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Preface

Engineering mathematics including numerical methods and
application is the essential part of key problem-solving skills for
engineers and scientists. Modern engineering design and pro-
cess modelling require both mathematical analysis and com-
puter simulations. Vast literature exists on engineering math-
ematics, mathematical modelling and numerical methods. The
topics in engineering mathematics are very diverse and the syl-
labus of mathematics itself is evolving. Therefore, there is a
decision to select the topics and limit the number of chapters
so that the book remains concise and yet comprehensive enough
to include all the important mathematical methods and popu-
lar numerical methods.

This book endeavors to strike a balance between mathemat-
ical and numerical coverage of a wide range of mathematical
methods and numerical techniques. It strives to provide an
introduction, especially for undergraduates and graduates, to
engineering mathematics and its applications. Topics include
advanced calculus, ordinary differential equations, partial dif-
ferential equations, vector and tensor analysis, calculus of varia-
tions, integral equations, the finite difference method, the finite
volume method, the finite element method, reaction-diffusion
system, and probability and statistics. The book also empha-
sizes the application of important mathematical methods with
dozens of worked examples. The applied topics include elastic-
ity, harmonic motion, chaos, kinematics, pattern formation and
hypothesis testing. The book can serve as a textbook in en-
gineering mathematics, mathematical modelling, and scientific
computing.

Xin-She Yang
Cambridge, 2007



Acknowledgements

First and foremost, I would like to thank my mentors, tutors
and colleagues: Prof. A C Fowler and Prof. C J Mcdiarmid
at Oxford University, Dr J M Lees and Dr C T Morley at
Cambridge University, Prof. A C Mclntosh, Prof. J Brindley,
Prof. R W Lewis, Prof. D T Gethin, and Prof. Andre Revil
for their help and encouragement. I also thank Dr G. Parks,
Dr T. Love, Dr S. Guest, Dr K. Seffen, and many colleagues
for their inspiration. I thank many of my students, especially
Hugo Whittle and Charles Pearson, at Cambridge University
who have indirectly tried some parts of this book and gave their
valuable suggestions.

I also would like to thank my publisher, Dr Victor Riecan-
sky, for his kind help and professional editing.

Last but not least, I thank my wife, Helen, and son, Young,
for their help and support.

Xin-She Yang

ii



About the Author

Xin-She Yang received his D.Phil in applied mathematics
from the University of Oxford. He is currently a research fellow
at the University of Cambridge. Dr Yang has published exten-
sively in international journals, book chapters, and conference
proceedings. His research interests include asymptotic anal-
ysis, bioinspired algorithms, combustion, computational engi-
neering, engineering optimization, solar eclipses, scientific pro-
gramming and pattern formation. He is also the author of a
book entitled: “An Introduction to Computational Engineering
with Matlab”, published in 2006 by Cambridge International
Science Publishing Ltd.

iii






Contents

1 Calculus 1
1.1 Differentiations . . ... ... .. ... ...... 1
1.1.1 Definition . . . ... ... ... ...... 1

1.1.2 Differentiation Rules . . . . . ... .. .. 2
1.1.3 Implicit Differentiation . . . . . . ... .. 4

1.2 Integrations .. ... ................ 5
1.2.1 Definition . ... ... ... ... ..... 5
1.2.2 Integration by Parts . .. ... ... ... 6

1.2.3 Taylor Series and Power Series . . .. . . 8

1.3 Partial Differentiation . ... .. .. ... .. .. 9
1.3.1 Partial Differentiation . ... .. ... .. 9

1.3.2 Differentiation of an Integral . ... ... 12

1.4 MultipleIntegrals . . . . .. ... ... ...... 12
1.4.1 Multiple Integrals . .. .......... 12
142 Jacobian. .. ... ............. 13

1.5 Some Special Integrals . . . . ... ........ 16
1.5.1 Asymptotic Series . . ... ... ..... 17
1.5.2 Gaussian Integrals . . .. ... ...... 18
1.5.3 Ewror Functions. . . .. ... ... .. .. 20

1.5.4 Gamma Functions ... ... ... .... 22

1.5.5 Bessel Functions . . ... ......... 24

2 Vector Analysis 27
21 Vectors . .. ..... ... ... ... ..., 27
2.1.1 Dot Product and Norm .. ... ... .. 28



vi

CONTENTS CONTENTS
2.1.2 CrossProduct ............... 30

2.13 Vector Triple . . .. ............ 31

2.2 Vector Algebra . . ... .............. 32
2.2.1 Differentiation of Vectors . ... ... .. 32

2.2.2 Kinematics .. ... ... ......... 33

223 Linelntegral ... ............. 37

2.2.4 Three Basic Operators . . . . .. ... .. 38

2.2.5 Some Important Theorems . .. ... .. 40

23 Applications. . ... ... ...... . ...... 41
2.3.1 Conservationof Mass . . ... ...... 41

232 Saturn’sRings ... ............ 42

3 Matrix Algebra 47
31 Matrix . . ... ... .. .. ... .. ... 47
32 Determinant. . ... ................ 49
33 Inverse. ... ... ... .. ... .. ... ..., 50
3.4 Matrix Exponential . . . . ... ... ....... 52
3.5 Hermitian and Quadratic Forms . ... ... .. 53
3.6 Solution of linear systems . .. .......... 56

4 Complex Variables 61
4.1 Complex Numbers and Functions . . . . . .. .. 61
4.2 Hyperbolic Functions . . . . .. .......... 65
4.3 Analytic Functions . . . .. ............ 67
44 ComplexIntegrals . ................ 70

5 Ordinary Differential Equations 77
5.1 Imtroduction. . ................... 77
52 First Order ODEs . ................ 78
521 LinearODEs ... ............. 78

5.2.2 Nonlinear ODEs . ............. 80

5.3 Higher OrderODEs ... ... .......... 81
53.1 General Solution . . ... ......... 81

5.3.2 Differential Operator . . . . ... ... .. 84

54 Linear System. ... ................ 85
5.5 Sturm-Liouville Equation . ... ....... .. 86



CONTENTS CONTENTS

55.1 Bessel Equation. . . ... ... ... ...
5.5.2 EulerBuckling . ..............
5.5.3 Nonlinear Second-Order ODEs . . .. ..

6 Recurrence Equations
6.1 Linear Difference Equations . . . ... .. .. ..
6.2 Chaos and Dynamical Systems . .........
6.2.1 Bifurcations and Chaos . .. .......
6.2.2 Dynamic Reconstruction . . . . ... ...
6.2.3 Lorenz Attractor . . . .. ... ......
6.3 Self-similarity and Fractals .. ... .......

7 Vibration and Harmonic Motion
7.1 Undamped Forced Oscillations . . ... ... ..
7.2 Damped Forced Oscillations . . . .. ... ....
73 NormalModes . ..................

8 Integral Transforms
8.1 Fourier Transform .................
8.1.1 Fourier Series . . .. ... .........
8.1.2 Fourier Integral . . . .. ... .......
8.1.3 Fourier Transform . ............
8.2 Laplace Transforms. . . . ... ..........
83 Wavelet . ......................

9 Partial Differential Equations
91 FirstOrder PDE . . ... .............
9.2 Classification ... .................
93 ClassicPDEs ... .................

10 Techniques for Solving PDEs
10.1 Separation of Variables. . . ... ... ......
10.2 Transform Methods. . . . . .. ... ... .. ..
10.3 Similarity Solution . . .. ... ... .... ...
10.4 Travelling Wave Solution. . . . .. ... ... ..

vii

109
109
112
116
119

125
126
126
128
129
131
134

137
138
139
139



CONTENTS CONTENTS

10.5 Green’s Function . . ... ... ... ....... 148
10.6 Hybrid Method . . . . ... ... ......... 149
11 Integral Equations 153
11.1 Calculus of Variations . .. ... ......... 153
11.1.1 Curvature . . . . . ... ... ....... 153

11.1.2 Euler-Lagrange Equation . ... ... .. 154

11.1.3 Variations with Constraints . . . . . . . . 160

11.1.4 Variations for Multiple Variables . . . . . 165

11.2 Integral Equations . .. ... ........... 167
11.2.1 Linear Integral Equations . . .. ... .. 167

11.3 Solution of Integral Equations . . . . ... .. .. 169
11.3.1 Separable Kernels . .. .......... 169

11.3.2 Displacement Kernels . . .. ... .. .. 170

11.3.3 Volterra Equation . ... ...... ... 170

12 Tensor Analysis 173
12.1 Notations . . ... ... ... ... ........ 173
122 Tensors . . .. ... ... .. ... .. ...... 174
123 Tensor Analysis . . . ... ... ... ....... 175
13 Elasticity 181
13.1 Hooke'’s Law and Elasticity . ........ ... 181
13.2 Maxwell’s Reciprocal Theorem . ... ... ... 185
13.3 Equations of Motion . . ... ........... 189
13.4 Airy Stress Functions . . ... ... ....... 192
13.5 Euler-Bernoulli Beam Theory . . ... ... ... 196

14 Mathematical Models 201
14.1 ClassicModels . . ................. 201
14.1.1 Laplace’s and Poisson’s Equation . . . . . 202

14.1.2 Parabolic Equation . . . . ... ... ... 202

14.1.3 Wave Equation . . . . ... ........ 203

142 Other PDEs . . . . ... ... ... ........ 203
14.2.1 Elastic Wave Equation . . . . ... .. .. 203

14.2.2 Maxwell’s Equations . . . ... ... ... 204

viii



CONTENTS CONTENTS

14.2.3 Reaction-Diffusion Equation. . . . . . . .
14.2.4 Fokker-Plank Equation ... ..... ..
14.2.5 Black-Scholes Equation ... .......
14.2.6 Schrodinger Equation . . . . ... .. ..
14.2.7 Navier-Stokes Equations . . . . ... ...
14.2.8 Sine-Gordon Equation . . . ... ... ..

15 Finite Difference Method
15.1 Integrationof ODEs . . .. ... .........
15.1.1 Euler Scheme . . .. ... .........
15.1.2 Leap-Frog Method . .. ... ... .. ..
15.1.3 Runge-Kutta Method .. ... .... ..
15.2 Hyperbolic Equations . .. ... .........
15.2.1 First-Order Hyperbolic Equation . . . . .
15.2.2 Second-Order Wave Equation . . . . . . .
15.3 Parabolic Equation . . . . . ... ... ... ...
15.4 Elliptical Equation . . . ... ... ........

16 Finite Volume Method
16.1 Introduction . . . . . ... . ... .........
16.2 Elliptic Equations . . .. ... ..........
16.3 Parabolic Equations . .. ... ..........
16.4 Hyperbolic Equations . .. ... ... ......

17 Finite Element Method
17.1 Concept of Elements . . . . ... ... ... ...
17.1.1 Simple Spring Systems . . . . ... . ...
17.1.2 Bar and Beam Elements . . . . ... ...
17.2 Finite Element Formulation . ... ... ... ..
17.2.1 Weak Formulation . .. ... .......
17.2.2 Galerkin Method . . . .. .. ... .. ..
17.2.3 Shape Functions . ... ... .......
173 Elasticity . .. ... ... ... ... .......
17.3.1 Plane Stress and Plane Strain . . . . . . .
17.3.2 Implementation . . . ... ... ... ...
17.4 Heat Conduction . . .. .. ... .........

209
209
210
212
213
213
214
215
216
218

221
221
222
223
224



CONTENTS CONTENTS

17.4.1 Basic Formulation . ... ... . ... ..
17.4.2 Element-by-Element Assembly . .. ...
17.4.3 Application of Boundary Conditions . .
17.5 Time-Dependent Problems. . . . .. .. ... ..
17.5.1 The Time Dimension . . . . ... ... ..
17.5.2 Time-Stepping . . ... ... .......
17.5.3 1-D Transient Heat Transfer. . . . . . . .
17.54 Wave Equation . . ... ... ... .. ..

18 Reaction Diffusion System
18.1 Heat Conduction Equation . ... ........
18.1.1 Fundamental Solutions . . . . ... .. ..
18.2 Nonlinear Equations . . . ... ..........
18.2.1 Travelling Wave . . ............
18.2.2 Pattern Formation . ... .. .. ... ..
18.3 Reaction-Diffusion System . . . . ... ... ...

19 Probability and Statistics
19.1 Probability . . .. ... ..............
19.1.1 Randomness and Probability . ... ...
19.1.2 Conditional Probability . ... .... ..
19.1.3 Random Variables and Moments . . . . .
19.1.4 Binomial and Poisson Distributions . . .
19.1.5 Gaussian Distribution . . .. ... .. ..
19.1.6 Other Distributions . . ... ... . ...
19.1.7 The Central Limit Theorem . . . . . . . .
19.2 Statistics . .. ... ... ... ... ... ...
19.2.1 Sample Mean and Variance . .. ... ..
19.2.2 Method of Least Squares ... ... ...
19.2.3 Hypothesis Testing . . . ... .. ... ..

A Mathematical Formulas
A.1 Differentiations and Integrations . ... ... ..
A.2 Vectors and Matrices . . . . ... .........
A3 Asymptotics . ...................
A4 Special Integrals . . ... .............

. 248

251
251
253
253
254

257
257
257
259
259
260
263

267
267
267
275
277

. 281

283
286
287
289
290
292
297



Chapter 1

Calculus

The preliminary requirements for this book are the pre-calculus
foundation mathematics. We assume that the readers are fa-
miliar with these preliminaries, and readers can refer to any
book that is dedicated to these topics. Therefore, we will only
review some of the basic concepts of differentiation and inte-
gration.

1.1 Differentiations

1.1.1 Definition

For a known function or a curve y = f(z) as shown in Figure
1.1, the slope or the gradient of the curve at the point P(z,y)
is defined as

- lim flz+ Azx) — f(a:)’
Az—0 Ax

(1.1)

on the condition that there exists such a limit at P.

This gradient or limit is the first derivative of the function
f(z) at P. If the limit does not exist at a point P, then we
say that the function is non-differentiable at P. By conven-
tion, the limit of the infinitesimal change Az is denoted as the
differential dz. Thus, the above definition can also be written

1



1.1 Differentiations Calculus

dy=df = d{i(::) dr = f'(z)dz, (1.2)

which can be used to calculate the change in dy caused by the
small change of dz. The primed notation ’ and standard nota-
tion % can be used interchangeably, and the choice is purely

out of convenience.

Figure 1.1: Gradient of a curve

The second derivative of f(z) is defined as the gradient of
f'(x), or
Py _

dm2 = n( ) df(:l:)

(1.3)

The higher derivatives can be defined in a similar manner.
Thus,

a3y m f”(:l:) 'y _ (n) —_ df b
& =1 = o g ==

1.1.2 Differentiation Rules

If a more complicated function f(x) can be written as a prod-
uct of two simpler functions u(x) and v(z), we can derive a
differentiation rule using the definition from the first princi-

2



Calculus 1.1 Differentiations

ples. Using

f(z + Az) — f(x) _ Uz + Az)v(z + Az) — u(z)v(z)
Az Az ’

and subtracting and adding —u(z + Az)v(z) + u(z + Az)v(z)
[= 0] terms, we have

& _ du(z)(z)]
dzx dz
v(z + Az) — v(a:) u(z + Az) — u(z)
o +v(z) o ]
= u(x)g—z + Z—:v(m),

which can be written in a contract form using primed notations

= A+ 42)

(1.5)

fl(z) = (w) =v'v+uw. (1.6)

If we differentiate this equation again and again, we can gen-
eralize this rule, we finally get the Leibnitz’s Theorem for dif-
ferentiations

+oe + w0, (1.7)

where the coefficients are the same as the binomial coefficients

n nl

If a function f(z) [for example, f(z) = e*"] can be written
as a function of another function g(z), or f(z) = f[g(z)] [for
example, f(z) = €9®) and g(z) = z"), then we have

Ang

f'@)= Jim 222, (1.9



1.1 Differentiations Calculus

which leads to the following chain rule

@ =22, (1.10)
(@)Y = Flo@)] ¢ @). (1.11)

In our example, we have f'(z) = (%) = e na™~L.
If one use 1/v instead of v in the equation (1.6) and (1/v)’ =
—v'/ v2, we have the following differentiation rule for quotients:
u u'v —uv'

(=) = ——. (1.12)

v v2

O Ezample 1.1: The derivative of f(z) = sin(z)e~ (%) can be
obtained using the combination of the above differentiation rules.
f'(z) = [sin(z)])'e” cos(z) | sin(z)[e~ cos(=)]/
= cos(z)e™ %@ 4 sin(z)e~ %[ cos(x)]’
= cos(z)e” cos(z) 4 sinz(a:)e_ cos(z)
0
The derivatives of various functions are listed in Table 1.1.

1.1.3 Implicit Differentiation

The above differentiation rules still apply in the case when there
is no simple explicit function form y = f(x) as a function of
z only. For example, y + sin(z) exp(y) = 0. In this case, we
can differentiate the equation term by term with respect to x
so that we can obtain the derivative dy/dz which is in general
a function of both = and y.

O Ezample 1.2: Find the derivative 3% if y® + sin(z)e? = cos(z).
Differentiating term by term with respect to x, we have

2y% + cos(z)e¥ + sin(z)ey% = —sin(z),

dy _  cos(z)e? +sin(x)
dr 2y +sin(z)ey




Calculus 1.2 Integrations

Table 1.1: First Derivatives

!
@ | 7@
P n:c"'l
et et
a*(a>0)| a®lna
1
Inx . =
log, z e
sinzx coszT
COS I —sinz
tanx sec? r
sin"lz L
1-z
coslz | ——=L
tan xr H—II
sinhz coshz
coshz sinh z

1.2 Integrations

1.2.1 Definition

Integration can be viewed as the inverse of differentiation. The
integration F'(x) of a function f(z) satisfies

dF(z) _
- = (@), (1.13)

or -
F(z) = / £(€)de, (1.14)

where f(z) is called the integrand, and the integration starts
from zo (arbitrary) to z. In order to avoid any potential confu-
sion, it is conventional to use a dummy variable (say, £) in the
integrand. As we know, the geometrical meaning of the first
derivative is the gradient of the function f(z) at a point P, the

5



1.2 Integrations Calculus

geometrical representation of an integral | : f(&)dE (with lower
integration limit @ and upper integration limit b) is the area
under the curve f(x) enclosed by z-axis in the region z € [a, b].
In this case, the integral is called a definite integral as the limits
are given. For the definite integral, we have

Lb f(z)dzr = /x: f(z)dx — /x: f(z)dz = F(b) — F(a). (1.15)

The difference F(b) — F(a) is often written in a compact form
F|} = F(b) — F(a). As F'(z) = f(x), we can also write the
above equation as

b b
/a f(z)dz = /a F'(z)dz = F(b) — F(a). (1.16)

Since the lower limit zg is arbitrary, the change or shift
of the lower limit will lead to an arbitrary constant c. When
the lower limit is not explicitly given, the integral is called an
indefinite integral

/ f(z)dz = F(z) +c, (1.17)

where c is the constant of integration.
The integrals of some of the common functions are listed in
Table 1.2.

1.2.2 Integration by Parts
From the differentiation rule (uv)’ = uv' + u'v, we have
w' = (w) —u'v. (1.18)

Integrating both sides, we have

/u—dx = uv —/—vda: (1.19)

in the indefinite form. It can also be written in the definite
form as

/au—dzz:—[uv]| +/ v—da: (1.20)

6



Calculus 1.2 Integrations

Table 1.2: Integrals

f(z) [ f(z)
n+1
1
r In |.’12|
et et
sinzx —coszx
cos T sinz
P _i_ — 1 tan‘:_””
a+x
aZ—z2 Za ln
1 1 In z a
z2—a? 2a r+a
! sin"!Z

1
T In(z + vz% + a?)
[or sinh™! £]
7% In(z + vzZ - a?)

[or cosh™! f]

sinh z coshz
cosh z sinhz
tanhz Incosh z

The integration by parts is a very powerful method for evalu-
ating integrals. Many complicated integrands can be rewritten
as a product of two simpler functions so that their integrals can
easily obtained using integration by parts.

O Ezample 1.3: The integral of I = [zlnz dx can be obtained
by setting v = x and u = Inz. Hence, v = é and v’ = é We now
have

z2 2
I= / rlnzdr = lna: x—ida:

2

_a:zlna: T
T

2




1.2 Integrations Calculus

Other important methods of integration include the sub-
stitution and reduction methods. Readers can refer any book
that is dedicated to advanced calculus.

1.2.3 Taylor Series and Power Series
From b
[ #@)ds = F) - Fla), (1.21)

and 4£ = F' = f(x), we have

xo+h
[ r@de = feot by - fz), (122)

0

which means that
xo+h
faath=feo)+ [ fla)de.  (129)

If h is not too large or f’(z) does not vary dramatically, we can
approximate the integral as

X
] * f(z)dz ~ f'(z0)h. (1.24)
zo
Thus, we have the first-order approximation to f(zo + k)

f(zo+ h) = f(za) + hf'(20). (1.25)

This is equivalent to say, any change from zg to zo+h is approx-
imated by a linear term hf’(xo). If we repeat the procedure for
f'(z), we have

f'(xo + k) = f'(z0) + hf"(z0), (1.26)
which is a better approximation than f’(zg + h) = f'(z). Fol-

lowing the same procedure for higher order derivatives. we can
reach the n-th order approximation

h? B3
f(zo + h) = f(zo) + hf' (o) + gf”(fllo) + gf”’(mo)

8



Calculus 1.3 Partial Differentiation

oot 21O zg) + Ry (), (L.27)

where Rp11(h) is the error of this approximation and the no-
tation means that the error is about the same order as n + 1-th
term in the series. This is the well-known Taylor theorem and
it has many applications. In deriving this formula, we have im-
plicitly assumed that all the derivatives f'(z), f”(z), ..., f(™(x)
exist. In almost all the applications we meet, this is indeed the
case. For example, sin(z) and e*, all the orders of the deriva-
tives exist. If we continue the process to infinity, we then reach
the infinite power series and the error lim,_.oo Rp4+1 — 0 if the
series converges. The end results are the Maclaurin series. For
example,

e* =1+x+2—?+ -+ i , (x€R), (1.28)
snnm—x—g—?+x—5—..., (x € R), (1.29)
cosr=1-— g +— :z:4 - (z€R), (1.30)

and
In(1+x) =m—%2+%3—%4+%5—...,, (-1<z<1). (1.31)

1.3 Partial Differentiation

1.3.1 Partial Differentiation

The differentiation defined above is for function f(z) which has
only one independent variable z, and the gradient will generally
depend on the location z. For functions f(z,y) of two variables
z and y, their gradient will depend on both z and y in general.
In addition, the gradient or rate of change will also depend on
the direction (along z-axis or y-axis or any other directions).
For example, the function f(z,y) = zy shown in Figure 1.2
has different gradients at (0,0) along z-axis and y-axis. The

9



1.3 Partial Differentiation Calculus

Figure 1.2: Variation of f(z,y) = zy.

gradients along the positive z- and y- directions are called the
partial derivatives respect to  and y, respectively. They are
denoted as gﬁ and %5, respectively.

The partial derivative of f(z,y) with respect to z can be
calculated assuming that y =constant. Thus, we have

of(z,y) _ ) f
Toz == |y
i f(”+A$,!/)—f(w,y)
- Aa:—»(%gl;mnst Az . (1.32)
Similarly, we have
0f(z,y) _ f, = 6f|
Toy Oy'”*
= lim flz,y+ Ay) — f(:v,y). (1.33)

Ay—0,z=const Ay

The notation ?%|y emphasizes the fact that y is held constant.
The subscript notation f, (or f,) emphasizes the derivative is
carried out with respect to x (or y). Mathematicians like to

10



Calculus 1.3 Partial Differentiation

use the subscript forms as they are simpler notations and can
be easily generalized. For example,

0 f 0> f

e =gz o= pagy

(1.34)

Since AzAy = AyAzx, we have fyy = fyz.

O Example 1.}: The first partial derivatives of f(z,y) = zy +
sin(z)e~Y are

fe=E=yraoses,  fy= P =z sinae.

The second partial derivative of f(x,y) is
fzz = —sin(z)e?, fyy = sin(z)e™¥,
and
fey = fyz =1 — cos(z)e™Y.
[H]

For any small change Af = f(z + Az, y+ Ay) — f(x,y) due
to Az and Ay, the total infinitesimal change df can be written

® oy, Oy,
df = dm
if = + = 8
If z and y are functions of another independent variable £, then
the above equation leads to the following chain rule

& _ofds, 0fdy

¢ Oz df Oy dE’
which is very useful in calculating the derivatives in parametric
form or for change of variables. If a complicated function f(z)
can be written in terms of simpler functions u and v so that
f(z) = g(x,u,v) where u(x) and v(z) are known functions of
z, then we have the generalized chain rule

do_ 9, d0du_ Bodo
dz ~ 0z ' Oudz ' Ovdr
11

(1.35)

(1.36)

(1.37)



1.4 Multiple Integrals Calculus

The extension to functions of more than two variables is
straightforward. For a function p(z,y, z,t) such as the pressure
in a fluid, we have the total differential as

Op Op Op
=2 dt+ 3598+ 50 + 5,95 (1.38)

1.3.2 Differentiation of an Integral

When differentiating an integral

b
®(z) = / &z, y)dy, (1.39)
with fixed integration limits a and b, we have
0B(z) [ 8¢(x,y)
S - /a ey, (1.40)

When differentiating the integrals with the limits being func-
tions of z,

I(z) = v P(z,7)dr = V[z,u(x)] — ¥[z,v(x)], (1.41)

v(z)

the following formula is useful:

dI u(z) Php do
P /v(z) 6xdT+ [¥(=, u(a:))— — Y(z, (z))%]. (1.42)

This formula can be derived using the chain rule
dI oI oldu oldv
dz ~ 0z  Oudx ' Qvdx’

where = (z,u(z)) and ¥ = —y(z,v(x)).

(1.43)

1.4 Multiple Integrals
1.4.1 Multiple Integrals

As the integration of a function f(z) corresponds to the area
enclosed under the function between integration limits, this

12
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can extend to the double integral and multiple integrals. For a
function f(z,y), the double integral is defined as

F= /Q f(z,y)dA, (1.44)

where dA is the infinitesimal element of the area, and Q is the
region for integration. The simplest form of dA is dA = dzdy
in Cartesian coordinates. In order to emphasize the double
integral in this case, the integral is often written as

I= / /Q f(z,y)dedy. (1.45)

O Example 1.5: The area moment of inertia of a thin rectangular
plate, with the length 2a and the width 2b, is defined by

I=// y2dS=// y2dzdy.
Q Q

The plate can be divided into four equal parts, and we have

a b al
I=4/ [/ yzdy]d:c=4/ =bdz
o Jo o 3

4b3/ e _4ab3.

1.4.2 Jacobian

Sometimes it is necessary to change variables when evaluating
an integral. For a simple one-dimensional integral, the change
of variables from z to a new variable v (say) leads to z = z(v).
This is relatively simple as dv = %d’u, and we have

Tp b
/z " f(e)da = fa f(z(v))j—:dv, (1.46)

where the integration limits change so that z(a) = z, and
z(b) = zp. Here the extra factor dr/dv in the integrand is
referred to as the Jacobian.

13



1.4 Multiple Integrals Calculus

For a double integral, it is more complicated. Assuming
T = x(&sn)*y = y({,n), we have

J[ t@vydody = [[ remindean,  .an)

where J is the Jacobian. That is

Az, y)
J=
a&,m)
or Oz oz g_g
—| % Om o€ ¢ 1.48
Jé; T . ( )

The notation 9(z,y)/d(§,7n) is just a useful shorthand. This
equivalent to say that the change of the infinitesimal area dA =
dxzdy becomes

) ey _ 0200 om0y
dzdy = |m|d§dfl = I6§ a0 o 3§|d§dﬂ- (1.49)

O Example 1.6: When transforming from (z,y) to polar coordi-
nates (r,0), we have the following relationships

T = rcosb, y =rsinf.

Thus, the Jacobian is

j=dew) _0zdy osdy
T 9(r,0)  9rds 98 or

=cosf x rcosf — (—rsinf) x sinf = rfcos? § + sin? 6] = r.

Thus, an integral in (x,y) will be transformed into

// o(z, y)dzdy =// #(r cos 0, 7 sin 6)rdrdf.
]

In a similar fashion, the change of variables in triple inte-
grals gives

v = [[[ $.v.2)dadydz = [[ (&m0l deands. (1.50)

14
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and
0z Oy 9=
J=0($,yaz)_ 5_35 g g_g (1.51)
CoEmC) | oo '
a 9 T
For cylindrical polar coordinates (7, ¢, z) as shown in Figure
1.3, we have
T =rcosd, y =rsing, z=2z. (1.52)
The Jacobian is therefore
cos ¢ sing 0
J = gg’—;g =| —rsing rcos¢p 0 |=r. (1.53)
T 0 0 1
z
P(r,¢,2)
o - Yy
r
X

Figure 1.3: Cylindrical polar coordinates.

For spherical polar coordinates (7,6, ¢) as shown in Figure
1.4, where 0 is the zenithal angle between the z-axis and the
position vector r, and ¢ is the azimuthal angle, we have

x = rsinf cos ¢, y = rsinfsin ¢, z=rcosf. (1.54)
Therefore, the Jacobian is

sin 0 cos ¢ sin @sin ¢ cos @
J=| rcosfcos¢p rcosfsing —rsinf |=r?sind. (1.55)
—rsinfsing rsinfcos¢ 0

15
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Figure 1.4: Spherical polar coordinates.

Thus, the volume element change in the spherical system is

dzdydz = r?sin 0drdfde. (1.56)

O Ezample 1.7: The volume of a solid ball with a radius R is

defined as
-l
Q

Since the infinitesimal volume element dV' = r? sin(6)drdfd¢ in spher-
ical coordinates v > 0,0 < 0 < 7w and 0 < ¢ < 2, the ball can be
divided into two equal parts so that

= 2/ {/ sln0[ d¢]d0}dr

= 2/0 {27r/0"r sin(8)df}dr

R
= 47r/ r2dr = 4—7rR3.
0 3

1.5 Some Special Integrals

Some integrals appear so frequently in engineering mathemat-
ics that they deserve special attention. Most of these special

16
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integrals are also called special functions as they have certain
varying parameters or integral limits. We only discuss four of
the most common integrals here.

1.5.1 Asymptotic Series

Before we discuss any special functions, let us digress first to
introduce the asymptotic series and order notations because
they will be used to study the behaviours of special functions.
Loosely speaking, for two functions f(x) and g(z), if

f(z)

2 LK, z-—x, 1.57
(@) 0 (1.57)

where K is a finite, non-zero limit, we write
f=0(g). (1.58)

The big O notation means that f is asymptotically equivalent
to the order of g(z). If the limit is unity or K = 1, we say f(z)
is order of g(z). In this special case, we write

f~g, (1.59)

which is equivalent to f/g — 1 and g/f — 1 as z — z9. Ob-
viously, zg can be any value, including 0 and oco. The notation
~ does not necessarily mean = in general, though they might
give the same results, especially in the case when z — 0 [for
example, sinz ~ x and sinz = z if z — 0].

When we say f is order of 100 (or f ~ 100), this does not
mean f = 100, but it can mean that f is between about 50 to
150. The small o notation is used if the limit tends to 0. That
is

f
E — 0, T — o, (1.60)
or

f=o(g). (1.61)

17
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If g > 0, f = o(g) is equivalent to f « g. For example, for
Vz € R, we have e® ~ 1+ 2+ O(2?) ~ 1+ z + & + o(z).

Another classical example is the Stirling’s asymptotic series
for factorials

Al ~ \/21m(§)", n> 1. (1.62)

In fact, it can be expanded into more terms

n.. 1 1 139
nl~ V2mn(2) (1 + 5 + 25877 ~ STagons ~

(1.63)

This is a good example of asymptotic series. For standard
power expansions, the error Ri(h*) — 0, but for an asymptotic
series, the error of the truncated series R decreases and gets
smaller compared with the leading term [here v2mn(n/e)"].
However, R, does not necessarily tend to zero. In fact, Ry =
5= - V2rn(n/e)™ is still very large as Ry — oo if n > 1. For
example, for n = 100, we have n! = 9.3326 x 10!57, while the
leading approximation is v2mn(n/e)® = 9.3248 x 10'57. The
difference between these two values is 7.7740 x 1013, which is
still very large, though three orders smaller than the leading
approximation.

1.5.2 Gaussian Integrals

The Gaussian integral appears in many situations in engineer-
ing mathematics and statistics. It can be defined by

I(a) = /_ c: e~ dg. (1.64)

In order to evaluate the integral, let us first evaluate I2. Since
the Gaussian integral is a definite integral and must give a
constant value, we can change the dummy variable as we wish.
We have

oo oo
P eoaaft= [~ eortan [~ ey
—00 -0 )

18
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[e o] o0 2 2
=/ / e+ ) drdy. (1.65)
—o0J—00

Changing into the polar coordinates (r,6) and noticing r? =
z2 4+ y? and dzdy = rdrdf, we have

oo 2% 2
2=[ dr / re=ordg
0 0
0o

1 _m.'z 2 _ ™
—27r/0 —e™ " d(ar?) = 2. (1.66)

I(a) = /_ °:° e dy = \/g (1.67)

Since a is a parameter, we can differentiate both sides of this
equation with respect to a, and we have

Therefore,

o0
2gmartgy - 1 [T 68
/_ N e T 52\ o (1.68)

By differentiating both sides of the Gaussian integral (equa-
tion 1.67) n times with respect to a, and we get the generalized
Gaussian integral I,

oo

—_ 2

In =/ x2ne ax
—00

_ (=1 1.3;-‘-(271 -1 /02:“, (1.69)

where n > 0 is an integer.
. — 1 — .
For a special case when a = ol and n = 0, the equation

(1.67) can be rearranged as

/: f@ao)de=1, f(@)= ﬁe‘f}. (1.70)

The function f(z,0) is a zero-mean Gaussian probability func-
tion. As o — 0, f(z) — é6(x) where é(z) is the Dirac é-function
which is defined by

6(z) #0 (at £ =0), but 6(x) =0, for £#0, (1.71)
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and o
/ §(z)dz = 1. (1.72)

(=2}

It has an interesting property that
[ #@6(z - p)de = £(8), (173)

where f(z) is a function.

1.5.3 Error Functions

The error function, which appears frequently in heat conduc-
tion and diffusion problems, is defined by

erf(z) = \/i% /0 " e dn. (1.74)

Its complementary error function is defined by

erfe(z) = 1 —erf(z) = %/:o e ¥ dt. (1.75)

The error function is an odd function: erf(—z) = —erf(z).
Using the results from the Gaussian integral
Rad 2
/ e dn = /7, (1.76)
—0o0

together with the basic definition, we have erf(0) = 0, and
erf(co) = 1. Both the error function and its complementary
function are shown in Figure 1.5.

The error function cannot be easily evaluated in closed
form. Using Taylor series for the integrand

1 1
e"’2 =1- 772 + 5774 - 6776 + ... (L.77)

and integrating term by term, we have

2 3 L 7

20



Calculus 1.5 Some Special Integrals

— erf(x)
-=-- erfc(x) A
30 s o 5 10
X
Figure 1.5: Error functions.
or
2n+1
erf(z) = Z 2n+1 — (1.79)
The integrals of the complementary function are defined by
{e o}
ierfe(z) = / erfe(n)dn, (1.80)
T
and 0o
i"erfe(x) =/ i"erfe(n)dn. (1.81)
T

Using integration by parts, we can prove the following asymp-

totic series
—z2

e
f(z) ~ 1 — e
er (.’L‘) mﬁ’ (
On the other hand, if we replace z in the error function by
Bz, we have

z — o). (1.82)

Jim. S+ erf(62)) — H(a) (1.83)

where H(zx) is a Heaviside function or a unit step function
which is defined by

H(z)=1 (for = > 0), H(z) =0 (for £ <0). (1.84)
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At z = 0, it is discontinuous and it is convention to set H(0) =
1/2. Its relationship with the Dirac é-function is that

dH(z)
dz

= 5(z). (1.85)

1.5.4 Gamma Functions
The special function is the gamma function which is defined by
o0 [o o]
I(z) = / = letdt = / e~tHa=Dintgy (1.86)
0 0
Using integral by parts, we have
o0 00 o0
Fx+1) =] te~tdt = —t"’e't| +/ zt* letdt
0 0 0
= zI[(z). (1.87)
When z = 1, we have

I'(1) =/0 e tdt = —e't|;° =1 (1.88)

The variation of I'(z) is shown in Figure 1.6.
If = n is an integer (n € NV), then I'(n + 1) = n!. That is
to say,

nl=T(n+1)= / ernttg. (1.89)
0
The integrand f(n,t) = exp[n Int—t] reaches a maximum value
at
Zt—f =0, or t=n. (1.90)

The maximum is fp,., = exp[nInn —n|. Thus, we now can set
t=n+7 =n(l+() so that 7 = n{ varies around n and ¢
around 0. For n >> 1, we have

l = / * glnInln(140)]-n(140)} gy

=00

=/°° e{(nlnn_n)+n[l“(1+<)_<]}d7', (1.91)
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201

10

11| ﬂ

)
(-]
B

-5
Figure 1.6: Variation of I'(z).

where we have used In[n(1 + ¢)] = Inn + In(1 + ¢). The inte-
gration limits for 7 = n¢ (not () are from —o0 to oco. Using

SRS
In(l+¢)=C— = +>—.., (1.92)
2 3
we have
0 2
nl=erlnn / e~z dr. (1.93)
—o0
From the Gaussian integral with oo = 1/(2n)
o —07'2 7r
/ e " dr = /== V2nn, (1.94)
—-00 a

we now obtain the Stirling’s asymptotic formula
nl =™ "o = \/27rn(%)". (1.95)

From the basic definition, it can be shown that

y=vr =L ()

N —

D(~3)=-2V7, I

The standard gamma function can be decomposed into two
incomplete functions: the lower incomplete gamma function
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¥(a,z) and the upper incomplete gamma function I'(a,z) so
that I'(z) = v(a, z) + (v, z).
The lower incomplete gamma function is defined by

T
Y(a,z) = / e lemtde, (1.97)
0
while the upper incomplete gamma function is defined by
o0
I(a,z) = ] t*=le~tds, (1.98)
x

Obviously, ¥(a, z) — I(e) as £ — c0. As T(}) = /7, we
have

erf(x) = %'y(%,mz). (1.99)

Another related function is a beta function
1
B(z,y) =/ t’”—l(l - t)y"ldt. (1.100)
()}

From the definition, we know that the beta function is sym-
metric, B(z,y) = B(y,z). The beta function is linked to T’

function by
_ I'(@)I'(y)

BV =1tery

(1.101)

1.5.5 Bessel Functions

Bessel functions come from the solution of the Bessel’s equation
2y + 2y + (2 - Ny =0, (1.102)

which arises from heat conduction and diffusion problems as
well as wave propagation problems. The solution (see later
chapters in this book) can be expressed as Taylor’s series, and
the Bessel function associated with this equation can be defined
by

Ia(z) = ;ﬁ%(g)z"“, (1.103)
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Figure 1.7: Bessel functions.

where A is a real parameter. These are the Bessel functions of
the first kind. It can also be defined by the Bessel integral

1 f2r .
M) = 5 /0 cos|\t — z sint]dt. (1.104)
The Bessel functions of the second kind are related to Jy, and
can be defined by

_Jacos(Am) — J_y

Y= () (1.105)

When A = k is an integer, they have the following properites
Joi(@) = (-1*i(e).  You(@) = (-)MY(z).  (L.106)

The Bessel functions of the first kind are plotted in Figure 1.7.

With these fundamentals of preliminary mathematics, we
are now ready to study a wide range of mathematical methods
in engineering.
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Chapter 2

Vector Analysis

Many quantities such as force, velocity, and deformation in en-
gineering and sciences are vectors which have both a magnitude
and a direction. The manipulation of vectors is often associated
with matrices. In this chapter, we will introduce the basics of
vectors and vector analysis.

2.1 Vectors

A vector x is a set of ordered numbers x = (z1,z2,...,Zn),
where its components z, s, ..., Z, are real numbers. All these
vectors form a n-dimensional vector space V". To add two
vectors X = (Z1,Z2,...,Z,) and ¥y = (¥1,Y2 .., Yn), We simply
add their corresponding components,

z=x+y=(T1+y1.x2+ Y2, ... Tn + Yn), (2.1)

and the sum is also a vector. This follows the vector addition
parallelogram as shown in Fig 2.1

The addition of vectors has commutability (u + v =v +u)
and associativity [(a + b) + ¢ = a+ (b + c)]. Zero vector
0 is a special vector that all its components are zeros. The
multiplication of a vector x with a scalar or constant « is carried
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out by the multiplication of each component,
ay = (ayy, Yy, ..., 0Yy). (2.2)

Thus, -y = (—=y1, =¥2,...,—¥a). In addition, (aB)y = a(By)
and (o + B)y = ay + By.

Figure 2.1: Vector addition.

Two nonzero vectors a and b are said to be linearly inde-
pendent if aa + b = 0 implies that a = 8 = 0. If o, 8 are not
all zeros, then these two vectors are linearly dependent. Two
linearly dependent vectors are parallel (a/b) to each other.
Three linearly dependent vectors a, b, ¢ are in the same plane.

2.1.1 Dot Product and Norm

The dot product or inner product of two vectors x and y is
defined as

n
X-y=1Y1 +Zoys + ... + TpYp = Z Z;Y;s (23)
i=1

which is a real number. The length or norm of a vector x is
the root of the dot product of the vector itself,

x| = x| = VX -x = zn:a:f (2.4)
\Ii=1
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When ||x|| = 1, then it is a unit vector. It is straightforward
to check that the dot product has the following properties:

X y=y-x, x-(y+2z)=x-y+x-z, (2.5)

and
(ax) - (By) = (aB)x -y, (2.6)

where a, # are constants.
If 6 is the angle between two vectors a and b, then the dot
product can also be written

a-b = |la|| ||b||cos(8), 0<6<m. 2.7

If the dot product of these two vectors is zero or cos(8) = 0 (i.e.,
0 = m/2), then we say that these two vectors are orthogonal.
Rearranging equation (2.7), we obtain a formula to calcu-
late the angle @ between two vectors
a-b
0s(f) = ———. (2.8
Tl o )
Since cos(f) < 1, then we get the useful Cauchy-Schwartz in-
equality:
lla-b|| < [la]l [[b]|. (2.9)

Any vector a in a n-dimensional vector space V" can be
written as a combination of a set of n independent basis vectors
or orthogonal spanning vectors e;,es, ...,e,, so that

n
a=aqaje) +azez + ... + ane, = Z a;e;, (2.10)

i=1

where the coefficients/scalars oy, a2, ..., @, are the components
of a relative to the basis e;, e2...,e,. The most common basis
vectors are the orthogonal unit vectors. In a three-dimensional
case, they are i = (1,0,0), j=(0,1,0, k= (0,0,1) for three
z—,y—, 2—axis, and thus x = x1i + z2j + z3k. The three unit
vectors satisfy i-j=j-k=k.i=0.
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2.1.2 Cross Product

The dot product of two vectors is a scalar or a number. On the
other hand, the cross product or outer product of two vectors
is a new vector

c=axb

= (®2y3 — T3y2)i + (T3yy — T143)j + (T1y2 — zoyn )k,  (2.11)

which is usually written as

i j k
axb=|zy 9 z3
oy y
_ Ty I3 I3 Iy Iy X9 k (2 12)
Y2 U3 s n Y Y2

The angle between a and b can also be expressed as

lla x bl

sinf = ——.
llall {1l

(2.13)

In fact, the norm |la x b|| is the area of the parallelogram
formed by a and b. The vector ¢ = a x b is perpendicular to
both a and b, following a right-hand rule. It is straightforward
to check that the cross product has the following properties:

XXy = —yXX, (X+Y)Xz=xx2+yxz, (2.14)

and
(ax)x(By) = (af)xxy. (2.15)

A very special case is axa = 0. For unit vectors, we have

ixj=k, jxk=1i, kxi=}j (2.16)

O Ezample 2.1:  For two 3-D vectors a = (1,1,0) and b =
(2, —1,0), their dot product is

a-b=1x2+1x(-1)+0=1.
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As their moduli are

lall = VI 2402 = V3, bl = VZ+ (—D2+0= 5,

we can calculate the angle 6 between the two vectors. We have

cosf = ab _ 1
llallllb]]  v2V5’
or .
8 = cos lmz7l.56°.

