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1 Introduction 

When the renal mass is reduced either experimentally or in the course of 
spontaneously occurring chronic renal disease (CRD), the remaining neph- 
rons perform the excretory functions of the kidney essential to survival 
sufficiently well to preserve the basic integrity of body fluids. They do 
this by maintaining external balance for many of the key solutes and 
water of  the extracellular fluid on an ongoing basis despite random and 
unpredictable variations in the rates of accession of these substances. The 
purpose of this review is to discuss the mechanisms by which this contri- 
bution to homeostasis can occur in the face of the profound obstacles im- 
posed by the presence of CRD. It is obvious that as the nephron popula- 
tion diminishes progressively without a commensurate decrease in the 
amounts of those substances that require excretion by the kidneys, each 
remaining nephron must assume an ever-increasing share of the total ex- 
cretory burden. 

The response of the surviving nephrons in CRD will be addressed first in 
terms of their ability to function as an integrated group serving to defend 
the biologic integrity of the organism. Emphasis will be given to how well 
the composite group of surviving nephrons maintains its organizational 
composure as nephron destruction and the extent of anatomic distortion 
of the renal parenchyma progress. In these comments, a statement and ex- 
planation of the "Intact Nephron Hypothesis" will be provided. 

The second major area of  consideration will deal with the adaptations, 
both general and specific, that occur as CRD advances. In this portion of 
the discussion attention will be focused on the fact that an organized (i.e., 
homogeneous) pattern of function among the residual nephrons in the 
chronically diseased kidney is not sufficient in itself to maintain homeo- 
stasis on an ongoing basis. The course of CRD is characterized by a fall in 
glomerular filtration rate (GFR) from normal towards zero. To preserve 
life requires that continuous solute-specific adaptations occur in the re- 
maining nephrons each time new nephron loss occurs. The execution of 
the adaptations, in turn, requires the availability of a means of monitoring 
the rates of acquisition of the individual solutes to be excreted and of 
transmitting "information" to the remaining nephrons that will modulate 
transtubular transport rates (reabsorption or secretion) so as to affect the 
required excretion rates of each substance into the urine. To control the 
regulation of many different excretory rates simultaneously, it would 
seem likely that a series of biologic control systems must exist for individ- 
ual constituents of the extracellular fluid (ECF). A theoretical discussion 
of the nature of  the adaptations and of a prototypic control system will 
be considered in this manuscript. 
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2 Historical Perspective and the Development of an Experimental Model 

Until approximately a decade ago it was widely believed that the kidney 
afflicted with any form of advancing CRD lost its responsivity to the 
homeostatic needs of the patient. The surviving nephrons were thought to 
undergo progressive functional deterioration and ultimately to be reduced 
to a heterogeneous and disorganized group with disparate and unpredict- 
able abilities to contribute to the maintenance of life and well-being. 
Indeed, it was generally accepted that no diseased kidney functioned like 
another and no nephron in a given diseased kidney necessarily functioned 
like any other nephron in the same kidney (Oliver 1939;Platt 1952; Steele 
et al. 1968; Gottsehalk 1971). Coupled with this view was the belief that 
any approach to treatment of CRD based on established principles of nor- 
mal renal physiology was futile. 

When the foregoing concepts were subjected to critical examination, 
serious problems became apparent. For example, patients do maintain ex- 
ternal balance for sodium, potassium, magnesium, and a number of other 
solutes until the end stage of CRD (Bricker et al. 1965, 1971). Moreover, 
a very small percentage of the original nephron population, perhaps as few 
as 20 000---30 000 nephrons residing in a severely scarred and damaged 
kidney can often maintain life in a patient without major dietary altera- 
tions or the use of  chronic hemodialysis. Finally, these accomplishments 
seem to occur in all forms of CRD and thus are largely independent of the 
nature of the structural changes. However, patients or animals with ad- 
vanced uremia do exhibit abnormalities and limitations in renal function 
that could lend support to the view that the pathologic changes in the 
scarred and damaged renal parenchyma impair numerous functional sys- 
tems in the surviving nephrons (Bricker et al. 1964). For example, chroni- 
cally uremic patients cannot concentrate their urine, nor can they dilute it 
normally (Bricker et al. 1959; Kleeman et at. 1961; Holliday et al. 1967; 
Tannen 1969; Harrington and Cohen 1973). Acidification is impaired by 
virtue of decreased ammoniagenesis, and alkalinization of the urine may be 
defective (Puchett and GoMberg 1969;MacLean andHayslett 1980). Chron- 
ically uremic patients cannot conserve sodium maximally on a low salt diet 
(Polak 1971), and they may have a reduced capacity to reabsorb glucose 
and bicarbonate (Morrin et al. 1962b; Shankel et al. 1967). To establish 
the validity of the view that "so goes structure, so goes function," how- 
ever, other explanations for the functional changes had to be excluded. 
One of these was the possibility that the accumulation of potentially toxic 
materials in the blood in chronic uremia affects various transport systems 
adversely. Another explanation is that many of the changes in nephron 
function are either due directly or are related in some manner to adapta- 
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tions that basically serve to enhance the excretory ability of the surviving 
nephrons. 

Resolution of  this dilemma required the design of an experimental ap- 
roach that in a sense could outmaneuver nature. The approach that was 
employed, and that made it possible to examine and quantify the func- 
tional integrity of the surviving nephron of the chronically diseased kid- 
ney, is described below. 

The experimental design which allowed clarification of this issue, as is 
so often the case, turned out to be simple. Techniques were developed for 
producing chronic renal lesions in only one of the two kidneys of experi- 
mental animals, leaving the contralateral kidney of each animal intact and 
with its full complement of nephrons. One such form of unilateral renal 
disease is the so-called remnant kidney which is produced by ligating 
second- and third-order branches of the renal artery of one kidney so as to 
infarct approximately 75%-80% of its renal parenchyma, leaving the re- 
sidual nephrons in the uninfarcted renal parenchyma intact. Other lesions 
that have been induced unilaterally include pyelonephritis and various 
forms of immunologic glomerulonephritis (Bricker et al. 1960a, c ;Dorhou t 
Mees 1966;Lubowitz et al. 1969; Wagnild et al. 1974). 

With the lesion confined to one kidney, the composite (i.e., bilateral) 
nephron population must by definition exceed 50% of the original num- 
ber. Thus, compositional changes in body fluids are minimized and any 
impact of high levels of "toxic" materials in the blood on the functional 
systems of the nephrons of the diseased organ is virtually eliminated as a 
variable. Moreover, because of the large number of functioning nephrons, 
the necessity for major adaptation in the residual nephrons of either the 
normal or the diseased kidney is obviated. Hence, the second variable is 
largely eliminated. The advantages of the model go beyond the elimination 
of these two variables, however. The reasons for this are as follows: 

1. Theoretically, each functioning nephron, regardless of the kidney in 
which it resides, shares the same fraction of the total excretory require- 
ments for the various solutes and water. 

2. The nephrons of the diseased kidney are perfused by the same blood 
that perfuses the nephrons of  the intact organ and thus are exposed to the 
same concentration of any humoral modulators of tubular transport. 

3. Any other extrarenal events capable of modulating hemodynamic or 
transport functions of the nephrons such as blood pressure elevation, or 
changes of serum protein concentration, and hematocrit, also should exer- 
cise closely comparable effects on the nephrons of the diseased and intact 
kidneys. 

4. The composition of the glomerular filtrate should be identical in the 
nephrons of both kidneys. 
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Thus, the animal with unilateral renal disease and a contralateral intact 
kidney offers a unique opportunity to evaluate the intrinsic functional 
capabilities and functional organization of the nephrons of the diseased 
organ and thus to quantify the impact on function of the pathologic stig- 
mata of the underlying renal lesion. This opportunity is made possible by 
the ability to study many different functional systems in the diseased 
organ and to compare the data with those obtained simultaneously on the 
same functional systems in the contralateral kidney of the same animal. 

This experimental model has additional utility. Sequential studies may 
be performed in individual animals employing the following protocol. 
After dividing the urinary bladder (generally of the dog) into two perma- 
nent hemibladders, each of which drains urine from a separate kidney, 
data are obtained in one or more studies before the induction of unilateral 
renal disease. These observations on the two normal kidneys are referred 
to as the stage I studies. Thereafter a renal lesion is induced in one of the 
two kidneys and, after allowing an appropriate period of time for recuper- 
ation (generally at least a week), stage II studies are performed. These 
may be limited to a single clearance study or serial experiments performed 
over periods of many months. In each experiment the function or func- 
tions of the diseased organ are compared with the data from the contra- 
lateral kidney. 

At the completion of the stage II studies the nondiseased kidney is re- 
moved surgically. The animal now is left with only surviving nephrons of 
the diseased kidney, and the chemical and other stigmata of uremia evolve 
rapidly. Stage III studies are now performed. Again the number of experi- 
ments may be limited to a single set of measurements, or series studies 
may be performed on the diseased organ for periods as long as 2 years. In 
the stage III studies not only is the diseased kidney solely responsible for 
the total renal contribution to life preservation, but its nephrons must also 
accomplish their functions in a uremic milieu. By comparing the patterns 
of function that are observed in the diseased kidney in the stage I| experi- 
ments with the changes in the same functions that take place with time 
and under varying experimental conditions in stage III, the nature of the 
adaptation in a specific functional system (as well as any nonadaptive 
functional changes) may be quantified and characterized. As will be indi- 
cated subsequently, techniques designed to reverse specific adaptations 
also may be evaluated in serial studies in stage III animals (Schmidt et al. 
1974). 
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3 The Level of Functional Organization of the Chronically Diseased 
Kidney: Homogeneity of Glomerulo-Tubular Balance 

Glomerulo-tubular (G-T) balance will be used in the present discussion in 
its broadest sense to indicate the relationship between GFR and a tubular 
function of the appended nephron regardless of the segment or segments 
of the tubule in which the tubular function takes place (Wesson 1973). 
The degree of homogeneity of G-T balance for the composite population 
of nephrons of  any kidney, normal or diseased, is reflected by the frequen- 
cy distribution curve of the individual values for G-T balance for all the 
individual nephrons tested (either the total population or a representative 
group) in the kidney under study. In essence, homogeneity of G-T balance 
exists if the ratios between single nephron glomerular filtration rate 
(SNGFR) and the rate of tubular transport of the reference material are 
closely comparable in all the nephrons of the kidney, irrespective of the 
absolute values for SNGFR in the nephrons tested. 

Three experimental techniques have been employed in the evaluation of 
homogeneity of G-T balance in the chronically diseased kidney. The first 
involves the use of clearance techniques in stage I! animals wherein the 
ratio of GFR to the value for a tubular function in the diseased kidney is 
compared to the value simultaneously measured in the intact organ. The 
second technique, also a clearance procedure, utilizes the method known 
as the glucose titration test. The third technique involves the study of 
SNGFR and tubular transport of a reference solute in a group of nephrons 
studied individually on a diseased kidney using micropuncture techniques. 
Each of these approaches will be considered below. 

3.1 Clearance Ratios in Stage II Animals 

A summary of the results of several hundred experiments performed on 
dogs, sheep, and rats with unilateral or predominantly unilateral disease is 
shown in Fig. 1. In the upper panel on the left the individual blocks re- 
present values for glomerular filtration rate in the two normal kidneys in 
stage I. The mean values, as expected, are equal. The upper panel on the 
right depicts the changes in GFR after induction of unilateral renal disease. 
The mean value for GFR in the intact kidneys is approximately 10% higher 
than in the same kidneys in stage I. GFR in the diseased organs is marked- 
ly decreased. The bottom panel depicts the ratios between GFR and 
values for several different tubular transport systems in the two kidneys. 
In stage I the ratios of GFR are closely comparable in the two normal kid- 
neys. The same ratios were restudied in stage II. Despite the compensatory 
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U N I L A T E R A L  R E N A L  D ISEASE IN THE DOG 
CONTROL DISEASED 

TWO NORMAL KIDNEYS KIDNEY KIDNEY 

GFR 

ERPF Trn PAH Tm qlucose TmPO 4 UV NH) , _ _  

GFR ~ GFR ~ GFR 
UV ti l  ocid UV URATE 

GF---R~ ' GFR 

Fig. 1. Functional relationships between the two kidneys of the dog. The changes in 
glomerular filtration rate (GFR) in both kidneys after induction of unilateral renal 
disease are shown in the upper row of boxes. In the lower row of boxes, values for 
various tubular functions expressed as a function of the simultaneously determined 
GFR are equal in the two kidneys before the induction of the disease; they remain 
equal bilaterally after induction of unilateral disease. Tm, the maximal rate of trans- 
port of PAH, glucose, and phosphate. UV, the rate of excretion of NH3, titratable 
acid, and urate. ERPF, effective renal plasma flow (from Brieker et al. 1965) 

increase in GFR in the intact kidney and the variable fall in GFR in the 
diseased kidney, all the ratios remain equal in the two sets of  organs. This 
equality o f  G-T balance between diseased and contralateral control kid- 
neys is independent of  the nature and the severity of  the underlying lesion. 
Moreover, the same equality o f  clearance ratios between the two kidneys 
has been found in patients with unilateral or predominantly unilateral 
renal diseases for a series o f  solutes that  are transported in different seg- 
ments o f  the nephron, which strengthens the evidence for homogeneity 
of  G-T balance in the nephrons of  the diseased organ. The fact that  the 
ratios remain equal for solutes that are reabsorbed and solutes that are 
secreted lends further support to the evidence favoring homogeneity of  
G-T balance in diseased organs (Reiss et al. 1961; Rieselbach et al. 1964; 
Bricker 1969; Schultze et al. 1971). Finally, the fact that the clearance 
ratios of  the two kidneys remain equal in a patient or an animal in which 
the degree of  involvement is unequal in the two kidneys adds further 
credence to the view that G-T balance is preserved in CRD. 
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The significance of  equal clearance ratios in a diseased and contralateral 
normal kidneys may be examined in a more explicit fashion by a mathe- 
matical analysis o f  the clearance data; such an analysis is shown in Table 1. 
The maximal rate o f  ammonia excretion has been chosen as the tubular 
transport marker for several reasons: (1) Ammonia is secreted in both 
proximal and distal segments o f  the nephron; (2) the synthesis of  ammonia 
within the tubular epithelial cells requires continuous delivery of  substrate 
to the tubular cell interior; (3) it requires appropriate spatial orientation 
of  key subcellular organelles; and (4) the trapping of  NH3 as NH4 in the 
tubular fluid and the delivery of  the NH4 into the final urine depends 
upon finely modulated transport o f  hydrogen ions across the luminal cell 
membrane (Pitts 1974). 

Table 1. Mathematical analysis of equal clearance ratios in a stage II dog. Adapted 
from Bricker et al. ( 1971) 

Diseased kMney Normal kidney 

1 UNH 4 V = UNtt4 V 

Uin V UinV Pin Pin 

2. UNH4 (mol/ml) = UNH 4 (mol/ml) 

Uin (mol/ml) Uin (mol/ml) 

moles NH 4 moles NH 4 
3. = 

mol inulin mol inulin 

UNH 4 V = absolute rate of ammonia excretion in mol/min; Uin V = inulin clear- 
ance in ml/min; UNH 4 = urinary concentration of ammonium; Uin = plasma con- 
centration of inulin in mol/ml 

The data in Table 1 are from a stage II animal. Equation 1 indicates 
that the ratio o f  ammonia excretion to GFR is equal in the diseased and 
normal kidneys o f  the same acidotic dog. The V terms on each side of  the 
equation are common to the numerator  and denominator  and may be can- 
celed; plasma inulin concentration (Pin), which has the same value for 
both kidneys, may also be canceled. In Eq. (2), the equal clearance ratios 
result in an equality between the ammonia- inul in  concentration ratios in 
the urine o f  the respective kidneys. Once again, however, there is a com- 
mon term that can be canceled (i.e., ml). The final expression, shown in 
Eq. (3), establishes the fact that  the ratio of  ammonia to inulin (both in 
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moles) is identical in the urine of  the diseased and intact kidneys (Morrin 
et al. 1962a; Bricker et al. 1971). Thus, for any given number of  inulin 
molecules filtered (i.e., for any given volume of  glomerular filtrate), the 
tubules of  the diseased kidney secrete exactly the same number of  mole- 
cules of  ammonia as do the tubules of  the normal kidney (Bricker et al. 
1960b; Brieker 1969). 

Expressed in terms of  G-T balance, the equality of  clearance ratios be- 
tween the two kidneys of  any animal or patient (whether there is unilateral 
renal disease, predominantly unilateral renal disease, or bilateral renal dis- 
ease) establishes the fact that the relationship between the mean rate of  
tubular transport of  the reference marker and the mean rate of  SNGFR is 
exactly the same in the nephrons of  the left as in those of the right kidney. 

It is theoretically possible to obtain equal clearance ratios in a stage II 
animal due to a highly fortuitous combination of two equally balanced 
groups of  abnormal nephrons, each of which offsets the effects of  the 
other on whole kidney clearance ratios. One group would have values for 
SNGFR depressed out of  proportion to impairment of tubular function; 
the other would have the reverse abnormality. However, the greater the 
number of  species subjected to clearance ratio studies, the more forms of  
renal disease that are examined, the greater the spectrum and severity of  
pathologic changes, the greater the number of  tubular transport markers 
examined, and the greater the number of sites in the tubule in which the 
transport takes place, the less likely it is that there would be equal clear- 
ance ratios. There would have to be a highly consistent balance between 
"'hypoglomerular and hypotubular"  nephrons. The glucose titration test 
and micropuncture studies approach this possibility in a rigorous manner. 

3.2 Glucose Titration Studies 

The glucose titration technique consists of  elevating the concentration of  
glucose in the serum (by intravenous infusion) in a stepwise fashion from 
the fasting level to values sufficiently high to exceed the maximum capa- 
city of the tubules to reabsorb glucose [i.e., the maximal tubular reab- 
sorption capacity for glucose (Tmglucose)]. Because the concentration of  
glucose is identical at any moment  in time in the filtrates of all function- 
ing glomeruli, the amount of  glucose filtered by each nephron will be de- 
termined by its value for SNGFR. The Tmglucose in any nephron, therefore, 
will depend upon the balance between SNGFR and the glucose reabsorp- 
tire capacity of  the appended proximal tubule. In the normal kidney vir- 
tually all of  the filtered glucose is reabsorbed until the Tm is approached. 
However, some glucose does escape reabsorption and enter the urine be- 
fore the Tm level is completely reached. The blood sugar level at which 
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glycosuria begins is denoted the "threshold." The glucose that enters the 
urine between the threshold blood sugar level and the Tm blood sugar 
level accounts for a bend of "splay" in the glucose titration curve, which 
plots the filtered load of glucose against glucose reabsorption (Kurtzman 
and Pillay 1973). 

A normal glucose titration curve is shown in Fig. 2. The splay zone, 
which is small in area, resembles the transition zone between first-order 
and zero-order kinetics observed in a standard Michaelis-Menton plot of an 
enzyme-substrate reaction (Bricker et al. 1960c). 

1 , 2 "  

• • • o = o,,, ..o 0, .o ", • ., o~ ]° 
~ e, ,o o.= e e e  ,~ % • ,t o o , , , ~  

I,O- L . ~ f , , . ~  ,m,,  : : ." .o° . o.'. 
~ e .  ° °  $ ~ o-  • o • 

T'~TmO '8" 0.6- / - "  " ' ~ "° 

0.4" • ~ Diseased Kidneys 

0 ' 0 , 6  ' I ' 0  ' I' ' 2 ' ,2 ' 

L O A % m  

Fig. 2. A mass plot of the data obtained in 12 animals undergoing glucose titration 
experiments. T/Tm,  the observed rate of glucose reabsorption expressed as a fraction 
of the Tm for the same kidney. Load~Tin, the filtered toad expressed as a fraction of 
the Tm (from Bricker et al. 1960c) 

The glucose titration test seems almost ideally suited to detect the pres- 
ence of any major degree of heterogeneity of G-T balance among the neph- 
rons of the diseased kidney. Because the titration curve for the whole kid- 
ney does represent the composite of the individual titration curves for all 
of its functioning nephrons, any nephrons in which tubular function (i.e., 
glucose reabsorption) is reduced out of proportion to glomerular function 
would excrete glucose into the urine at low blood sugar levels. Conversely, 
nephrons in which SNGFR is reduced disproportionately to glucose reab- 
sorptive capacity would require higher blood levels of glucose to saturate 
their glucose transport system than the rest of the nephrons. Either cate- 
gory of nephrons, if present in detectable numbers, would alter the appear- 
ance of the whole kidney titration curve, leading to an increase in the 
splay zone. The coexistence of both types of nephrons in the same kidney 
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would, rather than having an offsetting effect, have an additive effect, i.e, 
exaggerate the splay zone. 

Glucose titration studies have been performed both in stage II rats and 
dogs with different forms of unilateral renal disease. The results have 
shown consistently that the splay in the titration curve for the diseased 
kidney is not greater than that for the contralateral intact kidney and that 
in neither organs is the titration curve abnormal or the splay zone increas- 
ed (Bricker et al. 1960a, c;Kawamuara et al. 1977). 

Glucose titration studies have also been performed in patients with bi- 
lateral CRD of varying etiologies. No increase in splay in the titration 
curves was demonstratable in patients with GFRs over 15 ml/min (Riesel- 
bach et al. 1967). In the group with GFRs between 10 and 15 ml/min 
there was a modest increase in the splay, but only in patients with GFR 
below 10 ml/min was the degree of splay increased substantially. However, 
even the existence of an increase in splay in far advanced chronic renal dis- 
ease does not necessarily establish the existence of inhomogeneity of G-T 
balance among the surviving nephrons (Shankel et al. 1967). Thus, when 
the intact kidney of the stage II rat is removed, the degree of splay in the 
glucose titration curve of the diseased organ increases markedly, although 
there is no increase in the severity of underlying disease process (Shankel 
et al. 1967). Conversely, when stage III dogs with an exaggerated splay 
were subjected to a graded reduction in sodium intake, which was propor- 
tional to the decrease in their GFR, the splay zone decreased to normal 
(Schrnidt and Danovitch 1979). Finally, in normal rats subjected to 
marked ECF volume expansion with a resultant decrease in proximal fluid 
reabsorption, the splay zone in the glucose titration curve increases to a 
degree comparable to that observed in far advanced uremia (Robson et al. 
1972). 

The examination of urine glucose concentrations at serum glucose levels 
below the threshold is also relevant to the question of whether a tubular 
glomerulus contributes to urine formation in CRD. It has been noted that 
the urine remains free of glucose in the diseased kidney of stage II animals 
until the blood sugar concentration approaches the Tm level. Were there 
even a small number of nephrons with relatively normal values for SNGFR 
but "impotent" tubules with respect to their capacity for glucose trans- 
port, glycosuria should occur either before or shortly after glucose infu- 
sion begins and certainly at blood glucose concentrations well below those 
required to initiate gtycosuria in the contralateral normal organ. The urine 
is also free of glucose under normal blood sugar levels in moderately ad- 
vanced bilateral renal disease in man and experimental animals. 
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3.3 Micropuncture Studies 

Micropuncture studies from a variety of  laboratories have also allowed in- 
vestigators to deal with the question of  the homogeneity of G-T balance in 
the nephrons of  the chronically diseased kidney with both glomerular and 
nonglomerular lesions. Regardless of  the nature or severity of  the lesion, 
when fractional fluid reabsorption is plotted against the percentage length 
of  proximal tubule at which the tubular fluid is sampled, the function is 
closely comparable to that obtained from nephrons of normal kidneys 
(Mazumdar et al. 1975). When absolute sodium reabsorption along the 
proximal tubules is plotted against SNGFR for the same nephrons, similar 
evidence for homogeneity of  G-T balance is found (Lubowitz et al. 1966; 
Allison et al. 1974; Maddox et al. 1975). Finally, when single nephron 
glucose reabsorption is plotted against SNGFR (or single nephron filtered 
load of  glucose) in rats with experimental glomerulonephritis, homogeneity 
of G-T balance appears to be preserved (Kawarnura 1977). It is of  consider- 
able interest that homogeneity of  G-T balance in the chronically diseased 
kidney persists despite an increase in values for SNGFR among the con- 
stituent nephrons. 

3.4 Summary 

In summary, the level of  G-T balance and the degree of  its homogeneity 
using a number of  different tubular transport systems as the indexes of 
tubular function are either identical to or are closely comparable in the 
diseased and in the contralateral nondiseased, or less diseased, kidney in 
the same host when both organs are studied simultaneously. G-T balance 
also has been found to be relatively homogeneous throughout the neph- 
ron population of  the chronically diseased kidney of  man and animals by 
use of  the glucose titration technique which has special attributes for this 
type of analysis of  whole kidney function. Finally, study of single neph- 
rons from chronically diseased kidneys using micropuncture techniques 
has provided additional and compelling support for the view that the pro- 
cesses of disease do not disrupt the homogeneity of  G-T balance among 
the surviving nephrons, even though values for SNGFR and the absolute 
rate of tubular transport for the reference solutes may vary widely from 
one nephron to the next in the same kidney. 
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4 The Response of the Surviving Nephrons to the Changing 
Requirements for Solute and Water Excretion 

13 

The fact that the residual nephrons in CRD appear to function as an organ- 
ized group with an unexpected degree of  homogeneity of  G-T balance 
does not in itself explain how these nephrons can continue to maintain 
external balance for many key solutes as their numbers diminish progres- 
sively. It is evident that if the load o f  any given solute (either ingested or 
produced metabolically) that requires renal excretion remains constant, 
each wave of  nephron toss increases the excretory task of  each surviving 
nephron. In essence, therefore, for external balance to be preserved for 
multiple solutes, the level of  G-T balance must be reset repeatedly for 
every solute under renal regulation. For  a solute that is excreted by filtra- 
tion and partial tubular reabsorption, tubular reabsorption must decrease 
every time GFR falls, if the total amount  of  the solute delivered into the 
urine is to be prevented from falling. For  a solute that is excreted by filtra- 
tion and tubular excretion, the rate o f  secretion per nephron must increase 
with each successive fall in GFR. Finally, for a solute that is filtered and 
both reabsorbed and secreted, the balance between the two tubular trans- 
port processes must be readjusted continuously so as to permit the requir- 
ed increase in absolute excretion rate per nephron as the number  of  neph- 
rons falls. 

The patterns by which solute and water excretion per nephron increases 
as GFR falls may be divided into three general types. 

No Regulation. For some solutes, of  which urea and creatinine are the 
principal examples, the excretion rate is controlled primarily by the filtra- 
tion rate and there is little or no active tubular transport in health (Smith 
1951). For  urea, a variable fraction o f  the filtered load is excreted (Shan- 
non and Smith 1935;Chasis and Smith 1938), but the amount  reabsorbed 
(i.e., the nonexcreted amount)  does not  appear to be modulated in any 
precise fashion by a transport system geared to the need to maintain con- 
stancy of serum content  or concentration. The fraction of  the filtered 
load o f  urea that is excreted is determined in large measure by concurrent  
rate of  fractional water excretion, and since the latter increases in ad- 
vancing chronic renal disease, so does the former. For creatinine, there is 
no net reabsorption and although some tubule secretion occurs at elevated 
plasma levels (Shannon 1935), the secretory mechanism again is not  finely 
at tuned to the need to maintain excretion rates equal to acquisition rates. 
Thus, nephron loss cannot lead to adaptive changes in tubular reabsorp- 
tion or secretion that are regulatory in nature. For these solutes, each suc- 
cessive loss o f  nephrons (and associated decrement in GFR) results in a 
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temporary period of retention in the blood and a consequent rise in the 
serum concentration. (This assumes that the rate of acquisition of the sol- 
ute stays constant and the volume of distribution unchanged.) Once GFR 
stabilizes, balance will be reachieved, but only after the serum level rises 
sufficiently to increase the filtered load per residual nephron to such an 
extent that the rate of excretion again equals the rate of acquisition. In 
general, for each 50% reduction in GFR, the serum levels of urea and crea- 
tinine double (Kopple and Coburn 1974). 

Regulation with Limitation. The solutes that fall into this group are filter- 
ed and actively reabsorbed or secreted by the tubules. Each time nephrons 
are lost and there is a fall in GFR, no matter how small, retention of the 
solute will occur and serum levels will rise as in the case of urea and crea- 
tinine. However, as opposed to urea and creatinine, the retention of the 
solute sets a series of corrective events in motion that culminate in changes 
in the rate of tubular reabsorption or secretion. The effect of these changes 
will be to increase excretion rate per nephron in each of the remaining 
nephrons. The increments must be precise, first, providing for the excre- 
tion of the solute retained and second, maintaining a new rate if, follow- 
ing the toss of  nephrons, excretion per nephron is to be high enough, to 
permit the continued preservation of external balance. The regulation is 
qualified by the term "with limitation" because the adaptation operates 
with maximum effectiveness through only part of the natural history of 
chronic renal disease. Two of the solutes which have been studied in con- 
siderable depth and which fall into the category of "regulation with limi- 
tation" are phosphate and uric acid. Serum phosphate levels tend to re- 
main normal until GFR is reduced by approximately 70%-75% (Goldman 
and Bassett 1954). Urate levels may be elevated earlier in the course of 
chronic renal disease, but the elevation is not progressive until relatively 
late in the course of the disease (Brochner-Mortenson 1938). Once the 
limitation of the adaptation is reached, each further reduction of the num- 
ber of functioning nephrons will result in an additional permanent eleva- 
tion of serum levels, unless the rate of  acquisition of the solute is dimin- 
ished [e.g., by restricting the protein intake or administering phosphate 
binding gels in the case of  phosphate (Slatopolsky et al. 1968b;Massry et 
al. 1973) or by reducing the rate of metabolic production of urate using 
allopurinol (Danovitch et al. 1972)]. 

Complete Regulation. For some solutes the adaptive increase in excretion 
rates per nephron continues to provide for the maintenance of normal 
serum concentration virutally until the nephron population is exhausted. 
Two of the most important solutes in this group are sodium (Bricker 1967) 
and potassium (Platt 1950; Kleemann et al. 1966;Schultze et al. 1971). A 
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third solute, magnesium (Coburn et al. 1969), is often regulated with suf- 
ficient precision to maintain normal serum levels until GFR reaches very 
low values. Other solutes, including zinc, also appear to fall into this cate- 
gory. The precise modulation of excretion rates per nephron must take 
into account not only the diminishing nu: 5er of  excretory units but also 
the random variations in the rates of acquisition of specific solutes. As has 
been emphasized already and will be developed further, the regulation of 
each solute would appear to require a "solute specific" biologic control 
system. 

5 The Magnification Phenomenon 

The magnification phenomenon defines a truly extraordinary and essential 
characteristic of the adaptations in solute excretion that occur in CRD. 
The definition is as follows: "For any given perturbation of body fluids 
occasioned by the entry of any given amount of solutes into the extracel- 
lular fluid, the excretory response per nephron must increase as GFR de- 
creases" (Bricker et al. 1978). The remarkable nature of this phenomenon 
can be readily illustrated. In a normal person with a GFR of 120 ml/min, 
the ingestion of  120 mEq sodium in the course of 24 h requires that each 
nephron excrete an average of only 1 of every 200 sodium ions filtered 
during the 24-h period. In striking contrast, the ingestion of the same 
amount of  sodium by a patient with far advanced chronic renal disease in 
whom the GFR has fallen to 2 ml/min is attended by the excretion of 
about 30% of the filtered sodium. An identical perturbation (i.e., 120 mEq 
Na) thus leads to a sodium excretion rate per nephron (expressed as frac- 
tional excretion of  sodium) more than 60 times greater in the uremic pa- 
tient than in the normal person. To extend the example, if the normal per- 
son ingests 60 mEq of sodium on one day and 120 mEq on the following 
day, fractional excretion of sodium will change from 0.25% to 0.50%, an 
increment in excretion of 1 sodium ion of every 400 filtered. The same 
change in sodium intake over the same time interval in the patient with 
the GFR of 2 ml/min will result in an increment of fractional sodium ex- 
cretion from 16% to 32%. Once again the average individual nephron re- 
sponse in the uremic patient is more than 60 times greater than that in the 
normal subject, although it must be presumed that the perturbation of the 
ECF produced by the ingestion of the same amount is indistinguishable in 
the two subjects (Slatopolsky et al. 1968a). 

The magnified end organ excretory response illustrated vividly in the 
case of sodium (Fine et al. 1976b) is by no means limited to the sodium 
ion. The magnification phenomenon applies to all regulated solutes that 
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fall into the category "regulation with limitation" and "complete regula- 
tion." For example, in the hypothetical patient with a GFR of 2 ml/min 
whose intake of sodium rises from 60 to 120 mEq in 2 days, the intake of 
potassium could fall from (for example) 8 0 - 4 0  mEq during the same 
time period. On the initial potassium intake (assuming a serum potassium 
concentration of 4.5 mEq/liter), the excretion of potassium must be ap- 
proximately six times greater than the amount filtered. On the following 
day, a sodium excretion rises from 16% to 32% of the amount filtered, 
potassium excretion must fall by 50% (Schultze et al. 1971). If all of  the 
solutes regulated completely or with limitation are added to this exposi- 
tion, the accomplishments of the residual nephrons assume dimensions 
that become difficult to comprehend, let alone explain. 

6 The Concept of"Biologic Control Systems" 

As the body of knowledge about the nature of the adaptations in solute 
excretion in CRD has grown, so also has the belief that the surviving neph- 
rons do not operate in isolation. Rather, there are compelling reasons to 
postulate the existence of a series of control systems which assist the 
nephrons in the maintenance of external balance for at least certain major 
constituents of body fluids. In an overall sense, a prototypic biologic con- 
trol system would contain a "detector element" which is capable of moni- 
toring changes in some facet of  the ECF induced by the addition or loss of 
the specific solute being regulated. Activation of the detector element 
then will lead to modulation of the rate of transtubular transport of the 
specific solute by the residual nephrons. The system by which the detec- 
tor element communicates with the effector element end organ of the 
nephron may, for at least some solutes, be humoral in nature. The inte- 
grated activity of a biologic control system must operate to reverse the 
initial translocation from the steady state and thus to restore body fluid 
composition to the preperturbation level. Presumably this occurs by virtue 
of an oscillating pattern of operation, whereby the level of inhibition or 
stimulation of net tubular transport (either reabsorption or secretion) is 
increased and decreased in an alternating fashion in search of the null 
point. If sodium is the prototypic solute, the following model may be pre- 
sented for the biologic control system. It will be assumed that at time zero 
the patient is in a steady state condition with respect to ECF volume. 
Shortly thereafter, a meal is ingested which contains a finite amount of 
sodium chloride. The sodium and its anion (chloride) will be absorbed 
across the gastrointestinal (GI) tract and enter the ECF, and the initial 
effect may be to increase the concentration of sodium in the plasma. 
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However, this change is neither consistent nor lo~g lived, for activation of 
the thirst mechanism will lead to an increased intake of water, a slight os- 
motic gradient will lead to the movement of water into the ECF out of  
the intracellular fluid, and the release of antidiuretic hormone will result 
in a reduced rate of water excretion. The overall effect is to restore the 
plasma sodium concentration to the control value. Operationally, there- 
fore, the entry of  the sodium chloride into the ECF occurs isosmotically. 
It is this isosmotic expansion o f  ECF that presumably constitutes the per- 
turbation that activates the detector limb of the biologic control system. 
Either the ECF volume expansion per se or some derivative of the expan- 
sion is sensed by the detector element of the system. Precisely where the 
detector element resides is unknown, but there is growing evidence that a 
(or the) major location is intrathoracic and possibly within the wall of the 
left atrium (Gilmore 1968; Epstein et al. 1972, 1975; Begin et al. 1976). 
Activation of  the detector element will lead to an increase in the level of 
activity of "natriuretic forces" which will decrease fractional and absolute 
sodium reabsorption by the residual nephrons, thus increasing the rate of 
excretion of sodium per residual nephron (Epstein et al. 1978). The aug- 
mented rate of sodium excretion will continue until the initial expansion 
of ECF volume is reversed. It would seem likely that the intensity of the 
natriuretic forces would diminish as the initial steady state value for ECF 
volume is approached, but it is possibly that there could be some "'over- 
shoot" resulting in modest contraction of the ECF volume from the initial 
level. Where this is the case, natriuretic forces would be reduced below the 
control level of  activity and sodium retention would follow, resulting in a 
slight expansion (real or apparent) of the ECF volume. Deactivation of the 
natriuretic forces would then follow once again. With this sequence there 
would perforce be an oscillating pattern of control wherein oscillations 
would begin only after most of  the ingested sodium is excreted and would 
become progressively smaller as the preset value for ECF volume is ap- 
proached. 

This model of  a biologic control system for sodium is "detector orient 
ed." Although it would not necessarily require an element that would 
sense the number of surviving nephrons or the magnitude of the residual 
glomerular filtration rate, the magnification phenomenon does dictate 
that the overall sensitivity of the system to any given perturbation of 
extracellular fluid volume, as judged by the end organ response, increases 
progressively as GFR falls. 

Though selected for presentation, the biologic control system for sodi- 
um may not, in fact, be prototypic; for it is the only one that detects 
changes in volume. Whatever other solute control systems exist, they very 
likely detect changes in the concentration of their solute in the ECF 
(Schmidt and Bricker 1973). However, in each instance the control system 
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(1) is presumably "detector oriented", (2) responds to nephron loss by 
pyogressively magnifying the response to the gain or loss of  fixed amounts 
of the solute; (3) maintains specificity for the solute which it regulates; 
(4) may well contain a humoral "messenger" that modifies transtubular 
transport of  the solute; and finally, (5) possesses the ability to override, if 
necessary, the effects of  any other solute control system that could theo- 
retically iriterfere with the required degree of  modulation of  the specific 
solute being regulated. 

7 The Regulation of  Specific Solutes in CRD 

7.1 Sodium 

The difference in the end organ response of  the normal subject and a pa- 
tient with a GFR of 2 ml/min to the ingestion of the same amount  of  
sodium illustrates the magnitude of  the adaptation phenomenon and in 
particular of  the magnification. However, the adaptation actually begins 
with the first wave of  nephron destruction and continues throughout the 
natural history of  CRD. In Fig. 3, values for fractional sodium excretion 
are plotted against GFR through the entire course of  chronic renal disease. 
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Fig. 3. The relationship between steady-state GFR and the fraction of filtered sodium 
excreted on 3.5- and 7.0-g salt diets (from Slatopolsky et al. 1968a) 
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The two curves, one representing the response to a 60 mEq per day sodium 
intake, the other to a sodium intake of 120 mEq a day, are smooth, con- 
tinuous, and at each GFR appropriate for the maintenance of external 
balance and a normal serum sodium concentration (Slatopolsky et al. 
1968a). 

7.1.1 The Location of  the Detector Element 

Some evidence, mostly phenomenologic, points to the upper portions of 
the body and presumably the thorax as the location of the detector ele- 
ment. For example, when a normal subject is immersed in a tank of  water 
to the neck, a translocation of ECF takes place from the lower extremities 
into the central circulation. A modest natriuresis follows (Epstein et al. 
1972). When patients with varying degrees of severity of CRD are "water 
immersed," the same internal translocation of ECF occurs. However, the 
lower the steady state GFR, the greater is the natriuresis, and values for 
fractional sodium excretion in patients with advanced CRD may increase 
by more than 15% (Bricker 1978). The inverse relationship between the 
magnitude of the rise in fractional sodium excretion and the GFR serve 
further to highlight the magnification phenomenon (Schultze et al. 1969). 
However, it also seems to lend credence to an intrathoracic location for 
the detector element inasmuch as the extreme degrees of natriuresis take 
place in the face of contraction of ECF volume in the lower extremities. 
Another experiment leads to similar conclusions. When patients with CRD 
are subjected to ECF volume expansion of approximately 1.5 liters, the 
natriuretic response (as measured by fractional sodium excretion) occurs, 
and once again the magnitude is inversely related to steady state GFR 
(Schultze et al. 1969; Wilkinson et al. 1972; Schultze and Berger 1973). 
If, at the height of  the natriuretic response, the resistance to venous return 
from the lower extremities is increased by inflating toumiquets around 
both thighs to pressure slightly below the diastolic blood pressure, the 
natriuresis is aborted and values for fractional sodium excretion return to 
the preinfusion level (Slatopolsky et al. 1968a). Presumably, the latter 
maneuver results in sequestration of fluid in the lower extremities and a 
relative decrease in central blood volume. 

Up to now it has not been possible to determine further the nature of  
the detector element, precisely what is detected, exactly where the ele- 
ment (or elements) is located, and whether the magnification phenomenon 
owes its existence to progressive enhancement of the sensitivity of the de- 
tector element or to progressive enhancement of the sensitivity of ele- 
ments in the control system beyond the detector element. 
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7.1.2 The Effector Element 

The natriuretic forces serving to maintain sodium balance and volume 
homeostasis in health presumably are operative in progressive CRD. Brief 
comments will be made about  several of  the factors currently believed to 
participate in the regulation of  sodium excretion. 

7.1.2.1 Increase in GFR. In various models o f  experimental CRD, SNGFR 
increases in stage III to values two or more times that o f  the control values 
(Bank and Ayned/ian 1966; Deen et al. 1974; Weber et at. 1975). Such an 
increase, when it occurs, should certainly play a supportive role in enhanc- 
ing the natriuretic capability of  the involved nephrons. However, it pre- 
sumably does not  explain the adaptation in sodium excretion with time in 
CRD, nor does it explain the magnification phenomenon.  For  example, it 
has been shown in the stage II dog on a constant intake that reduction of  
GFR toward the stage III value produced by compression o f  the renal ar- 
tery does not  lead to progressive sodium retention; rather, external bal- 
ance of  sodium is preserved (Schultze et al. 1969). Moreover, in experi- 
mental models with immunologic glomerulonephritis, values for SNGFR 
are either normal or  reduced (Rocha et al. 1973; Lubowitz et al. 1974). 
Nevertheless, balance studies have demonstrated the ability of  such animals 
to maintain external sodium balance as long as they are not  nephrotic 
(Godon 1972). A final argument against a prepotent  role for increases in 
SNGFR in the continuing ability to maintain external sodium balance in 
CRD is implicit in Fig. 3. To account for the magnification phenomenon 
on the basis of  SNGFR, one would have to evoke a rise in values that 
would in some way parallel a hyperbole shown in Fig. 3 ; moreover, the 
lower the total GFR,  the greater is the increased fractional sodium excre- 
tion associated with a modest  change in dietary salt intake. Hence, one 
also would have to postulate that the lower the GFR,  the greater is the 
acute increased fractional sodium excretion associated with a modest  
change in dietary salt intake. Hence, one also would have to postulate that 
the lower the GFR,  the greater is the acute increment in SNGFR to per- 
mit survival on a varying intake o f  salt. 

7.1.2.2 Redistribution of Glornerular Plasma Flow. Another possibility, 
not  too  dissimilar to that based on rising values for SNGFR, is that there 
is a shift in the distribution o f  blood flow and o f  glomerular filtration rate 
between superficial and deep nephrons, a shift that would enable any 
given number of  nephrons to increase its rate of  fractional excretion (Del 
Greco et al. 1969; Carriere et al. t973).  The arguments presented in the 
foregoing paragraph about  SNGFR all appear to be applicable to the re- 
distribution hypothesis. These arguments will not  be redeveloped in the 
present context .  
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7.1.2.3 "Physical Factors". A number of events that influence the intra- 
renal peritubular environment are known to modify fluid reabsorption in 
the proximal tubule. These include changes in peritubular capillary oncotic 
pressure (Davidrnan et al. 1972), changes in peritubular capillary hydro- 
static pressure (Martino and Earley 1968), and changes in hematocrit 
(Bahlrnann et al. 1967). For the deep nephrons, the rate of blood flow 
through vasa recta and local sodium radiance also may theoretically in- 
fluence the rate of  sodium excretion into the urine. 

It seems most unlikely to the authors that physical factors could ac- 
count for the type of regulation depicted in Fig. 3 and could explain the 
magnification phenomenon. Were this the case, one or more of the physi- 
cal factors would have to show the change that parallels the natriuretic 
response to a fixed sodium load, and the change would have to progress 
throughout the entire course of CRD. However, not all patients with CRD 
are hypertensive, nor is there any consistent relationship between the level 
of the blood pressure and the ability to maintain external sodium balance 
on an ad libitum sodium intake. Although the filtration fraction does fall 
in the transition from stage II to stage III in the dog, this fall is indepen- 
dent of the intake of sodium chloride and does not bear any consistent re- 
lationship to the ability of the experimental animal to maintain external 
sodium balance (Schuttze et al. 1969). 

Most of  the information about the influence of physical factors on sodi- 
um reabsorption relates to the proximal convoluted tubule of superficial 
nephrons. It is not at all clear that modification of proximal sodium reab- 
sorption can, under any circumstances, lead to subtle modulation of sodi- 
um excretion rates (Howards et al. 1968; Knox 1973; Sonnenberg t973; 
Stein et al. 1973, t 974). But, to whatever degree inhibition of proximal 
reabsorption contributes to the natriuresis per nephron, no correlation 
could be found between fractional sodium reabsorption in superficial 
proximal tubules of stage III rats and sodium intake (Weber et al. 1975). 
Moreover, in both nephrotic uremic patients and nephrotic uremic rats, 
the profound hypoalbuminemia should lead to marked inhibition of fluid 
reabsorption in the proximal tubule. Yet, in both groups external sodium 
balance is not preserved and sodium retention occurs (Godon 1972; 
Bourgoignie et al. 1974). This represents one of the rare examples where 
external sodium balance is not preserved in advancing CRD. On the other 
hand, when the nephrotic patients and rats were given salt poor albumin 
intravenously so as to elevate their serum albumin levels, a striking natri- 
uresis followed despite the presumption that fractional sodium reabsorp- 
tion increased (Luetscher et al. 1950;Allison et al. 1975). Little is known 
about the role of  physical factors in the inner medulla in the fine modula- 
tion of sodium excretion. There are data to indicate that in the transition 
from stage II to stage III total blood flow and presumably medullary blood 
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flow goes up strikingly in the remnant kidney of the dog (Kaufman et al. 
1975). However, to account for the pattern shown in Fig. 3 and for the 
magnification phenomenon, it would be necessary to demonstrate a change 
in the influence of the intermedullary physical factors that corresponds to 
the established changes in sodium excretion in the course of CRD. To date 
neither the evidence for this nor an acceptable theoretical model has been 
produced. 

7.1.2.4 Atdosterone Activity. Aldosterone levels may be elevated in pa- 
tients with advanced CRD (Cope and Person 1963; Hayslett et al. 1969; 
Schrier and Regal 1972; Berl et al. 1978). Moreover, if the values for 
SNGFR are markedly increased, absolute reabsorption in those portions 
of the nephrons that are influenced by aldosterone may be increased at 
the same time that absolute sodium excretion and fractional excretion 
rates are increased. However, when SNGFR is normal or low, it is difficult 
to invoke increased levels of  a sodium-retaining hormone in explanation of 
patterns of sodium excretion depicted in Fig. 3. Moreover, the natriuretic 
response that characterizes the transition from stage II to stage III and 
dogs with a unilateral remnant kidney took place in animals in which min- 
eralocorticoid hormone activity was maintained at supernormal levels 
through the administration of fluorocortisol. It also took place in animals 
that were adrenalectomized and given maintenance doses of desoxycorti- 
costerone (Schultze et al. 1969). 

7.1.2.5 Prostaglandins. The role of prostaglandins in modulating sodium 
transport is currently under study in a number of laboratories. At the 
present time the data are conflicting (Papanicolaou et al. 1975; Tobian 
and O'Donnell 1976;Kaye et al. 1978;Dunn 1979), but none of the avail- 
able observations supports the possibility that prostaglandins represent the 
key modulators of sodium excretion in CRD and none can account for the 
patterns shown in Fig. 3 or for the magnification phenomenon. A suppor- 
tive role of  prostaglandin cannot, however, be dismissed at this time. 

7.1.2.6 Natriuretic Hormone. Although a natriuretic hormone has not yet 
been isolated in pure form, chemically defined, or synthesized in the lab- 
oratory, there is a large, growing, and impressive body of evidence sup- 
porting the existence of such a hormone. Moreover, an impressive case 
may be made in favor of this putative hormone representing the major 
modulator for sodium excretion in advancing CRD (Brickler 1967) by its 
behavior in nornaal individuals (Brown et al. 1972; Buckalew and Lancaster 
1972;Favre et al. 1975, 1979; Gonick and Saldanha 1975 ;Favre 1978a, b; 
Clarkson et al. 1979). Some of the evidence of a circulating inhibitor of 
sodium transport in uremia [i.e., natriuretic hormone (NH)] as well as 
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some of the biologic properties of  NH will be reviewed briefly. A low mol- 
ecular weight substance (less than 1000 daltons) has been found in urine 
and serum of  patients and dogs with chronic uremia who are on an average 
salt diet and who demonstrate the typical natriuresis per nephron seen in 
CRD (Bourgoignie et al. 1972, 1974). Detection of the biologic activity 
involves the use of one of several bioassay techniques. These include inhib- 
iton of transcellular sodium transport by the isolated frog skin or toad 
bladder (Bourgoignie et al. 1971;Kaplan et al. 1974), inhibition of sodi- 
um-potassium-activated ATPase activity (Hillgard et al. 1976), increase in 
absolute and fractional sodium excretion in the unanesthetized stage III 
rat (Bourgoignie et al. 1974), increase in the water-loaded stage I rat 
(Sealey et al. 1969; Brown et al. 1972;Favre et at. 1979), inhibition of 
active sodium transport in the isolated perfused cortical collecting tubule 
of the rabbit (Fine et al. 1976a), and inhibition of sodium effiux by the 
Modin-Darby canine kidney (MDCK) strain of tubular epithelial cells 
grown in tissue culture and originally obtained from the intact dog kidney 
(Licht, unpublished data). 

As indicated, the active inhibitor may be obtained using either urine or 
serum as the source. It also has been obtained from kidney homogenates 
and hypothalamic preparation (Clarkson et at. t 974; Gonick and Saldanha 
1975; Louis and Favre 1980a). The initial step of  isolation and purifica- 
tion involves the use of gel filtration techniques (usually Sephadex G-25 
or biogel P-2). The biologic activity has been found by most investigators 
in the fraction of eluate that appears immediately after the peak contain- 
ing the majority of the inorganic salts, which include sodium, chloride, 
and calcium as well as urea and creatinine. A higher molecular weight frac- 
tion has also been observed by some investigators (Sealey et al. 1969; 
Buckalew and Lancaster 1971; Buckalew 1972; Clarkson et al. 1976; 
Godon 1978), but the relationship between the two inhibitors of sodium 
transport has not yet been clarified. The possibility exists that the larger 
substance is a precursor and the smaller is the active hormone (Gruber and 
Buckalew 1978). 

Some of the biologic properties of NH are as follows: It is active when 
added to the "blood side" of anurian membranes or the peritubular capil- 
lary surface of the isolated perfused renal tubule (Bourgoignie et al. 1974; 
Kramer et al. 1974;Favre et al. 1975;Fine et al. 1976a). NH increases the 
intracellular sodium content of  isolated epithelial cells from the toad blad- 
der and decreases the rate of  pyruvate oxidation by the same cells (Kaplan 
et al. 1974). NH also has no effect on systemic or renal hemodynamics in 
the rat (Favre et at. 1979). In both the assays involving the unanesthetized 
stage I and III rats and the MDCK epithelial cells, a dose-response relation- 
ship may be demonstrated (Favre et al. 1979;Licht, unpublished data). In 
the former assay, increments in fractional excretion of sodium as great as 
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15% may be produced using a concentrated fraction of  NH contained in a 
total volume of  200 t~l (Licht, unpublished data). 

In uremic dogs in which the adaptive natriuresis per nephron is reversed 
by proportional reduction of  sodium intake, no NH activity may be de- 
monstrated using the standard stage III rat bioassay (Schmidt et al. 1974). 
In uremic man with concomitant high rates of protein excretion, hypoal- 
buminemia, and avid sodium retention with values for fractional excretion 
of  sodium of  less than 1%, no activity has been demonstrated (Bourgoignie 
et al. 1974). Activity, however, is present in the urine of normal dogs fed 
a high salt diet and given a potent  mineralocorticoid hormone after the 
animals have "escaped" (Favre et al. 1975). In the latter experiments, the 
incidence of  positive bioassays correlated with the degree of  sodium re- 
tention prior to escape (Favre et al. 1975). Activity is present in normal 
man during the natriuresis o f  water immersion (Epstein et al. 1978). It has 
been found in nonuremic patients with aldosterone secreting tumors be- 
fore surgery and the activity has disappeared in the same patients after 
removal of  the tumors (Kramer et al. 1977; Favre 1978a). Activity has 
been found in the kidney tissue extracts from rats acutely expanded by 
isotonic saline in amounts depending on the previous sodium intake 
(Louis and Favre 1980a), but it is not  detectable in rats expanded by albu- 
min solution in which the natriuretic syndrome failed to appear (Stein et 
at. 1973;Louis and Favre 1980b). The gel filtration eluate containing the 
biologic activity has been subjected to a number of  additional purification 
techniques and considerable purification has been effected with several of  
these, particularly those involving high performance liquid chromato- 
graphy (Buckalew and Gruber 1978;Licht, unpublished data). 

