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Walter R. Hess (1881-1973) 

RICHARD JUNG * 

Am 12. August 1973 starb Walter Rudolf Hess im 93. Lebensjahr in Ascona 
nach einer fiber sechs Jahrzehnte w~hrenden T~itigkeit als Physiologe. Mit 
dem Zfircher Physiologischen Institut war Hess 1912-1917 als Assistent 
und Privatdozent, 1917-1951 als Professor und Direktor und 1951 - 1960 
als Emeritus eng verbunden. Dort hat er seine berfihmten Arbeiten fiber 
das vegetative System, den Schlaf und die Motorik durchgefiihrt und war 
Lehrer vieler Generationen yon Physiologen und Krzten. Sein Lebensweg 
ist kurz zu schildem, seine Forschungsleistungen bedfirfen einer ausffihrli- 
cheren Darstellung. 

Biographie und Pers6nlichkeit 

Der Lebensweg. Hess wurde am i7. Mfirz 1881 in Frauenfeld (Kanton 
Thurgau) als Sohn eines Gymnasialprofessors der Physik geboren, dem er 
die frtihesten Anregungen zur naturwissenschaftlichen Forschung verdankt 
[40]. Er studierte 1899-1905 in Lausanne, Berlin, Kiel und Ziirich Medi- 
zin. Nach ophthalmologischer Ausbitdung und friiher Heirat mit  Luise 
Sandmeyer 1909 wurde er 1912 nach dreij~ihriger augen~irztlicher T~itig- 
keit wieder Physiologe. An der Zfircher Universit~it, die ihm fiber 60 Jahre 
geistige Heimat blieb, wurde Hess 1913 Privatdozent und 1917 ordentli- 
cher Professor der Physiologie und Direktor des Physiologischen Instituts. 
Von 1912--1951 hat er das Zfircher Institut nur kurz verlassen: ffir wenige 
Vortragsreisen, ffir die Ferien in Ascona, wo er seine Bficher schrieb, und 
nur einmal far ein Jahr Forschungsarbeit in Bonn als Gastassitent bei Ver- 
worn 1915/16. FUr seine Entdeckung der Hirnstammreizeffekte auf das 
Verhalten der wachen Katze, die er 1927-1947 in systematischen Experi- 
menten ausbaute, erhielt Hess 1949 den Nobelpreis fiir Physiologie und 
Medizin. Auger zahlreichen Ehrenmitgliedschaften Wissenschaftlicher Ge- 
sellschaften und Akademien erhielt er die Carl-Ludwig-Medaille und die 
Johannes-Miiller-Medaille. 1951 wurde er emeritiert, arbeitete aber an der 
Auswertung seiner Experimente weiter, bis er sich im 85. Lebensjahr ganz 
in sein Ferienhaus in Ascona zurackzog. 

* Abteilung far Neurophysiologie der Universitfit Freiburg, Hansastr. 9a, D-7800 
Freiburg 
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Der Physiologe. Sein langes Forscherleben in der Physiologie fahrte Hess 
vom Kreislauf [4, 5, 12] zu den vegetativen Hirnfunktionen [7, 14, 20], 
zur Atmung [13, 17, 18, 21], zum Schlaf [9 -11 ,  16, 28], im dritten und 
sechsten Lebensjahrzehnt zur Motorik [3, 22-27]  und schlieNich zur Psy- 
chophysiologie [39]. 

Hess begann seine wissenschaftliche Arbeit 1903 als 22j~ihriger Student 
mit der eigenwilligen Beobachtung und Erklfirung einer GefgfSanomalie, 
yon der er mechanische Gesetzm~ifSigkeiten des Blutgef~fSverlaufs mit ihrer 
Bedeutung far den Kreislauf ableitete [ 1 ]. Er erregte damit die Aufmerk- 
samkeit W. Rouxs,  des Begranders der Entwicklungsmechanik. Seitdem 
besch/fftigten ihn die Kreislaufphysiologie und Neurophysiologie als For- 
schungsgebiet fiber fanf Jahrzehnte. Dennoch unterbrach er die geplante 
experimentelle Arbeit far fast sieben Jahre: 1905 begann er unter Einflut~ 
des Ophthalmologen Haab eine klinisch-augenfirztliche Fachausbildung an 
der Zt~cher Augenklinik und arbeitete dort fiber Augenmuskell~ihmungen 
und ihre Doppelbildmessung [3]. Nach seiner Heirat er6ffnete er eine 
Praxis ats Augenarzt in Rapperswil am Zfircher See. Er wollte zun/~chst 
durch ~irztliche Tfitigkeit ein sicheres Familieneinkommen haben. Doch 
sein wissenschaftlicher Impetus und seine IAebe zur PhysioloNe setzten 
sich bald wieder durch: 1912 ginger  an die Universit~it Zfirich zurack, wo 
er sich im Physiologischen Institut bei Gaule schon im n~ichsten Jahre mit  
einer Arbeit fiber die H/imodynamik habilitierte [47]. 1915/16, wShrend 
des ersten Weltkriegs, arbeitete er ein Jahr in Bonn bei Max Verworn, dem 
damals ffihrenden deutschen Neurophysiologen. Verworns allgemeine Phy- 
siologie und sein weiter biologischer Aspekt, der yon den Einzellern bis 
zum menschlichen Gehirn reichte, waren ffir Hess prfigende Eindrficke. 
Doch die Erkrankung Verworns, der in Hess' Gegenwart seinen ersten 
cerebralen Schlaganfall erlitt, und die KriegsverhNtnisse beeintrgchtigten 
die gemeinsame Arbeit. 

Die Rt~ckkehr nach Zfirich brachte durch die Erkrankung Gaules far 
Hess eine schwere Zeit, die er mit Energie und Z~higkeit meisterte. Er 
mutate sich yon 1916 bis 1919 fast ganz dem Unterricht und der Instituts- 
organisation widmen, mehrfach unterbrochen durch kurze Einberufungen 
zum Milit~irdienst. IIess konnte damals nur wenige Experimente aber die 
Organdurchblutung fortfahren, und die Forschung blieb bis zum Kriegs- 
ende liegen. Sein meist 15standiger Arbeitstag reichte von morgens 7 bis 
abends 22 Uhr mit Vorlesungen, Kursen, Institutsordnung und Anleitung 
seiner Assistenten. Zwei ttichtige Mitarbeiter, die sich 1920/21 bei ihm ha- 
bilitierten, der vorwiegend biophysikalisch ausgerichtete Alfred Fleisch 
und der mehr biochemisch-pharmakologisch interessierte Ernst Rothlin, 
halfen ibm, das Ziircher physiologische Institut trotz der unganstigen Zeit- 
verhfiltnisse zu neuer Aktivit~it zu ffihren. Nach Gaules vorzeitiger Emeri- 
tierung wurde der 36jfihrige Hess gegen manche Widerst~inde zum Professor 
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Abb. la, b. W.R. Hess als Privatdozent 1914 und als Professor 1936. a Der 33j~ihrige 
Assistent yon Gaule war damals seit 1912 am Ztircher Physiologischen Institut und 
seit t913 habitititert, bevor er 1915-1916 neurophysiologisch bei Verworn in Bonn 
arbeitete, b Der 54j~ihrige war seit 1917 Direktor des Physiologischen Instituts der Uni- 
versitfit Ztirich. 1936, als ich in sein Institut eintrat, bearbeitete Hess die Effekte der 
Zwischenhirnreizung auf Atmung und Kreislauf [20], nachdem er 1926-28 die intra- 
kranielle Reiztechnik an der freien Katze entwickelt hatte [8, 9, 14] 

der Physiologie und Institutsdirektor berufen. Die Chance, als junger Phy- 
siologe ein eigenes Insti tut  aufzubauen und die Forschung zu f6rdern, hat 
Hess in 44 Jahren unermfidlicher Tfitigkeit erfolgreich ausgenutzt. 1921 
konzentrierte sich Hess nach einer orientierenden Reise durch die briti- 
schen Institute und den Besuch des Internationalen Physiologen-Kongresses 
in Edinburgh zun~ichst auf  den Abschlut~ seiner Arbeiten zur Regulierung 
yon Blutkreislauf und Atmung, die zu zwei Monographien [ 12, 13] erwei- 
tert wurden. 1924 schrieb er eine programmatische Arbeit fiber die Bezie- 
hung yon psychischen und vegetativen Funkt ionen [7], die zur gedankli- 
chen Grundlage seiner fiber zweieinhalb Jahrzehnte dauernden Experimente 
am zentral-vegetativen System des Zwischenhirns ffihrte (vgl. S. 9). 

1929 beim internationalen Physiologen-Kongref~ in Boston lernte Hess 
die amerikanischen Physiologen kennen. Seine Hoffnung, W. Cannon ffir 
seine Konzeption der vegetativen Funkt ionen zu gewinnen, wurde ent- 
tfiuscht. Eine gemeinsame Studienreise mit dem deutschen Physiologen 
Wachholder durch die nordamerikanischen Forschungsinstitute brachte 
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bessere Kontakte, aber Hess blieb gegent~ber den angloamerikanischen 
Physiologen reserviert und hielt die stereotaktischen Reizexperimente am 
narkotisierten Tier mit faradischer Reizung yon Ransom und seiner Schule 
far unphysiologisch. Die deutschsprachige Physiologie war seine geistige 
Heimat, u n d e r  ffihlte sich in der yon ihm so genannten deutschen ,,Physio- 
logenfamilie" zu Hause, in guter Freundschaft mit Gteichgesinnten und in 
kritischem Abstand zu anderen. Auch nach Grandung einer eigenen 
Schweizer Physiologischen Gesellschaft erschien ihm die Schweiz far wis- 
senschaftliche Diskussion und produktiven Ideenaustausch zu klein. Die 
Tagungen der Deutschen Physiologischen Gesellschaft hat Hess fiber fiinf 
Jahrzehnte regelmggig besucht. Dort trug er seine experimentellen Ergeb- 
nisse vor und demonstrierte zuerst seine neue Methode der Zwischenhirn- 

Abb. 2a -e .  Hess auf Kongressen, im Institut und zu Hause 1948-1953.  a Diskussion 
mit Fachkollegen auf der deutschen Physiologentagung in Frankfurt 1948. b Demon- 
stration eines Experimentes vor Studenten 1949. c Irn hfiuslichen Arbeitszimmer mit 
dem Papagei auf der Schulter 1953 
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reizung an der freilaufenden Katze auf der Deutschen Physiotogentagung 
in Bonn 1927 [8]. Er blieb bis in sein hohes Alter ein anregender und kriti- 
scher Diskutant auf diesen Tagungen (Abb. 2a). Von 1928-1954 kam er 
oft nach Baden-Baden zu den Sfidwestdeutschen Neurologen und Psychia- 
tern, in deren Versammlungen er 1928 und 1929 seine ersten Experimente 
tiber Schlafausl6sung durch Zwischenhirnreiz bei der Katze im Film de- 
monstrierte [9, 1 t ]. Diese drei Kurzmitteilungen bei Neurologen- und Phy- 
siologentagungen [8, 9, 11] waren aufSer seiner S chlaftheorie [10, 16] fiber 
zehn Jahre seine einzigen Publikationen fiber den Schlaf dutch Thalamus- 
reiz. 1932 beschrieb er monographisch seine Methodik der Reizung und 
Ausschaltung lokalisierter Hirnstrukturen [ 14] und 1938 die Zwischen- 
hirnbeeinflussung von Atmung und Kreislauf [20]. 

Hess organisierte Institut und Forschung nach funktionellen Gesichts- 
punkten. Auch bei Experimenten verwendete er die gleiche Regel, die er 
als Funktionsprinzip des lebenden Organismus ansah: die Kraft soll dort 
einsetzen, wo sie ihre grOfite Wirkung entfaltet. Bei der bis 1946 sehr ge- 
ringen Dauerpersonalbesetzung des Instituts (2 Assistenten, 1 Mechaniker, 
1 Sekretfirin) hat er Hitfskrfifte angelernt und aus eigenen oder aus For- 
schungsmitteln bezahlt. Eine Kinderschwester, die er im Haus nicht mehr  
brauchte und deren Interesse ffir systematische Ordnung er kannte, hat 
fiber 20 Jahre die statistische Dokumentation seiner Hirnreizexperimente 
durchgeffihrt. Wenn Hess beim Experiment einen Reizerfolg sah, fragte er 
sie, warm und mit welcher Lokalisation der Effekt schon frfiher vorkam. 
Wenn Frl. Jaussi (Abb. 3b, links) es nicht auswendig wufSte, bl~itterte sie in 
der Kartei, und in wenigen Minuten kam die Antwort.  So konnte Hess 
Reizpunktkarten der verschiedenen vegetativen und motorischen Sympto- 
me aufstellen und dann mit anatomischen Strukturen in Verbindung brin- 
gen [31,36].  

Charakter und Arbeitsweise. [less verstand es, systematische Theorie und 
methodisches Experimentieren in seiner Forschungsarbeit zu vereinen. 
Welter Interessenkreis, gedankliche Klarheit und hartndckiger Fleifi, ge- 
ftihrt durch gezielte TheorienbiIdung und gezfigelt dutch methodische Be- 
schrdnkung, das waren die Charakteristika seiner Arbeitsweise und die 
Grundlagen seiner Erfolge. Daraus entwickelte [less seine Synthese der 
Physiologie, die mit seinen Forschungsleistungen dargestellt werden mug. 

Hess war eine gltickliche Mischung eidgen6ssischer Zfihigkeit und Strenge 
(die er von seinem Schweizer Vater herleitete) mit lebhaftem Forschungs- 
geist und wachem Interesse f~Jr alles Neue (das er als Erbteil seiner s~ichsi- 
schen Mutter ansah [40]). Diese beiden Seiten seines Charakters bestimm- 
ten Hess' Forschungsimpetus: Die Aufgeschlossenheit far neue Probleme 
f6rderte die Vielseitigkeit seiner Physiologie. Z~ihigkeit und Exaktheit 
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ftihrten ihn zur systematischen Planung und Ausarbeitung der Ergebnisse 
fiber viele Jahre. 

Hess war auch ein Meister experimenteller Methodik und ihrer kriti- 
schen Begrenzung. Obwoht er sich in Gesprfich und Diskussion ftir neue 
Ideen und Ergebnisse begeistern konnte,  begrenzte er seine praktische For- 
schung auf erreichbare Ziele, die er mit systematischem Denken und kri- 
tisch-methodischer Strenge verfolgte. Als ich ihm 1937 in jugendlichem 
Optimismus vorschlug, seine cerebralen Reiz- und Ausschaltungsexperi- 
mente durch die Ableitung yon Hirnpotentialen zu erweitern, winkte Hess 
ab. Obwohl er mit O. Wyss einen sehr guten Elektrophysiologen ats Ober- 
assistenten hatte, meinte er, hirnelektrische Untersuchungen sollten andere 
Institute machen: er Mtte  mit der Auswertung der Reizversuche und ihrer 
ihm immer etwas fremden hirnanatomischen Korrelation schon zu viele 
ungelSste Aufgaben fiJr das n~chste Jahrzehnt. 

Hess beschrfinkte die Hirnstammexperimente auf das Versuchstier 
Katze und begrtindete dies mit Verhaltensbeobachtungen, der geringen Va- 
riation yon Hirn- und K6rpergr6t~e und der guten Sehorientierung yon 
Katzen im Vergleich zum Hund. Experimente an Affen hielt er bei Hirn- 
stammfunktionen f~Jr unn6tig kostspielig. Ftir seine Schlafuntersuchungen 
war die Katze das ideale Versuchstier, da sie gem und leicht am Tage 
schlfift. Dies erleichterte seine frtihen Experimente der Schlafausl6sung 
durch Zwischenhirnreizung [8-11,  28]. 

Hess erffillte die doppelte Aufgabe als Lehrer und Forscher, indem er 
den Unterricht zeitlich genau einteilte und sich fiJr die Experimente be- 
stimmte Stunden und Tage frei hielt. Seine Forschung plante Hess konti- 
nuierlich und systematisch. Kein Tag blieb ohne Arbeit. Im Hause am 
Zihrichberg sag er in der Veranda und schrieb, oft mit seinem Papagei auf 
der Schulter (Abb. 2c). Wenn er aus dem Institut nach Hause kam, und in 
den Ferien, wenn er seinen Garten in Ascona bestellt hatte, entwarf er 
seine vielfach umkon'igierten Arbeiten. Im Institut halfen ihm treu ergebe- 
ne Mitarbeiter, in der Wohnung auf dem Ztirichberg und im Sommerhaus 
in Ascona seine Frau bei der Vollendung seiner wissenschaftlichen Schrif- 
ten, die alle seine pers6nliche Prggung trugen. Obwohl ihm, wie er oft sag- 
te, das Schreiben schwer fiel, entstand zwischen 1903 und 1970 in konti- 
nuierlichem Fluf5 seine erstaunliche Publikationsreihe von 294 Einzelar- 
beiten und 10 Monographien. 

Hess' Konzeptionen und Forschungsleistungen 

Forschungsergebnisse. Die wichtigsten physiologischen Leistungen von 
Hess seien im Folgenden mit ihrem Zeitgang kurz charakterisiert: 
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1) Systemkonzeptionen des Blutkreislaufs und der Atmung als Korabina- 
tion Mmodynaraischer Faktoren mit peripheren und zentralen Regula- 
tionen (1913-1931 [4, 5, t2]). 

2)Funktionsordnung des vegetativen Systems rait zentraler Organisation 
von zwei reziprok koordinierten Untersysteraen, die er ergotrop und 
trophotrop nannte (1924-1938 [7, 16, 30]). 

3) Methodische Entwicklung der subkortikalen Hirnreizung beim freibe- 
weglichen Tier (1927-1931 [8, 14]). 

4) Erforschung der Zwischenhirnfunktionen ftir vegetative und Verhaltens- 
regulationen (1929-1949 [20, 22, 31,37]).  

5) Begrtindung der experiraentellen Schlafforschung rait Entdeckung der 
Schlafausl6sung durch elektrische Thalamusreizung (1929-1944 [9, 16, 
281). 

6)Entdeckung richtungsbestimmter motorischer Regulationszentren im 
Zwischenhirn und Mittelhirn (1941-1943 [22-24]).  

7)Koordination der Zielbewegung und Stiitzmotorik beim Menschen 
(1941-1965 [24, 27, 42]). 

8)Synthese physiologischer Verhaltenskoordinationen mit psychischen 
und vegetativen Funktionen (1943-1962 [26, 39]). 

Integrative Physiologie. Hess interessierte sich iraraer fOx die ganze Physio- 
logie, und seine Arbeiten reichten in einera breiten Spektrura von den 
Kreislauf- und Atmungsfunktionen bis zur Hirnphysiologie. Reines Spezia- 
listentura war ihra frerad. Er war, wie Verworn, ein synthetischer Denker. 
Physiologische Mechanisraen s a h e r  iraraer ira Zusararaenhang rait ihrem 
biologischen Zweck innerhalb des Organisraus und rait dem Ziel des Tieres 
ira triebgesteuerten Verhalten. Kreislauf, Atraung, vegetative Funktionen 
und Hirnt~itigkeit studierte er experiraentell als Teilfunktionen des ganzen 
Organismus. Hess wurde nicht ratide, seine Schtiler mit vielfach variierten 
Beispielen dynaraisch-integrierter K6rperregulationen zura funktionell- 
physiologischen Denken zu erziehen, das er dem statischen ,,anatoraischen" 
Denken entgegensetzte. Seine Physiologie war eine Synthese von Theorie 
und Experiment zur Erforschung integrativer zielgesteuerter Leistungen, 
die eine lebendige Ordnung ira Organisraus erkennen l~ifSt. Einen ~hnlichen 
Gegensatz sah er zwischen seiner integrativen Systera-Physiologie und der 
mehr auf "facts" und Einzelanalyse eingestellten Haltung angels~ichsicher 
Physiologen, denen oft die Tatsache alles und die Theorie nichts gait. FOX 
Hess dagegen brachten Einzeltatsachen nur Hinweise fox Funktionsgesetze. 
Nut ihre gesetzra~ifSige Wiederholung oder Zusararaenhiinge rait anderen 
Tatsachen waren als physiologische Funktionen zu werten, in die er auch 
psychische Leistungen einschlof~ [7]. Seine Betonung von Ziel und Funk- 
tionsordnung ist oft als ,,teleologisch" raif~verstanden worden, war aber 
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immer biologisch gemeint. Daher suchte er auch Beziehungen zur Verhal- 
tensforschung yon Lorenz und seiner Schule und zu v. Holsts Regelungs- 
prinzipien. FiJr Hess war das Gehirn eine Struktur- und Funktionsordnung, 
die als ,,dynamisches Kr~iftespiel" nie zur Ruhe kommt,  nur bei relativem 
Gleichgewicht Ruhe vortauscht und in einem dauernden Wechsel yon Erre- 
gung und Hernmung verschiedener Systeme biologisch-zielstrebig arbeitet 
[39]. 

KreMaufphysiologie. Die Funktionen des Blutkreislaufes haben Hess seit 
seiner Gef~it~arbeit [ 1 ] als Student besonders interessiert. Erste selbst~indige 
Leistungen waren ein Apparat zur Messung der Blutviskositiit t907 [2] 
und die Habilitationsschrift fiber das Okonomieprinzip der Hdrnodynamik 
1914 [4]. Daraus entwickelte sich irn Laufe von zwei Jahrzehnten eine 
systematische Untersuchung der Kreislaufregelung, die 1930 monogra- 
phisch dargestellt wurde [ 12]. 20 Jahre bevor die Regelprinzipien rnit dem 
Stichwort ,,Kybernetik" in der Neurophysiologie aktuetl wurden, hat Hess 
alle Regulierungen rnit dem sp~iter so benannten negativen und positiven 
"Feedback" an den Leistungen des Blutkreislaufs klar beschrieben. Als 
einfachste Regelung der Gewebsdurchblutung betrachtete er die Nutritions- 
reflexe, die er auch ,,Eigenreflexe des Kreislaufs" nannte und rnit der Pro- 
priozeptivit~t der Muskulatur in Parallete setzte: Die Gef~f~erweiterung 
durch CO2 und lokale Stoffwechselprodukte einschlieNich der Axonre- 
flexe sorgt ftir ad~iquate Blutversorgung entsprechend der T~tigkeit der Or- 
gane. Antagonistisch zurn Nutritionsreflex wirkt der Entlastungsreflex, der 
in Parallele zur Vaguswirkung arn Herzen, den Depressor- und Carotis- 
Sinus-Reflexen, eine Schutzfunktion for das Gewebe hat. Beide reziprok 
arbeitenden Reflexe zfigeln auch rnit gleichzeitiger Aktivierung die Durch- 
blutung und den Gewebsstoffwechsel. Auch der meist wenig verstandenen 
Gef~it~erweiterung dutch antidrorne sensible Impulse gab Hess einen funk- 
tionellen Sinn zur Regelung der Gewebefunktion: Die Schrnerzfasern un- 
terstfitzen eine schrnerzunterschwellige Gewebstrophik. Nur bei st~rkeren 
Reizen entstehen Schmerz oder Entztindung, bei schw~cheren nur physio- 
logische Durchblutungssteigerungen. Man erkennt in den antagonistischen 
Konzeptionen der Durchblutungsregelung unschwer den Ursprung von 
Hess' Schema des trophotropen und ergotropen vegetativen Systems [16, 
301. 

Wie der Untertitel seiner Kreislauf-Monographie [12] zeigt und Hess in 
der Einleitung betonte, war die Kreislauffunktion ffir ihn ,,eine Gelegen- 
heit, in die integrativen Leistungen des vegetativen Nervensysterns Ein- 
Nick zu nehmen".  Die Durchblutungsregelung arbeitet ebenso wie die ve- 
getative Innervation als Anpassung an die Leistung des Organs und hat 
eine ,,Dynamik h6herer Ordnung". Neben der Herzt~itigkeit und den far das 
Gewebe entscheidenden Kapillarfunktionen betonte Hess auch die T~itig- 
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keit der Arterien und Venen, die er auf ihre organspezifischen Reaktionen 
untersuchte. Das Herz wird als Hilfsapparat der eigenttichen kapillaren 
Austauschvorg~inge angesehen, und die Entlastungsreflexe werden im An- 
tagonismus zu den Nutritionsreflexen ~ihnlich der kardialen Vagus- und 
Sympathicuswirkung als Erholungs- und Leistungsfunktionen gedeutet. 
Auf die cerebralen Kreislaufregulationszentren ging Hess in dieser Mono- 
graphie noch nicht genauer ein, tat dies aber sp~ter nach systematischer 
Auswertung seiner zentralen Reiz- und Ausschaltungsversuche im Zwi- 
schenhirn 1938 [20]. 

Ergotrope und trophotrope vegetative Leistungen. Sein Interesse fOr das 
vegetative System fiJhrte Hess zu einer theoretischen Systemkonzeption, 
die er in einer ersten weitgehend spekulativen Arbeit iJber ,,Wechselbezie- 
hungen psychischer und vegetativer Funktionen" 1925 als Programm for 
expefimentelle Untersuchungen ver6ffentlichte [7]. Im Gegensatz zur ana- 
tomischen Zweiteilung sympathischer und parasympathischer Nerven be- 
niJtzte Hess das Leistungskriterium for seine Einteilung in zwei funktionelle 
Untersysteme: 1) das ergotrope System, das die Leistungsbereitschaft ani- 
mater Funktionen f6rdert; 2) das trophotrope System, das f~r Erhaltung 
und Erholung der Gewebsleistungen sorgt. Im ersten Entwurf [7] hatte er 
das zweite auch ,,histotropes" und sp~ter ,,endophylaktisches" System 
[30] genannt, und solche terminologischen Eigenwilligkeiten erschwerten 
manchmal das Verst~indnis flit Hess' Mare Gedankenwelt in der physiologi- 
schen Forschung. Mit Cannon konnte sich Hess in einem Gespr~ich nicht 
~ber eine gemeinsame Konzeption und Terminologie einigen, und die Ent- 
deckung der cholinergen und adrenergen Transmitterstoffe machten auch 
die alte pharmakologische Zweiteilung sympathischer und parasympathi- 
scher Drogenwirkungen problematisch. Anatomisch werden ergotrope 
Funktionen in der Peripherie nach Hess vorwiegend, abet nicht allein 
durch sympathische Nerven vermittelt. Beide Systeme gehorchen efiaer 
zentralen Steuerung, deren Erforschung sichHess zur Lebensaufgabe mach- 
te. Im Gehirn sind beide Funktionssysteme anatomisch nicht klar unter- 
scheidbar und offenbar noch enger antagonistisch verkoppett. Nachdem 
Hess 1925 auch den Schlaf mit seiner Erholungswirkung als trophotrope 
Funktion bezeichnete [7], hat er die lange vernachl~issigte physiologische 
Schlafforschung entscheidend angeregt. 1933 hat er ein iJbersichtliches 
Schema ~Jber die Funktionsverkn~Jpfungen beider Systeme in einer Pro- 
grammschrift iJber den Schlaf [16] gegeben. Diese Theorien konnten erst 
experimentell gepRift werden, nachdem seit 1934 hirnelektrische Registrie- 
rungen aus dem schlafenden Gehirn gemacht wurden und Bergers EEG 
auch beim Menschen die objektive Erfassung der Schlafver~inderungen er- 
m6glichte. Hirnelektirsche Schlafuntersuchungen hat Hess nur in wenigen 
Experimenten mit seinem Sohn an der schtafenden Katze 1950 begonnen. 
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Dann tibertiet~ er dieses Feld anderen. Dat~ im letzten Jahrzehnt die Kate- 
cholaminforschung neue Aspekte der neurochemischen Schlafregulationen 
er6ffnete, hat Hess zwar interessiert, aber die biochernische Forschung lag 
ibm fern. 

Seine hirnphysiologischen Experimente konzentrierte Hess' auf das 
Zwischenhirn, in dem er die Integrationszentren der vegetativen Regula- 
tionen vermutete, nachdem seit 1909 nur wenige Reiz- und Ausschaltungs- 
experirnente, vor allem der Wiener Physiologen Karplus und Kreidt auf die 
Rolle des Hypothalarnus for das Vegetativum hingewiesen hatten. 

Die Hirnstammreizung an der wachen Katze. Fi~r die Methodik der seit 
1925 durchgefiihrten Zwischenhirnexperimente entwickette Hess eine spe- 
zielle elektrische Reizung und Elektrodenlokalisation im Gehirn [ 14]. Die 
Berliner-Blau-Reaktion nach Eisen-Elektrophorese yon den Stahlelektro- 
denspitzen diente als Makrotokalisation und erste Orientierung auf den 
horizontal zertegten Hinrscheiben. Zur histologischen Lokalisation ver- 
wendete er auf Rat Oskar Vogts abwechselnde Nissl- und Markscheiden- 
f~rbungen der horizontalen Schnittserien. Von diesen tier5 er 1926 und 
1937 einen fotografischen Atlas der Stammganglien und des Zwischen- 
hirns herstellen [ 14]. 

Die yon Hess entwickelte Hirnreizrnethode verwendete unterbrochenen 
Gleichstrom, urn auch markarrne und rnarklose vegetative Fasern zu reizen, 
die durch die tiblichen kurzen faradischen Stromst6fSe nicht erregt werden. 
Er konstruierte einen kleinen, auf der Sch~deldecke verschraubten Stan- 
dardhalter far sechs Elektroden, so dab die wache Katze mit ihren Zwi- 
schenhimelektroden auf dem Versuchstisch wie in Abb. 3 frei laufen und 
ohne Fixation und Narkose in ihrem Verhalten untersucht und gefilrnt 
werden konnte [ 14]. Dagegen erfal~te die etwa gleichzeitig yon W. Ransom 
in Chicago systematisierte subkortikale stereotaktische Reizung narkoti- 
sierter Katzen mit der alten Horsley-Clarke-Methode lediglich grobe rnoto- 
rische Effekte, aber konnte fiber Verhaltenskorrelationen wenig oder nichts 
aussagen. Daher beurteilte Hess die Stereotaxie in Narkose sehr zurtickhal- 
tend. Ransom wiederurn kritisierte Hess' Schlafexperirnente rnit ihrer lang- 
dauernden Reizung und verrnutete elektrolytische L~isionen der Ausschal- 
tung start Reizung. So kam es nicht zu der wtinschenswerten Koordination 
tier beiden Forschergruppen yon Ransom und Magoun in Chicago und yon 
Hess in Zfirich. 

Zur Anatomie hatte Hess ein zwiespNtiges Verh~iltnis. Einerseits brauch- 
te er lokatisatorische Kontrollen der Hirnreizungen, andererseits mif~traute 
er dern statisch-anatornischen Denken. Obwohl seine erste Arbeit 1903 in 
tier Anatomie begann, hat Hess schon damns anatomische Strukturen mit 
ihrer Funktion korreliert. Reine Strukturbeschreibung hielt er fiJr ein be- 
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Abb. 3a, b. Reizexpefiment an der 
freien Katze in Hess' Laboratofium 
1946. a Hess gew6hnt die Katze durch 
Fiittern an den Versuchstisch und die 
experimentelle Situation. b Kopf-und 
Augendeviafion der Katze nach oben bei 
mesencephaler Reizung. - Der Versuchs- 
tisch mit Uhr, Datum und Experiment- 
Nummer ftir die Filmaufnahme war seit 
t928 eine Standardordnung fiir jedes 
Experiment. Die Katze trug eine Zulei- 
tung feiner Drfihte zum Elektrodenhalter 
auf dem Sch/idel, da es noch keine 

drahtlose Reizung gab. Der Institutstechniker Jenny sitzt rechts an der Reizapparatur, 
zwei Assistenten beobachten und filmen die Katze, und die Sekret~rin links protokol- 
liert. Vor 1939 machte Hess selbst die Filmaufnahmen der Reizeffekte 

schrf inktes ana tomisches  K o n z e p t .  Er  mitSachtete A n a t o m e n ,  die sich aus 

F r e u d e  am m o r p h o l o g i s c h e n  Detai l  nu r  a u f  F o r m s t u d i e n  beschrf inkten.  
Hess sah sich die E l e k t r o d e n s p i t z e n p o s i t i o n e n  zun~ichst m a k r o s k o p i s c h  

im Berliner-Blau-Bild an u n d  liet~ dann  Schni t t se r ien  anfer t igen  [ 14]. D o c h  
fiberlief~ er die e igent l iche his to logische A u s w e r t u n g  am Zell- u n d  Faser-  

bild anderen .  E r  pf leg te  zu sagen, es kfime im Geh i rn  weniger  au f  die Kerne  
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an als auf ihre Verbindungen, in denen sich die physiologische Ordnung 
zeige. Darum begrat~te er es sehr, als Weisschedel und ich 1936 im Zarcher 
Institut eine modifizierte Marchi-Methode zur Darstellung degenerierender 
Fasern yon den nach der Reizung durch Koagulation zerst6rten Hirnteilen 
einf'uhrten. Die Pr~parate zeigten nun die efferenten Faserverbindungen 
der gereizten und koagulierten Strukturen. AUerdings wurden die Grenzen 
der Marchi-Technik bald deuttich, da sie vorwiegend dicke markhaltige 
Nervenfasern darstellte, aber die im vegetativen System h~iufig markarmen, 
dannen Fasern nur schlecht erkennbar waren. Die Silbermethoden zur 
Markierung synaptischer Projektionen wurden damals erst entwickelt und 
die modernen Enzymdarstellungen anatomischer Projektionen waren un- 
bekannt. 

Die Schlafexperimente. Hess' Demonstrationen, dab Hirnreizungen Schlaf 
ausl6sen, erregten zun/ichst Erstaunen, entsprachen aber genau seinem Po- 
stulat der Erholungsfunktion des t rophotropen Systems von 1924/25 [7]. 
So wurden seine breiter angelegten Reizversuche an der freibeweglichen 
Katze seit 1929 vor allem dutch Schlafexperimente bekannt, obwohl diese 
auch mit Skepsis aufgenommen wurden: Die Einw~inde amerikanischer 
Kritiker, die mit Ransom bei seinen langen Reizserien durch pulsierenden 
Gleichstrom elektrolytische L~isionen annahmen, konnte Itess jedoch 
widerlegen. Seine Experimente brachten 1927-1929 einen entscheiden- 
den AnstofS f~ir die yon der Physiologie bis dahin vernachl/issigte SchIaf- 
forschung. Hirnelektrische Korrelate des Schlafes wurden dann wenig sp~i- 
ter durch Bergers , ,Elektrenkephalogramm" (EEG) nachgewiesen, und seit 
1935 machten amerikanische Forscher systematisch EEG-Ableitungen 
beim schlafenden Menschen. 

Schwierigkeiten ffir die hi~nphysiologische Deutung der Schtafexperi- 
mente von Hess lagen vor allem in der welt verstreuten unspezifischen Lo- 
kalisation der Reizpunkte, die yore medialen Thalamus bis zum Striatum 
reichten, und in der langen und sehr wechselnden Latenz des Schlafeffek- 
tes. Dennoch haben Hess' Untersuchungen eine neue Forschungsrichtung 
begrtindet, die mit der wenig sp~iter beginnenden VerhaItensforschung yon 
Lorenz und v. Holst zum Experimentieren am wachen Versuchstier fiihrte. 
Mit dem Schlafverhalten konnte Hess zum ersten Mal durch Zwischenhirn- 
reizung eine geordnet ablaufende Instinkthandlung ausl6sen, die dem nor- 
malen Triebvorgang entspricht, der nach Ermtidung zum Ausruhen ft~hrt 
[8, 37]. 1943 konnte er einen umgekehrten Aktiviemngseffekt, die ,,affek- 
tire Abwehrreaktion" nach Hypothalamusreizung [26], hinzuffigen. Erst 
viel sp~iter wurde das Konzept der sog. unspezifischen Aktivierung tier 
Hirnrinde im EEG nach Reticularis-Reizung im Mittelhim durch Moruzzi 
und Magoun 1949 entwickelt. Da Hess sich zun~ichst auf Reizexperimente 
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oberhatb des Mittelhirns beschrSnkte und die sp~iteren Reticularis-Reizun- 
gen anderer Autoren meist am narkotisierten Tier erfolgten, dauerte es ein 
bis zwei Jahrzehnte, bis die Befunde yon IIess mit den hirnelektrischen Er- 
gebnissen und dem Konzept eines unspezifischen aufsteigenden Aktivie- 
rungssystems koordiniert werden konnten. 

Seit 1960 gelang es dann Jouvet, Moruzzi und ihren Mitarbeitern, auch 
die Beteiligung tieferer rhombencephater Hirnteile an der Schlafregulation 
nachzuweisen. Diese Reiz- und Ausschaltungsexperimente in Pons und Ob- 
longata und die Entdeckung der vom Hirnstamm zum Cortex aufsteigen- 
den Systeme mit verschiedenen chemischen (~bertr~igerstoffen zeigten, dat~ 
die Schlafregutationen viel komptizierter sind, als man in den 30er Jahren 
annahm. Im Prinzip hat jedoch IIess' Theorie, wonach der Schlaf eine tro- 
photrope Ruhigstellung des Groj3hirns durch vom Hirnstamm aufsteigende 
dfimpfende Impulse ist, auch heute noch ihre Gfiltigkeit. 

Die Motorik. Hess' Interesse ftir die Bewegungsphysiologie begann schon 
in seiner ophthalmologischen Zeit, als er ein Schema zur Erfassung der 
Augenmuskell~hmungen entwarf [3]. Die Augenmotorik war ftir ihn ein 
Idealfall, der die Bewegungsordnung in den drei Raumebenen mit drei Paa- 
ren antagonistischer Muskeln exakt darstellen lieiL Dreifiig Jahre spgter 
kam er mit einer pr~ikybernetischen Arbeit tiber die Motorik als Organisa- 
tionsproblem [24] zur sensomotorischen Koordination zurtick. Er konstru- 
ierte Blockschaltungen als Modelle der okulomotorischen Beherrschung 
des Blickfeldes mit einfacher und doppelter Mannigfaltigkeit, die ftirjede 
Ausgangsstellung eine Bewegungsfreiheit nach allen Richtungen entspre- 
chend der Gesichtsfeldlokalisation erm6glichten. Diese erweiterte er ftir 
die K6rpermotorik mit Oberwindung der Gravitation durch propriozeptive 
Regulation. Nach seinen Worten sollten bei der Bewegung Rezeptorsysteme 
zur St6rausschaltung und Muskelinnervation als ,,zielorientiert gruppierte 
Kr~ifte fehlerfrei zum Ziel ftihren". Diese Bewegungsregulation muf6 bei 
jeder neuen Stellung die Muskelzugwirkung verfindern. Er postulierte im 
Gehirn eine Parallelschaltung der Raumwahrnehmung mit der Bewegungs- 
koordination. Seine pr~ikybernetischen ModeUe verwendeten Vektorwir- 
kungen ffir die richmngsm~fSige Impulssummation. Gleichzeitig demon- 
strierte er mit seinen Hirnstammreizungen die Existenz richtungsspezifi- 
scher Substrate im Zwischen- undMittelhirn der Katze [22, 35]. So konn- 
ten seine experimentellen Befunde die Realit~it der yon vielen als spekula- 
tiv empfundenen Bewegungsorganisation nachweisen. 

Seine Bewegungstheorien hat Hess zwei Jahre sp~iter ffir die menschliche 
Ziel- und Stiitzmotorik durch ein lebendes Modell f ~  die praktische Bewe- 
gungsleistung erg/inzt [27]. Die Wechselwirkung yon Haltung und Bewe- 
gung wurde durch drei Personen dargesteltt. Der Trfiger reprfisentiert Skelet 
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und Schwerkraft-kompensierende Muskulatur, der Stfitzer die Halteinner- 
vation rumpfnaher Muskeln und der Springer die dynamisch-ballistische 
Muskelaktion. Bei der aufrechten Haltung des Menschen wird die Stfitz- 
motorik vor allem zur Kompensation yon Schwerkraftwirkungen einge- 
setzt. Damit die Zielbewegung gelingt, mut~ die Stfitzfunktion fNhzeitig 
aktiviert werden. Diese Antizipation bedeutet ein Primat der Haltung ffir 
die Bewegungsbereitschaft. Trfiger und St~tzer mfissen den Moment des 
Sprunges wissen, Gewicht und Absprungkraft fi~hlen und sich an die Hal- 
tungsver~inderung anpassen. Die Zielbewegung miNingt, wenn der unge- 
statzte Tr~iger vom Absprung nicht orientiert wird. Prinzip der Statz-und 
Zielmotorik sind demnach Bereitschaftshaltung mit regelnder und steuern- 
der Riickmeldung entsprechend der in den folgenden Jahren entwickelten 
Biokybernetik [42,431. 

Hess' ungew6hnliche Terminologie yon 1943, ,,teleokinetische Motili- 
t~it" ffir die Zielmotorik und ,,ereismatische Motilitfit" ft~r die Stiitzmoto- 
rik [27], erschwerten zunfichst das Verstfindnis dieses Modellversuchs, so 
daf5 Hess ihn 22 Jahre sp~iter noch einmal mit Filmbildern zusammenfas- 
send dargestellt hat [42, 43]. 

Die weitere Ausarbeitung/iberlief~ tIess anderen. Als seine Schiller Wyss 
und Koella die Labyrinthreflexe und ich die visuell-vestibul~ire Koordina- 
tion mit Registrierung der Augenbewegungen untersuchten, zog er sich zu- 
r/ick, als die Ergebnisse zu kompliziert ffir Modellbilder wurden. Doch ver- 
folgte Hess die Reafferenz-Konzepte v. Holsts und andere Regelmodelle, 
die Blickbewegung und Wahrnehmung dutch entsprechende biokyberneti- 
sche Schaltbilder erklfiren sollten, mit wachem Interesse. 

Die Psychophysiologie. Sein letztes Buch [39], das Hess nach seiner Eme- 
ritiemng schrieb, war fiber Jahrzehnte geplant. Es sollte zun~chst den Titel 
,,Psychophysiologie" erhalten, den er 1962 in Psychologie in biologischer 
Sicht ~nderte. Seine Korrelation von psychischen und neuralen Funktio- 
nen hatte ihren frfihen Ursprung in der Schrift yon 1925 fiber psychische 
und vegetative Funktionen [ 7]. Das Psychologiebuch ist oft mi~verstanden 
worden, besonders die Ausffihrungen ~ber unbekannte ,,psychische Kr~fte". 

Im Gespr~ch erl~uterte Hess die seelische Kraft und ihre unbekannte 
Natur viel klarer als in dem Buch: Er zog eine Parallele zur Schwerkraft in 
der Physik, deren Wesen auch niemand kennt, aber deren Wirkungen man 
beobachten und exakt messen kann. So meinte Hess, sollten auch psychi- 
sche Kr~fte in ihren Auswirkungen zu erkennen und mefibar sein, obwohl 
ihre Natur v611ig unklar bleibt. Ein Rezensent glaubte, das Buch enthalte 
unwissenschaftliche Vorstellungen von psychischen Kr~ften ohne Korrela- 
tion mit Hirnfunktionen, obwohl Hess mehrfach betont hat, dal~ psychi- 
sche Funktionen nur auf der Grundlage neuronaler Hirnprozesse m6glich 
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sind. Eine pers6nliche Diskussion sollte diese MifSverstfindnisse vor der 2. 
Auflage beseitigen. Um die Verbindung mit der modernen Forschung zu 
erhalten, organisierte Hess ein kleines Symposion, bei dem Freunde und 
Schiller neuere Befunde mit informationstheoretischen Fragen besprachen. 
Diese Diskussion erschien in tier 2. Auflage [39]. 

Ober allgemeine Fragen yon Hirnfunktion und BewuiStsein und seine 
Konzeption der psychischen Kr~ifte korrespondierte Hess zuletzt mit dem 
Pharmakologen H. Fischer. Teile dieses Briefwechsels erschienen in engli- 
scher Obersetzung 1973 kurz nach seinem Tode. Darin wird eine L6sung 
dieser Fragen auf empirischer Basis abgetehnt und philosophische und re- 
ligi6se Gedanken werden nur als m6gliche Annfiherungen diskutiert. Zu 
den Grenzen unseres Wissens sagt Hess: ,,Wir milssen uns zufrieden geben, 
daf3 noch so vieles in der Welt existiert und vor sich geht, das unserem Ver- 
stfindnis entzogen ist. Darfiber hinaus hake ich ein bescheidenes Schweigen 
als die beste Einstellung zu den aufgeworfenen Fragen." 

Nebenwege der Forschung. Die rhythmischen Spontankontraktionen der 
Arterien verschiedener Organe und ihre humorale Beeinflussung dutch ve- 
getativ aktive Stoffe haben IIess fiber viele Jahre interessiert. Die mehr 
oder weniger spezifischen Ver~inderungen durch Adrenalin, Acetylcholin 
und andere Stoffe wurden von zahlreichen Doktoranden untersucht. 

GrofSe Verdienste hatte ttess auch far die meteorologisch-physiologische 
Forschung. Er grfindete die It6henstation Jungfraujoch und verwendete 
viel Zeit ftir die Organisation und Einrichtung, his er sie an von Muralt, 
Bern, abgab, der die von Hess ehrenamtlich durchgefilhrte Leitung dann in 
eine amtliche Direktorenstelle verwandelte. Nach frilhen Anregungen for 
die Wetterforschung durch seinen Vater hat Hess manche Arbeit auf die- 
sere Gebiet veranlagt, abet war setbst nicht auf dem meteorologisch-biolo- 
gischen Gebiet t~itig, das auch heute noch ungekl~irt ist. 

Die Wirkungen seines Forscherlebens 

Der akademische Lehrer. In den ersten Jahren seiner Institutsleitung 
1917-1924 widmete [less viel Zeit dem Ausbau des physiologischen 
Unterrichts, bevor er 1924 seine Hirnforschungsarbeit begann. Er verbes- 
serte den physiologischen Kurs mit experimentellen Demonstrationen und 
filhrte den Schmalfilm ft~r Unterricht und Forschung ein. Die Filmdemon- 
stration blieb far Hess seitdem wichtigstes Instrument der Demonstration 
und Dokumentation. Die Hauptvorlesung fCtr alle Gebiete der Physiologie 
hielt er jedes Semester, auch in spfiteren Jahren, in denen die experimen- 
telle Arbeit seine ganze Kraft ben6tigte. Seine Reizexperimente filmte er 
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viele Jahre selbst und erst nach 1945, als er das Personal des Institutes ver- 
gr6t~ern konnte,  flbernahmen Mitarbeiter die Filmarbeit, wie Abb. 3b zeigt. 
Die Prinzipien der Motorik hat Hess' vorwiegend durch Filmanalyse und 
Modellexperimente gef6rdert. Auch in den 30er Jahren, als seine Methode 
der Hirnreizung bei der freilaufenden Katze seine ganze Arbeitskraft in 
Anspruch nahm, hat er sich nicht vom studentischen Unterricht zurackge- 
zogen, sondern grundlegende Experimente oft selbst vorgefilhrt wie in 
Abb. 2b. 

Der Sprecher und Autor. Hess war ein guter Redner, und seine Sprache als 
akademischer Lehrer war klar und einpr~igsam. Auch in der Diskussion traf 
er mit wenigen, richtigen Worten den Kern der Sache. Als er auf der deut- 
schen Physiologentagung 1960 wieder einmal die mangelnde physiologi- 
sche Hirnforschung in den deutschen Instituten monierte, sagte er: ,,Wenn 
Sie es nicht machen, werden die Pharmakotogen die Hirnphysiologie iiber- 
nehmen, abet die Neuropharmakologie wird funktionell wichtige Zusam- 
menh/inge ilbersehen". Wenn Hess dann die gleichen Gedanken in schrift- 
liche Form brachte, wurden die einfach erfafSten Prinzipien zwar mit kon- 
kreten Beispielen illustriert, aber sein systematisches, sich mit allen Neben- 
wirkungen und Widersprfichlichkeiten auseinandersetzendes Denken ver- 
fiihrten ihn zu langen Erkl~irungen und komplizierten Formulierungen. 
Seine Terminologie war oft eigenwillig und erschwerte die Annahme seiner 
klaren Konzeptionen durch vermeintliche Ausdrucksverbesserung: z.B. die 
Umbenennung des anfangs ,,histotropen" [7] dann , , t rophotropen" vege- 
tativen Nervensystems [16] in ein ,,endophylaktisches" System [30], das 
als Antagonist des ergotropen Systems funktioniert. Auch die Bezeich- 
nung der Zielmotorik als ,,teleokinetisch" und der Stfitzmotorik als ,,ereis- 
matisch" war der Anerkennung dieser wichtigen Leistungsanalyse der Be- 
wegung und Haltung nicht gfinstig. 

Bei Abfassung seiner Manuskripte gab Hess sich grot~e Mtihe und schrieb 
sie immer wieder urn. Nach der Emeritierung war er ohne Sekret/irin, und 
in Ascona half ihm seine Frau bei allen sp~teren Arbeiten unermi~dlich an 
der Schreibmaschine. Zur Begrandung mangelnder sprachlicher Eleganz 
sagte Hess, fiir jemand, der in der Umgangssprache Schwyzerdfitsch rede, 
sei das ,,Schriftdeutsch eine Fremdsprache". Aber dies hat reich hie aber- 
zeugt, weiI Hess auch im hochdeutschen Vortrag spontan klar und pr~zise 
sprach. Es war seine Grfindlichkeit und Gewissenhaftigkeit, die den einfa- 
chen Satz komplizierte. So habe ich bei allen strittigen Fragen lieber per- 
s6nlich mit ihm gesprochen, als korrespondiert oder alte Publikationen 
nachgelesen. 1958 wollten HassIer und ich, als seine Schiller, Hess' Kon- 
zeption der Ziel- und Stiitzmotorik im amerikanischen Handbuch der Phy- 
siologie darstellen: Bei unserem Besuch in ZiJrich gab uns Hess an einem 
Nachmittag mfindlich mit einem alten Film ein klares Expos6, das aus der 
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Lekttire seiner zehn vorangehenden Arbeiten nur mtihsam zu abstrahieren 
war. Der Film lieg sich in einer Schemazeichnung zusammenfassen, die 
Hess dann korrigierte und best~itigte: Haltung, Stfitze und Zielbewegung 
war in einem Drei-Personen-Experiment anschaulicher dargestellt als es 
eine lange Beschreibung vermochte (vgl. S. 14). 

Jede Begegnung mit  Hess war noch bis in die letzten Altersjahre inter- 
essant und anregend, denn er blieb noch als 80jfihriger produktiv mit 
neuen Ideen und diskutierte gern auch fiber neue Gebiete der Verhaltens- 
forschung und Biokybernetik. So habe ich die fraheren Ztircher Besuche, 
zu denen er nach kurzer Anfrage einlud, und die selteneren sp/iteren in 
Ascona in sch6nster Erinnerung. 

Die Hess-Schule und persOnliche Erinnerungen. W~ihrend der vier Jahr- 
zehnte seiner T~itigkeit im Ztircher Physiologischen Institut hatte Hess 
zahlreiche Mitarbeiter, die auf verschiedenen Gebieten der Physiologie ar- 
beiteten und vorwiegend Schweizer Lehrsttihle besetzten. Von den ~ilteren 
Mitarbeitern nenne ich F. Verzar in Basel, A. Fleisch in Lausanne und 
O.A.M. Wyss, der sein Nachfolger in Ztirich wurde und vorwiegend The- 
men der Neurophysiologie und Atmungsphysiologie bearbeitete, ferner 
E. Rothlin und W.P. Koella, die neurophysiologische und neurophalxnako- 
logische Forschungen in der Schweizer Pharmaindustrie f6rderten. Sp~tere 
neurophysiologische Schiller waren Marcel Monnier, der aus der Neurologie 
kam und nach einer kurzen Tfitigkeit in Genf den Basler Lehrstuhl als 
Nachfolger Ferzars erhielt und die Physiologie und Neurochemie des 
Schlafs bearbeitete, und R.W. Hunsperger, der die cerebralen Reizversuche 
tiber die affektive Abwehrreaktion fortsetzte und die Verbindungen der 
hypothalamischen Strukturen mit dem Rhinencephalon und dem Mandel- 
kern klfirte, Sandro Biirgi, der die anatomische Auswertung yon Hess' Ex- 
perimenten Ende der 30er Jahre fibernahm, wurde Neurologe, abet hielt 
die Verbindung mit dem Institut aufrecht. Der Sohn Rudolf  Hess jun. 
wechselte yon der Physiologie zur klinischen Elektroenzephalographie. 
Konrad Akert war der letzte und in der Forschung aktivste Schiller, mit 
dem Hess zahlreiche Arbeiten 1945-1952 schrieb und der sein Werk mit 
dem Aufbau des Ztircher Hirnforschungsinstitutes fortsetzte. Nach mehr- 
j~ihrigen Arbeiten in verschiedenen physiologischen und anatomischen In- 
stituten der USA kam Akert nach Zfirich zurtick, als Hess, entt~iuscht yon 
dem Fortgang der Hirnforschung im Physiologischen Institut die Grtindung 
eines Hirnforschungsinstitutes erreicht hatte, das auch die hirnanatomi- 
sche Abteilung v. Monakows fortsetzen sollte. Dieses selbstfindige Institut 
tibernahm A kert, richtete Abteilungen ffir Neurophysiologie, Neuroanato- 
mie und Neurochemie ein und konnte so die yon Hess inaugurierte For- 
schungsrichtung fortsetzen und erweitern. 
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Von auslfindischen Mitarbeitern erw~hne ich den Holtfinder W.O.C. 
Magnus, Sohn des Utrechter Pharmakologen, den Schweden B. A ndersson, 
den Italiener C. Bartorelli und E. Weisschedel, R. Hassler und mich selbst 
aus Deutschland. 

Ich habe Hess tiber fast 40 Jahre gekannt, und seit meiner ersten Tgtig- 
keit in seinem Institut 1936/37 trafen wir uns regelm~if~ig. Der grot~e 
Altersunterschied yon drei Jahrzehnten - Hess war damals 55 und ich 
25 Jahre alt - bedeutete keine Trennung. AufSer dem Lehrer-Schtiler- 
Verh~ltnis entwickelte sich in den nfichsten Jahrzehnten durch meine Zu- 
wendung zur Elektrophysiologie, die Hess selbst nicht betrieb, ein Ver- 
h~iltnis gegenseitiger Anregung ftir die hirnphysiologische Forschung. Als 
Hess 1938 mein Laboratorium in Freiburg besuchte und ich ihm die 
grot~en, bilateral-synchronisierten EEG-Wellen beim kleinen epileptischen 
Anfall zeigte, rief er spontan: ,,Das ist die vegetativ-trophotrope Beeinflus- 
sung des Cortex aus dem Zwischenhirn". Eine fihnliche subcorticate Be- 
einflussung des Cortex war bei den langsamen Schlafpotentialen anzuneh- 
men. 

Selbst die Kriegsjahre brachten keine vollstfindige Unterbrechung unse- 
rer wissenschaftlichen Diskussion. Hess kam 1941 nach Frankfurt, um 
seine neuen Motorikuntersuchungen in den drei Raumrichtungen nach 
Hirnstammreizung bei Kleist zu demonstrieren, in dessen Lazarett ich da- 
mals arbeitete, und diskutierte klinisch-neurologische Korrelate der Wende- 
und Drehbewegu~g seiner Katzen mit uns. In den schwierigen Nachkriegs- 
jahren, als wir in der Besatzungszeit noch ohne wissenschaftlichen Kontakt 
mit dem Ausland blieben, lud Hess hirnanatomisch interessierte deutsche 
Mitarbeiter wie Weisschedel und Hassler ein, an der Auswertung seiner 
Ausschaltungsversuche teilzunehmen [32, 35]. 

Unsere Reiz- und Ausschaltungsexperimente an der Substantia nigra, 
die wir auf Wunsch yon Spatz bei Hess 1936/37 in Ztirich machten, brach- 
ten nicht die erhofften Ergebnisse, da die Marchi-Methode ftir die Degene- 
ration der feinen Fasern nicht ausreichte und die modernen Silberdegene- 
rationsmethoden und die Dopamintransmitter noch nicht bekannt waren. 
So waren wir bei der Deumng des flachen EEG im Isocortex und der 
Thetawellen im Allocortex nach Sinnesreizen und Hirnstammreizungen, 
die ich mit Weisschedel undKornmiiller 1937 in Berlin untersuchte, anato- 
misch zu skeptisch gegen die yon Hess postulierten ascendierenden Cortex- 
projektionen. Damit versgumten wir, das thalamo-retikulfire System zu 
erkennen, auf das erst 1949 Moruzzi und Magoun aufmerksam machten, 
und Hirnstamm-Cortex-Beeinflussungen, die jetzt ffir die Katecholamin- 
transmitter anerkannt sind. 