Their cross product is
v=axb=(1x0-0x(-1),0x1-1x0,1x(-1)-2x1)

= (0, 07 _3)3

which is a vector pointing in the negative z-axis direction. The vector
v is perpendicular to both a and b because

a-v=1x0+1x0+0x(-3)=0,

and
b-v=2x0+(-1)x0+0x(-3)=0.

2.1.3 Vector Triple

For two vectors, their product can be either a scalar (dot prod-
uct) or a vector (cross product). Similarly, the product of triple
vectors a, b, ¢ can be either a scalar

a; ay a,
a-(bxc)=]|b: b b; |, (2.17)
€z € C
or a vector
ax(bxc)=(a-c)b—(a-b)c. (2.18)
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As the dot product of two vectors is the area of a parallel-
ogram, the scalar triple product is the volume of the paral-
lelepiped formed by the three vectors. From the definitions, it
is straightforward to prove that

a-(bxc)=b-(cxa)=c-(axb)=-a-(cxb), (2.19)
ax (bxc)#(axb)xc, (2.20)
and

(axb)-(cxd)=(a-c)(b-d)—(a-d)(b-c). (2.21)

2.2 Vector Algebra

2.2.1 Differentiation of Vectors

The differentiation of a vector is carried out over each compo-
nent and treating each component as the usual differentiation
of a scalar. Thus, for a position vector

P(t) = z(t)i + y(t)j + 2()k, (2.22)

we can write its velocity as

v= % =x(H)i+y(t)j + 2(t)k, (2.23)
and acceleration as
az TP _ F(B)i + §(8)j + £(t)k, (2.24)

dt?

where () = d()/dt. Conversely, the integral of v is
P= / vt +c, (2.25)

where c¢ is a vector constant.
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From the basic definition of differentiation, it is easy to
check that the differentiation of vectors has the following prop-
erties:

dlea) da d(a-b) da db
di = QE, —dt = E -b +a-: E’ (226)
and d( ) d d
axb a b

2.2.2 Kinematics

As an application of vector algebra, let us study the motion
along a curved path. In mechanics, there are three coordinate
systems which can be used to describe the motion uniquely.
The first one is the Cartesian coordinates (z,y) with two unit
vectors 4 (along positive z-axis) and j (along positive y-axis),
and the second one is the polar coordinates (r,8) with two unit
vectors e, and eg as shown in Figure 2.2.

Y
)

€9

Figure 2.2: Polar coordinates, their unit vectors and their re-
lationship with Cartesian coordinates.

The position vector r = z(t)i + y(t)j at point P at any
instance ¢ in the Cartesian coordinates can be expressed as
(r,8). The velocity vector is

v = re, + rfey, (2.28)
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and the acceleration is
a=v=(i—r6%e, + (r6 + 276)eq. (2.29)

The third coordinate system is the intrinsic coordinate sys-
tem (s, 1) where s is the arc length from a reference point (say,
point O) and 9 is the angle of the tangent at the point P (see
Figure 2.3). The two unit vectors for this systems are e; along
the tangent direction and e, which is the unit normal of the
curve.

Figure 2.3: Intrinsic coordinates and their unit vectors.

In the intrinsic coordinates, the position is uniquely deter-
mined by (s,%), and the velocity is always along the tangent.
Naturally, the velocity is simply

v = se;. (2.30)
The acceleration becomes
52
a=3e; + 76,,, (2.31)

where p is the radius of the curvature at point P.

For the circular motion such as a moving bicycle wheel as
shown in Figure 2.4, the three coordinate systems are intercon-
nected. In a rotating reference frame with an angular velocity

34



Vector Analysis 2.2 Vector Algebra

€

x

9 .
ANNNNNNNNNNN

Figure 2.4: Three coordinate systems for a wheel in circular
motion.

w = Bk where k point to the z-axis, the velocity and accelera-
tion at any point (say) P can be calculated using another fixed
point A on the rotating body (or wheel). The velocity is

dr
vp=va+ E‘A +wxr, (2.32)
and the acceleration is
d’r dw
ap=as+ WlA + ’ X T+ acor + acent, (2.33)
where p
r
= 92 —_— .
acor = 2w X —| (2.34)

is the Coriolis acceleration, and
ACent =W X (W X 1), (2.35)

is the centripetal acceleration. It is worth noting that the ve-
locity v, and acceleration a, is the velocity and acceleration
in a non-rotating frame or an inertia frame.

In addition, the differentiation of the unit vectors are con-
nected by

e, =w x e, =0eg, ép = w x eg = —be,, (2.36)
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and
& =wxe = d}en, é,=wXe,= —ébet. (2.37)

In the intrinsic coordinates, we have s = R¢ where R =constant
is the radius of the wheel in circular motion. Thus, § = R¢.
The velocity for this circular motion is simply

v = $e; = Roe,. (2.38)

Differentiating it with respect to time and using the relation-
ships of unit vectors, we have

a =V = Rée; + Rd’e,, (2.39)
where the unit vectors are

e; = cos @i + sin ¢j, e, = — sin ¢i + cos ¢j. (2.40)

O Example 2.2: A car is travelling rapidly along a curved path
with a speed of 30 m/s at a given instance. The car is fitted with
an accelerometer and it shows that the car is accelerating along the
curved path at 2 m/s*. The accelerometer also indicates that the
component of the acceleration perpendicular to the travelling direc-
tion is 5 m/s®. What is the direction of the total acceleration at this
instance? What is the radius of the curvature? Suppose the car has
a height of 2 meters and a width of 1.6 meters, is there any danger
of toppling over?

Let @ be the angle between the acceleration vector and the veloc-
ity vector, and let a be the magnitude of the total acceleration. In the
intrinsic coordinates, the velocity is v = $e, = 30e,. The acceleration
is given by

52
a=se; + 7en = a(cosfe, + sinfe,).

Therefore, we have
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or the instantaneous radius of curvature is p = 302/5 = 180m. We
know that the magnitude of the acceleration is a = /22 + 52 = /29.
The angle is

0 =tan~! g ~ 68.20°.

In addition, we can assume that the centre of gravity is approx-
imately at its geometrical centre. Thus, the centre is 1m above the
road surface and 0.8m from the edges of the outer wheels. If we take
the moment about the axis through the two contact points of the
outer wheels, we have the total moment

2
1x M% —0.8Mg~ —2.8M <0,

where M is the mass of the car. There is no danger of toppling over.
However, if the car speeds up to v = 42 m/s (about 95 miles per
hour), there is a danger of toppling over when the moment of the

weight is just balanced by the moment of the centripetal force. O

2.2.3 Line Integral

3

S — |

dz

ds = \/dz? + dy?

Figure 2.5: Arc length along a curve.
An important class of integrals in this context is the line
integral which integrates along a curve r(z,y, z) = zi+yj+ zk.

For example, in order to calculate the arc length L of curve r
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as shown in Figure 2.5, we have to use the line integral.

L= /ds—/ Vdz? + dy? = /‘/1+(@ (2.41)

O Example 2.3: The arc length of the parabola y(x) = —:c2 from
z=0tox=1is given by

1 1
L=/ \/1+y’2d:c=/ V1+ z2dx
0 0

1
= %[z\/ 14 22 +In(z + V1 + 22)]
0

- %[\/5 — In(V2 - 1)] ~ 1.14779.

2.2.4 Three Basic Operators

Three important operators commonly used in vector analysis,
especially in fluid dynamics, are the gradient operator (grad or
V), the divergence operator (div or V-) and the curl operator
(curl or Vx).

Sometimes, it is useful to calculate the directional derivative
of a function ¢ at the point (z,y, 2) in the direction of n

0

gﬁ Vo= @ cos(a) + 5, ¢ cos() + % cos(), (2.42)
where n = (cosa, cos 3,cos <) is a unit vector and «, 8,7 are
the directional angles. Generally speaking, the gradient of any
scalar function ¢ of z,y, z can be written in a similar way,

3<1> 09,  0¢
ad Vo =— —k. 2.43
gradp =Vo =g i+ 5 i+ 5, (2.43)

This is equivalent to applying the del operator V to the scalar
function ¢

8. 8. 9
V=it gt gk (2.44)
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The direction of the gradient operator on a scalar field gives a
vector field. The gradient operator has the following properties:

V(ay+p6¢) = aVy+6Ve,  V(¥g) = yV+¢Vi, (2.45)

where o, 3 are constants and %, ¢ are scalar functions.
For a vector field

u(z,y,2) = ui(z,y, 2)i + uz(z,y, 2)j + us(z,y.2)k, (2.46)

the application of the operator V can lead to either a scalar field
or a vector field, depending on how the del operator applies to
the vector field. The divergence of a vector field is the dot
product of the del operator V and u
. Ouy 0 0

d1vu=V-u=gl+%+%,
and the curl of u is the cross product of the del operator and
the vector field u

(2.47)

i j k
culu=Vxu=|£ £ £ | (2.48)
Uy U9 us

It is straightforward to verify the following useful identities
associated with the V operator:

V.-Vxu=0, (2.49)

V x V¢ =0, (2.50)

V x (Yu) =9V x u+ (Vy) x u, (2.51)
V. (Yu) =9V -u+(Vy)-u, (2.52)
V x(Vxu)=V(V-u) - Vu (2.53)

One of the most common operators in engineering and sci-
ence is the Laplacian operator is

v 920 9w

2 — . _
V=V (VY) 52z " 97 T o

(2.54)
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for Laplace’s equation
AT = V2P = 0. (2.55)

In engineering mathematics, it is sometimes necessary to ex-
press the Laplace equation in other coordinates. In cylindrical
polar coordinates (7, ¢, z), we have

19(ru,;) | 10u, + Ou,

V U= ar ;W (2.56)
The Laplace equation becomes
9% 10¢ 18%°0 9%
2 = —
le_ar2+r6r+r26¢2+62 (257)

In spherical polar coordinates (r,8, ¢), we have

1 0%(r%y,) 1 O(sinfuyg) 1 Ouy
Vo= 2 Or2 + rsinf 00 + rsind 8¢ (2.58)

The Laplace equation can be written as

2y 20
v = gl )
1 1 %0
+r2 sin 6 50 [s1n0 00 ] r2sin20 0¢2 (2.59)

2.2.5 Some Important Theorems

The Green theorem is an important theorem, especially in fluid
dynamics and the finite element analysis. For a vector field
Q = ui+vjin a 2-D region  with the boundary I" and the unit
outer normal n and unit tangent t. The theorems connect the
integrals of divergence and curl with other integrals. Gauss’s
theorem states:

f /]Q (V-Q)dQ = / /S Q- nds, (2.60)

which connects the volume integral to the surface integral.
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Another important theorem is Stokes’s theorem:

/L(VxQ)-de=}€_Q.tdr=fFQ.dr, (2.61)

which connects the surface integral to the corresponding line
integral.
In our simple 2-D case, this becomes

f (udz + vdy) = / /Q (g_; - Z—Z)dmdy. (2.62)

For any scalar functions i and ¢, the useful Green’s first
identity can be written as

— 2 A
fé VT = /Q (V26 + Vo - Vo)dQ, (2.63)

where d) = dxdydz. By using this identity twice, we get
Green’s second identity

_ — 2, o2
fmww ¢Vy)dl /Q (YV2¢ — ¢V2)dQ.  (2.64)

2.3 Applications

In order to show the wide applications of vector analysis, let
us apply them to study the mechanical and flow problems.

2.3.1 Conservation of Mass

The mass conservation in flow mechanics can be expressed in
either integral form (weak form) or differential form (strong
form). For any enclosed volume 2, the total mass which leaves
or enters the surface S is

}{pu-dA,
s

where p(z,y, 2,t) and u(z,y, z,t) are the density and the ve-
locity of the fluid, respectively. The rate of change of mass in

Qis 5
5t/ P
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The mass conservation requires that the rate of loss of mass
through the surface S is balanced by the rate of change in Q.
Therefore, we have

9
%Spu-dA+a/dV—0.

Using Gauss’s theorem for the surface integral, we have

/V-(pu)dV+2/pdV=0.
Q ot Jo

Interchange of the integration and differentiation in the second
term, we have

Op _
/Q[E +V - (pw))dV = 0.

This is the integral form or weak form of the conservation of
mass. This is true for any volume at any instance, and subse-
quently the only way that this is true for all possible choice of
Qis 5
Ep + V. (pu) =0,

which is the differential form or strong form of mass conser-
vation. The integral form is more useful in numerical meth-
ods such as finite volume methods and finite element methods,
while the differential form is more natural for mathematical
analysis.

2.3.2 Saturn’s Rings

We all know that Saturn’s ring system ranks among the most
spectacular phenomena in the solar system. The ring system
has a diameter of 270,000 km, yet its thickness does not ex-
ceed 100 meters. The sizes of particles in the rings vary from
centimeters to several meters, and this size distribution is con-
sistent with the distribution caused by repeated collision. The
ring system has very complicated structures. One natural ques-
tion is why the formed structure is a ring system, why not a
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spherical shell system? This is a challenging topic which has
not yet fully understood. However, under some reasonable as-
sumptions, we can understand why the ring system is so.

When the debris particles surrounding a planet will ulti-
mately settle into flat circular rings or disks, which are the
natural consequence of energy dissipation in rotating systems.
The interparticle collisions dissipate energy while conserving
the total angular momentum. Laplace in 1802 showed that
such rings could not be solid because the tensile strength of
the known materials was too small to resist tidal forces from
Saturn. Later, Maxwell in 1890 showed that a fluid or gaseous
ring was unstable, therefore, the rings must be particulate.

Suppose the whole particulate system consists of N par-
ticles (i = 1,2,...,N). Its total angular momentum is h. By
choosing a coordinate system so that (x, y) plane coincides with
the plane of the rings, and the z-axis (along k direction) is nor-
mal to this plane. If we now decompose the velocity of each
particle into v; = (v, v, v;:), the total angular momentum is
then

N
h=k-[2m,~ri x v;]

i=1

[\"12

m;(r; X v;,) - k+Zml(r X Vi) - k+Zm, T X V) k.

i=1 i=1 =1
(2.65)
The first two terms disappear because v;. is parallel to k and
axial velocity does not contribute to the angular momentum.
So only the tangential terms are non-zero, and we have

N
h= Z m;T;V;g. (266)

The total mechanical energy is

1

N
5 Z 'Uw + 'vzo + ,v2 ) + Z mﬂﬁ Tz)Saturna (267)
=1 =1
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where 1(7;) is the potential per unit mass due to Saturn’s grav-
ity. The interparticle collisions will dissipate the energy, there-
fore, the system will evolve towards an energy minimum. From
both expressions for h and E, we can see that the minimization
of E while h is held constant requires that v;. — 0 and v;3 — 0.
This means that the collisions dissipate energy while flattening
the system into a disk or rings.

Now let us see why the minimization of the rotational en-
ergy will also lead to the same conclusion of ring formation.
Loosely speaking, we can assume that the angular velocity
w = 6 is almost the same for all particles as t — oo (or any
reasonable long time) so that collisions are no longer significant
or the rate of energy dissipation is small. If there are differ-
ent angular velocities, one particle may move faster and ulti-
mately collides with other particles, subsequently redistribut-
ing or changing its angular velocity. If we further assume that
the potential energy does not change significantly (this is true
if the particles do not move significantly along the radial di-
rection), thus the minimization of total energy leads to the
minimization of the total rotational energy.

This will essentially lead to a quasi-steady state. With these
assumptions, we have v;p = r;jw. Therefore, the angular mo-
mentum becomes

N
h = Z mirtw = Iw, I= Zmn‘?,
i=1

i=1
where I the moment of inertia of the particulate system. The
total rotational energy is

——Zmlr w== Iw —%hT—»Tmm

In order to minimize T, we have to maximize I because h is
constant. For a disk with a radius a, a thickness t <« a and the
total mass m, we have

I= / 2dm—t/ rprdr/ df = 27rtp/ ridr = Trtp—
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Using the density p = m/(twR?), we have

1
Idisk = imR2 .

If all the mass is concentrated at a ring, we have
Liing = mR2.

Similarly, for a solid ball with the same mass and same
radius R, we have

Loan = ngﬁ’.

For a spherical shell, we have

2
Isphere = ng2

Therefore, we have
Iring > Idisk > Isphere > Iball-

This means that the total rotational energy is minimized if the
particle system evolves into a ring or at least a disk. This is
probably the main reason why the planetary system and rings
are formed.
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Chapter 3

Matrix Algebra

3.1 Matrix

Matrices are widely used in almost all engineering subjects. A
matrix is a table or array of numbers or functions arranged in
rows and columns. The elements or entries of a matrix A are
often denoted as a;;. A matrix A has m rows and n columns,

an a2 ... a; ... Qi

a2 a2 .. Qag; .. G2,
A=lay]=] . . A R GA)

: H a;; ... :

Aml Am2 ... Qmj ... Qmn

we say the size of A is m by n, or mxn. A is square if m = n.
For example,

1 2 3 et sinz
A_(4 5 6)’ B_(—icosa: et? )’ (3.2)

and
N

u=| v |, (3.3)
w

where A is a 2x3 matrix, B is a 2x2 square matrix, and u is
a 3x1 column matrix or column vector.
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The sum of two matrices A and B is only possible if they
have the same size mxn, and their sum, which is also mxn, is
obtained by adding corresponding entries

C=A +B, Cj = a;j + byj, (3.4)

where (i =1,2,...,m;j =1,2,...,n). We can multiply a matrix
A by a scalar a by multiplying each entry by a. The product
of two matrices is only possible if the number of columns of A
is the same as the number of rows of B. That is to say, if A is
mxn and B is nxr, then the product C is mxr,

n

G = (AB),] = Z a,-kbkj. (35)
k=1

n

o
If A is a square matrix, then we have A™ = AA...A. The
multiplications of matrices are generally not commutive, i.e.,
AB # BA. However, the multiplication has associativity
A(uv) = (Au)vand A(u+v) =Au+ Av.

The transpose AT of A is obtained by switching the posi-
tion of rows and columns, and thus AT will be nxm if A is
mxn, (al);; = aj;,(6 = 1,2,...,m;j = 1,2,...,n). In general,
we have

(AT)T = A, (AB)T = BTAT. (3.6)

The differentiation and integral of a matrix are done on
each member element. For example, for a 2x2 matrix

dA . day  daiy )
—=A= @ @ | (3.7)
dt ( G P

and

Jadt J azodt

A diagonal matrix A is a square matrix whose every entry
off the main diagonal is zero (a;; = 0 if ¢ # j). Its diagonal

/ Adt = ( Jandt [ andt ) (3.8)
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elements or entries may or may not have zeros. For example,
the matrix

I1=

S O =
O = O

0
0 (3.9)
1

is a 3x3 identity or unitary matrix. In general, we have
AT =TA =A. (3.10)

A zero or null matrix 0 is a matrix with all of its elements being
Z€ero.

3.2 Determinant

The determinant of a square matrix A is a number or scalar
obtained by the following recursive formula or the cofactor or
Laplace expansion by column or row. For example, expanding
by row k, we have

det(A) = |A| =Y (—1)**ay; My, (3.11)
j=1

where M;; is the determinant of a minor matrix of A obtained
by deleting row i and column j. For a simple 2x2 matrix, its
determinant simply becomes

ai a2

= ajjay — a12a9. (3.12)
azy a2

It is easy to verify that the determinant has the following prop-
erties:

laA| =calA|, |AT|=|A|, |AB|=|A|B|, (3.13)

where A and B are the same size (nxn).
A nxn square matrix is singular if |[A| = 0, and is nonsin-
gular if and only if |A| # 0. The trace of a square matrix tr(A)
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is defined as the sum of the diagonal elements,

tr(A) =) @i = ass + Ggo + ... + o (3.14)
i=1

The rank of a matrix A is the number of linearly indepen-
dent vectors forming the matrix. Generally, the rank of A is
rank(A) < min(m,n). For a nxn square matrix A, it is non-
singular if rank(A) = n.

From the basic definitions, it is straightforward to prove the
following

(AB...Z)T = ZT. BTAT, (3.15)
|AB....Z| = |A|B|...|Z|, (3.16)
tr(A) = tr(AT), (3.17)

tr(A + B) = tr(A) + tr(B), (3.18)
tr(AB) = tr(BA), (3.19)
det(A™1) = ﬁ(A), (3.20)
det(AB) = det(A)det(B). (3.21)

3.3 Inverse
The inverse matrix A~! of a square matrix A is defined as
ATTA=AAI =1L (3.22)

It is worth noting that the unit matrix I has the same size as
A. The inverse of a square matrix exists if and only if A is
nonsingular or det(A) # 0. From the basic definitions, it is
straightforward to prove that the inverse of a matrix has the
following properties

(AH T =4A (AT)T=(AHT, (3.23)
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and
(AB)"! =B71A71, (3.24)

A simple useful formula for obtaining the inverse of a 2 x 2

matrix is
-1
a b 1 d -b
(c d) =(ad—bc)(—c a ) (3:25)

0O Ezample 8.1: For two matrices

we have

Vih Vi
AB=V = Vor Vo y
Var Vs

where
Vil =1x1+2x243x1=8, Vio=1x(-1)+2x3+3x7=26;

Vor = =1x14+1x240x1=1, Voo = -1x(-1)+1x34+0x7=4;
Va1 =3x1+2x242x1=9, V3p=3x(-1)+2x3+2x7=1T7.

Thus,
8 26
AB=V=|1 4 |.
9 17

However, BA does not exist. The transpose matrices of A and B

are
1 -1 3
AT=[2 1 2 BT=(1 21).
oy 137

Similarly, we have

8 1 9
BTAT=( o6 4 17 ) =VT = (AB)".
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The inverse of A is

1 -2 -2 3
A l= 3 -2 7 3 ],
5 -4 -3

and the determinant of A is
det [A| = -9.
The trace of A is
tr(A) = A+ Ao+ Aza=1+14+2=4.

3.4 Matrix Exponential

Sometimes, we need to calculate exp[A], where A is a square
matrix. In this case, we have to deal with matrix exponentials.
The exponential of a square matrix A is defined as

o0

1 1
A _ § : n 2

n=0

where I is a unity matrix with the same size as A, and A% =
AA and so on. This (rather odd) definition in fact provides
a method to calculate the matrix exponential. The matrix
exponentials are very useful in solving systems of differential
equations.

0O Example 8.2: For a simple matrix

t 0
A‘(o t)’
A _ Ct 0

e_(O e‘)'

we have

For
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we have
AL e L 1)
M=) fa+e) )

For a slightly complicated matrix
t —w
a=(e7)

A etcosw —esinw
etsinw efcosw /-

we have

a

As you see, it is quite complicated but still straightforward

to calculate the matrix exponentials. Fortunately, it can be eas-
ily done using a computer. By using the power expansions and
the basic definition, we can prove the following useful identities

1 t2
tA _ n _ 2
e =nz=:om(m) =T+tA+ A%+ .., (3.27)
— (=1)*! 12, 1,3
InIA)=) ———A"=A--AZ+_A3+ .., (3.28)
o 2 3
eheB =eAB  (if AB=BA), (3.29)
9 ga _ acth e A, (3.30)
dt
(eA) 1 =4, (3.31)
det(e) = et™A, (3.32)

3.5 Hermitian and Quadratic Forms

The matrices we have discussed so far are real matrices because
all their elements are real. In general, the entries or elements
of a matrix can be complex numbers, and the matrix becomes
a complex matrix. For a matrix A, its complex conjugate A*
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is obtained by taking the complex conjugate of each of its ele-
ments. The Hermitian conjugate A' is obtained by taking the
transpose of its complex conjugate matrix. That is to say, for

a, a2, ... \\
A= asy as ... , (333)
we have
aj; ajy .. \
A* = a;l a;-z “es s (3.34)
and
a;l a§1
A=A = ATy =| a} az .. | (3.35)

A square matrix A is called orthogonal if and only if A~! =
AT, If a square matrix A satisfles A* = A, it is said to be an
Hermitian matrix. It is an anti-Hermitian matrix if A* = —A.
If the Hermitian matrix of a square matrix A is equal to the in-
verse of the matrix (or At = A~1), it is called a unitary matrix.

O Example 8.8: For a matrix
{24 3-2 1
B=( 2400 1)
its complex conjugate B* and Hermitian conjugate B! are

L (2-i 3+2% 1
B‘( e 0 1+i7r>’

2—13 er
Bt=| 3+2% 0 = (B")T.
1 1+4:m

For the rotation matrix

A=( cosf si110)

—sinf cosf
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its inverse and transpose are

A-1= 1 cosf —sind
" cos26 +sin20 \ sinf cosf )’

and
sinf cos@

AT = ( cosf —sinf )

Since cos? 6 + sin® @ = 1, we have AT = A~!. Therefore, the original
matrix A is orthogonal. ]

A very useful concept in engineering mathematics and com-
puting is quadratic forms. For a real vector q7 = (91,92,93,---,4n)
and a real square matrix A, a quadratic form ¥(q) is a scalar
function defined by

¥(a) =q"Aq

Al A ... Ain q

A A .. A Q2
(o @ @) T 0
Anl An2 Ann Gn
(3.36)
which can be written as
n n
Y@) =) g4 (3.37)

i=1j=1

Since ¥ is a scalar, it should be independent of the coordi-
nates. In the case of a square matrix A, 1) might be more
easily evaluated in certain intrinsic coordinates Q, @2, ...Qp.
An important result concerning the quadratic form is that it
can always be written through appropriate transformations as

B(@) =D AQF = MQT + 2203 + .. 0.Q2. (3.38)
i=1

The natural extension of quadratic forms is the Hermitian form
that is the quadratic form for complex Hermitian matrix A.
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Matrix Algebra

Furthermore, the matrix A can be linear operators and func-
tionals in addition to numbers.

0O Example 3.):

1
a=( %1

we have a quadratic form

For a vector q = (q1,q2) and the square matrix

-2

).

-2

)(a)

¢ — 4q192 + ¢2.

0
3.6 Solution of linear systems
A linear system of m equations for n unknowns
anul + agug + ... + aptt, = by,
ag1u] + agug + ... + agnti, = bo,
can be written in the compact form as
ai a2 A1n Uy by
azn a agn up b2
. . = A (3.40)
aml am2 Amn Un bn
or simply
Au=b. (3.41)

In the case of m = n, we multiply both sides by A~! (this
is only possible when m = n),

A 1Au=A"1p,

(3.42)
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we obtain the solution
u=A"b. (3.43)

A special case of the above equation is when b = Au, and
this becomes an eigenvalue problem. An eigenvalue X and cor-
responding eigenvector v of a square matrix A satisfy

Av =)v, (3.44)

or
(A= AI)v =0. (3.45)

Any nontrivial solution requires

anp—A  ap Q1n
a-zl ag—A ... axm o, (3.46)
an1 n2 .. Gun— A
which is equivalent to
A"+ an A Lt ag
=A=A)A=A)...(A=A,) =0. (3.47)

In general, the characteristic equation has n solutions. Eigen-
values have the interesting connections with the matrix,

tl‘(A) = Zaﬁ =AM+ A+ .+ AL (348)
i=1

For a symmetric square matrix, the two eigenvectors for two
distinct eigenvalues ); and \; are orthogonal vTv = 0.

Some useful identities involving eigenvalues and inverse of
matrices are as follows:

(AB..Z)"1 =271 . BlAY (3.49)
AVl' = )\ivi, Ai = eig(A), (350)
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eig(AB) = eig(BA), (3.51)

tr(A) = Z A= Z i, (3.52)

det(A) = IL; ;. (3.53)

O Ezample 3.5: For a simple 2 x 2 matrix

15
=2 0)
its eigenvalues can be determined by

‘1—/\ 5 ‘=0’

2 4=

or
1-XN)E-X)-2x5=0,

which is equivalent to

(A+1)(A—6) =0.

Thus, the eigenvalues are A\; = —1 and A\, = 6. The trace of A is

tl'(A)=A11+A22=1+4=5=/\1+/\2.

In order to obtain the eigenvector for each eigenvalue, we assume

v= ( i )
V2
For the eigenvalue A\ = —1, we plug this into
|A — AIjv =0,

and we have

or

which is equivalent to

5
2v; + bvy, =0, or v = —§v2.
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This equation has infinite solutions, each corresponds to the vector
parallel to the unit eigenvector. As the eigenvector should be normal-
ized so that its modulus is unity, this additional condition requires

v+ vg =1,
which means
( —51)2
2
We have v; = —5/v29, vy = 2/v29. Thus, we have the first set of
eigenvalue and eigenvector

__5
A =1, v1=( Y2 ) (3.54)

Y +vi=1.

V29

Similarly, the second eigenvalue Ay = 6 gives

1-6 ) (21 -0
2 4-6|\ v, J
Using the normalization condition v? + v = 1, the above equation
has the following solution
[

For a linear system Au = b, the solution u = A~1b gen-
erally involves the inversion of a large matrix. The direct in-
version becomes impractical if the matrix is very large (say, if
n > 1000). Many efficient algorithms have been developed for
solving such systems. Gauss elimination and LU decomposition
are just two examples.

A2=6, V2=(

S SN
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Chapter 4

Complex Variables

Although all the quantities are real variables in the physical
world, however, it is sometimes easy or even necessary to use
complex variables in mathematics and engineering. In fact,
the techniques based on complex variables are among the most
powerful methods for mathematical analysis and solutions of
mathematical models.

4.1 Complex Numbers and Functions

Mathematically speaking, a complex number z is a generalized
set or the order pair of two real numbers (a, b), written in the
form of

z=a+ib, 2 =1, a,beR, (4.1)

which consists of the real part #(z) = a and the imagery part
J(z) = b. It can also be written as the order pair of real num-
bers using the notation (a,b). The addition and substraction
of two complex numbers are defined as

(a+1b) £ (c +id) = (a+c) +i(b+ d). (4.2)

The multiplication and division of two complex numbers are in
the similar way as expanding polynomials

(@ +b) - (c+ id) = (ac — bd) + i(ad + bc), (4.3)
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4.1 Complex Numbers and Functions Complex Variables

and
a+ib ac+bd .bc—ad

ctid C+dl +Zc2+d2'
Two complex numbers are equal a + ib = ¢ + id if and only if
a = c and b = d. The complex conjugate or simply conjugate
Z (also z*) of 2 = a + ib is defined as

(4.4)

Z=a-1b (4.5)

The order pair (a,b), similar to a vector, implies that a
geometrical representation of a complex number a + ib by the
point in an ordinary Euclidean plane with z-axis being the
real axis and y-axis being the imaginary axis (iy). This plane
is called the complex plane. This representation is often called
the Argand diagram (see Figure 4.1). The vector representation
starts from (0,0) to the point (a,b). The length of the vector
is called the magnitude or modulus or the absolute value of the

complex number
r=|z| = Va% + b2 (4.6)
S3(2)

4

Figure 4.1: Polar representation of a complex number.

The angle 6 that the vector makes with the positive real
axis is called the argument (see Fig 4.1),

0 = arg 2. (4.7)

In fact, we may replace 8 by 6+ 2nm (n € N). The value range
—7 < 0 < 7 is called the principal argument of z, and it is
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Complex Variables 4.1 Complex Numbers and Functions

usually denoted as Argz. In the complex plane, the complex
number can be written as

)

z = re® = rcos(8) + irsin(6). (4.8)

This polar form of z and its geometrical representation can
result in the Euler’s formula which is very useful in the complex
analysis

e*® = cos(8) + isin(6). (4.9)
The Euler formula can be proved using the power series. For
any z € C, we have the power series

2 2"

: z
e —1+z+§+...+a+..., (4.10)
and for a special case z = if, we have
; 62  i6®
0 _ g 2L Y
e 14140 T + TR
02 ) 03
Using the power series
. 6% 65
sinf =0 — §+5—..., (4.12)
and 2 gt

we get the well-know Euler’s formula or Euler’s equation
e = cosf + isin. (4.14)
For 6 = =, this leads to a very interesting formula
e +1=0. (4.15)
If we replace 6 by —0, the Euler’s formula becomes
e™* = cos(—0) + isin(—6) = cos — i sin . (4.16)
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Adding this equation to (4.14), we have

e +e7% = 2¢os 6, (4.17)
or i6 i6
2 -
cosf = %. (4.18)

Similarly, by deducting (4.16) from (4.14), we get
. e
sinf = — (4.19)

For two complex numbers z; = r1e’®! and 2y = roe'2, it is
straightforward to show that

2129 = ryrget(c1tae) = rirg[cos(a; + ag) + isin(ay + as)),
(4.20)
which can easily be extended to get the well-known de Moivre’s
formula

[cos(8) + isin(0)]" = cos(nf) + isin(nd). (4.21)

O Example 4.1: Find 2% if z = 1 + /3i. We can evaluate it by
direct calculation

2= (14+V3)* =[(1 + V31?2 = [1 - 3+ 2V3i)?
=2%(—1+ V3i)2 =4(1 - 3-2V3) = -8 — 8V/3i.

We can also use Moivre’s formula. The modulus of z isr = |z| =

V12+ V3> = 2. The argument 6 = tan™" 4 = n/3 = 60°. Thus,

2z = 2¢™3. We now have
24 = 2%e7/3 = 16(cos4T7r + isin %’r)

1 3
= 16(~5 - \/T_i) = 8- 8V3i,
which is exactly the same result as we obtained earlier. The second
method becomes much quicker if you want to evaluate (say) z'°°.
0
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Complex Variables 4.2 Hyperbolic Functions

sinh(x)

—— sinh

--- cosh

== tanh

‘-53 -2 -1 0 1 2 3
X

Figure 4.2: Hyperbolic functions.

4.2 Hyperbolic Functions

Hyperbolic functions occur in many applications and they can
be thought as the complex analogues of trigonometric func-
tions. The fundamental definitions are
sinhz = ﬂ, coshz = w, (4.22)
2 2

and
sinh z _
coshz’ tanhz’

Figure 4.2 shows the variation of sinh, cosh, and tanh. If
we replace = by iz and use Euler’s formula, then we have

tanhz =

(4.23)

eix _ e—ix
sinhiz =
2

DN =

[(cosx + isinz) — (cosz —isinz)] = isinz. (4.24)
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Similarly, we have
; 1 iz —ix
coshiz = 5(6 +e™ )

[(cosz + isinx) + (cosz — isinz)] = cos z. (4.25)

N =

In a similar fashion, we can also prove that
cosir = cosh z, siniz = isinhz. (4.26)

Some identities are as follows:

cosh?z —sinh®z = 1, (4.27)
sinh 2z = 2sinh z cosh z, (4.28)

and
cosh 2z = sinh? z + cosh? z. (4.29)

O Ezample 4.2: Prove that cosh’z — sinh®x = 1. From the
definitions, we have

COSh2 = %(CI + 6—2)2 - %(62: +2+ 8_21")_'

and 1 i
sinh?z = Z(ez —e T2 = Z(ez" —24e7%),

Thus, we have

cosh? z — sinh®z = %[(eh + 2+ e ) — (e¥* — 24 7))

1
=2-(-2)=1.

]

The inverses of hyperbolic functions are defined in a similar

way as trigonometric functions. For example, y = coshz, its

inverse is defined as x = cosh™! y. From the basic definitions,

we have

sinhz + coshz = e®. (4.30)
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Using sinhz = v cosh? z — 1, we have
\cosh?z — 1 + coshz = e, (4.31)

Vi —1+y=¢, (4.32)
x = cosh™ly = In(\/y2 — 1 +y). (4.33)

4.3 Analytic Functions

or

which gives

Analytic Functions

Any function of real variables can be extended to the function
of complex variables in the same form while treating the real
numbers z as « + i0. For example, f(z) = 22,z € R becomes
f(2) = 22,z € C. Any complex function f(z) can be written as

f(2) = f(z + i) = R(f(2)) +13(f(2))

= u(z,y) + iv(z, t), (4.34)

where u(z,y) and v(z,y) are real-valued functions of two real
variables.

A function f(z) is called analytic at 2 if f/(2) exists for all z
in some e—neighborhood of zg, that is to say, it is differentiable
in some open disk |z — 29| < €. If f(z) = u + v is analytic at
every point in a domain Q, then u(r,y) and v(z,y) satisfying
the Cauchy-Riemann equations

Ou = @, u = _6_v' (4.35)
or by oy Oz
Conversely, if u and v of f(z) = u + iv satisfy the Cauchy-
Riemann equation at all points in a domain, then the complex
function f(2) is analytic in the same domain. For example, the
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4.3 Analytic Functions Complex Variables

elementary power function w = z®,(n > 1) is analytic on the
whole plane, w = pe*?, z=re’ then

p=r",¢=nd. (4.36)
The logarithm is also an elementary function w = ln 2
Inz =In|z| +iarg(z) = Inr + (6 + wrk), (4.37)

which has infinitely many values, due to the multiple values of
0, with the difference of 2wik(k = 0,41,+2,...). If we use the
principal argument Argz, then we have the principal logarithm
function

Ln(z) =In|z| + Argz. (4.38)

If we differentiate the Cauchy-Riemann equations, we have
0%*u/8z8y = O%u/Bydz. After some calculations, we can reach
the following theorem. For given analytic function f(z) =
u + iv, then both u and v satisfy the Laplace equations

0u + v 0 0% + 0% _

Ox2  9y2 7 0x2 ' Oy?
This is to say, both real and imaginary parts of an analytic
function are harmonic.

A very interesting analytical function is the Riemann zeta-
function ((s), which is defined by

0. (4.39)

() =3 = (4.40)
n=1

where s is a complex number with its real part more than unity.
That is s € C and R(s) > 1. This function (infinite series) is
analytic, and it can be extended for all complex numbers s # 1.
For example,

1 1 2
but
()=1+stitit. =0 (4.42)
— 2 3 4 s T . 0
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This ¢(s) function has trivial zeros s = —2,—4,—6,... and it
also has non-trivial zeros.

There is a famous unsolved problem, called the Riemann
hypothesis, related to this function. The Riemann hypothesis
conjectured by Bernhard Reimann in 1859 states that all real
parts of any non-trial zero of the Riemann zeta-function ((s)
are é- That is to say, all the non-trivial zeros should lie on a
straight line s = % + 4¢y. This is a-million-dollar open problem
as the Clay Mathematical Institute in 2000 offered a million
dollars to search for a proof, and yet it still remains unsolved.

Laurent Series

For an analytic function p(z), one of important properties is
the singularity such as the pole. If p(z) can be written as

q(2)
= —_— 4.43
p(2) =) (4.43)
where n > 0 is a positive integer while ¢(z) # 0 is analytic
everywhere in the neighbourhood containing z = 29, we say
that p(z) has a pole of order n at z = z3. The above definition
is equivalent to say that the following limit is finite

Jimp(z)z - 20" =¢, il <oo, C€C.  (444)

Any analytic function f(z) can be expanded in terms of the
Taylor series

f(z) = i T z—z)* = z ar(z — z)*. (4.45)

k=0

This expansion is valid inside the analytic region. However,
if the function f(z) has a pole of order n at z = zp and it is
analytic everywhere except at the pole, we can then expand the
function p(z) = (z—2p)™ f(z) in the standard Taylor expansion.
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This means that original function f(z) can be written as a
power series

— Q_p a_
1(z) (z—2) to (z — 20)
oo(z — 20) + ... + a(z — 2)* + ..., (4.46)

which is called a Laurent series, and it is an extension of the
Taylor series. In this series, it is often assumed that a_, # 0.
The terms with the inverse powers a_,/(2—2)"+...4+a_1/(z—
29) are called the principal part of the series, while the usual
terms ag(z — 29) + ... + o (2 — 2z9)* + ... are called the analytic
part.

Furthermore, the most important coefficient is probably
a—1 which is called the residue of f(z) at the pole z = 2.
In general, the Laurent series can be written as

(=2}

f(2)= Y arl(z—2), (4.47)

k=—n

where n may be extended to include an infinite number of terms
n — —00.

4.4 Complex Integrals

Given a function f(z) that is continuous on a piecewise smooth
curve T', then the integral over ', [i. f(2)dz, is called a contour
or line integral of f(z). This integral has similar properties as
the real integral

AMﬂa+@umh=aﬁﬂ@&+ﬁAﬁ@&. (4.48)

If F(2) is analytic and F'(z) = f(z) is continuous along a curve
I', then

LU@@:me-me. (4.49)
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Cauchy’s Integral Theorem

We say a path is simply closed if its end points and initial
points coincide and the curve does not cross itself. For an
analytic function f(z) = u(z,y) + iv(x,y), the integral on a
simply closed path

I= /rf(z)dz = /1_(u + iv)(dx + idy))

= /l_(udz —vdy) +1 /l_(vda: + udy). (4.50)

By using the Green theorem, this becomes
I= /(-‘9_“- 2)da dy+z/(———)dzd (451)

From the Cauchy-Riemann equations, we know that both in-
tegrals are zero. Thus, we have Cauchy’s Integral Theorem,
which states that the integral of any analytic function f(z) on
a simply closed path I in a simply connected domain Q is zero.

That is
/F f(2)dz = 0.

3(z2)

Figure 4.3: Contours for Cauchy integrals.

This theorem is very important as it has interesting conse-
quences. If the close path is decomposed into two paths with
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reverse directions I'; and I'y (see Figure 4.3), then I’y and —T'y
form a close path, which leads to

/r f()dz = /l_ ()i (4.52)

That is to say that the integrals over any curve between two
points are independent of path. This property becomes very
useful for evaluation of integrals. In fact, this can be extended
to the integrals over two closed paths I and 4 such that v is a
very small circular path inside I'. Using a small cut with two
curves C1 and Cs so that these two curves combine with I" and
7 form a closed contour (see Figure 4.3), the Cauchy integral
theorem implies that

/P f(2)dz = L f(2)dz, (4.53)

since the contribution from the cut is zero.

For an analytic function with a pole, we can make the con-
tour v sufficiently small to enclose just around the pole, and
this makes the calculation of the integral much easier in some
cases.

