp = b and 8iqcq = c, we have 

a(b x c) = b(tSjqajcq) - c(tSiPaibp)· 

By renaming the indices (j - i and q - j) so that 8iqajcq 
8ijaici = a • c and tSiPaibP = a • b, we finally obtain 

ax (b x c)= b(a ·c)- c(a ·b). 
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Tensors in Non-Cartesian Coordinates 

The tensors we have discussed so far are expressed in Carte­
sian coordinates. In non-Cartesian coordinates, they are more 
complicated. Tensor analysis is very important in theoretical 
physics and differential geometry where formal mathematical 
theory is required. In fact, many books on tensor analysis use 
a modern approach in terms of tensor duality, covariance and 
contravariance concepts. In the simplest term, a tensor such 
as a vector v can be expressed as the sum of its components 
multiplying by the basis vectors 

(12.27) 

where vi(i = 1, 2, 3) are called the covariant components of v 
in the contravariant basis vectors ei, while vi(i = 1, 2, 3) are 
called the contravariant components of v in the covariant basis 
vectors ei. For the curvilinear coordinates ( Ql , Q2, q3) at any 
point P on a position vector r(q1, q2, q3), the basic vectors are 
given by 

(i=1,2,3), (12.28) 

where ei and ei are reciprocal systems of vectors, and ei · ei = 

8j, where 8j acts in the similar way as 8ii· In many books on 
tensor analysis, ei is also written as €i = ei. 

Furthermore, the tensor product (also called outer product) 
of two tensors is rather complicated. For example, the tensor 
product u Q9 v = uvT of two vectors u and vis given by 

U@V = ( ~~ )@(Vt V2 V3) = ( ~~~~ ~~~~ ~~~: ) . (12.29) 
U3 U3V1 U3V2 U3V3 

Using these basis vectors, we can write a second-order tensor 
in tern1s of covariant components aii and contravariant com­
ponents aii as 

(12.30) 

178 



Tensor Analysis 12.3 Tensor Analysis 

In a given frame of reference, the fundamental metric tensor is 
defined by 

(12.31) 

This tensor is always symmetric 9ii = 9ji, its determinant g = 
l9ij I = det(gij) is related to the Jacobian J = Vff· 

The derivatives in non-Cartesian coordinates are far more 
complicated, and they usually involve the Christoffel coeffi­
cients rt = ek · ~. For example, the divergence of a vector 

is defined by the covariant differentiation u1i or V · u = u~i = 
~u~ +r~.ui = ui.+r1

1
.ui. It is worth pointing out that ei and ei vq1 l] ,] • 

become identical and r~j = 0 in Cartesian coordinates, and it 
is therefore not necessary to distinguish the contravariant and 
covariant vectors and components. 

Mathematically speaking, the formal approach is preferred. 
In engineering mathematics, however, the simple formulation in 
terms of multidimensional arrays in Cartesian coordinates is a 
more convenient approach, especially from the computational 
point of view. That is why we have used an over-simplified 
approach here. In the next chapter, we will study the theory 
of linear elasticity as an application of tensor analysis. 
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Chapter 13 

Elasticity 

13.1 Hooke's Law and Elasticity 

The basic Hooke's law of elasticity concerns an elastic body 
such as a spring, and it states that the extension x is propor­
tional to the load F, that is 

F=kx, (13.1) 

where k the spring constant. However, this equation only works 
for 1-D deformations. For a bar of uniform cross-section with 
a length L and a cross section area A, it is n1ore convenient to 
use strain e and stress u. The stress and strain are defined by 

F ~L 
u = A, e = L' (13.2) 

where ~Lis the extension. The unit of stress is N jm2 , while the 
strain is dimensionless, though it is conventionally expressed in 
mjm or% (percentage) in engineering. For the elastic bar, the 
stress-strain relationship is 

u=Ec, (13.3) 

where E is the Young's modulus of elasticity. Written in terms 
F and x = ~L, we have 

EA 
F= L~L=kx, 
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where k is the equivalent spring constant for the bar. This 
equation is still only valid for any unidirectional compression 
or extension. For the 2-D and 3-D deformation, we need to 
generalize Hooke's law. For the general stress tensor (also called 
Cauchy stress tensor) 

(13.5) 

and strain tensor 

e = ( ::: ::: ::: ) = ( :~~ :~~ :~: ) ' 
c::;x c::;y c::;::; c31 c32 c33 

(13.6) 

it can be proved later that these tensors are symmetric, that is 
u = uT and e = eT, which leads to 

O"xy = O"yx' O"xz = O":;x, O"yz = O"::;y' (13.7) 

and 
cxy = cyx, cxz = c::;x, cy::: = c:::y· (13.8) 

Therefore, we only have 6 independent components or unknowns 
for stresses and 6 unknown strain cmnponents. 

The strain tensor is defined by the displacement u T = 

1 8ui 8uj 
Cij = -

2
(-
8 

+ -
8 

), (13.9) 
Xj Xi 

where Xt = x, x2 = y, and x3 = z. Sometimes, it is useful to 
write 

1 
e = 2'(V'u + V'uT). (13.10) 

The generalized Hooke's law can be written as 

1 
Cxx = E[axx- v(ayy + O"::;z)], (13.11) 

1 
cyy = E[ayy- v(axx + O"zz)], (13.12) 
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1 
c::::: = E [u::::- v(uxx + O"yy)], (13.13) 

1+v 
cxy = ----g-O"xy, (13.14) 

1+v 
ex;:: = ----g-O"x;:;, (13.15) 

(13.16) 

where v is the Poisson's ratio, and it measures the tendency 
of extension in transverse directions (say, x and y) when the 
elastic body is stretched in one direction (say, z). It can be 
defined as the ratio of the transverse contract strain (normal 
to the applied load) to the axial strain in a stretched cylindri­
cal bar in the direction of the applied force. For a perfectly 
incompressible material, v = 0.5, and v = 0 rv 0.5 for most 
common materials. For example, steels have v = 0.25 rv 0.3. 
Some auxetic material such as polymer foams or anti-rubbers 
have a negative Poisson's ratio v < 0. 

This generalized Hooke's law can concisely be written as 

(13.17) 

where we have used the Einstein's summation convention O"kk = 

O"xx+O"yy+O"::::· Another related quantity is the pressure, which 
is defined by 

1 
p = --O"kk = 

3 
(13.18) 

The negative sign comes from the conventions that a positive 
normal stress results in tension, and negative one in compres­
sion, while the positive pressure acts in compression. Some­
times, it is more convenient to express the stress tensor in terms 
of pressure and devitoric stress tensor Sij 

(13.19) 
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If we want to invert equation (13.17), we have first express 
akk in terms of Ckk so that the right hand side of the new 
expression does not contain the stress akk· By contraction using 
j ---+ i, we have 

(13.20) 

where we have used 8ii = 811 + 822 + 833 = 1 + 1 + 1 = 3 and 
aii = akk· In engineering, the quantity 

fPut 82u2 82u3 
Ckk = Cxx + Cyy + Cz::: = Bx2 + By2 + Bz2 = V · u, (13.21) 

means the fractional change in volume, known as the dilation. 
This gives that 

E 
CJii = CJkk = 1 _ 2v Ckk· (13.22) 

Substituting it into equation (13.17), we have 

1 +v v E 
Cij = ----g-aii - E ( 1 _ 2v Ckk)8ij, (13.23) 

or after some rearrangement 

1+v v 
----g-aii = Cij + 1 _ 2v Ckk8ij, (13.24) 

which can be written as 

(13.25) 

where J.L and A are La1ne constants. They are 

E 
G = J.l = 2(1 + v)' 

A= vE . 
(1 + v)(1 - 2v) 

(13.26) 

This stress-strain relationship can also be written as 

u = 2Ge + A(V · u)l5. (13.27) 

In engineering, G = J.L is called the shear modulus, while K = 

3( 1 ~2,) is called the bulk modulus which is the ratio of pressure 
-p to the volume change ~ V. 
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13.2 Maxwell's Reciprocal Theorem 

For an elastostatic problem, the balance of force leads to 

V ·U+ b = 0, (13.28) 

where b is the body force or force per unit volume. For a small 
cube volun1e element, the total body force dfi along the xi-axis 
is 

8aii 
dfi = -dbi = -

0 
dV, 

x· J 

(13.29) 

here we have used the index summation conventions. Similarly, 
the total force along the j-axis is 

d/j = oaiidV. 
OXi 

(13.30) 

Since there is no relative rotation of the cube element because 
the cube element must be at rotational equilibrium, thus the 
result moment must be zero. Taking the moment of the two 
force components about any point (say, a corner of the cube). 
This leads to 

(13.31) 

which means the stress tensor is symmetric. This is in fact the 
compatibility condition for stresses. 

Alternatively, consider a cube element at rotational equi­
librium with a volume dV = 8x8y8z, and the dimensions of the 
elements are 8x, 8y and 8z, respectively. We consider the forces 
along the four faces that are parallel to z-axis (shown in Figure 
13.1). If we take the moment about a line which is parallel 
to z-axis and goes through one corner point, we only have to 
consider the two faces that are far from this point because the 
two faces through this point do not contribute to the moment. 
The forces on the two faces are O'xydAtdY and ayxdA2dx where 
the surface areas are dAt = 8x8z and dA2 = 8y8z. The total 
moment about point D is 

(13.32) 
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Thus, axy = ayx· Similar arguments for other faces along x­
and y-directions about any other points and we have aii = Uji· 

z 

y 

8y 

Figure 13.1: A cubic element in an elastostatic body. 

Using the stress-strain relationship, it is straightforward to 
prove that the strain tensor is also symmetric (cij = cji)· In 
engineering, this tensor is often written as 

(13.33) 

so as to emphasize that the non-diagonal elements are for shear 
components Txy etc. 

From the matrix algebra, we know that a square matrix can 
always be expressed in terms of eigenvalues and eigenvectors. 
For the stress tensor, the eigenvalue problen1 

(u- ail)ft = 0, (13.34) 

provides the the principal stresses ai(i = 1, 2, 3) (eigenvalues) 
and their principal directions ftT = n1, n2, n3 (eigenvectors). 
In the coordinate system formed by the three eigenvectors, the 
stress is expressed by the three principal stresses along three 
principal directions, and there are no shear stress components. 

The non-trivial solutions require the determinant of the co-
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efficient matrix must be zero. That is 

(Jx- (J Txy Tx:; 
Txy ay- a Ty:; = 0. (13.35) 
Tx::; Ty:; (J:; - (J 

It can be expanded into a cubic equation 

a3- (ax+ ay + a::;)a2 

+[axay + aya:; + a::;ax- (r;y + r;::; + r;:;)]a 

-[axaya::; + 2TxyTy:;Tx::;- (axr;::; + ayr;::; + a::;T;y)] = 0. (13.36) 

There are three invariants (It, h and I3) for the second-order 
symmetric stress tensor aii, and these invariants satisfy the 
characteristic equation 

where 

I 1 = tr( a ii) = ax + a y + a::;, 

h = axay + aya:: + a:;ax- (r;y + r;:; + r;:;;), 

and 

(13.37) 

(13.38) 

(13.39) 

Under appropriate transformations, this tensor can be trans­
formed into a diagonal form 

(13.41) 

where a1, a2, a3 are principal stresses. Written in terms of prin­
cipal stresses, the three invariants become 
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and 
(13.44) 

Now consider an elastic body when n concentrated load 
f1 , f2 , ... , fn acted upon the body at n different points. The dis­
placements at each point in the direction of the corresponding 
force are Ql, Q2, ... , Qn. For a linear elastic body, the principle 
of superposition applies and we have 

(13.45) 

(13.46) 

(13.47) 

where Cij are the influence coefficients or flexibility matrix. 
The total work done due to this set of loads is 

(13.48) 

There is a very useful theorem concerning these coefficients. 
It is called Maxwell's reciprocal theorem or Maxwell-Betti the­
orem, which states that the influence coefficients (or flexibility) 
matrix is symmetric Cii = Cji· That is to say, the displace­
ment at point i due to a unit load at another point j is equal 
to the displacement at j due to a unit load at point i. This 
theorem is essentially equivalent to say the displacements are 
path-independent and independent of the order of the loads 
applied upon the elastostatic body. 

For two forces f i and f i, the final displacements are the 
same where fi is applied first, then fi, or fi is applied first 
then f i, or even both are applied at the same time. In other 
words, the system has no memory of the load history. In the 
case of only two forces, we first apply /i slowly (so as to reduce 
the dynan1ical effect) with fi = 0, the displacement of point 
i is Cii/ i and the displacement of point j is Ciif i. The work 
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done is !Ciifl where Jl = fi · fi. Now with /i kept fixed, we 
apply I i slowly, the additional displacement at point i is Cij f i 
and the additional displacement at point j is Cjj f j. In this 
case, the extra work done is Cijfi · fj + !Cii!J. The total work 
done at the final state is 

1 2 1 2 
W = 2ciifi + 2ciifi + Cii(fi · fj). (13.49) 

If follow the same procedure but slowly apply I i first, then 
f i, the total work done is now 

(13.50) 

As the total work done should be independent of the order in 
which the loads are applied, this requires W = W, which leads 
to 

(13.51) 

Since fi · fj is a dot product and thus a scalar, we now get 

(13.52) 

This completes the proof of the :rviaxwell's reciprocal theorem. 
This theorem is the important basis for boundary element anal­
ysis and virtual work method in computational engineering. 

13.3 Equations of Motion 

For a general solid where the inertia is not negligible, we have 

(13.53) 

where p is the density of the elastic body. In some books, 
the following form of body force b = pf is used, in this case, 
the force f means the force per unit mass. Together with the 
generalized Hooke's law and relationship with displacement u, 
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we have the following set of equations of motion for an elastic 
body. 

(13.54) 

(13.55) 

(13.56) 

There are 15 equations (6 for stresses, 6 for strains, 3 for dis­
placement) and we have 15 unknowns (6 stress con1ponents, 6 
strain components and 3 displacements). Therefore, the elastic 
field should be uniquely determined if appropriate boundary 
conditions are given. There are other compatibility equations 
as well, and we will briefly discuss them later. 

If we write the equations of motion using the bold font 
notations, we have 

{)2u 
V·u+b=p8t2 ,, 

u = 2Ge + .X(V · u)d, 

1 
e = 2'(Vu + VuT). 

(13.57) 

(13.58) 

(13.59) 

If we substitute the generalized Hooke's law and displacement 
into the first equation (13.57), we have 

or 

{)2u 
V · [2Ge + .X(V · u )«5] + b = P 8t2 , 

{)2u 
V. [G(Vu + VuT) + .X(V · u)«5] + b = P {)t2 , 

which leads to 

[)2u 
(G + .X)V(V · u) + GV2u + b = P {)t2 • 
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Using G +A= G/(1- 2v) and after some rearrangements, we 
have 

(13.63) 

which is the well-known Cauchy-Navier equation. This equa­
tion supports both longitudinal wave ( P wave) and transverse 
wave (S wave). In the simplest 1-D case without any (external) 
body force b, we can take V · u = 0 for S-wave, the equation 
is simplified as 

(13.64) 

thus its wave speed is 

vs=~· (13.65) 

For the P-wave in 1-D, the displacement field is non-rotational, 
i.e., V x (V xu)= 0. From the identity V(V · u) = V x (V x 
u) + V2u, the 1-D Cauchy-Navier equation becomes 

82
u1 a2

ut 
P fJt2 = (A + 2G) ax2 . (13.66) 

Then, the speed of P-wave is 

Vp = J(.>..+p2G). (13.67) 

Since A+ 2G > G, therefore, P-waves always travel faster than 
S-waves. 

Furthermore, from the definitions of the strain components 
in terms of displacements uT = (ut, u2, u3) = (u, v, w), we have 

au 
Cxx =ax' 

8v 
Cyy = oy' 

By assuming the displacements are continuous and differen­
tiable functions of positions, we differentiate Cxx with respect 

191 



13.4 Airy Stress Functions Elasticity 

to y twice, we have 

(13.69) 

Similarly, differentiate cyy with respect to x twice, we have 

(13.70) 

Now differentiate cxy with respect toy once, and with respect 
to x once, we have 

(13.71) 

where we have used the interchangeability of partial derivatives 
fPvj8x8y = 82vj8y8x. This can be rearranged as 

82
cxx + 82

cyy = 2 8
2
cxy 

8y2 8x2 8x8y ' 
(13.72) 

which is the compatibility equation. In the same fashion, we 
can derive other compatibility equations 

(13. 73) 

(13.74) 

13.4 Airy Stress Functions 

For certain engineering problems, the solutions in a plane is 
of concern. In this case, we are dealing with plane strain and 
plane stress problems. For a plane stress problem, we assume 
that a:::: = 0 (but c:;:; =I= 0), then the plane stress problem 
involves no stress components depending on z. That is to say 
Uxz = Uyz = Uzz = 0. We have only three independent stress 
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components axx' aYY' and axy· The generalized Hooke's law 
reduces to 

However, 

1 
Cxx = E(axx- vayy), 

1 
Cyy = E(ayy- vaxx), 

1+v 
Cxy = ----g-axy· 

-v 
C::;::; = -

1 
-(Cxx + Cyy), 
-v 

which is not zero in general. 

(13.75) 

(13.76) 

(13.77) 

(13.78) 

For plane strain problems, it is assumed that C::;::; = 0. Thus, 
there are only three independent strain components Cxx' Cyy' 

and Cxy, however, the stress a::;::; = v(axx + ayy) is not zero. 
The compatibility equation becomes 

82
Cxx + fPcyy = 2 fPcxy 

8y2 8x2 8x8y · 
(13.79) 

For plane strain problems with no body forces, the equilibrium 
equations are automatically satisfied if the stress components 
are related to a scalar function q,, called Airy's stress function. 
The Airy's stress function is defined by 

(13.80) 

In this case, the compatibility equation becomes 

(13.81) 

which is a biharmonic equation and can be written as 

(13.82) 

In cylindrical polar coordinates (r, 8, z), it becomes 

82 18 182
2-

[ 8r2 + ; 8r + r2 882] q, - O. (13.83) 
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Figure 13.2: A crack in an elastic plate. 

Now consider a semi-infinite crack in an infinite solid as 
shown in Figure 13.2, assuming the elastic body deforms in 
plane strain. The far field is subjected to bounded stress at 
infinity. The surfaces of the crack shall be stress free, which 
leads to the following boundary conditions 

[)2 cp {) 1 {)cp 
U()() = {)r2 = 0, Ur() = - {)r (-; {)O) = 0, at 0 = ±7r. (13.84) 

Let us try a solution of the form 

cp = rn+l f(O), (13.85) 

and substitute it into the governing biharmonic equation, we 
get 

d?- 2 d?- 2 
[d02 + (n + 1) ][d02 + (n- 1) ]f(O) = 0. (13.86) 

As the second-order equation y" + >..2y = 0 has a general solu­
tion y = A sin >..O + B cos >..O, we can here use this method twice, 
the general solution takes the following form 

f(O) = Acos(n + 1)0 + Bsin(n + 1)0 

+C cos(n- 1)0 + D sin(n- 1)0. 