Jedes physiologische Gespr~ich mit Hess brachte neue Anregungen, Kri- 
tik und Aufmunterung. Anfangs begegnete er unseren Mikroelektroden- 
studien mit Zurfickhaltung, dann begragte er sie, riet aber mehr zu einer 
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Analyse der Motorik, die ihn seit 1940 vor allem interessierte. Zu dieser 
Arbeit kam ich erst nach seinem Tode, habe aber in den letzten Jahren 
seines Lebens noch einiges mit ihm diskutieren k6nnen. Nur eine Entt~iu- 
schung muf~te ich Hess bereiten: Seinem Wunsch, den Lehrstuhl ffir Neuro- 
logie in Zttrich zu iibernehmen, zu dem reich die Fakult~t 1955 berief, 
konnte ich nicht folgen, nachdem einige zun~ichst gegebene Zusagen nicht 
erfiillt wurden. 

Das letzte Jahrzehnt. 15 Jahre nach seiner Emeritierung, als fast alle Ztir- 
cher Freunde gestorben waren und Hess wegen seiner zunehmenden 
Schwerh6rigkeit nicht mehr zu wissenschaftlichen Tagungen reisen konnte, 
aberliei~ er seine Bibliothek dem Institut und zog 1967 ohne Bficher und 
Sonderdmcke yon Zfirich in sein kleines Sommerhaus nach Ascona. Dort 
tebte er mit seiner Frau in Ruhe ffir die letzten sechs Jahre. Beziehungen 
zur Umwelt behielt er durch lebhafte Gespr~iche mit besuchenden Freun- 
den und seine dauernde Freude an der Pflege seines Gartens. 

Im letzten Jahrzehnt verhinderte seine Altersschwerh6rigkeit alle Ta- 
gungsdiskussionen, aber in der Einzelunterhaltung blieb Hess aufnahme- 
f/ihig und anregend wie in jungen Jahren. Die tetzte Tagung, an der er 
noch aktiv teilnahm, war das yon seinem Schiller Akert 1964 organisierte 
Schlafsymposion in Zt~rich, in dem er einen kurzen Oberblick iiber seine 
Konzeption des Schlafes als einer aktiven Leistung des gesamten Organis- 
mus gab. In Ascona habe ich ihn seit 1967 fast jedes Frilhjahr gesehen und 
konnte ihm 1971 zum 90. Geburtstag die Glackw~nsche der deutschen 
Physiologen ilberbringen, yon deren Gesellschaft er dann zum Miinchener 
Internationalen Physiologenkongret~ die Johannes-Mfiller-Medaille erhielt. 
Damals zeigte uns Hess den Friedhof auf dem benachbarten Berg, auf dem 
er begraben sein wollte. W~ihrend er sich im August 1973 an der sommerli- 
chen Falte seines geliebten Gartens freute, kam ein friedlicher Tod durch 
Herzversagen und beendete sein rastloses Forscherleben. 
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Neural Organisation 
and Control of the Baroreceptor Reflex 
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1 I n t r o d u c t i o n  

T h e  ba ro r ecep to r s  o f  the  aor t ic  a rch  and  the  caro t id  sinuses par t i c ipa te  in 

the  h o m e o s t a t i c  con t ro l  o f  the  card iovascular  sys t em th rough  a regula t ion  
o f  ar ter ial  b lood  pressure.  T h e  basic p rope r t i e s  o f  the  ba ro r ecep to r s  and 

the  i n p u t - o u t p u t  character is t ics  o f  the  ref lex  have been  reviewed (Heymans 
and  Neil 1958; Kezdi 1967;  Kirchheirn 1976).  T h e  years  tha t  span  these  

three  m a j o r  reviews have seen a t r e m e n d o u s  advance  in our  unde r s t and ing  

o f  the  centra l  ne rvous  con t ro l  o f  the  c i rcula t ion,  y e t  this w o r k  appears  to  
have m a d e  very  li t t le i m p a c t  on  the  analysis  o f  neural  con t ro l  o f  the  re f lex  
p resen ted  in the  la tes t  o f  these  reviews. This  is l ikely to  ref lec t  the  domi-  
nance  o f  the  c o n c e p t  o f  a m e d u l l a r y  " v a s o m o t o r "  cen t re  t h rough  which  
cent ra l  and  per iphera l  inputs  exer t  their  in f luence  on the  card iovascular  
sys tem (Bayliss 1923; Alexander 1946).  Accord ing ly ,  since the  barorecep-  
t o r  i npu t  has  an i m p o r t a n t  role  in card iovascular  con t ro l ,  its role has been  
res t r ic ted  to a con t ro l  o f  this h y p o t h e t i c a l  " c e n t r e " .  Since the  founda -  
t ions  on wh ich  b o t h  the  original c o n c e p t  and the  a n a t o m i c a l  l oca t ion  o f  
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the centre are based have been questioned (Peiss 1965; Hilton 1966, 1975 ; 
Downman 1972; Smith 1974), it becomes important to draw attention to 
the basic neuronal circuitry that mediates the baroreceptor reflex. 

This article will endeavour to review the neurophysiological and neuro- 
anatomical studies that have at tempted to investigate the pathway within 
the central nervous system taken by the baroreceptor reflex. The last de- 
cade in particular has seen a rapid development in the range and specificity 
of  neurophysiological and neurohistological techniques so that a general 
framework has emerged concerning the nature and extent of  this pathway 
(Sect. 2). Secondly, an at tempt will be made to summarise the available 
material on the baroreceptor inputs to and control ofpreganglionic auton- 
omic neurones, since by analogy with the somatic nervous system they 
may well be a site of  integration (Sect. 3). It will be necessary at this time 
to review the control of  sympathetic and vagal preganglionic activity from 
other brainstem sites and the relationship of  baroreceptor inputs to these 
controls because this may well supplement and, it is hoped, complement,  
the data reviewed in Sect. 2. Finally, an at tempt  will be made to evaluate 
the modifications of  the reflex which may be evoked centrally or peri- 
pherally (Sect. 4). This has already received extensive review (see for ex- 
ample Korner 1971) since it has often been suspected that a central reset- 
ting of  the reflex might play a role in the development of hypertension 
(Kezdi 1967). The present account will concern itself only with those 
modifications which have been investigated neurophysiologically. This re- 
stricted selection may, however, prove adequate, as an analysis of such a 
limited brief indicates that certain modifications result from a limited 
range of  neuronal mechanisms. 

Throughout,  only a limited effort will be directed to neuropharmacol- 
ogical studies on the performance of  the baroreceptor reflex, since there 
are few examples of  direct investigation, and the expansive literature on 
the pharmacology of  cardiovascular control has received extensive review 
elsewhere (for example Day and Roach 1974; Haeusler 1976; Prichard 
1978). 

2 The Projection of  Sinus and Aortic Baroreceptors 

2.1 Termination of  Sinus and Aortic Nerves: Location of  the 
First Synapse 

In establishing the central pathway taken by the baroreceptor reflex, the 
location of  the first synapse is of particular importance. Standard neuro- 
anatomical and neurophysiological techniques are available to investigate 
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the projections of primary afferent sensory fibres, but although these have 
been applied to the problem of the baroreceptor input to the brain, until 
recently controversy had remained regarding the localisation of even the 
first relay station. 

There are many reasons for this. Firstly, the afferent fibres originating 
from the baroreceptors do not form a homogeneous group; they range 
from unmyelinated to medium-sized myelinated fibres (de Castro 1928; 
Douglas and Ritchie 1956; Douglas and Schaumann 1956; Douglas et al. 
1956; Fidone and Sato 1969). Furthermore, in the case of those innervat- 
ing the carotid sinus, they are carried in the sinus nerve, mixed with affer- 
ent fibres innervating the chemoreceptors of the carotid body which have 
diameters within the same spectrum as baroreceptor afferents (see de 
Castro 1928;Heymans andNeil 1958;Fidone and Sato 1969). This means 
that it is impossible to activate preferentially either baroreceptor or 
chemoreceptor afferent fibres on electrical stimulation of the sinus nerve, 
although this has sometimes been claimed (see for example de Groat and 
LaIley 1974). Furthermore, the sinus nerve is a branch of the IXth cranial 
nerve, which contains afferents from a wide range of areas such as the 
pharynx, tonsil and posterior part of the tongue, in addition to efferent 
fibres. The sinus nerve itself contains two groups of efferent fibres: post- 
ganglionic sympathetic fibres and a group of nonsympathetic and pre- 
dominantly unmyelinated fibres which relay from an unknown site in the 
central nervous system, i.e. true sinus nerve efferents (see Fidone and Sato 
1969). 

In the case of aortic baroreceptor afferents similar problems arise. In 
the rabbit, there are no chemoreceptors in the aortic arch (Heyrnans and 
Nell 1958), and the aortic nerve (depressor nerve) is usually independent 
of the cervical vagus as far as the nodose ganglion. This fortunate anatom- 
ical arrangement is not repeated in other species, and in all species the 
intracranial vagal rootlets contain a heterogeneous mixture of afferents 
which innervate a wide range of thoracic receptors, both cardiovascular 
and respiratory, in addition to aortic arch baroreceptors and chemorecep- 
tors and of course efferent axons (for references seePaintal 1972, 1973). 
The cervical vagus may also contain afferents innervating a group of baro- 
receptors in the carotid artery but independent of the carotid sinus (Green 
1965). 

Neuroanatomical studies on the projection of the IXth and Xth cranial 
nerves, which have traced degenerating axons and terminals following 
transection, whilst not providing data concerning the projection of baro- 
receptors in isolation, do provide a broad estimate of the limits within 
which these afferents must distribute themselves (seeMcAlIen et al. 1979). 
With the recent application of neurophysiological techniques and specific- 
ally using antidromic mapping, it has been possible to obtain a reliable 
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picture of  the termination of  sinus and aortic nerve fibres. To this it has 
been necessary to add unit recording coupled with natural afferent stimula- 
tion in order to identify specific baroreceptor projections. 

2.1.1 Neuroanatornical Studies 

The projections of  aortic and carotid sinus baroreceptors have been inferred 
from tracing degenerating axons and terminals after sectioning the cranial 
rootlets of  the Xth and IXth nerves respectively. An early study using the 
Marchi technique, which traces only degeneration in myelinated fibres, 
showed that following vagal rhizotomy in the cat, degenerating fibres were 
restricted to the area around the ipsitateral tractus solitarius (TS) of the 
medulla (Foley and Dubois 1934). They described that the vagal fibres 
descended through the tractus giving off collaterals to the main nuclear 
regions - the medial, circumferential and commissural nuclei - in much 
the same way as described for IXth and Xth afferents by Cajal (1909). 
Ingrain and Dawkins (1945) also described a similar distribution in the cat, 
although they also showed that some fibres decussated at obex level to 
terminate within the contralateral commisural nucleus and a small number 
relayed to the ipsilateral spinal trigeminal nucleus, probably those fibres 
which arose from the auricular branch of the vagus. The distribution of  
IXth nerve afferents was broadly similar, with the absence, however, of  
any projection to the contralateral side. The advent of the Nauta tech- 
nique, which traces degeneration in unmyelinated fibres as well as myelin- 
ated fibres (Glees and Nauta 1955), led to the description of  both myelin- 
ated and unmyelinated terminal degeneration in the nucleus tractus soli- 
tarius (NTS) of  many species after section of either vagal or glossopharyn- 
geal rootlets (Torvik 1956; Cottle 1964; Culberson and Kirnmel 1972; 
Cottle and Calaresu 1975). 

In the rat, Torvik (1956) found terminal degeneration of  IXth and Xth 
nerve afferents throughout the NTS, the majority of  degenerating terminals 
being located caudal to the rostral pole of  the hypoglossal nucleus. At this 
level the heaviest degeneration was found in the lateral division of  the 
NTS, although a large number of finer fibres passed medially to form a 
plexus in the medial nucleus, especially in its dorsolateral quadrant. 

The most authorative study so far is that of  Cottle (1964) who cut 
rootlets of  both IXth and Xth nerves and traced the resulting degeneration 
in the medulla of  cats. She showed that the rostral third of  the NTS re- 
ceived an input from the IXth alone; the caudal-most portion of  the NTS 
receiving an innervation from the Xth. The greatest signs of  degeneration 
were observed in the intermediate zone of the nucleus, which extends 
from obex level 2.5 mm rostrally, and this zone received degenerating 
fibres from both IXth and Xth nerves. This region she considered to re- 
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present the area receiving the baroreceptor afferent input, since vagal 
fibres terminating in this area had been shown in an earlier study to origi- 
nate from vagal rootlets which contained fibres innervating cardiovascular 
receptors (yon Baumgarten and A rranda Coddou 1959; Bonvallet and Sigg 
1958). Other studies have indicated a marked projection of IXth afferents 
to this area in different species (mouse, AstrOm 1952; cat, Kerr 1962; cat, 
rat, and guinea pig, Kimmet and Kimmet 1964; monkey,  Rhoton et al. 
1966; opossum, Culberson and Kimrnet 1972). 

With the use of  the anterograde transport of  horseradish peroxidase, 
Katz and Karten (1979) describe the projection of  aortic nerve afferent 
fibres to the subnucleus dorsalis of  the NTS in the pigeon. The terminals 
appear to be restricted to a region which in this species contains catechol- 
aminergic neurones. Using a highly sensitive technique to visualise HRP, 
Berger (1979) described the transganglionic transport of this material 
from the SN to the NTS in the cat. The ipsilateral medial and lateral por- 
tions of  the nucleus were densely innervated. A significant contralateral 
projection to both the commissural and medial subnuclei and to the lateral 
nucleus at levels rostral to the obex was seen, although this has yet to be 
confirmed neurophysiologically (see 2.1.2). 

The location of  vagal and glossopharyngeal terminals is summarised in 
Fig. I a, modified from McAllen et al. (1979). 

2.1.2 Electrophysiological Studies 

2.1.2.1 Antidromic Activation 

The anatomical limits for the termination of  vagal and glossopharyngeal 
afferents have been provided by neuroanatomical studies (see Fig. la), 
and within the broad areas thus delineated it would be expected to find 
the terminals of  the baroreceptor afferents originating from both aortic 
and sinus nerves. In order to identify specifically the projection of  these 
nerves, the technique of  antidromic activation of  their intracranial projec- 
tions has been used, recording activity evoked in SN and AN peripherally. 
This technique has, however, the disadvantages of  activating both fibres 
en passant as well as terminals. 

In a few studies, an at tempt has been made to identify whether evoked 
responses have resulted from stimulation within terminal fields (Lipski et 
al. 1975; Jordan 1977;Jordan and Spyer 1977a, 1978b). The interpreta- 
tion of  data based on whole nerve evoked activity remains controversial, 
but the threshold-depth contours obtained in these studies are broadly 
analogous to those of  Jankowska and Roberts (1972) on single neurones 
in the spinal cord. More recent studies have confirmed these inferences for 
single, including aortic, vagal neurones (Garcia et al. 1979a, b). It, how- 
ever, remains a possibility that responses evoked in the sinus nerve on 
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Fig. la-c.  Diagrammatic representation of: a projection of IXth and Xth cranial nerves 
from degeneration studies; b projection of SN and AN afferent fibres revealed by anti- 
dromic activation; c location of neurones excited by the carotid sinus baroreceptors 
and pulse-rhythmically discharging neurones in the ARTS. Cross-hatching shows projec- 
tion of the IXth cranial nerve, sinus nerve afferents and carotid sinus baroreceptors. 
Stippied area illustrates projection of the Xth cranial nerve, aortic nerve afferents and 
the location of pulse synchronous neurones. (In this figure, the TS and NTS are pro- 
jected onto the dorsal surface of the medulla) 

stimulating within the medulla can reflect the activation of  the efferent 
nonsympathetic  neurones in the sinus nerve. These fibres are thought to 
be mainly small and predominantly unmyelinated (Biscoe and Sampson 
1968;Fidone and Sato 1969). Jordan and Spyer (1977a) drew attention 
to their inability to activate two efferent nonsympathetic  SN neurones on 
stimulating within the dorsomedial medulla [the NTS, dorsal vagus nucleus 
(DNV) and the area postrema].  

Where this technique has been applied in studying the projections of  
SN and AN afferents in the cat, antidromic volleys in the SN and AN have 
always been evoked from the NTS and its near vicinity (CrilI and Reis 
1968; Gabriel and Seller 1970; de Groat and Lalley 1974; Lipski et al. 
1975; Jordan and Spyer 1977a, 1978b; Donoghue et al. 1977), that is, 
within the limits provided by the neuroanatomical studies (see McAllen 
et al. 1979 for review). Crill and Reis (1968),  however, have argued for a 
much wider distribution of  the terminals o f  both SN and AN myelinated 
aff.erents. They claimed to have activated them on stimulating within the 
medial reticular formation in the paramedian reticular nucleus (NPR), an 
area corresponding to the classical medullary "depressor centre" (Alexan- 
der 1946). Lipski et al. (1975) reinvestigated the central projection o f  the 
myelinated SN afferents, but  were unable to activate these fibres when 
stimulating anywhere but  within the NTS, and even then only from a re- 
stricted portion of  the NTS, primarily its ventrolateral aspect at levels 
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rostral to the obex. This restricted localisation of the terminals of  large- 
diameter afferents (conduction velocity > 12.5 m/s) has since been con- 
firmed for both the cat and the rabbit (Jordan and Spyer 1977a). It is 
worthwhile noting at this point that Lipski et al. (1975) were able to re- 
produce the aberrant results of  Crill and Reis (1968) when recording uni- 
polarly from the SN as in Crill and Reis' study. Conventional bipolar rec- 
ordings never gave equivalent results. For the AN, neither Donoghue et al. 
(1977) nor Jordan and Spyer (1978b) could evoke antidromic responses 
except from the close vicinity of  the NTS (see below). 

Lipski et al. (1975) and Jordan and Spyer (1977) consider that this 
ventrolateral region of  the NTS is the region containing the central afferent 
terminals of  large myelinated SN fibres. This conclusion was reached from 
studying the relationship between stimulus current and depth (or position 
of  electrode) during a penetration. In this region, the threshold for evok- 
ing a response fell abruptly to a low value, this value then being maintained 
over considerable depth (0 .3-0.9  ram) before abruptly increasing again. 
This contrasts with the effect of  stimulating in the region of  a discrete 
nerve tract; at the level where the glossopharyngeal nerve fibres enter the 
TS, 'point '  depth-threshold contours were seen (see McAllen et al. 1979). 
The presence of  terminal arborisations in the NTS conforms to Ca]al's de- 
scription of  the distribution of  IXth and Xth fibres once they enter and 
descend through the TS (see Ca]al 1909). 

Gabriel and Seller (1970) describe a restricted termination of both SN 
and AN afferents in the dorsomedial portion of the NTS just rostral to the 
obex in the cat. These must represent the terminals of small myelinated 
afferents (the latency of these responses being around 10 ms). Jordan and 
Spyer (1977) have mapped the projections of  large myelinated fibres (con- 
duction velocity > 12.5 m/s), small myelinated fibres (conduction velocity 
2.5-12.5 m/s), and unmyelinated fibres (conduction velocity < 2.5 m/s) 
of  the SN in both cats and rabbits. The restricted projection and termina- 
tion of  large myelinated fibres have already been described, the small 
myelinated and unmyelinated afferents being distributed over much wider 
areas of the NTS, extending beyond its borders especially towards the 
dorsal vagal nucleus (DNV in the cat, its homologue the n. alaris in the rab- 
bit). In the cat, stimulation at a few points in the area postrema evoked re- 
sponses in SN afferents of all dimensions. The significance of this projec- 
tion remains uncertain (for discussion see Jordan and Spyer 1977). 

In summary, SN afferents would seem to terminate only in close prox- 
imity to the NTS at levels from 0 to 3 mm rostral to obex. Only the largest 
myelinated afferents (conduction velocity in the range 12.5-32 m/s) have 
a restricted distribution within the nucleus, smaller myelinated and un- 
myelinated fibres projecting to much wider areas of  the medulla although 
always in the immediate vicinity of the NTS (see Fig. 1 b). 
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Much less attention has been paid to the projections of  the AN, and 
most information then has come from stimulating the nerve and recording 
the orthodromically evoked volley in the medulla (see Kumada and Naka- 
]ima 1972). Crill and Reis (1968), however, provided the first description 
of  the possible localisation of  the projection of  these afferents using the 
antidromic technique. Although they claimed a widespread distribution of  
the afferents within the medulla, complementing their description of  the 
projection of  the SN, again their observations do not  conform to the ana- 
tomical description of  the projection of  vagal afferent fibres. Although 
they describe a marked representation of  AN afferents, within the NTS, 
their figures show an abundant distribution in the rostral portions of  the 
NTS (Crill and Reis 1968), which contradicts the restricted nature of  de- 
generating vagal fibres described by Cottle (1964) amongst others, within 
this nucleus.Donoghue et al. (1977), Jordan (1977), and Jordan and Spyer 
(1978b) have provided evidence that AN fibres projecting to the NTS are 
found primarily in an area close to the DNV (Fig. lb). Jordan (1977) and 
Jordan and Spyer (1978b) have shown that the area of  the NTS from 
which antidromic responses in the AN can be evoked is restricted in both 
the cat and the rabbit to within t mm of  the obex. More recent studies by 
Garcia et al. (1979a, b) have shown that single aortic baroreceptor affer- 
ents, whose activity was recorded in the nodose ganglion, project to the 
vicinity of  the NTS. They were shown to send profuse terminal arborisa- 
tions laterally in the NTS by antidromic activation. In the cat, stimulation 
within the commissural nucleus of  the NTS, both ipsilateral and contra- 
lateral to the recording site, evoked responses in myelinated fibres (Crill 
and Reis 1968; Donoghue et al. 1977; Jordan 1977; Donoghue 1978; 
Jordan and Npyer 1978b). In the rabbit, aortic nerve afferents appear to 
project and terminate over a somewhat wider area than in the cat, relative- 
ly few terminating in the NTS and most extending from the borders o f  
this nucleus into the nucleus alaris and nucleus intercalatus, but no evi- 
dence of  a contralateral projection has yet been obtained (Jordan 1977; 
Jordan and Spyer 1978b). 

2.2 Baroreceptor Reflex Pathway 

From the preceding sections it would seem safe to conclude that the pri- 
mary relay station in the baroreceptor reflex is located within the confines 
of  the NTS,although its precise localisation and the characteristics of  the 
second-order neurones remain in question. As a consequence of  this and 
the unresolved complexity of  connections within the NTS, the efferent 
connections from the nucleus concerned with cardiovascular control re- 
main ill-defined. Both neuroanatomical and neurophysiological studies, 
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have, however, revealed something of  the profusion of  probable pathways, 
and from a combination of  these approaches it is not  too optimistic to ex- 
pect the development of  new and detailed information on the barorecep- 
tor reflex pathway. 

2.1.1 Neuroanatomicat Studies 

The initial neuroanatomical studies involved placing lesions in areas of  the 
NTS and searching the central nervous system for signs of  anterograde de- 
generation (Kosaka and Yagita 1905; Hirose 1916; Morest 1967 ;Norgren 
and Leonard 1973; Cottle and Calaresu 1975; Palkovits and Zaborsky 
1977) or else placing lesions in presumed target areas of  the nervous sys- 
tem before analysing the NTS for signs of  chromalysis through retrograde 
degeneration (Torvik 1957). 

Although degeneration studies have been valuable when conducted by 
skilled investigators, the techniques have sometimes proved capricious, 
and the interpretation of  results is often suspect in the absence of  electron 
microscopy. In recent years there has been a tendency to replace this type 
of  investigation by the use of  radioactive-labelled amino acids to reveal 
efferent connections through anterograde transport (Loewy and Burton 
1978; Ricardo and Koh 1978) and by the use of  horseradish peroxidase 
(HRP) which may be transported in both an anterograde and retrograde 
direction (Kalia 1977; Amendt et al. 1978; Loewy and Burton 1978; 
Mesulam 1978). Autoradiographic studies have proved particularly useful 
in determining whether connections between regions were significant or 
merely represented fibres of passage. Even though these new and apparently 
reproducible anterograde and retrograde methods represent a distinct ad- 
vance over previous techniques, the interpretation of  the resulting data re- 
quires caution, and it is desirable to confirm conclusions using both meth- 
ods. Moreover, it is important to recognise that in the absence of physiol- 
ogical data it is not  possible to determine unequivocally the relationship 
of  specific anatomical pathways to cardiovascular control. 

Morest (1967), using degeneration techniques, provided the first de- 
tailed modem description of the efferent projections of  the NTS in the 
cat, although the study was restricted to the caudal half of  the nucleus and 
then only its medial aspects. He emphasised the problems associated with 
any encroachment of  lesions into the surrounding reticular formation but 
showed that lesions of  the medial NTS at the level of  the area postrema re- 
sulted in the appearance of  degenerating terminals in the lateral nucleus of  
the NTS, the dorsolateral reticular formation of  the medulla, the nucleus 
ambiguus (NA) and retrofacialis and the lateral reticular nucleus. He traced 
degeneration also to the n. intercalatus (see also Cottle and Calaresu 1975, 
who, however, have been challenged by Loewy and Burton 1978) and 
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medial reticular formation, but observed no degenerative changes in the 
spinal cord, or thalamus; indeed they could find no convincing evidence at 
all for an ascending projection to the diencephalon. Morest (1967)also 
showed that the subnucleus gelatinosa of the NTS sent efferent connec- 
tions only within the NTS. Cottle and Calaresu (1975) described a broadly 
similar pattern of  degeneration resulting from similar experiments, observ- 
ing considerable degeneration within the DNV. 

The absence of  evidence for a solitariospinal projection in the study of 
Morest (1967) is countered by observations of  Torvik (1957) in the cat. In 
fact, there is now overwhelming evidence in favour of  direct connections 
from the NTS to the spinal cord, but these app.ear to emanate mainly 
from the ventrolateral nucleus (Torvik 1957;Norgren 1978; Loewy and 
Burton t978). Torvik (1957) describes chromalytic changes in NTS neu- 
rones after spinal lesions in the rat, and Norgren (1978) has shown antero- 
grade transport of labelled amino acids to the spinal cord from the ventro- 
lateral nucleus. This descending pathway is mainly contralateral (Norgren 
1978; Loewy and Burton 1978), but there is evidence of  some ipsilateral 
transport of  labelled amino acids (Loewy and Burton 1978). The pathway 
appears to be concerned primarily with medullary control of  respiratory 
motoneurones (Euler et al. 1973a, b). There is, however, evidence of ter- 
minal labelling within both the intermediolateral and intermediomedial 
columns (Loewy and Burton 1978). 

More detailed information on solitariospinal connections has been pro- 
vided by the use of  HRP. Neurones in the ventrolateral portion of  the nu- 
cleus have been labelled by HRP injections into the contralateral thoracic 
and cervical spinal cord (Loewy and Burton 1978). Interestingly, the 
intermediate and commissural nuclei have been shown to receive bilateral 
labelling from injections made at cervical, thoracic, lumbar, and sacral 
cord levels, although the medial nucleus remains unlabelled (Loewy and 
Burton 1978). This latter observation has been questioned by Seller and 
his colleagues, who describe an extensive labelling in the dorsomedial part 
of the nucleus after HRP injections into the thoracic intermediolaterat cell 
column (Arnendt et al. 1978). Loewy and Burton (1978) would, however, 
argue that this labelling, apparently localised in the caudal part of  the 
dorsomedial NTS, may be confused with labelling in the dorsal column 
nuclei. 

The differences in the patterns of  efferent connection of  the constitu- 
ent subnuclei of  the NTS that are beginning to the revealed may have pro- 
found physiological significance. The ventrolateral nucleus contains the 
dorsal group of  inspiratory neurones (Baumgarten and Kanzow 1958, and 
subsequently others) and nonrespiratory neurones there receive an excita- 
tory input from the SN and carotid sinus baroreceptors (Lipski et al. 
1975), whilst the medial nucleus receives AN and SN inputs (see Sect. 2.1.2) 
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but there is as yet little convincing evidence of  a direct sinus baroreceptor 
input (Lipski et al. 1975). The commissural and intermediate nuclei may 
receive an AN input (Jordan and Spyer 1978b; Garcia et al. t979a, b). 

The rostral projections from the NTS are likely to be particularly im- 
portant in both cardiovascular and respiratory control. In the case of  re- 
spiratory control the connections with the pontine reticular nuclei, the 
nucleus parabrachialis and Kolliker-Fuse nuclei, shown using HRP (Kalia 
1977; Loewy and Burton 1978) and by injections of  amino acids in the 
NTS (Loewy and Burton 1978), are particularly significant especially as 
reciprocal connections may exist (see Kalia 1977). In a particularly exten- 
sive study, Loewy and Burton (1978) have shown not  only dense projec- 
tions from the NTS to these pontine nuclei but also projections ascending 
as far rostraUy as the periaqueductal grey, the inferior colliculus and even 
to the bed nucleus of  the stria terminalis. From other studies using HRP it 
is clear that the NTS projects to the contralateral locus coerulus with a 
small ipsilateral projection (Cedarbaurn and Agha]anian 1975;Sakai et al. 
1977);this structure is itself known to project to the diencephalon (Loizou 
1969). 

Accordingly, these observations both complement and extend the 
study of Morest (1967) whilst beginning to question the absence of  a di- 
encephalic projection (see also Ricardo and Koh 1978). They also confirm 
and illustrate the profusion of  connections within the medulla: there are 
projections to the medial reticular formation, including the NPR and to 
the raphe complex and striking projections to the NA and lateral reticular 
nucleus (LRN). Loewy and Burton (1978) and Ricardo and Koh ( t978)  
draw special attention to the connections between the NTS and the A1 
group of  noradrenergic neurones in the LRN (Dahlstrdrn and Fuxe 1965). 
In addition they illustrate a pathway from the lateral NTS to the medial 
accessory olivary nucleus Loewy and Burton 1978). In the context of  
ascending projections, the autoradiographical and HRP studies of Ricardo 
and Koh (1978) provide indications in the rat, at least, that the NTS sends 
efferent projections to the lateral subthalamus, the parabrachial area and 
to the paraventricular, dorsomedial and arcuate nuclei of  the hypothala- 
mus. In addition the medial preoptic area, periventricular nucleus of the 
thalamus, bed nucleus of  the stria terminatis and central nucleus of  the 
amygdala seem to receive an input in this species. Neurophysiological 
studies are now required to assess the significance of  these pathways in the 
baroreceptor reflex and cardiovascular control. 

2.2.2 Electrophysiologicat Studies 

The limits for the projection of  primary afferent fibres of  the SN and AN 
have been inferred from neuroanatomical studies and confirmed by the 



Neural Organisation and Control of the Baroreceptor Reflex 35 

antidromic mapping experiments described in a previous section. The 
more traditional neurophysiological technique of recording evoked re- 
sponses from a population of neurones on stimulating a peripheral nerve 
has also been used to obtain information on the projection of SN and AN 
afferents, and provides a potential advantage in evoking discharges at sev- 
eral levels within the reflex pathway. In this way it is possible to use the 
generalised field response as a marker for single unit studies. This is of 
particular importance in the case of the projection of SN and AN afferents, 
as in the former case it is possible then to use physiological stimulation of 
the afferent receptors, baroreceptor and chemoreceptor, so as to identify 
the role of neurones in specific reflex pathways. 

2.2.2.1 Evoked Potentials 

Lain and Tyler (1952), in the most important early study of this type, 
were able to record an evoked potential of complex waveform in the ipsi- 
lateral NTS on stimulating the cervical vagus nerve of the rabbit, primarily 
in its commissurat and "dorsosensory" areas (using the nomenclature of  
Cajal 1909), i.e. dorsomedial portion of the nucleus. Anderson and Berry 
(1956), in a subsequent and more detailed study in the cat, described sim- 
ilar evoked responses in the NTS but showed a more widespread distribu- 
tion of points within the medulla from which they could record evoked 
potentials in response to vagal stimulation. Indeed, they drew particular 
attention to the fact that they could record within the intramedullary 
course of vagal afferent fibres (see also Lam and Tyler 1952), a factor not 
always accepted as complicating many later studies. Furthermore, they 
observed what they considered postsynaptic activity in the spinal nucleus 
of the Vth cranial nerve, the gracilis nucleus, and more often in the DNV, 
NA, n. intercalatus and parasolitary nucleus, as well as in the lateral reticu- 
lar formation. They also noted the antidromic activation at short latency 
of neurones in the DNV and NA on stimulating the cervical vagus, a point 
later reiterated by Porter (1963) in a similar study. Clearly, observing 
evoked potentials on stimulating an afferent input cannot prove a response 
to have been generated postsynaptically; indeed, any conclusion regarding 
the complexity of  connection between the afferent input and the neuronal 
site under investigation must be viewed critically if it rests solely on the 
evidence of evoked potentials. 

The Aortic Nerve. The earliest work concerning specifically the effects 
evoked on stimulating the AN was that of Anderson andBerry (1956)in 
the cat. They showed that electrical stimulation of the central end of the 
cut AN evoked activity in both the intracranial and medullary course of 
vagal fibres and the NTS. The negative field potential in the NTS consisted 
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of  two major waves, which were considered to represent activity generated 
by the different fibre types found in the AN;Paintal (1972) refers to a bi- 
modal distribution of  fibre size in this nerve. Similar negative field poten- 
tials have been described by others in the NTS on stimulating the AN 
(Gahery and Ancri 1967; Biscoe and Sampson 1970a), although often the 
evoked responses were recorded outside the limits of  the nucleus within 
the nucleus parvocellularis (see Biscoe and Sampson 1970a). Gabriel and 
Seller (1970) describe a response restricted to the dorsomedial portion of 
the NTS at a level approximately 0.5 mm rostral to the obex. This re- 
sponse, due in the authors' opinion to activation of only the lowest thresh- 
old afferents in the AN, had a latency of  10-11 ms, and this study never 
revealed responses in the latency range 2 - 6  ms commonly reported by 
other workers (Gahery and Ancri 1967; Biscoe and Sampson 1970a;/~2t- 
mada and Naka]ima 1972). The most detailed study so far is that of Ku- 
mada and Naka]ima (1972) in the rabbit. They recorded evoked responses 
of  widely ranging latency in the NTS and sparsely within the nucleus alaris 
(or DNV). They assumed that short-latency responses (< 40 ms) reflected 
activation of  large myelinated afferent fibres and that these were likely to 
be generated monosynaptically. Long-latency responses (> 40 ms), seen in 
the NTS and elsewhere, were considered a consequence of  the activation 
of  small diameter fibres. As responses of short latency were also seen in 
the NA and lateral reticular formation, this distinction is hardly tenable. 
Such a conclusion would have a stronger basis if the afferent volley had 
been monitored as in the study of  Lam and Tyler (1952). Even then it 
is impossible, on the basis of the evidence presented, to deny that both 
short and long latency responses might be generated over polysynaptic 
pathways. 

In a recent study Gahery and Ancri (1967) reported an evoked response 
to AN stimulation in the NTS, in a region medial to TS where they had 
previously recorded neuronal activity with a cardiac rhythm of  sinus baro- 
receptor origin. The latency of  this evoked response fell into two latency 
ranges (2 -3  ms and 4--6 ms). 

From the Sinus Nerve. In the late 1960s, the effects of  stimulating the SN 
on the activity o f  medullary neurones were investigated. Humphrey 
(1967) reported a maximal evoked response in the intermediate region of  
the ipsilateral NTS (0 .5-2.0  mm rostral to the obex). This response (of 
negative polarity) had a minimum latency of 3 - 4  ms; since then similar 
responses have been observed in the NTS by numerous workers (Miura 
and Reis 1969a; Biscoe and Sampson 1970a; Spyer and Wolsteneroft 
1971 ; McAllen 1973; de Groat and Lalley 1974; Hitdebrandt 1974; Lipski 
and Trzebski 1975). Humphrey (1967) noted that this response was not  
restricted to the NTS but was also seen in the subadjacent reticular forma- 
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tion, an observation extended by Biscoe and Sampson (1970a), who found 
that the most prominent effect of SN stimulation was an evoked response 
in the nucleus parvocellularis. Humphrey (1967) also noted that at the 
level of  the obex, SN stimulation evoked responses bilaterally in the NTS, 
the contralateral response having a latency 3 - 4  ms in excess of the ipsi- 
lateral response. 

Biseoe and Sampson (1970a) drew attention to positive-going potentials 
evoked in the medial reticular formation (n. gigantocellularis), which were 
associated with a decrease in neuronal excitability. The possibility of a 
major monosynaptic input of  SN afferents to neurones of the medial retic- 
ular formation, particularly those of the NPR, has been a matter of 
controversy for a number of years. The question of a primary afferent 
projection has been approached using the antidromic activation of SN af- 
ferents on stimulating within the medulla (see above), and the consensus 
appears to be that this is unlikely to represent a significant projection. 
Miura and Reis (I 969b), however, claimed the occurrence of a monosyn- 
aptic evoked potential within the NPR on stimulating low-threshold SN 
afferents. The particularly short latency (0.7-1.4 ms), together with the 
smooth contour and enormous magnitude of the response, seemed surpris- 
ing in view of the nature of the responses evoked by others in the NTS. 
Spyer and Wolstencroft (1971) were unable to obtain a similar response 
on stimulating the SN except in cases where they had sufficient current 
spread to activate the neighbouring hypoglossal nerve. Only then could 
they record a similar potential in the region of the NPR,.which is ventral 
to the hypogtossal nucleus. Presumably the "smooth-contoured" response 
reflects the antidromic potential evoked in the hypoglossal nucleus, view- 
ed at a distance by the microetectrode. 

In addition to the "early" response in the NPR,Miura and Reis (1969a) 
drew attention to a similar response in the intermediate portion of the 
NTS. They also observed longer latency response in the NTS and NPR, 
"late" responses (> 5 ms) being much more widely distributed through the 
medulla, and long latency responses (6-150 ms latency) were observed in 
the ports. Responses with a latency of up to 80 ms were observed in the 
rostral medulla (Miura and Reis 1969a), and more recently Adair and 
Manning (1975) have claimed to evoke activity in the perifornical region 
of the hypothalamus with a latency in the range from 20 to 120 ms. 

Returning to the NTS, Seller and lllert (1969) and Gabriel and Seller 
(1970) have reported a response restricted to the dorsomedial part of the 
nucleus, the part where Gabriel and Seller (1970) have also described a re- 
stricted input from the AN. They attributed the response to an effect of  
activating the lowest threshold SN afferents but surprisingly the latency 
was in the range 7-11 ms, much in excess of the "early" response of 
Miura andReis (1969a) or the short latency responses of others (Humphrey 
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1967; Biscoe and Sampson 1970a; Spyer and Wolstencroft t 971 ; Lipski et 
al. 1975). There is no obvious explanation for this discrepancy, nor indeed 
for the wide variations between response recorded in different laboratories. 
Presumably the anatomical arrangement of the SN in close proximity to 
other nerves relaying to the region of the NTS makes effects due to cur- 
rent spread a particular problem, and the wide variety of fibre size in the 
SN may well militate against consistent observations from one laboratory 
to another. 

2.2.2.2 Single Unit Studies 

Aortic Nerve Stimulation. The literature contains relatively few reports of  
the effects of AN stimulation on individual brainstem neurones. Gahery 
and Ancri (1967), who observed evoked potentials within the NTS on 
stimulating the AN, did so in areas where they had observed pulse-syn- 
chronous activity, which they considered to be of SN origin, as the animals 
had previously had their AN sectioned. In more recent studies, Donoghue 
(1978) and Donoghue et al. (1978) report that AN stimulation in cats 
evokes activity in medullary units with either short (< 20 ms) or long 
(> 20 ms) latencies. These responses are considered to be generated by 
activation of myelinated and unmyelinated afferents respectively. Short 
latency responses were observed in several regions of the medulla in addi- 
tion to the medial portion of the NTS, the dorsomedial and lateral reticu- 
lar formation and the NA being areas particularly affected. Those units 
activated at longer latencies were only observed in the dorsomediat medulla 
and were concentrated in the medial portion of the NTS. No responsive 
cells were located in the medial reticular formation. An indication that 
there was a convergence of input from the myelinated and unmyelinated 
components of the AN was obtained from observations that some neu- 
rones, located in the vicinity of NTS and NA, were activated at both short 
and long latency. Biscoe and Sampson (1970b) report activating a few 
single neurones of the NTS on stimulating the AN. Many neurones outside 
the limits of the NTS in the n. parvocellularis also responded to SN stimu- 
lation (as well as showing excitatory responses to other IXth and Xth nerve 
inputs) and showed excitatory responses to AN stimulation. McAllen 
1973) similarly reported a convergence of excitatory inputs from SN and 
AN onto neurones outside the NTS (around the DVN, in the "parahypo- 
gl~)ssal" region, and close to the NA), but within the NTS neurones were 
excited by either the AN or SN but never both. Sehwaber and Schneider- 
man (1975) also observed synaptic activation at short latency of NTS neu- 
rones on stimulating the AN (latency 4 - 5 0  ms) in the rabbit. Similar syn- 
aptic effects were also noted in this study in the region of the n. alaris (or 
DNV). Brickman et al. (1977) have also observed effects of AN stimula- 
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tion on hypothalamic neurones. Stimulating the AN produced excitatory 
responses in approximately 5% of  neurones recorded in the anterior hypo- 
thalamus-preoptic region. Considering the conduction distance and the 
inevitable involvement of  a polysynaptic pathway, the latencies of  these 
responses were often remarkably short ( 14 -176  ms). This area would 
seem equivalent to the area described by Hilton and Spyer (1971) in the 
cat as the hypothalamic "depressor" area, whose involvement in the inte- 
gration of the carotid sinus baroreceptor reflex has been demonstrated 
(see Sect. 2.2.3.3). 

Sinus Nerve Stimulation. The picture from studies on the effects of  SN 
stimulation on single neurones in the brainstem broadly complements the 
data from recordings of evoked potentials. All authors are agreed that 
there is a major monosynaptic input to neurones of the NTS (Humphrey 
1967; Miura and Reis 1968, 1969a; Biscoe and Sampson 1970b; Spyer 
and Wolstencroft 1971;McAllen and Spyer 1972; Weiss and Kastella 1972; 
Miura 1975; Lipski et al. 1975; Lipski and Trzebski 1975; Hildebrandt 
1974; Lipski et al. 1976; Miura and Kitamura 1979), although the extent 
and properties of  this input vary widely in the reports from different 
groups. Whilst the results of  Lipski et al. (1975) agree closely with the 
anatomical data and the results of  their antidromic studies, i.e. the major 
effects of  myelinated SN afferents being observed in the ventrolateral 
portion of the nucleus at levels rostral to the obex, Biscoe and Sampson 
(1970b) reported only a small proportion of  activated neurones in this 
area, the majority being located outside the limits of  the nucleus in the 
n. parvocellularis. Miura and Reis (1969a) reported that the majority of  
responses they obtained (unitary activity superimposed on evoked poten- 
tials) were in the intermediate part of  the NTS, 1 mm ahead and behind 
the obex. 

Humphrey (1967) and Lipski etal .  (1975) drew particular attention to 
the paucity of  neurones activated with a latency compatible with a mono- 
synaptic input from large myelinated fibres (i.e. within 8 ms) on stimula- 
tion of the SN. Lipski et al. (1975) found that only 17% of neurones in 
the NTS were activated within 8 ms; Humphrey (1967) and McAllen 
(1973) consider that it is likely that many neurones are activated over 
both monosynaptic and polysynaptic pathways, the faster and more direct 
pathway sometimes requiring considerable temporal and spatial summa- 
tion to make its effect noticeable (see MeAllen 1973; McAllen etal .  1979). 
Such a complex interneuronal arrangement within the NTS confirms the 
impression from histological studies of  Morest (1967) and Cottle and 
Calaresu (1975), as well as others discussed earlier. 

The latency of  responses in the NTS was, however, usually shorter than 
noted elsewhere in the medulla, although considerable overlap was noted. 
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The "parahypoglossal region" was shown to receive a major input from 
the SN over a relatively direct pathway, if latency can provide such evi- 
dence (Lipski et al. 1975; MeAllen and Spyer 1972), but there is no evi- 
dence for a monosynaptic input of  SN afferents of any fibre diameter to 
this region (Jordan and Spyer 1977). Apart from an input to this area, 
which lies close to the hypoglossal nucleus, Lipski et al. (1975) could find 
no excitatory (or inhibitory) input to neurones of the medial reticular 
formation, an area classically termed the "drepressor" area (see Alexander 
1946) and containing the NPR, where Miura and Reis (1969a) and Itomma 
et al. (1970) have claimed a significant monosynaptic input. Humphrey 
(1967) considered the presence of a polysynaptic input to this region and 
to the midline raphe nuclei as significant, but its influence was never seen 
by Lipski et al. (1975). In contrast, Biscoe and Sampson (1970a) describe 
a positive field potential in midline regions associated with a reduction in 
the excitability of neurones. It is worth noting at this point that Scheibel 
et al. (1955) were unable to activate neurones in this medial reticular area 
on stimulating the cervical vagus, and Spyer and Wolstencroft (1971), 
analysing the response of NPR neurones relaying to cerebellum or activated 
synaptically by stimulation of the cerebellar peduncles, could find no evi- 
dence for a convergent input, either excitatory or inhibitory, from the SN. 
There is, however, anatomical evidence for connections from the NTS to 
these areas (see above). Miura and Reis (1972a) present conflicting results 
arguing for a convergence of fastigiofugal fibres and SN afferents at the 
ievel of  the NPR. This will be discussed later (Sect. 4.2.2). 

There is much greater agreement on the lateralisation of SN effects in 
the medulla. Most investigators report a significant proportion of neurones 
in the lateral regions of the medullary reticular formation responsive to 
SN stimulation (Humphrey 1967; Biscoe and Sampson 1970b; McAllen 
and Spyer, 1972; McAllen 1973; Davies and Edwards 1973, 197 5 ; Hilde- 
brandt 1974; Lipski et al. 1975). In particular, responsive neurones have 
been reported in the vicinity of the NA (Davies and Edwards 1973, 1975; 
Hildebran dt t 974; Lipski et al. 1975; Spyer 1975), although there is some 
disagreement as to the nature of  the input. Lipski et al. (1975)have shown 
that it is mediated by a polysynaptic pathway, the latency of responses 
being significantly longer than usually observed within the NTS or "para- 
hypoglossal" region, whilst Davies and Edwards (1975) claim a monosyn- 
aptic input, i.e. a latency comparable with that also observed in the NTS. 
As there is no histological evidence for such a direct connection of either 
SN or AN afferents and as the antidromic mapping study of Jordan and 
Spyer (1977) failed to reveal a primary afferent projection of the SN to 
this area, it would seem best to ignore this conclusion. The significance of 
an influence of SN inputs on neurones of the NA will be discussed later 
(Sect. 3.6.2). 
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2.2.3 Baroreceptor Stimulation 

The limits for the areas involved in the baroreceptor reflex at medullary 
levels have been provided by the data summarised above, but as the SN in 
all species contains both baroreceptor and chemoreceptor afferents, these 
observations are of limited value in ascribing an integrative role to these 
areas in baroreceptor responses. Two major approaches have been used in 
attempts to determine which neurones specifically mediate the barorecep- 
tor reflex. The first arose from the premise that as this afferent input is 
normally pulse modulated, central neurones should have their activity 
sculptured by such a phasic input. Accordingly, attempts have been made 
to locate neurones with activity modulated by the pulse in the medulla. 
The second approach has involved eliciting a change in the stimulus to the 
baroreceptors and searching for neurones whose activity fluctuates in rela- 
tionship to the experimental change in afferent barrage. At its simplest 
this has involved labelling neurones as "cardiovascular" in function if they 
either increase or decrease their discharge in response to a rise or fall in 
arterial blood pressure, usually induced pharmacologically. At its most 
elaborate it has involved controlled stimulation of  the baroreceptor endings 
of  the carotid sinus employing a "blind-sac" preparation, sometimes in 
association with an initial sampling of  unit activity by stimulating the 
intact SN. 

2.2.3.1 Pulse-synchronous Activity 
Although there have been several attempts to identify pulse-synchronous 
activity in the brainstem, there are surprisingly few units adequately iden- 
tified and convincingly free of  artifactical modulation (see Hellner and 
Baumgarten 1961; Salmoiraghi 1962; Smith and Pearce 1961; Werz et al. 
1974; Langhorst and Werz 1974; Humphrey 1967; Stroh-Werz et al. 
t 977a, b). However, there remains an isolated claim of  a profusion of  such 
neurones in the medulla (Middleton et al. 1973). The observation that 
even at the level of  the NTS pulse-synchronous activity is rare in single 
units (Salmoiraghi 1962; Humphrey 1967; Stroh-Werz et al. 1977a, b) 
may be taken as an indication that the complexity of  connections within 
this nucleus, referred to above, may well smooth what is clearly a power- 
ful pulse-modulated input  from the peripheral baroreceptors. 

A detailed analysis of  the firing pattern of  NTS neurones, particularly 
those in the dorsomedial portion of  the nucleus, showed that only 28 neu- 
rones of  several hundred recorded in 17 dogs and 80 cats had activity 
clearly related to the cardiac cycle (Stroh-Werz et al. 1977a), but even 
then a single and direct baroreceptor modulation was not  convincingly de- 
monstrated. The possibility remained that the cardiac rhythm arose from 
cardiovascular mechanoreceptors other than arterial baroreceptors, and 
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indeed the major result was a convergence of vagal inputs onto neurones 
that received an input from extravagal fibres (presumably sinus nerve af- 
ferents although this was not directly tested). Miura and Reis (1972b), 
however, have recorded from 12 neurones which displayed a pattern of 
discharge which "often bore a striking similarity to the discharge pattern 
of baroreceptor afferent fibres", this activity being obliterated on bilateral 
carotid occlusion. Seven of these were in the dorsomedial portion of the 
NTS within 0.5 mm of the obex, three lateral to the TS, one in the hypo- 
glossal nerve tract, and one just medial to it (presumably the "parahypo- 
glossal" region, see Lipski et al. 1975). By constructing post-R-wave histo- 
grams of NTS unit activity, McCall et al. (1977) have demonstrated car- 
diac-related rhythmicity in several neurones. The activity of the majmity 
of these neurones (8 out of 14) was not modulated in a simple manner, 
exhibiting a polymodal distribution of discharge in relation to the R wave 
of ECG. 

The consensus from all these studies would be that distinct pulse-relat- 
ed activity, when present, is mainly restricted to the dorsomedial portion 
of the NTS (Salmoiraghi 1962; Smith and Pearce 1961 ;Humphrey 1967; 
Miura and Reis 1972b; Middleton et al. 1973; Schwaber and Schneiderman 
1975; Stroh-Werz et al. 1977a, b; see Fig. lc). Even so, it becomes clear 
that in only a few cases can this pattern of activity be attributed unequiv- 
ocally to activation of the carotid sinus baroreceptors, although Seller and 
Illert (1969) recorded mass responses (and some single units) with a cardiac 
rhythm in this area in cats after vagotomy (see also Gahery and Ancri 
1967). Indeed, many authors draw attention to background cardiac 
rhythmicity (see Stroh-Werz et al. t977a), although the occurrence of 
convincing single unit responses is so rare. 

The observation of a marked convergence of afferent inputs onto single 
neurones in the NTS (Stroh-Werz et al. 1977b) has led to other studies in 
which the "afferent spectra" of medullary neurones has been investigated. 
In these studies, a computer analysis of a unit's activity often reveals a 
cardiac rhythm when post-R-wave histograms or autocorrelogram func- 
tions are derived (see Langhorst and Werz 1974; Langhorst et al. 1975; 
Stroh-Werz et al. 1976;McCall et al. 1977), but even where this rhythm is 
abolished by vagal cooling or SN section or both (Koepchen et al. 1967, 
reviewed by Langhorst and Werz 1974) it is clear that there is no a priori 
reason for defining the unit as "cardiovascular", as other rhythms can 
often be distinguished simultaneously. 
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2.2.3.2 "'Cardio vascular" Neuron es 

The question of the identification of "cardiovascular" neurones in the 
brainstem has been mooted for a number of years. On the basis that both 
the afferent input from the cardiovascular mechanoreceptors and the ef- 
ferent outputs from the central nervous system controlling the cardio- 
vascular system are modulated in phase with the cardiac cycle, the belief 
has grown that the intemeurones in the baroreceptor reflex pathway are 
likely to have a cardiac rhythm. Indeed, it has been assumed that if a cen- 
tral neurone can be shown to have a rhythm in common with the sympa- 
thetic efferent output, there is an a priori connection between that neu- 
rone and the sympathetic outflow [i.e. it is part of the sympathetic-activ- 
ity-generating system; see Gootrnan et al. (1975) for a detailed statement 
of this hypothesis]. This simplistic model rests on the hypothesis that sym- 
pathetic activity is generated solely by a tonically active medullary centre 
(i.e. the "vasomotor" centre), which is reflexly regulated by the barore- 
ceptor input. The paucity of clear pulse modulation at the level of the 
NTS immediately produces a call for caution in using a "cardiac" rhythm 
as the sign of such a correlation. Indeed, the earliest claims for identifying 
"cardiovascular" units comes from studies in which the relative absence of 
pulse-rhythmic unit activity was stressed (Salmoiraghi 1962; Pryzybyla 
and Wang 1967). In the first study, "cardiovascular" units were identified 
as cells whose activity changed in a reciprocal manner to drug induced 
changes in arterial blood pressure (Salmoiraghi 1962); in the second study, 
a "cardiovascular" unit was considered to be one that decreased its activ- 
ity by at least 30% for a 30 mmHg increase in arterial pressure (Pryzybyla 
and Wang 1967). This latter definition is a very convenient extrapolation, 
as these authors considered they were recording within the medullary 
"pressor" area (dorsolateral reticular formation), which they considered 
to be the sympathetic tone generating centre (cf. Alexander 1946). 

Langhorst and his co-workers (Langhorst and Werz 1974;Langhorst et 
al. 1975), have made the most detailed analysis of the behaviour of brain- 
stem neurones in terms of their relatonships to afferent inputs and possible 
efferent connections. They have demonstrated the presence of a cardiac 
rhythm in the activity of many neurones of  the "unspecific" reticular for- 
mation (i.e. units located outside the limits of the clearly defined reticular 
nuclei) in the dog, using post-event time histograms and spectral analysis. 
They have shown that this forms only one of many afferent inputs that 
can modify neurone activity: they are truly reticular, receiving somatic in- 
puts, respiratory influences and have patterns of activity relating to the 
delta-theta oscillations of the EEG. Often the cardiac-related discharge 
was obliterated by section of the relevant afferent input, either vagus or 
sinus nerve (see Koepchen et al. 1967). Furthermore, this rhythmic dis- 
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charge was not fixed rigidly: their activity could fluctuate from a rhythm 
state to a tonic nonmodulated discharge pattern. The most significant con- 
clusion of  this study is that no reticular neurone with a rigidly organised 
pattern of  activity has yet been identified. Reticular neurones have multi- 
sensorial inputs, somatic as well as vegetative, and evidence of  the common 
rhythms can be observed in both somatic and autonomic outflows. This 
precludes any definition of  reticular neurones as "cardiovascular". 

To compound this, there are also reports of  pulse-related discharges 
in neurones in the absence of  any baroreceptor input. These have been de- 
scribed in the medulla (Porszasz and Porszasz-Gibischer 1968), the mid- 
brain (Baust and Niemczyk 1968) and the hypothalamus (Baust et al. 
1963). The frequency of the delta-theta EEG oscillation may often, at 
least in the cat and dog, be similar to that of the cardiac rhythm, so with- 
out a full spectral analysis their separation is often impossible (see Lang- 
horst et al. 1975) and these apparent cardiac rhythms may well be insig- 
nificant. None the less, if taken at face value, these observations underline 
the problems in using an apparent rhythm to ascribe function, in particular 
the fallibility of  using a 3 Hz rhythm as an indication of  a cardiac rhythm 
in establishing the central pathway of the baroreceptor reflex. 