For the integral of p(z) = f(2)/(z — z0) over any simply
closed path I' enclosing a point 2 in the domain ,

I= /F p(2)dz, (4.54)

we can use the Laurent series for p(z)

p(2) = (za—;lzo) +ao(z —20) +... + ar(z — zo)k +..., (4.55)

so that the expansion can be integrated term by term around
a path. The only non-zero contribution over a small circular
contour is the residue a—;. We have

I= /r p(2)dz = 2mia_; = 2ri Res[p(2)]|_, (4.56)
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which can be written in terms of f(z) as

17 e

2niJrz— 2

dz = f(z0). (4.57)

Similarly, this can be extended for higher derivatives, and we
have

f f(z) dr = 2mi f) (29)
r( '

z—z)ntl" nl

£©)

¢ i3?

> ~R(C)

—00 0
Figure 4.4: Contour for the integral I(a, 3).

Residue Theorem

For any analytic f(z) function in a domain 2 except isolated
singularities at finite points z1, 29, ..., 2y, the residue theorem
states

N
}{ f(z)dz =213 Resf(2)].,.,
r k=1

where I’ is a simple closed path enclosing all these isolated
points. If f(z) has a pole of order N at zg, the following formula
gives a quick way to calculate the residue

1 dV (2 — 20)V £ (2)]

Resf(z)l;, = (N —1)! zli—»nzlo dzN-1

(4.58)

The residue theorem serves a powerful tool for calculating
some real integrals and summation of series, especially when
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the integrand is a function of sin and cos that can be changed
into a complex integral. The real integral [%_ v (z)dz becomes
2mi multiplying the sum of the residues of 1 (z) at the poles in
the upper half-space.

0O Example 4.3: In order to evaluate the integral

o eiaz(;
I(a,ﬂ)=/ md@

it is necessary to construct a contour (see Figure 4.4). As the function
¢ = €2"¢ /(8 + (2) has two poles ¢ = +i3? and —i3? and only one
pole ¢ = +if3? is in the upper half plane, we can construct a contour
to encircle the pole at ( = i3 by adding an additional arc at the
infinity (¢ — oo) on the upper half plane. Combining the arc with
the horizontal line from the integral limits from —oo to oo along the
C-axis, a contour is closed. Hence, we have

_ e +if) _ Q)

¢ —1ip? ¢ —ig?’

where f(¢) = eia®¢ /(¢ +18?%). Using the residue theorem, we have

¢

. .22 . €_°262 5_0252
I =2mf({=1i8°)] = 27”2-[32 T

In a special case when a = 0, we have

oc 1 s
./_oo Y
0

Another important topic in complex variables is the confor-
mal mapping. The essence of a conformal mapping

w = f(2), z,w€C, (4.59)

is that this mapping preserves the angles between curves and
their orientations. One of the widely used mappings is M6bius
linear fractional transformation

_az+p a f
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By choosing the appropriate coefficients o, 3,v,8 € C, this
mapping can include all major geometrical transformations such
as translations, rotations, inversion, and expansions and con-
tractions. Conformal mappings are useful in solving steady-
state problems involving harmonic functions by transforming
the problem from a complicated geometrical domain to a reg-
ular domain such as circles and rectangles, and subsequently
the techniques based on conformal mapping are widely used in
solving Laplace’s equation in engineering.
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Chapter 5

Ordinary Differential
Equations

Most mathematical models in engineering are formulated in
terms of differential equations. If the variables or quantities
(such as velocity, temperature, pressure) change with other in-
dependent variables such as spatial coordinates and time, their
relationship can in general be written as a differential equation
or even a set of differential equations.

5.1 Introduction

An ordinary differential equation (ODE) is a relationship be-
tween a function y(z) of an independent variable z and its
derivatives ¥, ¥”, ..., y(™. It can be written in a generic form

\Il(:c,y,y’,y”,...,y(")) =0. (5.1)

The solution of the equation is a function y = f(z), satisfying
the equation for all z in a given domain .
The order of the differential equation is equal to the order
n of the highest derivative in the equation. Thus, the Riccati
equation:
¥ +a(e)y? + b(z)y = c(c), (5.2)
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5.2 First Order ODEs Ordinary Differential Equations

is a first order ODE, and the following equation of Euler-type

"

22y + ajzy’ + agy = 0, (5.3)
is a second order. The degree of the equation is defined as the
power to which the highest derivative occurs. Therefore, both
Riccati equation and Euler equation are of the first degree. An

equation is called linear if it can be arranged into the form
a. ()™ + ... + ar(2)y’ + ag(z)y = d(z), (5.4)

where all the coefficients depend on z only, not on y or any
derivatives. If any of the coefficients is a function of y or any
of its derivatives, then the equation is nonlinear. If the right
hand side is zero or ¢(z) = 0, the equation is homogeneous. It
is called nonhomogeneous if ¢(z) # 0.

The solution of an ordinary differential equation is not al-
ways straightforward, and it is usually very complicated for
nonlinear equations. Even for linear equations, the solutions
can only be obtained for a few simple types. The solution of
a differential equation generally falls into three types: closed
form, series form and integral form. A closed form solution is
the type of solution that can be expressed in terms of elemen-
tary functions and some arbitrary constants. Series solutions
are the ones that can be expressed in terms of a series when a
closed-form is not possible for certain type of equations. The
integral form of solutions or quadrature is sometimes the only
form of solutions that are possible. If all these forms are not
possible, the alternatives are to use approximate and numerical
solutions.

5.2 First Order ODEs
5.2.1 Linear ODEs

The general form of a first order linear differential equation can
be written as

Y +a(z)y = b(z). (5-5)

78



Ordinary Differential Equations 5.2 First Order ODEs

This equation is always solvable using the integrating factor
and it has a closed form solution.

Multiplying both sides of the equation by exp[[ a(z)dx],
which is often called the integrating factor, we have

y/efa(x)dz + a(z)yefa(x)dz — b(x)efa(z)dx’ (5.6)
which can be written as
[ye/ @) = p(z)e] =z, (5.7)
By simple integration, we have
ye @@z _ / b(z)el *@zdy 4 C. (5.8)
So its solution becomes

y(z) = e J a@) / ba)e) @4 gy 4 cem @z (59

where C is an integration constant. The integration constant
can be determined if extra requirements are given, and these
extra requirements are usually the initial condition when time
is zero or boundary conditions at some given points which are
at the domain boundary. However, the classification of condi-
tions may also depend on the meaning of the independent z. If
z is spatial coordinate, then y(z = 0) = yo is boundary condi-
tion at z = 0. However, if x = ¢ means time, then y(t = 0) = yo
can be thought of as the initial condition at ¢ = 0. Neverthe-
less, one integration constant usually requires one condition to
determine it.

0O Ezample 5.1: We now try to solve the ordinary differential
equation %' + ty(t) = —t with an initial condition y(0) = 0. As
a(t) = t,b(t) = —t, its general solution is

y(t) = o= J /(_t)eftdtdt+ce—ftdt
t2 2 2
=—e" 7 /te"fdt +Ce™T
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2 2 2 o2
=—eTeT +Ce T =-14Ce 7.
From the initial condition y(0) = 0 at t = 0, we have
0=-1+C, oo C=1.

Thus, the solution becomes

y(t) = e - 1.

5.2.2 Nonlinear ODEs

For some nonlinear first order ordinary differential equations,
sometimes a transform or change of variables can convert it into
the standard first order linear equation (5.5). For example, the
Bernoulli’s equation can be written in the generic form

v +p(2)y =q(z)y", n#l (5.10)

In the case of n = 1, it reduces to a standard first order linear
ordinary differential equation. By dividing both sides by y»
and using the change of variables

1 , (1=-n)y
u(z) = T U= (y—nn)y (5.11)
we have
v’ + (1 — n)p(z)u = (1 — n)g(z), (5.12)

which is a standard first order linear differential equation whose
general solution is given earlier in this section.

O Ezample 5.2: To solve y'(z) + zy = y*°, we first use u(z) =
1/y'°, and we v’ = —19y’/y*®. The original equation becomes

u' —19xu = —19,
whose general solution is

u(z) = Ae'®* 4 1.
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Therefore, the solution to the original equation becomes

1 o
y'¥= e GG o (Ae'® + 1),

5.3 Higher Order ODEs

Higher order ODEs are more complicated to solve even for the
linear equations. For the special case of higher-order ODEs
where all the coefficients a, ...,a;, ag are constants,

a ™ + ... + a1y’ + aoy = f(), (5.13)

its general solution y(z) consists of two parts: the complemen-
tary function y.(z) and the particular integral or particular
solution y;(z). We have

Y(z) = ye(z) + yp(x). (5.14)

5.3.1 General Solution

The complementary function is the solution of the linear homo-
geneous equation with constant coefficients and can be written
in a generic form

any{™ + an1y™ Y + ..+ a1yl +ag = 0. (5.15)

Assuming y = Ae®, we get the polynomial equation of char-
acteristics

a2\ + 0, A" 4 A+ a9 =0, (5.16)

which has n roots in general. Then, the solution can be ex-
pressed as the summation of various terms y.(z) = S 7_; cre™®
if the polynomial has n distinct zeros Aj,...A,. For complex
roots, and complex roots always occur in pairs A = r & iw, the
corresponding linearly independent terms can then be replaced
by e"*[A cos(wz) + Bsin(wz)].
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The particular solution y;(z) is any y(z) that satisfies the
original inhomogeneous equation (5.13). Depending on the
form of the function f(x), the particular solutions can take vari-
ous forms. For most of the combinations of basic functions such
as sin z, cos , €%, and z", the method of the undetermined co-
efficients is widely used. For f(x) = sin(az) or cos(az), then
we can try y, = Asinax + B sin az. We then substitute it into
the original equation (5.13) so that the coefficients A and B can
be determined. For a polynomial f(z) = z"*(n =0,1,2,....,N),
we then try y} = A+ Bz + Cz? + ... + Q2" (polynomial).
For f(z) = €**z™, y5 = (A + Bz + Cz? + ..Qz")e*. Sim-
ilarly, f(z) = e*sinaz or f(z) = e*“cosaz, we can use
Yy = e**(Asinaz + Bcosaz). More general cases and their
particular solutions can be found in various textbooks.

O Example 5.8: In order to solve the equation y'(z) — 2y”(x) —
y'(x) + 2y(z) = sinz, we have to find its complementary function
yc(z) and its particular integral y*(x). we first try to solve its com-
plementary equation or homogeneous equation

y"(z) - 24"(z) - 9/ (z) + 2y(z) = 0.
Assuming that y = Ae**, we have the characteristic equation
A —2X2-X14+2=0,

or
A-DA+1)(A-2) =0.

Thus, three basic solutions are e*, e~ and €*. The general comple-
mentary function becomes

Yo = Ae® + Be™" + Ce?*,

As the function f(x) = sinz, thus we can assume that the particular
integral takes the form y*(z) = asinz + bcosz. Substituting this
into the original equation, we have

(—acosz + bsinz) — 2(—asinx — bcosx)

—(acosz — bsinz) + 2(asinz + bcosz) =sinz,

82



Ordinary Differential Equations 5.3 Higher Order ODEs

or
(b+2a+b+2a—1)sinz+ (—a+2b—a+2b)cosz =0.
Thus, we have
da+2b=1,-2a+4b=0,

whose solution becomes
1 1
A T X

Now the particular integral becomes

a=

. 1. 1
y*(x) = gsinz + 75 Cos -

Finally, the general solution
y= %sin:c + %cosz + Ae® + Be™® 4 Ce®®.
[m]
The methods for finding particular integrals work for most
cases. However, there are some problems in the case when the
right-hand side of the differential equation has the same form
as part of the complementary function. In this case, the trial
function should include one higher order term obtained by mul-
tiplying the standard trial function by the lowest integer power
of = so that the product does not appear in any term of the
complementary function. Let us see an example.

O Ezample 5./: Consider the equation
y'(x) — 3y'(z) + 2y(z) = €.
Using y(z) = Ke**, we have the characteristic equation
M -3x+2=0.
Its complementary function is
Yo = Ae® + Be?®.

As the right hand side f(x) = €® is of the same form as the first term
of y., then standard trial function ae® cannot be a particular integral
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as it automatically satisfies the homogenous equation y"(z)—3y'(z) +
2y(x) = 0. We have to try y; = (a + bx)e” first, and we have

e“(a+ 2b+ bx) — 3e®(a + b+ bx) + 2(a + bx)e™ = €*.
Dividing both sides by €, we have
(a+2b+bx)—3(a+b+bx)+2(a+bz)=1,

or
b=-1.

As there is no constraint for a, thus we take it to be zero (a =0). In
fact, any non-zero ae® can be absorbed into Ae®. Thus, the general
solution becomes

y = —ze® + Ae® + Be*®,

5.3.2 Differential Operator

A very useful technique is to use the method of differential
operator D. A differential operator D is defined as

d

%.

(5.17)

Since we know that De** = Ae** and D"e** = \"e**| so they
are equivalent to D — A, and D® — A". Thus, any polyno-
mial P(D) will map to P()A). On the other hand, the integral
operator D~! = [dz is just the inverse of the differentiation.
The beauty of using the differential operator form is that one
can factorize it in the same way as for factorizing polynomials,
then solve each factor separately. Thus, differential operators
are very useful in finding out both the complementary func-
tions and particular integral.

O Example 5.5: To find the particular integral for the equation

yllllr + 2y — 17621,
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we get
(D® +2)y* = 17,
or
. 1T 4
v =Ds+2°

Since D% — X% = 25, we have

. 17621 _ 621

Y =9%32"72

0

This method also works for sinz, cos z,sinhz and others,
and this is because they are related to e’ via sinf = (e —
e ) and coshz = (e* + e7%)/2.

Higher order differential equations can conveniently be writ-
ten as a system of differential equations. In fact, an nth-order
linear equation can always be written as a linear system of n
first-order differential equations. A linear system of ODEs is
more suitable for mathematical analysis and numerical integra-
tion.

5.4 Linear System

For a linear n order equation (5.15), it can be always written
as a linear system

dy _, Ww_ i
dx _yli d:p y2‘ eeey d([ —yn—l,
(Tt = —An-1(T)Yn-1 + ... + a1(2)y1 + ao(z)y + ¢(z),

(5.18)
which is a system for u = [y y1 ¥2 ... Yn—1)7.
For a second-order differential equation, we can always write
it in the following form

du dv
i (u,v,x), pri g(u,v, ). (5.19)

If the independent variable x does not appear explicitly in f
and g, then the system is said to be autonomous. Such a system

85



5.5 Sturm-Liouville Equation Ordinary Differential Equations

has important properties. For simplicity and in keeping with
the convention, we use ¢t = = and % = du/dt in our following
discussion. A general linear system of n-th order can be written
as

Uy an @2 ... G uy
{15 a1 az .. Qaop
= : (5.20)
Un Qnl Gn2 ... QGnn Un
or
u=Au (5.21)

If u = vexp(At), then this becomes an eigenvalue problem for
matrix A,
(A - AI)v=0, (5.22)

which will have a non-trivial solution only if

det(A — AI) = 0. (5.23)

5.5 Sturm-Liouville Equation

One of the commonly used second-order ordinary differential
equation is the Sturm-Liouville equation in the interval z €
0,

d dy
d—x[p(a:)%] +q(z)y + Mr(z)y =0, (5.24)

with the boundary conditions
y(a) +oy'(a) =0,  y(b) +By'(b) =0, (5.25)

where the known function p(z) is differentiable, and the known
functions g(z),r(z) are continuous. The parameter A to be
determined can only take certain values A, called the eigen-
values, if the problem has solutions. For the obvious reason,
this problem is called the Sturm-Liouville eigenvalue problem.
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For each eigenvalue A, there is a corresponding solution
¥, called eigenfunctions. The Sturm-Liouville theory states
that for two different eigenvalues A,, # A, their eigenfunctions
are orthogonal. That is

/w)‘ )Yy, (z)r(x)dz = 0. (5.26)

or more generally

b

/ s, (2)0a, (@)r(z)dz = by (5.27)

It is possible to arrange the eigenvalues in an increasing order
Al <A< <Ay <o — 00, (5.28)

Sometimes, it is possible to transform a nonlinear equation
into a standard linear equation. For example, the Riccati equa-
tion can be written in the generic form

¥ =p(z) +q(z)y +r(z)y®, r(z) #0. (5.29)

If r(z) = 0, then it reduces to a first order linear ODE. By
using the transform

oot
or
u(z) = e~ J @@z (5.31)
we have
u” — P(z)v' + Q(z)u = 0, (5.32)
where

P(e) = L@ +1E@0@) 5y pa). (5.33)




5.5 Sturm-Liouville Equation Ordinary Differential Equations

5.5.1 Bessel Equation
The well-known Bessel equation

2y +zy + (22 = )y =0, (5.34)

is in fact an eigenvalue problem as it can be written as

() + (z - %2)1; =0. (5.35)

Although v can be any real values, but we only focus on the
case when the values of v are integers. In order to solve this
equation, we assume that the solution can be written as a series
expansion in the form

y(z) =z° Z apz” = Z a,z™* ag # 0, (5.36)

n=0

where s is a parameter to be determined. If ayg = 0, we can
always change the value of s, so that the first term of a,, is not
zero. Thus, we assume in general ag # 0. This method is often
called the Frobenius method which is essentially an expansion
in terms of a Laurant series. Thus, we have

dy

- Z an(n+ sz, (5.37)
n=0
d2
s Z an(n + s)(n+s—1)zn+s2, (5.38)

Substituting these expression into the Bessel equation, we have

o0 [e o]
D (k+s)(k+5—1)anz"** + Y (n+ s)azz"*

n=0 n=0

oo oo
+) a2 Y g™t = 0. (5.39)
n=0

n=0
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Equating the coefficients of the same power z*(n = 0,1,2,...),
we can get some recurrence relationships. For n = 0, we have

ao(s? —v?) =0. (5.40)

Since ag # 0, we thus have
s=zv. (5.41)

From n =1 terms, we have
a1(2s+1) =0, (5.42)

or 1
a =0, (s#-3) (5.43)

For the rest of terms n = 2,3.4, ..., we have

an(n+8)(n+5—1)+an(n+8) + @n2 — v2a, =0, (5.44)

or
Ap—-2 an-2
a, = — = - . 5.45
" (n+s)2-012 n(n+ 2v) (5.45)
Since we now know that a;j =0, thusaz =as =ar = ... =a; =

0. All the even terms contain the factor ag, we finally have

y(@) = a0 Z mxz’”" = aody, (5.46)

where we have used n = 2k =0,2,4,... sothat £k =0,1,2,3,....
The function J,

J=3 (=" 5.47)
v ,; 22npl(n + v)lg2n+v’ 5.

is called the Bessel function of the order v. This is the Bessel
function of the first kind. It has many interesting properties:

(%[z"J,,(z)] =z"J,_1(x); (5.48)
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i B =1, Jou(x) = (-1)"J,(x); (5.49)
and

/Oz udo(u)du = xJy(z). (5.50)

There are other properties as well such as the orthogonality
b
/ zJ,(azx)J,(Bz)dr = 0, (o # B). (5.51)

5.5.2 Euler Buckling

As an example, let us look at the buckling of an Euler column
which is essentially an elastic rod with one pin-jointed end and
the applied axial load P at the other end. The column has a
length of L. Its Young’s modulus is F and its second moment
of area is I = [ y2dA = const (for a given geometry). Let u(z)
be the transverse displacement, the Euler beam theory gives
the following governing equation

EId?
Tz tu=0, (5.52)
or
v’ + o?u =0, a? = %, (5.53)

which is an eigenvalue problem. Its general solution is
u = Asinaz + Bcosaz. (5.54)
Applying the boundary conditions, we have at the fixed end
u=0 (at = =0), B =0, (5.55)
and at the free end
u=0, (at = =1L), Asin(aL) =0. (5.56)
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Thus we have two kinds of solutions either A = 0 or sin(al) =
0. For A =0, we have u(z) = 0 which is a trivial solution. So
the non-trivial solution requires that

sin(aL) = 0, (5.57)
or
aL =0 (trivial), 7, 27, ..., nm, .. (5.58)
Therefore, we have
n?m2El
P=o%El = 77—  (n=123.) (5.59)

The solutions have fixed mode shapes (sine functions) at some
critical values (eigenvalues P,). The lowest eigenvalue is

w2EI
L b}
which is the Euler buckling load for an elastic rod.

P, =

(5.60)

5.5.3 Nonlinear Second-Order ODEs

For higher-order nonlinear ordinary differential equations, there
is no general solution technique. Even for relatively simple
second-order ODEs, different equations will usually require dif-
ferent methods, and there is no guarantee that you can find the
solution. One of the best methods is the change of variables
so that the nonlinear equation can be transformed into a lin-
ear ordinary differential equation or one that can be solved by
other methods. This can be beautifully demonstrated by the
solution process of finding the orbit of a satellite.

As the satellite orbits the Earth, the force is purely radial in
the polar coordinates, therefore, its total angular momentum L
is conserved. L = mrz%‘ti = const, or 726 = L/m = h = const.
The radial acceleration is a, = # — rd. Using Newton’s second
law of motion and Newton’s law of gravity, we have

GMm
2

2
miS (@~ Gl (5.61)
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where M and m are the masses of the Earth and the satellite,
respectively. G is the universal constant of gravitation. Using
the conservation of angular momentum so that

_h? L

6 = = h==, (5.62)
we then have

dr h?2 GM

F_TT_*_TT:O’ (5.63)

which is a nonlinear equation. By using the change of variables
u = 1/r, the conservation of angular momentum becomes

% = hu?, (5.64)

which is equivalent to dt = df/(hu?) and this can be used to
eliminate . Then, we have

dr _pdu du
primi i —hd—o, (5.65)
and
dPu _di d2ud0__h2 o d%u 5.66)
dt? — dt  de%dt de? .
Now the governing equation becomes
d*u
2,2 2,3
~hPu? =y — b’ + GMu? =0, (5.67)
o d? GM
u

Since this is a second-order linear ordinary differential equation,
it is straightforward to write down its solution

u=S+ Acosf + Bcosd = S[1 + ecos(d + )], (5.69)

where A and B are integration constants, which can be con-
verted into the eccentricity e and the initial phase 1. The final

solution is 1

r= S[1+ ecos(6 + )]’

(5.70)
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which corresponds to an ellipse where e is the eccentricity of
the orbit. If we set the polar coordinates in such a way that
1 = 0 (say, along the major axis) and one focus at the origin,
then the equation simply becomes

h2

~ GMJL + ecos 6]’ (571)

r

which is the orbit for satellites and planets.
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Chapter 6

Recurrence Equations

6.1 Linear Difference Equations

Differential equations always concern the quantities that vary
continuously. However, some problems such as finance are con-
cerned with quantities (say, interest rate) that are discrete and
do not vary continuously, and even the independent variables
such as time are not continuously counted or measured (in sec-
onds or years). For this type of problem, we need the differ-
ence equation or the recurrence equation as the counterpart in
differential equations. In fact, there many similarity between
difference equations and differential equations, especially the
linear ones.

A linear difference equation of N-order can generally be
written as

aoYn + A1Yn—1 + A2Yn—2 + ... + ANYn—N = f(n), (6.1)

where a;(i = 0, ..., N) are coefficients which are not functions of
Y. Yn [= y(n)] is the value of the variable y at n = 0,1,2,.... If
f(n) = 0, we say that the difference equation is homogeneous.
If all the coefficients a; are constant, the equation is called the
linear equation with constant coefficients (as the counterpart
in the differential equations). In this book, we only focus on
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the second-order linear difference equation. Thus, we have

aYn + byn—1 + cYn—2 = f(n), (6.2)

which can also be written as

AYn+1 + byn + CYn-1= g(n)7 (63)

where g(n) = f(n —1). If f(n) = 0, we say the equation is
homogeneous. The most famous difference equation is probably
the recurrence relation

Yn = Yn—1+ Un-2, (6.4)

for the Fibonacci sequence (0,1,1,2,3,5,8,...). The recurrence
equation is valid for n = 2,3, ... and the initial conditions are
y(0) = 0,y(1) = 1.

Similar to the solution procedure of linear ordinary differ-
ential equations, the general solution of a difference equation
Yn = Un + pn Where u, is the complementary solution to the
homogeneous equation

ay, + byn—l +cyp—2 =0, (65)

while p, is any particular solution of (6.2).

In order to obtain u,, we assume that u,, = aA™ (similar to
yc = Ae™* for differential equations). Substituting into (6.5),
we reach a characteristic equation

a)? +bA+c=0. (6.6)
It has two solutions A; and A; in general. Therefore, we have

un = AN} + BA}. (6.7)

O Example 6.6: Find the solution of
Yn + 3yn—l + 2yn—2 =0.
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This is a homogeneous equation, we assume u,, = a\", we have
A2430+42=0, or A+1)(A+2)=0.

Thus, we have A\; = —1 and A\, = —2. Therefore, the general solution
can be written as y,, = A(—1)" + B(=2)". )

For given initial values, we can determine the constant in
the general solution so that an exact expression can be ob-
tained.

O Ezxample 6.7: The Fibonacci sequence is governed by the
difference equation

Yn = Yn—1 + Yn-2,

with initial conditions yo = 0,3y, = 1. This is a homogeneous equa-
tion. The characteristic equation is

M —-A-1=0,
whose solution is A = L%ﬁ The general solution is therefore

= a8y 55y

In order to determine A and B, we first use yo = 1, we get

0=A+B.
Forn=1,y, =1 gives
1 1-
1= A( +2‘/5) + B( 2‘/5).

Now we have A =1//5, B = —1//5. The general solution becomes

_ 1(1+\/5),,_ 1(1—\/5),,
yn—TgT % 5 .

0

For finding a particular solution p,,, we can use the similar
technique used in ordinary differential equations. For f(n) =
k = const, we try p, = a. For f(n) = kn, we try p, = a + fn
where o and 8 will be determined. For f(n) = ky", we try
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Pn = a¥™. Other forms such as polynomials can be done in a
similar fashion.

O Example 6.8: For the equation
Yn+t —Yn —6yn_1 =n,

its complementary equation is
Yns1 = Yn —6Yn_1 =0,

and the characteristic equation is

AN -X-6=0, or A+2)(A=-3)=0.

The general complementary solution can now be written as

u(n) = A(-2)" + B3™.

Finding any particular solution requires that we try p, = a+bn. We
now have

a+bn+1)—(a+bn)—-6la+bn-1)]=n,
or
—6a + 7b — 6bn = n.
As for any n, this equation is valid, therefore we have a = %, and
b= —2. Finally, the general solution is
n 7

y(n) = A(-2)" + B3" - 5~ 36

6.2 Chaos and Dynamical Systems

As you may have noticed that the above analysis is mainly
about the linear equations, what happens to the nonlinear
equations? The main problem with nonlinear equations is that
there is no general solution techniques available for most cases.
Even for the simplest case, the analysis is not easy. In addition,
the behaviour of nonlinear equations is very complex, even for
the simplest equations. Often, nonlinear equations may have
chaotic behaviour under appropriate conditions.
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Figure 6.1: Variations of y,, for v =2 and v = 3.

6.2.1 Bifurcations and Chaos

In order to show this, we now briefly introduce the concept of
chaos by studying the following nonlinear difference equation

Yn+1 = VYn(l — yn), (6.8)

where v is a constant parameter. This is the well-studied lo-
gistic map, which is essentially an iteration process because all
the values yo,y3, ... can be determined for a given parameter v
and an initial condition y;. This is one of the simplest dynam-
ical systems. This seemingly simple equation is in fact very
complicated. If you try to use the method to solve the linear
difference equations discussed earlier, it does not work.

For a given value v = 2, we can use a computer or a pocket
calculator to do these calculations. If the initial value y; = 0
or y1 = 1, then the system seems to be trapped in the state
yn = 0 (n=2,3, ...). However, if we use a slight difference value
(say) y; = 0.01, then we have

y1 = 0.01, yo = 0.0198, y; = 0.0388, y, = 0.0746,

ys = 0.1381, yg = 0.2381, y7 = 0.3628, ys = 0.4623,
yo = 0.4972, y;0 = 0.5000, y,; = 0.5000, ... (6.9)
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Figure 6.2: Variations of y, for v = 3.5 and v = 4.

Then, the values are trapped or attracted to a single value or
state yoo = 0.5000. All the values are then plotted in a graph
as shown in Figure 6.1.

If we use a different parameter v = 3 and run the simula-
tions again from the same initial value y; = 0.01, the results
are also plotted on the right in Figure 6.1. Now we have a dif-
ference phenomenon. The final values do not settle to a single
value. Instead, they oscillate between two states or two final
values Y, = 0.6770 and y.*x = 0.6560. The iteration system
bifurcates into two states as the parameter v increases. If we
do the same simulations again using a different value v = 3.5
(shown in Figure 6.2), there are four final states. For v = 4,
every values seems difference, the system is chaotic and the
values looks like a random noise.

Following exactly the same process but using different val-
ues of v ranging from v = 0.001 to v = 4.000, we can plot out
the number of states (after N = 500 iterations) and then we get
a bifurcation map shown in Figure 6.3. It gives a detailed map
about how the system behaves. From the chaotic map, we see
that for v < 1, the final state is zero (the system is attracted
to a stable state yoo = 0). For 1 < v < 3, the system settles
(or attracts) to a single state. For 3 < v < 3.45, the system
bifurcates into two states. It seems that the system is attracted

100



Recurrence Equations 6.2 Chaos and Dynamical Systems
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Figure 6.4: Bifurcation and similarity.

by these discrete states. For this reason, the map is also called
the attractors of the dynamical system. The system becomes
chaotic for v > v, where v, &~ 3.57 is the critical value.

It is a bit surprising for a seemingly determined system
VYn(l — Yn) — Yn4+1 because you may try many times to simu-
late the same system at the same initial value yo = 0.01 (say)
and parameter v. Then, we should get the same set of values
Y1,Y2,.... You are right. So where is the chaos anyway? The
problem is that this system is very sensitive to the small vari-
ation in the initial value yg. If there is a tiny different, say,
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yo = 0.01 % 0.000000001 or even 1071990 difference, then the
set of values you get will be completely different, and there is
no way of predicting the final values (say, yso0 or ¥1,000,000)-
Since there is always uncertainty in the real world, even the
computer simulations can only use a finite number of digits,
so the chaos is intrinsic for nonlinear dynamical systems. In
fact, there is a famous ‘butterfly effect’. It says that the wing
flip of a butterfly in Africa can cause a tornado in America
or anywhere. Obviously, this is exaggerated too much, but it
does provide some vivid picture for the nature of chaos and
sensitivity to the initial uncertainty in chaotic systems.

If we study Figure 6.4 closely, we can see there is a sim-
ilarity between the whole map and its certain part (enclosed
by a box) which is enlarged and plotted on the right in the
same figure. In addition, the ratio between the lengths of the
parameter intervals for two successive bifurcation approaches
the Feigenbaum constant dr = 4.669..., which is universal for
the chaotic systems.

This self-similarity is one of the typical behaviours of chaotic
systems and it also occurs in other nonlinear systems such as

Yn+1 = Asinyn, (6.10)

and
Ynt1 = Asin? yp, (6.11)

which are plotted in Figure 6.5.

6.2.2 Dynamic Reconstruction

When a nonlinear system becomes chaotic, it seems that it is
very difficult to understand the behaviour. However, there may
be some regularity such as attractors and self-similarity as we
have seen earlier. In some case, it is even possible to reconstruct
the system itself.

Suppose we do not know the exact form of the dynami-
cal system, but we do know it only depends on one parameter
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Figure 6.5: Bifurcation for y,,; = Asiny, and y,;, =

Asin? y,,.

and we can observe the states y;,¥s,...,y, (to a certain de-
gree). From our observations, we can actually reconstruct the
system using the sorted data and plotting y,, versus y,_;. If
there are N observations, we have U = yo,...,yn as one set
and V = y;,99,...,Yn—1 as another set. We plot U versus V,
then the system can be dynamically reconstructed. For exam-
ple, from the 100 data for the nonlinear system discussed in
the previous section, the constructed system is a parabola as
plotted in Figure 6.6. The parabola is essentially the original
function y(1 — y). The mapping is then y — y(1 — y). With a
free parameter v and discrete time n, we obtain the dynamical
system

Yn = VYn—1(1 = Yn_1), or  Yni1 =vYn(l —y,). (6.12)

We see that even a simple nonlinear equation in 1-D can
show the rich complexity of dynamical behaviour. Now we
briefly look at a Lorenz system as a classical example.

6.2.3 Lorenz Attractor

The Lorenz attractor was first discovered by Edward Lorenz
when he studied the weather model in 1963. The Lorenz equa-
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Figure 6.6: Dynamic reconstruction of the nonlinear function.

Figure 6.7: Lorenz strange attractor.

tions are

Z:/ = 6(2 - y)>
i=(r—ay—z, (6.13)

where " = 3‘13-, and (3,6,v are parameters. Specifically, ¢ is the
Prandtl number, and v is the Rayleigh number.

For certain ranges of parameters, for example 8 = 8/3,6 =
10,4 = 28, the system becomes chaotic. The system moves
around in a curious orbit in 3-D as shown in Figure 6.7, and the
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orbit is bounded, but not periodic or convergent. This strange
characteristic gives the name °‘strange’ to the attractor, and
thus the Lorenz strange attractor. The chaotic map looks like
a butterfly.

6.3 Self-similarity and Fractals

In the bifurcation map of chaotic systems, we have seen the
self-similarity. This self-similarity is quite universal in many
phenomena, and it is also linked with the concept of fractals. In
fact, self-similarity and fractals occur frequently in nature. Two
classical examples are fern leaves and the pattern of lightening.
This observation suggests that even if the system is chaotic,
there is still some pattern or certain regularity in its behaviour,
and thus chaos is very different from the random noise, even
though they sometimes may look the same.

In geometry, we know that a point is zero dimension and a
line is one dimension. Similarly, the dimension for a plane is
two and the dimension for a volume is three. All these dimen-
sions are integers (0,1, 2, 3). But there are other possibilities in
nature that the dimension can be a fraction or a real number.
This is where the fractals arise. The basic idea of fractals can
be demonstrated using the generation of the Koch curve (also
called the Koch snowflake curve). The generator or seed of
this curve is the four straight line segments as shown in Figure
6.8. By starting with this generator (left) denoted as S, and
replacing each straight line segment by the generator itself, we
get the second generation curve (middle, S5). If we continue
this procedure many times, we get the Koch curve. A snapshot
at generation 5 is shown on the right in Figure 6.8. The total
length of the seed S; is Ly = 4/3 since it has four segments
and each segment has a length of 1/3, for the Sy curve, the
total length is 42/3%. This is because there are 4 more seg-
ments added, but each segment is only 1/3 of the previous one
in length. For the n-th generation, we have the total length
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VAN & S A P

Figure 6.8: Generation of the Koch curve.

($)™ with 4" segments in total.

The fractal dimension can be defined by covering the curve
using small balls (circles in a plane) and counting the number
of balls with radius r = ¢ > 0. For a curve I' in a compact
set of a metric space and for each ¢ as the radius of the small
balls, the smallest number N(€) of balls to cover the curve T'
will varies with €. The fractal dimension is defined by the limit

d = — lim 2V (6.14)
e—0 Ine
For the Koch curve, the minimum radius of the balls is ¢ =
1/3", and the total number is N(e) = 4. Hence, we have the
fractal dimension of the Koch curve

d= —lim In4d In4

Another famous example of fractals, which is related to the
iterative dynamical systems, is the Mandelbrot set z = 22 + ¢,
or

Znp1 =22 +c, (6.16)

where z € C is in the complex plane, and c is a complex number
to be tested. If you start with zp = 0 (say), the iterations
continue until certain criteria are met. In this set, the stopping
criterion is simply |z| > 2. That is to say, for each given c, the
magnitude of z during the iterations changes, it either stays
small (< 2) or it will eventually surpass two (> 2). If |2| < 2,
we say that ¢ belongs to the Mandelbrot set, otherwise, it is not
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Figure 6.9: Fractal nature of the Mandelbrot set: z = 22 + c.

part of the Mandelbrot set. The iterations will go on until the
modulus of z reach 2, and the point ¢ is marked on the complex
plane (z,iy) if it is not part of the Mandelbrot set. Then, we
change a different value of ¢, and follow the same iterative
process again. After many iterations across a region of the
complex plane, the results become the well-known picture of the
Mandelbrot set (shown in Figure 6.9). It is an usual practice
to mark the points with colours depending on the number of
iterations for each point to reach the modulus |z| = 2. This
simple iterative system can produce beautiful patterns. You
can view this system as a dynamical system, but it is a very
complicated system.

Vast literature exists on this subject, and it is still an active
research area.
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Chapter 7

Vibration and
Harmonic Motion

After the studies of the complex numbers and ordinary dif-
ferential equations, it is time to see how they are applied to
engineering problems. This chapter concerns the vibration and
harmonic motion of mechanical systems.

7.1 Undamped Forced Oscillations

The simple system with a spring attached with a mass m is
a good example of harmonic motion (see Figure 7.1). If the
spring stiffness constant is k, then the governing equation of
the oscillations is a second-order ordinary differential equation
for undamped forced harmonic motion, which can be written
as

v +wiy = f(t), (7.1)
where wg = k/m, and f(t) is the a known function of ¢. In the
case of f(t) = acoswt, we have

v+ wgy = o coswt, (7.2)

where wp is the natural frequency of the system, and « is the
amplitude of external forcing.
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L

- Ty(t)

Figure 7.1: Undamped forced oscillations.

The general solution y(t) = y. + y, consists of a comple-
mentary function y. and a particular integral y,. The comple-
mentary function y. satisfies the homogeneous equation

¥’ +wdy =0. (7.3)
Its general solution is
Ye(t) = Asinwgt + B coswot. (74)

For the particular integral y,, we have to consider two different
cases w # wp and w = wg because for w = wp the standard
particular a sin wt + b cos wt does not work. It needs some mod-
ifications. For w # wo, we assume that y, = asinwt + bcos wt.
We thus obtain

o
= t. 7.5
Yo = T o7 oo (7.5)

Therefore, the general solution

y(t) = Asinwyt + B cos wot +

a
 —: cos wt. (7.6)

If we further assume that the system is initially at rest when
the force starts to act, we have the initial conditions y(0) = 0
and y'(0) = 0. With these conditions, we have A = 0 and
B = —a/(w3 — w?) in the general solution. We now have

y(t) = = —5—=(cos wt — cos wpt). (7.7)
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= w°=2
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time (t)

Figure 7.2: Variation of amplitude at w = wy.

Using
cos C —cos D = —2sin (C+ D) sin © ; D),
we have
y(t) = w32_a 5 Sin (w —2wo)t sin (w +2w0)t
— At)sin +2“’°)t = A(t)sinat, (7.8)
where % . (w—wp)t
At) = g sin 5 (7.9)

As |w — wp| < |w + wp|, we can see that the oscillator oscillates
with a major and fast frequency & = (w + wp)/2, while its
amplitude or envelope slow oscillates with a frequent dw =
(w — wg)/2. This phenomenon is called beats.

For the special case of w = wp, the complementary function
is the same as before, but the particular solution should take
the following form

Yp = t(asinwt + bcoswt), (7.10)
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which gives o
yp(t) = mt sin wot. (7.11)
The general solution is therefore
y(t) = Asinwyt + B coswgt + %itsinwot. (7.12)
0

Similarly, the initial solution y(0) = y’(0) = 0 implies that
A = B = 0. We now have

y(t) = ——tsinwot = A(t) sin wot, (7.13)
2w

where A(t) = at/(2wo). As the amplitude A(t) increases with
time as shown in Figure 7.5, this phenomenon is called reso-
nance, and the external forcing cause the oscillations grow out
of control when the forcing is acted at the natural frequency
wp of the system.

7.2 Damped Forced Oscillations
L

- Ty(t)

Figure 7.3: Damped harmonic motion.

As all the real systems have a certain degree of friction,
thus damping should be included. An example of damping is
shown in Figure 7.3. With damping, the equation of forced
oscillations becomes

¥ (t) + 20y (t) + wy(t) = acoswt, (7.14)
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where A is the damping coefficient. In principle, one can try
to solve this equation using the standard method, but it may
become a little awkward as it involves complex numbers. In
fact, there is quite an elegant method using the complex vari-
ables. In order to do this, we write the companion equation for
equation (7.14) with a different forcing term

" () + 227 () + win(t) = asinwt. (7.15)

Since et = coswt + isinwt, we can multiply (7.15) by ¢, and
add it to (7.14), and we have

2'(t) + 2Xz + wiz = ce™, (7.16)

where z(t) = y(t) + in(t). By solving this equation, we essen-
tially solve both equations (7.14) and (7.15) at the same time
if we can separate the real and imaginary parts. The comple-
mentary function corresponds to the transient part while the
particular function corresponds to the steady state. For the
transient part, the characteristic equation gives

p+ 22+ W =0, (7.17)

p=-Ax /A2 -uwi. (7.18)

If A2 > wi, then g < 0. If A? < w3, then p = =\ + iy /wd — A2
and R(u) < 0. In both cases (1) < 0, thus the solution
ze o< "Rt _, 0. In engineering, it is conventional to define
a case of critical damping when £ = A\/wp = 1. The quality
factor @ = % is also commonly used. We now have

or

p=wo(—€+/§2-1). (7.19)
For £ = 0, we have pt = iwp, which corresponds to the harmonic
oscillations without damping. For £ = 1, u = —wy, it is critical

damping as the imaginary term is zero. The amplitude de-
creases exponentially at just the slowest possible manner with-
out any oscillations. For € < 1, we get ut = —wpf +iwp/1 — £2.
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Figure 7.4: Critical damping (£ = 1), under-damping (§ = 0.1),
and over-damping (£ = 1.5).

The real part corresponds to the exponential decrease of the
amplitude and the imaginary part corresponds to oscillations.
For this reason, it is called under-damped. Finally, £ > 1 leads
topu=wo(—€x VE = 1) < 0. The imaginary part is zero (no
oscillation). As the amplitude decreases much faster than that
at the critical damping, this case is thus called over-damped.
Figure 7.4 shows the characteristics of these three cases.

If time is long enough (t > 1), the transient part y. will
becomes negligible as ¢ increases. Therefore, we only need to
find the particular solution z,.

If we try the particular solution in the form z = zpeit, we
have

2" + 202" + wi = P(iw)z, (7.20)

and
P(iw) = (iw)? + 2\(iw) + wd = (W — w?) + 2wi, (7.21)

which is essentially the characteristic polynomial. The general
solution becomes

- wt (0%
0= Py ~ R T

ot (7.22)
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Figure 7.5: Variations of amplitude with frequency w and
damping coefficient .

