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Preface 

This text in applied probability is designed for senior engineering, mathematics and 
systems science students. I n  addition I have used the optional, advanced sections 
as the basis of graduate courses in quality control and queueing. I t  is  assumed the 
students have had a first course in probability but that some need a review. Discrete 
models are emphasized and examples have been chosen from the areas of quality 
control and telecommunications. The text provides correct, modern mathematical 
methods and at the same time conveys the excitement of real applications. 

No physical measurement is infinitely precise and so, at some scale, is a discrete 
measurement. Here we take the point of view that the most interesting concepts 
in applied probability are discrete in nature and hence the description should not 
be complicated by measurability conditions implicit in a continuous model. The 
discrete model also has tremendous advantages. The complexity of conditioning 
continuous random variables disappears. Conditioning on the past of a random 
sequence becomes a simple application of Bayes’ formula rather than a projection 
onto an L2 space! Moreover, the discrete model allows one to do coupling in a 
transparent way and coupling methods are used throughout the book. Of course, 
continuous approximations may offer simplified descriptions and easier computa- 
tions so naturally we will use this tool. We do not, however, pursue the theory to 
cover the continuous case. On the other hand, within the constraints of the discrete 
model, the most modern methods are presented. 

Painful experience over the years has shown that the abstract model and es- 
pecially the definition of c-fields on probability spaces given in Chapter 2 is not 
everyone’s cup of tea. The probability primer in Chapter 1 provides an overview 
of Chapter 2 by giving an equiprobability model describing a random experiment 
associated with a no-frills example. In some cases it may therefore be advisable to 
assign the primer as background reading and then skip directly to Chapter 3. The 
results in Chapter 2 are then referenced as needed. A first course might then be 
completed by covering Chapter 3 and the first few sections of Chapters 4, 5 and 7 
or Chapter 4, 5 and 8. Proofs are kept to a minimum in these sections but the main 
computational tools are given. This results in the condensed version of the course 

vii 
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described as the Systems Science course in the following diagram. The sections 
which are marked with a star give the proofs and more advanced material. 

An advanced class would read Chapter 1 for the background on the “information 
highway” but the instructor would start in Chapter 2 .  Following the Flow Chart 
for the Mathematics Course below the instructor might complete most of the book 
in two quarters or perhaps one semester. The sections marked with a star give the 
proofs and advanced material while those marked with two stars are more advanced 
or on special topics. 

On-line quality control procedures are emphasized and the Cusum is treated 
including a proof of optimality to cap off the last chapter. The “information high- 
way” is described in the introductory Chapter 1 and used as an example throughout 
the book. Some examples are worked out using Mathematicu and the commands 
are given in the text. These topics are received enthusiastically by the students 
and while some students don’t have access to Muthemuticu, I think it essential to 
illustrate the interplay between the theory and the enormous computational power 
available today. 

This book is my best effort at trying to sell the subject of applied probability 
to a rather diverse audience. I believe the result is a course which is modern and 
mathematically sound but without too many prerequisites. It is my hope that this 
text will provide engineering, mathematics and systems science students with an 
accessible introduction to modern techniques in quality control and the performance 
analysis of computer and telecommunication systems. 

David McDonald 
Ottawa, 2003 
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Chapter 1 

Introduction 

1.1 Telecommunications and Quality Control 

A book on applied probability would be pointless without applications. There are 
a huge number of possibilities including applications to the biological sciences, to 
manufacturing or to the behavioural sciences but here we emphasize applications 
to telecommunications and to quality control. 

1.2 The Digital Network 

Real world applications of applied probability are as near at hand as your telephone. 
The information revolution is upon us. The integration of computing and telecom- 
munications will change the way people live and work. Traditional services such as 
mail, bank transactions and newspaper subscriptions will be delivered electronically 
directly to the home along with telephone services. New services will emerge that 
we can’t imagine. These services will be delivered on the information highway built 
on a network of fiber optical cables. 