2.2.3.3 Specific Baroreceptor Inputs to the Brainstem and Hypothalamus 

The baroreceptor input to the brainstem has been investigated by observ- 
ing the changes in unit activity evoked by slow changes in blood pressure 
in units already identified as receiving an input from the sinus nerve 
(Humphrey 1967) or by observing the effects on similarly identified neu- 
tones of bilateral carotid occlusion (Humphrey 1967; Miura and Reis 
1972b;Nosaka 1976). Both these physiological tests are not "pure": slow- 
ly changing levels of  blood pressure will evoke changes in the activity of  
numerous cardiovascular receptors, whilse bilateral carotid occlusion will 
lead to withdrawal of  the carotid sinus baroreceptor input but a concomi- 
tant excitation of  the carotid body chemoreceptors. Natural baroreceptor 
stimulation using a "blind-sac" preparation of  the carotid sinus to test the 
responses of  units previously shown to receive an SN input is by far the 
most specific test (Biscoe and Sampson 1970b; McAllen and Spyer 1972; 
Lipski et al. 1975;Lipski and Trzebski 1975;Lipski et al. 1976). In other 
cases, the effects of  baroreceptor stimulation alone have been used 
(Trzebski et al. 1962; Trzebski and Peterson 1964; Spyer 1972; Richter 
and Seller 1975; Yamashita 1977). 

The Input to the Medulla. Trzebski et al. (1962) and Trzebski and Peterson 
(1964) described experiments in which natural stimulation of  the carotid 
sinus baroreceptors was shown to evoke changes in the activity of  medul- 
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lary neurones. Unfortunately details of the location of  responsive neurones 
and the pattern of their response were not given. Humphrey (1967) de- 
scribed in detail the nature of the SN input to the medulla (Sect. 2.2.2). 
In particular, of 89 neurones in the NTS which were excited by SN stim- 
ulation, none had an obvious cardiac rhythm and all showed irregular 
spontaneous activity. Of these, 28 were investigated in detail for evidence 
of a hidden "cardiac" rhythm, but even after constructing post-R-wave 
histograms, no cardiac-related discharge was apparent (Humphrey 1967). 
This might suggest either that through the complexity of interconnections 
within the NTS the cardiac rhythm so apparent in the SN was "smoothed" 
or that these units received an input solely from chemoreceptor afferents. 
In 18 of these neurones, however, changes in activity correlating with slow 
changes in arterial blood pressure were apparent. Unfortunately none was 
tested for a response to sinus inflation. Biseoe and Sampson (1970b) re- 
ported on the responses of neumnes in the n. reticularis parvocellularis, 
excited by both SN and baroreceptor stimulation: here they found the 
largest profusion of neurones excited on stimulating the IXth and Xth 
cranial nerves and their peripheral branches (see Biscoe and Sampson 
1970a, b). Nine neurones excited by nerve stimulation were also depressed 
by sinus inflation. 

Miura and Reis (1972b) reported that o f  a small population of neurones 
in the dorsomedial medulla the majority (9 of 12), located within the NTS 
at levels rostral to the obex, had their cardiac rhythm abolished by bi- 
lateral carotid occlusion. It would seem possible that these neurones were 
also excited by stretching the carotid artery. In a more detailed study, 
McAlten and Spyer (1972) and Lipski et al. (1975) described a barorecep- 
tor input to a large number of medullary neurones, identified originally on 
the basis of their excitatory response to stimulation of the SN. Those with 
the shortest latency were found in the NTS and are illustrated in Figs. 1 c 
and 2. All responded to sinus inflation before reflex changes in arterial 
blood pressure, and most responded abruptly with a discharge related to 
the sudden elevation in intrasinusal pressure, with an adapting discharge 
during the phase of elevated intrasinusal pressure (Lipski et al. 1975). A 
few, however, showed only gradual changes in activity. 

Excited neurones were found also beyond the NTS in the n. reticularis 
parvocellularis (i.e. equivalent to the description of Biscoe and Sampson 
1970b), many in the "parahypoglossal" region, and others in the lateral 
reticular formation, particularly in and close to the NA (see Fig. 2). This 
distribution has been confirmed in other similar but less extensive studies 
(Lipski and Trzebski 1975; Lipski et al. 1976), which stress the prepon- 
derance of responsive neurones in the ventrolateral portion of the NTS 
extending into the neighbouring reticular formation (McAllen and Spyer 
1972; Lipski et al. 1975; Lipski and Trzebski 1975). The significance of 
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Fig. 2. Distribution of 91 identified baroreceptor-sensitive neurones plotted onto four 
standard sections of the medulla. A nucteus ambiguus; AP area postrema; C cuneate 
nucleus; DNV dorsal motor nucleus of the vagus; EC external cuneate nucleus; IO 
inferior olive; NTS nucleus of the tractus solitarius; TS tractus solitarius; XII hypo- 
glossal nucleus. Lipski, McA Ilen and Spyer (1975) 

the baroreceptor projection to the NA has been stressed (Spyer 1975, 
1979) and will form an important  part o f  a subsequent section o f  this re- 
view (Sect. 3.6.2), as it appears that this nucleus contains the preganglionic 
vagal neurones that supply the heart (seeMcAllen and Spyer 1976, 1977, 
1978a, b). In this context  it is notable that no evidence has been found o f  
a baroreceptor  input to the DNV in the cat (see Lipski et al. 1975). 

The other  major feature o f  the study of  Lipski et al. (1975) was the ab- 
sence o f  any major input to the medial reticular formation. Four  neurones 
excited by the SN and receiving an excitatory input from the baroreceptor  
were found at the lateral edges o f  what may be loosely termed the medial 
reticular formation, but  although the area and its more medial core were 
routinely penetrated no other excitatory response was identified (Sect. 
2.2.2). This contrasts with results o f  Humphrey (1967) and Miura and 
Reis (1969a), although Humphrey (1967) drew particular attention to the 
requirement of  considerable temporal facilitation to alter the activity o f  
neurones in the medial reticular formation, relatively few responding to a 
single shock to the SN or NTS. Of  those neurones excited or inhibited by  
SN stimulation, however, only 10 out  o f  30 gave consistent responses to 
carotid occlusion; even then the response was often the opposite o f  that 
predicted on the basis of  the response to electrical stimulation of  the SN. 
Only one neurone in the s tudy of Miura and Reis (1972b) showing a sinus 
baroreceptor  input can be said to lie in this area, and even then it was 
more strictly in the "parahypoglossal" region. 
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Lipski and Trzebski (1975) studied the properties of  400 medullary 
units, mostly located close to the NTS, found that some 89 responded to 
SN stimulation, 61 had a purely excitatory input and 23 purely inhibitory, 
with a latency of  3 -21  ms. Of the irregularly firing neurones (i.e. non-re- 
spiratory neurones), 44 were excited by baroreceptor stimulation and 
only 3 were inhibited. Furthermore a proportion of  these irregularly firing 
neurones projected to cervical levels of  the spinal cord, although definite 
proof  was established in only 12, of  which 7 projected contratateratly and 
5 ipsilaterally. The location of the spinal projecting axon was no better 
established, the authors noting that the intensity necessary to evoke an 
antidromic response was usually six times greater than required to produce 
synaptic activation from the cord. 

The result indicates the possible involvement of  a bulbospinal inhibit- 
ory pathway originating from the NTS through which the baroreceptors 
control sympathetic activity (Sec. 3.3). As such this represented the first 
direct demonstration of  putative bulbospinal interneurones in the barore- 
ceptor reflex, although the small sample and the rapid conduction velocity 
of its axons clearly limit its significance. Other studies reported by Lipski 
et al. (1976) may add a further question: using equivalent procedures, 
they showed that, of  25 nonrespiratory neurones excited by SN stimula- 
tion in this same area of  the medulla, 2 responded to natural baroreceptor 
stimulation alone, 8 responded to both baroreceptor and chemoreceptor 
stimulation, and the remaining 15 responded to natural chemoreceptor 
stimulation alone. None of  this sample was tested for spinal projection, 
but it appeared that many were located in the vicinity of  the NTS and 
from their latency to SN stimulation appeared early in the reflex pathway. 
Such a marked convergence of baroreceptor and chemoreceptor inputs 
might seem justifiable considering the excitatory effects of  both inputs on 
vagal efferent activity in the anaesthetised animal, but strange in view of  
their often antagonistic effect on sympathetic efferent activity. Since in 
general terms the two reflexes can be considered to act antagonistically, 
this apparently powerful convergence at such an early stage in the reflex 
pathways must be viewed with caution. The simplest explanation for this 
apparently anomalous effect of  chemoreceptor stimulation is that it exerts 
a generalised excitatory influence on brainstem neurones, particularly 
those in the vicinity o f  the NTS, as part of  its general arousal influence. 

The demonstration in the work ofLipski et al. (1975) and Lipski et al. 
(1976) that SN stimulation affected respiratory neurones reinforces the 
effects reported by others from similar studies (Biscoe and Sampson 
1970b; Lipski et al. 1975, 1976b, 1977) and also that baroreceptor stimu- 
lation inhibits inspiratory neurones (Trzebski and Peterson 1964;Richter 
and Seller 1975). Baroreceptor stimulation, however, may prolong the 
duration of  discharge of  expiratory neurones (Trezbski andPeterson 1964; 
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Richter and Seller (1975). From intracellular recordings of the activity of 
the lateral group of respiratory neurones, Richter and Seller (1975) have 
shown that whilst inspiratory neurones are powerfully hyperpolarised by 
baroreceptor stimulation (AN stimulation), no synaptic potentials or 
changes in membrane potential were noted in expiratory neurones during 
such stimulation. This indicates that the baroreceptor effects on these ex- 
piratory neurones are secondary to their action on inspiratory neurones, 
i.e. the effect represents disinhibition. Since the baroreceptors also exert 
an inhibitory control of  the dorsal group of inspiratory neurones, the role 
of bulbospinal respiratory pathways in the control of sympathetic activity 
must be taken into account (Lipski et al. 1977 and Sect. 4.3). 

The Effects of Lesions on the Baroreeeptor Reflex. In addition to the 
neurophysiological and neuroanatomical data considered above, the abla- 
tion of areas of the central nervous system has provided some information 
on the possible role of central structures in the organisation of cardiovas- 
cular control. However, negative results are not sufficient to allow the 
conclusion that an area has no involvement in the integration of the baro- 
receptor reflex, as any modulating influence may well not be readily de- 
monstrated in an anaesthetised preparation. 

As might be expected, the most striking results have come from lesions 
encroaching on the dorsomedial medulla, and specifically the NTS, 
whether produced electrolyticatly or by radio-frequency current. The first 
clear statement on the effects of  lesions of the NTS was made by Oberhol- 
zer (1960), who described that circumscribed electrolytic lesions of the 
NTS at levels rostral to the obex, in both cat and rabbit, abolished the re- 
flex response to stimulation of the ipsilateral carotid sinus; these lesions 
were usually some 1 mm rostral to the obex. Similar results were later ob- 
tained in the cat by Humphrey (1967). Oberholzer (1960) also noted that 
more caudally placed lesions were successful in abolishing the cardiovascu- 
lar responses to AN stimulation. These results broadly confirm the data 
cited already regarding the sites of termination of the SN and AN nerves 
(see Fig. 1). The effectiveness of lesions of the NTS in abolishing the carotid 
sinus reflex has since been confirmed by numerous authors in the cat and 
the rat (Hilton and Spyer 1971; Miura and Reis 1972b; Doba and Reis 
1973, 1974b; de Jong et al. 1975a, b, 1977; deJong andPalkovits 1976; 
Palkovits and Zaborszky 1977; Reis et al. 1977; Zandberg et al. 1977). 
Burkhart et al. (1977) have shown that transverse cuts through the NTS of 
the dog passing rostral to the obex do not abolish carotid sinus reflexes 
but totally abolish the responses to AN stimulation, emphasising that a 
lesion just rostral to the obex in the cat is sufficient to abolish carotid 
sinus reflexes (see Gabriel and Seller 1970; Miura and Reis 1972b; Doba 
and Reis 1973, 1974). It is interesting to note also that the effects of 
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lesions within the NTS are not merely acute but chronic; in fact the sur- 
vival of  rats can be severely jeopardised by NTS lesions (see Doba and Reis 
1973; Zandberg et al. 1977), and although long-term survival is more com- 
mon in the cat, blood pressure remains labile (Reis et al. 1977). In contrast 
Barman and Gebber (1978a) claim that although lesions in the NTS may 
abolish the baroreceptor reflex and raise blood pressure, it soon returns to 
control levels. It is interesting in this context that Snyder et al. (1978) 
claim that selective destruction of catecholamine terminals in the NTS of 
the rat results in a chronic lability of blood pressure. 

The above data is of limited value in ascribing functional characteristics 
to the different areas of the NTS. Little is ever revealed of the precise area 
destroyed; it may extend considerably beyond the obvious site of ablation 
and may often involve the afferent input rather than the neuronal ele- 
ments of the nucleus. Indeed, lesions elsewhere in the medulla are often 
claimed to affect the efficacy of baroreceptor reflexes and the develop- 
ment of hypertension and this may well result from inadvertent damage to 
the NTS. The claim by Ylitalo et al. (1974) that lesions of the area postre- 
ma produced hypertension were contested by Hilton et al. (1974), who 
drew attention to the close proximity of the NTS to the area postrema 
and to the failure of these workers to demonstrate whether baroreceptor 
reflexes were affected by their destruction of the area postrema. Zandberg 
et al. (1977) proved the validity of this questioning experimentally; lesions 
qf the area postrema are ineffective in producing hypertension unless they 
extend to damage the NTS when the baroreceptor reflex is either abolish- 
ed or severely attenuated. 

Much of the work concerned with a possible rote of other areas of the 
brainstem in the baroreceptor reflex pathway may well have suffered from 
the possibility that extensive lesions in the lower brainstem may have de- 
stroyed or damaged sinus nerve and vagal afferents en passant or the trac- 
tus solitarius and the surrounding nucleus in part. In this context it is not 
surprising that Wang and Chai (1962, 1967) and Katz et al. (1967) claim 
that only destruction of the dorsolateral medulla, the "pressor" area, is 
sufficient to abolish the cardiovascular response to bilateral carotid occlu- 
sion. Their lesions, as illustrated, invariably damaged or destroyed the 
rostral NTS and probably also its afferent input. In contrast, Manning 
(1962, 1965a, b) reported that massive lesions in the dorsolateral reticular 
formation did not abolish the reflex responses to bilateral carotid occlu- 
sion, although a subsequent decerebration did. However, Wang and Chai 
(1962, 1967) and Chai and Wang (1962, 1968) have claimed that decere- 
bration at intercollicutar levels in no way impairs baroreceptor function, 
although as Peiss (1965) has pointed out decerebration invariably produces 
some fall in arterial pressure (review even the classical studies of Osw]anni- 
kow 187 I), which may approach as much as 20 mmHg, in which case baro- 
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receptor reflexes can hardly be considered to be functioning normally. 
Carotid occlusion is a poor test of  baroreceptor function as it results in a 
concomitant activation of  the carotid body chemoreceptors, but the dis- 
tinction between results is striking. In view of  the preceding discussion it 
is likely that Manning's lesions spared the NTS, as chemoreceptor afferents 
also terminate there (Miura and Reis 1972b; Lipski et al. 1975;Jordan 
and Spyer 1977a). 

Manning (1962, 1965a, b) proposed that midline structures in the 
medulla as well as suprabulbar areas, in particular the hypothalamus, were 
essential for the typical sympatho-excitatory response to carotid occlusion. 
In view of  the definition of  the medial reticular formation as the "depres- 
sor" centre (Alexander 1946;Bach 1952), this would seem at first sight an 
attractive possibility. Unfortunately, electrolytic destruction of  the medial 
reticular formation, including the NPR and raphe nuclei, does not  abolish 
baroreceptor reflexes (Ldfving 1961 ; Hilton and Spyer 1971 ; Miura and 
Reis 1972a, b; Barman and Gebber 1978a), although some variable effects 
have been reported by others. Lesions in the ventromedial medulla have 
been cited as abolishing the depressor (Smith et al. 1966, quoted by Hum- 
phrey 1967) or cardiac (Lee et al. 1972) components of  the baroreceptor 
reflex. Miura and Reis (1972b) claim that the cardiac effects are uneffect- 
ed, but that whilst the depressor response to SN stimulation is abolished 
by such lesions, the effects of  natural baroreceptor stimulation remain un- 
effected. Barman and Gebber (1978a), however, leave little doubt that 
medial areas of the medulla are involved in only non-baroreceptor sym- 
patho-inhibitory responses. Large medial lesions evoked an increase in 
renal sympathetic activity but left the cardiac rhythm in the renal nerves 
(postganglionic sympathetic) unaffected, and the sympatho-inhibitory re- 
sponse to baroreceptor activation was unaltered (Barman and Gebber 
1978). It appears that lesions in the "parahypoglossal" region, which has 
been shown to receive both SN and baroreceptor input (McAllen and 
Spyer 1972; Lipski et al. 1975), also do not  ablolish baroreceptor reflexes 
(Doba and Reis 1973). 

The effects o f  laterally placed lesions are, however, much clearer. Lee 
et al. (1972) state that lesions in the NA of the cat abolish the bradycardia 
which normally follows the intravenous injection of  either adrenaline or 
veratridine, whilst a lesion in the DNV was ineffective. This result, which 
has been confirmed for other forms of  vagal bradycardia (Kerr 1969; 
Borison and Dora~an 1970), argues for the fact that, at least in the cat, the 
vagat preganglionic supply to the heart arises from neurones in the NA 
(see Sect. 3.6.1). This evident lateralisation of  the reflex may well extend 
also to its sympatho-inhibitory component.  Evidence cited earlier has 
argued for powerful efferent projections extending from the NTS to the 
lateral reticular nucleus (Sect. 2.2.1), and particularly to the A1 group of  
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catecholamine-containing neurones (Dahlstr6rn and Fuxe 1965), which 
Coote and Macleod (1974a, b) consider to exert sympatho-inhibitory ef- 
fects. Hildebrandt (1974) describes neurones in the lateral reticular forma- 
tion which are excited by AN and SN stimulation whose axons can be ex- 
cited by spinal cord stimulation. This will be discussed in greater detail 
subsequently (Sect. 3.3). 

That baroreceptor function is not totally abolished by decerebration, 
and may even appear relatively normal, cannot be taken to imply that 
suprabulbar areas are not essential for a normal expression of the reflex. 
In fact quite the converse would appear to be the case, for evidence has 
accumulated that suprabulbar regions may well play an important role in 
the normal reflex [see Reis and Cuenod (1965) for confusing data concern- 
ing the effects of  various transections of the neuraxis]. Indeed, Hilton and 
Spyer (1971) and Spyer (1969) have provided strong evidence for a role 
of the hypothalamus in the baroreceptor reflex. They defined an area in 
the anterior hypothalamus of the cat which on electrical stimulation 
evoked a "depressor" response qualitatively identical to the baroreceptor 
reflex (Spyer 1969; Hilton and Spyer 1971). Furthermore, Spyer (1969, 
1972) has shown that neurones within this area of the hypothalamus are 
affected by carotid sinus baroreceptor stimulation (see Sect. 2.2.3.3). Bi- 
laterally placed lesions restricted to this region of the hypothalamus re- 
duced the efficacy of the baroreceptor reflex, but never abolished it (Hilton 
and Spyer 1971). Equally, lesions within the medullary "depressor" area 
never abolished the reflex response to stimulation of the ipsilateral carotid 
sinus; they usually reduced it, unless the lesion encroached upon the ipsi- 
lateral NTS. Where a significant response remained after a unilateral medul- 
lary lesion, bilateral destruction of the hypothalamic depressor area abol- 
ished the response completely. Arterial blood pressure did not remain ele- 
vated for a considerable time after these hypothalamic lesions, nor was the 
order of lesions important (Hilton and Spyer 1971). In the same year the 
importance of suprabulbar areas in the performance of the reflex was re- 
iterated by Kent et al. (1971), who showed that, following decerebration, 
the range over which the baroreceptors can evoke a change in arterial pres- 
sure is severely restricted compared to that in an animal with intact neur- 
axis. 

In summary, the results of lesion studies show that baroreceptors ter- 
minate in the NTS and indicate a role for suprabulbar areas in the organisa- 
tion of the baroreceptor reflex (Hilton and Spyer 1971). Such a longitudi- 
nal arrangement would mirror that for sympatho-excitatory control (see 
Hilton 1975 for review) and would then conveniently encompass other 
data that argue strongly for hypothalamic interactions in cardiovascular 
control (Gellhorn 1957). 
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The Baroreceptor Input to Suprabulbar Areas. The importance of supra- 
bulbar areas in the performance of the baroreceptor reflex has been sum- 
marised above and data illustrating the ascending projections of the NTS 
described. It now remains to establish the nature and extent of the baro- 
receptor input to these rostral structures. Recent studies have shown a 
baroreceptor influence on hypothalamic unit activity (Thomas and Calaresu 
1972; Yamashita 1977; Kannan and Yagi 1978). In particular Spyer (1969, 
1972) has described that approximately 5% of neurones investigated in 
the anterior hypothalamic depressor area (Hilton and Spyer 1971 ) received 
a baroreceptor input. Of the 21 neuonres studied, 15 were excited and 6 
inhibited by raising the pressure of 200 mmHg in a vascularly isolated 
carotid sinus. In other experiments it was shown that neurones in this same 
area were excited on stimulating within the NTS at a latency of 20-50  ms 
(Spyer, unpublished work). In the rabbit, neurones in the equivalent area 
have been shown to be excited on AN stimulation, the latency often being 
surprisingly short (Brickman et al. 1977). In another study, neurones in 
the perifornical region of the medial hypothalamus were shown to be ex- 
cited by SN stimulation (Thomas and Calaresu 1972). Of the 23 neurones 
affected, 7 were excited (latency 17-40 ms, mean 29 -+ 3.7 ms), 16 inhib- 
ited (latency 30-140 ms, mean 68 -+ 9.0 ms). Five inhibited by such stim- 
ulation were also inhibited during the pressor response to intravenous nor- 
adrenaline. These neurones would appear to be located in the region of 
the hypothalamus believed to integrate the defence reaction, including its 
cardiovascular components (see Abrahams et al. 1960). It is interesting 
that the pattern of response of neurones in this area was the converse of 
that seen in the hypothalamic "depressor" area (compare Thomas and 
Calaresu 1972 to Spyer 1972). An antagonistic arrangement of these two 
hypothalamic areas has been suggested (Hilton and Spyer 1971; cf. Gell- 
horn 1957), a relationship that may well continue throughout the length 
of the brainstem. These observations could be interpreted as lending in- 
direct support to such a model. 

In addition it has been known for many years that the baroreceptor 
(and chemoreceptor) inputs alter the release of antidiuretic hormone from 
the posterior pituitary. It was hence no surprise that Barker et al. (1971) 
were able to demonstrate an effect of SN stimulation on neurosecretory 
neurones in the supra-optic nucleus. The major effect was excitatory, but 
more recently Yamashita (1977) has shown that neurosecretory neurones 
in the supra-optic nucleus are excited by chemoreceptor stimulation and 
inhibited by inflation of the carotid sinus. Similarly Kannan and Yagi 
(1978) report an inhibitory effect of the carotid baroreceptors on these 
neurones. 

In addition to baroreceptor inputs to the hypothalamus, there are in- 
dications of  an AN input to the subthalamus in the rabbit. Kaufman et al. 
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(1979) have excited neurones in the zona incerta of the rabbit on AN 
stimulation with latencies as short as 4 ms. Whilst such latencies are dra- 
matically shorter than previously reported for supramedullary effects and 
even shorter than usually observed in the medulla, they are consistent 
with the autoradiographic findings of Ricardo and Koh (1978)in the rat, 
which describe a direct projection from the NTS to the lateral subthalamic 
area. 

In addition to this direct demonstration of a baroreceptor influence at 
the level of  the hypothatamus it is well established that this input can have 
marked effects on behaviour: it can suppress the outbursts of sham rage 
in hypothalamic animals (Bartorelti et al. 1960), influence the sleep-wake- 
fulness cycle (Guazzi and Zanchetti 1965; Baust and Heinemann 1967) 
and influence electrocortical activity (Bonvallet et al. 1953). Baroreceptor 
stimulation is also known to affect motor tone and activity (see Koch 
1932;Schweitzer and Wright 1937;Schulte et al. 1959; Dell and Bonvallet 
1966), and in a recent study Coleridge et al. (1976) have demonstrated 
that pyramidal tract neurones in the motor cortex of cats are either direct- 
ly inhibited or prevailing excitatory inputs onto them are suppressed by 
baroreceptor stimulation. The pathway along which this effect is produced 
is unknown, although it is likely to involve ascending reticular pathways, 
which may be influenced from the NTS (Magnes et at. 1961 ;Akirnoto and 
Saito 1966; Klee 1966). 

3 Baroreceptor Control of Preganglionic Autonomic Activity 

3.1 Sympathetic Efferent Activity 

The central nervous control of the cardiovascular system is exerted pri- 
marily by means of the postganglionic sympathetic innervation of vascular 
beds and the heart. Together with the vagal control of  the heart, these ef- 
ferent pathways constitute the final efferent arm of the various cardio- 
vascular reflexes that are considered to exert a homeostatic control on the 
circulation (see Heymans and Neil 1958). Hence it is not surprising that 
sympathetic efferent activity, particularly that of postganglionic nerves, 
is distinguished by its marked cardiac or pulse rhythmic discharge (Adrian 
et al. 1932;Bronk et al. 1940;Alexander 1945, t946; Hagbarth and Vallbo 
t968; Polosa 1968; Cohen and Gootman 1969, 1970; Gootrnan and 
Cohen 1970, 1973; Koizurni et al. 1971;Mannard andPolosa 1973;Seller 
1973; Taylor and Gebber 1975; Gross and Jginig 1976;Horeyseck et al. 
1976; Gregor et al. 1977). This cardiac rhythm is usually superimposed on 
a respiratory related pattern of activity (Adrian et al. 1932;Itagbarth and 
Vallbo 1968; Polosa 1968; Cohen and Gootman 1970; Gootrnan and Cohen 
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1970, 1973; Richter et al. 1970; Koizumi et al. 1971; Seller and Richter 
1971;Mannard andPolosa 1973;Seller 1973; Gregor et al. 1977;Lipski et 
al. t977; Preiss andPolosa t977) and is considered to reflect the powerful 
control of  sympathetic activity exerted by the baroreceptor inputs. Indeed 
this rhythm is usually attenuated, if not  totally abolished, by baroreceptor 
denervation (Gootman and Cohen t970 and others). There is, however, a 
claim that this apparent cardiac rhythm of  postganglionic sympathetic 
(and of  course preganglionic) activity results merely from an entrainment 
of  the baroreceptor afferent input to an intrinsic rhythm of  brainstem 
origin (Taylor and Gebber 1975; Gebber 1976; Gebber and Barman 1977). 

It is well established that preganglionic and postganglionic discharge is 
characterised by a 3 Hz oscillation in the cat (Green and Heffron 1968; 
Cohen and Gootman 1970; Gootman and Cohen 1970, 1973; Snyder and 
Gebber 1973; Taylor and Gebber 1975; Camerer et al. 1977; Gebber and 
Barman 1977) which has usually been considered to represent the baro- 
receptor-related inhibitory control of  sympathetic discharge. More recent- 
ly a power spectral analysis of  postganglionic sympathetic activity has 
shown that it contains two peaks at around 3 Hz in the cat (Camerer et al. 
1.977). One is related to the baroreceptor input and is abolished by baro- 
receptor denervation, the other is related to the delta-theta oscillation of  
the EEG and is abolished by decerebration (Camerer et al. 1977). Gebber 
and Barman (in press), however, have indications that a 2 - 6  c/s rhythm 
persists after both baroreceptor denervation and decerebration. Whether 
this implies that the baroreceptor input is entrained to this "central oscil- 
lator" or whether they exert their influences along independent pathways 
remains to be resolved. 

Nevertheless, the cardiac rhythm of the sympathetic discharge survives 
decerebration (Alexander 1946; Mannard and Polosa 1973;Camerer et al. 
1977). This cannot be taken to imply that the normal reflex control of 
sympathetic activity involves only a bulbar pathway. Furthermore, it is 
probable that not all sympathetic efferent fibres are affected in a similar 
manner by baroreceptor inputs. Detailed studies of  the sympathetic sup- 
ply to the hindlimb of  the cat, investigating the inputs to hairless and 
hairy skin and to muscle, suggest that functional distinctions can be 
made on the basis of  the pattern of discharge of individual neurones 
(Gr6sse and Jginig 1976; Horeyseck et al. 1976; Gregor et al. 1977;Jiinig 
and Kiimmel 1977). Indeed, it would seem convincingly demonstrated at 
this level of  the sympathetic pathway that neurones with a vasocon- 
strictor function can be distinguished by their powerful cardiac rhythm, 
muscle vasoconstrictors having the most distinctive cardiac rhythm and 
inspiratory related discharge (Gregor et at. 1977). These neurones are 
usually spontaneously active, firing at a low rate, and their pattern of  re- 
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sponse to various physiological stimuli, as well as stimulation of  the neur- 
axis, provides at least a teleological suggestion of  their probable function. 

This analogy may also apply at preganglionic levels, where studies on in- 
dividual fibres or recordings from the cell bodies in the spinal cord suggest 
that not all preganglionic neurones, when active, have either cardiac or 
respiratory related discharges (Fernandez de Motina et al. 1965; Polosa 
1967, 1968; Koizurni et al. 1971;Mannard andPotosa 1973;Seller 1973; 
Coote and Westbury 1974, 1979a, b; Preiss et al. 1975; Gebber and McCall 
1976). This immediately raises the question of  identity: can preganglionic 
neurones be labelled as vasoconstrictor or cardio-accelerator, or is func- 
tional specialisation the reserve of  postganglionic elements? As yet, a con- 
clusive answer cannot be given; preganglionic neuronal discharges cannot 
yet be analysed in as much detail as postganglionic fibres, but a degree of  
heterogeneity has already been demonstrated by considering just the pres- 
ence or otherwise of  two rhythms, cardiac and respiratory (Fernandez de 
Molina et al. 1965; Polosa 1967, 1968; Koizurni et al. 1971 ;Mannard and 
Polosa 1973; Seller 1973; Coote and Westbury 1974, 1979a, b; Preiss et 
al. 1975; Gebber andMcCall 1976). 

This question of  identity is not esoteric. Its importance resides in its 
necessity when establishing the central pathways of  cardiovascular as dis- 
tinct from autonomic control. It has long been considered that the sympa- 
thetic nervous system acts in a general and undifferentiated manner (cf. 
Cannon 1929, 1930, 1932), but it is becoming apparent that this is not 
the case. This original contention arose from two main factors: the exag- 
gerated emotional states investigated and the fact that in most studies 
whole nerve activity has been recorded rather than the properties of  the 
individual functional groups. With these factors in mind it will be neces- 
sal t  to review the organisation of  the preganglionic sympathetic neurones, 
as the final common pathway within the central nervous system, to deter- 
mine the synaptic complexity that is responsible for their basic firing 
properties and, it is hoped, to discern the pathways that mediate the 
powerful baroreceptor control of  their activity. 

3.2 Baroreceptor Control of  Sympathetic Activity 

The initial studies relating to baroreceptor control of  sympathetic activity 
have involved the effects of  such stimulation on on-going activity (Goot- 
man and Cohen 1970; Koizurni et al. 1971; Foreman and Wurster 1973; 
Seller 1973; Snyder and Gebber 1973; Taylor and Gebber 1973; Coote 
and Westbury 1973, 1979a, b; Gebber 1976; Gebber and McCall 1976; 
Gebber and Barman 1977;McCall et al. 1977;Barman and Gebber 1978a; 
Geis et al. 1978) and somatic or visceral reflexes into these nerves (Coote 
and Downrnan 1966, 1969; Coote et al. 1969; Koizurni et al. t971 ;Seller 
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t 973 ; Coote and Macleod 1974b, 1975). In the context of the present re- 
view it is irrelevant to discuss in detail the nature and synaptic complexity 
of somatic and visceral reflexes into sympathetic nerves. These have been 
dealt with at length in the past (Sato and Schmidt 1973; Coote t978; 
Coote and Sato 1978). The influence of the baroreceptor input on the 
supraspinal and spinal components of these reflexes will be raised, as this 
may provide considerable data on the basic circuitry of baroreceptor 
mechanisms. 

It has been known for many years that the baroreceptors exert an in- 
hibitory control of sympathetic efferent activity. Their cardiac rhythm is 
of baroreceptor origin, but the central pathways involved remained unre- 
solved. The central delay of a reflex provides some indication of its syn- 
aptic complexity, although affected by the length of the interneuronal 
pathways, and as such the measurements of the central delay of the baro- 
receptor-sympathetic reflex are of value. Kezdi and Geller (1968) provided 
the first detailed open-loop study of the baroreceptor-sympathetic reflex 
in the dog. They showed that the latency to inhibition of postgangtionic 
sympathetic activity, recorded in either renal or splanchnic nerves, varied 
from 150-360 ms. From preganglionic recordings in the cat during elec- 
trical stimulation of the sinus nerves, Richter et al. (1970) and Seller and 
Richter (1971) obtained a value of 181 -+ 23 ms for complete inhibition of 
on-going sympathetic activity. Green and Heffron (1968), using natural 
baroreceptor stimulation, obtained values in the range of 150-300 ms, as 
did Coote and Downman (1969). These observations, however, leave un- 
answered the site of  inhibition, which could be within the brainstem, or at 
the level of the cord, or a mixture of both. 

The fact that somatic and visceral reflexes into sympathetic nerves have 
both a spinal and supraspinal pathway (for review see Sato and Schrnidt 
1973; Coote 1978) at least suggested the possibility that investigating the 
baroreceptor control of their effectiveness might shed light on the site of 
interaction between the baroreceptor input and sympathetic control. In 
fact, the controversy remains, partly no doubt owing to the variability of 
the early spinal reflex into sympathetic nerves, at least as far as those into 
the white rami are concerned, and partly to its questioned significance re- 
garding cardiovascular control (see Seller 1973). This questioning has a 
particular relevance in this context since early or spinal reflexes are rarely 
seen in cardiac and renal sympathetic nerves (Coote and Downman t 966; 
Cdote and Sato 1978), although often elicited in white rami (see above) 
and the cervical sympathetic nerves (Coote et al. 1969; Schrnidt and 
Schdnfuss 1970). It would appear that at the level ofpostganglionic nerves, 
the early response in the anaesthetised animals with intact neuraxis is vari- 
able (see Coote and Downman 1969) but is inhibited by baroreceptor 
stimulation along with the late supraspinal reflex. That an early response 
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can be recorded in the white rami and postganglionic nerves, yet the white 
rami responses remain unaffected by baroreceptor stimulation (Coote et 
al. 1969; Koizumi et at. 197t ; Seller 1973) seems at first sight confusing 
since postganglionic effects have to be transmitted through these rami. 
Koizurni et al. (1971) found it difficult to record significant early (i.e. 
spinal) reflexes into renal or cardiac nerves; they were usually small and 
powerfully affected by the on-going cardiac and respiratory-related dis- 
charges of these nerves. These authors do, however, illustrate that when 
white rami early reflexes were present they were unaffected by barorecep- 
tor stimulation. Coote and Macleod (1974b), however, illustrate that baro- 
receptor inputs powerfully inhibit the late (i.e. supraspinal) reflex in renal 
and cardiac sympathetic nerves, but the effects on the early spinal reflex 
were not  entirely clear. The early reflex into cardiac nerves appeared unaf- 
fected. They were, however, able to show a baroreceptor inhibition of  
thoracic white rami early reflexes which contrasts to previous reports 
(Coote et al. 1969; Koizumi et al. 1971 ; Seller 1973). This observation has 
been used by Coote and Macteod (1974b, 1975) as a significant factor in 
their claim that the baroreceptor reflex acts, at least in part, by an inhib- 
itory action at the level of  the spinal cord (see Sect. 3.3.3.3). 

In this context,  it is pertinent to draw attention to a study of  individual 
preganglionic fibres recorded in the cat; only 2 from thoracic white rami 
(out of  55 tested) and 24 from lumbar white rami (out of 54) showed seg- 
mental early spinal reflexes to somatic stimulation (Seller 1973). Further- 
more, only one of  these fibres showed a cardiac rhythm in its discharge, 
and none was silenced by the baroreceptor activation in response to an 
adrenaline injection. 

In conclusion, the central delay of the baroreceptor-sympathetic reflex 
is long, generally above 150 ms, and there is no controversy regarding the 
ability of  this input  to abolish the late (supraspinal) component  of somatic 
and visceral reflexes into sympathetic nerves. The significance for cardio- 
vascular control of  those pre- and postganglionic sympathetic neurones re- 
ceiving an early (spinal) reflex remains in question although in line with 
the fact that all on-going sympathetic activity appears susceptible to pow- 
erful baroreceptor stimulation, and if these inputs are in any way concern- 
ed with the background discharge of  sympathetic neurones some effects 
on early reflex responses appear possible. 

3.3 Preganglionic Sympathetic Neurones 

Preganglionic sympathetic neurones are located in the intermediolateral 
horn of  the thoracic spinal cord, with a varying and small representation in 
the lower cervical and a marked representation in upper lumbar segments 
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of the spinal cord. Some preganglionic neurones may extend from this 
area into the adjacent white matter of the cord and into the intercalated 
area (see Petras and Cummings 1972; Chung et al. 1975, and detailed anal- 
ysis in Wurster 1977). The preganglionic supply to the heart originates 
from T1-5  (Wurster 1977) with the greatest density of neurones in the 
intermediolateral column of the cat being in segments T 1 - 2  and L3-4  
(Henry and Calaresu 1972). Their axons are almost all myetinated and 
leave the spinal cord via the thoracic and lumbar ventral roots, and after 
passing for a short distance with the spinal nerves they separate to form 
the white rami. From here they pass to the sympathetic ganglia, from 
which unmyelinated postganglionic fibres leave to innervate end-organs. A 
more detailed discussion of this anatomical arrangement with particular 
reference to cardiac control is given in a recent review (Wurster 1977), and 
a general description is contained in a survey of sympathetic reflexes 
(Coote 1978). 

In the present discussion, interest will be directed specifically at the 
physiological properties of the preganglionic elements but it will be neces- 
sary also to refer to the anatomical arrangements considered to represent 
the spinal intemeuronal circuitry controlling their activity. 

3.3.1 Firing Patterns 

The activity of individual preganglionic neurones has been recorded by 
t~asing single active units not only from preganglionic nerves, usually the 
cervical sympathetic (Pitts et al. 1941;Pitts and Bronk 1942;Preiss et al. 
1975; Preiss and Polosa 1977) but also from thoracic and lumbar white 
rami (Seller 1973). In these cases, selection was dependent on the pres- 
ence of spontaneous activity, which is not an ubiquitous property of sym- 
pathetic neurones. The alternative approach is to record from the cell 
bodies of  these neurones, identifying the neurone from its antidromic re- 
sponse to stimulation of its axon in the white rami or other preganglionic 
nerves (Hongo and Ryall 1966; Polosa 1967, 1968; Mannard and Polosa 
1973 ; Taylor and Gebber 1973 ; Wyszogrodski and Polosa 1973; Kirchner 
et al. 1975a, b; Gebber and McCall 1976; Lipski et al. 1977;McCall et al. 
1977). In addition, intracellular recordings are now possible (Fernandez 
deMolina et al. 1965; Coote and Westbury 1974, 1979b). 

Recordings from preganglionic fibres (Adrian et al. 1932; Pitts et al. 
1941; Alexander 1946; Preiss et al. 1975;Preiss and Polosa 1977) show 
that these neurones fire at a low rate, often without an obvious cardiac 
rhythm, and it would appear that the frequency-limiting step in the sym- 
pathetic outflow is not a property of the ganglion alone but is already im- 
posed by or before the preganglionic neurones (Pitts and Bronk 1942). 
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The "silent period" following a burst of  activity first observed by Pitts 
and Bronk (1941) was defined as post-excitatory depression, i.e. an ortho- 
dromic volley producing a period of subexcitability. These authors con- 
sidered this to reflect the properties of  the excitatory pathways impinging 
on them. Conversely, Polosa (1967, 1968), recording extracellularly from 
preganglionic cell bodies in the spinal cord, suggests that the "silent period" 
following intense activity is a property of  the neurone itself, as it may be 
produced by antidromically evoked spikes. He purported to eliminate the 
necessity for a recurrent inhibitory interneuronal pathway (Renshaw-type 
cell), because he provides evidence that the effect was only produced by 
an antidromic spike, a subthreshold stimulus to the cervical sympathetic 
failing to elicit a "silent period". Furthermore, in 8 out of  10 cases supra- 
threshold stimuli failed to affect the duration of  the "silent period". In- 
deed in his later study Polosa (1968) showed that an antidromic spike 
would reset the on-going rhythm of  a preganglionic neurone without sig- 
nificantly shortening t h e  expected interspike interval. In certain cases, 
however, Polosa (1967) found indications of  Renshaw-type recurrent ef- 
fects on cervical sympathetic stimulation (i.e. 4 neurones), but strychnine 
did not  block the apparent inhibition. More recently, Mannard and Polosa 
(1973) have extended this study and have retained the conclusion that the 
firing rate is broadly an intrinsic property and not  determined solely by 
presynaptic events. Two recent studies, have, however, revived the possibil- 
ity that the activity of  a proportion of  preganglionic sympathetic neurones 
may be controlled by a recurrent collateral pathway (Barman and Gebber 
1978b; Gebber et al. 1978;Lebedev et al. 1980), although the appropriate 
interneurone has yet to be described (Rethelyi 1972). Gebber and Barman 
(1979) consider that the inhibitory interaction between preganglionic 
sympathetic neurones results from a cholinergic action of sympathetic 
neurones with C-fibre axons on the more numerous sympathetic B-fibre 
neurones. It is as yet  unresolved whether it involves a recurrent pathway 
or results from dendrodendritic interactions. 

Whatever mechanism(s) is responsible, there is no question that in the 
intact anaesthetised animal, preganglionic neurones when active fire at 
rates below 10 impulses/s (Fernandez de Molina et al. 1965; Polosa 1967, 
1968; Mannard and Polosa 1973; Snyder and Gebber 1973; Taylor and 
Gebber 1973; Coote and Westbury 1974, 1979a, b; Gebber and McCall 
1976, and see above for fibre recordings). Spontaneous activity appears 
in as few as 20% of  antidromicalty identified neurones (Polosa 1968;Man- 
nard and Polosa 1973) to as many as 60% (Coote and Westbury 1974, 
1979a), most studies suggesting around 30%. Interestingly, Mannard and 
Polosa (1973) have shown that although the incidence of  spontaneous dis- 
charge is reduced as one goes from the intact, to the spinal, and finally 
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to the segmental preparation, background firing remains in even this final 
situation (see also Alexander 1945). 

The discharge of pregangtionic neurones, recorded either from fibre or 
cell body usually appears irregular, but by constructing post-R-wave histo- 
grams (Seller 1973; Taylor and Gebber 1973; Gebber and McCall 1976; 
McCall et al. 1976, and see Fig. 3) or autocorrelogram functions (Mannard 

Post-RWave Int,sec 

Fig. 3. Phase relationship between averaged arterial 
pulse wave and post-R wave TIH of antidromically 
identified preganglionic neurone. Sample run 256 c/s, 
address bin 4 ms, blood pressure 160/t25 mmHg. 
Adapted from Gebber and McCall (1976) 

and Polosa 1973) a clear cardiac rhythm can be shown. Coote and West- 
bury (1974, 1979) have constructed pulse-triggered histograms of sympa- 
thetic neuronal activity and have shown that the probability of discharge 
was minimal 150-200 ms after the beginning of systole. Moreover in a 
group of neurones the effects of inflating a blind sac of one carotid sinus 
was tested; the mean latency to inhibition was 148 +- 14 ms (SE, n = 15). 
This value for units recorded at T3 level is in close agreement with pre- 
vious studies on the reflex time (see above). 

At this point it is worth noting that both Fernandez de Molina et al. 
(1965) and Coote and Westbury (1979)report  intracellular recordings 
from antidromicaUy identified sympathetic neurones. As yet, however, no 
clear data have resulted on the nature of the baroreceptor control of their 
activity, as pulse-related changes in membrane potential have yet to be 
established. 
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3.3.2 Spinal Interneuronal Control of Preganglionic Neurones 

The possibility that preganglionic neurones are under recurrent control 
implies the involvement of a local inhibitory interneurone (Barman and 
Gebber 1978b; Gebber et al. 1978; Gebber and Barman 1979; Lebedev 
et al. 1980). There is no anatomical support for this contention (Rethelyi 
1972), but Gebber and McCall (1976) describe non-antidromically driven 
neurones in close proximity to antidromically driven preganglionic neu- 
rones (stimulating the cervical sympathetic nerve and recording at T1-5) .  
These neurones had a cardiac rhythm (post-R-wave peak 159 e 17 ms in 
15 out of 43 studied) as against a post-R-peak of 177 ± 10 ms for pregang- 
lionic neurones (i.e. antidromically identified neurones). These 15 non- 
antidromicatly driven neurones were also inhibited by baroreceptor stim- 
ulation, as were preganglionic neurones, but in general whilst a pregang- 
lionic neurone seldom fired more than once in each cardiac cycle, "inter- 
neurones" fired in bursts of up to 4 spikes/cardiac cycle. Further, brain- 
stem stimulation at "pressor" sites evoked excitatory responses in "inter- 
neurones" as well as preganglionic neurones, but the onset latency was 
shorter to the former (mean 31 • 3 ms compared to 41 ± 6 ms for pre- 
ganglionic neurones). There was no significant difference, however, in 
either the latency or duration of the effects of "depressor" area stimula- 
tion on their discharge. It was concluded that they represent an excitatory 
interneurone, presumably mediating descending excitatory (and possibly 
segmental reflex control) of  preganglionic neurones. 

In more recent studies, McCall et al. (1977) have described neurones in 
the intermediomedial region of the spinal grey with properties suggesting 
that they might represent inhibitory interneurones controlling pregangli- 
onic activity. It is known that neurones in this area project to the inter- 
mediolateral horn (Bok 1928; Petras and Cummings 1972). Twenty-nine 
neurones in this area were spontaneously active but silenced on bilateral 
carotid occlusion and had cardiac rhythm. They also received a short- 
latency excitatory input from the NTS (latency 8 ± 1 ms; conduction vel- 
ocity 15 ± 2 m/s). These properties provide indirect evidence for their role 
as inhibitory interneurones but direct evidence is still lacking. 

In the context of delineating the spinal organ±sat±on of the control of 
preganglionic activity, this tentative description of two groups of interneu- 
rone may be important in discerning the nature and involvement of de- 
scending excitatory and inhibitory pathways in mediating the barorecep- 
tor reflex. 
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3.3.3 Supraspinal Influences on Sympathetic Activity 

It is now well established that electrical stimulation at numerous sites with- 
in the brainstem can evoke increases in arterial blood pressure, primarily 
through an increase in sympathetic activity. There are, however, examples 
of brainstem stimulation evoking changes in sympathetic activity without 
concomitant alterations in arterial blood pressure (Kahn and Mills 1967). 

The first direct demonstrations of brainstem influences on sympathetic 
discharges were those studies which showed an influence of the hypothala- 
mus on sympathetic activity made in the t930s and 1940s (Bronk et al. 
1940; Pitts et al. 1941 ;Pitts and Bronk 1942). Furthermore, these studies 
revealed a marked interaction between these excitatory effects and baro- 
receptor inputs. From these and subsequent investigations, it became ac- 
cepted that the activity of sympathetic preganglionic neurones was deter- 
mined by the algebraic summation of excitatory and baroreceptor inputs 
at the level of the "vasomotor" centre. Sympathetic neurones have a low 
dynamic firing range, partly determined by intrinsic properties, but in gen- 
eral considered to result from interactions at the level of the "vasomotor 
centre", i.e. from its excitatory input. As such, baroreceptor control of 
these neurones can be considered to result from disfacilitation through a 
withdrawal of descending excitatory drives. 

This model has come under determined experimental attack in recent 
years, and it is now established that sympathetic control involves far more 
than this stereotyped mechanism (reviewed by Peiss 1965; Hilton 1965, 
1966, 1975, 1977; Smith 1974). It is now apparent that simple summa- 
tion at the level of the medulla cannot explain all observations. There are 
circumstances where the baroreceptor input can be totally over-ridden, in 
such a way that even non4inear summations are unlikely to provide all the 
answer (see Sect. 4.4). In addition some sympatho-excitatory effects ap- 
pear insensitive to baroreceptor inhibition (see Kahn and Mills 1967). It is 
also becoming clear that inhibitory effects can occur within the spinal 
cord, on or near to the final common pathway, the preganglionic neurone. 
It remains controversial whether this spinal inhibitory mechanism is re- 
sponsible for baroreceptor control of sympathetic activity, but it does 
imply an integrative action within the cord and presumably an integrative 
function for preganglionic sympathetic neurones. 

3.3.3.1 Brainstem Inputs to the Cord 
The fact that stimulating within the brainstem can excite the sympathetic 
motoneuronal pool has led to the conclusion that there is a relatively ste- 
reotyped bulbospinal excitatory system (see above, and Alexander 1946). 
Recent studies indicate that the sympatho-excitatory pathways are not 
homogeneous. Gebber and his colleagues have provided evidence for two 
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distinct excitatory systems (Gebber et al. 1973 ; Snyder and Gebber 1973 ; 
Taylor and Gebber 1973;Gebber and McCall 1976) divided into the pat- 
tern first described by Kahn and Mills (1967) and subsequently Nathan 
(1972). This conclusion rested on the fact that although electrical stimula- 
tion at sites in the medulla (Gebber et al. 1973 ; Snyder and Gebber 1973 ; 
Taylor and Gebber 1973; Gebber and McCall 1976), midbrain and hypo- 
thalamus (Gebber et al. 1973; Snyder and Gebber 1973) excite sympa- 
thetic activity, two patterns of response can be discerned: one is a short 
latency and relatively constant response, and the other, which may be 
evoked concomitantly from the same site, has a longer latency and is vari- 
able in appearance. In addition, the "early" response is resistant to barore- 
ceptor stimulation and the "late" is totally suppressed by baroreceptor in- 
puts. This suggests that the inhibition of the late response is mediated 
within the spinal cord. Other evidence to support this model will be re- 
viewed below (see Sect. 3.4). The resistance of the "early" excitatory input 
to sympathetic neurones to baroreceptor stimulation, may not be total. 
Coote and Macleod (personal communication) have shown that "early" 
excitatory responses evoked in thoracic white rami by stimulation in de- 
scending sympatho-excitatory tracts of the cervical cord can be inhibited 
during powerful baroreceptor stimulation. 

Medullary Pathways. The "pressor" area is considered to lie in the lateral 
areas of the medulla (see Alexander 1946). Gebber et al. (1973) showed 
that stimulating within this area, particularly within the n. reticularis ven- 
tralis and the LRN, evoked discharges in the postganglionic external caro- 
tid nerve over two pathways. Furthermore, Taylor and Gebber (1973) 
have described the effects of such stimulation on single preganglionic neu- 
rones, the early response (latency 21.4 + 1.0 ms) as against the late re- 
sponse (55.4 + 3.8 ms) was resistant to both baroreceptor activation and 
to stimulation in depressor areas of the medulla. In addition, later experi- 
ments have shown that stimulating in these areas of the medulla also ex- 
cited non-antidromically driven sympathetic "interneurones" located 
close to preganglionic neurones (T1-5)  identified by their antidromic re- 
sponse to stimulating the cervical sympathetic (Gebber and McCall 1976, 
and see above). The division into sympathetic preganglionic neurones and 
"interneurones" may not be as firm as Gebber and McCall claim; all that 
the authors can conclude with certainty is that the "interneurones" do 
not have an axon running in the cervical sympathetic nerve. 

These apparently distinct descending excitatory systems are differen- 
tially affected by stimulation in "depressor" areas of the medulla (Taylor 
and Gebber 1973; Snyder and Gebber 1973; Gebber and McCall 1976). 
The pathway responsible for the early excitatory response (which is resis- 
tant to "depressor" area and baroreceptor stimulation) conducts at around 
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5 m/s, and the pathway whose effects are powerfully suppressed by both 
baroreceptors and the "depressor" area conducts at up to 2 m/s. Seller 
(1973) describes the effects of stimulation of the brainstem on sympathet- 
ic preganglionic neurones with a latency broadly compatible with the range 
described above, but without discerning functionally distinct effects. 

Considerably faster pathways exerting excitatory effects on sympathet- 
ic activity have been described (Alanis et al. 1966; Cataresu and Henry 
1970; Henry and Calaresu 1974a-d). In particular, stimulation in the para- 
hypoglossal area (Alanis et al. 1966; Calaresu and Henry 1970) excites 
sympathetic neurones (of the inferior cardiac nerve) with a latency of 3 -  
10 ms (conduction velocity 45 m/s). It has already been shown that this 
area of the medulla receives a baroreceptor input (Lipski et al. 1975), but 
since this is an excitatory input, it is difficult to formulate an explanation 
for the relationship of this excitatory input to this sympatho-excitatory 
pathway. Alanis et al. (1966) argue that it represents a descending path- 
way (i.e. fibre tract) arising from the hypothalamus, so there may be no 
significant connection between the baroreceptor input to and the efferent 
effects of  stimulation of the parahypoglossal area. 

In alternative studies Henry and Calaresu (1974a) have described field 
potentials and unit responses in the NPR and LRN with a latency of around 
1.7 ms on stimulating within the intermediolateral cell column of upper 
thoracic levels at points which evoked cardio-acceleration. They considered 
that they were activating descending excitatory and inhibitory pathways 
converging onto sympathetic preganglionic neurones (Henry and Cataresu 
1974a-d), but since the calculated conduction velocities of these putative 
pathways were around 60 m/s it is impossible to reconcile them with the 
observations of others (see above). Even more serious was their failure to 
demonstrate that they were not activating fibres en passant, without direct 
functional connection to sympathetic preganglionic neurones. This is espe- 
cially likely, as the intermediolateral horn is adjacent to the lateral funicu- 
lus. In this context, the conduction velocities quoted are very similar to 
those of the bulbospinal respiratory neurones, whose axons traverse the 
lateral funicutus (see Bianchi 1971; Euler et al. 1973a, b; Merrill t974; 
Richter et al. 1975, and others). 

In an attempt to reconcile their results with those of others, Henry and 
Calaresu (1974d) have stimulated at cardio-accelerator and cardio-inhibitory 
sites in the medulla recording in the intermediolateral horn at T2. They 
claim two patterns of response, one of short latency (2.4-5.0 ms, mean 
3.0 ms) and another of long latency (12-40  ms, mean 20 ms), which they 
consider to act at spinal interneurone and preganglionic neurone respective- 
ly, but they provide no physiological identification of the neurones inves- 
tigated. Unfortunately their presumed interneuronal response, which is 
equivalent to their previous data in terms of latency (Henry and Calaresu 
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1974a), is at variance with the data of Gebber and McCall (1976), where 
the interneuronal response is within the overall range of  that seen in pre- 
ganglionic neurones although the modal latency is somewhat less (31 + 3 
ms compared to 41 -+ 6 ms for preganglionic neurones). Henry and Calare- 
su's observations can only have any significance if there are complex pro- 
priospinal pathways (see Kirchner et al. 1975a) but this has yet  to be con- 
vincingly demonstrated. 

Hypothalamic Pathways. The first demonstrations of brainstem control of  
sympathetic activity were those showing that  simulation of  the hypothala- 
mus could evoke increases in the activity of  post- and preganglionic sym- 
pathetic fibres (Bronk et al. 1940, and subsequently others). In the main, 
studies have since been concerned more specifically with the pathways 
from the hypothalamus affecting arterial blood pressure (see Abrahams et 
al. 1960; Schramm and Bignall 197 I, amongst many others). Most results 
suggest that the efferent pathways involve connections within the medulla, 
but anatomical evidence is accumulating that there may be direct connec- 
tions from the hypothalamus to the spinal cord, and particularly to the 
intermediolateraI horn of  the thoracic and lumbar cord (Beattie et al. 
1930;Smith 1965;Kuypers andMaisky 1975;Saper et al. 1976). 