It is conventional to call H(iw) = 1/P(iw) the transfer func-
tion. We can always write the general solution z = Aei(wt+9)
where A = |z| is the modulus and ¢ is the phase shift. There-
fore, we have

z = Ae'WHHe) (7.23)
where o
A= , (7.24)
\/(wg — w?)Z +4X2,2
and
1 —2\w
¢ = tan 1 ;3__(”2 (725)

As the amplitude of the forcing is a, the gain G(w) of the
oscillation is
A 1
Glw)=—= , (7.26)
o \/(wg — w?2)2 4 4X2w2
which is shown in Figure 7.5.
Finally, the solution of the original equation (7.14) is the

real part. That is

y(t) = Acos(wt + ¢). (7.27)
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Some special cases where w — 0 and w — o are very interest-
ing. For w < wy, the driving force is at very low frequency, we
have

A— —5, ¢ — 0. (7.28)
Wo
That is N
y(t) = —5 coswt. (7.29)
Wo

The system is in the same phase with the forcing,.
If w > wy, the forcing is at very high frequency. We have

Ao S 4o - (7.30)
Wo

The oscillator is completely out of phase with the forcing.
If w = wp, we have

(83 us

o 7y (7.31)

A- >’

and
o

y(t) = 2Awo

At resonance frequency w? = w3 — 2)2, the amplitude of the
oscillations increases dramatically.

sinwpot. (7.32)

7.3 Normal Modes

In the above harmonic oscillations, we know wyp is the natural
frequency of the concerned system, which is relatively simple.
In general, there may be many natural frequencies or modes in
a system, and the natural frequencies are in fact determined
from the eigenvalue problem resulting from the system. Now
let us study a more complicated system with three mass blocks
attached in by two springs as shown in Figure 7.6. This system
can be thought of as a car attached to two caravans on a flat
road.

Let uy,u2,u3 be the displacement of the three mass blocks
my, my, mg, respectively. Then, their accelerations will be ii;,
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iy, iy where @i = d?u/dt?. From the balance of forces and
Newton’s law, we have

mlill = k1 (’U,Q - ul), (733)
mgilz = k2(’U.3 - U.g) - kl (’u.2 - ul), (7.34)
mgiiz = —ka(uz — up). (7.35)

These equations can be written in a matrix form as

my 0 0 ’ill
0 my 0 iy
0 0 mg ilg
kq —ky 0 Uy 0
+| k1 ki +ky —ko Ug =! 0], (736)
0 —ko ko us 0
or
Mii + Ku = 0, (7.37)

where u? = (uy,ug, u3). The mass matrix is

ma 0 0
M=| 0 my 0 |, (7.38)
0 0 mg

and the stiffness matrix is

kk -k 0
K= -k ki+ky —ko |. (7.39)
0 —ko ko

Equation (7.37) is a second-order ordinary differential equa-
tion in terms of matrices. This homogeneous equation can be
solved by substituting u; = U; cos(wt) where U;(i = 1,2, 3) are
constants and w? can have several values which correspond to
the natural frequencies. Now we have

—w?MU; cos(wt) + KU; cos(wt) = 0, (7.40)
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Figure 7.6: Harmonic vibrations.

where ¢ = 1,2, 3. Dividing both sides by cos(wt), we have
K — w?M|U; = 0. (7.41)

This is essentially an eigenvalue problem because any non-
trivial solutions for U; require

K — w?M]| =0. (7.42)

Therefore, the eigenvalues of this equation give the natural fre-
quencies.

O Example 7.1: For the simplest case when m; =ma =mz =m
and k, = ky = k, we have

k—w?m —k 0
—k 2k — w?m -k =0,
0 -k k—w?m

or
—w?(k — w?m)(3km — w?m?) = 0.

This is a cubic equation in terms of w?, and it has three solutions.
Therefore, the three natural frequencies are

k 3k
wi =0, w%=;, w§=;.

For w? = 0, we have (Uy,U,,Us) = —5(1,1,1), which is the rigid
body motion. For w, = k/m, the eigenvector is determined by

0 -k 0 U 0
-k k -k U, | =] 0|,
0 -k 0 Us 0
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which leads to U, = 0, and U; = U,;. Written in normalized form, it
becomes (U,,Us,Us) = 715(1,0, —1). This means that block 1 moves
in the opposite direction away from block 3, and block 2 remains
stationary. For w} = 3k/m, we have (U;,U,,Us) = 7%(1,—2,1).
That is to say, block 2 moves in the different direction from block 3
which is at the same pace with block 1. 0

7.4 Small Amplitude Oscillations

For a mechanically conservative system, its total energy F =
T + V is conserved, where T is its total kinetic energy and V
is its total potential energy. The configuration of the mechan-
ical system can be described by its general coordinates q =
(91,92, ---s¢n)- The general coordinates can be distance and an-
gles. Thus, the velocities of the system will be ¢ = ¢y, g3, ..., §n.
If we consider the system consists of many small particles or
even imaginary parts, then the total kinetic energy T is a func-
tion of q and sometimes q, but the potential energy V is mainly
a function of q only. As we are only concerned with small am-
plitude oscillations near equilibrium V,,;, = V(0) = V;, we can
always take q = 0 at the equilibrium so that we can expand V
in terms of q as a Taylor series

oV
V(q) = Vinin + Z a—q‘?% + Z Z Kijqiq; + ..., (7.43)
i i g

where the stiffness matrix is
18

7~ 28q;0q; : 7.44
’ 23‘1i3qj|qf=o,q,~=o (7.44)

Since potential energy is always relative to an arbitrary refer-
ence point, we can thus take the potential energy at equilibrium
Vimin to be zero. In addition, the equilibrium or the minimum
value of V requires g% = 0 at the equilibrium point ¢; = 0,
and the force F;, = g—;ﬁ shall be zero. This is correct because
the resultant force must be zero at equilibrium, otherwise, the
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system will be driven away by the resultant force. The com-
ponent of the resultant force along the general coordinate g¢;
should also be zero. Therefore, the total potential energy is
now simplified as

V=33 aKijg = q'Kq, (7.45)
T j

which is a quadratic form.

For any small oscillation, the velocity is linear in terms of
g;, and thus the corresponding kinetic energy is %mcj?. The
total kinetic energy is the sum of all the components over all
particles or parts, forming a quadratic form. That is to say,

T =Y midqg =4 Mq, (7.46)
i

where M = [m;;] is the mass matrix.
For a conservative system, the total mechanical energy F =
T + V is conserved, and thus time-independent. So we have

AT+V) d. ;.
.L£J=%WMm@WQﬂL (7.47)

Since M and K are symmetric matrices, this above equation
becomes
Mq+ Kq=0. (7.48)

This is a second order ordinary differential equation for matri-
ces. Assuming the solution in the form q” = (g1, g, v Qn) =
(U1 coswt, Uz coswt, ..., Uy coswt) and substituting it into the
above equation, we have

M - w?K| =0, (7.49)

which is an eigenvalue problem.

As an application, let us solve the same system of three
mass blocks discussed earlier as shown in Figure 7.6. The total
potential energy T is the sum of each mass block

1 ) 1 . 1 .
T =gzm(d 2+ 5"’»2(“2)2 + 57713(143)2
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m 0 0 i
= (1w i ag )| 0 mp 0 a |, (7.50)
0 0 my )\

which can be written as a quadratic form

T = u"Mu, (7.51)
where u” = (u;,uy,u3), and
1 m; O 0
M= 3 0 mg 0 |. (7.52)
0 0 msg

We see that M is a symmetric matrix.
For a spring, the force is f = kz, thus the potential energy
stored in a spring is

/ " kadz = ku?. (7.53)
0 2

Therefore, the total potential energy of the two-spring system
is 1 1
V= ski(uz - u)? + gka(us - up)2. (7.54)

Since interchange of u; and us does not change V, it is thus
symmetric in terms of u;, ug etc, which implies that K;; should
be symmetric as well.

The stiffness matrix K = [Kj;] can be calculated using

1 8%v
i = E_Ou,ﬁuj' (7.55)
For example,
102V 1 k1
Kll = 5 u12 = § X kl = 7a (756)
and 1 @V 10 0V
K=

2 Ju18us 2 ouy (8u2 )
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1 k

= 5_[’91 —u1) + ka(ug — ug)] = —?l (7.57)
Following the similar calculations, we have
1 k1 -k 0

K= 5 —k1 ki+ky ko |, (7.58)
0 —ko ko

which is exactly 1/2 multiplying the stiffness matrix we ob-
tained earlier in equation (7.39). Thus, the equation for small
amplitude oscillation is

Mii + Ku = 0. (7.59)

For the special case of m; = mg = m3 =m and k; = ko = k,
its eigenvalues are determined by

k—w?m -k 0
-k 2%k-uwrm -k =0, (7.60)
0 -k k—w?m

which is exactly the problem we solved in the previous section
(see example 7.1).

For a simple system such as a pendulum, equation (7.39) is
equivalent to the following simple formula for calculating the
natural frequency

Vll(q)
W= ——2, 7.61
M(q) (7.61)
where V” > 0 because the potential energy at equilibrium is
minimum.

O Fxample 7.2: A simple pendulum with a mass m is hanged
vertically from a ceiling with a distance L from the fixed point. Let
0 be the small angle from its equilibrium, then the kinetic energy is
T = ymv? = tmL? (9)2. The potential energy is

V =mgL(1 - cosf).
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Therefore, the stiffness is K = $V"(0) = mgL cosf|e—0 = mgL/2.
The equivalent mass is M(f) = mL?. The governing equation be-
comes

1 1
EmL 0+ 5mgL9,

or L
6+ =6=0.
g

The natural frequency for small oscillations is

VII g
w=——==,/>.
M(q) L
The period of this pendulum is

=27

2T L
T= -
g

w
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Chapter 8

Integral Transforms

The mathematical transform is a method of changing one kind
of functions and equations into another kind, often simpler or
solvable one. In general, the transform is essentially a math-
ematical operator that produces a new function F(s) by inte-
grating the product of an existing function f(t) and a kernel
function K (t,s) between suitable limits

F(s) = / K(t,s)f(t)dt. 8.1)

In the Laplace transform, the kernel is simply exp(—st) and
integration limits are from 0 to co. In the Fourier transform,
the kernel is exp(+ist) with a normalized factor 1/v/2m.

The Fourier transform maps the time domain of a time-
dependent series such as a signal into a frequency domain,
which is common practice in signal processing. The Laplace
transform is a very powerful tool in solving differential equa-
tions. In this chapter, we will focus on the three major trans-
forms: Fourier, Laplace and Wavelet transforms. They are
commonly encountered in engineering and computational sci-
ences.
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8.1 Fourier Transform

8.1.1 Fourier Series

For a function f(t) on an interval ¢t € [T, T, the Fourier series
is defined as

f(t) =30 2 ncos(— +bns1n(n,17:t), (8.2)

where | T
a0 =z ]_ _fte, (8.3)
and L T .
W=z ( ) cos(—7-)dt, (84)

1 /T . nmt
by = /_ 1) sm(?)dt, (n=1,2,..). (85)

Here a, and b, are the Fourier coefficients of f(t) on [-T,T).
The function f(t) can be continuous or piecewise continuous
with a jump discontinuity. For a jump discontinuity at ¢t = to,
if f'(to—) and f'(to+) both exist, but f(to—) # f(to+), then
the Fourier series converges to [f(to—)+ f(to+)]/2. The Fourier
series in general tends to converge slowly.

From the coefficients a,, and b,,, one can easily see that b,, =
0 for an even function f(—t) = f(t). Similarly, ap = a, = 0
for an odd function f(—t) = —f(t). In both cases, only one-
side [0, T'] of the integration can be used due to the symmetry.
Thus, for an even function f(t), we have the Fourier cosine
series on [0,T]

o0
d .
ft)= > ; n COS(— (8.6)
For an odd function f(t), we have the Fourier sine series
X . axt
f(t) = Z sm(T). (8.7)
n=1

126



Integral Transforms 8.1 Fourier Transform

Figure 8.1: Triangular wave with a period of 2.

D Exzample 8.1: The triangular wave is defined by f(t) = |t| for
t € [-1,1] with a period of 2 or f(t+2) = f(t). Using the coefficients
of the Fourier series, we have

ao—lf |t|dt——[/ (- t)dt+/ tdt]_

Since both |t| and cos(nnt) are even functions, we have for anyn > 1,

1 1
an, =/ || cos(nnt)dt = 2/ t cos(nmt)dt
-1 0

t . 2 [, 2
= 2n_1r sin(nrt)| — %/0 sin(nrt)dt = —3 [cos(nm) - 1].

Because |t|sin(nnt) is an odd function, we have

1
b, =/ [t| sin(nmt)dt =
-1

Hence, the Fourier series for the triangular wave can be written as
cos(mr)
f@®) = + 2 Z —_— cos(mrt).

0

The n-term of the Fourier series, that is a, cos(nnt/T) +

b, sin(n7t/T), is called the n-th harmonic. The energy of the
n harmonic is defined by A2 = a2 + b2. The sequence of A,
forms the energy or power spectrum of the Fourier series. The
energy spectrum of the triangular wave is shown in Figure 8.2.
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Figure 8.2: Energy spectrum of the triangular wave.

8.1.2 Fourier Integral

For the Fourier coefficients of a function defined on the whole
real axis [—o00, 00|, we can take the limits

a(wn) = /_ TT F(t) cos(wat)dt

and
nw

bw,) = /_ i f®sinwnt)dt,  wa=70,  (88)

as the limits T — oo and w, — 0. We have ag — 0 if

00
J <. (8.9)
o0
In this case, the Fourier series becomes the Fourier integral
£(t) = / ” la(w) cos(wt) + b(w) sin(wt)dw, (8.10)
0
where
1 o
w)== / F(t) cos(wt)dt, (8.11)
bw) = = / ) sin(wt)dt. (8.12)
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Following the similar discussion for even and odd functions, we
know that even functions lead to Fourier cosine integrals and
odd functions lead to Fourier sine integrals.

8.1.3 Fourier Transform

The Fourier transform F[f(t)] of f(t) is defined as

1 S :
= F[f(t)] = _/ t)e *dt, 8.13
ol =—= [ se (813)
and the inverse Fourier transform can be written as

f(t) = FF(W)] = F(w)e™dw, (8.14)

v IR
where expliwt] = cos(wt) + isin(wt). The Fourier transform
is a linear operator, and it has most of the properties of the
differential operator and the integral operator. Hence, it is
straightforward to prove that it has the following properties:

FI) + ) = FIF@O)] + Flo(®)], (8.15)
Flef@®)] = aF[f ()], (8.16)
Fl(=t)"f(t)] = an(w), (8.17)
and
FIFM(#)] = (w)"Fw), (8.18)
if f(t — fo0) = f'(t = fo0) = ... = fD(t - +oo) — 0.

The transform can have different variations such as the Fourier
sine transform and the Fourier cosine transform. The Fourier
transforms of some common functions are listed in the follow-
ing table 8.1.

O Ezample 8.2: For the triangle function f(t) = 1—|t| for (|t| < 1)
and f(t) =0 for |t| > 1, its Fourier transform is

V2rF(w) = / ” (1 - |t]e**dt
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0 1
=/ (1 +t)e™*dt +/ (1 —t)e *dt.
-1 0

Integrating by parts and using

cosw = (e 4+ e™)/2, sin®(w/2) = F%,

we have

VIRF(w) = iw + 12_ e e _|.2iw -1_ 2(1 - Zosw)'
w w w

Hence, we have

1 sin®(w/2) 1

F(W) = ﬁW = \/2_7rsinc2(w/2).

Table 8.1: Fourier Transforms

ft) F(w) = F[f®)]
f(t—to) F(w)e™
f(t)e~ ot F(w — wp)
8(t) 1/V2n
1 V2ré(w)
sign(t) =
e—cltl 35%5
e~ (a > 0) 7‘536‘532
a (%
flet f;’ffﬁf;.)
o e 2T
cos(wpt) \/%-[5(00 — wp) + §(w + wo)]
sin(wo) 1/ F[0(w + wo) — d(w — wo)]
2122 (o > 0) [/%, (lwl<@);0, (lv|>a)

The most useful Fourier transform for engineering and com-
putational science is probably the discrete form, especially in
digital signal processing. The discrete Fourier transform (DFT),
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Integral Transforms 8.2 Laplace Transforms

for a periodic discrete function or signal z(n) with a period N,

is defined by
N-1

XK = ¥ z[n)e %", (8.19)
n=0
and the inverse transform, also called the signal reconstruction,

is defined by
N-1 s 2nkn

2l = - S Y X[Rei, (8.20)
N =

A periodic signal z(n + N) = z(n) has a periodic spectrum
X[k + N]) = X[k]. The discrete Fourier transform consists
of N multiplications and N — 1 additions for each X[k], thus
for N values of k, the computational complexity is of O(N?).
However, if N = 2™ (m € N), many of the DFT calculations
are not necessary. In fact, by rearranging the formula, one can
get the complexity of O(N logy, N). This type of algorithms
is called Fast Fourier Transform (FFT). Vast literature exists
on the signal processing such as FFT, filter design and signal
reconstruction.

8.2 Laplace Transforms

The Laplace transform L[f(t)] of a function f(t) is defined as
F(s) = £lf(®) = [ f(t)eat (8:21)

where s > 0 The inverse Laplace transform £~![F(s)] is f(t)
or f(t) = L7![F(s)]. The Laplace transforms of most simple
functions can be obtained by direct integration. For simple
functions ¢ and e?t, we have

o0 1 t g1 1
L[t] = / te tdt = / —e~*tdt + [——e_“’t] ==.
0 0 S s )

0

Lle) = / ~ eate=stgt = [_s lae-<s-a>t]°° = - la.
0 - 0 -
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8.2 Laplace Transforms Integral Transforms

Conversely, [I‘l[;l;] = t, £_1[$] = e°t, For the Dirac
é-function, we have its Laplace transform

L[6()] = /o Totetdt = e =1. (8.22)

t=0

However, the inverse of a Laplace transform is usually more
complicated. It often involves the partial fractions of polynomi-
als and usage of different rules of Laplace transforms. From the
basic definition, it is straightforward to prove that the Laplace
transform has the following properties:

Llaf(t) + By(t)] = aL[f(t)] + BL[g(?))], (8:23)
L ft)]=F(s—a), s>aq, (8.24)
LIf(t— a)] = e L[f(2)], (8.25)
LIf'(1)] = sCIf(t)] - £(0), (8.26)
el[ s = 1eip), (8:27)

0 s

The Laplace transform pairs of common functions are listed
below in table 8.2.

O FExample 8.3: In order to obtain the Laplace transform of
f(t) = coswt, we shall first write

f(t) = coswt = %(em +emit),
Then, we have

LU0 = Flo) = [ [ + e e ar

— l[/ e(—s+iw)tdt+/ e—s—iw)tdt]
2 0 0
1
2

[1 1]=s

s—iw  s+iw 82 +w?’
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Integral Transforms

8.2 Laplace Transforms

Table 8.2: Laplace Transform

Function f(t)

Laplace Transform F(s)

1 T
S
5(t) :
t",'n >0 S_:l-!Fl'
cos(at) i
sin(at) i
eat i
S—Q
iy b3
t—1/2 z
S
t"f(t) (=1)» d"dljngsy
cos(at + ) 8005(5);2 sin(3)
sinh(at) -
cosh(at) 2
1 —
erfc(%\@) ;e a/s
1 - 1 oy
77r=t€ 4t \/se a )
sin ay/t g \/§ 5
1 1—+t""‘ (a>0) ln(11+ 2
5(e%t — ™) (o # ) S

Both Fourier and Laplace transforms follow the convolution
theorem. For two functions f and g, their convolution f * ¢

obeys

fro= [ 1t~ ag(@)da

and their Laplace transforms follow

LIf(2) * g(B)] = F(s)G(s),

LY F(s)G(s)] = /0 t f(t - a)g(a)do.
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8.3 Wavelet Integral Transforms

The Fourier transform has the similar properties
o0
f(t)=g(t) = / f(t)g(t — uw)du, (8.31)
—o0

FIf(t) *9(t)] = F(w)G(w). (8.32)

8.3 Wavelet

The Fourier transform is an ideal tool for studying the sta-
tionary time signal whose properties are statistically invariant
over time. In the Fourier transform, the stationary signal is
decomposed into linear combinations of sine and cosine waves

#, %cos(nt), \Lﬁsin(nt), (n=1,2,..). (8.33)

The Fourier transform is very useful to analyse stationary
signals where a stationary signal means that the frequencies of
the signal do not change with time. For non-stationary sig-
nals whose frequencies f = w/2m vary with time (see Figure
8.3), the Fourier transform does not work well. In addition,
in the Fourier transform there is a tradeoff between frequency
resolution and time resolution,

AwAt > % (8.34)

which is similar to the Heisenberg uncertainty principle for spa-
tial and velocity intervals. The wavelet transform is an alter-
native approach to the Fourier transform to overcome the res-
olution problem using the Mother wavelet v or prototype for
generating the other windows functions, and all the used win-
dows are in the form of either dilated /compressed or shifted. As
a result, the wavelet transform is very powerful in dealing with
non-stationary signals because the Fourier transform is not
suitable for such signals. In the wavelet transform, a transient
signal is decomposed into elementary components of wavelets
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Integral Transforms 8.3 Wavelet

stationary
e+

I
-b
T
1

0 4 6 10
1 1,205 (Hz), 1,=2 (Hz)
. . .
s
S
E o -
@
[ =4
2
'10 10

4 6
f=w/2r varies with time (t)

Figure 8.3: A stationary signal with two fixed frequencies
(fi = 0.5 Hz and f; = 2 Hz) and a non-stationary signal whose
frequency varies with time.

or wavelet packets. There are three major type of wavelets:
Grossmann-Morlet wavelets, Daubechies wavelets and Gabor-
Malvar wavelets.

Wavelets are defined as a real-valued function ¥(t) (¢t €
R) in terms of the generator wavelet or mother wavelet. The
function ¥ is both well localized, decreasing rapidly as ¢ — oo
and oscillating in a wavery manner. To generate other wavelets,
¥(a, B,t) is used by translating in time and change of scales.

Grossmann-Morlet wavelets are of the form

Lotz as0,  aber, (8.35)
« «

where % a generator wavelet. The Daubechies wavelets have
the form
2M2p(2" —m), m,n€ Z. (8.36)
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8.3 Wavelet Integral Transforms

The Gabor-Malvar wavelets are in the form
1
w(t—m)cos[n(n+§)(t—m)], meZ,neN. (837)

The continuous wavelet transform can be defined by
U= o= [ 10w (839)
=T 6

where 7 is the translation of the location of the window and s
is the scale where s =1 is for the most compressed wavelet.

Wavelet analysis has vast literature and it is still an active
research area in signal processing. Readers can search the latest
research journals to follow the latest developments.

136



Chapter 9

Partial Differential
Equations

Partial differential equations are much more complicated com-
pared with the ordinary differential equations. There is no
universal solution technique for nonlinear equations, even the
numerical simulations are usually not straightforward. Thus,
we will mainly focus on the linear partial differential equations
and the equations of special interests in engineering and com-
putational sciences. A partial differential equation (PDE) is a
relationship containing one or more partial derivatives. Simi-
lar to the ordinary differential equation, the highest nth partial
derivative is referred to as the order n of the partial differential
equation. The general form of a partial differential equation
can be written as
2, 52 2
BV o g 5o 5 g ) =0 (01
z’ Oy’ 8x2%’ Oy 9z0y°

where u is the dependent variable and z,y, ... are the indepen-
dent variables.

A simple example of partial differential equations is the lin-
ear first order partial differential equation, which can be written
as

o, 1) g5 + e 1) g = 1z, 92)
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9.1 First Order PDE Partial Differential Equations

for two independent variables and one dependent variable u.
If the right hand side is zero or simply f(z,y) = 0, then the
equation is said to be homogeneous. The equation is said to be
linear if a,b and f are functions of z,y only, not u itself.

For simplicity in notations in the studies of partial differ-
ential equations, compact subscript forms are often used in the
literature. They are

o, 0 _ %
I_afll, y—aya J::z:—ax?s
%u o%u
= —s, Ugy = =, .. 9.3
Uyy ayQ' Uzy axay ( )
and thus we can write (9.2) as
aug + buy = f. (9.4)

In the rest of the chapters in this book, we will use these nota-
tions whenever no confusion occurs.

9.1 First Order PDE

The first order partial differential equation of linear type can
be written as

a(z,y)uz + b(z, y)uy = f(z,y), (9.5)

which can be solved using the method of characteristics

—_— i — T — 9.6
This is equivalent to the following equation in terms of param-
eter s d d i
z Y u
— — — .7
ds " ds b, ds f (0-7)

which essentially forms a system of first-order ordinary differ-
ential equations.

138



Partial Differential Equations 9.2 Classification

The simplest example of a first order linear partial differ-
ential equation is the first order hyperbolic equation

where c is a constant. It has a general solution of
u = Y(z — ct), (9.9)

which is a travelling wave along z-axis with a constant speed c.
If the initial shape is u(x,0) = ¥(z), then u(x,t) = Y(xz—ct) at
time ¢, therefore the shape of the wave does not change though
its position is constantly changing.

9.2 Classification

A linear second-order partial differential equation can be writ-
ten in the generic form in terms of two independent variables
z and y,

AUz + bugy + cuyy + gu, + huy + ku = f, (9.10)

where a,b,¢,g,h, k and f are functions of z and y only. If
f(z,y,u) is also a function of u, then we say that this equation
is quasi-linear.

If A = b? — dac < 0, the equation is elliptic. One famous
example is the Laplace equation u,, + u,, = 0.

If A > 0, it is hyperbolic. One example is the wave equation
Uy = c2uzx-

If A = 0, it is parabolic. Diffusion and heat conduction
equations are of the parabolic type u; = Ku,,.

9.3 Classic PDEs

Many physical processes in engineering are governed by three
classic partial differential equations so they are widely used in
a vast range of applications.
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9.3 Classic PDEs Partial Differential Equations

Laplace’s and Poisson’s Equation

In heat transfer problems, the steady state of heat conduction
with a source is governed by the Poison equation

kV2u = f(z,y,t), (z,y) € Q, (9.11)

or
Uzz + Uyy = q(T, Y, 1), (9.12)

for two independent variables z and y. Here k is the thermal
diffusivity and f(z,y,t) is the heat source. If there is no heat
source (¢ = 0), this becomes the Laplace equation. The so-
lution or a function is said to be harmonic if it satisfies the
Laplace equation.

Heat Conduction Equation

Time-dependent problems, such as diffusion and transient heat
conduction, are governed by parabolic equations. The heat
conduction equation

u = ks, (9.13)

is a famous example. For diffusion problem, k is replaced by
the diffusion coefficient D.

‘Wave Equation

The vibrations of strings and travelling sound waves are gov-
erned by the hyperbolic wave equation. The 1-D wave equation
in its simplest form is

Ut = czu”, (9.14)

where c is the speed of the wave.

There are other equations that occur frequently in mathe-
matical physics, engineering and computational sciences. We
will give a brief description of some of these equations in later
chapters.
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Chapter 10

Techniques for Solving
PDEs

Different types of equations usually require different solution
techniques. However, there are some methods that work for
most of the linearly partial differential equations with appro-
priate boundary conditions on a regular domain. These meth-
ods include separation of variables, series expansions, similarity
solutions, hybrid methods, and integral transform methods.

10.1 Separation of Variables

The separation of variables attempts a solution of the form
u=X(z)Y(y)T(), (10.1)

where X(z),Y (y),T(t) are functions of z,y,t, respectively. In
order to determine these functions, they have to satisfy the
partial differential equation and the required boundary condi-
tions. As a result, the partial differential equation is usually
transformed into two or three ordinary differential equations
(ODEs), and these ordinary differential equations often appear
as eigenvalue problems. The final solution is then obtained by
solving these ODEs. As a classic example, we now try to solve
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10.1 Separation of Variables Techniques for Solving PDEs

the 1-D heat conduction equation in the domain z € [0, L] and
t>0

with the initial value and boundary conditions
u(0,t) = u(L,t) =0, u(z,0) = 9. (10.3)
Letting u(z,t) = X(x)T'(t), we have

X" (x) _T'(®)

X kT
As the left hand side depends only on z and the right hand
side only depends on ¢, therefore, both sides must be equal
to the same constant, and the constant can taken to be as
—)2. The negative sign is just for convenience because we
will see below that the finiteness of the solution T'(t) requires
that eigenvalues A2 > 0 or A are real. Hence, we now get two
ordinary differential equations

(10.4)

X"(@)+X2X(z) =0, T'(t)+kMNT()=0, (10.5)
where X is the eigenvalue. The solution for T'(t) is
T = Ape™ ¥, (10.6)
The solution for X () is in a generic form
X (t) = acos Az + Bsin Az. (10.7)

From the boundary condition u(0,t) = 0, we have o = 0. From
u(L,t) = 0, we have
sin AL = 0, (10.8)

which requires that AL = nz. Please note that n # 0 be-
cause the solution is trivial if n = 0. Therefore, A cannot be
continuous, and it only takes an infinite number of discrete val-
ues, called eigenvalues. Each eigenvalue A = A\, = n7/L,(n =

142



Techniques for Solving PDEs 10.2 Transform Methods

1,2, ...) has a corresponding eigenfunction X,, = sin(\,z). Sub-
stituting into the solution for T'(t), we have

7I1l'2

T(t) = Ape¥* = Aje™ 2 *, (10.9)
By superimposing u,, = X, T,, and expanding the initial condi-

tion into a Fourier series so as to determine the coefficients, we
have

[o o)
u(e,t) = Y ansin(Z)e”CEIR,
n=1

L
tn = % /O V(@) sin(m;ldé)d{. (10.10)

10.2 Transform Methods

Laplace Transform

The basic idea of the integral transform method is to reduce
the number of the independent variables. For the 1-D time-
dependent heat conduction, it transforms the partial differen-
tial equation into an ordinary differential equation. By solving
the ordinary differential equation, the solution to the original
problem is obtained by inverting back from the Laplace trans-
form. As an example, we now solve the 1-D heat conduction in
semi-infinite interval [0, co),

or | 0T
- = ko (10.11)
with the boundary conditions
T(z,0) =0, T(0,t) = Tp. (10.12)

Let T(z,s) = [g° T(z, t)e~*tdt be the Laplace transform of
T'(z,t), the equation then becomes

_ AT
sT = km,
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10.2 Transform Methods Techniques for Solving PDEs

and the boundary condition at = 0 becomes T,_o = Ty/s.
The general solution to the ordinary differential equation can

be written as
T = Ae_‘/%c + Be\/"f'_‘m.

The finiteness of the solution as £ — oo requires that B = 0,
and the boundary conditions lead to

= Ty _

T=—e kz

By the inversion of the Laplace transform, we have
T
T = Tyerfe(—=),
0 (2 T t)

where erfc(x) is the complementary error function.

Fourier Transform

Fourier transform works in the similar manner as the Laplace
transform. The famous example is the classical wave equation

Uy = VU, (10.14)

with the initial conditions u(x,0) = ¥(x) = exp[—(x — a)?],
and u(x,0) = 0. Let @(w,t) = 712_1,f3°oo u(z,t)e™*dr be the
Fourier transform of u(x,t). This transforms the PDE problem
into an ODE

% = —v2wa, (10.15)
with (. 0
= Pw), % = 0. (10.16)

The general solution in terms of the parameter w is
@(w, t) = P(w) cos(vwt).
By using the inverse Fourier transform, we finally have

u(z,t) = / P(w) cos(vwt)e ™ dw
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Techniques for Solving PDEs 10.3 Similarity Solution

N =

[¥(z + vt) + P(z — vi)]

%[e—(:n:—a+vt)2 + e—(a:—a—vt)2], (1017)

which implies two travelling waves: one travels along the z-axis
and the other along the negative z-axis direction.

10.3 Similarity Solution

The essence of similarity solution is to use the so-called simi-
larity variable £ = z/t° so as to reduce the partial differential
equation to an ordinary differential equation. For example, the
diffusion equation

Up = KUy, (10.18)

can be solved by using the similarity method by defining a
similar variable

2
x
n=— (10.19)
or
x
== 10.20

In general, we can assume that the solution to the equation has
the form

By substituting it into the diffusion equation, the coefficients
o and 3 can be determined. For most applications, one can
assume o = 0 so that u = f(() (see the following example for
details). In this case, we have

_ , f//
—(B(rt)"f = (R (10.22)
or
f” — —(f"B(K,t)Zﬁ_l, (10‘23)
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10.3 Similarity Solution Techniques for Solving PDEs

where f' = df /d¢. In deriving this equation, We have used the

chain rules of differentiations ?% = g?gé and £ 5= 62'6' so that

% - _% — —BCF(C) (k)1 (10.24)
and & £(0)
u

Since the original equation does not have time-dependent
terms ezplicitly, this means that all the exponents for any t-
terms must be zero. Therefore, we have 28 = 1, or 8 = 5
Now, the diffusion equation becomes

Q)= —sf’, (10.26)

Using (In f') = f”/f’ and integrating the above equation once,
we get

’_ _C2 /1 _ —¢2/4
Inf' = T or [ =Ke . (10.27)

Integrating it again and using the (? = 4£2, we obtain

u= A ‘ e ¥ de = Cerf( )+ D, (10.28)

\/_
where C and D are constants that can be determined from
appropriate boundary conditions. For the same problem as
(10.12), the boundary condition as x — oo implies that C+D =
0, while u(0,t) = To means that D = —C = Tp. Therefore, we
finally have

u = Tp[1 — erf( (10.29)

X x
m)] = Toel‘fC(m) .

O FEzxzample 10.1:  For the similarity solution of the diffusion
equation u; = Kuy,, wWe assume u = (fet)"f(?fv. Now we want to
know why o = 0. Since

uy = ar(kt)*~1f — (kt)*"1kBCS, =(x )a( {;25’
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Techniques for Solving PDEs 10.4 Travelling Wave Solution

the diffusion equation becomes
(kt)*[oef — BCf) = (rt)*—29+1f" = 0.

The requirement that no explicit (time t) appears in the equation
leads to
a=0, a—28+1=0.

Thus,

DN =

a=0, 8=

|

You may think that why not divide both sides of the above

equation by (kt)®, then we do not impose any requirement on

a, thus § = 1—"52 This non-zero « indeed appears in some

nonlinear diffusions equations where the diffusion coefficient is
not a constant and «(u) may depend on u itself.

10.4 Travelling Wave Solution

The travelling wave technique can be demonstrated using the
famous Korteweg-de Vries (KdV) equation

ou ou &u

W + 6u6—m + @ =0, (10.30)
or

ut + 3(u?)z + Uggz = 0, (10.31)

which is a third-order nonlinear partial differential equation.
The interesting feature of this equation is that it has a solitary
wave solution or soliton. The soliton phenomenon was first
observed by John Russell in 1834 when he travelled along the
Union canal in Scotland. Nowadays, telecommunications use
solitons to carry signals in optical fibres.

Now we seek the travelling wave solution in the form

u = ¢(z — vt), (10.32)
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10.5 Green'’s Function Techniques for Solving PDEs

where v is the speed of the travelling wave. By substituting
into the KdV equation, we have

9" + 699’ — v =0. (10.33)

Using (¢%/2)' = ¢¢' and integrating the above equation once,
we have
" +3¢% —vp = A4, (10.34)

where A is an integration constant. The requirement of ¢, ¢/,
¢" — 0 at far field z — o0 leads to A = 0. Let 1 = ¢/, we

get
dyy

- 2 _yod =
¢d¢ +3¢° —vp=0. (10.35)
Integrating with respect to ¢, we get
%1/,2 - B %vqs?. (10.36)

Integrating it again and substituting back to u, we have the
travelling wave solution

u= gsech2[§(z — vt —35))], (10.37)

where ¢ is a constant and v/2 is the amplitude of the wave. We
can see that the speed of the wave depends on the amplitude or
height of the wave. That is to say, big waves travel faster than
smaller waves. For linear wave equations, waves can travel in
both directions, but here it is only possible for the soliton to
travel in one direction, that is along z-axis direction in this
scenario.

10.5 Green’s Function

The method of Green’s function is very powerful in solving
elliptic equations. A Green’s function inside the domain  is
defined as

V2G = AG = 2n8(z — €)6(y — 1)8(z — 6), (10.38)
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Techniques for Solving PDEs 10.6 Hybrid Method

where §(z) is the Dirac delta function. It usually requires that
G = 0 on the boundary surface I'. Generally speaking, G =
G(z,y,2¢,,().

For the hyperbolic equations such as the wave equation, we
can define the Green’s function as

Gu — *AG = d(z — €)d(y — n)d(z = ()6t — 7). (10.39)

The fundamental Green’s function for this case is

1
G(z,y,2,5:6m.(,7) = T—=3[(t - 7) - 2]. (10.40)

The Green’s function method is very complicated, but it can
be very neat in obtaining solutions. Readers can refer to the
literature listed at the end of the book.

10.6 Hybrid Method

Some differential equations can be solved using one of the meth-
ods described above, but often a single method simply does
not work. In this case, a hybrid method that combines several
methods is needed. For example, the Crank’s diffusion problem
in an infinite cylinder is governed by the following equation:

Ou

ot
where k is the diffusion coefficient, and r is the distance in the
polar coordinates. wu(r,t) can be concentration or any other
quantity. Now we want to solve this equation with the following
boundary conditions:

19, Ou
= TE[Tna_'I‘]’ (10.41)

u(r,t) =0, r=a, (10.42)

and
u(r,0) = ¢(r), r € (0,a). (10.43)

First, we use the separation of variables, we have

u(r,t) = v(r)e V<, (10.44)
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10.6 Hybrid Method Techniques for Solving PDEs

then we have the equation for v(r)
n, 1, 2
v -i-;v + Av =0, (10.45)

where v' = dv/dr and ) is a parameter to be determined. This
equation is essentially the Bessel equation of the zero-order
v = 0. Thus, we can now assume that the general solution for
u(r,t) has the following form

u(r,t) = 3" Dido(Nir)e Nk, (10.46)

=1

where D; are undetermined coefficients. The boundary condi-
tion [u(r = a) = 0] requires that

Jo(Aia) =0, (10.47)

which means that parameter \; are the roots of the Bessel func-
tion Jy(A;a) = 0. The initial condition gives

1/)(1“) = i DiJo()\,-r). (10.48)
i=1

Using the basic properties of the Bessel functions

/0 Cror)do(Ar)dr =0, (A £ A;), (10.49)

and ,
/0 rlJo(Ar)Pdr = T-J3(a)), (10.50)
/0 " rdo(Air)dr = TN, (10.51)

the general solution can be written as

= Jo(rTAi) X2kt

2
0= L@

/0 () Jo(rhi)dr.  (10.52)
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Techniques for Solving PDEs 10.6 Hybrid Method

The solution procedure shows that it requires a combination of
separation of variables, Bessel functions, and power series.

0O Example 10.2: If we now want to solve the same diffusion
equation in the cylindrical coordinates with slight different boundary
conditions:

u(r = a,t) = ug = const, u(r,0) = ¢(r),

we have to make a transformation u = w + ug. Both u and w satisfy
the same diffusion equation, but now the boundary conditions for w
become

w(r =a,t) =0, w(r,0) = ¢(r) — up = ¥(r),

which is the problem we have just solved. By substituting u = w+ug
and ¥(r) = ¢(r) — uo and using the properties of Bessel functions,
we finally obtain

L Jo(rA) ey, o 200(TA) e
= 1-= K 2k .
u UO[ Z )\ J (a/\ ]+§—a2Jl2(a)‘i)e IA,,

where I, = [ r¢(r)Jo(rA:)dr. For a very special case when ¢(r) =
0, we have

iy =N 2H(N) sz
U =1Y [1 ; me ].

|

There are other important methods for solving partial dif-

ferential equations. These include series methods, asymptotic

methods, approximate methods, perturbation methods and nat-
urally the numerical methods.
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Chapter 11

Integral Equations

The calculus of variations is important in many optimization
problems and computational sciences, especially the formula-
tion of the finite element methods. On the other hand, integral
equations are a different type of equation and they frequently
occur in applied mathematics and natural sciences. In this
chapter, we will briefly touch these topics.

11.1 Calculus of Variations

The main aim of the calculus of variations is to find a function
that makes the integral stationary, making the value of the
integral a local maximum or minimum. For example, in me-
chanics we may want to find the shape y(z) of a rope or chain
when suspended under its own weight from two fixed points.
In this case, the calculus of variations provides a method for
finding the function y(z) so that the curve y(z) minimizes the
gravitational potential energy of the hanging rope system.

11.1.1 Curvature

Before we proceed to the calculus of variations, let us first dis-
cuss an important concept, namely the curvature of a curve.
In general, a curve y(z) can be described in a parametric form
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11.1 Calculus of Variations Integral Equations

in terms of a vector r(s) with a parameter s which is the arc
length along the curve measured from a fixed point. The cur-
vature k of a curve is defined as the rate at which the unit
tangent t changes with respect to s. The change of arc length

1S
ds — dy 2 — 2
—_— ‘/1+(—) _\/1+y . (ll.l)

We have the curvature

n, (11.2)

where p is the radius of the curvature, and n is the principal
normal. As the direction of the tangent is defined by the angle
6 made with the z-axis by t, we have tanf = y’. Hence, the
curvature becomes

dé dbdc
From 6 = tan~! y/(z), we have
dé =10, 1) y’
—_—=t =—_ 114
=l W) = (11.4)

Using the expression for ds/dx, the curvature can be written
in terms of y(x), and we get

"

Y

d?
K=ol = TG (11.5)

11.1.2 Euler-Lagrange Equation

Since the calculus of variations is always related to some min-
imization or maximization, we can in general assume that the
integrand v of the integral is a function of the shape or curve
y(x) (shown in Figure 11.1), its derivative y’(z) and the spatial
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Integral Equations 11.1 Calculus of Variations

coordinate = (or time ¢, depending on the context). For the
integral
b
I= / ¥(z,y,v)dz, (11.6)
a
where a and b are fixed, the aim is to find the solution of the
curve y(z) such that it makes the value of I stationary. In this

sense, I[y(r)] is a function of the function y(z), and thus it is
referred to as the functional.

a Y+ eC

- T
Figure 11.1: Variations in the path y(z).

Here, stationary means that the small change of the first
order in y(z) will only lead to the second-order changes in val-
ues of I[y(r)], and subsequently, the change I of I should be
virtually zero due to the small variation in the function y(z).
Translating this into the mathematical language, we suppose
that y(z) has a small change of magnitude of € so that

y(z) — y(z) + {(z), (11.7)

where ((z) is an arbitrary function. The requirement of I to
be stationary means that

61 =0, (11.8)
or more accurately,
dI

Sle=0=0,  for all ((z). (11.9)
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Thus I becomes

b
(y ) = / W(z,y + €, ¥ + €C')dx

—/ t/zxy,y)dx+/[e(c—+c ——]dz + O(é®). (11.10)

The first derivative of I should be zero, and we have

oI b o ,
5_e=/a [gw_y“a_i(]dx:(]’ (11.11)

which is exactly what we mean that the change 61 (or the first
order variation) in the value of I should be zero. Integrating
this equation by parts, we have

/b o d oy

oY b
5y ~ Tayt = -5, (11.12)

If we require that y(a) and y(b) are known at the fixed points
z = a and z = b, then these requirements naturally lead to
¢(a) = ((b) = 0. This means that the above right hand side of

the equation is zero. That is,

[ g_j]’; —0, (11.13)
which gives
/ [g’i jmg‘/’]cd (11.14)

As this equation holds for all {(z), the integrand must be zero.
Therefore, we have the well-known Euler-Lagrange equation

o _d oy

B dx(6y ) (11.15)

It is worth pointing out that this equation is very special in the
sense that ¢ is known and the unknown is y(z). It has many
applications in mathematics, natural sciences and engineering.
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Integral Equations 11.1 Calculus of Variations

The simplest and classical example is to find the shortest
path on a plane joining two points, say, (0,0) and (1,1). We
know that the total length along a curve y(z) is

1
L =/ 1+ y2da. (11.16)
0

Since ¥ = /1 + y’? does not contain y, thus %‘—: = 0. From the
Euler-Lagrange equation, we have

d O

— (=) = 17
7(5) =0 (11.17)
its integration is
O y
— =2 __— A 11.18
oy  J1+y? ( )
Rearranging it as
A? A
2 !
= = —_— 11.19
T or y — (11.19)
and integrating again, we have
y=kz+c k= A (11.20)
’ v1-AT '

This is a straight line. That is exactly what we expect from
the plane geometry.