The boundary conditions become 

aeo = rn- 1n(n + 1)/(0), 
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and 

Ure = rn-ln{(n + 1)[Asin(n + 1)8- Bcos(n + 1)8] 

+(n- 1)[C sin(n- 1)8- D cos(n- 1)8]}, (13.89) 

at 8 = ±1r. We know n = 0 is trivial. From the first equation, 
we have 

sin(2n7r) = 0, 
1 3 

n = ±2, ±1, ±2, ... , (13.90) 

and rn(n ~ 1) does not converge, therefore, they are not suit­
able solutions. The constraint now becomes n ::; 0, but the 
solutions has singularity as r-----+ 0. This is however acceptable 
in the crack propagation as the stress concentrations do physi­
cally exist. Substituting the general solution into the boundary 
conditions with n = 1/2 and 8 = ±1r, we get 

3A+C= 0, B- D = 0. (13.91) 

By defining the stress intensity factor K1 for the crack, 

K _ 3A-/2i 
I- 4 ' (13.92) 

which is for the opening (model I) of the crack. It is a limit of 
stress at 8 = 0 

K1 =lim uee(r, 8)1 . r-o 6=0 
(13.93) 

Finally, the solution of stresses can be written as 

}(/ . 2 8 8 
Urr = . M=:(1 + Slll -)COS-, 

v 21rr 2 2 
(13.94) 

K 1 3 8 
U()() = v'27fTCOS 2' (13.95) 

}(/ 2 8 . 8 
Ure = v'21fT cos 2 s1n 2· (13.96) 
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Once we have the stress distribution, we can get the strains. 
Then the displacements are the integration of the strains, and 
we have 

(13.97) 

and 

K1(1 - v) fiT . 30 . 0 
ue = E V -;r[sin 2 - (5- 4v) sm 2]. (13.98) 

13.5 Euler-Bernoulli Beam Theory 

The Euler-Bernoulli beam theory is a simplified theory for cal­
culating the deflection of beams under a distribution of load 
force using the linear isotropic theory of elasticity. The basic 
assumptions for the beam theory are: 1) the beam is isotropic 
and elastic; 2) the beam deformation is dominated by bending, 
and distortion and rotation are negligible; 3) the beam is long 
and slender with a constant cross section along the axis. Under 
these assumptions, we can now derive the governing equations. 

Let u(x, t) be the deflection of the beam (shown in Figure 
13.3), A be the area of the cross section, and f(x, t) be the force 
per unit length. The first assumption implies that the bending 
moment M is proportional to the curvature K of the bending. 
That is 

M=EIK, (13.99) 

where E is the Young's modulus and I is the area moment of 
the beam's cross section. In mechanics, I is also called the 
second moment of area or the area moment of inertia. It is 
worth pointing out that the area moment about a horizontal 
axis through the centroid is defined by 

(13.100) 
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which has a unit of [m]4 , and it should not be confused with 
the mass moment of inertia J (also often denoted as I, but we 
use J here) about an axis, which is defined by 

(13.101) 

with a unit of [Kg] [m]2 . Both E and I do not change along 
the x-axis. For a cylindrical rod with a radius of R, we have 
I= 7rR4 j4. For a rectangular beam with a base width of band 
a depth of h, we have I = bh3 /12. 

X 

V(x)/ r---I 
~ /v(x+dx) 

f(x, t)dx 

...-r------=-=--=-:..:-:.:-~- - - -- ---- - - -- - , 
_____ _J 

Tu(x,t) 

Figure 13.3: Beam bending. 

The second assumption means that the shear V ( x) is related 
to the bending moment 

8M 
8x = V(x), (13.102) 

and the third assumption means tx << 1. Therefore, we have 

82u 
M::::::: EI 8x2' (13.103) 

or 
V::::::: ~(EI82u). 

8x 8x2 (13.104) 

For a small volume element (also shown in Figure 13.3), the 
mass of the element is pAdx where p is the density, and the 
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acceleration is fff. The shear force variation V(x + dx) 
V ( x) + ~dx, and the total force is 

8V 
V(x)- V(x + dx) + f(x, t)dx = [f(x, t)- ax ]dx. (13.105) 

Using the Newton's second law of motion, we have 

8V 82u 
f(x, t) - ax = pA at2 . (13.106) 

Substituting the above expression for V, we have 

82u 82 82u 
pA at2 + ax2 [EI ax2] = f(x), (13.107) 

which is the Euler-Bernoulli equation. If there is no force 
f(x, t) = 0, the equation becomes a homogeneous form 

{)2u {)2 a2u 
pA fJt2 + {)x2 [EI {)x2] = 0, (13.108) 

which is a fourth-order wave equation. It governs the waves 
that travel along a beam, a rod or any slender column. 

This equation can essentially explain why spaghetti and dry 
pasta almost always break into more than two fragments. You 
can try in your kitchen to break a slender spaghetti by hold­
ing its two ends and gradually form an arc and bend beyond 
its curvature limit. When a spaghetti rod snaps, it will gener­
ally break three to pieces. This phenomenon is very interesting 
and once puzzled the famous physicist Richard Feynman for 
quite a while, and it was recently studied by two scientists that 
the brittle fragmentation process is virtually governed by this 
Cauchy-N a vier equation. They found that the sudden relax­
ation of the curvature by first breaking will lead to a burst of 
flexural waves along the spaghetti rod, and these waves locally 
increase the curvature in the rod, resulting in more fragmented 
pieces. 

()2 For the elastostatic problem, 7Jfi ::::::: 0, we have 

82 {)2u 
ax2 [EI {)x2] = q(x), (13.109) 

198 



Elasticity 13.5 Euler-Bernoulli Beam Theory 

where q(x) = f(x) is the applied force per unit length. This 
equation will be used to determine the deflection of a bean1. 

0 Example 19.1: Let us now use the Euler-Bernoulli theory to 
calculate the shape of a heavy cantilever with a uniform cross section 
under its own gravity. For a beam under its own gravity, the force is 
constant q(x) = pgA per unit length where g is the acceleration due 
to the Earth's gravity. If the length of the cantilever is L, then the 
total weight is W = pgAL, thus q = ~. Therefore, we have 

d4 u W 
EI dx4 = q = T 

where we have use EI =canst. Integrating it twice, we have 

cPu q 2 EI dx2 = 2x +Ax+B. 

At the free end, the beam cannot support bending moment and/or 
shear, which implies that M(L) = 0 and V(L) = q*L+A = 0. These 
conditions lead to A = -qL and B = qL2 /2. Integrating the above 
equation again, we have 

du q qL qL2 

EI- = -x3
- -x2 + -x+C 

dx 6 2 2 · 

As the beam is fixed at x = 0, we have u = 0 and :: = 0 at x = 0. 
Thus we have C = 0 from u = 0. Integrating once again, we have 

As Ux = 0 at x = 0, we have D = 0. Therefore, the final deflection 
curve becomes 

The end deflection 8 = u(x = L) is 

0 
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Chapter 14 

Mathematical Models 

What we have discussed so far in terms of differential equa­

tions is very limited. In engineering and natural sciences, there 
are so many different kinds of phenomena that require both 

mathematical modelling and computer simulations as well as 
experimental studies. In most cases, the classical models (us­

ing the heat conduction equation and the wave equation and 
others) are simply not adequate to described these phenomena. 

Therefore, we have to broaden our view to study other kinds of 
partial differential equations. In fact, mathematical modelling 

per se is a subject with vast literature, and subsequently we 
have to focus on the relevant equations and to introduce them 
very briefly. 

14.1 Classic Models 

Before we introduce more complicated partial differential equa­
tions, let us first remind us the three types of classic partial 

differential equations because they are widely used and occur 
in a vast range of applications. To a certain extent, almost 

all books or studies on the partial differential equations will 
have to deal with these three types of basic partial differential 
equations. 
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14.1.1 Laplace's and Poisson's Equation 

In heat transfer problems, the steady state of heat conduction 
with a source is governed by the Poison equation 

(x,y) En, (14.1) 

or 

Uxx + Uyy = q(x, y, t), (14.2) 

for two independent variables x and y. Here k is thermal diffu­
sivity and I ( x, y, t) is the heat source. If there is no heat source 
(q = 0), this becomes the Laplace equation. The solution or a 
function is said to be harmonic if it satisfies Laplace's equation. 

In order to determine the temperature u completely, the ap­
propriate boundary conditions are needed. A simple boundary 
condition is to specify the temperature u = uo on the bound­
ary an. This type of problem is the Dirichlet problem. On 
the other hand, if the temperature is not known, but the gradi­
ent 8uf 8n is known on the boundary where n is the outward­
pointing unit normal, and this forms the Neumann problem. 
FUrthermore, some problems may have a mixed type of bound­
ary conditions in the combination of au + (3 g~ = 1', which 
naturally occur as a radiation or cooling boundary condition. 

14.1.2 Parabolic Equation 

Time-dependent problems, such as diffusion and transient heat 
conduction, are governed by the parabolic equation 

(14.3) 

Written in then-dimensional case Xt = x, x2 = y, X3 = z, ... , it 
can be extended to the reaction-diffusion equation 

(14.4) 

where I is the reaction rate. 
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14.1.3 Wave Equation 

The vibration of strings and travelling sound waves are gov­
erned by the hyperbolic wave equation. The 1-D wave equation 
in its simplest form is 

- 2 
Utt- C Uxx' (14.5) 

where cis the velocity of the wave. Using a transformation of 
the pair of independent variables 

~ = x+ct, 'f/ = x- ct, (14.6) 

fort> 0 and -oo < x < oo, the wave equation can be written 
as 

u~11 = 0. (14.7) 

Integrating twice and substituting back in terms of x and t, we 
have 

u(x, t) = f(x + ct) + g(x- ct), (14.8) 

where f and g are arbitrary functions of x + ct and x - ct, 
respectively. We can see that there are two directions that the 
wave can travel. One wave moves to the right and one travels 
to the left at a constant speed c. 

14.2 Other PDEs 

We have shown examples of the three major equations of second­
order linear partial differential equations. There are other equa­
tions that occur frequently in mathematical physics, engineer­
ing and computational sciences. We will give a brief description 
of some of these equations. 

14.2.1 Elastic Wave Equation 

As we have seen in the linear elasticity, the wave in an elas­
tic isotropic homogeneous solid is governed by the following 
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equation in terms of displacement u, 

82u 
p 8t2 = J.L\72u +(A+ J.L)\7(\7 · u) + b, (14.9) 

where p is density. A and J.l are Lame constants. b is body force. 
Such an equation can have two types of wave: transverse wave 
(S-wave) and longitudinal or dilatational wave (P-wave). 

14.2.2 Maxwell's Equations 

The scientific essence of modern wireless communications is 
governed by the :Maxwell's equations for electromagnetic waves 

8B 
VxE=- at' 

\7 · B = 0, 

(14.10) 

(14.11) 

(14.12) 

1 8E 
\7 x B = J.LoJ + c2 7K' (14.13) 

where Pe is the charge density, E is the electric field, B is the 
magnetic field and J is the current density. eo and J.lo are the 
permittivity and permeability of the free space, respectively. 
Finally, c is the speed of light. The first equation is the elec­
trostatic equation, the second one is the Faraday's law and the 
last equation is the Ampere-Iviaxwell's law. 

14.2.3 Reaction-Diffusion Equation 

The reaction-diffusion equation is an extension of heat conduc­
tion with a source 

Ut = Dtl.u + f(x, y, z, u), (14.14) 

where D is the diffusion coefficient and f is the reaction rate. 
One example is the combustion equation 

D Q ->..ju 
Ut = Uxx + ue , (14.15) 

204 



1\t/athematical 1\t/odels 14.2 Other PDEs 

where D, Q and A are constants. The other example is the 
Fitz-Hugh-N agumo equations for transport of a nerve signal 

Ut = Uxx + u( 1 - U) ( U - Q) - V, 

Vt = f(U- /V), 

(14.16) 

(14.17) 

where /' > 0, 0 < a < 1 and E << 1. These equations are 
sometimes also called the equations in excitable media. 

14.2.4 Fokker-Plank Equation 

The time evolution of the probability density function of posi­
tion and velocity of a particle system is described by the Fokker­
Plank equation 

8p n aD!ll n n 82 n!~l -=[-L:-1 +L:L: lJ ]p, 
8t i=l axi i=l i=l 8xi8xi 

which can be generalized as 

N 
8p ="" "" (-1)k_!__ _!__{D(kJ . } at L- . L-. 8Xii ... 8Xik ZI , •••• 1kp ' 

k=lt}, .... lk . 

(14.18) 

(14.19) 

where D[k] (x1, x2 , ... , xn) are tensors. In the special case of 
N = 2, nl11(xt' ... , Xn) is the drift vector, while Dl21 is the 
diffusion tensor. 

14.2.5 Black-Scholes Equation 

In the option pricing model, the value of an option u( 8, t) at 
time t is governed by the well-known Nobel-winning Black­
Scholes equation 

au au 1 2 2 82u 
{)t = ru - r 8 a8 - 2a 8 882 ' (14.20) 

where 8 is the current stock price of the underlying stock and 
r is the risk-free interest rate. t is the time until option expi­
ration. a is the stock volatility or the standard deviation of 
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stock returns. The Black-Scholes equation is very similar to 
the extended version of the diffusion equation. The interesting 
feature for a call option with an exercise price E and expiry 
time T, the change of variables 

T = (T- t)a2 /2, V = uer(T-t) (14.21) 

and 
2r 

x = ln(S/E) + (2 -1)r, 
(J 

(14.22) 

can transform it into a standard diffusion equation 

(14.23) 

Then, we can use the standard methods such as integral trans­
forms to solve this equation. 

14.2.6 Schrodinger Equation 

The famous Schrodinger equation is the revolutionary equation 
in quantum mechanics and molecular dynamics 

·i:_ aw - tt2 t"'72 ,y, u·T· ZH----v ':l'+ ':l' 
8t 2m ' 

(14.24) 

where tt is a Planck constant. This equation can be obtained 
from the energy formE=::+ U (where pis the momentum) 
using differential operator mapping E ---+ itt£ and p ---+ -itt V. 
W is the probability wave function and U = V ( r) - E is the en­
ergy potential. This is a complex partial differential equation. 

14.2. 7 Navier-Stokes Equations 

The Navier-Stokes equations for an incompressible flow can be 
written as 

V·u=O, 

1 2 
Ut + ( u · V)u = ReV u - Vp, 
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where Re = pUL/ J.l is the Reynolds number. U is the typical 
velocity and L is the length scale. p and J.l are the density 
of the fluid and its viscosity, respectively. In computational 
fluid dynamics, most simulations are mainly related to these 
equations. 

In the limit of Re << 1, we have the Stokes flow (slow flow) 
governed by 

(14.27) 

In another limit Re >> 1, we have the inviscous flow 

V'. u = 0, Ut + (u · V')u = -V'p. (14.28) 

We can see that the equations are still nonlinear even in this 
simplified case. 

14.2.8 Sine-Gordon Equation 

Another important equation that appears in a wide range of 
applications in physics and many other fields is the Sine-Gordon 
equation 

Utt- Uxx + sin(u) = 0, 

which can generally be written as 

Utt = Uxx + asin(wu). 

This is a nonlinear hyperbolic equation. 

(14.29) 

(14.30) 

Almost all these equations are very difficult for mathemat­
ical analysis, and most of them do not have closed-form solu­
tions under most common boundary conditions. Therefore, the 
numerical methods are a good alternative in this case. In the 
next few chapters, we will introduce various numerical methods 
in details. 
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Chapter 15 

Finite Difference 
Method 

The finite difference method is one of the n1ost popular meth­
ods that are used commonly in computer sin1ulations. It has 
the advantage of simplicity and clarity, especially in 1-D con­
figuration and other cases with regular geon1etry. The finite 
difference method essentially transforms an ordinary differen­
tial equation into a set of algebraic equations by replacing the 
continuous derivatives with finite difference approximations on 
a grid of mesh or node points that spans the domain of inter­
est based on the Taylor expansions. In general, the boundary 
conditions and boundary nodes need special treatment. 

15.1 Integration of ODEs 

The second-order or higher order ordinary differential equations 
can be written as a first-order systen1 of ODEs. Since the 
technique for solving a system is essentially the same as that 
for solving a single equation 

dy 
dx = f(x,y), (15.1) 
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then we shall focus on the first-order equation in the rest of this 
section. In principle, the solution can be obtained by direct 
integration, 

y(x) =Yo+ {x f(x, y(x))dx, 
lxo (15.2) 

but in practice it is usually impossible to do the integration 
analytically as it requires the solution of y( x) to evaluate the 
right-hand side. Thus, some approximations shall be utilized. 
Numerical integration is the most common technique to obtain 
approximate solutions. There are various integration schemes 
with different orders of accuracy and convergent rates. These 
schemes include the simple Euler scheme, Runge-Kutta method, 
Relaxation method, and many others. 

15.1.1 Euler Scheme 

Using the notations h = ~x = Xn+l - Xn, Yn = y(xn), Xn = 
x0 + n~x (n = 0, 1, 2, ... , N), and ' = djdx for convenience, 
then the explicit Euler scheme can simply be written as 

1
Xn+l 

Yn+l = Yn + f(x, y)dx ~ Yn + hf(xn, Yn)· 
Xn 

(15.3) 

This is a forward difference method as it is equivalent to the 
approximation of the first derivative 

1 Yn+l- Yn 
Yn = ~X (15.4) 

The order of accuracy can be estimated using the Taylor ex-
pansion 

h 'I h2 "I Yn+l = Yn + Y n + TY n + ··· 

~ Yn + hf(xn, Yn) + O(h2
). (15.5) 

Thus, the Euler method is first order accurate. 
For any numerical algorithms, the algorithm must be sta­

ble in order to reach convergent solutions. Thus, stability is 
an important issue in numerical analysis. Defining 8y as the 
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discrepancy between the actual numerical solution and the true 
solution of the Euler finite difference equation, we have 

(15.6) 

In order to avoid the discrepancy to grow, it requires the fol­
lowing stability condition 1~1 ::; 1. The stability restricts the 
size of interval h, which is usually small. One alternative 
that can use larger h is the implicit Euler scheme, and this 
scheme approximates the derivative by a backward difference 
y~ = (Yn- Yn-d/h and the right-hand side of equation (15.2) 
is evaluated at the new Yn+l location. Now the scheme can be 
written as 

(15.7) 

The stability condition becomes 

(15.8) 

which is always stable if f'(y) = U ::; 0. This means that 
any step size is acceptable. However, the step size cannot be 
too large as the accuracy reduces as the step size increases. 
Another practical issue is that, for most problems such as non­
linear ODEs, the evaluation of y' and f'(y) requires the value of 
Yn+l which is unknown. Thus, an iteration procedure is needed 
to march to a new value Yn+l, and the iteration starts with a 
guess value which is usually taken to be zero for most cases. 
The implicit scheme generally gives better stability. 

0 Example 15.1: To solve the equation 

dy 
dx = f(y) = e-y- y, 

we use the explicit Euler scheme, and we have 
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Suppose the discrepancy between real solution y~ and the numerical 
Yn is 8yn so that y~ = Yn + 8yn, then the real solution satisfies 

y~+l = y~ + hf(y~). 
Since f(y~) = f(Yn) + :~8yn, the above equation becomes 

Yn+l + 8yn+l = Yn + 8yn + h[f(Yn) + J'(Yn)8yn]· 

Together with the Euler scheme, we have 

8yn+l = 8yn + J'8Yn· 

Suppose that 8yn ex en, then we have 

en+l =en+ h/'en' or e = 1 + hf'. 

In order for the scheme to be stable (or en- 0), it requires that 

or - 1 ~ 1 + hf' = 1 - h(e-Yn + 1) ~ 1. 