The active fraction has either chemical and/or biologic properties which 
differentiated it from prostaglandins, vasopressin, parathyroid hormone 
(or fragments thereof), angiotensin, and kallikrein. 

The presence of  the active material in both blood and urine of  uremic 
patients and animals with an adaptive natriuresis per nephron suggests that 
it is produced in increased quantity in uremia rather than being retained in 
the blood by virtue of  failure o f  excretion. Its existence in increased activ- 
ity (demonstrable in bioassay) in both animals and patients, who, for vari- 
ous reasons, are undergoing high rates of  sodium excretion per nephron 
suggests that it is not  a nonspecific concomitant of  the uremic state. The 
foregoing observations, coupled with the fact that the activity is not  
readily demonstrable in the presence of  chronic uremia when the adaptive 
natriuresis per nephron is absent (e.g., proportional reduction of  sodium 
in the dog and nephrotic syndrome in uremic man), support a physiologic 
role for NH in the modulation of  sodium excretion. The demonstration 
that it inhibits transcellular sodium transport in the toad bladder, which is 
an analogue of the distal portions of the nephron, and that it inhibits 
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sodium reabsorption in the isolated perfused cortical collecting tubule 
supports the possibility that NH acts "downstream" in the nephron and 
thus would be a candidate for the "fine modulator"  of  sodium excretion. 
The fact that it acts only from the peritubular capillary surface, that it 
increases intracellular sodium content,  and that there is a fall in oxidated 
phosphorylation that accompanies the decrease in sodium transport sup- 
ports the view that NH acts on some key step or steps in the active trans- 
port system for sodium either on the cartier mechanism, the energy source 
for the carrier or perhaps the coupling between the two. 

The fact that the increased rate of  production of  NH is associated with 
the increased values for fractional excretion of sodium in CRD would 
favor its role in supporting the adaptation and in providing at least a 
partial explanation for the pattern of  sodium excretion shown in Fig. 3. 
Evidence obtained by infusing NH preparations directly into the renal 
artery of  stage I and stage III rats has shown a marked increase in end 
organ sensitivity in the nephrons o f  the latter group, and this observation 
could help to explain the magnification phenomenon (Fine et al. 1976b). 

The ultimate determination of  the role o f  the natfiuretic hormone in 
the modulation of  sodium excretion in health, in the adaptive changes in 
sodium excretion in progressive CRD, and in the explanation of  the mag- 
nification phenomenon represents an area of  importance and one that is 
the subject of  considerable interest in many laboratories at the present 
time. 

7.2 Potassium Transport by the Remaining Nephrons 

The regulation of  the potassium concentration of  the ECF must be ac- 
complished in advancing CRD. The range of  potassium concentration as 
consistent with life and well-being is small (ca. 2 - 7  mEq/liter), and the 
total amount  o f  potassium entering the ECF daily through the diet equals 
or exceeds the total amount  o f  potassium contained in the ECF in a 70-kg 
adult person. Thus the adaptive kaliuresis per nephron that occurs with 
advancing nephron loss must be hihgly developed and highly sensitive 
(Berlyne 1971). 

In a healthy person the daily rate of  ingestion of  potassium, and thus 
the amount  requiring renal excretion, is approximately 10%-15% of  the 
amount filtered each 24 h. Approximately half of  the filtered potassium is 
reabsorbed by the end of  the accessible portion of  the proximal convolut- 
ed tubule. Additional reabsorption continues in the ascending limb of the 
loop of  Henle, and by the time tubule fluid reaches the distal tubule, a 
very small fraction of  the filtered load (approximately 10%) remains unre- 
absorbed (Beck et al. 1973; Wright 1977). Thus, virtually all of  the potas- 
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sium delivered into the urine, at least in superficial nephrons, derives from 
secretion beyond the last accessible portion of the distal tubule (Berliner 
and Kennedy 1948). Some reabsorption may occur in the collecting 
tubule, but the precise role of this reabsorptive process in the modulation 
of the excretion rates of potassium remains unknown. 

The continuing ability to maintain external balance and normal serum 
potassium concentrations until very late in the course of CRD is due prin- 
cipally to the increasing rates of kaliuresis per nephron, although there is 
some increase in the contribution of fecal excretion of potassium in ure- 
mia. The amount of  potassium reaching the distal tubule in the uremic rat 
has not been found to be increased over normal (Bank and Aynedfian 
1973); thus, in uremia as in health virtually all the potassium delivered in- 
to the urine is secreted "'downstream." On a potassium intake of 60-80  
mEq per day, a patient with a GFR of 5 ml/min and a serum potassium of 
4.5 mEq/liter must excrete 123% of the total amount of potassium filter- 
ed. At a GFR of 2 ml/min the total amount of potassium filtered in 24 h 
is only t 3 mEq. Hence, to deliver 40 mEq of potassium into the urine re- 
quires a secretory rate that is 300% greater than the amount filtered. 

The distal segments of the nephron must therefore play the principal 
role in the maintenance of external potassium balance in CRD (Schon et 
al. 1974). An impressive demonstration of the magnitude of this role has 
recently been obtained from observations on cortical collecting tubules 
removed from uremic rabbits maintained on high versus low potassium 
diets (Fine et al. 1979). The isolated perfused tubules from the animals on 
the high potassium intake secreted more than six times the rate observed 
in the same nephron segment in normal rabbits and several times the 
amount secreted by nephron segments from uremic rabbits on a normal 
potassium intake. The fact that these high rates of secretion persisted in 
tubular segments removed from the uremic animal as well as from the kid- 
ney of that animal suggests that the potassium secretory adaptation, what- 
ever its genesis, contains a "memory." 

None of the known factors thought to control potassium excretion in 
health accounts for the remarkable adaptive capacity for potassium secre- 
tion in CRD nor for the magnification phenomenon for potassium 
(Schuttze et al. 1971). A nonaldosterone-mediated increase in Na-K-ATPase 
activity in the outer medulla has been found to accompany this adaptive 
kaliuresis per nephron (Finkelstein and Hayslett 1974), and a similar in- 
crease has been observed in the kidneys of normal rats maintained on a 
large potassium intake (Silva et al. 1973; Epstein 1975). The change in 
ATPase activity, on the other hand, can be prevented by reducing the po- 
tassium intake in proportion to the decrement in GFR, an event which 
serves also to prevent the adaptive kaliuresis per nephron (Silva et al. 
1973). Na-K-ATPase activity also has been found to be increased in the 
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colon of uremic rats in association with an enhanced rate of GI excretion 
of potassium (Fisher et al. 1974;Basti et al. 1975). Thus, the possibility 
that the Na-K-ATPase system participates in the adaptation in potassium 
excretion in CRD is not without a certain amount of experimental sup- 
port. But, it is not clear whether the relationship is a primary one or 
whether the increased ATPase activity is a supportive or an associated 
phenomenon. For example, in the previously cited studies of the isolated 
perfused uremic rabbit cortical collecting tubules, no correlation could be 
found between the degree of  augmentation of potassium secretion and the 
level of  Na-K-ATPase activity. 

Other factors which could play a role, from permissive to regulatory, in 
the adaptive kaliuresis include an increase in distal delivery of  sodium in 
the tubular fluid (Kleeman et al. 1966), hyperaldosteronism (Schmidt et 
al. 1975), an increased intraluminal electronegativity in the collecting duct 
(Hauley et al. 1980), and an increased potassium activity gradient from 
tubular epithelial cell water (in the collecting tubules) to tubular fluid 
(Giebisch 1971). 

A number of these factors may probably be ruled out as the major 
modulating event in the potassium adaptation and magnification phenom- 
enon. External potassium balance is maintained accurately in chronically 
uremic dogs and rats in the face of changing rates of intake and excretion 
of sodium as well as other solutes, including phosphorus and ammonium 
(Schultze et al. 1971). Balance is maintained in the uremic dog that is 
either adrenalectomized and given a low fixed dose of mineralocorticoid 
hormone or given a super maximal dose of mineralocorticoid hormone 
without adrenalectomy. The adaptation occurs within 24 h of the conver- 
sion of a stage II dog to a stage III animal and appears to be independent 
of any changes of serum potassium concentration, although values for 
intracellular activity have not been measured in uremic animals (Schultze 
et al. 1971). Thus, an increase in potassium excretion rate per nephron 
from an amount approximating 10% of the filtered load to an amount in 
excess of 200%-300% of the filtered load occurs within 24 h of the initi- 
ation of uremia. This increase cannot be explained on the basis of the con- 
current patterns of excretion of sodium or any other solutes, at the level 
of  mineralocorticoid hormone activity, or on the concentration of serum 
potassium. Moreover, the kaliuresis per nephron persists when SNGFR is 
reduced in the surviving nephrons by constricting the renal artery experi- 
mentally (Espinel 1975b). The composite group of data raises the possibil- 
ity that a modulator of potassium secretion, as yet not defined, may not 
only exist but may also be the principal determinant of the high rates 
of potassium secretion in the surviving nephrons in advanced CRD. If such 
a modulator plays this role in uremia, then it is quite likely that it is pre- 
sent in health and participates in the regulation of potassium excretion 
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and the maintenance of potassium balance in normal states. Although no 
concerted effort has yet been launched to find a "kaliuretic hormone," 
there appears to be sufficient evidence of a phenomenologic nature to 
warrant such a search. 

7.3 Phosphate Transport by the Surviving Nephrons 

Normal phosphatemia will prevail in advanced CRD with an unrestricted 
intake of elemental phosphorus only if the total increment in phosphate 
excretion (i.e., the aggregate of the single nephron increments) offsets 
precisely the reduction of the total excretion resulting from the loss of 
nephrons. In practice, normal phosphatemia does prevail irrespective of 
the form of CRD through at least 75% of the natural history of the disease 
(Bricker et al. 1972). A considerable amount of information has been ac- 
cumulated about biologic control systems regulating phosphate excretion 
in health, and although there are still areas of uncertainty and some areas 
of conflict, the body of knowledge about the adaptation in phosphate ex- 
cretion that occurs in CRD is substantial and growing. 

The amount of phosphorus ingested in the diet each 24 h varies from 
culture to culture and from society to society, but a value of 1 g per day 
is probably an accepted representative figure. 

Of this amount, approximately 70% is absorbed across the GI tract and 
enters the ECF. The remaining 30% is excreted in the stool. Following 
each phosphate-containing meal there is a finite elevation of serum phos- 
phate levels and, although the precise physical chemical mechanisms are 
not completely known, the elevation of serum phosphate results in a reci- 
procal fall in the concentration of  ionized calcium in the serum. In both 
normal and uremic dogs given an oral load of phosphorus of 500 mg there 
is a 0.1 mg percent fall in ionized calcium for every 1 mg percent rise in 
serum phosphate. The effect of the drop in ionized calcium on the para- 
thyroid glands is to increase the rate of release of parathyroid hormones 
(PTH) and thus to increase the concentration of  PTH reaching the receptor 
site in the renal tubule (Kaplan et al. 1978). With a normal GFR and an 
amount of phosphate requiring excretion equal to 700 mg/day, the PTH 
must inhibit 15% of the filtered phosphate from being reabsorbed. Thus, 
85% of the filtered load of phosphate ions will be returned to the ECF 
and 15% will be excreted. This is a value for the full 24 h and does not re- 
flect the postprandial increments in fractional excretion. At the end of the 
24 h the full 700 mg of ingested and absorbed phosphorus has been ex- 
creted and the serum phosphate concentration, serum calcium concentra- 
tion, and serum PTH levels are restored to their previous control levels 
(Bricker et al. 1972). 
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Adaptation in phosphate excretion begins, as with other solutes, with 
the loss of  nephrons (Massry et al. 1973). If the intake in absorption of  
phosphorus is unchanged, nephron loss will lead to retention of that 
amount of phosphate that was being excreted by the destroyed units. 
There thus will follow an elevation in serum phosphate concentration 
which is greater than would have occurred if the full population of neph- 
rons continued to function. The reciprocal fall in ionized calcium will also 
be greater, and the stimulation of  PTH secretion will lead to higher levels 
of circulating hormones. Due to the latter, the level of inhibition of phos- 
phate reabsorption per surviving tubule will be increased (Bank et al. 1978) 
and the total rate of phosphate excretion will rise sufficiently to restore 
serum phosphate levels and ionized calcium levels to normal (Goldman 
and Bassett 1954;Slatopolsky et al. 1968b). As the calcium levels rise, the 
stimulus to PTH secretion will diminish; however, values for PTH cannot 
return to the control level, for if this were to happen, the rate of phos- 
phaturia per nephron would diminish to its control level, retention would 
reoccur, ionized calcium values would fall, and the augmented stimulus to 
PTH secretion would be renewed. Consequently, following each wave of 
nephron destruction, PTH levels will rise and then will remain at the new 
level, although very likely the existing as oscillations as well as pre- versus 
postprandial swings (Reiss et al. 1970) probably persist. 

The adaptation must serve more than the elimination of the phosphate 
retained immediately following nephron destruction. Owing to the de- 
crease in the GFR and the number of nephrons, the mean value for 24-h 
phosphate excretion per nephron must remain elevated, if the amount of 
phosphorus entering the ECF daily is not reduced in proportion to the fall 
in GFR. 

Within the framework of the foregoing theoretical formulation an ex- 
planation may be presented for the magnification phenomenon for phos- 
phate. When an acute load of phosphorus (600 mg) was administered to a 
group of uremic dogs and to a matched group of normal animals, the serum 
phosphate concentration rose by approximately 2 mg percent more in the 
uremic group, although peak values occurred at approximately 2.5 h after 
the phosphate load in both groups. Ionized calcium fell in an identical 
fashion in the two groups of  animals (i.e., 1 0.1/10 mg percent fall with 
each 1 mg percent rise in serum phosphate concentration). Thus, serum 
PTH levels which were already markedly elevated in the uremic dogs prior 
to the acute load rose further, and fractional phosphate reabsorption, 
which already was reduced in the uremic dogs, was further reduced. The 
filtered load of  phosphate (GFR times serum phosphate concentration) 
exceeded the Tm for phosphate through most of  the 5-h period of obser- 
vation following the phosphate loading. The augmentation of phosphate 
excretion per nephron thus was following the same oral load of phosphate 
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and despite the existence of identical fasting serum phosphate concentra- 
tions. Indeed, the calculated peak rate of phosphate excretion per neph- 
ron (expressed as an increase over the preloading control value) was over 
300% greater in the uremic than in the normal dogs (Kaplan et al. 1978). 

There are certain observations that raised the question as to whether 
PTH is the principal mediator of  the adaptive increase in phosphate excre- 
tion per nephron in CRD (Sherwood et al. 1968;Fotino 1977). Although 
it has been shown that PTH levels rise throughout the course of CRD in 
both patients and dogs (Arnaud 1973; Reiss et al. 1969; Kaye 1974; 
Slatopolsky et al. 1971), most of the observations have been performed 
using antibodies that measure the carboxy terminal end of the PTH mol- 
ecule and its fragments (Arnaud et al. 1974). There are data indicating 
that the rise in the carboxy terminal species correlates with the fall in 
GFR and that the relationship between the values obtained and the bio- 
logic activity of the circulating material measured may be variable and/or 
inconsistent (Martin et al. 1978; Massry et al. 1979). To date, not enough 
data using an aminoterminal antibody are available, although information 
of this nature is currently being collected. 

One point in favor of the validity of the hypothetical formulation is 
that the rise in PTH levels using the carboxy terminal antibody is largely 
if not completely suppressed by preventing the adaptive phosphatufia 
from occurring in the course of  CRD. Thus, if phosphate intake and ab- 
sorption into the ECF are reduced in proportion to the decrement in GFR, 
there is no requirement for an adaptive phosphaturia per nephron in the 
residual nephron, and neither the adaptation nor the rise in PTH levels 
occurs (Slatopolsky et al. 1972;Slatopolsky and Bricker 1973;Kaplan et 
al. 1979). 

Another observation which could question the theoretical formulation 
presented here is found in a recent study demonstrating that uremic dogs 
that are parathyroidectomized appeared to maintain external phosphorus 
balance without the intervention of parathyroid hormones (Swenson et al. 
1975). This observation requires confirmation and extension, and experi- 
ments are currently in progress in an effort to accomplish both (Slatopols- 
ky et al. 1978b). 

This theory also omits the potential role of vitamin D metabolites in 
the pathogenesis of secondary hyperparathyroidism, and conceivably in 
adaptation the most active vitamin D metabolite is 1-25 dihydroxy Da. A 
precursor of this hormone is 25 hydroxy D3, and its conversion to the 
1-25 form occurs in the kidney. Thus, if 1-25 dihydroxy D3 activity were 
to diminish early in the course of  CRD and values were to fall progressive- 
ly with time, it is conceivable that a defect in the enteric absorption of 
calcium could be the primary stimulus to increased secretion rates of PTH 
rather than the mechanism based on transient periods of phosphate reten- 
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tion in the serum. At this time several laboratories are in the process of  
defining the relationship between GFR and the circulating levels of  1-25 
dihydroxy D3. The available data suggest that the values are not  low in 
early or moderately advanced disease, and data on far advanced disease 
are as yet quite limited (Slatopolsky et al. 1975, 1978a; Colodro et al. 
1978). However ,  at whatever point  vitamin deficiency serves to retard GI 
absorption of  calcium, the development of  and/or rate o f  progxession of  
secondary hyperparathyroidism would be augmented. Moreover, reduced 
biologic activity of  vitamin D and its metabolites on the GI tract may be 
assumed with a reasonable degree of  certainty to account in large measure 
for any osteomalacic component  of  uremic osteodystrophy. 

It is possible that a decrease in the one hydroxylation step of  25 hydro- 
xy D3 could influence the adaptation in phosphate excretion in CRD 
through additional mechanisms, i.e., a direct effect of  D3 and/or a biolo- 
gically active metabolite on the renal regulation of  phosphate excretion 
(Bonjour et al. 1977). However, if the vitamin or its metabolites does in- 
fluence the transtubular movement  directly or through some vitamin-D- 
PTH interdependence, the role o f  the vitamin-hormone in the adaptation 
could be very substantial (Popovtzer et al. 1974). There also is uncertainty 
as to the effect o f  1-25 dihydroxy D3 and other vitamin metabolites, par- 
ticularly 24-25 hydroxy D3, on the rate of  PTH secretion (Maser et al. 
1975). If one or another of  these substances represents a component  part 
of  a feedback loop, once again the vitamin hormones would assure a role 
in the adaptation and conceivably in the magnification phenomenon of  a 
higher order than that attributed to them in the present discussion. 

8 Acid-Base Regulation: The Adaptation in Ammoniagenesis and the 
Excretion of Titratable Acid 

The requirements involved in the regulation of  acid base homeostasis in 
CRD have dimensions that differ strikingly from that of  any of  the other 
key solutes of  the ECF. From a physical and chemical point of  view, the 
hydrogen ion is a unique particle among the solutes of  body fluids. It is 
highly reactive, consisting o f  a single proton, and has a very high ratio of  
charge to density, with an exceedingly high affinity for combining with 
other molecules that are negatively charged. It is likely that the hydrogen 
ion exists only transiently as a free proton in body fluids. Rather, it is 
presumed to attach itself to water molecules to form hydronium ions or 
H30 with a positive charge. The concentration of hydrogen ions (or 
hydronium ions) under normal circumstances in the ECF is extremely 
small, both in relation to that o f  other key solutes o f  the ECF and in rela- 
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tion to the rate of acquisition of new hydrogen ions and over 3 million 
sodium ions for every hydrogen ion circulation in the ECF. Moreover, for 
every hydrogen ion normally present in the ECF, approximately 500 000 
new hydrogen ions, generated principally from metabolism of protein, 
enter the ECF in the course of 24 h. If less than 140 thousandths of this 
daily load were to remain free in solution, death would ensue rapidly. Ob- 
viously, a highly effective control system must exist in the face of this 
striking imbalance between the rate of acquisition of hydrogen ions and 
the circulating concentration which is consistent with survival. The changes 
that take place in the regulatory system in progressive renal disease must, 
and do, maintain the hydrogen ion concentration of the ECF within the 
rather narrow limits compatible with life. 

The hydrogen ions that enter the ECF are buffered primarily by bicar- 
bonate. Under steady state circumstances, the same number of  hydrogen 
ions is excreted daily in the urine by virtue of a process which serves to 
restore the same number of bicarbonate ions that were consumed in the 
initial buffering process. The process whereby both of these events are ac- 
complished involves the secretion of hydrogen ions from the tubular epi- 
thelial cells into the tubular fluid and their combination with the two 
principal nonvolatile buffers, ammonia and phosphate. The hydrogen that 
is secreted derives from carbonic acid, and the residual bicarbonate is re- 
turned across the contraluminal membrane to the venous circulation. 

The other major charge of kidneys in the maintenance of acid-base 
homeostasis is the reabsorption of  all of the bicarbonate that is filtered, an 
amount which is in excess of 4,500 mEq per day in a normal person. 

In the course of CRD the rate of hydrogen ion accession is no less than 
in a normal subject, unless the protein intake is diminished; this usually 
takes place relatively late in the course of the disease (Elkington 1957). 
Thus, in order to prevent progressive acidemia as nephron destruction pro- 
ceeds in CRD, the residual nephrons must adapt by excreting more hydro- 
gen in the form of ammonium and dihydrogen monosodium phosphate 
while simultaneously increasing the rate of bicarbonate production. The 
nephrons must also continue to reabsorb all or virtually all of the filtered 
bicarbonate, for the loss of bicarbonate into the urine would serve to off- 
set compensatory adaptive increments in net hydrogen ion excretion per 
nephron and de novo bicarbonate excretion per nephron. 

8.1 Bicarbonate Reabsorption 

Although there is a body of  opinion that holds that bicarbonate loss into 
the urine due to inhibition of proximal tubular bicarbonate reabsorption 
is a major factor in the pathogenesis of the metabolic acidosis of chronic 
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renal disease, the bulk of  the evidence would seem to oppose this point  of  
view (Morrin et al. 1962b;Espinel 1975a). In the physiologic state, proxi- 
mal bicarbonate reabsorption is diminished by expansion of  the ECF 
(Purkenson et al. 1969; Slatopolsky et al. 1970; Herbert et al. 1972) as 
well as by high circulating parathormone levels (Crumb et al. 1974), both 
conditions that are met  in CRD. By extrapolation it often is assumed and 
actually supported by experiments in man and rats (Slatopolsky et al. 
1970; Lubowitz et al. 1971) that in uremia the kidneys are no longer able 
to reabsorb the total amount  of  the filtered bicarbonate. However, recent 
observations in uremic dogs have clearly demonstrated that the capacity 
to reabsorb the bicarbonate is increased despite the presence o f  high frac- 
tional excretion rates for sodium, potassium, and phosphorus (Schmidt et 
al. 1976). Superimposed ECF expansion decreases in both control and 
uremic dogs the proximal tubular bicarbonate reabsorption, but for any 
given degree o f  ECF expansion, the uremic animal reabsorbs more bicar- 
bonate than its control (Arruda et al. 1976). Explanations for the fact 
that in uremia the capacity for reabsorbing bicarbonate is increased re- 
main unclear, since it could not  be accounted for by the effects of  known 
determinants of  bicarbonate reabsorption. In addition, under steady-state 
conditions in all forms of  CRD, the pH of  the urine tends to remain be- 
tween 4.5 and 5.5 (Morrin et al. 1962a). For these pH values, because the 
pK of  the carbonic acid bicarbonate buffer system operationally is ap- 
proximately 6.1 in urine and the pCO2 is rarely in excess of  40 to 60 
mmHg, the urine must, by virtue of  the law of  mass action, be virtually 
free of bicarbonate. Thus, factors other than diminution in bicarbonate 
reabsorption appears to be responsible for the degree of  acidosis that does 
develop in the course of  CRD. 

8.2 Hydrogen Excretion 

The amount  of  hydrogen a kidney could eliminate depends on its capacity 
to produce ammonia and on the amount of titrable acid (most is phos- 
phate) available in the urine. 

8.2.1 Ammoniagenesis 

In health 60% or more o f  net hydrogen excretion is accounted for by the 
excretion of  ammonia, the production of  which is stimulated by the exo- 
genous and/or endogenous acid load. The capacity to produce adequate 
amounts of  ammonia both in steady state and in response to systemic 
acidosis is preserved for GFR values equal to or above 20%-30% of  normal 
(Schoolwerth et al. 1975 ; Welbourne et al. 1972). This implies an adaptive 
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increase in the ammoniagenesis per nephron as GFR decreases. Because no 
changes in enzymes or substrates and no increase in the production rate of  
ammonia per milligram DNA are associated with the increased production 
of  ammonia per nephron in the rat, this compensatory phenomenon has 
to be explained on the basis of  the formation of additional ammonia- 
producing cells due to hyperplasia (Benyajati and Goldstein 1978; 
MacLean and Hayslett 1980). 

As GFR decreases further, although the ammoniagenesis per nephron 
may still increase, the total 24-h rates of  ammonium excretion may be 
reduced to levels below 10 mEq and acidosis develops (Schwartz et al. 
1959). Both the increased ammoniagenesis per nephron and its limitation 
are supported by experimental evidence from the studies of  stage II acid- 
loaded dogs reduced to stage III (Morrin et al. 1962b). 

8.2.2 Titratable Acid 

The other form in which hydrogen ions are excreted in the urine is titrat- 
able acid (most of  which is buffered phosphate). In the discussion of  the 
adaptation in phosphate excretion, it was noted that external phosphate 
balance is maintained through approximately 75% of the course of  CRD, 
even when the load of  dietary phosphorus is undiminished. Phosphate 
balance is also maintained during the last 25% of  the course, although it 
occurs at the expense of  hyperphosphatemia (Bricker et al. 1972). Never- 
theless, the 24-h excretion rates of  phosphate under steady-state condi- 
tions remain equal to the rate of  entry of  phosphate into the extracellular 
fluid. Given the fact that the pK of  phosphate is approximately 6.9 and 
that the urine pH in CRD averages close to 4.9, 99 of  every 100 phosphate 
ions excreted enter the urine in the dihydrogen monosodium form. Thus, 
the contribution of  titratable acid to hydrogen ion excretion and bicar- 
bonate synthesis in progressive renal disease will depend upon phosphate 
intake, and values may well be equal to those observed in normal individu- 
als. The adaptive phosphaturia per nephron observed in progressive renal 
disease, therefore, is associated with an adaptive increase in hydrogen ex- 
cretion per nephron. 

9 Conclusion 

The residual nephrons respond to the progressive nephron loss by an 
organized functional adaptation which permits them to maintain homeo- 
stasis. They do this by magnifying their response to the information pro- 
vided by the control systems for the major key solutes (i.e., sodium, 
phosphorus, and possibly potassium), by increasing secondary to hyper- 
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plasia the number of specific cells (i.e., ammonium), or by unknown 
mechanisms (i.e., bicarbonate). As discussed, all the physiologic mech- 
anisms of intrarenal transports apply to the residual nephrons which 
behave like normal nephrons facing an overload of solute and water. 
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1 History 

G. ttocman 

Since its discovery by Gordon et al. (1952) the human thyroxine-binding 
s-globulin (TBG) has been a subject of extensive research. Being the main 
carrier of 1-thyroxine (T4) in blood, the physiologic importance of TBG 
was considered to be great. Moreover, as the binding properties of TBG in 
plasma are in close relationship to the function of the thyroid gland, a 
number of tests measuring various binding functions of thyroxine-binding 
proteins have been devised to evaluate the function of the thyroid gland. 

The aim of the present review is to survey the most important attempts 
to purify human TBG and to summarize the available data (as obtained 
from pure TBG preparations) on its nature. However, the review does not 
include the thyroxine-binding pre-albumin (TBPA) or any other T4-bind- 
ing protein. The present article summarizes examples of the relevant liter- 
ature published toward the end of 1979. It is not the aim of the paper to 
give a comprehensive account of  all papers concerning human TBG; rather, 
it aims at illustrating the recent development and at anticipating results 
which could reasonably be expected in this field in the near future. In the 
past there were several attempts to summarize the results on this topic in 
the form of review articles (e.g., Lecureuil et al. 1977;Hocman 1978a-c; 
Robbins et al. 1978). 

The contemporary research on TBG seems to cluster around four main 
issues: 
1. Attempts to achieve further purification of TBG; 
2. Further elucidation of the structure of TBG, its subunits, its hetero- 

geneity, and its interaction with T4 and 3,5,3'-l-triiodothyronine (T3) 
from the point of  view of physical chemistry; 

3. The biosynthesis and metabolic fate of TBG; and 
4. Analytic determination of TBG in blood for clinical and research pur- 

poses. 
The basic principle of purification of TBG is the addition of a tracer 

dose of either 131 I- or 12SI-l-thyroxine to blood plasma, serum, or any 
other starting material such as Cohn fraction IV-5. The radioactive T4 is 
is preferentially bound to TBG, because T4 is the ligand with the highest 
affinity to this protein. The fractionation of the above material is carried 
out by usual physicochemical methods and the fraction with the highest 
ratio of radioactivity to protein content is collected. The control of the 
TBG entity after each step of fractionation is done usually by paper or 
acrylamide gel electrophoresis. During the process of purification, suitable 
experimental conditions for avoiding the denaturation of TBG, custom- 
ary in protein chemistry, should be maintained. 

1 All statistical values throughout the paper are means +_ standard deviations, unless 
mentioned otherwise. 
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By means of  electrophoresis of  plasma, it was shown by Freinkel et al. 
(1955) that human TBG was concentrated in Cohn fractions IV4,  IV-6, 
and IV-9, all of  them containing large amounts of a-globulins. These frac- 
tions are therefore considered suit~" le as a starting material for further 
purification of  TBG. The isolation of  TBG from such Cohn fractions was 
at tempted by ion exchange chromatography on Dowex 1, but this proce- 
dure caused a marked diminution of  the T4-binding capacity of  TBG 
(Ingbar et al. 1957). It seems that every at tempt to purify TBG, i.e., to 
separate TBG from its "natural environment" of  other proteins in plasma, 
led invariably to a - sometimes considerable - loss of  its binding capacity. 

2 Isolation 

2.1 Tata 

The first serious attempt to purify human TBG was carried out by Tata 
(1961a, b). The proteins of  fraction IV-9, labeled with 131I-T4, were sub- 
jected to preparative electrophoresis on cellulose at pH 8.6 in barbiturate 
buffer to prevent the binding of  T4 to the TBPA fraction. The protein 
concentration of  the fractions was determined by measuring the absorban- 
cy at 280 rim; the T4 content  was estimated by the measurement of  radio- 
activity. The fractions which had the highest 1311 to protein ratio (specific 
radioactivity) were isolated, dialyzed three times, and freeze dried. The 
above procedure was repeated twice with the freeze-dried protein frac- 
tions. 

The proteins obtained in this way were subjected to gel chromatography 
on Sephadex G 75, then further chromatographed on dieethylaminoetha- 
nol (DEAE)-cellulose, equilibrated with 0.05 M NaH2PO4, and eluted with 
a gradient of  sodium chloride up to 0.1 M NaC1 and 0.05 M NaH2PO4. 
The isolated, dialyzed, and freeze-dried T4-binding proteins obtained in 
this step were purified further by starch gel electrophoresis in glycine buf- 
fer, pH 9.0. The zone containing TBG was eluted, dialyzed, freeze dried, 
and the remains of starch were separated by repeated DEAE-cellulose 
chromatography as described previously. 

A shorter but less efficient method is described by the same author 
(Tata 1961b). In this method the Cohn fraction IV-9 of  proteins labeled 
with radioactive T4 are chromatographed on DEAE-cellulose in 0.05 M 
NaH2PO4. The proteins containing the highest specific activity were fur- 
ther purified by repeated (twice) electrophoresis on a cellulose column in 
barbiturate buffer, pH 8.6. The fraction of  proteins was then chromato- 
graphed on DEAE cellulose with the salt gradient elution as described 
previously. 
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The protein fraction obtained in the first, more thorough procedure 
seemed to be homogeneous according to the results of  zone electrophoresis 
on paper, cellulose acetate, agar gel, an( :ellulose column. Electrophoresis 
on starch, however, revealed a marked heterogeneity of  the proteins. The 
relative purification of  TBG, calculated from the specific radioactivity 
ratio for Cohn fraction IV-9 and the final protein, showed that the purified 
TBG had a specific radioactivity approximately 50 times higher than that 
of  the starting material. 

2.2 Sealand Doe 

Seal and Doe (1962a, b, 1964) introduced a procedure for isolating TBG, 
TBPA and corticosteroid-binding protein from human plasma. Blood plas- 
ma (pH 7.0 by addition of  bicarbonate) was dialyzed against water and ap- 
plied to a column of  DEAE Sephadex A 50 equilibrated with 0.02 M 
phosphate buffer with a pH of  5.9. The adsorbed TBG was eluted by the 
same phosphate buffer containing 0.3 M sodium chloride and was then 
precipitated by addition of  ammonium sulphate. The precipitate was sepa- 
rated, dissolved in water, and fractionated by gel filtration on Sephadex 
G 200. The most retarded peak, containing albumin and TBG, was isolat- 
ed, concentrated by uttrafiltration, equilibrated with 0.01 M phosphate 
buffer (pH 6.8), and finally fractionated on hydroxylapatite. TBG was 
eluted with 0.04 M phosphate, pH 6.8. This protein was free of  contami- 
nants as judged by polyacrylamide electrophoresis, immunoelectrophore- 
sis, and ultracentrifugation. However, the behavior of  TBG in the ultra- 
centrifuge proved to be concentration dependent. The authors suggest a 
reversible dissociation of  the protein. According to this work it is possible 
to purify TBG 8000 times in comparison with TBG in normal human 
plasma. 

2.3 Andreoli and Salvatore 

By conventional chromatography on DEAE cellulose saturated with Cohn 
fraction IV-4 Andreoli et al. (1964) and Salvatore et al. (1966) obtained a 
globulin fraction (TBG) not contaminated by other T4-binding globulins. 
However, their protein fraction contained only 33 times more TBG than 
did normal serum. 
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2.4 Giorgio and Tabachnik 

In 1968 Giorgio and Tabachnik isolated TBG by ammonium sulfate preci- 
pitation (30% to 50% saturation ) of  blood plasma to remove as much al- 
bumin as possible. The precipitated proteins were dialyzed against deion- 
ized water, thus precipitating the euglobulins. The solution containing 
TBG was concentrated by freeze drying, labeled with 131I-T4, and subject- 
ed to preparative zone electrophoresis on cellulose column (Tris-maleate 
buffer, pH 8.8, 0.073 mA, 150-175 V, 5 - 6  days at 4°C). After electro- 
phoresis, the separated fractions were eluted from the column with the 
same buffer, and the TBG-containing fraction was collected, freeze dried, 
and subjected to repeated electrophoresis under the above conditions. 

The freeze-dried TBG-containing fraction from the second electropho- 
resis was then chromatographed on a DEAE-cellutose column (phosphate 
buffer 0.01 M, pH 7.8 at 4°C) and eluted with an NaC1 gradient (up to 
0.2 M). TBG was eluted at approximately 0.12 M NaC1. The fraction was 
further purified by gel chromatography on Sephadex G 150 or G 200 
(eluting buffer 0.2 M NaC1 plus 0.01 M phosphate, pH 7.8 at 4°C) and the 
TBG-containing fraction was finally purified by preparative electrophore- 
sis on polyacrylamide gel (Tris-HC1 buffer, 0.38 M, pH 8.9 in resolving gel, 
and Tris-HC1 buffer, 0.052 M, pH 8.1 as elution buffer, at 0°C, 50 mA for 
6 to 10 h, 300 to 800 V). The TBG was then 4300 times more concentrat- 
ed than in plasma and seemed to be homogeneous according to analytic 
disc electrophoresis, starch gel electrophoresis, immunoelectrophoresis, 
and ultracentrifugal analysis. 

2.5 Marshall and Pensky 

Marshall and Pensky published two methods for the purification of  TBG. 
The first (Marshall and Pensky 1969) precipitates human serum with am- 
monium sulfate at 40% saturation; the supernatant was then dialyzed 
against water and chromatographed on Dowex 2 x 10 anion exchange 
resin at pH 7.3. The main band of  unabsorbed protein emerging at void 
volume and containing TBG was saturated with ammonium sulfate to 60% 
saturation. The mixture was filtered and the filtrate brought to 65% satu- 
ration by ammonium sulfate. The precipitate was dissolved in water, 
dialyzed, and chromatographed on DEAE-cellulose at pH 7.3 with a linear 
concentration gradient of  sodium chloride (0-0 .15  M). The main radio- 
active fraction of  TBG labeled with 12 s I-T4 was pooled, concentrated, and 
dialyzed against 0.06 M Tris chloride buffer, pH 8.6. The sample was final- 
ly chromatographed on DEAE-Sephadex A 50 in the above buffer and 
eluted with a linear concentration gradient of  sodium chloride (limit: 
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0.2 M); then the samples from the ascending part of  the radioactive peak 
were pooled and concentrated by pressure dialysis. 

The authors claim that this preparation is free of  all traces of  contami- 
nating albumin and is homogeneous as shown by disc electrophoresis and 
immunoelectrophoresis. 

The second method (Pensky and Marshall 1969) utilizes bioselective ad- 
sorption (affinity) chromatography on agarose gel containing covalently 
bound/-thyroxine.  

Pooled human serum was stirred with the suspension of  T4, bound to 
agarose (Sepharose 4 B) overnight, and decanted, and the suspension was 
washed four times with 0.1 M NaHCO3, pH 8.6. The washed suspension 
was then packed into a chromatographic column and washed with the 
above NaHCO3 solution until no proteins were eluted. The proteins re- 
tained on the column were then eluted with 0.002 M KOH, pH 9.3. The 
elution pattern showed two distinct peaks, the first containing a single 
thyroxine-binding protein which had the same mobility as TBG in normal 
serum, or, the same as the highly purified TBG obtained by the first meth- 
od of  the same authors. 

The same procedure repeated with agarose (to which no T4 was bound) 
yielded no stainable protein in the TBG region as established by disc elec- 
trophoresis. 

In further purification, the thyroxine-binding protein, eluted from the 
T4-Sepharose column in the first peak, was concentrated by pressure dia- 
lysis, then dialyzed against 0.06 M Tris-chloride buffer, pH 8.6, and sub- 
jected to DEAE-Sephadex column chromatography as in the first method. 
The purified TBG produced a single band on analytic polyacrylamide gel 
electrophoresis and by electrophoresis on cellulose acetate. The calculated 
yield of  TBG was 18%-37%. 

2.6 Hamadaand Sterling 

In 1970 Hamada et al., followed by Sterling et al. (197t) ,  published a 
method for preparation of  TBG from Cohn fractions IV-4 and IV-5,6. 
These fractions, together with a tracer amount  of  12SI-T4, were subjected 
to column chromatography on carboxymethyl cellulose (in 0.075 M ace- 
tate buffer, pH 5.0). The fractions containing the 12SI-T4 were concen- 
trated by ultrafiltration and chromatographed further on Sephadex G 200 
(in 0.05 M NaC1). The radioactive peak, again concentrated by ultrafiltra- 
tion and dialyzed against a Tris HC1 buffer (0.05 M, pH 8.0), was then 
chromatographed on DEAE-Sephadex A 50 in the above Tris buffer and 
eluted with a salt gradient (0 .10-0.18 M NaC1). The peak containing TBG 
was then subjected to the "double gel" preparative polyacrylamide gel 
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electrophoresis with acid and alkaline pH gel layers devised for better sep- 
aration of albumin from TBG. The pH of the upper gel was 4.0, that of 
the lower, 8.6 (concentration of  the gel: 7.5%). During the first electro- 
phoresis (24 mA for 30 rain, then 60 mA for 30 rain, and finally 800 V 
for 75 min) a pH gradient appeared in both the upper and lower gels. At 
pH 4.5 the negatively charged TBG enters the upper gel, while the other 
proteins are excluded into the upper electrode buffer. This buffer was 
then removed and replaced with Tris-barbiturate buffer (pH 7.4), and a 
second electrophoresis was carried out at 50 mA for 18--20 h. The TBG 
fraction eluted from the "double gel" electrophoresis column was finally 
purified by usual preparative polyacrylamide gel electrophoresis in Tris- 
glycine (0.052 M, pH 8.9) upper buffer and Tris-HC1 (0.1 M, pH 8.1) 
lower buffer at 50 mA for 15-17 h. This step resulted in a homogeneous 
(by disc and paper electrophoresis, immunoelectrophoresis, gel chroma- 
tography on Sephadex G 200, and uttracentrifugation) protein, TBG. 

2.7 Korcek and Tabachnik 

The method of Korcek and Tabachnik (1974) uses the first two steps 
introduced by the second method of Pensky and Marshall (1969). In a 
comprehensive, three-step method of isolation, the first step involves bio- 
selective adsorption (affinity) chromatography of whole human blood plas- 
ma on thyroxine-Sepharose 4 B, with results rather similar to those of 
Pensky and Marshall (1969). It should be noted that, according to Korcek 
and Tabaehnik (1974), a large number of proteins other than TBG were 
found in the sample after the bioselective adsorption (affinity) chromato- 
graphy step. The second step consists again, as in the previous method, of 
chromatography on DEAE-Sephadex A 50 from which the sample is elut- 
ed by a linear concentration gradient (0.06 M - 0.2 M NaC1). After this 
step the sample still contains proteins other than TBG, as is shown by 
analytic polyacrylamide gel electrophoresis. 

In the third step the sample from the DEAE-Sephadex chromatography 
containing TBG is subjected to preparative polyacrylamide gel electropho- 
resis as described by Giorgio and Tabachnik (1968). This step resulted in a 
TBG preparation virtually free (by analytic polyacrylamide electrophore- 
sis) of any contaminating proteins. The yields of TBG by this method 
ranged from 20% to 27%, assuming a starting concentration of TBG in 
plasma of 1.5 mg per 100 ml. 
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2.8 Nilsson and Peterson 

In the method o f  Nilsson and Peterson (1975) the human plasma to which 
12s I-T4 has been added was adjusted by ammonium sulfate up to 40% 
saturation. A majority of plasma proteins precipitated, but albumin, TBG, 
and TBPA remained in the solution. The supernatant was diluted with an 
equal vohrme of 0.02 M Tris-HC1 buffer, pH 7.4, concentrated by ultra- 
filtration, and then dialyzed exhaustively against 0.02 M Tris-HC1 (pH 7.4) 
containing 0.2 M NaC1. The sample was then subjected to ion exchange 
chromatography on DEAE-Sephadex A 50 in the same buffer. Elution was 
performed by an NaC1 gradient (0.2-0.6 M) at pH 7.4. The TBG peak, 
indicated by the 12si radioactivity, was eluted at a concentration of ap- 
proximately 0.26 M NaC1. The fraction containing TBG was then dialyzed 
against 0.06 M Tris-HC1 buffer (pH 8.6) containing 0.1 M NaC1, concen- 
trated by ultrafiltration, and subjected to a second ion exchange chroma- 
tography on DEAE-Sephadex in the above buffer. The peak containing 
TBG appeared at the NaC1 concentration of 0.32 M and was further puri- 
fied by gel chromatography on Sephadex G 200 (in 0.02 M Tris-HCl, pH 
7.4, containing 0.15 M NaC1). TBG appeared in the last, third peak by elu- 
tion with the same buffer. This sample was concentrated by ultrafiltration 
and subjected to zone electrophoresis in barbital buffer at pH 8.6. The 
zone containing TBG was isolated and finally purified by preparative poly- 
acrylamide gel electrophoresis in 0.1 M borate buffer, pH 8.9. The pre- 
pared TBG appeared to be homogeneous according to immunoelectro- 
phoresis (against polyvalent antihuman serum protein serum). 

The purified TBG was freed of endogenously and exogenously bound 
thyroid hormones by dialysis against a saturated solution of ANS (8-anil- 
ino-l-naphtalene sulphonic acid) in 0.05 M phosphate buffer (pH 7.5) 
containing 0.15 M NaCI. After the exhaustive dialysis the sample contained 
no radioactivity, indicating that all bound thyroid hormones were substi- 
tuted by ANS. Subsequently, the ANS was removed by dialyzing the 
ANS-containing TBG against large volumes of phosphate buffer containing 
2% serum albumin. At the end of dialysis no significant ANS fluorescence 
was detected in the TBG preparation. 

2.9 Kagedal and Kallberg 

Since human pregnancy serum reportedly contains large amounts of TBG, 
it is considered a suitable source for isolation of the protein. Kagedal and 
Kallberg (1977) described a method for obtaining pure TBG from pooled 
human sera collected during the third trimester of pregnancy. From serum 
diluted 2:1 with water the gross impurities were adsorbed batchwise onto 
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the same volume of gravity-settled hydroxylapatite. After centrifugation, 
the TBG contained in the supernatant was adsorbed batchwise on epoxy- 
activated Sepharose 6 B coupled with T4. From this material the TBG was 
desorbed by elution with 2 mM ANS. The obtained crude TBG (approxi- 
mately 80% pure, 1200-fold purification, 23% yield) was concentrated by 
ultrafiltration. The resulting TBG was further adsorbed as a glycoprotein 
on Concanavaline-A(Con-A)-Sepharose. This step separated the nonglyco- 
proteinic impurities. The purified TBG was desorbed from the Con-A- 
Sepharose by washing with alpha-methylmannoside. This preparation of 
TBG appeared to be pure by polyac 'lamide gel electrophoresis and im- 
munologically. Its T4-binding ability was tested by equilibrium dialysis. 
This kind of TBG binds 1.1 tool T4 per mole protein, assuming its mole- 
cular weight to be 58 000 daltons, and its association constant is 2.0 x 109 
liter per mole. 

2.10 Preseiat Attempts 

The present methods of  preparation of TBG are essentially combinations 
of the steps presented in the last three methods, i.e., affinity chromato- 
graphy, gel filtration, and either ion exchange chromatography or electro- 
phoresis (Robbins 1976; Horn and Gdrtner 1979). Moreover, since the 
chemical entity of a highly purified TBG is at present already available, 
the research concerning its isolation has shifted already to the isolation of 
parts of  the protein, e.g., its carbohydrate content (Zinn et al. 1978a, b). 

Horn et al. (1979) presented a comprehensive and precise method for 
the isolation of human TBG. The first step consists of bioselective adsorp- 
tion (affinity) chromatography on CH-Sepharose 4 B to which T3 was at- 
tached by means of a six-carbon-long spacer. This T3-Sepharose was mix- 
ed (60 rain, 4°C) with 2 liters of human plasma, the solute filtered away, 
and the excess proteins removed (cold 0.05 M barbiturate buffer, pH 9.0). 
The TBG was then eluted with a solution ofT3 at pH 9.1 at 30°C. 

This TBG solution was then subjected to ion exchange chromatography 
on QAE-Sephadex A 50 (0.15 M Tris NaC1 buffer, pH 8.6). The TBG-con- 
taining fraction was eluted by raising the concentration of salt (NaC1) to 
0.225 M. The third step consisted of affinity chromatography on Con-A- 
Sepharose (0.05 M Tris, pH 7.4) for the separation of glycoprotein enti- 
ties. TBG, as a glycoprotein, remained bound to the Con-A-Sepharose and 
was subsequently eluted with 0.02 M alpha-methyl-D-mannoside in Tris 
and NaC1 solution (0.17 M, pH 8.6). In the next step the TBG-enriched 
fraction was subjected to anotherion exchange chromatography on DEAE- 
Sephadex A 50 (linear salt gradient 0.15 to 0.20 M NaC1) in 0.05 M Tris, 
pH 8.6, and the TBG solution was concentrated by means of  a subsequent 
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Con-A-Sepharose chromatography and QAE-Sephadex A 50 ion exchange 
chromatography as described above. This preparation of  TBG was dialyzed 
against water and chromatographed again on hydroxylapatite (BioGel 
HTP, natriumphosphate gradient 0.03 to 0.08 M, pH 6.8); the TBG was 
then dialyzed again against water and stored frozen at -60°C. 

Horn and Gdrtner (1979) recently reported an improvement and sim- 
plification of  their procedure for the isolation of  TBG from human serum. 
TBG was adsorbed onto an epoxy-activated Sepharose 6 B with covalently 
bound T3. The protein was eluted by a solution containing 10 mg T4 and 
100 ml of  serum albumin. The albumin was then removed by Con-A-Seph- 
arose affinity chromatography. The overall yield of  TBG is about 40%. 

From the point of view of  relative simplicity and the relatively high 
yield of  TBG as well as the combination of  the three most efficient meth- 
ods - i.e., bioselective adsorption (affinity) chromatography, ion exchange 
chromatography utilizing elution by salt concentration gradient, and the 
preparative polyacrylamide gel electrophoresis - the method of  Korcek 
and Tabachnik (1974) seems at present to be the most suitable for the 
purification of  TBG from human plasma. It should be noted, however, 
that a fourth step, namely the bioselective adsorption (affinity) chromato- 
graphy on Con-A-Sepharose used by the last-mentioned authors, is also 
important in achieving a thoroughly purified TBG. This step uses the gly- 
coprotein nature of  TBG to separate it from other proteins of nonglyco- 
proteinic entities. 

Since thyroxine has a high tendency to become bound by various un- 
specific compounds,  the bioselective adsorption (affinity) chromatography 
step on T4-bound Sepharose isolates from the blood plasma not only TBG 
but also TBPA, albumin, and probably also a number of  other proteins, al- 
though the TBG is bound preferentially to the T4-containing chromato- 
graphy column. Therefore, this first step in the above purification proce- 
dure alone is not  sufficient to produce isolated TBG. 

Since the published characteristics of  different recent preprations of 
TBG obtained in various laboratories by the above three- or four-step 
methods agree within narrow limits with one another, the preparation of  
TBG could be considered now to be virtually free of  contaminants, i.e., 
as a well-defined human plasma protein. Today, human TBG is even com- 
mercially available (UCB - CHRISTIAENS, Bioproducts, Peptide Depart- 
ment,  Rue de Berkendael 68, B-1060  Brussels, Belgium) for laboratory 
purposes only, of  course. 
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3 Properties 

Many reports dealing with the properties of  human TBG involve studies of  
this protein in its "'natural environment," i.e., blood plasma. For example, 
many investigators studied the electrophoretic mobilities of  blood plasma 
proteins labeled with radioactive T4 on a wide variety o f  supporting media 
under different conditions of  pH, buffer composition, and concentration 
as well as different conditions of  electric current, or they studied the com- 
petitive interaction of  T4 and a number of  other compounds with their 
binding proteins in blood. Since it is next to impossible to deal with the 
whole of  this literature without selection, in the present review we will 
deal only with those properties o f  TBG which were derived from the study 
of  isolated, purified preparations o f  human TBG. 

All authors claim to have isolated an individual, pure protein, TBG. 
However, the physical and chemical properties of  these protein fractions 
differ to a large extent. For comparison these properties are listed in 
Tables 1,2,  and 3. 

The ultracentrifugal analysis of the TBG obtained by Tata (1961a, b) 
showed two major protein components,  the sedimentation constants of  
which were about 3.5 and 7.2. The author suggests that TBG is present in 
the fraction with the sedimentation constant of  3.5. This preparation of  
TBG is essentially free o f  TBPA; it has a molecular weight o f  40 0 0 0 -  
50 000 daltons and is present in human serum in a concentration of  ap- 
proximately 1 -2  mg TBG in 100 ml serum. 

The mobilities of  isolated TBG (Tata 196 l b) studied by paper electro- 
phoresis (pH 8.6 and 4.5, ionic strength 0 .05-0 .10)  alone and in mixture 
with whole human serum are presented in Table 4. The author concluded 
that his preparation of TBG had a high carbohydrate content but a low 
concentration of  lipids and tryptophan.  