O Example 11.1: The Euler-Lagrange equation is very general
and includes many physical laws if the appropriate form of 1 is used.
For a point mass m following under the Earth’s gravity g, the action
(see below) is defined as

2

1.
¥ =smv® —mgy = Em(y)2 - mgy,

where y(t) is the path, and now z is replaced by t. v = y is the
velocity. The Euler-Lagrange equation becomes

o0 _d 0w,
dy  dt v’
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11.1 Calculus of Variations Integral Equations

or d
—mg = a(mv),
which is essentially the Newton’s second law F = ma because the
right hand side is the rate of change of the momentum mv, and the
left hand side is the force.
(H|

Well, you may say, this is trivial and there is nothing new
about it. This example is indeed too simple. Let us now study
a more complicated case so as to demonstrate the wide appli-
cations of the Euler-Lagrange equation. In mechanics, there is
a Hamilton’s principle which states that the configuration of
a mechanical system is such that the action integral I of the
Lagrangian £ =T — V is stationary with respect to the varia-
tions in the path. That is to say that the configuration can be
uniquely defined by its coordinates ¢; and time ¢, when moving
from one configuration at time ¢y to another time ¢ = tx

t'
I=[ C(t,q,d)dt, i=12,.,N, (11.21)
0

where T is the total kinetic energy (usually, a function of ¢;),
and V is the potential energy (usually, a function of ¢). Here
¢; means
gi = % (11.22)
i = .
In analytical mechanics and engineering, the Lagrangian £
(=Kinetic energy - Potential energy) is often called the action,
thus this principle is also called the principle of least action.
The physical configuration or the path of movement follows
such a path that makes the action integral stationary.
In the special case, *+ — t, the Euler-Lagrange equation

becomes

oL d oL
which is the well-known Lagrange’s equation. This seems too
abstract. Now let us look at a classic example.

(11.23)
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Figure 11.2: A simple pendulum.

O Example 11.2: For a simple pendulum shown in Figure 11.2,
we now try to derive its equation of oscillations. We know the kinetic
energy T and the potential energy V are

T= mlz((ji—Z)2 = %mlzéz, V = mgh = mgl(1 — cos0).

1
)

Using L=T -V, q=20 and § = 6, we have

which becomes

d 24
i =0.
mglsin 6 : (ml*6)
Therefore, we have the pendulum equation

d’0 ¢
— + =sinf=0.
a0 + 7 sin
This is a nonlinear equation. If the angle is very small (6 < 1),
sinf = 0, we then have the standard equation for the linear harmonic
motion
d?9

9y _
W'I'TO—O.
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11.1.3 Variations with Constraints

Although the stationary requirement in the calculus of varia-
tions leads to the minimization of the integral itself, there is
no additional constraint. In this sense, the calculus of varia-
tion discussed up to now is unconstrained. However, sometimes
these variations have certain additional constraints, for exam-
ple, the sliding of a bead on a hanging string. Now we want to
make the integral I stationary under another constraint inte-
gral @ that is constant. We have

b
I= / Y(z,y,y')dz, (11.24)
subjected to the constraint
b
Q= / o(z,y,y')dz. (11.25)
a

As for most optimization problems under additional constraints,
the method of Lagrange multipliers can transform the con-
strained problem into an unconstrained one by using a com-
bined functional J = I + AQ or

J=/:[1/J+/\¢]dz, (11.26)

where A is the undetermined Lagrange multiplier. Replacing
1 by [ 4+ A@] in the Euler-Lagrange equation or following the
same procedure of the derivations, we have

o d oY d 0¢

[% - %(3—?/)] - E(a—y’)] =0.

Now we can come back to our example of the hanging rope

problem with two fixed points. The total length of the rope is
L, and it hangs from two fixed points (—d,0) and (d,0). From
the geometric consideration, it requires that 2d < L. In order
to find the shape of the hanging rope under gravity, we now
define its gravitational potential energy E,, as

+ ,\[g—‘z (11.27)

d d
By = [ loau(z)ds = pg [ u/1+yde.  (1138)
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The additional constraint is that the total length of the rope is
a constant (L). Thus,

d
Q =/ 1+y2dc=L. (11.29)
-d

By using the Lagrange multiplier A, we have J = E, + A@, or
d

J= / [pgy + A\|\/1 + y2dz. (11.30)
-d

Since ¥ = [pgy + A]\/1 + y™ does not contain z explicitly, or

;,L = 0, then the Euler-Lagrange equation can be reduced into

a simpler form in this special case. Using

dv 9V + o ov dy + ov dy’
dz oz By dz ' Oy dz

ov ov
=0+y —+9y'—, 31
+y 5y +y ] (11.31)
and the Euler-Lagrange equatlon ( %), we have
d\II d 6\1/ ,,6\11 _ 6\1'
which can again be written as
d ,00
—[¥ -y —]=0. 11.
¥ -¥551=0 (11.33)
The integration of this equation gives
, 00
v — yF—A—const (11.34)

Substituting the expression of ¥ into the above equation, the
stationary values of J requires

St v - v __ A (11.35)
VI+y?  pgy+ A
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Multiplying both sides by /1 + y’2 and using the substitution
Acosh( = pgy + A, we have

y? =cosh?( -1, (11.36)

whose solution is

—1;P9Y + A, _ xpg
S =g K

h
cos 2

(11.37)
Using the boundary conditions at z = +d and the constraint
Q = L, we have K = 0 and implicit equation for A

pgd) pgL

sinh( 5i (11.38)

Finally, the curve for the hanging rope becomes the following
catenary

(x)——[c h("gz) sh(p%l)]. (11.39)

O Example 11.8: For the hanging rope problem, what happens
if we only fix one end at (a,0), while allowing the free end of the
hanging rope to slide on a vertical pole? Well, this forms a variation
problem with variable end-point(s). We assume that free end is at
(0,y) where y acts like a free parameter to be determined. Now the
boundary condition at the free end is different. Since the variation
of 1 =0, we have

8= [15 - 2elgmlcde + 151 =

As the variation ( is now non-zero at the free end point, we then have

0w _
oy

From J = E, + AQ, we have ¥ = (pgy + A)\/1 + y"2. Thus, we get

9
a—y,[(pgy +A)V1+y?]=0
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or
Y(pgy+N)/V1+y?2=0, or ¢ =0.
In other words, the slope is zero at the free end. 0

Such a boundary condition of ¥’ = 0 has the real physical
meaning because any non-zero gradient at the free end would
have a non-zero vertical component, thus causing the vertical
slip along the rope due to the tension in the rope. The zero-
gradient leads to the static equilibrium. Thus, the whole curve
of the hanging rope with one free end forms half the catenary.

O Exzample 11./4: Dido’s problem concerns the strategy to enclose
a maximum area with a fixed length circumference. Legend says
that Dido was promised a piece of land on the condition that it was
enclosed by an oxhide. She had to cover as much as land as possible
using the given oxhide. She cut the oxhide into narrow strips with
ends joined, and a whole region of a hill was enclosed.

Suppose the total length of the oxhide strip is L. The enclosed
area A to be maximized is

a=[ " y(zyaz,

a

where z, and x, are two end points (of course they can be the same
points). We also have the additional constraint

To
/ V1 +y"2dz = L = const.

This forms an isoperimetric variation problem. As L is fixed, thus
the maximization of A is equivalent to make I = A + )L stationary.

That is .
I=A+)\L=/ ¥+ AV1 +y7?da.
Using the Euler-Lagrange equation, we have

or_dor _
dy dz Oy
or

o = d 0 = _
3—y[y+)~v1+y ]+Ea—y,[y+)\\/1+y ]=0,
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which becomes ,
124 (y_) =

dz \\/T+y2

Integrating it once, we get
Ay
/ 1 + y12

where K is the integration constant. By rearranging, we have

=z + K,

y=rStK
Integrating this equation again, we get
y(@) =FV/¥ - @+ K)? +B,
where B is another integration constant. This is equivalent to

(x+K)2+ (y- B)? =12,

which is essentially the standard equation for a circle with the centre
at (—K,B) and a radius A. Therefore, the most area that can be
enclosed by a fixed length is a circle. O

An interesting application is the design of the slides in play-
grounds. Suppose we want to design a smooth (frictionless)
slide, what is the best curve/shape the slide should take so
that a child can slide down in a quickest way? This problem is
related to the brachistochrone problem, also called the short-
est time problem or steepest descent problem, which initiated
the development of the calculus of variations. In 1696, Johann
Bernoulli posed a problem to find the curve that minimizes the
time for a bead attached to a wire to slide from a point (0, k)
to a lower point (a,0). It was believed that Newton solved it
within a few hours after receiving it. From the conservation
of energy, we can determine the speed of the bead from the
equation %mv2 + mgy = mgh, and we have

v=/2g9(h —y). (11.40)
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So the total time taken to travel from (0, k) to (a,0) is

a a !
t= [ Las VITYE (11.41)

0o v - o V29(h—v)
Using the simplified Euler-Lagrange equation (11.34) because

the integrand ¥ = /1 + y?/\/2g(h — y) does not contain z
explicitly, we have

(1+y?) Ii[ (1+y?2)
2g9(h - y) oY\ 29(h —y)

By differentiation and some rearrangements, we have

| = A. (11.42)

B-h+y 1
12—— =
= h_y , 2g7. (11.43)

By changing of variables n = h —y = -g-(l — cosf) and inte-
grating, we have

= g[@ —siné] + k, (11.44)

where 8 < 7 and k is an integration constant. As the curve
must pass the point (0,h), we get £ = 0. So the parametric
equations for the curve become

zT= g(O—sinO), y=h—§(1 — cos B). (11.45)

This is a cycloid, not a straight line, which seems a bit surpris-
ing, or at least it is rather counter-intuitive. The bead travels
a longer distance, thus has a higher average velocity and sub-
sequently falls quicker than traveling in a straight line.

11.1.4 Variations for Multiple Variables

What we have discussed so far mainly concerns the variations in
2-D, and subsequently the variations are in terms y(z) or curves
only. What happens if we want to study a surface in the full 3-
D configuration? The principle in the previous sections can be
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extended to any dimensions with multiple variables, however,
we will focus on the minimization of a surface here. Suppose
we want to study the shape of a soap bubble, the principle of
least action leads to the minimal surface problem. The surface
integral of a soap bubble should be stationary. Now we assume
that the shape of the bubble is u(z,y), then the total surface
area, is

A(w) = / ] Vdedy = // \/1+ 2+ )2d dy, (11.46)

where

\I:=\/1+(%)2+(g—2)2= ,/1+u§+u§. (11.47)

In this case, the extended Euler-Lagrangian equation for two
variables z and y becomes

ov_o 0w o 0v
Ou Oz 0uz” Oy Ouy

0. (11.48)

Substituting ¥ into the above equation and using ‘?E‘I’ =¥,=0
since ¥ does not contain u explicitly, we get

0 . 10u, 0 10u
_az[ﬁaz] By[\IIBy] (11.49)
or

(1 + u2)uzz — 2uguy + (14 u2)uyy = 0. (11.50)

This is a nonlinear equation and its solution is out of the scope
of this book. This nonlinear equation has been one of the active
research topics for more than a century. It has been proved that
the fundamental solution to this equation is a sphere, and in
fact we know that all bubbles are spherical. For some problems,
we can approximately assume that u, and u, are small, thus
the above equation becomes Laplace’s equation

Uz + Uyy = 0. (11.51)
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The calculus of variations has many applications. The other
classical examples include Fermat’s principle in optics, Sturm-
Liouville problem, surface shape minimization, the action prin-
ciple, and of course the finite element analysis.

11.2 Integral Equations

From the calculus of variations, we know that the unknown
y(x) to be optimized is inside the integrand of I. In certain
sense, this is an integral equation. In fact, many physical
processes and laws of conservation are expressed in terms of
integral forms rather than their differentiation counterparts.
Naturally, one of the ways of constructing an integral equa-
tion is to integrate from a differential equation. Integral equa-
tions are much more complicated compared with the differential
equations. There is no universal solution technique for nonlin-
ear equations, even the numerical simulations are usually not
straightforward. Thus, we will mainly focus on the simplest
types of integral equations.

11.2.1 Linear Integral Equations
Fredholm Integral Equations

A linear integral equation for y(z) can be written in the follow-
ing generic form

b
u(z) + A [ K@ my(n)dn = v(z)y(), (10.52)

where K (z,n) is referred to as the kernel of the integral equa-
tion. The parameter A is a known constant. If the function
u(z) = 0, the equation is then called homogeneous. If u(z) # 0,
the equation is inhomogeneous.

If the function v(z) = 0, then the unknown y(z) appears
only once in the integral equation, and it is under the integral
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sign only. This is called the linear integral equation of the first
kind

b
u(x) + A / K(z,m)y(n)dn = 0. (11.53)

On the other hand, if v(z) = 1, equation (11.52) becomes the
integral equation of the second kind

b
uw)+ A [ K@nymdn =y@. (1154

An integral equation with the fixed integration limits a and b,
is called a Fredholm equation. If the upper integration limit
b is not fixed, then the equation becomes a Volterra equation.
The integral equation becomes singular and at least one of its
integration limits approaches infinite.

Volterra Integral Equation

In general, the Volterra integral equation can be written as
T
u(z) + A [ K(znjymdn = v(z)y(z). (11.55)
a

The first kind [or v(z) = 0] and second kind [or v(z) = 1] are
defined in the similar manner.

The kernel is said to be separable or degenerate if it can be
written in the finite sum form

N

K(z,n) =) fi(x)gi(n), (11.56)

=1

where f;(z) and g;(n) are functions of z and 7, respectively. A
kernel is called a displacement kernel if it can be written as a
function of the difference (x — 7) of its two arguments

K(z,n) = K(z - 7). (11.57)
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11.3 Solution of Integral Equations

Most integral equations do not have closed-form solutions. For
linear integral equations, the closed-form solutions are only pos-
sible for the special cases of separable and displacement kernels.

11.3.1 Separable Kernels

For a Fredholm integral equation of the second kind with sep-
arable kernels, we can substitute the kernel (11.56) into the
equation and we have

» N
() + A / 3 fi(@)g(n)dn = y(), (11.58)
a ;5

1=

which becomes
N b
u(z) +A Y fia) [ gi(m)dn = y(a) (11.50)
i=1 a

Because the integration limits are fixed, the integrals over n
should be constants that are to be determined. By defining

b
ai = [ aitny(man, (11.60)
we now have the solution in the form
N
y(2) = u(z) + AY_ aifi(x), (11.61)
i=1

where the N coefficients o; are determined by

b N b
% =/ gilmu(mdn + 23 / leifi(m)gi(m)dn,  (11.62)
¢ i=17a

fori=1,2,...,N. Only for a few special cases, these coefficients
can be written as simple explicit expressions.
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11.3.2 Displacement Kernels

For a singular integral equation with a displacement kernel, the
equation can be solved by Fourier transforms if both integration
limits of the integral are infinite. In this case, we have

u(z)+ A [ K(e = ny(ndn = (o). (11.63)

Using the Fourier transforms and the convolution theorem, we
have

U(w) + \W2rK (W)Y (w) = Y (w), (11.64)

which is an algebraic equation for Y (w). Its solution is simply

o U(w)
Y = T3k

The solution y(z) can be obtained using the inverse Fourier
transform

(11.65)

_L ® U(W) LT
Vo) = 7r | ToWErR @ (11.66)

11.3.3 Volterra Equation

A Volterra equation with separable kernels may be solved by
transforming into a differential equation via direct differentia-
tion. In the case of a simple degenerate kernel

K(z,n) = f(@)g(n), (11.67)
we have
v(@) = u@) + A [ f(@)omutnidn (11.68)
which becomes
u(@) = u(@) + M (@) [ amutnydn (11.69)
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If f(z) #0, it can be written as

% = +A / g(my(n)dn. (11.70)
Putting ¢(z) = u(x)/f(x) and differentiating it, we have
2 f(x)] = ¢/(z) + Ag(z)y(<). (11.71)

By letting ¥ = y(z)/f(z), we have
V'(z) - Mf(2)9(2)¥(z) = ¢'(2), (11.72)

which is a first-order ordinary differential equation for ¥(z).
This is equivalent to the standard form

¥ + P(z)¥ = Q(z), (11.73)
and

P(z) = -\ f(@)e(z).,  Qz)= [“‘ )] (11.74)

We can use the standard technique by multiplying the integrat-
ing factor exp[[ P(x)dz] to obtain the solution. We get

y(z) = f(z)fe S P@) / Q(z)e] P@%=ldz}.  (11.75)

With appropriate boundary conditions, the exact form of the
solution can be obtained.

O Example 11.5: Let us try to solve the integral equation of
Volterra type

v@) = e+ [ e sin(Qu(c)ic
First, we divide both sides by e, we get

1 = 1+ [ sin(owic)ac,
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whose differentiation with respect to x leads to

[y(w)

2 = y(@)sin(a),

or
T

~¥/(@) - (@) = y(@)sina)

Divide both sides by y(x) and using [Iny(z)]’ = y'(z)/y(z), we have
(Iny(z)) = e®sinz + 1.

By direct integration, we have

1 .
Iny(z) =z — s€" cosz + ze”sinz.

2 2
Thus, we finally obtain

y(x) = explz — %(cosx — sinz)].

]

There are other methods and techniques of solving integral

equations such as the operator method, series method and the

Fredholm theory. However, most integral equations do not have

closed-form solutions. In this case, numerical methods are the
best alternative.
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Chapter 12

Tensor Analysis

Many physical quantities such as stresses and strains are ten-
sors. Vectors are essentially first-order tensors. Tensors are the
extension of vectors, and they can have any number of dimen-
sions and any orders, though most commonly used tensors are
second order tensors.

12.1 Notations

In tensor analysis, the Einstein summation convention or Ein-
stein notations ! and notations for subscripts are widely used.
Any lowercase subscript that appears exactly twice in any term
of an expression means that sum is over its all possible values
of the subscript. For example, in the three-dimensional case,
we have

3
o = Zaixi = o111 + Ty + a3rs. (12.1)
=1
3
A;Bji = AijBji = Aj By + AipBok + Ai3Ba..  (12.2)
=1

This notation convention was introduced by Albert Einstein in 1916
when formulating the theory of General Relativity.
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Qi _ g g O du Ous
dz; ~ ~ 35, 9z,  Bas (123)

The Kronecker delta 4;; which is a unity tensor (like the unity
matrix I in matrix analysis), is defined as
1 (if i =j),
0 (if 7 # 7).
For a tensor with three subscripts similar to 4;;, the Levi-Civita
symbol or tensor is defined as

8 = { (12.4)

—1 if (i,j, k) is an odd permutation of (1,2, 3),

+1 if (i,j, k) is an even permutation of (1,2, 3),
€ijk = {
0 (otherwise).

(12.5)
The tensors 4;; and ¢;;;, are related by

€ijk€kpq = OipOjq — digljp. (12.6)
Using the summation conventions, the matrix equation
Ax =b, (12.7)
can alternatively be written as

Aij.'l:j = bi, (1. = 1, 2, ,n) (12.8)

12.2 Tensors

When changing the bases from the standard Cartesian e; =i,
e2 = j, e3 = k to a new set of bases €}, €5, 3, a position vector
X = (z1,%2,z3) in the old bases is related to the new vector
x' = (z1,z5,23) in the new bases by a coefficient matrix S;;.
S;; can be the rotation, translation, enlargement or any of their
combinations. For example, the matrix for a simple rotation,
with an angle of § around a fixed axis, S;; becomes

cosf@ sinf 0
Sij=| —sin@ cosf 0 |. (12.9)
0 0 1
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The orthogonality of S;; requires that SST=8TS=Tor
Sij Sk = ik, SkiSkj = ij. (12.10)

If the components u; of any variable u are transformed to the
components u; in the new bases in the same manner as

then u;(¢ = 1,2,3) are said to form a first-order Cartesian
tensor (or vector in this case). If components of a variable such
as strains o;; are transformed as

/
g,

i SiijqO'pq, 0;; = Spisqu’;,q, (12.12)

we say these components form a second-order tensor.

The order of a tensor is also called its rank. Scalars have
rank zero, vectors have rank 1, and second-order tensors have
rank 2. In engineering and computing, the rank is associated
with the number of indices to describe a tensor in terms of a
multidimensional array. In this sense, a second-order tensor is
equivalent to a two-dimensional array or a matrix.

In a similar fashion, higher-order tensors can be defined,
and for each order increase, then there is one S;; extra in the
product for transforming, but no subscripts are allowed to ap-
pear more than twice

7.k = SipSig---SkrTpg...rs (12.13)
and

Tijk = SpiSqj.--SrkTpg..r- (12.14)
12.3 Tensor Analysis

Tensors in Cartesian Coordinates

One of the main advantages of tensors is that a tensor is in-
dependent of any chosen frame of reference. Therefore, any
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physical laws or equations that are formulated in terms of ten-
sors should be independent of frame of reference. For example,
the stress -strain relation in linear elasticity is independent of
frame of reference (for details see next chapter)

0:j = 2p€;; + Aerkdij, (12.15)

where o;; and ¢;; are the stress tensor and strain tensor, re-
spectively. 1 and A are Lamé constants.

In the similar way as multi-dimensional arrays or matri-
ces, two tensors can be added or subtracted component-by-
component if and only if they are the tensors of the same order.
For second-order tensors, a tensor 7;; is said to be symmetric
if 7;; = 7j, and antisymmetric if 7;; = —7j;. An interesting
property of a tensor 7;; is that it can always be written as a
sum of a symmetric tensor and an antisymmetric tensor

1 1 )
Tij = 5(7‘,‘]’ + 7ji)[sym.] + E(Ti]’ — 7j;)[antisym.]. (12.16)

All the formulas in vector analysis can be rewritten in the
tensor forms using the summation convention and notations

u- v = uv; = 030, (12.17)
0%y oy
2,0 — 4.
V= Oz;0z; 8 0z;0z;’ (12.18)
Hu
V x (V X u)i = fijkfkpqw.xqp. (1219)

Similarly, the divergence theorem can be rewritten as the fol-
lowing form

Ou;
v Ox;
The tensor forms are sometimes useful to the proof of the com-

plex relationship among vectors and tensors. They also become
handy for the implementation of numerical algorithms.

i gy — j[ windS. (12.20)

176



Tensor Analysis 12.3 Tensor Analysis

Using the tensor notations, we have the identity J,;4; = A;.
The cross product A x B can be expressed as

C; = eijkAjBk. (12.21)

Another way of denoting the derivatives of tensors ¢ and v
is to use following notations

Oo 82’01’

;= — Yk = ——
) or; ’ t,5k 8xj(9xk )

where the index of the spatial component z; is denoted by a
comma, to avoid any potential confusion with other indices.
With these notations, the important operators involving the
V-operator can be written as

(12.22)

gradg = ¢,i = V¢, (12.23)
Vi =i = A, (12.24)

and

%uy  Puz  Pug
0x1? * 8re?  9x3®
A very special case is that

Vv=uv;;= (12.25)

zij = 0. (12.26)

0O Ezample 12.1: Let us now use the tensor notations to prove
ax (bxc)=b(a-c)— c(a-b). From above expressions for cross
products, we know that

a X (b X C) = €45k Qj (ekqupcq) = eijkekpqajbpcq
= (dipdjq — 0iqljp)ajbpcq = 8ipbp(djqa;cq) — 8igCq(djpa;by).
Using 8;,b, = b and d;qcq = ¢, we have
a(b x ¢) = b(djqa;¢4) — c(d;pa;bp).

By renaming the indices (j — i and ¢ — j) so that djqa;c, =
d;ja;c; = a - ¢ and é;,a;b, = a - b, we finally obtain

ax(bxe)=b(a-¢c)—c(a-b).

177



12.3 Tensor Analysis Tensor Analysis

Tensors in Non-Cartesian Coordinates

The tensors we have discussed so far are expressed in Carte-
sian coordinates. In non-Cartesian coordinates, they are more
complicated. Tensor analysis is very important in theoretical
physics and differential geometry where formal mathematical
theory is required. In fact, many books on tensor analysis use
a modern approach in terms of tensor duality, covariance and
contravariance concepts. In the simplest term, a tensor such
as a vector v can be expressed as the sum of its components
multiplying by the basis vectors

v =v'e; = y;el, (12.27)

where v;(i = 1,2,3) are called the covariant components of v
in the contravariant basis vectors e‘, while v*(i = 1,2,3) are
called the contravariant components of v in the covariant basis
vectors e;. For the curvilinear coordinates (gi,g2,¢3) at any
point P on a position vector r(g;, g2, g3), the basic vectors are
given by

e=— e€=Vg, (i=1,23), (12.28)
9g;’

where e; and e* are reciprocal systems of vectors, and e - e; =
5’ where 6‘ acts 1n the similar way as d;;. In many books on
tensm anaJySIS, €' is also written as €; = e'.

Furthermore, the tensor product (also called outer product)
of two tensors is rather complicated. For example, the tensor
product u® v = uvT of two vectors u and v is given by

ul Ui1v1 U1V UuU1vV3
uv =\ ug ®(v1 v2 v3) = UV UV uUgv3 |. (12.29)
u3 u3gv; u3v2 u3v3

Using these basis vectors, we can write a second-order tensor
in terms of covariant components 0;; and contravariant com-
ponents o¥ as

o =0;; ei®ej =aijei®ej. (1230)
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In a given frame of reference, the fundamental metric tensor is
defined by
Ggi; = €; - ¢€;. (12.31)

This tensor is always symmetric g;; = g;;, its determinant g =
|9i;| = det(gi;) is related to the Jacobian J = /7.

The derivatives in non-Cartesian coordinates are far more
complicated, and they usually involve the Christoffel coeffi-
cients Ff] =ek. %%. For example, the divergence of a vector
is defined by the covariant differentiation u’] orV.-u= u’J =
%g—j+r{ jui = u]J+Ff jui. It is worth pointing out that e; and €'
become identical and I‘i‘, = 0 in Cartesian coordinates, and it
is therefore not necessary to distinguish the contravariant and
covariant vectors and components.

Mathematically speaking, the formal approach is preferred.
In engineering mathematics, however, the simple formulation in
terms of multidimensional arrays in Cartesian coordinates is a
more convenient approach, especially from the computational
point of view. That is why we have used an over-simplified
approach here. In the next chapter, we will study the theory
of linear elasticity as an application of tensor analysis.
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Chapter 13

Elasticity

13.1 Hooke’s Law and Elasticity

The basic Hooke’s law of elasticity concerns an elastic body
such as a spring, and it states that the extension z is propor-
tional to the load F, that is

F =kz, (13.1)

where k the spring constant. However, this equation only works
for 1-D deformations. For a bar of uniform cross-section with
a length L and a cross section area A, it is more convenient to
use strain ¢ and stress 0. The stress and strain are defined by
AL
Ta
where AL is the extension. The unit of stress is N/m?, while the
strain is dimensionless, though it is conventionally expressed in
m/m or % (percentage) in engineering. For the elastic bar, the
stress-strain relationship is

F
o= €= (13.2)

o = E, (13.3)

where E is the Young’s modulus of elasticity. Written in terms
F and z = AL, we have
PoEAs ke ko EA

= , (13.4)
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where k is the equivalent spring constant for the bar. This
equation is still only valid for any unidirectional compression
or extension. For the 2-D and 3-D deformation, we need to
generalize Hooke’s law. For the general stress tensor (also called
Cauchy stress tensor)

Oxx Ozy Oz 011 012 013
g = Oyz Oyy Oy = 091 092 093 |, (135)
Ozx Oy Oz 031 032 033

and strain tensor

€rx Ezy Egz: €11 &12 €13
E=| Cyz Eyy &y | =| €21 €22 €23 |, (13.6)
€z Exy €z €31 €32 €33

it can be proved later that these tensors are symmetric, that is
o =0T and £ = €7, which leads to

Ozy = Oygy Oz =05, Oy, =0y, (13.7)

and
Ery = €yz, Ezz = Exz, Eyz = Ezy. (13.8)

Therefore, we only have 6 independent components or unknowns
for stresses and 6 unknown strain components.
The strain tensor is defined by the displacement u? =

(u1,u2,u3)
1, 0u;

€15 = | cm—

4 2 (a:t]

where 1 = z, 9 = y, and 3 = z. Sometimes, it is useful to
write

+ %), (13.9)

€= %(Vu + VuT). (13.10)
The generalized Hooke’s law can be written as
1
€xz = E[U” — V(0yy + 0:2)], (13.11)
1
Eyy = E[ayy — V(022 + 022)), (13.12)
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€ae = %[0;; —U(0zz +0yy)), (13.13)
Eay = HTV"W’ (13.14)
£ae = = e, (13.15)
Eys = HT”ay;, (13.16)

where v is the Poisson’s ratio, and it measures the tendency
of extension in transverse directions (say, z and y) when the
elastic body is stretched in one direction (say, z). It can be
defined as the ratio of the transverse contract strain (normal
to the applied load) to the axial strain in a stretched cylindri-
cal bar in the direction of the applied force. For a perfectly
incompressible material, v = 0.5, and v = 0 ~ 0.5 for most
common materials. For example, steels have v = 0.25 ~ 0.3.
Some auxetic material such as polymer foams or anti-rubbers
have a negative Poisson’s ratio v < 0.
This generalized Hooke’s law can concisely be written as
e = ”T”aij - Zudi, (13.17)
where we have used the Einstein’s summation convention oy, =

Ozz+0yy+0:.. Another related quantity is the pressure, which
is defined by

p= _%akk =-Z=t U;’;”" 2o (13.18)

The negative sign comes from the conventions that a positive
normal stress results in tension, and negative one in compres-
sion, while the positive pressure acts in compression. Some-
times, it is more convenient to express the stress tensor in terms
of pressure and devitoric stress tensor s;;

Oy =— 5,']' + 8ij. (13.19)
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If we want to invert equation (13.17), we have first express
okk in terms of e so that the right hand side of the new
expression does not contain the stress o;;. By contraction using
7 — 1, we have

1+v v 6“—1_2”
Tan_’fakk W= T F

where we have used §;; = 811 +d2+d33 =14+1+1=3 and
0ii = Okk. In engineering, the quantity

uy  O%uy  O%us
Ekk = Exx +€yy +é& = 6.’132 + 6'!/2 + 622 =V. u, (1321)
means the fractional change in volume, known as the dilation.
This gives that

oii, (13.20)

i =

E
Oy = Okk = 1— 2I/Ekk' (13.22)
Substituting it into equation (13.17), we have
1+v v, E
€y = Tdij - E(mﬁkk)(s,:j, (13.23)
or after some rearrangement
1+v v
—F 0iu =i + makkéﬁ, (13.24)
which can be written as
0ij = 2Gei; + Aekrdij, (13.25)
where p and A are Lamé constants. They are
E vE
This stress-strain relationship can also be written as
o =2Ge + A(V - u)d. (13.27)

In engineering, G = p is called the shear modulus, while K =
ﬁ is called the bulk modulus which is the ratio of pressure
—p to the volume change AV.

184



Elasticity 13.2 Maxwell’s Reciprocal Theorem

13.2 Maxwell’s Reciprocal Theorem

For an elastostatic problem, the balance of force leads to
V.o+b=0, (13.28)

where b is the body force or force per unit volume. For a small
cube volume element, the total body force df; along the z;-axis
is
dfi = —db; = i gy, (13.29)
Ox;
here we have used the index summation conventions. Similarly,
the total force along the j-axis is
doji
df; = 6_:v,'dV (13.30)
Since there is no relative rotation of the cube element because
the cube element must be at rotational equilibrium, thus the
result moment must be zero. Taking the moment of the two
force components about any point (say, a corner of the cube).
This leads to
O35 = Oji, (1331)

which means the stress tensor is symmetric. This is in fact the
compatibility condition for stresses.

Alternatively, consider a cube element at rotational equi-
librium with a volume dV = ézéydz, and the dimensions of the
elements are dz, 0y and &z, respectively. We consider the forces
along the four faces that are parallel to z-axis (shown in Figure
13.1). If we take the moment about a line which is parallel
to z-axis and goes through one corner point, we only have to
consider the two faces that are far from this point because the
two faces through this point do not contribute to the moment.
The forces on the two faces are 0,,dA,dy and o,,dAsdx where
the surface areas are dA; = dzéz and dAy; = dydz. The total
moment about point D is

OzydV — 0yzdV = 0. (13.32)
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Thus, 6,, = 0y,. Similar arguments for other faces along z-
and y-directions about any other points and we have 0;; = 0;;.

___s‘__
N

’
, oz

oy
Figure 13.1: A cubic element in an elastostatic body.

Using the stress-strain relationship, it is straightforward to
prove that the strain tensor is also symmetric (&;; = ¢;;). In
engineering, this tensor is often written as

Or Try Tzz
O=| Toy 0y Ty: |» (13.33)
Tez Ty= O:

so as to emphasize that the non-diagonal elements are for shear
components T, etc.

From the matrix algebra, we know that a square matrix can
always be expressed in terms of eigenvalues and eigenvectors.
For the stress tensor, the eigenvalue problem

(-0 =0, (13.34)

provides the the principal stresses 0;(i = 1,2,3) (eigenvalues)
and their principal directions i7 = nj,nz2,n3 (eigenvectors).
In the coordinate system formed by the three eigenvectors, the
stress is expressed by the three principal stresses along three
principal directions, and there are no shear stress components.

The non-trivial solutions require the determinant of the co-
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efficient matrix must be zero. That is

Oz —0 Ty Tos
Tey Oy—0 Ty: |=0. (13.35)
Taz Ty: 0,—0

It can be expanded into a cubic equation
a® — (0 +0y+ cr;)o2

+[020y + 040 + 0205 — (T2, + T2, + 72.)]0
—[UnyU; + QTxyTy::Tz- (UxT + O'yT +o; T ) =0. (1336)

There are three invariants (I1, I and I3) for the second-order
symmetric stress tensor o0;;, and these invariants satisfy the
characteristic equation

03— No*+ Lo —I;=0, (13.37)
where
Iy =tr(o;) =0, +0,+ 0., (13.38)
Iy = 0,0y + 040 + 005 — (12, + ‘ry2; +72.), (13.39)
and
I3 = 0040 + 2Ty TysTaz — ( + O'yT + 0. 7' ) (13 40)

Under appropriate transformations, this tensor can be trans-
formed into a diagonal form

gy 0 0
0ij — 0 oo 0 |, (13.41)
0 0 o3

where 01,02, 03 are principal stresses. Written in terms of prin-
cipal stresses, the three invariants become

L=014+00+ o3, (13.42)
12 = 0109 + 0903 + 0307, (1343)
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and
I3 = 010903. (13.44)

Now consider an elastic body when n concentrated load
f;.fa, ..., f, acted upon the body at n different points. The dis-
placements at each point in the direction of the corresponding
force are q1,492,...,9r. For a linear elastic body, the principle
of superposition applies and we have

a1 =Cufi+Ciafa+ ... + Cinfr, (13.45)
a2 =Cnfi+Cufs+..+Confn, (13.46)
an =Cn1f; +Cr2fa + ... + Confp, (13.47)

where C;; are the influence coefficients or flexibility matrix.
The total work done due to this set of loads is

1 n
= EZfi - q;. (13.48)

There is a very useful theorem concerning these coefficients.
It is called Maxwell’s reciprocal theorem or Maxwell-Betti the-
orem, which states that the influence coefficients (or flexibility)
matrix is symmetric C;; = Cj;. That is to say, the displace-
ment at point ¢ due to a unit load at another point j is equal
to the displacement at j due to a unit load at point i. This
theorem is essentially equivalent to say the displacements are
path-independent and independent of the order of the loads
applied upon the elastostatic body.

For two forces f; and f;, the final displacements are the
same where f; is applied first, then f;, or f; is applied first
then f;, or even both are applied at the same time. In other
words, the system has no memory of the load history. In the
case of only two forces, we first apply f; slowly (so as to reduce
the dynamical effect) with f;j = 0, the displacement of point
i is C;; f; and the displacement of point j is Cj; f;. The work
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done is %Cii f? where f? = f; - f;. Now with f; kept fixed, we
apply f; slowly, the additional displacement at point i is C;; f;
and the additional displacement at point j is Cj; f;- In this
case, the extra work done is Cj;f; - f; + §C;;f?. The total work
done at the final state is

W= %C’ﬁff + %ijff +Cij(f - £;). (13.49)

If follow the same procedure but slowly apply f ; first, then
f;, the total work done is now

1 1
W= EC""f'? + Ecjjff + Cji(fs - £5). (13.50)

As the total work done should be independent of the order in
which the loads are applied, this requires W = W, which leads
to

Cij(fi - f5) = Cju(fi - ). (13.51)

Since f; - fj is a dot product and thus a scalar, we now get
Ci; =Cji. (13.52)

This completes the proof of the Maxwell’s reciprocal theorem.
This theorem is the important basis for boundary element anal-
ysis and virtual work method in computational engineering.

13.3 Equations of Motion

For a general solid where the inertia is not negligible, we have

2
v -a+b=p%, (13.53)

where p is the density of the elastic body. In some books,
the following form of body force b = pf is used, in this case,
the force f means the force per unit mass. Together with the
generalized Hooke’s law and relationship with displacement u,
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we have the following set of equations of motion for an elastic
body.

0o ; 0%y,
S TV =P 13.54
0ij = 2Geij + Aerdij, (13.55)
C1,0u; | O
Cij = 5(6—% + a_a:i)' (13.56)

There are 15 equations (6 for stresses, 6 for strains, 3 for dis-
placement) and we have 15 unknowns (6 stress components, 6
strain components and 3 displacements). Therefore, the elastic
field should be uniquely determined if appropriate boundary
conditions are given. There are other compatibility equations
as well, and we will briefly discuss them later.

If we write the equations of motion using the bold font
notations, we have

2
V-o+b=p?9t—g',, (13.57)
o =2Ge + A\(V - u)éd, (13.58)
€= %(Vu + VauT). (13.59)

If we substitute the generalized Hooke'’s law and displacement
into the first equation (13.57), we have

0u
V- 2Ge +A(V-u)d]+b= P (13.60)
or
T (92’0,
V- [G(Vu+Vu')+ AV -u)d]+b= 5 (13.61)
which leads to
2 82u
(G+AV(V-u)+GV*u+b= P 5 (13.62)
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Using G + A = G/(1 — 2v) and after some rearrangements, we
have

62“: G 2

—_— . b .

P52 1_2VV(Vu)+GV u +b, (13.63)

which is the well-known Cauchy-Navier equation. This equa-
tion supports both longitudinal wave (P wave) and transverse
wave (S wave). In the simplest 1-D case without any (external)
body force b, we can take V - u = 0 for S-wave, the equation
is simplified as

62u1 6211,1
"o =~ o (1364
thus its wave speed is
Vs = g (13.65)
0

For the P-wave in 1-D, the displacement field is non-rotational,
i.e., V x (V x u) = 0. From the identity V(V-u) =V x (V x
u) + V2u, the 1-D Cauchy-Navier equation becomes

(92’LL1 (9211,1

Then, the speed of P-wave is

vp = ,/@. (13.67)

Since A +2G > G, therefore, P-waves always travel faster than
S-waves.

Furthermore, from the definitions of the strain components

in terms of displacements uT = (u1,ug, u3) = (u,v, w), we have

. _ Ou . _Ov . _1(6u+6v

R N Wy T 2\9y | Oz

By assuming the displacements are continuous and differen-

tiable functions of positions, we differentiate ¢,, with respect

). (13.68)
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to y twice, we have

OB Bu

Similarly, differentiate ¢,, with respect to z twice, we have

8% v
S = 5ot (13.70)

Now differentiate €., with respect to y once, and with respect
to x once, we have

Oty 1[ ou v |= 1[32611 02 f:yy]
0zdy ~ 2'020y? 6y6m2 2' 9y?

(13.71)

where we have used the interchangeability of partial derivatives
0%v/8z8y = 8%v/Bydz. This can be rearranged as

2 2
0%,  O%yy

+ _ Bzezy
Oy?

9z2 " 9zdy’

(13.72)

which is the compatibility equation. In the same fashion, we
can derive other compatibility equations

2 2 2
6 Ean 6 Eyy _ 6 sy:

ay; 37 - 590z (13.73)
0%, O%.. 8%,
9.2 + 922 =2 520" (13.74)

13.4 Airy Stress Functions

For certain engineering problems, the solutions in a plane is
of concern. In this case, we are dealing with plane strain and
plane stress problems. For a plane stress problem, we assume

that .. = 0 (but .. # 0), then the plane stress problem
involves no stress components depending on 2. That is to say
Oy. = 0y. = 0., = 0. We have only three independent stress
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components 0;;,0,,, and 0,,. The generalized Hooke’s law
reduces to

Ezz = %(am — VOyy), (13.75)
Eyy = %(ayy — V0gyz), (13.76)
Exy = HTVUW. (13.77)
However,
Ear = %(sm +eyy)s (13.78)

which is not zero in general.

For plane strain problems, it is assumed that .. = 0. Thus,
there are only three independent strain components €, €,
and ey, however, the stress 0.. = V(0zc + 0yy) is not zero.
The compatibility equation becomes

Pewa | ey _ g0y (13.79)
Oy? oz? Ozdy
For plane strain problems with no body forces, the equilibrium
equations are automatically satisfied if the stress components
are related to a scalar function ®, called Airy’s stress function.
The Airy’s stress function is defined by

2
ors = ?97?’ 0,y = %, Oy = — ;j ;’y. (13.80)
In this case, the compatibility equation becomes
V3(V2®) =0, (13.81)
which is a biharmonic equation and can be written as
Vi = 0. (13.82)
In cylindrical polar coordinates (r, 8, z), it becomes
[6‘9_; + %6% + Tizg—;]% =0. (13.83)
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Figure 13.2: A crack in an elastic plate.