More recent studies using spinal injections of  HRP (Kuypers andMaisky 
1975; Saper et al. 1976) are particularly revealing because they suggest a 
pathway from perifornical regions of  the hypothalamus descending direct- 
ly to the intermediolateral column of  the thoracic cord. Moreover, Saper 
et al. (1976) have demonstrated the anterograde transport of labelled 
amino acids from the hypothalamus to this region of  the cord, arguing for 
true terminal endings in the intermediolateral column. They have also 
shown that pathways from the hypothalamus terminate within regions of  
the midbrain and medulla previously implicated in cardiovascular control. 
The relationship of  these areas of  the midbrain and hypothalarnus to those 
stimulated in former studies that resulted in sympathetic activation (see 
Gebber et al. 1973) remains unresolved. 

3.3.3.2 Spinal Sympatho-Excitatory Pathways 
A specific locus of  a sympatho-excitatory pathway has been identified in 
the spinal cord of the cat. This pathway descends in the dorsolateral funi- 
culus (Illert and Gabriel 1972; Gebber et al. 1973; Coote and Macleod 
1974a, b; Foreman and Wurster 1973; Henry and Calaresu 1974b, c; 
Kirchner et al. 1975; Barman et al. 1976; Szulcyck 1976; Achari et al. 
1978; Geis et al. 1978). Lesions in this pathway have been shown to re- 
duce blood pressure and to abolish the cardiovascular responses to bilateral 
carotid occlusion in acute experiments in the cat (Foreman and Wurster 
1973), but  chronic experiments in the dog show that blood pressure reverts 
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to normal levels although the response to carotid occlusion remains absent 
(Geis et al. 1978). The interpretation of  these data may be complicated by 
the fact that this part of the dorsolateral funiculus also contains descend- 
ing axons of  at least two sympatho-inhibitory pathways, one of  which has 
also been implicated in mediating the inhibitory control of  sympathetic 
activity during the baroreceptor reflex (see Sect. 3.3.3.3). 

In addition to this established pathway, there is evidence that central 
respiratory drive, and in particular inspiratory drive, can effect sympathet- 
ic efferent activity (Polosa 1968;Mannard and Polosa 1973; Preiss et al. 
t975;  Preiss and Polosa 1977; Lipski et al. 1977). Since the excitability of  
preganglionic, and indeed postganglionic, vasoconstrictor neurones (see 
above) is so powerfully influenced by inspiratory activity, it is likely that 
the bulbospinal pathways from medullary respiratory neurones are involv- 
ed in a control or background drive to sympathetic neurones, mediated no 
doubt by spinal interneurones (see for example Lipski et al. 1977). 

3.3.3.3 Descending Inhibitory Control 
The medulla, and indeed other levels of the neuraxis, have been known to 
be capable of  reducing arterial blood pressure through an inhibition of  
sympathetic activity. The medullary "depressor" area was considered to 
encompass the medial reticular formation, extending medially from the 
intramedullary course of  the hypoglossal nerve tract (Alexander 1946). Its 
action was supposed to be mediated by an inhibitory action on the "pres- 
sor" area (see above), and in consequence baroreceptor control of sympa- 
thetic activity was mediated by this medullary reciprocal network. In fact 
data have accumulated showing that it is very unlikely that the medial ret- 
icular formation and the midline raphe system are involved in baroreceptor 
reflexes. Lesions of this area have been shown to leave baroreceptor re- 
flexes unaffected (see Sect. 2.2.3.3). There is, however, little doubt that the 
medial regions of  the medulla, i.e. the classical "depressor" area, can evoke 
profound changes in the discharge of  sympathetic neurones (Gootman and 
Cohen 1971 ; Taylor and Gebber 1973 ; Gebber et al. 1973 ; Kirchner et al. 
1975a, b; Gebber 1976; Gebber and McCall 1976) and can exert a tonic 
control ofsomato-sympathetic reflexes (Coote and Sato 1978, and others). 

In this section an at tempt will be made to evaluate the role of  this area 
in the control of  sympathetic activity and to establish whether other areas 
of the medulla can exert a significant inhibitory control of  sympathetic 
activity. The role of these areas in mediating baroreceptor reflexes will 
also be discussed. 

The Nucleus of  the Tractus Solitarius. The connections of  the NTS with 
the spinal cord were described in Sect. 2.2.1. It seems that there may be 
pathways independent of  the bulbospinal respiratory pathway, descending 
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from the NTS to the spinal cord and which may have a role in barorecep- 
tor-mediated inhibition (Hildebrandt 1974; Lipski and Trzebski 1975; 
McCall et al. 1977). 

In this context Lipski and Trzebski (1975) have shown that some baro- 
receptor-sensitive neurones in the vicinity of the NTS can be activated anti- 
dromically on stimulating within the cervical spinal cord. This pathway 
conducted at 29 -+ 5.2 m/s, but as it was activated by stimulation at C4 no 
details of its termination, and in particular of  its relevance to sympathetic 
control, were obtained. McCall et al. (1977) have provided evidence for a 
pathway from the NTS to the intermediomedial zone of the spinal grey, 
the pathway having a conduction velocity of 15 -+ 2 m/s. They have illus- 
trated that the firing patterns of neurones in the two areas have similar 
post-R-peaks and are similarly excited by electrical stimulation of sym- 
pathetic afferent fibres in the inferior cardiac nerve. These intermedio- 
medial neurones have been considered as candidates for a role as spinal 
inhibitory interneurone in the baroreceptor reflex pathway (see McCall et 
al. 1977). 

Pararnedian Reticular Nucleus; Ventromedial Medulla. There is consider- 
able evidence that stimulating in the vicinity of  the NPR and ventromedial 
medulla produces an inhibition of sympathetic activity (Coote and Down- 
man 1969; Gootman and Cohen 1971; Gebber et al. 1973; Taylor and 
Gebber 1973; Coote andMacleod 1974b, 1975;Henry and Calaresu 1974d; 
"Kirchner et al. 1975a, b; Gebber 1976). In many studies the latency of the 
evoked inhibition has been shown to be brief, in fact of an order of magni- 
tude less than the central delay of the baroreceptor reflex (see Coote and 
Downman 1969; Gootman and Cohen 1971; Coote and Macleod 1974b, 
1975; Henry and Calaresu 1974a; Gebber andMcCall 1976). It would ap- 
pear that the descending pathway from this region passes in the ventral 
funiculus of the spinal cord (Henry and Calaresu 1974b; Coote and Mac- 
leod 1975), and that this must be sectioned to permit the increase in the 
spinal component of  somato-sympathetic reflexes, especially in the case of 
those into the cardiac sympathetic nerves (Coote and Sato 1978). In other 
words, it would appear to mediate a tonic inhibition of the spinal compo- 
nent of  somato-sympathetic reflexes. 

It would seem that this pathway conducts at a fairly rapid rate (ca. 
12.0 m/s - see Gebber and McCall 1976) and the short latency would 
make its involvement in the baroreceptor reflex, where the central delay is 
so long, unlikely (see Sect. 3.3). To this must be added the fact that lesions, 
which may be extensive, in this area of the medulla (see L6fving 1961 ; 
Hilton and Spyer 197t; Barman and Gebber 1978a, and others) do not 
impair baroreceptor function. These observations are particularly signifi- 
cant because in other circumstances Gebber and his colleagues argue that 



68 K.M. Spyer 

the inhibition evoked from this area is analogous to baroreceptor-mediated 
inhibition of  sympathetic activity (see Snyder and Gebber t973; Taylor 
and Gebber 1973, 1975; Gebber andMcCall 1976;McCall et ah 1977). 

Raphe-Spinat Neurones. The inhibition that may be evoked from the mid- 
line, mainly in the n. raphe pallidus, has a long latency (Scherrer 1966; 
Coote and Macleod 1974a, b, 1975). This long latency is in complete dis- 
agreement with the latencies quoted by Henry and Cataresu (1974a). 
Coote and Macleod (I 974a) have provided evidence that 5-hydroxytrypt- 
amine-(5HT)-containing neurones may make up the sympatho-inhibitory 
pathway descending from the raphe which passes via the dorsolateral funi- 
culus. Subsequent studies have shown that lesions of  this part of  the spinal 
cord abolished the inhibitory effects of stimulating in the raphe on IC9 to 
T10 WR reflex (Coote and Macleod 1975), but Henry and Calaresu 
(1974b) concluded that the fast-conducting pathway originating from the 
raphe traversed the ventral funiculus! In view of  the many other discrep- 
ancies between this latter study and those of  all other groups, it is probably 
advisable to treat this observation with caution. Pharmacological depletion 
of  this pathway using p-chlorophenylalanine or 5-, 6-dihydroxytryptamine 
affected neither ongoing sympathetic activity nor baroreceptor control of  
sympathetic discharge (Coote et al. 1978). 

Ventrolateral Sympatho-Inhibitory Neurones. There is evidence that stim- 
ulating within LRN can produce falls of arterial pressure and a reduction 
in sympathetic efferent activity (Coote and Macleod 1974a), although 
there is also evidence of  sympatho-excitatory effects from stimulating 
in this area (Thomas et al. 1977). Coote and Macleod (1974a) have shown 
that the area producing these inhibitory effects corresponds to the area in 
which the A1 group of noradrenaline-containing neurones are located 
(Dahlstrdm and Fuxe 1965). These bulbospinal neurones are small and 
have mainly unmyelinated axons, which agrees with the long latency of  
the sympatho-inhibitory effects produced by stimulating in this area 
(Coote and Macleod 1974a, b). From the use of 6-hydroxydopamine le- 
sions (Coote and Maeleod 1977) and surgical transections (Coote and Mac- 
Ieod 1975, 1977), it appears that these neurones relay in the dorsolateral 
funiculus, in the area where Illert and Gabriel (1972) described a sympa- 
tho-inhibitory pathway but where there is also evidence for a sympatho- 
excitatory pathway (see above and Fig. 4). The inhibitory effects of  stim- 
ulating in the ventrolateral medulla on the spinal component  of  somato- 
sympathetic reflexes has been shown to be abolished by both surgical and 
pharmacological destruction of  this pathway (Coote and Macleod t 974a, b, 
1975, 1977). There is now convincing neuroanatomical data, from studies 
using both the retrograde transport of  HRP and the anterograde transport 
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of labelled amino acids, that axons from the LRN terminate in the inter- 
mediolateral cell column (Martin et al. 1979). 

! m 
mm 
mmmum 

5 
Fig. 4. Diagram of a transverse section of spinal cord (C 3 - 4 )  to show distribution of 
points, obtained in seven experiments, where electrical stimulation caused either an 
inhibition (o) or an excitation (u) of renal nerve activity. Unanaesthetised decerebrate 
cats, spinalised at C1. Figure has been modified to illustrate a course of bulbospinal 
noradrenergic neurones descending from LRN; b raphe-spinal neurones; c descending 
pathway from the ventromedial medulla. See text for further details. Adapted from 
Coote and MaeIeod (1974a) 

The Spinal Course of Inhibitory Pathways. The preceding sections have 
described the three main medullary areas with bulbospinal inhibitory pro- 
jections. The anatomical location of these pathways in the spinal cord and 
their characteristics have been established by several studies (Illert and 
Seller 1969; Illert and Gabriel 1972; Coote and Macleod t974a, 1975; 
Kirehner et al. 1975a, b) and are summarised in Fig. 4. 

The implication is that pathways from the medulla can act either direct- 
ly or via spinal interneurones on the preganglionic sympathetic neurones. 
It is now widely accepted that somato-sympathetic reflexes, which involve 
a spinal pathway as well as a supraspinal loop (reviewed by Sato and 
Schmidt 1973) are under bulbar inhibitory control. For example, recent 
studies in which the upper cervical cord has been cooled to block descend- 
ing inhibitory (and for that matter excitatory pathways) have revealed 
both an increase in the magnitude and shortening of the latency of inter- 
costal to T3 or T4 white rami reflex (Dembowsky et al. 1978). Naturally 
this type of experiment wilt not reveal which pathway or pathways are in- 
volved, but Coote and Sato (1978) have demonstrated that, with respect 
to somatic (and visceral) reflexes into cardiac sympathetic nerves, sections 
of the dorsolateral funiculus are ineffective in releasing the spinal compo- 
nent of  the reflex. This would implicate the ventromedial medulla and its 
efferent pathway through the ventral funiculus in the control of these re- 
flexes (see Coote and Macleod 1975). It would seem that destruction of 
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this ventral pathway is ineffective in altering the baroreceptor reflex con- 
trol of sympathetic activity (Illert and Seller 1969; Coote and Macleod 
1975). However, there is little doubt that the other two inhibitory systems 
can equally well affect somato-sympathetic reflexes, but presumably they 
do not exert a tonic control. 

For baroreceptor control of sympathetic activity, previous considera- 
tions must lead to a discussion of the role of the dorsolateral funiculus as 
the pathway for its action. This could result from the interplay of both 
descending excitatory and inhibitory pathways (see IIlert and Seller 1969; 
Foreman and Wurster 1973; Coote and Macleod 1974b, 1977; Geis et al. 
1978). 

With respect to the involvement of descending inhibitory pathways, 
the noradrenergic neurones in the LRN (sending axons in the dorsolateral 
funiculus) are a strong candidate (Coote and Macleod 1974b, 1977). At 
present the conclusion must rest on the fact that the spinal component of 
IC 10 to T9 WR reflex is partially suppressed by the electrical stimulation 
of the sinus nerve and that this suppression is reduced by lesions in the 
dorsolateral funiculus (Coote and Macleod 1974b) or by pharmacological 
destruction of noradrenergic neurones (Coote and Macleod 1977). 

However, other data have been used to counter, or at least question, 
this claim. Electrical stimulation of the sinus nerve evokes concurrent ac- 
tivation of both chemoreceptor and baroreceptor afferents, the former 
evoking an increase in sympathetic activity. Accordingly, the apparent de- 
pression could result from a "silent period" following the excitatory effect 
of chemoreceptor stimulation. Szulczyk (1976) has shown that the excit- 
atory effects of sinus nerve and hypoglossal nerve stimulation are blocked 
by DLF section (cf. Foreman and Wurster 1973 for the effects of such le- 
sions on the response to bilateral carotid occlusion). To distinguish which 
interpretation is correct, it would seem there is no option but to use single 
unit recordings. 

In the one case in which single sympathetic units have been studied 
during stimulation of  the dorsolateral funiculus, the results are complicat- 
ed by the fact that this region contains both excitatory and inhibitory 
pathways (Kirchner et al. 1975a). Stimulation normally evoked an early 
excitatory response followed by a long4asting "silent period", although in 
three cases a pure inhibition was seen. As the recordings were made extra- 
cellularly at T2 and several of  the neurones were activated by the ionto- 
phoretic application of glutamate, it would seem likely that the "silent 
period" could result from a direct inhibitory action. These authors also 
showed that the inhibition evoked from this area of the cord was present 
in chronic spinal animals, as judged from effects on somatic reflexes into 
white rami at lumbar levels and the renal nerve (Kirchner et al. 1975b).The 
authors consider that this makes a direct monosynaptic inhibitory action 
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unlikely to be the only mechanism for spinal inhibition but indicates the 
involvement of propriospinal pathways (see also Kirchner et al. 1975a). 

In contrast, Coote and Macleod (1974b, 1977) argue for a direct nor- 
adrenergic inhibitory innervation of sympathetic neurones from bulbo- 
spinal neurones. This would be a surprising situation as most long-circuited 
inhibitory effects are mediated by an inhibitory interneurone close to the 
target neurone. In support of  their claim is the fact that the iontophoretic 
application of noradrenafine to sympathetic pregangtionic neurones de- 
presses their activity (Coote and Macleod, unpublished work), although 
Hongo and Ryall (1966) have provided less clear-cut results on the effects 
of noradrenaline. There is, however, evidence that the ~-agonist clonidine, 
given systemically, reduces the size of spinal reflexes onto sympathetic 
neurones (Dembowsky et al. 1978; Haeusler 1977). As yet the ionto- 
phoretic studies would seem to be at an early stage, and the use of specific 
antagonists to NA on the effectiveness of baroreceptor inputs to the pre- 
ganglionic neurones would be indicated. Certainly, since baroreceptor 
stimulation can affect the performance of somato-sympathetic reflexes (see 
refs. above and Fussey et al. 1973a), an effect that can be produced by ac- 
tivating any of three inhibitory pathways so far identified, there can be 
little doubt that at least part of the baroreceptor reflex is mediated by an 
inhibitory action with the cord. 

3.4 Integrative Control of Sympathetic Activity 

There are indications that two general processes are involved in barorecep- 
tor control of sympathetic activity. The first process is not at variance 
with the generally accepted view that the baroreceptors act by inhibiting 
descending excitatory pathways. Its extension is that it does not limit this 
action to a control of medullary excitatory pathways but opens the possi- 
bility that there may be parallel channels from the hypothalamus and mid- 
brain which may pass without synaptic connections in the medulla. The 
second process is the possibility that active inhibition occurs at the level 
of  the spinal cord. From the various studies referred to in the previous 
sections, a general conclusion can be made that there are pathways, of un- 
known synaptic complexity, which descend through the spinal cord and 
can exert a powerful inhibitory control of sympathetic activity. As yet 
there is no conclusive evidence that the baroreceptor influence is mediated 
by such a system, although the ability of the baroreceptor input to sup- 
press both medullary and spinally evoked sympatho-excitatory responses 
is striking. It is probably not too naive to argue that the baroreceptors 
which have been known to exert such a powerful control of vasoconstric- 
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tor and cardio-accelerator " tone"  through the sympathetic nervous system 
are likely to utilise both systems. 

Accepting then the premise that baroreceptor control of  sympathetic 
activity may be exerted by both disfacilitation (i.e. control o f  descending 
excitatory inputs) and active inhibition within the spinal cord, is it possible 
to speculate usefully on the connections, at least those acting within the 
cord, that integrate such a control? It is probably justified for a review to 
pose such a question, and to conclude this section, two simple models will 
be proposed as a challenge for subsequent experimental work (see Fig. 5). 

2- 

BARORECEPTOR$ BARORECEPTCRS 

Fig. 5a, b. Diagrams of the relationship of bulbospinal spinal pathways in the media- 
tion of the baroreceptor reflex. • neurones exerting an excitatory function; o neurones 
exerting an inhibitory function. 1 medulla; 2 spinal cord; NTS nucleus of the tractus 
solitarius. PSM preganglionic sympathetic motoneurone; IML intermediolateral cell 
column; IMM intermediomedial cell column. In a the site of convergence is at the level 
of the PSM, in b an excitatory interneurone forms an important site of integration. 
Dotted lines refer to pathways of unknown synaptic complexity. Further details in the 
text 

In considering baroreceptor regulation of  sympathetic activity we are 
really only questioning the integrative role o f  these preganglionic neurones 
(Fig. 5a). In this model, their output  is determined by the interplay of  in- 
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hibitory and excitatory inputs at the cell body (and presumably its den- 
drites) of  the sympathetic neurone. This does not  preclude interactions 
further back in multisynaptic pathways onto them, but draws an analogy 
to the situation in the somatic system. Unfortunately there is insufficient 
data, as yet, to give credence to the presence of excitatory or inhibitory 
interneurones in the intermediolateral column that impinge on sympathetic 
preganglionic neurones. The evidence in favour of  an excitatory interneu- 
rone is the stronger and received indirect support from a study using intra- 
cellular recordings from sympathetic neurones (Coote and Westbury 1974, 
1979b). In the latter study the membrane potential was marked by random 
EPSPs of  relatively small amplitude and short duration, with no evidence 
of  large slow potential changes. This observation may be taken as evidence 
for the fact that their control is exerted by an excitatory interneurone 
alone (Fig. 5b). In this situation, inhibitory control, either baroreceptor 
or recurrent, could be exerted by convergence onto this interneurone. 

In both models, it is possible to envisage that some descending excita- 
tory control is exerted directly on the preganglionic neurone, in view of  
the baroreceptor-insensitive excitatory effects that may be elicited from 
the brainstem (see Sect. 3.3.3.2). It is, however, unlikely that these inputs 
are totally baroreceptor-insensitive; their apparent insensitivity probably 
represents only a more synaptically secure input than other descending ex- 
citatory systems. Accordingly, its failure to excite sympathetic activity at 
heightened levels of baroreceptor stimulation would result from the re- 
duced excitatory input, i.e. disfacilation, (see Fig. 5b) or from the power 
of  the induced inhibitory control of  sympathetic activity (Fig. 5a). 

To complete an already complex arrangement, the neurones of  the 
intermediomedial nucleus may also function as interneurones in the baro- 
receptor reflex (McCall et al. 1977). It is very simple to accommodate 
their action in either of  the schemes presented in Fig. 5. It may be that a 
combination of  these two models will present the most adequate approxi- 
mation to reality; detailed experimental studies using conventional neuro- 
physiological and neuroanatomical techniques can be expected to resolve 
this question in due course. 

3.5 Vagal Control of  the Heart 

Nervous control of  the heart is mediated by the reciprocal discharges of 
its sympathetic (see above) and vagal innervations. The role of  the vagus in 
exerting a negative chronotropic influence is so well documented that cita- 
tion is superfluous. In the context of  the present review its significance 
rests on the abundant demonstration that the baroreceptor control of  the 
heart is mediated primarily by the vagal outflow (see Heymans and Neil 
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1958; Schaeffer 1960; Kirchheim 1976; Levy 1977). This basic control 
mechanism appears to function relatively normally in the decerebrate ani- 
mal, but until the present the basic circuitry linking the baroreceptor af- 
ferent input to the vagal outflow, i.e. the pregangtionic vagal neurones, re- 
mained in doubt  (for discussion see McAllen and Spyer 1978;Spyer 1979). 
This uncertainty resulted from the fact that although the vagus had been 
known for at least the last hundred years to have two motor  nuclei in the 
medulla of  mammals, controversy had remained concerning which con- 
tains the cell bodies of  the preganglionic innervation of  the heart (Mitchell 
and Warwick 1955;McAlten and Syper 1976, 1978a; Spyer 1979). Accord- 
ingly, most data relating to vagat control has been obtained from the ef- 
fects of  the baroreceptors on heart rate or the activity of  preganglionic 
vagal fibres in the cervical vagus or cardiac branches of  the thoracic vagus. 

The studies referred to above have been reviewed extensively (Heymans 
and Nell 1958; Kirchheim 1976; Levy 1977), and it is unnecessary to re- 
iterate in detail that in animals with heart rates less than 180 beats/min 
the vagal innervation exerts a beat-by-beat control of  cardiac function 
(Levy 1977). However, since neuroeffector delays are long, in the region 
of  0.3 ms (Warner and Cox 1962), this type of study will provide little of  
value regarding the central integrative responses underlying the observed 
changes. It is for this reason that the subsequent discussion will concern 
the activity and control of  preganglionic vagal neurones, firstly with re- 
spect to fibre recordings and finally with a discussion of  recent studies re- 
lating to recordings from the cell bodies of these neurones. 

3.6 Preganglionic Vagal Cardiomotor Neurones 

Preganglionic vagal fibres with presumed cardio4nhibitory function have 
been described as having distinctive firing patterns. They have a variable 
pulse rhythm, which can be seen as a burst of  discharge synchronous with 
each cardiac cycle, or revealed by constructing histograms of their pulse- 
triggered or post-R wave-triggered activity (Magruth et at. 1951; Green 
1959; Schaeffer 1960; Okada et al. 1961 a, b; Weidinger et al. 1962; Jewett 
1964; Katona et at. 1970, 1977; Kunze 1972). This cardiac rhythm of  
baroreceptor origin is usually superimposed on a respiratory-related 
rhythm; they normally fire in phase with expiration (Ri]lant 1936a, b; 
Weidinger et al. 1962; Iriuchifima and Kumada 1963, 1964;Jewett 1964; 
Katona et al. 1970, 1977; Neil and Palmer 1975; Davidson et al. 1976). 
Their overall discharge frequency is low: in the cat vagal "'tone" is espe- 
cially low (see Kunze 1972; McAllen and Spyer 1976, 1978a), whilst in 
the dog spontaneous activity is more conspicuous. Even so, the overall 
characteristics of  discharge have similarities, and it is rare for vagal efferent 
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fibres to the heart to fire at greater than 20 impulses/s (Iriuchi]ima and 
Kumada 1963, 1964;Jewett 1964; Katona et al. 1970, 1977; Kunze 1972). 
However, with arterial pressure elevated to around 200 mmHg, activity 
may reach 30 -40  Hz (see Jewett 1964; Katona et al. 1970, 1977;Kunze 
1972), although Okada et al .(196 lb) claim recording discharges with up 
to 26 impulses/s per cardiac cycle, at a mean frequency of 120 Hz, in the 
cardiac branches of the cat. 

It is pertinent at this point to question the number of cardiac efferent 
fibres present in the cervical vagus. It is likely that a very few can have a 
marked effect on heart rate (McAllen and Spyer 1976, 1978a), and it is 
known that in the cat there are only some 500 B fibres in the cervical vagus 
which appear to pass to the thoracic vagus or its various branches (Agostini 
et al. 1957). It is established beyond reasonable doubt that, in mammals, 
cardio4nhibitory neurones have B fibre axons (Heinbecker 1930; Hein- 
becker and O'Leary 1933; Brown and Eccles 1934a, b; Grundfest 1939; 
Middleton et al. 1950). This has been shown by graded electrical stimula- 
tion of the cervical vagus, recording the evoked volley and noting the ef- 
ferent effects on the heart (see also McAllen and Spyer 1978a). There are, 
however, equally strong indications that among the population of B fibres 
so activated are those destined for the lungs, which have a bronchocon- 
strictor function (Widdicombe 1961, 1966; Jewett 1964) and the oeso- 
phagus (Jewett 1964), so that the total number of cardiac efferents is like- 
ly to be very much smaller. 

Attempts have been made to assess the complexity of connections be- 
tween the arterial baroreceptors and these vagal efferent fibres by study- 
ing either the nature of their response to electrical stimulation of the sinus 
nerve (Iriuchi]ima and Kumada 1963, 1964; Kunze 1972) or the proper- 
ties of their cardiac rhythm (Jewett 1964;Katona et al. 1970, 1977; 
Kunze 1972). Both these approaches and the data accrued will be discussed 
later, but as in both cases efferent conduction time is unknown and in the 
latter afferent conduction time is also unknown, the reflex times obtained 
can give little indication of the central delay of the reflex and hence of its 
neuronal complexity. For this purpose it is necessary to have the possibil- 
ity of recording from the cell bodies of  preganglionic vagal neurones. 

3.6.1 Location of  Preganglionic Vagal Neurones 

3.6.1.1 Anatomical Studies 

The existence of two vagal nuclei in the medulla of mammals has been ap- 
preciated for at least a hundred years. There had at first been controversy 
whether one was sensory and the other motor but by the early part of this 
century it was agreed that both the dorsal (DNV, dorsal motor nucleus of 
the vagus) and the ventral (NA, n. ambiguus) had motor functions (see 



76 K.M. Spyer 

Mitchell and Warwick 1955 for discussion). By the same token, it became 
accepted that the DNV was a visceral-motor nucleus, the NA having a so- 
matomotor function (Mitchell and Warwick 1955). For this reason, the 
consensus was that the DNV contained the cardio-inhibitory vagal neu- 
tones (Mitchell and Warwick 1955, and most current textbooks of neuro- 
anatomy), although dissenting voices have remained (Kosaka 1909;Szen- 
tagothai 1952). 

The major evidence for the DNV as the location for these vagal cell 
bodies was from studies observing the chromalytic changes produced in 
the vagal nuclei following section of the vagus and its peripheral branches 
(Mitchell and Warwick 1955; Smolen and Truex 1977 for review). The 
alternative technique of observing peripheral changes after central destruc- 
tion has provided contrasting results. Szentagothai (I 952) showed that le- 
sions within the NA of the cat were followed by signs of Wallerian degen- 
eration in the vagal cardiac branches; similar discrete lesions in the DNV 
were ineffective hi producing such changes (see also Kosaka 1909; Kerr 
1967, 1969). The implication is that the cell bodies of cardio-inhibitory 
neurones are located in the NA. These results are unfortunately not with- 
out certain limitations, as the technique of central destruction will destroy 
fibres en passant as well as cell bodies, and it is known that efferent axons 
from the DNV pass close to the NA, whilst the axons of the NA may pass 
dorsomedially towards the DNV (Ca]aI 1909). 

There are as yet few studies on the transport of HRP from the vagal 
cardiac branches to the medulla (Bennett et al. to be published; Garcia et 
al. to be published; Nosaka et al. 1979), but several studies have shown 
the retrograde transport of HRP from the cervical vagus to both vagal nu- 
clei in the medulla (Devito et al. 1974;Miller 1976;Robertson et al. 1976; 
Geis and Wurster 1978). In general, labelling is more apparent in the DNV 
than the NA by factor of at least ten (Miller 1976;Robertson et al. 1976). 
In one study, medullary labelling has been observed after placing HRP on 
the sinoatrial and atrioventricular nodes of the heart in the cat (Todo et ai. 
1977) on the basis that this would label preganglionic vagal neurones. Un- 
fortunately this is not without serious inherent problems: HRP is readily 
transported in the blood and would be expected to enter the central sys- 
tem whenever the blood-brain barrier is ineffective. It is hence not sur- 
prising that labelling was seen in the vicinity of the NTS and DNV close to 
the area postrema, particularly as no evidence was provided that the mate- 
rial was intracellular. 

In a similar study, Gels and Wurster (1978) have shown that epicardial- 
ly placed HRP is transported to the brainstem. The majority of labelled 
neurones (78%) were seen in the NA, just 5% in the DNV and the rest in 
between these nuclei. Similarly, Bennett et al. (to be published) achieved 
equivalent neuronal labelling from identified cardiac branches in both NA 
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and DNV, whilst Garcia et al. (to be published) noted that labelling from 
cardiac branches was mostly restricted to the NA, although pulmonary 
branch axons appeared to originate from neurones in both NA and DNV. 
Nosaka et al. (1979) have identified labelled neurones in both the DNV 
and NA of the rat, after embedding cardiac vagal branches in HRP, and 
also in the region between these two nuclei. Since it is apparent that cardi- 
ac branches are often contaminated with fibres destined for the lungs, it is 
impossible to conclude very much from these studies in the absence of 
physiological data. The labelling in the DNV from cardiac branches might 
represent the efferents with unmyelinated axons described by McAllen 
and Spyer (1976) and demonstrated to be profuse by Bennett et al. (to be 
published). 

3.6.1.2 Destructive Lesions in the Medulla: Cardiac Effects 
The effects of  electrolytic lesions in the medulla on vagally mediated bra- 
dycardia were summarised earlier (Sect. 2.2.3.3). Broadly, destruction of 
the DNV is ineffective in abrogating such effects (Kerr 1967, 1969;Bori- 
son and Domjan 1970), whilst lesions in the NA were effective in the cat 
(see Lee et al. 1972). 

3. 6.1.3 Neurophysiological Studies 
Electrical Stimulation. Physiological studies concerning the site of origin 
of preganglionic vagal neurones supplying the heart, based on electrical 
stimulation of the medulla, have favoured either or both vagal nuclei 
(Miller and Bowman 1915; Chiurugi and Mollica 1954; Calaresu andPearce 
1965b; Gunn et al. 1968; Thomas and Calaresu 1974a; Chen and Chai 
1976;Dugin et at. 1976). It is worth recalling that the efferent axons from 
each nucleus may pass in close proximity to the other nucleus (Ca]al 1909) 
and hence may account for at least part of the confusion. Equally, current 
spread from the point of stimulation may account for at least some of the 
observed changes. This is particularly so in the case of the DNV, which is 
located close to the NTS, where baroreceptor afferents terminate. Accord- 
ingly, bradycardia mediated by vagal fibres can result from stimulating 
any part of  the baroreceptor reflex pathway. Stimulation elsewhere in the 
CNS may well evoke a bradycardia by a similar process. 

There may well be a species difference in the location of these vagal 
cardio-inhibitory neurones, which may also account for some of the dif- 
ferences in the literature. In the cat, vagal bradycardia can be obtained by 
stimulating the NA (Gunnet  al. 1968; Thomas and Calaresu 1974a; 
Chen and Chai 1976) but not the DNV (Calaresu and Pearce 1965b; Gunn 
et al. 1968). In the dog, Gunn et al. (1968) report eliciting vagal brady- 
cardia from both sites. In contrast there are claims that vagat bradycardia 
can be evoked from stimulating the DNV in the cat (Miller and Bowman 
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1915; Chiurigi and Mollica 1954; Dugin et al. 1976). It is worth noting 
that the bradycardia elicited from the NA is abolished by ipsilateral vago- 
tomoy in the cat whilst that evoked from the NTS and DNV is only par- 
tially reduced by ipsilateral vagotomy (Thomas and Calaresu 1974a). 

Recording Experiments. Calaresu and Pearce (1965a) were unable to re- 
cord activity correlated with the cardiac cycle in the DNV of the cat. This 
was perhaps not  unexpected in view of  the data from stimulating and le- 
sion studies (see above). In conclusion, in the cat it appears likely that the 
NA would contain vagal cardio-inhibitory neurones. This has been con- 
firmed directly in recent studies (McAllen and Spyer 1975, 1976, 1977, 
1978a, b). In the cat, they have been shown that there are neurones in the 
NA which can be antidromically activated by stimulating cardiac branches 
at intensities which evoke cardiac slowing (McAllen and Spyer 1976, 
1978a) and that these neurones have axons which are in the range of  B 
fibres on the basis of  calculated conduction velocity. In the same study 
similar neurones were not  found in the DNV; furthermore, on studying a 
large number of  neurones in the DNV relaying to the cervical vagus, none 
with B fibres was found to relay into the cardiac branches (McAllen and 
Spyer 1976; Fig. 6). Three neurones with axons in the C fibre range were, 

_ _ _  o 

+3  

+2 

~0 ~O 
0 +1 + 2  -I-3 

Fig. 6. The positions of 46 cardiac efferent neurones are shown on four standard sec- 
tions of the medulla taken at obex level, and at 1-mm intervals rostrally. Inserts, 2 mm 
square, show details of their relation to the structure of the nucleus ambiguus. TS 
tractus solitarius; DNV dorsal motor nucleus of the vagus; NA nucleus ambiguus. 
McAllen and Spyer (1976) 
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however, seen to relay to the cardiac branches, which could explain cer- 
tain of the observations of Todo et al. (1977), Geis and Wurster (1978) 
and Bennett et al. (to be published). 

This demonstration that vagal neurones with B fibre axons originate in 
the NA does not on its own prove a cardio-inhibitory function. Among 
the B fibres in the thoracic vagus are bronchoconstrictor vagaI neurones 
(Widdicombe 1961, 1966 ;Jewett 1964) and oesophageal-motor vagal neu- 
rones (Jewett 1964). Physiological studies have added still further support 
to the original suggestion (McAllen and Spyer 1977, 1978a, b). These have 
involved analysing the firing patterns of identified cardiac-branch-project- 
ing neurones, firing patterns from both spontaneously active neurones, 
and those induced to fire by the iontophoretic application of DL-homo- 
cysteic acid (DLH) or glutamate. A major group of neurones with an expi- 
ratory firing pattern (the majority were usually silent until the expulsion 
of excitant amino acid) have been observed and were shown to have a 
cardiac rhythm of baroreceptor origin in their discharge (McAllen and 
Spyer 1978a, b). These neurones, when activated by amino acid, were cap- 
able of slowing the heart (McAtlen and Spyer 1977, 1978a), which con- 
firms the impression that they represent cardiac vagal motoneurones. 

A second group of neurones with B fibre axons were also identified as 
projecting to either cardiac branches or lung branches of the thoracic 
vagus. These neurones were usually spontaneously active, discharging with 
an inspiratory rhythm. They were not excited by the arterial baroreceptors 
(McAlIen and Spyer 1978a) but were excited by laryngeal stimulation and 
would seem equivalent to the vagal efferent fibres described by Widdi- 
combe (1961, 1966) as bronchoconstrictor in function. There was also a 
degree of spatial separation of the two classes of vagal preganglionic neu- 
rone within the NA (see Fig. 7). The bronchoconstrictor neurones tended 
to be more rostrally and dorsally placed in the nucleus, extending into the 
n. retrofacialis. 

As suggested previously there may be species differences regarding the 
location of cardiac vagal motoneurones. In the pigeon it is clear from neu- 
rophysiological studies that they are located in the DNV (Schwaber and 
Cohen 1978a, b), but it is generally considered that this species has a 
single vagal motor nucleus, the DNV. In the dog there is evidence that the 
NA contains cardiac vagal motoneurones, i.e. neurones activated anti- 
dromicaUy from cardiac branches of the right vagus (McAllen and Spyer 
unpublished work), but no data exists regarding the DNV. In the rabbit, 
however, there is evidence in favour of their tocalisation in the DNV. 
Schwaber and Schneiderman (1975) and Kaufman et al. (1979) have de- 
scribed in the DNV of the rabbit neurones whose axons projected in the 
cervical vagus and which were, on the basis of conduction velocity, B 
fibres. These they considered to be cardio-inhibitory: their spontaneous 
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and evoked discharge varied inversely, but proportionally, with heart rate 
and they were located in the area of  the DNV which elicited a low-threshold 
bradycardia on electrical stimulation. Moreover, the discharge of  these 
neurones evoked by the iontophoresis of  DLH elicited a bradycardia (Jor- 
dan et al. 1979). In a recent study, Jordan et al. (1979) have described a 
population o f  vagal neurones with B-fibre axons which are located in both 
DNV and NA. These neurones have been shown to have identical proper- 
ties to CVMs described in the cat (see above). 
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Fig. 7. a The position of 21 CVMs (o) and nine BVMs (X) on five standard sections of 
the medulla taken at obex level, 1, 2, 3 and 4 mm rostral to the obex. DMN dorsal 
motor nucleus of the vagus;NA nucleus ambiguus;NRF nucleus retrofascialis, b and c 
show histograms of the conduction velocities of cardiac and bronchomotor units, re- 
spectively. MeA tlen and Spyer (1978a) 

3.6.2 Baroreceptor Input to PregangIionic Vagal Neurones 

The influence of  the arterial baroreceptors on vagal preganglionic neu- 
rones is well documented (Marguth et al. 1951; Green 1959; Schaeffer 
1960; Okada et al. 1961a, b; Weidinger et al. 1962; Jewett 1962, 1964; 
Iriuchijima and Kurnada 1963, 1964; Katona et al. 1970, 1977;Davidson 
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et al. 1976), but there is considerably less quantitative data available on 
this subject. Furthermore, even the quantitative information available is in 
a form which does not allow any conclusions to be drawn regarding the 
central mechanisms and pathways linking the baroreceptor afferent input 
to these neurones. 

In the main, studies have fallen into two categories. Firstly, the effects 
of electrical stimulation of the SN on vagal efferent fibres located in the 
cervical vagus (Iriuchifima and Kumada 1964) and vagal cardiac branches 
(Iriuchifima and Kumada 1963; Kunze 1972) have been observed. Second- 
ly, attempts have been made to analyse the pulse-related discharge of simi- 
lar vagal efferent fibres (Jewett 1962, 1964; Weiclinger et al. 1962; Katona 
et al. 1970, 1977;Kunze 1972). 

In the cat, Kunze (1972) has shown that stimulation of the SN excites 
efferent fibres in the vagal cardiac branches with a latency in the range of 
26-90  ms, and their probability of discharge was maximal at 70--400 ms, 
in different units, after the rise in systolic pressure. With increases in arte- 
rial pressure the discharge of neurones rose to a peak instantaneous fre- 
quency of up to 40 Hz. In similar experiments in the dog, Iriuchi]ima and 
Kumada (1963) report a latency of 60-100 ms for evoked responses in 
cardiac branch fibres and 50-100 ms for fibres in the cervical vagus (Iriu- 
chifima and Kumada 1964) on stimulating the SN. They also noted that 
the stimulus was most effective during expiration, responses rarely being 
observed from stimuli occurring during inspiration (Iriuchijirna and Kuma- 
da 1964; for discussion see Sect. 4.3). 

There is general agreement that the pulse-related discharge of vagal ef- 
ferent fibres in the cervical vagus occurs some 50-250 ms after the systolic 
rise in aortic pressure (Jewett 1964; Katona et al. 1970). Jewett (1964) 
showed that the first peak in histograms of post-R-wave-triggered vagal 
activity occurred some 60-240 ms after the systolic rise in pressure, a 
second peak related to the dichrotic notch following some 180--300 ms 
after the first peak. Katona et al. (1970) describe the first peak at 50-40  
ms (mostly around 80 ms), the second 80--200 ms after the dichrotic rise 
in pressure. This contrasts with observations of Weiclinger et al. (I 962), in 
the cat, which suggest that the peak in vagal activity follows 45-55  ms 
after the R wave of  the ECG. Since the aortic pressure starts to rise some 
60 ms after the R wave of  the ECG (see Jewett 1964; Katona et al. 1970), 
it is unlikely that the cardiac rhythm of these multifibre preparations can 
result from inputs generated from the arterial baroreceptors, except in the 
case where the peak is related to the preceding arterial pulse, which might 
be possible at rapid heart rates. 

In order to overcome the problems in interpreting the above data in 
terms of the reflex time of the baroreceptor-vagal reflex, McAllen and 
Spyer (1978b) have made accurate timings of the probability of discharge 
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of CVMs, in relation to the arterial pulse. These were recorded in the NA 
of the cat, the afferent barrage from the carotid sinus also being moni- 
tored. In a proportion of their preparations the aortic baroreceptors had 
been denervated, and as the cardiac rhythm of  CVMs was then obliterated 
by bilateral carotid occlusion, it was possible to conclude that this rhythm 
depended on an input from sinus baroreceptors alone. The pulse-related 
peak followed the increase in SN activity by from 20 -110  ms in individual 
neurones (McAllen and Spyer 1978b, see Fig. 8). In a proportion of  these 
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Fig. 8 a - c .  The cardiac rhythm of a CVM (aortic baroreceptors denervated). Pulse-trig- 
gered histograms (256 cycles superimposed, 10 ms bin width) of  CVM activity {upper 
trace) and sinus nerve activity {lower trace). Femoral  pulse wave form was averaged 
simultaneously with the same bin width {middle trace), a Before, b during and e after 
bilateral carotid occlusion. The unit  was firing in response to 17 nA DLH. McAllen and 
Spyer (1978b) 

neurones the effect of  SN stimulation was also tested. Invariably the la- 
tency of  the response was significantly shorter than that measured for nat- 
ural baroreceptor stimulation (McAllen and Spyer 1978b; Spyer 1979). 
With the reservation that these values of  reflex time are not  an accurate 
measure of  central delay (see Spyer 1979 for discussion), they do provide 
an indication of the complexity of connection in the reflex pathway. The 
reflex time at physiological levels of blood pressure is surprisingly long, 
considering that these values eliminate efferent conduction (see Fig. 8). 
This makes it unlikely that the baroreceptor-vagal reflex involves a simple 
fast-conducting disynaptic pathway (McAllen and Spyer 1978b;Spyer 
1979). Baroreceptor afferents are known to terminate in the NTS (Sect. 
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2.1 and 2.2), and the NTS projects to the NA (Sect. 2.2), but the complex- 
ity of  connections within both the NTS and NA remains unresolved (Spyer 
1975, 1979;McAllen et al. 1979) so it is not  as yet  possible to eliminate 
a role for supramedultary connections in the normal reflex pathway. 

3.6.3 Supramedullary Inputs to Preganglionic Vagal Neurones 

The previous sections have outlined the putative ascending projections in 
the baroreceptor reflex pathway and have indicated a role for suprabulbar 
and diencephalic areas in the reflex. Some of  the pathway between the 
baroreceptor input  and CVMs has been indicated above, and it is sufficient 
at this point  to emphasise that there is both anatomical and physiological 
evidence for hypothalamic pathways descending to areas of  the medulla 
known to contain preganglionic vagal neurones. From the use of  retro- 
grade transport HRP and the anterograde transport of tritiated amino 
acids, Saper et al. (1976) described pathways emanating from the hypo- 
thalamus and ending in the NA, NTS, and close to the DNV. Swanson 
(1977) has further demonstrated that descending fibres from the para- 
ventricular nucleus of the hypothalamus containing the carrier protein 
neurophysin project to or through the NA, DNV, NTS, and lateral teg- 
mental field at the nucleus intermedius. The role of these connections re- 
mains to be resolved, and the physiological data relating to suprabulbar 
control of  vagal activity will be considered in subsequent sections (see also 
Fig. 13, p. 100). 

4 Modulation of  the Baroreceptor Reflex 

The previous sections have detailed the current position concerning the 
central pathways involved in mediating the baroreceptor control of  sym- 
pathetic and vagal efferent activity. The details are, however, as yet in- 
complete. A further set of  experimental studies have provided information 
on both the organisation and control of  the baroreceptor reflex. These 
have involved studies on the interaction between the different baroreceptor 
afferent inputs, between baroreceptors and other peripheral afferent in- 
puts, and finally the influence of stimulation within the brainstem and 
cerebellum on the efficacy of  the baroreceptor reflex. These approaches 
are diverse, yet  the observations have revealed some physiological phenom- 
ena that may indicate common synaptic processes in the integration of  
these various inputs. 
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4.1 Interactions Between Carotid Sinus and Aortic Arch 
Baroreceptor Inputs 

From numerous reports it has been accepted that there is a broad degree 
of similarity in the receptor properties of the baroreceptors of the carotid 
sinus and aortic arch (reviewed by Kirchheim t976), although there may 
be differences in their dynamic sensitivity (see Landgren 1952; Angell- 
James 1971a,b), and it has been suggested that they may act over different 
ranges of pressure (Petletier et al. 1972; Shepherd 1973). Since this latter 
suggestion depended on observations of whole nerve activity, its applic- 
ability to the normal in vivo situation is questioned; Samodelov et at. 
(1979) consider that the working ranges and sensitivities of individual re- 
ceptors from the two areas are in fact similar, at least in the cat. 

There is, however, good evidence that the quantitative effects of the 
two groups of baroreceptors on vasomotor activity and the heart may be 
different.Angell-James and Daly (1970) have shown that at static pressures 
within the physiological range, vascular resistance is reduced to a greater 
extent by a change in sinus pressure than an equivalent change in pressure 
in the aortic arch. Such differences were not seen during perfusion with 
putsatile pressures. These quantitative differences may reflect either dif- 
ferences in the distensibility properties of the two areas or a central phe- 
nomenon (Angell-James and Daly 1970). The latter could be due to af- 
ferent density or differential effects on central neurones, or both. These 
authors also demonstrated that simultaneous stimulation of the aortic arch 
and carotid sinus baroreceptors evoked responses of greater magnitude than 
stimulating either alone, although the apparent summation resulted in an 
effect that was less than the algebraic sum of the individual effects. This 
type of summation has been demonstrated by others (Stegemann and 
Mi~ller-Biiton 1966; Kotter et al. 1970; Warzel and BrattstrOm 1972; Kato- 
na and Tan 1975). 

Such interactions in the control of vascular resistance imply a form of 
central summation, but Wang and Borison (1947b) argue for an occlusive 
interaction between baroreceptor inputs from the two carotid sinuses, al- 
though they readity demonstrated facilitation in the baroreceptor-cardiac 
reflexes mediated by the vagal efferents. Such a facilitation of vagally 
mediated cardiac effects appears not uncommon, representing either an 
intrinsic property or extrinsic control of the vagat preganglionic neuronal 
pool. 

In an earlier section (2.2) the termination of AN and SN afferents in 
the medulla was described, and mention was made of attempts to identify 
the convergence of these inputs onto second-order neurones in the NTS. 
Suggestions for convergence have resulted from monitoring evoked poten- 
tials concurrently at the same site on stimulating the AN and the SN 
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(Hellner and Baumgarten 1961 ; Biscoe and Sampson 1970a; Gabriel and 
Seller 1970), but single unit studies have as yet failed to demonstrate con- 
vergence at this level of the brainstem (MeAllen 1973). It is, however, 
often observed on medullary neurones located beyond the confines of the 
NTS (Biscoe and Sampson 1970b;McAllen 1973), which presumably re- 
present later stages in the reflex pathway. 

Direct studies on the interactions of SN and AN inputs are few (Biscoe 
and Sampson 1970b; Gabriel and Seller 1970; McAllen 1973; Jordan 1977; 
Jordan and Spyer 1978b), and all are complicated by the fact that electri- 
cal stimulation of SN evokes a concomitant activation of chemoreceptor 
afferents (as also occurs with AN stimulation in the cat). Gabriel and Seller 
(1970) have shown that the evoked response to electrical stimulation of 
the SN recorded in the NTS is modified by a conditioning stimulus to the 
AN, and vice versa. Equally, the response to one input can be modified by 
a conditioning stimulus to the same nerve, the response to SN stimulation 
at 10 Hz being only 50% of that observed at 1 Hz (Seller and Illert 1969; 
Gabriel and Seller 1970). Similarly, contralateral inputs from SN and AN 
can modify the responses to ipsilateral inputs (Gabriel and Seller 1970). 
It may be that the first synapse represents a frequency-limiting step in the 
reflex pathway, since the cardiovascular responses to SN stimulation are 
maximal at 20-30  Hz, while those from stimulating the NTS are maximal 
at 120 Hz (Seller and Illert 1969). These apparently occlusive interactions 
provide an explanation for the observations of Wang and Borison (1947a, 
b) on the vascular component of the baroreceptor reflex, but are clearly at 
variance with the simultaneous observations of summation (or facilitation) 
in the cardiac arm of the reflex. These studies may thus indicate an early 
decussation of the reflex, which was also implied by the observation of 
Lipski et al. (1976) on chemoreceptor-baroreceptor interactions in or 
close to the NTS. 

If the data from evoked potentials can be taken to indicate a conver- 
gence of these baroreceptor inputs at the first synapse, the interaction is 
most certainly postsynaptic. Gabriel and Seller (1970) and Jordan and 
Spyer (1978b) have failed to reveal presynaptic interactions of SN and AN 
afferent fibres. Conditioning stimuli in either AN or SN failed to alter the 
magnitude of the antidromically evoked potential in the other nerve of 
the pair elicited by stimulation in the NTS (Gabriel and Seller 1970 ;Jordan 
and Spyer 1978b). Under a number of different circumstances, Jordan and 
Spyer (1977, 1978a, 1979) have failed to demonstrate presynaptic influ- 
ences on either SN and AN afferent terminals in the medulla, a result 
which confirms the impression of Rudomin (1968) that although AN in- 
puts could evoke presynaptic influences on other vagat afferent inputs at 
this level, they were themselves not amenable to presynaptic modulation. 
Thus, within the limits of the techniques so far applied, it would seem 
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that interactions between AN and SN occur postsynaptically at the first 
synapse or at subsequent synapses in the reflex pathway. 

In resolving the connections within the NTS that may account for con- 
vergence, it would appear that there are many complicating factors. For 
SN inputs alone it appears that some neurones may receive both mono- 
synaptic and polysynaptic input (Humphrey 1967;McAllen 1973). Fur- 
thermore, any interaction between SN and AN inputs wilt reflect the rela- 
tive potency of each input onto recipient neurones, which may vary great- 
ly across the population of NTS neurones. Equally, the functional effec- 
tiveness of the pattern of convergence will be dependent on the efferent 
projection of these recipient neurones. 

There is anatomical and neurophysiological evidence that the interme- 
diate portion of the NTS contains afferent terminals of both the SN and 
AN (Sect. 2.1.2), particularly in the case of small myelinated and unmye- 
linated fibres (see Jordan and Spyer 1977a, 1978b, among others). It is 
interesting to note that unmyelinated cardiac vagal afferents appear to ex- 
cite neurones in this area also (Fussey et al. 1973b; Donog,hue 1978). 
Since stimulation of these fibres evokes a pattern of response qualitatively 
the same as baroreceptor stimulation (Oberg and Thoren t973a, b; Little 
et al. 1975), some form of convergence may be indicated at this level. In 
addition the activation of myelinated cardiac afferents has been shown to 
activate neurones in the NTS (Baertschi et al. 1975; Keith et at. 1975; 
Ward et al. 1977). 

4.2 Cardiac Component of the Baroreceptor Reflex 

4.2.1 Facilitation 

In reviewing only the interactions of baroreceptor inputs it appears that 
there are considerable difference in the integration of the vascular and car- 
diac components of the response. In the previous section, evidence was 
cited which showed summation, and even implied facilitation, in the car- 
diac arm of the reflex. Since baroreceptor control of the heart is exerted 
primarily by its vagal innervation (Wang and Borison 1947a, b; Heymans 
and )Veil 1958; Levy and Zieske 1969; Levy 1977), it is clear that we are 
concerned with mechanisms related to the control of vagal preganglionic 
activity. This is reinforced by the demonstration that whatever the level 
of ongoing sympathetic activity, vagal efferent activity is the major de- 
terminant of  heart rate (Levy and Zieske 1969; Levy 1977). 

The relationship between vagal efferent activity, as inferred from stim- 
ulation frequency, and heart rate is nonlinear (see Fig. 9), the slope being 
especially steep at low frequencies, and it is clear that convergent inputs 
may well produce enhanced effects, since vagal discharge is usually low. 
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This may well account for the facilitation that can sometimes be observed 
between any two inputs that evoke a vagal bradycardia. This has been 
claimed for inputs from the two carotid sinuses (Wang and Borison 1947b), 
baroreceptors and sinus arrhythmia (Schweitzer 1935), chemoreceptors 
and nasal receptors (Angell-James and Daly 1969, 1973, 1975a, 1978; 
Daly et al. 1978, among numerous authors), the "diving" response and the 
baroreceptor and chemoreceptor reflexes (Angell-James and Daly 1975b; 
Eisner et al. 1977; AngeIl-James et at. 1978), superior laryngeal nerve 
stimulation and baroreceptor inputs (Lopes and Palmer 1976a, 1978; 
Angell-James and Daly 1978), and the effects of central ischaemia and 
medullary stimulation (Borison and Dora]an 1970). There is a respiratory 
related control of the excitability of preganglionic vagal neurones (McAllen 
and Spyer 1978b; Spyer and McAllen 1979; Spyer 1979; see Sect. 4.3), 
which may contribute to the low firing of these neurones and hence may 
be partly responsible for the pattern of interaction demonstrated above. 

Fig. 9. Change in heart rate as a 
function of the frequency of vagal 
and sympathetic stimulation fre- 
quency in Hz. The response sur- 
face represents the mean data 
from 10 anaesthetised dogs. Levy 
and Zieske (1969) 
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Aside from the facilitation of the baroreceptor-cardiac reflex by other 
peripheral afferent inputs (see above), it has often been noted that electri- 
cal stimulation at sites within the central nervous system also facilitates its 
effects. In the 1950s Gellhorn published a monograph proposing that the 
anterior hypothalamus facilitated the baroreceptor reflex (Gellhorn 1957). 
Direct evidence for such an interaction has since come from studies in 
which the anterior hypothalamus-preoptic region and the septum have 
been stimulated electrically in the cat (Klevans and Gebber 1970; Gebber 
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and Klevans 1972; Lopes and Palmer 1978). Part of this area would ap- 
pear to correspond to the anterior hypothalamic "depressor" area identi- 
fied on the basis of  the similarity of the response evoked to the barorecep- 
tot response (Itilton and Spyer 1971). This has been broadly confirmed in 
the rabbit, where hypothalamic stimulation at sites which evoke a vagal 
bradycardia either summate with the response to AN stimulation or evoke 
facilitation (Evans 1977; Gimpl et al. 1976). Moreover such stimulation 
has been shown to excite presumed vagal preganglionic neurones in the 
DNV and interneurones excited by AN stimulation. 

Gebber and Klevans (1972) describe a facilitation of the baroreceptor- 
vagal reflex evoked in the cat from the amygdala and septum. In addition 
it would seem that this component of the reflex can be facilitated by stim- 
ulation in the midbrain and hippocampus (Hockman et al. 1969). Kauf- 
man et al. (1979) argue for a role of the lateral subthalamus (zona incerta) 
in the vagal bradycardia evoked by AN stimulation, because stimulation in 
this area excites presumed cardio-inhibitory neurones in the DNV (and 
close to the NTS in the rabbit. Neurones in the zone incerta were also ex- 
cited by AN stimulation at remarkably short latency (as short as 4 ms) 
and an anatomical connection between the NTS and this subthalamic area 
has been demonstrated (Ricardo and Koh 1978), therefore a facititatory 
loop in baroreceptor/vagal control appears likely. 