The traffic laws for this highway are hotly debated. Asynchronous transfer mode 
or ATM was conceived in the late nineteen eighties as international standard for 
the integrated services digital networks or ISDN networks capable of carrying the 
above mixture of services. This standard was designed to deliver the quality of 
service we expect from a telephone network. However, the advent of the world wide 
web changed everything! The light and easy internet protocol TCP/IP (Transfer 
Control Protocol over the Internet Protocol) was better adapted for delivering web 
pages. Today the TCP/IP protocol dominates but so far falls short in delivering 
the quality of service envisaged for ATM. 

Both protocols are based on sending information in packets across the network. 
Under both ATM and TCP/IP, multimedia services such as digitized voice, text, 
image, video and computer communications are supported by dividing the data 
stream into ATM cells or TCP/IP packets. ATM cells are short, 53 byte packets 
while TCP/IP packets are of different sizes. These heterogeneous data streams can 

1 
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be multiplexed together over a common transmission medium such as an optical 
cable. Consequently this high capacity medium must no longer be dedicated to a 
single data source. 

In both protocols the routing information is in the header and the data follows. 
The format of an ATM cell is given in Figure 1.1 below: 

8 

7 

6 

5 

4 

3 

2 

1 

bit 

1 
- 

VPI 

- 

GFC 

- 

2 - 

VCI 

- 

VPI 

- 

byte 

3 4  5 

HEC 1 
6 
- 

jata 

- 

D..... 

53 
- 

data 

- 

Fig. 1.1 The ATM cell 

Ottawa 

Sudbury 

Toronto Local 

Buffalo 

Fig. 1.2 An ATM network 

On the information highway, asphalt and cement are replaced by fiber optical 
cables. Motor vehicles become cells or packets and the highway interchange is 
replaced by an electronic ATM switch or packet router. If vehicle traffic obeyed the 
laws of an ATlLl network then all vehicles would be of the same size and capacity 
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and they would carry passengers or cargo. A big delivery from Toronto to Ottawa 
could consist of a series or convoy of vehicles merged or multiplexed onto the high 
capacity 401 highway leading to Kingston along with all other vehicles headed that 
way. The drivers of the vehicles wouldn’t know the destination but would carry an 
identifier which a dispatcher in Kingston would recognize. The dispatcher at the 
Kingston interchange would be looking for vehicles with this identifier and would 
know that these vehicles should be switched onto highway 15 toward Ottawa. There 
is in fact a virtual connection for all the vehicles involved in this delivery maintained 
by the dispatchers along the path. In an ATM cell in Figure 1.1 the passengers or 
cargo are the data in the 48 byte data field. The cell identifier is given in fields VPI 
(Virtual Path Indicator) and VCI (Virtual Channel Indicator). 

If vehicle traffic obeyed the laws of a TCP/IP network then vehicles would come 
in variable sizes and capacities. A big delivery from Toronto to Ottawa would consist 
of a convoy of vehicles with drivers who know their final destination. When the 
vehicles arrive at the Kingston interchange the driver would tell the dispatcher his 
destination and the dispatcher would look up the best road in a routing table. The 
vehicle would then merge onto highway 15 if directed to do so. There is no virtual 
connection so in this sense an TCP/IP network is more like a real vehicle highway 
than an ATM network. TCP/IP is light and easy with no prearranged virtual 
path but as witah the real traffic network there is no way to limit access to avoid 
traffic jambs! This is the first major difference between ATM and TCP/IP. Finally, 
under TCP/IP, when each vehicle arrives Ottawa a small vehicle is dispatched back 
to Toronto acknowledging that this portion of the delivery was successfully made. 
This acknowledgement feedback in TCP/IP is another major difference between 
ATM and TCP/IP. 

Let’s consider what happens in an ATM network when a long distance telephone 
call is made from Toronto to Ottawa. When the number is dialed the signalling 
system called SS7 must set up the call. SS7 alerts the ATM switches in Toronto, 
Kingston and Ottawa that it has a call requiring a capacity of 64,000 bits a second 
plus the same amount to carry the other party’s voice back to the caller. If that 
capacity is not available then the caller gets a busy signal. If the call is accepted 
SS7 ties up the resources and rings the other party. If the other party doesn’t 
answer and the caller hangs up then SS7 will release the resources. If the other 
party answers, the ATM switches are notified to expect cells with giveii VCI-VPI 
identifiers. The Toronto switch knows it must send cells with this identifier to 
Kingston while the Kingston switch knows it must send such cells to Ottawa (not 
Montreal for instance). The Ottawa switch knows it sends cells with this identifier 
to a specific telephone number in Ottawa. This conipletes the ATM virtual circuit. 