The stability condition becomes 

O<h<--2~ - - e-y, + 1 

15.1.2 Leap-Frog Method 

The Leap-frog scheme is the central difference 

1 Yn+1 - Yn-1 
Yn = 2Ax ' 

which leads to 

Yn+1 = Yn-1 + 2hf(xn, Yn)· 

0 

(15.9) 

(15.10) 

The central difference method is second order accurate. In a 
similar way as equation (15.6), the leap frog method becomes 

8yn+1 = 8Yn-1 + 2hf'(y)8yn, (15.11) 

or 

8yn+1 = ~28Yn-1' (15.12) 

where ~2 = 1 + 2hf'(y)~. This scheme is stable only if 1~1 ::; 1, 
and a special case is 1~1 = 1 when f'(y) is purely in1aginary. 
Therefore, the central scheme is not necessarily a better scheme 
than the forward scheme. 
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15.1.3 Runge-Kutta Method 

We have so far seen that stability of the Euler method and the 
central difference method is limited. The Runge-Kutta method 
uses a trial step to the midpoint of the interval by central dif­
ference and combines with the forward difference at two steps 

Yn+l/2 = Yn + .;. f(xn, Yn), (15.13) 

(15.14) 

This scheme is second order accurate with higher stability com­
pared with previous shnple schemes. One can view this scheme 
as a predictor-corrector method. In fact, we can use multisteps 
to devise higher order methods if the right combinations are 
used to eliminate the error terms order by order. The popular 
classical Runge-Kutta method can be written as 

a= hf(xn, Yn), 

b = hf(xn + h/2, Yn + a/2), 

C = hf(xn + h, Yn + b/2), 

d = hf(xn + h,yn +c), 

a+ 2(b +c)+ d 
Yn+l = Yn + 6 ' (15.15) 

which is fourth order accurate. Generally speaking, the higher­
order scheme is better than the lower scheme, but not always. 

15.2 Hyperbolic Equations 

Nun1erical solutions of partial differential equations are more 
complicated than that of ODEs because it involves time and 
space variables and the geometry of the domain of interest. 
Usually, boundary conditions are more complex. In addition, 
nonlinear problems are very common in engineering applica­
tions. Now we start with the simplest first order equations and 
then move onto more complicated cases. 
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15.2.1 First-Order Hyperbolic Equation 

For simplicity, we start with the one-dimensional scalar equa­
tion of hyperbolic type, 

(15.16) 

where c is a constant or the velocity of advection. By using the 
forward Euler scheme for time and centered-spaced scheme, we 
have 

u~+ 1 - u"!- un un 
J ~t J + c[ i+1; j-1] = 0, (15.17) 

where t = n~t, n = 0, 1, 2, ... , x = x0 + jh,j = 0, 1, 2, ... , and 
h = ~x. In order to see how this method behaves numerically, 
we use the von Neumann stability analysis. 

Assun1ing the independent solutions or eigenmodes (also 
called Fourier modes) in spatial coordinate x in the form of 
uj = ~neikhi, and substituting into equation (15.17), we have 

~t ikh(j+1) ihk(j-1) 
~n+ 1 ikhj - ~n ikhj = ~n c e - e 
~ e ~e ~ h 2 . (15.18) 

Dividing both sides of the above equation by ~n exp( ikhj) and 
using sinx = (eix- e-ix)/2i, we get 

~ = 1- ic~t sin(kh). (15.19) 

The stability criteria 1~1 ~ 1 require 

( c~t )2 . 2 kh 0 h Sill ~ . (15.20) 

However, this inequality is impossible to satisfy and this scheme 
is thus unconditionally unstable. 

To avoid the difficulty of instability, we can use other schemes 
such as the upwind scheme and Lax scheme. For the upwind 
scheme, the equation becomes 

u~+ 1 - u"!- u"!- - u"!- 1 1 1 + c[ 1 h 1
- ] = 0, 

~t 
(15.21) 
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whose stability condition is 

1~1 =II- c~t [1- cos(kh) + isin(kh)]l ~ 1, 

which is equivalent to 

c~t 
0<--,;:~l. 

(15.22) 

(15.23) 

This the well-known Courant-Friedrichs-Lewy stability condi­
tion, often referred to as the Courant stability condition. Thus, 
the upwind scheme is conditionally stable. 

15.2.2 Second-Order Wave Equation 

Higher order equations such as the second-order wave equation 
can be written as a system of hyperbolic equations and then be 
solved using numerical integration. They can also be solved by 
direct discretization using a finite difference scheme. The wave 
equation 

(15.24) 

consists of second derivatives. If we approximate the first 
derivatives at each time step n using 

u'- uft-1- uf 
i- ~X 

, uf- uf-1 
ui-1 = ~x (15.25) 

then we can use the following approximation for the second 
derivative 

" u~- u~-1 U· =......;....-....;........;. 
t ~X 

uf+1- 2uf + uf-1 
(~x)2 

(15.26) 

This is in fact a central difference scheme of second order accu­
racy. If we use the similar scheme for time-stepping, then we 
get a central difference scheme in both time and space. 
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Thus, the numerical scheme for this equation becomes 

ui+1- 2uf + ui-1 2 uf+1- 2uf + uf-1 
(~t)2 = c (~x)2 (15.27) 

This is a two-level scheme with a second order accuracy. The 
idea of solving this difference equation is to express (or to solve) 
ui+1 at time step t = n+ 1 in terms of the known values or data 
uf and ui- 1 at two previous time steps t = n and t = n - 1. 

15.3 Parabolic Equation 

For the parabolic equation such as the diffusion or heat con­
duction equation 

8u = ~(D8u) 
8t 8x 8x ' 

(15.28) 

a simple Euler method for the time derivative and centered 
second-order approximations for space derivatives lead to 

(15.29) 

The stability requirement ~ ::; 1 leads to the constraint on the 
time step (see the example), 

(15.30) 

This scheme is shown in Figure 15.1 and it is conditionally sta­
ble. 

0 Example 15.2: From equation (15.29), we can apply the von 
Neumann stability analysis by assuming uj = f.neikhj, we have 

Dividing both sides by f.neikhj, we have 

Dt::..t ·kh ·kh f. = 1 + """h2"[e1 + e-z - 2]. 
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t 

Q t=n+1 
I 
I 
I 

0 6 Ot=n 
j-1 j j+1 

x· J 

Figure 15.1: Central difference in space and explicit Euler time­
stepping. 

Using cosx = (eix + e-ix)/2 and sin2 (x/2) = (1- cosx)/2, we obtain 

4DD.t . 2 kh 
e=1-~sm(2). 

Since sin( X) ~ 1' thus e ~ 1 requires 

4DD.t 
-1 < 1--- < 1. - h2 - 0 

or 

0 

A typical feature of a solution to the diffusive system is 
that the profile is gradually smoothed out as time increases. 
The time-stepping scheme we used limits the step size of time 
as larger time steps will make the scheme unstable. There 
are 1nany ways to improve this, and one of most widely used 
schemes is the implicit scheme. 

To avoid the difficulty caused by very small timesteps, we 
now use an implicit scheme for time derivative differencing, and 
thus we have 

DL).t 
u~+l - uf!- = --(u~+l + 2u~+l + u~+ 1 ) 

J J h2 J+l J J-1 . 

Applying the stability analysis, we have 

1 
~ = 1 + 4D.6.t · 2 kh' fiT""sm 2 
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whose norm is always less than unity (1~1 ~ 1). This means 
the implicit scheme is unconditionally stable for any size of 
time steps. That is why in1plicit methods are more desired in 
simulations. However. there is one disadvantage of this method, 
which requires more programming skills because the inverse of 
a large matrix is usually needed in implicit schen1es. 

15.4 Elliptical Equation 

In the parabolic equation, if the time derivative is zero or u 
does not change with time Ut = 0, then it becomes a steady­
state problem that is governed by the elliptic equation. For 
the steady state heat conduction problem, we generally have 
the Poisson problem, 

V · [K(u, x, y, t)Vu] = f, (15.33) 

If K is a constant, this becomes 

f q=-. 
K 

(15.34) 

There are many methods available to solve this problems such 
as the boundary integral method, the relaxation method, and 
the multigrid method. Two major ones are the long-time ap­
proximation of the transient parabolic diffusion equations, the 
other includes the iteration method. 

The long time approximation method is essentially based 
on fact that the parabolic equation 

(15.35) 

evolves with a typical scale of ../'Kl. If VKJ, >> 1, the system is 
approaching its steady state. Assuming t ---+ oo and K >> 1, we 
then have 

2 f 1 V U = - - -Ut ---+ 0. 
K K 

(15.36) 
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The long-time approximation is based on the fact that the 
parabolic equation in the case of K = const degenerates into the 
above steady-state equation (15.33) because Ut -----+ 0 as t -----+ oo. 
This approximation becomes better if K >> 1. Thus, the usual 
numerical methods for solving parabolic equations are valid. 
However, other methods may obtain the results more quickly. 

The iteration method uses the second-order scheme for space 
derivatives, and equation (15.34) in the 2-D case becomes 

Ui+l,j - 2Ui,j + Ui-l,j Ui,j+l - 2ui,j + Ui,j-1 
(Ax)2 + (Ay)2 = q. (15.37) 

If we use Ax = Ay = h, then the above equation simply be­
comes 

(15.38) 

which can be written as 

Au=b. (15.39) 

In principle, one can solve this equation using Gauss elimina­
tion; however, this becomes impractical as the matrix becomes 
large such as 1000 x 1000. The Gauss-Seidel iteration provides 
a more efficient way to solve this equation by splitting A as 

A=L+D+U, (15.40) 

where L, D~ U are the lower triangle, diagonal and upper tri­
angle matrices of A~ respectively. The iteration is updated in 
the following way: 

(15.41) 

This procedure stops until a prescribed error or precision is 
reached. 
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Chapter 16 

Finite Volume Method 

16.1 Introduction 

The finite difference method discussed in the previous chapter 
approximates the ordinary differential equations and partial 
differential equations using Taylor series, resulting in a system 
of algebraic equations. The finite volume method resembles 
the finite difference method in certain ways but the starting 
point is the integral formulation of the problem. It uses the 
integral form of the partial differential equations in terms of 
conservation laws, then approximates the surface and boundary 
integrals in the control volumes. This becomes convenient for 
problems involving flow or flux boundaries. 

For a hyperbolic equation that is valid in the domain n with 
boundary an' 

(16.1) 

or written in terms of flux function F = F(u) = -K.'\Ju, we 
have 

8u at + v · F = q. (16.2) 

The integral forn1 of this equation becomes 

In ';;: dQ + In V' . F = In qdf!. (16.3) 
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If the integral form is decomposed into many small control vol­
umes, or finite volumes, n = U~1 ni and ni n ni = 0. By 
defining the control volume cell average or mean value 

(16.4) 

where \ti = IOil is the volume of the small control volume ni, 
the above equation can be written as 

(16.5) 

By using the divergence theorem 

fv \7 · F = £ F · ndA, (16.6) 

we have 

(16. 7) 

where dS = ndA is the surface element and n is the outward 
pointing unit vector on the surface ri enclosing the finite vol­
ume ni. The integration can be approximated using various 
nun1erical integration schemes. In the sin1plest 1-D case with 
h = ~x, the integration 

11(i+l/2)h 
ui =- udx, 

h (i-1/2)h 
(16.8) 

is a vertex-centred finite volume scheme. In the following sec­
tions, we will discuss the three major types of partial differ­
ential equations (elliptic, parabolic and hyperbolic) and their 
finite volume discretizations. 

16.2 Elliptic Equations 

Laplace's equation is one of the most studied elliptic equations 

\72u(x, y) = 0, (x, y) E 0, (16.9) 

222 



Finite Volume l'vlethod 16.3 Parabolic Equations 

its integral form becomes 

'\7 udO. = - · dS = 0. 1 2 1 8u 
n r 8n 

(16.10) 

For the simple regular grid points (i~x,j~y), the control vol­
ume in this case is a cell centred at ( i~x, j ~y) with a size of 
~x (along x-axis) and ~y (along y-axis), and the boundary 
integral on any cell consists of four parts integrated on each 
of the four sides. By using the simple approximation ~ with 
g~ = (ui+l,j- ui.j)/~x and t = (ui,j+l- ui,j)j~y, we have 

1 8u ~y 
-8 dO.= A (ui+l.i + Ui-t,j- 2ui,j) 

f2·. n uX 
t,] 

~X 
+ ~y (ui,j+l + ui,j-1 - 2ui,j) = 0. (16.11) 

Dividing both sides with ~x~y, and letting ~x = ~y = h, we 
obtain 

(ui+l,j + Ui.j+l + Ui-l,j + Ui,j-t)- 4Ui,j = 0, (16.12) 

which resembles finite difference methods in many ways. In 
fact, this is exactly the Laplace operator for a 5-point differ­
encing scheme. 

16.3 Parabolic Equations 

For the case of heat conduction 

(16.13) 

we have its integral form 

[ [ {)u 82u 
lt ln ( 8t - k {)x2 - q)dxdt = 0. (16.14) 
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If we use the control volume from ( i- 1 /2)h to ( i + 1 /2)h where 
h = D.x, and with time from step n to n + 1, we have 

{(n+1)At 1(i+1/2)h {Ju fJ2u 
lnAt (i-1/2)h ( {)t - k 8x2 - q)dxdt = O. (16.15) 

By using the mid-point approximation 

l '1/J(x)dx = '1/J[(a; b)](b- a), (16.16) 

and the DuFort-Franke! scheme where we first approximate the 
gradient 

[)2u uf+1 - 2uf + uf-1 
{)x2 = h2 (16.17) 

then replace -2uf with -(uj+1 + uj-1), we have 

u~+1- u~-1 
t t = 2D.t 

(16.18) 

where we have used the central scheme for time as well. The 
finite volume scheme is more versatile in dealing with irregular 
geometry and more natural in applying boundary conditions. 
Following the stability analysis, we get 1~1 < 1 is always true 
and thus the Dufort-Franke! scheme is unconditionally stable 
for all .Dot and D.x. 

16.4 Hyperbolic Equations 

For the hyperbolic equation of the conservation law in the one­
dimensional case 

{)u 8w(u) _ 
0 {Jt + ---ax- - ' (16.19) 

we have its integral form in the fixed domain 

-dx=- udx 1
Xb {)u {) 1Xb 

Xa {Jt {Jt Xa 
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= -{w[u(xb)]- w[u(xa)]} = 0. (16.20) 

If we use the mid-point rule u* to approximate the integral, we 
have 

(16.21) 

If we choose the control volume [(i -1/2)~x, (i + 1/2)~x] cen­
tred at the mesh point Xi = i~x = ih with the approximation 
ui ~ ui in each interval, and using the forward differencing 
scheme for the time derivative, we have 

(16.22) 

By further approximation of the flux \ll(xi+l/2) ~ \ll(xi), we 
have the upward scheme 

(16.23) 

which is conditionally stable as we know this in the finite dif­
ference method. For the simplest flux w(u) = cu, we have 

n+l n c~t ( n n ) u = ui - h ui - ui-1 ' 

and its stability requires that 

0 c~t < 1 < h - . 
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Chapter 17 

Finite Element Method 

In the finite difference method, we approximate the equations 
at a finite number of discrete points, and there are many limi­
tations in finite difference methods. One of such disadvantages 
is that it is not straightforward to deal with irregular geometry. 
lviore versatile and efficient n1ethods are highly needed. In fact, 
the finite element method is one class of the most successful 
methods in engineering and have a wide range of applications. 

The basic aim of the finite element method is to formulate 
the numerical method in such a way that the partial differential 
equation will be transformed into algebraic equations in terms 
of matrices. For time-dependent problems involving partial dif­
ferential equations, the equations can be converted into an ordi­
nary differential equation, which will in turn be discretized and 
converted into algebraic equations by time-stepping or some it­
eration techniques. For example, a linear elastic problem can 
be formulated in such a way that it is equivalent to the equation 
of the following type 

Ku=f, (17.1) 

where K is the stiffness matrix, and f is a vector corresponding 
to nodal forces and some contribution from boundary condi­
tions. u is the unknown vector to be solved and it corresponds 
to the nodal degree of freedon1 such as the displacement. 
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17.1 Concept of Elements 

17.1.1 Simple Spring Systems 

The basic idea of the finite element analysis is to divide a model 
(such as a bridge and an airplane) into many pieces or ele­
ments with discrete nodes. These elements form an approxi­
mate system to the whole structures in the domain of interest, 
so that the physical quantities such as displacements can be 
evaluated at these discrete nodes. Other quantities such as 
stresses, strains can then be evaluated at certain points (usu­
ally Gaussian integration points) inside elements. The simplest 
elements are the element with two nodes in 1-D, the triangular 
element with three nodes in 2-D, and tetrahedral elements with 
four nodes in 3-D. 

In order to show the basic concept, we now focus on the 
simplest 1-D spring element with two nodes (see Figure 17.1). 
The spring has a stiffness constant k (Njm) with two nodes i 
and j. At nodes i and j, the displacements (in metres) are Ui 

and Uj, respectively. /i and /j are nodal forces. 

k 

Figure 17.1: Finite element concept. 

From Hooke's law, we know the displacement ~u = Uj - Ui 

is related to f, or 
f = k(~u). (17.2) 

At node i, we have 

(17.3) 

and at node j, we get 

(17.4) 
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These two equations can be combined into a matrix equation 

or Ku = f. (17.5) 

Here K is the stiffness matrix, u and f are the displacement 
vector and force vector, respectively. This is the basic spring 
element, and let us see how it works in a spring system such 
as shown in Figure 17.2 where three different springs are con­
nected in series. 

Figure 17.2: A simple spring system. 

For a simple spring system shown in Figure 17.2, we now 
try to determine the displacements of Ui ( i = 1, 2, 3, 4). In order 
to do so, we have to assemble the whole system into a single 
equation in terms of global stiffness matrix K and forcing f. 
As these three elements are connected in series, the assembly 
of the system can be done element by element. For element E1, 
its contribution to the overall global matrix is 

( 
k1 -k1 ) ( Ul ) = ( fi ) ' 

-k1 k1 U2 /2 (17.6) 

which is equivalent to 

(17.7) 

where 

(17.8) 
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and !'f
1 

= (ft, /2, 0, 0). Similarly, for element E2, we have 

( k2 -k2 ) ( U2 ) = ( -/2 ) ' 
-k2 k2 U3 /3 

(17.9) 

or 

KFU 
0 0 !} k2 -k2 

-k2 k2 
0 0 

(17.10) 

where we have used the balance at node 2. For element E3, we 
have 

(17.11) 

or 

(17.12) 

where /4 = /. has been used. We can now add the three sets 
of equations together to obtain a single equation 

( kl 
-k2 

0 0 ) ( UJ ) ( !J ) -t kt + k2 -k2 0 U2 -/2+/2 
-k2 k2 + k3 -k3 U3 = - j3 + /3 ' 

0 -k3 k3 U4 f* 

or 

Ku=f, (17.13) 

where 

K = Kt +K2 +K3 

( kl 
-kl 0 _t} = T kt + k2 -k2 

(17.14) 
-k2 k2 +k3 

0 -k3 k3 
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and 

(17.15) 

In general, the matrix K is singular or its rank is less than the 
total number of degrees of freedom, which is four in this case. 
This means that the equation has no unique solution. Thus, we 
need the boundary conditions to ensure a unique solution. In 
this spring system, if no boundary condition is applied at any 
nodes, then the applied force at the node 4 will make the spring 
system fly to the right. If we add a constraint by fixing the left 
node 1, then the system can stretch, and a unique configuration 
is formed. 

In our case where there are no applied forces at nodes 2 and 
3, we have 

(17.16) 

0 Example 11.1: For k1 = 100 Njm, k2 = 200 N/m, and k3 = 
50N/m, and J. = 20 N, the boundary at node 1 is fixed (u1 = 0). 
Then, the stiffness matrix is 

and the force column vector 

-100 
300 

-200 
0 

0 
-200 
250 
-50 

fT = (0, 0, 0, 20). 

_t )' 
50 

The rank of K is 3, therefore, we need at least one boundary condi­
tion. By applying u 1 = 0, we now have only three unknown displace­
ments u2 , u3 , u4 • Since u 1 = 0 is already known, the first equation for 
Ut becomes redundant and we can now delete it so that the reduced 
stiffness matrix A is a 3 x 3 matrix. Therefore, we have 

( 

300 

A= -~00 

and the reduced forcing vector is 

-200 
250 
-50 

gT = (0, 0, 20). 
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The solution is 

( 
0.2) u =A -lg = 0.3 . 
0.7 

Therefore, the displacements are u2 = 0.2 m, u3 = 0.3 m, and u4 = 
0.7 m. 