The molecular weight of  the preparation isolated by Korcek and 
Tabachnik (1974) was estimated by sodium dodecyl sulphate (SDS) poly- 
acrylamide gel electrophoresis, giving a value of  approximately 65 000 dal- 
tons. The "'slow TBG" (STBG) moved during electrophoresis behind the 
normal band of  TBG (see also Sect. 4.2) and appeared after repeated use 
of  the bioselective adsorption (affinity) chromatography column in a sim- 
ilar way as in the isolation of  electrophoretically STBG according to the 
second method of Pensky and Marshall (1969); its molecular weight had 
a value of  57 000 -+ 1000 daltons. On ultracentrifugal analysis of  sedimen- 
tation equilibrium, a value of  60 700 -+ 1800 daltons was calculated for 
the molecular weight of  the normal TBG preparation isolated by Korcek 
and Tabaehnik (1974). 
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Table 2. Amino acid composit ion of  TBG (mole/mol  TBG). a 

57 

Amino acid 1 2 3 4 5 6 

Lysine 12 25 18 22.49 29 28 
Histidine 11 10 7 13.94 12 11 
Arginine 22 16 4 15.96 17 6 
Aspartic acid 25 38 26 41.64 45 36 
Threonine 18 25 20 25.69 28 25 
Serine 19 34 24 31.64 49 29 
Glutaminic acid 34 52 30 62.91 61 42 
Proline 27 30 16 29.48 20 t5 
Glycine 25 25 23 32.37 29 19 
Alanine 27 31 32 34.80 30 28 
1/2 Cystine 5 8 3 10.63 8 5 
Valine 12 23 21 26.75 25 27 
Methionine 3 5 6 10.56 8 12 
lsoleucine 8 9 12 18.54 17 18 
Leucine 43 44 28 46.81 37 38 
Tyrosine 7 10 4 11.62 15 9 
Phenylalanine 14 18 12 22.49 17 22 
Tryptophan 4 4 3 N b 4 4 

Given according to authors: (1) Seal and Doe 1964; (2) Giorgio and Tabachnik 
1968; (3) Sterling et al. 1971; (4) Korcek and Tabachnik 1974; (5)Ni lsson and 
Peterson 1975; and (6)Gershengorn et al. 1977. 

N, not  determined. 

Table 3. Carbohydrate composit ion of  TBG (moles/mol TBG). a 

Carbohydrate 1 2 3 4 5 6 

Hexose 56 
Hexosamine 15 
Fucose 19 0 0 1 
Sialic acid 9 5 4 6.23 0 
Neutral hexose 24 
Glucosamine 12 11 12.37 7 
Galactosamine 3 0 4.47 0 
Xylose 1 0 
Mannose 5 12.17 7 
Galactose 6 5.84 7 
Glucose 2 2.2 

1 
10 

22 
0 

6 
13 
6 

a According to authors as in Table 2. 
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Table 4. Electrophoretic mobility of human TBG (according to 
Tara 1961b). a 

G. Hocman 

TBG pH Mobility 
x 10 -s cm2V-~s -1 

Alone 8.6 4.9 
Mixed with whole serum 8.6 4.7 

Alone 4.5 1.8 
Mixed with whole serum 4.5 1.7 

a TBG, thyroxine-binding a-globulin. 

The yield of  TBG isolated by the above method was about  27%. The 
same authors found measurable amounts of  various fatty acids associated 
with their TBG preparation. It is interesting that in the isolation of  TBG, 
Korcek and Tabachnik (1974) found no difference between the bioselec- 
tive adsorption (affinity) chromatography columns, where the T4 was 
coupled directly to the Sepharose, and where, between the Sepharose and 
T4, different "arms" (ethylene diamine or 3,3'-diaminodipropylamine) 
were attached. 

Fullerton (1974) achieved the crystallization of  TBG prepared by Ster- 
ling et al. (1971). To 3 mg TBG 0.13 ml distilled water, 0.04 ml ethanol, 
and 0.01 ml 2 M NaOH were added. Crystals (approximately 20-tam long) 
appeared after 20 min at room temperature. After 3 weeks at 2°C the cry- 
crystals reached a size o f  60 tam and in a further 3 months reached maxi- 
mal size (100 x 70 x 40 tam). The pH of  the medium was 8.5. 

TBG was "also crystallized in the presence o f  T4. The solution of  T4 
consisted o f  2.7 mg T4 dissolved in distilled water (0.6 ml), to which 0.3 
ml 2 M NaOH was added. Three mg TBG and 0.04 ml of  the above T4 
solution were kept  for 5 min at room temperature to achieve the binding 
of  T4; then 0.08 ml distilled water and 0.04 ml ethanol were added. Crys- 
tals (approximately 50-tam long) grew overnight at room temperature. The 
crystals appeared to be morphologically identical with those of  native 
TBG. After the crystals were placed into the cold (+2°C), they grew to a 
maximal size o f  approximately 75 tam. Crystals were not  obtained in the 
absence o f  protein. The presence of  bound iodine in the crystals o f  TBG 
crystallized in the presence o f  T4 may prove particularly useful as a heavy 
atom in X-ray crystallographic studies. 

The kinetics of  thermal denaturation of  TBG were measured in the fol- 
lowing experiment (Takemura et al. 1971): Whole human serum was 
heated for some time (5---60 min) at a certain temperature (52 .5 -60°C)  
and the T4-binding capacity o f  TBG was then measured by means of  paper 
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electrophoresis with addition of T4 and ~ 3 a I-T4. The process of denatura- 
tion could be considered to be a simple monomolecular reaction 

TBGnative ~ TBGdenaturate d 

where the denaturated TBG does not bind T4. From the decrease of the 
binding capacity in heated samples of TBG in comparison with native 
TBG in serum, the rate constant of the reaction was calculated (k52.5 = 
0.00458; k60 = 0.10801). The changes of the rate constant with the tem- 
perature are related to the activation energy of denaturation of TBG, 
which, according to Arrhenius' equation, seems to be E = 89 867.2 ± 33.4 
cal per mole of TBG. 

For studies of  the metabolism of  TBG, radioiodinated preparations of 
this protein may prove particularly useful. Refetoff et al. (1975) used 
purified human TBG or desialylated STBG which were labeled by radio- 
iodine; their properties were compared with those of the native TBG in 
whole human serum. The authors found that the liver rapidly and selec- 
tively clears the STBG injected into the bloodstream. The half life of  
STBG in rabbit is approximately 3 rain. Radioactivity from labeled TBG 
and/or STBG was found in urine and bile. The T4-binding capacity of 
both TBG and STBG was close to 1 tool T4 per mole protein. The binding 
affinity of purified TBG was identical to that of the TBG in native serum; 
however, in the case of STBG is was lower. The polyacrylamide gel elec- 
trophoretic mobility of purified TBG was identical with that of  native 
TBG, but under the same conditions STBG migrated in a broader band 
more cathodically placed than TBG. In general, radioiodinated TBG be- 
haves in many respects in a manner similar to that of  native TBG. 

Inherited TBG abnormalities in man may be due to mutations at a 
single X-chromosomeqinked locus controlling the synthesis of TBG. After 
injecting 131 I- or 125 I-labeled purified TBG into normal subjects,Refetoffet 
al. (1976) measured the half-life (tl/2) of TBG, which is 5.3 ± 0.4 days; 
its distribution space is 7.2 ± 1.0 liters; total daily degradation is 0.211 -+ 
0.053 t~mol per day. The total daily degradation of TBG was proportional 
to the serum concentration of this protein. They found different values 
for tl/2 for TBG in patients with altered thyroid status, e.g., 3.6 days in 
patients with thyrotoxicosis. The authors studied and described pedigrees 
of families with altered TBG concentration in blood (absence, low, and 
high TBG). In subjects with changed concentration of TBG in serum due 
to X-chromosome-linked abnormalities, the TBG is identical to that in 
normal person electrophoretically, immunologically, and with respect to 
its affinity for T4 and its response to heat denaturation. The changes in 
TBG concentration did not seem to affect in a significant way the euthy- 
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roid status and the concentration of  free T4 in blood, which were close to 
normal values. 

Cavalieri et al. (1975) prepared TBG according to a slight modification 
of the method of Pensky and Marshall (1969), using T3-substituted Sepha- 
rose for affinity chromatography. The purified TBG was iodinated by 12 s I, 
separated from free iodide by gel chromatography and Sephadex G 75, 
and finally" purified by preparative polyacrylamide gel electrophoresis. 
After injecting the 12SI-TBG to normal and hypothyroid patients, the 
authors established the half-time of  the disappearance from plasma as 5.0 
± 1.2 days in normals and 6.1 ± 3.2 days in hypothyroids. The TBG turn- 
over rate was 17.8 ± 2.1 mg per day in healthy and 23.2 ± 8.5 mg per day 
in hypothyroid patients. The radioiodinated TBG retained the electro- 
phoretic and immunologic characteristics of  the unlabeled TBG save for a 
partial loss o f  T4-binding activity. 

The preparation of  TBG obtained by Horn et al. (1977), which repre- 
sented a 20% yield of  its content  in the blood serum, had a molecular 
weight of  approximately 57 000 daltons, but the molecular weight of its 
protein component  alone was about 48 500 daltons. The amino acid com- 
position of  this preparation seems to be in fairly good agreement with the 
other preparations, i.e., those of Korcek and Tabachnik (1974) and 
Gershengorn et al. (1977b) (see Table 2). The preparation of  TBG ob- 
tained by Horn et al. (1977) proved to be free of  contaminants as judged 
by disc electrophoresis at polyacrylamide gel concentrations of  5%, 7.5%, 
and 10%, in glycine-acetate buffer (pH 8.9), and Tris-barbiturate buffer 
(pH 7.0). 

In the reports o f  Gershengorn et al. (1977a, b) the authors used TBG, 
prepared according to the second method of Pensky and Marshall (1969), 
for characterization of  its properties and subunit structure. This prepara- 
tion of  TBG showed one single protein band even in overloaded analytic 
polyacrylamide disc electrophoresis columns, as well as in electrophoresis 
in 0.1% SDS. Six preparations of  TBG contained from 0 .09-0 .64  mol T4 
per mole TBG; the TBG used for obtaining the present results contained 
0.19 mol T4 per mole TBG and was able to bind an additional 0.85 mol 
T4. Its molecular weight (by equilibrium sedimentation) was 54 000 dal- 
tons in water (0.1 M KC1, 0.05 M phosphate, pH 7.5) and 52 000 daltons 
in 6 M guanidine (0.1 M KC1, 0.05 M phosphate, pH 6.5). Its extinction 

E 1% at 280 nm, corrected for the absorbancy of  T4, was 6.17, and its 
1 cm 

partial specific volume was 0.724 ml per gram in water and 0.735 ml per 
gram in guanidine. The authors found 374 amino acid residues per mole 
TBG; carboxypeptidase A digestion suggested that the carboxy terminal 
amino acid o f  this TBG is leucine. 
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4 Molecule 

4.1 Structure 

The size and shape of  the TBG molecule as well as its structure have been 
investigated by a number of  authors. The preparation of  TBG obtained by 
Gershengorn et al. (1977a, b) prepared according to the second method 
of  Pensky and Marshall (1969) is stable in diluted alkali; however, it 
undergoes minor but irreversible structural alteration in very dilute acid, 
which greatly alters its ability to bind T4. The ultraviolet circular dichro- 
ism (CD) spectra at pH 8.3 showed that 24% of  total peptide groups are 
ordered in alpha-helix structure and 27.7% in beta structure and that 
48.3% should be considered unordered. The binding of  T4 to the mole- 
cule caused certain changes in the CD spectrum in the near-ultraviolet 
region. 

The relaxation time of  TBG was measured by fluorescence polarization 
after covalent labeling of  the protein with dansyl (5-dimethylaminonaph- 
tatene-l-sulphonyl). Above 50°C the authors observed a time-dependent 
increase in polarization. They concluded that TBG is stable up to about 
50°C but that above this temperature aggregation of  the thermally dena- 
turated TBG may occur. The measurement of  the relaxation time suggests 
that TBG is a compact and symmetric molecule. 

Gershengorn et al. (1977a) claim that the molecule of TBG consists of  
374 amino acids. About one-half of  the peptide groups are equally distrib- 
uted in the alpha helical and beta structures. The carbohydrate content  of  
this TBG is approximately 15% by weight. By means of  isoelectric focus- 
ing four major bands of  TBG protein were found; this microheterogeneity 
is attributable to different contents of  N-acetylneuraminic acid in them 
(see Sect. 4.2). After desialylation with neuraminidase only one band of  
protein was found (Horn and Gdrtner 1979). 

The molecular transitions of  human TBG in guanidinium chloride solu- 
tions were described in an excellent paper by Johnson et al. (1980). The 
TBG molecule, made up from a single polypeptide chain, has a compact,  
symmetric structure in neutral and alkaline solutions. Acidification below 
pH 5 results in irreversible loss of its hormone-binding ability and in 
minor structural changes. The molecule of  TBG is easily denaturated by 
mechanical agitation, by even mild heating (Takemura et al. 1971), and 
during storage in isolated form. 

Johnson et al. (1980) found that solutions of  guanidinium chloride 
strongly enhance the denaturation process. The measurement of  circular 
dichroism spectra of  native TBG showed a relatively highly structured mol- 
ecule (at pH 8.3 the percentages of  structures were: alpha helix, 48%; beta 
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structure, 19%; and random coil, 33%) which is altered by acidification (at 
pH 3.4 the percentages of  structures were: alpha helix, 35%; beta structure, 
28%; and random coil, 36%). The addition ofguanidinium chloride (2, 4, 
and 6 M) results in a corresponding decrease of  alpha helix structure (28%, 
14%, and 17%, respectively) as well as the beta structure (23%, 15%, and 
16%, respecitively). The amount  of  unordered, random coil increases ac- 
cordingly (49%, 71%, and 67%). It should be noted that the mean length 
of  the alpha helical structure is rather short (4.5 residues per alpha helix 
segment) and is even more shortened by addition ofguanidinium chloride 
(to 3.0 residues per alpha helix segment). 

The fluorescence polarization of  either native TBG or dansyl derivatives 
of  TBG (DNS, 5-dimethylamino-l-naphtalenesulphonyl chloride) were 
measured either in the presence of  guanidinium chloride or in its absence. 
The resUlts of  the changes of  tryptophanyl fluorescence revealed a subse- 
quent transition of  the protein molecule to different conformational 
structures. The molecular transition of TBG in about 2 M guanidinium 
solutions results in irreversible loss of  the binding site for T4. At neutral 
pH and above 2 M guanidinium concentration, further structural changes 
of  the TBG molecule occurred, which led to a series of  several new mole- 
cular species (Johnson et al. 1980). The increase in the polarization of  the 
DNS-TBG complex could be considered as a sign of  an association of  the 
unfolded form of  TBG. A conformational transition of  the molecule pre- 
cedes the self-association reaction. 

These transition reactions, evoked by the presence of  a denaturating 
agent, guanidinium chloride, are rather fast (the first-order rate constants 
being in the order of  5 • 10 -3 sec -1). Upon removal of  guanidinium chlo- 
ride TBG does not  refold to the original native structure. The authors, 
logically enough, conclude that the native form of  TBG in serum does not  
represent its most stable form. 

Zinn et al. (1978a) described the structure and composition of  the car- 
bohydrate part of  a TBG preparation obtained by the affinity chromato- 
graphy procedure. The carbohydrate composition of TBG (14.6% by 
weight) consisted of  mannose, galactose, N-acetylglucosamine, and N- 
acetytneuramidinic acid in molar ratios 11:9: 16:10 per mole glycoprotein. 
No fucose or N-acetylgalactosamine was found. The presence of  glucose in 
various preparations of  TBG is considered to represent a contamination 
(Zinn et al. 1978a). According to the authors, TBG contains four N-glyco- 
sidically linked oligosaccharide chains, and their probable structures are 
presented in an excellent second article (Zinn et al. 1978b). These four 
chains are of  three different kinds of  branched carbohydrate entities, prob- 
ably to a great extent similar to one another in structure. The above three 
kinds of  branched oligosaccharide chains are contained in the TBG mole- 
cule in the molar ratios of  1:2: 1. The authors propose that the asialo-TBG 
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binds to the membranes of  liver cells; however, native TBG did not  show 
this kind of  interaction. 

4.2 Microheterogeneity 

The TBG purified by the second method of Pensky and Marshall (1969) is 
homogeneous by conventional criteria but shows a marked microhetero- 
geneity when subjected to isoelectric focusing (Marshall et al. t 973). In 
polyacrylamide gels in a pH gradient from pH 3 to 6, at least nine stain- 
able protein bands were found. All these bands appeared to bind T4. Com- 
pletely desialylated TBG showed approximately the same phenomenon.  
The authors demonstrated that all protein bands are immunologically 
identical. 

In contrast to the findings of Marshall et al. (1973), Korcek and Tabach- 
nik (1974) did not  find any multiple bands of  TBG after polyacrylamide 
gel electrophoresis of  TBG first treated with 8 M urea. 

The microheterogeneity of  TBG has been associated with different me- 
tabolic states. Henze et al. (1979) studied desialylated TBG preparations. 
From a preparation of TBG, the N-acetylneuraminic acid was removed 
either to a certain degree or completely by means of  treatment with neur- 
aminidase from Clostridium perfringens. These desialylated preparations 
of  TBG were analyzed by means of  isoelectric focusing. The partially de- 
sialylated preparation of  TBG revealed four protein bands (in the pH 
region of  4 .2 -4 .6 ) ;  the completely desialylated protein represented one 
band at pH 6.2. The association constants of  all these preparations with 
T4 as well as their antibody binding were nearly identical. The authors 
conclude that the progressive desialylation in vitro causes an increasing 
microheterogeneity, with bands migrating to more basic regions with the 
decrease of  N-acetylneuraminic acid content  of  the protein and finally re- 
sulting in a single band of  completely desialylated TBG at pH 6.2. This 
microheterogeneity is obviously caused by different degrees of  desialyla- 
tion of  TBG. 

Since the microheterogeneity of  TBG varies with different metabolic 
states, Gdrtner et al. (1979) studied this phenomenon in relation to dif- 
ferent nonthyroidal metabolic states. Examination of  pooled normal hu- 
man sera by means of  isoelectric focusing and subsequent immunofixation 
of different TBG entities by monospecific TBG antiserum revealed three 
major (pI 4.55, 4.45, and 4.35) and one minor (pI 4.25) protein bands. 
This typical distribution pat tem of  microheterogeneous TBG was found 
in hypo- and hyperthyroidism as well as in genetic TBG deficiency. 

However, in pregnancy (increased glycoprotein synthesis under the in- 
fluence of  estrogens) a further band of  TBG (pI 4.15) appeared and the 
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"minor"  band (at pI 4.25) became more intense. On the other hand, in 
liver disease characterized by diminished glycoprotein degradation, an 
increase in the pI 4.55 band and diminution of  the pI 4.25 band was ob- 
served. 

The healthy, normal newborns showed a pattern closely related to that 
of  normal human adults; premature infants showed a pattern of  four 
double bands which were normalized 6 months later. In genetic TBG de- 
ficiency the pattern of  microheterogeneity was comparable to that of  nor- 
reals. 

4.3 Subunits 

By means of  the method of  Nilsson and Peterson (1975) a total of  110 
amino acid residues per molecule of  TBG were found, and consequently a 
molecular weight of  12 235 daltons was obtained for the protein. This 
TBG seems to contain 7.5% carbohydrate which yielded a molecular 
weight of 13 317 daltons. Since the molecular composition suggested a 
molecular weight o f  approximately 13 000 daltons and ultracentrifugation 
gave a value o f  approximately 54 000 daltons, the authors investigated the 
possible subunit structure of  TBG. Electrophoresis in SDS indicated 
that subunits do not  dissociate in SDS. In a further test TBG, fully re- 
duced and alkylated, was subjected to gel chromatography in 6 M guani- 
dine hydrochloride on Sepharose 6 B. Three peaks emerged suggesting 
substances with molecular weights of  52 000, 25 000, and 13 000 daltons, 
respectively. According to these authors, prolonged exposure of  TBG to 
6 M guanidine hydrochloride causes a partial dissociation of  the molecule. 
The TBG seems to be composed of  polypeptide chains of  similar molecu- 
lar weights which are held together by noncovalent interactions only 
(Nilsson and Peterson 1975). Electrophoresis on starch gel in 8 M urea at 
pH 2.7 suggested a stabilizing effect upon "monomeric"  TBG and demon- 
strated that the two half cystines in the globulin subunit form an inter- 
chain bridge (disulfide bridge). Repeatedly frozen and thawed prepara- 
tions of TBG subjected to gel chromatography on Sephadex G 200 at 
pH 8.0 yielded two peaks: the first consisted presumably o f  larger aggre- 
gates, the second was immunologically identical with TBG but had a mole- 
cular weight of  26 800 daltons. The gel chromatography of  this material 
(reduced and alkylated TBG) on Sepharose 6 B in 6 M guanidine hydro- 
chloride revealed two peaks with molecular weights of approximately 
28 000 (60% of  the material) and 14 000 (40%) daltons. From these data 
Nilsson and Peterson (1975) conclude that the isolated component  repre- 
sented half molecules of  TBG composed of  two subunits of  identical 
size. 
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On the other hand, in the report of  Gershengorn et al. (1977a, b) the 
authors used TBG prepared according to the second method of Pensky 
and Marshall (1969) for cl- racterization of  its properties and subunit 
structure. They concluded that TBG consists of  a single polypeptide chain. 
Four lines of  chemical and physical evidence were presented for this con- 
clusion: 
1. Quantitative - COOH terminal amino acid analysis by hydrolysis with 

carboxypeptidase A revealed 1 tool leucine liberated per mole TBG and 
lesser amounts o f  serine and alanine (0.89 Leu; 0.46 Ser; 0.59 Ala, after 
120 min of  hydrolysis; carboxypeptidase B failed to release any amino 
acids). 

2. Peptide mapping revealed six different arginine-containing peptides and 
a total of  27~-30 arginine- and lysine-containing peptides. Altogether 6 
arginine- and 34 lysine- and arginine-containing peptides should be ex- 
pected after tryptic digestion, if TBG were a single polypeptide chain, 
and only one-quarter o f  this number  would be found if TBG were com- 
posed of  four identical subunits. 

3. After reduction, alkylation, and exposure to detergents no TBG sub- 
units were observed by gel electrophoresis. 

4. Exposure of  native or reduced and alkylated TBG to 6 M guanidine 
hydrochloride for prolonged periods (7 days) and examination by gel 
filtration and equilibrium sedimentation failed to demonstrate any sub- 
units. 
These data suggest that TBG indeed consists of  a single polypeptide 

chain. In a comprehensive article Robbins et al. (1978) discuss the struc- 
ture o f  TBG and support the view that TBG is not a polymeric protein but 
consists of  a single polypeptide chain. They found 1 tool N-terminal alanine 
per mole TBG and a unique sequence for the first 15 amino acids. More- 
over, the relaxation time of  the TBG molecule (49 ns) is almost the same 
as for a sphere of  the same weight and partial specific volume. This means 
that TBG is very probably a compact molecule with no evidence for loose- 
ly attached subunits. The single polypeptide chain of  TBG is easily dena- 
tured by acid, heat, or guanidine. At present, most authors agree that TBG 
consists of  a single polypeptide chain which is not  composed of  subunits. 

5 Interactions 

5.1 Experimental Examinations 

Tata (1963) was the first to suggest that the interaction of  T4 with TBG 
is a phenomenon  of  reversible, simple binding, probably governed by elec- 
trostatic forces. TBG binds T4 with such a high affinity that only about 
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one-thousandth of  the hormone is not protein bound. There is a high de- 
gree of  specificity in the bi~,aing of  thyroid hormones and their chemical 
derivatives by TBG. 

Seal and Doe (1962a, b, 1964) established the glycoprotein nature of  
TBG and also found that the T4 binding is reversibly inhibited by calcium 
ions. The depressed T4 binding can be restored by treatment with 0.01 M 
ethylenediaminetetraacetic acid (EDTA) followed by gel filtration on 
Sephadex G 25. The protein appears to have a single sulfhydryl group, low 
sulphur and high proline content,  and one binding site for thyroxine per 
molecule. The TBG contains approximately 32% carbohydrates and has a 
rather high fucose content. 

Salvatore et al. (1966) suggested that T4 quenches the intrinsic ultra- 
violet fluorescence of its binding proteins. The measurement of fluores- 
cence quenching showed that the process of  binding of  T4 to a protein is 
extremely rapid, e.g., the interaction of  T4 with albumin is complete in 
150 ms. 

The final TBG product isolated by Giorgio and Tabachnik (1968) was 
found to bind a maximum of  0.25 • 0.05 tool T4 per mole protein. If it is 
assumed that TBG binds 1 mol T4 per mole of  protein, then the purified 
TBG exhibited only 25% of  its theoretical binding capacity. In the pres- 
ence of  whole serum no significant increase in binding capacity was ob- 
served. However, the TBG showed a high affinity for T4, with a binding 
constant of the order of  109 M -1. The authors claim that the reduced 
binding capacity may result from the removal during purification of  a 
second component  or cofactor which is required for the maintenance of  
full T4-binding capacity. Alternatively, a change in conformation of  TBG 
as a consequence of  the removal of  a protective substance such as a pro- 
tein or, perhaps, of T4 itself during the purification may result in the loss 
of  binding capacity. 

Competitive binding experiments with purified TBG (Tabachnik et al. 
1971) in which 12sI-T4 bound to TBG was displaced by various (di- and 
tri-) peptides containing T4 showed that covalently bound T4 is capable 
of  interacting with TBG as strongly as the free T4. A similar study using 
various analogues of  T4 for displacement of  the hormone from TBG (Hao 
and Tabaehnik 1971) showed that (1) all four halogens, either iodides or 
bromides, are required for optimal binding, (2) a free phenolic group is 
also necessary; and (3) the alanine side chain of  T4 is also intimately in- 
volved in the binding reaction. On the other hand, neither a free amino 
nor a carboxyl group appeared to be essential for the binding. 

The preparation of  TBG purified by Hamada et al. (t  970) and Sterling 
et al. (1971) seemed to be better than the one isolated by Giorgio and 
Tabachnik (1968). The former preparation was also able to bind 0.7 tool 
T4 per mole TBG, which, assuming one single binding site for T4 on TBG, 
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represents 70% of  the binding capacity of  TBG. The binding capacity of  
purified TBG was 14 740 tag T4 p~ gram TBG; this represents a 5 000- 
fold purification in comparison with the proteins of  whole human serum. 
By competitive binding studies of  T4 employing TBG and TBPA, the as- 
sociation constant was estimated to be of  the order o f  101° M -1. 

The solutions of  TBG in water and/or buffer gradually lost their bind- 
ing ability, probably because of  denaturation. Also, the removal of T4 
from the TBG preparation resulted in loss of  the binding capacity. The 
properties of  the TBG isolated by Marshall and Pensky according to their 
first method (1969) showed a close relationship with the TBG preparation 
obtained by Giorgio and Tabachnik (1968). The final yield of  TBG by this 
method was approximately 10%-20%, assuming the concentration of  
TBG in serum to be 2 mg per 100 ml. 

The properties of  the preparation of  TBG, isolated according to the sec- 
ond method of  Pensky and Marshall (1969) as well as its interactions with 
thyroid hormones are described in a series of  articles (Marshall and Pensky 
1971 ; Green et al. 1972a-c;Marshall et al. 1972, 1973). 

This preparation of  TBG again bound T4 in a molar ratio of  approxi- 
mately 1 : 1. The binding of  T4 to TBG is maximal in the range o f p H  be- 
tween 6.4 and 10.4; below pH 6.4 the binding declines and has nearly dis- 
appeared at pH 4.2. After the treatment of  TBG with 8 M urea the protein 
does not  bind T4 and shows an electrophoretic mobility slower than that 
of  native TBG. After the removal of  urea by dialysis, five or six protein 
bands were detectable by polyacrylamide gel electrophoresis, but only one 
of  them showed the same mobility and ability to bind T4 as the original 
TBG (Marshall andPensky; 1971 ;Marshall et al. 1973). 

The native, intrinsic fluorescence of  TBG is quenched by binding of  
thyroxine (Green et al. 1972a). Since the fluorescence maximum of  TBG 
is at approximately 340 nm and the absorption maximum of  T4 is at 
about 3 20 nm, this fluorescent-molecule-quencher pair is especially suit- 
able for the study of  their interactions by means of fluorescence quench- 
ing. The authors established by this method that one mole TBG binds 
0.85 + 0.06 mol T4 or 0.91 -+ 0.06 tool T3 (3,5,3'-triiodothyronine). The 
fluorescence data also suggested some thermodynamic parameters of  the 
interaction of  T4 and TBG. The binding reaction is accompanied by a 
small change of  enthalpy ( -0 .210  kcal/mole) but a larger change of  entro- 
py (+ 46 cal/degree • mole). These data suggest a typical hydrophobic 
interaction between T4 and TBG. The association constant of  this inter- 
action is 2.3 x 101° M-I  at 23°C, and 1.7 x 101° M -1 at 37°C as measur- 
ed by ultrafiltration. 

The same authors (Green et al. 1972b, c) investigated the binding site 
of  TBG by observing its fluorescence emission in the presence of  a T4-. 
binding competi tor  dye, 1,8-anilinonaphtalene sulphonic acid (ANS). 
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They (1) found a conformational change of  the TBG molecule affecting 
the binding site below pH 6.4; (2) demo1,otrated a thermally dependent 
transition of  TBG structure (decrease of  the slope of  the quenching curve 
above 40°C and the irreversibility of  this curve when temperature is low- 
ered from 65°C); and (3) proved that the ionic strength of  the solvent 
above 0.1.5 influences neither the fluorescence of  the bound ANS nor the 
binding of  T4 to TBG. 

Using the preparation of  TBG obtained by the second method of  
Pensky and Marshall (1969), Schussler (1972) studied the conformational 
requirements for the binding of  T3 to TBG. Due to the restricted rotation 
at the ether bond, there are two existing conformations for T3: one with 
the 3' iodine distal to the alpha ring and the other with the 3' iodine prox- 
imal to the alpha ring. The molecule of  T3 with the distal orientation of  
the 3' iodine in the T3 was found to be the more effective one in displac- 
ing T3 and T4 from TBG. 

When the column for bioselective adsorption (affinity) chromatography 
was used several times, the preparation of  TBG obtained from such a col- 
umn moves more slowly during electrophoresis on polyacrylamide gel 
(Marshall et al. 1972). The authors suggest that this kind of  STBG is a 
partially desialylated normal TBG. STBG binds T4 with a molar ratio of  
1 : 1, but its affinity for T4 is approximately ten times less then that of  the 
normal TBG. 

The binding of  T4 and T3 to TBG isolated by Nilsson and Peterson 
(1975), examined by means of  equilibrium dialysis under physiologic 
conditions, gave for both iodothyronines the same number of  binding sites 
per molecule (0.95), and the corresponding association constants were 
6.3 x 109 M -a for T4 and 5.4 x 108 M -a for T3. At high pH values (ap- 
proximately 10) TBG showed a high association constant, the maximal 
binding being at a pH of  about 8. On lowering the pH, TBG progressively 
lost its affinity for the hormones. Below pH 3 no interaction was detected. 
The tryptophyl fluorescence of  TBG was greater at lower pH values and 
was suddenly diminished at higher pH values. This suggest a conformation- 
al change of  the TBG molecule at a pH of about 6. The binding of  T4 to 
TBG affects the pK value of  its phenolic group, too, by displacing its value 
by about 1 pH unit in comparison with the pK of  free T4. Similar equili- 
brium dialysis experiments with half molecules of  TBG suggested that half 
molecules as well as the native protein have a single thyroid hormone- 
binding site, with a association constant of  approximately 1 x 107 M -1 . 

Korcek and Tabachnik (1976) investigated the interaction of  T3 and 
T4 with purified TBG by means of  equilibrium dialysis at different tem- 
peratures and pH values. They confirmed that T4 is bound to TBG by one 
single binding site. The apparent association constant (K, moles -a) calcu- 
lated from Scatchard's plots at different temperatures are as follows (for 
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T4): 5 ° C , K = 4 . 7 3  x 101° ;25°C,K=1.55x  101°; a n d 3 7 ° C , K = 9 . 0 8 x  
109 (all values at pH 7.4,. The data for T3 seem to be more complex and 
could be calculated by assuming two different classes of binding sites 
(nl, 2 = numbers of binding sites obtained from Scatchard's plots). At pH 
7.4 the values are: 
1. at 5°C, K1 = 3.35 x 10 9, nl = 1.04, K2 = 0.69 x 108 , and n2 = 1.40; 
2. at25°C, K1 = 6 . 5 x  108,nl =1.04,K2 =0 .43x  108,andn2 =0.77; 
3. at37°C, Kl =4 .32x  108 ,n~ = l .02 ,andn2K2 =0 .056x  108 mo1-1. 

The thermodynamic values of this interaction calculated from the 
above constants for T4 at 37°C and 5°C, (pH 7.4) are ~G~7 = - 14.1 kcal 
per mol; AH ° = - 8 . 9 6  kcal per mol; and 2xS ° = + 16.7 cal • grad -1 • 
mo1-1 . For T3 under the same conditions 2xG~7 = - 12.3 kcal • mo1-1 , 
2xH ° = - 11.9 kcal • mo1-1 , and 2xS ° = + 1.4 cal • grad -I • mo1-1 . 

The quenching of fluorescence of TBG by T4 indicated that 0.86 mol 
T4 is bound to 1 mol TBG. The dependence of the binding upon pH 
showed that for both T3 and T4 the maximal binding occurs in the physi- 
ologic range of pH 6.8 to 7.7. 

Korcek and Tabachnik (1976) recommend the addition of ovalbumin 
to the sample of TBG during equilibrium dialysis. Ovalbumin, while inter- 
acting with thyroid hormones very weakly, protects the binding ability of 
TBG, which was found to decrease during the dialysis procedure. They 
also recommend the storage of the solution of TBG at + 4°C, possibly 
with the addition of  0.02% sodium azide. Under these conditions of stor- 
age no loss of T4-binding activity was observed for a period of about 8 
weeks. The storage at - 20°C in a frozen state or one single freezing and 
thawing of the TBG solution resulted in losses of binding ability up to 
20%. The authors also caution against vigorous stroking of  TBG solution. 
At + 5°C shaking of  a TBG solution (200 strokes per min) for 48 h result- 
ed in almost complete loss of its T4-binding ability. Apparently, TBG is 
rather sensitive to surface denaturation. 

The binding of T4 to TBG probably differs from the binding of T3 to 
the protein. Besides hydrophobic forces, steric and atlosteric effects and 
different charges may contribute to these differences. The different ioni- 
zation state of phenolic -OH group in T3 and T4 at physiologic pH may 
also be of  importance. These differences are emphasized by different val- 
ues of changes of  entropy for the interaction of T3 and T4. 

The binding of  analogues of  thyroid hormones to TBG was studied by 
Snyder et al. (1976). The authors used diluted (1:100) human serum or 
purified TBG (Pensky and Marshall 1969) and measured the binding of T4 
and its analogues to T4-binding proteins by means of equilibrium dialysis 
(20 h at 37°C) in 0.035 M barbital buffer, pH 7.5. They found two classes 
of binding sites, the first (with an affinity constant of  2.5 x 10 9 M -1) be- 
longing to TBG and a second one (affinity constant less than 10 6 M -1) 
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belonging to albumin. The investigation of  the ability o f  various analogues 
of  T4 to become bound by TBG or to replace the already bound 12SI-T4 
from its binding showed that the authors'  results essentially confirm those 
o f  Hao and Tabachnik (1971). 

Horn et al. (1977) examined the binding of  T3 and T4 by their prepa- 
ration o f  TBG and found that 1/~g TBG binds either 12 ng T4 or 10 ng T3 
(binding capacity). 

The preparation o f  TBG obtained by Tabachnik and Korcek (1978) has 
been used to measure the binding constants for its interaction with thyro- 
xine analogues. By means o f  equilibrium dialysis at pH 7.4 and 37°C the 
displacement o f  1 ~ S i_labele d T4 from purified TBG by various iodothyro-  
nine compounds  was measured. The changes of  standard free energy, 2xG °, 
o f  the TBG-iodothyronine interaction was also measured, and from its 
changes the structural requirements o f  this interaction were approximated 
(Table 5). From these results it follows that a change in the configuration 

Table 5. The association constants (K, x 10 -8 M -~) and changes of standard free 
energy ( - a G  °, kcal per mole) of the interaction of TBG with various thyroxine anal- 
ogues (according to Tabachnik and Korcek 1978). 

Compound K a G ° 

L-thyroxine (in absence of other compounds) 
D-thyroxine 
3,5-Diiodo-3'-isopropyl-L-thyronine 
3,5,3'-Triiod o-L -thyronine 
3,3',5'-Triiodo-DL-thyronine (reverse T3) 
Tetraiod othyropropionic acid 
Tetraiodothyroacetic acid 
Tetrachloro-DL-thyronine 
3,5-Diiodo-3'5'-diJsopropyl-L-thyronine 
3 '5 '-Diiod o-DL-thyronin e 
3,5-Diiodo-DL-thyronine 
3,5-Diiodo-3'5'-dimethyl-L-thyronine 
3,3'-Diiod o-L-thyronine 

60.0 13.87 
10.4 +- 2.8 12.79 
4.9 _+ 0.8 12.33 
3.3 -+ 0.8 12.08 
3.1 _+ 0.2 12.05 
2.7 _+ 0.3 11.96 
2.6 +- 0.3 11.94 
1.0  +- 1 1 . 3 5  
0.89 +_ 0.2 11.28 
0.83 _+ 0.2 11.23 
0.71 _+ 0.2 11.14 
0.66 11.09 
0.59 11.02 

of  the alpha-amino group from L to D form reduces the free energy favor- 
ing binding by about  1 kcal per tool (this means that D forms are less firm- 
ly bound than the corresponding L forms). Both the ionized and nonion- 
ized forms o f  the phenolic group are involved in the interaction with the 
protein. The presence of  an alpha-amino group on the alanine side chain 
contributes about  2 kcal per mole to the free energy favoring binding, that 
is, the presence of  this alpha-amino group means more firm binding. In all, 
the structural requirements for optimal binding of  thyronines to TBG in- 
clude an intact alanine side chain, four halogens, either iodines or bro- 
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mines, the phenolic - O H  group, and a diphenyl ether structure. Practical- 
ly all these structural features agree with those found earlier (Tabachnik 
et al. 1971). 

If there is a modification of  the protein structure of  the TBG, it would 
affect - at least to a certain degree - the binding of  T4 to this protein. 
From this point  of  view Siegel et al. (1979) studied the reaction of  p-iodo- 
phenylsulphonyl (pipsyl) chloride, which reacts with some amino acids 
bound in the molecule of  a protein, e.g., TBG. 

The molecule of  TBG was pipsylilated to a certain degree (aproximately 
40 riM pipsyl chloride in acetone, 8 nmol TBG, borate buffer, pH 9.0, 0°C, 
2 h) and the derivatized protein was set- ;ated from the residual free pipsyl 
chloride by means of  Sephadex G 25 gel filtration. The the T4-binding 
ability of  such altered TBG was compared with that o f  native TBG, i.e., 
subjected to the above procedure without pipsyl chloride. The authors 
found that the decrease in percent binding activity for T4 is directly relat- 
ed to the degree of  pipsylilation (the more pipsylilated TBG is, the less it 
binds T4). 

The hydrolysis of  pipsylilated TBG revealed that about 70% of  pipsyl 
was bound to the epsilon-amino group of  lysine in TBG. When the pipsyl- 
ilation was carried out  with TBG where its binding site was blocked with 
either T4 or tetraiodothyroacetic acid, a decrease in the degree ofpipsyl-  
ilation was observed (33% vs 29%, respectively). 

The authors conclude that the reaction of  epsilon-amino group of  lysine 
in TBG with pipsyl diminished the binding o fT4 ,  because it modified the 
immediate environment of  the T4-binding active site on the TBG mole- 
cule. 

5.2 Theoretical Analyses 

In two theoretical articles Wosilait and Nagy (1976) and Wosilait (1977) 
consider the interplay between T4 and three different T4-binding proteins. 
Wosilait and Nagy (1976) described a computer  program for the estima- 
tion of  free T4 in plasma and its distribution among different sets of  bind- 
ing sites on different proteins. As a basis for these calculations the 
Scatchard model for binding of  a ligand to a protein carrier is employed. 
The input data consist o f  the number and concentration of  binding pro- 
teins (TBG, TBPA, albumin), the number of  binding sites on each protein, 
the association constant and binding capacity o f  each set o f  binding sites 
for T4, and the total concentration of  T4. However, it should be noted 
that the Scatchard equation was devised strictly for the interaction of  one 
protein containing one single set of  binding sites for one ligand, which is 
hardly the case in complex natural systems. So every calculation applying 
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Scatchard's equation to multiple binding sites on one protein or to such 
complex systems as blood plasma is necessarily only approximate. More- 
over, a possible mutual interdependence of  binding sites should be taken 
into consideration. 

Wosilait (1977) considers one single binding site of  T4 on TBG, two 
sets of sites of  TBPA, and two sets of  sites on serum albumin. The author's 
analytic method makes possible the calculation of  free T4 in blood under 
the conditions of  various concentrations of  its binding proteins. 

6 Metabolism 

6.1 Biosynthesis 

Glinoer et al. (1976) gave experimental evidence that TBG is synthesized 
in hepatocytes. Isolated hepatocytes of  normal adult rhesus monkeys were 
incubated with radioactive 14C-teucine for 4 - 6  h. The incubated hepato- 
cytes were then subjected to the following procedures to yield three frac- 
tions: the incubated cells were washed three times and then centrifuged 
(100 x g, 3 min), and the medium was recentrifuged again (105 000 x g, 
90 rain) to separate the cell debris. This solution was called "medium."  
The cellular pellet which remained after the first centrifugation was wash- 
ed, homogenized, and subjected to centrifugation (105 000 x g, 90 min) 
which yielded the second fraction, "cytosol." The remaining particulate 
fraction was then extracted with 0.4% digitonin solution for 1 h and re- 
centrifuged again (105 000 x g, 90 rain), yielding the third solute fraction, 
called "particulate." TBG was isolated from all three fractions (medium, 
cytosol, particulate) by dialyzing the samples extensively against 0.1 M 
bicarbonate and by subsequent affinity (bioselective adsorption) chroma- 
tography on T4-Sepharose. The adsorbed TBG was desorbed from the col- 
umn by 0.002 M KOH. 

Thyroxine-binding s-globulin used for immunization was purified from 
monkey serum according to the methods of Marshall et al. (1973) employ- 
ing bioselective adsorption (affinity) chromatography and anion exchange 
and gel chromatography. Antiserum against TBG was obtained by immun- 
ization of rabbits with TBG obtained as described above. The purified 
anti-TBG serum was then allowed to react (immunoprecipitation, double 
diffusion, and electrophoresis) with 14C-labeled, newly synthesized TBG 
from the hepatocytes. 14C-TBG was found in all three fractions. After 6 h 
of  incubation, 59% of  the TBG was found in the particulate fraction, 20% 
in the cytosol, and 21% in the medium. Newly synthesized TBG was pre- 
sent after 4 h incubation. After 6 h, the total synthesized TBG had in- 
creased to 150% of  the 4-h value, while the amount  present in the medium 
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had increased to 300%, indicating probable TBG secretion into the 
medium. 

An implantation of beta-estradiol-containing capsules in female rhesus 
monkeys (Glinoer et al. 1977a) resulted in an increase of the TBG concen- 
tration (initially 20.6 -+ 6 tag per ml serum) 24 h after the implantation; 
this reached a steady level (48.6 -+ 5.0 tag per ml serum) in 7 -10  days. The 
decay rate of TBG was slightly lower after the estradiol treatment. The 
major effect of  beta-estradiol was the stimulation of TBG production rate 
(2.9-fold, from 1.83 -+ 0.34 mg per day to 5.31 -+ 0.82 mg per day after 
3 - 4  weeks). The concentration of beta-estradiol in serum increased ten- 
fold (from 20 -+ 7 pg per ml to 212 +- 41 pg per ml) 3 - 4  weeks after the 
implantation of capsules. 

The total distribution or serum equivalent volume of TBG after 3 - 4  
weeks of implanted beta-estradiol increased 1.4-fold, from 338 -+ 37 ml to 
458 -+ 22 ml, and the metabolic clearance rate increased 1.3-fold, from 90 
-+ 10 ml per day to 113 -+ 12 ml per day. The preparation of TBG from 
rhesus monkey blood, according to Marshall et at. (1973), was radioiodin- 
ated and used for quantitation of TBG by means of radioimmunoassay. 
The kinetics of its disapperance from blood was analyzed with a five-com- 
partment model. 

Isolated liver cells of  rhesus monkeys were incubated for up to 9 h with 
3 Hqeucine (Glinoer et al. 1977b). The washed cells were homogenized and 
centrifuged (105 000 x g), and the newly synthesized 3H-TBG was deter- 
mined in the cytosol. This newly synthesized TBG was first separated 
from the other proteins by means of affinity chromatography on agarose 
columns with attached T4. The determination of TBG was carried out by 
means of immunoprecipitation and measurement of radioactivity. 

The production of nonradioactive TBG released into the medium by 
hepatocytes (without 3H-leucine) was measured after 24 h of incubation. 
The cells were separated from the medium by centrifugation (100 x g for 
3 min and 105 000 x g for 90 min) and dialysis against barbital buffer, pH 
8.6. The TBG in the sample was detected by radioimmunoassay. 

The hepatocytes of monkeys receiving beta-estradiol in a capsule (sub- 
cutaneously for 4 - 5  weeks) contained approximately three times as much 
3H-TBG in the liver cells and produced about 2.4 times as much TBG 
released into the medium as controls not receiving beta-estradiol (3.48 ng 
TBG per hour per 107 cells in monkeys receiving estradiol as compared 
with 1.46 ng TBG per hour per 107 cells in controls). Assuming 10.2 x 
109 cells in the liver, the authors (Glinoer et al. 1977b) estimated the 
production rate of  TBG as being about 250 pg per liver per day in monkeys 
with beta-estradiol and 104 tag TBG per liver per day in control monkeys. 

Gershengorn et al. (1976a) investigated the biosynthesis of  TBG in the 
human liver. TBG, purified by affinity, anion exchange, and gel chromato- 
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graphies, was used to immunize rabbits. The same preparation of TBG was 
labeled with 12sI and purified f-r ther on Sephadex G 25 and by affinity 
chromatography on T4-Sepharo~e. The tested plasma was diluted (1:100 
or 1:200); 100/11 of this diluted sample, labeled with 125I-TBG and anti- 
TBG serum (final dilution 1:25 000), were incubated at first at 4°C for 
48 h, then with anti-rabbit IgG for 20 h at 4°C. After washing and centri- 
fugation, the radioactivity of the precipitate was measured and the TBG 
content of serum was determined by means of a calibration curve repre- 
senting percentage of  radioactivity bound versus the amount of nonradio- 
active TBG added to the sample. 

The authors found 1.48 + 0.46 mg TBG in 100 ml serum of  euthyroid 
normals. The level for females, 1.66 + 0.56, was significantly higher than 
that for males, 1.37 +- 0.37. Comparison of the concentration of TBG in 
serum with the binding capacity of serum for T4 yielded a molar ratio of 
1:1 for T4 and TBG. 

Gershengorn et al. (1976b) demonstrated the synthesis and secretion of 
TBG by normal hepatocytes isolated from rhesus monkeys. Because of the 
brief survival of  these hepatocytes (less than 24 h) the results were more 
pronounced when they used a continuous culture line of hepatocarcinoma 
cells of rhesus monkeys. TBG was identified by immunochemical and T4- 
binding techniques. De novo synthesis of TBG was shown by incorpora- 
tion of 14C-leucine and autoradiography. In serum-free media the cells 
survived for 5 days and produced TBG. The quantitation of TBG was 
achieved by radioimmunoassay. TBG accumulation in the medium rose 
linearly for 48 h. Also, albumin and other T4-binding proteins were secret- 
ed into the medium. At the end of the 48 h the authors found in the 
medium 4.9 + 0.2 ng TBG per mg cell protein. At the beginning of the in- 
cubation there was no measurable TBG in the medium. 

Addition of T4 to the medium affected the synthesis of TBG in a bi- 
phasic way. There was a significant progressive increase of the TBG ac- 
cumulation in the range of concentrations o fT4  10 -14 M to 10 -11 M. For 
comparison, the concentration of  free T4 in rhesus monkeys is 6.10 -12 M. 
At concentrations of T4 ranging from 10 -11 to 10 -1° M, the synthesis of 
TBG was maximal (about 6.5-7.0 ng of TBG per mg cell protein during 
48 h). Any further increase of the concentration of T4 in the medium 
caused a progressive decrease of the amount of synthesized TBG; when 
the concentration of T4 was 10 -7 M, the amount of TBG synthesized fell 
even below the control level to 4.0 ng TBG per mg of cell protein for 48h. 

Therefore, the authors (Gershengorn et al. 1976b) concluded that T4 
regulated the synthesis and secretion of TBG by hepatocarcinoma cells. At 
lower concentrations, T4 stimulates the accumulation of TBG, while at 
concentrations of T4 above 10 -1° M there is an inhibition of the accumula- 
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tion of  TBG. However, the effect o f  T4 upon the hepatic protein synthesis 
may be a general one~ 

Marshall et al. (1974) showed that desialylated TBG becomes bound to 
the hepatic cell membranes. Since there were alterations observed in 
glycoproteins of  sera from cirrhotic patients (e.g., they contain more 
partially desialylated TBG than normals), this finding may have its signif- 
icance in the overall metabolism of  TBG. 

It should be noted that Cavalieri et al. (1975) found the distribution 
space of  their preparation of  TBG to be about 7 liters, which corresponds 
to that of  albumin; the half life of  TBG in plasma was found to be approx- 
imately 5 days. 

Glinoer et al. (1979) carried out a comprehensive study of  the metabo- 
lism of  TBG in rhesus monkeys. The monkey TBG was purified as describ- 
ed earlier (Glinoer et al. 1976, 1977a) and radioiodinated by means of  
12sI. This I~5I-TBG has been injected into experimental animals (2-year- 
old Macaca mulatta) and studied for 9 days in order to obtain normal val- 
ues. Then hyperthyroidism was induced by means of  injecting the mon- 
keys with T3 (twice daily, 10 tag T3 for 45 days) and the kinetics of  12sI- 
TBG were determined again. At the end of  this period, the treatment of  
the animals was stopped for 4 weeks and they were subjected to total 
thyroidectomy. Over a period of  6 weeks the monkeys became hypothy- 
roid and the third part of  the kinetic study was performed after injecting 
the animals with ~SI-TBG for a further 8--10 days. For each study (basal, 
hyper-, and hypothyroid) the animals were injected intravenously with 
10-20  taCi 125I-TBG. 

The initial concentration of  TBG was 24.0 -+ 1.1 tag per ml serum in 
normal animals. During the first 2 weeks of  T3 administration this concen- 
tration dropped by about 33%, then rose again and stayd close to normal 
(23.8 -+ 1.3). After thyroidectomy it rose and stayed high (28.8 -+ 0.6). 
The authors measured nearly all the parameters of  thyroid function (T4, 
T3, TSH, etc.) as well as the kinetic parameters of  TBG. The total distri- 
bution volume of  TBG (initial, 323 -+ 23 ml) was reduced by about 33% in 
hyperthyroidism (217 -+ 21 ml), but increased again to 17% above normal 
in hypothyroidism (379 +- 11 ml). 

The decay rate (k) of  TBG was 0.28 -+ 0.01 day -1 (basic value); it rose 
in hyperthyroidism (0.36 -+ 0.01) and decreased below normal in hypo- 
thyroidism (0.14 -+ 0.01 ). 

The metabolic clearance rate (MCR) was 92 -+ 10 ml per day; it decreas- 
ed in hyperthyroidism (81 +- 9 ml) but decreased even more in hypothyro- 
idism (51 +- 4 ml). The production rate of  TBG was 2.23 +- 0.14 mg per 
day in normals; it decreased to 1.93 -+ 0.11 in hyperthyroid and decreased 
further to 1.62 +- 0.09 in hypothyroid animals. 
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The values presented here are similar to those observed for TBG in four 
female rhesus monkeys. The corresponding values for males and females, 
respectively, are: TBG half-lives: 2.5 -+ 0.1 vs 2.7 +- 0.1 days; MCRs: 92 -+ 10 
vs 77 -+ 5 days; production rate: 2.23 +- 0.14 vs 1.57 -+ 0.17 mg per day; 
serum TBG levels: 24.0 -+ 1.1 vs 20.2 -+ 0.8/2g per ml; and total distribu- 
tion volume: 323 +- 23 vs 290 -+ 18 ml. All values presented here were ob- 
tained in animals with normal thyroid status. 

All values presented by Glinoer et al. (1979) are means • standard 
errors (SEM) and are expressed per 3 kg body wt. of  the monkeys. Six 
monkeys were studied. The results obtained during hyper- and hypothy- 
roidism were adjusted for changes in body weight for better comparison 
of  the data. Results obtained without the adjustment of  body weight 
were quite similar (Glinoer et al. 1979). 

6.2 Degradation 

The above papers presented conclusive evidence for the synthesis of  TBG 
in human and monkey hepatic cells, either normal or carcinomatous. On 
the other hand, biodegradation o f  TBG as well as that of  other proteins of  
human body is supposed to follow mainly the normal pathways through 
proteases. However, at least a certain amount  of  TBG is excreted via the 
kidneys into the urine. This way of  biodegradation of  TBG is possible be- 
cause of  its low molecular weight, as shown by Hocman et al. (1976). 
These authors found a protein fraction in human urine, the T4-binding 
ability of  which was ascertained by equilibrium dialysis. Although it was 
not proven that this protein moiety is TBG, it is highly probable that it 
represents either native or modified (denaturated) human TBG excreted 
from the blood stream via the kidneys. 