The mechanics of the same call on a TCP/IP network are still in flux. When 
conceived in 1983, TCP/IP was designed to deliver packets like registered letters 
sent through the postal service. Packets pass through a series of routers, are stored 
and then sorted and then sent on their way. When a letter is successfully delivered 
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an acknowledgement is returned to the source. This protocol was designed for 
reliable delivery over a failure prone network with military applications in mind. 
The concept of virtual circuits is foreign to TCP/IP and this prevents telephone 
operators from guaranteeing high quality calls. Nevertheless by tweaking TCP/IP, 
voice over TCP/IP is becoming common and this is pushing down the cost of 
personal communication. 

For simplicity we will mostly consider ATM here since switching fixed lenglh 
cells is easier to analyze than routing variable length packets (in fact some TCP/IP 
routers break packets in fixed length cells for switching purposes and then reassem- 
ble the packet at  the output port). One should bear in mind that technological 
changes like optical switching will eventually make both these protocols obsolete. 
Nevertheless, if past history is any guide, the mathematical concepts studied here 
will remain relevant for evaluating the performance of newer technologies 

Band Limited Speech Wavefor%- 

PAM Pulses for a Single Channel 

Fig. 1.3 Speech sampling 

The mechanics of converting voice to information hasn’t changed in 40 years. 
The caller’s voice compresses a diaphragm in the mouth piece of the telephone which 
generates an electric current which is detected at the local telephone wire center. 
This signal voltage is measured or sampled at  the wire center every 125 microseconds 
or 8,000 times a second. The voltage is quantized and encoded into 8 bits or 1 
byte; that is 64,000 bits or 8000 bytes are produced every second. Six milliseconds 
worth of speech makes 48 bytes which is exactly the data content of an ATM cell. 
This is about right because the human ear can’t distinguish delays shorter than 6 
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milliseconds. Siniilarly TCP/IP packets may carry about 6 niilliseconds worth of 
voice data from a single source. Hence each speaker would produce a steam of cells 
or packets at a rate of about 6 per millisecond. 

Alternatively the cell may serve as a frame to carry one byte from 48 different 
speakers between the same two points on the network. If 48 customers were simulta- 
neously calling Ottawa from Toronto they each would produce a byte every 1/8000 
of a second and these bytes would be assembled into one cell and sent. At the 
receiving end these bytes would be disassembled and send to the separate receivers. 
This would produce a stream of cells at  a rate of 8000 per second. In this way ATNI 
can erriulatje the TDM (Time Division Multiplexing) system currently in use around 
the world. Naturally more customers can be accommodated by managing separate 
streams of frames. The same techniques can be used to carry voice over IP (VoIP). 

The cells associated with our speaker arrive in Kingston, the header is identified 
and the ATM switch in Kingston switches these cells onto the Ottawa trunk. On 
arrival in Ottawa the header is again identified and the switch routes thcse cells to 
the local wire center in Ottawa. At the local wire center the digitization procedure 
is reversed and a voltage is sent down the line to the other party. This voltage drives 
the speaker in the other party’s telephone and the speaker’s words are received. 

The projected rate of the trunk lines is 10 gigabytes per second; that is around 
10,000,000,000 bytes per second or around 200,000,000 cells per second. On an 
ATM network this means that between consecutive cells from our speaker the switch 
sends out roughly 1,000,000 cells. These cells could be used for other speakers so 
in principal a million other callers could be using this trunk simultaneously! The 
enormous trunk capacity will of course be used for other kinds of traffic. Combining 
the cells or packets of various sources onto a single trunk is called niultiplexing arid 
this multiplexing of traffic results in a substantial increase in the carrying capacity 
of a single trunk. In fact since no source books a particular time slot, if a source has 
no cell or packet to  send in a given time slot then this spare capacity ca,n be used 
by somebody else. This is exactly what occurs in a telephone conversation. There 
are silence periods when the other party i s  talking. This means in fact that several 
million callers could use the same trunk line bemuse most of ariy conversation is 
silence. Of course if everyone were speaking simultaneously and generating cells or 
packet at  the peak rate then the trunk capacity will be inadequate. We hope this 
has small probability! 