Theoretically speaking, the force should be 20N eve1ywhere in 
the spring systems since the mass of the springs is negligible. Let us 
calculate the force at nodes 2 and 3 to see if this is the case. At the 
node 2, the extension in element E 1 is ~u = u2 - u 1 = 0.2 m, thus 
the force at node 2 is 

f2 = kt~U = 100 X 0.2 = 20N. 

Similarly, at node 3 of element E2, we have 

which is the same at node 3 of element E3 

So the force is 20 N everywhere. 0 

17.1.2 Bar and Beam Elements 

The spring system we discussed earlier is limited in many ways 
as a spring does not have any mass and its cross section is not 
explicitly included. A more complicated but realistic elen1ent 
is the bar element as shown in Figure 17 .3, which is a uniform 
rod with a cross section area A, Young's elastic modulus E, 
and a length L. A bar element can only support tension and 
compression, it cannot support bending. For this reason, it is 
also called a truss element. 

The displacements at nodes i and j are Ui and Uj, respec­
tively. The forces at the corresponding nodes are fi and fi. 
Now we have to derive its stiffness matrix. Assuming the bar 
is linearly elastic, the stress a is thus related to strain f via 
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a= EE. Since f = (uj- ui)/L and a= f /A where F is the 
force in the bar element, we have 

EA 
f = y(~u) = k(~u), (17.17) 

where ~u = Uj - Ui is the extension or elongation of the bar 
element. Now the equivalent spring stiffness constant is 

k = EA 
L" 

Therefore, the stiffness matrix K for this bar becomes 

K = ( k -k ) = EA ( 1 -1 ) . 
-k k L -1 1 

u· t 

A,E,L 

Figure 17.3: Bar element. 

j 

u· J 

(17.18) 

(17.19) 

We have up to now only discussed 1-D systems where all 
displacements Ui or Uj are along the bar direction, and each 
node has only one displacement (one degree of freedom). We 
now extend to study 2-D syste1ns. In 2-D, each node i has two 
displacements ui (along the bar direction) and vi (perpendicu­
lar to the bar direction). Thus, each node has two degrees of 
freedom. 

If we rotate the bar elen1ent by an angle (} as shown in 
Figure 17.4, we cannot use the standard addition to assemble 
the system. A transformation is needed between the global 
coordinates (x, y) to the local coordinates (x', y'). From the 
geometrical consideration, the global displacements ui and vi 
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at node i are related to the local displacement u~ and (usually) 
v~ = 0. 

( ~~ ) = ( ~::o :: ) ( ~; ). (17.20) 

y 

Figure 17.4: 2-D transformation of coordinates. 

Using the similar transformation for Uj and Vj, we get the 
transformation for the two-node bar ele1nent 

(~) ( ~o sinO 0 

si~O) (:} I -ro cosO 0 
U= 

0 cosO 
0 -sinO COS 0 Vj 

which can be written as 

u' = Ru, (17.21) 

where 

R== ( 

cosO sinO 0 

si~O} -sinO cosO 0 
0 0 cosO 
0 0 -sinO cosO 

(17.22) 

The same applies to transform the force, 

f' = Rf, (17.23) 
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and the stiffness matrix in local coordinates is 

K'u' = f'. (17.24) 

As the calculation is n1ainly based on the global coordinates, 
and the assembly should be done by transforming the local 
systems to the global coordinates, by combining the above two 
equations, we have 

K'Ru=Rf, 

or 
R-1K'Ru = Ku = f, 

which is equivalent to a global stiffness matrix 

The stiffness matrix K is a 4 x 4 matrix in 2-D. 

(17.25) 

(17.26) 

(17.27) 

Bar elements can only elongate or shrink, they do not sup­
port bending or deflection. For bending, we need the beam ele­
ments which include a rotation around the end nodes ()i and ()i. 
In this case, each node has three degrees of freedom ( Ui, Vi, Oi), 
and the stiffness matrix is therefore a 6 x 6 matrix in 2-D. 
For more complicated elements, it is necessary to use a formal 
approach in terms of shape functions and weak formulations. 

17.2 Finite Element Formulation 

17.2.1 Weak Formulation 

l\llany problems are modelled in terms of partial differential 
equations, which can generally be written as 

.C( u) = 0, X E !l, (17.28) 

where .C is a differential operator, often linear. This prob­
lem is usually completed with the essential boundary condition 
£(u) = (u- u) = 0 for X E {)!lE and natural boundary condi­
tions B(u) = 0 for X E anN. Assuming that the solution can 
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be approximated by uh over a finite element mesh with an av­
eraged element size or mean distance h between two adjacent 
nodes, the above equation can be approximated as 

(17.29) 

Multiplying both sides of the equation by a test function or 
a proper weighting function, integrating over the domain and 
using associated boundary conditions, we can write the general 
weak formulation of Zienkiewicz-type as 

fn C( uh)widn 

+ f B(uh)widr + f &(uh)widrE ~ o, (17.30) lanN lanE 
where (i = 1, 2, ... , M). If we can approximate the solution uh 
by the expansion 

M M 
uh(u, t) = L ui(t)Ni(x) = L UjlVj, (17.31) 

i=l j=l 

it requires that Ni = 0 on 8f2E so that Wi = 0 on {}O.E. Thus, 
only the natural boundary conditions are included since the 
essential boundary conditions are automatically satisfied. In 
addition, there is no much limitation on the choice of Wi and 
wi. If we choose wi = -wi so as to simplify the formulation, 
we have 

(17.32) 

17 .2.2 Galer kin Method 

There are many different ways to choose the test functions Wi 
and shape functions Ni. One of the most popular methods 
is the Galerkin method where the test functions are the same 
as the shape functions, or Wi = Ni. In this special case, the 
formulation simply becomes 

(17.33) 
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The discretization of this equation will usually lead to an alge­
braic matrix equation. 

On the other hand, if we use the Dirac delta function as 
the test functions Wi = 8 ( x - ~), the method is called the 
collocation method which uses the interesting properties of the 
Dirac function 

fo f(x)8(x- Xi)dn = f(xi)· (17.34) 

together with 8(x- Xi) = 1 at x = Xi and 8(x- Xi) = 0 at 
xfXi· 

17.2.3 Shape Functions 

The n1ain aim of the finite elen1ent method is to find an ap­
proxinlate solution uh(x, t) for the exact solution u on some 
nodal points, 

M 

uh(x, t) = L Ui(t)Ni(x) 
i=l 

(17.35) 

where ui are unknown coefficients or the value of u at the dis­
crete nodal point i. Functions Ni (i = 1, 2, ... , M) are linearly 
independent functions that vanish on the part of the essential 
boundary. At any node i, we have Ni = 1, and Ni = 0 at any 
other nodes, or 

M 

LNi = 1, Ni(Xj) = 8ij· (17.36) 
i=l 

The functions Ni ( x) are referred to as basis functions, trial 
functions or more often shape functions in the literature of 
finite element methods. For the simplest 1-D element with two 
nodes i and j, the linear shape functions can be written as 

(17.37) 

where L = lxi- xil, which is shown in Figure 17.5. 
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j 

~ = xflxi- xil 

Figure 17.5: The 1-D linear shape functions. 

X 

Using the assumptions that ui(t) does not depend on space 
and lVi(x) does not depend on time, the derivatives of u can 
be approximated as 

M 
8u 8uh """' 1 a~ fJx = ~ Ui(t)N (x), 

X i=l 

M 
. OUh """' . N( ) u~~=~ui x, 

vt i=l 
(17.38) 

where we have used the notations: 1 = dj dx and· = 3t. Higher 
order derivatives are then calculated in a similar way. The 
ultimate goal is to construct a method of computing ui such 
that the error uh - u is minimized. Generally speaking, the 
residual R varies with space and time, so we have 

(17.39) 

There are several methods to minimize R. Depending on the 
scheme of minimization and the choice of shape functions, var­
ious methods can be formulated. These include the weighted 
residual method, the method of least squares, the Galerkin 
method and others. 
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17.3 Elasticity 

17.3.1 Plane Stress and Plane Strain 

The stress tensor u and strain tensor e are not written as tensor 
forms but vector forms u = (axx, ayy, a:;::, axy, ay::, a::x)T, and 
€ = (f.xx' f.yy, f.:;:;, "fxy, 'Yyz, 'Yzx)T. The strain tensor is usually 
defined as 

1 oui 8u· 
cij = -(- + _J ), 

2 8xj 8xi 
(17.40) 

where one applies the engineering shear strain f.xy = 2cxy· 
Hooke's elasticity can be expressed as 

(17.41) 

where Dis a 6 x 6 symmetrical matrix as functions of Young's 
modulus E and Poisson's ratio v. 

Two special cases that are commonly found in many appli­
cations are the plane stress (a zz = 0, but f.z:; =/= 0) and plane 
strain (f.:::: = 0, but azz =/= 0). The commonly used formulation 
is the displacement-based formulation or u-based formulation. 
In the 2-D case, the displacen1ent u = (u, v)T and the strain f. 

and stress a are defined as 

(17.42) 

Now the stress-strain relationship becomes 

a= D(f.- f.o), (17.43) 

where D is a 3 x 3 matrix. The strains are given by 

au 8v au 8v 
f.x=-, f.y=- l'xy=-+-, 

ox 8y ' {)y OX 
(17.44) 

where f.o is the initial strain due to temperature change or ther­
mal loading. If there is no such change, then the initial strain 
can be taken to be zero in most applications. 
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The equilibrium of force in elasticity leads to 

V' · u+ b = 0. (I7.45) 

where b = [fx /y]T is the body force. In the case of plane 
stress, we have 

E ( I v 0 ) D=--2 v I 0 . 
I - v 0 0 (I - v)/2 

(I7.46) 