Burke and Shakespear (1976) measured the clearance of  T3 and T4 by 
urine. In euthyroid persons with proteinuria the authors found higher 
amounts of  excreted T4 than in persons with normal, low excretion of  
proteins. They consider this a consequence of  the appearance of  protein- 
bound T4 in urine. 

Urinary protein prepared from the urine of  four normal subjects by 
ammonium sulfate precipitation and exhaustive dialysis contained signif- 
icant amounts of  T3 and T4, as established by radioimmunoassay. About 
0.5/~g T3 was found in 1 g urinary protein and about 0.7/~g T4 in 1 g pro- 
tein. It is interesting that these authors found a "low molecular weight" 
binder (LMW binder) for T3 and T4 in urine. In urine, they found free T3, 
protein-bound T3, and LMW-bound T3 (39,4%, 8.9%, and 51.7%, respec- 
tively). For T4, the corresponding values are free T4, 20.1%, protein- 
bound T4, 11.9%; and LMW-binder-associated T4, 68.0%. This low-molec- 
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ular weight binder represents a substance which binds T3 and T4 and mi- 
rates a little beyond the ~alt peak on Sephadex G 50, but is able to pass a 
Visking membrane during dialysis. The authors suggest that the approxi- 
mate molecular weight of  this substance is around 500 to 2000 daltons. 

Gavin et al. (1979) studied the urine of ten healthy, euthyroid males. 
The samples were concentrated by ultrafiltration (at least 100 times on a 
molecular filter with a cutoff at molecular weight of  about 25 000 daltons) 
and dialyzed against 40 mM sodium barbital-HC1 buffer containing EDTA, 
pH 7.4. This pooled concentrate from the urine contained a protein entity 
reacting with rabbit antiserum to human TBG which is called "urinary 
TBG" (TBG u) by these authors (Gavin et al. 1979). The quantitation of 
this entity was carried out by means of radioimmunoassay and its concen- 
tration was found to be 1.74 ± 0.87/ag TBG u per 100 ml urine. The con- 
centration of TBG in sera of the same individuals exhibited a concentra- 
tion of 1.8 +- 0.2 mg TBG per 100 ml serum. This means that the actual 
concentration of TBG u in unconcentrated urine is approximately 1/1000 
of that of  serum TBG. The mean daily excretion of TBG was 13.2 +- 6.5 ~g 
per gram creatinine per day. If the absolute turnover rate of TBG is 26.2 
± 10.9 t~g per day, the renal excretion accounts for only about 0.15% of 
the total daily disposal of  TBG. 

During polyacrylamide gel filtration and electrophoresis, and during 
reverse-flow electrophoresis TBG u showed patterns similar to those ob- 
tained with serum TBG; both showed close immunologic similarity. The 
association constant of TBGu, determined by equilibrium dialysis and 
analyzed by Scatchard's plot, showed two kinds of binding centers: one, 
showing a low capacity-high affinity site (K a = 0.46 ± 0.20 • 101° M -1 , 
n = 1), and another, a set of  high capacity-low-affinity sites (K a less than 
107 M-l). Under identical conditions the K a of serum TBG was slightly 
higher (K a = 1.43 ± 0.23 • 10 l° M-l).  The binding capacity ofTBG u was 
1.12 -+ 0.15 tool T4 per mole TBG u (for serum TBG, the corresponding 
value is 1.15 + 0.23). TBG u bound 0.76 tool T4 per mole TBGu, whereas 
serum TBG bound 0.82 mol T4. 

Gavin et al. (1979) state that even if the data for both TBGs are similar, 
these proteins may not be identical. The electrophoretic mobility indicates 
that TBG u may not be desialylated, but probably underwent conforma- 
tional and/or charge alterations during renal excretion. The lower value of 
association constant for TBG u could be a consequence of binding of in- 
hibitors present in the concentrated urine. The leakage of macromolecules 
through normal glomerular membranes may be related to charge as well as 
to size and shape of the protein molecule. 

Since the extent of  excretion of  TBG through the kidneys into the urine 
is rather insignificant, other means of degradation of TBG - probably by 
proteases - and the degradation patterns obvious for other body proteins 
play a decisive role in the elimination of TBG from the organism. 
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7 Determination 

The methods for determination of  TBG can be roughly divided into two 
groups: the methods utilizing some kind of immunoassay and methods 
employing the measurement of  T4-binding capacity of  TBG. 

7.1 Immunoassay 

Bradwelt et al. (1976) described a method for isolation of  TBG which is 
subsequently used as an antigen for immunologic determination of  TBG. 
Human serum labeled with 125 I-T4 was chromatographed on DEAE cellu- 
lose. The adsorbed TBG was eluted by means of  a Tris-HC1 gradient (0.05 
M to 0.5 M). The radioactive peak, concentrated by ultrafiltration, was 
subjected to a second ion exchange chromatography under essentially the 
same conditions as above. The fraction containing TBG was separated by 
gel chromatography on Sephadex G 150 and finally purified by polyacryl- 
amide gel electrophoresis. The main radioactive peak was retained in both 
last steps. The partially purified TBG, labeled with 12s I-T4, was subjected 
to two-dimensional immunoelectrophoresis against antiserum prepared in 
sheep against the alpha-1 electrophoretic fraction of  serum. In the agarose 
gel the TBG-antibody complex was identified by autoradiography, sepa- 
rated, and injected repeatedly into sheep. After 20 days, two circulating 
antibodies were identified by two-dimensional immunoelectrophoresis, 
the antibody against TBG was identified and isolated as above. The anti- 
body against TBG was utilized by means of  Laurell's rocket immunoelec- 
trophoresis technique for determination of  TBG in serum samples. The 
values o f  TBG in sera obtained with this technique were (in mg per liter) 
normal males, 11.0 + 2.8; normal females, 12.1 -+ 2.3 ; females on estrogen 
contraceptives, 16.1 -+ 2.2;pregnant females, 25.0 -+ 3.4. 

Pure TBG makes possible the preparation of  monovalent antisera and 
thus a simple and precise direct determination of  the amount  of  TBG in 
blood plasma by means of  a radioimmunoassay (Hesch et al. 1976a). 
TBG was iodinated by the chloramine T method with 1~5I, purified on 
Sephadex G 25, and stored at -20°C. Before the assay it was further puri- 
fied by affinity chromatography on agarose-bound T4. The authors claim 
that the purification of  12SI-labeled TBG is critical for the assay. As a 
standard, TBG-enriched plasma (5.1 mg per 100 ml) was used. In the 
assay, 0.1 ml standard (or unknown) plasma (diluted 1:300), 0.05 ml 
12 s I-labeled TBG, 0.05 ml antiserum to TBG (rabbit, diluted to 1:20 000), 
0.3 ml barbital buffer (0.07 M, pH 8.6, contains 0.25% of  bovine serum 
albumin) were mixed and incubated for 2 days at 4°C. The 0.5 ml DASP 
(Organon, Munich, Federal Republic of  Germany) was added to each 
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sample for the separation of free and bound TBG, and the tubes were 
rotated for 5 h at room temperature. The samples were centrifuged (2000 
rpm, 3 min), and the precipitate was washed with 0.5 ml of the buffer and 
recentrifuged. Bound 12SI-TBG in the precipitate was measured in a 
gamma scintillation counter. 

Immunologic cross reactivity with albumin, prealbumin, and a number 
of other proteins was excluded or minimized. The concentration of TBG 
was determined by means of  a standard curve (1.5-2.5 ng TBG per 100 
ml). 

The normal values of TBG in young adults were 0.97 mg per 100 ml of 
plasma. In childhood the concentration of TBG was elevated (1.34 mg per 
100 ml) as well as in old age ( 1.28 mg per 100 ml). The authors conclude 
that there is no correlation between the concentration of TBG in blood 
and age. In mild thyrotoxicosis the concentration of TBG was slightly in- 
creased (1.20 mg per 100 ml), while in more severe hyperthyroidism its 
concentration did not differ markedly from normal values. In hypothyro- 
idism the concentration of  TBG was elevated (1.26 mg per 100 ml). 

The same authors used the determination of TBG by means of radio- 
immunoassay in the course of human development (Hesch et al. 1976b). 
Purified TBG labeled with 12 s I by the chloramine T method is first purified 
on a Sephadex G 25 column (0.1 M bicarbonate buffer, pH 7.6) and the 
protein is then further purified by affinity (bioselective adsorption) chro- 
matography on T4-agarose (the 12s I-labeled protein is pipetted onto the 
column, incubated for 30 rain in 0.1 M bicarbonate buffer, and then 12sI- 
TBG is eluted with 0.002 M KOH solution, pH 11.5). One hundred/ag of 
the purified t2SI-TBG (5000 to 10 000 cpm) is incubated with 50/11TBG 
antibody (final dilution 1:5000). One hundred #1 standard TBG (ranging 
from 1.56-25 ng per sample, dissolved in 0.07 M barbital buffer, pH 8.6, 
containing 25% bovine serum albumin) or 100 ill of unknown plasma 
(diluted 1:300) is added. The volume is adjusted with buffer to 500 gl. 
After the reaction, the separation is performed with 500 gl DASP diluted 
with the same buffer to 30 ml and rotated for 5 h. The TBG content is de- 
termined by measurement of the radioactivity of the precipitate from a 
calibration curve of  standards of known TBG concentrations. 

The authors suggest that low concentrations of thyroid hormones in the 
aged are not due to a decreased TBG concentration, because the actual 
concentration of  TBG is increased. The concentration of TBG in the elder- 
ly was increased significantly (to 13.0 -+ 1.8 mg per liter; n = 22) as com- 
pared to the middle-aged group. 

The concentration of T4, T3, and TBG (measured with the above meth- 
od) was determined in blood plasma of healthy individuals ranging in age 
from newborns to 95 years (Hesch et al. 1977). The results are summarized 
in Table 6. The authors introduced the T4/TBG and T3/TBG concentra- 



80 G. Hocman 

tion ratios, which could explain some o f  the changes in the metabolism of  
thyroid hormones during aging. 

Table 6. Changes of the concentration of TBG with age (mean +- S.D.) in the blood 
plasma (according to Hesch et al. 1977). a 

Age groups Cord 1-6 7 months 5-12 19-29 30-45 60-95 
(years) blood months - 2 years years years years years 

Number of 5 13 13 15 28 6 21 
subjects 

TBG 1.14 1.30 t.44 1.30 0.95 t.08 1.28 
mg/100ml +0.18 ±0.14 ± 0.14 _+ 0.16 ±0.14 ±0.10 +0.15 

a TBG, thyroxine binding c~-globulin 

The preparation o f  TBG isolated by Horn et al. (1979) was used to ob- 
tain antiserum against TBG. Two rabbits were immunized (three times in 
3 weeks) with 75/ag TBG each in Freund's adjuvant, and 10 days after the 
last injection, antiserum against human TBG was obtained. This served for 
immunologic assay of  TBG. The isolated protein, marked with 1~ 51 by the 
chloramine T method,  was used as a standard. One hundred #1 diluted se- 
rum or standard 12 s I-TBG was incubated overnight with 100/~1 antiserum. 
After addition o f  100 tal o f  a 10-g-per-liter bovine gamma globulin solu- 
tion and 500 /sl o f  a 250-g-per-liter polyethylene glycol in 0.05 M Tris 
(pH 7.4), the TBG-antibody complex precipitated and its TBG content  
was determined according to a calibration curve. 

7.2 Other Methods 

Bastomsky et al. (1977) used the measurement of  T4-binding ability o f  
TBG for its determination. From a sample of  human serum endogenous 
thyroidal hormones are extracted by means o f  REXYN 202 ion exchange 
resin, which binds them quantitatively. Thus, the serum contains the bind- 
ing proteins only and is devoid o f  T4 or T3. Such serum is chromatograph- 
ed on a Sephadex G 25 column to which 1.3 to 2.0 pmol 12SI-T4 was 
added (representing 0.01 t~Ci). Its concentration should be high enough to 
saturate the TBG present in the serum as much as possible, but  low enough 
to avoid any significant interference by  binding to TBPA or albumin. This 
labeled T4 is bound to Sephadex owing to the high affinity of  iodothyro-  
nine to polydextrane gels. When the sample serum flows through the 
Sephadex column, TBG absorbs the labeled T4 from the gel. The radio- 
activity o f  the effluent is then determined, where activity is in direct rela- 
tion to the amount  o f  T4 adsorbed onto  the TBG. 
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The concentration of TBG in unknown serum is determined by means 
of a calibration curve made lrom serial dilutions of high-TBG serum (in 
the range of 12 to 60 mg TBG per liter). The concentrations of TBG ob- 
tained by the above method are (in mg per liter): normals, 31.6 +- 5.4; 
hypothyroid, 40.6 -+ 7.5; pregnant females, 50.3 ± 5.4; hyperthyroids, 
28.3 -+ 4.8; women using oral contraceptives, 40.1 ± 6.8; and cirrhotics, 
20.7 -+ 4.3. 

8 Physiologic Role 

Since people with raised or diminished concentration of TBG in the blood 
and even people with no TBG at all (see below) may be euthyroid and suf- 
fer from no known disorder attributable to changes of TBG concentration 
in the blood, this protein does not seem to be vitally important (Robbins 
et al. 1976, 1978). 

Sterling (1979a, b) considers the physiologic role of TBG in binding 
and solubilizing of  the poorly soluble iodinated thyroid hormones. The in- 
definitely soluble peptide and protein hormones need no such "carrier," 
whereas steroid and thyroid hormones increase their "solubility" in blood 
by binding to transporting protein molecules which are themselves soluble 
in blood plasma. This may constitute one of the important features of 
TBG. 

However, it may be interesting to measure the changes of TBG in blood 
during various physiologic conditions. In an interesting experiment Scriba 
et al. (1979) measured the effects of total fasting for some 30 days upon 
various physiologic parameters. The initial mean concentration of TBG in 
obese persons (2.6 ± 0.6 mg per 100 ml) was significantly higher than the 
mean of age-matched controls (2.0 ± 0.4 mg per 100 ml). The level of 
TBG decreased significantly and linearly during fasting, but rose again 
during realimentation. The T4/TBG ratio increased, but T3/TBG decreas- 
ed during fasting. 

Bratusch-Marrain et al. (1979) investigated a kindred (three generations) 
with reduced TBG and found that while in males the TBG was altogether 
absent, in females its concentration was only reduced. However, this ab- 
normality caused no clinical symptoms and had no discernible ill effects. 
The total serum concentrations of T3 and T4 were decreased. The authors 
confirmed the X-chromosome-linked inheritance of the absence of TBG. 

Another important feature of TBG which connects it, at least in a way, 
with both the thyroid function and the utilization of thyroid hormones at 
the target tissue, is the diagnostic value of the determination of either 
TBG itself or the T4/TBG or T3/TBG ratio. These indicators seem to be 
useful for the evaluation of the thyroid status of some patients. 



82 G. Hocman 

Using a commercially available kit for TBG assay (TBGK - CIS, EURO- 
TOPE SERVICES, Ltd., London)McDowell  (1979) measured the concen- 
tration of  TBG in sera of  several groups of  patients categorized according 
to clinical findings. The author compared five different tests for the evalu- 
ation of thyroid function [T4, moles per liter; T3, moles per liter; T3- 
uptake; thyroid stimulating hormone (TSH), mIU per ml; TBG, mg per 
liter] from the blood serum, in several groups of  persons (acutely ill, con- 
traceptives, pregnant, borderline hypothyroid,  hypothyroid,  hyperthyroid, 
and euthyroid). In each group the TBG levels were well correlated with 
T3-uptake values. However, only the euthyroid and borderline hypothy- 
roid groups showed a significant correlation between serum TBG and T4 
levels. After evaluation of  all the possible combinations of  different tests 
with the various clinical groups, the author reaches the conclusion that 
"the assay of  serum TBG clearly does not aid the diagnosis of  hyperthy- 
roidism." 

Horn et al. (1977), with the help of their preparation of  TBG, investi- 
gated a number o f  physiologic functions of  this protein. They found the 
normal range of TBG in blood serum to be 23.0 -+ 4.0 mg per liter (n = 
233 patients with normal thyroid glands). No significant difference be- 
tween males and females was found. The concentration of  TBG is particu- 
larly high in newborns (34.3 mg per liter) and up to 1 year of  age (29.4); 
it decreases after puberty and in middle age to its normal value and rises 
again in older ages. However, the T4/TBG ratio remains constant (3.2 -+ 
0.7) throughout  the human lifespan. 

In the primary thyroid disorders, the values of  TBG are essentially in 
the normal range: hyperthyroidism, 20.0 -+ 3.5; endemic goiter, 21.1 +- 
4.6; and hypothyroidism, 21.6 -+ 7.0. The changes of  the T4/TBG ratio, 
which was elevated in hyperthyroidism and decreased in hypothyroidism, 
was caused by the changes in T4 levels in the blood. 

The necessity o f  the determination of  TBG content of  blood serum for 
the diagnosis of thyroid disorders was stressed by Horn et al. (1979). 
Since more than 99% of  thyroid hormones in blood are bound to proteins, 
mainly to TBG, the concentration of  TBG may grossly influence the level 
of  total serum T3 and T4. The measurement of  the T4/TBG ratio could 
give a better assessment o f  the thyroid status than does the determination 
of total T3 or total T4 alone. The T4/TBG ratio correlates well with the 
concentration of  free T4 in blood, and, hence, with the physiologic status 
of  the thyroid gland. For the diagnosis of  thyroid disorders the determina- 
tion o f  the T4/TBG ratio may be better than the estimation of  free thyro- 
xine index (Horn et al. 1979). The determination of  TBG itself, e.g., by 
means of  radioimmunoassay, may be an additional characteristic for the 
determination of  the status of  the thyroid gland. Pickardt et al. (1977) 
correlated the concentration of  TBG in blood with age as well as with thy- 
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roid status in the following way (TBG, mg per liter): gravidity, 40.4 -+ 
12.0; contraception, 3 t .4  +- ~ 2; hypothyroidism, 21.6 +- 7.0; goiter, 21.1 
-+ 4.6; hyperthyroidism, 20.0 +- 3.5; physiologically diminished level of  
TBG, 9.0 -+ 4.3; and physiologically elevated TBG level, 42.2 -+ 1.7. 

The preparation of  TBG obtained by Horn and Gdrtner (1979) has been 
used also for radioimmunoassay for TBG. If the concentrations of  TBG 
and total T4 in blood are known, the value of  free T4 in blood can be cal- 
culated. The normal range of  TBG established by these authors was 1 .0 -  
2.8 mg TBG per 100 ml serum, and consequently, a range of  values be- 
tween 2.1 and 5.6 was obtained for the T4/TBG ratio. However, changes 
in TBG concentration do not  influence the thyroid function because the 
levels of  T4 normally change in parallel to those of  TBG in order to main- 
tain the normal T4/TBG ratio. The changes in the T4/TBG ratio may help 
to diagnose thyroid disorders, since elevated T4/TBG ratios were found 
only in hyperthyroidism and diminished T4/TBG ratios, only in hypo- 
thyroidism. 

In two excellent articles Robbins (1976) and Robbins and Johnson 
(1979) presented a mathematical model for the calculation of  free T4 and 
T3 from the values of  total hormones in blood and the concentrations of  
their transporting proteins. They found, in good agreement with the re- 
suits of  other authors, that the amount  of  free T4 is only 0.036% of  its 
total value in blood; its concentration is 39 pM. Since the binding of  both 
T4 and T3 to TBG changes with temperature, they calculated in the range 
of  35°C to 41°C an increase in the amount  of  free forms of  both hor- 
mones (3.3% per degree of  T4 and 4.2% per degree for T3). These small 
changes in free hormone concentration may play a role in hypothermia or 
febrile states. 

However, it should be noted (Robbins and Johnson 1979) that the 
physiologic role of  TBG is far from important. There are genetic disorders 
in which TBG may be totally absent or may be increased up to four times 
its normal value, but neither of  these disorders is accompanied by any 
detectable alteration in the thyroid status. The absence of  hypothyroidism 
in TBG deficiency proves that TBG is not  required even for the intracellu- 
lar entry and subsequent action of  the hormones. What is important for 
human health, however, is the concentration of  free hormones (T4 and 
T3) in blood. "There is direct evidence that the free hormone concentra- 
tion tends to remain in the normal range when the transport proteins are 
altered by a variety o f  physiologic or pathologic conditions" (Robbins and 
Johnson 1979). 



84 G. Hocman 

9 Future 

It is not customary in reviews of research data to speculate on the direc- 
tions, trends, and further development in a given field, and even less to 
anticipate some of the results of future research. However, the author's 
opinion is that such views should be included in every review. They may 
help the newcomers to the field to orient themselves not only in the 
"state of the art" picture, but also to perceive the dynamic trends of fu- 
ture research in the particular field. 

In the author's view, the interest of  researchers is already shifting from 
thyroid-hormone-binding proteins in blood to those in receptor tissues. 
The work of Sterling et al. (1977) indicated that the thyroid hormones act 
via mitochondria and that their binding to receptor proteins at the inner 
surface of mitochondrial membrane of rat liver cells showed a rather high 
association constant to thyroid hormones (more than 1011 M -1) and are 
probably in direct relationship to the enhancement of oxidative phospho- 
rylation caused by thyroid hormones, whereas the much less firm binding 
to cytosol proteins may serve as a kind of intraceltular storage of thyroid 
hormones. 

It was shown that subjects who do not have any TBG in blood, prob- 
ably because of a certain genetic disorder, may be completely euthyroid 
and healthy, indicating that the presence of TBG in blood may be of only 
secondary importance from the point of view of production of thyroid 
hormones and their utilization in target tissues. Considerable effort is, 
and probably will further be devoted to the study of receptor proteins to 
which thyroid hormones are bound in the target tissues and their cyto- 
plasma, membranes, and cellular particles. 

The determination of the exact amount of TBG in blood as a diagnostic 
tool is probably also of secondary importance. Since neither the produc- 
tion of thyroid hormones nor their utilization and action seems to depend 
directly upon the concentration of TBG, the determination of its amount 
may serve as an auxiliary diagnostic parameter. 

On the other hand, it is reasonable to expect that the primary structure 
of human TBG (and probably of that of  other species as well) will be de- 
finitely established in the near future, with the eventual subunits and com- 
plete structure of the molecule. 

The mode of  interaction of thyroid hormones with TBG wilt be further 
elucidated from thermodynamic and physiochemical as well as from 
structural points of view. Techniques like fluorescence quenching and 
various spectroscopic methods may be helpful in this respect. By a lucky 
chance, the maximal absorption of T4 in solution is approximately in the 
same region of the spectrum as the maximal fluoresence of proteins 
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( 3 2 0 - 3 3 0  nm); this makes possible an exact fluorimetric measurement o f  
this interaction (Hocman 1971). 

Moreover, the interaction o f  TBG with thyroid hormones is very strong, 
and since both  components  are characterized, or will be in the near future, 
this interaction may serve as an appropriate and exact model for other  
interactions between protein and small molecular weight ligand. 

As indicated in this review, the general principles o f  the biosynthesis 
and degradation (or excretion) of  TBG are already known. In this respect 
we may expect a further analysis and detailed characterization of  the 
"life" of  TBG in the organism. 

Since thyroxine itself contains four heavy iodide atoms and since TBG 
may be obtained in crystalline form, it is not  excluded that the thyroxine- 
TBG complex may draw the attention of  X-ray crystallographers. In this 
case, we may expect a more exact s tudy of  the structure of  crystallized 
TBG and further elucidation o f  its interaction with thyroxine.  

The chemical homogenei ty and identity o f  the isolated glycoprotein,  
TBG, can be considered as confirmed. The next question is whether the 
physiologic significance o f  this protein lies only in its binding o f  thyroxine 
or, perhaps, in facilitating some other actions. 

The statement o f  Robbins et al. (1978) that " the genetic absence o f  
TBG in otherwise healthy persons is a strong evidence that TBG is not  es- 
sential for thyroid hormone act ion" seems to stress that there are, in fact, 
some other physiologic mechanisms in which TBG may play another, 
more important  role. 

Today,  in a somewhat exaggerated way, we may consider TBG to be 
one o f  the least important  but  most studied and best known human pro- 
tein. 
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Abbrev ia t ions  

PLA 
pro-PLA 
AMPA 
des-Ala-I-AMPA 

PL 
FA 
PC (phosphatidylcholine,  L-lecithin, 

di-Cn-PC , 1,2-diacyllecithin 
sn-3-1ecithin) 

D-Lecithin (D-diCn-PC, sn-l-lecithin) 
/3-Lecithin (sn-2-1ecithin) 
Lysolecithin (tyso-PC, 1 -acyl- 

lysolecithin) 
DMPC 
DPPC 
DiC n ether PC 
PE 
PS 
PG 

AB-I 
ANB-AI 

ANB-NOS 
ANS 
Boc 
BPB 
CNBr 
Dansyl 
DFP 

phospholipase A2 (EC 3.1. t .4) 
prophospholipase A2 
e-amidinated phospholipase A2 
e-amidinated phosphotipase A2 from which 

the N-terminal Ala-1 has been removed 
phospholipid 
fat ty  acid 

1,2-diacyl-sn-glycero-3-phosphocholine 
2,3-diacyl-sn-glycero- 1 -phosphocholine 
1,3-diacyl-sn-glycero-2-phosphocholine 

1 -acyl-sn-glycero-3-phosphocholine 
1,2-dimyristoyl-sn-glycero-3-phosphocholine 
1,2-dipalmit oyl-sn-glycero-3-phosphocholine 
1,2-dialkyl-rac-glycero-3-phosphocholine 
1,2-diacyl-sn-glycero-3-phosphoet hanolamine 
1,2-diacyl-sn-glycero-3-phospho-L-serine 
1,2-diacyl-sn-glycero-3-phospho- 1 '-glycerol 

ethyl 4-azidobenzimidate. HC1 
ethyl N-azid o-2-nitrobenzoylamino acetimidate. 

HC1 
N-5 -azido-2-nitr obenzoytoxysuccinimide 
1-anilinonaphthalene-8-sufonic acid 
t -butyloxycarbonyl  
p-bromophenacyl  bromide 
cyanogen bromide 
5-(dimethylamino) naphthalene-l-sulfonyl 
di isopropylfhiorophosphate 
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DBE 

EDC 

EDTA 
EOFA 
ttNB 
NBS 
NPS 
TNM 
RNAse S' 

CTAB 
SDS 
Triton X-IO0 

Tween 

N-diazoacetyl-N'-(2,4-dinitrophenyl) ethylene- 
diamine 

1-ethyl-3-(N,N-dimethyl) aminopropyl carbo- 
diimide 

ethylene diamine tetracetic acid 
ethoxyformic acid anhydride 
2-hydroxy-5-nitrobenzylbromide 
N-bromosuccinimide 
o-nitrophenylsuccinimide 
tetranitromethane 
Ribonuclease S' (enzymatically fully active 

complex of equimolar amounts of S-peptide 
and S-protein) 

cetyl trimethylammonium bromide 
sodium dodecylsulphate 
p-( 1,1,3,3-tetramethylbutyl) phenoxypolyoxy- 

ethylene glycol 
polyoxyethylenesorbitot fatty acid ester 

CMC 
IRS 

critical micelle concentration 
interface recognition site 

CD 
NMR 
Photo-CIDNP 

PRR 
IEP 

circular dichroism 
nuclear magnetic resonance 
photochemically-induced dynamic nuclear 

polarization 
proton relaxation rate 
isoelectric point 

1 In t roduct ion 

Phospholipases As (EC 3.1.1.4) are wide spread in Nature and are found 
both within and without  the cell (see for reviews Shen and Law 1979; 
van den Bosch 1980). In this review we will confine ourselves to the extra- 
cellular phospholipases which are abundant in pancreatic tissue and in the 
venom of  snakes and arthropods 1. Exceptions may, however, occur as is 
exemplified by guinea pig pancreas which does not contain PLA. In lieu 
two lipases which are unusually active on phosphoglycerides (White et al. 
1971; Durand et al. 1978; Fauvel et al. 1981) have been reported to 
be present. Irrespective o f  the source, the enzyme is a small (mol. wt. 
14 000 for the monomeric form) water-soluble protein. Like all lipolytic 
enzymes it is able to hydrolyze monomeric substrate molecules, but its 
full activity only becomes evident in the presence of  certain lipid-water 
interfaces. A break is observed in plots of  velocity vs. substrate concentra- 

In 1981 a more detailed review on pancreatic PLA by J.J. Volwerk and G.H. de 
Haas entitled "Pancreatic Phospholipase A 2 . A model for lipid-protein interac- 
tions?" will appear in Molecular Biology of Lipid-Protein Interactions (Eds. O.H. 
Griffith and P. Jost), J. Wiley & Sons, Inc., New York (1981) 
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tion at the moment  aggregation of  substrate starts (Fig. 1, curve a). The 
precursor of  the pancreatic enzyme (Fig. 1, curve b) behaves as a "normal"  
esterase and is not  activated by the lipid-water interface. 
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Fig. 1. Hydrolysis of di-heptanoyl 
lecithin by porcine pancreatic 
phospholipase (curve a) and by 
its precursor (curve b) (Pieterson 
et al. 1974b) 

The enzymatic activity of  PLA is calcium dependent.  The naturally 
occurring 3-sn-phosphoglycerides are hydrolyzed exclusively at the 2 posi- 
tion, giving rise to the formation of  1-acyl-3-snqysophospholipids. How- 
ever, when synthetic substrates 2 containing short (~< six carbon atoms) 
fat ty acids are incubated in the presence of  large amounts of the pancreatic 
enzymes, they loose part of  their stereo- and positional specificity (this 
laboratory, unpublished results). From the results of  the hydrolysis of  
dibutyryl lecithin as presented by Wells (1972) one is inclined to conclude 
that the same is true for Crotalus adamanteus phospholipase. It is known 
that hydrophobic binding forces are important  in the Michaelis-Menten 
complex formation (vide infra). Therefore,  it is conceivable that short fat ty 

2 For the synthesis of (short-chain) substrates and the synthesis of product analogs 
like n-atkylphosphocholine the reader is referred to recent review articles (Slot- 
boom et al. t 973 ; Eibt 1980) 
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acids contribute less to the orientation of  the substrate than do longer 
acyl chains. This obviously could result in aspecific binding and hydrolysis. 

In the pancreas the production of (pro)PLA undoubtedly serves a 
digestive function. For the venom phospholipases the role is less clear, 
although the enzyme functions in digesting the prey in concert with the 
various hydrolytic enzymes found in snake venoms (Tu 1977). Snake 
venom phospholipases may serve another goal since the presynaptic 
toxins found in venoms are basic phospholipases or are a complex con- 
taining phospholipase. In addition to the neurotoxic action several 
venom phospholipases exhibit other pharmacological effects such as 
direct hemolytic action, anticoagulant properties, and myonecrotic and 
postsynaptic neurotoxic effects. For details the reader is referred to 
recent reviews (Karlsson 1978; Howard and Gundersen 1980). 

In the pancreas phospholipase is produced in the form of an inactive 
precursor which is stored in the secretory granules. Only in the intestine 
does activation occur by limited tryptic proteolysis giving rise to the for- 
mation of  the active phosphotipase and a small polar activation peptide. 
For snake venoms no evidence for such a precursor has been obtained 
and no data about the occurrence of (pro)phospholipase in snake pan- 
creatic tissue has been obtained so far. 

Both precursor and phospholipase are about equally active on mono- 
meric solutions of  short-chain substrates (Fig. 1, curves a and b). How- 
ever, only phospholipase displays full enzymatic activity on mixed 
micelles of  bile salts and (natural) long-chain phosphoglycerides. Under 
these conditions the precursor is at least 104 times less active and for 
practical purposes can be considered as inactive in vivo. The inertness of  
the precursor toward organized substrates is due to its inability to bind 
to lipid-water interfaces as demonstrated by a variety of  techniques (vide 
infra). Similarly phospholipase in which the a-amino group is blocked by 
a number of  different reagents (Abita et al. t972; Slotboom and de Haas 
1975) does not bind to aggregated substrates nor degrade them. The 
early suggestion by Abita and co-workers that the s-amino group of 
phospholipase is locked in a fixed position, thereby stabilizing the active 
site geometry, has been confirmed by recent X-ray studies. 

Based on the kinetic properties of  phospholipase and its precursor and 
on specific chemical modifications Pieterson et al. (1974b) proposed that 
both PLA and precursor possess a fully functional active site in which 
monomeric substrates are bound and hydrolyzed. In addition to the active 
site the enzyme (but not  the precursor) is supposed to contain an inde- 
pendent  and topographically different site (IRS) responsible for the inter- 
action with lipid-water interfaces. According to our present knowledge the 
basic concept of  two different and independent sites is still attractive, 
although several examples of  mutual  effects have been found (vide infra). 
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Phospholipase A2 has been used for the preparation of a number of 
(lyso)phospholipids (Stotboom et al. 1973; Eibl 1980), and, in conjunc- 
tion with other lipolytic enzymes, for studies of the distribution of phos- 
pholipids in biomembranes and the lipid requirement of  membrane-bound 
enzymes (see for recent reviews Op den Kamp 1979; Roelofsen and 
Zwaal 1976). 

2 Different Assays 

Phospholipase A2 catalyzes the reaction: diacyl phospholipid ~ mono- 
acylphospholipid + fatty acid. The enzymatic activity can be measured 
by the disappearance of substrate or the appearance of products. Analysis 
of the remaining substrate is generally less accurate since under kinetic 
conditions only a small portion of the substrate will be used. Hence, the 
determination of the remaining substrate by chromatography or the 
estimation of  the disappearance of  ester bonds (Augustyn and Elliott 
1969) is only rarely employed. 

Among the methods to determine reaction products many applications, 
advantages and drawbacks have been discussed by Van den Bosch and 
Aarsman (1979). The appearance of lysophospholipids is in general fol- 
lowed by measurement of their effect on the turbidity of lecithin emul- 
sions (Habermann and Hardt 1972), coagulability of egg yolk (Haber- 
mann and Neumann 1954), the turbidity of egg yolk (3~larinetti 1965; 
Mebs 1970), and hemolysis of red blood cells (Braganca et al. 1969). 
A rapid assay to determine the number of electrophoretic PLA variants 
has been described (Shier and Trotter 1978). This method employs disc 
gel electrophoresis in the absence of Ca 2+ ions in gels containing lecithin. 
After electrophoresis the gels are incubated in the presence of Ca 2+ and 
rhodamine 6G to detect liberated fatty acids. 

Although some of these assays are easy to carry out and may be useful 
to screen a large number of samples for phospholipase activity, compari- 
son of different enzymes is difficult because no absolute activities are 
obtained. 

The liberation of fatty acids is more easily quantitated. Methods pro- 
posed include bioluminescence of a bacterium as a response to released 
myristic acid (Ulitzur and Heller 1978), conductometry (Moores and 
Lawrence 1972), thin-layer and/or gas-liquid chromatography of labeled 
compounds (see review Van den Bosch and Aarsman 1979), and polaro- 
graphy in a coupled assay with lipoxygenase (Gale and Egan 1980). The 
most widely used method is the titration of  liberated fatty acids in a pH 
star. Both purified lecithin and whole egg yolk have been used either 
without detergent or in the presence of detergents. After the reports of  
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Magee et al. (1962) and Ute and Magee (1971) deoxycholate has been 
widely used, although the optimal conditions with respect to Ca 2÷ and 
deoxycholate concentrations for enzymes from different sources can be 
very different (Nieuwenhuizen et al. 1974; Figarella et al. 1971 ; Evenberg 
et al. 1977a). The nonionic detergent Triton X-100 as introduced by 
Salach et al. (1968, 1971) and also used for kinetic studies by Dennis 
(see Sect. 5) has been applied in routine assays in many studies. 

However, as with deoxycholate, often little attention has been paid to 
the optimal conditions. In our hands it appeared that every enzyme has 
its characteristic optimum for Ca 2÷ and Triton X-100 concentration. 
These concentrations not only affect the rate of hydrolysis but also 
greatly affect the linearity of the reaction with time. Outside the optimal 
conditions the reaction rapidly slows clown with time, an effect that also 
has negative influence on proportionality between enzyme concentration 
and velocity (unpublished results). In conclusion the egg yolk assay is 
rapid, cheap with respect to substrate, and reproducible with a good sen- 
sitivity: specific activities are between 100-5000 tamol " rain -~ • mg -1 
which allows detection and determination of about 0.2 pmol/min (corres- 
ponding to about 2 t~g down to 40 ng of protein). 

Since long-chain phospholipids are insoluble in water, their activity 
can only be accurately measured in the presence of detergents. Synthetic 
short-chain phospholipids dissolve in water and form true (monomeric) 
solutions or, at higher concentrations, micelles (Roholt and Schlamowitz 
1961 ). Assays based on the use of monomeric substrates and on the use of 
micellar medium-chain substrates have been used. However, these methods 
are quite expensive with regard to substrate and only for special purposes 
do these assays deserve support, i.e., for kinetic analysis in the monomeric 
or micellar substrate region (see also Sect. 5). The best synthetic substrate 
known (dioctanoyl lecithin) can be used, however, to increase the sensitiv- 
ity of the test. First, the baselines are stable and allow the use of very 
dilute hydroxide solutions. Second, all phospholipases tested in our labora- 
tory showed a higher activity on this substrate than on any other system, 
including egg yolk. For example, t3-bungarotoxin, a presynaptic toxin 
with low PLA activity (SA .~ 100 on eggyolk), is quite active when tested 
with dioctanoyl lecithin as a substrate (SA ~ 1000) and is in fact about 
equally active as porcine pancreatic PEA (unpublished results). 

Finally a number of specific assays deserve attention. Aarsman et al. 
(1976) introduced the use of thioester substrates. During hydrolysis thiol 
groups are released which can be detected spectrophotometrically after 
reaction with Ellmann's reagent. The introduction of the thiol ester func- 
tion has been used to study the hydrolysis of monomeric lecithins by 
porcine pancreatic phospholipase (Volwerk et al. 1979) and was found 
to be about 100-fold more sensitive than titration of liberated fatty acids. 
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The use of  31 p NMR to study hydrolysis was introduced by Henderson 
et al. (1975) and Brasure et al. (1978). This method is based on the dif- 
ference in chemical shifts of phosphatidylcholine and lysophosphatidyl- 
choline. In an elegant study by Roberts et al. (1979) this method was 
applied to simultaneously analyze the hydrolysis of individual phospho- 
lipid species in phospholipid mixtures. 

3 Isolation 

Venom as well as pancreatic tissue contains high amounts (1%-10% of 
all proteins present) of (pro)PLA. As these proteins are very stable with 
respect to heat, variations in pH, and denaturing conditions, their isola- 
tion is relatively simple. For the pancreatic (pro)phospholipases the puri- 
fication includes homogenization of  the tissue, a heat treatment at low pH, 
a salt precipitation, and chromatography on both DEAE and CM cellulose. 
The purest preparations of  active phospholipase are prepared by tryptic 
activation of  the precursor followed by chromatography on CM cellulose. 

In this respect it must be mentioned that the pancreatic tissue should 
preferably be fresh. Even freezing and thawing can modify the activation 
peptide of  the precursor (Nieuwenhuizen et al. 1973a,b; Evenberg et al. 
1977a) without changing the final phospholipases. Under more drastic con- 
ditions, however, activation to phospholipase or even proteolytic break- 
down of  the enzyme may occur (de Haas et al. 1968). The relative sensi- 
tivity of  the pancreatic phospholipase to proteolysis might explain the 
multiple forms of the enzyme we observed using commercial pancreatic 
powder rather than fresh pancreas (unpublished results). Multiple forms of 
pancreatic phospholipase have also been described by Tsoa et al. (1973). 
These authors also used commercial pancreatin, and their disputable 
results once more argue against the use of  this powder as enzyme source. 
Pure preparations of (iso) precursors and activation of  these to the cor- 
responding enzymes have been described for pancreatic tissue and juice 
from pig (Nieuwenhuizen et al. 1974 and references therein; van Wezel 
and de tIaas 1975), ox and sheep (Dutilh et al. 1975), horse (Evenberg 
et at. 1977a), and man (Figarella et al. 1971; Wittich and Sehmidt 1969; 
Gratoli et al. 1981). 

As venoms from a great variety of animals can be bought and since 
there is no need for extensive extraction and homogenization procedures, 
these venoms have proven to be popular sources of PLA. Yet the elution 
patterns contain in general more PLA peaks than those observed with the 
pancreatic enzymes. Complex elution patterns can be explained because 
of (1) the presence of isoenzymes with different charge properties, (2) self- 
aggregation of  the protein leading to molecular weight values between 
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9000 and 40 000, (3) combination of the enzyme with nonenzymatic 
components (these complexes may or may not  be stable under the con- 
ditions employed in the isolation), and (4) changes in the charge of  the 
phospholipase by desamidation and/or proteolytic breakdown. Possibil- 
ities (1) and (2) occur in most venoms and only a few exceptions are 
known (e.g.,Crotalus atrox).Complexes [possibility (3)] have been found 
in several venoms, including those of Oxyuranus scutellatus (Fohlman 
et al. 1976), Parademansia microlepidotus (Fohlman 1979), Vipera pales- 
tinae (Simon and Bdohlah 1980), Vipera ammodytes (Aleksiev and Shipo- 
lini 1971), Bothrops asper ( Vidal and Stoppani 1971 a), Crotalus durissus 
terrificus (see minireview Haberman and Breithaupt 1978), and Crotalus 
scutulatus scutulatus (Cate and Bieber 1978). Changes in the charge pro- 
perties of  the PLA [possibility (4)] yield proteins with different electro- 
phoretic mobilities but identical amino acid composition. These charges 
might arise from scissions in the chain while the peptides are held 
together by the disulfide bridges. No evidence for such splits (with reten- 
tion of enzymatic activity) has been reported. The a and ¢/forms of C 
adamanteus PLA differ by a single Gln ~ Glu substitution only (Heinrik- 
son et al. 1977), and although no evidence is available about the cause of 
their appearance, it might very well be a result of desamidation by 
venom proteolytic enzymes. Evidence for such activities has been pre- 
sented for the venom of  Vipera palestinae (Shiloah et al. 1973) where 
the native phospholipase was converted into a more acidic one by incuba- 
tion with whole venom. 

Most purification methods employ a combination of gel filtration and 
the use of one or more ion exchangers. The more rational order of  their 
application undoubtedly includes first a group separation on a molecular 
sieve which in general improves the specific activity two- to threefold 
and removes small toxines (like direct lytic factor) and most other 
enzymatic activities from the phospholipase fraction. Subsequent chro- 
matography on an ion exchange column gives then the separation into 
the isoenzymes. Because of the greater capacity of the ion exchange 
columns, the order is frequently reversed. In that case precautions have 
to be taken to avoid aggregation of  the low molecular weight toxins due 
to lyophilization of  solutions containing high salt concentrations (Karls- 
son 1978). Instead of or prior to these aspecific purification methods the 
use of  a more specific purification should be considered. A number of  
potentially interesting methods have been described: 

1. Precipitation of  PLA from aqueous isopropanol with NdC13 (Wells 
1975) 

2. Affinity chromatography with an immobilized substrate analog (Rock 
and Snyder 1975) which makes use of the fact that only the enzyme- 
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calcium complex of Crotalus adarnanteus phospholipase binds to the 
columns. [Elution was done with EDTA, but in our hands a more satis- 
factory elution takes place by eluting with about 30% organic solvent 
(acetonitril, dimethylformamide) or 6-3/1 urea (unpublished results).] 

3. Hydrophobic chromatography on phenyl sepharose CL-4B as described 
for the removal of traces of  PLA from cardiotoxin preparations (Louw 
and Carlsson 1979) 

4. Affinity chromatography using immobilized antibodies against PLA 
(Apsalon et al. 1977; Guben~ek and ~uni( 1978; Delori and Tessier 
1980). 

5. The use of concanavalin-Sepharose 4B (Gritsuk et al. 1979) as an ele- 
gant way to isolate bee venom phospholipase (which contains carbo- 
hydrates) 

Phospholipases or phospholipase-containing complexes have been iso- 
lated in a pure state and have been characterized from venom from the 
following snakes: Agkistrodon halys blomhoffi (Kawauchi et al. 1970a 
and b; Hanahan et al. 1980), Agkistrodon piscivoris (Augustyn and Elliot 
1970), bees (Shipolini et al. 1971; Gritsuk et al. 1979), Bitis arietans 
(Howard 1975), Bitis gabonica (Botes and Viljoen 1974a), Bothrops asper 
(A lag6n et al. 1980; Ferlan and Gubensek 1978), Bothrops atrox, Bothrops 
]araraca, Bothrops jararacussu, and Bothrops neuwiedii ( Vidal and Stop- 
pani 1971 b), and Bungarus caerutus (A be et al. 1977; Moody and Raftery 
1978). 

From Bungarus rnulticinctus venom several components  with weak 
phospholipase activity and presynaptic activity have been isolated. The 
/3-type toxin apparently contains two chains (mol. wt. 22 000 for the 
covalent complex) based on molecular weight determinations and amino 
acid composition of the unreduced toxin (Abe et al. 1977) and on the 
sequence analysis (Kondo et al. 1978a and b and references therein). 
However, there are also studies showing that in addition to the double- 
chain toxin, /3 toxins composed of a single chain (tool. wt. 11 000) are 
present in this venom (Tobias et al. 1978;Hanly et al. 1977). In addition 
a nontoxic phospholipase is present as well (Wernieke et al. 1974). 
A possible explanation for this confusing data might be that B. multi- 
cinctus contains, in addition to the a toxin (postsynaptic toxin), double 
chain t~ toxins (tool. wt. 22 000) with microheterogeneity. It is conceiv- 
able that like in other venoms, phospholipases (mol. wt. 11 0 0 0 - 1 4  000) 
with different IEPs are present. The acidic phospholipase is nontoxic 
(Wernicke et al. 1974) and the basic phospholipases could very well show 
presynaptic activity (~ toxin activity), but they should be compared to 
other single chain presynaptic toxins (e.g., notexin) rather than to #-bun- 
garotoxin. 
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The venoms of Crotalus adamanteus (Wells" and Hanahan 1969; Wells 
1975) and of C. atrox yield acidic phospholipases (Wu and Tinker 1969; 
Hachimori et al. 1971), whereas the venom of C. durissus terrificus con- 
tains the first venom toxin (crotoxin) ever isolated (Slotta and Fraenkel- 
Conrat 1938; for a review see Habermann and Breithaupt 1978). The cro- 
toxin complex contains one or two basic isophospholipases (depending on 
the source of the venom; Breithaupt et al. 1974); an acidic nontoxic phos- 
pholipid is also present in this venom (Breithaupt et al. 1975). C. scutula- 
tus scutulatus venom contains a toxic complex very similar in properties to 
crotoxin (Cate and Bieber 1978; Gopalakrishnakone et al. 1979). From 
the venom of C. scutulatus salvinii a phospholipase (tool. wt. 30 000) was 
isolated with two different amino terminal residues. The authors concluded 
that this enzyme is an asymmetrical dimerin analogy with the symmetrical 
dimer found in C adamanteus and C. atrox venoms (Nair et al. 1979). 
However, as Cate andBieber showed that the acidic component was easily 
missed in the complex isolated from C. scutulatus seututatus, it could 
very well be that Nair and co-workers have isolated a similar complex 
from C~ seutulatus salvinii venom. Pure phospholipases have also been 
isolated from the following venoms: Enhydrina schistosa (Fohlman and 
Eaker 1977), Hemachatus haemachatus (Joubert 1975a; Yang and King 
1980b), Laticauda semifasciata ( Yoshida et al. 1979 and references there- 
in), Micrurus fulvius microgalbineus (Possani et al. 1979). 

The Asiatic Nala genus (cobras) is represented by a large variety of sub- 
species of Na]a na]a. It has even been proposed that N.n. oxiana should 
be considered to be a different species and should be called N. oxiana. 
This uncertainty and the possibility that the venoms of the snakes from 
different geographical origin are mixed may explain the large variability 
of the phospholipase patterns in these venoms. At least nine and possibly 
11 isoenzymes have been reported in the venom of Na]a na]a (Salach 
et al. 1971). However, in the venom of a single (sub)species the situation 
can also be complex: from the venom of N.n. oxiana seven isoenzymes 
have been reported (Apsalon 1977). The fact that the three main frac- 
tions (IEP 5.1-5.5) represent > 98% of the enzymatic activity but only 
62% of the protein on a weight basis may be representative of the com- 
plexity of cobra venoms and stresses the need for good purification pro- 
tocols. A similar situation in the venom of N.n. na]a might explain why 
Barden et al. (1980) could remove about 20% of a protein of low specific 
activity from their phospholipase preparations. Purifications have been 
reported for: 

l.N.n, atra (Chang et al. 1976) 
2. N.n. naja (Salach et al. 1971; Deems and Dennis 1981 and references 

therein) 
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3. N.n. kaouthia (= siamensis) (Andreasen et al. 1979; Karlsson and 
Pongsawasdi 1980; Joubert and Taljaard 1980) 

4. ?V:n. oxiana (Apsalon et al. 1977) 
5. N. melanoleuca (Joubert and van der Walt 1975) 
6. N. mossambica mossambica (Joubert1977 ; Martin-Moutot and Rochat 

1979) 
7. N. nigricollis ( Yang and King 1980a and references therein; Evans et al. 

1980). 

For Notechis scu tatus scu tatus venom the isolation of three isoenzymes, 
including one without phospholipase activity, has been described by Hal- 
pert and Eaker (1975, 1976a,b). Further purifications have been described 
for: Oxvuranus scutellatus (Fohlman et al. 1976), Parademansia micro- 
lepidotus (Fohlman 1979), Pseudechis australis (Leonardi et al. 1979; 
Mebs and Same]ima 1980b), P. colletti (Mebs and Samejima 1980a,b), 
P. porphyriacus (Mebs and Samejima 1980b) and Trimeresurus flavoviri- 
dis (Ishimaru et al. 1980). 

The venom of Vipera ammodytes contains a neurotoxic complex consti- 
tuted by a basic phospholipase and an acidic subunit (Aleksiev and Shi- 
polini 1971 ;Aleksiev and Tchorbanov 1976; Tchorbanov et al. 1977 and 
references therein) and several other toxic as well as nontoxic phospho- 
lipases (Sket et al. 1973). 

Phospholipases have also been isolated from the venoms of Vipera aspis 
(Boffa et al. 1971) and Vipera berus (Delori 1973; Boffa et al. 1976). 
Vipera palestinae venom contains one phospholipase. During isolation 
this protein is partly converted into a species with different electrophore- 
tic mobility but identical amino acid composition (Shiloah et al. 1973). 
The venom also contains a neurotoxin which appears to be a 1 : 1 complex 
of the acidic phospholipase and a basic polypeptide. The basic compo- 
nent was able to enhance the toxicity of a number of phospholipases iso- 
lated from other snake venoms but did not render porcine pancreatic 
PLA toxic (Simon and Bdohlah 1980). Finally two phospholipases A2 
have been isolated from the venom of Waterinnesia aegyptica (Simon and 

Bdohlah 1980). 

4 Structural and Molecular Properties 

The phospholipases isolated from mammalian pancreas, bee venom, and 
snake venom are heat stable, are resistant to denaturing agents, and are Ca 2+ 
dependent. Therefore, one may expect that several structural aspects of 
these enzymes are similar. Because of their low molecular weight the deter- 
mination of the amino acid sequence of phospholipase has become rela- 
tively easy, and the amino acid sequences of more than 20 "true" phospho- 
lipases have been determined. In addition, the sequence of a number of 
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homologous proteins like the ~/-chain of taipoxin and the B-chain of 
~-bungarotoxin have been determined. The structures of these proteins are 
compared in Fig. 2. 

It is obvious that all phospholipases shown in Fig. 2 are homologous 
proteins which probably have developed from a common ancestor. Bee 
venom PLA (Shipolini et al. 1974 a, b) is not included in Fig. 2, because 
its sequence is too different from all other phospholipases to allow a 
homology comparison. Only the peptide around the active center histi- 
dine (Ala-Cys-Cys-Arg-Thr-His-Asp-Met-Cys) is recognizable. Bee venom 
phospholipase might be an example of converging evolution. However, 
the observation that for example cytochrome C from insects and mam- 
mals shows a high degree of sequence homology makes the determina- 
tion of a PLA from the venom of another arthropod highly desirable. 