Now consider a semi-infinite crack in an infinite solid as
shown in Figure 13.2, assuming the elastic body deforms in
plane strain. The far field is subjected to bounded stress at
infinity. The surfaces of the crack shall be stress free, which
leads to the following boundary conditions

9%® o 100

gge = W = 0, Org = —E ;%) = 0, at 0 = =+m. (1384)
Let us try a solution of the form

@ = r"*1f(9), (13.85)

and substitute it into the governing biharmonic equation, we
get
i o @& 2
[W +(n+1) ][W +(n—1)°]f(0) =0. (13.86)

As the second-order equation y” 4+ A2y = 0 has a general solu-
tion y = Asin A0+ B cos A@, we can here use this method twice,
the general solution takes the following form

f(0) = Acos(n+ 1)0 + Bsin(n + 1)6

+C cos(n — 1)8 + Dsin(n — 1)8. (13.87)
The boundary conditions become
ogp = " n(n+1)£(6), (13.88)
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and
oro =" 'n{(n + 1)[Asin(n + 1)§ — Bcos(n + 1)6

+(n — 1)[Csin(n — 1)6 — D cos(n — 1)6]}, (13.89)

at 6 = +m. We know n = 0 is trivial. From the first equation,
we have

sin(2n7m) = 0, n= :l:é, +1, :I:g, oy (13.90)
and r*(n > 1) does not converge, therefore, they are not suit-
able solutions. The constraint now becomes n < 0, but the
solutions has singularity as r — 0. This is however acceptable
in the crack propagation as the stress concentrations do physi-
cally exist. Substituting the general solution into the boundary
conditions with n = 1/2 and § = £, we get

34+C=0, B-D=0. (13.91)

By defining the stress intensity factor K for the crack,

3AV2n
4 ’

K= (13.92)

which is for the opening (model I) of the crack. It is a limit of
stress at 6 = 0
K = lim ogq(r, e)|9=0. (13.93)

Finally, the solution of stresses can be written as

K 20 ]
Opp = ‘/%(1 + sin? —) cos 3, (13.94)
Ogg = mcos 2, (13.95)
K 0 . 0
O = \/2l?cos2 3sinz. (13.96)
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Once we have the stress distribution, we can get the strains.
Then the displacements are the integration of the strains, and
we have

_K((1-v) [2r 0 30
Uy = T ?[(5 41/) Ccos 5 — COSs 7], (1397)
and
_Ki(1-v) [2r . 30 .6
up = —5— ?[sm 5 (5 —4v)sin 5] (13.98)

13.5 Euler-Bernoulli Beam Theory

The Euler-Bernoulli beam theory is a simplified theory for cal-
culating the deflection of beams under a distribution of load
force using the linear isotropic theory of elasticity. The basic
assumptions for the beam theory are: 1) the beam is isotropic
and elastic; 2) the beam deformation is dominated by bending,
and distortion and rotation are negligible; 3) the beam is long
and slender with a constant cross section along the axis. Under
these assumptions, we can now derive the governing equations.
Let u(z,t) be the deflection of the beam (shown in Figure
13.3), A be the area of the cross section, and f(z,t) be the force
per unit length. The first assumption implies that the bending
moment M is proportional to the curvature x of the bending.
That is
M = EIk K= i (13.99)
’ [1+(53)2%2
where E is the Young’s modulus and I is the area moment of
the beam’s cross section. In mechanics, I is also called the
second moment of area or the area moment of inertia. It is
worth pointing out that the area moment about a horizontal
axis through the centroid is defined by

I= A y2dA, (13.100)
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which has a unit of [m]%, and it should not be confused with
the mass moment of inertia J (also often denoted as I, but we
use J here) about an axis, which is defined by

J= / r2dm = / pr2dzdydz (13.101)
Q Q

with a unit of [Kg] [m]?. Both E and I do not change along
the z-axis. For a cylindrical rod with a radius of R, we have
I = mR*/4. For a rectangular beam with a base width of b and
a depth of h, we have I = bh3/12.

AARARRRNNNY

Figure 13.3: Beam bending.

The second assumption means that the shear V(z) is related
to the bending moment

oM

and the third assumption means % <« 1. Therefore, we have
8u

~ Fl— .103

M=~EI 322’ (13.103)
or 5 o

u
Va~—(EI—). 13.104
72 El5) ( )

For a small volume element (also shown in Figure 13.3), the
mass of the element is pAdx where p is the density, and the
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acceleration is %’tg The shear force variation V(z + dz) =

V(z)+ % da:, and the total force is

V(z) - V(z +dx) + f(z,t)dz = [f(z,t) — ?)—Z]dz (13.105)

Using the Newton’s second law of motion, we have

ov 0%u
Substituting the above expression for V, we have
Pu 92 0%u
pASg + 5Bl ] = f(a), (13.107)

which is the Euler-Bernoulli equation. If there is no force
f(z,t) =0, the equation becomes a homogeneous form
Pu 92 0%u

PAGE T 52 Bl gzl =0,

which is a fourth-order wave equation. It governs the waves
that travel along a beam, a rod or any slender column.

This equation can essentially explain why spaghetti and dry
pasta almost always break into more than two fragments. You
can try in your kitchen to break a slender spaghetti by hold-
ing its two ends and gradually form an arc and bend beyond
its curvature limit. When a spaghetti rod snaps, it will gener-
ally break three to pieces. This phenomenon is very interesting
and once puzzled the famous physicist Richard Feynman for
quite a while, and it was recently studied by two scientists that
the brittle fragmentation process is virtually governed by this
Cauchy-Navier equation. They found that the sudden relax-
ation of the curvature by first breaking will lead to a burst of
flexural waves along the spaghetti rod, and these waves locally
increase the curvature in the rod, resulting in more fragmented
pieces.

For the elastostatic problem, %i# = 0, we have

o2 o2
o121 = o),

(13.108)

(13.109)
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where g(z) = f(z) is the applied force per unit length. This
equation will be used to determine the deflection of a beam.

O Example 18.1: Let us now use the Euler-Bernoulli theory to
calculate the shape of a heavy cantilever with a uniform cross section
under its own gravity. For a beam under its own gravity, the force is
constant q(r) = pgA per unit length where g is the acceleration due
to the Earth’s gravity. If the length of the cantilever is L, then the
total weight is W = pgAL, thus q = % Therefore, we have

du w

EId.‘l?‘l =q=T

where we have use EI = const. Integrating it twice, we have

v q,
EIF— 51’ + Az + B.
At the free end, the beam cannot support bending moment and/or
shear, which implies that M(L) =0 and V(L) = g« L+ A = 0. These
conditions lead to A = —qL and B = qL?/2. Integrating the above
equation again, we have
du q , gL , qL?
— =2 - = —z+C.
EI T 62: 5 z° + 5 T 4+
As the beam is fixed at = 0, we haveu =0 and & =0 at z = 0.
Thus we have C = 0 from u = 0. Integrating once again, we have
_ 9. 4_ gL , qL? 2
EIu—24x 6x+ 4z+D.
Asu, =0atz =0, we have D = 0. Therefore, the final deflection
curve becomes
gL 5, 9L

_1l.q 4 _ 2
u—ﬁ[ﬁl’ TI +Tl' ].

The end deflection 6 = u(x = L) is

_ qL* _ 3
= 3BT = WL®/(8EI).
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Chapter 14

Mathematical Models

What we have discussed so far in terms of differential equa-
tions is very limited. In engineering and natural sciences, there
are so many different kinds of phenomena that require both
mathematical modelling and computer simulations as well as
experimental studies. In most cases, the classical models (us-
ing the heat conduction equation and the wave equation and
others) are simply not adequate to described these phenomena.
Therefore, we have to broaden our view to study other kinds of
partial differential equations. In fact, mathematical modelling
per se is a subject with vast literature, and subsequently we
have to focus on the relevant equations and to introduce them
very briefly.

14.1 Classic Models

Before we introduce more complicated partial differential equa-
tions, let us first remind us the three types of classic partial
differential equations because they are widely used and occur
in a vast range of applications. To a certain extent, almost
all books or studies on the partial differential equations will
have to deal with these three types of basic partial differential
equations.
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14.1.1 Laplace’s and Poisson’s Equation

In heat transfer problems, the steady state of heat conduction
with a source is governed by the Poison equation

kV2u = f(z,y,t), (x,9) € Q, (14.1)

or
Ugz + Uyy = q(T, Y, 1), (14.2)

for two independent variables x and y. Here k is thermal diffu-
sivity and f(z,y,t) is the heat source. If there is no heat source
(g = 0), this becomes the Laplace equation. The solution or a
function is said to be harmonic if it satisfies Laplace’s equation.
In order to determine the temperature u completely, the ap-
propriate boundary conditions are needed. A simple boundary
condition is to specify the temperature © = ug on the bound-
ary 0Q0. This type of problem is the Dirichlet problem. On
the other hand, if the temperature is not known, but the gradi-
ent du/dn is known on the boundary where n is the outward-
pointing unit normal, and this forms the Neumann problem.
Furthermore, some problems may have a mixed type of bound-
ary conditions in the combination of au + ﬂg_:: = «, which
naturally occur as a radiation or cooling boundary condition.

14.1.2 Parabolic Equation

Time-dependent problems, such as diffusion and transient heat
conduction, are governed by the parabolic equation

up = kg, (14.3)

Written in the n-dimensional case z; = z, 20 = y,z3 = 2, ..., it
can be extended to the reaction-diffusion equation

u = kV2u + f(21,..,Zn, t), (14.4)
where f is the reaction rate.
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14.1.3 Wave Equation

The vibration of strings and travelling sound waves are gov-
erned by the hyperbolic wave equation. The 1-D wave equation
in its simplest form is

Uy = czum, (145)

where c is the velocity of the wave. Using a transformation of
the pair of independent variables

=1z +ct, n=z—ct, (14.6)

for t > 0 and —o0 < z < 00, the wave equation can be written
as
Ugn = 0. (14.7)

Integrating twice and substituting back in terms of z and ¢, we
have

u(z,t) = f(z + ct) + g(x — ct), (14.8)

where f and g are arbitrary functions of z + ¢t and z — ct,
respectively. We can see that there are two directions that the
wave can travel. One wave moves to the right and one travels
to the left at a constant speed c.

14.2 Other PDEs

We have shown examples of the three major equations of second-
order linear partial differential equations. There are other equa-
tions that occur frequently in mathematical physics, engineer-
ing and computational sciences. We will give a brief description
of some of these equations.

14.2.1 Elastic Wave Equation

As we have seen in the linear elasticity, the wave in an elas-
tic isotropic homogeneous solid is governed by the following
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equation in terms of displacement u,

2
pgt—‘; =uViu+ A+ u)V(V-u) +b, (14.9)

where p is density. A and p are Lamé constants. b is body force.
Such an equation can have two types of wave: transverse wave
(S-wave) and longitudinal or dilatational wave (P-wave).

14.2.2 Maxwell’s Equations

The scientific essence of modern wireless communications is
governed by the Maxwell’s equations for electromagnetic waves

v.E=2 (14.10)
€o

oB
VxE=——, 14.11
xB=-" (14.11)
V-B=J, (14.12)

1 0E

VxB= /J.oJ + ?W, (14.13)

where p, is the charge density, E is the electric field, B is the
magnetic field and J is the current density. £¢ and pg are the
permittivity and permeability of the free space, respectively.
Finally, c is the speed of light. The first equation is the elec-
trostatic equation, the second one is the Faraday’s law and the
last equation is the Ampere-Maxwell’s law.

14.2.3 Reaction-Diffusion Equation

The reaction-diffusion equation is an extension of heat conduc-
tion with a source

u; = DAu + f(z,y,2,u), (14.14)

where D is the diffusion coefficient and f is the reaction rate.
One example is the combustion equation

ug = Dug, + Que™M®, (14.15)
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where D, and A are constants. The other example is the
Fitz-Hugh-Nagumo equations for transport of a nerve signal

U = Ugz + u(l —u)(u— ) — v, (14.16)
vy = €(u — ), (14.17)
where v > 0, 0 < @ < 1 and € < 1. These equations are
sometimes also called the equations in excitable media.
14.2.4 Fokker-Plank Equation

The time evolution of the probability density function of posi-
tion and velocity of a particle system is described by the Fokker-
Plank equation

_ -\ 9D ij
5 ="l T T hran P (14.18)

which can be generalized as

9 (pw
Z Z 8:1711 ‘Ox z;, {Dil,....ikp}> (1419)

k=11iy,....3;

where D[k](xl,xz, ...,Tn) are tensors. In the special case of
N = 2, DUl(x,,...,x,) is the drift vector, while D2 is the
diffusion tensor.

14.2.5 Black-Scholes Equation

In the option pricing model, the value of an option u(S,t) at
time t is governed by the well-known Nobel-winning Black-
Scholes equation

—=ru—rS— 0°8°—

ot "85 " 2° © 35
where § is the current stock price of the underlying stock and
r is the risk-free interest rate. ¢ is the time until option expi-
ration. o is the stock volatility or the standard deviation of

(14.20)
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stock returns. The Black-Scholes equation is very similar to
the extended version of the diffusion equation. The interesting
feature for a call option with an exercise price F and expiry
time T, the change of variables

T=(T-t)0%/2, v=ueT™? (14.21)
and 5
z = In(S/E) + (U—’; ~r, (14.22)
can transform it into a standard diffusion equation
v v
5 = 3T (14.23)

Then, we can use the standard methods such as integral trans-
forms to solve this equation.

14.2.6 Schrodinger Equation

The famous Schrédinger equation is the revolutionary equation
in quantum mechanics and molecular dynamics

., 00U R _,
where £ is a Planck constant. This equation can be obtained
from the energy form E = ;’—:l + U (where p is the momentum)
using differential operator mapping F — ih% and p — —ihV.
U is the probability wave function and U = V(r) — E is the en-
ergy potential. This is a complex partial differential equation.

14.2.7 Navier-Stokes Equations

The Navier-Stokes equations for an incompressible flow can be
written as
V-u=0, (14.25)

w+u-Viu= évzu - Vp, (14.26)
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where Re = pUL/u is the Reynolds number. U is the typical
velocity and L is the length scale. p and p are the density
of the fluid and its viscosity, respectively. In computational
fluid dynamics, most simulations are mainly related to these
equations.
In the limit of Re <« 1, we have the Stokes flow (slow flow)
governed by
uV?u = Vp. (14.27)

In another limit Re > 1, we have the inviscous flow
V.u=0, w + (u- V)u=-Vp. (14.28)

We can see that the equations are still nonlinear even in this
simplified case.

14.2.8 Sine-Gordon Equation

Another important equation that appears in a wide range of
applications in physics and many other fields is the Sine-Gordon
equation

Ut — Ugg + sin(u) = 0, (14.29)

which can generally be written as
Ut = Uzz + asin(wu). (14.30)

This is a nonlinear hyperbolic equation.

Almost all these equations are very difficult for mathemat-
ical analysis, and most of them do not have closed-form solu-
tions under most common boundary conditions. Therefore, the
numerical methods are a good alternative in this case. In the
next few chapters, we will introduce various numerical methods
in details.
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Chapter 15

Finite Difference
Method

The finite difference method is one of the most popular meth-
ods that are used commonly in computer simulations. It has
the advantage of simplicity and clarity, especially in 1-D con-
figuration and other cases with regular geometry. The finite
difference method essentially transforms an ordinary differen-
tial equation into a set of algebraic equations by replacing the
continuous derivatives with finite difference approximations on
a grid of mesh or node points that spans the domain of inter-
est based on the Taylor expansions. In general, the boundary
conditions and boundary nodes need special treatment.

15.1 Integration of ODEs
The second-order or higher order ordinary differential equations
can be written as a first-order system of ODEs. Since the

technique for solving a system is essentially the same as that
for solving a single equation

d
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then we shall focus on the first-order equation in the rest of this
section. In principle, the solution can be obtained by direct
integration,

y(z) =vo + /x : f(z, y(z))dz, (15.2)

but in practice it is usually impossible to do the integration
analytically as it requires the solution of y(z) to evaluate the
right-hand side. Thus, some approximations shall be utilized.
Numerical integration is the most common technique to obtain
approximate solutions. There are various integration schemes
with different orders of accuracy and convergent rates. These
schemes include the simple Euler scheme, Runge-Kutta method,
Relaxation method, and many others.

15.1.1 Euler Scheme
Using the notations h = Az = Zny1 — Zn, Yn = Y(Tn), Tn =

To + nAz (n = 0,1,2,...,N), and ' = d/dz for convenience,
then the explicit Euler scheme can simply be written as

Tn4l
Ynt1 = Yn + / f(z,y)dz ~ yp + hf(Zn,¥n).  (15.3)

This is a forward difference method as it is equivalent to the
approximation of the first derivative

’ Yn+l — Yn
=2F =" 15.4
Yn Ao (15.4)
The order of accuracy can be estimated using the Taylor ex-

pansion

h2
Yn+l = Yn + hy’ln + ?yﬂln + ..

~ Yn + hf(Tn, yn) + O(R?). (15.5)
Thus, the Euler method is first order accurate.
For any numerical algorithms, the algorithm must be sta-

ble in order to reach convergent solutions. Thus, stability is
an important issue in numerical analysis. Defining dy as the
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discrepancy between the actual numerical solution and the true
solution of the Euler finite difference equation, we have

OYns1 = [1 + hf'(y)] = £byn. (15.6)

In order to avoid the discrepancy to grow, it requires the fol-
lowing stability condition |é| < 1. The stability restricts the
size of interval h, which is usually small. One alternative
that can use larger h is the implicit Euler scheme, and this
scheme approximates the derivative by a backward difference
Yn = (Yn — Yn—1)/h and the right-hand side of equation (15.2)
is evaluated at the new y,,; location. Now the scheme can be
written as

Yntl = Yn + h'f(xn+l>yn+l)- (157)

The stability condition becomes

0yn

OUn+t = 8% = TR gy

(15.8)

which is always stable if f'(y) = % < 0. This means that

any step size is acceptable. However, the step size cannot be
too large as the accuracy reduces as the step size increases.
Another practical issue is that, for most problems such as non-
linear ODEs, the evaluation of 3’ and f/(y) requires the value of
Yn+1 Which is unknown. Thus, an iteration procedure is needed
to march to a new value y,41, and the iteration starts with a
guess value which is usually taken to be zero for most cases.
The implicit scheme generally gives better stability.

O Ezample 15.1: To solve the equation

dy _ -y
% - f(y) =e€ - Y,
we use the explicit Euler scheme, and we have
Yns1 X Yn + hf(yn) = yn + h(e7" —yy).
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Suppose the discrepancy between real solution y;, and the numerical
Yn IS 8y, so that Y} = yYn + Oy, then the real solution satisfies

Ynpr = Y + RS (Y7).

Since f(y2) = f(yn) + :—’;6%, the above equation becomes
Ynt1 + 0Ynsr = Yn + 6Yn + A[f(yn) + '(yn)Oyn].

Together with the Euler scheme, we have

0Ynt1 = 0Yn + f'0yn.
Suppose that 8y, x €™, then we have

M =¢" L hf'er,  or  E=1+hf"
In order for the scheme to be stable (or é€* — 0), it requires that
€] <1, or —1<14hf'=1-h(e¥™ +1)<1.

The stability condition becomes

0O<hs —2
P |
0
15.1.2 Leap-Frog Method
The Leap-frog scheme is the central difference
/ Yn+l — Yn—-1
= 15.9
Yn 280 (15.9)
which leads to
Yntl = ¥Yn-1 + 2hf(1‘n, Yn)- (15.10)

The central difference method is second order accurate. In a
similar way as equation (15.6), the leap frog method becomes

0Ynt1 = 0Yn—1 + 2hf (¥)0Yn, (15.11)
or
SYnt1 = E26Yn—1, (15.12)
where £2 = 1 + 2hf'(y)¢. This scheme is stable only if || < 1,
and a special case is |{| = 1 when f’(y) is purely imaginary.
Therefore, the central scheme is not necessarily a better scheme
than the forward scheme.
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15.1.3 Runge-Kutta Method

We have so far seen that stability of the Euler method and the
central difference method is limited. The Runge-Kutta method
uses a trial step to the midpoint of the interval by central dif-
ference and combines with the forward difference at two steps

. h
Un+1/2 = Yn + 5.f(Zn, yn), (15.13)

Yn+1 = Yn + hf(Tni1/2: Unt1/2)- (15.14)
This scheme is second order accurate with higher stability com-
pared with previous simple schemes. One can view this scheme
as a predictor-corrector method. In fact, we can use multisteps
to devise higher order methods if the right combinations are
used to eliminate the error terms order by order. The popular
classical Runge-Kutta method can be written as

a=hf(zn,yn),
b=hf(xn+ h/2,y, +a/2),
c= hf(xn + h»yn + b/2)\

d=hf(zn+h,yn +¢),

a+2(b+c)+d

3 )
which is fourth order accurate. Generally speaking, the higher-
order scheme is better than the lower scheme, but not always.

Yntl = Un + (15.15)

15.2 Hyperbolic Equations

Numerical solutions of partial differential equations are more
complicated than that of ODEs because it involves time and
space variables and the geometry of the domain of interest.
Usually, boundary conditions are more complex. In addition,
nonlinear problems are very common in engineering applica-
tions. Now we start with the simplest first order equations and
then move onto more complicated cases.
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15.2.1 First-Order Hyperbolic Equation

For simplicity, we start with the one-dimensional scalar equa-
tion of hyperbolic type,

ou + Cau

at oz
where c is a constant or the velocity of advection. By using the
forward Euler scheme for time and centered-spaced scheme, we
have

=0, (15.16)

n+l _ u®

j j Ui — Uiy
L+ =g, (15.17)

where t = nAt,n =0,1,2,..., z = 2o + jh,j = 0,1,2,..., and
h = Az. In order to see how this method behaves numerically,
we use the von Neumann stability analysis.

Assuming the independent solutions or eigenmodes (also
called Fourier modes) in spatial coordinate = in the form of
ul = £met*hi | and substituting into equation (15.17), we have

u

cAt eikh(G+1) _ gikk(j-1)

n+likhj _ ¢ntkhj _ enZ27

Dividing both sides of the above equation by £” exp(ikhj) and
using sinz = (e** — e7**)/2i, we get

cAt

€ = 1 — i——sin(kh). (15.19)
The stability criteria |£| < 1 require
(%)%nﬁ kh < 0. (15.20)

However, this inequality is impossible to satisfy and this scheme
is thus unconditionally unstable.

To avoid the difficulty of instability, we can use other schemes
such as the upwind scheme and Lax scheme. For the upwind
scheme, the equation becomes

n

hu"“] —0, (15.21)

+1
At
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whose stability condition is

6 = 11— S50 — cos(kh) +isin(kR)]| <1, (15.22)

which is equivalent to

0< %At <1. (15.23)
This the well-known Courant-Friedrichs-Lewy stability condi-
tion, often referred to as the Courant stability condition. Thus,

the upwind scheme is conditionally stable.

15.2.2 Second-Order Wave Equation

Higher order equations such as the second-order wave equation
can be written as a system of hyperbolic equations and then be
solved using numerical integration. They can also be solved by
direct discretization using a finite difference scheme. The wave
equation

62 u 262 u

—_— ==,

ot? Oz?
consists of second derivatives. If we approximate the first
derivatives at each time step n using

(15.24)

u® . —ul u —yt
/ i+1 i ' i 1—1
Uy = —————— Ui | = ——— 15.25
1 2:1: ’ 1—1 AZ I ( )

then we can use the following approximation for the second

derivative
/ /
n_ U — Ui

! Az
_oufy —2uf +ul,
= Bz . (15.26)

This is in fact a central difference scheme of second order accu-
racy. If we use the similar scheme for time-stepping, then we
get a central difference scheme in both time and space.
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Thus, the numerical scheme for this equation becomes

wtl = uP ™! c2“?+1 = 2u +up
(At)? B (Az)?

(15.27)

This is a two-level scheme with a second order accuracy. The
idea of solving this difference equation is to express (or to solve)
uP*! at time step ¢ = n+1 in terms of the known values or data
u? and u?™! at two previous time steps t =7 and t = n — 1.

15.3 Parabolic Equation

For the parabolic equation such as the diffusion or heat con-
duction equation

ou 0, Ou

o = 0c Pz
a simple Euler method for the time derivative and centered
second-order approximations for space derivatives lead to

(15.28)

DAt
utt! — u? + - (U1 — 2u] +uf_q). (15.29)

f]
The stability requirement £ < 1 leads to the constraint on the
time step (see the example),
B2
At < 3D (15.30)
This scheme is shown in Figure 15.1 and it is conditionally sta-
ble.

0O Example 15.2: From equation (15.29), we can apply the von
Neumann stability analysis by assuming u} = £"e**", we have

§n+leikhj - éneikhj + Dﬁxsnlez’kh(ﬂl) — 9¢ikhi + eikh(j-l)]‘
h

Dividing both sides by £™e**"i we have

DAt ; ;
6 — 1+ h_z[etkh + e—tkh _ 2]
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t=n+1

Ot=n

9
3
J j+1

_11?]‘

Figure 15.1: Central difference in space and explicit Euler time-
stepping.

Using cos z = (€' + ¢7%*)/2 and sin®(x/2) = (1 —cos z)/2, we obtain

4DAt s
§=1- (—)
Since sin(z) < 1, thus £ < 1 requires
4DAt
-1<1- 77 <1,
or B2
< < =
0<At< 5D

0
A typical feature of a solution to the diffusive system is
that the profile is gradually smoothed out as time increases.
The time-stepping scheme we used limits the step size of time
as larger time steps will make the scheme unstable. There
are many ways to improve this, and one of most widely used
schemes is the implicit scheme.
To avoid the difficulty caused by very small timesteps, we
now use an implicit scheme for time derivative differencing, and
thus we have

DAt
wit - = o (W + 205+ ). (15.31)
Applying the stability analysis, we have
1
= T D g %’1’ (15.32)
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whose norm is always less than unity (|| < 1). This means
the implicit scheme is unconditionally stable for any size of
time steps. That is why implicit methods are more desired in
simulations. However. there is one disadvantage of this method,
which requires more programming skills because the inverse of
a large matrix is usually needed in implicit schemes.

15.4 Elliptical Equation

In the parabolic equation, if the time derivative is zero or u
does not change with time u; = 0, then it becomes a steady-
state problem that is governed by the elliptic equation. For
the steady state heat conduction problem, we generally have
the Poisson problem,

V. [k(u,z,y,t)Vu] = f, (15.33)

If x is a constant, this becomes

Viu=q, q= (15.34)
There are many methods available to solve this problems such
as the boundary integral method, the relaxation method, and
the multigrid method. Two major ones are the long-time ap-
proximation of the transient parabolic diffusion equations, the
other includes the iteration method.

The long time approximation method is essentially based
on fact that the parabolic equation

ou

=+ KV = f, (15.35)

evolves with a typical scale of V«t. If vkt > 1, the system is
approaching its steady state. Assuming ¢t — oo and x> 1, we
then have

Viu= % - %ut — 0. (15.36)
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The long-time approximation is based on the fact that the
parabolic equation in the case of ¥ = const degenerates into the
above steady-state equation (15.33) because u; — 0 as t — oo.
This approximation becomes better if £ > 1. Thus, the usual
numerical methods for solving parabolic equations are valid.
However, other methods may obtain the results more quickly.
The iteration method uses the second-order scheme for space
derivatives, and equation (15.34) in the 2-D case becomes

Ui 41 — 2Us 5 + Us -1
(Ay)?

If we use Az = Ay = h, then the above equation simply be-
comes

Uirl,j — 2Uij + Ui-1,j
(Az)?

+ =q. (15.37)

(Wij41 + Uit + i1 j + ui-15) — duij = h%q,  (15.38)
which can be written as
Au=b. (15.39)

In principle, one can solve this equation using Gauss elimina-
tion; however, this becomes impractical as the matrix becomes
large such as 1000 x 1000. The Gauss-Seidel iteration provides
a more efficient way to solve this equation by splitting A as

A=L+D+01, (15.40)

where L,D, U are the lower triangle, diagonal and upper tri-
angle matrices of A, respectively. The iteration is updated in
the following way:

u® = (D + L) b - Uu™Y). (15.41)

This procedure stops until a prescribed error or precision is
reached.
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Chapter 16

Finite Volume Method

16.1 Introduction

The finite difference method discussed in the previous chapter
approximates the ordinary differential equations and partial
differential equations using Taylor series, resulting in a system
of algebraic equations. The finite volume method resembles
the finite difference method in certain ways but the starting
point is the integral formulation of the problem. It uses the
integral form of the partial differential equations in terms of
conservation laws, then approximates the surface and boundary
integrals in the control volumes. This becomes convenient for
problems involving flow or flux boundaries.

For a hyperbolic equation that is valid in the domain Q with
boundary 99,

du
— — V. (kVu) =gq, 16.1
o=V (VU = ¢, (16.1)
or written in terms of flux function F = F(u) = —kVu, we
have 9
u
§+V-F—q. (16.2)
The integral form of this equation becomes
Ou
—d2 /V-F=/ dQ. 16.3
/Q ot M Q ol (16.3)
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16.2 Elliptic Equations Finite Volume Method

If the integral form is decomposed into many small control vol-
umes, or finite volumes, © = U, Q; and QN = 0. By
defining the control volume cell average or mean value

1
U; = — udQ;, ¢ = l/ qd$);, (16.4)
1 JQ, Vi i
where V; = |Q;| is the volume of the small control volume ;,
the above equation can be written as

a“"+§: L[ V. Pu)do = g (16.5)
ot " &V Jo, DER = ‘

By using the divergence theorem

/V-F:/F-ndA, (16.6)
% r

we have

a“’ +Z / F.dS =g, (16.7)

where dS = ndA is the surfa,ce element and n is the outward
pointing unit vector on the surface I'; enclosing the finite vol-
ume §2;. The integration can be approximated using various
numerical integration schemes. In the simplest 1-D case with
h = Az, the integration

(i+1 /2)h

u; = 7 (16.8)

(i-1 /2)h
is a vertex-centred finite volume scheme. In the following sec-
tions, we will discuss the three major types of partial differ-
ential equations (elliptic, parabolic and hyperbolic) and their
finite volume discretizations.

16.2 Elliptic Equations

Laplace’s equation is one of the most studied elliptic equations

Viu(z,y) =0, (z,9)€Q, (16.9)
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its integral form becomes
2 611
/ V2udQ = / 9 gs=o. (16.10)
Q r On

For the simple regular grid points (iAz, jAy), the control vol-
ume in this case is a cell centred at (iAz, jAy) with a size of
Az (along z-axis) and Ay (along y-axis), and the boundary
integral on any cell consists of four parts integrated on each
of the four sides. By using the simple approximation g% with

§ = (wip1; — uij)/Az and §% = (u;j41 — i ;)/Ay, we have

Ou Y
o, on Q= = (Uir1y + Ui-1,j — 2ui)
Az
+A—y(u,~,j+1 + Ujj-1 — 2u,~,j) =0. (16.11)

Dividing both sides with AzAy, and letting Ax = Ay = h, we
obtain

(Wit + Uijer + imrj + 1) —4uij =0, (16.12)
which resembles finite difference methods in many ways. In
fact, this is exactly the Laplace operator for a 5-point differ-
encing scheme.

16.3 Parabolic Equations

For the case of heat conduction

Ou %u
we have its integral form
du 0%u
_——h— = =0. .
/t /Q (57 — kamr — a)dedt (16.14)
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If we use the control volume from (i —1/2)h to (i+1/2)h where
h = Az, and with time from step n to n + 1, we have

(n4+1)At  (i+1/2)h 2
/ /( &k pdmdt=0.  (16.15)

i~1/2)h 6t 3 0z

By using the mid-point approximation

/ ¥(z)d _d)[(a+b)

and the DuFort-Frankel scheme where we first approximate the
gradient

1(b - a), (16.16)

Pu _ uP) —2ul +ul

= o (16.17)
then replace —2u? with —(u;""1 + u}"l), we have
u"..H'l - u'.z_l
1 T
2At
(Gl Citak R 5 B (16.18)

K2
where we have used the central scheme for time as well. The
finite volume scheme is more versatile in dealing with irregular
geometry and more natural in applying boundary conditions.
Following the stability analysis, we get €] < 1 is always true
and thus the Dufort-Frankel scheme is unconditionally stable
for all At and Az.

16.4 Hyperbolic Equations

For the hyperbolic equation of the conservation law in the one-
dimensional case

Ou , 0¥(u)

ot oz

we have its integral form in the fixed domain

T Qu a [T
. gdx—a . udzx

=0, (16.19)
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= —{¥[u(zs)] — Y[u(z,)]} = 0. (16.20)

If we use the mid-point rule u* to approximate the integral, we
have

u*

5 =~ () - Vu@)))  (1621)
If we choose the control volume [(i —1/2)Az, (i +1/2)Ax] cen-
tred at the mesh point z; = iAz = ih with the approximation
u; =~ u} in each interval, and using the forward differencing
scheme for the time derivative, we have

(zp — Za)

At
UM -l = (O (2ig172) — U(Tio1y0)]- (16.22)
h

By further approximation of the flux ¥(z;;1/2) = ¥(z;), we
have the upward scheme

At
uftl -yl = — [T (w) = ¥(ui)), (16.23)
which is conditionally stable as we know this in the finite dif-

ference method. For the simplest flux ¥(u) = cu, we have

At
I B S (16.24)

h
and its stability requires that

0< %‘t <1 (16.25)
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Chapter 17

Finite Element Method

In the finite difference method, we approximate the equations
at a finite number of discrete points, and there are many limi-
tations in finite difference methods. One of such disadvantages
is that it is not straightforward to deal with irregular geometry.
More versatile and efficient methods are highly needed. In fact,
the finite element method is one class of the most successful
methods in engineering and have a wide range of applications.

The basic aim of the finite element method is to formulate
the numerical method in such a way that the partial differential
equation will be transformed into algebraic equations in terms
of matrices. For time-dependent problems involving partial dif-
ferential equations, the equations can be converted into an ordi-
nary differential equation, which will in turn be discretized and
converted into algebraic equations by time-stepping or some it-
eration techniques. For example, a linear elastic problem can
be formulated in such a way that it is equivalent to the equation
of the following type

Ku=f, (17.1)

where K is the stiffness matrix, and f is a vector corresponding
to nodal forces and some contribution from boundary condi-
tions. u is the unknown vector to be solved and it corresponds
to the nodal degree of freedom such as the displacement.
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17.1 Concept of Elements

17.1.1 Simple Spring Systems

The basic idea of the finite element analysis is to divide a model
(such as a bridge and an airplane) into many pieces or ele-
ments with discrete nodes. These elements form an approxi-
mate system to the whole structures in the domain of interest,
so that the physical quantities such as displacements can be
evaluated at these discrete nodes. Other quantities such as
stresses, strains can then be evaluated at certain points (usu-
ally Gaussian integration points) inside elements. The simplest
elements are the element with two nodes in 1-D, the triangular
element with three nodes in 2-D, and tetrahedral elements with
four nodes in 3-D.

In order to show the basic concept, we now focus on the
simplest 1-D spring element with two nodes (see Figure 17.1).
The spring has a stiffness constant k& (N/m) with two nodes i
and j. At nodes i and j, the displacements (in metres) are u;
and uj, respectively. f; and f; are nodal forces.

k .
fi J
U; Uuj
AN

Figure 17.1: Finite element concept.

From Hooke’s law, we know the displacement Au = u; —u;
is related to f, or

f =k(Au). (17.2)
At node i, we have
i =—f=—k(uj — ;) = ku; — ku;, (17.3)
and at node j, we get
fi = f = k(uj —u;) = —ku; + ku,. (17.4)
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These two equations can be combined into a matrix equation

(_kk _kk)(:;)=(£) or  Ku=f (17.5)

Here K is the stiffness matrix, u and f are the displacement
vector and force vector, respectively. This is the basic spring
element, and let us see how it works in a spring system such
as shown in Figure 17.2 where three different springs are con-
nected in series.

Figure 17.2: A simple spring system.

For a simple spring system shown in Figure 17.2, we now
try to determine the displacements of u;(i = 1,2, 3,4). In order
to do so, we have to assemble the whole system into a single
equation in terms of global stiffness matrix K and forcing f.
As these three elements are connected in series, the assembly
of the system can be done element by element. For element Fj,
its contribution to the overall global matrix is

ki —k w\ _ (A
() (a)-(2) oo

which is equivalent to

Kiu=fg, (17.7)
where
kl _kl 00 U fl
-k k 00 U2 _ fa
0 0 00 w |7 . (17.8)
0 0 00 Uyq
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and fT = (f1, f2,0,0). Similarly, for element E,, we have

ks —ko ug \ _ [ —fo
(w)(e)=(F) oo

or

0 o0 0 0
0 ko —-k2 O
= 7.10
K2 0 —ks ks O (17.10)
0 o0 0 O

where we have used the balance at node 2. For element E3, we

have
ka —ks3 u3 —f3
= , 17.11
(ow)(2)=(F) o
or
00 O 0
00 O 0
Kj = 00 ki —ks | (17.12)
0 0 —k3 k3

where fs = f, has been used. We can now add the three sets
of equations together to obtain a single equation

kl —k2 0 0 U0 fi
—k1 ki+ky -k 0 u | _| —fothfe
0 —ky  ky+ks —ki ug -f3+fa
0 0 —k‘3 k‘3 (7} f*
or
Ku=Tf, (17.13)
where

K=K;+K;+Kj3

ky -k 0 0

_ -k ki+k —ko 0

= 0 Tky kot ks —ks |’ (17.14)
0 0 —k3 k3
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and
ul = (w1, ug,us, ), f=fg +fE, + 5, (17.15)

In general, the matrix K is singular or its rank is less than the
total number of degrees of freedom, which is four in this case.
This means that the equation has no unique solution. Thus, we
need the boundary conditions to ensure a unique solution. In
this spring system, if no boundary condition is applied at any
nodes, then the applied force at the node 4 will make the spring
system fly to the right. If we add a constraint by fixing the left
node 1, then the system can stretch, and a unique configuration
is formed.

In our case where there are no applied forces at nodes 2 and

3, we have
7 = (0,0,0, f,). (17.16)

O Ezxzample 17.1: For ky = 100 N/m, k, = 200 N/m, and k3 =
50N/m, and f, = 20 N, the boundary at node 1 is fixed (u; = 0).
Then, the stiffness matrix is

100 -100 O 0
—-100 300 -200 O
0 —-200 250 -50
0 0 =50 50

K=

and the force column vector
£7 = (0,0,0,20).

The rank of K is 3, therefore, we need at least one boundary condi-
tion. By applying uy = 0, we now have only three unknown displace-
ments uy, uz, 4. Since uy = 0 is already known, the first equation for
u) becomes redundant and we can now delete it so that the reduced
stiffness matrix A is a 3 x 3 matrix. Therefore, we have

300 -200 0
A= -200 250 o0 |,
0 -50 50

and the reduced forcing vector is

g7 = (0,0,20).

231



17.1 Concept of Elements Finite Element Method

0.2
u=A"1g=1{ 03 ].
0.7

Therefore, the displacements are uy = 0.2 m, uz = 0.3 m, and uq =
0.7 m.

Theoretically speaking, the force should be 20N everywhere in
the spring systems since the mass of the springs is negligible. Let us
calculate the force at nodes 2 and 3 to see if this is the case. At the
node 2, the extension in element E, is Au = uy — u; = 0.2 m, thus
the force at node 2 is

The solution is

5 = ki Au =100 x 0.2 = 20N.
Similarly, at node 3 of element E>, we have
fa = ka(ua — up) =200 x 0.1 = 20N,
which is the same at node 3 of element E3
f3 = ka x (—Au) = ka(uq — u3) = 50 x 0.4 = 20N.

So the force is 20 N everywhere. a

17.1.2 Bar and Beam Elements

The spring system we discussed earlier is limited in many ways
as a spring does not have any mass and its cross section is not
explicitly included. A more complicated but realistic element
is the bar element as shown in Figure 17.3, which is a uniform
rod with a cross section area A, Young’s elastic modulus F,
and a length L. A bar element can only support tension and
compression, it cannot support bending. For this reason, it is
also called a truss element.

The displacements at nodes ¢ and j are u; and u;, respec-
tively. The forces at the corresponding nodes are f; and f;.
Now we have to derive its stiffness matrix. Assuming the bar
is linearly elastic, the stress o is thus related to strain e via
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o = Ee. Since € = (u; — u;)/L and 0 = f/A where F is the
force in the bar element, we have

f= %(Au) = k(Au), (17.17)

where Au = u; — u; is the extension or elongation of the bar
element. Now the equivalent spring stiffness constant is

_EA

= (17.18)

Therefore, the stiffness matrix K for this bar becomes

k —-k\ EA[{ 1 -1
K=(_k . )=T< . 1). (17.19)

i AE L j
fi 5
-<—¢ 1)—»-
u; L.. 'U,J

Figure 17.3: Bar element.

We have up to now only discussed 1-D systems where all
displacements u; or u; are along the bar direction, and each
node has only one displacement (one degree of freedom). We
now extend to study 2-D systems. In 2-D, each node i has two
displacements u; (along the bar direction) and v; (perpendicu-
lar to the bar direction). Thus, each node has two degrees of
freedom.

If we rotate the bar element by an angle 6 as shown in
Figure 17.4, we cannot use the standard addition to assemble
the system. A transformation is needed between the global
coordinates (z,y) to the local coordinates (z’,y’). From the
geometrical consideration, the global displacements u; and v;

233



17.1 Concept of Elements Finite Element Method

at node ¢ are related to the local displacement u] and (usually)

v; =0.
u; \ _ [ cos® sinf u;
( v} ) - ( —sinf cosf )( v; ) (17.20)

i
Ui, U; [/ . T

Figure 17.4: 2-D transformation of coordinates.

Using the similar transformation for u; and v;, we get the
transformation for the two-node bar element

u; cosf sinf 0 0 U;

o = v, | | —sin® cos6 0 0 v;
R 0 0 cosf sind u; |’

/ 0 0 —sinf cosf v;

which can be written as

v’ = Ru, (17.21)
where
cosf sinf 0 0
—sinf cos@ 0 0
R== 0 0 cosf sinf | (17.22)
0 0 —sinf cos@

The same applies to transform the force,

f' = Rf, (17.23)
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and the stiffness matrix in local coordinates is
Ku =f. (17.24)

As the calculation is mainly based on the global coordinates,
and the assembly should be done by transforming the local
systems to the global coordinates, by combining the above two
equations, we have

K'Ru = Rf, (17.25)

or
R IK'Ru=Ku=f, (17.26)

which is equivalent to a global stiffness matrix
K =R K'R. (17.27)

The stiffness matrix K is a 4 x 4 matrix in 2-D.

Bar elements can only elongate or shrink, they do not sup-
port bending or deflection. For bending, we need the beam ele-
ments which include a rotation around the end nodes 6; and 6;.
In this case, each node has three degrees of freedom (u;, v;,6;),
and the stiffness matrix is therefore a 6 x 6 matrix in 2-D.
For more complicated elements, it is necessary to use a formal
approach in terms of shape functions and weak formulations.

17.2 Finite Element Formulation

17.2.1 Weak Formulation

Many problems are modelled in terms of partial differential
equations, which can generally be written as

L(u)=0, x€Q, (17.28)

where £ is a differential operator, often linear. This prob-
lem is usually completed with the essential boundary condition
E(u) = (u—u) = 0 for x € 0Nk and natural boundary condi-
tions B(u) = 0 for x € 0Qy. Assuming that the solution can
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be approximated by u; over a finite element mesh with an av-
eraged element size or mean distance h between two adjacent
nodes, the above equation can be approximated as

L(up) ~ 0. (17.29)

Multiplying both sides of the equation by a test function or
a proper weighting function, integrating over the domain and
using associated boundary conditions, we can write the general
weak formulation of Zienkiewicz-type as

/ L(up)w;dQ
Q

+ / Blup):dl + / E(un)BidTE ~0,  (17.30)
N e

where (i = 1,2,..., M). If we can approximate the solution u;
by the expansion

M M
un(u,t) = Y ui(t)Ni(z) = Y u;Nj, (17.31)
i=1 j=1

it requires that N; = 0 on 8Qg so that w; = 0 on 8Qg. Thus,
only the natural boundary conditions are included since the
essential boundary conditions are automatically satisfied. In
addition, there is no much limitation on the choice of w; and
w;. If we choose w; = —w; so as to simplify the formulation,
we have

/Q L£(up)widQ ~ /8 .. Blujusdr. (17.32)

17.2.2 Galerkin Method

There are many different ways to choose the test functions w;
and shape functions N;. One of the most popular methods
is the Galerkin method where the test functions are the same
as the shape functions, or w; = N;. In this special case, the
formulation simply becomes

/ L(un) NidQ ~ / B(un) NidT. (17.33)
Q N
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The discretization of this equation will usually lead to an alge-
braic matrix equation.