Such apparent facilitation of baroreceptor-vagal reflex may again reflect 
the respiratory effects of central stimulation. Hilton and Spyer (1971) 
drew attention to the inhibition of respiration evoked from the hypo- 
thalamic "depressor" area, and even baroreceptor stimulation alone is 
known to powerfully suppress inspiration (see Sect. 2.2.3.3). The anterior 
hypothalamus can evoke a pattern of response very similar to the barore- 
ceptor reflex and its destruction can attenuate the reflex (Hilton and 
Spyer 1971), and this argues powerfully for its involvement in the inte- 
gration of the baroreceptor reflex. That its stimulation may facilitate the 
cardiac component of the reflex (Klevans and Gebber 1970; Gebber and 
Klevans 1972; Lopes and Palmer 1978) or summate with it (Jordan et al., 
unpublished work) provides additional support for this contention. 

4.2.2 Inhibition 

Just as there are well-documented instances where the cardiac component 
of the baroreceptor reflex can be facilitated by peripheral or by central in- 
put, so there is plentiful evidence for its suppression by other inputs. This 
inhibitory effect could result either from influences on the excitability of 
the preganglionic vagal neurone pool, i.e. disfacilitation, or from a simple 
summation of antagonistic drives at their membranes. Alternatively, the 
baroreceptor reflex input might itself be gated, a possibility that has been 
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tested experimentally (see Sects. 4.3 and 4.4). Equally, these mechanisms 
may not  be mutually exclusive; the apparent suppression of the cardiac 
arm of the reflex could result from a mixture of  disfacilitation, summa- 
tion, and a true reflex "gating". In this context,  lung inflation, with result- 
ing activation of  lung stretch afferents, may provide a valuable indication 
of  the mechanisms where by the baroreceptor-cardiac reflex is modified. 
Lung inflation has been shown to suppress baroreceptor control of heart 
rate (Haymet and McCloskey 1975 ; Davidson et al. 1976; Angell-James 
and Daly 1978; Gandevia et al. 1978) and vagal efferent fibre discharge 
(Davidson et al. 1976), as well as affecting resting heart rate. Since it is 
more appropriate to consider the influence of  respiration, both the central 
patterning and afferent feedback together, discussion will be considered 
later (Sect. 4.3). 

However, there are plentiful examples of  other peripheral inputs, such 
as sciatic nerve stimulation (Quest and Gebber 1972; Kumada et al. 1975), 
evoking an increase in arterial blood pressure and a simultaneous suppres- 
son of the cardiac component  of the baroreceptor reflex. This effect, 
which may simply represent an alerting stimulus, would be expected to 
excite those areas of  brainstem involved in the integration of  the defence 
reaction (Sect. 4.4). In very much the same way a powerful stimulation of 
the peripheral chemoreceptors may also block the cardiac component  of  
the baroreceptor reflex through eliciting a defence response (Marshall 
1977). 

In addition to peripheral inputs evoking a suppressive effect on the car- 
diac arm of  the reflex, stimulation at certain sites in the brainstem, amyg- 
dala, and hypothalamus also exert a significant inhibitory control of  vagal- 
ly evoked bradycardia. 

It is well illustrated that stimulation at many sites in the hypothalamus, 
particularly in medial and posterior regions, can suppress the vagal arm of  
the baroreceptor reflex (Hilton 1963; Feigl et al. 1964; Folkow et at. 
1964, 1968; Djo/osugito et al. 1970; Gebber and Snyder 1970; Kylstra 
and Lisander 1970; Bagshaw et al. 1971; Humphreys et al. 1971; Wilson 
et al. 1971 ; Coote and Perez-Gonzalez 1972; Thomas and Calaresu 1974b; 
Kumada et al. 1975; Lopes and Palmer 1975; Keith et al. 1976;McAllen 
t976; Jordan and Spyer 1977b, 1979; Coote 1978; Coote et al. 1979), 
while the vascular arm of  the reflex either remains unaffected (Feigl et al. 
1964; Folkow et al. 1964, 1968; D]ojosugito et al. 1970; Gebber and 
Snyder 1970; Kylstra and Lisander 1970; Bagshaw et al. 1971; Humphreys 
et al. 1971; Wilson et al. 1971; Kidd and Penna 1976) or is even potenti- 
ated (Kumada et al. 1975). The vascular effects are usually considered to 
represent an algebraic stimulation of  the baroreceptor response and the 
centrally evoked sympatho-excitatory response, although stimulation in 
the defence area may well block both cardiac and vascular components of  



90 K.M. Spyer 

the baroreceptor reflex (see Sect. 4.4.1). The common features of the cen- 
trally evoked response are a rise in arterial pressure, sometimes an increase 
in heart rate and usually an increase in respiration (see above references). 
Similar effects are also observed during stimulation in the midbrain (Kurna- 
da and Sagawa 1974) and amygdala (Schldr and Stock 1978; Tirnms 
1977) and are accompanied by a suppression of the vagal arm of the baro- 
receptor reflex. Stimulation within the medulla may also evoke blocking 
of the baroreceptor reflex (Perez-Gonzales and Rojas 1976). In the rabbit, 
stimulation within the posterior hypothalamus usually suppresses the 
vagal bradycardia accompanying baroreceptor or AN stimulation (Brick- 
man et al. 1977; Gimpl et al. 1976), although hypothalamic stimulation 
itself may not increase either heart rate or blood pressure. 

In addition to these effects elicited from the brainstem it is clear that 
cerebellar stimulation can affect the baroreceptor reflex. As long ago as 
1938, Moruzzi suggested that electrical stimulation in the cortex of the 
anterior lobe of the cerebellum could reduce the respiratory and cardio- 
vascular response to both vagal stimulation and bilateral carotid occlusion 
(Moruzzi 1938, 1940, 1947, 1950). Although such stimulation might af- 
fect respiration, it appeared to have no effect on resting arterial blood 
pressure (Moruzzi 1940). Since the inhibitory effect of cerebellar stimula- 
tion was manifest on the effects of chemoreceptor excitation, it may be 
that the effect on the response observed during bilateral carotid occlusion 
represents an effect on this reflex rather than on the baroreceptor reflex. 
Indeed it could represent a secondary influence evoked through its inhib- 
itory influence on respiration (see Sect. 4.3). Even allowing for these 
problems of interpretation these studies represented the first controlled 
investigation of cerebellar influences on the cardiovascular system. Since 
then interest has focussed more onto the role of the fastigial nucleus. 

Zanchetti and Zoccotini (1954) described that stimulation in the fasti- 
gial nucleus evoked both a pressor response and bursts of sham rage in the 
thalamic cat. Subsequently several reports describe a characteristic pres- 
sot response elicited from the rostral pole of the fastigial nucleus in anaes- 
thetised cats (Achari and Downman 1969, 1970;Miura and Reis 1969b, 
1970, 1972a; Lisander and Martner 1971a, b, 1973). There is also an ac- 
companying suppression of the cardiac component of the baroreceptor re- 
flex, whether evoked through the injection of noradrenaline (Achari et al. 
1973) or by vagal or sinus nerve stimulation (.Flockman et al. 1970; Gure- 
vitch and Vyshatira 1973) or distension of an isolated carotid sinus (Lisan- 
der an d Martner 1971 b). 

There may be important functional implications in these observations: 
it would appear that fastigial stimulation evokes bursts of sham rage, which 
is equivalent to a defence reaction (Zanchetti and Zoccolini 1954;Moruzzi 
1947), while stimulation in the white matter of the anterior lobe sup- 
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pressed the autonomic components of the defence reaction (Lisander and 
Martner 1971a). In view of the profound effects of the defence reaction 
on the baroreceptor reflex, which will be reviewed later (Sect. 4.4) this 
implies that either the anterior lobe evokes a generalised inhibitory action 
on reflexes or else that its inhibitory action is concerned with chemorecep- 
tor reflexes, which may themselves evoke defence reactions, having no in- 
fluence of importance on the baroreceptor reflex except via its effect on 
the defence reaction. In essence, cerebellar influences may be considered 
to represent the antagonistic balance between cerebellar cortex and fasti- 
gial nucleus influences on the defence reaction. Lisander and Martner 
(1973) discount this possibility on the basis that fastigial stimulation might 
suppress the cholinergic vasodilatation in skeletal muscles evoked in the 
defence reaction, although vasoconstrictor effects were clearly facilitated 
(Lisander and Martner t 973 ; Achari et al. 1973). Behavioural components 
may similarly fail to show facilitation in conscious animals (Achari et al. 
1973), so this apparent discrepancy cannot be taken to result from a sup- 
pressive effect of anaesthesia and caution is required in attributing a func- 
tional significance to any of the observations made so far. 

It has been suggested that the anatomical and physiological connections 
described between the fastigial nucleus and the paramedian reticular nu- 
cleus (see Jansen and Brodal 1954; Spyer and Wolstencroft 1971 ; Ghetar- 
ducci et al. 1974, among many others) may mediate both the cardiovascu- 
lar responses and this apparent suppression of vagally mediated bradycar- 
dia of the baroreceptor reflex (Miura and Reis 1972a). This may well prove 
insignificant: the role of this medullary nucleus in mediating the barore- 
ceptor reflex has been shown to be highly questionable, its stimulation 
usually evoking a suppression of sympathetic activity (Sect. 3.3.3), and the 
interactions at the neural level appear confusing (Miura and Reis 1972a). 

There is also a report that stimulating in the motor area of the cerebral 
cortex evokes increases in heart rate and blood pressure as well as a sup- 
pression of the bradycardia of the baroreceptor reflex (Achari and Down- 
man 1978). Another study, however, indicates that stimulation in the mo- 
tor cortex exerts little, if any, direct effect on the cardiovascular system, 
the changes being secondary to evoked movement (Hilton et al. 1975, 
1979). Since, either directly or through evoked movement, respiratory 
changes may accompany stimulation in the motor cortex, the observed 
change in the efficacy of the reflex may again manifest only its powerful 
control by respiratory activity. 

The most important observation may prove to be the fact that stimulat- 
ing in the various brainstem sites, cerebral, cortical and cerebellar loci that 
profoundly modify or suppress the baroreceptor-cardiac reflex, invariably 
also evokes an increase in ventilatory drive. It would seem advisable at this 
juncture to consider the respiratory influences on the baroreceptor reflex, 
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for such consideration may provide at least a partial answer to the nature 
of  the synaptic mechanisms responsible for these apparent suppressive in- 
fluences and the facilitatory interactions discussed previously. 

4.3 Respiratory Influences on the Baroreceptor Vagal Reflex 

In considering the ability of  peripheral and central inputs to suppress or 
facilitate the cardiac arm of  the baroreceptor reflex, indications have been 
obtained that central respiratory drive might be responsible in part for this 
apparent gating of  the reflex. Lung inflation was also described as a potent  
stimulus to the suppression of  vagal efferent discharge. Indeed, the influ- 
ence of  respiration on the heart, and by implication vagal efferent activity, 
has been appreciated since 1936, when Anrep et al. (1936a, b) showed 
that the respiratory related fluctuations in heart rate were effected through 
two mechanisms. The first had a central origin and was related to the gen- 
esis of respiratory activity (Anrep et al. 1936b); the second was the result 
of  an inhibitory input related to lung inflation (Anrep et al. 1936a). These 
two mechanisms are normally in phase and the result is sinus arrhythmia 
(see also Katona and Jih 1975). Accordingly, if the excitability of  CVMs 
is the key to their ability to respond to excitatory inputs, a respiratory 
"gate" at their membrane might explain all the apparent inhibitory influ- 
ences on the baroreceptor cardiac reflex. 

This argument for an effective respiratory gating of  the baroreceptor 
reflex was first made by Koepchen and his colleagues (Koepchen et al. 
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Fig. 10. A scheme of the mechanisms responsible for the respiratory" modulat ion of the 
sinus baroreceptor control of the heart (for explanation see text). (Taken from 
Koepchen et al. 1961b) 
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1961a, b). In their studies of  the SN and baroreceptor control of heart- 
period, they demonstrated that a stimulus to the SN was effective in pro- 
longing heart-period only if timed to occur within expiration and was in- 
effective, or considerably less effective, if timed to occur during inspira- 
tion. Accordingly, three explanations were tendered to account for the 
observation (see Fig. 10): it could result from a "gating" o f  the afferent 
input to the vagal neurones (Fig. 10a), a respiratory related control of  the 
excitability of  CVMs (Fig. 10b), or a combination of  both (Fig. 10c). These 
pioneering observations on heart rate (Anrep et al. 1936a, b) and barore- 
ceptor control of  heart rate (Koepchen et al. 1961 a, b) have been confirm- 
ed by numerous groups. It is now generally accepted that a brief stimulus 
to the carotid sinus baroreceptors evokes a bradycardia only if timed to 
occur during expiration, an equivalent stimulus in inspiration being inef- 
fective (Iriuchijima and Kumada 1963; Katona et al. 1970; Haymet and 
McCloskey 1975; Nell and Palmer 1975; Davidson et al. 1976;Lopes and 
Palmer 1976;McAllen and Spyer 1975). Consequently the same is true for 
the baroreceptor input to vagal efferent neurones (Iriuchi]ima and Kumada 
1963; Katona et al. 1970;Davidson et al. 1976;McAllen and Spyer 1978b; 
see Fig. 11). Furthermore a chemoreceptor stimulus will only evoke a 
bradycardia and activate vagal efferent fibres if timed to occur during ex- 
piration (Davidson et al. 1976). 

Considering then the possible explanations for this apparent "gating" 
of  the reflex, we can eliminate a presynaptic control of the central termi- 
nals of the baroreceptor afferents within the NTS. Jordan and Spyer 
(1978a, b, 1979) have shown that the excitability of  SN and AN afferent 
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Fig. 11. Dog. Chloralose and morphine. Records of carotid sinus blood pressure, re- 
spiratory air flow and the activity of single cardiac vagal efferent nerve (CVE) are 
shown. A burst of firing in the cardiac efferent nerve was evoked by a barorecelator 
stimuls timed so as to occur in the expiratory pause. No firing was evoked when a sim- 
ilar stimulus was given during inspiration. Davidson et al. (1976) 
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terminals (without distinguishing them as either baroreceptor and chemo- 
receptor afferents) does not  alter in phase with central respiratory activity. 
This was demonstrated in both cats and rabbits, in artificially ventilated 
and paratysed preparations, with central inspiratory activity being record- 
ed from the phrenic nerve. Antidromic potentials evoked in the SN and 
AN by stimulating within the NTS showed no variation in amplitude (or 
threshold) in phase with central respiratory drive, nor were changes ob- 
served in phase with lung inflation, although this was not  tested with large 
lung inflations. 

It remains possible that  a "gate" may occur at a postsynaptic site with- 
in the NTS, as many neurones there show both respiratory and cardiac 
rhythm (Stroh-Werz et al. 1977a, b). In contrast, many neurones receiving 
SN and baroreceptor input have no obvious respiratory rhythm (Lipski et 
al. 1975). 

If  such a "gate" exists, it cannot represent an "all or none"  mechanism. 
The evidence for this conclusion is shown in Fig. 12. In this experiment 
McAllen and Spyer (1978b) took advantage of  the fact that by recording 
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Fig. 12a-e. Cardiac rhythm of a CVM and its response to stimulation of the sinus 
nerve. Trace from top downwards: pulse-triggered histograms of CVM activity (120 
cycles, 10 ms bins) with femoral pulse wave on same time scale, histograms of response 
to sinus nerve stimulation (0.1 ms pulse at 2 V, 128 cycles, 5 ms bin width), a Anal- 
ysed throughout the respiratory cycle; b analysed in expiration; e analysed in inspira- 
tion. Unit firing in response to 60 nA DLH. McAllen and Spyer (1978b) 
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from CVMs directly and altering their excitability by the iontophoresis 
of  DLH they could induce CVMs to fire during inspiration, when they are 
normally silent and inexcitable by reflex inputs, as well as during expira- 
tion. By analysing the firing patterns of  CVMs, a pulse rhythm of  baro- 
receptor origin was observed in both inspiration and expiration (see Fig. 
12; McAllen and Spyer 1978b). Furthermore, stimulation of  the SN was 
effective in both inspiration and expiration in this situation of  heightened 
excitability. The implication is that CVMs receive an excitatory barorecep- 
tor input throughout  the central respiratory cycle but that it is normally 
subliminal during inspiration (McAllen and Spyer 1978b; Spyer and 
McAllen 1979; Spyer 1979). Hence the "gate" in the baroreceptor-cardiac 
reflex is essentially at the level of  the CVM. This does not eliminate the 
possible influence of other respiratory related mechanisms acting on the 
pathway to CVMs but it does imply that these are relatively ineffective. 
To accommodate the role of lung inflation inputs, McAlten and Spyer 
(1978c) studied open-chest artificially ventilated cats, where central respi- 
ratory activity was out of  phase with the respiratory pump;  it is only nec- 
essary to suggest that such inputs act via a pathway that impinges on 
CVMs. 

The question of  the synaptic mechanisms responsible for the respiratory 
related control of  CVM activity has been raised (Lopes and Palmer 1976, 
1978; McAllen and Spyer 1976, 1978b; Spyer and McAllen 1979; Spyer 
1979) and the simplest explanation would seem to be that it is related to 
central inspiratory drive. Lopes and Palmer (1976, 1978), from a range of  
indirect observations, have suggested that the R~ inspiratory neurones of  
the NTS might be the ideal candidate, since they have a central inspiratory 
rhythm and they are excited by lung inflation (Baumgarten and Kanzow 
1958, and subsequently others). In the cat, they certainly project to the 
NA, where CVMs are located (Merrill 1974). 

More directly, McAllen and Spyer (1978b) and Spyer and McAllen 
(1979) have argued for a role of  the inspiratory neurones of the NA, 
among which CVMs are located (McAllen and Spyer 1976, 1978b). The 
pattern of  discharge of  CVMs firing either spontaneously or in response to 
the iontophoresis of  DLH does not resemble the recruiting discharge of  
central expiratory activity (see Merrill 1974; Sears 1964), and the firing 
pattern of  CVMs could be best explained by an inhibitory sculpturing of  
their activity through an inspiratory related inhibitory input (Spyer 1979). 
Indeed, more positive evidence in favour of such a mechanism has arisen 
from the demonstration of  Garcia et al (1978) that atropine applied ionto- 
phoretically blocks both the inhibitory action of  acetylcholine exerted on 
CVMs by iontophoretic application and the inspiratory related depression 
of  activity of CVMs firing in response to DLH. Katona et al. (1977) had 
previously reported that small doses of  atropine, considerably smaller than 
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those normally used to block vagal efferent effects on the heart, evoked 
both an increase in vagal efferent activity and a fall in heart rate, but only 
if the animal had central respiratory activity. This postulated synaptic 
mechanism has the added attraction that it conveniently explains both the 
apparent "gating" of  the baroreceptor reflex and the phenomenon of  
sinus arrhythmia. It also leaves the original contention that the major ex- 
citatory input to CVMs arises from the arterial baroreceptors, its effective- 
ness being adjusted by the excitability of  the CVM. Hence, any input that 
promotes inspiratory drive will reduce the excitability of  CVMs, and any 
mechanism which reduces inspiratory drive will increase vagal efferent ex- 
citability. This observation does not, however, exclude the participation 
of other inhibitory controls that are independent of  the "inspiratory gate". 

On the basis of  these observations alone it may be premature to dis- 
cuss the synaptic mechanisms responsible for the inhibitory control of 
CVM activity. It could involve a direct cholinergic innervation from inspi- 
ratory neurones or be mediated via a neighbouring inhibitory interneurone 
which also receives an excitatory input from CVM axon collaterals, i.e. in 
this circumstance ACh would excite the interneurone, which would also 
have an inspiratory rhythm. 

It would be wrong to leave the impression that only the vagal arm of  
the baroreceptor reflex is influenced by the respiratory cycle. The excit- 
ability of  sympathetic preganglionic neurones is altered in phase with re- 
spiratory activity (Sect. 3.3.1; Lipski et al. 1977). Accordingly it is not 
surprising that the  baroreceptor control of the heart mediated by sympa- 
thetic efferents is powerfully affected by the respiratory cycle (Seller et 
al. 1968; Richter et al. 1970; Seller and Richter 1971 ;Davis et al. 1977). 
The changes in heart rate evoked by the baroreceptors in vagotomised 
dogs are reduced during inspiration, and the effecitveness of  the barore- 
ceptor control of sympathetic activity shows quantitative differences dur- 
ing the respiratory cycle (Seller et al. 1968; Seller and Richter t 971 ; Davis 
et al. 1977). The duration of the silencing of  sympathetic activity evoked 
by the baroreceptors was shown to be minimal in the middle of  the phrenic 
nerve discharge and maximal shortly after the end of inspiration. Since 
there is plentiful support for an inspiratory related excitatory input to 
sympathetic preganglionic neurones, it is possible that the disfacilitation 
of  these neurones at the end of inspiration is sufficient to explain their 
heightened sensitivity to the baroreceptor inhibitory input at that time. In 
effect there is no respiratory "gate" in the baroreceptor-sympathetic re- 
flex, merely a changing sensitivity to its inhibitory action and, accordingly, 
a quantitative reduction in effectiveness. Thus the control of the activity 
of  sympathetic neurones falls into the pattern described by Pitts et al. 
(1941), where summation was considered a suitable explanation of their 
control. 
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4.4 Total Central Inhibition of the Baroreceptor Reflex 

In the previous section, the baroreceptor cardiac reflex was seen to be pro- 
foundly modified by both peripheral and central drives. In particular the 
portion of the reflex mediated by vagal efferent neurones was shown to be 
particularly sensitive to respiratory related factors, a mechanism that was 
seen as part of  direct control of CVM excitability by respiration. In con- 
trast, the baroreceptor sympathetic reflex showed quantitative variations 
during the respiratory cycle but there was no evidence of an "all-or-none" 
gating of this arm of the reflex. The quantitative variations in efficacy of 
baroreceptor control of sympathetic activity with respect to the respira- 
tory cycle seemed to be explicable on the basis of an algebraic summation 
of baroreceptor inhibitory inputs and on-going excitatory inputs not dis- 
similar from the interactions between baroreceptor inputs and the excita- 
tory drive from the hypothalamus first described by Pitts et aI. (1941) and 
Pitts and Bronk (1942). 

It is now generally accepted that the cardiac component of the barore- 
ceptor reflex is particularly sensitive to other inputs, but there are two 
centrally evoked patterns of response that appear to include a total sup- 
pression of the baroreceptor reflex. This central inhibition is considered 
an integral part of the defence reaction (Hilton 1963, 1965, 1966) and 
can also be evoked on stimulating in a restricted portion of the inferior 
olive (Smith and Nathan 1966). 

4.4.1 The Defence Reaction 

It is beyond the scope of this review to describe in detail the physiological 
and anatomical arrangement of limbic and hypothalamic integration of de- 
fensive or aggressive behaviour, but it is important to underline that the 
autonomic component of such responses involves a characterisitc pattern 
of cardiovascular response easily distinguished from more general pressor 
responses evoked by central stimulation. This response, which may be 
elicited on electrical stimulation of the hypothalamus of anaesthetised 
animals, involves an increase of mean and pulse pressure, tachycardia, and 
a generalised peripheral vasoconstriction, although the blood flow through 
skeletal muscle increases dramatically (for refs. see Hilton 1966). In the 
cat, this hindlimb vasodilatation involves both an activation of sympathet- 
ic cholinergic vasodilator fibres and a reduction in vasoconstrictor tone 
(Eliasson et al. 1951 ; Abrahams et al. 1960). The concomitant increase in 
heart rate and arterial pressure suggests a modification, or at least a reset- 
ting, of the baroreceptor reflex. Indeed, Hilton (1963) claimed that the 
reflex was totally suppressed during the hypothalamically induced defence 
response. This preliminary report triggered off considerable controversy 
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and a spate of reports claiming that although the cardiac component of 
the baroreceptor reflex was suppressed during the defence reaction, the 
vascular component was either unaffected (Feigl et al. 1964; Folkow et al. 
1964, 1968; Djo]osugito et al. 1970; Kylstra and Lisander 1970; Bagshaw 
et aI. 1971 ; Hurnphreys et al. 1971 ; Wilson et al. 1971 ; Kidd and Penna 
1976) or even potentiated (Kumada et al. 1975) and that the two inputs 
might act synergistically in producing the characteristic hindlimb vasodila- 
tation of the defence reaction (Djo/osugito et al. 1970). Behaviourally the 
effects of the two drives are opposite (see Hilton 1975) and may even be 
mutually inhibitory, so a synergistic relationship between their effects on 
the cardiovascular system would seem surprising. 

The case for a synergistic interrelationship rested on the observations 
of Folkow et al. (1964) and Bolrne et al. (1967) that vasoconstrictor tone 
has to be more or less totally eliminated before cholinergic vasodilatation 
can be fully developed. They argued that the powerful vasoconstrictor 
drive to other vascular areas, with an accompanying increase in cardiac 
output and hence blood pressure, led to a baroreceptor-mediated suppres- 
sion of the vasoconstrictor supply to skeletal muscle (D]o]osugito et al. 
1970). This extrapolation has since been shown to be unnecessary. Coote 
et al. (1973) have shown in the cat that stimulating in part of the descend- 
ing pathway for the defence reaction, in a narrow strip close to the dorsal 
surface of the medulla, evokes an increased hindlimb flow that is indepen- 
dent of both cholinergic vasodilator fibres and baroreceptor inputs but is 
abolished by guanethidine; hence it is likely to result from an active with- 
drawal of vasoconstrictor tone specifically in skeletal musculature. More- 
over, Horeyseck et al. (1976) have shown that stimulation in areas of the 
hypothalamus which evoke a cholinergic vasodilatation in hindlimb skel- 
etal muscles, evokes a discharge in normally silent postganglionic neurones 
(putative cholinergic sympathetic neurones) and a complex pattern of re- 
sponse in postganglionic vasoconstrictor neurones. These latter neurones 
may be silenced briefly, followed by a burst of activity which precedes a 
second and prolonged suppression, at a time when cholinergic vasodilator 
fibres are most conspicuously active. 

The argument of Folkow et at. (1964) is further handicapped by the 
fact that their observations would demand a differential effect on vasocon- 
strictor activity of different vascular beds. It is now well documented that 
renal sympathetic activity is powerfully excited during defence are stimula- 
tion (McAllen 1976; Jordan and Spyer 1977b, 1979; Coote et al. 1979) 
and that this remains elevated throughout stimulation. Stimulating at sites 
beyond this integrative area similarly elevates sympathetic activity but the 
response is not maintained. Furthermore, baroreceptor inputs are ineffect- 
ive in lowering or silencing sympathetic activity during such defence area 
stimulation (McAllen t976; Coote et al. 1979). Since the effects of SN 
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stimulation are also blocked by such stimulation (Jordan and Spyer 1977, 
1979; Coote et al. 1979), it is clear that the mechanism involves a central 
suppression and cannot be explained by a sympathetic mediated resetting 
of the baroreceptors themselves, as remained a possibility from the obser- 
vations of the effect of sympathetic activity on baroreceptors (Koizurni 
and Sato 1969). 

It would thus appear that the central mechanism underlying the inter- 
action between baroreceptors and the defence reaction is more than a 
simple saturation effect due to the enormous excitatory drive to the sym- 
pathetic neuronal pool evoked on hypothalamic stimulation. Increases of 
sympathetic activity of comparable magnitude evoked from other sites in 
the hypothalamus, for instance, remain buffered by the baroreceptors 
(Coote et al. 1979). 

There has been much speculation on the nature of the mechanisms re- 
sponsible for this complete suppression of the reflex. The receptors them- 
selves do not appear to be significantly affected, and it has been proposed 
that the afferent terminals in the medulla might be under a presynaptic 
control (Weiss and Crill 1969). They claimed that stimulation within the 
fields of Forel, an area of the hypothalamus which is not a part of the 
integrative matrix of the defence reaction, evoked a depolarisation of SN 
afferent endings in the NTS. Jordan and Spyer (1977, 1979) have looked 
directly at the effect of conditioning stimuli delivered within the hypo- 
thalamic defence area on SN and glossopharyngeal afferent terminals in 
the NTS. They could show no effect on SN terminals, although glosso- 
pharyngeal afferents were markedly affected by stimulation at hypo- 
thalamic sites which totally suppressed the cardiovascular responses to SN 
stimulation. There are, however, indications that the excitatory responses 
of NTS neurones to both baroreceptor and SN stimulation may be block- 
ed by conditioning stimuli delivered to the hypothalamic defence area 
(McAllen 1976). On the basis of the latency of the response of these neu- 
tones to SN stimulation it would seem that they were located within one 
or two synapses of the afferent input (McAllen 1976). The specificity of 
this action is in question: Adair andManning (1975)claim to have block- 
ed the normal excitatory response of NTS neurones to SN stimulation on 
stimulating in the hypothalamus, although the hypothalamic site of stim- 
ulation and its effect on the baroreceptor reflex were never analysed. 
These observations indicate that at least part of  the block of the barore- 
ceptor reflex during the defence reaction may be effected close to the ter- 
mination of  baroreceptor afferents. In this type of interaction we are con- 
cerned with the functioning of polysynaptic pathways, and it is likely the 
synaptic processes mediating these changes may involve actions at several 
levels of the neuraxis, including the hypothalamus (Gellhorn 1957; Hilton 
and Spyer 1971;Hilton 1975). 
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The block of  the cardiac component  of  the reflex during the defence 
reaction may be elicited through the respiratory "gate" (Sect. 4.3). De- 
fence area stimulation certainly evokes hyperpnoea, with an especially po- 
werful inspiration drive. However, Lopes and Palmer (1978)have suggest- 
ed that hypothalamic inputs might exert an additional tonic inhibitory 
control of  CVM activity. Jordan, Khalid, Schneiderman and Spyer (unpub- 
lished work) have since shown that  stimulation in the defence area of  the 
hypothalamus of  the cat inhibits both on-going CVM activity (i.e. that  in- 
duced by the iontophoresis of  DLH) and AN inputs to CVMs and that  this 
inhibitory action is not blocked by the iontophoresis of  atropine although 
this did block inspiratory related inhibition. Accordingly, hypothalamic 
descending inhibition is likely to be mediated, at least partly, by a mech- 
anism independent of  the inspiratory-gate. Furthermore,  it appears that  at 
least a portion of  the CVM neuronal pool is amenable to recurrent inhibi- 
tion (Jordan et al., unpublished work), an influence that  is antagonised by 
iontophoresis of  atropine. Although at a preliminary stage, the observa- 
tions together provide an indication of  the nature of  the inhibitory mech- 
anisms that  control vagal efferent discharge (see Fig. 13). 

The defence area influence on the sympathetic and vascular compo- 
nents of  the baroreceptor reflex is not  necessarily an all-or-none phenome- 
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Fig. 13. Diagram illustrating the control of the baroreceptor input to cardiac vagal 
motoneurone (CVMJ. Inspiratory neurones of the NA (I) exert an inhibitory control 
of CVM either directly, or via an interneurone which may also receive recurrent colla- 
teral inputs from CVMs. This inhibitory mechanism is sensitive to atropine. The hypo- 
thalamic defence area may inhibit CVM activity and block their baroreceptor input 
through this mechanism, but also by an alternative mechanism. This may involve a 
direct inhibitory control of CVM, or via a modification of transmission through the 
NTS. See text for further details. Dotted lines represent pathways of unknown synaptic 
complexity, excitatory pathways are shown by thick lines, inhibitory by thin lines 
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non. The temporal relationship between these antagonistic stimuli is im- 
portant. Stock (pers. communication) has shown that ifa baroreceptor stim- 
ulus is timed early in a defence response elicited by amygdala stimulation, 
it is totally blocked, but delaying the test stimulus until later during the 
defence response allows the vascular component  to reassert itself although 
the cardiac component  remains suppressed. The fatigue of cholinergic 
sympathetic dilatation has been documented (Djo]osugito et al. 1968), 
and the slowly increasing vasoconstrictor tone in the supply to skeletal 
muscle may well provide a basis on which to explain this observation (Ho- 
reyseck et al. 1976). Also, many of  the interactions may be reserved for 
the level of  the preganglionic sympathetic neurones, so the temporal and 
spatial nature of  descending inputs may play an important role in the pat- 
tern of  interaction observed. 

4.4.2 The lnferior Olive 

It has been suggested that a region in the dorsomedial portion of the in- 
ferior olive exerts an inhibitory control of the baroreceptor reflex (Smith 
and Nathan 1966). Stimulation of  this region evokes no obvious change in 
arterial blood pressure or heart rate but completely blocks the effect of  
carotid sinus inflation. Smith and Nathan (1966) suggested that this area 
of the medulla might mediate the defence area inhibition of  the barorecep- 
tor, and more recent neurohistological studies have indicated a descending 
pathway from the perifornical region of  the hypothalamus to this part of  
the olivary complex (Saper et al. 1976). Smith and Nathan (1966) implied 
that the inhibitory control might be mediated via the cerebellum, since 
Moruzzi (1938, 1940) and subsequently others (Holler et al. 1966) had 
indicated that the anterior lobe of  the cerebellum might exert an inhibitory 
control of  autonomic reflexes in general and the baroreceptor reflex in 
particular. In some unpublished studies, Coote et al. have confirmed the 
original observation of  Smith and Nathan (1966) but have shown that the 
inhibitory effect on the baroreceptor reflex survives cerebellectomy. They 
also have evidence that bilateral lesions in the olive, destroying the specific 
region from which this effect can be elicited, in no way impair the sup- 
pressive effect of the hypothalamic defence area on the baroreceptor re- 
flex. Interestingly, these restricted lesions alone produce an enormous in- 
crease in both mean arterial blood pressure and pulse pressure, which de- 
velopes slowly and is maintained. Furthermore, against a background of  
high sympathetic tone produced by bilateral carotid occlusion, stimulation 
in the olive may evoke a small fall in arterial pressure. It seems remarkable 
that despite blocking the baroreceptor reflex at normal levels of back- 
ground blood pressure, olivary stimulation is ineffective in evoking obvious 
cardiovascular responses and so is apparently leaves ongoing baroreceptor 
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inputs unaffected. At this stage, the pattern of effect can best be described 
as interesting: further studies will be required before the significance of 
the olive in cardiovascular control can be assessed. 

5 Concluding Remarks 

This review has endeavoured to consider the baroreceptor reflex as a mech- 
anism with a distinctive input-output relationship whose central pathway 
might shed light on basic problems concerning the nervous control of the 
heart and circulation. As such, it has dealt mainly with establishing the 
central connections mediating the baroreceptor control of sympathetic 
and vagal preganglionic neurones, but the survey has been extended to dis- 
cern the synaptic processes responsible for the modification of the pattern 
of reflex response that occurs in different physiological states. This latter, 
relatively restricted discussion may in fact hold the most important clues 
for understanding the integrative basis of the baroreceptor reflex and 
consequently the nervous control of  arterial blood pressure. 

These rather broad generalisations can be supported by some significant 
conclusions that arise from such a survey of the literature. For example, 
there is now abundant evidence in favour of an essential role of the NTS 
in the mediation of the baroreceptor reflex and in cardiovascular and re- 
spiratory control. It remains to resolve whether this involves simply an 
ordered organisation of the diverse afferent inputs which impinge on this 
nucleus or whether the output from this nucleus in response to, say, baro- 
receptor stimulation can be modified by other afferent inputs to this area, 
both those arising from peripheral receptors and from central structures. 
Such modification would imply an integrative function and could be ex- 
pected to result in differential effects on the heart and vasculature under 
different physiological situations. There are techniques currently available 
to solve this problem which are analogous to those neurophysiological and 
neuroanatomical approaches being used so successfully in studying the 
processing of  afferent information in the dorsal horn of the spinal cord. 

A start has certainly been made in this direction with the recent reap- 
praisals of  the anatomical description of this area and its efferent connec- 
tions, to which has been added neurophysiological data on the inputs to 
the NTS. In this context probably more is known of the baroreceptor in- 
nervation of the NTS than for any other of its afferent inputs, yet its inter- 
actions at this level with other afferents have, as yet, barely been ap- 
proached. 

From this first relay in the NTS, there are indications of a complex 
series of connections that mediate the baroreceptor reflex and extend 
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through divergent areas of the brainstem. This effectively diffuse pathway 
finally converges to control the activity of the autonomic preganglionic 
neurones, the sympathetic and vagal neurones. A major advance has been 
achieved in the last decade with the realisation that these neurones have 
an integrative function. In this, their baroreceptor input over a polysyn- 
aptic pathway forms just one of the many inputs that modify their excit- 
ability, but such an organisation can certainly be seen to minimise the role 
of any distinctive and restricted "vasomotor centre" in the control of the 
circulation. The many links in the baroreceptor pathway may still remain 
uncertain, but we have reached a stage where analytical rather than simply 
qualitative studies can be undertaken to identify the action of the barore- 
ceptors and their interactions with other inputs on the activity of these 
neurones. 

The divergent nature of the baroreceptor input may well have contrib- 
uted to our failure to identify more precisely the interneuronal matrix of 
the reflex. In fact connections with little direct relevance to the basic re- 
flex may well have obscured its most important connections, since so 
many of its influences appear to involve the reticular formation. As a rea- 
sonable working hypothesis, it is possible to suggest that the baroreceptor 
input may have a preferential pathway through the reticular formation 
related to cardiovascular control and an indirect influence on both this 
and behaviour through more general effects on the  reticular formation. 
The "preferential" system would seem to offer the most immediate chal- 
lenge to neurophysiological investigation; certainly a series of possible reti- 
culospinal connections have been revealed which may contribute to the 
baroreceptor control of  sympathetic efferent activity. The latter and more 
generalised effects may well also alter the excitability, and hence effective- 
ness, of  the preferential pathway, but except in a few instances little has 
yet been achieved in investigating the more general effects of the barore- 
ceptor input on the reticular formation. 

An involvement of the baroreceptors in the regulation of reticular 
mechanisms, such as sleep-wakefulness, has been described. The marked 
cardiovascular changes in these states certainly imply interactions, but 
whether these are at the level of the brainstem, at the final common path- 
way, the preganglionic neurone, or at both remains to be resolved. 

An attempt has been made to assess how certain patterns of physiol- 
ogical behaviour evoked from the central nervous system can influence the 
effectiveness of  baroreceptor inputs. Indeed, studies on the influence of 
central respiratory activity and the defence reaction on the efficacy of the 
baroreceptor control of  vagal and sympathetic activity have shed consider- 
able light on the basic mechanisms underlying the reflex. Furthermore, 
since these two patterns of activity are so powerfully affected by peripheral 
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inputs  and behavioural  state, they  m a y  well of fer  par t icular ly valuable 

clues to  the basic mechanisms under ly ing  no t  on ly  the integrat ion o f  the 

ba ro recep to r  reflex, bu t  also the nervous cont ro l  o f  circulation.  
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I n t r o d u c t i o n  

The study of  event-related slow (DC) potentials of  the human brain is at 
the same time fascinating and disappointing. It is fascinating because ob- 
vious correlations exist between these electrical phenomena of  the brain 
with higher psychic functions and processes. But it is disappointing be- 
cause these correlations remain "phenomenological",  and little is known 
about the actual underlying brain mechanisms. Historically, Caton (1875) 
first observed event-related slow (DC) potentials in response to sensory 
stimulation and motor  acts. Later studies ignored DC potentials due to the 
use of  low frequency filters. Renewed interest in these problems started 
with Davis et al. (1939), who tried to correlate slow (DC) potentials with 
variations in depth of  sleep. Goldring and O'Leary (195 la) studied stimu- 
lus-evoked slow (DC) potentials, and Kdhler and Held (1949) and Kdhler 
et al. (1952) demonstrated slow (DC) potentials connected with complex 

visual stimuli. 
Event-related slow (DC) potentials occurring after external stimulation 

as well as prior to behavioural responses have been extensively described 
by Caspers (1961, 1963, 1965). DC potentials related to mental activity 
were found by Bechtereva (1967, 1968, 1974) in different subcortical 
structures of  the brain. Slow potentials related to conditioned responses 
have been observed by Rowland (1960, 1967, 1968), and sound-evoked 
slow negative potentials were recorded from auditory cortex by Gumnit 
(1960, 1961). 
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Late responses in the form of long latency, slow evoked potentials 
have been described as being associated with "information delivery" (Sut- 
ton et al. 1965) and with unpredictably occurring stimuli as a kind of  cen- 
tral orienting response (Haider et at. 1968b; Ritter et al. 1968). These late 
responses have been variously designated "P 3" or "P 300" (Ritter et al. 
1968); "late positive component"  (LPC) (Ritter and Vaughan 1969) and 
"association cortex potential" (ACP) (Vaughan 1974). 

Contingent responses have been observed as slow (DC) potential 
changes between a warning or conditional stimulus ($1) and an imperative 
or unconditional one ($2) with which the subject is "engaged" in the form 
of  action or decision. Walter et at. (1964), in such an experimental design, 
observed a slow increase in surface negativity and called it "contingent 
negative variation" (CNV) or "expectancy wave" (E-wave). 

Slow (DC) potentials preceding a voluntary movement have been ob- 
served by Kornhuber and Deecke (1965), who called this slow potential 
shift Bereitschaftspotential (BP) or "readiness potential" (RP). The poten- 
tial changes associated with motor  action have been named "motor  poten- 
tial" (MP) by Gilden et al. (1966) and Vaughan et al. (1968). 

Our review deals with these three groups of  phenomena, namely the 
late potentials associated with orienting and information processing, the 
contingent potentials associated with expectancy and the movement-relat- 
ed potentials associated with voluntary movement and motor  control. First 
we will survey the terminologies and abbreviations which unfortunately 
are used very inconsistently in this field. Then we will describe some me- 
thodological aspects, which seem to be necessary since different methods 
for registration and analysis have been proposed. After comments on elec- 
trogenesis and physiological significance we will describe results of  research 
with corticography and stereo-electro-encephalography. The later parts of  
the review will then be devoted to topographical and maturational aspects 
and related psychological processes, as well as the application in clinical 
studies and research on drug effects and toxic influences. 

2 Terminology and Definitions 

Concerning terminology, abbreviations and definitions we will try to work 
out  some unifying principles and recommendations for further usage. A 
basic discrepancy already exists between researchers recording directly 
from the cortex, working mainly on the animal brain, and researchers re- 
cording from the human scalp. The first group has decided that the term 
DC potentials, derived from the application of directly coupled amplifiers, 
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would be most  unprejudiced and that  this nomenclature  should be adopted 
in future publications (Caspers 1974). 

The second group, in the title of  its congress papers, uses the term 
"event-related slow potentials"  (McCallurn and Knott 1973). 

In our  title we have combined both  terminologies by adding DC in the 
sense of  direct coupling, in parantheses, and also by using the term "event- 
related slow (DC) potentials".  This combined  term has already been used 
by Lindsley (1969). A general review of  the different terminologies and 
abbreviations used in this field is given in Tables 1 and 2. 

Table 1. General terminology and abbreviations for event-related slow (DC) potentials a 

Technological terms 

Descriptive terms related to 

Potential characteristics Events 

[DC (direcily coupled)] 

DC (direct current) 
DC recordings 

SP (slow potentials) ] 

SPC (slow potential change) 
SPS (slow potential shift) 
DC change 
DC shift 
Standing potential 
Steady potential 
Sustained potential 

]ERP (event-related 
[..potentials) J 

a Terms used as main headings in this paper and recommended for future usage are 
enclosed. 

At the time terminologies must  remain largely descriptive and not  ex- 
planatory. We therefore use as main headings in this review and propose 
for further  usage the general descriptive terms "slow potent ia ls"  (SP) and 
"event-related potent ials"  (ERP) and as specific descriptive terms, "late 
potent ia l"  (LP) or "information-related potent ia l"  (IRP), "cont ingent  po- 
tential"  (CP) and "movement-related potent ia l"  (MRP). 

We are not  concerned in this review with the early and middle compo-  
nents of  evoked potentials. Late potentials (LP) may include positive as 
well as negative potentials between 200 and 500 ms, depending on the ex- 
perimental  situation. The best usage seems to us therefore to designate the 
main componen t  of  the late responses according to its polarity and latency. 
In many  cases this will be a positive wave with a peak latency around 300 
ms, as originally described by Sutton et al. (1965) and designated as P 3 
or P 300 by Ritter et al. (1968) or LPC (late positive componen t )  by 
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Table 2. Situation-specific terms and abbreviations for event-related slow (DC) poten- 
tials a 

Phenomenological Topographical 
terms terms 

Descriptive terms related to 
Potential Events 
characteristics 

OP (orienting 
potential) 

ACP (associa- 
tion cortex 
potential) 

LP (late potential) l [IRP (information- 
Irelated potential) { 

LPC (late positive PWSP (post warning 
component) signal positivity) 

SNP (slow negative 
potential) 

P3 = Paoo (positive 
wave with peak 
latency 300 ms) 

E-wave 
(expectancy wave) 

Imaginary 
potential 

Imagination 
potential 

I CP (contingent 
potential) ] 

CNV (contingent negative 
variation) 

RCPV (rewarding contin- 
gent positive variation) 

PINV (post imperative 
negative variation) 

I-wave (intention 
wave) 

MRP (movement- 
related potential) 

RRP (response-related 
potential) 

AMP (average movement 
potential) 

RP (readiness potential, 
i.e. BP, Bereitschafts- 
potential) 

PMP (premotor positive 
potential) 

MP (motor potential) 

GDMP (goal-directed 
movement potential) 

a Terms used as main headings in this paper and recommended for future usage are 
enclosed. 
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Ritter and Vaughan (1969). In other cases the main potential components 
may be a negative wave with latencies of about 250 ms, as described by 
Haider et al. (1968b). In other studies, still other prominent waves or 
wave complexes may be seen which could all be summed up under the de- 
scriptive heading of  "late potentials". Since all components seem to be re- 
lated to different aspects of  information processing we propose the term 
"information-related potential" (IRP). 

Similarly, the term "contingent potential" (CP) could be used for a 
whole group of  responses described by Walter (1975) as "potential changes 
whose appearance is contingent on the association of  signals and/or action 
or decision by the subject." The most obvious of these is the contingent 
negative variation (CNV). Again, this more specific term applies to a spe- 
cial situation in which a negative potential appears. 

But sometimes the variation may be positive. Marezynski (1972)de-  
scribed a reward-contingent positive variation (RCPV). In some parts of  
the brain (frontal of  the thalamus) even the typical experimental situation 
for a CNV leads to slow positive variations (MeCallum et al. 1976). 

Under the heading "movement  related potentials" (MRP), at least three 
main components are described: a slow rising readiness potential (Bereit- 
schaftspotential), premovement phasic components and a late positive 
wave. Recently, Zielbewegungspotentiale (goal-directed movement poten- 
tials, GDMP) have been found over the precentrat and parietal cortex 
(Griinewald-Zuberbier et al. 1978a; Griinewald-Zuberbier and Griinewald 
1978). In these instances the premotion negativity increases and remains 
during the goal-directed movement  until the target is reached. 

It must be emphasized that some authors (Gilden et al. 1966; Vaughan 
et al. 1968) use the term "motor  potential" for all potential components  
associated with movements, whereas other authors (Kornhuber and Deecke 
1965; Deeeke et al. 1969) call only the negative peak "motor  potential". 
There is no agreement as to what part of  the trace the term N2 applies and 
to what part, the term "motor  potential". Gerbrandt et al. (1973) use the 
term "average movement potential". A group attending the symposium on 
motor  control [Fourth International Congress on Event-Related Slow Po- 
tentials, Otto (ed.) 1978] therefore proposed the following taxonomy of  
movement-related brain macropotentials (Papakostopoulos, 1978). 

1. Potentials related to the state of  the sensory motor  system at rest (rest- 
ing potentials - RTPs) 

2. Potentials related to functions during the preparatory period (prepara- 
tory period (preparatory potentials - P P s )  

3. Potentials related to the initiation period (initiation potentials - IPs) 
4. Potentials related to the execution of  the movement (movement-execu- 

tion potentials - MEPs) 
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5. Potentials related to the termination of the movement (termination po- 
tentials - TPs) 

Future research must show the extent to which these terms are useful 
in handling our knowledge of motor control from different disciplines. In 
this review we take the term "movement-related potentials" as the best 
descriptive term and propose it for further usage. How far the different 
components of these movement-related potentials, according to their time 
sequence, are related to preparation, initiation, execution and termination 
of movements will be discussed in this review. 

3 Potential Characteristics and Methodology 

3.1 The Biological Signal 

3.1.1 Late Potentials 

Sutton et al. (1965) described a rather slow late positive potential compo- 
nent with a peak latency of about 300 ms which appeared to be related 
more to complex psychological variables than to the physical character- 
istics of the stimulus. Further experiments showed that this phenomenon 
of late potential changes with peak latencies between ~200 and ~400 ms 
seem to be related to similar psychological variables (Haider et al. 1968b; 
Ritter et al. 1968). Multiple late potential components have also been de- 
scribed (Harter and Salomon 1972; Squires et al. 1975; Courchesne et al. 
1975). Some characteristic wave forms of late potentials, drawn according 
to the published curves of different authors, are compared in Fig. 1. 

There have also been reports of cerebral potentials occurring at about 
the time of an expected but absent stimulus. Stimulus absence provided 
information or is salient for the subject. These potentials consist mainly of 
a positive peak occurring about the same time as the p 300 and is referred 
to as an "emitted p 300" potential (Klinke et al. 1968; Weinberg et al. 
1974;Ruehkin et al. 1975). 

The original construct that one unifying psychological variable is re- 
sponsible for these potential changes which are elicited in a wide variety 
of situations such as uncertainty, information delivery, signal significance, 
orienting, inhibition, selective recognition, awareness or salience, has been 
replaced by some authors with the concept of several independent late po- 
tential components. This second concept is supported mainly by topo- 
graphical data. 

The technical problems involved in defining LP on the basis of  individ- 
ual trials are considerable (see Sect. 3.6.2) and sometimes impossible (low 
signal-to-noise ratio). 
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Fig. 1 A--D. Late potentials found by dif- 
ferent authors for unexpected stimuli 
compared with expected stimuli, un- 
expected stimuli; . . . . . .  expected stim- 
uti negativity upwards; ]" stimulus onset. 
A Ritter et al. (1968); B Haider et al. 
(1968b); C Squires et al. (1973); D 
Courehesne et al. (1975) 
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Late potentials normally are extracted from the raw EEG by different 
methods o f  averaging (methods that  increase the signal-to-noise ratio). 

3.1.2 Contingent Potentials 

The contingent negative variation derives its name from being a slow po- 
tential shift in the EEG baseline which typically occurs on the association 
(contingency) of  successive stimuli. As mentioned previously, it was first 
described by Walter et al. (1964), as developing between the warning 
signal and the imperative signal in a constant foreperiod reaction time task. 
The contingent negative variation appears within the intersignal interval 
as a surface negative shift with respect to a mastoid reference. 

Meanwhile, it has been demonstrated that the CP can be elicited by 
many different experimental designs. It is not  dependent on stinmlus 
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Fig. 2. Contingent negative variation (CNV) in the standard paradigm reaction time 
experiment with foreperiod) and the effect of time constant  on the contingent varia- 
tion. Note also the apparent  variations in latency of  the first peak of  CNV. A warning 
signal (S 0 is followed by repetitive clicks which were terminated by the press of  a 
button.  Each trace is the average of 50 trials recorded simultaneously but  with dif- 
ferent time constants. Negativity upwards. (Cooper et al. 1974) 
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modality or intensity, nor are overt motor acts essential for a contingent 
variation. The reasons for the sometimes considerable changes in CP 
morphology and amplitude as well as for changes in peak latency varia- 
tions are discussed in Sect. 8. 

The CP is not readily seen in the raw EEG traces of most normal adults. 
Therefore, different averaging techniques are used to enhance CP ampli- 
tude relative to background EEG. In the last years some mathematical 
models have also been discussed for CP evaluation as alternatives to the 
averaging methods, which include some theoretical difficulties. 

The maximum negative voltage, compared to the iso-electric direct 
current prestimulus baseline, ranges from 10 t~V to 50/~V with an approx- 
imate mean of 20 uV (Walter 1967b). The termination of the CP can be 
slow and inconsistent as well as immediate. 

The terminating potential decline limb of the CP may overshoot the 
baseline. The time course for the development of CP may vary from 0.5 s 
to many seconds. It is reported to persist as long as 20 s under special con- 
ditions, if the subject is highly motivated. When using RC-coupled ampli- 
tiers the time constant may reduce the amplitude of slow potentials. This 
is demonstrated in Fig. 2, which presents a typical example of a CP simul- 
taneously recorded with different time constants in a classic experimental 
paradigm. 

3.1.3 Movement-Re&ted Potentials 

Voluntary movements are preceded and followed by slow electrical brain 
potentials of different latency and amplitude characteristics. There is 
general agreement as to the morphology of this MRP and its division in 
four components: a slowly rising negativity (N1), an inconsistently appear- 
ing small positivity (P1), a fast negative deflection (N2) and a large, rather 
slow final positivity (P~). 

Characteristic examples of movement-related potentials for right and 
left unilateral finger movements are shown in Fig. 3, which demonstrates 
that the fast negative deflection (motor potential, according to Deecke 
and Kornhuber 1977) occurs contralateral to the moving hand. 

The N~ component, generally called Bereitschaftspotential (BP), is a 
bilateral, slowly increasing surface negative potential. In scalp derivations 
it starts on the average about 0.8 s prior to the onset of a movement. The 
amplitude of the average BP is between 5 and 7 I~V. There is small intra- 
individual but large interindividual variability in latency. Amplitudes are 
dependent on several individual and experimental parameters. 

Similar to the CP the BP occurs in preparatory situations. Therefore, 
the question sometimes arose whether CP and BP would not be the same 
electrophysiological phenomenon. There is now, however, general agree- 
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Fig. 3. Examples of voluntary movement-related potentials (Deecke et al. 1976b). 
Comparison of right unilateral (R) and left unilateral (L) index finger movements in 
the same experiment. With right index finger movement there is more negativity over 
the left precentral region (R) ; with left index finger movement there is more negativ- 
ity in the right precentral lead (L). Bipolar recording (left versus right precentral) in 
the bottom trace 

ment  that  CP and BP are correlates o f  different psychophysiological mech- 
anisms. Deecke and Kornhuber (1977) ascribe different topographical dis- 
tribution, morphology and amplitudes to CP and BP. Similar differences 
between BP and CP were described by McCallum (1978) for cortical deri- 
vations. 

A small positive-going wave whose deflection time is 9 0 - 8 0  ms before 
the start o f  movement  as defined by EMG onset is sometimes registered. 
Average amplitude of  this wave is about 1.7 t~V. This P1 component  ap- 
pears to be bilateral and widespread and is described as occurring incon- 
sistently across and within subjects (Gerbrandt et al. 1973; Vaughan et al. 
1968). Deecke and Kornhuber (1977) found this premotor  positivity in 
about two-thirds of  their subjects. McCallum (1978) was not able to anal- 
yse this potential component .  

A fast negative deflection following the P1 component  was described 
by Kornhuber and Deecke (1965) and is called N2 or motor  potential 
(MP). The negative MP is restricted to the contralateral precentral area. It 
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starts 60--50 ms prior to EMG onset and has an average amplitude of  about  
1.6 #V. The MP starts before the onset o f  movement.  The N2 component  
described by  Deecke and Kornhuber does not  correspond to the N2 com- 
ponent  described by Gerbrandt et al. (1973),  who found that this compo- 
nent arises after movement  onset. This difference obviously depends on 
electrode linkage and position. 

In cortical derivations during stereotactic surgery the motor  potential 
has now been observed as a restricted, localized phenomenon at the proper 
motor  cortex, area 4 (Ganglberger et at. 1980). 

During smooth goal-directed hand movements the premotion negativ- 
ity increases and remains during movement  until the target is reached. An 
example is shown in Fig. 4. 