With the exception of the proteins from Bitis gabonica, #-bungarotoxin 
B-chain, and taipoxin q,-chain, all phospholipases contain seven disulfide 
bridges. The disulfide connections of 12 half-cysteine residues were 
determined for the porcine phospholipase (de Haas et al. 1970a, b), but 
since a reinvestigation of the sequence showed that this enzyme also con- 
rains 14 half cysteines (Puijk et al. 1977), the disulfide bridge assignment 
was partly incorrect. A second attempt to assign the bridges was made using 
a low resolution X-ray structure of porcine precursor, but unfortunately 
two bridges were interchanged, leaving a lot of confusion (Drenth et al. 
1976). The three-dimensional structure of bovine pancreatic PLA at 
1.7 h resolution revealed the correct pairing beyond any doubt (Diikstra 
et al. 1978; Di]kstra 1980). The disulfide bridges are indicated in Fig. 3. 
As no attempts have been made to determine the disulfide bridges in 
snake venom phospholipases we can only assume that they are present at 
homologous places as in bovine pancreatic phospholipases. From Fig. 2 
it is obvious that in all elapidae and hydrophidae phospholipases (with 
the exception of/3-bungarotoxin B-chain) the half-cysteine residues are 
completely conserved 3 Hence one must assume that in these enzymes 
the disulfide bridges are connected as in the bovine pancreatic PLA 
(Fig. 3). As already pointed out by Iteinrikson et al. (1977)in viperidae 
and crotalidae phospholipases the half-cysteine residues 11 and 77 (Figs. 2 
and 3) are absent. In these enzymes two half-cysteines are found at posi- 
tion 50 and at the C terminus which are not present in the phospholipases 
from pancreas or from elapidae or hydrophidae venoms. Again in the 
absence of chemical evidence one must assume that these half-cysteines 
form a disulfide bridge. In their article Heinrikson et al. (1977) divided 
phospholipases into two groups. Group I contains the enzymes of pan- 
creas and elapidae, while group II contains viperidae and crotalidae phos- 

3 It should be noticed, however, that the alignment of the sequences as shown in 
Fig. 2 is also based on the positions of the half-cystein residues. Because of their 
highly conserved character they contribute much to this alignment 
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Fig. 3. Amino acid sequence of bovine pro-PLA and the connection of the disuffide 
bridges 

pholipases. However, since then more sequences (or part ial)sequences 
have appeared indicating that there are exceptions to this division: in the 
B-chain of  ~-bungarotoxin (Kondo et al. 1978b) and the phospholipase 
from Micrurus rnicrogalbineus, both elapids, the bridge Cys 11 -Cys 77 is 
missing. 

The high number  of  disulfide bridges contributes to the stability of  the 
enzyme and their correct pairing must be a prerequisite for enzymatic 
activity. When the disulfide bridges are broken by reduction the activity 
is lost and, without  special precautions, the activity is only partly or not  
at all recovered following reoxidation (van Scharrenburg et al. 1980). 
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Using porcine pancreatic PLA van Scharrenburg et al. (1980) showed 
that reduction led to a complete loss of activity. When the reoxidation 
was carded out in the absence of  thiols only about 35% of the enzymatic 
activity was recovered. The authors assumed that the relatively low 
recovery was due to the formation of mismatched disulfide bridges. 
When the reoxidation was carded out in the presence of  cysteine and in 

1 2 3 4 5 6 7 8 9 i0  11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

i PIG 0 28 19 4 68 68 6? 71 65 65 58 68 69 68 68 64 66 66 66 59 59 68 63 6.5 7~I 83 91 85 

2 HORSE 28 8 72 27 7t 7t 71 74 69 70 63 65 68 67 68 61 6?; 63 67; 62 57 58 62 66 74 86 96 89 88 

3 OX 19 ~2 B 17 72 73 73 73 71 71 62 59 68 67 67 6t 62 63 6Z 56 58 58 61 65 72 64 92 84 87 

4 Iso-pig 4 27 i? 8 68 69 6g 71 66 66 58 59 68 67 67 63 65 65 65 57 58 59 62 63 69 83 91 84 82 

5 L. s e m i f .  I 63 71 72 6~ o 18 10 41 42 47 39 57 51 48 50 ~ .  53 54 54 55 53 52 57 69 f6 7~ F9 81 84- 

6 ibid, III 68 71 7X 69 18 0 3 34 36 ~ 48 68 54 52 5] 54 54 55 54 56 54 52 59 79 65 72 81 82 81 

7 ib id .  IV 67 71 77 68 1g 3 0 33 35 37 48 60 54 52 57 54 54 55 54 56 54 53 59 68 65 71 82 82 if! 

8 E. s c h i s t .  71 74 73 71 41 34 37 8 26 26 46 62 56 54 56 58 57 58 58 54 52 54 59 72 66 74 83 88 ~i~ 

9 Notex in  65 69 71 66 42 76 3~ 26 8 7 41 GO 55 56 58 56 56 N 54 55 52 52 58 67 66 79 86 85 84 

10 N. s c u t .  I I - 5  65 70 7.! 66 43 38 37 26 7 8 42 58 57 57 59 57 57 56 56 57 54 54 59 68 65 78 ~6 83  62 

11 i b i d .  I I - 1  58 67 62 58 39 49 48 46 4t 42 0 ~ 56 56 57 57 57 55 55 57 5f 5t 56 62 f6 74 85 N 85 

12 H. haem, 68 65 59 59 57 60 6~ &2 60 58 58 8 33 ~ ~2 2{7 3~5 37 I¢1 25 24 22 22 68 62 74 84 87 88 

13 H. me1. I 69 68 68 68 51 54 54 56 55 57 56 73 8 10 13 ~ 30 72 32 27 25 25 23 63 68 74 82 86 87 

14 i b i d .  I1 c~6 67 67 67 48 52 52 54 56 57 [6 72 ~0 0 6 74 32 75 ~ 25 24 24 27 62 66 77 82 ~5 86 

15 i b i d .  I I I  60 68 67 67 50 57 53 56 56 59 57 22 t3 6 ~ 23 22 24 24 26 26 26 29 64 64 74 ~ 85 86 

16 N.m mos. I 64 61 61 63 53 54 54 58 56 57 5? 3? -~ 34 33 8 3 13 12 31 29 26 3~ 62 67 74 82 ~ 86 

t7  i b i d .  I I  66 63 63 65 52 54 54 57 56 57 57 35 3"8 32 32 3 8 i t  l@ 78 28 25 29 62 66 74 82 85 

18 i b i d .  I I I  6G 62 6~ 65 54 55 55 58 54 56 55 37 22 25 34 17 i t  @ t 72 ~ 29 33 64 gg 72 N ~t e2 

19 N. n i g r i .  66 67 6.~ 65 54 54 54 58 54 56 ~ 28 ~2 35 74 12 10 1 8 33 33 78 34 64 66 72 81 61 62 

20 N.n.  o x i a n .  59 62 56 57 55 56 56 54 55 57 5~ 25 27 25 26 3t ~ 32 77 8 14 :[2 16 55 65 73 88 84 85 

21 N.n .kaouth .  I 59 57 58 58 57 54 54 52 52 54 gi 24 25 24 26 29 28 32 37 t4 8 4 i t  57 62 72 £1 ~ 86 

22 i b i d ,  I I I  68 ~ . . 5 8  59 52 53 5~ .54 5~ 54 53. 22 25 24 26 26 25 29 30 i2 4 B 9 57 6I 72 82 84 85 

23 N.n. a t r a  67 62 6t 62 57 59 59 59 58 59 56 ~ 29 2? 29 N 23 33 ~, 16 1I 9 O 6t 62 75 84 86 87 

24 Ta ip .  65 66 65 67 69 70 68 72 67 68 62 68 63 62 64 62 62 64 64 55 57 57 61 O 750 82 86 90 89 

25 6-bung. 76 74 72 69 66 65 65 66 66 65 66 62 68 66 6,~ 67 66 66 66 65 62 6i  62 75 B 76 87 82 8'I 

26 B. Caud. 63 ~6 84 83 7~ 72 71 ?4 79 78 74 74 74 7~ 74 74 74 72 72 73' 72 72 75 82 76 0 58 6#. 61 

27 B. Gabon 9i % 92 91 79 8I 82 83 86 86 85 84 82 82 85 82 82 81 81 88 81 82 84 86 87 50 8 65 64 

28 C. Adam, 85 69 84 84 8I B2 82 80 85 83 86 87 86 85 85 85 85 81 81 84 85 84 86 98 ~ 61 65 O 6 

29 C. A t r ox  ~3 e~ 8~ 82 8t 8t 8t 8~ 84 82 85 88 87 ~ 66 ~6 86 ~2 82 85 ~ 85 87 89 8t 6t 64 6 8 

Fig. 4. Sequence difference matrix for phospholipases from various sources. Sequences 
were aligned as shown in Fig. 2 and the comparison is based on a total number of 
residues (including deletions) of 138. The values shown are the number of positions 
(including deletions) where a change has occurred; a value of 69 in the figure there- 
fore indicates a 50% homology. For the full names of the phospholipase sources see 
Fig. 2 
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the presence of 0.9-M guanidine chloride to increase the solubility of  the 
reduced protein, 90%-95% of  the enzymatic activity could be recovered. 
After purification this enzyme was indistinguishable from the native 
enzyme. 

Figure 4 shows a sequence difference matrix constructed from the 
sequence alignment as shown in Fig. 2 for 29 PLAs. Included are four 
pancreatic, four hydrophid,  17 elapid (four Australian, five Asian and 
eight African), and four viper sequences. The average sequence difference 
of about 50% shows the strong homology among all PLAs. The homology 
between hydrophidae and the Australian Notechis enzymes is much 
greater than that between hydrophid and the other elapids. Hemachatus 
haemachatus is phylogenically distinct from the African cobras (Naja 
species). This is confirmed by the sequence of  its PLA. In fact this struc- 
ture is closer to that of  the Asian than to that of  the African cobra. Both 
rattlesnake PLAs (C. adamanteus and C. atrox) show a strong homology 
as could be expected for such related snakes. In contrast, both viperidae 
sequences are very different from each other, a fact that casts serious 
doubt on the correct classification of  both snakes in the genus Bitis. 

From Fig. 4 one might conclude that cobras are more closely related 
to mammals than to vipers, even if one does not take into regard the 
C terminal appendage which is distinctive for viper PLAs. Apparently the 
elapid venom and pancreatic PLA have undergone only a limited parallel 
divergent evolution from the ancestral enzyme within the same frame- 
work of disulfide bridges and number of  peptide loops between the 
bridges. The sequence changes in viper venom PLA resulting in the intro- 
duction of the C terminal appendage and the loss of disulfide bridge 
Cys 11.Cys77 apparently has opened the way to other more pronounced 
sequence changes. 

When all sequences are compared it appears that 32 amino acids are 
absolutely conserved. In addition 29 residues are usually substituted by 
residues with similar properties with respect to size, charge, or hydro- 
phobicity. When only pancreatic and elapid phospholipases are compared 
these numbers are as high as 36 and 45, respectively. The residues which 
are absolutely conserved are so because of two major reasons: either they 
are catalytic residues (Ills-48, Asp-99), residues involved in binding of 
the cofactor Ca 2÷ (Asp-49), or they have an important  structural func- 
tion (e.g., all half-cysteines, five glycine residues). 

Since it is known that upon binding of  substrate (either monomers or 
aggregated substrate) hydrophobic interactions are involved, it is of  inter- 
est to analyze the residues which surround the active site of  bovine pan- 
creatic phospholipase. Inspection of  the X-ray model shows the astonish- 
ing fact that several hydrophobic side chains surrounding the active site 
are not  buried but point toward the surrounding water. This creates 
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a large surface area with hydrophobic properties suitable for interactions 
with lipids. These surface residues are: Leu-2, Trp-3, Leu-19, Leu-20, 
Leu-31, Lys-56, Leu-58 (Val-Leu-Val-65), Tyr-69, and Thr-70. Figure 2 
shows that in all phospholipases these side chains are highly variable (as 
could be expected for exposed residues), but mainly hydrophobic resi- 
dues are present. Among the side chains carrying a charge only a single 
negatively charged side chain is found, although several arginine and 
lysine residues are present. This might suggest that interactions with 
lipid-water interfaces not  only require a large hydrophobic surface area 
but also that a positive charge on the protein may add favorably to this 
interaction. Two regions rich in lysine may be important for binding. In 
bovine pancreatic PLA the lysine residues 53, 56, 57, and 62 form a 
cluster that might be important for binding (Dijkstra et al., 1981a). 
Also the C terminal part of  the sequence (residues 116-121)  may be 
important.  Especially in venom PLAs this part contains a cluster of  
hydrophobic side chains (see Fig. 2). Since more than ten residues contri- 
bute to the hydrophobicity of  the protein surface one might expect that 
substitution (or chemical modification) of  only one of  these side chains 
will not  drastically alter the interaction with lipid-water interfaces per se. 

Only a few insertions and deletions are needed to achieve maximal 
homology except for residues 55-68 .  This part of the sequence is present 
as two long external loops around disulfide bridge Cys 61-Cys 9 1  in bovine 
PLA. Deletion would shorten these loops but would not  affect the gross 
shape of the whole molecule. For this reason a tryptophan found in most 
elapid phospholipases is placed in the middle of two deletions; it is sup- 
posed to replace the bovine sequence Val-63-Leu-Val-65. 

The B chain of/~-bungarotoxin occurs as a covalent complex with the 
A chain. The complex does not  contain free sulfhydryl groups. Since 
12 half-cysteines are present at conserved sites, the A chain might very 
well be attached via the unique cysteine at position 15. 

Two proteins are reported to be devoid of  phospholipase activity: 
Notechis II-1 and taipoxin y-chain. The former, which binds Ca 2+ and 
does react with active site irreversible inhibitors, has a normal elapid 
phospholipase structure except for the substitution of  Ser for the other- 
wise invariant Gly-30 (Lind and Eaker 1980). Since this part of the 
main chain participates in Ca 2÷ binding one might suppose that although 
the enzyme binds Ca 2÷ ions the Ca is not  bound at the proper position. 
This situation might then resemble the enzyme-barium complex which is 
very similar to the enzyme-calcium complex but lacks enzymatic activity 
( Verhei] et al. 1980a). 

The taipoxin y-chain has several salient structural features different 
from other phospholipases: 
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1. At the N terminus it contains eight additional residues as do the zymo- 
gens of the pancreatic phospholipases. 

2. If the cysteines present at positions 15 and 19 form a disulfide bridge, 
a short extra loop is present near the entrance of the active site. 

3. It is the only sequence with Pro-31 in a part of  the sequence important 
for Ca binding. 

4. There is no deletion between residues 55 and 68. 
5. A polysaccharide is attached to Asn-70 which is located at the entrance 

of the active site. 

The precursors of the pancreatic enzymes, which are devoid of activity 
on micellar substrates but efficiently hydrolyze monomeric substrates, 
differ from the active enzymes only by the presence of a polar activation 
peptide at the N terminus. Activation peptides containing three, five, or 
seven residues have been reported (Nieuwenhuizen et al. 1973a; Dutilh 
et al. 1975; Evenberg et al. 1977a), all containing an invariant arginine 
residue at the C terminal end. 

In 1972 it had already been suggested that the a-amino group of PLA 
forms an internal salt bridge, thereby stabilizing the active site geometry 
(Abita et al. 1972). This hypothesis has been supported by the high 
(8.3-8.9) pK values of this group (Jansen 1979; Janssen et al. 1972). 
Also the finding that replacement of Ala-1 by other amino acids can have 
drastic effects (see Sect. 6) stresses the importance of this bridge. Finally, 
the refined X-ray structure of bovine PLA shows that Ala-1 is indeed 
buried in the interior of the enzyme. The a-amino group is linked via 
a water molecule to the side chain of Asp-99; moreover, the a-ammonium 
group is hydrogen bonded to the side chain of Gln-4 and to the main 
chain carbonyl carbon of Asn-71 (see also Sect. 9). 

Despite a remarkable sequence homology of the enzymes isolated 
from pancreatic tissue and from the venoms of all classes of venomous 
snakes their behavior in solution is quite different. Whereas the enzymes 
from C adamanteus and C atrox only occur as dimers even at concentra- 
tions as low as 50 tag/ml (Wells and Hanahan 1969; Hachimori et al. 1971 ), 
the enzyme from porcine pancreas exists as monomer even at concentra- 
tions of 5 mg/ml (de Arau]o et al. 1979). Several other phospholipases 
show a concentration-dependent association, generally in the concentra- 
tion range between 0.05 and 0.5 mg/ml. This equilibrium is shifted to 
the monomeric form at low pH, whereas calcium ions display a more 
complex behavior, showing either no influence on the monomer-dimer 
equilibrium or shifting it toward the monomeric or to the dimeric form 
(Shiloah et al. 1973; Roberts et al. 1977a; Joubert and van der Walt 1975 ; 
Yang and King 1980b). Mal'tsev et al. (1979) showed that Ca 2+ ions 
alter the association-dissociation rate constants of the monomer-dimer 
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equilibrium of Naja n. oxiana PLA, but the equilibrium constant was 
hardly affected. 

Based on the concentration-dependent dimerization one might expect 
molecular weights between about 14000 and about 28000.  However, 
a much broader range is reported in the literature with values ranging 
from 10 000 to 38 000. The higher molecular weight may reflect associa- 
tion beyond a dimer. The lower values may be due to systematic errors 
caused by hydrophobic interactions with the gel matrices or to abnormal 
SDS binding properties caused by the relatively large proportion of hydro- 
phobic residues (de Jong et al. 1978). In any case, since no sequenced 
" t rue"  phospholipase has a molecular weight outside the range of  13 0 0 0 -  
14000, characterization of phospholipases by only molecular weight 
determination must be considered of  limited value. 

Since all extracellular PLAs are calcium dependent,  it is not  surprising 
that those phospholipases that were tested are able to bind calcium ions. 
In general the observed dissociation constants fall in the range of 0 . 1 -  
1 mM at pH 7 - 8 .  For a limited number of enzymes detailed studies per- 
taining to spectral and conformational changes as well as to amino acid 
side chains involved in the binding have been published (see Sect. 7). 

5 Kinetic Analyses 

5.1 Introduction 

The kinetic behavior of  a large number of water-soluble enzymes acting 
on molecularly dispersed substrates (including esterases) has been ana- 
lyzed in detail. Usually these enzymes display classical Michaelis-Menten 
kinetics and important  information has been obtained on the mechanism 
of action of  these proteins. 

Phospholipase A2 (EC 3.1.1.4.) belongs to a special group of esterases, 
the lipolytic enzymes, the specific activity of which strongly depends on 
the state of  aggregation of  the substrate. The rate of hydrolysis of  phos- 
pholipids increases by several orders of magnitude on passing from 
monomolecularly dispersed to micellar solutions. 

The analysis of  the kinetic properties of  this enzyme acting on mono- 
molecularly dispersed substrates has provided a theory about the mech- 
anism of  catalysis (cf. Sect. 10). Attempts  to reveal kinetic pathways for 
these enzymes acting upon their biologically relevant aggregated sub- 
strates have not met with success so far, notwithstanding extensive 
efforts. Up till now no general agreement even exists on the model of 
lipolysis from which the kinetic equations have to be derived. 
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As has been discussed in recent review papers (Brockerhoff and Jensen 
1974; Verger and de Haas 1976; Skmbriva and Desnuelle 1978; Verger 
1980), the main difficulty in understanding lipolysis is our lack of infor- 
mation concerning the mechanisms leading to the observed enhanced 
rates as induced by certain organized lipid-water interfaces. Although it 
is evident that the physicochemical properties of the aggregated phos- 
pholipid systems play a predominant role in lipolysis, the effects of 
important factors such as steric environment and hydration of polar 
headgroups, chain packing density and surface defects, surface charge, 
and -pH still are poorly understood. This results in the use of  rather 
vague terms as "quality of  interface", "supersubstrate", etc. 

Three speculative hypotheses have been suggested to explain the burst 
in enzyme activity upon substrate aggregation. 

1. "Enzyme theory",  which assumes a conformational change in the 
adsorbed enzyme controlled by the microenvironment of the lipid- 
water interface and resulting in an optimization of the active site. 

2. "Substrate theory",  which assumes a much higher susceptibility of 
substrate molecules toward the enzyme in the lipid-water interface. 

3. "Product theory",  which assumes that the rate limiting step of product 
release, being very slow in water, markedly increases in the hydropho- 
bic lipid-water interface. 

The in vivo function of PLAs is a controlled degradation of aggregated 
long-chain phospholipids, and our final aim should be the elucidation of  
the mechanism of action under these conditions. Based on the above 
mentioned difficulties, we will try, however, to evaluate kinetic data 
obtained with other systems as well in the following order: (1) Mono- 
meric substrates, (2) micellar substrates (micelles of short-chain lecithins 
and mixed micelles ofphospholipids with detergents), (3) monomolecular 
surface films of medium-chain phospholipids, and (4) phospholipids pres- 
ent in bilayer structures. 

5.2 Monomeric Substrates 

As early as 1961, Roholt andSchlamowitz in a remarkable study investiga- 
ted the kinetics of crude PLA from Crotalus durissus terrificus on molecu- 
larly dispersed dihexanoyl lecithin. The enzyme was found to act optimally 
at pH 8, and Ba 2÷ ions were shown to inhibit the hydrotysisby competition 
with the essential cofactor Ca 2÷ for binding to the protein.The highly water- 
soluble reaction products,hexanoic acid and 1 -hexanoyl-lysolecithin 4, did 

4 Most probably this tysolecithin would have inhibited the enzyme at higher con- 
centrations. Cf. Wells (1972) 
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not appear to influence the reaction rate. On the other hand a number of 
monoalkyl long-chain surfactants such as egg lysolecithin, sodiumdode- 
cylsulphate or Tween, strongly influenced the hydrolysis rate, and it is 
now evident that these effects have to be attributed to the incorporation 
of the substrate in the detergent micelle (see Sect. 5.3). 

The first very detailed kinetic analysis of a highly purified PLA from 
Crotalus adamanteus, using as substrate monomeric 1,2 dibutyryl leci- 
thin, was reported in 1972 by Wells. The pH activity profile of  this 
enzyme (opt imum pH 8-8 .5)  is in agreement with the results of Roholt 
and Schlamowitz (1961), and under no circumstances was it possible to 
find any cation which could replace Ca ~÷ in the enzymatic reaction. The 
pH dependence of  the reaction suggests that a group with pK 7.6 is involved 
in the catalytic step as well as in Ca ,+ binding (see Wells 1974b). Besides 
the important  consequences of  these studies for our understanding of the 
mechanism of catalysis of PLA, the author clearly demonstrated that his 
results are consistent with an ordered addition of ligands to the venom 
enzyme. Ca 2÷ adds first, followed by monomeric substrate. In addition 
the kinetic results point to an ordered release of products where fatty 
acid is released first from the enzyme, followed by the lysolecithin. It has 
to be remarked that the Crotalus adamanteus PLA has an exceptionally 
strong tendency to form dimeric enzyme complexes in aqueous solution. 
Very recently Smith and Wells (1981) demonstrated by "active enzyme 
ultracentrifugation" that it is the dimeric form of  the enzyme which 
catalyzes the hydrolysis of monomeric substrate. 

Using a series of  homologous short-chain diacyl lecithins varying in 
chain length between C2 and Cs, Zhelkovskii et al. (1978a) also showed 
that a homogeneous preparation of PLA from the cobra Naja na]a oxiana 
is able to hydrolyze these short-chain lecithins at concentrations far 
below their CMC. Although the individual kinetic constants kca t and K m 
could not  be derived because the Michaelis constants are considerably 
higher than the CMC values, it is evident that the efficiency of  the cata- 
lytic transformation of the substrate strongly depends on chain length of  
the hydrocarbon moiety of the substrate. From the results obtained it 
follows that the PLA molecule must possess an apolar region and most 
probably both acyl chains participate in the hydrophobic interaction 
between substrate and enzyme. 

Viljoen and Botes (1979) investigated the kinetic properties of pure 
PLA from Bitis gabonica on monomeric dihexanoyl lecithin as a function 
of pH. The authors confirmed the results of Wells (1972) that these 
enzymes follow a kinetic mechanism of  the ordered bi-ter type and 
found a kcat/PH dependence controlled by a group active in catalysis 
with a pK of 6.8 which probably is a histidine residue. It is not  clear why 
the authors used 0.5 nu~/lipid as highest substrate concentration, taking 



t 14 H.M. Verheij et al. 

into account the CMC of dihcxanoyt-lecithin which is about 10 nag. 
Although the value of kcat/K m can be determined in this way, the abso- 
lute values of  kca t and K m could have been estimated with more accuracy 
by using higher substrate concentrations. The enzyme-Ca 2÷ dissociation 
constant was found to be pH dependent and controlled by a group with 
a pK of 6 .0 -6 .4  which was assigned a carboxylate function. This assign- 
ment is based, however, on disputable experimental evidence. In addition 
they reported that the Michaelis constant K b is pit  independent in the 
range 5 .5-9 .0  which could be in agreement with a predominantly hydro- 
phobic interaction between enzyme and substrate. The comparison made 
by the authors between their present results (obtained with molecularly 
dispersed dihexanoyl lecithin) and those reported previously by them 
(obtained with dihexadecanoyl lecithin) should be re-evaluated (see 
Sect. 5.5). 

Although the highly purified pancreatic (pro)PLAs are also known to 
be able to hydrolyze molecularly dispersed short-chain lecithins (de Haas 
et al. 1971; Pieterson et al. 1974b), technical difficulties connected with 
the use of the titrimetric assay (see also Wells 1972) have prevented so far 
more extensive kinetic analyses. Using specific chromogenic short-chain 
lecithins containing thioester bonds, Volwerk et al. (1979) reported kine- 
tic data of porcine pancreatic PLA in the monomeric substrate region. 
In contrast to the venom enzymes, the initial velocity patterns of the 
pancreatic phospholipase are consistent with random addition of  sub- 
strate and Ca 2÷ to the protein. Enzyme-monomer substrate binding in 
the absence of  Ca 2÷ was confirmed by direct binding studies. This binding 
is most probably not  aspecific as shown by Volwerk et al. (1974): an 
increasing protective effect against irreversible active-site His-48 modifica- 
tion was observed for a series of monomeric substrates and lysolecithins. 
This technique allowed the quantitative determination of dissociation 
constants of  monomeric phospholipids. The increase in z~ G (~ 600 cal per 
extra methylene group) upon binding to the active center of the enzyme 
is in agreement with predominant hydrophobic binding. Although both 
studies were hampered by unfavorable Km-CMC ratios, hydrophobic 
interaction again seems to be the main driving force for binding of mono- 
meric substrates to the enzyme. The Vmax-PH profiles show that the 
activity of  the pancreatic enzyme is controlled by a group of approxi- 
mately pK 5.5, tentatively assigned to His-48. 

In summary, although most of our present knowledge of  the mecha- 
nisms of  catalysis of  PLA has been obtained by analyses of the kinetics 
of hydrolysis of monomeric substrates, it must be emphasized that these 
studies are often seriously hampered because of comparable values of K m 
and CMC. In such cases the monomeric substrate region is so limited that 
Michaelis-Menten plots of  velocity as function of substrate concentration 
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do not  allow the separate determination of kca t and Kin, and only their 
ratio can be determined. Of course in these situations potential inhibitors 
which increase the apparent K m value cannot be investigated. Despite 
extensive synthetic efforts in the authors' laboratory involving chemical 
changes both in the polar head group and in the alkyl chain, hardly any 
success was obtained in attempts to raise the CMC of the substrate while 
at the same time keeping the K m low. Most probably the hydrophobic 
binding forces which control both micelle stability and enzyme-monomer 
attraction are very similar and the K m-CMC ratio hardly changes. 

5.3 Micellar Substrates 

5.3.1 Micelles o f  Short-Chain Lecithins 

The above-mentioned difficulties in obtaining detailed kinetic data on 
PLA with monomeric substrates combined with the fact that lipolytic 
enzymes in vivo act on aggregated phospholipids led various investigators 
to examine the kinetics of  PLA acting on micellar short-chain lecithins. 
De Haas et al. (1971) studied the action of porcine pancreatic PLA on 
a series of  short-chain diacyl lecithins varying in acyl chain length from 
C6 to C9. Large increases in reaction rates were observed upon passing 
the CMC, and in the micellar region seemingly normal Michaelis curves 
were obtained describing the progressive adsorption of the enzyme at the 
surface of  the micelles. Notwithstanding their slight differences in chemi- 
cal structure, the various lecithins are degraded with very different rates, 
indicating the importance of the "quali ty" of the lipid-water interface 
for hydrolysis. 

Initial rate measurements were interpreted to be consistent with a ran- 
dom addition of  Ca 2÷ and substrate to the enzyme which is in agreement 
with the results obtained for this enzyme in the monomeric substrate 
region (Volwerk et al. 1979). These results would support the existence 
of separate and independent binding sites for substrate and metal activator 
on the enzyme, although Pieterson et al. (1974a) in direct binding studies 
reported a synergistic effect for Ca 2÷ and substrate binding between pH 5 
and 8. The porcine pancreatic enzyme works optimally at a pH of about 
6, but such values obtained with aggregated substrates have to be con- 
sidered as apparent and are essentially uninterpretable [cf. also Wells 
(1974a) and Kensil and Dennis (1979)]. 

A dramatic activation of  the enzyme was found at high salt concentra- 
tions. No clear-cut explanation was provided, but the concomitant 
decrease of  the apparent K m supports the idea that micellar binding to 
this enzyme also involves mainly hydrophobic forces. 
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Detailed kinetic analyses of PLA from Crotalus adamanteus acting on 
dibutyryl, dihexanoyl, and dioctanoyl lecithin both below and above 
the CIVIC were reported by Wells (1974a). Also for the venom enzyme a 
dramatic increase in catalytic efficiency was observed when the substrate 
concentration exceeded the CMC. In contrast to the pancreatic enzyme, 
this venom PLA requires an ordered addition of Ca 2+ and substrate both 
in micellar and monomeric form. No activation of the venom enzyme 
was observed in the presence of high salt concentrations. Although the 
Vma x of the phospholipase acting on rnonomeric dibutyryl lecithin is 
some 3000 times lower than the Vma x measured on dioctanoyl lecithin 
rnicelles, dibutyryl PC concentrations near the K m of this substrate 
(~ 40 raM) were found to competitively inhibit the enzyme action on 
micellar dioctanoyl PC. This result was interpreted as a support for a 
mechanism of PLA in which the enzyme after each single encounter with 
the micellar interface and a catalytic cycle returns to the aqueous phase. 

This argument, however, is valid only if diCa -PC is not present in the 
diC8 -PC micelle. If part of the diC4 PC is incorporated into mixed micelles 
together with diCs-PC, the quality of the lipid-water interface will 
change and inhibition is to be expected. The observation that no hydro- 
lysis of diC4 -PC occurs cannot be adduced as evidence that diC4 -PC does 
not partition between solvent and diCs-PC micelles. Even if present in 
the micelle, the diC4 -PC monomer will hardly be able to compete for the 
monomer binding site on the enzyme with the monomeric diC8-PC mole- 
cule. Compare the monomer-E dissociation constants: 

1.K m diC4-PC ~ 40 mM 
2. K m diC 6 -PC ~ 4 mM 
3. K m diCs-PC ~ 0.4ram 

Indeed, such a "single encounter mechanism" in which the enzyme 
"hops" up and down between bulk and micelle surface would not be 
fundamentally different from its interaction with monomeric substrate. 
The large rate enhancements attendent upon substrate aggregation were 
tentatively explained by assuming (1) marked increase in the rate of pro- 
duct release s, (2) a much lower entropy of activation, or (3) conforma- 
tional constraints placed on the glycerophosphoryl-chotine moiety of the 
substrate in the aggregated state. 

In an attempt to improve our understanding of the large rate enhance- 
ment observed with PLA when the substrate concentration exceeds the 
CMC, Pieterson et al. (1974b) compared the kinetic data of the "active" 
pancreatic enzyme with that of its natural zymogen using short-chain 
substrates below and above the CMC. Both proteins catalyze the hydro- 

5 This means that the interface can affect the apparent kinetic mechanism of PLA 
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lysis of  short-chain monomeric  3-sn-phosphatidyl cholines with a similar 
albeit low efficiency, indicating the pre-existence of  the catalytic site in 
the zymogen [see also Volwerk et al. (1979)].  Direct binding studies 
involving Ca 2÷ and monomeric  substrate analogs and irreversible inactiva- 
tion characteristics also point  to a very similar architecture of  the active 
center in PLA and its zymogen (Volwerk et al. 1974). The aggregated 
(micellar) form of  the lecithins is hydrolyzed effectively only by  PLA 
and not  by the zymogen. Apparently only the active form of  the pancre- 
atic enzyme recognizes certain organized lipid-water interfaces and hydro- 
lyzes such substrates in a very efficient way. These results together with 
a previous monolayer  s tudy (Verger et al. 1973; see also Sect. 5.4) led to 
the hypothesis that "act ive" PLA, in contrast to its zymogen, contains a 
hydrophobic  surface region, the interface recognition site (IRS), through 
which the enzyme binds 6 to the lipid-water interface. Direct binding 
studies involving both active PLA and its zymogen with micellar sub- 
strates and analogs conf~med that only the "act ive" enzyme interacts 
with interfaces (Pieterson et al. 1974b). The fact that irreversible modifi- 
cation of  the active center in PLA does not  impede the binding of  the 
protein to interfaces (Volwerk et al. 1974) suggests a functional and 
topographic separation of  IRS and the active center. Nuclear magnetic 
relaxation studies by Ilershberg et al. (1976b)  are in agreement with 
such topologically distinct sites. A similar conclusion was reached by 
Roberts et al. (1977c) for  the Na/a na]a PLA. As shown in Fig. 5, two 
successive equilibria are supposed to exist, first a rate-limiting, reversible 

Fig. 5. Proposed model 
for the action of PLA (E) 
at an interface (Verger 
et al. (t973). A similar 
model has been proposed 
by Vidal et al. (1978) to 
explain the activation ki- 
netics of fiver 3-D-(-)- 
hydroxybutyrate apode- 
hydrogenase by phospho- 
choline containing fipids. 
For description of the 
model see text 

/ 
E P 

A comparable "hydrophobic head" or "interfacial affinity region" in lipolytic 
enzymes has been independently postulated by Brockerhoff (1973). Because the 
mode of interaction of the enzyme with the interface is still under discussion, 
"binding" is used in a rather loose sense and stands for different forms of interac- 
tion such as "adsorption", penetration", "anchoring", etc. 
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penetration 7 of  the enzyme into the interface (E ~- E*), followed by the 
formation ~f  a "two-dimensional Michaelis complex"  (E* + S ~- E 'S) .  
The dramatic rate enhancement observed for PLA from various sources 
when the substrate concentration exceeds the CMC and lipid-water inter- 
faces are formed has been at tr ibuted to a conformational  change in the 
bound protein (E*) resulting in an optimal alignment of  the active site 
amino acid residues. 

This model  could also explain why irreversible active-site inhibition of  
PLA by p-bromophenacyl  bromide is stimulated in the presence of  cer- 
tain micellar interfaces (Volwerk et al. 1974). Although the apolar rea- 
gent is incorporated in various forms of  lipid aggregates, such as micelles 
and lamellar structures, only those interfaces which allow binding of  
PLA to the interface gave rise to increased inhibition. 

In a very interesting study Allgyer and Wells (1979) reana lyzed  the 
hydrolysis kinetics of  Crotalus adarnanteus PLA acting on monomeric  
and micellar diC6 -, diC7 -, and diC8 -PC. The abnormal parabolic velocity 
dependence on substrate concentration near the CMC was tentatively 
explained by a thermodynamic model for micelle formation in which 
two species of  micelles exist. In this formulation the first micelle is 
formed at lecithin concentrations near the CMC and the second micelle 
arises from the first at higher concentrations of  lecithin (Hershberg et al. 
1976a). A satisfactory fit to the kinetic data was achieved, assuming that 
the second micelle is the form of substrate responsible for the large rate 
enhancement observed above the CMC. In agreement with an early hypo-  
thesis of  Brockerhoff (1968) and with recent laC-NMR results of  
Schmidt et al. (1977) the authors suggest that  dehydrat ion of  the carbo- 
nyl groups in micelle II might be the main reason for the enhanced activ- 
ity of  PLA. The enzyme's  extreme sensitivity for small changes in lipid 
hydrat ion was noted earlier by Wells and colleagues (Wells 1974c;Misio- 
rowski and Wells 1974;Poon and Wells 1974). 

In summary,  from the foregoing it is clear that PLAs from different 
sources display dramatic rate enhancements when their substrates pass 
from the monomeric into the micellar form. Both for the Crotalus PLA 
and the pancreatic enzyme it has been demonstrated that  substrate mole- 
cules at concentrations below their CMC are hydrolyzed much more 
rapidly after incorporation into mixed micelles, even with nonsubstrates 
or with competitive inhibitors. No agreement, however, exists on the ori- 
gin o f  this interracial activation. 

7 Penetration is used because of the multiple indications that at least for the pan- 
creatic enzyme hydrophobic interactions play a major role in the binding process 
(Verger et al. 1973; Verhei] et al. 1981). Most probably an insertion of apolar 
amino acid side chains in the hydrophobic lipid core is preceded by a more loose 
adsorption process 
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Wells (1972, 1974a, 1978) prefers the "substrate" hypothesis: it is the 
lipid-water interface which confers a preferred conformation 8 on the 
substrate molecule which would allow for a higher fraction of productive 
single encounters with the enzyme. On the other hand the investigators 
working with the pancreatic enzymes favor the "enzyme" theory in 
which PLA reversibly "binds" to the lipid-water interface, followed by 
a conformational change in the protein with increased catalytic activity. 
Although it could be argued that PLAs from various sources might follow 
different pathways, the high structural resemblance of these enzymes 
makes such an idea unattractive. In the reviewers' opinion the "enzyme" 
theory does not exclude the "substrate" hypothesis: both could be 
acting together and result in the large rate enhancement observed. How- 
ever, the assumption that the enzyme necessarily leaves the interface 
after each catalytic cycle is based on disputable arguments, and it is not 
clear why such a mechanism would lead to accelerated catalysis. 

5.3o 2 Mixed Micelles o f  Phospholipids with Detergents 

Detergent solutions with a low CMC solubilize phospholipids by incor- 
poration into mixed micelles. Such systems are attractive for kinetic 
investigations of fipolytic enzymes because, at least at the first glance, 
they combine all the advantages of isotropy of micellar solutions with 
the possibility of investigating long-chain natural phospholipids by classi- 
cal pH stat assay techniques. In a series of papers Dennis (1973a,b; 
1974a,b), Deems and Dennis (1975), and Roberts et al. (1978b) exten- 
sively analyzed the kinetic behavior of PLA from Na]a na]a na]a acting 
on lecithins (varying in chain length from C6 to C16) solubilized in the 
nonionic detergent Triton X-100. Although this detergent is somewhat 
polydisperse, its neutral character constitutes a distinct advantage over 
charged amphiphiles such as bile salts, CTAB, SDS, etc. in kinetic studies 
of phospholipases which are dependent on metal cofactors. Biologically 
relevant phosphofipids, such as the long-chain lecithins DMPC and DPPC, 
form bilayer structures in water (liposomes, vesicles) interfaces which are 
hardly attacked by most PLAs (compare Sect. 5.5). Addition of increas- 
ing amounts of Triton gradually transforms these lamellar structures into 
mixed micells, and at a molar ratio of Triton to lecithin of about 2:1, 
isotropic solutions are obtained which are optimally susceptible to the 
action of the cobra enzyme 9. 

8 Support for a change in monomer PL conformation/orientation occurring as the 
1 13 molecules become packedin an interface was obtained in H and C-NMR studies 

of Roberts and colleagues (Roberts et al. 1978a; Burns and Roberts 1980) 
9 The authors demonstrated (Robson andDennis 1979 ;Dennis 1974b) that this forma- 

tion of mixed micelles takes place only above the thermotropic phase transition tem- 
perature of the phospholipid. Formation of mixed micelles at temperatures below 
the transition temperature requires much higher ratios of Triton to phospholipid 
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Higher mol fractions of the detergent gave rise to increasing "inhibi- 
t ion" of  the phospholipase, a kinetic effect which has been ascribed to 
"surface dilution" of  the substrate. To explain the observed "surface 
dilution" kinetics, Deems et al. (1975) used a model of  lipolysis compar- 
able to the one shown above in Fig. 5. By changing the lecithin concen- 
tration in the interface of the mixed micelle with Triton, they calculated 
approximate values of  K A (= kp/k d in Fig. 5), the dissociation constant 
for the enzyme-mixed micelle complex, and KBI (= K~v 1 in Fig. 5), the 
two-dimensional Michaelis constant for the catalytic step. Credit should 
be given to the authors for the originality of  the idea to quantitatively 
separate the affinity constant of  the enzyme for the interface and the 
binding to the substrate in the interface. Unfortunately, the numerical 
values reported have to be considered as rather rough estimates, taking 
into account the simplifying assumptions which were required to apply 
the kinetic equations. As has been extensively discussed before (Verger 
and de Itaas 1976), changes in the molar ratio of Triton to phospholipid 
might induce differences in the quality of the lipid-water interface and 
thereby influence K~. Such changes have been detected in fact by the 
authors (Dennis 1974a; Roberts et al. 1979). On the other hand reliable 
estimates of K~ are even more difficult to obtain, Under "saturating" 
conditions when all enzyme molecules were bound to the mixed micellar 
surface, the authors showed that the velocity remained linearly propor- 
tional with the amount  of  lecithin in the interface of the mixed micelle 
up to a mol fraction of 0.33 (Dennis 1973b; Deems et al. 1975). This 
implies that the two-dimensional lecithin concentration is far below K B, 
and even rough estimates of  its absolute value become impossible. 

In a similar attempt to separate K~I from kp/k d (Fig. 5) and to obtain 
a numerical value for the two-dimensional Michaelis constant, Slotboom 
et al. (1976) used two enantiomeric 2-sn-lecithins containing fatty acids 
of  different chain length in positions 1 and 3. By incorporating mix- 
tures of  both fl-lecithins into Triton micelles, keeping total phospholipid 
concentrations and total amount of  Triton constant, the enzyme activ- 
ity could be followed as a function of  the mol fraction of  each of  the 
~J-lecithins. Because of the identical physicochemical properties of 
enantiomers, the quality of  the interface remains constant. Although 
this technique clearly showed that the K~I values for stereoisomers are 
not  identical, a quantitative relationship can be obtained only under 
interfacial saturation conditions (all E in form E*). Pancreatic PLA has 
a very low affinity for pure Triton micelles, as was found also for the 
Cobra enzyme (Roberts et al. 1977c), and therefore the distribution of 
enzyme over bulk interface (E ~ E*) will strongly depend on the total 
amount  of/3-lecithin incorporated into the mixed micelles. This implies 
for this detergent that interfacial saturation is difficult to reach. Using 
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n-alkylphosphorylcholine as a carrier micelle for which the enzyme has 
a high affinity, kca t and K~ values could be obtained for both stereoiso- 
mers. It must be pointed out, however, that also in this case a simplifying 
assumption had to be made because the molecules of the carrier matrix 
are competitive inhibitors of  the enzyme. In addition in this study one 
might also wonder whether the quality of the lipid-water interface 
remained rigorously constant upon incorporation of increasing amounts 
of  H-lecithin. 

Roberts et al. (1977c) proposed a new model for the interaction 
between Na]a na]a PLA and mixed micelles of  Triton and phospholipid: 
two phospholipid molecules should be required, one to sequester the 
enzyme to the interface and the other for subsequent catalysis. Based on 
cross-linking experiments of the enzyme in the presence of  excess sub- 
strate it was concluded that the substrate is essential for enzyme aggrega- 
tion and that probably the resulting dimer unit is the active form of the 
enzyme. This "'dual-phospholipid" model, however, was heavily based on 
the presumed "half-site reactivity" of this enzyme (Roberts et al. 1977a), 
which is now known to be incorrect (Darke et al. 1980). Of course, the 
withdrawal of the "half-site" reactivity does not need to invalidate the 
proposal that the cobra enzyme aggregates to its enzymatically active 
dimer form in the presence of substrate. On the other hand, the results 
of the cross-linking experiments, where under optimal conditions trimer 
formation is relatively more important than dimerization, are not  fully 
convincing. 

Maybe the strongest evidence for the "dual-phospholipid" model has 
to be found in the "specificity reversal" of  this enzyme (vide infra). An 
interesting observation in this study is that the cobra enzyme, like the 
pancreatic PLA, has no affinity for pure Triton micelles. Only mixed 
micelles containing phospholipids (including sphingomyelin) in the pres- 
ence of Ca 2+ or Ba 2÷ ions bind to the enzyme. Also lysolecithin or free 
fatty acid incorporated in the Triton micelle enable the enzyme to bind 
to the mixed micelles and with these products no bivalent metal ions 
were required for binding. Although these findings might be interpreted 
as a support for a mechanism in which PLA initially interacts with a 
single lipid molecule in the interface, other explanations are possible 
as well. An interesting case of  specificity reversal oftheNa]a naja PLA was 
described by Dennis and co-workers (Adamich and Dennis 1978; Roberts 
et al. 1979; Adamich et al. 1979) which might have a direct relevance to 
the mechanism of  action of  this enzyme. Comparing the action of the 
enzyme on mixed micelles of  Triton and long-chain lecithin with that on 
mixed micelles of  Triton and long-chain PE, the cobra PLA hydrolyzes 
the lecithin-containing micelles at a much higher rate. However, in Triton 
micelles containing both PE and PC in equimolar amounts,  the enzyme 
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was shown to possess a clear preference for PE as substrate. The activat- 
ing effect on PE hydrolysis appeared not  to be limited to long chain PC, 
but several other phosphoryl choline containing lipids showed a similar 
behavior, such as lyso-PC, sphingomyelin, and even dibutyryl lecithin. 
These results were tentatively explained by the possible existence of  two 
binding sites on the enzyme molecule: (1) an activator site which requires 
a lipid molecule containing the phosphorylcholine moiety and at least 
one fatty acyl chain and (2) a head group nonspecific catalytic site. 

While it might be argued that activation of  PLA towards PE by long- 
chain phosphoryl choline lipids could be caused by subtle changes in the 
lipid-water interface of the mixed micelle, the activating effect of the 
highly water soluble dibutyryl lecithin constitutes the strongest evidence 
for the proposed direct interaction of  the PC molecule with the enzyme. 
Taking into account the relatively weak activating effect of dibutyryl PC 
(four times) as compared to the twofold activation by an aspecific, non- 
phosphorylcholine-containing lipid such as oleic acid, it is, however, of  the 
utmost importance to be certain that dibutyryl lecithin is not  partially 
incorporated into the mixed micelle. The experimental techniques used by 
the authors (Roberts et al. 1979 ;Adamich et al. 1979), namely, equilibrium 
gel filtration in the absence of PE and a 1 P-NMR, would probably not detect 
a low incorporation of  dibutyryl PC in the mixed micelle. The activating 
effects observed here of phosphorylcholine containing lipids on the venom 
PLA hydrolysis rate of  more negatively charged phospholipids are in agree- 
ment with previous reports on similar activation by n-alkylphosphoryl- 
choline of  Crotalus adamanteus venom PLA hydrolysis of negatively 
charged phospholipids such as cardiolipin, phosphatidylglycerol, and phos- 
phatidic acid (van Deenen and de Haas 1963; de Itaas et al. 1966). The small 
size of  a PLA molecule, however, makes it difficult to suppose the presence 
of two binding sites for the relatively large phospholipid molecules. 
The previous suggestion of Roberts et al. (1977c) that the substrate 
might induce enzyme aggregation and that probably the resulting dimer 
is the active form of  the enzyme would solve the "sterical" problem, but 
in that case the dimer structure should be asymmetrical. 

In summary, the combined efforts of Dennis and colleagues lead to 
the following model for hydrolysis of  mixed micelles by the Naja naja 
naja PLA. The enzyme, present as monomer  under catalytic conditions, 
binds to a single substrate molecule in the interface. A conformational 
change occurs in the enzyme molecule which gives rise to dimerization of  
the protein. The second PLA molecule binds then a second phospholipid 
molecule of  the interface to a functional active site and hydrolysis takes 
place. Binding of  the enzyme to the phospholipid requires Ca =+ and the 
resulting dimeric structure is asymmetrical. 
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5.4 Monomolecular Surface Films of  Medium-Chain Phospholipids 

The principles, advantages, and drawbacks of this attractive technique to 
investigate the kinetics of  lipolytic enzymes have been discussed in con- 
siderable detail in two recent reviews (Verger and de Haas 1976; Verger 
1980). Therefore, we will limit ourselves here to a discussion of  a few very 
recent papers. Although a number of  them deal with lipase-substrate 
interactions in rnonolayers and therefore, strictly speaking, do not  fit in 
this review on PLA, the general conclusions which can be drawn from 
these studies may have a large bearing on our understanding of the inter- 
action of  PLA with their specific substrates. 

In a series of papers Dervichian and Barque (1979) and Barque and 
Dervichian (1979a,b) investigated the kinetics of pancreatic lipase acting 
on surface films of  1,3 didecanoylglycerol. The authors showed that the 
enzyme adsorbs in a reversible way to the lipid monolayer and that the 
equilibrium surface concentration is a linear function of the bulk lipase 
concentration. In agreement with previous studies (Zografi et al. 1971) 
in which a similar "constant surface pressure" setup was used, it was 
found that a rapid establishment of  the adsorption equilibrium required 
efficient stirring of  the subphase. 

However, in contrast to most other monolayer studies using lipolytic 
enzymes (cf. Verger and de Haas 1976), Dervichian and Barque stopped 
stirring after the initial adsorption equilibrium was reached and followed 
enzymatic velocity as function of  various variables such as surface pres- 
sure, enzyme concentration, pH, etc. after film transfer to an enzyme- 
free bulk phase. The fact that after this film transfer the lipase initially 
displays the same hydrolysis rate as before transfer is in good agreement 
with the results of  Rietsch et al. (1977) and Pattus et al. (1979a) ob- 
tained with pancreatic PLA. Moreover, these experiments clearly demon- 
strate that some kind of fixation of the water-soluble enzyme to the 
lipid-water interface must have taken place. The decline of  enzyme activ- 
ity after transfer, the velocity of  which is dependent on the surface pres- 
sure used, is also in agreement with the reports by Pattus et al. (1979a) 
and this enzyme desorption from the interface is clearly in favor of  a 
reversible adsorption process. 

In their second paper Barque and Dervichian (1979a) studied the 
enzymic velocity dependence on bulk enzyme concentration and on the 
surface substrate density, which is proportional to the surface pressure 7r. 
It is interesting to note that notwithstanding the proportionality between 
bulk enzyme concentration and velocity of  hydrolysis, the extrapolated 
curve does not  pass through the origin. This behavior has also been reported 
by other investigators ( Verger and de Haas t 973; Pieroni and Verger 1979) 
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and so far no adequate explanation has been provided. To study the rela- 
tionship between enzyme velocity and substrate density at the interface 
the authors applied two techniques: (1) the initial adsorption of the 
enzyme and the rate measurement were made at each individual surface 
pressure rr and (2) all initial adsorptions of the enzyme were effected at 
a constant 7r, and after readjustment to the desired surface pressure, the 
hydrolysis rate was measured. The authors claim that in this way the 
effects of the amount of adsorbed enzyme and the specific activity of 
the enzyme on the hydrolysis rate can be separated. Although the obser- 
vation that the amount of enzyme adsorbed to the monolayer at a cer- 
tain surface pressure remained constant upon changing ~r contradicts the 
findings of Verger et al. (1976) and Pattus et al. (1979a), it should be 
realized that the experimental conditions of Dervichian and Barque were 
totally different from those of Verger and Pattus. The latter investigators 
applied continuous and efficient stirring during the whole assay which 
will rapidly readjust the distribution equilibrium of enzyme between 
bulk and monolayer upon surface pressure changes. 

Dervichian and Barque, however, stopped agitation immediately after 
the establishment of the adsorption equilibrium. Perhaps under the latter 
conditions the amount of enzyme adsorbed to the film remains constant 
("frozen") during changes in surface pressure or area and the mixed 
monolayer (lipid plus adsorbed enzyme) might be considered as a segre- 
gated phase. The main conclusion of Dervichian and Barque is that the 
variations of enzymatic hydrolysis rate as a function of surface pressure 
are caused by two effects: changes in amount of adsorbed enzyme and 
changes in the specific activity of the enzyme. In their third paper 
Barque and Dervichian (1979b) studied the enzymatic velocity at con- 
stant surface area, i.e., under conditions where the surface pressure is 
continuously decreasing. Because of the limited stirring procedure 
described earlier it was assumed again that substrate and enzyme together 
form a segregated and well~efined system on the surface. This implies that 
notwithstanding the gradually decreasing substrate density at the surface 
the total amount of adsorbed enzyme (E* + E*S in Fig. 5) remained con- 
stant. The explanation given by the authors is that only E* (cf. Fig. 5) 
is in equilibrium with the bulk enzyme concentration. Upon decreasing 
the surface pressure the equilibrium E* + S ~ E*S is supposed to shift 
to the left and only when [E*] gets higher than the bulk equilibrium 
enzyme concentration would the enzyme desorb. 