In the case of plane strain, we have 

E 

( 

~~~ i~v 0 ) 
v 1-v 0 

D = (I - 2v) l~v l~v (1-2v) . 

2(1+v) 

(I7.47) 

Clearly, for the I-D case plane stress when v = 0, /y = 0 and 
uy = Txy = 0, the equation of force balance simply becomes 

E 82u 
-I--2 8 2 + fx = 0, -v x 

(I7.48) 

where we have used the stress-strain relationship. This I-D 
equation is essentially the same as the I-D heat transfer equa­
tion u" + Q = 0 that will be discussed in detail later, so the 
solution technique for the I-D heat transfer shall equally ap­
ply. Therefore, we shall focus on the 2-D case in the rest of 
this section. 

Displacements ( u, v) in a plane eletnent can be interpolated 
from nodal displacements. For example, using a triangular ele­
ment (i,j, m) with three nodal points as shown in Figure I7.6 

(xi, Yi), (xj, Yi), and (xm, Ym), we have 

u = (:) = (N;I,N;I,Nml] =Nd, (I7.49) 
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y 

X 

Figure 17.6: Schematic triangular mesh and the layout of a 
triangular element. 

where I is a 2 x 2 unitary matrix, i.e., 

and 

N = ( N
0

i 0 
Ni 

N· J 

0 

By defining a differential operator 

( 
fx 0 ) Ld= 0 -iu, {) w 
i)y 'ljX 

we can rewrite the above forn1ulation as 

where 
B =LdN. 

Now the equation (17.45) becomes 

where 

Ku=f, 

K = In BTDBdV, 
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and 

(17.57) 

where r is the surface traction (force per unit area). 

17 .3.2 Implementation 

In the case of 2-D elastic problems, the simplest elen1ents are 
linear triangular elements, thus we have Bi = LdNi, or 

1 c; 0 b· 0 bm 

~). J 

B = LdN = 2~ 0 Ci 0 c· 0 J 

c· b· c· b· Cm bm l l J J 

(17.58) 

where 

1 
1 Xi Yi 

~=- 1 x· Yi 2 J 

1 Xm Ym 
(17.59) 

is the area of the triangular element. The linear elen1ent im­
plies that the strain is constant in the element. The stiffness 
matrix K~j) (i,j = 1, 2, ... , 6) of each triangular element can be 
expressed as 

(17.60) 

For a triangular element with three nodes (i,j, m), each node 
has two degrees of freedom (ui, Vi), then the stiffness matrix 
K(e) for each element is a 6 x 6 matrix. In general, if each 
element has r nodes, and each node has n degrees of freedom, 
then the local stiffness matrix is a rn x rn matrix. If the region 
has M nodes in total, then M n equations are needed for this 
problem. For the present case (n = 2), we need 2/v/ equations 
for plane stress and plane strain. 

In order to calculate the contribution of each element to 
the overall (global) equation, each node should be identified in 
some way, and most often in terms of the index matrix. The 
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nodal index matrix for three nodes ( i, j, m) can be written as 

( 

(i, i) (i,j) (i, m) ) 
IDnode = (j, i) (j,j) (j, m) . 

(m, i) (m,j) (m, m) 
(17.61) 

The nodal index matrix identifies the related nodes in the global 
node-numbering system. However, the main assembly of the 
stiffness matrix is about the corresponding equations and the 
application of the boundary conditions, thus we need to transfer 
the nodal index matrix to the equation index matrix in terms of 
the global numbering of equations with two degrees of freedom 
for each node (e.g., equations 2i -1 and 2i for nodal i, equation 
2j - 1 and 2j for node j, etc). Thus, for each entry in the 
stiffness matrix, say (i,j), in the nodal index matrix, we now 
have four entries, i.e., 

( .. ) ~ ( (2i -1,2j -1) (2i -1,2j)) 
Z,J (2i, 2j - 1) (2i, 2j) ' 

etc (17.62) 

The equation index matrix now has 6 x 6 entries, and each 
entry is a pair such as (2i- 1, 2j- 1), ... , (2m, 2m), etc. By 
writing it as two index matrices (ID = JDT), we now have 

IDequ = JD~u, 

2i -1 2i 2j -1 2j 2m-1 2m 
2i -1 2i 2j -1 2j 2m-1 2m 

JDequ = 
2i -1 2i 2j -1 2j 2m-1 2m 

(17.63) 
2i -1 2i 2j -1 2j 2m-1 2m 
2i -1 2i 2j -1 2j 2m-1 2m 
2i -1 2i 2j -1 2j 2m-1 2m 

So that the contribution of K~) to the global matrix Kij is 
sin1ply 

K - K + K(e) (J Dequ(/.J),J Dequ(/,J)] - (J Dequ(I,J),JDequ(/.J)] (/.J)' 

I,J = 1,2, ... ,6. (17.64) 
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Similarly, the contribution of the body force and external force 
can be computed 

J(l) = f(l) + j(e)(l) 

where l = 2i- 1, 2i, 2j- 1, 2j, 2m- 1, 2m etc. 

17.4 Heat Conduction 

Heat transfer problems are very common in engineering and the 
geometry in most applications is irregular. Thus, finite elen1ent 
methods are especially useful in this case. 

17 .4.1 Basic Formulation 

The steady-state heat transfer is governed by the heat conduc­
tion equation or Poisson's equation 

V · (kVu) + Q = 0, (17.65) 

with the essential boundary condition 

u =u, x E anE, (17.66) 

and the natural boundary condition 

(17.67) 

Using the formulation similar to the formulation (17.33) in 
terms of u ~ uh, we have 

f [V · (kVu) + Q]1VidO.- f [k
8
8
u- q]lVidr = 0. (17.68) 

ln lanN n 

Integrating by parts and using Green's theorem, we have 
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+ f Q1Vidn- f [k 8
8
uh - q]JVidr = o. 

ln lanN n 
(17.69) 

Since lVi = 0 on {)O.E, thus we have 

f [ ]Nidr = f [ ]Nidr. 
lan lanN 

(17.70) 

Therefore, the above weak formulation becomes 

Substituting uh = Ej\1~ 1 UjlVj(x) into the equation, we have 

- [ qNidr = 0. 
lanN 

This can be written in the compact matrix form 

M 

L KijUj = fi, KU = f, 
j=l 

(17.72) 

(17.73) 

where K = [Kij], (i,j = 1, 2, ... , M), uT = (ut, U2, ... , UM ), and 
cT = (ft, !2, ... , !M ). That is, 

Kii = In k"V Ni "V lVjdO., (17.74) 

fi = f QNidn + f qNidr. 
ln lanN 

(17.75) 

0 Example 17.2(a): As a simple example, we consider the 1-D 
steady-state heat conduction problem, 

u"(x) + Q(x) = 0, 

witb boundazy conditions 

u(O) = /3, u'(l) = q. 
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For a special case Q(x) = rexp(-x), we have the analytical solution 

u(x) = ({3- r) + (re- 1 + q)x +re-x. (17.76) 

Then equation (17. 75) becomes 

For the purpose of demonstrating the implementation procedure, let 
us solve this problem by dividing the interval into 4 elements and 5 
nodes. This will be discussed later in more details. D 

17 .4.2 Element-by-Element Assembly 

The assembly of the linear matrix system is the popular element­
by-element method. The stiffness matrix Kin equations (17.73) 
and ( 17.75) is the summation of the integral over the whole 
solution don1ain, and the don1ain is now divided into m ele­
ments with each element on a subdomain ne (e = 1, 2~ ... , m). 
Each element contributes to the whole stiffness matrix, and in 
fact~ its contribution is a pure number. Thus, assembly of the 
stiffness matrix can be done in an elen1ent-by-element manner. 
Furthermore, Ki,j =I= 0 if and only if (or iff) nodes i and j be­
long to the same elements. In the 1-D case~ Ki,j =I= 0 only for 
j = i - 1, i, i + 1. In finite element analysis, the shape func­
tions Nj are typically localized functions~ thus the 1natrix K is 
usually sparse in most cases. 

The element-by-element formulation can be written as 

(17. 77) 

and 

m 

fi = L fi(e), 

e=l 
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In addition, since the contribution of each element is a sinl­
ple number, the integration of each elen1ent can be done using 
the local coordinates and local node numbers or any coordi­
nate system for the convenience of integration over an element. 
Then, the nonzero contribution of each element to the global 
system matrix K is simply assembled by direct addition to the 
corresponding global entry (of the stiffness n1atrix) of the cor­
responding nodes or related equations. In reality, this can be 
easily done using an index matrix to trace the element contri­
bution to the global system matrix. 

0 Example 17.2(b): The assembly of the global system matrix 
for the example with 4 elements and five nodes is shown below. For 
each element with i and j nodes, we have 

L= he, 

Kljl = [f kN;Njdx] = :. ( !1 
-1) 
1 ' 

f~ e) = Q he ( 1 ) 
z 2 1 ' 

so that, for example in elements 1 and 2, these can extend to all 
nodes (with hi = xi+l -xi, i = 1, 2, 3, 4), 

( 

k/ht 
-k/ht 

K<'l = ~ 

-k/ht 0 0 
k/ht 0 0 

0 0 0 
0 0 0 
0 0 0 

and so on. Now the global system matrix becomes 

K= 
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( 
k/ht -k/ht 0 0 0 

} -k/hl k/hl + k/h2 -k/h2 0 0 
0 -k/h2 k/h2 + k/h3 -k/h3 0 
0 0 -k/h3 k/h3 + k/h4 -k/h4 
0 0 0 -k/h4 k/h4 

U=U~} ( Qh./2 ) Q(hl + h2)/2 
I= Q(h2 + h3)/2 , 

Q(h3 + h4)/2 
Qh4/2 + q 

where the last row of I has already included the natural bounda1y 

condition at u' ( 1) = q. D 

17.4.3 Application of Boundary Conditions 

Boundary conditions can be essential, natural or mixed. The 
essential boundary conditions are automatically satisfied in the 
finite elen1ent formulation by the approxin1ate solution. These 
include the displacement, rotation, and known value of the so­
lution. Sometimes, they are also called the geometric boundary 
conditions. In our example, it is u(O) = /3. Natural boundary 
conditions often involve the first derivatives such as strains, 
heat flux, force, and moment. Thus, they are also referred to 
as force boundary conditions. In our example, it is u'(1) = q. 

The natural boundary conditions are included in the inte­
gration in the finite elen1ent equations such as (17.75). Thus no 
further in1position is necessary. On the other hand, although 
the essential boundary conditions are automatically satisfied 
in the finite element formulations, they still need to be im­
plemented in the assembled finite element equations to ensure 
unique solutions. The imposition of the essential boundary con­
ditions can be done in main several ways: a) direct application; 
b) Lagrangian n1ultiplier and c) penalty method. To show how 
these methods work, we use the 1-D poisson equation on the 
distinct points xi(i = 1, 2, ... , 1\11) E (0, 1] to aid our discussion. 
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Direct Application 

In this method, we simply use the expansion uh = Et!1 uilVi, 
and apply directly the essential boundary conditions at point i 
to replace the corresponding ith equation with ui = ui so that 
ith row of the stiffness matrix K in equation (17. 73) becon1es 
(0, 0, ... , 1, ... , 0) and the corresponding /i = f(i) = ui. All 
other points will be done in the similar manner. For example, 
the boundary conditions u(O) = a and u(M) = (3 in the 1-
D case mean that the first and last equations are replaced by 
u1 =a and UM = {3, respectively. Thus, Ku = 1, It =a (all 
other coefficients are set to be zeros: K12 = ... = K1M = 0, 
and KMM = 1, !M = /3 with Ki\111 = ... = KM,M-1 = 0). 
Then, the equations can be solved for (ub u2 , .•• , uM )T. This 
method is widely used due to its simplicity and the advantage 
of time-stepping because it allows bigger time steps. 

Lagrangian Multiplier 

This method is often used in the structure and solid mechanics 
to enforce the constraints ( Ui = Ui). The variation is added by 
the extra term .X(ui- ui) where A is the Lagrange multiplier. 
Now we have 

(17.79) 

whose variation 8II = 0 leads to 

(17.80) 

Because 8u and 8-X are arbitrary, we have 

where ei = (0, 0, ... , 1, 0, ... , O)T (its ith entry is equal to one). 
This method can be extended tom Lagrangian multipliers. 
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Penalty Method 

One of the most widely used methods of enforcing the essential 
boundary conditions is the so-called penalty method in terms 
of a very large coefficient I' Ui = ft at Xi E an E' so that 
/Ui = '")'U can be directly added onto Ku =f. In the 1-D ex­
ample, it simply leads to Ku = Ku +!', KMM = KMM+/, and 
It =It+ /O::, fA,/ = fM + '"'(/3. The common rule for choosing 
I' is that '"'f >> max IKiil· Usually, '"Y ~ lOOOmax IKiil should 
be adequate. The penalty method is widely used in steady­
state problems. However, it may affect the efficiency of time­
stepping since it increases the maximum eigenvalue of the stiff­
ness matrix, and thus very small time steps are required for 
convergence. The advantage of the penalty method is that the 
handling of the essential boundary conditions becomes simpler 
from the implementation point of view. The disadvantage is 
that the conditions are only satisfied approximately. 

0 Example 17.2(c): Following the same example of the 1-D 
steady state beat conduction discussed earlier, we now use the direct 
application method for the essential boundary conditions. lVe can 
replace the first equation E;=l K 1iui = f 1 with u 1 = (3, so that the 
first row becomes K 1j = (1 0 0 0 0) and f 1 = (3. Thus, we have 

K= 

( 
1 0 0 0 0 

} -k/ht k/ht + k/h2 -k/h2 0 0 
0 -k/h2 k/h2 + k/h3 -k/h3 0 
0 0 -k/h3 k/h3 + k/h4 -k/h4 
0 0 0 -k/h4 k/h4 

U= ( ~~} ( ~ ) Q(ht + h2)/2 
I= Q(h2 + hJ)/2 , 

Q(h3 + h4)/2 
Qh4/2 + q 

For the case of k = 1,Q = -1,h1 = ... = h4 = 0.25, f3 = 1 and 
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q = -0.25, we bave 

( 1 

0 0 0 

~} ( 1 ) 
-4 8 -4 0 -0.25 

K= ~ -4 8 -4 f = -0.25 
0 -4 8 -4 -0.25 
0 0 -4 4 -0.375 

Hence, tbe solution is 

0.72 

( 

1.00 ) 

U = K- 1 J = 0.50 . 
0.34 
0.25 

17.5 Time-Dependent Problems 

D 

The problems we have discussed so far in our finite element 
analysis are not time-dependent, and the solutions obtained are 
the steady-state solutions. However, most realistic problems 
involve time, and thus we will now discuss the tin1e-dependent 
problems. 

17.5.1 The Time Dimension 

As the weak formulation uses the Green theorem that involves 
the spatial derivatives, the time derivatives can be considered 
as the source term. Thus, one simple and yet instructive way 
to extend the finite element forn1ulation to include the time 
dimension is to replace Q in equation (17.65) with Q- GUt­

/3Utt = Q - GU - /3il so that we have 

V' · (kV'u) + (Q- GUt- f3utt) = 0. (17.81) 

The boundary conditions and initial conditions are u(x, 0) = 

4J(x), u = u,x E {)O.E, and kg~- q = O,x E {)O.N. Using 
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integration by parts and the expansion uh = EJ~1 uiNi, we 
have 

M M 
'Lrj (k'VN/vlVj)dn] + L J [(NiaNi)ui + (Ni/3Ni)uj]dn 
i=l n i=l n 

- f NiQdn - f Niqdr = o, 
ln lanN 

which can be written in a compact form as 

where 

and 

Mii+ Cu+Ku = f, 

Kii =In [(k'V Ni 'V Ni )]dO., 

fi = [ NiQdn + [ Niqdr, 
ln lanN 

(17.82) 

(17.83) 

(17.84) 

(17.85) 

(17.86) 

The matrices K, M, C are symmetric, that is to say, Kij = 

Kji, Mij = Mji, Cij = Cji due to the interchangeability of the 
orders in the product of the integrand k, Ni and Nj (i.e., 'V Ni · 
k · 'VNi = k'VNi'VNi, Nia1Vi = 1ViaNi =aNiNi etc). The 
matrix C = [Cij) is the damping matrix similar to the damping 
coefficient of damped oscillations. M = [Mii] is the general 
mass matrix due to a similar role acting as an equivalent mass 
in dynamics. In addition, before the boundary conditions are 
imposed, the matrix is usually singular, which may imply many 
solutions. Only after the proper boundary conditions have been 
enforced, the stiffness matrix will be nonsingular, thus unique 
solutions may be obtained. On the other hand, M and C will 
be always non-singular if they are not zero. For example, for 
the 1-D elen1ents (with nodes i and j), 

-1) 
1 ' (17.87) 
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but 

M;~) = /3~e ( ~ ~ ) , det[M(e)] # 0, 

C~~) = o.he ( 2 1 ) det[C(e)] # 0, 
t} 6 1 2 ' (17.88) 

Clearly, if M = 0, it reduces to the linear heat conduction. If 
C = 0, it becomes the wave equation with the source term. 

17 .5.2 Time-Stepping 

Fron1 the general governing equation 

Mii+ Cu+Ku = f, (17.89) 

we see that it is an ordinary differential equation in terms of 
time and matrices. Thus, in principle, all the time-stepping 
methods developed in the standard finite difference method 
can be used for this purpose. For a simple center difference 
scheme, we have 

.. (un+1 _ 2un + un-1) 
u = (~t)2 (17.90) 

so that equation (17.89) becomes 

(un+1 _ 2un + un-1) 
M (~t)2 

(17.91) 

Now the aim is to express un+1 in tenns of un and un-1. 

17.5.3 1-D Transient Heat Transfer 

In the case of heat conduction (M = 0), we have 

Cu+Ku=f, (17.92) 
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or 
. c-1(f K ) U= - U. (17.93) 

Using the explicit time-stepping method, we can write it as 

n+l n 
u - u = c-t (f- K n) 

tl.t u ' (17.94) 

so that we have 

(17.95) 

0 Example 17.9: For a transient heat conduction problem, we 
have 

OUt = kuxx + Q, 

and 
u(x, 0) = 0, u(O, t) = 1, u'(l) = q. 

The formulation with 5 nodes and 4 elements leads to 

C= 

( 2h, 
ht 0 0 

0 ) 
ht 2(ht + h2) h2 0 0 

~ 0 h2 2(h2 + ha) ha 0 
6 0 0 ha 2(ha + h4) h4 

0 0 0 h4 2h4 

For the case of a= 6,k = 1,Q = -1,h1 = ... = h4 = 0.25, we 
have 

( 0.5 
0.25 0 0 

0 ) 
0.25 1 0.25 0 0 

C= 0 0.25 1 0.25 0 . 
0 0 0.25 1 0.25 
0 0 0 0.25 0.5 

0 

17.5.4 Wave Equation 

For the wave equation (C = 0), we have 

Mii+Ku=f. (17.96) 
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Using 
.. un+1 - 2un + un-1 
u = (~t)2 (17.97) 

we have 

where I is an identity or unit matrix. For example, the 1-D 
wave equation 

82u 82u 
8t2 = c {)x2' 

with the boundary conditions 

u(O) = u(1) = 0, u(x, 0) = e-(x- 1/ 2)
2

, 

can be written as 

(17.99) 

(17.100) 

Mii = fo1 

NiNjdx, Kii = l cNfNjdx, f = 0, (17.101) 

and u 0 is derived from the u(x, 0) = exp[-(x- 1/2)2]. 

The finite element methods in this book are mainly for lin­
ear partial differential equations. Although these methods can 
in principle be extended to nonlinear problems, however, some 
degrees of approximations and linearization are needed. In ad­
dition, an iterative procedure is required to solve the resultant 
nonlinear n1atrix equations. The interested readers can refer to 
many excellent books on these topics. 
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Chapter 18 

Reaction Diffusion 
System 

The partial differential equations we solved in the previous 
chapters using the three major numerical methods are linear 
equations. We know that the generalized forn1s of parabolic 
equations are nonlinear reaction-diffusion equations. l\1athe­
matically speaking, nonlinear equations are far more difficult 
to analyse if it is not impossible. From the numerical point 
of view, some extra linearization and approximations should 
be used for the nonlinear terms. However, the finite differ­
ence scheme should still be useful for most nonlinear equations 
though they should be implemented more carefully. Before we 
proceed to study the nonlinear system, let us review the funda­
mental characteristics of linear parabolic equations by solving 
the linear heat conduction equations. 

18.1 Heat Conduction Equation 

18.1.1 Fundamental Solutions 

From the similarity solution in section 10.3, we know that both 
diffusion equation and heat conduction equation may mathe-
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matically have a similarity variable defined by 

X 

(= ym' (18.1) 

where k is either the thermal diffusivity or diffusion coefficient. 
In engineering, the coefficient k has the unit [n1]2 /[s], thus the 
unit of kt is [1n]2, which means the variable ( is dimensionless. 
Any two combinations of x and kt giving the same ( will have 
similar solutions. 

Using the similarity variable (, the heat conduction equa­
tion can be transformed into an ordinary differential equation 

!"(() = -2(/', or (ln !')' = -2(. (18.2) 

Integrating it once, we have 

(18.3) 

where C is an integration constant. Integrating it again, we 
have 

1
xo 2 

u = C x e-< d( + D, (18.4) 

which is the general solution of the heat conduction equation. 
If the domain is semi-infinite or infinite so that x0 ~ 0, then 
we get 

X 
=Aerf( ~)+B. 

v4kt 
(18.5) 

0 Example 18.1: 
domain, we have 

For the heat conduction in a semi-infinite 

au= k8
2u 

8t 8x2 ' 

with the boundazy condition 

U = UQ, (X ~ 0), 

and an initial condition 

u = 0, (x > 0) at t = 0. 
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The general solution is 

X 
u = Aerf( /"A"U) + B. 

v4kt 

For x ~ oo, erf(x/ ../4kl) ~ 1, we have 

A+B = 0. 

At x = 0, erf(O) = 0, we get B = uo. The solution is 

X X 
u = uo[l - erf(. 17'i:!')] = uoerfc r:rr:r· 

v4kt v4kt 

However, if u is constant (u = uo) in the initial region x E [-h, h), 
then we have 

uo h-x h+x 
u = -[erf-- + erf--]. 

2 J4kt J4kt 
0 

The solutions of heat conduction do not always involve the 
error function because error functions only occur when the inte­
gration involves semi-infinite or infinite domains. If the domain 
has a finite length, then the solutions often consist of power se­
ries or even special functions. For example in heat conduction 
through a plane sheet with zero initial temperature, its two 
surfaces are held at constant temperatures with the boundary 
conditions u = u0 at x = 0 for (t ~ 0), and u = 0 at x = L for 
(t ~ 0). The general solution can be written as 

(1 x) 2 ~ uo . n1rx -kn21r2t;L2 u = uo - - +- L...., - sm --e , 
L 1T' n=l n L 

(18.6) 

which is a slowly convergent series. 

18.2 Nonlinear Equations 

18.2.1 Travelling Wave 

The nonlinear reaction-diffusion equation 

8u 82u 