G OALD!RECTED HAND MOVEMENT WITH DIRECT TARGET FIXATION 
~ BereHschoHspotenhal 

ZietbewegungspoleN+ot 

MEAN 
A 3sec BEFORE MOVEMENT DURATION 
B GOAL DIRECTED MOVEMENT: 2.7see 
C SIOP ON TARGET : 0.4sec 

O BACKWARO MOVEMENT: ~.7 sec 
E 1.5sec AFTER MOVEMENT 

c PRECENTRAL TC =Ssec 

Righ~ 

: PARIETAL iT TC:3sec 

_ + _  S+ E T R+ J+ + T  BA.ER R , G , T + 0  
N=34 TRIALS AVERAGED 

Fig. 4. Negative potentials during goal-directed movements, Zielbewegungspotential 
(B "I'm) reach double amplitudes of Bereitschaftspotential before movement (AI--q). 
In B the right hand guides the rod to the visualized goal during maintained target +- 
fixation. Reference: linked mastoids. (Griinewald-Zuberbier et al. 1978a) 

The negativity is very large and widespread and has maximal ampli- 
tudes over the vertex. Over the precentral cortex they are larger contra- 
laterally, but  over parietal cortex an ipsilateral preponderance is some- 

times seen. 
Potential changes during such goal-directed movements are of  higher 

amplitude than potential changes during voluntary finger movements and 
very often may be seen in the raw EEG. Griinewald-Zuberbier et al. 
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(1978a), Griinewald-Zuberbier and Griinewald (1978) were the first to 
describe the phenomenon under the term "goal-directed movement poten- 
tial". 

3.2 Reliability of  Biological Signals 

The reliability of a measurement is a crucial factor in determining its use- 
fulness. Generally the reliability is expressed as the correlation between re- 
peated measurements. Information on test-retest reliability (TRR) of aver- 
aged slow potential changes is limited, and the results of different investi- 
gations may not directly be compared. Different authors use various ex- 
perimental designs and parameters for potential descriptions. This prob- 
ably accounts for some of the diverging results. 

The test-retest reliability of different EP components is reported to be 
between 0.87 and 0.97 (Shagass and Schwartz 1961 ; Callaway et al. 1965; 
Kooi and Bagchi 1964; Ellingson et al. 1973 ; Soskis and Shagass 1974). 

Smaller reliability coefficients were found by Roth et al. (1975) (r = 
0.78 amplitude; latencies 0.63). For longer test intervals smaller correla- 
tion coefficients in the range 0.55-0.66 were found. There is general 
agreement on higher reliability for earlier potential components than for 
the later ones. There is so far no agreement whether latency measurements 
or amplitude measurements are more reliable (Kooi and Bagchi 1964; 
Roth et al. 1975). 

There are only few experimental data on CP reliability. Straumanis et 
al. (1969) found a rather low reliability of 0.32 for a normal population 
and 0.05 in a psychiatric population. It has to be mentioned, however, 
that different experimental designs were used as test and retest. 

Cohen (1969) reports a reliability coefficient of 0.80 for "average max- 
imum vertex amplitude", using test intervals of 2 - 8  days. The median 
subject consistency in retests separated from 5 min to 8 days was 0.68 as 
reported byRoth et al. (1975). 

Timsit-Berthier et at. (1978) studied CP reliability using two groups of 
psychiatric patients (those with permanent behaviour disorders and those 
with important changes in their clinical state) and retest intervals of 1-2  
months and 1-2 years. Correlation coefficients for amplitude measures 
were 0.66 ( I - 2  months) and 0.55 (1 -2  years), respectively (P < 0.05). 
For qualitative evaluation of CNV termination, retest reliability was even 
higher (0.88-0.78). 

Tests for personality traits which by definition are stable over time 
have TRRs ranging between 0.9 and 0.6 for intervals of several weeks. The 
CP reliability is therefore lower than expected for measurement of trait 
reliability but much higher than measurements of individual variables 
fluctuating with different states of the individual. 
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3.3 Variability of Biological Signals 

The interindividual variability of the EP component shows a slight but 
progressive increase for waves I - I I I  and is very high for the late potential 
components. This occurs in the peak latencies as well as in amplitude mea- 
surements (Storm van Leeuwen et al. 1975). 

There is considerable interindividual variability in phenomena related to 
contingent potential development. In raw EEG traces, CP's are to be seen 
in about 20% of subjects. The range of CP amplitude found among normal 
individuals is between 8 and 50 ~V in standard CP paradigms. 

Changes in the experimental design (i.e. omission of S~, distraction 
from $2) may evoke different reactions in different subjects, i.e. decrease 
in CP amplitude for some subjects and augmentation for others. 

In summary, the interindividual variability of CP parameters in standard 
situations is already great. Introduction of supplementary behavioural 
aspects into the situation increases the interindividual variability consider- 
ably. 

Average EPs in the same subject under identical conditions are very 
stable over a long period of time: the intra-individual variability is small. 
Studies of Aunon and Cantor (1977) have shown that the intrasession 
variability for EP components is significantly smaller than the intersession 
variability within the same subject. Interlaboratory standard deviation was 
found to be over twice as large as the intralaboratory standard deviation 
measured over an 8-week period. 

3.4 Recording System 

3.4.1 Characteristics of  Electrodes for Registration of  Slow (DC) 
Po ten tial Changes 

Reversible electrodes should be used for registration of steady or slowly 
changing potential differences; i.e. electrodes having low values for R F, 
the faradic resistance of the chemical change and the Warburg impedance. 
Using reversible electrodes a small increase or decrease of potential above 
or below the electrode potential will cause the discharge of ions at a con- 
siderable rate. This means that such electrodes have a low resistance to 
steady or slowly changing potentials. 

Reversible electrodes commonly used in EEG investigations are revers- 
ible with respect to anions. In this case a metal is in contact with one of 
its insoluble salts immersed in a solution of a soluble salt of the same anion 
(Geddes 1972; Cooper et al. 1974). 

The choice of the metal used for electrodes cannot only be determined 
by the susceptibility to polarization. Many metals cause inflammation 
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when they are in contact with tissue for longer periods. Therefore, espe- 
cially for chronical intracerebral recordings, metals such as stainless steel 
or gold must be used whose recording characteristics are poor when DC 
recordings have to be made and conventional EEG amplifiers are used. 
The low frequency activity is attenuated by a factor determined by the 
values of  the electrode impedance and the amplifier impedance. EEG am- 
plifiers with high input impedance (100 M~2) make possible the registra- 
tion of  slow potential changes with such electrodes without too much loss. 
In animal experiments, electrolyte-filled glass pipettes in connection with 
sintered Ag/AgC1 pellets seem to be a good alternative (Rebert and Irwin 
1973). 

Electrode potentials often change with time. Slow drifts may be caused 
by several sources; for instance, differences between electrodes, skin po- 
tentials or potential changes at the skin as a result o f  the conducting jelly 
can be in the range of  mV and therefore much higher than the EEG phe- 
nomenon under investigation. Because of these instabilities one should 
carefully consider whether DC recordings with all their difficult technical 
aspects are really required or whether AC amplifiers with very long time 
constants (25 s) will suffice. 

3.4.2 Number and Location o f  Electrodes 

There is general agreement that as many electrodes as possible should be 
used in EP experiments. The number and location of electrodes must be 
d~cided according to the specific goal of  the experiment and the technical 
availabilities of the recording system. Further limitations are set by the 
capacity of the data-analysing equipment. For experiments dealing with 
the relationship between EPs and complex psychological processes, the 
following ranking of  electrode placements in order of  desirability was pro- 
posed by Donchin et al. (1977) if scalp electrodes are used. Electro-oculo- 
gram EOG and the encephalogram from the location C Z should always be 
recorded followed by derivations from P3 and P4 (Pz), C~, C4, then F3, 
F4 (or FZ), O1 and 02 and finally, Ts and T6. For specification of  elec- 
trode placement the international 10-20  electrode placement system 
(Jasper 1958) should be used. Electrode positions which vary for scientific 
reasons from the 10-20  system should also be specified in terms of the 
standard coordinate system. 

3.4.3 Recording Montages 

For deriving EEG recordings from an electrode array, three main methods 
are described: 
1. In the bipolar method potential differences are measured between two 

electrodes, both of  which are affected by EEG potentials ("active" elec- 
trodes). 
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2. In a common reference (unipolar, monopolar) derivation each amplifier 
is situated between one "active" electrode and the so-called common 
reference which is placed so as to minimize the possibility of  picking up 
brain potentials ("inactive" electrode). 

3. In a common average reference system (Goldman-Offner method)  usu- 
ally all the electrodes on the scalp (sometimes with the exclusion of  
some electrodes thought likely to produce artefacts) are connected 
through equal resistors to a single point which is then used as a com- 
mon reference. The potential of  this point will be the average of  the po- 
tentials at the scalp electrodes. Each amplifier is then connected between 
one active electrode and this common average "inactive" reference). 

It is not  possible to make a general recommendation as to which re- 
cording method is preferable. In investigations of  stow potential changes 
there seems to be, however, a preference for common reference deriva- 
tions using "linked ears" as the "inactive" electrode site. 

3.5 Artefacts 

"By definition an artefact in electroencephalography is any recorded elec- 
trical potential which does not  originate in the brain" (Cooper et al. 1974). 
Artefacts arise because o f  two main factors: technical and physiological. 
Many technical artefacts arise at the junction between the electrodes and 
the patient's scalp. Movement of  the electrode relative to the scalp results 
in a change o f  contact  resistance or disturbance of  the electrode potential. 
Imperfect  electrode contact or contamination of  the different junctions 
(electrode clipjacket) may cause further artefacts. 

Several physiological potentials originating from extracerebral sources 
may be recorded from the scalp electrodes used to detect  the EEG and the 
time-locked cerebral potential it contains. Some of  them, such as muscle 
activity or artefacts from the EEG, are rather easily recognized in the raw 
EEG. Galvanic skin response and respiratory effects may seriously con- 
found the activity originating from the brain, especially when event-relat- 
ed slow (DC) potential shifts are under investigation. 

Low et al. (1966a) reported that a consistent pattern of  involuntary 
eye movements could accompany behavioural tasks used to elicit the CNV 
or other CP. 

The most serious difficulty, however, is undoubtedly  presented by the 
corneoretinal potential which generates the EOG. The fact that  the EOG is 
sometimes time-locked to stimuli has led to serious errors, especially in slow 
potential investigations. This EOG potential is large in comparison to cere- 
bral potentials and may significantly contaminate recordings taken from 
points as distant as the vertex and sometimes the occiput (Rowland t 968). 
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Different methods for EOG elimination have been proposed: 

1. Requiring the subject to fix his gaze during the recording period is re- 
ported to be effective in about 50% of subjects (Rowland 1968; Wasman 
et al. 1970); Hillyard and Galambos (1970) found this method "gener- 
ally" effective. 

2. A variation of the gaze-fixation technique using a special device for 
stimulus presentation has been shown to virtually eliminate involuntary 
ocular rotations (Borda and Hablitz 1973). 

3. Techniques which favour rejection of eye-movement contaminated 
trials are: 
a) Electrographical monitoring of eye-movements and subsequent elimi- 

nation from further analysis of trials during which eye movements 
occurred, based on either visual monitoring or automatic EOG recog- 
nition in off-line analysis (Debeeker and Carmeliet 1974) with anal- 
ogue equipment or on4ine by a general purpose computer. 

b) Rejection of mechanically detected eye-movement contaminated 
trials in on-line analysis using a mechanical transducer to sense move- 
ments of the eye equivalent to 3 ° or more has been suggested byPapa- 
kostopoulos et al. (1973). 

The behavioural significance of such "cleaned" CPs must be discussed 
as it is very likely that in some situations CP trials accompanied by eye 
movements represent a special situation. 

4. Mathematical adjustment of CNV amplitude based on the correlation 
between magnitude of eye movements and magnitude of "pseudo-CNV" 
recorded on the vertex (Hillyard and Galambos 1970). 

5. On-line technique for separating eye movement potentials from EEG 
potentials by electronically subtracting a fraction of both the horizontal 
and the vertical EOG potential from the raw EEG (Girton and Kamiya 
1973). 

3.6 Data Analysis 

3.6.1 Averaging and its Limitations 

Since Adrian (1941) demonstrated that an evoked response to a flash in 
the ongoing activity of the EEG was tied in time to the stimulus, with la- 
tencies of about 100 ms one assumed that earlier signal-evoked events 
were also almost certainly present though masked by the ongoing EEG. 
The problem of selecting these evoked responses from the ongoing EEG is 
one of increasing the signal-to-noise ratio. A technique was consequently 
developed by which the recorded potential change is time locked to a pulse 
coincident with the stimulus. Repetition of the same signal situation and 
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averaging the resultant record was, for a long time, the only method of 
enhancing the signal-to-noise ratio. 

Different parameters of these averaged evoked responses are used for 
descriptive and statistical purposes. The parameters most often used in 
slow potential studies shall be discussed. 

One way to define the size of LP components, contingent variation or 
movement-related potentials, is the measurement of amplitude. There is 
presently no general agreement as to whether the amplitude of EP compo- 
nents should be measured from a baseline or as an absolute distance be- 
tween peaks of adjacent components (peak-to-peak measurement). Mea- 
surements from the baseline present some difficulties. First, one must de- 
fine the baseline and, second, measurements from the baseline introduce 
special complexities in the interpretation of data, for example when neg- 
ative-going potentials peak at levels more positive than the baselines. 

When using peak-to-peak amplitude measures one need not be concern- 
ed by the fact that there are sometimes difficulties in determining a base- 
line and also that the baseline and the whole EP may be superimposed on 
a (very) slow wave. However, measuring peak-to-peak does not take into ac- 
count that adjacent components may be differently affected by the intro- 
duced variables. Thus, those measurements may blur the true relationship. 

Investigations of late potential components generally refer to a baseline 
prior to stimulus onset (5%-10% of total sweep time is recommended). In 
both baseline measures and peak-to-peak measures, the points for ampli- 
tude evaluations are determined by the peak latencies and the number of 
late potential components. 

In CP studies baseline considerations are dependent upon the general 
definition of the contingent variation which can be either (a) the absolute 
level of negativity/positivity, measured in relation to an absolute baseline 
(in this case prestimulus baseline is used); or, alternatively (b)a  potential 
change with respect to the level upon which the warning stimulus falls. 
Here baseline would be adjusted from a point 400 ms following the first 
stimulus (Rebert and Knott 1970). 

The difference between these two definitions of CP becomes important 
whenever the evoked response to the first stimulus is associated with a 
pronounced positive shift, followed by a small negative-going potential 
shift which in fact may never exceed the absolute baseline (i.e. the stimu- 
lus baseline). 

The use of the late positive-going potential shift of the first signal for 
baseline evaluation or peak-to-peak measurements would imply that this 
component is not affected by the same variables as the contingent varia- 
tion. Some investigations, however, have shown that such activity evoked 
by the first stimulus has considerable effect on the CNV (Otto and Leifer 
1973). 



Event-Related Slow (DC) Potentials in the Human Brain 143 

There are two different ways for amplitude evaluation commonly used 
in contingent variation studies. Some workers measure amplitude just be- 
fore or at the time of the presentation of the imperative stimulus (McCal- 
lurn and Walter 1968), whereas others use maximum amplitude wherever 
it happens to occur in the interstimulus interval. 

Further amplitude measures used in most CNV studies are the values 
for the post-warning signal positivity measured either in relation to abso- 
lute baseline or as peak-to-peak measure in relation to previous negative 
potential peak. 

Amplitude measures of  movement-related potential changes refer to a 
prepotential baseline and also to peak-to-peak measures. Because the onset 
time of the slowly developing Bereitschaftspotential (readiness potential) 
changes according to different parameters of  the performed movement, no 
general assumption can be made for the length of the necessary premove- 
ment registration time. (In experiments using the general experimental de- 
signs of voluntary finger movement 2-s premovement and 1-s postmove- 
ment registration should be enough for baseline evaluation and measure- 
ment of slow potential components.) 

No general solution can be advanced when amplitude measures are of 
concern. Each experiment, however, should examine these data both as 
measured from the baseline prior to stimulus onset and also from "peak- 
to-peak". 

Low and McSherry (1968) proposed to use the integration of the area 
above or under the baseline between arbitrarily defined points as a mea- 
surement of the size of potential components. This method should only 
be used when digital computation is available. There are some typical 
integration limits, generally used by experimentors, which correspond in 
some way to the most frequently used points of  amplitude measurement. 
Because less data are discarded by the use of area measures than by ampli- 
tude measurement, this method offers some advantages. 

Neither amplitude nor area measures are able to take the shape of the 
contingent variation or movement-related potentials. As a matter of fact 
a great variety of wave shapes exists. For the CNV, Tecce (1972)has dis- 
cussed at least three major types, each showing a large individual variabil- 
ity. 

Some evidence, however, is emerging that the slope of the ascending 
limb might be equally as important as other CNV measures. In this con- 
nection the use of "latency to peak" or some other rise time measures 
could be helpful. Attempts to relate the cut-off or descending part of  the 
curve with diagnostic measures have already been successful, and it will be 
necessary to perform further work on these problems. 

The concept of  signal averaging implies that a signal must be extracted 
which may not be observed in its entirety in the raw data. It implies at the 
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same time that each reaction in the nervous system in response to the 
same stimulus should be the same. This assumption is certainly not true, 
since the stimuli occur at different times and are therefore presented to a 
different state of  the nervous system. Different reactions should result. 
For  some parameters, systematic changes during successive presentations 
of  the same event are known. In those cases, variability may be thought o f  
as a dependent  factor. 

The most important  limitation of  signal averaging is the inability of  
this method to give specific information about  the specific influence of  
the single trials on the central tendency both with respect to amplitude 
and latency differences which may exist. 

Knowledge of  the consistency of  potential changes is necessary, how- 
ever, to any statement of  reliability. Therefore measures of  variability are 
now of ten used as routine qualification o f  the average. The most  common- 
ly used measure is "variability o f  voltage at the same time". But as long as 
those measurements refer to the mean or the sum of  potentials, the vari- 
ability in the amplitude of  the signal may not be distinguishable from 
variability in latencies. 

3.6-.2 Alternatives to Averaging 

One alternative to signal averaging is the method of  superimposition, 
which assumes that the same variability would emerge with an equal num- 
ber of  randomly selected single trials. Superimposition of  single trials, on 
the other hand, does not  yield results if the signal-to-noise ratio is low. In 
both,  the eye is used as a device for estimating mean and variability. 

Discriminant and factor analysis techniques were proposed. These 
methods are based on the same assumption as average methods,  namely 
that single trials represent variability in respect to a "real signal". 

Fourier  analysis has also been used for the analysis of  averages as well 
as for that o f  raw data. Fourier  analysis gives very little information about  
the time when the signal is occurring, but  this difficulty may be partially 
solved by  using successively smaller epochs within the record of  interest. 

4 Electrogenesis and Physiological Significance 

The discussion o f  electrogenesis and physiological significance will be kept  
brief as Caspers and Speckmann wilt give an extensive account in one of  
the following volumes o f  "Reviews o f  Physiology". At present such a dis- 
cussion can be only hypothetical.  The main problem is to bridge the gap 
between our knowledge of  sensory, neuron and membrane physiology as 
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well as neurochemical mechanisms on the one hand and the slow DC po- 
tential phenomena on the other hand. 

4.1 Even-Related Slow (DC) Potentials 

Slow surface potentials o f  evoked responses are assumed by some authors 
(Watanabe et al. 1966; Creutzfeld and Kuhnt 1966, 1967) to reflect the 
summated postsynaptic potentials of  cortical cells as well as the potentials 
originating in synchronous afferent and efferent fibre activity. Expanding 
this theory to cover slow DC potentials McSherry (1973)assumes a com- 
bination of  prolonged superficial axodendritic excitatory postsynaptic po- 
tential volleys and prolonged deep axosomatic inhibitory postsynaptic po- 
tential volleys, and he presumes distant cortical and subcortical centres to 
supply the steady barrage of  inhibiting and excitatory input. In accordance 
with this view, McSherry and Borda (1973), in a study using monkeys, 
found intracortical, positive conetates to the slow rising surface negativity. 
Rebert (1973) described different active and inactive brain regions during 
the training of  monkeys on a reaction time task. Some stereotactic studies 
using humans demonstrated the involvement of  different subcortical brain 
structures in the genesis of  slow DC potentials (Haider et al. 1968a, 1972; 
Groll-Knapp et al. 1968, 1977;McCallum etal .  1976). 

Other authors stress the possibility that neurons and glia may contri- 
bute to slow DC potentials. Goldring (1974) concludes that evoked DC 
shifts will reflect either sustained hyperpolarization of  neurons in cortical 
depth, predominantly glial depolarization, or a blend of  both neuronal 
and glial depolarization. 

Since gross recordings of  slow DC potentials probably reflect the aver- 
age potential fluctuations in a large number of  individual units, investiga- 
tions of  the origin of  DC potentials have focussed on special experimental 
conditions, such as seizure activity, in which the majority of individual 
generators are forced into synchronized action. Studies with such models 
have shown that DC changes are paralleled by membrane-potential changes 
of single neurons and of  glia cells (Karahashi and GoMring 1966; Gldtzner 
and Griisser 1968; Grossman and Hampton 1968; Caspers and Speckmann 
1970; Speckmann et al. 1972). Since Kuffler andNichols (1966)pointed  
out that glial depolarization will occur due to local release of  potassium as 
a result of  neural activity, it seems possible that a linkage between neuron- 
al and glial activity represents a complex generation of  slow DC potentials. 
The extent to which such models may be applied to late responses, con- 
tingent responses and movement-related potentials awaits further study. 

The possibility of  an involvement of  cholinergic mechanisms in the 
genesis of  slow DC potentials is suggested by laminar DC studies of  acetyl- 
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choline-activated epileptiforrn discharges in cerebral cortex (Ferguson and 
Jasper 1971) and the cholinergic influences on reward-contingent positive 
variations (Marczynski et al. 1971). Obviously many questions with re- 
spect to neurochemical mechanisms and their association with slow DC 
potentials in different brain regions need further explication. Because an 
"ascending cholinergic reticular system" from the brain stem, with dorsal 
and ventral tegmental pathways extending to the anterior thalamus and 
septal regions with important projections to the limbic system and cere- 
bral cortex has been described (Shute and Lewis 1967; Lewis and Shute 
1967), it may be speculated that thalamic slow DC potentials as observed 
by Haider et al. (1968a, 1972), Rebert (1972), McCallurn et al. (1976) 
and Grotl-Knapp et al. (1977) may also be cholinergically mediated. 

It should be mentioned that some authors (Wurtz and O'Flaherty 1967; 
Besson et al. 1970) assume a vascular origin for DC potential shifts related 
to sleep, arousal and drug influences. The time course of  vascular changes 
is however much too slow to account for the event-related stow DC po- 
tentials discussed herein. 

4.2 Late Potentials 

Assumptions about the physiological significance of  late potentials are 
complicated by the fact that different experimental situations lead to dif- 
ferent topographical distributions of  these responses. Therefore it cannot 
easily be concluded that they all depend on an unitary physiological 
mechanism arising from a single cerebral generator system. Some authors 
(Waszak and Obrist 1969; Karlin et al. 1970) noted an augmentation of  
localized late responses in situations with an inhibitory context. Papako- 
stopoulos et al. (1976) and McCallum et al. (1976) explain these findings 
as being due to an increased spatial distribution in the cortex, resulting in 
an augmentation of  amplitude when recorded from the scalp, and they 
interpret late responses as electrophysiologically indicating an inhibitory 
brain function. These authors also find a spread of  late responses generally 
located parietally to prefrontal cortex in situations demanding alterations 
of  a preset plan and discuss this as being compatible with frontal lobe func- 
tions and with the special perceptual motor  deficits after frontal lobe 
damage. Desmeth and Debeeker (1979a, b) interpret the P3so as a post- 
decision event resulting from a phasic inhibition exerted by prefrontal cor- 
tex on the mesencephalic reticular formation at the closure of  a cognitive 
processing epoch. 
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4.3 Contingent Potentials 

In speculating about the physiological significance of contingent responses, 
Walter (1975) suggests that the underlying electrochemical processes may 
act as cortical "primers", ensuring prompt and economical firing of the 
central effector mechanisms. He mentions that such slow DC potential 
phenomena arise in brain regions closely connected to the motor area and 
that the amplitude of  such potentials is related inversely to motor reaction 
times. During the 200-300 ms before the imperative stimulus, when the 
contingent response is at its peak, the amplitude of responses to intracere- 
bral electrical stimuli is 30% larger than at other times, the latency of  re- 
sponses to interpolated sensory stimuli is slightly shorter at this phase and 
the threshold for the H-reflex is lower (Papakostopoulos et al. 1973). 

Concerning the connection of contingent responses and the energy ex- 
change system of the brain, Walter (1975) maintains that a local rise in 
available oxygen starts about 10 s after the response and peaks at about 
20 s. Such local variations in oxygen availability may be measured with 
noble metal electrodes (Cooper et al. 1966). On the hypothesis that they 
are due to changes in blood flow and that this is mediated by variations in 
CO2 as a result of glycolysis, it is supposed that the electrical phenomena 
of contingent responses are associated with local increases in brain metab- 
olism. 

4.4 Movement-Related Potentials 

The physiological significance of movement-related potentials has been 
proposed on the basis of different timing for the main components. The 
readiness potential (RP, or Bereitschaftspotential) obviously resembles 
the contingent responses (Kornhuber and Deecke 1965; Gilden et al. 1966) 
and represents physiological activity related to conation or preparation for 
performance of  a motor act (Low et al. 1966a). Vaughan (1975) showed 
that the negative shift recorded in the classic situation for contingent re- 
sponses conforms to the topographical distribution of the readiness po- 
tential and is more closely time locked to the motor response than to the 
stimulus. 

On the other hand it has to be pointed out that slow (DC) potentials 
may be observed even when no motor response is required. The subject 
may only anticipate a meaningful presentation (Cohen 1969) or the "re- 
sponse" may only be a decision (Haider et al. 1968b). Some clarification 
may be found in the observation that tasks requiring sensory discrimina- 
tion are associated with potential distributions consistent with their gener- 
ation in sensory areas, whereas tasks with establishment of a preparatory 
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motor set are characterized by potentials arising from motor cortex (Vau- 
ghan and Costa 1968; Vaughan 1969). The premovement phasic compo- 
nents are considered to represent cortico-subcortico,motor-cortical loops 
with cerebellar neurons being active prior to the motor cortex as well as 
the corticospinal discharge immediately preceding motor contraction. With 
subdural electrodes during stereotactic surgery in humans a "localized mo- 
tor potential" is observed at area 4 over the representation of hand or fin- 
ger movement (Ganglberger et al. 1980). The corticomuscular delay, i.e. 
the interval between onset of cortical potentials and electromyograph 
(EMG) activity varies according to the length of neural pathways between 
brain and contracting muscle (Ganglberger 1962; Vaughan et al. 1968). 
The late positive wave of movement-related potentials has been considered 
to represent kinesthetic feedback (Kornhuber and Deecke 1965). Later, 
Vaughan et al. (1968) have shown that deafferentiation of the upper ex- 
tremity failed to alter the configuration of motor potentials. Sometimes, 
especially in mental patients, the late positive components are absent and 
sometimes they last very long. It may be postulated therefore that these 
later portions of movement-related potentials may reflect primarily cen- 
tral mechanisms. 

5 Electrocortieography and Stereo-Electro-Encephalography 

5.1 Electrocorticographical Studies 

The term "electrocorticography" refers to the recording of electrical activ- 
ity through the dura (the term "electrodurogram" is seldom used), directly 
from the cortical surface, using electrodes placed in different cortical 
layers or with a transcortical electrode arrangement. 

5.1.1 Late Potentials 

Late potentials have been observed localized mainly over the parietal and 
frontal cortex during stereotactic brain surgery (Groll-Knapp et al. 1968; 
Papakostopoulos and Crow 1976). These studies show that late potentials 
are cerebral events, independent of stimulus modality and with a localiza- 
tion slightly different from contingent responses. In the most frequently 
used experimental situation the maximal amplitude of LP is localized over 
the parietal cortex. Under special circumstances, for instance in situations 
where the subject is asked to alter a preset plan, the late potentials may 
also be recorded over more frontal and prefrontal localizations. 
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5.1.2 Contingent Potentials 

Contingent potentials, in most situations, are electrocortigraphically re- 
corded over a widespread central and frontal area (Haider et al. 1968c; 
Papakostopoulos and Crow 1976;McCallum 1978). The distribution for 
contingent responses is usually similar though not identical to the distrib- 
utions of late potentials and readiness potentials. Contingent potentials 
are symmetrically distributed and slightly more prominent anteriorly then 
late responses and readiness potentials. In animal studies under special cir- 
cumstances, for instance during waiting periods (Donchin et al. 1971, 
1973) or following periods of food deprivation (Borda 1973), some 
authors observed a central or postcentral dominant potential. In the usual 
stimulus-response paradigm, most authors (Low et al. 1966b;Rebert 1972, 
1973;Borda 1973) found a frontal premotor dominant potential.McSherry 
and Borda (1973) concluded from their work with animals that contingent 
potentials are not uniformly distributed throughout the frontal lobe, but 
rather are a local phenomenon and consist of a superficial cortical negative 
shift or an intracortical positive shift or, at some locations, both a super- 
ficial negative and an intracortical positive shift. 

5.1.3 Movement-Related Potentials 

Cortical recordings of movement-related potentials should be instrumental 
in providing additional insight into the questions related to preparation, 
initiation, execution and termination of movement. At the moment the 
information is meagre and partially contradictory. McCallum (1978) de- 
monstrated that the readiness potential is distributed weakly asymmetric- 
ally, showing increased negativity over the hemisphere contralateral to the 
operative muscles, the largest values occurring pre-RolandicaUy. In no case 
was a premotion positivity observed by MeCallurn. Papakostopoulos and 
Cooper (1976) found cortical negativity to be completely paralled with 
EMG recordings up to the point of movement and concluded that these 
potentials may be the result of  movement. Groll-Knapp et al. (1977) and 
Haider et al. (1979) extracted some patterns of movement-related cortical 
potentials: one early positive potential shift in the parietal and the fronto- 
polar cortical region, a slow negative potential change occurring on the 
premotor region and marked phasic potential shifts around the time of 
movement in the proper motor cortex. 

A premovement positivity followed by a negative small "motor poten- 
tial" can be observed locally at the region of area 4 indicating hand or fin- 
ger movement. If the electrode is near or at the postcentrat area, only a 
prominent positive wave is seen. These specific localized changes are de- 
picted in Fig. 5 in which the different curves are grouped according to the 
different representation fields. 
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Fig. 5. Voluntary movement-related potentials from different localizations in area 4. 
The eight individual traces are grouped and superimposed according to representation 
fields. Negativity upwards, button trace: averaged EMG activity. $ trigger point at 
time of the button press 

5.2 Stereo-Electro-Encephalographical Studies 

The term stereo-electro-encephalography (SEEG) has been proposed for 
the recording of  electrical activity from different intracranial levels with 
the help of  stereotactic procedures for localizing the different brain struc- 
tures (Bancaud 1975). The localization procedures that make it possible 
to determine intracranial and especially subcortical brain structures rather 
precisely in animals cannot be transposed directly to man. Functional 
stereotactic investigations in man were dependent on the publication of  
atlases providing the spatial coordinates of  the different brain structures. 
With the help of  special methods and electrodes, it is possible in any pa- 
tient to reach the intracranial targets previously determined. Investigations 
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are based e i ther  on chronica l ly  i m p l a n t e d  e lec t rodes  or  recordings  m a d e  

dur ing acu te  s t e reo tac t i c  surgery.  In  b o t h  s i tua t ions  loca t ion  o f  e lec t rodes  

and  du ra t i on  o f  inves t igat ions  are l imi ted  accord ing  to  the  medica l  indica-  
t ion.  

5.2.1 Late Potentials 

Late  po ten t ia l s  fo r  d i f fe ren t  subcor t ica l  s t ruc tu res  have no t  been  sys t em-  

at ical ly s tudied  up  to  now.  A series o f  e x p e r i m e n t s  by  Groll-Knapp et al. 

(1968) and  Haider (1970) s h o w e d  in m a n ,  howeve r ,  t ha t  evoked  po ten t i a l s  

r eco rded  in nuclei  o f  m o t o r  t ha l amus  a f t e r  u n e x p e c t e d  acous t ic  s t imul i  

c lear ly d i f fe ren t ia te  f rom evoked  po ten t i a l s  a f t e r  regular  s t imula t ion .  T h e  
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V.o.p. = Nc. ventro-oralis posterior thalami 
Zo.in = zonaincerta D.o.1. = Nc. dorsalis oralis thalami 
Ce = Nc centralis thalami Cd = Nc. caudatus 

(centre median) CA = Commisura anterior 
Pu = Pulvinar thalami Cp.in = Capsula interna 
M = Nc. medialis thalami Cz = Vertex 
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Fig. 6. Evoked potentials on vertex (scalp), in area 6 (subdural) and in the motor thal- 
amus (nucleus ventralis orahs anterior, v.o.a.) after unexpected ( ~ and expected 
( . . . . .  ) stimuh. Reference: linked mastoids; negativity upwards. 
V.o.a. = Nc. ventro-oralis anterior D.im.1 = Nc. dorsalis intermedius 
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differences consisted of  longer latencies and higher amplitudes of the 
prominent wave in the orienting situation. The late potentials in the motor  
thalamus demonstrate the involvement of  the central motor  system in ori- 
enting reactions. Fig. 6 gives examples of late potentials in motor  thala- 
mus, premotor cortex and scalp derivation. 

Acoustically evoked potential shifts in motor  thalamus have also been 
reported by Ganglberger et al. (1971) and by Fukushima et al. (1976). 

The differential effect of  attention and task relevance on late subcor- 
tical somatically evoked potentials (SEPs) was previously mentioned by 
Ervin and Mark (1964) and recently studied by Velasco et al. (1975) in a 
group of Parkinson's disease patients. Ervin and Mark (1964) reported 
SEPs at the medial thalamus (CM) with long-lasting rhythmic after-dis- 
charges. Significant amplitude reduction of  late SEP components was found 
by Velasco et al. (1975) when patients shifted from attention to distrac- 
tion or habituation. No such changes occurred in early components.  In 
contrast to the early SEP components the late components occurred rather 
widespread in thalamic lemniscal, prelemniscal and reticular regions. 

5.2.2 Contingent Potentials 

For several years contingent responses have been generally regarded as cor- 
tical phenomena, primarily because it was possible to record contingent 
potentials directly from the cerebral cortex (see Sect. 5.2.1). Recordings 
taken from thalamic nuclei in a standard CNV paradigm during acute 
stereotactic surgery indicated, however, a close relationship between the 
thalamic and the cortical electrophysiological event connected with ex- 
pectancy (Haider et al. 1972, 1979; Groll-Knapp et al. 1970). These re- 
sults are shown, together with similar results reported by Iliukina (1977) 
and Tsubokawa andMoriyasu (1978), in Fig. 7. 

In Fig. 7 contingent responses reported by different authors for dif- 
ferent patients during stereotactic brain operations can be seen. The ver- 
tex and cortical leads show the typical CNV pattern. In the thalamus, 
clear local differences may be observed. In the motor  thalamus [ventro- 
oralis posterior (v.o.p.) and ventrolateralis (VL) regions] only late poten- 
tials after the first stimulus (orienting potentials) and between the second 
stimulus and the response occur, but no slow rising negativity is seen. 

In the nucleus medialis, or dorsomedialis, as well as in the centre me- 
dian and intralaminar nuclei a clear slow negative potential shift is seen in 
most cases. This potential shift has a short deflection time and precedes 
the stow rising negativity of  cortical and vertex derivations in its sequen- 
tial development. This may show that in humans the whole medial thala- 
mus and the mediothalamic-frontocortical system are involved in the gen- 
eration and control of slow DC potentials of the cortex. 
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Fig. 7. Contingent potentials in a CNV paradigm with a warning and an imperative 
stimulus (CI-CI-R), found by different authors in vertex, cortex, motor thalamus 
(V.o.p., ventro-oralis posterior, VL, ventrolateralis), medial (M) or dorsomedial (DM) 
nucleus and non-specific thalamic projection nuclei (CM, centre median;Lain, iamella 
medialis). Negativity upwards; 4. trigger point;R, time of reaction 

These conclusions are supported by the observation of  Tsubokawa and 
Moriyasu (1978) that ventrolateral tha lamotomy has no effect on the am- 
plitude of  cortical contingent potentials, whereas medial tha lamotomy 
causes suppression o f  contingent potentials. One could speculate that this 
mechanism of  suppressing attention and expectancy for exogenous stimuli 
may be involved in the relief o f  intractable pain after medial thalamotomy. 

McCallum and his colleagues (1976) studied DNV distribution with 
multiple implanted gold electrodes in brain stem structures. Widespread 
slow (DC) potential  changes were observed for brain stem derivations, 
those from the most rostral electrodes being positive and those from the 
most caudal (mesencephalic electrodes) negative. These slow subcortical 
potential shifts look very similar to the contingent responses recorded 
from some parts o f  the cortex. In thalamic nuclei little evidence of  contin- 
gent responses was found. 

Some common features in all studies seem to be that complex cortical 
events are mediated at subcortical levels. Many thalamic nuclei show no 
slow DC potential changes such as contingent responses, but  in some thal- 
amic structures, especially the medial thalamus, slow potential shifts ac- 
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companying the beginning and the duration of  the cortical slow (DC) 
events are observed. 

Several experiments using animals support the still rather limited find- 
ings in human studies. Slow potentials were recorded in different animals 
from a variety of  subcortical nuclei during different experimental para- 
digms. Rebert (1972, 1973, t976), in macaque monkeys, found negative 
potential shifts in several non-specific projection nuclei (midbrain reticular 
formation, nucleus reuniens, posterior hypothatamus), whereas positive 
shifts developed in the caudatum, amygdala and nucleus dorsomedialis, 
thus confirming earlier assumptions that positive shifts occur in rhinence- 
phalic structures. For some structures the coincidence of negative shifts 
with increased multiple unit activity and of  positive shifts with decreased 
unit activity could be demonstrated. The earliest indication of  learning 
(defined by the occurrence of  slow potentials) was found in non-specific 
ascending reticular structures and not  in cortical regions. 

A series of  studies in cats (Skinner 1971 ; Skinner and Lindsley t 973 ; 
Yingling and Skinner 1977; Skinner and Yingling 1977) demonstrate the 
involvement of  the mediothalamic frontocortical system in the generation 
of  cortical slow DC potentials. Bilateral cryogenic blockade in the inferior 
thalamic peduncle (ITP) with interruption of  connections between medial 
thalamus and frontal cortex abolished all SP changes in the cortex after 
novel stimuli as well as SP after strong cutaneous stimulation or SP in a 
tone-shock conditioning paradigm. Slow potential changes in nucleus reti- 
cularis thalami are unequally affected. While conditioned slow potential 
shifts and slow potentials evoked in the reticular thalamic nucleus after 
medial thalamic stimulation are abolished during ITP blockade, SPs after 
medioreticular formation stimulation and after strong cutaneous shock re- 
main unaffected. 

5.2.3 Movement-Related Potentials 

The distribution of  movement-related potential shifts throughout the mid- 
brain and brain stem was studied with implanted gold electrodes (McCal- 
lure et al. 1976). Similar to their CNV results the authors found little evi- 
dence for movement-related potential changes in thalamic nuclei. In the 
rostral derivations MRP were positive, whereas in the caudal derivations 
negative shifts could be demonstrated. 

In recent studies Groll-Knapp et al. (1977) and Haider et at. (1979) 
reported voluntary movement-related slow potential changes in different 
subcortical nuclei. Subcortical target points - according to the indication 
for stereotactic surgery - were in different thalamic nuclei (Nuclei media- 
lis, centre median, v.o.a, V.o.p, L.Po., V.c.pc; see Fig. 8 for explanation of  
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abbreviations), in the tractus spinothalamic, fornix and amygdala [nomen- 
clature ofHassler (1959), stereotactic atlas o f  Schaltenbrand and Bailey]. 

Voluntary movement-related slow (DC) potential changes for various 
thalamic specific and non-specific nuclei and other subcortical structures 
are shown in Fig. 8. 

Fig. 8. Voluntary movement-related potentials from various thalamic nuclei and other 
subcortical structures. M.fa.p, Medialis fasciculus posterior; Ce, nucleus centralis or 
centre median of Luys; V.e.pe, ventrocaudalis parvocellularis;Fx, fornix; Z.im, nucleus 
centralis intermedius; Ko.p, ventro-oralis posterior; Z.i, zona incerta; Am.m, nucleus 
medialis amygdalae. The different beginnings of the traces are due to the different tape 
speeds during the instantaneous opisthochronic analysis; R, reaction and trigger point 

In the specific motor  relay nuclei and the zona incerta the negativity 
starts shortly before motor  action and is followed by a relatively sharp in- 
crease. The peak is reached after the trigger mark produced by thumb 
press. In the nucleus medialis or dorsomedialis, as well as in the centre 
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median, a clear slow negative potential shift starts earlier and shows a 
higher amplitude than those recorded from the motor  thalamus. In recent 
studies we observed greatly enhanced motor  thalamic potentials during 
goal-directed movements, which were sustained until the target was 
reached. 

According to our findings four patterns of cortical and subcortical 
event-related slow potential changes may be differentiated: 
1. Early positive potential shifts in parietal and frontopolar cortex associ- 

ated with beginning negative potential changes in medial thalamus; 
2. Widespread slow negative potential rises in premotor and parietal cor- 

tex, increasing during goal-directed movements; 
3. Localized potential changes on proper motor  and sensory cortex, motor  

thalamus and other subcortical nuclei around the time of movement.  
Some of these potentials are greatly enhanced and sustained during 
goal-directed movements; and 

4. Positive potential declines in most cortical and subcortical electrode 
sites after movements, decisions or responses. 
On the basis of time relationships of  these four possible patterns it may 

be speculated that designs or "ideations" are accompanied by early poten- 
tial changes in parietal cortex and the mediothalamic-frontocortical sys- 
tem. These potential changes, together with widespread negative potential 
rises over premotor and parietal cortex (readiness potentials), constitute 
the preparatory period for judgements, decisions and responses. In the 
initiation period a premotion positive decline over premotor  cortex as well 
as localized potential changes in motor  cortex and motor  thalamus are 
sometimes seen. In the part of  area 4 representing hand or finger move- 
ments, premotion positivity (PMP) and motor  potentials (MP) are seen 
(Ganglberger et al. 1980). Near or at the sensory cortex only a prominent 
positive wave occurs. In the upper and lower parts of  area 4 a slowly rising 
negativity reaching its peak around the time of  actual movement or short- 
ly afterwards is observed. These negative peaks of  motor  cortical and 
motor  thalamic potentials are greatly enhanced and sutained during goal- 
directed movements until the target is reached. Since the motor  thalamus 
is integrated in motor  feedback loops from the cerebellum and basal gang- 
lia to the motor  cortex, these potentials may be related to the control and 
internal monitoring of  programming activities during initiation and execu- 
tion of movement. The final post-movement-positive potential decline may 
represent central mechanisms related to termination of  movements and re- 
afferent signals from the periphery. 

Many of these interpretations are still highly speculative, but our 
studies, based on acute stereotactic surgery, demonstrate some mechanisms 
of  summation and integration of  the multiple local generators in the cor- 
tex to the common patterns of  event-related responses emerging from 
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studies using scalp electrodes. Moreover, these studies reveal subcortical 
involvement in the regulation of  cortical activity and the interrelationship 
between subcortical and cortical electrophysiological events. 

6 Topographical Aspects (Scalp Distribution) 

6.1 Late Potentials 

Studies by Vaughan and Ritter (1970) suggested for LPs a dipole layer 
source with axes perpendicular to the surface of  the scalp and centred 
upon the parietotemporal association area. In accordance with this sug- 
gestion the largest amplitude for late potentials has been reported at the 
parietal electrodes (Donchin et al. 1975). The same modality non-sepcific 
distribution with a maximum over the parietal region has been found for 
the "emitted potentials" from missing stimuli. The distributions and pre- 
sumptive sources of  negative and positive components of visually evoked 
potentials and for potentials after missing stimuli are shown in Fig. 9. 

The topographical analyses seem to show that the earlier components 
have distributions compatible with sources in and near the primary cortical 
projection area, whereas the potential components for missing stimuli sim- 
ilar to all late potentials have a distribution compatible with a cortical 
origin in the inferior parietal lobule. The main localization for late poten- 
tials has also been found in electrocorticographical studies to be at the 
parietal cortex (see Sect. 5). Because the topographical distribution sug- 
gests an origin in secondary cortical projection areas and in association cor- 
tex, Vaughan (1975) uses the term "association cortex potential (ACP)". 

Since late potentials are not  a uniform wave component  but consist of  
a variety of  negative and positive waveforms, we must also take into ac- 
count the possibility of different sites of generation, depending for in- 
stance on the task and experimental design (see Sect. 8.1). Late potential 
components,  with distributions largest over posterior regions, have been 
described during an acquisition task (Pooh et al. 1974). On the other hand 
a large frontal positive component  following a negative orienting potential 
was observed for novel stimuli (Courchesne et al. 1975). One may specu- 
late, therefore, that different topographical field distributions for late po- 
tentials reflect different functions of  cortical and subcortical sites with re- 
spect to novelty and information processing. 

Stereo-electro-encephalographical studies (see Sect. 5) clearly demon- 
strate that the source of  late potentials is not purely cortical. Therefore 
one has to consider that either subcortical or combined cortical-subcortical 
sources may account for the reported scalp distribution. Intracranial 
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Fig. 9. Averaged responses (VER) to 1-s light flash (S) and brain potentials missing 
stimulus potentials (MSP) associated with unexpected deletion of a flash (S). Poten- 
tials are grand means of  11 responses obtained from eight subjects. Isopotential  maps 
on left depict the negative (N 1) and late positive (P:)  components of the VER, respec- 
tively, together with the estimates of intracranial sources inferred from these data. 
Maps on the fight indicate the distribution and presumptive sources of  the missing 
stimulus paradigm (Vaughan 1975) 
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studies during stereotactic surgery (Groll-Knapp et al. 1968, 1970; Haider 
1970; Ganglberger et al. 1971; Velasco et al. 1975) have shown that quick- 
ly habituating late potentials for unexpected (orienting) stimuli are wide- 
spread in different thalamic nuclei, even in the motor  thalamus. This may 
explain to a certain degree why late potentials show modality non-specific 
distributions without polarity inversions in scalp and cortical depth rec- 
ordings and with maximum amplitudes deep in the brain and not  near the 
cortical surface (Wood et al. 1979). 

6.2 Contingent Potentials 

There may be three approaches to the analysis of  differences in contingent 
potentials, recorded from different localizations of  the scalp. Some authors 
consider contingent potentials to be unitary phenomena, while others see 
them as being composed of  several different waves, converging on local 
recording sites. A third group assumes that each potential is characteris- 
tically generated at the local site from which it is recorded (Weinberg and 
Papakostopoulos 1975). 

Early studies (Walter et al. 1964; Low et al. 1966a) reported contin- 
gent potentials with maximal amplitudes at frontal sites. Later studies re- 
ported a gradient of  change in the anterior-posterior axis. Many authors 
(Cant et al. 1966; Walter 1967a, b; Cohen 1969; Gullickson 1970) sug- 
gested a bilateral symmetrical distribution with maximum at the vertex, 
being smaller in the frontal region and smallest in posterior areas. 

In tasks involving the processing of  verbal and spatial information, the 
amplitudes of  contingent potentials were larger at parietal areas compared 
to frontal and temporal sites (Marsh and Thompson 1973). 

In conditioning experiments differences in location have been found 
related to the different stages of  training. In early training phases a central 
dominant potential was seen; during overtraining periods a frontal domi- 
nant wave was observed (Borda 1970;Hablitz t 973). 

That contingent potentials may indicate functionally different processes 
in more frontal or more posterior areas is suggested by different studies. 
Task dependency has been demonstrated by frontal dominant potentials 
in an auditory discrimination task and central dominant potentials prior 
to motor  movements (Jiirvilehto and Fruhstorfer 1970). 

Correlation studies of  contingent potentials and reaction times showed 
poor  matching of  frontal and vertex waveforms contrasting with good 
matches of  central and parietal with vertex waveforms. Moreover, there 
was a lack of  correlation between contingent potentials and reaction times 
in prefrontal areas but some correlation in central-parietal areas (Papako- 
stopoulos and Fenelon 1975). Similarly, Weinberg and Papakostopoulos 
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(1975) used a pattern recognition technique to determine the form dif- 
ferences o f  contingent potentials in frontal, parietal and vertex sites. Fron- 
tal potentials were the smallest and were different in form from vertex, 
central and parietal sites. 

One conclusion to be gained from all these studies seems to be that the 
wave-form of  contingent potentials to a certain degree maps the processing 
of  information under the recording area. In this respect contingent poten- 
tials show similarities to late potentials. But besides topographical differ- 
ences there are differences in the kind of  information processing and its 
outcome. Late potentials are post stimulus and therefore are most sensitive 
to immediate outcomes of  information processing, whereas contingent po- 
tentials occur prior to critical stimuli and may reflect changes in different 
cerebral sites as a result of  accumulated information. 

6.3 Movement-Related Potentials 

The topography of  voluntary movement-related potentials was first studied 
systematically by Vaughan et al. (1968) and Deecke et al. (1969). Ger- 
brandt et al. (1973), Becket et al. (1973), Deecke et al. (1973, 1979), and 
McCallum et al. (1976) have also investigated this problem. 

There is still some controversy about the topographical distribution of 
movement-related potentials. Different spatial distribution of maximal 
amplitudes and onset of  the main three potential components preceding 
the movement,  as well as for the post-movement positivity, have been 
found. 

The individual differences in both the prominence and degree of  sym- 
metry of  the MRP are substantial and greater than for the CNV. These 
variations could perhaps partly account for some of  the discrepancies in 
the above-mentioned studies. Differences in experimental design and espe- 
cially in the measurement technique may also explain diverging results. 

Deecke et al. ( t969,  1973), Deecke and Kornhuber (1977) and Becker 
et at. (1973) report that the slow surface negative potential (readiness po- 
tent ia l ,  RP) is maximal at the vertex and that  this potential is nearly sym- 
metrical in the pre- and postcentral region. It is sometimes larger over the 
contralateral than over the ipsilateral precentral region, mainly when the 
dominant hemisphere is involved in the movement.  The readiness poten- 
tial declines in amplitude in more anterior derivations. In frontal and basal 
leads, however, Deecke and Kornhuber (1977) found this potential to be 
positive. 

The difference in the distribution of the RP compared to that of the 
CNV indicates that the slow surface negative potential reflects the general 
facilitating process which pre-activates the brain regions needed in the 
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ensuing situation. During a premovement time the frontal lobe might be 
inactive (no negative shift) or even inhibited (positive RP). 

Premovement positivity was also found to be symmetrically distributed 
and rather widespread over the scalp, In contrast the additional rising neg- 
ativity occurring shortly before the onset of  EMG activity (motor poten- 
tial, MP) had its maximum over the contralateral precentral motor  region, 
sometimes may only be recorded there and is a very circumscribed pheno- 
menon. This has now been directly demonstrated by our corticographic 
studies as shown in Fig. 5 (Sect. 5.1.3). 

There is rather good agreement among different authors that the final 
component  of  the movement-related potential, the relatively large and 
complex positive (P2)-negative wave occurring after the movement,  is 
largest and most asymmetrical predominantly over the motor  cortex and 
that these components are mainly due to the input from joint receptors. 
Several authors (Vaughan et al. t968; Deecke et al. 1969; and Gerbrandt 
et al. 1973) mention the close relationship between the P2 peak and the 
"vertex potential" of  the somatically evoked potential. The authors have 
developed their concepts about physiological origin and the physiological 
relevance of  the potential components according to scalp distribution and 
the time relations of  the movement-related potential components. Vaughan 
et al. (1968) report that movement-related potential components are di- 
rectly connected to motor  cortex activity. In contrast, Gerbrandt et al. 
(1973) states that the motor  origin of  the different components of  the 
"average movement  potential" components indicates different aspects in 
the preparation and execution of  a motor  movement,  Taking into account 
the results of  cortical and subcortical investigations of  humans (Groll- 
Knapp et al. 1977; McCallum 1978) mentioned in the previous section 
this concept now seems the most appropriate. 

7 Maturational Aspects 

7.1 Theoretical Problems of  Developmental Studies 

Developmental studies in slow potential research involve some theoretical 
problems. Age is generally taken as the independent variable in develop- 
mental studies, but the question remains to what extent chronological age 
is a relevant parameter for a process, such as slow potential changes, which 
is so clearly linked to behaviour. The great interindividual differences, 
mainly in children, between chronological age and behavioural age point 
out this difficulty. There exists no complete parallel between psychological 
and behavioural maturation, on the one hand, and biological and neurol- 
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ogical development on the other. One should therefore try to find other 
criteria, perhaps based on behavioural tests, to form homogeneous groups 
for developmental investigations. 

Compared to the general explosion of  research relating to the CNV 
since its discovery, only a few investigations have at tempted to study onto- 
genetic aspects of  SP. It is only in the last years that  the number of  rele- 
vant publications has increased, due mainly to the fact that SP research 
was introduced to psychiatric research. In this connection one expects 
that the study of  SP in normal subjects can provide the normal data base 
necessary for comparative evaluation of  SPs in psychiatric populations and 
for the development of  adjuvant procedures for the evaluation of  higher- 
order functions in clinical populations. 

7.2 Late Potentials 

The various long latency waves (> 100 ms) seem to be unequally affected 
by age. Peak latencies of  wave components between 140 and 300 ms are 
reported to be shortest for teenagers and young adults (Dustman and Beck 
1969; Liiders 1970; Schenkenberg 1970, unpublished work; Buchsbaum 
et al. 1974). Young children (Dustman, 0 - 4  years;Buchsbaum, 6 - 9  years) 
and older people show longer latencies. Courchesne (1979) did not  find 
any change in latencies of  these potential components between 6 and 36 
years of  age. Amplitudes of  these components generally decline at higher 
ages (Dustman and Beck 1969; Liiders 1970; Buchsbaum et al. 1974; 
Courchesne 1979). 

Wave components occurring after 300 ms were observed by Kurtzberg 
et al. (1979) for children in paradigms similar to P3 paradigms used for 
studies o f adults. 

Recently Courchesne (1979) reported on a series of  experiments with 
subjects between 6 and 36 years of  age. When events occurred which were 
not  explicitly pre-categorized, subjects of different ages produced ERPs 
dominated by different waves. In adults P3 waves were the most prominent,  
while large negative components with peak latencies at about 700 ms and 
positive peaks at about 1000 ms were characteristic for 6-month-old in- 
fants (Courchesne et at. 1977) and for children between 6 and 17 years 
(Courchesne 1979). In this latter group, the P3 component,  which was not  
clearly developed in infants, had peak latencies at about 700 ms and de- 
creased with age to approximately 400 ms. 

In studies in which subjects are actively involved, significant age-depen- 
dent changes were not seen (Mat;s'h 1978). Higher activity for older sub- 
jects was found if a cumulative voltage measure was taken between 2 0 0 -  
500 ms (Schenkenberg 1970, unpublished work). 
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Linear correlation coefficients were calculated for ten normal children 
(5 .7-12.7  years; X = 9.5 years) between age and cumulative voltage mea- 
sures referred to prestimulus baseline for positive shifts occurring during 
the encodement  interval in a three-stimulus paradigm "protracted p 300 
waves" (Otto et al. 1976). Substantial negative correlations were found 
for all measurement epochs during the $2-$3 (encodement interval) and 
for the 320-ms epoch preceding $2. Young children tended to show posi- 
tive shifts during the warning and encodement interval while older children 
showed negative shifts similar to CNV. 

Positivity after the warning signal in a classic CNV paradigm was found 
to be developmentally related (Karrer and Ivins 1975, 1976). Postwarning 
stimulus positivity (PWSP) was determined in relation to prestimulus base- 
line and occurred with a latency of  about 3 0 0 - 5 0 0  ms. There were signifi- 
cant differences between the two groups under experiment. Younger chil- 
dren ( 9 - 1 2  years; X = 11.1) had significantly larger PWSP than older 
children (13 -18  years; X = 15.1 ) on the vertex. The same trends were not  
significant in frontal areas. The larger PWSP in young children is interpret- 
ed within the p 300 conceptualization as reflecting greater conscious effort 
to control irrelevant activity and greater uncertainty in responding. 