The model of lipolysis proposed by Verger et al. (1973)was recently 
checked by Pattus et al. (1979a,b,c) using two radioactively labeled pre- 
parations of porcine pancreatic PLA and a series of medium-chain leci- 
thins containing C8, C9, C1 o, and C1 ~ acyl chains. The lag time observed 
during pre-steady-state kinetics reflects the rate limiting step of the pene- 
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tration of the enzyme in the monolayer. Film transfer experiments 
showed this penetration to be reversible, but the desorption of the 
enzyme from the film is slow as compared to the adsorption which is in 
agreement with the results of Barque and Dervichian. The kinetics of the 
penetration process is governed by the packing density of  the substrate 
molecules, and it seems that the polar head group of the phospholipid 
molecule and its hydration state play an important  role. The steady state 
surface concentration of  the enzyme decreases with increasing film pres- 
sure. However, this surface concentration increases with fatty acyl chain 
length of  the substrate which is in agreement with the idea that hydro- 
phobic interaction dominates the penetration process. 

The influence of  bulk pH on the pre-steady-state kinetics of the por- 
cine enzyme was investigated, and it was found that at alkaline pH the 
penetration capacity strongly decreases (increase of induction time). 
In the presence of  Ca 2+, the equilibrium surface concentration of the 
enzyme was found, however, to be pH independent until the pi t  region 
where deprotonation of  the o~-NH~ group of Ala-1 occurs. Deprotonation 
of this function results in a rapid desorption of  the enzyme from the 
interface. At slightly acidic pH values (~< 6.0) enzyme substrate binding 
occurs in the absence of  Ca 2+, but at higher pH only the E-Ca 2+ complex 
is able to interact with the PC film. The rapid decomposition of  the 
E-Ca2+-PC complex at basic pH upon addition of EDTA again is a strong 
indication for the reversibility of  the binding process. 

Willman and Stewart-Hendrickson (1978) investigated the influence of  
positive charge on the kinetics of  hydrolysis of  diC1 o -PC monolayers by 
PLA from porcine pancreas and Crotalus adarnanteus. Different insoluble 
long-chain amines were incorporated in the substrate PC film and hydro- 
lysis rates were followed in a "zero-order" trough as function of pH 
and amine mol fraction. Because the amines possess very different appar- 
ent pK a values in the mixed surface films, it was possible to follow 
hydrolysis rates as a function of  the surface charge of the monolayer. 
The authors conclude that the inhibition of both PLAs is caused exclu- 
sively by the positive surface charge of  the film and not  by changes in 
film packing. Unfortunately no use was made of radiolabeled enzymes, 
so it is not  clear whether the surface penetration step or the two-dimen- 
sional Michaelis parameters K* and kca t are modified by the positive 
charge of the film. Most probably more meaningful kinetics would have 
been obtained by the mixed-film technique (which will be described later) 
which avoids a continuous change of  the quality of  the mixed film. 

Until now all recent kinetic studies on lipolytic enzymes using the 
monolayer technique have been performed with surface films consisting 
of  one type of  lipid. This is inherent to the technique, as it does not  
allow one to follow individually in one experiment the hydrolysis of  
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more than one substrate species. In the most popular rectangular trough 
design it is also not possible to study the influence of surface inhibitors 
on the kinetics of lipolysis. Hydrolysis of substrate molecules would con- 
tinuously modify the chemical composition of the film by enrichment of 
the inhibitor, resulting in a change of the quality of the interface. Applica- 
tion, however, of the "zero-order" trough (Verger and de tfaas 1973) 
enabled V¢rger and colleagues to study the hydrolysis of mixed mono- 
molecular t'rims of triglyceride and lecithin by pancreatic lipase (Pieroni 
and Verger 1979) and by pancreatic PLA (Pieroni and Verger, to be pub- 
lished). Such studies are of particular relevance since lipolysis in vivo 
involves the participation of several classes of lipids. The principle of the 
method is shown in Fig. 6 where a mixed film of trioctanoylglycerol- 
didodecanoyl lecithin is hydrolyzed by lipase. A most remarkable result 

i i  i [  Suhstrate o non Substrate i Solubte products 

Fig. 6. Principle of the method for 
the study of enzymatic tipolysis of 
mixed monomolecular films (Pieroni 
and Verger 1979) 

from this study is that the mixed films containing increasing mol frac- 
tions of the PC (which is not degraded) are hydrolyzed at a continuously 
increasing rate up to a PC mol fraction of about 0.4. This rate increase 
is not caused by the presence of higher amounts of enzyme in the film 
- on the contrary, radioactivity measurements of the 14 C-labeled lipase 
present in the surface showed that less enzyme is present in the inter- 
face when the mol fraction of PC increases! The observed rate increase 
is the more remarkable because one would expect that substitution 
of triglyceride molecules by PC molecules would give rise to substrate 
dilution and would thereby lower the velocity. In terms of the lipolysis 
model of Fig. 5 the accelerating effect was attributed to a better binding 
between enzyme and triglyceride in the film (lower K* )and/or to an 
increased kca t. It is our feeling that a decrease in K* cannot be used as 
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explanation for the observed enhanced lipolysis rates. According to the 
model of  Fig. 5 a displacement of the equilibrium E* + S -~ E*S to the 
right would result in a concomitant shift of the equilibrium E .~ E*, and 
more enzyme would be attached to the film. Therefore, to explain the 
above results one must assume that the surface defects introduced in the 
triglyceride film by the PC molecules create a microenvironment which 
is favorable for the decomposition of E 'S,  in other words these surface 
defects must increase kca t. A drawback of this mixed-lipid system is the 
use of triglyceride as a substrate for lipase. Additional complications of 
the kinetics can be expected because the first hydrolysis product, dioc- 
tanoin, is insoluble and remains at the lipid-water interface, changing the 
quality of that interface. Although it will be ultimately hydrolyzed by 
lipase into completely soluble products, this is a slow reaction. In a sub- 
sequent study Pieronie and Verger (to be published) investigated the 
hydrolysis kinetics of the same mixed monolayer of trioctanoin/diC1 o PC 
by pancreatic PLA. In this case only PC is degraded and the influence of 
increasing mol fraction of triglyceride on the hydrolysis rate was studied 
as function of film pressure. 

At low surface pressure (10 dynes/cm) which is the optimum for 
hydrolysis of pure diC1 o PC, an increase in mol fraction of triglyceride 
results in a proportional decrease of hydrolysis rate. The amount of radio- 
active enzyme in the film remains roughly constant and independent of 
the chemical composition of the mixed film. This behavior was explained 
by substrate dilution, assuming that the two-dimensional substrate con- 
centration is smaller than KI~ I . At higher film pressures, however, where 
the pure PC film is not hydrolyzed at all because the enzyme is unable to 
penetrate, the substitution of 40%-50% of the substrate molecules by 
triglyceride results in a sudden and very sharp increase of penetrated 
enzyme. This behavior was explained by the creation of surface defects 
("cracks" 1o) at certain molar ratios of triglyceride and PC. Such cracks 
might be caused by isothermal phase separation in the surface film. 
A consequence of  this surface heterogeneity is the fact that the surface 
pressure optimum of the enzyme shifts to much higher values than mea- 
sured with the pure PC substrate. 

Mixed monolayer films of diC12 PC and bovine brain sphingomyelin 
were used by Barenholz et al. (to be published). They investigated two 
radiolabeled PLAs from porcine pancreas and from the venom of Vipera 
berus and studied the kinetics at different surface pressures and molar 
ratios of the phospholipids. Taking into account the complex thermo- 
tropic behavior of natural sphingomyelins which are composed of various 

10 Following a proposal of M.K. Jain such still ill-defined surface defects will occa- 
sionally be indicated by "cracks" 
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acyl chains (broad phase transition between 22°-45°C),  it can be expec- 
ted that mixtures of  this phospholipid with diC12 PC will show nonideal 
mixing in surface films (compare Untracht and Shipley 1977). V. berus 
PLA, an enzyme characterized by a high penetrating power (Boffa et al. 
1980; Verheij et al. 1980b), is relatively insensitive for the cracks intro- 
duced in the surface film by increasing mol fractions ofsphingomyelin. Its 
surface pressure-activity profile does not shift, and the lower hydrolysis 
rates observed with increasing sphingomyelin content could be explained 
just by substrate dilution. However, these experiments demonstrate again 
the high sensitivity of  the weakly penetrating pancreatic PLA for surface 
defects. At low film pressures (10 dynes/cm) where the enzyme experiences 
no penetration problems, addition of sphingomyelin decreases enzymatic 
activity by substrate dilution. At high surface pressures, however, where 
the enzyme is unable to penetrate pure PC films, the insertion of  sphingo- 
myelin molecules in the film gives rise to phase separation and the result- 
ing cracks are immediately recognized by the pancreatic enzyme 11 
which enters the film and high hydrolysis rates are found. This results in 
a dramatic shift in the activity-surface pressure profile. It would be very 
interesting to repeat these experiments with a better defined synthetic 
sphingomyelin. 

In summary, notwithstanding its inherent drawback - a small inter- 
face to volume ratio which makes interfacial enzyme saturation impos- 
sible - the monolayer technique continues to yield valuable information 
on the interaction between lipolytic enzymes and interfaces. Notably film 
transfer experiments, use of radiolabeled enzymes, and mixed film kine- 
tics have considerably extended our insight into lipolysis. Moreover the 
possibility to study pre-steady-state kinetics in a relatively simple way 
should not  be underestimated. Although the technique demands highly 
purified materials, the amounts of  enzyme and substrate are extremely 
low. 

The extension of  the technique to long-chain substrate films by incor- 
poration of albumin or bile salt micelles in the subphase as recently 
described by Scow et al. (1980) and Lairon et al. (1980), respectively, 
can be expected to yield important results on the interaction of lipolytic 
enzymes with biologically relevant lipid-water interfaces. Careful con- 
trols should be made, however, to make sure that albumin does not 
introduce surface defects in the film. 

11 The observation that the even weaker penetrating zymogen of pancreatic PLA 
(cf. Pat tus  et al. 1979a) is able to adsorb to sphingomyelin monolayers up to 
21 dynes/cm indicates that surface films of  this natural material contain many 
surface defects 
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5.5 Phospholipids Present in Bilayer Structures 

One of the earliest kinetic analyses of  a pure PLA (Bitis gabonica) acting 
on DPPC was reported by Viljoen et al. (1974). Although the authors 
were under the impression that they studied monomer catalysis, the sub- 
strate concentrations applied in their assays were so far above the CMC 
reported by Tanford (1973) for DPPC (+ 10 -1° M) that we must assume 
that they worked with lipid aggregates, presumably bilayers. Using a 
somewhat obsolete enzyme assay technique in which proton release is 
followed by pH drop they were able to measure initial hydrolysis rates at 
substrate concentrations ranging from 5 - 8 0  ~M. The very low maximal 
velocity of the enzyme under these conditions (calculated from the 
figures to be about 0.5/~mol min-1 mg-1 protein) is not  in agreement 
with the Vma x value given in Table 1 of their paper which is more than 
200 times higher. 

Initial rate measurements in which substrate and Ca 2÷ concentrations 
were varied confirm the mechanism proposed by Wells (1972) for the 
Crotalus adamanteus PLA in which Ca ~÷ adds first to the enzyme before 
the substrate molecule. Product inhibition experiments suggest that also 
in the Bit& gabonica enzyme the products are released in an obligatory 
order: fatty acid first and lysolecithin second. In summary, the results of 
Vil]oen et al. (1974) might be interpreted by stating that the mechanism 
of  action of  both venom PLAs are very similar and are independent of 
the aggregation state of  the substrate. On the other hand the ill-defined 
physicochemical state of  the substrate under the conditions used, together 
with the uncertainty about the maximal velocity, make such conclusions 
premature. Similar remarks have to be made on the kinetic experiments 
with PLA from Naja mossambica mossambica reported by Martin-Moutot 
and Rochat (1979). 

Long-chain diacylphospholipids such as PC which form aggregated 
bilayer structures in water have been known for a long time to be very 
poor substrates for pancreatic PLAs (van Deenen et al. 1963; de Haas 
et al. 1968) and accurate kinetic analyses seemed to be impossible. How- 
ever, after the initial reports of  Op den Kamp et al. (1974, t975) that 
several fully saturated long-chain lecithins become very susceptible to 
hydrolysis by porcine pancreatic PLA at the thermotropic phase transi- 
tion, a renewed interest has come up. At the transition temperature 
domains of  frozen molecules are separated from surface areas where the 
lipids are in the liquid crystalline state, and most probably at the borders 
surface defects (cracks) exist which allow the penetration of  the enzyme. 
Both below and above the phase transition the more regular and tighter 
packing of the phospholipid molecules prevent the anchoring of the 
enzyme into the interface, and no hydrolysis is observed. It has to be 
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remarked that this sharp differentiation is found only with PLAs charac- 
terized by a weak penetrating power such as the pancreatic enzymes, 
/~-bungarotoxin (Strong and Kelly 1977), or platelet phospholipase (Kai- 
nagi and Koizumi 1979), in combination with multilayered liposomes of 
fully saturated lecithins. With increasing unsaturation of the lecithin acyl 
chains resulting in looser packing of the phospholipid molecules in the 
interface, the more powerful penetrating PLAs in particular are also able 
to enter the bilayer to a certain extent at temperatures above the thermo- 
tropic phase transition and hydrolysis occurs. 

14/ilschut et al. (1976, 1978) extended these studies and showed that 
sonicates of PC dispersions, especially those containing small unilamellar 
vesicles, are more susceptible to PLA hydrolysis than the multilamellar 
liposomes. They also observed that if sonication is done below the phase 
transition temperature, the resulting vesicles are hydrolyzed over a much 
wider temperature range. Most likely the high curvature of the vesicles 
results in surface defects which facilitate penetration on the enzyme. 
These systems, however, are still hardly of any use in kinetic studies 
because of difficulties in determining initial rates and the variable effects 
of reaction products on the enzymatic velocity. 

In order to overcome these difficulties, Jain and Cordes (1973a,b) pro- 
posed the incorporation of medium chain n-alkanols (C6, C8) in the 
aqueous dispersions of long-chain lecithins. By a number of different 
techniques, including trapping experiments, they showed that the bilayers 
remained closed. They concluded that at optimal concentration of 
activating alcohols egg PC liposomes and vesicles behave as excellent sub- 
strates for various PLAs and that normal Michaelis kinetics can be 
obtained. Most probably the alcohol chains inserted in the bilayer cause 
an increased spacing of the substrate molecules and thus allow a facili- 
tated penetration of the PLA molecule 12. However, effects of the alco- 
hol molecule on the catalytic factors K* and kca t could not be excluded. 
In a subsequent study Upreti and Jain (1978) improved their assay sys- 
tem by an osmotic shock of the multilamellar vesicles before addition of 
the enzyme. A major disadvantage of the original substrate, phospholipid 
liposomes plus alkanol, was the rather high apparent K m of the lipolytic 
enzymes used. Because only the outer layer of the multilamellar vesicles 
is exposed to the enzyme, large amounts of substrate were required to 
obtain interfacial saturation. Moreover initial rate measurements were 
complicated because the rate of hydrolysis was increasing with time as 

12 An exceptional case seems to be the highly unsaturated cabbage lecithin ( )  4 
double bonds/tool). Without any addition of alcohols, normal Michaelis kinetics 
were obtained with Russels viper venom PLA. Moreover an unusually high appar- 
ent K m ( 13 mM) appeared to be accompanied by a very high kca t (25 and 40 times 
higher than for egg PC and DPPC, respectively) 
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successive bilayers were "opened" and more substrate became exposed. 
By a sudden decrease of  the ionic strength of the assay solution the lipo- 
somes transiently "open"  and such osmotically shocked bilayers offer a 
nearly complete access of the enzyme to the substrate molecules. Because 
resealing of the liposomes is a rather slow process (tl/2 ~ 10 min), initial 
rate measurements were possible and the apparent K m values were much 
lower. 

It has to be remarked that even with these osmotically shocked lipo- 
somes, the pancreatic PLA, in contrast to all venom enzymes tested, 
shows a lag phase at the beginning of hydrolysis and only after a certain 
induction time (r) is a steady-state rate obtained (Jain and Apitz-Castro 
1978). This lag phase is strongly reminiscent of the behavior of the pan- 
creatic enzyme towards densely-packed medium-chain PC monolayers 
(Verger et al. 1973). Jain and Apitz-Castro showed that the lag period 
preceding the steady state phase is not  caused by increasing amounts of 
hydrolysis products. Moreover, the induction time appeared to be inde- 
pendent  of concentrations of enzyme, substrate, alkanol, and Ca ~÷. These 
facts ted the authors to a hypothetical kinetic mechanism for this enzyme 
which is very similar to the model of Verger et al. (1973) (cf, Fig. 5) in 
which the latency period is due to a slow, rate-limiting penetration of  the 
enzyme into the lipid-water interface (Pattus et al. 1979a). It is difficult 
to understand, however, how in this model T could be independent of 
the concentration of  the bitayer perturbing alcohol. Moreover the obser- 
vation that calcium is not  required for the slow penetration step is not  
in agreement with the monolayer results. 

Recently, Upreti et al. (1980) in a very detailed study investigated the 
bilayer perturbing capacity of an impressive series of different alkanols 
and the effect of  the alcohol-modified bilayer on the kinetics of PLA. 
Whereas insertion of all alkanols into egg PC liposomes resulted in an 
increase of  free space in the substrate bilayer (surface defects) as evi- 
denced by a higher accessibility to the enzyme and increasing velocities, 
estimation of  the individual kinetic constants (cf. Fig. 5) remained impos- 
sible. The fact that the increasing chain length of straight-chain n-alco- 
hols results in a higher apparent Kin, whereas insertion of  branched alco- 
hols seems to have no influence on this parameter, suggests that the 
former alcohols might compete with substrate molecules for the hydro- 
phobic binding site in the active center (cf. Slotboom et al. 1976). In this 
study the authors confirmed the original observation made by Bonsen 
et al. (1972a) that in mixtures of  sn-3 and sn-1 lecithins having the same 
chain length the D-isomer behaves as a pure competitive inhibitor charac- 
terized by the same binding constant to the enzyme. This makes the 
stereoisomeric sn-l-phospholipid the most ideal phospholipid for deter- 
ruination of  dissociation constants by direct binding experiments. Using 
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sn-1 DPPC bilayers and radioactive PLA preparations from bee venom 
and porcine pancreas Upreti et al. clearly showed that addition of increas- 
ing amounts of alkanol to the PC bilayer increases the amount of PLA 
bound to the lipid-water interface. Usually higher enzyme concentrations 
in the bilayer result in higher hydrolysis rates. The observed decrease in 
enzymatic activity at very high alcohol concentration, where even more 
enzyme was shown to be bound to the bilayer, is similar to the findings 
of Dennis (1973a,b) working with Triton-PC mixed micelles. Most prob- 
ably this effect is caused by competitive inhibition and substrate dilution 
and/or unfavorable effects of the microenvironment on kca t. It goes 
without saying that at least for the venom PLAs a most relevant approach 
to study the kinetics of the enzymes would be the use of an aqueous sys- 
tem containing only long-chain substrate, enzyme, and Ca 2+ ions. 

Several groups investigated such systems using PLAs of different origin 
(Tinker et al. 1978; Tinker and Wei 1979; Kensil and Dennis 1979; 
Upreti and Jain 1980). Tinker et al. (1978), working with dispersions 13 
of DPPC and of DMPC, analyzed the kinetics of hydrolysis by Crotalus 
atrox PLA at different temperatures, both below and above the phase 
transition temperature. They observed that the hydrolysis of gel-phase 
lecithins showed hyperbolic dependence of initial steady state rates on 
bulk lipid concentration, which is in agreeement with the results of Vit- 
joen et al. (1974) and of Martin-Moutot and Rochat (1979). However, 

hydrolysis of liquid crystalline preparations showed a short initial burst 
of proton release and then a long lag period of very slow reaction, which 
was followed by a dramatic increase in the reaction rate. The accelerated 
proton release during the last stage is probably caused by the presence of 
considerable amounts of hydrolysis products in the interface. The lag 
period could indeed be abolished by preaddition of the reaction products 
to the substrate bilayer before the reaction was started, an observation 
which was reported also by Roholt and Schlamowitz ( 1961 ). 

Based on this results the authors proposed a kinetic model of lipolysis 
which is quite different from that of Fig. 5, which had been proposed by 
Verger et al. (1973), Brockerhoff (1973), Deems et al. (1975), and Jain 
and Apitz-Castro (1978). As shown in Fig. 7, the key feature of this new 
model implies that the enzyme can only bind to the lipid-water interface 
by forming a 1 : 1 complex of enzyme and a single substrate molecule. This 
complex formation is supposed to involve a conformational change in the 
enzyme resulting in exposure of hydrophobic sites which subsequently 

13 Unfortunately the authors prepared their vesicles by sonication below the phase 
transition temperature and no annealing was attempted. This procedure is 
known (Szoka and Paphacl]opoulos 1980) to give unstable, very heterogeneous 
particles. The relatively low apparent K m values reported by the authors (100 
200/IM) suggest that most of the bilayers contained structural defects (cracks) 
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Fig. 7. Kinetic model for 
hydrolysis of phosphatidyl 
choline aggregates by C. 
atrox PLA (Tinker et al. //~¢ 
l o c i p o n o  
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penetrate the lipid surface. After the performance of one catalytic cycle, 
the enzyme molecule can either desorb from the surface and return to the 
aqueous phase ("hopping" 14) or diffuse along the surface to an adjacent 
substrate molecule ("scooting" 14 ). The authors proposed that the hop- 
ping model describes the rapid hydrolysis of the gel-phase phospholipids, 
whereas the slower hydrolysis of  the liquid crystalline phasewould proceed 
by the scooting pathway. In a second paper (Tinker and Wei 1979) the 
authors worked out a mathematical treatment of the observed kinetics in 
the liquid crystalline state and concluded "that the proposed model is con- 
sistent with current ideas on the mechanism of catalysis by this enzyme". 

Very recently, the same group (Tinker et al. 1980) analyzed the 
hydrolysis of the gel phase and studied the effects of reaction products 
on hydrolysis rates. Gel filtration experiments demonstrated that the 
enzyme binds to egg PC bilayers even in the absence of Ca 2 ÷ and that 
incorporation of hydrolysis products in the bilayer weakened the enzyme 
binding. These observations together with the observed increase in hydro- 
lysis rate at later stages of the reaction where substantial amounts of 
lyso-PC and free fatty acids are present were ascribed to a product-facili- 
tated desorption of the enzyme from the surface. In this latter study 
both annealed and unannealed sonicated DPPC vesicles were used, but 
no attempt was made to separate the larger multilamellar structures from 
small unilamellar vesicles. 

Kensil and Dennis (1979) examined the action of Naja naja na]a PLA 
on single-walled, sonicated vesicles of DPPC, DMPC, and egg PC as a 
function of temperature. They confirmed the observation of Tinker et al. 

t4 "Hopping" and scooting" are expressions used by Upreti and Jain (1980) to 
differentiate between these pathways 
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(1978) that the venom PLA hydrolyzes the gel phase phospholipids at a 
higher rate than the same substrate in the liquid crystalline state. In addi- 
tion they also found an apparent stimulation of  activity as the reaction 
proceeded above the phase transition temperature. This observation was 
tentatively attributed to an increase in phase transition temperature 
caused by increasing amounts of reaction products by which the enzyme 
could actually be hydrolyzing gel state phospholipid, the preferred physi- 
cal form. As possible explanation for the enhanced hydrolysis of gel state 
phosphoiipids, the authors consider decreased hydration of  head groups 
and better accessibility of  the 2-ester function to the enzyme by a tilt of 
the acyl chains. In this study well-characterized, annealed, small unilam- 
mellar vesicles were used, and consequently the apparent K m values are 
about 30 times higher than reported by Tinker et al. ( t978).  

Finally Upreti and Jain (1980) reported on the kinetics of bee venom 
PLA acting on unmodified PC bilayers. Packing alterations in the sub- 
strate aggregate were made by sonication, temperature change, and osmo- 
tic shock. Again biphasic progress curves were found: after an initial rapid 
proton release in which less than 7% total available substrate is hydro- 
lyzed, the reaction slows down and only after production of a certain 
amount of  lyso-PC plus fatty acid does fast hydrolysis start again. As 
a very attractive hypothesis to explain the observed kinetics the authors 
propose that any treatment of the bilayer which introduces defect struc- 
tures (cracks), and therefore free space, will enhance PLA activity. In 
terms of the model in Fig. 5 they do not  preclude effects of the cracks 
on the catalytic parameters K*m and kcat, but a highly important  func- 
tion of the surface defects is thought to be the shift of the equilibrium 
E ~- E* to the right side. The specific influence on phosphatidyl-choline 
bilayer packing exerted by the simultaneous presence of the hydrolysis 
products, lysolecithin and free fatty acid, has been demonstrated by Jain 
et al. (1980) and Jain and de Haas (1981). While the pancreatic PLA 
is unable to penetrate into the closely packed bilayers of pure leci- 
thin, the presence of both lysolecithin and fatty acid results in surface 
defects (phase separation), and the enzyme displays a high affinity and 
catalytic power to such "cracked" interfaces(Jain et al., to be published). 

The hypothesis that cracks or irregularities in the lipid bilayer enhance 
PLA activity is furthermore illustrated by studies on a natural membrane 
using pancreatic PLA (Bevers et al. t977, 1978; Bouvier et al. 1981). 
The Acholeplasrna laidlawii membrane contains glycotipids (70%) and 
PG (30%) as the only substrate for PLAs. The physicochemical condi- 
tion of the membrane can be manipulated by growth of  the organisms 
on different fatty acids: e.g. palmitate addition yields membranes in 
which 80% of the esterified fatty acids present consists of palmitate, 
and the lipids undergo a phase transition between 15 and 40°C. At tern- 
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peratures above the lipid phase transition PG is accessible for hydro- 
lysis, below the lipid phase transition no PG is hydrolyzed. In the latter 
condition proteins are aggregated, eliminating to a large extent the 
presence of irregularities in the gel state bilayer (Bevers et al. 1977). That 
membrane proteins may be responsible for irregularities in the membrane 
is illustrated by experiments on membranes which are enriched with 
branched chain fatty acids. In this case protein aggregation does not  occur 
upon a decrease in temperature and PG remains accessible also below the 
onset of  the transition (Bouvier et al. 1981). Another type of cracks 
can be induced by binding the membranes at temperatures between the 
onset and termination of the lipid-phase transition. Now phase separa- 
tion occurs between domains of gel like lipids surrounded by liquid crys- 
talline lipid molecules. Pancreatic PLA has access only to those PG mole- 
cules which are present in the fluid, protein-containing areas of the lipid 
bilayer (Bevers et al. 1978). 

In a very recent study Menashe et al. (1981) reported on the action 
of  porcine pancreatic PLA in annealed DPPC unilammelar vesicles. At or 
above the phase transition temperature long lag times were observed. 
Preineubation of  the enzyme with substrate for a short period of time 
below the transition temperature followed by enzymatic assay at high 
temperature abolished the lag time. These results were explained by a 
slow substrate-enzyme organizational step above the phase transition, 
whereas this process is much more rapid with gel state phospholipids. 
The intrinsic activity of the enzyme is maximal when the substrate is in 
the liquid crystalline state. 

Summary. What is the additional information obtained from kinetic 
studies of  PLA acting on intact PC bilayers? One remarkable result seems 
to be the observation of  Tinker et al. (1978) and Kensil and Dennis 
(1979) that gel phase PC bilayers are hydrolyzed with a higher rate than 
the corresponding liquid crystalline phase. These reports are in agreement 
with an early observation of  Smith et al. (1972). He found at 30°C a 
faster hydrolysis rate of  DPPC as compared to dioleoyl PC or dilinoleoyl 
PC. It is clear, however, that independent of  the physical structure of  the 
PC bilayers used (multilamellar liposomes, single walled vesicles, annealed 
and unannealed), the kinetics are all characterized by similar, very com- 
plex progress curves. The reviewers feel that initial rate measurements 
with an acceptable accuracy are hardly possible and that therefore mathe- 
matical analyses of these systems using rate equations such as developed 
by Gatt and Bartzai (1977a,b) are premature. On the other hand, the 
experimental results obtained by the various investigators appear to be in 
good agreement and therefore one should try, if only in a rather qualita- 
tive and intuitive way for the present, to explain the reported observations 
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and to fit them in a common and generalized model of lipolysis. At this 
moment  two hypothetical models are under discussion: (I) the model of 
Verger et al. (1973) (cf. Fig. 5) and (2) the model of Tinker et al. (1978) 
(cf, Fig. 7). It seems that in general investigators working with snake 
venom PLAs are more inclined to model (2), whereas most people inves- 
tigating the pancreatic enzyme prefer model (1). 

Yet these two models are fundamentally different: while in the Verger 
model the enzyme is supposed to interact hydrophobically with the 
interface (by penetration or anchoring) before Michaelis-Menten type 
ES formation and hydrolysis occurs, the prevailing pathway in the 
Tinker model (hopping) implies initial formation by collision of  an ES 
complex at the interface and a return of  the enzyme into the aqueous 
bulk phase after each catalytic cycle. The generally observed accelerated 
hydrolysis of substrates in aggregated form is tentatively explained in 
the Verger model by a conformational change in the penetrated is 
enzyme with a concomitant optimization of  the active site. On the other 
hand, in the Tinker model the high interface activity is attributed to a 
hopping of the enzyme from interface to bulk solution and vice versa, 
and a prolonged stay of the enzyme at the surface of  the aggregate 
(scooting) is supposed to yield low hydrolysis rates. While the effective 
hydrolysis of gel-phase phospholipids and the observed rate increases 
upon product formation in the Tinker model are explained by product- 
facilitated desorption of  enzyme from the interface, in the Verger model 
these phenomena are ascribed to a product-facilitated adsorption of 
enzyme to an interface containing more surface defects! 

An often reported objection against the Verger model is that with 
several venom enzymes no indications could be found for initial adsorp- 
tion to or penetration in the lipid-water interface using optical techniques 
such as ultraviolet difference spectroscopy or fluorescence spectroscopy. 
Most probably, however, these negative results are caused by the particu- 
lar lipid-water aggregates used. In titration experiments with single-chain 
substrate or product analogs such as lysolecithin, glycol lecithins and 
n-alkylphosphorylcholines, ultraviolet and fluorescence signals were 
obtained for a number of  venom PLAs (Verheij et al. 1980b; Prigent- 
Dachery et al. 1980) and usually saturation was observed. A second argu- 
ment  against this model could be the observation that the enzyme hydro- 
lyzes gel-phase phsopholipids more rapidly than the liquid crystalline 
phase. A priori, one would expect in the Verger model that adsorption 
of the enzyme and surface diffusion in the interface would be favored by 

15 Although the penetration process by various techniques has been shown to be 
reversible, the enzyme is thought to remain bound to the interface during a num- 
ber of catalytic cycles 
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the more loosely packed liquid crystalline phase and would result in 
increased hydrolysis rates. It has to be remarked, however, that besides 
the difficulties mentioned above to determine initial velocities with 
bilayer systems, comparison of  the steady state hydrolysis rates is ham- 
pered because of the unknown amounts of enzyme present in the inter- 
face. In addition, all investigators agree upon the fact that in phase-sepa- 
rated mixtures of lecithins the most liquid component  is hydrolyzed 
more extensively. As regards the Tinker model the following points seem 
to be relevant: 

1. PLAs, independent of their origin, are known to possess an unusual 
affinity for all kinds of  interfaces, and adsorption occurs not  only to 
lipid-water aggregates but also to glass, teflon, and many other surfaces, 
including the air-water interface. Therefore, an ordered mechanism in 
which a Michaelis type ES complex would be required before hydropho- 
bic interaction of the enzyme with the interface can occur seems to be 
superfluous. 

2. A product (lyso-PC and/or fatty acid)-stimulated desorption of PLA 
from the lipid aggregate, assumed to explain the observed higher hydro- 
lysis rates, seems to be in contrast with the results of many direct binding 
studies. Several PLAs adsorb very well to micelles of single-chain deter- 
gents such as lyso-PC, fatty acid, n-alkylphosphocholines, etc. Moreover, 
the pancreatic PLAs which have no affinity to pure lecithinaggregates in 
bilayer form (liposomes or vesicles) strongly adsorb to these structures if 
low percentages of  hydrolysis products are incorporated (Jain et al., to 
be published). 

3. The hopping mechanism implies that desorption of  PLA from the 
surface is a faster process than the formation of a new ES complex. This 
argument  is based on a supposed slow surface diffusion of  the enzyme in 
the lipid bilayer, a medium of higher viscosity than water, but does not  
take into account the well-known high mobility of  free substrate mole- 
cules in the plane of  the bilayer. 

5.6 Reversible Inhibition of  Phospholipase A2 

Studies of inhibition kinetics have contributed to a large extent to our 
present knowledge of the mechanism of  many enzymes. Unfortunately 
this approach has yielded only limited information on the mechanism of 
action of  lipolytic enzymes. With the exception of the earlier work of  
Wells (1972) in which product inhibition was successfully studied with 
Crotalus adamanteus PLA acting on monomeric substrate, similar studies 
on several other PLAs were seriously impeded by unfavorable CMC-K m 
ratios. An important  problem is that inhibition studies of PLA acting on 
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aggregated substrates are plagued by even greater difficulties. Any incor- 
poration of  a possible inhibitor in an organized lipid-water interface will 
change the quality of the interface and influence not  only the Michaelis 
parameters K*  and kca t (cf. Fig. 5) but also the amount  of enzyme pres- 
ent in the interface (kp/k d in Fig. 5). In this way several potential inhibi- 
tors of PLA act in fact as potent  activators (Roholt and Schlamovitz 
1961 ; Bonsen et al. 1972a;Drainas and Lawrence 1978;Jain et al., to be 
published; Rosen thal and Ching-Hsien Han 1970). This subject has been 
discussed previously by Verger and de Ltaas (1976) and up tilt now it has 
not  been possible to separate the effects of inhibition in the classical 
chemical sense from pure physical effects. 

Recent reports showed that several dyes are able to bind with a high 
affinity to the enzyme. Hydrophobic binding forces seem to be predomi- 
nant and the competitive behavior with monomeric substrates suggests 
that the catalytic site is involved. Indirect evidence that ravin analogs 
bind to a particular surface region of pancreatic PLA was obtained by 
photo-CIDNP experiments (Jansen et al. 1978). Zhelkovskii et al. (1978a) 
demonstrated that the acridine dye proflavine interacts with PLA from 
Naja naja oxiana and inhibits the enzymatic hydrolysis of diC4-PC in a 
competitive way. Barden et al. (1980) showed that Naja na]a naja PLA is 
effectively inhibited by the dye Cibracron blue F3 GA. Again the displace- 
ment  of the dye from the enzyme by the monomeric substrate diC6 -PC 
suggests that binding occurred at the hydrophobic active center region. 
Inhibitory effects of a number of  local anesthetics on PLAs of  different 
origin have been reported by several investigators (Scherphof et al. 1972; 
Waite and Sisson 1972; Kunze et al. 1974, 1976). Interference with Ca 2÷ 
binding, perturbation of  the lipid aggregate, and direct binding to the 
enzyme have been evoked to explain the inhibition of  the enzyme. Often, 
however, crude enzyme preparations and nonhomogeneous PL systems 
have been used, and it is difficult to draw definite conclusions. Stewart- 
Hendrickson and van Dam-Mieras (1976) investigated the action of local 
anesthetics on the porcine pancreatic PLA using the monomolecular sur- 
face film technique to avoid the influence of  enzymatic breakdown pro- 
ducts. 

Naturally occurring PLA-inhibitor complexes have been shown to be 
present in several snake venoms (Braganca et al. 1970; Vidal and Stop- 
pani 1971a; Breithaupt 1976; Simon and Bdohlah 1980). These inhibi- 
tors are relatively small peptides with an opposite charge at neutral pH as 
compared to the PLA molecule. Notwithstanding tight binding between 
both polypeptides, in detergent-activated assay systems for PLA the 
complex often slowly dissociates and accelerating kinetics (lag phase) are 
observed. 
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5.7 Monomeric or Dimeric Enzymes? 

The question whether PLAs are catalytically active as monomeric or 
dimeric proteins becomes particularly important after the reports of 
Wells (1973b) and Roberts et al. (1977a) that Crotalus adamanteus and 
Na]a na]a na]a PLAs demonstrate "half of the sites" reactivity. Although 
the original evidence for a dimeric form of the Crotalus adamanteus 
enzyme as presented by Wells (1971 b) and confirmed by Shen et al. (1975) 
has been criticized (Volwerk et al. 1979), there is now little doubt that 
this PLA under catalytically meaningful concentrations is present as a 
dimer in aqueous solution. Moreover, very recently Wells showed by 
"active enzyme ultracentrifugation" that this PLA hydrolyzes diC6-PC 
monomers as a dimeric protein (Smith and Wells 198 t). 

Although the half-site reactivity for the Na]a na]a na]a PLA has been 
withdrawn (Darke et al. 1980), this enzyme demonstrates a concentration- 
dependent  aggregation in aqueous solution (Deems and Dennis 1975): 
at concentrations below 50 t~g ° ml-1 enzyme exists predominantly in 
the monomeric form, however additional evidence has been reported 
that aggregated lipids shift this equilibrium to the dimeric state and that 
in fact the (asymmetric) dimer of this PLA is the catalytically active 
form of the enzyme. 

A similar substrate-induced shift of  monomeric into dimeric protein 
has been proposed for PLA from Na]a na]a oxiana (Zhelkovskii et al. 
1978a; Mal'tsev et al. 1979). Again the enzyme dimer is assumed to be 
organized asymmetrically, but it is not clear why the enzyme should 
dimerize into asymmetric units in order to be able to hydrolyze mono- 
meric diC4-PC molecules. As regards the porcine pancreatic PLA, in 
aqueous solutions without lipids this enzyme exists as monomeric pro- 
tein up to concentrations of  several mg • ml- 1 

Addition of  monoacyl zwitter ionic substrate analogs in concentrations 
up to the CMC does not  induce aggregation of  the enzyme ( Volwerk et al. 
1979), suggesting that this enzyme is catalytically active as monomer.  
On the other hand direct binding studies of  porcine pancreatic PLA with 
micetlar substrate analogs and analysis of  the resulting lipoprotein com- 
plexes (Arau]o et al. 1979; Hille et al. 1981) showed the presence of  
particles containing two or three enzyme molecules per 8 0 - 1 0 0  lipid 
monomers.  

In summary, with the exceptions of the Crotalus adamanteus and 
Agkistrodon halys blomhoffii PLAs which act as dimers in the hydrolysis 
of monomeric substrate molecules, the functional role of enzyme aggre- 
gation in the hydrolysis of  organized lipid-water interfaces seems to be 
uncertain for all phospholipases investigated. 
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6 Chemical Modification Studies of Phospholipases A2 

In the past decade a wide variety of more or less specific reagents have 
been used to modify almost all functional groups present in PLAs. As 
cited previously (cf. Jeng and Fraenkel-Conrat 1978) one has to bear in 
mind that there exist no specific protein reagents but only specific pro- 
tein reactions. From this statement it may already be clear that it is 
necessary to first purify the modified protein to homogeneity before 
studying the effects produced by the modification. Obviously, the major 
goal of these studies is to pinpoint active site residues in order to gain 
more insight into the mechanism of action of PLA. For some of these 
modifications it has been concluded - based almost exclusively on the 
observed loss of enzymatic activity toward substrate present as a lipid- 
water interface - that the residue modified is an active site residue. 
Although this form of the substrate enables the enzyme to display its full 
enzymatic activity, PLA has also a distinct, though considerably lower, 
activity toward the same substrate present as monomers. The enzymatic 
activity of PLAs on aggregated substrates can be completely lost by 
modification of a particular residue, while its active site remains intact. 
As a matter of fact such modifications lead to zymogen-like proteins. 
The' loss of enzymatic activity toward aggregated substrates can be 
ascribed to the inability of the modified PLA to bind to hpid-water inter- 
faces or, alternatively, to bind nonspecifically, preventing the formation 
of products. In these cases the residue modified is quite often termed 
"essential" without further proving its function. In order to avoid equi- 
vocal explanations it is therefore preferable for PLAs to reserve the term 
"active site residues" to those residues directly involved in binding of the 
monomeric substrate and the essential Ca 2÷ ion and to the residues per- 
forming the actual splitting of the ester bond. Modification of such resi- 
dues will lead to loss of enzymatic activity of PLA toward substrate pres- 
ent as organized lipid-water interfaces and toward monomeric substrate. 
Residues which upon modification give rise to loss of PLA activity toward 
aggregated substrate but which do not significantly affect enzymatic 
activity toward monomeric substrates are most likely involved in the 
binding to aggregated substrates. 

6.1 Sulfhydryl Groups 

Based on studies with inhibitors and the absence of any free sulfhydryl 
groups in all known PLAs it is generally agreed that no sulfhydryl group 
is essential for activity or binding of PLA (Long and Penny 1957; Saito 
and [Ianahan 1962; Kurup 1965; de Haas et al. 1968; Wells and Hanahan 
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1969; Salach et al. 1971 ; Shipolini et al. 1971). Reports describing inhibi- 
tion of PLA activity by sulfhydryl reagents therefore must be ascribed to 
reaction with residues other than cysteine (Brown and Bowles 1966; Wu 
and Tinker 1969;Mun]all and Elliott 1971). 

6.2 Serine 

It is now well established that various organic phosphorous compounds 
do not cause inhibition of PLAs from different sources (Saito and Hana- 
han 1962; de Haas et al. 1968; Salach et al. 1971 ; Shipolini et al. 1971 ; 
Vidal et al. 1972;Howard and Truog 1977). The fact that PLA activity is 
not destroyed by DFP and similar compounds suggests that no Ser is 
present in the active site of this enzyme. However, since the active site of 
PLA contains a hydrophobic region, the possibility could not be excluded 
that more apolar organic phosphorous inhibitors would destroy the enzy- 
matic activity. Both di (1-methylheptyl)phosphofluoridate and 1-methyl- 
heptyl-methylphosphofluoridate did not inactivate porcine pancreatic 
PLA, neither when present as a pure emulsion nor when present as a 
mixed micelle with various detergents (Volwerk 1979). It can thus be 
concluded that a Ser residue is not involved as an active site residue in 
PLA. In good agreement with this conclusion is the fact that no Set resi- 
due close to the active site could be detected in the recently reported 
X-ray structure of bovine PLA (Dijkstra et al. 1981b). Most likely the 
observed inhibition of PLA activity of Crotalus atrox by DFP is not due 
to modification of an active site Ser residue (Brown and Bowles 1966; 
Wu and Tinker 1969). 

6.3 Histidine 

In contrast to PLA from Crotalus adamanteus (Wells 1973b), PLA from 
Naja naja naja was inactivated by photo-oxidation, most likely due to 
modification of histidine groups (Kochotaty 1966; Salach et al. t971). 

Soon after Erlanger et al. (1966, 1967) showed that p-bromophenacyl 
bromide (BPB) inactivated pepsin by reaction with one aspartyl group, 
this reagent turned out to inhibit also porcine pancreatic PLA (Postema 
1968). In contrast to the inhibited pepsin, no recovery of enzymatic 
activity was observed upon treatment of  the BPB-inhibited PLA with 
thiophenol, pointing to the modification of a functional group other 
than a carboxylate. Also the results of  the pH dependence of  the BPB 
inactivation of the porcine PLA (vide infra) suggested that instead of 
a carboxylate a histidine residue was modified (Bonsen et al. 1972b). 
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More systematic studies ( Volwerk et al. 1974; Volwerk 1979) revealed that 
the inactivation of porcine PLA and its zymogen follows similar pseudo 
first order kinetics, suggesting that in both proteins one class of groups 
was modified. When the residual enzymatic activity was less than 5%, 
amino acid analyses showed the loss of about one residue of His per mole 
of PLA or its zymogen in good agreement with the incorporation of 
1.1-1 .2  mole of [14C] BPB per mole of protein. The [14C] BPB incor- 
porated Was shown to be localized mainly on His-48, while 10% of the 
radioactivity was associated with His-115. Similar experiments with 
horse pancreatic PLA (Verhei] et al. 1980a) lacking His-115 showed His- 
48 to be the only residue reacted with BPB, demonstrating that His-48 is 
the primary site of modification and that alkylation of this residue pro- 
duces a PLA inactive both toward micellar and monomeric substrate. 

Kinetic studies have shown that Ca 2+ is an absolute cofactor of PLA. 
In agreement with the metal ion binding properties of the enzyme and its 
zymogen (de Haas et al. 1971; Pieterson et al. 1974a;Pieterson 1973) 
both proteins are protected against BPB inactivation very efficiently by 
Ca 2+ and Ba 2÷, while Mg 2+ has no effect. In addition short-chain D-leci- 
thins, previously shown to be competitive inhibitors (Bonsen et al. 1972a), 
the products of the PLA hydrolysis (lysolecithin and fatty acid), and the 
nondegradable substrate analogs (n-alkylphosphocholines), when present 
below their respective CMCs, all protect the enzyme and the zymogen 
efficiently against the inactivation by BPB. The most effective protection 
was obtained when both Ca 2+ and a monomeric D-lecithin were present. 
On account of the stoichiometric relationship between the loss of enzy- 
matic activity and the incorporation of one mole of BPB per mole of pro- 
tein and the effective protection by Me 2+ and substrate analogs against 
the inactivation, His-48 was assigned to be an active site residue in PLA. 

From the effect of pH on the BPB inactivation of porcine PLA the 
apparent pK of His-48 was found to be 6.2 (Bonsen et al. 1972b; Volwerk 
et al. 1974), while His-48 in the bovine PLA was shown to have a PKap p 
of 6.8 (Dutilh 1976). The BPB inactivation of this latter PLA was shown 
to be ten times faster than that of the porcine enzyme using similar con- 
ditions (Dutilh 1976). 

It should be emphasized that the protection against BPB inactivation 
with all lipids was observed only below their CMCs and was thus a result 
of  the formation of the protein-monomer complex. Anomalous behavior 
was observed when the rate of inactivation of PLA was studied with 
D-diC~ or D-diC~ lecithins in a concentration range above the respective 
CMCs. When the CMCs are exceeded there is no longer protection but 
rather an enhancement of the inactivation of PLA. The observed inclu- 
sion of BPB into the lipid-water interface and the interaction of PLA 
with this lipid-water interface would increase the BPB concentration 
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close to the reaction site, so that enhanced rates of inactivation are to be 
expected. Taking into account the increase in the rate of PLA catalyzed 
hydrolysis when the substrate goes from a monomeric to an aggregated 
form, the observed enhancement is difficult to account for by a concen- 
tration effect alone. The stimulated inactivation of PLA was not observed 
when aggregates of  D-diC10 lecithin, which are of the lamellar type and 
to which pancreatic PLA does not  bind, were used, although BPB is 
incorporated into these structures as well. No enhancement of the inacti- 
vation rate is observed for the zymogen in the presence of micellar sub- 
strate analogs because this protein has no affinity for these aggregated 
structures. 

The identical rates of  inactivation of PLA and the zymogen and their 
similar protection by divalent metal ions and monomeric substrate analogs 
suggest that the active site pre-exists, at least partially, in the zymogen. 
This idea is supported by the observation that the zymogen is capable of 
hydrolyzing monomeric substrates (Pieterson et al. 1974b; Volwerk et al. 
1974, 1979), whereas it is inert towards micellar substrates. These results 
provide the strongest basis for the hypothesis that PLA contains an addi- 
tional site for the interaction with lipid-water interfaces (IRS) which is 
absent in the zymogen. 

The values of the second order rate constants for the inactivation of 
porcine pancreatic PLA by various bromoketones follow the expected 
chemical reactivity and show that the presence of a phenyl ring is not  a 
structural requirement of the inhibitor. The most important  requirement 
seems to be a certain degree of  hydrophobicity (Volwerk 1979; Verhei] 
et al. 1980a). Essentially similar findings were reported by Roberts et al. 
(1977a) for PLA from Na]a na]a na]a. From inactivation of both porcine 
and equine PLAs with N-bromoacetylbenzylamine it was established that 
exclusively the N-1 position of  His-48 is alkylated, pointing to a specific 
orientation of  the imidazole ring. This was confirmed by methylation of  
His-48 with methyl  p-nitrobenzenesulfonate (Verhei] et al. 1980a). 

Since efficient protection by monomeric substrate analogs is observed 
and since the affinity of PLA for these compounds is predominantly 
dependent on the length of  the fatty acyl chains, it was concluded that 
the reactive His-48 is close to a hydrophobic site on the protein. This site 
might help to orient the apolar BPB in such a way that covalent bond 
formation is favored. However, so far no evidence for saturation kinetics 
with BPB has been obtained for porcine PLA. Therefore, we must con- 
clude that if modification of His-48 proceeds via a noncovalent E-I com- 
plex, the K D of  this complex will be considerably larger than the solubil- 
ity limit of  the apolar haloketone (-+ 0.1 mM), so that for all practical 
purposes the reaction follows normal second-order kinetics. Although all 
data obtained from the BPB modification support the importance of  
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His-48, which is conserved in the primary structure of all vertebrate 
PLAs, it does not specify its catalytic role. 

More conclusive evidence on this point was obtained recently by Ver- 
heij et al. (1980a) who used methyl p-nitrobenzenesulfonate to introduce 
a methyl group specifically on the N-1 position in His-48 of pancreatic 
PLAs. The methylated pancreatic PLAs have lost all their enzymatic 
activity both towards micellar and monomeric substrates but still bind 
monomeric substrate analogs and Ca 2÷ with comparable affinities as the 
native enzymes. Binding of these ligands to the BPB or t-bromo-octan- 
2-one inhibited PLAs is, however, greatly impaired, most probably due 
to steric hindrance of these more bulky moieties (Volwerk 1979; Verheij 
et al. 1980a). Binding to lipid-water interfaces of PLA inhibited with BPB, 
1-bromo-octan-2-one or methyl-p-nitrobenzenesulfonate is almost iden- 
tical to that of the unmodified enzyme, thus indicating that the IRS and 
active site are topographically distinct (Pieterson et al. 1974b). Also BPB- 
inactivated Na]a naja na]a PLA retained its affinity for mixed micelles 
(Roberts et al. 1977a). Introduction of a [~3 C]-methyl group on His-48 
enabled the determination of the pK value of the modified His residue 
by 13 C NMR measurements. From the results obtained it was concluded 
that the proton on N-3 in the imidazole ring is involved in a strong inter- 
action with a buried carboxylate group, thereby hindering rotation of 
the imidazole ring, and that the N-1 is involved in catalysis. Based on 
this result and other observations of the methylated PLA together with 
Y-ray data, a catalytic mechanism for PLA was proposed (see Sects. 9 
and 10). 

Since the publication for porcine PLA several reports have appeared 
describing the selective modification of one His residue per protein mole- 
cule by BPB in various PLAs and presynaptic snake venom neurotoxins 
(Halpert et al. 1976; Halpert and Eaker 1976b; Fohlman and Eaker 1977; 
Kondo et al. 1978c,d; Jeng and Fraenkel-Cbnrat 1978; Martin-Moutot 
and Rochat 1979; Abe et al. 1977; Viljoen et al. 1977;Magazanik et al. 
1979; Fohlman et al. 1979; Yang and King 1980a,b;Eaker 1978). These 
neurotoxins are basic proteins which have a high degree of homology 
with PLA and possess PLA activity. Reaction of these neurotoxins with 
BPB causes complete loss of PLA activity as well as of neurotoxicity. 
Apparently, an intact active site is not only important for PLA activity 
but is also a prerequisite for neurotoxicity. It has to be mentioned that 
in the crotoxin and taipoxin complexes, which consist of two and three 
polypeptide chains, respectively, only one His residue in the former and 
two in the latter are modified (Jeng and Fraenkel-Conrat 1978; Fohlrnan 
et al. 1979). Crotoxin, consisting of an acidic (crotoxin A) and a basic 
(crotoxin B) subunit, does not react with BPB and retains its PLA activ- 
ity. In contrast, crotoxin B alone, the subunit possessing the PLA activity, 
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incorporates one mole of BPB with the concomitant loss of one His and 
all PLA activity and neurotoxicity (Jeng and Fraenkel-Conrat 1978). 
Most likely the presence of the A chain protects the His-48 in the active 
site of the B chain. The BPB-modified crotoxin B is still able to form the 
noncovalent complex with the A chain, in a way similar to that of the 
unmodified crotoxin B. 