8t = D {)x2 + f(u), (18. 7) 
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can have the travelling wave solution under appropriate condi­
tions of f(O) = f(1) = 0, f(u) > 0 for u E [0, 1], and f'(O) > 0. 
For example, f(u) = ')'u(1 - u) satisfies these conditions, and 
the equation in this special case is called the Kolmogorov­
Petrovskii-Piskunov (KPP) equation. By assuming that the 
travelling wave solution has the form u( () and ( = x - vt, and 
substituting into the above equation, we have 

Du"(() + vu'(() + f(u(()) = 0. (18.8) 

This is a second-order ordinary differential equation that can 
be solved with the appropriate boundary conditions 

u( -oo) --+ 1, u( oo) --+ 0. (18.9) 

The KPP theory suggests that the limit of the speed of the 
travelling wave satisfies 

v 2?: 2J Df'(O). (18.10) 

18.2.2 Pattern Formation 

One of the most studied nonlinear reaction-diffusion equations 
in the 2-D case is the Kolmogorov-Petrovskii-Piskunov (KPP) 
equation 

{)u fPu 82u 
{)t = D( ax2 + {)y2) + '"YQ(u), (18.11) 

and 
q(u) = u(1 - u). (18.12) 

The KPP equation can describe a huge number of physical, 
chemical and biological phenomena. The most interesting fea­
ture of this nonlinear equation is its ability of generating beau­
tiful patterns. We can solve it using the finite difference scheme 
by applying the periodic boundary conditions and using a ran­
dom initial condition u = random( n, n) where n is the size of 
the grid. 
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1 

0.5 
0 

200 

0 200 

0 

Figure 18.1: 2-D pattern formation forD= 0.2 and 'Y = 0.5. 

Figure 18.1 shows the pattern formation of the above equa­
tion on a 100 x 100 grid for D = 0.2 and 'Y = 0.5. We can see 
that rings and thin curves are formed, arising from the random 
initial condition. The landscape surface shows the variations in 
the location and values of the field u(x, y) can be easily demon­
strated. 

The following simple 15-line Matlab program can be used 
to solve this nonlinear system. 

% Pattern formation: a 15 line matlab program 
% POE form: u_t=O*(u_{xx}+u_{yy})+gamma*q(u) 
%where q(u)='u.*(1-u)'; 
% The solution of this POE is obtained by the 
% finite difference method, assuming dx=dy=dt=1 
% Written by X S Yang (Cambridge University) 
% Usage: pattern(100) or simply >pattern 

function pattern(time) % line 1 
% Input number of time steps 
if nargin<1, time=100; end % line 2 
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% Initialize parameters n=100; 
% 0=0.2; gamma=0.5; 
n=200; 0=0.2; gamma=0.5; % line 3 

%Set initial values of u randomly 
u=rand(n,n); grad=u*O; 

% Index for u(i,j) and the loop 
I = 2:n-1; J = 2:n-1; 

% Time stepping 

% line 4 

% line 5 

for step=1:time, % line 6 
% Laplace gradient of the equation % line 7 
grad(I,J)= u(I,J-1)+u(I,J+1)+u(I-1,J)+u(I+1,J); 
u ={1-4*0)*u+O*grad+gamma*u.*(1-u); %line 8 

% Show results 
pcolor(u); shading interp; % line 9 

% Coloring and colorbar 
colorbar; colormap jet; % line 10 
drawnow; % line 11 

end % line 12 

% plot as a surface 
surf(u); % line 13 
shading interp; % line 14 
view( [ -25 70]); % line 15 
% ------------- End of Pragram -----------------

If you use this program to do the simulations, you will see that 
the pattern emerges naturally from the initially random back­
ground. Once the pattern is formed, it evolves gradually with 
time, but the characteristics such as the shape and structure 
of the patterns do not change much with time. In this sense, 
one can see beautiful and stable patterns. 
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18.3 Reaction-Diffusion System 

The pattern formation in the previous section arises naturally 
from a single equation of nonlinear reaction-diffusion type. In 
many applications, we often have to simulate a system of non­
linear reaction-diffusion equations, and the variables are cou­
pled in a complicated manner. 

The pattern formation in the previous section comes from 
the instability of the nonlinear reaction diffusion system. In 
order to show this, let us use the following mathematical model 
for enzyme inhibition and cooperativity. 

For example, the following system consists of two nonlinear 
equations 

(18.13) 

(18.14) 

and 
bu- cv 

f(u, v) = au(1 - u) -
1 

, 
+u+v 

(18.15) 

g(u,v) = 
vd 

(18.16) 
1+u+v' 

where Du and Dv are diffusion coefficients, while a, b, c, d are all 
constants. This reaction diffusion system may have instability 
if certain conditions are met. 

The steady state solutions are obtained from f(uo, vo) = 0 
and g(uo, vo) = 0. They are 

b~ 
uo = 2a [ V 1 + 4/;2 - 1], vo = 0. (18.17) 

Let 1/J = (u- uo, v - vo) be the small perturbation, then 1/J 
satisfies 

81/; = D\12,.,, + M"'' at ~ ~, (18.18) 
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where 

(18.19) 

and 

M = 1 ( -(2au0 +b) a(1 -duo)+ c ) . 
(1 + uo) 0 

(18.20) 

Writing 'l/J in the form of 

(18.21) 

where the sumn1ation is over all the wavenumbers k, we have 

(18.22) 

where I is a 2 x 2 unity matrix. This eigenvalue equation has 
two roots. Since ~(A) > 0 implies that instability, this requires 
that 

Dv d 
- < ~-----:~ 
Du (2auo +b) 

(18.23) 

The range of unstable wavenumbers between the two roots of 
k2 at the bifurcation point is given by 

k2 = dDu - Dv(2auo +b) [1 ± J 1 D D 8] 
± 2DuDv ( 1 + Uo) + 4 

u v ' 
(18.24) 

with 

8 
_ (2auo +b) 
- [dDu- Dv(2auo + b)]2 · 

(18.25) 

If the unstable criteria are satisfied, any small random pertur­
bation can generate complex patterns. 

Similar to the nonlinear KPP equation (18.12), beautiful 
patterns also arise naturally in the following nonlinear system 

8u 82u 82u -
8t = Da ( 8x2 + 8y2 ) + 'Y f ( u, v)' (18.26) 

8v 82v 82v _ 
8t = Db( 8x2 + 8y2) + f3g(u, v), (18.27) 
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and 

](u, v) = u(1- u), g(u, v) = u- u2v, (18.28) 

for the values Da = 0.2, Db = 0.1, "( = 0.5 and {3 = 0.2. 
With different functions j ( u, v) and g( u, v), these equations 
can be used to sin1ulate the pattern formation in a wide range 
of applications where nonlinear reaction-diffusion equations are 
concerned. 
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Chapter 19 

Probability and 
Statistics 

All the mathematical models and differential equations we have 
discussed so far are deterministic systems in the sense that 
given accurate initial and boundary conditions, the solutions 
of the system can be determined (the only exception is the 
chaotic system to a certain degree). There is no intrinsic ran­
domness in the differential equations. In reality, randomness 
occurs everywhere, and not all models are deterministic. In 
fact, it is necessary to use stochastic models and sometimes 
the only sensible models are stochastic descriptions. In these 
cases, we have to deal with probability and statistics. 

19.1 Probability 

19.1.1 Randomness and Probability 

Randomness such as roulette-rolling and noise arises from the 
lack of information, or incomplete knowledge of reality. It can 
also come from the intrinsic complexity, diversity and pertur­
bations of the system. The theory of probability is mainly the 
studies of random phenomena so as to find non-random regu­
larity. 
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For an experiment or trial such as rolling dices whose out­
come depends on chance, the sample space n of the experi­
ment is the set of all possible outcomes. The sample space 
can be either finite or infinite. For exan1ple, rolling a six-sided 
die will have six different outcomes, thus the san1ple space is 
n = {1, 2, 3, 4, 5, 6}. The elements of a sample space are the 
outcomes, and each subset of a sample space is called an event. 
For example, the event S = {2, 4, 6} is a subset of n. In a 
sample space n, the outcomes of an experiment is represented 
as numbers ( 1 for heads and 0 for tails for tossing coins). A 
real-valued variable that is defined for all the possible outcomes 
is referred to as a random variable, which is a function that as­
sociates a unique numerical value with every outcome of an 
experiment, and its actual value varies from trial to trial as the 
experiment is repeated. The values of a random variable can 
be discrete (such as 1 to 6 in rolling a single die) or continuous 
(such as the level of noise). If a random variable only takes 
discrete values, it is called a discrete random variable. If its 
values are continuous, then it is called a continuous random 
variable. 

Figure 19.1: Venn Diagrams: An Band AU B. 

Two events A and B can have various relationships and 
these can be represented by Venn diagrams as shown in Figure 
19.1. The intersection An B of two events means the outcome 
of the random experiments belongs to both A and B, and it 
is the case of 'A AND B'. If no event or outcome belongs to 
the intersection, that is An B = 0, we say these two events are 
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mutually exclusive or disjoint. 
The union A U B denotes the outcome belongs to either 

A or B or both, and this means the case of 'A ORB'. The 
complement A = n - A (or not A) of the event A is the set of 
outcomes that do not belong to A but in the sample space n 
(see Figure 19.2). The A- B means the outcomes in A only. 

Figure 19.2: Venn Diagrams: A = n - A and A - B. 

Probability P is a number or an expected frequency as­
signed to an event A that indicates how likely the event will 
occur when a random experiment is performed. This probabil­
ity is often written as P( A) to show that the probability P is 
associated with event A. For a large number of fair trials, the 
probability can be calculated by 

P(A) = NA(number of outcomes in the event A). 
N n (total number of outcomes) 

(19.1) 

0 Example 19.1: If you tossed a coin 1000 times, the head (H) 
occurs 511 times and the tail (T) occurs 489 times. The probability 
P(H) and P(T) are 

511 
P(H) = 

100 
= 0.511, 

and 
489 

P(T) = 
1000 

= 0.489. 

There are three axioms of probability, and they are: 

Axiom I : 0 ~ P(A) ~ 1. 
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Axiom II: P(f!) = 1. 

Axiom III: P(A U B)= P(A) + P(B), if An B = 0. 

The first axiom says that the probability is a number be­
tween 0 and 1 inclusive. P(A) = 0 corresponds to impossibility 
while P(A) = 1 corresponds to absolute certainty. The sec­
ond axiom simply means that an event must occur somewhere 
inside the sample space. The third axiom is often called the ad­
dition rule. Since A and A are mutually exclusive (An A= 0), 
we have 

P(A) + P(A) = P(A u A) = P(fl) = 1, (19.2) 

or 
P(A) = 1 - P(A), (19.3) 

which is usually called the NOT rule. The third axiom can be 
further generalized to any two events A and B 

P(A U B) = P(A) + P(B) - P(A n B). (19.4) 

In a special case when events Ai ( i = 1, 2, ... , n) exhaust the 
wholesamplespacesuch that A= Uf=tAi = AtUAiU ... UAn = 
nand Ai n Ai = 0(i =I= j), 

n 

P(A n B)= L P(Ai n B). (19.5) 
i=l 

Since n n B = B, we also get 

n 

P(n n B) = P(B) = L P(Ai n B), (19.6) 
i=l 

which are the useful properties of the total probability. 

For example, if you randomly draw a card from a standard 
pack of 52 cards, what is the probability of it being a red king 
or a diamond with a face value being a prime number (if its 
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face value is counted from 1 to 13). The prime numbers are 2, 
3, 5, 7, 11, 13, therefore they are 6 cards that forms the primes. 

The possibility of event (A) of drawing a red king is P( A) = 

~ = ,Js. The probability of event (B) of drawing a prime 
number is P(B) = 5

6
2 = :f6 • As a diamond king (13) is also a 

prime, this means P( A n B) = ~. Therefore, the probability 

P(A U B) = P(A) + P(B) - P(A n B) 

1 3 1 7 
= 26 + 26 - 52 = 52. 

Two events A and B are independent if the events has no 
influence on each other. That is to say, the occurrence of one 
of the events does not provide any information about whether 
or the other event will occur. In this case, the probability of 
both occuring is equal to the product of the probabilities of the 
two individual events P(A) and P(B) 

P(A n B)= P(A) * P(B). (19.7) 

This can be easily extended to n mutually independent events 
Ai(i = 1, 2, ... , n). The probability of all these events happening 
is 

n 

P(L nAi) = Ilf::1P(Ai) = P(Al)P(A2) · · · P(An)· (19.8) 
i=l 

0 Example 19.2: The probability of drawing a king from a pack 
of cards (Event A), and showing an even number of rolling a six­
sided die (event B) is P(A n B). We know P(A) = 4/52 = 1/13, 
and P(B) = 3/6 = 1/2. Since these two events are independent, the 
probability that both events occur is 

1 1 1 
P(A n B) = P(A)P(B) = - · - = -13 2 26. 

0 

If the two events are not independent, then one may affect 
the other event, in this case, we are dealing with the conditional 
probability which will be discussed later in the next section. 
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In calculating the probabilities, it is useful to know the pos­
sible combinations and permutations of certain objects. Sup­
pose you have 5 pairs of shoes, 4 pairs of trousers, 7 shirts and 
2 hats. This is equivalent to the lineup problem from your feet 
to your head. In this case, as the event of selecting each thing 
to wear is in a similar manner of putting it into slots in succes­
sive stages, the total number of all possible ways is simply the 
multiplication of all the possible choices for each stages. All 
possible outfits you can wear form a permutation problem, and 
the total number is 5 x 4 x 7 x 5 = 700. 

In order to line 5 objects marked A, B, C, D, E, in the first 
place, there are 5 possible choices, the second place has only 4 
options, the third place 3 choices, the fourth place has 2 choices, 
and there is only one left for the last place. Thus the number 
of all possible permutations is 5 x 4 x 3 x 2 x 1 =51. Following 
this line of reasoning, n objects can in general be pern1utated 
. I Inn. ways. 

Suppose there are n = 20 students in a class (named 81, 
82, .... , 820 ), we want to select 5 students at random to fonn 
a 5-student team to work on a project. This is different from 
the lineup problem because once you have selected any five 
students (say) 8~, 81, 8w, 81s, 819, it does not n1atter what 
order you selected them, the final formed team is the same. 
There are 51 permutations within the same tea1n. Order does 
not count in this case. This is a combination problem (also 
called a comn1ittee problem). As before, there are 5 places to 
line up the students, and the total number of all permutations 
for selecting 5 students is 20 * 19 * 18 * 17 * 16. Therefore, the 
total number of combinations (of selecting 5 students) is 

20c = 20 * 19 * 18 * 11 * 15 = 201 = 15504 5 51 5!15! . (19.9) 

In general, the total number of all possible combinations of 
selecting k objects from n is 

nck = ( ~ ) = kl(nn~ k)!" (19.10) 
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The consistency requires OJ= 1. 

0 Example 19.9: A club of 5 members is chosen at random 
from 8 female students, 10 male students, and 7 teachers. What is 
the probability of the club consisting of 2 female students, 2 male 
students, a.nd 1 teacher? The total number of clubs is 25Cs. If two 
female students are selected, we have 8 C2. Similarly, 10C2 for select­
ing 2 male students, and 7 C1 for selecting one teacher. Therefore, 
the total number N of forming the 5-member club is 

N = sc2IOC27Cl = ~ ~ 0166 
2SC5 253 · 

0 

There is an interesting 'birthday paradox' which is related 
to this context. The birthday paradox was first proposed in 
1939 by Richard von l\1ises, which states that what is the prob­
ability of two people having the same birthday in a group of n 

people. For a group of 367 people, it is certain that there must 
be two people having the san1e birthday as there are only 365 
(or 366 if someone was born in a leap year) possible birthdays. 
Ignoring 29 February and the year of birth and assuming that 
the birthdays are evenly distributed throughout the year, we 
only have 365 different birthdays (days and months only). If 
the event A denotes that all the n people will have different 
birthdays (no birthday matching), the first person can have 
any date as his or her birthday, 365/365. The second person 
must be in other 364 dates, which is 364/365, and the kth per­
son has (365- k + 1)/365. Therefore, the probability of no two 
people having the same birthday is 

365 364 (365- n + 1) 
P( A, n) = 365 x 365 x .. · x 365 

365 * (364) * ... * (365- n + 1) _ 365! 
365n - (365- n)f365n · 

(19.11) 

Now the probability of two people with the same birthday is 

- 365! 
P(A, n) = 1- P(A, n) = 1- (365- n)!365n. (19.12) 
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The factorial 3651 is a large number, but you do not have to 
deal with such large numbers. You can use a simple calculator 
to estimate it. For five people, the probability of two people 
with the same birthday is 

P(.A 5) = 1 _ 365 * 364 * 363 * 362 * 361 ~ 0 027 (19.13) 
' 3655 . ' 

which seems insignificant. However, the interesting thing is 
that for n = 23, the probability becomes 

- 365! 
P(A, 23) = 1 - (365 - 23)136523 ~ 0.507. (19.14) 

This means that you have slightly more than a 50-50 chance of 
finding two people sharing the same birthday. If you increase 
n, you get P(A, 30) ~ 0. 706 for n = 30, P(.A, 40) ~ 0.891 for 
n = 40, and P(A, 50) ~ 0.970 and P(A, 70) ~ 0.9992 (aln1ost 
certainty) for n = 70. 

It is worth noting that there is some difference in combi­
nations when the member drawn is placed back or not. Sup­
pose there are 10 red balls and 10 white balls in bag. If we 
draw a ball (say a red, event A) from the bag and then put it 
back (with replacement), then we draw another ball (event B). 
P(A) = 1/20 and P(B) = 1/20. The probability of getting two 
red balls are P(A n B) = P(A) * P(B) = 1/400. We call this 
easel. 

For a second case (Case II), if we do not put it back after 
we have drawn the first ball (without replacmnent), then the 
probability of event B is now different P(B) = 1/19 as there 
is now only 19 balls in the bag. The probability of getting two 
red balls now becomes P(A n B) = .Jrr x .fg = ~~ which is 
different from 1/400. 

The reason here is that the two events are not independent 
in the case of no-replacement. If we use notation 'BIA' which 
means that event B occurs given that event A has occurred, 
then we can use P(BIA) to denote the probability of event 
B when there is no replacement in event A in the scenario 
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described in Case II. Now P(B) becomes P(BIA). Hence, we 
have 

P(A n B) = P(A)P(BIA), (19.15) 

which is often called the multiplication rule in probability the­
ory. Similarly, we can get 

P(A n B) = P(B)P(AIB). (19.16) 

This is essentially a conditional probability problem which forms 
the main topic of the next section. 

19.1.2 Conditional Probability 

In calculating the probabilities, we often assume that all pos­
sible outcomes of an experiment such as drawing a card are 
equally likely. Probabilities can change if additional informa­
tion is known or some other event has already occurred and 
thus P(BIA) denotes the probability that event B will occur 
given that event A has already occurred. The conditional prob­
ability can be calculated by 

Conversely, we have 

P(BIA) = P(B n A) 
P(A) . 

P(AIB) P(A n B) 
P(B) . 

(19.17) 

(19.18) 

Using equation (19.15), we can write the above formulation as 

P(AIB) = P(A)P(BIA) 
P(B) 

P(A)P(BIA) 
P(A)P(BIA) + P(A)P(BIA)' 

(19.19) 

which is the Bayes' theorem. Here have used A u A = 0 and 
P(A) = 1 - P(A). 
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As an example, we consider the drug test in sports. It is 
believed that the test is 99% accurate if athletes are taking 
drugs. For athletes not taking drugs, the positive test is only 
0.5%. It is assumed that only one in 1000 athletes takes this 
kind of drug. Suppose an athlete is selected at random and 
the test shows positive for the drug. What is the probability 
that the athlete is really taking the drug? If event A denotes 
an athlete is taking the drug, and B denotes the event that 
the individual tests positive. Thus, P(A) = 1/1000, P(BIA) = 

0.99 and P(BIA) = 0.005. The probability that the athlete is 
actually taking the drug is 

P(AIB) _ P(A)P(BIA) 
- P(A)P(BIA)+P(A)P(BIA) 

0.001 * 0.99 ~ 0.165. 
0.001 * 0.99 + 0.999 * 0.005 

(19.20) 

This is surprisingly low in probability. 

0 Example 19.4: The classical problem of three cards consists of 
three cards: one blue card (B) is blue on both sides, one white card 
(W) is wbite on both sides, and one mixed card (A1) is wbite on one 
side and blue on the other. If you draw one card at random from a 
bag and place it on a table, suppose that the side you can see is blue, 
what is the probability of other side is also blue? This a conditional 
probability problem. There are 3 blue faces and 3 white faces, thus 
tbe total probability of showing a blue face (F) is P(BF) = 1/2, and 
probability of pull the blue-blue card out is P(BB) = 1/3, while the 