On the other hand, if we use the Dirac delta function as
the test functions w; = §(x — x,), the method is called the
collocation method which uses the interesting properties of the
Dirac function

| £608(x — xi)der = 1) (17.34)

together with §(x — x;) = 1 at x = x; and §(x — x;) = 0 at
X # X;.

17.2.3 Shape Functions

The main aim of the finite element method is to find an ap-
proximate solution up(x,t) for the exact solution u on some
nodal points,

up(x,t) = f: u; () N; (x) (17.35)
=1

where u; are unknown coefficients or the value of u at the dis-
crete nodal point i. Functions N; (i = 1,2, ..., M) are linearly
independent functions that vanish on the part of the essential
boundary. At any node i, we have N; = 1, and N; = 0 at any
other nodes, or

YN =1, Nix;) = & (17.36)

The functions N;(x) are referred to as basis functions, trial
functions or more often shape functions in the literature of
finite element methods. For the simplest 1-D element with two
nodes ¢ and j, the linear shape functions can be written as

z T
Ni=1-¢=1-3Nj=¢=7, (17.37)
where L = |z; — ;|, which is shown in Figure 17.5.
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§=z/|z; -z

Figure 17.5: The 1-D linear shape functions.

Using the assumptions that u;(t) does not depend on space
and N;(x) does not depend on time, the derivatives of u can
be approximated as

du _ dun _ -
o ™ = 2 (BN (),

(9 M
— Z 4;N(x), (17.38)

where we have used the notations: ' = d/dx and "= % Higher
order derivatives are then calculated in a similar way. The
ultimate goal is to construct a method of computing u; such
that the error u, — u is minimized. Generally speaking, the
residual R varies with space and time, so we have

R(uy,...,upr,x) = L(up(x)). (17.39)

There are several methods to minimize R. Depending on the
scheme of minimization and the choice of shape functions, var-
ious methods can be formulated. These include the weighted
residual method, the method of least squares, the Galerkin
method and others.
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17.3 Elasticity

17.3.1 Plane Stress and Plane Strain

The stress tensor o and strain tensor € are not written as tensor
forms but vector forms o = (am,ayy,a;:,azy,ay;,a;,)T, and

€ = (eu,eyy,e~~,'yzy,’yy~,'y-z)7. The strain tensor is usually
defined as

1 Ou; ¢9uJ
€ij = 5(6% 690,) (17.40)
where one applies the engineering shear strain e;; = 2¢y.
Hooke’s elasticity can be expressed as
o = De, (17.41)

where D is a 6 x 6 symmetrical matrix as functions of Young’s
modulus E and Poisson’s ratio v.

Two special cases that are commonly found in many appli-
cations are the plane stress (0., = 0, but ¢.. # 0) and plane
strain (e.. = 0, but o.. # 0). The commonly used formulation
is the displacement-based formulation or u-based formulation.
In the 2-D case, the displacement u = (u,v)” and the strain e
and stress ¢ are defined as

T T
o= ( Oz Oy Tay ) , €= ( €z € Yry ) . (17.42)
Now the stress-strain relationship becomes
o = D(e — ¢g), (17.43)

where D is a 3 x 3 matrix. The strains are given by

ou ov du Ov

€Exr = 6_1:’ ey = 6—y’ '7’.1:y = 6—y + a—z, (17.44)

where g is the initial strain due to temperature change or ther-
mal loading. If there is no such change, then the initial strain
can be taken to be zero in most applications.
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The equilibrium of force in elasticity leads to
V.-o+b=0. (17.45)

where b = [f; fy]T is the body force. In the case of plane
stress, we have

E 1 v 0

D= T2 v 1 0 . (17.46)
\o 0 a-v)2
In the case of plane strain, we have
1_

E +ll; }U_U 0
D=—| & &= 0 . 17.47
(1 — 21/) 1-611 1-({)-1/ (1-20) ( )

2(T+v)

Clearly, for the 1-D case plane stress when v = 0, f, = 0 and
0y = Tzy = 0, the equation of force balance simply becomes

E 8%

1— 12822

where we have used the stress-strain relationship. This 1-D

equation is essentially the same as the 1-D heat transfer equa-

tion u” + Q = 0 that will be discussed in detail later, so the

solution technique for the 1-D heat transfer shall equally ap-

ply. Therefore, we shall focus on the 2-D case in the rest of
this section.

Displacements (u,v) in a plane element can be interpolated
from nodal displacements. For example, using a triangular ele-
ment (i, j,m) with three nodal points as shown in Figure 17.6

(z:,4:), (z5,9;), and (Zm, Ym), We have

+f.=0, (17.48)

u= ( Z ) =[NLNLNoI| Y | =Nd, (17.49)
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y

[

(zi,u:)

(x5, y5)

(Tm> Um)

Figure 17.6: Schematic triangular mesh and the layout of a

triangular element.

where I is a 2 x 2 unitary matrix, i.e.,

10
=(o 1)

and

0O N, 0 N 0

(N 0 N 0 Nn 0
N—( N,,,)'

By defining a differential operator

2 0

3 9
Ld= 0 )

0o 3

dy Oz

we can rewrite the above formulation as
¢ = Lqu =LgNd = Bd,

where
B =L4N.

Now the equation (17.45) becomes
Ku=Tf,
where

K = / BTDBJV,
Q
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and
fi= [ bNaV + [ TN, (17.57)
Q r

where 7 is the surface traction (force per unit area).

17.3.2 Implementation

In the case of 2-D elastic problems, the simplest elements are
linear triangular elements, thus we have B; = LyN;, or

1 b 0 b, 0 b, O
B=LiN=5-| 0 ¢c 0 ¢; 0 cn |, (17.58)
2A
C; b,' C; bj Cm bm
where
1 1 =z oy
A= 3 1 z; y; (17.59)
1 0 Ym

is the area of the triangular element. The linear element im-
plies that the strain is constant in the element. The stiffness
matrix Kz(j) (4, = 1,2,...,6) of each triangular element can be
expressed as

K© — / BTDB dzdy, (17.60)
Qe

For a triangular element with three nodes (i, j,m), each node
has two degrees of freedom (u;,v;), then the stiffness matrix
K(© for each element is a 6 x 6 matrix. In general, if each
element has 7 nodes, and each node has n degrees of freedom,
then the local stiffness matrix is a 77 x rn matrix. If the region
has M nodes in total, then Mn equations are needed for this
problem. For the present case (n = 2), we need 2M equations
for plane stress and plane strain.

In order to calculate the contribution of each element to
the overall (global) equation, each node should be identified in
some way, and most often in terms of the index matrix. The
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nodal index matrix for three nodes (¢, j,m) can be written as

@9 (1) (Em)
I]:)node = (.7’ 1’) (]s]) (-7? m) . (1761)
(mi) (m3) (m,m)

The nodal index matrix identifies the related nodes in the global
node-numbering system. However, the main assembly of the
stiffness matrix is about the corresponding equations and the
application of the boundary conditions, thus we need to transfer
the nodal index matrix to the equation index matrix in terms of
the global numbering of equations with two degrees of freedom
for each node (e.g., equations 2i —1 and 2 for nodal 7, equation
2j — 1 and 2j for node j, etc). Thus, for each entry in the
stiffness matrix, say (¢,7), in the nodal index matrix, we now
have four entries, i.e.,

- (2i—1,2—1) (2i—1,2j)
(4,3) — ( (20,2 1) (26, 27) ), etc  (17.62)

The equation index matrix now has 6 x 6 entries, and each
entry is a pair such as (2¢ — 1,25 — 1), ... , (2m,2m), etc. By
writing it as two index matrices (ID = JDT), we now have

IDequ = JDZL,,

2i—1 2t 2j—-1 25 2m—-1 2m
20—-1 2t 2j-1 25 2m—-1 2m
2i—1 2¢ 2j—-1 25 2m—-1 2m
20—-1 2t 2j—-1 25 2m—1 2m
2i—1 2t 2j—1 25 2m—-1 2m
2i—-1 2t 2j—-1 25 2m—-1 2m

IDequ = (17.63)

So that the contribution of Kf; ) to the global matrix K;j is
simply

_ (e)
K(1D,u(1.0),9Dequ(l 7)) = K[IDugu(1,), Degu(1.0)] + K(;.J)’

1,J=1,2,..,6. (17.64)
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Similarly, the contribution of the body force and external force
can be computed

HOES{OERAU(!

where | = 2 — 1,2i,25 — 1,24,2m — 1, 2m etc.

17.4 Heat Conduction

Heat transfer problems are very common in engineering and the
geometry in most applications is irregular. Thus, finite element
methods are especially useful in this case.

17.4.1 Basic Formulation

The steady-state heat transfer is governed by the heat conduc-
tion equation or Poisson’s equation

V.- (kVu)+Q =0, (17.65)
with the essential boundary condition
u=14, XE€OoNE, (17.66)

and the natural boundary condition

ou
ks-—q=0, xedn. (17.67)

Using the formulation similar to the formulation (17.33) in
terms of u =~ up, we have

/ [V - (kVu) + Q|N:dQ — / k— _gINidT'=0. (17.68)
Integrating by parts and using Green’s theorem, we have
Oup

] (Vun - k- VN;)dQ + / k== Nidl
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+ / QN;d) — / [k% — g|N;dT" = 0. (17.69)
Q oy On
Since N; = 0 on 9Qg, thus we have
/ [|N:dD = / [|N;dT. (17.70)
N NN

Therefore, the above weak formulation becomes
/ (Van - k- VN;)dQ — / QN:dQ — / gN:dl = 0. (17.71)
Q Q N

Substituting up = Z;‘il u;N;(x) into the equation, we have

M
;[ /Q (EVN; - VN;)dQu; — /Q QN:dQ

- / gN;dT = 0. (17.72)
NN
This can be written in the compact matrix form
M
Y KijUi=fi, KU=f, (17.73)
j=1

where K = [K;;], (5,5 = 1,2,..., M), UT = (uy,ug, ...,un), and
T = (f1, f2,...; fmr). That is,

K;; =/QICVN1'V1deQ, (17.74)

fi= / QN.d + / gN;dr. (17.75)
Q NN

O Ezample 17.2(a): As a simple example, we consider the 1-D
steady-state heat conduction problem,

u"(z) + Q) = 0,

with boundary conditions
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For a special case Q(z) = r exp(—z), we have the analytical solution
u(@)=(8—r)+(re”' +q)z +re " (17.76)

Then equation (17.75) becomes
M 1 1
3 / N!Nidz)u; = / QNidz + qNi(1).
= Jo 0

For the purpose of demonstrating the implementation procedure, let
us solve this problem by dividing the interval into 4 elements and 5
nodes. This will be discussed later in more details. O

17.4.2 Element-by-Element Assembly

The assembly of the linear matrix system is the popular element-
by-element method. The stiffness matrix K in equations (17.73)
and (17.75) is the summation of the integral over the whole
solution domain, and the domain is now divided into m ele-
ments with each element on a subdomain Q. (e = 1,2,...,m).
Each element contributes to the whole stiffness matrix, and in
fact, its contribution is a pure number. Thus, assembly of the
stiffness matrix can be done in an element-by-element manner.
Furthermore, K;; # 0 if and only if (or iff) nodes ¢ and j be-
long to the same elements. In the 1-D case, K;; # 0 only for
J=1—1,7,74+ 1. In finite element analysis, the shape func-
tions NN; are typically localized functions, thus the matrix K is
usually sparse in most cases.
The element-by-element formulation can be written as

K;;= Z K® Ki(;') = /Q kV N,V N;dQ., (17.77)

2,7’
e=1

and
m

=359, = / QN;dQ, + f gN;dT,. (17.78)
e=1 Qe 6QNG
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In addition, since the contribution of each element is a sim-
ple number, the integration of each element can be done using
the local coordinates and local node numbers or any coordi-
nate system for the convenience of integration over an element.
Then, the nonzero contribution of each element to the global
system matrix K is simply assembled by direct addition to the
corresponding global entry (of the stiffness matrix) of the cor-
responding nodes or related equations. In reality, this can be
easily done using an index matrix to trace the element contri-
bution to the global system matrix.

O Ezample 17.2(b): The assembly of the global system matrix
for the example with 4 elements and five nodes is shown below. For
each element with i and j nodes, we have

Ni=1-¢ N;j=¢ €=7. L=he
L
(e _ _ k(1 -1
K _[/0 kN{NJ’.dm]_h—e( 7 )

10=2(1).

so that, for example in elements 1 and 2, these can extend to all
nodes (with h; = ;1 — z;,1=1,2,3,4),

k/hy  —k/hy 0 0 0 hi
—k/hy k/hy 0 0 O hy

KM = 0 0 000 ,f‘”:g o |,
0 0 00 0 2l o

0 0O 00 0) 0 )

0 0 0 0 0) 0\
0 k/hy —k/hs 0 O ol ™

K(2)= 0 —k/hg k/hg 0 0 N f(2)=? h2 5
0 0 0 00 0

0 0 0 0 0) 0 )

and so on. Now the global system matrix becomes

K=
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k/h —k/hy 0 0 0
—k/h1 k/hi+k/hs —k/hoy 0 0
0 —k/hy k/hy + k/hs —k/hs 0 ,
0 0 —k/h3 k/ha +k/hy —k/hy
0 0 0 —k/hy k/h4
Uy Qh1/2
Uup Q(h1 + h2)/2
U= us . f= Q(h2+h3)/2
uy Q(hs + hy)/2
us Qha/2+¢
where the last row of f has already included the natural boundary
condition at u'(1) = gq. ]

17.4.3 Application of Boundary Conditions

Boundary conditions can be essential, natural or mixed. The
essential boundary conditions are automatically satisfied in the
finite element formulation by the approximate solution. These
include the displacement, rotation, and known value of the so-
lution. Sometimes, they are also called the geometric boundary
conditions. In our example, it is u(0) = . Natural boundary
conditions often involve the first derivatives such as strains,
heat flux, force, and moment. Thus, they are also referred to
as force boundary conditions. In our example, it is u'(1) = q.
The natural boundary conditions are included in the inte-
gration in the finite element equations such as (17.75). Thus no
further imposition is necessary. On the other hand, although
the essential boundary conditions are automatically satisfied
in the finite element formulations, they still need to be im-
plemented in the assembled finite element equations to ensure
unique solutions. The imposition of the essential boundary con-
ditions can be done in main several ways: a) direct application;
b) Lagrangian multiplier and c) penalty method. To show how
these methods work, we use the 1-D poisson equation on the
distinct points z;(i = 1,2,..., M) € [0, 1] to aid our discussion.
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Direct Application

In this method, we simply use the expansion u, = Zf‘il u; N;,
and apply directly the essential boundary conditions at point i
to replace the corresponding ith equation with u; = ; so that
1th row of the stiffness matrix K in equation (17.73) becomes
(0,0,...,1,...,0) and the corresponding f; = f(i) = 4;. All
other points will be done in the similar manner. For example,
the boundary conditions %(0) = a and u(M) = § in the 1-
D case mean that the first and last equations are replaced by
u; = a and upy = f, respectively. Thus, Ky =1, fi = a (all
other coefficients are set to be zeros: Kj3 = ... = Ky = 0,
and Kyy = 1, fm = B with Kpynn = ... = Kyp—1 = 0).
Then, the equations can be solved for (u;,uy,...,up)T. This
method is widely used due to its simplicity and the advantage
of time-stepping because it allows bigger time steps.

Lagrangian Multiplier

This method is often used in the structure and solid mechanics
to enforce the constraints (u; = 4;). The variation is added by
the extra term A(u; — @;) where X is the Lagrange multiplier.
Now we have

= %uTKu —uTf + A(u; — @), (17.79)
whose variation 6II = 0 leads to
ouTKu — 6uTf + Adu; + 6A(y; — @;) = 0. (17.80)

Because éu and §\ are arbitrary, we have

(5 5)0)-(5)

where e; = (0,0,...,1,0,...,0)T (its ith entry is equal to one).
This method can be extended to m Lagrangian multipliers.
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Penalty Method

One of the most widely used methods of enforcing the essential
boundary conditions is the so-called penalty method in terms
of a very large coefficient v, u; = @ at x; € Qp, so that
~yu; = 4 can be directly added onto Ku = f. In the 1-D ex-
ample, it simply leads to K11 = K11+7, Ky = Kyae+7, and
fi = fi+7va, far = fm +v8. The common rule for choosing
7 is that v > max|Kj;|. Usually, v &~ 1000 max |K;;| should
be adequate. The penalty method is widely used in steady-
state problems. However, it may affect the efficiency of time-
stepping since it increases the maximum eigenvalue of the stiff-
ness matrix, and thus very small time steps are required for
convergence. The advantage of the penalty method is that the
handling of the essential boundary conditions becomes simpler
from the implementation point of view. The disadvantage is
that the conditions are only satisfied approximately.

O Ezample 17.2(c): Following the same example of the 1-D
steady state heat conduction discussed earlier, we now use the direct
application method for the essential boundary conditions. We can
replace the first equation Z;=1 Kiju; = fi with uy = f3, so that the
first row becomes K;; = (1000 0) and f; = 8. Thus, we have

K=
1 0 0 0 0
—k/hy k/hy+k/hy  —k/ha 0 0
0 —k/hy  k/ho+k/hs  —k/hs o |,
0 0 —k/h3 k/hs+k/hy —k/hy
0 0 0 —k/hy  k/ha
uy B
2 Q(hy + h2)/2
U=| us |, f=| Q(ha+h3)/2
Uy Q(hs + hy)/2
Us Qha/2+¢
For the case of k = 1,Q = —1,hy = ... = hy = 0.25, 8 = 1 and
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g = —0.25, we have

1 0 0 0 O 1
-4 8 -4 0 0 —0.25
K= 0O -4 8 -4 0 |, f= —0.25
0 0 -4 8 —4 —0.25
0O 0 0 -4 4 —0.375

Hence, the solution is

1.00
0.72
U=K'f=| 050
0.34
0.25

17.5 Time-Dependent Problems

The problems we have discussed so far in our finite element
analysis are not time-dependent, and the solutions obtained are
the steady-state solutions. However, most realistic problems
involve time, and thus we will now discuss the time-dependent
problems.

17.5.1 The Time Dimension

As the weak formulation uses the Green theorem that involves
the spatial derivatives, the time derivatives can be considered
as the source term. Thus, one simple and yet instructive way
to extend the finite element formulation to include the time
dimension is to replace @ in equation (17.65) with @ — au; —
Bug = Q — au — Bi so that we have

V. (kVu) + (Q — aus — Bug) = 0. (17.81)

The boundary conditions and initial conditions are u(x,0) =
o(x), u = 4,x € 0N, and kg—z —q = 0,x € 9Qy. Using
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integration by parts and the expansion u;, = Z;‘il u;N;, we
have

M M . )
;[ /Q (kVN;VN;)de] + ,; /Q [(N:aN;Yi; + (NiBN; )i;]d

- / N:Qde - / N;qdl" = 0, (17.82)
Q N
which can be written in a compact form as
Mii + Ct + Ku = f, (17.83)
where
Kij = / (kYN VN;)]de, (17.84)
Q
fi= / N:QdQ + / NigdT, (17.85)
Q oy
and
Cij = / N;aN;dQ), M;; = / N;BN;dS2. (17.86)
Q Q

The matrices K, M, C are symmetric, that is to say, K;; =
Kji, Mi; = Mj;,C;; = Cj; due to the interchangeability of the
orders in the product of the integrand k&, N; and Nj (i.e., VN;-
k- VNJ' = kVNiVNj, N;aN; = N;aN; = aN,'Nj etc). The
matrix C = [Cj;] is the damping matrix similar to the damping
coefficient of damped oscillations. M = [M;j;] is the general
mass matrix due to a similar role acting as an equivalent mass
in dynamics. In addition, before the boundary conditions are
imposed, the matrix is usually singular, which may imply many
solutions. Only after the proper boundary conditions have been
enforced, the stiffness matrix will be nonsingular, thus unique
solutions may be obtained. On the other hand, M and C will
be always non-singular if they are not zero. For example, for
the 1-D elements (with nodes i and j),

) _ k 1 -1 e _
K _h_e( 11 ) det[K®)] = 0, (17.87)
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but
(@ _ Phe( 21 (e)
M) = = (1 o | det[M@] £0,
Cﬁf’=age(f é) det[C?)] #0, (17.88)

Clearly, if M = 0, it reduces to the linear heat conduction. If
C =0, it becomes the wave equation with the source term.

17.5.2 Time-Stepping

From the general governing equation
Mi+ Cu+ Ku =f, (17.89)

we see that it is an ordinary differential equation in terms of
time and matrices. Thus, in principle, all the time-stepping
methods developed in the standard finite difference method
can be used for this purpose. For a simple center difference
scheme, we have

. un+1 —-u" . (un+1 —2u™ + un—l)
so that equation (17.89) becomes
(un+1 —2u™ + un—l)
e
(un+l _ un—l) n
—_— =f. 1791
+C SAL +Ku"=f ( )
Now the aim is to express u™*! in terms of u” and u™~!.
17.56.3 1-D Transient Heat Transfer
In the case of heat conduction (M = 0), we have
Cu+ Ku=f, (17.92)
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or
u=C(f - Ku). (17.93)
Using the explicit time-stepping method, we can write it as
un+l —u® 1 n
= =C ' (f - Ku"), (17.94)
so that we have
u™t! = u" + AtCTH(f — KuP). (17.95)

O Ezample 17.3:  For a transient heat conduction problem, we
have

auy = kuzz + Q,
and
u(z,0) =0, u(0,t)=1, «(1)=gq.

The formulation with 5 nodes and 4 elements leads to

C=
2h, hy 0 0 0
a hy  2(hy + hy) ha 0 0
5 0 hy 2(ha + h3) h3 0
0 0 ha 2(hz + hy) hy
0 0 0 hy 2hy
For the case of a = 6,k = 1,Q = —1,hy = ... = hy = 0.25, we

have
05 025 O 0 0
025 1 025 O 0
C= 0 025 1 025 0O
0 0 025 1 0.25
0 0 0 025 05

]
17.56.4 Wave Equation
For the wave equation (C = 0), we have
Mii + Ku = f. (17.96)
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Using
un+1 —2u™ + un—l
(at)?

i = (17.97)
we have
u™t! = MIf(AL)? + [21 — (At)PMT'KJu® — u™!, (17.98)

where I is an identity or unit matrix. For example, the 1-D
wave equation

8%u 0%u
B2 = o2 (17.99)
with the boundary conditions
u(0) =u(l) =0, u(z,0)=e "1/ (17.100)

can be written as
1 1
Mi; = / N;Njdz, K= / ¢cNiN/dz, £f=0, (17.101)
0 0

and u® is derived from the u(z,0) = exp[—(z — 1/2)2].

The finite element methods in this book are mainly for lin-
ear partial differential equations. Although these methods can
in principle be extended to nonlinear problems, however, some
degrees of approximations and linearization are needed. In ad-
dition, an iterative procedure is required to solve the resultant
nonlinear matrix equations. The interested readers can refer to
many excellent books on these topics.
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Chapter 18

Reaction Diffusion
System

The partial differential equations we solved in the previous
chapters using the three major numerical methods are linear
equations. We know that the generalized forms of parabolic
equations are nonlinear reaction-diffusion equations. Mathe-
matically speaking, nonlinear equations are far more difficult
to analyse if it is not impossible. From the numerical point
of view, some extra linearization and approximations should
be used for the nonlinear terms. However, the finite differ-
ence scheme should still be useful for most nonlinear equations
though they should be implemented more carefully. Before we
proceed to study the nonlinear system, let us review the funda-
mental characteristics of linear parabolic equations by solving
the linear heat conduction equations.

18.1 Heat Conduction Equation

18.1.1 Fundamental Solutions

From the similarity solution in section 10.3, we know that both
diffusion equation and heat conduction equation may mathe-
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matically have a similarity variable defined by

z
¢ = Ta (18.1)
where k is either the thermal diffusivity or diffusion coefficient.
In engineering, the coefficient k has the unit [m]?/[s], thus the
unit of kt is [m]?, which means the variable ¢ is dimensionless.
Any two combinations of x and kt giving the same ¢ will have
similar solutions.
Using the similarity variable (, the heat conduction equa-
tion can be transformed into an ordinary differential equation

"¢ =-2¢f", or (nfy=-2 (18.2)
Integrating it once, we have
Inf' = Ce™%’, (18.3)

where C is an integration constant. Integrating it again, we
have

u=C / * e=Cd( + D, (18.4)

which is the general solution of the heat conduction equation.
If the domain is semi-infinite or infinite so that x5 — 0, then

we get
eg .

= Aerf + B. 18.5
() (18.5)
O FExample 18.1:  For the heat conduction in a semi-infinite
domain, we have
ou _ k82u
ot oz

with the boundary condition
u=1ug, (z<0),
and an initial condition

u=0, (z>0) at t=0.
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The general solution is

u = Aerf(

\/4%) +B.
For z — oo, erf(x/v4kt) — 1, we have
A+ B=0.
Atz =0, erf(0) = 0, we get B = ug. The solution is

u = ugp[l — erf( )] = ugerfe

z T
VAakt Vakt
However, if u is constant (v = wug) in the initial region x € [—h,h],

then we have
h +z

= Pt et )

0
The solutions of heat conduction do not always involve the
error function because error functions only occur when the inte-
gration involves semi-infinite or infinite domains. If the domain
has a finite length, then the solutions often consist of power se-
ries or even special functions. For example in heat conduction
through a plane sheet with zero initial temperature, its two
surfaces are held at constant temperatures with the boundary
conditions u = ug at =0 for (¢ > 0),and u =0 at z = L for
(t > 0). The general solution can be written as

u=ug(l - —) += Z 20 sin "Zx e~kn®m /L2 (18.6)

which is a slowly convergent series.

18.2 Nonlinear Equations

18.2.1 Travelling Wave

The nonlinear reaction-diffusion equation

ou %u
o =Daz+f W) (18.7)
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can have the travelling wave solution under appropriate condi-
tions of f(0) = f(1) =0, f(u) > 0 for u € [0,1], and f'(0) > 0.
For example, f(u) = yu(l — u) satisfies these conditions, and
the equation in this special case is called the Kolmogorov-
Petrovskii-Piskunov (KPP) equation. By assuming that the
travelling wave solution has the form u(¢) and ¢ = z — vt, and
substituting into the above equation, we have

Du"(¢) + v/ (€) + F(u(¢)) = 0. (18.8)

This is a second-order ordinary differential equation that can
be solved with the appropriate boundary conditions

u(—o0) —» 1, u(ooc) — 0. (18.9)

The KPP theory suggests that the limit of the speed of the
travelling wave satisfies

v > 2,/Df(0). (18.10)

18.2.2 Pattern Formation

One of the most studied nonlinear reaction-diffusion equations
in the 2-D case is the Kolmogorov-Petrovskii-Piskunov (KPP)
equation , )
-+, (s
and
q(u) = u(l — u). (18.12)

The KPP equation can describe a huge number of physical,
chemical and biological phenomena. The most interesting fea-
ture of this nonlinear equation is its ability of generating beau-
tiful patterns. We can solve it using the finite difference scheme
by applying the periodic boundary conditions and using a ran-
dom initial condition u = random(n,n) where n is the size of
the grid.
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0" 200

Figure 18.1: 2-D pattern formation for D = 0.2 and -y = 0.5.

Figure 18.1 shows the pattern formation of the above equa-
tion on a 100 x 100 grid for D = 0.2 and v = 0.5. We can see
that rings and thin curves are formed, arising from the random
initial condition. The landscape surface shows the variations in
the location and values of the field u(z, y) can be easily demon-
strated.

The following simple 15-line Matlab program can be used
to solve this nonlinear system.

% Pattern formation: a 15 line matlab program
% PDE form: u_t=D*(u_{xx}+u_{yy})+gamma*q(u)

% where q(u)=’u.*(1-u)’;

% The solution of this PDE is obtained by the
% finite difference method, assuming dx=dy=dt=1
% Written by X S Yang (Cambridge University)

% Usage: pattern(100) or simply >pattern

function pattern(time) % line 1
% Input number of time steps
if nargin<1, time=100; end % line 2
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% Initialize parameters n=100;
% D=0.2; gamma=0.5;
n=200; D=0.2; gamma=0.5;

%Set initial values of u randomly
u=rand(n,n); grad=u*0;

% Index for u(i,j) and the loop
I =2:n-1; J = 2:n-1;

% Time stepping
for step=1:time,
% Laplace gradient of the equation

h

%

line

line

% line 5

)
%

line
line

6
7

grad(I,J)= u(I,J-1)+u(I,J+1)+u(I-1,J)+u(I+1,J);
% line 8

u =(1-4*D)*u+D*grad+gamma*u.* (1-u) ;

% Show results
pcolor(u); shading interp;
% Coloring and colorbar
colorbar; colormap jet;
drawnow;
end

% plot as a surface
surf(u);

shading interp;
view([-25 701);

)

YA
YA
A

line 9

line
line
line

10
11
12

h —mmmmmmmm—mm End of Pragram -----—----———---——-

If you use this program to do the simulations, you will see that
the pattern emerges naturally from the initially random back-
ground. Once the pattern is formed, it evolves gradually with
time, but the characteristics such as the shape and structure
of the patterns do not change much with time. In this sense,

one can see beautiful and stable patterns.
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18.3 Reaction-Diffusion System

The pattern formation in the previous section arises naturally
from a single equation of nonlinear reaction-diffusion type. In
many applications, we often have to simulate a system of non-
linear reaction-diffusion equations, and the variables are cou-
pled in a complicated manner.

The pattern formation in the previous section comes from
the instability of the nonlinear reaction diffusion system. In
order to show this, let us use the following mathematical model
for enzyme inhibition and cooperativity.

For example, the following system consists of two nonlinear
equations

Ou %u  H%u
(9v_D v 18.14
5= ”(67+6_3/2)+g(u’v)’ (18.14)
and b
—cv
() = ——2% (18.16)
) = Truto '

where D,, and D, are diffusion coefficients, while a, b, c, d are all
constants. This reaction diffusion system may have instability
if certain conditions are met.

The steady state solutions are obtained from f(ug,vp) = 0
and g(ug,vp) = 0. They are

o= [144% 21, w=0 (18.17)
0= % ZAN S '

Let ¥ = (u — uo,v — vo) be the small perturbation, then
satisfies
oY

_ 2
5 = DV + My, (18.18)
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where
D, 0
D= ( o D, ) (18.19)
and
_ 1 —(2aug+b) a(l —up)+c
= _(1 ) ( 0 d ) (18.20)

Writing ¢ in the form of
=) eMyy, (18.21)
where the summation is over all the wavenumbers k, we have
|M — M — Dk?| =0, (18.22)

where I is a 2 x 2 unity matrix. This eigenvalue equation has
two roots. Since R(\) > 0 implies that instability, this requires

that
& D, d

_— < —_——

D,  (2aug + b)
The range of unstable wavenumbers between the two roots of
k2 at the bifurcation point is given by

dD, — D,(2aug + b)
2 _ v
ki = 2D, Dy (1 + o) [1+V1+4D,D,3), (18.24)

(18.23)

with
(2aup + b)

"~ [dDy — Dy(2aug + b2
If the unstable criteria are satisfied, any small random pertur-
bation can generate complex patterns.

Similar to the nonlinear KPP equation (18.12), beautiful
patterns also arise naturally in the following nonlinear system

)

(18.25)

ou Pu  u -
E = Da(W + a_yz) + '}'f(’u,'()), (1826)
ov v 9% .
Bt - Db(w + 6—312) + B89(u, v), (18.27)
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and
flu,v) = u(l-u), J(u,v) =u—uv, (18.28)

for the values D, = 0.2, D, = 0.1, ¥ = 0.5 and 3 = 0.2.
With different functions f(u,v) and g(u,v), these equations
can be used to simulate the pattern formation in a wide range

of applications where nonlinear reaction-diffusion equations are
concerned.
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Chapter 19

Probability and
Statistics

All the mathematical models and differential equations we have
discussed so far are deterministic systems in the sense that
given accurate initial and boundary conditions, the solutions
of the system can be determined (the only exception is the
chaotic system to a certain degree). There is no intrinsic ran-
domness in the differential equations. In reality, randomness
occurs everywhere, and not all models are deterministic. In
fact, it is necessary to use stochastic models and sometimes
the only sensible models are stochastic descriptions. In these
cases, we have to deal with probability and statistics.

19.1 Probability
19.1.1 Randomness and Probability

Randomness such as roulette-rolling and noise arises from the
lack of information, or incomplete knowledge of reality. It can
also come from the intrinsic complexity, diversity and pertur-
bations of the system. The theory of probability is mainly the
studies of random phenomena so as to find non-random regu-
larity.
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For an experiment or trial such as rolling dices whose out-
come depends on chance, the sample space Q of the experi-
ment is the set of all possible outcomes. The sample space
can be either finite or infinite. For example, rolling a six-sided
die will have six different outcomes, thus the sample space is
Q= {1,2,3,4,5, 6}. The elements of a sample space are the
outcomes, and each subset of a sample space is called an event.
For example, the event § = {2,4,6} is a subset of Q. In a
sample space 2, the outcomes of an experiment is represented
as numbers (1 for heads and 0 for tails for tossing coins). A
real-valued variable that is defined for all the possible outcomes
is referred to as a random variable, which is a function that as-
sociates a unique numerical value with every outcome of an
experiment, and its actual value varies from trial to trial as the
experiment is repeated. The values of a random variable can
be discrete (such as 1 to 6 in rolling a single die) or continuous
(such as the level of noise). If a random variable only takes
discrete values, it is called a discrete random variable. If its
values are continuous, then it is called a continuous random
variable.

ANB AUB
Figure 19.1: Venn Diagrams: AN B and AU B.

Two events A and B can have various relationships and
these can be represented by Venn diagrams as shown in Figure
19.1. The intersection AN B of two events means the outcome
of the random experiments belongs to both A and B, and it
is the case of ‘A AND B’. If no event or outcome belongs to
the intersection, that is AN B = @, we say these two events are
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mutually exclusive or disjoint.

The union A U B denotes the outcome belongs to either
A or B or both, and this means the case of ‘A OR B’. The
complement A = Q — A (or not A) of the event A is the set of
outcomes that do not belong to A but in the sample space
(see Figure 19.2). The A — B means the outcomes in A only.

Figure 19.2: Venn Diagrams: A =Q — A and A — B.

Probability P is a number or an expected frequency as-
signed to an event A that indicates how likely the event will
occur when a random experiment is performed. This probabil-
ity is often written as P(A) to show that the probability P is
associated with event A. For a large number of fair trials, the
probability can be calculated by

_ Na(number of outcomes in the event A)

P(A
(4) Ngq(total number of outcomes)

(19.1)

O FExample 19.1: If you tossed a coin 1000 times, the head (H)

occurs 511 times and the tail (T) occurs 489 times. The probability
P(H) and P(T) are

511
P(H) = 100 = 0.511,
and
489
P(T) = 1000 = 0.489.

There are three axioms of probability, and they are:

Axiom I: 0 < P(A) L 1.
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Axiom II: P(Q) =1.
Axiom III: P(AUB) = P(A) + P(B),if ANB=4.

The first axiom says that the probability is a number be-
tween 0 and 1 inclusive. P(A) = 0 corresponds to impossibility
while P(A) = 1 corresponds to absolute certainty. The sec-
ond axiom simply means that an event must occur somewhere
inside the sample space. The third axiom is often called the ad-
dition rule. Since 4 and A are mutually exclusive (AN A = ),
we have

P(A) + P(A) = P(AU 4) = P(Q) = 1, (19.2)
or
P(A) = 1- P(4), (19.3)

which is usually called the NOT rule. The third axiom can be
further generalized to any two events A and B

P(AUB) = P(A) + P(B) - P(AN B). (19.4)

In a special case when events A;(i = 1,2,...,n) exhaust the
whole sample space such that A = U™ 4; = AjUA;U..UA, =
Qand 4;NA; =0(i # j),

P(ANB)=>_ P(A;NB). (19.5)

=1
Since QN B = B, we also get

P(QNB) = Xn: P(A; N B), (19.6)

=1

which are the useful properties of the total probability.

For example, if you randomly draw a card from a standard
pack of 52 cards, what is the probability of it being a red king
or a diamond with a face value being a prime number (if its
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face value is counted from 1 to 13). The prime numbers are 2,
3,5, 7,11, 13, therefore they are 6 cards that forms the primes.
The possibility of event (A) of drawing a red king is P(A) =

52,2- = ’2!6' The probability of event (B) of drawing a prime
number is P(B) = & = £. As a diamond king (13) is also a

prime, this means P(A N B) = g5. Therefore, the probability
P(AU B) = P(A) + P(B) — P(AN B)

Two events A and B are independent if the events has no
influence on each other. That is to say, the occurrence of one
of the events does not provide any information about whether
or the other event will occur. In this case, the probability of
both occuring is equal to the product of the probabilities of the
two individual events P(A) and P(B)

P(AN B) = P(A)  P(B). (19.7)

This can be easily extended to n mutually independent events
Ai(i = 1,2,...,n). The probability of all these events happening
is

P(zn: NA;) = I, P(A;) = P(A1)P(A3) - P(A,).  (19.8)

=1

0O Example 19.2: The probability of drawing a king from a pack
of cards (Event A), and showing an even number of rolling a six-
sided die (event B) is P(AN B). We know P(A) = 4/52 = 1/13,
and P(B) = 3/6 = 1/2. Since these two events are independent, the
probability that both events occur is

11 1
P(ANB) = P(A)P(B) = 3°5= %
0
If the two events are not independent, then one may affect
the other event, in this case, we are dealing with the conditional
probability which will be discussed later in the next section.
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In calculating the probabilities, it is useful to know the pos-
sible combinations and permutations of certain objects. Sup-
pose you have 5 pairs of shoes, 4 pairs of trousers, 7 shirts and
2 hats. This is equivalent to the lineup problem from your feet
to your head. In this case, as the event of selecting each thing
to wear is in a similar manner of putting it into slots in succes-
sive stages, the total number of all possible ways is simply the
multiplication of all the possible choices for each stages. All
possible outfits you can wear form a permutation problem, and
the total number is 5 x 4 X 7 x 5 = 700.

In order to line 5 objects marked A, B,C, D, E, in the first
place, there are 5 possible choices, the second place has only 4
options, the third place 3 choices, the fourth place has 2 choices.
and there is only one left for the last place. Thus the number
of all possible permutations is 5 x 4 x 3 x 2 x 1 = 5. Following
this line of reasoning, n objects can in general be permutated
in n! ways.

Suppose there are n = 20 students in a class (named S,
S, ..., So), we want to select 5 students at random to form
a 5-student team to work on a project. This is different from
the lineup problem because once you have selected any five
students (say) Si, S7, Sio, S15, Si9, it does not matter what
order you selected them, the final formed team is the same.
There are 5! permutations within the same team. Order does
not count in this case. This is a combination problem (also
called a committee problem). As before, there are 5 places to
line up the students, and the total number of all permutations
for selecting 5 students is 20 * 19 * 18 % 17 * 16. Therefore, the
total number of combinations (of selecting 5 students) is

_20%19%18%17x15 20!
- 5! ~ 5115!
In general, the total number of all possible combinations of
selecting k objects from n is

20 Cs

=15504.  (19.9)

n!

"Cr = ( Z ) = m (19.10)
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The consistency requires 0! = 1.

0O Ezample 19.3: A club of 5 members is chosen at random
from 8 female students, 10 male students, and 7 teachers. What is
the probability of the club consisting of 2 female students, 2 male
students, and 1 teacher? The total number of clubs is 2°Cs. If two
female students are selected, we have 8Cs. Similarly, '°C; for select-
ing 2 male students, and ?C; for selecting one teacher. Therefore,
the total number N of forming the 5-member club is

3CL,10C,7C, 42
T = ﬁ ~ 0.166

N =
]
There is an interesting ‘birthday paradox’ which is related
to this context. The birthday paradox was first proposed in
1939 by Richard von Mises, which states that what is the prob-
ability of two people having the same birthday in a group of n
people. For a group of 367 people, it is certain that there must
be two people having the same birthday as there are only 365
(or 366 if someone was born in a leap year) possible birthdays.
Ignoring 29 February and the year of birth and assuming that
the birthdays are evenly distributed throughout the year, we
only have 365 different birthdays (days and months only). If
the event A denotes that all the n people will have different
birthdays (no birthday matching), the first person can have
any date as his or her birthday, 365/365. The second person
must be in other 364 dates, which is 364/365, and the kth per-
son has (365 — k +1)/365. Therefore, the probability of no two
people having the same birthday is

_ 365 364 (365 —n +1)
P(A.,'n) —% X % X ..o X —365
_ 365 (364) *...* (365 —n+1) 365! (19.11)
- 365" ~ (365 —n)13657 "
Now the probability of two people with the same birthday is
P(A,n)=1-P(A,n)=1- 369! (19.12)

(365 — n)1365"
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The factorial 365! is a large number, but you do not have to
deal with such large numbers. You can use a simple calculator
to estimate it. For five people, the probability of two people
with the same birthday is

365 * 364 * 363 * 362 x 361
365°

which seems insignificant. However, the interesting thing is
that for n = 23, the probability becomes

_ 365!

P(A,5)=1- ~ 0.027, (19.13)

This means that you have slightly more than a 50-50 chance of
finding two people sharing the same birthday. If you increase
n, you get P(A,30) =~ 0.706 for n = 30, P(A,40) ~ 0.891 for
n = 40, and P(A4,50) = 0.970 and P(4,70) =~ 0.9992 (almost
certainty) for n = 70.

It is worth noting that there is some difference in combi-
nations when the member drawn is placed back or not. Sup-
pose there are 10 red balls and 10 white balls in bag. If we
draw a ball (say a red, event A) from the bag and then put it
back (with replacement), then we draw another ball (event B).
P(A) =1/20 and P(B) = 1/20. The probability of getting two
red balls are P(AN B) = P(A) x P(B) = 1/400. We call this
case I.

For a second case (Case II), if we do not put it back after
we have drawn the first ball (without replacement), then the
probability of event B is now different P(B) = 1/19 as there
is now only 19 balls in the bag. The probability of getting two
red balls now becomes P(AN B) = 5y X 1y = g5, Which is
different from 1/400.

The reason here is that the two events are not independent
in the case of no-replacement. If we use notation ‘B|A’ which
means that event B occurs given that event A has occurred,
then we can use P(B|A) to denote the probability of event
B when there is no replacement in event A in the scenario
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described in Case II. Now P(B) becomes P(B|A). Hence, we
have
P(ANB) = P(A)P(B|A), (19.15)

which is often called the multiplication rule in probability the-
ory. Similarly, we can get

P(AN B) = P(B)P(A|B). (19.16)

This is essentially a conditional probability problem which forms
the main topic of the next section.