Taipoxin consists of three subunits, two of which (a and ~) are homo- 
logous with PLA, while the third subunit (v) is homologous to the por- 
cine pancreatic zymogen (Fohlman et al. 1979). Both in the a and ~ sub- 
unit one His residue reacts with BPB, whereas it has been suggested that 
the presence of a carbohydrate moiety situated at or very close to the 
active site in the "r subunit prevents the reaction with BPB of His in this 
subunit. It is remarkable that the ~ subunit of taipoxin, just like notechis 
II-1 from Notechis scutatus scutatus (Halpert and Eaker 1976b), has no 
PLA activity but does react with BPB. It has been suggested that alkyla- 
tion of His-48 by BPB might be used generally for the production of 
high-titer antibodies against snake venoms in a short time and with no ill 
effects in the antisera-producing animals (Ramlau et al. 1979). 

Until very recently PLA from Na]a nala na]a was shown to be the only 
PLA in which one His residue per dimer reacted with BPB, with the com- 
plete loss of all its enzymatic activity ("half-site reactivity") (Roberts 
et al. 1977a). However, more recent experiments revealed that the pro- 
posed concept of  "half-site reactivity" has to be abandoned (Darke et al. 
1980). 

The His residue modified with BPB has been positively assigned to be 
His-48 in a large number of PLAs and neurotoxic PLAs (Italpert et al. 
1976; Halpert and Eaker 1976b; Kondo et al. 1978c,d; deng andFraenkel- 
Conrat 1978; Viljoen et al. 1977; Magazanik et al. 1979; Yang and King 
1980a,b). Both for//-bungarotoxin (Kondo et al. 1978c,d) and PLA from 
Naja naja naja (Roberts et al. 1977a) the His residue modified was shown 
to have a pK of 6.9. 

Ca 2÷ has been demonstrated to protect the inactivation by BPB for a 
number of these PLAs and neurotoxins (Halpert et al. 1976; Kondo et al. 
1978c,d; Abe et al. 1977; Viljoen et al. 1977;Roberts et al. 1977a; Yang 
and King 1980a,b). Only for crotoxin B could no such protecting effect 
be demonstrated, even at 25 mM Ca 2÷ (Yeng and Fraenkel-Conrat 1978). 
Modified notexin (Halpert et al. 1976) as well as modified/3-bungarotoxin 
(Abe et al. 1977) have almost completely lost its Ca 2÷ binding properties 
just as have modified pancreatic PLAs. In contrast, it has been reported 
that the BPB-inactivated PLAs from Naja na]a naja (Roberts et al. 1977a), 
from Naja nigricollis (Yang and King 1980a), and from Hemachatus 
haemachatus (Yang and King 1980b) still bind Ca 2+ with comparable 
affinities as the corresponding native enzymes. 
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For a number of PLAs and neurotoxic PLAs the protective effect by 
substrate analogs against BPB modification was also investigated. Although 
it was claimed that /3-bungarotoxin is protected by 5 mM egg lecithin 
(Kondo et al. 1980c,d) or 50 mM lysolecithin (Abe et al. 1977) and PLA 
from Bitis gabonica by lysolecithin (Vil]oen et al. 1977), it seems more 
likely that this effect is due to selective sequestering of BPB in the lipo- 
somal or micellar systems used. Under the experimental conditions used 
the enzyme most likely does not bind to the aggregates, causing a protec- 
tive effect rather than an increased inactivation as observed for the por- 
cine pancreatic PLA ( Volwerk et al. 1974). This explanation was put  for- 
ward also by Roberts et al. (1977a) to explain the observed "protecting 
effect" of Triton on the BPB inactivation of Naja naja naja PLA, which 
does not  bind to Triton micelles alone. Using micellar phospholipids in 
the presence of  Ca 2÷ ions (Jeng and Fraenkel-Conrat 1978; Vil]oen et al. 
1977), under conditions favoring binding, it is difficult to draw conclu- 
sions about protecting effects of the micellar phospholipid alone. As 
pointed out  already the inactivation is protected by Ca 2÷ and monomers 
of the phospholipid, whereas the incorporation of BPB into the micelles 
also affects the inactivation process. 

Recently, it has been shown for PLAs from Naja naja naja (Barden et 
al. 1980) and from Naja nigricollis and Iternachatus haemachatus (Yang 
and King 1980a,b) that Cibacron blue or ANS protects against BPB 
modification. Cibacron blue is supposed to bind to the active site of the 
enzyme, although the dye still can bind to modified enzyme. ANS is 
supposed to bind to the hydrophobic pocket of the active site and pre- 
vents the bulky BPB group from reaching His-48 due to steric hindrance. 
In contrast to the previously described binding of  BPB-inactivated Naja 
naja naja PLA with Cibacron blue, the BPB-modified Na]a nigricollis and 
Hemachatus haemachatus PLAs lost their ability to bind ANS. 

Inactivation of  the basic anticoagulant PLAs from Vipera berus and 
Naja nigricollis by reaction with 1-bromo-octan-2-one abolished all cata- 
lytic and anticoagulant activities of these enzymes, despite the retention 
of their lipid binding properties (Verheij et al. 1980b). Finally BPB has 
been used as a specific reagent to demonstrate the presence of  PLA activ- 
ity in amniotic fluid (Gebhardt et al. 1978) and to investigate the role of  
PLA in the release of prostaglandins from platelets (Vargaftig et al. 
1980). 
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6.4 Tryptophan 

The oxidation of  two Trp residues per dimer in Crotalus adamanteus 
PLA by N-bromosuccinimide (NBS) renders the enzyme inactive and 
leads to the loss of  both anomalous solvent-induced spectral perturba- 
tions and cation-related spectral changes (Wells 1973b). Although these 
properties would suggest that oxidation leads to dissociation, the oxidized 
protein is still a dimer. As pointed out by the auhtor it is unlikely that 
Trp participates directly in the catalytic process. Most likely the oxidized 
Trp residue is involved in the binding to lipid-water interfaces. It would 
therefore be of interest to show whether this modified PLA possesses 
enzymatic activity toward monomeric substrates. 

Reaction of  2-hydroxy-5-nitrobenzylbromide (HNB) with Crotalus 
adamanteus PLA also modified two Trp residues per dimer (Wells 1973a). 
In contrast to the NBS-oxidized PLA, the HNB-modified PLA retains full 
catalytic activity and also exhibits spectral perturbations in the presence 
of divalent cations. Because of the presence of three Trp residues per 
subunit (Heinrikson et al. 1977) it seems very likely that the reagents 
modify different Trp residues. 

Vil]oen et al. (1976) carried out  Trp modification for PLA from Bitis 
gabonica with NBS. They were able to show that oxidation of  Trp-31 
was responsible for the observed loss of  enzymatic activity toward sub- 
strate present as organized lipid-water interfaces. In addition these inves- 
tigators found that Ca 2÷ or diC1 ~PC (30 tiM) does not  or only very 
weakly protect against the oxidation. In contrast micelles of lyso-PC and 
particularly in the presence of Ca 2+ do protect against oxidation of 
Trp-31. Although Vil]oen et al. (1976) claim that Trp-31 is an active site 
residue, their second explanation that Trp-31 is involved in the binding 
to lipid-water interfaces seems more likely. This explanation is consistent 
with the fact that Trp-31 is variable in most PLAs. Moreover, Ca 2+ ions 
alone do not  protect against inactivation, whereas Ca 2÷ ions plus micelles 
do protect. Unfortunately, the enzymatic activity of  the oxidized PLA 
toward monomeric substrate has not  been tested. Apparently NBS is not  
incorporated in micelles of  lyso-PC, otherwise a more rapid modification 
would be expected. PLA from Bitis gabonica was reacted also with 
o-nitrophenylsulfenylchloride (NPS) (Viljoen et al. 1976), modifying 
predominantly Trp-70 with retention of full enzymatic activity. More 
drastic conditions lead to the modification of  an additional Trp residue, 
which was found to be Trp-31, with a concomitant loss of  enzymatic 
activity. Also NBS-modified Trp-31 PLA incorporates NPS. 

Modification of the single Trp-3 residue in porcine pancreatic PLA 
with NPS did not  affect the enzymatic activity when assayed on micellar 
L-diC8 PC (Slotboom and de Haas 1975). In the egg yolk assay the Trp-3- 
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modified PLA possesses only half of  the activity as compared to the 
native enzyme. 

Yoshida et al. (1979) modified the single Trp at position 70 by NBS 
oxidation in one of the four iso-PLAs isolated from the sea snake Lati- 
cauda semifasciata and found that the activity decreased considerably 
and becomes comparable to those of the other three isoenzymes lacking 
this Trp residue. Moreover the authors reported the interesting observa- 
tion that the Trp modification changed the kinetic properties of  this iso- 
enzyme. NBS oxidation of the Trp-containing enzyme produced a PLA 
which, just as the native Trp-free isoenzymes, displays biphasic kinetics. 
The lag periods were shown to disappear in the presence of  the reaction 
products lyso-PC and fatty acid. The mechanism of the product activa- 
tion of the Trp-free proteins is not  clear at present. It is tempting, how- 
ever, to relate this behavior to a Trp-involving, lipid-binding site on this 
enzyme. 

NBS was reported by ttoward and Truog (1977) to oxidize Trp in 
t3-bungarotoxin with loss of PLA activity and neurotoxicity. Both NBS 
and 2-hydroxy-5-nitrobenzylbromide modified all of the tryptophan 
present in Naja na]a naja PLA with the loss of almost all activity toward 
substrate present in lipid-water interfaces (Roberts et al. 1977a). It is not  
certain whether all three Trp residues now known to be present in this 
PLA (Darke et al. 1980) were modified. In these latter two modifications 
it seems very likely that the observed losses in enzymatic activities are due 
to impaired binding of the modified enzymes to lipid-water interfaces. 

6.5 Methionine 

PLA from Crotalus adamanteus venom was found to slowly react with 
2-bromoacetamido-4-nitrophenol by modification of the single Met-10 
residue (Wells 1973a). When about 0.75 moles of p-nitrophenol groups 
were incorporated per subunit, all enzymatic activity was still present. 
No detectable spectral perturbations of the p-nitrophenol group were 
observed in the presence of divalent cations, demonstrating that these 
ions do not  bind in the environment of  Met. 

Carboxymethylation of  horse, bovine, and pig iso-PLAs, all possessing 
only one Met residue at position 8, resulted in a rather slow loss of 
enzymatic activity (van Wezel et al. 1976; Meyer 1979). After approxi- 
mately 22 h reaction 65% of the enzymatic activity of these enzymes 
is still present. When, however, 8-M urea is present, inactivation of por- 
cine iso-PLA is fast (van Wezel et al. 1976). The modified enzyme has 
lost its enzymatic activity toward both micellar and monomeric sub- 
strates. Direct binding studies of  this carboxymethylated iso-PLA showed 
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that it does not bind any longer to lipid-water interfaces but that it still 
could bind a monomeric substrate analog and Ca 2÷, though with a lower 
affinity than the native enzyme. Based on these observations it was pro- 
posed that Met-8 was part of the IRS. From the X-ray structure of bovine 
PLA (Di]kstra et al. 1978, 1981b) it turns out that Met-8 is buried in 
the interior of the protein. Apparently upon introduction of the zwitter 
ionic group under rather vigorous conditions part of the tertiary structure 
of the enzyme is considerably distorted. Contrary to native PLA, removal 
of urea does not result in proper refolding to the active conformation, 
resulting in the loss of enzymatic activity upon modification. Therefore 
the previous conclusion that Met-8 is part of the IRS is no longer tenable. 

Porcine PLA, having an additional Met residue at position 20, is rapidly 
carboxymethylated in the absence of urea under conditions where Met-8 
of the iso-PLA is hardly reactive. The modified protein retained about 
50% of its activity (Meyer 1979). 

Although no inactivation was observed upon prolonged reaction of 
porcine PLA with methyliodide, the reagent slowly alkylates Met-20 
as was demonstrated by incorporation of [14C]_methyliodide. Similarly 
as observed for carboxymethylation, it was found that methylation ofiso- 
PLA was considerably slower than that of normal porcine PLA. The 
observed differences in rates of alkylation of Met-8 and Met-20 in porcine 
PLA enabled Meyer (1979) to selectively prepare both S-carboxymethyl 
Met-20 and S-methyl Met-20 porcine PLA. After purification of the alkyl- 
ated PLAs he found a 1 : 1 stoichiometric incorporation of the alkylating 
agents, which were found to be located exclusively at Met-20. Both modi- 
fied proteins possess similar enzymatic activities toward monomeric sub- 
strates as the native enzyme. Also, the affinities of both atkylated PLAs 
for monomeric and micellar substrate analogs as well as for Ca 2+ were not 
affected. Furthermore, the specific activity of S-methyl Met-20 PLA when 
tested with the egg yolk assay was found also to be similar to that of native 
PLA, whereas that of  the S-carboxylmethyl Met-20 PLA was only about 
50%. Monolayer experiments of these two modified PLAs revealed that 
the penetrating power was noticeably decreased, in particular for that 
of  the carboxymethyl analog. Most likely the more drastic effects on 
the properties of the enzyme upon carboxymethylation of Met-20 as 
compared to those upon methylation are due to the introduction of a 
positive and a negative charge (carboxymethylation) or a positive charge 
only (methylation). The finding that the introduction of a positive charge 
on Met-20 has little influence on the properties of the pancreatic PLA is 
compatible with the occurrence of a positively charged Arg residue at this 
position in some snake venom PLAs (see Sect. 4). These results together 
with the three-dimensional X-ray structure of the bovine PLA suggest 
that Met-20 is part of the IRS. 
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6.6 Lysine 

Hl]oen et al. (1977) concluded that Lys is a residue essential for enzyma- 
tic activity of Bitis gabonica PLA based on the observation that reaction 
of pyridoxal-5'-phosphate followed by reduction with sodium boro- 
hydride inactivated the enzyme toward the substrate present as a lipid- 
water interface. The enzyme is protected against inactivation by micellar 
lysolecithin but not by Ca 2+. It is therefore very likely that the modified 
residue(s) is involved in some way in the binding to aggregated substrate. 
The loss of enzymatic activity was not due to modification of one partic- 
ular Lys residue per enzyme molecule but to four different Lys residues, 
each modified by about 25%. First-order plots were obtained which, 
according to the authors, indicate that the modification does not involve 
groups with different reactivities. Since the inhibition reaction velocities, 
measured as a function of pyridoxal-5'-phosphate concentration, showed 
saturation kinetics and complete loss of enzyme activity was found at 
the stage where one mole of pyridoxal-5'-phosphate had been incor- 
porated per mole of enzyme, it was concluded that this modification is 
of the active site-directed type. 

Pyridoxilation followed by reduction with 3 H-labeled sodium boro- 
hydride was used to radioactively label ~-bungarotoxin (MaeDerrnot et al. 
1978). The dissociation constant for binding to several tissue subfrag- 
ments of nervous tissue was found to increase tenfold upon pyridoxyla- 
tion. No data were reported for loss of PLA activity. 

6.7 Carboxylate Groups 

Recently PLA from Naja naja oxiana has been modified with N-diazoace- 
tyl-N'-(2,4-dinitrophenyl)-ethylenediamine (DBE) in the presence of 
Ca 2+ (Zhelkovskii et al. 1977, 1978b). When one carboxylate group per 
dimer was modified, the authors found complete inactivation of PLA, 
using monomeric L-diC4 PC as substrate. Their evidence, however, seems 
to be based heavily on the previously observed "half-site reactivity" by 
Dennis and co-workers (cf. Roberts et al. 1977a) which is no longer valid 
(Darke et al. 1980). Proflavin, a competitive inhibitor for this enzyme, 
and Ca 2÷ ions did not have any effect or increased the incorporation. 
After reduction of the modified protein with sodium borohydride, indi- 
cations were obtained for selective modification of an Asp residue, which 
has not yet been assigned to a particular Asp residue. 

In order to obtain information about the involvement of particular car- 
boxylate groups in the active site and in Ca 2÷ binding of bovine pancreatic 
PLA, Fleer et al. (1981 a) used the water-soluble 1 -ethyl-3-(N,N-dimethyl) 
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amino propyl carbodimide (EDC) and semicarbazide as the nucleophile. 
Depending on the conditions they were able to block all carboxylates 
except one (Asp-99) or two (Asp-39 and Asp-99). Both modified pro- 
teins have lost their enzymatic activity toward micellar and monomeric 
substrates and have also lost their Ca 2÷ binding properties. Repeating these 
experiments in the presence of Ca 2÷ ions, the carboxylate of  Asp-49, in 
addition to those of  Asp-39 and Asp-99, was not  modified. This protein 
still possesses enzymatic activity. Its Ca 2÷ binding properties were lost 
upon further modification in the absence of Ca 2÷ under conditions where 
only Asp-49 reacted. Therefore, it was concluded that Asp-49 is the Ca 2+ 
binding ligand, which is in good agreement with the results from the 
X-ray structure of  bovine pancreatic PLA (Di]kstra et al. 1981b). From 
the pH dependence of  the Ca 2÷ binding to bovine PLA a group with an 
apparent pK of  5.25 was found which was tentatively assigned to Asp-49. 

6.8 Arginine 

Recently, Vensel and Kantrowitz (1980) reported the modification of an 
essential Arg residue in porcine pancreatic PLA by reaction with phenyl- 
gtyoxal. About  one Arg residue per PLA molecule was modified, based 
on the assumption of a stoichiometry of  two phenylglyoxal molecules 
per Arg residue, which is not necessarily always valid. 

Moreover, the correlation of the inactivation of PLA with the number 
of Arg residues modified, derived in a rather unsatisfactorily way, does 
not  show very convincingly that modification of one Arg residue per 
PLA molecule correlates with the loss of  enzymatic activity. Almost no 
protection by Ca 2÷ was found, whereas a good protection against the 
inactivation was exhibited by micellar n-alkylphosphocholines. Increas- 
ing the pH from 6.5 to 9.5 leads to a more rapid inactivation, whereas it 
decreases the efficiency of  protection by the micellar substrate analogs. 
It is known, however, that phenylglyoxal can transaminate a-amino 
groups even more rapidly than it modifies Arg residues (Takahashi 1968). 
Because the presence of a free a-amino group is essential for enzymatic 
activity and binding of porcine pancreatic PLA to lipid-water interfaces, 
Vensel and Kantrowitz (1980) tried to prove by amino acid analysis and 
qualitative end group analysis that the inactivation was not  due to trans- 
amination. 

In the reviewers' opinion the methods used to show that transamina- 
tion had not  occurred are not  sensitive enough. The effects of  pH and 
micellar substrate analogs hold equally well for transamination of  the 
a-amino group. Moreover, 2,3-butanedione and 1,2-cyclohexanedione, 
being more specific for Arg than phenylglyoxal, cause a much slower 
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inactivation, despite the large excess used of each of these reagents. 
From extensive model studies in the reviewers' laboratory it turned out 
that phenylglyoxal gives rise to excessive transamination of porcine pan- 
creatic PLA with simultaneous modification of Arg residues, the number 
of which depends on the reagent concentration. Using phenylglyoxal con- 
centrations lower than those of Vensel and Kantrowitz, complete inacti- 
vation of porcine PLA was observed. Then the protein was subjected to 
CNBr cleavage. After separation of the liberated N terminal octapeptide 
from the remainder of the protein, it was found by amino acid analysis 
that in addition to the disappearance of 80% of Arg-6, Ala-1 was almost 
completely absent. In order to prevent transamination, the a-amino 
group in porcine AMPA was protected with an N-t-Boc group prior to 
modification by phenylglyoxal using similar conditions as for PLA. As a 
result the modified protein after deblocking of the a-amino group still 
possessed considerable enzymatic activity, while approximately one Arg 
(presumably Arg-6) per AMPA molecule was modified (Fleer et al. 
1981b). Therefore, Fleer et al. preferred the use of [14C]-labeled 1,2- 
cyclohexanedione in the presence of borate 
cine PLA. Despite the tbrmation of some 
able to isolate a PLA modified exclusively 

to modify Arg residues in por- 
transaminated PLA they were 
at Arg-6. Extensive characteri- 

zation revealed that the modification had almost no effect on the Vma x 
values when assayed both on micellar and monomeric substrates, and on 
Vma x values, assayed both on micellar and monomeric substrates, and on 
the Ca 2+ binding properties as compared to unmodified PLA. The affinity 
of the modified PLA to micellar substrate analogs as well as its penetrating 
capacity into monomolecular lecithin films was improved as compared to 
the unmodified PLA. 

6.9 a-Amino Group 

Transamination of proteins by glyoxylic acid in the presence of Cu 2+ is 
assumed to be specific for the a-amino group (Dixon and Fields 1972). 
This assumption is based on the mechanism proposed for transamination 
in which the peptide carbonyl group participates in the formation of an 
intermediate. A rather rapid inactivation was observed for both porcine 
and equine PLA (tl/2 ~ 53 min and 16 rain, respectively, under condi- 
tions as described by Dixon and Fields 1972), whereas bovine PLA is 
much more stable (h/2 ~ 400 min) (Slotboom et al., to be published). 
Ca 2+ and monomeric substrate analogs do not appreciably protect against 
the inactivation, whereas micellar substrate analogs almost completely pro- 
tect porcine PLA against the modification. In order to check the specificity 
of the reaction, porcine pro-PLA, devoid of an a-amino group, was reacted 
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under similar conditions as PLA. It was found that at a stage where PLA 
was approximately 80% inactivated about 15% of the potential activity 
of the zymogen was lost, indicative of some kind of side reaction. 

Prolonged reaction times lead to an increased loss of the potential 
activity of the zymogen. Because of the structural similarity of glyoxylic 
acid with arginine modifying reagents (a, ~-diketone structure) it could 
not be precluded a priori that one or more Arg residues were modified. 
In particular, the C terminal Arg residue of the activation peptide could 
possibly be modified, thereby preventing tryptic activation of the zymo- 
gen. This could indeed be the case because the lost potential activity of 
the zymogen could partially be restored upon storage at pH 8, conditions 
which favor the dissociation of Arg-phenylglyoxal complex (Takahashi 
1968). 

When the transamination reaction was performed in the presence of 
6-M guanidine hydrochloride or 8-3//urea, complete inactivation of bovine, 
porcine, and equine PLAs within 30 -60  min was observed. After similar 
treatment of porcine pro-PLA, all potential activity was recovered, indi- 
cating no additional inactivation 16. 

Transaminated porcine PLA prepared in this way was subsequently 
purified by ion exchange chromatography, and the only detectable modi- 
fication was the conversion of the a-amino group into a keto group. The 
transaminated porcine PLA had lost its enzymatic activity toward micel- 
lar substrate due to its considerably decreased affinity for lipid-water 
interfaces but still retained its enzymatic activity toward monomeric sub- 
strate. In these respects the transaminated PLA thus resembles very 
much the zymogen. As a matter of fact, the results of Photo CIDNP 
NMR spectroscopy (Egmond et al. 1980) as well as the tentative 2.4-A 
X-ray structure of transaminated bovine PLA (B. W. Diikstra, personal 
communication) support this conclusion. Subsequent treatment of a 
transaminated protein with o-phenytene diamine is reported (Dixon and 
Fields 1972) to selectively remove the N terminal amino acid residue. 
This sequence of reactions was applied to the enzymatically inactive 
Ala -1 -AMPA 1~ , which indeed produced in about 30% overall yield 
enzymatically active AMPA having the same specific activity as authentic 
AMPA (Slotboom et al., to be published). 

The use of glyoxylic acid to selectively modify the a-amino group is 
of particular interest for the snake venom PLAs because it allows one to 
study whether it has similar effects on enzymatic activity and lipid binding 

16 Using radioactive glyoxylic acid incorporation of 14C radioactivity was observed 
both in PLA and pro-PLA. Upon subsequent purification and dialysis almost aU 
of the incorporated radioactivity disappears 

17 AMPA in which an Ala residue has covalently been attached to the N terminal 
Ala 1 



154 H.M. Verheij et al. 

properties as observed for the pancreatic PLAs. PLAs from Crotalus 
atrox, Vipera berus, and Na]a melanoleuca were rapidly inactivated by 
glyoxylic acid in the presence of 4-M tetramethylurea (Verhei] et al. 
1981). After purification, the modified proteins have no enzymatic 
activity when tested with micellar substrate but partially retained their 
activity toward substrate in monomeric form. Direct binding studies 
revealed that the affinity of the transaminated snake venom PLAs for 
lipid-water interfaces was decreased five- to tenfold, but in contrast to 
transaminated porcine PLA, a strong interaction was still observed. A pos- 
sible explanation for this difference could be that the rather weak bind- 
ing of  the pancreatic PLAs is mainly induced by its N terminal region, 
whereas the stronger binding of  the snake venom PLAs is predominantly 
due to interaction with other hydrophobic regions in the protein. There- 
fore, upon transamination of  the a-amino groups relatively small effects 
on the affinity to lipid-water interfaces could be expected in the latter 
case as compared to the former. The lack of  enzymatic activity of  the 
modified pancreatic enzyme can be explained by the impaired inter- 
action with lipid-water interfaces, ttowever, even though the modified 
venom PLAs do bind to lipid-water interfaces, no enhanced activity 
induced by the interface was observed. This was explained (Verhei] et al. 
1981) by the assumption that PLA bound to lipid-water interfaces can 
occur in two conformations characterized by low and high turnover 
numbers, respectively, when acting on these aggregated substrates. 

6.10 Tyrosine 

From direct binding studies of pancreatic PLAs with Ca 2+, monomeric,  
and micellar substrates analogs using spectroscopic methods it was found 
that binding of these ligands perturbed one or more Tyr residues (Pieter- 
son et al. 1974a; van Dam-Mieras et al. 1975; DonnO-Op den KeMer 
et al. 1981). Meyer et al. (1979a,b) nitrated Tyr residues in horse, por- 
cine, and bovine (pro)-PLAs with tetranitromethane (TNM), giving rise 
to a rapid, partial loss of  enzymatic activity, which is even more rapid 
in the presence of lysolecithin micelles and Ca 2÷. This latter effect was 
attributed to the incorporation of  the reagent into the lysolecithin 
micelles, thus enhancing the rate of  nitration of those Tyr residues 
involved in the micellar binding site of  PLA. The presence of  lysolecithin 
also protects against polymerization which was a side reaction in its 
absence. After purification of  the mono- and di-NO2 monomeric pro- 
teins it was found that in all three pancreatic PLAs Tyr-69 was always 
nitrated. In addition Tyr-124 in porcine and Tyr-19 in horse PLA were 
also nitrated. All these mononitrated PLAs still posses 15%-50% of  the 
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enzymatic activities of the respective unmodified enzymes when assayed 
on micellar substrates, indicating that the modified Tyr residues are not 
active site residues. The NO2-Tyr residues could be reduced by sodium 
dithionite into NH2-Tyr residues. The various NH2-Tyr PLAs are still 
enzymaticalty active, and due to the low pK values of these NH2 groups, 
they could easily be transformed into the corresponding dansyt-NH2 -Tyr 
PLAs also possessing enzymatic activity. 

From direct binding studies using ultraviolet difference spectroscopy 
it was found that NO2 -Tyr-69 as well as the dansyl-NH2 -Tyr-69 porcine 
and equine PLAs and in particular NO2-Tyr-19 and dansyt-NH~-Tyr-19 
equine PLA possess a higher affinity for lipid-water interfaces than the 
native enzymes. Upon interaction of the latter dansyl-NH2-Tyr PLAs 
with micellar substrate analogs a considerable increase in fluorescence 
and a concomitant blue shift of the emission maximum of the dansyl 
group was observed. No such effects occurred for the corresponding dan- 
syl-NH2-Tyr pro-PLAs nor for dansyl-NH2-Tyr-124 porcine PLA. It has 
therefore been concluded that Tyr-19 and Tyr-69 are part of the IRS in 
pancreatic PLA. 

Monomer phospholipid binding at pH 6 as monitored by ultraviolet 
difference spectroscopy induces a strong hydrophobic perturbation of 
NO2 -Tyr-69 and -19, and again the microenvironment of NO2 -Tyr-124 is 
not changed. When measured at pH 8 monomer binding decreased con- 
siderably, most probably due to charge repulsion between the phosphate 
moiety of the phospholipid analog and the negatively charged NO2 -Tyr- 
69 residue which has a lower pK than Tyr. The corresponding NH2 -Tyr- 
69 PLA does not show this difference. In addition to Tyr-69 and Tyr-19 
another Tyr residue, most probably Tyr-52 located in the active site 
cavity close to His-48 and Tyr-69, is also perturbed on monomer binding. 
So far this residue could not be modified by TNM nor by other Tyr- 
modifying reagents (Meyer, unpublished observations). 

Ca ~÷ binding affects the NO2-Tyr-69 residue as was shown by ultra- 
violet difference spectroscopy and the lowering of the pK of NO~ -Tyr-69, 
whereas no such effects were found for NO2 -Tyr-19 and -124. 

The introduction of the NO2 group and in particular of the dansyl- 
NH~ group on Tyr-69 and Tyr-19 greatly enhances the penetrating 
power of these modified enzymes for monomolecular L-di Ca o PC films. 
When the pH is increased from 6 to 9 the penetrating power of the NO2 - 
Tyr-69 porcine and equine PLAs, however, decreased considerably due 
to the introduction of a negative charge. 

The availability of various pure NO~-Tyr PLAs was of great help for 
the identification of resonances in the IH-NMR spectrum of PLA originat- 
ing from Tyr residues. By using the Photo CIDNP method, developed by 
Kaptein et al. (1978), it was possible to assign resonances corresponding 
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to H3,s protons of  Tyr-69 and Tyr-124 in porcine PEA. Monomer bind- 
ing as studied with this technique showed, in agreement with the above 
mentioned results, that Tyr-69 is perturbed while Tyr-124 is not  (Jansen 
et al. 1978). 

For various studies, in particular for monolayer experiments (see 
Sect. 5), the availability of  highly radioactively labeled, enzymatically 
active PEA is required. For this purpose iodination of Tyr residues is 
very attractive. Reaction of  bovine pancreatic (pro)-PLAs with an equi- 
molar amount  of iodine resulted for the bovine proteins in the exclusive 
monoiodination of  Tyr-69 while in the porcine proteins in addition to 
extensive monoiodination of  Tyr-69 Tyr-124 also monoiodinated to a 
small extent (Slotboom et al. 1978c). As compared to the native enzyme 
the iodinated enzyme has a higher specific activity when assayed in the 
egg yolk assay, while similar Vma x values were found using micellar diC8 
PC. The introduction of one atom of iodine on Tyr-69 in pancreatic PEA 
slightly increases the penetration capacity of  the enzyme in monolayers 
of L-di C10 PC which is compatible with a better K m found for mono- 
iodinated PEA activity on micelles of  di C8 PC (Pattus et al. 1979a). 

Crotalus adamanteus PEA upon reaction with iodine retained 88% of 
its activity when one mole of  di-iodotyrosine per protein molecule was 
present (Wells 1973b). 

Bon et al. (1979) also used iodination to radioactively label the sub- 
units of  crotoxin. Upon incorporation of  one atom of iodine per mole of  
protein the iodinated component  B showed no significant decrease of the 
PEA activity and retained full neurotoxic potential when tested after 
complexing with native component  A. When the extent of iodination was 
0 .5 -1 .0  atom of  iodine per mole component  A its efficiency in poten- 
tiating neurotoxic effects of  component  B was decreased by about 40%. 

Upon reaction of  purified bee venom PEA with imidazolide derivatives 
of long-chain fatty acids, a single acyl residue is covalently coupled, pre- 
sumably to a Tyr residue (Drainas et al. 1978; Drainas and Lawrence 
1978; Lawrence and Moore 1975; Lawrence 1975). Kinetic analysis of  the 
acylated enzyme shows an increase of the enzymatic activity which is 
almost entirely determined by enhancement of  the Vma x term (53-fold), 
with a small modification of  the K m value. Addition of free fatty acids 
has the same effect, though to a lesser extent. Similar phenomena were 
observed for PEAs from Vipera ammodytes and Naja naja venoms. Of 
the possible explanations for this phenomenon given by the authors, the 
most attractive mechanism is that activation faciliates functional penetra- 
tion of  the lipid interface by the enzyme. 
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6.11 Miscellaneous 

6.11.1 Modification of Phospholipase A2 with Ethoxyformic Acid 
Anhydride 

Ethoxyformic acid anhydride (EOFA) is a very reactive nonspecific rea- 
gent which reacts in proteins with several amino acid side chains such as 
phenolates, imidazoles, carboxylates, sulfhydryls, a- and e-amines, and 
guanidino groups (Larroqudre 1964; Melchior and Fahrney 1970; Miihl- 
rdd et al. 1967; Burstein et al. 1974). The reagent is unstable and hydro- 
lyzes rapidly in aqueous media (tl/2 at pH 7.0 and 20-25°C in between 
8 and 25 min; c.f. Berger 1975; Larroqukre 1964;Melchior and Fahrney 
1970). Despite these drawbacks the reagent has been used for chemical 
modification of  a large variety of  proteins, including PLA. 

Wells (1973b) used this reagent to identify whether a Lys of His resi- 
due might be important  in the active site of  Crotalus adamanteus PLA. 
Because no radioactive EOFA was used, the modification of  His was 
determined by spectral changes at 230 nm. These measurements are not  
a reliable measure of  the involvement of  His when Tyr residues are simul- 
taneously ethoxy~brmylated. Spectral changes during selective de-ethoxy- 
formylation of His by mild hydroxylamine treatment (20 raM) not 
affecting O-ethoxyformyl Tyr residues are much easier to interpret. 
While Wells found almost no ethoxyformylation of  His but a complete 
loss of  enzymatic activity, the same modification in the presence of 4-M 
urea showed the modification of  4 His residues (per dimer) with reten- 
tion of  26% of  the enzymatic activity. The fact that four His residues per 
dimer were modified would also mean that the active site His-48 was 
modified, which is not  compatible with retention of  26% of  the activity. 
Therefore, the result of  the spectroscopic determination is probably mis- 
leading. During subsequent treatment with 0.1-M instead of 0.02-M 
hydroxytamine not  only His but also Tyr residues are probably de-ethoxy- 
formylated. These results suggest that other important  group(s)were  
modified as well. The observation that EOFA modification is first order 
with respect to dimeric enzyme and EOFA led Wells to conclude that 
this modification is an example of  "half-site reactivity". This hypothesis 
was supported by the findings that only one Lys residue/dimer is modi- 
fied and that there were still detectable cation-induced optical effects 
and by the recovery of  the theoretically predicted specific activities upon 
dissociation-reassociation of  50% and 100% inactivated PLA at pH 5.0. 
Based mainly on these observations it was concluded that within the 
active site of  Crotalus adamanteus PLA a Lys residue was identified. 
Besides the observation that until now no Lys residue in any sequenced 
PLA has been reported on a position which in the tertiary structure of  
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the bovine pancreatic PLA forms part of the active site (see Sect. 9), 
there are in the reviewers' opinion several reasons to re-evaluate this 
modification. It is now known that the Crotalus adamanteus PLA has a 
free ~-NH2 group which could have reacted also with EOFA. Moreover 
Tyr residue(s) are very likely simultaneously ethoxyformylated. Taking 
into account the large variety of possible sites for incorporation, a more 
direct determination of the residue(s) modified as well as of the number 
of residues modified by radioactive EOFA should be considered. Further- 
more, it would have been worthwhile to determine whether enzymatic 
activity is also lost when assayed using monomeric substrate. 

Upon reaction of EOFA with Na]a na]a naja PLA the group of Dennis 
(Roberts et al. 1977a) claimed that two amino groups, one Tyr and half 
a His per enzyme molecule, were modified with retention of 15% of 
enzymatic activity. Based on this observation and the results obtained 
after consecutive EOFA-BPB or BPB-EOFA modifications, it was con- 
cluded that EOFA also shows half-site reactivity. Most likely the same 
arguments which led to the withdrawal of the half of the site reactivity 
of BPB (Darke et al. 1980) also hold for EOFA modification. 

EOFA and acetic anhydride have been reported to modify only NH2 
groups and no His or Tyr residues in crotoxin (Jeng and Fraenkel-Conrat 
t978; Bon et al. 1979). With a 50-fold excess two NH2 groups reacted in 
crotoxin with retention of all PLA activity and neurotoxicity, while 
higher concentrations of EOFA modified progressively more NH2 groups 
with increasing losses of PLA activity and neurotoxicity. In this respect 
the separate crotoxin B-chain (basic PLA) behaves in a way almost iden- 
tical with that of the complex, whereas in the A-chain (Crotapotin) 
EOFA acylates only one NH2 group. 

Simlarly, all PLA activity and neurotoxicity are lost upon reaction of 
EOFA with ~3-bungarotoxin, although no data were reported in which 
amino acid residues were modified (Itoward and Truog 1977; Ng and 
Howard 1978). Ca 2÷ and di C6 PC (above the CMC) were found to pro- 
tect almost all PLA activity against inactivation by EOFA, whereas the 
neurotoxic properties are still lost. The authors suggest that there are 
possible two sites on the protein, one responsible for PLA activity which 
can be protected and another one for neurotoxicity which can not be 
protected against EOFA modification. 

Reaction of notechis II-5 with EOFA showed the modification of one 
Tyr, one Lys, and two His residues (Eaker 1978). One of the His residues 
reacts slowly, the other fast. Although contradictory results were obtained 
concerning whether PLA activity is lost or not, depending on the use of 
egg yolk or purified egg yolk PC, the authors claimed to have modified 
His-14 and His-21, which would mean that His-48 was not modified. Most 
probably His-21 is involved in the binding of the enzyme to lipid-water 
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interfaces. More extensive treatment with EOFA ted to inactivation 
which could not  be reversed with hydroxylamine. It is suggested that 
a Lys residue has been modified, although no supporting evidence was 
presented. 

6.11.2 Cross-Linking of  Phospholipase A 2 

In order to demonstrate crossqinking ofNaja naja naja PLA under condi- 
tions in which the enzyme exists in an aggregated state, Lewis et al. 
(1977) used various photoactivatable heterobifunctional arylazides. The 
reagents used, N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOS), 
ethyl N-5-azido-2-nitrobenzoyl-aminoacetimidate HC1 (ANB-AI), and 
ethyl 4-azido benzimidate HC1 (AB4), were found to react with about 
1 .5-1.8  Lys residues without appreciable loss of  enzymatic activity and 
without polymerization in the absence of  irradiation. After irradiation of  
the modified PLAs at a concentration of  1 mg/ml it was found that 
except for the PLA-AB-I complex the other two complexes gave rise to 
-+ 80%-90% cross4inking with the formation of  roughly similar ratios of  
di-, tri-, and tetramers. Only about 50% of  the PLA-AB4 complex was 
cross-linked, 31% of  which resulted in the formation of  dimers. The 
unpurified, cross-linked PLAs all had retained 20%-80% of  the enzyma- 
tic activity. Because this activity is significantly higher than can be 
explained by the presence of monomeric PLA in the mixture, a portion 
of  the crossqinked proteins retains PLA activity. 

To test the hypothesis that crotoxin A serves as a "chaperon" to 
enhance the specificity of  crotoxin B Hendon and Tu (1979) cross-linked 
both polypeptide chains using the bifunctional cross4inking agent 
dimethylsuberimidate. An average of  three cross-links were introduced as 
found from the number of  Lys residues blocked. Most likely two of  
these cross-links occur between the subunits A and B, while the third is 
presumably present as an intrapeptide cross-link on subunit B. No loss 
of  PLA activity of  the cross-linked crotoxin was observed indicating that 
crossqinking does not  interfere with the PLA active site present in the 
B chain. In contrast, neurotoxicity of  the cross-linked crotoxin is lost. 
Since the PLA activity of  the cross-linked complex remains unaffected 
and since this activity is believed to be directly involved in presynaptic 
action in neurotoxicity, it appears that the loss of neurotoxicity occurs 
from some form of  interference between the cross-linked complex and 
the target site, thus adding credence to the chaperon concept for cro- 
toxin A. 

Roberts et al. (1977c)also used dimethylsuberimidate for cross-linking 
experiments to determine whether Naja na]a na]a PLA at low concentra- 
tions aggregates in the presence of  substrate micelles. Moderate amounts 
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of  covalently linked enzymes are formed when cross linking was per- 
formed in the absence of micelles at concentrations where the enzyme is 
a dimer. Only under conditions favoring binding of the enzyme to mixed 
micelles was it found that not only the dimer-monomer ratio increased 
but also that the trimer-monomer ratio increased even more as compared 
to conditions where no binding exists between the enzyme and mixed 
micelles (c.f. also Sect. 5). 

6.11.3 PhotoaffiniLv Labeling 

So far, only Ituang and Law (1978, 1981) used photoaffmity labeling to 
study the interaction of  PLA (Crotalus atrox) with phospholipids. They 
synthesized a racemic 1,2-dihexyl ether analog of PE which contains in the 
polar head group an ethyl diazomalonyl group and which was found to 
be an effective substrate analog. After photolysis of a mixture of the 
PLA and the photolabile PE analog (present in a concentration of only 
four times its CMC), they observed covalent linkage of the enzyme with 
the PE by the photochemically generated carbene. From the amount of 
incorporated substrate analog the ratio of bound ligand to 14 000-dalton 
polypeptide was 1.04 and no half-site reactivity was found. Extensive 
inhibition was observed, whether or not Ca 2÷ was present, although inhi- 
bition was greater in the presence of Ca 2÷ as could be expected for an 
ordered mechanism of binding with Ca 2+ adding first. When the diether 
PE analog without the photolabile group was added along with the photo- 
labile PE analog the enzyme was protected from inactivation, suggesting 
that the two phospholipids compete for the same site. Based on the 
assumption that Crotalus atrox PLA, like the Crotalus adamanteus PLA, 
is only active in the dimeric form, ttuang and Law (1978) suggest that 
atkylation of one subunit in the dimeric enzyme leads to rapid dissocia- 
tion and reassociation of unalkylated monomers to give active dimers. 

The radioactivity associated with the PE analog incorporated into the 
PLA was found to be localized in two fragments, viz. a large peptide 
comprising residues 43-97 and the N terminal segment residues 1-15. 
Undoubtedly important information toward a better understanding of 
the architecture of the enzyme-substrate interaction can be expected 
upon further exploration of this attractive approach. 

6.11.4 Semisynthesis of  Pancreatic Phospholipase A 

The a-helical N terminal region of pancreatic PLAs has been shown to be 
directly involved in the binding of these enzymes to lipid-water interfaces 
(Van Dam-Mieras et al. 1975). Furthermore, the absence of micellar 
activity of the zymogen as well as of various a-amino-blocked porcine 
AMPAs (vide intYa) led Abita et al. (1972) to conclude that the a-amino 
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group stabilizes the active geometry of  the catalytic site. To further eluci- 
date the important role of  the N terminal region on activity and lipid- 
binding properties of  the pancreatic PLAs chemical modification was less 
attractive or not  possible. Therefore semisynthesis was used to substitute 
various amino acid residues at the N terminal region (Slotboom and 
de Haas 1975; Slotboom et al. 1978a). Such a semisynthetic approach 
requires that the e-amino groups of  Lys residues must be selectively pro- 
tected, enabling removal and reintroduction of  amino acid residues or 
peptides to take place exclusively at the free a-amino group. For the 
pancreatic PLAs this was done by amidination of  the zymogens with 
methylacetimidate followed by tryptic activation. The resulting e-ami- 
dinated PLAs (AMPAs) have about 70% of  the enzymatic acticity of that 
of  native PLAs when assayed on micelles of  L-diC8 PC; their behavior is 
almost identical in all respects to that of  the unmodified PLAs. It is there- 
fore not  necessary to remove afterwards the protecting amidino groups. 
Using this procedure Pattus et al. (1979a) prepared 3 H-labeled AMPA for 
monolayer studies (see Sect. 5). Upon successive removal of N terminal 
amino acid residues of  porcine AMPA by the Edman procedure des-Ala-1 -, 
des-Ala-1 .Leu-2-, and des-Ala-1 .Leu-2.Trp-3-AMPAs were obtained which 
are devoid of  enzymatic activity on micellar substrate. Although des-Ala-1 
AMPA still possesses some activity toward monomeric substrate, removal 
of  more than one amino acid residue further decreases this activity. Various 
amino acids were covalently coupled to des-Ala-1 AMPA, resulting in 
AMPA analogs which were always catalytically active on monomeric sub- 
strate. Whereas substitution of  L-Ala-1 by Gly,/3-Ala, L-Asn, L-Asp, or 
L-NorLeu produced AMPA analogs catalytically active on micellar sub- 
strates, this was found not  to be the case for AMPA analogs having N ter- 
minal D-Ala, L-a-amino isobutyric acid, N-methyl-L-Ala, L-Leu, or L-Phe. 
These latter analogs do not  bind to lipid-water interfaces despite the 
availability of a free a-amino group (Slotboom et al. 1978a; Slotboom 
et al., to be published). Most likely this is due to the presence of  a rather 
bulky, branched, or D-amino acid residue, which for steric reasons pre- 
vents the proposed interactions shown in Fig. 13 with concomitant  dis- 
tortion of  the IRS (Slotboom et at. 1977). Similarly various 13 C-enriched 
amino acids have been introduced at the N terminal position of  pancrea- 
tic AMPAs, enabling the determination of  the pK values of  the a-amino 
groups. A pK of  8.4 was found for the a-amino group of porcine AMPA, 
in good agreement with similar values (8.3 and 8.45, respectively) deter- 
mined by proton titration (Janssen et al. 1972) and by titration of  pro- 
tons released during tryptic activation of  the zymogen (Slotboom et al. 
1978b). Even higher pK values were found for the a-amino group of  
equine and bovine [(3 -13 C)-L-AIa-1 ] AMPA, viz. 8.8 and 8.9, respectively 
(Jansen 1979; Jansen et al. 1979). In contrast, [(3 -13 C)-D-Ala-1 ] porcine 
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AMPA was found to have a more normal pK value of 7.8 for its a-amino 
group (Slotboom et al. 1978b). These results, together with the observa- 
tion that introduction of an octan-2-one moiety on His-48 or addition of  
specifically Ca 2÷ ions increase the pK of the a-amino group of  [(3 -13 C)- 
L-Ala-1] AMPA from 8.4 to 9.0 and not that of  [(3 -13 C)-D-Ala-1 ] AMPA, 
once more stresses the special environment of L-Ala-1 in pancreatic PLA. 

Using the same technique, but now coupling the tripeptide Ala.Leu.Phe 
to des Ala-1 .Leu-2.Trp-3-AMPA, [Phe-3] AMPA was obtained. This ana- 
log was found to have about 40% of  the enzymatic activity of  AMPA, 
indicating that Trp-3 is not essential (Slotboom and de Haas 1975). 
[Phe-3] AMPA enabled the unambiguous conclusion that in addition to 
Trp perturbation one or more Tyr residues are also perturbed upon inter- 
action with miceUar substrate analogs (van Dam-Mieras et al. 1975). 

Substitutions further on in the N terminal region have been performed 
by covalent coupling of preassembled peptides to AMPA fragments shor- 
tened at the N terminal which were prepared by selective proteolytic 
cleavage or CNBr splitting of tri-, hexa-, and octapeptides. It has to be 
mentioned that these splittings caused the loss of all enzymatic activity 
which could not be restored by noncovalent combining of  the peptide 
and protein fragment as observed for RNASe S'. Similar findings were 
reported also for PLA for Naja naja oxiana (Magazanik et al. 1979). 
Using chymotryptic cleavage at Trp-3 Jansen (1979) prepared [Gly-3] 
and [Glu-4] porcine AMPAs and showed that substitution of  Trp-3 by 
Gly abolishes almost all micellar activity, most likely due to distortion of  
the a-helical structure. Although Gln-4 is absolutely conserved in all 
sequenced PLAs, [Glu-4] AMPA possesses about 40% of  the activity of  
AMPA. Interestingly, the penetrating power of [Gly-3] AMPA into mono- 
layers of  L~iCI 0 PC was decreased, whereas that of [Glu-4] AMPA was 
increased as compared to that of  unmodified AMPA. Recently van Schar- 
renburg et al. (1981) substituted Asn-6 in the bovine AMPA by Arg 
which occurs at this position in the porcine enzyme. This substitution 
was found to increase both the low affinity for lipid-water interfaces and 
the low penetrating capacity of  the bovine AMPA for monolayers to 
comparable values found for the porcine AMPA. Substitution of  the 
absolutely conserved Phe-5, located in the hydrophobic wall around the 
active site cleft (see Fig. 13), by a Tyr residue in bovine AMPA causes 
the loss of almost all catalytic activity, probably due to a distortion of 
the active site (van Scharrenburg et al., to be published). It can thus be 
concluded that these substitutions may yield valuable information on the 
role of  the N terminal amino acid residues in enzymatic activity and lipid 
binding properties of  pancreatic PLAs, but more work has to be done to 
properly explain the observed findings. 
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7 Direct Binding Studies 

7.1 Binding of Ca ~÷ 

7.1.1 Pancreatic Phospholipases A 2 

Equilibrium gel filtration studies demonstrated that both porcine PLA 
and its zymogen possess only one high-affinity Ca 2÷ binding site per protein 
molecule (Pieterson 1973, Pieterson et al. 1974a; Slotboom et al. 1978b). 
Binding of Ca 2÷ to porcine PLA and pro-PLAinduces ultraviolet difference 
spectra which are characterized by a large peak at 242 nm and two small 
peaks at 282 and 288 nm. It was tentatively concluded that the observed 
difference spectrum originates from a shift of a Tyr residue to a more 
polar environment and a charge effect on a His residue. Qualitatively 
identical difference spectra were obtained for both proteins with Ba 2÷ 
and Sr 2÷, while Mg 2÷ did not produce a difference spectrum nor inter- 
fered with the appearance of the normal Ca 2÷ difference spectrum. From 
the appearance of the Ca2÷-induced ultraviolet difference spectrum and 
the observation that Ca 2÷ substantially slows down the rate of tryptic 
inactivation of PLA, it was concluded that saturation of the Ca 2÷ binding 
site produces a conformational change in the protein. Both from 1 H-NMR 
and fluorescence titration studies using native and His-48-modified pan- 
creatic PLAs it was demonstrated that Ca 2+ binding decreases the pK 
value of His-48 from about 7 to 5.7 (Aiguiar et al. 1979; Verhei] et al. 
1980a). This finding is in agreement with the conclusion that catalysis 
depends on the unprotonated form of a group with a pK of 5.5 ( Volwerk 
et al. 1979) which has therefore been assigned to the imidazole side 
chain of His-48 (Verhei] et al. 1980a; see Sects. 8 and 9). 

The conclusion that Tyr is the only aromatic chromophore perturbed 
on Ca 2+ binding is in agreement with the finding that Ca 2÷ does not influ- 
ence the fluorescence spectra of PLA and pro-PLA. However, addition of 
Ca 2+ enhances the ANS fluorescence induced by PLA and its zymogen, 
enabling the determination of the metal ion dissociation constants (Pie- 
terson et al. 1974a). A similar conclusion was reached by Brittain et al. 
(1976) who used Tb 3÷ as a luminescent probe of Ca 2÷ sites in proteins. 
They showed that irradiation in the tyrosine region produces emission 
from added Tb 3+ which was similar for PLA and pro-PLA. 

Ca 2+ dissociation constants were also derived from inactivation of PLA 
by BPB (Pieterson et al. 1974a; Volwerk et al. 1974). The dissociation 
constants for the porcine PLA-Ca 2÷ complex obtained by these different 
techniques showed good agreement. Rather similar values were found 
also for the dissociation constants of the zymogen-Ca 2÷ complex as well 
as for the Ba 2+ and Sr 2÷ complexes of both proteins. Values were found 
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ranging from I0-  1 M at pH 4 to 2.10 -4 M at pH 10, and the pH depen- 
dency suggests that the metal ion binding site contains one or more car- 
boxylates. 

Using methods similar to those described above Kca 2+ values for bovine, 
ovine and equine PLAs were determined by ultraviolet difference spectro- 
scopy at pH 6 and found to be 4.5, 4.5, and 1.1 mM, respectively 
(Dutilh et al. 1975;Fleer et al. 1981a; Meyer 1979). For the bovine PLA 
the pH dependency of  Kfa2+ was shown to be controlled by a single 
carboxylate group with an apparent pK of  5.2 which by chemical modi- 
fication studies was tentatively assigned to Asp-49 (Fleer et al. 1981a). 
A similar pK value was very recently reported by Andersson et al. (1981 ) 
for porcine pro-PLA using 43 Ca-NMR. With this technique the authors 
found a dissociation rate constant of  2.5 X 103 s- i .  Together with the 
reported Kfa2* value (0.4 mM at pH 7.5) it was concluded that the 
Ca 2+ binding site of  porcine pro-PLA is more rigid or generally less acces- 
sible to an incoming Ca 2+ ion as has also been observed for rabbit skeletal 
muscle troponin C. 

It has to be mentioned that the chemically modified pancreatic PLAs 
like AMPA and [D-Ala-1]-AMPA (Slotboom et al. 1978a) and the various 
nitrated PLAs (Meyer et al. t979b) all possess Kca2+ values similar to 
their native PLAs. Obviously, no Ca 2+ binding could be detected for the 
Asp-49 modified bovine PLA (Fleer et al. 1981a), whereas Ca ~+ binding 
to BPB-modified pancreatic PLA is greatly impaired, probably due to 
steric hindrance (Verhei] et al. 1980a). 