probability of showing a blue face is P(BFIBB) = 1 if the pulled 
card is blue-blue one. Then, the probability of other side being also 
blue is 

P(BBIBF) = P(BFIBB)P(BB) = 1 X t = ~ 
P(BF) ! 3· 

(19.21) 

!\lost people will intuitively guess that the probability is t, which is 
not correct. 0 

Another related problem is the so-called l\1onty Hall prob­
lem (or three door problem) in a classical game show. Suppose 
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that you are given the choice of three doors. There is an ex­
pensive car behind one door, behind other two doors are goats. 
If you choose one door (say, A) at random, then the host opens 
one of the other door (say, B), which he knows there is a goat 
behind it, to reveal a goat. Now you have a choice either to 
stick with your original choice or swap with the other door 
(say, C). What is your best strategy based on probability? Ini­
tially, the prize car behind any door (Y) has a priori probability 
P(any) = 1/3, so your initial choice P(A) = 1/3. As the host 
knows where the prize is, if the car is behind A, the host will 
open B or C so 1/2 each. If the car is behind B, the host 
will never open B, and if the car is behind C, the host will 
surely open B. Nlathematically, this gives P(OpenBIA) = 1/2, 
P(OpenBIB) = 0, and P(OpenBIC) =I. 

So the total probability of opening door B is 

P(OpenB) = P(A)P(OpenBIA) + P(B)P(OpenBIB) 

1 1 1 1 1 
+P(C)P(OpenBIC) = '3 x 2 + 3 x 0 + 3 x 1 = 2. (19.22) 

Now the probability of the car behind door Cis 

P(CIOpenB) = P(OpenBIC)P(C) = 1 x ~ = ~' (19.23) 
P(OpenB) ~ 3 

which is greater than your initial choice 1/3. Therefore, the 
best strategy is to switch your choice. This game has other 
variations such as the three envelope problem and others, but 
the analysis and strategy are the same. 

19.1.3 Random Variables and Moments 

Random Variables 

For a discrete random variable X with distinct values such as 
the number of cars passing through a junction, each value Xi 

may occur with a certain probability p(xi)· In other words, 
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the probability varies with the random variable. A probabil­
ity function p(xi) is a function that defines probabilities to all 
the discrete values xi of the random variable X. As an event 
must occur inside a sample space, the requirement that all the 
probabilities must be summed to one leads to 

n 

LP(Xi) = 1. (19.24) 
i=l 

The cumulative probability function of X is defined by 

P(X ~ x) = L p(xi)· (19.25) 
Xi<X 

For a continuous random variable X that takes a continuous 
range of values (such as the level of noise), its distribution is 
continuous and the probability density function p( x) is defined 
for a range of values x E [a, b] for given limits a and b [or even 
over the whole real axis x E (-oo,oo)]. In this case, we always 
use the interval (x, x + dx] so that p(x) is the probability that 
the random variable X takes the value x < X ~ x + dx is 

~(x) = P(x <X~ x + dx) = p(x)dx. (19.26) 

As all the probabilities of the distribution shall be added to 
unity, we have 

l p(x)dx = 1. (19.27) 

The cumulative probability function becomes 

~(x) = P(X ~ x) = J.x p(x)dx, (19.28) 

which is the definite integral of the probability density function 
between the lower limit a up to the present value X= x. 

Mean and Variance 

Two main measures for a random variable X with a given prob­
ability distribution p(x) are its mean and variance. The mean 
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J1. or the expectation value of E[X] is defined by 

J1. = E[X] =<X>= j xp(x)dx, (19.29) 

for a continuous distribution and the integration is within the 
integration limits. If the random variable is discrete, then the 
integration becomes the sumn1ation 

E[X] = L XiP(Xi)· (19.30) 

The variance var[X] = a 2 is the expectation value of the 
deviation squared (X- J..L) 2 . That is 

(19.31) 

The square root of the variance a = Jvar[X] is called the 
standard deviation, which is simply a. 

This simply becomes a sum 

(19.32) 

for a discrete distribution. In addition, any other formulas for 
a continuous distribution can be converted to their counter­
part for a discrete distribution if the integration is replaced by 
the sum. Therefore, we will mainly focus on the continuous 
distribution in the rest of the section. 

Other frequently used measures are the mode and median. 
The mode of a distribution is defined by the value at which 
the probability density function p( x) is maxin1um. For an even 
number of data sets, the mode may have two values. The me­
dian m of a distribution corresponds to the value at which the 
cumulative probability function <l>(m) = 1/2. The upper and 
lower quartiles Qu and QL are defined by <I>(Qu) = 3/4 and 
<I>(QL) = 1/4. 
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Moments and Moment Generating Functions 

In fact, the mean is essentially the first moment if we define 
the kth moment of a random variable X by 

E[Xk] = Jlk =I xkp(x)dx, k = 1, 2, ... , N. (19.33) 

Similarly, the kth central moment is defined by 

E[(X- Ill] = vk =I (x- p,)kp(x)dx, k = 1, 2, ... , N. 

(19.34) 
Obviously, the variance is the second central moment. From 
these definitions, it is straightforward to prove 

(19.35) 

and 

var[ax + .6] = a 2var[X]. (19.36) 

where a and .6 are constants. 
Ivlost probability functions can be expressed in terms of 

moments and moment generating functions. The moment gen­
erating function is defined by 

(19.37) 

where v E 'R is a real parameter. By expanding exp[vx] into 
power series and using the definition of various moments, it is 
straightforward to verify that 

(19.38) 

and 
2 _ ~Gx(O) _ [dGx(0)]2 

a - dv2 dv · (19.39) 

280 



Probability and Statistics 19.1 Probability 

19.1.4 Binomial and Poisson Distributions 

Binomial Distribution 

A discrete random variable is said to follow the binomial dis­
tribution B(n,p) if its probability distribution is given by 

B(n,p) = nCxpx(l- Pt-x, nc - n! (19.40) 
x- xl(n-x)l' 

where x = 0, 1, 2, ... , n are the values that the random variable 
X may take, n is the number of trials. There are only two 
possible outcomes: success or failure. p is the probability of 
a so-called 'success' of the outcome. Subsequently, the proba­
bility of the failure of a trial is q = 1 - p. Therefore, B(n,p) 
represents the probability of x successes and n- x failures in 
n trials. The coefficients come from the coefficients of the bi­
nomial expansions 

n 

(p+qt = LnCxpxqn-x = 1, (19.41) 
x=O 

which is exactly the requirement that all the probabilities should 
be summed to unity. 

0 Example 19.5: Tossing a coin 10 times, the probability of 
getting 7 heads is B(n, 1/2). Since p = 1/2 and x = 7, then we have 

10c (.!.)1(.!.)3 = ~ ~ o 111 7 2 2 128 . . 

0 

It is straightforward to prove that J1. = E[X] = np and 
a2 = npq = np( 1 - p) for a binomial distribution. 

Another related distribution is the geometric distribution 
whose probability function is defined by 

P(X = n) = pqn-1 = p(1- p)n-1' (19.42) 

where n ~ 1. This distribution is used to calculate the first 
success, thus the first n- 1 trials must be in failure if n trials 
are needed to observe the first success. The mean and variance 
of this distribution are J1. = 1/p and a2 = (1 - p)jp2. 
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Poisson Distribution 

The Poisson distribution can be thought as the limit of the 
binomial distribution when the number of trial is very large 
n --+ oo and the probability p --+ 0 (small probability) with the 
constraint that A = np is finite. For this reason, it is often 
called the distribution for small-probability events. Typically, 
it is concerned with the number of events that occur in a certain 
time interval (e.g., number of telephone calls in an hour) or 
spatial area. The Poisson distribution is 

A> 0, (19.43) 

where x = 0, 1, 2, ... , n and A is the mean of the distribution. 
Using the definition of mean and variance, it is straightforward 
to prove that J.L = A and a 2 = A for the Poisson distribution. 
The parameter A is the location of the peak as shown in Figure 
19.3. 

0 Example 19.6: If you receive 3 calls per hour on your mobile 
phone on the average. If you do not switch your phone off, what is 
the probability that it begins to sound (one call is enough) during 
any one-hour class? \-'Ve know that .,\ = 3. The probability of no 
phone call at all is 

Thus, the probability of sounding is P(X > 0) ~ 1 - 0.0498 ~ 0.95. 
In fact, the probability of receiving one call is 

31e-3 
P(X = 1) = -

1
,-::::::: 0.149, 

and the probability of receiving two calls is 

0 
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Figure 19.3: Poisson distributions for different values of .X = 
5, 10, 15. 

The moment generating function for the Poisson distribu­
tion is given by 

(19.44) 

19.1.5 Gaussian Distribution 

The Gaussian distribution or normal distribution is the most 
important continuous distribution in probability and it has a 
wide range of applications. For a continuous random variable 
X, the probability density function (PDF) of a Gaussian dis­
tribution is given by 

1 (x-,_.)2 

p(x) = . m=e-~, 
ay27T 

(19.45) 

where a 2 = var[X] is the variance and J-l = E[X] is the mean 
of the Gaussian distribution. From the Gaussian integral, it is 
easy to verify that 

/

00

00 

p(x)dx = 1, 
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Figure 19.4: Gaussian distributions for a = 5~ 7, 10. 

and this is exactly the reason that the factor 1/ .;2-i comes 
from the normalization of the all probabilities. The probability 
function reaches a peak at x = J..l and the variance a 2 controls 
the width of the peak (see Figure 19.4). 

The cumulative probability function ( CPF) for a normal 
distribution is the integral of p( x), which is defined by 

1 !X (<-w2 
4>(x) = P(X < x) = ~ e- 2a d(. 

21ra2 -oo 
(19.47) 

Using the error function defined by Chapter 1, we can write it 
as 

1 X-J..t 
4>(x) = ro[1 + erf( ro )]. 

v2 v2a 
(19.48) 

The moment generating function for the Gaussian distribution 
is given by 

(19.49) 

The Gaussian distribution can be considered as the limit 
of the Poisson distribution when A >> 1. Using the Sterling's 
approximation xl rv ..f2;iX(xje)x for x >> 1, and setting J..l =A 
and a 2 =A, it can be verified that the Poisson distribution can 
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be written as a Gaussian distribution 

(19.50) 

where J..t = A. In statistical applications, the normal distribu­
tion is often written as N (J..t, a) to emphasize that the proba­
bility density function depends on two parameters J.L and a. 

The standard normal distribution is a normal distribution 
N(J..t, a) with a mean of J.L = 0 and standard deviation a = 1, 
that is JV(O, 1) This is useful to normalize or standardize data 
for statistical analysis. If we define a normalized variable 

X-J.L 
~=-, 

a 
(19.51) 

it is equivalent to give a score so as to place the data above or 
below the mean in the unit of standard deviation. In terms of 
the area under the probability density function, ~ sorts where 
the data falls. It is worth pointing out that some books define 
z = ~ = ( x - J.L) /a in this case, and call the standard normal 
distribution as the Z distribution. 

Table 19.1: Function¢> defined by equation (19.53). 

~ ¢>(~) ~ ¢> 
0.0 0.500 1.0 0.841 
0.1 0.540 1.1 0.864 
0.2 0.579 1.2 0.885 
0.3 0.618 1.3 0.903 
0.4 0.655 1.4 0.919 
0.5 0.692 1.5 0.933 
0.6 0.726 1.6 0.945 
0.7 0.758 1.7 0.955 
0.8 0.788 1.8 0.964 
0.9 0.816 1.9 0.971 
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Now the probability density function of standard normal 
distribution becomes 

(19.52) 

Its cumulative probability function is 

¢(~) = ~ ~~ e-~: d~ = -
2
1 

[1 + erf(. ~)]. 
v27r -oo v2 

(19.53) 

As the calculations of ¢ and the error function involve the nu­
merical integrations, it is usual practice to tabulate ¢ in a table 
(see Table 19.1) so that you do not have to calculate their values 
each time you use it. 

19.1.6 Other Distributions 

There are a dozen of other important distributions such as the 
exponential distribution, log-normal distribution, uniform dis­
tribution and the x2-distribution. The uniform distribution has 
a probability density function 

1 
p= --, X= (a:,b], 

{3-a: 
(19.54) 

whose mean is E[X] = (a: + {3) /2 and variance is a 2 = (/3 -
a:)2 /12. 

The exponential distribution has the following probability 
density function 

f(x) = ..\e-.Xx (x > 0), (19.55) 

and f(x) = 0 for x:::; 0. Its mean and variance are 

(19.56) 

The log-normal distribution has a probability density func-
tion 

1 (lnx- JL)2 
f(x) = ~exp[ 

2 2 ], 
x 21ra2 a 

(19.57) 
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whose mean and variance are 

(19.58) 

The x2-distribution, called chi-square or chi-squared dis­
tribution, is very useful in statistical inference and method of 
least squares. This distribution is for the quantity 

2 _~(Xi- /-li)2 Xn-L , 
i=l ai 

(19.59) 

where then-independent variables Xi are normally distributed 
with means J-li and variances a'f. The probability density func­
tion for x2-distribution is given by 

p(x) = 2n/2:(n/2) x1'-le-xf2 (19.60) 

where x 2:: 0, and n is called the degree of freedom. Its cumu­
lative distribution function is 

<I>( ) = "'f(n/2, x/2) 
X f(n/2) ' 

(19.61) 

where "Y(n/2, x/2 is the incomplete gamma function. It can be 
verified that the mean of the distribution is n and its variance 
is 2n. 

For other distributions, readers can refer to any books that 
are devoted to probability theory and statistical analysis. 

19.1.7 The Central Limit Theorem 

The most important theorem in probability is the central limit 
theorem which concerns the large number of trials and explains 
why the normal distribution occurs so widely. This theorem is 
as follows: Let Xi(i = 1, 2, ... , n) ben independent random vari­
ables, each of which is defined by a probability density function 
Pi ( x) with a corresponding mean J..Li and a variance a'f. The sum 
of all these random variables 

n 

e = Lxi = Xt +X2 + ... +Xn, 
i=l 
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Figure 19.5: A uniform distribution. 

7 

is also a random variable whose distribution approaches the 
Gaussian distribution as n ~ oo. Its mean E[8] and variance 
var[8] are given by 

n n 

E[8] = L E[Xi] = L Jli, (19.63) 
i=l i=l 

and 
n n 

var[8] = L var[8] = La?. (19.64) 
i=l i=l 

The proof of this theorem is out of the scope of this book 
as it involves the n1oment generating functions, characteristics 
functions and other techniques. In engineering mathematics, 
we simply use these important results for statistical analysis. 

In the special case when all the variables Xi are described 
by the same probability density function with the same mean 
Jl and variance a 2 , these results become 

E[8] = np,, var[8] = na2
. 

By defining a new variable 

8- np, 
{n = ..jn ' a n 
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Figure 19.6: A bilinear distribution. 

then the distribution of ~n converges towards the standard nor­
mal distribution N(O, 1) as n ~ oo. 

Let us see what the theorem means for a simple experiment 
of rolling a few dice. For a fair six-sided die, each side will 
appear equally likely with a probability of 1/6 ~ 0.1667, thus 
the probability function after rolling it 15000 times approaches 
a uniform distribution as shown in Figure 19.5. 

If we now roll two independent dice 15000 tin1es and count 
the sum (1-12) of the face values of both dice, then the sum 
obeys a bilinear distribution as shown in Figure 19.6. If we 
roll n = 15 independent dice, the sums of the face values vary 
from 1 to 90. After rolling the 15 dice 10,000 times, the distri­
bution is shown in Figure 19.7 and it approaches to a normal 
distribution as n ~ oo. 

19.2 Statistics 

Statistics is the mathematics of data collection and interpreta­
tion, and the analysis and characterisation of numerical data 
by inference from sampling. Statistical methods involve reduc-
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Figure 19.7: An approximate Gaussian distribution (the out­
comes of the sum of face values in rolling 15 dice). 

tion of data, estimates and significance tests, and relationship 
between two or more variables by analysis of variance, and the 
test of hypotheses. 

19.2.1 Sample Mean and Variance 

If a sample consists of n independent observations Xt, x2, ... , Xn 

on a random variable x such as the price of a cup of coffee, two 
important and commonly used parameters are sample mean 
and sample variance, which can easily be estimated from the 
sample. The san1ple mean is calculated by 

1 1 n 
X =<x>= -(Xt + X2 + ... + Xn) =- LXi, 

n n i=l 
(19.67) 

which is essentially the arithmetic average of the values Xi. 

Generally speaking, if u is a linear combination of n inde­
pendent random variables Yt, Y2, ... , Yn and each random vari­
able Yi has an individual mean J.li and a corresponding variance 
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a[, we have the linear combination 

n 

U = L O:iYi = O:tYl + G2Y2 + ··· + GnYn, 
i=l 

19.2 Statistics 

(19.68) 

where the parameters ai(i = 1, 2, ... , n) are the weighting coef­
ficients. From the central limit theorem, we have the mean J.lu 
of the linear combination 

n n 

J.lu = E(u) = E(L GiYi) = L aE(yi) = L GiJ.li· (19.69) 
i=l i=l 

Then, the variance u~ of the combination is 

n 

u~ = E[(u- J.lu)2] = E[L o:i(Yi- J.li)2], 
i=l 

which can be expanded as 

n 

a~ =La~ E[(Yi - J.li)2] 
i=l 

n 

+ L O:iGjE[(Yi- J.li)(Yj- J.lj)], 
i,j=l;i#j 

(19.70) 

(19.71) 

where E[(Yi - J.Li) 2] = ar Since Yi and Yi are independent, 
we have E[(Yi - J.li)(Yi - J.li )] = E[(Yi - J.li)]E[(Yi - J.li )] = 0. 
Therefore, we get 

n 

u~ = L:a'faJ. (19.72) 
i=l 

The sample mean defined in equation (19.67) can also be 
viewed as a linear combination of all the Xi assuming each of 
which has the same mean J.li = J.l and variance u'f = u2 , and the 
same weighting coefficient Gi = 1/n. Hence, the sample mean 
is an unbiased estimate of the sample due to the fact J.lx = 
Ef=t J.L/n = J.l. In this case, however, we have the variance 

n 1 0"2 
0"~ = ~ -0"2 = -

x ~ n2 n' 
t=l 
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which means the variance becomes smaller as the size n of the 
sample increases by a factor of 1 ln. 

The sample variance 8 2 is defined by 

2 1 ~ -2 S = --
1 

L...,(xi- x) . 
n- i=l 

(19.74) 

It is worth pointing out that the factor is 1l(n -1) not 1ln be­
cause only 1 I ( n - 1) will give the correct and unbiased estimate 
of the variance. From the probability theory in the earlier sec­
tions, we know that E[x2] = J..L2 + a 2. The mean of the sample 
variance is 

1~ 2 1~ 2 2 J..ls2 = E[--
1 

L...,(xi-x) ] = --
1 

L E[(xi -nx )]. (19.75) 
n- i=l n- i=l 

Using E[x2] = J..L2 + a2 In, we get 

Jls2 = n ~ 1 ~ { E[x~] - nE[x2
]} 

1 a 2 
= --{ n(J..l2 + a2) - n(J..l2 + -)} = a2. 

n-1 n 
(19.76) 

0 bviously, if we use the factor 1 In instead of 1 I ( n - 1), we 
would get J..l 82 = n~ 1 a2 < a2, which would underestimate the 
sample variance. The other way to think the factor 1 I ( n - 1) 
is that we need at least one value to estimate the mean, we 
need at least 2 values to estimate the variance. Thus, for n 
observations, only n - 1 different values of variance can be 
obtained to estimate the total sample variance. 

19.2.2 Method of Least Squares 

Maximum Likelihood 

For a sample of n values Xt,X2, .•• ,Xn of a random variable X 
whose probability density function p( x) depends on a set of k 
parameters f3t, ... , f3k, the joint probability is then 
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= p(xt, f3t, ... , !3k)p(x2, f3t, ... , !3k) · · · p(xm f3t, ... , f3k)· (19.77) 

The essence of the maximum likelihood is to maximize 4> by 
choosing the parameters /3i. As the sample can be considered 
as given values, the n1aximum likelihood requires that 

84> 
0/3i = 0, (i = 1, 2, ... , k), (19.78) 

whose solutions for /3i are the maximum likelihood estimates. 

Linear Regression 

For experiments and observations, we usually plot one variable 
such as pressure or price y against another variable x such as 
time or spatial coordinates. We try to present the data in a 
way so that we can see some trend in the data. For n sets 
of data points (Xi, Yi), the usual practice is to try to draw a 
straight line y =a+ bx so that it represents the major trend. 
Such a line is often called the regression line or the best fit line 
as shown in Figure 19.8. 

y 

Figure 19.8: Least square and the best fit line. 

The method of least squares is to try to determine the two 
parameters a (intercept) and b (slope) for the regression line 
from n data points. Assuming that Xi are known more precisely 
and Yi values obey a normal distribution around the potentially 
best fit line with a variance a 2 . Hence, we have the probability 

(19.79) 
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where A is a constant, and f(x) is the function for the re­