19.1.2 Conditional Probability

In calculating the probabilities, we often assume that all pos-
sible outcomes of an experiment such as drawing a card are
equally likely. Probabilities can change if additional informa-
tion is known or some other event has already occurred and
thus P(B|A) denotes the probability that event B will occur
given that event A has already occurred. The conditional prob-
ability can be calculated by

P(B|A) = % (19.17)
Conversely, we have
P(A|B)%. (19.18)

Using equation (19.15), we can write the above formulation as

P(A)P(B|A)

P(AIB) = =555

- P(A)P(B|A)
P(A)P(B|A) + P(A)P(B|A)’
which is the Bayes’ theorem. Here have used AU A = Q and
P(A)=1- P(A).

(19.19)

275



19.1 Probability Probability and Statistics

As an example, we consider the drug test in sports. It is
believed that the test is 99% accurate if athletes are taking
drugs. For athletes not taking drugs, the positive test is only
0.5%. It is assumed that only one in 1000 athletes takes this
kind of drug. Suppose an athlete is selected at random and
the test shows positive for the drug. What is the probability
that the athlete is really taking the drug? If event A denotes
an athlete is taking the drug, and B denotes the event that
the individual tests positive. Thus, P(A) = 1/1000, P(B|A) =
0.99 and P(B|A) = 0.005. The probability that the athlete is
actually taking the drug is

- P(A)P(B|A)
~ P(A)P(B|A) + P(A)P(B|A)
0.001 % 0.99

~ 0.001 * 0.99 + 0.999 * 0.005
This is surprisingly low in probability.

P(A|B)

~ 0.165. (19.20)

O Example 19./: The classical problem of three cards consists of
three cards: one blue card (B) is blue on both sides, one white card
(W) is white on both sides, and one mixed card (M) is white on one
side and blue on the other. If you draw one card at random from a
bag and place it on a table, suppose that the side you can see is blue,
what is the probability of other side is also blue? This a conditional
probability problem. There are 3 blue faces and 3 white faces, thus
the total probability of showing a blue face (F) is P(BF) = 1/2, and
probability of pull the blue-blue card out is P(BB) = 1/3, while the
probability of showing a blue face is P(BF|BB) = 1 if the pulled
card is blue-blue one. Then, the probability of other side being also
blue is
P(BF|BB)P(BB) _1x %

p(p5|pF) = LD - =§. (19.21)
2

Most people will intuitively guess that the probability is %, which is
not correct. 0

Another related problem is the so-called Monty Hall prob-
lem (or three door problem) in a classical game show. Suppose
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that you are given the choice of three doors. There is an ex-
pensive car behind one door, behind other two doors are goats.
If you choose one door (say, A) at random, then the host opens
one of the other door (say, B), which he knows there is a goat
behind it, to reveal a goat. Now you have a choice either to
stick with your original choice or swap with the other door
(say, C). What is your best strategy based on probability? Ini-
tially, the prize car behind any door (Y) has a priori probability
P(any) = 1/3, so your initial choice P(A) = 1/3. As the host
knows where the prize is, if the car is behind A, the host will
open B or C so 1/2 each. If the car is behind B, the host
will never open B, and if the car is behind C, the host will
surely open B. Mathematically, this gives P(OpenB|A) = 1/2,
P(OpenB|B) = 0, and P(OpenB|C) = 1.
So the total probability of opening door B is

P(OpenB) = P(A)P(OpenB|A) + P(B)P(OpenB|B)

1 1 1 1 1
+P(C)P(OpenB|C) = 3X5t3X 0+ 3x1=3 (19.22)

Now the probability of the car behind door C is

_ P(OpenB|C)P(C) 1x 3 _2
P(C|OpenB) = P(OpenB) = =3 (19.23)

which is greater than your initial choice 1/3. Therefore, the
best strategy is to switch your choice. This game has other
variations such as the three envelope problem and others, but
the analysis and strategy are the same.

19.1.3 Random Variables and Moments
Random Variables

For a discrete random variable X with distinct values such as
the number of cars passing through a junction, each value z;
may occur with a certain probability p(z;). In other words,
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the probability varies with the random variable. A probabil-
ity function p(z;) is a function that defines probabilities to all
the discrete values z; of the random variable X. As an event
must occur inside a sample space, the requirement that all the
probabilities must be summed to one leads to

> p(x:) =1. (19.24)
=1
The cumulative probability function of X is defined by
P(X <1z) z p(x:)- (19.25)
;<

For a continuous random variable X that takes a continuous
range of values (such as the level of noise), its distribution is
continuous and the probability density function p(z) is defined
for a range of values x € [a, b] for given limits a and b [or even
over the whole real axis € (—00,00)]. In this case, we always
use the interval (z,z + dx| so that p(z) is the probability that
the random variable X takes the value z < X < z +dxr is

®(z) = P(r < X <z + dz) = p(z)dz. (19.26)

As all the probabilities of the distribution shall be added to
unity, we have

b
/ p(z)dz = 1. (19.27)
a
The cumulative probability function becomes

®(z) = P(X < z) = / " p(a)de, (19.28)

which is the definite integral of the probability density function
between the lower limit a up to the present value X = z.

Mean and Variance

Two main measures for a random variable X with a given prob-
ability distribution p(z) are its mean and variance. The mean
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u or the expectation value of E[X] is defined by
p=EX]=<X>= / zp(x)dz, (19.29)

for a continuous distribution and the integration is within the
integration limits. If the random variable is discrete, then the
integration becomes the summation

E[X])= Z z;p(x;). (19.30)

The variance var[X] = o2 is the expectation value of the
deviation squared (X — p)2. That is

0? = var[X] = E[(X — p)?] = /(x - pw)?p(z)dz.  (19.31)

The square root of the variance 0 = /var[X| is called the
standard deviation, which is simply o.
This simply becomes a sum

o= Z(x — 1)?p(xs), (19.32)

)

for a discrete distribution. In addition, any other formulas for
a continuous distribution can be converted to their counter-
part for a discrete distribution if the integration is replaced by
the sum. Therefore, we will mainly focus on the continuous
distribution in the rest of the section.

Other frequently used measures are the mode and median.
The mode of a distribution is defined by the value at which
the probability density function p(z) is maximum. For an even
number of data sets, the mode may have two values. The me-
dian m of a distribution corresponds to the value at which the
cumulative probability function ®(m) = 1/2. The upper and
lower quartiles Qu and QL are defined by ®(Qu) = 3/4 and
B(Qu) = 1/4.
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Moments and Moment Generating Functions

In fact, the mean is essentially the first moment if we define
the kth moment of a random variable X by

E(X* = = / s*p(z)dz, k=1,2,.,N.  (19.33)
Similarly, the kth central moment is defined by

E[(X - u)k] =y = /(m - ,u)kp(x)da:, k=12..,N.
(19.34)
Obviously, the variance is the second central moment. From
these definitions, it is straightforward to prove

Elaz + 8] =cE[X]+8, E[X*)=p?+0%  (19.35)

and
var[az + 8] = o?var[X]. (19.36)

where o and 3 are constants.

Most probability functions can be expressed in terms of
moments and moment generating functions. The moment gen-
erating function is defined by

Gx(v) = E[e"X] = / e p(x)dx, (19.37)
where v € R is a real parameter. By expanding exp[vz] into

power series and using the definition of various moments, it is
straightforward to verify that

. d*Gx(v)
E[X" = % o (19.38)
and
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19.1.4 Binomial and Poisson Distributions
Binomial Distribution

A discrete random variable is said to follow the binomial dis-
tribution B(n,p) if its probability distribution is given by

n!

B(n,p) ="Cep*(1—p)"™%, "Cp= (19.40)

zl(n— o)’
where £ = 0,1, 2, ...,n are the values that the random variable
X may take, n is the number of trials. There are only two
possible outcomes: success or failure. p is the probability of
a so-called ‘success’ of the outcome. Subsequently, the proba-
bility of the failure of a trial is ¢ = 1 — p. Therefore, B(n,p)
represents the probability of z successes and n — z failures in
n trials. The coefficients come from the coefficients of the bi-
nomial expansions

n

(p+q)" =D "Cop*q" " =1, (19.41)

=0
which is exactly the requirement that all the probabilities should
be summed to unity.

0O Example 19.5: Tossing a coin 10 times, the probability of
getting 7 heads is B(n,1/2). Since p=1/2 and = = 7, then we have

1.1 15
100 (2)7(2) = —> ~0.117.

0
It is straightforward to prove that u = E[X] = np and
0% =npq= np(l — p) for a binomial distribution.
Another related distribution is the geometric distribution
whose probability function is defined by

P(X=n)=pg" ' =p(l-p*!,  (19.42)

where n > 1. This distribution is used to calculate the first
success, thus the first n — 1 trials must be in failure if n trials
are needed to observe the first success. The mean and variance
of this distribution are p = 1/p and 02 = (1 — p)/p?.
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Poisson Distribution

The Poisson distribution can be thought as the limit of the
binomial distribution when the number of trial is very large
n — oo and the probability p — 0 (small probability) with the
constraint that A = np is finite. For this reason, it is often
called the distribution for small-probability events. Typically,
it is concerned with the number of events that occur in a certain
time interval (e.g., number of telephone calls in an hour) or
spatial area. The Poisson distribution is

Afe™>

P(X =z)= -

A>0, (19.43)

where £ = 0,1,2,...,n and X is the mean of the distribution.
Using the definition of mean and variance, it is straightforward
to prove that 4 = X and 02 = X for the Poisson distribution.
The parameter A is the location of the peak as shown in Figure
19.3.

O Exzample 19.6: If you receive 3 calls per hour on your mobile
phone on the average. If you do not switch your phone off, what is
the probability that it begins to sound (one call is enough) during
any one-hour class? We know that A\ = 3. The probability of no
phone call at all is

306_3

P(X =0)= =

= 0.0498.

Thus, the probability of sounding is P(X > 0) =~ 1 — 0.0498 = 0.95.
In fact, the probability of receiving one call is

1,-3

3le
PX=1)= T

x 0.149,

and the probability of receiving two calls is

32e-3

P(X=2)=

= 0.224.
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Figure 19.3: Poisson distributions for different values of A =

5,10,15.
The moment generating function for the Poisson distribu-
(19.44)

tion is given by
X VT \T -
c-c - exp[A(e” —1)].

Gx) =2 —r—

=0

19.1.5 Gaussian Distribution
The Gaussian distribution or normal distribution is the most

important continuous distribution in probability and it has a
wide range of applications. For a continuous random variable

X, the probability density function (PDF) of a Gaussian dis-
(19.45)

tribution is given by
1 _E-w?
e 20 ,

pz) = ovV2rm
= var[X] is the variance and y = E[X] is the mean

2
of the Gaussian distribution. From the Gaussian integral, it is
(19.46)

where o
easy to verify that
oo
/ p(x)dzr =1,
oo
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Figure 19.4: Gaussian distributions for ¢ = 5, 7, 10.

and this is exactly the reason that the factor 1/v/2m comes
from the normalization of the all probabilities. The probability
function reaches a peak at £ = 1 and the variance o2 controls
the width of the peak (see Figure 19.4).

The cumulative probability function (CPF) for a normal
distribution is the integral of p(z), which is defined by

®(z) = P(X < z) = \/2;7 /_ ; A (19.47)

Using the error function defined by Chapter 1, we can write it
as

1 T—pu
o(z) = %[1 + erf(w)]. (19.48)

The moment generating function for the Gaussian distribution
is given by
1
Gx(v) = et +3(@), (19.49)
The Gaussian distribution can be considered as the limit
of the Poisson distribution when A > 1. Using the Sterling’s

approximation z! ~ v27wz(z/e)* for z > 1, and setting u = A
and o2 = ), it can be verified that the Poisson distribution can
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be written as a Gaussian distribution

z—p 2
P(z) ~ \/217r_/\e-‘—2%, (19.50)

where ¢ = A. In statistical applications, the normal distribu-
tion is often written as N(u, o) to emphasize that the proba-
bility density function depends on two parameters u and o.

The standard normal distribution is a normal distribution
N(u,o0) with a mean of 4 = 0 and standard deviation ¢ = 1,
that is V(0,1) This is useful to normalize or standardize data
for statistical analysis. If we define a normalized variable

= : (19.51)

it is equivalent to give a score so as to place the data above or
below the mean in the unit of standard deviation. In terms of
the area under the probability density function, £ sorts where
the data falls. It is worth pointing out that some books define
z =& = (z — p)/o in this case, and call the standard normal
distribution as the Z distribution.

Table 19.1: Function ¢ defined by equation (19.53).

§ o) | ¢ ¢
0.0 0500 | 1.0 0.841
0.1 0540 | 1.1 0.864
02 0579 |12 0.885
0.3 0.618 | 1.3 0.903
04 065514 00919
0.5 069215 0.933
06 0.726 | 1.6 0.945
0.7 0.758 | 1.7 0.955
0.8 0.788 | 1.8 0.964
09 081619 0971
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Now the probability density function of standard normal
distribution becomes

1 ¢
p(z):me 7. (19.52)

Its cumulative probability function is

6(6) = # / ; eFde = 1+ erf(%)]. (19.53)

As the calculations of ¢ and the error function involve the nu-
merical integrations, it is usual practice to tabulate ¢ in a table
(see Table 19.1) so that you do not have to calculate their values
each time you use it.

19.1.6 Other Distributions

There are a dozen of other important distributions such as the
exponential distribution, log-normal distribution, uniform dis-
tribution and the y2-distribution. The uniform distribution has
a probability density function

1
p_ﬁ—a’

z = [a,b)], (19.54)

whose mean is E[X] = (o + 3)/2 and variance is 02 = (8 —
a)?/12.

The exponential distribution has the following probability
density function

f(@) =X (z>0), (19.55)
and f(z) =0 for x < 0. Its mean and variance are
p=1/x o?=1/)2 (19.56)

The log-normal distribution has a probability density func-
tion

a2
£@) = —mpexpl- IS, (19.57)
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whose mean and variance are
E[X]) = et+o*/2)  var[X] =" t2(e?* —1).  (19.58)

The x2-distribution, called chi-square or chi-squared dis-
tribution, is very useful in statistical inference and method of
least squares. This distribution is for the quantity

2= (R (19.59)
i=1

ag;

where the n-independent variables X; are normally distributed
with means p; and variances o?. The probability density func-
tion for y2-distribution is given by

1
@) = ZiT )

where £ > 0, and n is called the degree of freedom. Its cumu-
lative distribution function is
2,z/2
o) = 20/22/2)
I'(n/2)

where ¥(n/2,z/2 is the incomplete gamma function. It can be
verified that the mean of the distribution is n and its variance
is 2n.

For other distributions, readers can refer to any books that
are devoted to probability theory and statistical analysis.

F-leme/2) (19.60)

(19.61)

19.1.7 The Central Limit Theorem

The most important theorem in probability is the central limit
theorem which concerns the large number of trials and explains
why the normal distribution occurs so widely. This theorem is
as follows: Let X;(¢ = 1,2, ...,n) be n independent random vari-
ables, each of which is defined by a probability density function
pi(x) with a corresponding mean y; and a variance o?. The sum
of all these random variables

O=Y"Xi=X1+Xo+ ..+ Xan, (19.62)

i=1
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Figure 19.5: A uniform distribution.

is also a random variable whose distribution approaches the
Gaussian distribution as n — co. Its mean E[©] and variance
var[©)] are given by

Ble] = Y ElX) =3 us (19.63)
i=1 =1
and n n
var[@] = 3 " var(@] = 3 o2 (19.64)
i=1 i=1

The proof of this theorem is out of the scope of this book
as it involves the moment generating functions, characteristics
functions and other techniques. In engineering mathematics,
we simply use these important results for statistical analysis.

In the special case when all the variables X; are described
by the same probability density function with the same mean
© and variance 02, these results become

E[©] =np, var[@] = no’. (19.65)
By defining a new variable

& = , (19.66)
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Figure 19.6: A bilinear distribution.

then the distribution of &, converges towards the standard nor-
mal distribution N(0,1) as n — oo.

Let us see what the theorem means for a simple experiment
of rolling a few dice. For a fair six-sided die, each side will
appear equally likely with a probability of 1/6 ~ 0.1667, thus
the probability function after rolling it 15000 times approaches
a uniform distribution as shown in Figure 19.5.

If we now roll two independent dice 15000 times and count
the sum (1-12) of the face values of both dice, then the sum
obeys a bilinear distribution as shown in Figure 19.6. If we
roll n = 15 independent dice, the sums of the face values vary
from 1 to 90. After rolling the 15 dice 10,000 times, the distri-
bution is shown in Figure 19.7 and it approaches to a normal
distribution as n — oc.

19.2 Statistics

Statistics is the mathematics of data collection and interpreta-
tion, and the analysis and characterisation of numerical data
by inference from sampling. Statistical methods involve reduc-
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Figure 19.7: An approximate Gaussian distribution (the out-
comes of the sum of face values in rolling 15 dice).

tion of data, estimates and significance tests, and relationship
between two or more variables by analysis of variance, and the
test of hypotheses.

19.2.1 Sample Mean and Variance

If a sample consists of n independent observations zy, 3, ..., Tp,
on a random variable z such as the price of a cup of coffee, two
important and commonly used parameters are sample mean
and sample variance, which can easily be estimated from the
sample. The sample mean is calculated by

1 1 &
T =<r>= ;(an +r24+ ...+ ) = ;iz:;mi, (19.67)

which is essentially the arithmetic average of the values z;.

Generally speaking, if u is a linear combination of n inde-
pendent random variables y;, s, ..., ¥» and each random vari-
able y; has an individual mean y; and a corresponding variance
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ol

1

we have the linear combination
n
U= Z o;y; = ay1 + agy2 + ... + apln, (19.68)
i=1

where the parameters a;(i = 1,2, ...,n) are the weighting coef-
ficients. From the central limit theorem, we have the mean p,
of the linear combination

pu = E(u Zazyz Z aE(y:) = aipi.  (19.69)

i=

Then, the variance o2 of the combination is

02 = E[(u — p,)?] = E[Zai(yi - #i)2], (19.70)
i=1
which can be expanded as
n
oh = ofE[(y: — 1)
i=1

n
+ )« B[y — ) (Y5 — 1)), (19.71)
t,j=1;i#j
where E[(y; — 1:)?] = o2. Since y; and y; are independent,
we have Ef(y: — ui)(y; — )] = El(yi — )] E|(y; — 15)] = 0.
Therefore, we get

=Y ald?. (19.72)
=1

The sample mean defined in equation (19.67) can also be
viewed as a linear combination of all the x; assuming each of
which has the same mean u; = p and variance 02 = 02, and the
same weighting coefficient a; = 1/n. Hence, the sample mean
is an unbiased estimate of the sample due to the fact puz =
Y1 #/n = p. In this case, however, we have the variance

2

“1 o
2_2—2 =—, (19.73)

Hno
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which means the variance becomes smaller as the size n of the
sample increases by a factor of 1/n.
The sample variance S? is defined by

]. n
2 _ Y
=7 i§=l(x, z)“. (19.74)

It is worth pointing out that the factor is 1/(n — 1) not 1/n be-
cause only 1/(n—1) will give the correct and unbiased estimate
of the variance. From the probability theory in the earlier sec-
tions, we know that E[z?] = p? + 02. The mean of the sample
variance is

ps = Bl 3" (2i-2)") = ZE[(m —nz?)]. (19.75)
=1
Using E[z?] = u? + 02/n, we get

ot = 7y X (Blet] - nEla%)

1 o2
= P+ oY) —n(+ )y =0k (1976)
Obviously, if we use the factor 1/n mstead of 1/(n — 1), we
would get pge = —a < 02, which would underestimate the

sample variance. The other way to think the factor 1/(n — 1)
is that we need at least one value to estimate the mean, we
need at least 2 values to estimate the variance. Thus, for n
observations, only n — 1 different values of variance can be
obtained to estimate the total sample variance.

19.2.2 Method of Least Squares
Maximum Likelihood

For a sample of n values 1, z9, ..., z, of a random variable X
whose probability density function p(z) depends on a set of k
parameters (3, ..., O, the joint probability is then

@ (61, - Br) = IE_yp(xi, Br, -, Bk)
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= p(Z1, 815 - Bi)P(T2, B1, s Bk) - - - (T, By -y Br). (19.77)
The essence of the maximum likelihood is to maximize ® by

choosing the parameters ;. As the sample can be considered
as given values, the maximum likelihood requires that

0P
9B;

whose solutions for 3; are the maximum likelihood estimates.

=0, (i=1,2..k), (19.78)

Linear Regression

For experiments and observations, we usually plot one variable
such as pressure or price y against another variable z such as
time or spatial coordinates. We try to present the data in a
way so that we can see some trend in the data. For n sets
of data points (z;,y;), the usual practice is to try to draw a
straight line y = a + bz so that it represents the major trend.
Such a line is often called the regression line or the best fit line
as shown in Figure 19.8.

Figure 19.8: Least square and the best fit line.

The method of least squares is to try to determine the two
parameters a (intercept) and b (slope) for the regression line
from n data points. Assuming that z; are known more precisely
and y; values obey a normal distribution around the potentially
best fit line with a variance o2. Hence, we have the probability

P =T yp(y) = Aexp{—5y >l — F@P), (1979
=1
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where A is a constant, and f(z) is the function for the re-
gression [f(z) = a + bz for the linear regression]. It is worth
pointing out that the exponent "2 ,[y; — f(z;)]?/0 is similar
to the quantity x2 defined in the x2-distribution.

The essence of the method of least squares is to maximize
the probability P by choosing the appropriate a and b. The
maximization of P is equivalent to the minimization of the
exponent

b=l - Fa)P. (19.80)
=1

We see that 1 is the sum of the squares of the deviations ef =
(y; — f(z;))? where f(z;) = a + bz;. The minimization means
the least sum of the squares, thus the name of the method of
least squares.

In order to minimize ¥ as a function of a and b, its deriva-
tives should be zero. That is

a n
a_’f - _2;[1,_ (a+bz;)] =0, (19.81)
and "
?9_11/,} = —2; zily; — (a+ bz;)] = 0. (19.82)

By expanding these equations, we have
n n
na+by z=> y, (19.83)
i=1 =1

and
n n n
ad z+b) 2t =z, (19.84)
i=1 i=1 i=1

which is a system of linear equations for a and b, and it is
straightforward to obtain the solutions as

l n n
a= H[Z Yi — bz z;] = g — bz, (19.85)
i=1 i=1
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b— n Zz—l ZiYi — (E =1 ml)(z:l—l yi)

, 19.86
n21—l .’II - (Zl_l xl)z ( )
where
=1 i _ 1 Xn: 19.87)
T n4 pot T nA e (19.
If we use the following notations
K:=) zi, Ky=) y, (19.88)
i=1 =1
and
Koz =) af, Ko=) 2, (19.89)
i=1 i=1
then the above equation for a and b becomes
_ KKy - K;K, _ nKzy - KK,
The residual error is defined by
€ =1Y; — (a + b.’l:i), (19.91)
whose sample mean is given by
1 & 1 1<
He = ;;Gi = ;yi —a—b;;l‘i
=§—a—-b=[g—bz]-a=0. (19.92)
The sample variance S is
n
> i — (a +bx))?, (19.93)

n—2i=1

where the factor 1/(n — 2) comes from the fact that two con-
straints are need for the best fit, and the residuals therefore
have a n — 2 degrees of freedom.
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Correlation Coefficient

The correlation coefficient 7., is a very useful parameter to
find any potential relationship between two sets of data x; and
y; for two random variables z and y, respectively. If z has a
mean g, and a sample variance S2, and y has a mean p, and
a sample variance Sg, the correlation coefficient is defined by

_cov(r,y) Efzy] - Halty
’[‘I’y - SISy - S S (19.94)

where cov(z,y) = E[(z — p](y — py) is the covariance. If
the two variables are independent cov(z,y) = 0, there is no
correlation between them (rz,y =0). If 72, =1, then thereis a
linear relationship between these two variables. r;, =1 is an
increasing linear relationship where the increase of one variable
will lead to increase of another. r,, = —1 is a decreasing
relationship when one increases while the other decreases.

For n sets of data points (z;,y;), the correlation coefficient
can be calculated by

MY i Tilhi — i) Ti Qi Ui

’f'_.,;’ s
YT — (S w2 T v — (Dt 9]
(19.95)
or
Toy = ey — Koy (19.96)

\/(nKm - K2)(nKyy — Kﬁ)

where K,y = Y0, y2.

O Example 19.7: Is there any relationship between shoe size
and height among general population? By collecting data randomly
among our friends, we have the following data:

Height (h): 162, 167, 168, 171, 174, 176, 183, 179 (cm);
Shoe size (s): 5.5, 6, 7.5, 7.5, 8.5, 10, 11, 12.

From these data, we know the sample mean u, = 172.5, u, = 8.5.
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Figure 19.9: Confidence interval vy =1 — a.

The covariance cov(h,s) = E[(h — pup)(s — ps)] = 13.2. We also have
the standard deviation of height Sy, = 6.422 and the standard devia-
tion of shoe size S, = 2.179. Therefore, the correlation coefficient r
is given by
_ cov(h,s) 13.2
"= 758, T 64222179

This is a relatively strong correlation indeed. O

~ 0.94.

19.2.3 Hypothesis Testing
Confidence Interval

The confidence interval is defined as the interval ; < X < 6,
so that the probabilities at these two limits 6, and 82 are equal
to a given probability v =1 — a (say, 95% or 99%). That is

P, <X <6)=7y=1-qa. (19.97)

The predetermined parameter < is always near 1 so that it can
be expressed as a small deviation o < 1 from 1 (see Figure
19.9). If we choose v = 95%, it means that we can expect that
about 95% of the sample will fall in the confidence interval
while 5% of the data will not.
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For the standard normal distribution, this means P(—6 <
£ <0)=1-aq,sothat

HE<h)=1- % (19.98)

If o = 0.05, we have ¢(§ < 0) =0.975 or § = 1.960. That is to
say, "0 < <OQorpu—6oc<z<pu+6o. We also know that
if you repeat an experiment n times, the variance will decrease
from 02 to 02/n, which is equivalent to say that the standard
deviation becomes ¢ //n for a sample size n. If o = 0.01, then
6 = 2.579, we have

g g
p—2579— <z < p+ 2.579—. (19.99)
Jn Jn

On the other hand, for 6 =1, weget u —0c <z < pu+ 0 and
~ = 0.682. In other words, only 68.2% of the sample data will
fall in the interval [u — o, 1 + o] or

r=pto, (19.100)

with a 68.2% confidence level.
It is conventional to use v = 0.95 for probably significant,
0.99 for significant, and 0.999 for highly significant.

O Ezxzample 19.8: The sample data of the time taken for a quick
lunch at a restaurant are as follows: 19, 15, 30, 20, 15, 23, 28, 22,
23 minutes. Suppose you want to attend a lecture at 12:30, at what
time you should start your order if you want to take 5% chance of
being late? The sample mean is

p=2=—(19+15+ 30+ 20 + 15 + 23 + 28 + 22 + 23) = 21.67.

O =

The sample variance is

%=

LS (i - 1) =265,
=1

n—14%

which gives a standard deviation of ¢ = 5.15 minutes. If you are
willing to take 5% chance, then ¢(£) = 0.95, it gives £ = 1.645. So
you shall start

z=p+&0 =30.15,
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which is about 30 minutes earlier or at about 12:00. 0

Student’s t-distribution

The Student’s t-test is a very powerful method for testing the
null hypothesis to see if the means of two normally distributed
samples are equal. This method was designed by W. S. Gosset
in 1908 and he had to use a pen name ‘Student’ because of his
employer’s policy in publishing research results at that time.
This is a powerful method for hypothesis testing using small-
size samples. This test can also be used to test if the slope
of the regression line is significantly different from 0. It has
become one of the most popular methods for hypothesis testing.
The theoretical basis of the t-test is the Student’s ¢-distribution
for a sample population with the unknown standard deviation
o, which of course can be estimated in terms of the sample
variance S? from the sample data.

For n independent measurements/data z;, z9, ..., £, with an
estimated sample mean Z and a sample variance S? as defined
by equation (19.74), the t-variable is defined by

t= (z/;\/‘;_) (19.101)

The Student’s ¢-distribution with k = n — 1 degrees of freedom
is the distribution for the random variable ¢, and the probability
density function is

_ &Y 2

It can be verified that the mean is E[t] = 0. The variance is
0% = k/(k — 2) for k > 2 and infinite for 0 < k < 2.
The corresponding cumulative probability function is

R NG = B AT e
FO) = Jecers /oo[1+ ] (19.103)
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This integral leads to a hypergeometric function, and it is not
straightforward to calculate, that is why they are tabulated in
many statistical tables. For a confidence level of v = 1 —q, the
confidence interval is given by

F(0)=1- (19.104)

2 Y
which is usually tabulated. For o = 0.05 and 0.01 (or 1—a/2 =
0.975 and 0.995), the values are tabulated in Table 19.2.

Table 19.2: Limits defined by F(f) = 1 — a/2 in equation
(19.104).

k | F(6)oors F(8)o.005
1 12.7 63.7
2 4.30 9.93
3 3.18 5.84
4 2.78 4.60
5 2.57 4.03
6 2.45 3.71
7 2.37 3.50
8 2.31 3.36
9 2.26 3.25
10 2.23 3.17
20 2.09 2.85
50 2.01 2.68
100 1.98 2.63
00 1.96 2.58

Suppose we are dealing with the 95% confidence interval,
we have p(-0 <t <) =1-a=09%orpt <) =1-
a/2 = 0.975, we have 6 = t,; = 12.70(k = 1), 4.30(k = 2),
3.18(k = 3), ..., 2.228(k = 10), ..., 1.959 for k — oco. Hence,

S S
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This is much more complicated than its counterpart of the
standard normal distribution.

Student’s t-test

There are quite a few variations of the Student’s #-test, and
most common are the one sample ¢-test and the two sample
t-test. The one sample t-test is used for measurements that
are randomly drawn from a population to compare the sample
mean with a known number.

In order to do statistical testing, we first have to pose pre-
cise questions or form a hypothesis, and such hypothesis is
conventionally called the null hypothesis. The basic steps of a
t-test are as follows:

1. The null hypothesis: Ho: u = po (often known value) for
one sample, or Hy: u; = po for two samples;

2. Calculate the t-test statistic ¢ and find the critical value
0 for a given confidence level ¥ = 1 — a by using F(t <
0) =1- /2

3. If |t| > 6, reject the hypothesis. Otherwise, accept the
hypothesis.

O Ezample 19.9: A group of candidates (say, more than 100
students) have claimed to have an averaged IQ of 110 (or po = 110).
Then, you randomly sample 11 students to do the IQ test and results
are: x = IQ = 106,112,103, 108, 108, 109, 100, 106, 106,99, 101. Test
the hypothesis:

Ho : p = po,
at a confidence level of 95%.
From the data, we know that n = 11, £ = 105.273, S = 4.077.
Then, we have
_ (@—p) _ (105273 -110) 3.846
T S/Vvr) T a0ty T
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We only use the positive value if we look at the statistical tables.
We also know for k = n — 1 = 10 degrees of freedom at a 95%
confidence level, 8 = 2.228. At a 95% confidence level, the probability
oft > 0 is 0.025 (or 2.5%) and the probability t < —8 is also 0.025.
Thus, the hypothesis is not valid at a 95% confidence level. At the
same level of confidence, the true mean pg lies in in the range of

£ —2.228%S/VII < po < T+ 2.2285/V11 or

102.53 < po < 108.00.

0

Another important ¢-test is the two-sample paired test. As-

suming that two pairs of n sample data sets U; and V; are in-

dependent and drawn from the same normal distribution, the

paired t-test is used to determine whether they are significantly
different from each other. The t-variable is defined by

_0-=v _ n—1)
t= ST O - \/Zz_l(Uz A (19.106)

where U; = U; — U and V; = V; — V. In addition,

S2 = —Z(Ul Vi)? (19.107)

This is equivalent to apply the one-sample test to the difference
U; — V; data sequence.

O Ezample 19.10: A novel teaching method of teaching children
science was tried in a class (say class B), while a standard method was
used in another class (say class A). At the end of the assessment,
8 students are randomly drawn from each class, and their science
scores are as follows:
Class A: U; = 76, 77, 76, 81, 77, 76, 75, 82;
Class B:V; =79, 81, 77, 86, 82, 81, 82, 80.
At a 95% confidence level, can you say the new method is really
better than the standard method?

If we suppose that the two methods do not produce any differ-
ence in results, that is to say, their mean are the same. Thus the null
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hypothesis is:

Ho:pa=pp.

We know that U = 77.5, V = 81. The combined sample variance
Sd = 2.828. We now have

_U-Vv _715-81 _
Sa/vn  2.828/\/8

We know from the statistical table that the critical value 0 = 2.37
for FO) =1-0af2andk=n-1=1T7 Ast< —fort >0, we
can reject the null hypothesis. That is to say, the new method does

produce better results in teaching science. ]

The variance analysis and hypothesis testing are important
topics in applied statistics, and there are many excellent books
on these topics. Readers can refer to the relative books listed
at the end of this book. It is worth pointing out that other
important methods for hypothesis testing are Fisher’s F-test,
x2-test, and non-parametric tests. What we have discussed in
this chapter is just a tip of an iceberg, however, it forms a solid
basis for further studies.

t -3.5.
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Appendix A

Mathematical Formulas

This is a summary for the mathematical formulas that have ap-
peared in various sections in this book. We list these formulas
for your easy reference.

A.1 Differentiations and Integrations
Differentiation Rules:
(wv) = u'v +uw
uv —uv
() =—p—

{fla@)} = f'lg(2)] - ¢'(=)

Leibnitz’s Theorem:

ele

A ) = u™ (n-1), n ) =)y )
(uv) = u™v +nu vt fu v

dz”
(n) ny__"n
+... +uvt, ( r ) i(m =)l

Integration by parts

b dv
/a ud—xd:c= [uv]
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A.2 Vectors and Matrices Mathematical Formulas

Differentiation of an integral

d [ db da, (%) Ju(z,y)
- /a R /a B

Power Series

22 2"
€:=1+Z+§+.+m (ZEC)
) 23 25 22 24
slnz=z—§+5—..., cosz=1—§+a—...
sinhz=z+£+z—5+..., coshz=1+£+£+...
3! 5l 21 4!

Complex Numbers

€® =cosf +isinf, [¢"+1=0).
z=1z+iy =re? = r(cosf +isinf)

De Moivre’s formula:

[r(cos 6 + isin8)])" = r™(cos nf + isinnd)

A.2 Vectors and Matrices
Dot Product
a-b = |a||b|cosd = a;b;é;; = a1by + azbs + azbs

Cross Product

i j k
ax b =nla||b|sind = ¢;,a;by =| a1 as a3
by by b3
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Mathematical Formulas A.2 Vectors and Matrices

Vector Triple

ay as as
[a.b,c]=a-(bxc)=|b by b3
a ¢ c3

a-(bxc)=b:-(cxa)=c-(axb)=-a-(cxDb)
ax(bxc)=(a-c)b-—(a-b)c

Divergence Theorem of Gauss

7w = o

Stokes’s Theorem

//S(qu)-ds=ﬁu-dr

Green’s Theorems

26— gv2p)av = [(w22 — 2%
[ wvte—ovruay = [ (gt - o5t)ds

}f (udz + vdy) = / / (g_; - g—Z)dxdy

Identities
V. Vxu=0 VxV¢p=0
V x (¢u) = ¢V xu+ (V) x u
V.-(¢u)=¢V-u+(Ve)-u
V x (V xu)=V(V . u) - V3u
Inverse, Trace and Determinants

(AB..Z)T = ZT. BTAT, (AB..Z)'1=Z"1.B1A"!

|AB...Z| = |A||B|..|Z|, |A|=detA
AV,‘ = )\iV,', eig(AB) = eig(BA)

313



A.3 Asymptotics Mathematical Formulas

tr(A) = Z A= Z PYR det(A) =IT;\;

tr(AB) = tr(BA), tr(A + B) = tr(A) + tr(B)

1
det(A~1) = , det(AB) = det(A)det
HA™) = Ay deH(AB) = det(A)det(B)
Exponential Matrices
21
eAEZ—A =I+A+=2A%+
On!

A.3 Asymptotics

Gaussian Distribution

i) = s opl- T L 5@) o —on

[o ]
a2 ™
/ e “dr=,/—
oo a

© L, 1" 1-3.-(2n—1)
/_oox2eaxdz=( ) - a2n+l,(n>0).

Binomial Distribution
nl ek
B(k;n,p) = (—k)'klp(l_ p)*" (k=0,1,2,..,n)
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Mathematical Formulas A .4 Special Integrals

B(z;n — oo,p)| p(z;1,0), p=np, 0% =np(1 - p).

~o
np>>1
Poisson Distribution

~-A\z

'\, zeN

x!

e

f(z;A) =
f@mA> ) =p(x;p,0), p=X o=
Bk — x:n — o0,p) ~ f(x; A = np), (nh_ngonp =)
A.4 Special Integrals
Gamma Function
(o] o0
D)= [~ letar = [ etrteinigy
0 0

1 1
_5) = _2\/;’ F(E) = ﬁ

l"(x—l-l)z(%)’”\/ﬁ, (x — 00).

T(n+1)=nl, I(

Stirling’s Formula
n! ~ (%)"\/27rn, n>1

Error Functions

—x2
eI

erf(x) = \/i;/oz e dp~1-— P (x — o0)

erfc(z) = 1 — erf(x) = \/i;/oo et dt

3 .5
x—+x——...], (z < 00).

2
erf(x) ~ \/—;[a: 3+t
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Index

1-D, 209, 254, 255
2-D, 261

Airy stress function, 192
algorithms, 210
analytic function, 67
analytical function, 67
assembly by element, 246
asymptotic, 151
error function, 314
Gamma function, 314
Stirling’s formula, 315

Bessel equation, 88
Bessel function, 24, 151
bifurcation, 99

binomial distribution, 281
birthday paradox, 273

Black-Scholes equation, 205

boundary condition, 252
essential, 248
natural, 248

calculus of variations, 153

multiple variables, 165
pendulum, 159
shortest path, 156
central difference, 212
central limit theorem, 287
chaos, 99
complex integral, 70
residue, 70
complex variables, 62
coordinates
cylindrical, 15
polar, 15
spherical, 15
correlation coefficient, 295
cross product, 30
cumulative probability function,
284
curl, 38
curvature, 153

determinant, 49
difference equation, 95
differential operator, 84

brachistochrone problem, 16dlifferentiation, 1

constraint, 160
curvature, 153
Dido’s problem, 163

hanging rope problem, 163

implicit, 4
partial, 9
rule, 2

vector, 32
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INDEX

INDEX

diffusion equation, 146
displacement, 239
divergence, 38

divergence theorem, 313
dot product, 28, 30
DuFort-Frankel scheme, 224
dynamic reconstruction, 102
dynamical system, 102

elastic wave, 203
elasticity, 181, 240
beam bending, 197

elastostatic, 185, 198

Euler-Bernoulli theory, 19

Hooke’s law, 181

gradient, 38

Green'’s function, 148
Green'’s identity, 41
Green'’s theorem, 313

harmonic motion, 109. 159
heat conduction, 139, 223, 253
hybrid method, 149

hyperbolic equation, 224

first-order, 214
second-order, 215

hyperbolic function, 65
Cauchy-Navier equation, 19lhypothesis testing, 297

6 index matrix, 243

inner product, 28

Maxwell-Betti theorem, 185 integral

strain tensor, 182
stress tensor, 182

stress-strain relationship, 184

elliptic equation, 218
error function, 20
Euler scheme, 210

Euler-Lagrange equation, 154

exponential distribution, 286

finite difference method, 209

multiple, 12

Bessel function, 88
Cauchy’s theorem, 71
differentiation, 12
Gaussian. 18

line, 38

residue theorem, 73
special, 17

integral equation, 153, 167

finite element method, 227, 248

finite volume method, 221
Fokker-Plank equation, 205

Galerkin method, 238
Gamma function, 22
Gauss’s theorem, 41
Gauss-Seidel iteration, 219
Gaussian distribution, 283

displacement kernel, 169
Fredholm equation, 167
sparable kernel, 169
Volterra equation, 168, 170

integral transform
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Fourier, 125
Fourier transform, 144
Laplace, 131
Laplace transform, 143
wavelet, 134



INDEX

INDEX

integration, 5
by parts, 6
iteration method, 219

Jacobian, 13
kinematics, 33

Lagrangian, 158

Lamé constant, 184
Laplace’s equation, 139, 201
Laurent series, 69

leap-frog scheme, 212
least-square, 238

Leibnitz theorem, 3

linear difference equation, 95
linear system, 56
log-normal distribution, 286
Lorenz attractor, 103

mathematical model, 201
matrix, 47
exponential, 52
Hermitian, 53
inverse, 50
Maxwell’s equations, 204
mean, 278
method of least square, 292

moment generating function, 280

Navier-Stokes equation, 206
Navier-Stokes equations, 206
node, 242

normal distribution, 283
normal modes, 116

null hypothesis, 301

ODE, 77, 80, 81

ordinary differential equation
complementary function, 81
general solution, 81
homogenous equation, 81
linear system, 85
particular integral, 81

oscillation
damped, 112
forced, 109
natural frequency, 112
small amplitude, 119
undamped, 109

outer product, 30

parabolic equation, 202, 216

pattern formation, 260
bifurcation, 264
instability, 263

pattern formation , 261

PDE, 138, 141, 203, 213

Poisson distribution, 281

Poisson’s equation, 201, 244

probability, 267

axiom, 270

conditional, 271, 275

distribution, 279

independent events, 271

moment, 280

Monty hall problem, 276

permutation, 272

random variable, 268, 277

randomness, 267

probability density function, 283

quadratic form, 55

random variables, 277
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INDEX INDEX

reaction-diffusion, 257, 262 Sturm-Liouville equation, 86
reaction-diffusion equation, 204

recurrence equation, 95 Taylor series, 69

Residue theorem, 73 tensor, 173.
Riccati equation, 77 analysis, 175
Cartesian, 175

Riemann ¢-function, 68 :
Riemann hypothesis, 69 notations, 173
Runge-Kutta method, 210, 213 rank, 175

vector, 176

Saturn’s rings, 43 three card problem, 276
Schrodinger equation, 206 time-dependent, 251
self-similarity, 105 time-stepping, 217, 253
separation of variables, 141 explicit, 254
series implicit, 211

asympottic, 17 transient, 254

power, 8 Travelling wave, 147

Talor, 8 travelling wave, 259
shape functions, 238 triangular element, 240

similarity solution, 145
Sine-Gordon equation, 207 uniform distribution, 286
soliton, 147 upwind scheme, 214
stability condition, 211, 215
standard normal distribution,
285
statistics, 289
confidence interval, 297
linear regression, 293
maximum likelihood, 292

variance, 278
vector, 27, 29
triple, 31
vector calculus, 32
Venn diagram, 268
vibration, 109

sample mean, 289 wave equation, 139, 202, 203,
sample variance, 289 215, 255
steady state, 245 weak formulation, 236
stiffness matrix, 242
Stokes’s theorem, 41 Young’s modulus, 181

stress intensity factor, 195
Student’s ¢-distribution, 299
Student’s t-test, 301
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