So far Gd a+ is the only metal ion which can substitute for Ca 2+ with 
retention of some of  its enzymatic activity on L-diC8 PC. Dissociation 
constants for PLA and pro-PLA were evaluated from water proton relaxa- 
tion (PRR) titrations. At pH 5.8 the KGd3+ for porcine PLA and p r o -  
PLA was found to be 0.5 and 0.18 re.M, respectively. The KMe for Ca 2+, 
Eu 3+, and Tb 3+ were evaluated in PRR titrations by competit ion of these 
cations with Gd 3+. The KCa2+ values determined in this way agreed very 
well with those obtained directly, whereas KMe for Eu a+ and Tb a+ for 
PLA were 0.07 and 0.08 mM at pH 5.3, respectively (Hershberg et al. 
1976b). 

Finally, it has to be mentioned that the affinity of  the enzyme for 
Ca 2+ is considerably enhanced at neutral pH by micellar substrate analogs 
(Pieterson et al. 1974a,b; Hershberg et al. 1976b; Slotboom et al. 1978b). 
This synergistic effect explains the discrepancies observed between Ca 2+ 
dissociation constants determined directly and those obtained from 
kinetic analysis (see also Sect. 7.3). 
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7.1.2 Venom Phospholipases A2 

Binding of  Ca 2+ to notexin (Halpert et al. 1976), notechis II-1 (Halpert 
and Eaker 1976b), and taipoxin (Fohlman et al. 1979) induced ultra- 
violet difference spectra almost identical to those observed for porcine 
PLA. Somewhat  lower Kca2+ values were calculated for these proteins as 
compared to that o f  porcine PLA. In addition, it was concluded that one 
Ca 2+ was bound per protein molecule, except for taipoxin which binds 
two Ca 2+ ions. In this latter protein one Ca ~+ is bound to the a-subunit 
and one to the -r-subunit, while the #-subunit has no affinity for Ca 2÷. 
Although it appears very likely that indeed one Ca 2÷ is bound per poly- 
peptide chain, this conclusion is based on the assumption that the maxi- 
mal absorbance is due to the binding of  one Ca 2÷ per protein molecule. 
From ultraviolet difference spectroscopy it was concluded that BPB- 
modified notexin is still able to bind one Ca 2÷ per protein molecule, 
although its Kca2÷ value (25 mM at pH 7.4) was 178-fold higher than 
that found for native notexin. 

A be et al. (1977) demonstrated by equilibrium dialysis that #-bungaro- 
toxin binds one mole of  Ca 2÷ per mole o f  protein and a KCa2+ of0 .15  mM 
was found at pH 8. Similarly as found for porcine PLA this Ca 2÷ binding 
induces a conformational  change as detected by fluorescence measure- 
ment in the presence of  the dye ANS. Using this method comparable 
KMe values for Ca 2÷, Ba 2÷, and Sr 2+ were obtained as determined by 
equilibrium dialysis, whereas Mg 2÷ and Mn 2÷ do not  bind. Fluorescence 
experiments with BPB-modified ~-bungarotoxin showed that Ca 2÷ up to 
5 mM produced only a very small effect on the fluorescence of  the dye- 
toxin complex. These fluorescence studies indicate that BPB-modified 
/~-bungarotoxin has lost its Ca 2÷ binding properties. 

Using equilibrium dialysis Wells (1973a) showed for the Crotalus ada- 
manteus PLA the presence of  two cation binding sites per dimer with a 
dissociation constant o f  about  5 × 10-s M at pH 8 for the alkaline earth 
cations. Ultraviolet difference spectroscopy revealed that the binding o f  
Ca 2÷, Ba 2÷, or Sr2. * to PLA causes a decrease in the absorbance, with 
peaks near 292 and 286 rim, and an increase in the absorbance, with a 
broad peak near 260 nm. These spectral perturbations were interpreted 
as arising primarily from the removal o f  a charged group from the vicinity 
of  a Trp residue. The pH dependency in the presence o f  Ca 2÷ of  the 
spectral perturbations is controlled by a group with an estimated pK of  
7.6. There is also a pH-dependent  spectral perturbation in the absence of  
Ca 2÷ which has identical characteristics to that seen in the presence of  
cations and which is controlled by a group with a pK of  8.9. Both groups 
are not  yet  assigned. No fluorescence enhancement of  ANS by this PLA 
was observed in the presence or absence of  Ca ~÷ (Wells 1974b). 
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Although Crotalus atrox PLA like all other PLAs requires Ca 2+ for 
activity, no ultraviolet difference spectrum was produced up to 20-mM 
Ca 2+ at pH 7.4 (Purdon et al. 1977). The observed effects of Ca 2+ on the 
CD spectrum, the enhancement of fluorescence of ANS-PLA complex by 
Ca 2+, and the heat effect in microcalorimetry suggest that the enzyme 
binds Ca 2+. So far only a kinetically determined Kca2+ value (1.1 × 10- 3M 
at pH 7.5.) was reported. Taking into account the very similar amino acid 
sequences of the Crotalus adarnanteus and Crotalus atrox PLA in which 
all aromatic residues are conserved (see Sect. 4), it is remarkable that the 
metal ion induced difference spectra are so different. 

Binding of Ca 2+ to Bitis gabonica PLA produces an ultraviolet differ- 
ence spectrum rather similar to that observed for Crotalus adamanteus 
PLA ( ViOoen et al. 1975). The difference spectrum of the Bitis gabonica 
PLA was ascribed to both solvent- and charge-induced perturbations of 
predominantly Tap, while at low Ca 2+ concentrations in addition some 
Tyr perturbation was observed. Moreover, Ca 2+ binding to Bitis gabonica 
PLA also shows a red shifted peak with a maximum at 240-245 nm, 
which was not observed for Crotalus adamanteus PLA, and which was 
used to determine the dissociation constant (Kca2+ = 6.8 X 10-4 M at 
pH 7.8) and the number of Ca 2+ binding sites (vide supra). Similar to the 
report of  Wells for Crotalus adamanteus PLA, Viljoen et al. (1975) also 
observed pH-dependent spectral perturbations both in the absence and 
presence of Ca 2+. More recently Viljoen and Botes (1979) found from 
the pH dependency of spectral changes in the presence of Ca 2+ three 
transition zones from which pK values of  5.66, 6.75, and 9.15 (at 25°C) 
were calculated. Based on the heats of ionization of groups associated 
with these various pK values, the group with pK 5.66 was assigned to a 
carboxylate involved in Ca 2+ binding. The other two groups with pK 
values of 6.75 and 9.15 were assigned to a His and a Tyr residue, respec- 
tively. From kinetic data the group involved in Ca ~+ binding was found 
to have a pK value of 6.4. From the observation that Ca 2+ induces a dif- 
ference spectrum in BPB-modified PLA Vil]oen and Bores (1979) con- 
clude that Ca 2+ is still able to bind, but no dissociation constant is 
reported. 

At basic pH Ca 2+ binding to Naja naja na]a PLA induces a blue shifted 
ultraviolet difference spectrum with minima at 292 and 283 nm, due to 
charge-induced perturbation of Trp. In contrast, at acid pH Ca 2+ induces 
a red shifted ultraviolet difference spectrum with maxima at 290.5 and 
282 nm due to solvent-induced perturbation of Tap and possibly Tyr 
(Roberts et al. 1977b). Binding constants for Ca 2+ in the pH range 3 .5 -  
8.5 were thus determined and were found to be in good agreement with 
those obtained from quenching effects of Ca :+ on the fluorescence inten- 
sity. In calculating binding constants only a single binding site for divalent 
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metal ions was observed. The binding of  Ca 2÷ to the enzyme is pH depen- 
dent with a pK of  5.9 and a Kca2÷ of  0.15 rnM for the unprotonated 
form of  the enzyme. The difference spectrum induced by Ca 2÷ at acidic 
pH is similar to the titration difference spectrum observed in the absence 
of  Ca ~÷ which shows a pH dependency with a pK of  about 7. It has been 
concluded that Ca 2÷ binding to Na]a na]a na]a PLA triggers a conforma- 
tional change lowering the pK of  a critical residue, probably the active 
site His residue. Ca 2÷ binding also affects the monomer-dimer equilibrium. 
Inhibitory metals include Zn 2÷, Ba 2÷, and Sr 2÷, whereas Mn 2+, Mg 2÷, and 
Cd 2÷ bind without altering enzymatic activity. The ultraviolet difference 
spectrum induced by Ca z÷ with BPB-modified enzyme was consistent 
with Trp perturbation and perturbation of  the newly added chromophore. 
The binding constant for Ca 2÷ was not  changed. 

The Ca2+-induced difference spectra of PLAs from Naja nigricollis 
( Yang and King 1980a) and from Itemachatus haernachatus ( Yang and 
King 1980b) are negative with minima at 290 and 283 nm and are inter- 
preted to be primarily charge-induced perturbations of Trp. In addition 
a positive peak at 260 nm was also observed which upon titration enabled 
the authors to determine the dissociation constants (Kca2+ 0.2 mM and 
0.23 mM at pH 8, respectively). Also these authors conclude that only 
one Ca 2÷ binding site per protein molecule is present. Essentially similar 
results were obtained for both BPB-modified enzymes, although the Ca 2÷- 
induced difference spectra drastically changed. Both PLAs from Naja 
nigricollis and Hemachatus haemachatus also markedly enhance the emis- 
sion intensity of  ANS, but in contrast to pancreatic PLA and/~-bungaro- 
toxin, Ca ~÷ decreases the fluorescence of  the complex. The corresponding 
BPB-modified proteins, however, did not enhance emission intensity at 
all, irrespective of  the presence o f  Ca 2÷. 

7.2 Binding of  Monomeric Substrate Analogs 

A prerequisite for these studies is the availability of  suitable phospho- 
lipids fulfilling at least the conditions (1) that they are not  hydrolyzed 
by the enzyme, (2) that they must behave as competitive inhibitors, and 
(3) that they must possess a large enough monomer  concentration range 
together with a good affinity. Similarly, as previously discussed (see 
Sect. 5) for monomer  kinetics direct binding studies are also hampered 
by the phenomenon that quite often the dissociation constants exceed 
the CMC values. Because short-chain 1-sn-phosphatidylcholines like 
D-diC6- or D-diC7 PCs have been shown to be competitive inhibitors, 
these lecithins have been used as suitable substrate analogs to study 
monomer  binding. Similarly 1-acyl lyso-PCs also appeared to be useful. 
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Although it could not strictly be proven that these lysolecithins are indeed 
competitive inhibitors, similar results were obtained as with D-lecithins. 
However, the use of either D-lecithins or 1-acyl lyso-PCs has the draw- 
back that in particular in the presence of  Ca 2÷ ions a slow aspecific 
hydrolysis might occur due to the rather high enzyme concentrations 
used as compared to kinetic studies. It is, however, possible to substitute 
Ca 2÷ by Ba 2÷ of Sr 2+ ions which are competitive for Ca 2÷. Alternatively, 
one can use nonhydrolyzable substrate analogs. The n-alkylphosphocho- 
lines having alkyl moieties of 10, 12, or 14 carbon atoms and CMC values 
of about 10, 1, and 0.1 raM, respectively, turned out to be most useful. 
As is the case for lysolecithins, no conclusive evidence is yet available 
that these substrate analogs are competitive inhibitors. Nevertheless, 
their behavior is in all respects similar to that of monomeric short-chain 
D-lecithins or 1-acyl lysolecithins. 

Binding or monomers of short-chain D-lecithins or 1-acyl lyso-PCs to 
porcine PLA or pro-PLA induces similar red shifted ultraviolet difference 
spectra with peaks at 282 and 288 nm caused by perturbation of (a) Tyr 
residue(s) (Pieterson 1973; Pieterson et al. 1974b). In agreement with 
this observation hardly any perturbation of the unique Trp residue at 
position 3 was observed in fluorescence spectroscopy with these or other 
substrate analogs present as monomers (Pieterson et al. 1974b; Van Dam- 
Mieras et al. 1975). Equilibrium gel filtration was also used to study 
monomer binding of Dqecithins to porcine PLA and pro-PLA. Both tech- 
niques enabled the determination of the dissociation constants for bind- 
ing of monomeric D-diC7 to porcine PLA, which were found to be 0.9 
and 0.4 raM, respectively, whereas for the zymogen somewhat higher 
values were reported. When using D-diC6 PC the K d values increased six- 
to sevenfold. Recently, Volwerk et al. (1979) using equilibrium dialysis 
found one monomer binding site to be present in porcine PLA for the 
n-decylphosphocholine. It was found from ultraviolet difference spectro- 
scopy and from BPB inactivation that the dissociation constant of  mono- 
meric 1-acyl lyso-PCs decreases from 43 to 0.06 mM when the acyl 
moiety increases from 7 to 14 carbon atoms, from which it was con- 
cluded that monomer binding is mainly due to hydrophobic interactions 
( Volwerk et al. 1974; Pieterson et al. 1974b). The affinity of monomers 
of D-diC7 PC or n-dodecylphosphocholine for porcine PLA remains con- 
stant between pH 4 and 7 and is not much affected by Ca 2÷. In particular in 
the absence of Ca 2÷ the affinity decreases above pH 7 (Pieterson 1973; 
van Dam-Mieras et al., unpublished observations). The dissociation con- 
stants for binding of n-decylphosphocholine to porcine, equine, and 
bovine PLA at pH 6 were found to be 1.6, 20, and 5 mM, respectively, 
while somewhat higher values were found for the zymogens (van Dam- 
Mieras et al. 1975; Verhei] et al. 1980a;Fleer 1980). 
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Methyl-His-48-porcine and -equine PLAs bind monomers of  n-decyl- 
phosphocholine with the same affinities as their respective native enzymes 
(Verhei] et al. 1980a). In contrast, no detectable binding was observed 
for monomers of  D-diC7 to BPB-inhibited porcine PLA using equilibrium 
gel filtration (Pieterson et al. 1974b). This lack of  binding is probably 
due to steric hindrance. Various N-terminal-blocked AMPAs as well as 
des-Ala-1 AMPA bind monomeric D-diC7 PC with comparable affinities 
as AMPA or native PLA, in contrast to des(Ala-l-Arg-6) AMPA which 
had lost its afffmity for monomers (J. C. Vidal, unpublished observations). 
Also the various nitrated porcine PLAs show at pH 6 affinities for mono- 
mers of  n-dodecylphosphocholine similar to those of the unmodified 
PLA (Meyer et al. 1979b). More interestingly, it was found that mono- 
mer binding of  nitro Tyr-69 porcine PLA was greatly impaired at pH 8 
compared to native PLA, most likely due to deprotonation of  the nitro 
Tyr-69 residue. No such effect was observed for amino Tyr-69 PLA nor 
for NO2 Tyr-124, suggesting that Tyr-69 is perturbed upon monomer  
binding. From the observed difference spectrum of the NO2 Tyr-69 PLA 
it has been suggested that in addition to Tyr-69 another Tyr residue is 
also perturbed, which probably could be Tyr-52. 

7.3 Binding to Aggregated Lipids 

As has been already extensively discussed (vide supra), a number of  theo- 
ries have been developed in the last decade to explain the high catalytic 
activity of  PLA towards substrate present in organized lipid-water inter- 
faces as compared to its low activity on the same substrate present in 
monomerlc form. Irrespective of  the particular model, it is therefore 
obvious that investigations providing detailed information on the protein- 
lipid interaction are of  utmost  importance. With the present thorough 
knowledge of  the properties of  various PLAs and of  different lipid-water 
interfaces such studies are now feasible, and valuable qualitative and 
quantitative data about the lipid-protein complex can be obtained. Unfor- 
turnately, direct binding studies consume rather large quantitites o f  
enzyme, and this is probably the main reason that up until now most 
at tention has been paid to the pancreatic PLAs. Although most of  these 
studies so far are limited to micellar substrate analogs, there is a growing 
interest in also extending these investigations to bilayer-type structures. 

Z 3.1 Pancreatic Phospholipase A 

Binding of micelles of D-diC7 PC, lyso-PC, or n-alkylphosphocholine to 
porcine PLA further increases the peaks in the ultraviolet difference 
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spectrum already produced by monomer phospholipid binding while a 
concomitant shift of the maximal difference absorption from 288 to 
292 nm is observed, indicative of both Tyr and Trp perturbation (Pieter- 
son et al. 1974b; van Dam-Mieras et al. 1975). Binding of micelles to 
PLA can also be monitored by fluorescence spectroscopy where a large 
increase in fluorescence intensity and a blue shift of about 10 nm of the 
emission maximum is observed. No such effects are observed for pro-PLA 
(van Darn-Mieras et al. 1975). Elution of a mixture of PLA and pro-PLA 
in the presence of lysolecithin micelles on Sephadex G-75 showed that 
only PLA elutes at the void volume bound to the lipid micelles, whereas 
pro-PLA elutes at its normal position according to its molecular weight 
(Pieterson 1973). These observations are in agreement with the presence 
of a binding site for aggregated lipids on the enzyme in addition to the 
monomer binding site. A similar conclusion was reached by Hershberg 
et al. (1976a) from PRR studies. 

Equilibrium gel filtration studies using either micelles of C14 lyso-PC 
or mixed micelles of D-diC10 PC plus C14 lyso-PC were performed by 
Pieterson et al. (1974b) to obtain quantitative data on the binding. It 
was concluded that one molecule of porcine PLA was bound to about 
35 lipid monomers in the mixed micelle and to about 15 in the lysoleci- 
thin micelle. The affinity of porcine PLA was found to be higher for the 
mixed micelles ("Kd" = 2.1 × 10 -s M) at pH 6 than for the Ca4 lyso-PC 
micelles ("Ka" = 1.6 X 10 -4 M) (J.C. Vidal, unpublished results). The 
bovine PLA, although having the same PLA-phospholipid ratio in the 
complex as the porcine PLA, possesses a lower affinity ("Kd" = 1.0 × 
10- 4 M) for the mixed micelles. BPB-inactivated porcine PLA was found 
to have a similar capacity to interact with these lipid-water interfaces as 
the native PLA, and it was concluded that the recognition site for inter- 
faces is not only functionally but also topographically distinct from the 
monomer binding and catalytic site. 

More recently, Araujo et al. (1979), Hille et al. (1981), and Donn&Op 
den Kelder et al. (1981) used equilibrium gel filtration and light scatter- 
ing to study the complex formation of porcine PLA with micelles of vari- 
ous n-alkylphosphocholines and lysolecithins. From the results obtained 
it turned out that the binding is not a simple additive process but rather 
an insertion of two enzyme molecules into the micelle followed by a 
reorganization of the detergent monomers. 

Araujo et al. (1979) found from microcalorimetry that the binding of 
PLA to micelles of n-hexadecylphosphocholine is a rapid, exothermic 
process. Using nonlinear regression analysis of binding data it is possible 
from these measurements to determine the enthalpy changes (~ H), the 
number of lipid molecules complexed with one PLA molecule (N), and 
the dissociation constant (Ka). The low A H values and the positive A S 
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changes together with the negative value of  the heat capacity ZX Cp are in 
support of  the idea that mainly hydrophobic interactions determine the 
stability of the PLA-lipid complex. A highly schematic drawing of  the 
complex formation in agreement with the stoichiometry found by the 
various techniques is given in Fig. 8. At least two possible pathways (A 
and B) can be considered (Robinson and Tanford 1975) along which the 
final complex is built up. 

: ' ! i  ~t;~ (;i J,;;? B 

Fig. 8. Schematic view of the pathways for the formation of a complex between PLA 
and micelles of n-hexadecylphosphocholine(Arau]o et al. 1979) 

The comicellization mechanism (pathway A) has been proposed for 
some water-soluble proteins containing several high-affinity lipid-binding 
sites (MaMno et al. 1973; Haberland and Reynolds 1975; Rosseneu et al. 
1976). Araujo et al. (1979) strongly favored the concept of  insertion of  
pancreatic PLA into the micelle (pathway B). The authors emphasized 
that the dimeric structure of  pancreatic PLA in the complex shown in 
Fig. 8 should not  be interpreted to mean that an enzyme dimer is func- 
tionally active in catalysis. 

Although these physicochemical techniques provide valuable informa- 
tion, these measurements are rather time consuming and need large quan- 
tities of  protein. It is therefore more advantageous to use fluorescence 
or ultraviolet difference spectroscopy. These techniques were used by 
van Dam-Mieras et al. (1975) to study the binding of porcine PLA to 
n-hexadecylphosphocholine micelles. In this study dissociation constants 
were calculated from total lipid concentrations. However, recently this 
method has been shown to be incorrect, since it leads to apparent K d 
values which are too high (Fig. 9) (Hille et al. 1981). As shown in Fig. 9 
plotting of  the ultraviolet absorption difference signals relative to free 
lipid concentration (expressed as monomers) requires nonlinear regres- 
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Fig. 9. A direct plot of the ultraviolet absorption difference spectroscopy signal at 
292 nm relative to the n-octadecylphosphocholine concentration expressed as mono- 
mers. The difference signal at 292 nm relative to total lipid concentration ( ')  is 
shown. The solid curve through these points represents the result of the computer fit. 
In addition, the observed signal is plotted as a function of free lipid (o). The broken 
curve gives the calculated difference signal relative to free lipid monomers. Inset: 
a double reciprocal plot of the observed difference signal at 292 nm as a function of 
total lipid (m) and free lipid (o), respectively. The concentration of PLA is 27.4 p.M. 
All measurements were done at 25°C and pH 4.0 (Hille et al. 198 I) 

sion analysis to obtain quantitative data. When the signal is plotted 
versus free lipid concentration the direct plot fits a hyperbola. Conse- 
quently, the corresponding double reciprocal plot is a straight line, 
whereas it is curved when lipid total  is plotted. Donn~-Op den Kelder  
et al. (1981) showed that only when complex formation is measured by 
titrating enzyme to lipid can K d and the number o f  lipid molecules 
complexed with one PLA molecule (N) be obtained graphically without 
the use of  a computer. However, this latter procedure requires large 
amounts of enzyme. Using both techniques the authors determined the 
K d values as well as the stoichiometry of  the porcine PLA complexes 
formed with a series of  saturated and unsaturated n-alkylphosphocholines 
and lysolecithins. In good agreement with the results obtained from micro- 
calorimetry they found that  all the PLA-lipid complexes formed with the 
saturated phospholipid analogs consisted of  two PLA molecules and 
about half the number of  monomers present in the original pure micelte. 
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The PLA-lipid complexes formed with the unsaturated phospholipid ana- 
logs were found to contain three PLA molecules and about 70% of  the 
monomers originally present in the pure miceUes. The dissociation con- 
stants were found to be dependent on the chain length of  the phospho- 
lipid analog and range from 23 tsM for n-tetradecylphosphocholine micelles 
to 6.6 p.M for n-octadecylphosphocholine micelles at pH 6, wheras the 
affinity for lyso-PCs was two- to sixfold lower. These observations fur- 
ther support the conclusion of Arau]o et al. (1979) that the stability of  
the PLA-lipid complex is predominantly due to hydrophobic interactions. 
Determination of  the molecular weight of  the protein part in the enzyme 
n-octadec.ylphosphocholine complex using the sedimentation equilibrium 
centrifugation method described by Reynolds and Tanford (1976)gave 
a value of 30 000 which was in good agreement with the proposed model 
(Hille et al. 1981). 

Studying the pH dependency of  the stability of  the PLA n-octadecyl- 
phosphocholine complex Donnd-Op den Kelder et al. (1981) found  that 
a protonated group with a pK of  6.25 controls this binding, and it has 
been suggested that the active site residues His-48 and/or Asp-49 are 
the most likely candidates involved in the lipid binding process. In par- 
ticular, at basic pH Ca 2÷ is required for binding of PLA to micellar com- 
pounds by stabilizing the conformation of  the enzyme that has opti- 
mum micelle-binding properties. Similar studies, but now using methyl- 
His-48- and octan-2-one-His-48-modified PLAs showed that the micelle 
binding of  these proteins is now controlled by a group with pK 4.6, 
while addition of  Ca 2÷ at high pH values again restores the micelle-bind- 
ing properties of  these modified PLAs. Therefore, most probably the 
group having a pK 4.6 should be assigned to Asp-49. Apparently, upon 
alkylation of  the N-1 atom of  His-48 the rather high pK value of  Asp-49 
drops from 6.25 to 4.6, the latter value being normal for a carboxylate 
group in a protein. In this respect it should be mentioned that it is per- 
haps not necessary to assume a second binding site for Ca 2÷ (van Dam- 
Mieras et al. 1975;Slotboom et al. 1978b), even when different affinities 
are found for Ca 2+- in the absence or presence of  micelles, respectively. 

7. 3.2 Snake Venom Phospholipase A2 

Prigent-Dachary et al. (1980) used fluorescence spectroscopy to study 
binding of  various snake venom PLAs to vesicles of  long-chain phospho- 
lipids. They found that strong inhibitors of  blood clotting (PLAs from 
Naja nigricollis, Naja mossambica mossambica, and Vipera berus orien- 
tale) interact with PC, PC + PS, and PS vesicles, although a higher affinity 
was found for the PS-containing vesicles than for the pure PC vesicles. 
Poor inhibitors of  blood coagulation (PLAs from Bitis gabonica, Crotalus 
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adamanteus, Crotalus atrox, and Naja melanoleuca DE H) do not or only 
.weakly bind to these vesicles. Using the "nonhydrolyzable" diC1 ~ ether 
PC it was demonstrated that Ca 2÷ promotes the complex formation which 
can occur whenever the lipids are in the crystal or fluid phase. Inactiva- 
tion of  the anticoagulant PLA from Naja nigricollis with BPB decreased 
the affinity of  the enzyme for the phospholipids twofold. 

Very rdcently Jain et al. (to be published) compared the binding of  
porcine and Na]a melanoleuca PLAs to long-chain phospholipid disper- 
sions (vesicles) using various techniques. Qualitatively, gel filtration, dif- 
ferential scanning calorimetry, and freeze-fracture electron microscopy 
showed binding of  Naja melanoleuca PLA to vesicles of  pure diC~ 4 ether 
PC. Similar experiments with porcine PLA did not reveal any binding to 
the diC~4 ether PC vesicles alone. However, only when vesicles of the 
ternary system PC ÷ lyso-PC + FA were used does the porcine PLA show 
affinity for the bilayer phospholipids. More quantitative data about the 
binding of  these two PLAs to bilayer structures were obtained from 
fluorescence and ultraviolet difference spectroscopy. Binding of  Naja 
melanoleuca PLA to pure diC14 ether PC vesicles causes an increase in 
fluorescence intensity and in parallel a blue shift of the emission maxi- 
mum, which for the porcine PLA again occurs exclusively in the ternary 
bilayer system. Using the curve-fitting procedure for lipid binding as 
described by Araujo et al. (1979)and Hille et al. (1981) it was found that 
the K d values for Naja melanoleuca PLA were lower than for porcine 
PLA for the same ternary system and that the number of  phospholipid 
molecules contributing to the binding is lower for the Naja melanoleuca 
PLA than for the porcine PLA. The product-facilitated binding of  the pig 
PLA to bilayers is also manifested in the time course and kinetics of 
hydrolysis of  substrate bilayers. Thus pig PLA catalyzed hydrolysis of  
diC~o PC and diCa4 PC dispersions is accompanied by a lag phase which 
is reduced or abolished by the externally added products. The results 
thus suggest that the binding of  pig PLA is regulated by the organization 
of  the bilayer and the factors favoring phase separation in bilayers also 
favor the binding of  the pancreatic PLA to bilayers. 

Recently, Verheij et al. (1980b) using ultraviolet difference spectro- 
scopy determined the dissociation constants and the stoichiometry of 
the PLA-n-hexadecylphosphocholine complexes for a number of snake 
venom PLAs in the presence of  Ca 2+ (Vipera berus, Naja melanoleuca, 
and Crotalus atrox). The dissociation constants were found to be in the 
range from 1.6 to 8 taM which is comparable to that of the porcine PLA, 
but the lipid to protein ratio (N) is considerably lower for snake venom 
PLAs than for the porcine PLA. BPB-inactivated Vipera berus also binds 
to micelles, though with a twofold lower affinity as compared to the 
native enzyme. 
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In the absence of  Ca 2÷ Wells (1973a) did not  observe an ultraviolet 
difference spectrum of Crotalus adamanteus PLA with micelles of  D-diC~ 
PC. Similar observations have been reported by Tinker for Crotalus atrox 
PLA (personal communication). 

In direct binding studies of Bitis gaboniea PLA with diCx 6 PC, lyso-PC, 
or fatty acid, Viljoen et al. (1975) found ultraviolet difference spectra 
originating from perturbation of  Trp residues, both in the presence and 
absence of Ca 2+. It was assumed that Ca 2÷ is necessary for producing an 
active conformation of  the enzyme allowing the productive binding of  
substrate and that in the absence of  Ca 2÷ unproductive binding gives rise 
to the observed difference spectrum. 

Roberts et al. (1977c) andAdamich et al. (1979) used equilibrium gel 
filtration to study binding of  native and BPB-modified Na]a na]a na]a 
PLAs to mixed micelles of  Triton X-100 plus long-chain PCs (and other 
phospholipids). They found binding only when divalent metal ions were 
present. In contrast, no metal ions were required for binding ofNaja na]a 
na]a PLA to mixed micelles of  Triton X-100 and fatty acid or lyso-PC. 
The reported K d values (Adamich et al. 1979) have no physical meaning, 
since it was assumed that the complex formed is additive (vide supra). 

8 Immunology 

Ouchterlony's double immunodiffusion showed that only cow and sheep 
pancreatic PLA gave precipitin lines of  complete identity to both anti- 
sera. Horse PLA only partially cross reacts with pig PLA using anti-horse 
PLA serum, whereas pig PLA shows a partial cross reaction with horse, 
cow, and sheep PLA towards anti-pig serum (Meyer et al. 1978; Meyer 
1979). Similar results were obtained from the microcomplement fixation 
assay. With this technique horse and cow PLA show in particular con- 
siderable immunological differences, whereas the pig enzyme takes an 
intermediate position between these phospholipases. Ouchterlony's 
immunodiffusion did not  discriminate between the enzyme and its zymo- 
gen, since a complete cross reaction toward anti-PLA serum was observed. 
However, the complement fixation assay detects a considerable differ- 
ence. Using this assay iso-porcine PLA could be clearly distinguished 
from porcine PLA, although there are only four substitutions in their 
sequences (Puilk et al. 1979). Moreover, with the microcomplement fixa- 
tion assay it tumed  out  that most likely the N terminal sequence Ala 1- 
Arg 6 is part of  an antigenic determinant of  PLA. Radioimmune assay, 
using monovalent PLA-specific Fab fragments revealed a maximum num- 
ber of  three antigenic sites of  PLA that can simultaneously be occupied 
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by antibody. The Fab fragments were separated into three fractions, 
using three immunoadsorbent columns in series. These Fab fragments 
showed different inhibitory properties toward binding of  PLA to micellar 
substrate. One of  these Fab fragments turned out to effectively protect  
PLA against BPB modification. 

9 X-Ray Analyses 

X-ray analysis of protein crystals is a powerful technique to obtain 
detailed structural information about the protein. The elucidation of  the 
spatial arrangements of  the side chains may contribute to our knowledge 
of  the catalytic mechanism of the enzyme. A prerequisite of a successful 
X-ray crystallographic analysis is the availability of  good protein crystals 
and heavy atom derivaties. Not all phospholipases crystallize readily to 
yield crystals suitable for X-ray analysis. The enzyme from porcine pan- 
creas never yielded suitable single crystals, despite numerous attempts, 
while its precursor produced crystals of  poor quality which allowed cal- 
culation of  an electron density map at a resolution of  only 3 h (Drenth 
et al. 1976). The revised sequence of porcine PLA (Puijk et al. 1977) 
could, however, not be incorporated into this electron density map. This 
observation and the absence of regular a-helices and ~-plated sheets sug- 
gest that the crystals contained denatured protein. 

In the meantime it was found that both the active enzyme and the 
precursor of  bovine pancreatic PLA crystallized readily as high quality 
single crystals. Using these crystals and three heavy-atom derivatives, the 
three-dimensional structure was determined to a resolution of 2.4 h 
(Dijkstra et al. 1978). Subsequently diffraction data to 1.7 h resolution 
was collected and the phospholipase model was crystallographically 
refined at this resolution to a final R factor of  17.1% (Dijkstra et al. 1981 b). 

Phospholipases from Crotalus adamanteus and Crotalus atrox also 
yield crystals suitable for X-ray analysis. In both cases one dimer per 
asymmetric unit was present (Pasek et al. 1975). Interpretation of  the 
electron density map at a resolution of 2.5 A shows that the main chain 
folding of  Crotalusatrox PLA is very similar to that of  bovine PLA (Keith 
et al. 1981). Furthermore it was found that the C-terminal appendage is 
linked via a disulfide bridge to Cys-50 (see also Sect. 4). In the dimer both 
active sites are shielded from the surrounding water, an observation which 
raises serious doubts on the catalytic function of  the dimer. 

Notexin, a neurotoxic basic phospholipase, forms crystals diffracting 
to a resolution of 1.8 h .  There are six molecules in the unit cell (Kannan 
et al. 1977). No further data obtained with this phospholipase has been 
published so far. 
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Fig. 10. Stereo diagram showing the conformation and disulfide bridges of the bovine 
pancreatic phospholipase molecule (Verheij et al. 1980a) 

In the absence of three-dimensional structures of other phospholipases 
we assume that the results obtained with the bovine pancreatic and the 
rattlesnake PLAs can be applied to other (venom) phospholipases as well. 
For this reason we will give a somewhat detailed description of the struc- 
ture of bovine PLA. 

The molecule is kidney-shaped with dimensions of 22A × 30 A X 42 A ; 
it has a high content of  secondary structure with about 50% a-helix and 
10% flostructure (Fig. 10). The structure is stabilized by a large number 
of hydrogen bridges linking (1) backbone to backbone, (2) backbone to 
side chain atoms, and (3) side chain to side chain atoms. In addition the 
loops are held together by seven disulfide bridges. For example, the two 
long antiparaUel a-helices corresponding to residues 40 to 58 and 90 to 
108 are connected by two disulfide bridges (Cys-44 to Cys-105 and Cys- 
51 to Cys-98). In these helices the active center residues His-48, Asp-49, 
Tyr-52, and Asp-99 are brought tightly together. 

Figure 11 shows a three-dimensional view of the active center of bovine 
PLA, including the backbones of residues 28-33,  48-52,  and 98-99  
and some of the side chains. Note that the amino acids in this part of the 
sequence are invariant in all phospholipases except for residues 31 and 
50 (see Fig. 2). 

The main chain of residues 28-33 is part of  the calcium-binding loop 
which runs from residues 25-42  and contains the five glycines conserved 
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Fig. 11. Stereo picture of the active site of PLA, including the calcium ion and several 
water molecules (Dijkstra 1980) 
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in all phospholipases. When the folding pattern of  bovine PLA is summa- 
rized in a Ramachandran plot these five glycine residues are found in 
regions disallowed for other amino acids. Substitution of  these glycines for 
other amino acids, while maintaining the chain folding pattern, would 
be highly unfavorable in energy terms (Di]kstra 1980). 

The calcium ion is located in the active site surrounded by  seven oxy- 
gen ligands (Fig. 12), viz. three carbonyl oxygens, the 61 and 62 oxygens 
of  Asp-49 (not Asp-99 as reported before;Di]kstra et al. 1978), and two 
water molecules. Six of  these ligands are found at the corners of  an octa- 
hedron. The Ca 2+ ion can be replaced by  a Ba 2+ ion, although Ba 2+ does 
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Fig. 13. Proton relay system of phospholipase (Dijkstra 1980) 

not orient itself exactly into the same position, probably due to its larger 
size (B. W. Dijkstra, personal cummunication). 

By chemical modification studies (Volwerk et al. 1974; Ferhei] et al. 
1980a) it has been shown that His-48 is involved in catalysis. Fig. 13 
shows that the imidazole ring is in close proximity to the side chains of 
Asp-99 and Tyr-52 and a water molecule. The N-3 atom of  His-48 is at 
hydrogen-bonding distance (2.8 A) of  one of  the carboxylate oxygens of 
Asp-99. Close to the N-1 of His-48 (about 3 A) a water molecule is found 
(water molecule I in Fig. 11). This water molecule could very well per- 
form the nucleophilic function in the ester hydrolysis in analogy to the 
active center serine in the serine esterases. "Fhe carbonyl oxygens of Asp- 
99 are also hydrogen bonded to the hydroxyl groups of Tyr-52 (2.55 A) 
and Tyr-73 (2.50 A). Both tyrosine residues are invariant in all phospho- 
lipases. Via a water molecule these residues are also hydrogen bonded to 
the a-amino group, the side chain of  Gln-4, and the carbonyt oxygens of  
Pro-68 and Asn-7 t. Gln-4 again is invariant in all phospholipases and the 
interactions with the a-amino group and the main chain carbonyl oxy- 
gens do not necessarily depend on the side chains. 

Therefore, one might predict that in all phospholipases such an extended 
proton relay system does exist. This system probably has a structural 
function rather than a catalytic function, since proteins devoid of  the 
a-amino group (e.g., precursor) effectively hydrolyze monomeric sub- 
strates. The system is buried in the interior of  the protein and the Asp-99 
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His-48 couple is shielded from the surrounding solvent by a number of  
invariant hydrophobic residues: Phe-5, Ile-9, Ala-102, Ala-103, Phe-106, 
and the disulfide bridge between Cys-29 and Cys-45. In addition Phe-22 
(Tyr in most venom enzymes) is part of this hydrophobic active site wall. 
Whereas the hydrophobic residues forming the active site wall are mostly 
invariant, the situation at the surface surrounding the active site is quite 
different. As already amply discussed (see Sect. 4) the entrance of the 
active site is composed of  highly variable, mainly hydrophobic amino acid 
side chains. The fact that the surface does not put  strict spatial require- 
ments on the size of  the side chains (as is the case with residues surround- 
ing the Asp-99-His-48 couple) gives rise to a great variety of  in general 
hydrophobic residues. 

If we finally try to predict how the primary structures of  about 
30 venom phospholipases (Fig. 2) would fit the three-dimensional struc- 
ture of  the bovine pancreatic phospholipase we come to the following 
conclusions: In all phospholipases the residues around the Asp-99-His-48 
couple and the potential Ca 2+ ligands are invariant (or highly conserved). 
There is no obvious reason why all phospholipases could not form an 
extended proton relay system as depicted in Fig. 13. The residues around 
the entrance of  the active site are variable, but  with few exceptions they 
are hydrophobic. The large deletion between residues 57 and 68 found in 
the venom phospholipases shortens two external loops around the disul- 
fide bridge between Cys-61 and Cys-91 without affecting the gross shape 
of the molecule. Therefore, we tentatively conclude that the phospho- 
lipases from the different sources not only show a high degree of  sequence 
homology but also have very similar three-dimensional properties. This 
conclusion is supported by the results of  the X-ray analysis of  the Crota- 
lus atrox PLA at 2.5 h resolution (Keith et al. 1981). 

Another X-ray determination deals with the structure of  the precursor 
of  bovine pancreatic PLA. Good crystals of this protein have been obtained 
and the results show that the structure is nearly identical to that of the 
active PLA, except for the N terminal region and Tyr-69. In the precursor, 
these residues show a high mobility, whereas they are fixed in the active 
PLA. Because the N terminal residues and the side chains around Tyr-69 
are part of  the IRS, this observation is of  utmost  interest (J. Drenth, 
personal communication). 
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10 Mechanism of Catalysis 

In this section we will make an at tempt to compare data emerging from 
chemical modifications, direct binding studies, and X-ray crystallography 
and see how this data fits a proposed catalytic model for bovine pancre- 
atic PLA. Kinetic analyses of  the hydrolysis of  aggregated substrate 
require a binding step of the enzyme to the lipid-water interface prior to 
the Michaelis-Menten complex formation. It has been discussed (see 
Sect. 5) that such an additionalbinding step complicates the interpreta- 
tion of  kinetic data in terms of  well-defined rate and binding constants. 
Only by using monomeric short-chain phospholipids can interpretable 
kinetic data be obtained (Roholt and Schlamowitz 1961; Wells 1972; 
Volwerk et al. 1979). As has been pointed out in the previous sections 
we know that: 

1. Hydrolysis requires an ester bond which is separated by five or six 
atoms from a negative charge and which must be present in a specific 
stereochemical orientation. 

2. Ca 2÷ ions are required for the reaction while Ba 2÷ and Sr ~+ ion are 
competitive inhibitors. They bind in a 1:1 ratio to the enzyme in a 
pocket formed by three backbone carbonyl groups and the side chain 
of  Asp-49. 

3. Monomeric substrates or substrate analogs bind in a 1 : 1 ratio; in this 
binding process hydrophobic interactions predominate. 

4. His-48 is involved in catalysis with its N-1 group oriented toward the 
solvent. The pK of  this group is about 6.5, a value that drops to about 
5.5 in the presence of  Ca 2+ ions. 

5. Although the enzyme hydrolyzes esters, it is not  a classical serine 
esterase. It does not  react with organophosphates, and no results have 
been obtained in favor of  the existence of  an acyt enzyme. Therefore, 
Wells (1973b) proposed that a water molecule must be the nucleophile 
attacking the ester bond. 

The proposed catalytic mechanism depends heavily on the X-ray struc- 
ture of bovine pancreatic PLA. We assume that this structure does not 
differ significantly from the structure of  any PLA (from pancreas or 
venom). Such an assumption is not  unrealistic, since we have seen that 
venom and pancreatic phospholipases show a high degree of  homology. 
Crystallographic data of  other homologous proteins (e.g., serine protea- 
ases, cytochromes C, and acid proteases) show that their three-dimen- 
sional folding is fairly independent of  variations in the primary structure. 

In the X-ray structure His-48 is located in a cleft near the absolutely 
conserved side chains of  Asp-49, Tyr-52, and Asp-99 (see Fig. 2). The 
wall o f  the cleft is constituted by residues with highly conserved, hydro- 
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Fig. 14. Proposed catalytic 
mechanism for PLA ( Verhei] 
et al. 1980a) 

phobic side chains. Based on the chemical evidence (vide supra) and the 
spatial arrangement of the side chains, a mechanism has been proposed 
(Verhei] et al. 1980a) which is described in Figure 14. 

The presence of the Asp-99-His-48 couple suggests a comparison with 
the serine esterases. The serine residue found in the serine esterases is 
lacking in PLA, but instead a water molecule about 3 A away from the 
N-1 nitrogen of His-48 is supposed to perform the nucleophilic function 
in the ester hydrolysis in analogy to the active center serine in the ester- 
ases. When this water molecule attacks the substrate carbonyl carbon 
atom, the imidazole ring of His-48 picks up a proton from the water 
molecule, thereby facilitating the reaction. This proton is subsequently 
donated by the imidazole ring to the alkoxy oxygen, just as in the serine 
enzymes where the proton from serine is transferred by His to the leav- 
ing group (Kraut 1977; Komiyama and Bender 1979). 

The function of  the Ca 2+ ion may be to bind the negative phosphate 
group. If this were the only role of the Ca 2+ ion it is not clear why in the 
presence of the slightly larger Ba ~÷ ions (0.99 A and 1.34 A) a ternary 
complex is formed but not hydrolyzed. 
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A possible explanation is that because Ca 2÷ is a stronger Lewis acid 
than Ba 2+ it can more easily polarize the ester carbonyl function and 
stabilize the tetrahedral intermediate in concert with the backbone NH 
group of  residue 30. A similar role for the metal ion cofactor has been 
suggested for the Zn 2÷ ion in carboxypeptidase (Quiocho and Lipscomb 
1971) and for Ca 2÷ in staphylococcal nuclease (Cotton et al. 1979). 

No X-ray crystallographic data of  an enzyme-substrate (analog) com- 
plex are available. However, it is possible to fit a substrate molecule in 
the active center with the susceptible ester bond in the required position 
relative to the attacking water molecule, the phosphate group close to 
the Ca 2÷ ion, and the remaining part of the polar head group (e.g., cho- 
line) pointing towards the solvent. The two acyl chains, while running 
parallel to each other, can be fitted into a shallow cleft on the enzyme 
surface in between the apolar side chains of  Leu-2, Leu-19, Leu-20, and 
Leu-31 (Fig. 15). 

How does this mechanism fit data of phospholipases other than the 
bovine pancreatic PLA? The side chains of  the calcium ligand Asp-49, 
the Asp-99oHis-48 couple, and Tyr-52 are invariant in all phospholipases 
and most probably fulfil a similar role. The role of  Tyr-52 is not  very 
clear, although it is at hydrogen bridge distance of  Asp-99 and may help 
to stabilize the charge of  the Asp-99-His-48 couple. 

Fig. 15. The space-filling model of bovine pancreatic phospholipase 
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Although somewhat variable, the residues forming the wall of  the 
active site cavity are very hydrophobic in all phospholipases (see Sect. 9). 
Consequently, we must assume that in all phospholipases the Asp-99- 
His-48 couple is accommodated in a hydrophobic microenvironment. 
Despite this similarity the reported pK values of  the group controlling 
catalysis - and according to Fig. 14 this must be histidine - vary between 
5.5 and 7.6 (Wells 1972; Villoen and Botes 1979; Volwerk et al. 1979) 
and may suggest that subtle changes near the Asp-99-His-48 couple 
might change its pK drastically. For all pancreatic enzymes it has been 
shown that the active site histidine shows a "normal" pK value of about 
6.5, and this value is lowered to about 5.5 in the presence of Ca ~÷ ions 
(Dutilh 1977;Aguiar et al. 1979; Verhei] et al. 1980a). AlsoinNa]a na]a 
na]a PLA the pK of  the active center histidine is lowered upon addition 
of  Ca 2÷ (Roberts et al. 1977b); the same influence of  Ca 2+ on the pK of  
His-48 has been observed with PLAs from C. adamanteus and N. rnelano- 
leuca fraction DE III (J. v. Ei]k, unpublished results). A further increase 
in kca t values above pH 7 observed in PLA from pancreatic as well as 
venom phospholipases might be ascribed to a conformational change 
induced by deprotonation of a residue with a pK value around 8. The 
nature of  this group has not  yet been elucidated, although it has been 
suggested to be a lysine (Wells 1973b) or the a-amino group (Volwerk 
et al. 1979). 

The binding of monomeric substrates or substrate analogs to both 
pancreatic,Na]a oxiana and C. adamanteus PLA has been shown to be a 
mainly hydrophobic process resulting in a threefold improvement in 
binding for each additional methylene group (Wells 1972, 1974a; Zhet- 
kovski et al. 1978a; Volwerk et al. 1974; Volwerk 1979). Also, modifica- 
tion of  His-48 with alkylating reagents is only successful when the reagents 
possess an apolar part (Roberts et al. 1977a; Verhei] et al. 1980a). If indeed 
the side chains of  the residues 2, 19, 20, and 31 contribute most to this 
binding, then we may expect from Fig. 2 that this hydrophobic inter- 
action plays an important  role for all phospholipases. These residues are 
also an integral part of  the larger hydrophobic surface (see Sect. 4) that 
is supposed to interact with lipid-water interfaces. Therefore, one expects 
a somewhat different orientation of  the substrate molecule bound to 
the active site when the enzyme becomes embedded in a lipid-water 
interface. Whether this confirmational change alone is responsible for 
the fact that aggregated substrates are hydrolyzed with high velocity 
compared to monomeric substrates is not  yet clear. Other factors like the 
conformation and the hydration of  the substrate (Brockerhoff 1973) and 
the entropy loss upon binding (Wells 1974a) may play an important role 
as well. Finally it is also conceivable, that in the hydrolysis of  monomers 
the release of  products is slow whereas in the interface the product is 
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replaced rapidly by a new substrate molecule by lateral diffusion. This 
diffusion is rapid enough to allow turnover numbers at least one order of  
magnitude higher than the observed maximal turnover numbers (about 
7000 sec-1 ). 

1 1 Concluding Remarks 

The combined efforts of  a number of  investigators using protein sequenc- 
ing, kinetic analysis, nuclear magnetic resonance, and high resolution 
X-ray have led to a proposed mechanism for the hydrolysis ofmonomer ic  
phospholipids by PLA. Further studies on the interaction of PLA with 
aggregated phospholipids on a molecular basis are required to understand 
how the fine structure of  the lipid-water interface determines the specific 
activity of  these enzymes. As yet no general agreement exists about the 
factors causing the dramatic rate enhancements observed with PLA from 
various sources. Does the microenvironment of  the organized lipid-water 
interface change the conformation of  the inserted enzyme improving 
the catalytic site or are the aggregated substrate lipid molecules in a con- 
formation and orientation particularly favorable for hydrolysis? 

The last decade witnessed intense interest in orientation, conforma- 
tion, and mot ion of  phospholipid molecules in the various forms of lipid 
aggregates. These properties have been studied using a wide variety of  
physical techniques (Hauser et al. 1980 and references herein). Deuterium 
magnetic resonance, neutron diffraction and single crystal X-ray studies 
have revealed a preferred phospholipid conformation which seems to be 
general for various phospholipid classes, independent of their aggregation 
state (monomer,  micelle, bilayer). On the average the sn-l-chain is extended 
perpendicular to the bilayer surface at all segments while the sn-2-chain 
begins parallel to the membrane surface and is bent perpendicular to it 
after the C2 segment. The more exposed and less hydrophobic microen- 
vironment of the sn-2-ester bond as compared to the sn-l-ester linkage 
has even tempted several investigators to "explain" the specific action of  
PLA and lecithin cholesterol acyltransferase! Unfortunately the detailed 
information available on the structure of  the hydrocarbon region has not  
been matched with information on the conformation of the polar head 
groups. Though refuted, the over-all orientation of  the phosphorylcholine 
group in PC and of  the phosphorylethanolamine group in PE seems to be 
parallel to the bilayer surface, and this preferred polar group conforma- 
tion is determined by intramolecular forces (Hauser et al. 1980). The 
head group is engaged in intermolecular interactions with neighboring 
phospholipid molecules and the extent of hydration is correlated with 
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the strength of association of  the head groups. The interaction of  the 
charged hydrophilic polar groups with each other and with water and the 
van der Waals attractions between the hydrophobic fatty acyl chains con- 
stitute the physical basis for the arrangement of  the lipid molecules in 
different structures such as micelles, cylindrical rods, or bilayers. 

As discussed before, the bilayer aggregates are usually too closely 
packed to allow interaction with phospholipases and only after the intro- 
duction of surface defects in the bilayer does penetration of the enzyme 
become possible. Such surface defects or cracks can be formed in several 
ways and in general any change in the environment resulting in lateral 
phase separation usually allows the enzyme to interact with the bilayer. 
At the thermotropic phase transition of a single PL species some surface 
heterogeneity is present, surface defects are formed in small unilamellar 
vesicles prepared by sonication below the phase transition temperature. 
The presence in the bilayer of small amounts of reaction products, 
lyso-PC + FA, or mixtures of different PLs creates phase separation, and 
especially with negatively charged phospholipids, ion binding or pH- 
induced charge alteration of  the polar group can lead to completely dif- 
ferent long-range order of the PLs and isothermal phase separation. 
Although all these surface defects allow the enzyme to penetrate the 
bilayer, the interaction process is not always accompanied by a high inter- 
facial activity. Our knowledge on a molecular level of  how the enzyme is 
oriented in the interface is still scanty. Is there an "annulus-type" phos- 
pholipid binding to the rough protein surface changing the conformation 
of certain lipid molecules? Does the lipid binding change the conforma- 
tion of the protein? 

The present state of  affairs suggests that PLAs from various sources 
have a different mode of action. Of course, they will differ in details 
because of  their various tasks in vivo; however, it seems highly improbable 
that proteins with such similar structures and proportions would follow 
a fundamentally different mechanism. An apparently simple question 
whether these enzymes degrade organized lipid-water interfaces as mono- 
meric or dimeric protein could not be answered so far. The analysis of 
inhibition kinetics both in the monomeric and aggregated substrate region 
is plagued with experimental difficulties which are not  easily solved. It is 
to be hoped that in the near future more high-resolution X-ray structures 
will be solved and that single crystals can be obtained from enzyme-inter- 
face complexes. High resolution NMR studies of enzyme-lipid complexes 
and application of  photoaffinity labels in PLA and PLs are expected to 
yield detailed information on the dynamic aspects of  lipid-protein inter- 
action. Much work must be done to increase our knowledge of  local surface 
charges and pH effects and of  the molecular details of hydration at various 
lipid-water interfaces. It seems evident that in order to surmount the 



Structure and Function of Phospholipase A 2 187 

present problems which are related to the interaction of two biopolymers, 
protein and PL aggregates, further collaboration between enzymologists, 
lipidologists, organic chemists, and physical chemists is required. 
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