gression [f ( x) = a + bx for the linear regression]. It is worth 
pointing out that the exponent L:i=dYi- f(xi)] 2 ja2 is similar 
to the quantity X~ defined in the x2-distribution. 

The essence of the method of least squares is to maximize 
the probability P by choosing the appropriate a and b. The 
maximization of P is equivalent to the minimization of the 
exponent 'l/J 

n 

'l/J = L)Yi - f(xi)f · (19.80) 
i=l 

We see that 'l/J is the sum of the squares of the deviations f.r = 

(Yi- f(xi)) 2 where f(xi) =a+ bxi. The minimization means 
the least sum of the squares, thus the name of the method of 
least squares. 

In order to minimize 'l/J as a function of a and b, its deriva­
tives should be zero. That is 

8'1/J n 
7) = -2L[Y- (a+ bxi)] = 0, 

a i=l 
(19.81) 

and 

(19.82) 

By expanding these equations, we have 

n n 

na+bLxi = LYi, (19.83) 
i=l i=l 

and 
n n n 

a LXi + b L:x~ = LXiYi, (19.84) 
i=l i=l i=l 

which is a system of linear equations for a and b, and it is 
straightforward to obtain the solutions as 

(19.85) 
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where 
1 n 

y =- LYi· 
n i=l 

If we use the following notations 

and 
n 

Kxx =LX~, 
i=l 

n 

Kxy = LXiYi, 
i=l 

then the above equation for a and b becomes 

KxxKy -KxKy 
a= K (K )2 ' n XX- X 

The residual error is defined by 

fi = Yi - (a + bxi), 

whose sample mean is given by 

1 n 1 1 n 
J-te = - L fi = -Yi - a - b- L Xi 

n i=l n n i=l 

= y - a - bx = [y - bx] - a = 0. 

The sample variance 8 2 is 

(19.87) 

(19.88) 

(19.89) 

(19.90) 

(19.91) 

(19.92) 

(19.93) 

where the factor 1/ ( n - 2) comes from the fact that two con­
straints are need for the best fit, and the residuals therefore 
have a n - 2 degrees of freedom. 
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Correlation Coefficient 

The correlation coefficient rx,y is a very useful parameter to 
find any potential relationship between two sets of data Xi and 
Yi for two random variables x and y, respectively. If x has a 
mean J..lx and a sample variances;, andy has a mean J..ly and 
a sample variance s~' the correlation coefficient is defined by 

(19.94) 

where cov(x, y) = E[(x - J..lx](Y - J..ly) is the covariance. If 
the two variables are independent cov(x, y) = 0, there is no 
correlation between them (rx,y = 0). If ri,y = 1, then there is a 
linear relationship between these two variables. r x,y = 1 is an 
increasing linear relationship where the increase of one variable 
will lead to increase of another. r x,y = -1 is a decreasing 
relationship when one increases while the other decreases. 

For n sets of data points (Xi, Yi), the correlation coefficient 
can be calculated by 

or 
nKxy -KxKy 

rx,y = --;.===::::::::::=======, 
J(nKxx- K';)(nKyy- K~) 

(19.96) 

where Kyy = Ei=l yr 
0 Example 19.7: Is there any relationship between shoe size 
and height among general population? By collecting data randomly 
among our friends, we have the following data: 

Height (h): 162, 167, 168, 171, 174, 176, 183, 179 (em); 
Shoe size (s): 5.5, 6, 7.5, 7.5, 8.5, 10, 11, 12. 

From these data, we know the sample mean J.lh = 172.5, J.Ls = 8.5. 
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Figure 19.9: Confidence interval 'Y = 1 -a. 

The covariance cov(h, s) = E[(h- J..lh)(s- J..ls)] = 13.2. \Ve also have 
the standard deviation of height sh = 6.422 and the standard devia­
tion of shoe size Ss = 2.179. Therefore, the correlation coefficient r 
is given by 

r = cov(h, s) ::::::: 13.2 ::::::: 0_94_ 
ShSs 6.422*2.179 

This is a relatively strong correlation indeed. D 

19.2.3 Hypothesis Testing 

Confidence Interval 

The confidence interval is defined as the interval fh ~ X ~ 02 

so that the probabilities at these two limits fh and fh are equal 
to a given probability 'Y = 1- a (say, 95% or 99%). That is 

(19.97) 

The predetermined parameter 1' is always near 1 so that it can 
be expressed as a small deviation a << 1 from 1 (see Figure 
19.9). If we choose 1' = 95%, it means that we can expect that 
about 95% of the sample will fall in the confidence interval 
while 5% of the data will not. 
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For the standard normal distribution, this means P( -8 ~ 
~ ~ 8) = 1- a, so that 

a 
4>(~ ~ 8) = 1 - 2" (19.98) 

If a = 0.05, we have </>( ~ ~ 8) = 0.975 or 8 = 1.960. That is to 
say, -8 ~ ~ ~ 8 or J..L - 8a ~ x ~ J..L + 8a. We also know that 
if you repeat an experiment n times, the variance will decrease 
from a 2 to a 2 jn, which is equivalent to say that the standard 
deviation becomes a/ .Jii for a sample size n. If a = 0.01, then 
8 = 2.579, we have 

a a 
J..L- 2.579 Vn ~ X ~ J..L + 2.579 .;n· (19.99) 

On the other hand, for 8 = 1, we get J..L- a ~ x ~ J..L +a and 
1' = 0.682. In other words, only 68.2% of the sample data will 
fall in the interval [J..L- a, J..L +a] or 

x = J..L ±a, 

with a 68.2% confidence level. 

(19.100) 

It is conventional to use 1 = 0.95 for probably significant, 
0.99 for significant, and 0.999 for highly significant. 

0 Example 19. 8: The sample data of the time taken for a quick 
lunch at a restaurant are as follows: 19, 15, 30, 20, 15, 23, 28, 22, 
23 minutes. Suppose you want to attend a lecture at 12:30, at what 
time you should start your order if you want to take 5% chance of 
being late? The sample mean is 

1 
J.L = x = g(19 + 15 + 30 + 20 + 15 + 23 + 28 + 22 + 23) = 21.67. 

The sample variance is 

which gives a standard deviation of a = 5.15 minutes. If you are 
willing to take 5% chance, then <!>(~) = 0.95, it gives~ = 1.645. So 
you shall start 

x = J.L +~a = 30.15, 
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which is about 30 minutes earlier or at about 12:00. 0 

Student's t-distribution 

The Student's t-test is a very powerful method for testing the 
null hypothesis to see if the means of two normally distributed 
samples are equal. This method was designed by W. S. Gosset 
in 1908 and he had to use a pen name 'Student' because of his 
e1nployer's policy in publishing research results at that time. 
This is a powerful method for hypothesis testing using small­
size samples. This test can also be used to test if the slope 
of the regression line is significantly different from 0. It has 
become one of the most popular methods for hypothesis testing. 
The theoretical basis of the t-test is the Student's t-distribution 
for a sample population with the unknown standard deviation 
a, which of course can be estimated in terms of the sample 
variance 8 2 from the sample data. 

For n independent measurements/data Xt, x2, ... , Xn with an 
estimated sample mean x and a sample variance 8 2 as defined 
by equation (19.74), the t-variable is defined by 

X-J.L 
t = (Sf Vn). (19.101) 

The Student's t-distribution with k = n - 1 degrees of freedom 
is the distribution for the randon1 variable t, and the probability 
density function is 

(19.102) 

It can be verified that the mean is E[t] = 0. The variance is 
a 2 = kf(k- 2) fork> 2 and infinite for 0 < k ~ 2. 

The corresponding cumulative probability function is 

r( k+t) 1t (2 k 1 
F(t) = -r [1 + -]-+d(. 

v'f:rrr(k/2) oo k 
(19.103) 
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This integral leads to a hypergeometric function, and it is not 
straightforward to calculate, that is why they are tabulated in 
many statistical tables. For a confidence level of -y = 1 - a, the 
confidence interval is given by 

Q 

F(O) = 1- 2"' (19.104) 

which is usually tabulated. For a = 0.05 and 0.01 (or 1-a/2 = 
0.975 and 0.995), the values are tabulated in Table 19.2. 

Table 19.2: Limits defined by F(O) = 1 - a/2 in equation 
(19.104). 

k F(O)o.975 F(O)o.995 
1 12.7 63.7 
2 4.30 9.93 
3 3.18 5.84 
4 2.78 4.60 
5 2.57 4.03 
6 2.45 3.71 
7 2.37 3.50 
8 2.31 3.36 
9 2.26 3.25 
10 2.23 3.17 
20 2.09 2.85 
50 2.01 2.68 
100 1.98 2.63 
00 1.96 2.58 

Suppose we are dealing with the 95% confidence interval, 
we have p( -0 ~ t ~ 0) = 1 - a = 0.95 or p(t ~ 0) = 1 -
a/2 = 0.975, we have 0 = ta,k = 12.70(k = 1), 4.30(k = 2), 
3.18(k = 3), ... , 2.228(k = 10), ... , 1.959 for k--+ oo. Hence, 

s s II - 0- < t < II+ 0-. ,..., rn- _,..., vn 
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This is much more complicated than its counterpart of the 
standard normal distribution. 

Student's t-test 

There are quite a few variations of the Student's t-test, and 
most common are the one sample t-test and the two sample 
t-test. The one sample t-test is used for measurements that 
are randomly drawn from a population to compare the sample 
mean with a known number. 

In order to do statistical testing, we first have to pose pre­
cise questions or form a hypothesis, and such hypothesis is 
conventionally called the null hypothesis. The basic steps of a 
t-test are as follows: 

1. The null hypothesis: Ho: J.L = J.Lo (often known value) for 
one sample, or H0 : f..Lt = f..L2 for two samples; 

2. Calculate the t-test statistic t and find the critical value 
() for a given confidence level 1 = 1 - o by using F( t ::s; 
0) = 1- of2; 

3. If ltl > 0, reject the hypothesis. Otherwise, accept the 
hypothesis. 

0 Example 19.9: A group of candidates (say, more than 100 
students) have claimed to have an averaged IQ of 110 (or J..Lo = 110). 
Then, you randomly sample 11 students to do the IQ test and results 
are: x = IQ = 106,112, 103,108,108, 109,100, 106,106,99,101. Test 
the hypothesis: 

Ho: J..L= J..Lo, 

at a confidence level of95%. 
From the data, we know that n = 11, x = 105.273, S = 4.077. 

Then, we have 

t = (x- J..L) = (105.273- 110) ~ _ 3_846_ 
(S/.fii) 4.077/JIT 

301 



19.2 Statistics Probability and Statistics 

We only use the positive value if we look at the statistical tables. 
lVe also know for k = n- 1 = 10 degrees of freedom at a 95% 
confidence level, (} = 2.228. At a 95% confidence level, the probability 
oft>(} is 0.025 (or 2.5%) and the probability t < -8 is also 0.025. 
Thus, the hypothesis is not valid at a 95% confidence level. At the 
same level of confidence, the true mean J.Lo lies in in the range of 
x- 2.228 * Sj.J[f ~ J.Lo ~ x + 2.2288/.Jff. or 

102.53 ~ J.Lo ~ 108.00. 

0 

Another important t-test is the two-sample paired test. As­
suming that two pairs of n sample data sets Ui and Vi are in­
dependent and drawn from the same normal distribution, the 
paired t-test is used to determine whether they are significantly 
different from each other. The t-variable is defined by 

n(n- 1) 
(19.106) 

"""~ (U-. _ iT.)2' 6t=l t. Vi 

where {fi = Ui - [J and 1% = Vi - V. In addition, 

2 1 ~ - - 2 sd = --
1 

L.)Ui- Vi) . 
n- i=l 

(19.107) 

This is equivalent to apply the one-sample test to the difference 
ui - Vi data sequence. 

0 Example 19.10: A novel teaching method of teaching children 
science was tried in a class (say class B), while a standard method was 
used in another class (say class A). At the end of the assessment, 
8 students are randomly drawn from each class, and their science 
scores are as follows: 
Class A: Ui = 76, 77, 76, 81, 77, 76, 75, 82; 
Class B: Vi= 79, 81, 77, 86, 82, 81, 82, 80. 
At a 95% confidence level, can you say the new method is really 
better than the standard method? 

If we suppose that the two methods do not produce any differ­
ence in results, that is to say, their mean are the same. Tl1us the null 
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hypothesis is: 

Ho: J..L.-\ = JlB· 

lVe know that V = 77.5, V = 81. The combined sample VBriance 
Sd = 2.828. We now have 

t = [J- v = 77.5-81 = -3 5 
Sd/Vn 2.828/v'8 .. 

We know from the statistical table that the critical value 8 = 2.37 
for F(8) = 1 - o:/2 and k = n - 1 = 7. As t < -8 or t > 8, we 
can reject the null hypothesis. That is to say, the new method does 
produce better results in teaching science. 0 

The variance analysis and hypothesis testing are important 
topics in applied statistics, and there are many excellent books 
on these topics. Readers can refer to the relative books listed 
at the end of this book. It is worth pointing out that other 
important methods for hypothesis testing are Fisher's F-test, 
x2-test, and non-parametric tests. What we have discussed in 
this chapter is just a tip of an iceberg, however, it forms a solid 
basis for further studies. 
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Appendix A 

Mathematical Formulas 

This is a summary for the mathematical formulas that have ap­
peared in various sections in this book. We list these formulas 
for your easy reference. 

A.l Differentiations and Integrations 

Differentiation Rules: 

(uv)1 
= u1v + uv1 

I I 

( ~)I= u v- uv 
v v2 

{f[g(x)]}1 = ! 1[g(x)] · g1 (x) 

Leibnitz's Theorem: 

d~n (uv) = u(n)v + nu<n-!)v' + ... + ( ; )u(n-r)v(r) 

+ ... + uv<n), ( n) n! 
r = r!(n- r)! 

Integration by parts 

b dv b du 

l

b 

1 u dx dx = [uv] a + 1 v dx dx 
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A .2 Vectors and !via trices !v.Iathematical Formulas 

Differentiation of an integral 

d 1b(x) db da 1b(x) {)u(x, y) 
-d u(x,y)dy = [u(x,b)-d -u(x,a)-d ]+ 

0 
dy 

X a(x) X X a(x) X 

Power Series 

~ z2 zn 
e- = 1 + z + -

21 
+ ... + 1 ... (z E C) 

. n. 
z3 zs z2 z4 

sin z = z - 3J + 5f - ... , cos z = 1 - 2f + 41 - ... 
z3 zs 

sinh z = z + 3J + 5f + ... , 

Complex Numbers 

ei0 =cosO+ isinO, [ei1r + 1 = 0]. 

z = x + iy = rei0 = r(cosO + isinO) 

De Jvloivre's formula: 

[r( cos 0 + i sin O)t = rn( cos nO+ i sin nO) 

A.2 Vectors and Matrices 

Dot Product 

Cross Product 

i j k 
a x b = nlallbl sin 0 = Eijkajbk = a1 a2 a3 

bt b2 b3 
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1\t/athematical Formulas A .2 Vectors and lvlatrices 

Vector Triple 

a1 a2 a3 

[a, b, c] = a · (b x c) = bt b2 b3 
CJ C2 C3 

a· (b x c)= b · (c x a)= c ·(ax b)= -a· (c x b) 

ax (b x c)= (a· c)b- (a· b)c 

Divergence Theorem of Gauss 

fffv V·udV= jfsu·dS 

Stokes's Theorem 

Green's Theorems 

Identities 

f If 8v au 
( udx + vdy) = (ax - ay )dxdy 

v. v Xu= 0, v XV¢>= 0 

V X (if>u) = (j>V Xu+ (V¢) xu 

V · (¢u) = 4>V · u + (V4>) · u 

V x (V x u) = V(V · u) - V2 u 

Inverse, Trace and Determinants 

IAB .... ZI = IAIIBI ... IZI, IAI = detA 

A vi= Aivi, eig(AB) = eig(BA) 
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A.3 Asymptotics !v.Iathematical Formulas 

tr(AB) = tr(BA), tr(A +B) = tr(A) + tr(B) 

1 
det(A - 1) = det(AB) = det(A)det(B) 

det(A)' 

Exponential Matrices 

00 1 ~ 
etA= L 1 (tAt = l+tA+ -

2
A2 + ... 

n=O n. 

oo (-1)n-1 1 1 
ln(IA) = L nl An= A- 2A2 + 3A3 + ... 

n=1 

eAeB = eA+B (if AB = BA) 

~etA = AetA = etA A 
dt 

(eA)-1 = e-A, det(eA) = etrA 

A.3 Asymptotics 

Gaussian Distribution 

1 (x- J-t) 2 

p(x; J-t, a)= ~ exp[-
2 2 ] ---+ <5(x) 

27ra2 a 

100 -QX2d If e x= -
-oo 0: 

l1---+ 00. 

1
00 2n -ax2 (-1)n ·1· 3· · · (2n -1) r-:;r 

-oo x e dx = 2n V 7n+T' (n > 0). 

Binomial Distribution 

B(k ) n! k(1 )n-k (k 0 1 2 ) ; n,p = (n- k)tkt p - p ' = ' ' ' ... , n 
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1\t/athematical Formulas A .4 Special Integrals 

B(x; n ~ oo, p)l "'p(x; J.L, a), p, = np, a2 = np(1 - p). 
np»l 

Poisson Distribution 

e-.XAx 
f(x;A) = -

1
-, x EN 

X. 

f(x; A>> 1) ::::::: p(x; p,, a), p, = A, a2 =A 

B(k ~ x; n ~ oo,p) "'f(x; A= np), (lim np =A) 
n-oo 

A.4 Special Integrals 

Gamma Function 

r(x) = fooo tx-le-tdt = fooo e-t+(x-1) Intdt 

1 1 
r(n + 1) = nl, r(-2) = -2y'7r, r(2) = v'1r 

r(x + 1)::::::: (=)xJ27rX, (x ~ oo). 
e 

Stirling's Formula 

nl::::::: (~tV27ffi, n >> 1 
e 

Error Functions 

315 



Index 

1-D, 209, 254, 255 
2-D, 261 

Airy stress function, 192 
algorithms, 210 
analytic function, 67 
analytical function, 67 
assembly by element, 246 
asymptotic, 151 

error function, 314 
Gamma function, 314 
Stirling's formula, 315 

Bessel equation, 88 
Bessel function, 24, 151 
bifurcation, 99 
binomial distribution, 281 
birthday paradox, 273 
Black-Scholes equation, 205 
boundary condition, 252 

essential, 248 
natural, 248 

multiple variables, 165 
pendulum, 159 
shortest path, 156 

central difference, 212 
central limit theorem, 287 
chaos, 99 
complex integral, 70 

residue, 70 
complex variables, 62 
coordinates 

cylindrical, 15 
polar, 15 
spherical, 15 

correlation coefficient, 295 
cross product, 30 
cumulative probability function, 

284 
curl, 38 
curvature, 153 

determinant, 49 
difference equation, 95 

calculus of variations, 153 differential operator, 84 
brachistochrone problem, 164lifferentiation, 1 
constraint, 160 
curvature, 153 
Dido's problem, 163 
hanging rope problem, 163 
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implicit, 4 
partial, 9 
rule, 2 
vector, 32 



INDEX 

diffusion equation, 146 
displacement, 239 
divergence, 38 
divergence theorem, 313 
dot product, 28, 30 
DuFort-Frankel scheme, 224 
dynamic reconstruction, 102 
dynamical system, 102 

gradient, 38 
Green's function, 148 
Green's identity, 41 
Green's theorem, 313 

INDEX 

harmonic motion, 109. 159 
heat conduction, 139, 223, 253 
hybrid method, 149 
hyperbolic equation, 224 

elastic wave, 203 first-order, 214 
elasticity, 181, 240 second-order, 215 

beam bending, 197 hyperbolic function, 65 
Cauchy-Navier equation, 19J.hypothesis testing, 297 
elastostatic, 185, 198 
Euler-Bernoulli theory, 196 index matrix, 243 
Hooke's law 181 inner product, 28 

' Maxwell-Betti theorem, 185 integral 
multiple, 12 strain tensor, 182 

stress tensor, 182 
stress-strain relationship, 184 

elliptic equation, 218 

Bessel function, 88 
Cauchy's theorem, 71 
differentiation, 12 
Gaussian. 18 error function, 20 

Euler scheme, 210 
Euler-Lagrange equation, 154 
exponential distribution, 286 

finite difference method, 209 
finite element method, 227, 248 
finite volume method, 221 
Fokker-Plank equation, 205 

Galerkin method, 238 
Gamma function, 22 
Gauss's theorem, 41 
Gauss-Seidel iteration, 219 
Gaussian distribution, 283 

line, 38 
residue theorem, 73 
special, 17 

integral equation, 153, 167 
displacement kernel, 169 
Fredholm equation, 167 
sparable kernel, 169 
Volterra equation, 168, 170 

integral transform 
Fourier, 125 
Fourier transform, 144 
Laplace, 131 
Laplace transform, 143 
wavelet, 134 
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INDEX 

integration, 5 
by parts, 6 

iteration method, 219 

Jacobian, 13 

kinematics, 33 

Lagrangian, 158 
Lame constant, 184 
Laplace's equation, 139, 201 
Laurent series, 69 
leap-frog scheme, 212 
least-square, 238 
Leibnitz theorem, 3 
linear difference equation, 95 
linear system, 56 
log-normal distribution, 286 
Lorenz attractor, 103 

mathematical model, 201 
matrix, 47 

exponential, 52 
Hermitian, 53 
inverse, 50 

Maxwell's equations, 204 
mean, 278 

INDEX 

ordinary differential equation 
complementary function, 81 
general solution, 81 
homogenous equation, 81 
linear system, 85 
particular integral, 81 

oscillation 
damped, 112 
forced, 109 
natural frequency, 112 
small amplitude, 119 
undamped, 109 

outer product, 30 

parabolic equation, 202, 216 
pattern formation, 260 

bifurcation, 264 
instability, 263 

pattern formation , 261 
PDE, 138, 141, 203, 213 
Poisson distribution, 281 
Poisson's equation, 201, 244 
probability, 267 

axiom, 270 
conditional, 271, 275 
distribution, 279 

method of least square, 292 
moment generating function, 280 

independent events, 271 
moment, 280 

Navier-Stokes equation, 206 
Navier-Stokes equations, 206 
node, 242 
normal distribution, 283 
normal modes, 116 
null hypothesis, 301 

ODE, 77, 80, 81 

l\1onty hall problem, 276 
permutation, 272 
random variable, 268, 277 
randomness, 267 

probability density function, 283 

quadratic form, 55 

random variables, 277 
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reaction-diffusion, 257, 262 
reaction-diffusion equation, 204 
recurrence equation, 95 
Residue theorem, 73 
Riccati equation, 77 
Riemann (-function, 68 
Rien1ann hypothesis, 69 
Runge-Kutta method, 210, 213 

Saturn's rings, 43 
Schrodinger equation, 206 
self-similarity, 105 
separation of variables, 141 
series 

asympottic, 17 
power, 8 
Talor, 8 

shape functions, 238 
similarity solution, 145 
Sine-Gordon equation, 207 
soliton, 147 

INDEX 

Sturm-Liouville equation, 86 

Taylor series, 69 
tensor, 173 

analysis, 175 
Cartesian, 175 
notations, 173 
rank, 175 
vector, 176 

three card problem, 276 
time-dependent, 251 
time-stepping, 217, 253 

explicit, 254 
implicit, 211 

transient, 254 
Travelling wave, 147 
travelling wave, 259 
triangular element, 240 

uniforn1 distribution, 286 
upwind scheme, 214 

stability condition, 211, 215 
variance, 278 

standard normal distribution, vector, 27, 29 
285 

statistics, 289 
confidence interval, 297 
linear regression, 293 
maximum likelihood, 292 
sample mean, 289 
sample variance, 289 

steady state, 245 
stiffness matrix, 242 
Stokes's theorem, 41 
stress intensity factor, 195 
Student's t-distribution, 299 
Student's t-test, 301 

triple, 31 
vector calculus, 32 
Venn diagram, 268 
vibration, 109 

wave equation, 139, 202, 203, 
215, 255 

weak forn1ulation, 236 

Young's modulus, 181 
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