Late negative postwarning stimulus activity was observed during fore- 
period experiments by Loveless and Sanford (1974). These authors found 
a negative-going potential shift peaking about 1 s after the warning signal. 
No significant difference in this component  was found between two age 
groups, one with a mean age of  21.0 (20.2-22.7)  and a second with a 
mean of  66.9 years (58.1-75.1).  Form and latency of  this negative peak 
were not  affected by the use of  different sets of  foreperiods, and this uni- 
formity strongly suggests that this negative peak is a constant effect of  the 
warning signal and is interpreted by the authors to be part of  the orienting 
response. 

Similar postwarning signal activity showed an age dependence for 
younger subjects in the study by Klorman (1975) insofar as this compo- 
nent tended to habituate over several trial blocks in 19-year-olds, but not  
in 10- and 14-year-olds. 

7.3 Contingent Potentials 

Compared to the few reports on the age dependence of  late potentials the 
literature on contingent potentials is more systematic and covers a broader 
span of  age. Walter (1967a, b), using a constant foreperiod reaction time 
paradigm, could not  observe CNVs in children under 3 years. Nevertheless, 
it seems possible to elicit contingent variations in very young and immature 
children (i.e. 3 years). In a systematic study of  preschool children, clear 
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CNVs were recorded by the use o f  coloured patterns and novel auditory 
patterns as S~ without  the occurrence o f  a motor  response. Probably the 
children's general interest, attention, motivation and cooperation were 
higher due to the different experimental design (Gullickson 1973a). 

Between the ages of  5 and 15, CNV is rather unstable. Either no CNVs, 
in the usual sense, are observed or only small inconsistent negative shifts, 
sometimes even a positive-going shift in the S~-$2 interval and a post-S2 
negativity (Low and Stoiten 1973; Timsit-Berthier and Hausrnan 1973). 
Papani and Zappoti (1973) found "tent-l ike" CNVs for this age. 

In general there seems to exist a positive correlation between CNV am- 
plitude and age during childhood up to the time when the adult contingent 
variation is established. Table 3 (Cohen 1973) demonstrates the age de- 
pendency of  the CNV. 

Table 3. Mean amplitude of peak CNV in 6-18-year-old sub- 
jects in frontal, vertex and parietal derivations 

Age of 
child 

Vertex Frontal Central Parietal 

L R L R L R 

6 11 6 6 11 I0 t2 1t 
7 13 9 8 12 13 t2 1I 
8 13 9 9 12 13 12 12 
9 15 11 10 13 12 13 12 

10 14 10 11 13 12 12 11 
11 16 12 13 13 14 11 11 
12 15 12 14 14 13 11 12 
13 16 14 12 13 14 I1 10 
14 17 13 13 15 14 12 12 
15 21 15 I3 15 16 12 13 
16 20 14 15 17 17 13 12 
17 21 15 14 17 I8 14 13 
18 22 16 15 18 19 13 12 

No agreement has so far been reached about the age at which "adult- 
like CNV" can be observed. Several authors assume a rather clearly matu- 
ration o f  CNV, at an age o f  about 10-11 years (Low et al. 1966a; Tirnsit- 
Berthier and Hausrnan 1972, 1973; Low and Stoilen 1973; Lancry 1976; 
Karrer and Ivins 1976; Karrer et al. 1978). These authors found either 
immature CNV forms for children younger than 10 years; and the usual 
configuration for older ones, or no correlation between age and CNV para- 

meters after age 12. 
A later age for the maturat ion of  the CNV is suggested by Klorman 

(1975), who did not  find the usual CNV configuration in subjects younger 
than about 14. In the investigations of  Cohen and his group the adult peak 
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amplitude of approximately 20-22/sV and pattern was reached by age 15 
(Cohen 1973). In earlier studies an even later age was proposed (Cohen 
1970, 16-18 years; Cohen et al. 1967a, 20 years). 

Whereas in adults CNV typically declines abruptly to baseline upon re- 
sponses to $2, in children this termination of CNV is usually gradual and 
has been suggested as an index of maturation (Cohen et al. 1967b; Low 
and Stoilen 1973). 

Investigations of CNV in older populations were done by Loveless and 
San ford (1974a), Marsh and Thompson (1973) and Marsh (1978). Loveless 
and Sanford have shown equal orienting responses for a group with a 
mean age of 21 and for one with a mean age of 66.9, but much reduced 
CNV responses at long foreperiod intervals (up to 15 s) for older subjects. 
The main age difference consisted in a rise of  slow potential initiated either 
immediately following the warning signal or after a brief period and then 
sustained at a fairly constant but low level throughout the foreperiod. 

Marsh and Thompson (1973) compared CNV parameters of a young 
group (19-21 years) with those of an elderly group (68-80  years). The 
absence of any consistent age difference agrees with the findings of 
Thompson and Nowlin (1971), but conflicts with the results of  Loveless 
and San ford (1974a). If one assumes that CNV reflects the level of arousal, 
the data suggest that elderly subjects are capable of showing central arousal 
levels similar to those of the young when the experimental situation re- 
quires a high arousal level. 

There is an interesting relationship between age and CNV distribution 
over the scalp. As previously discussed the usual topography of the CNV 
consists of maximum amplitude on the vertex and higher CNV amplitudes 
in frontal areas, compared to posterior regions. The anterior-posterior dis- 
tribution and the amplitude changes with age can also be seen in Table 3. 
The CNV attains its earliest peak amplitude in younger children in the 
parietal region. There is a shift to central and frontal maximum amplitude 
for older children and adults. After 11 years of age the adult pattern of 
higher CNV in the frontal areas emerged (Cohen 1973). This shift in topo- 
graphical distribution is due to an increase in frontal CNV, whereas pari- 
etal CNV amplitude remains essentially the same between 6 and 10 years 
of age. Other investigations support these findings, showing clearer CNV 
in posterior brain areas of young people than in adults (Walter 1967b) and 
a higher correlation for older children (between frontal and vertex deriva- 
tion) (Karrer and Ivins 1976). Low and Stoilen (I 973) occasionally found 
parieto-occipital dominant waves in children age 10 and over, though the 
configuration of  CNV was already classified as mature. 

As in adults contingent potentials in children appear to be bilaterally 
symmetrical over the hemispheres (Cohen 1973). 
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7.4 Movement-Related Potentials 

There has been little study of  the development o f  voluntary movement-  
related potential changes. A readiness potential preceding the motor  act 
was clearly seen by Gullickson (1973b) in 3-year-old children. For children 
up to 14 years, he found premovement negativity to be smaller than the 
postmovement  positivity. Between the age o f  12-14 ,  the preparatory po- 
tential becomes the dominant negative potential. Karrer et al. (1978)also 
found different wave-forms for children 6 - 8  years old as compared to 
young adults ( 1 6 - 1 8  years). Whereas the slowly rising negativity in adults 
begins 5 0 0 - 7 0 0  ms before EMG onset, in young children a positive-going 
wave was initiated at this time. This wave was followed by a negative shift 
peaking about 150-300  ms pre-EMG and a second positive shift. 

Three mechanisms are possibly responsible for this clearly divergent 
wave-form in young children in contrast to the wave-form of  adults in 
polarity and amplitude. First, the second positivity could be a correlate of  
the requirement of  greater activity for the initiation and may reflect an 
enhanced PMP. Second, the positivity occurring in adults after the move- 
ment  could be shifted forewards. A third speculation is that the young 
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Fig. 10. Mean Bereitschaftspotential (BP) amplitude in different age groups. White 
columns, BP amplitude at movement onset (first action potential in the EMG);hatched 
columns, BP amplitude 150 ms prior to EMG onset. (Deecke et al. 1978) 
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child may need some verbal control to organize his motor  response. Activ- 
ity preceding speech has a relatively large positive component.  

Only Deecke et al. (1978, 1979) have systematically investigated about 
movement-related potential development in higher age groups. The average 
BP amplitude is relatively constant from age 17 until the end of  the 4th 
decade (39 years) and then gradually declines. In the higher age groups 
very small BP amplitudes are observed; above age 60 positive BP can occur. 
Such positive BP are found in younger people only in frontal leads. For 
subjects between 30 and 69 the correlation coefficient between age and 
amplitude Plso was r = 0.58 (p < 0.01) and for Po, r = 0.66 (p < 0.001). 
In contrast, no significant reduction of  the motor  potential was observed 
(see Fig. 10). 

Gullickson (1973b) describes the anterioposterior distribution of  change 
occurring with age. The maximum preparatory potential was observed at 
the vertex for all ages. In young children the frontal response was larger 
than the parietal, whereas in subjects between 12 and 16 years, parietal 
response surpasses the frontal in magnitude. 

Age-dependent changes in the topographical distribution were also 
found by Karrer et al. (1978), who described an increase in the coherence 
of  BP measures between different derivations at higher ages. 

8 Psychological Correlates 

Many psychological processes have been related to slow (DC) brain poten- 
tials, and the whole field is as yet ill defined. It is impossible to cover the 
literature completely and therefore only the main lines of  scientific devel- 
opments and neuropsychological theorizing or model building will be out- 
lined. 

8.1 Late Potentials as Information-Related Potentials 

Substantial increase of  late potential components of  evoked potentials to 
various stimuli have been related by many investigators to the amount  of  
information carried by the stimulus (Chapman and Bragdon 1964;Sutton 
et al. 1965, 1967). Depending on the experimental design the late changes 
were elicited in a variety of  situations and have been interpreted in terms 
of  decision making (Hillyard 1969; Smith et al. 1970), cognitive evalua- 
tion (Ritter and Vaughan 1969), template matching (Squires et al. 1973, 
1975, 1977), reduction of  arousal (Karlin 1970), stimulus uncertainty 
(Paul and Sutton 1972), change in preparatory set (Karlin andMartz 1973) 
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and selective attention ([-Iillyard et al. 1973). The late potential in all these 
studies is interpreted as being dependent upon the recognition of known, 
task-relevant stimuli. Some authors, however, found no differences in P3 
latency and amplitude between task-relevant and task-irrelevant signals 
(Roth et al. 1976). 

In another development some authors observed late potentials evoked 
by novel, rare or unexpected stimuli. This was related to the concept of  
orienting responses or "what is it" reactions. Examples are demonstrated 
in Fig. t. The orienting potentials were independently described by [taider 
et al. (1968b) andRitter et al. (1968). Haicler et al. observed a late negative- 
positive wave complex with negative peak latencies between 250 and 350 
ms evoked by unexpected changes of stimuli in a time series as well as un- 
expected changes of sense modalities (Fig. 1A). Ford et al. (1973) found a 
modification of late negative waves with peaks between 190 and 280 in 
response to relevant or irrelevant stimuli from a relevant modality or to 
novel stimuli. Ritter et al. (1968)as well as Ritter and Vaughan (1969), ob- 
served P3 waves correlated with unpredictable changes in pitch (Fig. 1B). 
Demaire and Coquery (1977) showed that in the absence of any task to be 
performed by the subjects after the occurrence of stimuli, a N2-P3 com- 
plex is the most conspicuous component of the evoked potential to be dif- 
ferentially affected by stimuli to expected and unexpected modalities. 
Prominent negative-positive wave complexes with latencies between 210 
and 450 ms have been described by Squires et al. (1975 and 1977). The 
negative peaks occurred in response to rare stimuli, regardless of whether 
these were task relevant (Fig. 1D). The positive component P3so is en- 
hanced when the stimulus is rare and task relevant. A slow wave compo- 
nent following the P3so is related to the same variables but with a differ- 
ent scalp distribution. Courchesne et al. (1975) found a negative late po- 
tential component, similar to that described by Haider et al. (1968b) as 
largest for novel stimuli, which are most likely to produce an orienting re- 
sponse (Fig. 1C). This negative wave was followed by a large frontal posi- 
tive component (330-360 ms). Another, more posteriorly evoked positiv- 
ity (380-430 ms) was evoked by recognizable, simple stimuli. Courchesne 
mentions cases of an atypically high amplitude negative process (onset at 
200 ms and a duration of 450 ms) similar for all types of unexpected stim- 
uli. Other researchers have reported large negative deviations in response 
to complex visual patterns (Cohen and Walter 1966; Lifschitz 1966; Sym- 
rues and Eisengart 1971). An orienting potential with an onset latency of 
300-350 ms and a peak about 450-460 ms following the warning signal 
in a classic CNV paradigm has been interpreted by Loveless and Sanford 
(I 974) as a cortical component of the orienting response to the warning 
signal. This orienting response was not affected by instructions such as 
"sensory set" or "motor set". Finally it has been shown that orienting 
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which contains motor  elements in the sense of  readiness for movements 
enhances the late negative potential. This is demonstrated through experi- 
ments in which subjects had to make a direct or a delayed response (Kok 
1980;Ritter and Vaughan 1980). 

The great variety of situations evoking late potential changes and the 
correlations between psychological processes and different potential com- 
ponents are extensively discussed in recent review articles by Donchin 
(1979) and Sutton (1979). 

It may be concluded from all these studies that the late potential is not  
a unitary phenomenon,  but consists of  multiple components,  each related 
perhaps to different aspects of  cognitive behaviour. We therefore proposed 
in Sect. 2 that all these potential components may be summed up under 
the heading of "information-related potentials". This term may also in- 
clude the "emitted potentials" occurring at about the time of  an expected 
but absent stimulus when the event of  stimulus absence provided informa- 
tion or was salient for the subject (Rusinov 1959;Haider 1965;Sutton et 
al. 1967; Klinke et al. 1968; Barlow 1969; Weinberg et al. 1970, 1974; 
Ruchkin and Sutton 1973; Picton and Hillyard 1974). Emitted and evoked 
potential components are similarly affected by variations in event prob- 
ability (Rushkin et al. 1975). 

Concerning the differences of  polarities, latencies and topographies of  
information-related potentials one may speculate that the negative com- 
ponents and the frontally localized positive late component  constitute a 
central orienting response, with motor  readiness being most prominent in 
situations using rare stimuli, with novelty and unpredictability, and even 
without task relevance. Such late potential components have been observed 
by us in motor  thalamus and motor  as well as frontal cortex (Fig. 6). 

Especially in motor  thalamus a quick habituation occurred, showing 
that the whole motor  control system is involved in the response of  the or- 
ganism to novelty. The different positive components located more poste- 
riorly at the vertex and parietal regions seem more related to task-relevant 
information processing probability aspects of the stimuli and stimulus 
categorization. In some situations different negative and positive potential 
components may produce potential peaks which follow each other in a 
sequence of  cognitive processing; in others, one component  may outweigh 
the others. The potential peaks occurring in a certain situation depend on 
many factors. The peak latency is dependent on the internal event to 
which it is related, which may at least be partly independent of stimulus 
and response. The polarity is dependent on the basic DC level, which may 
to a certain degree represent the level of  cortical activation. 
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8.2 Contingent Potentials and Psychological Variables 

Contingent potentials occur in a great variety of situations in which per- 
ceptual, cognitive and motor acts are prepared, anticipated or conditioned. 
The paradigms in which CPs are generated may tentatively be classified 
into four general types: (1) holding a motor response in readiness; (2) pre- 
paring for a perceptual judgement; (3) anticipation of a positive or negative 
reinforcer; and (4) preparing for a cognitive decision (Hillyard 1971, 1973). 
In highly motivated and stressful situations contingent potentials are clear- 
ly seen in EEG records without averaging. One such example, from a 
musician who had to play a horn solo in an open performance, is demon- 
strated in Fig. 11. 

Fig. 1 la-c. Contingent variation in on-line EEG of a horn player prior to his solo per- 
formance during a concert, a EEG (P3-1inked mastoid), negativity upwards; b ECG; 
c Sonogram. (Haider and Groll-Knapp 1971) 

For the interpretation of empirical results, psychological constructs 
and theoretical concepts related to learning and memory, expectancy, 
conation, motivation and attention have been used. 

Slow potential shifts related to learning and conditioning are reported 
by Rowland (1960, 1967). Cortical slow potential shifts to non-reinforc- 
ing stimuli disappeared with loss of novelty and to reinforcing stimuli 
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diminished with drive reduction. In learning the slow (DC) potentials to 
non-reinforcing stimuli are acquired in some cortical loci and become drive 
dependent. It has recently been shown that the slow (DC) potentials may 
be conditioned operantly in humans by appropriate visual and acoustical 
feedback (Birbaumer et al. 1978; Bauer and Lauber 1979). 

The contingency of  reinforcement was also important in early theoriz- 
ing on CNV. The basic paradigm for generating a CNV involved a first 
stimulus (the warning stimulus, or $1) followed by a second stimulus (the 
imperative stimulus, or $2). When $2 was omitted, CNV amplitude was re- 
duced or "exstincted" after several trials (Walter et al. 1964; Low et al. 
1966b). This was interpreted in terms of  "expectancy processes". Expect- 
ancy was defined as "subjective probability" or relative certainty that $2 
will follow $1, and the CNV was phenomenologically called "expectancy 
or E-wave" (Walter 1964; Walter et al. 1964). Obviously this expectancy 
hypothesis leaves unexplained the many changes occurring in contingent 
potentials with unchanged statistical association between $1 and $2. 

That the intention to perform an act ("conation") is a main determi- 
nant for the development of  contingent potentials is demonstrated by the 
finding that the amplitude of  such potentials is significantly elevated when 
a motor  response is given to $2 compared with the absence of  a response 
(Irwin et al. t966; Jus et al. 1968; Low et al. 1966a; Peters et al. 1970; 
Small and Small 1970; Straumanis et al. 1969). In addition the potential 
magnitude was found to be directly proportional to be amount  of  antici- 
pated force needed for a response (Rebert et al. 1967; Low and McSherry 
1968). Furthermore, amplitude changes proportional to the anticipated 
speed of  movement  in response to $2 were described by Griinewald et al. 
(1979a). When the response terminates $2 and helps to avoid a shock, CP 
amplitude is significantly enhanced (Peters et al. 1970; Cant and Bickford 
1967). All these results provide evidence that motivational states and re- 
sponse intentions are important for the development of  contingent poten- 
tials. But it has been shown in other experiments that systematic changes 
in such potentials may occur without changes in the response parameters 
or even with no overt response (Irwin et al. 1966;Gutlickson 1970). 

Attention as an anticipatory selective function has been related to 
CNV development by different lines of  experimentation. The correlation 
between fast reaction times (RT) and large CNVs has been interpreted to 
signify that CNV is a sign of  attention (Hillyard and Galambos 1967). But 
later work on the relations of  RT to CNV shows conflicting results. Some 
authors (Walter et al. 1964; Hillyard and Galambos 1967; Rebert and 
Sperry 1973) reported significant correlations. Others (e.g. Waszak and 
Obrist 1969) failed to find such correlations, and Rebert and Tecee (1973) 
concluded in their review that CNV and RT are essentially unrelated 
events. Papakostopoulos and Fenelon (1975) found few intra-individual 
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correlations, but some correlations in average data across subjects in the 
central-parietal areas, contrasting with a lack of correlation in prefrontal 
are as. 

A second line of evidence for the influence of attentional factors on CP 
comes from correlations found between CNV amplitudes and measures of 
perceptual accuracy. Such results have been attained in auditory signal de- 
tection (Hillyard 1969, 1971), auditory intensity discrimination (Wilkinson 
and Haines 1970), visual pattern recognition (Cohen 1973) and visual 
position discrimination (McAdam and Rubin 1971). But there have also 
been studies in which no association between perception and CNV in audi- 
tory discrimination (Jdrvitehto and Fruhstorfer 1970) and auditory signal 
detection (Paul and Sutton 1972) was found. 

A third group of results involves changes of attention to $2, for instance 
by reducing the intensity of this expected signal to near threshold level. In 
these cases higher CNV amplitudes have been found (Low et al. 1967; 
Rebert et al. 1967; Faidherbe et al. 1969). The increased CNV may indi- 
cate a facilitation of sensory processing in these instances, but other fac- 
tors such as motivation and activation or arousal may also be involved. 

A fourth group of findings is that distracting stimuli produce concur- 
rent reduction in CNV and response effectiveness. CNV magnitude has been 
decreased by such extra stimulation as conversation and reading (Walter 
1964), irrelevant tones (MeCallurn and Walter 1968), presenting and re- 
membering letters (Tecce and Hamilton 1973) and background music 
(Miller et al. 1973). In the latter study, CNV amplitude was decreased 
only when S~ had a different sense modality than the extra stimulation. 
The results of  all these studies have been interpreted as CNV distraction 
effects and as support for an attention hypothesis of CNV development 
(Tecee 1972; Tecce and Hamilton 1973; Teece et al. 1976). Studies with 
sustained cognitive activity produced, in addition to the CNV changes, sig- 
nificant elevations in heart rate levels and also increased frequency of eye 
blinks (Tecce et al. 1976). In the frame work of a distraction-arousal 
hypothesis these result were interpreted as indicating heightened auto- 
nomic arousal which accompanies and mediates the disruption of CNV 
development. 

In conclusion one has to admit that the CNV does not in general pre- 
dict subsequent behavioural performance with a high degree of reliability 
(Hillyard 1973). Since it occurs in preparation for very diverse types of 
perceptual, motor and cognitive acts, the results may be conceptualized in 
a hierarchical model of activation and related behavioural events (Haider 
1969, 1970). In Sect. 11 we will try to elaborate such a hierarchical theo- 
retical model of  slow (DC) potentials, activation and behavioural states. 

The topographical differences in scalp derivations (Sect. 6.2) as well as 
in cortical and subcortical leads described in Sect. 5 seem to show that 
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contingent potentials are not a unitary process but rather may be differen- 
tiated into several task-specific event-related potential components. Jiirvi- 
lehto and Fruhstorfer (1970) distinguished a central premotor dominant 
and a frontal dominant CNV accompanying auditory discrimination, and 
Cohen (1973) reported a more posteriorly distributed negativity preced- 
ing a visual discrimination. Electrocorticographical studies on animals 
(McSherry and Borda 1973) and man (Groll-Knapp et al. 1977; Haider et 
al. 1979; Papakostopoulos and Crow 1976) demonstrated that contingent 
responses are not uniformly distributed over the cortex but consist of a 
complex of rather local phenomena. The common pattern emerging from 
studies with scalp electrodes obviously indicates an integration of various 
cortical and subcortical mechanisms. Since the results of  split brain experi- 
ments showed only slight deviations of bilateral symmetry it has been pro- 
posed (Hillyard 1973) that each type of human contingent potentials con- 
tains a bilaterally symmetrical, diffuse component, possibly under reticular 
and non-specific thalamic control, to which is added a process-specific 
negativity distributed across the cortex according to which thalamocortical 
pathways are active. 

The return to baseline after the motor performance has been called 
CNV resolution. Some variables have been shown to accelerate this return. 
Using complex tasks and a paradigm with more than two stimuli, it has 
been shown that CNV resolution was caused neither by the overt response, 
nor by the final decision concerning the nature of the stimulus, but prob- 
ably by the first coarse identification of the stimulus (Wilkinson and 
Spence 1973). It was also shown that the negativity was sustained during 
periods of unconfounded expectant attention, and it was suggested that a 
sustained negativity, sometimes seen in behaviour pathology, may be at- 
tributable to the attempt of subjects to continue processing information 
after $2 and the response have occurred (Weinberg 1973). 

8.3 Psychological Aspects of Movement-Related Potentials 

It has been mentioned in the last section that the amplitude of contingent 
potentials depends on response variables. The amplitude is elevated when 
a movement is made and especially when the response has an operant 
quality and motor readiness potential occur together and form a complex, 
"hybrid" wave. But when subjects are required to perform a voluntary 
movement in the absence of external stimuli, the motor readiness poten- 
tial is influenced by similar psychological variables such as the contingent 
potential, which increases with greater involvement in the experimental 
task (Kornhuber and Deecke 1965 ; Kornhuber et al. 1969) and varies with 
different motivational and attentional states. The amplitude can, for in- 
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stance, be elevated by monetary reward (McAdam and Seales 1969) and 
correlates with perceptual accuracy (McAdam and Rubin 1971). The read- 
iness potential preceding a verbal response seems to be largest over Broca's 
area (McAdam and Whittaker 1971). During a retrieval task, differences 
between words recognized on a list and words not recognized occurred 
over the temporal lobe. Effects of  physical aspects of  movements (speed, 
duration and force) on the movement-related potentials have been demon- 
strated by different authors (Hazemann et al. 1968; Kutas and Donchin 
1977;Becker and Kristeva 1980; Griinewald et al. 1979a). 

With forearm extensions against different forces opposing the move- 
ment, a surface negative-positive deflection appeared after movement be- 
gan (Wilke and Lansing 1973). The greater force condition produced 
greater amplitude of  this wave. Similarly, slow waves following movements 
were seen after clenching the fist or articulating words (Lelord et al. 1973). 
With imperative instructions, contingent potentials could be conditioned 
to the slow activity evoked during and after movements. 

Recently it has been reported that during smooth goal-directed hand 
movements the premotion negativity increases and remains during move- 
ment  until the target is reached. In a feedback task this goal-directed 
movement  potential showed an increased negativity and a large positivity 
after the feedback stimulus. It is suggested that the bilateral component  
of  the negative slow potential shift during goal-directed movements is re- 
lated to processes of  intention and expectancy and that the lateralized 
components reflect cortical activity specific to the movement execution 
(Griinewald-Zuberbier et al. 1978a, b; Griinewald et al. 1979b). 

The motor  thalamus exhibits only a small wave during short ballistic 
movements at the time of  movement.  This is greatly enhanced and extend- 
ed during the period of  goal-directed movements, thus showing that thala- 
mocortical interactions are important in the execution of  aimed and goal- 
directed motor  acts (Knapp et al. 1980). 

9 Psychiatric and Neurological Studies (Clinical Application) 

Many clinical psychiatric and neurological investigations have been carried 
out, the results being somewhat different, sometimes equivocal, sometimes 
even contradictory. Consequently the diagnostic value of  studying the 
various forms of  slow potential phenomena remains open for discussion. 
Several authors even discuss the possibility whether the differences found 
are caused only by varying degrees o f  attention of  the subjects. 

Some of  the various results attained by different groups of  investigators 
may be explained by the means of selection of  psychiatric patients and 



Event-Related Slow (DC) Potentials in the Human Brain 175 

also by national differences in classification of psychopathology. Differ- 
ences in method may also play a role. 

In the earliest stages of  CNV investigation, some irregularities were 
noted in mentally disturbed patients and neurotics. Patients with anxiety 
or phobias were reported to develop CNVs very slowly and with smaller 
amplitudes, the E-waves being more sensitive to equivocal presentations. 
Psychopathic delinquents showed "little or no sign of  an E-wave", but 
rather an augmentation of the non-specific (late) components of  the EP 
(Walter 1964;McCallum 1966, 1967a). 

Patients with compulsive-obsessive disorders showed irregularities, 
especially in relation to the effect of  the operant response, i.e. slow return 
to baseline after $2, and single subjects even showed what was later called 
a postimperative negativity while failing to develop a CNV (Walter 1964, 
1966a, b; Timsit-Berthier et al. 1971). 

In highly anxious patients smaller CNVs were found and distraction 
considerably attenuated the amplitude, which was also seen to a lesser 
degree in normal controls. Obsessive neurotics had slightly higher CNVs 
and showed faster recovery of  amplitude after distraction (Walter 1964, 
1966a, b, 1967; McCallum 1967b; McCallum and Walter 1967a, b); the 
higher amplitude was also confirmed by other groups (Dongier and Bostem 
1967; Tirnsit et al. 1970). 

Slightly smaller CNVs had been found in chronically anxious neurotics 
and in schizophrenic patients (McCallum 1966, 1967a). When mild dis- 
traction was introduced (irregular tones as a background), the amplitude 
could be reduced considerably. After elimination of distraction, normal 
controls recovered quickly, recovery being delayed in highly anxious neu- 
rotics and schizophrenics. Obsessive neurotics, on the other hand, showed 
recovery of  the CNV similar to that of  non-patients. After successful treat- 
ment  of  highly anxious neurotics the CNV amplitude increased and also 
became more resistant to distraction. The probability was pointed out  
"that  the common psychological factor shared" by neurotics and schizo- 
phrenics with small CVNs "is a failure of  a t tent ion" (M¢Callum 1967a). 

No correlation of  anxiety 
(Low et al. 1967; Bostem et 
attenuation of  amplitude in 
stress (Knott and Irwin 1968, 

with amplitude of  CNV was found by others 
al. 1967; Dongier and Bostem 1967), while 
a high anxiety group was found only under 
1973), females being more sensitive to stress 

than males (Knott and Peters 1974). 
The tendency of  mental patients to show prolonged CNVs has been re- 

ported by MeCallurn (1969), who had also published traces of  post-impe- 
rative negativity in a schizophrenic patient, after-distraction showing an 
independent post-imperative negativity. The significance of  this was point- 
ed out later byDongier et al. (1973), who also stated the necessity o f  aver- 
aging epochs of  8 s (Timsit et al. 1970) for studying prolonged CNV or 
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post-imperative negative variation (PINV). At the same time the question 
has been raised whether a PINV is necessarily a prolonged CNV. 

Timsit et al. (1970) compared CNVs of normal controls, neurotics 
(hysterics and obsessives) and psychotics (early and chronic schizophrenics 
and manic-depressives). Amplitude of CNV was found to be generally 
larger in obsessives than in hysterics (in agreement with Walter 1966a), 
while the highest incidence of  prolonged CNV was found in psychotics (in 
agreement with McCallum 1969) and the lowest in normal controls. The 
authors concluded that the probability of  the occurrence of  a prolonged 
CNV increases with the severity of  the psychological disturbance. 

No difference in amplitude between neurotics and normals was later 
reported (Timsit-Berthier et al. 1971) and no prolongation of  the Bereit- 
schaftspotential was found in these cases. Psychosomatically ill patients 
were found to have a greater CNV amplitude than normals (Dongier and 
Koninckx 1970). 

Different types of  CNVs, including post-imperative negativity, were 
worked out by Timsit-Berthier et al. (1973). The highest incidence of  
small CNVs was found in psychotics (in agreement with McCallum 1966, 
1967b; McCallum and Walter 1968;Small and Small 1971 ;McCallum and 
Abraham 1973 ; Abraham et al. 1976). The highest incidence of  prolonged 
CNVs was found in psychotics (in agreement with McCallum 1969; Timsit 
et al. 1970). 

Studying the motor  readiness potential (RP) in normals, neurotics and 
psychotics, the Liege group found, mainly in psychotics, and less frequent- 
ly in neurotics, a smaller motor  RP with slow and only gradual return to 
baseline after the voluntary movement.  

Dongier et al. (1973) found the highest incidence of  abnormal and pro- 
longed CNVs in psychotics. The prolongation was reported to shorten 
with clinical improvement. 

Contrary to earlier statements of  the Liege group the difference in am- 
plitude of  CNVs between hysterical and obsessive neurotics was not  con- 
firmed in this series, which also found that psychotics tended to have a 
prolonged motor  RP. Also not  found by this group was the small ampli- 
tude of CNV in psychopathic criminals, contrary to the findings of  the 
group in Bristol, which may be explained by a different selection of  sub- 
jects. 

In subjects suffering from phobic neurosis, CNV was found to be of  
higher amplitude and of  longer duration when phobogenic stimuli were 
used, while at the same time RT after $2 was found to be shortened (Bar- 
has et at. 1978). 

Schizophrenics showed slightly attenuated amplitudes together with a 
high trial-to-trials variability (McCallum 1966, 1967a, b, 1969). Another 
study confirmed these earlier observations (McCallum and Abraham 1973). 
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Especially florid cases of early schizophrenia showed small mean CNV am- 
plitudes in the "acquisition condition", together with further reduction in 
the "distracting condition". The initial amplitude was smaller and the re- 
duction by distraction was more pronounced in cases with more severe 
symptoms. In a more recent study (Abraham et al. 1974, 1976) using 
another group of  schizophrenics, acquisition and distraction amplitude, 
prolongation and parietal spread [amplitude difference between vertex (C z) 
and postcentral midline derivation (Pz)] were investigated, the subjects 
being without medication at the first test. The earlier observations were 
confirmed: prolongation tended to disappear with treatment and improve- 
ment. Patients with more florid symptoms showed less differences in am- 
plitude values between C z and Pz than normal controls. 

That post-imperative negativity could be selectively attenuated by 
hyperventilation without seriously affecting CNV amplitude and duration 
was shown by Dubrovsky et al. (1973). 

Total sleep loss for one night reduced CNV amplitude considerably; 
sleep loss for two nights abolished it (Naitoh et al. 197 l;Naitoh and Hil- 
bert 1976). 

Contingent negative variation in cases with known brain lesions was in- 
vestigated by several groups. McCallum et al. (1970) and McCallum and 
Cummins (1973) reported reduction of amplitudes over unilateral lesions, 
while cases with bilateral lesions and bilateral Parkinson's disease patients 
showed generally small amplitudes, the latter sometimes showing a ten- 
dency to inverse polarity. 

The Bereitschaftspotential in Parkinson's diesease patients was found 
to be severely attenuated over both hemispheres in bilateral cases, while 
hemi-Parkinson's diesease subjects showed severe attenuation contralater- 
ally to the akinesia-affected side of  the body (Deeeke et al. 1976a). 

Zappoli et al. (1976) reported that absent CNV in cases with frontal 
space-occupying lesions could be restored after surgery in some cases. This 
group also investigated patients who had previously undergone extensive 
prefrontal lobotomy. Of the small number of eight patients, five had 
"fairly typical" CNVs. In these subjects the actual extent of  the interrup- 
tion of  the mediothalamic-frontocortical system was deduced only from 
surgical reports, the anatomical evidence of  the extent of  interruption 
remaining open (Zappoli et al. 1976, 1980). 

Children with poor abilities to concentrate showed longer tatencies 
and smaller amplitudes of  the late components of  EPs and smaller CNVs 
(Griinewald-Zuberbier et al. 1978b; Griinewald et al. 1978). 

In dyslexic children CNV was found to be attenuated or even diminish- 
ed when a visually presented word was used for $2 (Fenelon 1968). 

Differences in CNV between normals and stutterers were reported to 
be found over inferiofrontal regions by Zimmermann and Knott (1974). 
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There was no difference in vertex CNV when stutterer spoke normally, 
but a less hemispheric asymmetry was found in stutterer over inferiofron- 
tal regions. When stuttering occurred no vertex CNV was seen. 

In an examination of  aphasic, dyslexic and normal children, using a 
three-stimulus paradigm, Otto et al. (1976) found greater positivity in 
aphasic and dyslexic children in the interval between warning and encode- 
ment. 

10 Drug Effects and Toxic Influences 

Some observations of drug effects on CNV were initially mentioned by 
Walter (1964). Deprivation of (the accustomed intake of) caffein attenu- 
ated the CNV which was restored by administration of  caffeine sodium 
citrate. The same result was found with amphetamine. In one subject ad- 
ministered 100 tag LSD-25, the E-wave following single flashes "was enor- 
mously augmented and spread to nearly all regions" (Walter 1964). 

Low (1969) saw no apparent effect on CNV amplitude in subjects 
given amphetamine or chlordiazepoxide. An increase of CNV amplitude 
was seen by McCallum (1969) in those administered methedrine. After ad- 
ministration of  large doses of  dextro-amphetamine Tecce and Cole (1974) 
found reduced CNV amplitudes in subjects who showed a paradoxical 
drowsiness in the 1st hour. Others, with increased alertness, showed in- 
creased CNV amplitudes. 

The influences of  marijuana and alcohol, methamphetamine and seco- 
barbital have been studied by Kopell et al. (1972), Low et al. (1973), and 
by Roth et al. (1977). Flurazepam was found to cause a marked reduction 
of  the EP to $1 while the CNV amplitude was only slightly attenuated 
(Hablitz and Borda 1973). Ashton et al. (1974) compared the effects of  
caffeine, nitrazepam and cigarette smoking on the CNV. The mean ampli- 
tude of  the CNV was clearly increased by administration of  300 mg caffe- 
ine citrate; it was significantly decreased by 2.5 mg nitrazepam. In smokers 
the change of  CNV amplitude differed between individual smokers, some 
smokers showing an increase and others a decrease in amplitudes. In a later 
study (Ashton et al. 1978), the effect of  nicotine was studied after smok- 
ing and after intermittent intravenous administration of  150 tag nicotine in 
volunteers. Initial small doses increased CNV amplitude while repeated 
small doses decreased the amplitude. The biphasic effect of  nicotine (small 
doses stimulating, larger doses acting as a depressant) was found also dur- 
ing cigarette smoking and was dependent on individual smoking habits: 

Increase of  the late components of visual evoked potentials (VEP) dur- 
ing tobacco smoking was found by Friedmann et al. (1974), while the 
auditory evoked potential (AEP) tended to be reduced. 
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Low doses of carbon monoxide were found to attenuate the CNV am- 
plitude, though this effect was not as clearly seen in a more recent study 
(Groll-Knapp et al. 1972, 1978), which also showed that with low level 
carboxyhemoglobin (COHb) the VEP remained unchanged while there is a 
marked effect on the somatosensory evoked potential (SEP), which was 
lessened with higher COHb levels. 

In a collaborative pilot study between investigators in Bristol and 
Newcastle-upon-Tyne, the CNV was studied under interference with the 
action of some putative neurotransmitters by intramuscular administration 
of antagonists and a placebo (physiological saline solution). Atropine was 
used as antagonist of acetylcholine, thymoxamine against noradrenalin, 
and metoclopramide as an antagonist of  dopamine. 

Atropine and metoclopramide produced a steady fall in CNV ampli- 
tude, a minimum amplitude was reached earlier with atropine, followed 
by partial recovery during the experiment. No significant change of mean 
CNV was produced by thymoxamine or the placebo. At the same time of 
the $2 response reaction time (RT) was measured. There was no change 
with atropine and placebo. Reaction time was lengthened with metoclo- 
pramide and shortened by thymoxamine, which had no effect on CNV 
amplitude. 

The handicap of the very short plasma life of thymoxamine was also 
discussed. It was suggested that there is more than one putative neuro- 
transmitter involved in the genesis of  the CNV (Thompson et al. 1978). 

In shoe industry workers exposed to chronic poisoning with adhesive 
solvents the CNV proved to be of no clinical value, while the raw EEG 
showed slowed a-rhythms and diffuse abnormalities, and the motor nerve 
conduction velocity was decreased in accordance with the clinical poly- 
neuropathy (Zappoli et al. 1978b). 

In conclusion it may be stated that the evidence concerning the relation 
between biochemical and toxicological effects and slow (DC) potential 
changes in the brain is currently scarce and inconsistent. One may hope 
that more biochemists and toxicologists become interested in event-related 
brain potentials and contribute to a more coherent theoretical and empiri- 
cal approach in the future. 

11 Concluding Remarks: a Hierarchical Model of Slow (DC) Potentials, 
Activation and Behaviour 

In reviewing the research field of event-related slow (DC) potentials one 
gets the impression that much data have been accumulated, but that the 
experimentor is still faced with problems and questions similar to those of 
20 years ago. We obviously need more principal data and new theoretical 
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approaches, and we must try to analyse psychological data which is as 
complex as neurophysiological data. On the one hand we must try to 
understand the basic neurophysiotogical mechanisms to be able to use 
event-related potentials as better indicators for psychological theory. The 
potentials clearly depend to some degree on psychological states and pro- 
cesses, but the question is how specifically they represent them. Obviously 
we are able to attend to certain stimuli and to learn and perform motor 
acts without reliably occurring slow potential changes. This may be disap- 
pointing but it demonstrates on the other hand the great adaptability of 
our neural functions. The brain may solve different problems by using dif- 
ferent strategies. All we can expect therefore is to find dynamic patterns 
of activity with some sequential development in time. 

Within a certain period of time we assume that different slow (DC) po- 
tentials occur in the brain with different slopes, different time courses and 
different amplitudes. The potential changes, recorded in a specific situa- 
tion, depend on many variables such as the state of the brain and the ex- 
perimental design. We must try to conceptualize the functional relations 
of all the different slow (DC) potentials in some kind of a theoretical 
model and to combine the study of general, long-term potential changes 
with event-related short-term changes. 

Many investigators interpreted slow (DC) potentials to be a consequence 
of altered levels of cortical activation (Goldring and O %eary 1951; Caspers 
1965; O'Leary and Goldring 1964; Walter et al. 1964; Rowland 1960, 
1967). Findings on event-related potentials suggest that more differentiat- 
ed activation processes are involved (Routtenberg 1968; Rebert 1973; 
Tecce 1972; Desrnedt and Debecker 1979a, b) and results of stereo-electro- 
encephalographic studies, summarized in Sect. 5, demonstrate the impor- 
tance of subcortical, reticular, thalamic and striatal mechanisms. 

In Fig. 12 we show a first approach for a hierarchical model of  slow 
(DC) potentials in relation to concepts of activation and behaviour. A hier- 
archical system of  activation was proposed earlier (Haicler 1969, 1970). 

First we have some general activation or arousal mechanisms, regulat- 
ing wakefulness and sleep. Related to these are long-term slow DC poten- 
tials which occur with gross transitions from one state of the brain to 
another, such as the sleep-wakefulness cycle (Caspers 1961, 1963) or sei- 
zure activity (Speckrnann and Caspers 1979). 

We then have "tonic" activation with long latencies and durations, 
slowly changing the state of the organism between low and high arousal; 
reticular and limbic activation mechanisms mediate these changes. Related 
to this may be middle term (tonic) slow (DC) potentials, observed, for 
instance, in some studies of Bechtereva (1974). 

Next there are "phasic" activation or arousal mechanisms with shorter 
latencies and durations. They are mediated by the diffuse thalamic projec- 
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tion system (Jaspers 1960) and the truncothalamic system, including a 
striatopallidal neuronal chain (Hassler 1978). Event-related (phasic) slow 
potentials related to expectancy, attention and motor readiness (contin- 
gent and readiness potentials) may be strongly connected to the function- 
ing of  these systems as well as to the mediothatamic-frontocortical system. 
It is now well established by studies of different authors that during ste- 
reotactic surgery in humans contingent potentials (CNVs) occur in all 
parts of  these systems (Groll-Knapp et al. 1977; Haider et al. 1968a, 1979; 
Iliukina 1977; McCaltum et al. 1976; Tsubokawa and Moriyasu t 978). 

Finally we have to consider a highly "differentiated and selective" acti- 
vation related to selective perceptual, cognitive and motor acts, without 
any gross changes in arousal level. For instance, some components of in- 
formation-related and motor potentials may depend on the more specific 
thalamocortical and striatocortical mechanisms involved in these processes. 
These mechanisms for the most part are feedback mechanisms so that one 
should really use the terms "thatamocortical-thalamic" or "striatothatamic- 
corticostriatal", etc. Striatocortical mechanisms include pathways to the 
neurons of the pallidum which send off ascending non-specific or semi- 
specific pathways which travel through the rostral pole of the thalamus 
and run through specific and non-specific afferents to almost all cortical 
fields (Hassler 1978). By stimulating the pallidum or the motor thalamus 
(v.o.a.) or the anterior thalamus during stereotactic surgery a "psychmotor 
advertance mechanism" may be elicited. This consists of  turning the head, 
directing attention to the contralateral side and dilating the pupil. This 
may be related to "orienting" potentials which we found in the motor 
thalamus. 

Motor thalamus and motor cortex a~so show clear motor potentials 
which at the proper motor cortex (area 4) are demonstrable only very spe- 
cifically and are localized on the parts representing hand- or finger move- 
ments (Ganglberger et al. 1980). Concerning the focussing of attention it 
should be mentioned that a well-organized corticostriatal feedback mech- 
anism with glutamate as the transmitter has been described. This mech- 
anism, especially in relation to the function of the putamen, may be in- 
volved in focussing attention to one single perceptive, cognitive or motor 
act and fading out all other events (Hassler 1978). Information- and move- 
ment-related potentials may in this connection indicate which thalamo- 
cortico-thalamic or striatothalamic-corticostriatal pathways are open and 
active during a specific mental act. 

In a hierarchical system of activation it must be assumed that each level 
of the hierarchy influences and determines the next one and vice versa. To 
be able to perform selective perceptional, cognitive and motor acts we 
need a waking organisms with optimal (medium) arousal and with atten- 
tiveness to a specific class of stimuli. Physiologically the upper levels of 
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the hierarchy determine the polarity o f  potential changes at lower levels 
by regulating the basic activation-related DC level (Speckmann and Caspers 
1979). Low levels o f  epicortical DC negativity (low activation) lead to pre- 
dominantly negative event-related slow potentials and high levels to pre- 
dominantly positive components.  

Empirically the generality or specificity of  activation may be operat- 
tionally defined by  the number of  variables differentiating the different 
levels. The more indicators vary with a certain level the more general it is. 
The change from sleeping to waking is accompanied by  a great variety o f  
physiological changes, amongst others by changes in body temperature,  
pulse rate, EEG and slow (DC) potentials. Distracting influences on con- 
tingent potentials may  be an effect  o f  heightened autonomic arousal, as 
shown by the elevations in pulse rate (Tecce et al. 1976). Some event- 
related slow (DC) potential changes are accompanied by phasic changes in 
EEG activity. For  instance, an inverse relation between a-activity and con- 
tingent potentials was found (McCallurn and Walter 1968; Pfurtscheller 
and Aranibar 1977). 

Finally, some information- and movement-related potential compo- 
nents are obviously related to specific mechanisms without  any change in 
the intrinsic EEG rhythm or in other  indications of  arousal. 

Many of  the assumed relationships in the hierarchical model  outlined 
here are arbitrary and speculative. 

With refined methods and experimentation the functional relations will 
be more precisely definable in future experimentation. What we need in 
the whole field for the future is not  so much phenomenology but  a more 
theoretical and neuroscientific framework within the broad context  o f  
brain systems and brain functions, including event-related slow (DC) po- 
tentials together with psychological states and processes. 
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1 I n t r o d u c t i o n  

In this review the classification o f  a -adrenocep to r s  in to  two  major  sub- 

groups is discussed, an idea which derived primari ly f rom studies on the 

pre- and pos t synap t ic  a - receptors  at junc t ions  be tween  postgangl ionic  

sympa the t i c  neurones  and s m o o t h  muscle cells. The terms ~i and a2, anal- 

ogous  to ~1 and t32, were loosely suggested (Delbarre and Schmitt 1973),  

subsequent ly  used to refer to pre- and pos t synap t i c  a-receptors  (Langer 
1974),  and finally generalized (Berthelsen and Pettinger 1977). 

Dif ferent  names are given to receptors  when the sites at which  they  

recognize and bind agonists and compet i t ive  antagonists  differ s t ructural ly  

* Pharmakologisches Institut, Universit~t Freiburg, Hermann-Herder-Strat~e 5, D-7800 
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and when, hence, for a given drug the drug-receptor  dissociation constants 
differ. We must then examine the methods used to determine the d rug -  
receptor dissociation constant or, in other words, the affinity of a drug for 
the receptor, which is proportional to the reciprocal of  the dissociation 
constant. One way is to measure the binding of  radioactive drugs to re- 
ceptors and the competitive inhibition of this binding by nonradioactive 
congeners. This yields dissociaton constants for the radioligand and for 
the competitor. Receptor properties may change, however, during the 
homogenization and incubation involved in such assays. 

Affinities can also be determined in functional experiments in which 
the biological response of the tissue indicates the drug-receptor  interac- 
tion. The interpretation is straightforward for antagonists. Receptor theo- 
ry (see Ariens t964; Furchgott 1964, 1972; Waud 1968) shows that the 
antagonist concentration which shifts the log concentrat ion-response 
curve of  an agonist to the right by the factor 2 is equal to the antagonist-  
receptor dissociation constant. The interpretation is less straightforward 
for agonists. In most studies only the ECs 0 is determined, i.e., the concen- 
tration that produces 50% of  the maximal response obtainable with the 
agonist; only the potency of the agonists is thus evaluated, which is pro- 
portional to the reciprocals of  the ECso values. In general, the function 
relating response or potency to receptor occupation or affinity is not 
known. The ECs0 of an agonist is not necessarily the concentration at 
which 50% of  the receptors are occupied. Moreover, the relative potencies 
of  a series of  agonists at a receptor are not  necessarily equal to the relative 
affinities for that receptor. The latter is only the case when the response is 
proportional to the 'stimulus' generated by the drug-receptor  interaction, 
or when the agonists have equal efficacies (see Stephenson 1956; Furchgott 
1972). Procedures have been worked out for functional determination of 
agonist-receptor dissociation constants, but have seldom been applied to 
e-adrenoceptors (e.g., Besse and Furchgott 1976). 

The present review is not  the final presentation of  a universally accept- 
ed theory, but a provisional account of a young and rapidly growing field 
of  research. Contradictions are not only inevitable but welcome. In partic- 
ular, the definition of  a l -  and ~2-adrenoceptors given in Table 1 is open 
to correction and improvement. It incorporates most of  the available data 
from the radioligand binding as well as from the functional studies that 
will be discussed at length. The drugs were chosen because they have been 
used in both kinds of  studies. Agents that are more selective at ~1 - or ~2 - 
receptors may eventually lead to a better definition. It can be seen that 
the relative potencies of  agonists in general agree with their relative affini- 
ties. An exception that will be discussed in Chap. 5 is the high affinity but 
low potency of clonidine relative to phenylephrine at ~-adrenoceptors .  
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Table 1. Proposed definition of al - and a 2-adrenoceptors 
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al-Adrenoceptor 

Agonist affinities and potencies 

Affinity and potency of 3-10 
(-)-noradrenaline 

Affinity and potency of 2 -  8 
(-)-noradrenaline 

Affinity of clonidine 4-15 
Potency of clonidine 0.1- 1 

times affinity and potency of a-methyl- 
noradrenaline a 

times affinity and potency of (-)-phenyl- 
ephrine 

times affinity of (-)-phenylephrine 
times potency of (-)-phenylephrine 

Antagonist affinities 

Prazosin >> corynanthine, yohimbine > rauwolscine 

a 2-Adrenoceptor 

Agonist affinities and potencies 

Affinity and potency of 0.1- 0.6 
(-)-noradrenaline 

Affinity and potency of 15 - 150 
(-)-noradrenaline 

Affinity and potency of 50 -1000 
clonidine 

times affinity and potency of a-me- 
thylnoradrenaline a 

times affinity and potency of 
(-)-phenylephrine 

times affinity and potency of 
(-)-phenylephrine 

Antagonist affinities 

Rauwolscine, yohimbine >> corynanthine, prazogin 

The stereoisomers of a-methytnoradrenaline are not always indicated unequivocally 
in the literature. It can be assumed that the racemate or the levorotatory form of 
the erythro-isomer was used 

Some aspects o f  the c~1/a2 subclassification have already been reviewed 
by Berthelsen and Pettinger (1977),  Starke (1977),  Wood et al. (1979) 
and, most  extensively, Wikberg (1979b).  

2 Funct ional  Studies: Pre- and Postsynaptic a-Adrenoceptors  at 
Sympathet ic  Nerve-Muscle  Junct ions 

Presynaptic a-adrenoceptors  mediate the autoinhibit ion of  transmitter  
release from noradrenaline neurones (see Starke 1977; Westfall 1977; Vizi 
1979). That  they differ from postsynaptic c~-adrenoceptors was first sug- 
gested by observations on rabbit hearts and cat spleens. In the rabbit heart,  
the relative potencies o f  phenylephrine,  oxymetazol ine ,  and naphazoline 
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at the presynaptic, release-inhibiting receptors did not agree with their 
relative potencies at the postsynaptic, contractility-enhancing receptors 
(Starke 1972). In the cat spleen, phenoxybenzamine was more potent  in 
blocking the postsynaptic than in blocking the presynaptic receptors 
(Langer 1973). In both studies it was explicitly concluded that the neuro- 
nal receptors differed from the classic postsynaptic receptors of the muscle 
cells. 

Pre- and postsynaptic effects of  agonists and antagonists in the pul- 
monary artery of  the rabbit were compared in detail. Table 2 shows that 
the presynaptic receptors fulfil ~2 criteria and the postsynaptic receptors 
cq criteria. From the effective concentrations postsynaptic/presynaptic 
potency ratios were calculated (Table 2; note that a presynaptic/postsyn- 
aptic concentration ratio such as EC20 pre/EC20 post yields a postsynaptic/ 
presynaptic potency ratio). Given the same kind of  receptors pre- and 
postsynaptically (and, for agonists, linear st imulus-response functions or 
the same efficacies), the ratios should be equal. In fact, however, they 
vary 500-fold for agonists and more than 10 000-fold for antagonists. The 
ratios also demonstrate that some drugs are quite selective. Clonidine, 
~-methylnoradrenaline, and tramazoline preferentially activate the presyn- 
aptic ~2 -receptor, whereas phenylephrine and methoxamine preferentially 
activate the postsynaptic ~l-receptor. After it had been classified as 
selectively presynaptic in the rabbit pulmonary artery (Starke et aI. 1974), 
clonidine was widely used not only for the activation of  ~-adrenoceptors  
irr functional experiments but also for their labelling in radioligand-binding 
studies. Yohimbine was the first preferentially presynaptic antagonist to 
be recognized (Starke et al. 1975a). One of  its diastereomers, namely 
rauwolscine, is even more selective. Prazosin (Cambridge et al. 1977; 
Cavero et al. 1977; Doxey et al. 1977), the yohimbine diastereomer 
corynanthine, clozapine, and azapetine preferentially block the postsynap- 
tic ~l-receptor. Phenoxybenzamine also primarily blocks postsynaptic ~- 
receptors in the pulmonary artery but, being an irreversible antagonist, is 
not listed in Table 2. 

The postsynaptic/presynaptic potency ratio is an essential feature of a 
drug, deciding how the drug affects the transmission of  information 
through neuroeffector junctions (with postsynaptic receptors of the 
type). ~l-Selective agonists such as phenylephrine act mainly postsynapti- 
cally, where their effect is additive to that of  sympathetic nerve stimula- 
tion. In contrast, ~2-selective agonists such as clonidine at low concentra- 
tions mainly diminish the release of  noradrenaline and thereby reduce the 
response to sympathetic nerve stimulation. Furthermore, ~l-selective 
antagonists like prazosin always inhibit the transmission of  information. 
In contrast, low concentrations of  ~2-selective antagonists such as yohim- 
bine primarily interrupt presynaptic autoinhibition, facilitate the release 
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of noradrenaline and thereby may enhance the transmission of informa- 
tion. This seemingly paradoxical effect of yohimbine was observed long 
ago (Bacq 1935). 

Postsynaptic/presynaptic potency ratios found in other tissues are 
shown in Table 3. The rank orders agree well. In all studies phenylephrine 
has a high ratio and is rather selective for postsynaptic a-receptors, and 
clonidine has a low ratio and is rather selective for presynaptic c~-receptors. 
Tramazoline, xytazine and guanfacine may surpass clonidine in selectivity 
(see Table 3; but see Wikberg I978b), as may 2-(3,4-dihydroxyphenyl- 
imino)imidazolidine (Hieble andPendleton 1979), 2-amino-6-allyl-5,6,7,8- 
tetrahydro-4H-thiazolo-(5,4-d)-azepin (B-HT 920; Kobinger and Pichler 
1980), and azepexole (B-HT 933; Pichler et al. 1980). Some dopamine 
derivatives also are preferentially presynaptic ~-adrenergic agonists in cer- 
tain preparations (Hicks and Cannon 1979; Steinsland and HiebIe 1979). 

The findings with antagonists in cat spleen (Langer 1973; see above) 
and rabbit pulmonary artery (Table 2) have also been substantiated. Phen- 
oxybenzamine preferentially blocks postsynaptic s-receptors in many tis- 
sues (Cubeddu et al. 1974; Dubocovich and Langer 1974; Drew 1976; 
Doxey et al. 1977), as does prazosin (Constantine et al. 1978; Lef~vre-Borg 
et al. 1978), whereas yohimbine preferentially blocks presynaptic ~-recep- 
tors (Doxey et al. 1977; Constantine et al. t978; Kapur and Mottram 
1978; Marshall et al. 1978; Walland 1978; Drew 1979; Leighton et al. 
1979). Other mainly postsynaptic antagonists are thymoxamine (Drew 
1976, 1977b; Marshall et al. 1978; Rhodes and Waterfall 1978), labetalol 
(Blakeley and Summers' 1977), some butyrophenones (Gdthert et al. 
1977), indoramin (Algate and Waterfall 1978;Rhodes and Waterfall 1978), 
2-[(2',6'-dimethoxyphenoxyethyl)-aminomethyl ] 1,4-benzodioxane (WB 
4101; Butler and Jenkinson 1978; Kaput and Mottram 1978), and 2-[2- 
(4- o-methoxyphenyl-piperazine- 1 -yl) ethyl]-4,4 -dimethy1-1,3(2H,4H)-iso- 
quinolinedione (AR-C 239; Mouille eta!.  1979, 1980). Slight presynaptic 
or slight postsynaptic or no preference has been reported for phentol- 
amine (Cubeddu et al. 1974; Borowski et al. 1977; Doxey et al. 1977; 
Kaput and Mottram 1978; Rhodes and Waterfall 1978), piperoxan (Bo- 
rowski et al. 1977; Blakeley and Summers 1978) and mianserin (Borowski 
et al. 1977; Doxey et al. 1978; Robson et al. 1978; Cavero et al. 1979b), 
indicating perhaps that these drugs occupy an intermediate position with 
no marked selectivity. In the rabbit pulmonary artery, tolazoline and di- 
hydroergotamine have lower presynaptic than postsynaptic threshold con- 
centrations, but have very flat presynaptic log concentration-response 
curves; high presynaptic affinity may be coupled with a presynaptic partial 
agonist effect that curtails the ~-adrenolytic facilitation of noradrenaline 
release (Borowski et al. 1977). 
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Before a general conclusion is drawn, some critical comments seem ap- 
propriate. 

t) Only some of the studies reviewed here were carried out in vitro 
under optimal conditions for receptor characterization (Furchgott 1972), 
for instance in the presence of ~-adrenolytic drugs and inhibitors of neuro- 
nal and extraneuronal noradrenaline uptake. Other studies were aimed at 
clarifying the consequences of selective receptor activation under near- 
normal conditions; these were of course performed in vivo and without 
auxiliary drugs. Some relevant details are specified in Table 3. 

2) Presynaptic receptors modify the release of noradrenaline. In only a 
few studies was release measured as directly as possible, namely as 'over- 
flow' into the medium (see Table 3). More frequently, the postsynaptic re- 
sponse was taken to reflect noradrenaline release. The postsynaptic re- 
sponse, however, may be modified by the postsynaptic as well as by the 
presynaptic action of  a drug (see Starke 1977). For instance, a marked dis- 
crepancy between the effect on noradrenaline release and the effect on 
the response of the effector cells has been demonstrated for the a-adren- 
ergic imidazoline derivative cirazoline (Dubocovich et al. 1980). 

3) Whenever drug effects on the depolarization-evoked release of nor- 
adrenaline are investigated, the transmitter itself is inevitably present in 
the biophase at rather high concentrations. This leads to underestimation 
of the presynaptic potency of a-receptor agonists and antagonists (Starke 
et al. 1974), whether release is determined as overflow or by the postsyn- 
aptic response. 

4) The term EC x is normally used for the concentration that produces 
x% of the maximal response obtainable with the same drug; such EC x 
values are suitable for calculation of relative potencies. The EC20 pre and 
EC30 pie values of Table 2 do not conform to this definition, since they 
do not refer to the individual maxima (see also, e.g., Drew 1976). Maximal 
presynaptic a-receptor effects could not be determined for many drugs be- 
cause at high concentrations they exerted marked side effects, e.g., dis- 
placement of stored noradrenaline. Of course these side effects also occur, 
although unnoticed, when postsynaptic responses are used to detect pre- 
synaptic effects, and are a possible source of error. It seems unlikely that 
the use, in Table 2, of  presynaptic concentrations unrelated to the individ- 
ual maxima greatly distorts the potency ratios. 

5) The sympathetic pathway was sometimes stimulated preganglion- 
ically, and ganglionic actions of drugs cannot be excluded (see some papers 
in Table 3). For studies on the vas deferens one has to recall that the motor 
transmitter may not, or not only, be noradrenaline, in which case the pre- 
synaptic receptors may be located on non-noradrenergic neurones. 

6) Potency ratios of agonists are the same as their affinity ratios only 
when their efficacies are equal (or in the rare event that the responses are 
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proportional to the stimulus). The agonists in Tables 2 and 3, however, in- 
clude some with high postsynaptic efficacy, e.g., noradrenaline, and some 
with low postsynaptic efficacy, e.g., clonidine (see Chap. 5). Clonidine 
and oxymetazoline may also have a lower presynaptic efficacy than nor- 
adrenaline (Starke et at. 1974;Rand et al. 1975;Stjdrne 1975;Medgett et 
al. 1978). Part of  the variability in potency ratios may thus reflect differ- 
ences in agonist efficacies rather than affinities, although the size of  the 
variability makes it unlikely that efficacy differences are the only reason. 
Moreover, the postsynaptic/presynaptic ratios of antagonists vary even 
further, and this can hardly be explained by anything but differences in 
affinity. 

7) Although, on the whole, all studies agree, there are discrepancies in 
details. This is illustrated by the postsynaptic/presynaptic potency ratio of  
clonidine. Drew (t  976) calculated the ratio of the dose which in pithed 
rats reduced the tachycardia evoked by sympathetic nerve stimulation by 
50 beats/min, and the dose which increased blood pressure by 50 mmHg; 
the ratio was 1.4 and close to the ratio 0.5 that Pichler and Kobinger 
(1978) found in similar experiments. Starke et al. (1975b) calculated the 
ratio of  the concentration that decreased the evoked overflow of  nor- 
adrenaline from strips of the rabbit pulmonary artery by 20%, and the 
concentration that elicited 20% of  the maximal contraction obtainable 
with clonidine; the ratio was 0.15. From experiments by Leighton et al. 
(1979) on the rat anococcygeus muscle in vitro two ratios can be calculat- 
ed: one, namely 0.3, from the ECso for inhibition of  the evoked overflow 
of noradrenaline and the ECs0 for the direct postsynaptic effect; the other, 
namely 0.03, from the ECso for inhibition of  stimulation-evoked contrac- 
tions and the postsynaptic ECs0. Finally, Medgett et al. (1978) compared 
the ECso for inhibition of  the evoked overflow of  noradrenaline from 
guinea-pig atria with the ECso for contraction of  rabbit aorta; the ratio 
was 0.0025. The ratios differ enormously. Nevertheless, all studies show 
that clonidine has a far lower postsynaptic/presynaptic potency ratio 
than other agonists such as naphazoline and phenylephrine. Much of  the 
discrepancy is probably attributable to the arbitrary choice of  potency 
parameters (see the two values of Leighton et al. 1979) and to the factors 
discussed under points 1-6 .  For instance, the presynaptic potency report- 
ed by Medgett et al. (1978) may be particularly high because these authors 
stimulated the atrial sympathetic nerves with only 5 pulses at 1 Hz. This 
yields low perineuronal concentrations of noradrenaline, little reduction 
in the apparent potency of clonidine (point 3), and a good approximation 
to the 'true' potency. 

These comments question certain aspects of  the work summarized here. 
On the whole, however, the evidence for differences between the pre- and 
the postsynaptic ~-adrenoceptors at sympathetic nerve-muscle junctions 
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is overwhelming. Moreover, in all tissues examined so far, the presynaptic 
receptors appear to be similar to those of  the rabbit pulmonary artery 
and, hence, at least predominantly ~2, whereas the postsynaptic receptors 
appear to be at least predominantly ~1. This conclusion does not imply 
that all noradrenergic axons possess only c~2-receptors and all smooth and 
cardiac muscle cells only ~l-receptors. There is now evidence for hetero- 
geneity. Contraction-eliciting, ~2-1ike adrenoceptors seem to occur on 
some smooth muscle cells such as those of  rat blood vessels (Chap. 3). One 
reason, perhaps, for the high postsynaptic/presynaptic potency ratio of  
clonidine found by Drew (1976) and Pichler and Kobinger (1978) is that 
in rats clonidine causes vasoconstriction in part via smooth muscle ez-re- 
ceptors. Presynaptic a-receptors may be heterogeneous as well (Doxey and 
Everitt 1977; Constantine et al. 1978; Roach et al. 1978; Dubocovich 
1979). For instance, the clonidine-induced inhibition of the tachycardia 
evoked by sympathetic nerve stimulation is antagonized by prazosin in 
dogs, cats and, according to some but not all investigators, rats (Constan- 
tine et al. 1978; LefOvre-Borg et al. 1978;Roach et al. 1978;Cavero et al. 
1979a; Mouill6 et al. 1979; Timmermans et al. 1979b), suggesting that the 
neurones may possess both presynaptic ~2- and prazosin-sensitive ~-re-  
ceptors (Cavero et al. 1979a; see also Kobinger and Pichler 1980). On the 
other hand, there is evidence that prazosin at high doses blocks ~2-recep- 
tors, and that at least in rats, the cardiac sympathetic nerves contain only 
the ~2 type (Docherty and McGrath 1980). 

Presynaptic receptors of  noradrenergic neurones other than those sup- 
plying muscle have rarely been investigated. In slices of  rat brain cortex, 
yohimbine and rauwolscine increase the stimulation-evoked release of  
noradrenaline at much lower concentrations than does corynanthine 
(Starke and Starnm, unpublished results), and prazosin has no effect (Du- 
bocovich 1979). Thus, the receptors satisfy ~2-criteria. On the other hand, 
in brain slices phentolamine is more potent  than yohimbine, and piperoxan 
is almost equipotent with yohimbine (Taube et al. 1977;Delini-Stula et al. 
1979), whereas in the rabbit pulmonary artery yohimbine is much more 
potent  than its congeners (Table 2), casting some doubt on the similarity 
between the two kinds of  presynaptic receptors. 

3 Functional Studies: a2-Adrenoceptors Outside Noradrenergic Axons 

Observations on pre- and postsynaptic a-receptors at noradrenergic syn- 
apses gained a new dimension when receptors resembling the presynaptic 
ones were found on structures other than noradrenergic terminal axons. 
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The terms al-  and a2-receptors had been proposed as synonyms for post- 
and presynaptic a-receptors (Langer 1974). The existence of the a2 type 
elsewhere made it necessary to use these prefixes solely for receptors with 
different affinities for drugs regardless of  location or function (Berthelsen 
and Pettinger 1977; Cedarbaum and Aghajanian 1977; Drew 1977a, 1978; 
Wikberg 1978a, b; Starke and Langer 1979). The following examples are 
just a selection, to illustrate the wide range of  potential a2-adrenoceptor 
locations. 

3.1 Cholinergic Neurones 

a-Adrenergic agonists inhibit the release of acetylcholine from central, 
preganglionic autonomic, and postganglionic parasympathetic neurones; 
they facilitate the release of  acetylcholine from motor  neurones to skeletal 
muscle (see Vizi 1979). The poperties of  the a-receptors in the intestine 
have been the subject of  most frequent study, a-Receptor agonists can in- 
hibit intestinal cholinergic activity at three sites at least, namely pregang- 
lionic terminals, the cell bodies of  the cholinergic neurones of  the enteric 
plexuses, and the axon terminals of  these neurones. Much of  the inhibition 
is probably exerted at the latter two sites (Paton and Vizi 1969; KosterIitz 
et al. 1970; Drew 1978). An early, unexplained observation was that 
methoxamine failed to inhibit acetylcholine release (Paton and Vizi 1969), 
whereas naphazoline, xylazine, and clonidine were potent  inhibitors 
(Oberdorf and Kroneberg 1970; Deck et al. 1971). Retrospectively, this is 
easily understood from the character of the receptors, which differ from 
classic smooth muscle a-adrenoceptors (Wikberg et al. 1975), and were 
eventually shown to be of  the a~ type (Drew 1977a, 1978; Wikberg 
1978a, b). 

Table 4 summarizes potencies of  agonists, relative to noradrenaline, in 
inhibition of  acetylcholine outflow or cholinergic transmission in the gui- 
nea-pig ileum. The receptors fulfil a2 criteria. In the terminal ileum 
phenylephrine fails to inhibit cholinergic transmission (Table 4, column c), 
but competitively antagonizes the effect of noradrenaline. Its affinity can, 
therefore, be estimated; it is low, the dissociation constant being 63 
(Wikberg 1978a). 

Similar experiments with agonists suggest that a,-receptors occur on 
cholinergic neurones of  the rabbit jejunum (Wikberg 1979a), the chicken 
stomach (Seno et al. 1978), the guinea-pig gallbladder (Lee and Fufiwara 
1977), the cat submaxillary gland (Green et al. 1979), and perhaps the 
cerebral cortex of  the rat (Vizi 1979). 

The a2 character is confirmed by experiments with blocking drugs. Yo- 
himbine is a potent  antagonist at the a-receptors of  the cholinergic neu- 
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Table 4. Relative potencies of agonists at a-adrenoceptors of the cholinergic neurones 
of the guinea-pig ileum 

Potencies relative to noradrenaline 

a b c d e 

Clonidine 9.1 10 20 10 18 
(-)-erythro- 3.2 

a -methylnoradren aline 
Tramazoline 2.9 
Naphazotine 2.2 
Oxymetazoline 1.7 2.2 3 
(-)-Noradrenaline t (1) 1 1 1 
(-)-Phenylephrine 0.0089 0.0004 0 0.001 0.018 
(-+)-Methoxamine 0.0004 0.0002 

The effect measured was the inhibition of contractions of the ileum evoked by electri- 
cal stimulation (columns a-d) or the inhibition of the stimulation-evoked outflow of 
acetylcholine (column e). a) From Wikberg (1978b). Ilea from reserpine-pretreated 
guinea pigs were mounted in medium containing sotalol, cocaine and corticosterone. 
With the author's consent, attention is drawn to the fact that this paper contains some 
printing errors that confuse the meaning, especially in Fig. 1 where the drugs are coded. 
For instance, a-methylnoradrenaline is 41, not 4k. b) From Drew (1978). Ilea were 
mounted in medium containing propranolol. Since the paper contains no data for nor- 
adrenaline, the potency of clonidine was taken to be 10. Effect of phenylephrine and 
methoxamine not reversed by piperoxan, c) From Wikberg (1978a). Terminal ilea were 
incubated in medium containing sotalol, d) From Ennis et al. (1979). Enantiomers not 
indicated, e) From Vizi (1979). Stereoisomers not indicated. 

tones o f  the guinea-pig ileum (Drew 1978; Andre]ak et al. 1980) and the 
cat submaxillary gland (Green et al. 1979). Tolazoline and piperoxan are 
also po ten t  antagonists in the ileum, whereas for phentolamine divergent 
results have been repor ted (Paton and Vizi 1969; Drew 1978; Wikberg 
1978a). The al-selective antagonists labetalol (Drew 1978), prazosin and 
AR-C 239 (Andrk]ak et al. 1980) fail to block the receptors. Interestingly, 
the facilitatory a-receptors a t  skeletal muscle motor  nerve endings are 
more akin to  a l -  than to a2-receptors (_Malta et al. 1979). 

Some of  the critical comments o f  Chap. 2 also pertain here. For  in- 

stance, not  only acetylcholine but  also noradrenaline is released by field 
stimulation o f  the guinea-pig ileum. Noradrenaline then inhibits the re- 
lease of  acetylcholine as shown by the fact that  yohimbine and tolazoline 

increase the evoked release o f  acetylcholine (Kilbinger and Wessler 1979). 
The presence o f  noradrenaline may lead to underest imation o f  the po tency  
o f  exogenous a-receptor  agonists and antagonists as discussed earlier. More- 
over, drugs may affect the release o f  acetylcholine indirectly by  changing 
primarily the release o f  noradreanline. 

Wikberg (1978b) avoided this by depletion o f  the noradrenaline stores 
by reserpine. Moreover, in his experiments/~-adrenoceptors as well as the 
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neuronal and extraneuronal uptake of  noradrenaline were blocked. Wikberg 
(1979b) calculated the correlation of  the relative potencies of  agonists at 
inhibiting cholinergic transmission in the guinea-pig ileum (Table 4, col- 
umn a) and at inhibiting noradrenaline release in the rabbit pulmonary 
artery (Table 2). The very close correlation (r = 0.96) is good evidence for 
the similarity of  these receptors. 

3.2 Noradrenergic Cell Bodies 

s-Receptor agonists inhibit the firing of the noradrenergic cells of  the 
locus ceruleus and hyperpolarize sympathetic ganglion cells. The receptors 
involved appear to be e2 (Cedarbaum and Aghajanian 1977; Brown and 
Caulfield 1979). For instance, the effect of  agonists on sympathetic gang- 
lia was reduced by yohimbine but not  by up to 10 uM prazosin (Brown 
and CaulfieM 1979). Phenylephrine was only slightly less potent  in hyper- 
polarizing the ganglia than was noradrenaline (Brown and Caulfield 1979), 
and this might be taken as evidence against a pure e2-receptor population. 
The experimental conditions of  the authors did not, however, exclude re- 
lease of  noradrenaline by phenylephrine and, hence, an indirect mode of  
action. From these observations and those discussed in Chap. 2 the general 
picture emerges that central and peripheral noradrenaline neurones may 
be endowed with inhibitory ~2-adrenoceptors, in other words inhibitory 
e2-autoreceptors, in both their soma-dendritic and their terminal region. 

3.3 Central Nervous System 

Interest in central e-adrenoceptors rose steeply when it became clear that 
these receptors were important sites of action of clonidine and related 
drugs as well as of  e-methylnoradrenaline, the active metabolite of  s-me- 
thyldopa (Delbarre and Schmitt 1969; Andkn et al. 1970;Heise and Kro- 
neberg 1970, 1973; Hoyer and van Zwieten 1971; Kobinger and Walland 
1971; Schmitt et al. 1971). As has been mentioned, electrophysiological 
and brain slice experiments indicate that cerebral noradrenergic neurones 
possess soma-dendritic and presynaptic ea-adrenoceptors. These studies 
concerned relatively isolated structures and simple responses. The involve- 
ment  of s-receptor  subtypes in more complex functions of the central 
nervous system is, of  course, very difficult to elucidate. The blood-brain  
barrier impedes drug access, and drugs may act simultaneously at many 
sites. All conclusions are tentative, and only selected aspects will be dis- 
cussed here (see also Berthelsen and Pettinger 1977; Schmitt 1977; Starke 
1977). 
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Clonidine and related compounds reduce the synthesis and utilization of 
noradrenaline in rat brain and spinal cord (Anddn et al. 1970; Scholtysik 
et al. 1975; Fuller et al. 1977). Lo~v doses of  clonidine are required. Its 
effect is strongly counteracted by yohimbine, piperoxan and tolazoline, 
but only weakly by phenoxybenzamine and not  at all by prazosin. In the 
case of  another ~-adrenergic effect upon the central nervous system, name- 
ly the increase in strength of  the flexor reflex of  acutely spinalized rats, 
the pattern of  drug effects is quite different. High doses of  clonidine are 
needed, and its effect is strongly counteracted by phenoxybenzamine and 
prazosin, but  only weakly by yohimbine, piperoxan and tolazoline (And~n 
et al. 1976, 1978). Since both the biochemical and the motor  effect occur 
in the spinal cord, the contrasting patterns are probably not  due to differ- 
ing access of the drugs to the receptors. Rather, the receptors differ. 
Those mediating the inhibition of  noradrenaline neurones appear to be ~2, 
whereas those mediating the increase of  the reflex appear to be ~l. 

The reflex-enhancing receptors are probably located on non-catechol- 
amine neurones (And~n et al. t976). The turnover-decreasing receptors 
might be identical with the ~-autoreceptors  of  noradrenergic neurones. 
However, this is by no means certain. The turnover-decreasing receptors 
may well be located on non-noradrenergic neurones and may depress the 
noradrenergic neurones via a neurone chain (Anddn et al. 1976). The ques- 
tion of  identity with the ~2-autoreceptors always arises when a central 
drug effect is supposed to be ~2-adrenergic. It is stressed that the ~2 prop- 
erties of  a central receptor do not  imply that it is a soma-dendritic or pre- 
synaptic receptor of  noradrenergic neurones or that the effect it mediates 
involves central noradrenergic pathways. 

The central receptors responsible for the cardiovascular depression 
caused by clonidine-like drugs and ~-methyldopa appear to differ from 
smooth muscle c~-receptors (see Schmitt 1977; Kobinger 1978)and may 
be of  the c~2 type (Berthelsen and Pettinger 1977; Starke 1977). The re- 
cently reported antagonism by prazosin does not  exclude this possibility, 
since high doses o f  prazosin were given (Timmerrnans et al. 1979b). What- 
ever the subtype, most but  not  all of  the receptors are probably located 
on non-catecholamine neurones because clonidine and related compounds 
retain much of  their central autonomic effect after near-complete catechol- 
amine depletion (Haeusler 1974; Kobinger and Pichler 1974; Reynoldson 
et al. 1979;Pichler et al. 1980). 

Sedation is a prominent  side effect of  clonidine-like drugs and of  ~- 
methyldopa and is probably mediated by central ~-adrenoceptors. The fol- 
lowing findings suggest that these receptors may be e2. 

1) In chicks with incomplete blood-brain barrier the potency of  agon- 
ists in inducing sleep declines in the order clonidine >> ~-methylnoradren- 
aline, naphazoline > noradrenaline (Fiigner and Hoefke 1971). 
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2) Sleep caused in chicks by clonidine is antagonized by phentolamine, 
tolazoline, piperoxan, and yohimbine, but not  by azapetine and phenoxy- 
benzamine (Delbarre and Schmitt 1969, 1971, 1973;Fiigner 1971). Simi- 
lar results were obtained in mice where the agonists prolong the chloral 
hydrate sleeping time (Delbarre and Schmitt 1971, 1973). 

3) In rats the sedative potencies of  intracerebro-ventricularly injected 
agonists decline in the order clonidie >> xylazine, naphazoline > methox- 
amine; phenylephrine is inactive. The sedation induced by clonidine is 
antagonized by intraventricular injection of  phentolamine, piperoxan, 
yohimbine and tolazoline, but not by injection of  labetalol, prazosin and 
thymoxamine (Drew et al. 1979). Essentially similar results were obtained 
in rats by other authors (Clinesehmidt et al. 1979, 1980; Delini-Stula et al. 
1979;Nomura et al. 1980). 

The question again arises as to whether the sedation-mediating sites, if 
~2, are autoreceptors. Since sedation and inhibition of  noradrenaline turn- 
over are produced by similarly low doses, this does seem possible. In fur- 
ther support of this view, clonidine no longer causes sedation after cate- 
cholamine depletion, but, on the contrary, causes locomotor  stimulation 
(Zebrowska-Lupina et al. 1977; see also Strdmbom and Svensson 1980). 

Effects of  clonidine related to sedation include suppression of  condi- 
tioned avoidance responses, of  self-stimulation, and of  the fear-potentiat- 
ed startle reflex. These effects also seem to be mediated by a2-receptors 
and, moreover, by inhibition of  central noradrenaline neurones (Franklin 
and Herberg 1977;Hunt et al. 1978;Robson et al. 1978;Davis et al. 1979; 
Hawkins and Monti 1979). 

Like noradrenaline neurones, central adrenaline pathways can be mod- 
ulated via a-receptors belonging to the a2 group (Scatton et al. 1979). 

3.4 Blood Platelets 

Adrenaline, noradrenaline, and ~-methylnoradrenaline induce an a-adren- 
ergic aggregation of human platelets. Non-catecholamine agonists do not  
share this effect with the three catecholamines but may enhance the ag- 
gregation produced by other stimuli (see Grant and Scrutton 1979; Hsu 
et al. 1979). The catecholamines also inhibit platelet adenylate cyclase. 
Non-catecholamine agonists fail to do so or are only partial agonists 
(Jakobs et at. 1978; Tsai and Leflcowitz 1978). All a2-receptors discussed 
hitherto were probably constituents of the cell membrane of  neurones. 
The platelet a-receptors may be an example of  non-neuronal ~2-receptors. 

a-Methylnoradrenaline is twice and clonidine 15 times as potent  as 
noradrenaline in enhancing ADP-induced aggregation, whereas phenyl- 
ephrine and methoxamine have little effect (Hsu et al. 1979). Yohimbine 
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and phentolamine, but not  up to 100/xM prazosin, counteract adrenaline- 
induced aggregation (Glusa et al. 1979;Hsu et al. 1979;Lasch and Jakobs 
1979). Non-catecholamines that have little or no effect of  their own do 
antagonize adrenaline-induced aggregation as well as the inhibition of  
adenylate cyclase (Hsu et al. 1979; Lasch and Jakobs 1979; Rossi et al. 
1979); oxymetazoline, naphazoline, and clonidine are much more potent  
in this respect than is phenylephrine (Lasch and Jakobs 1979). These find- 
ings are compatible with the view that platelets possess an a2-receptor 
through which only adrenaline, noradrenaline, and ~-methylnoradrenaline 
act with full efficacy (Glusa et al. 1979; Hsu et al. 1979; Lasch and Jakobs 
1979). They may, however, in addition contain an ~l-receptor which does 
not  contribute much to the response to adrenaline but which may mediate 
the aggregation-enhancing effect of phenylephrine (Grant and Scrutton 
1979). The observation that ~-methylnoradrenaline is only half as potent  
as noradrenaline in eliciting aggregation and inhibiting adenylate cyclase 
would be unusual for a pure ~2 population. 

3.5 Smooth Muscle 

Perhaps the most unforeseen ~2-receptors, or ~2-1ike receptors, have re- 
cently been detected in smooth muscle cells, the s-receptors of  which had 
served as ~1 prototypes. The initial observation was that prazosin anta- 
gonized the contractile effect of  noradrenaline strongly in human visceral 
arteries, but at best only slightly in digital arteries. There seemed to be a 
prazosin-sensitive and a prazosin-resistant group of  contraction-mediating 
vascular ~-adrenoceptors (Moulds and Jauernig 1977; Jauernig et al. 1978). 
Following up the idea that the two groups might be ~1- and ~2-receptors, 
Drew and Whiting (1979) showed that in cats and rats prazosin strongly 
counteracted the hypertensive effect of  phenylephrine, but much less 
markedly counteracted the effect of  noradrenaline. Conversely, yohimbine 
was slightly more potent  against noradrenaline than against phenylephrine. 
The effect of  noradrenaline was also relatively prazosin-resistant in the 
isolated cat hindlimb and mesenteric vascular beds but not in the renal 
vascular bed. Drew and Whiting (1979) concluded that phenylephrine con- 
stricts blood vessels solely via the prazosin-sensitive ~a-receptor, whereas 
noradrenaline, except in cat kidney, possesses an additional, prazosin-in- 
sensitive site of  action. Although they hesitated to classify the latter site 
as c~2, other experiments support this possibility. For instance, in pithed 
rats prazosin, at a dose which abolishes the pressor effect of high doses of 
phenylephrine, only reduces the pressor effect of  clonidine and does not  
change that of  the highly ~2-selective agonist xylazine; yohimbine anta- 
gonizes the effect o f  all three agonists, but antagonizes xylazine more than 
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phenylephrine (Docherty et al. 1979;Docherty and McGrath 1980). There 
are, by now, numerous analogous observations, the most clear-cut and 
consistent findings being that contractions of smooth muscle caused by 
agonists with a strong ~2-component are at least partly resistant to ~l- 
selective antagonists, and that the resistant contractions can be blocked by 
~2-selective antagonists and, hence, are probably mediated by c~2-adreno- 
ceptors (Timrnerrnans et al. 1979a; Constantine et al. 1980; Drew 1980; 
Flavahan and McGrath 1980; Kobinger and Piehler 1980; Mad/ar et al. 
1980; Timmermans and van Zwieten 1980). 

A cautionary remark must be added. None of the studies summarized 
above was carried out under optimal conditions for receptor characteriza- 
tion (see Furchgott 1972). Only in one published abstract has differentia- 
tion of smooth muscle ~1- and ~2-receptors under strictly controlled in 
vitro conditions been reported; ~2-receptors were found in dog veins but 
not arteries (De Mey and Vanhoutte 1980). Further such in vitro experi- 
ments are necessary before the occurrence of smooth muscle ~2-receptors 
can be considered as established. 

4 Radioligand-Binding Studies 

a-Adrenoceptors have been labelled with several radioactive ligands. In the 
present context, 3 H-dihydroergokryptine, 3 H-clonidine, 3 H-WB 4101, and 
3 H-prazosin are especially important. 

4.1 3 H-Clonidine, 3 H-WB 4101 and 3 H-Prazosin 

In the studies summarized in Tables 5 and 6, membrane fractions of tissue 
homogenates were incubated with low concentrations of the radioligands 
in 25-30  mM Tris-HC1 buffer pH 7.4-8.0. Nonspecific binding was mea- 
sured in the presence of high concentrations of unlabelled ligands and was 
subtracted from total binding. The remaining specific binding was satur- 
able and of high affinity, as shown by the dissociation constants KD of 
the radioligand-receptor complexes in the Table legends. The Tables 
contain dissociation constants Ki of nonradioactive drugs that competed 
with the radioligands for specific binding. 

The rank orders of affinities of agonists and antagonists for the 3 H- 
clonidine-binding site agree well in the various tissues and studies (Table 
5). The rank orders of affinities for the 3H-WB 4101 site resemble the 
rank orders for the 3 H-prazosin site and are therefore presented together 
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in Table 6, but they differ from the rank orders for the 3 H-clonidine site. 
There are, however, many discrepancies between absolute K i values. For 
instance, the K i values of  agonists for inhibition of 3 H-prazosin binding to 
rat brain membranes found by Hornung et al. (1979; Table 6, column h) 
exceed the corresponding values for inhibition of 3 H-prazosin binding 
found by Greengrass and Bremner (1979; column f )and  for inhibition of  
3H-WB 4101 binding found by U'Prichard et al. (1977; column a) by fac- 
tors of  between 2 and 27. The K i values of agonists for inhibition of 3 H- 
clonidine binding reported by Jarrott et al. (1979; Table 5, column h) also 
are higher than corresponding values (in columns a-g);  the discrepancy 
for oxymetazoline is particularly large, as pointed out  by the authors. Sur- 
prisingly different constants have been published for phentolamine. Its K i 
for 3H-clonidine binding varied between 1.2 and 300 nM in one laboratory 
(Table 5, columns e and f) and between 2.1 and 22 nM even in one tissue, 
namely rat brain (columns a and c). 

The K i values reveal two characteristic properties of  the binding sites. 
Firstly, agonists tend to have much higher affinities for the ~ H-clonidine 
site than for the 3 H-WB 4101 and 3 H-prazosin sites, whereas the reverse 
holds true for antagonists. This was noted even in the first experiments by 
Greenberg et al. (1976), U'Prichard and Snyder (1977), and U'Prichard et 
al. (1977). These authors concluded that either there was a single ~-adreno- 
ceptor that could take agonist- and antagonist-preferring conformations, 
or, more probably, that there were two distinct, non-interconvertible ~- 
adrenoceptors, one with high affinity for agonists (the 'agonist receptor 
site'), the other with high affinity for antagonists (the 'antagonist receptor 
site', see also Greenberg and Snyder 1978; Greenberg et al. 1978;Peroutka 
et al. 1978). 

With growing functional evidence for two major a-receptor subtypes, 
the second property of  the binding sites became obvious, namely that the 
3H-clonidifie site satisfies ~2-, whereas the 3H-WB 4101 site and the 3H- 
prazosin site satisfy ~l-receptor criteria (U'Prichard et al. 1978; Greengrass 
and Bremner 1979; Itornung et al. 1979; U'Prichard and Snyder 1979). 
Comparison of  Tables 1,5,  and 6 makes this plain. 

How are the two properties related? Is the 3H-clonidine site an ~2-re- 
ceptor, and is this receptor simultaneously an agonist-selective receptor? 
Is the 3H-WB 4101 and 3H-prazosin site (if both drugs label the same site) 
an ~l-receptor, and is this receptor simultaneously an antagonist-prefer- 
ring receptor? 

The predilection of  antagonists for the ~H-WB 4101 and 3H-prazosin 
site is not without exception. In the experiments of  U'Prichard et al. 
(1977) tolazoline, piperoxan, and yohimbine had higher affinity to the 
3H-clonidine site (the presumed agonist site) than to the 3 H-WB 4101 site 
(the presumed antagonist site). Similar results were obtained by Hornung 
et al. (1979) and Miach et al. (1980; see Tables 5 and 6). U'Prichard et al. 
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(1977) explained this by a partial agonist character of the three antagonists. 
Although the explanation may hold good for tolazoline, there is no evi- 
dence for a partial agonist effect of yohimbine and piperoxan at ~-adreno- 
ceptors. Even more striking are recent observations with the yohimbine 
diastereomer rauwolscine. Rauwolscine had 40-54  times higher affinity 
for the 3H-clonidine site in guinea-pig ileum and rat cerebral cortex (Table 
5, columns c and g) than for the cerebrocortical 3H-WB 410t site (Table 6, 
column b). Since rauwolscine, yohimbine, tolazoline, and (not consistently) 
piperoxan preferentially block ~2-adrenoceptors, all these findings fit in 
with the 3 H-clonidine site being an ~2-receptor but not an agonist receptor. 

There is as yet no exception to the predilection of agonists for the 3H- 
clonidine site. Yet, Tables 5 and 6 show that the K i values of phenyl- 
ephrine for 3H-clonidine binding (260-4  200 nM) and for 3H-WB 4101 
and 3 H-prazosin binding (1 400-110  000 nM) overlap, indicating that the 
preference of this drug for the presumed agonist site is small. On the 
whole, the available data suggest that the 3H-clonidine site is identical 
with the ~2-receptor found in functional studies, whereas the 3 H-WB 410 t 
and 3H-prazosin sites are identical with the al-receptor. There is a marked 
tendency for agonists to bind mainly to the 3H-clonidine site and for anta- 
gonists to bind mainly to the aH-WB 4101 and aH-prazosin sites under the 
conditions o f  the binding assays: This, however, is not generally valid, and 
the sites should not be called the agonist and antagonist site, respectively. 

Given this conclusion, a major difficulty remains. In the binding studies 
all agonists except phenylephrine have much higher affinity for the a2- 
than for the al-receptor. From the data of U'Prichard et al. (1977) the 
following a~/a2 affinity ratios can be calculated (columns a of Tables 5 
and 6): phenylephrine 0.10; noradrenaline 0.017; a-methylnoradrenaline 
0.0028; clonidine 0.013; naphazoline 0.052; tramazoline 0.038; oxymeta- 
zoline 0.079). Functionally, however, the agonists are not so much more 
potent at ~ -  than at al-receptors; some are equipotent (like noradrenaline) 
and some actually more potent at a~-receptors (like phenylephrine). For 
instance, comparison of the affinity ratios with the postsynaptic/presyn- 
aptic (al/a2) potency ratios of Table 2 shows that the latter are about 10 
times higher than the affinity ratios for the imidazolines, and about 100 
times higher than the affinity ratios for the phenylethylamines. Compari- 
son of ~i/a2 affinity ratios with the ~1/~2 potency ratios of agonists in 
guinea-pig aorta (e~) and in cholinergic neurones (~2; Wikberg 1978b) 
yields essentially similar values. As will be discussed in detail in Chap. 5, 
two factors may account for this discrepancy. Firstly, in physiological 
media the affinity of agonists to the a2-receptor may be lower than in the 
Tris buffer media used in the binding assays; secondly, in intact tissues a 
moderate affinity to ~-receptors may be translated into a high potency. 
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4.2 3 H-Dihydroergokryptine 

In several tissues the number of 3H-dihydroergokryptine-binding sites is 
equal to the sum of  the numbers of 3 H-clonidine and 3 H-WB 4101 binding 
sites. 3H-Dihydroergokryptine binds to the 3H-clonidine site and to the 3H- 
WB 4101 site with similar affinity. These and other observations were first 
interpreted in terms of agonist and antagonist a-receptors and a partial 
agonist character of dihydroergokryptine (Greenberg and Snyder 1978; 
Peroutka et al. 1978). It now seems more likely that 3H-dihydroergokryp- 
tine binds with about equal affinity to al- and a2-adrenoceptors (Miach et 
al. 1978; U'Prichard et al. 1978; Hoffman et al. 1979; U'Prichard and 
Snyder 1979; Wood et al. 1979). The binding of 3H-dihydroergokryptine 
to al-  and a2-receptors in tissues in which both occur is inhibited by other 
ligands in a typical manner. If the unlabelled ligand has similar affinity to 
either receptor, the log concentration-inhibition curve is monophasic and 
steep, as one would expect from the competition of two drugs for one site. 
If, however, the ligand is selective for one receptor, the curve becomes 
shallow or overtly biphasic. In experiments on brain membranes, steep 
monophasic curves are obtained with phentolamine (Miach et al. 1978), 
but biphasic curves with clonidine, WB 4101 and indoramin (Peroutka et 
al. 1978) as well as with yohimbine and prazosin (Miach et al. 1978). The 
differential effects of  phentolamine, prazosin and yohimbine on the bind- 
ing of 3H-dihydroergokryptine have been used to study quantitatively a- 
receptor subtypes in various tissues. Only a l-adrenoceptors were found in 
rat liver, only a2-adrenoceptors in human platelets, and a mixture in rab- 
bit uterus. Surprisingly, the affinity of a given antagonist for one receptor 
type varied greatly. For instance, the K i of yohimbine at the a2-receptor 
of rabbit uterus was 14 nM, but at the a2-receptor of human platelets 0.8 
riM; its K i at the ai-receptor of rabbit uterus was 3000 nM, but at the a~- 
receptor of rat liver 64 nM (Hoffman et al. 1979). Species or tissue differ- 
ences may be responsible, as the authors propose. Nevertheless, such large 
differences are disquieting when one looks for generally valid properties of 
a 1 -adrenoceptors and a2-adrenoceptors. 

5 Synthesis and Outlook 

5.1 Agonist Potencies Versus Affinities 

Functional studies on sympathetic nerve-muscle junctions, functional 
studies in other tissues, and radioligand binding studies have converged 
to the hypothesis that a-adrenoceptors fall into two subclasses. A major 
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discrepancy between the functional and the binding experiments was 
pointed out earlier. For all agonists, ~1/~2 potency ratios greatly exceed 
~1/cx2 affinity ratios. The difference is about 10-fotd for imidazotine agon- 
ists and about 100-fold for phenylethylamine agonists. It is suggested that 
two factors may explain the discrepancy: firstly, the use of nonphysiol- 
ogical media in binding experiments, and secondly, a particular kind of  
st imulus-response relationship in the case of smooth muscle c~l-adreno- 
ceptors. 

In the first place, all incubations for radioligand binding that yielded 
the data shown in Tables 5 and 6 were carried out in Tris buffer, some- 
times supplemented with ascorbic acid, EDTA, or magnesium, but without 
the monovalent cations that abound in physiological media. Sodium and, 
less effectively, potassium ions, however, reduce the binding of  3H-cloni- 
dine to brain membranes; the binding of 3H-WB 4101 and 3H-prazosin, on 
the other hand, is not changed (Greenberg et al. 1978; Glossmann and Pre- 
sek 1979; Hornung et al. 1979; Rouot et al. 1980). In ptatelets, sodium 
ions diminish the affinity of  agonists but hardly affect that of  antagonists 
to the 3H-dihydroergokryptine sites which, in these cells, are mainly ~2- 
receptors (Tsai and Lefkowitz 1978). These studies suggest that sodium 
reduces the affinity of  agonists to e2- but not ~l-adrenoceptors. Sodium 
may even increase the affinity of clonidine for e~-adrenoceptors (Gloss- 
mann and Hornung 1980). If so, the use of sodium-free media will lead to 
a systematic overestimation of  agonist affinities for the ~2-receptor and a 
systematic understimation of  their ~1/~2 affinity ratios (in comparison 
with more physiological conditions). 

Secondly, in several blood vessels the contractile effect of  e-adrenergic 
agonists seems to be an upwardly convex hyperbolic function of the stim- 
ulus generated by the agonist-receptor interaction (or of  the fraction of  
receptors occupied, which is proportional to the stimulus; see Fig. 3 of  
Johansson et al. 1972; Fig. 3 of  Besse and Furchgott 1976; and Fig. 2 of 
Ruffolo et al. 1979). Classic receptor theory states that, in such a case, an 
agonist with high efficacy should produce a large proportion of  its maxi- 
mal effect when only a small fraction of  the receptors is occupied; in other 
words, its ECs0 should be much lower than its dissociation constant, and 
the potency of  the agonist should exceed its affinity. Conversely, an agon- 
ist with low efficacy even at full receptor occupation should produce only 
stimuli in the lower, near-linear part of  the st imulus-response hyperbola; 
its ECso should be similar to its dissociation constant, and potency simi- 
lar to affinity. Indeed, noradrenaline, phenylephrine and ~-methylnor- 
adrenaline, which all have high and equal efficacies in rabbit aorta, produce 
50% of  their maximal effects when only 6% of  the receptors are occupied 
(Besse and Furchgott 1976). Conversely, clonidine and naphazoline, 
which in rat aorta possess only 2% of  the efficacy of  phenylephrine, have 
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t o  o c c u p y  a p p r o x i m a t e l y  50% o f  t he  r e c e p t o r s  in o r d e r  t o  p r o d u c e  50% 

o f  the i r  m a x i m a l  e f f e c t  (Ruf fo lo  et  al. 1979) .  T h u s ,  in t h e  s m o o t h  m u s c l e  

o f  b l o o d  vessels w i t h  classic a l - a d r e n o c e p t o r s  t he  m o d e s t  a f f in i ty  o f  phe -  

n y l e t h y l a m i n e s  is t r ans l a t ed  i n t o  h igh  p o t e n c y  because  o f  t he  u p w a r d l y  

c o n v e x  h y p e r b o l i c  s t i m u l u s - r e s p o n s e  curve .  This  m e c h a n i s m  does  n o t  

w o r k  f o r  l o w - e f f i c a c y  drugs  s u c h  as m a n y  imidazo l ines .  

A brief recapitulation of receptor theory may illustrate this point further (see 
Ariens 1964; Furchgott 1964, 1972; Waud 1968). The equilibrium between the agon- 
ist A, the receptor R and the agonist-receptor complex AR is assumed to obey the 
law of  mass action, from which the familiar equation 

[RA] [A] 

[Rt] [A] + K A (1) 

is derived, where [RA], [Rt] and [A] are the concentrations of agonist-receptor com- 
plex, total receptors, and free agonist, respectively, and KA is the dissociation constant. 
Stephenson (1956) suggested that formation of  the agonist-receptor complex gener- 
ates a stimulus S which is proportional to the fraction of receptors occupied: 

[RA] 
S = e - -  

[R t ] 

where e is the efficacy of  the agonist. The stimulus, in turn, triggers the response of  
the tissue, so that the effect is some function (not  necessarily linear) of S: 

__EmaxE = f(S)  = f e [Rt] / 

where E is the response at a certain concentration of a given agonist, and Ema x the 
maximal response obtainable with an agonist of  maximal efficacy. Let us now consider 
the case, exemplified by the effect of  a-adrenergic agonists on vascular smooth muscle, 
in which E/Emax is a rectangular hyperbolic function of  S according to 

E S 

Ema x S + 1 

In Fig. 1, E/Ema x is plotted against S, which is indicated on the abscissa in arbitrary 
units. Below the abscissa S is shown, for an agonist with high efficacy (e = 100) and 
for an agonist with low efficacy (e = 1), which fractional receptor occupation gener- 
ates a certain stimulus. When the high efficacy drug occupies all receptors ([RA]/[Rt]  
= 1), it produces the stimulus S = 100 and, hence, the effect E/Ema x = 0.99 of the 
theoretical maximal effect obtainable with an agonist of  maximal efficacy. The upper 
dashed horizontal line is drawn at the response E/Ema x = 0.99 / 2 = 0.495, and the 
corresponding dashed vertical line indicates that this effect is triggered by the stimulus 
S = 0.98 and a fractional receptor occupation of  only 0.0098. Thus, at the ECs0 of the 
agonist with e = 100, only about 1% of the receptors are occupied, and from equation 
(1) it follows that ECso = 0.01 K A. This is the type of relationship found when nor- 
adrenaline or phenylephrine acts on al-adrenoceptors. On the other hand, when the 
low-efficacy drug occupies all receptors, it produces the stimuius S = 1 and, hence the 
effect E/Ema x = 0.5. The lower dashed horizontal line is drawn at the response 
E/Ema x = 0.5 ] 2 = 0.25, and the corresponding vertical line indicates that this effect 
is triggered by the stimulus S = 0.33 and a fractional receptor occupation of 0.33. 
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Thus, at the ECs0 of the agonist with e = 1, about 33% of the receptors are occupied, 
and from equation (1) it follows that ECso = 0.5 KA. This is the type of relationship 
found when clonidine or naphazoline acts on al-adrenoceptors. 

One can also express the difference between high- and low-efficacy agonists using 
the concept of spare receptors. A calculation analogous to that described above shows 
that the e = 100 agonist produces 95% of its own maximal effect when only 16% of 
the receptors are occupied; in other words, there are unoccupied spare receptors even 
when the agonist produces essentially its maximal effect, and essentially the whole 
concentrat ion-response curve is covered when receptor occupation is increased from 
0 to only about 20%; hence the high potency in comparison with affinity. Conversely, 
the e = 1 agonist produces 95% of its own maximal effect when 90% of the receptors 
are occupied; there is no appreciable receptor reserve, and in order to cover the whole 
concentration-response curve, receptor occupation has to be increased from 0 to 
about 100%; hence the low potency in comparison with affinity. 
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Fig. 1. Relationship between receptor occupation [RA]/[Rt], stimulus S and response 
E/Ema x for an agonist with high efficacy, e = 100, and an agonist with low efficacy, 
e = l  

In the definition proposed in Table 1 it was necessary to distinguish 
between the high affinity and the low potency of  clonidine, relative to 
phenylephrine, at a1-adrenoceptors. We can now explain this by the low 
efficacy of  clonidine coupled with a hyperbolic stimulus-response curve 
at the el-receptors so far studied. Interestingly, published data show no 
analogous difference between the potency and the affinity of  clonidine, 
relative to phenylephrine, at ~2-adrenoceptors (see Table 1). Agreement 
between relative potencies and relative affinities at a2-receptors is also 
found when other imidazolines and phenylethylamines are compared. 
Since the agonists do have different efficacies in eliciting ~2-adrenergic 
effects (see Chap. 2 and Wikberg 1978b), the agreement suggests that for 
the e2-adrenergic mechanisms studied so far the stimulus-response func- 
tion is approximately linear. 
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In conclusion, factor 1 (the monovalent cation effect) holds good for 
all agonists. Factor 2 (the hyperbolic stimulus-response function) intro- 
duces a difference between the effects of high and the effects of  low effi- 
cacy agonists at c~1- but not  at ~-adrenoceptors .  Taken together, the fac- 
tors may explain why the el/~2 potency ratio is about 10 times higher 
than the ~/~2 affinity ratio for the imidazolines, and about 100 times 
higher for the phenylethylamines, for the a-adrenergic mechanisms studied 
so far. ~1/~2 Affinity ratios of  phenylephrine, noradrenaline and a-methyl- 
noradrenaline are 0.10, 0.017 and 0.0028, respectively (U'Prichard et al. 
1977). The 100-fold increase results in phenylephrine becoming ~-selec- 
tire, noradrenaline being equipotent,  and a-methylnoradrenaline remain- 
ing a2-selective in functional experiments. 

Wikberg (1978b) proposed the following definition of a-receptor sub- 
types: "When the relative affinities of phenylephrine and noradrenaline 
are greater than those of  tramazoline, xylazine and clonidine, ~a receptors 
are present, and when these orders are reversed, the receptors are of  the 
~ type". Ruffolo et al. (1979) criticized this definition since "ED50 
values . . . may be poor estimates of  agonist affinity". They pointed out 
that in rat aorta clonidine had 14 times higher affinity than phenylephrine 
for the smooth muscle a-receptor, so that, according to Wikberg (1978b), 
"the postsynaptic alpha receptors of  the rat aorta would have to be termed 
presynaptic which is clearly incorrect". The somewhat misleading termin- 
ology in these statements (presynaptic/postsynaptic; affinity/potency) 
should not detract from the fact that the scientific messages of  these 
authors can be reconciled when affinity and potency are distinguished as 
in Table 1 and when possible reasons for the apparent discrepancy are re- 
cognized. Wikberg (1978b) determined relative potencies only, and the 
potency of  phenytephrine does exceed, or is about as high as, that of  
clonidine at all ~-receptors  studied including those of  rat aorta (Ruffolo 
et al. 1979). 

5.2 Some Open Questions 

Questions, not  least those concerning discrepant findings, have been raised 
throughout this review. Some of  a more general nature will be added here. 

Receptor classes, once established, tend to divide, and it is stressed that 
the ~1/a2 subclasses may not be homogeneous. Some divergent results 
may be due to the existence of  sub-subclasses. A given receptor may also 
change its behaviour when its environment changes. Therefore, descrip- 
tions and distinctions should refer to a defined, preferably the physiol- 
ogical, environment. Although differences between receptors were defined 
here as differences in their recognition sites, receptors may differ elsewhere 
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in their molecules as well. We know too little, however, about components 
outside the recognition site to make them the basis for classification. 

There may be many more a~-receptors than those discussed in Chaps. 2 
and 3, such as in frog skin metanocytes (Berthelsen and Pettinger 1977), 
fat cells (Berthelsen and Pettinger 1977; Aktories et al. 1980), and the 
kidney, where they may inhibit renin release (BertheIsen and Pettinger 
1977; see however, Morris et al. 1979). These various possibilities deserve 
further study. 

The occurrence of a2-1ike receptors in smooth muscle makes reconsid- 
eration of previous investigations necessary, a2-Receptors should be 
sought in tissues which have been used for the definition of a 1-receptors, 
such as the rabbit pulmonary artery. It has been reported that high con- 
centrations of oxymetazoline desensitize the smooth muscle of rat vas 
deferens to oxymetazoline and other imidazoline agonists but not to nor- 
adrenaline, methoxamine, and phenylephrine (Ruffolo et al. 1977). Is this 
because the imidazolines, in contrast to the phenylethylamines, act mainly 
via smooth muscle a2-receptors [in spite of the fact that under different 
experimental conditions Docherty et al. (1979) did not find postsynaptic 
a2-receptors in this organ]? In some tissues the response to sympathetic 
nerve stimulation is reduced only slightly or not at all by clonidine (e.g. 
in the cat hindlimb: Haeusler 1976). Postsynaptic a2-receptors might ac- 
count for such findings. It may be that some reports on tissue or species 
differences in smooth muscle a-receptors (see Harper et al. 1979) which 
have not been discussed here can also be partly explained in the light of 
the existence of smooth muscle a2-receptors. Generally speaking, the pos- 
sibility that both al- and a2-receptors mediate smooth muscle contrac- 
tion, and in particular vasoconstriction, opens up a wide field for research 
(e.g., Constantine and Lebel 1980; Langer et al. 1980). 

Studies of radioligand binding to a-adrenoceptors have led to many dis- 
crepancies, such as the wide variation in Ki values of antagonists for inhib- 
iton of 3H-dihydroergokryptine binding to what one would assume to be 
the same receptor. It is important to discover the reason. The binding of 
ligands to a-receptors is influenced not only by monovalent but also by 
divalent cations and nucleotides (U'Prichard and Snyder 1978; Glossmann 
and Presek 1979; Tsai and Lefkowitz 1979; Rouot et al. 1980), and this 
may be relevant for the physiological implications of binding studies. The 
binding of selective radioligands has been used to visualize a~- and a2-re- 
ceptors in rat brain autoradiographically (Young and Kuhar 1979). This 
method may help to localize the receptors not only in terms of brain nu- 
clei but also in terms of cell regions, such as the pre- and postsynaptic 
sides of synapses. 

3H-Dihydroergokryptine is assumed to bind with about equal affinity 
to at- and a2-adrenoceptors. Surprisingly, the effects of  dihydroergokryp- 
tine on the subtypes have not been compared functionally. 



~-Adrenoceptor Subclassification 227 

A final question that can only be mentioned briefly is whether part of  
the binding of  radioligands is to presynaptic or soma-dendritic s-receptors 
of noradrenergic neurones. So far, such autoreceptor binding has been de- 
monstrated only in rat heart (Story et al. 1979), and has been sought in 
vain na several other tissues (e.g., U'Prichard et al. 1977; Tanaka and 
Starke 1979; for possible reasons, see Taube et al. 1977). 

5.3 Therapeutic Implications 

The existence of two a-adrenoceptor subclasses has therapeutic signifi- 
cance. As mentioned in Chap. 3.3 clonidine-like drugs and ~-methylnor- 
adrenaline probably owe their antihypertensive effect to their ~2-adren- 
ergic properties. The same holds good for some side effects such as seda- 
tion and dry mouth  (inhibition of  cholinergic transmission). Imidazotines 
used as nasal decongestants may cause sedation; this may also be an a2- 
adrenergic effect. Clonidine suppresses symptoms of  opiate withdrawal 
(Gold et al. 1978) possibly by acting at ~2-autoreceptors of the noradren- 
aline neurones of  the locus ceruleus, which are also endowed with opiate 
receptors (Montel et al. 1974). If depression involves diminished transmis- 
sion through central noradrenergic synapses, ~2-selective antagonists might 
have a salutary effect by facilitating transmission. This has in fact been 
reported (Puech et al. 1979). On the other hand, the view that mianserin 
acts as an antidepressant by blockade of central ~2-autoreceptors is ques- 
tionable since the drug is not  selective (see Chap. 2). 

Selectivity for ~l-adrenoceptors may also be important. Sympatho- 
mimetic drugs used as vasoconstrictors should have a marked ~1 compo- 
nent. From this point of  view, phenylephrine and methoxamine would 
have an advantage over the imidazolines. ~l-Setective antagonists such as 
prazosin appear to be useful, peripherally acting antihypertensive drugs. 
At low doses they should not  interrupt the ~-adrenergic feedback inhibi- 
tion of  noradrenaline release and hence should cause less tachycardia and 
hyperreninaemia than nonspecific ~-adrenolytic drugs like phentolamine. 
Other factors, however, must contribute to the lack of  reflex tachycardia 
after hypotensive doses of prazosin (Hardey and Lokhandwala 1979). ~l- 
Selective antagonists also cause less gastrointestinal stimulation than does 
phentolamine, possibly because they do not  interfere with the noradren- 
ergic inhibition of  intestinal cholinergic neurones. 
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- neurones, antidromic activation 28, 31 

- ,b ronchocons t r i c to r  79 ,80  

vagal neurones, cardiac 46 
- - ,  cardio-inhibitory 74 -76 ,  78 

, oesophageal-motor 79 
- - ,  preganglionic 74 ff, 84 

, ,baroreceptor input  to 80-83  
, , location of  75 ff 
, , respiratory control 87, 88 
, , supramedullary inputs 83 

- respiratory rhythm 74 
- nucleus, dorsal 35, 38 
- preganglionic supply 50 
- rootlets, central projection 27 
- - ,  fibre composition 26 
vago/sympathetic systems 86, 87 
vagus, dorsal motor  nucleus 50 
- - - ,  anatomical studies 75 -77  
- - - ,  baroreceptor input to 46 
- - - ,  recording from 7 8 - 8 0  
- - - , s t imula t ion  77 
- ,  HRP transport in 76 
- ,  stimulation of  35 
variability, lnterindividual 138 
vasoconstrictor neurones 54, 55 
- tone and baroreceptor reflex 98 

, reduction in 97, 98 
vasodilatation, cholinergic 91 
vasodilator fibres, cholinergic 97, 98 
'Wasomotor" center, medullary 24, 43, 62 

wakefulness 181 
warning stimulus 171 

3H-WB 4101 binding 216-220 ,  222 

xylazine 2 0 4 , 2 0 6 , 2 1 0 , 2 1 4 , 2 1 5 , 2 1 8 , 2 1 9  

yohimbine 2 0 1 - 2 0 3 , 2 0 6 , 2 0 9 , 2 1 0 , 2 1 3 ,  
215 ,218 ,219 ,221  

Zielbewegungspotentiale 130,136 
Ziel- und Stiitzmotorik 13 
zona incerta 53, 88,155 
Zwischenhirn, Beeinflussung vegetativer 

Funktionen 5 ,7 ,  10 