This is the basis of statistical multiplexing. More sources are accepted than 
could be handled if all sources transmit at  peak rate and this increases the revenues 
of the telephone company. There is however an inevitable cost to pay. Conflicts or 
contention for resources will arise. A videoconference will generate about a million 
cells a second so a service of this kind will occupy a nonnegligable part of the trunk 
capacity. Hence the question of call admission becomes critical because too many 
videoconferences would disrupt telephone service tjo thousands of customers. A 
large computer file transfer might have the same effect but since a data transfer 
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is not usually time critical such a call might be accepted but delayed at  a switch 
if that switch gets too busy. Telephone calls are very delay sensitive however so 
they must get high priority. On tlie other hand if the switch is really overloaded it 
might simply drop a few cells associated with a telephone call and nobody would 
ever notice. Dropping a few cells in a data transfer would would be costly however, 
as the correct data might have to be retransmitted. Dropping the formatting cells 
in a video message niight produce nonsense at  the other end. 

A simple large switch or router has no queueing at  the input ports. Cells or 
packets are routed through the switch without queueing delay directly to buffers 
(or to a common buffer) at the appropriate output port. The cells or packets are 
then scheduled for transmission along the output link. In Exercise 1.1 we consider 
one output port comprising two buffers and a link in a 2 x 2 ATM switch. The 
point of the exercise to investigate tlie impact of different scheduling protocols for 
cells queued at  the two competing output buffers. In fact modern switches now 
run more sophisticated protocols designed not only to reduce queue lengths and 
the associated delay but also to reduce the variability of the queueing delay so cells 
eventually arrive at  the destination in a steady predictable stream. 

The net effect of multiplexing many streams of data through a switch is clearly 
enormously complicated. It must be understood however because it is essential to 
decide ahead of time just how many traffic sources can be routed through this switch 
in order to avoid unacceptable delays and cell losses. This problem of admission 
control is still being hotly disputed. The problem is further complicated by the fact 
that a switch is receiving traffic directly from local sources or even local networks 
and also from other switches. 

The performance of the ATM switch or the TCP/IP router will be judged not 
only on tlie avcrage amount of traffic carried. It is also important to predict the 
proportion of cells or packets dropped as well as the average delay and the cell delay 
variation of cells or packets traversing the network. This results in complicated (but 
interesting) problems in queueing theory: the mathematical (and oftcn probabilistic) 
theory of queues. 

1.3 Quality Control 

Many maintain the catastrophic decline of the North American automobile industry 
in the nineteen seventies and eighties resulted partly from the fact that foreign 
competitors adopted military quality control standards while the North American 
companies forgot all about quality. Quality control has many aspects. Acceptance 
sampling described below can be used by a buyer to force a supplier to deliver 
product of a specified quality. The supplier can avoid poor quality product by 
monitoring the production line using the on-line quality control schemes described 
in future chapters. The supplier can also design his product in such a way that minor 
impcrfections in production do not result a poor quality product. The search for 
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these robust production regimes is called off-line quality control and is not treated 
in this book. 

The most famous military acceptance standards are MIL-STD-414 for accep- 
t'ance sampling by vasiables and MIL-STD-105D for acceptance sampling by at- 
tributes. The former is used when a quality measurement is available for elements 
of the sample. The later is used when one can only determine if the elements of the 
sample are defective or not. We consider MIL-STD-105D for historical rcasons since 
MIL-STD-105D was replaced by MIL-STD-105E in 1989 and then by MIL-STD- 
1916 in 2001. MIL-STD-105D has also been incorporated into the International 
Standards Organization (ISO) standard called I S 0  2859. Department of Defence 
(DOD) Specifications and Standards are available for public use through the DOD 
Scientific and Technical Information Network at  the bttp://stinet.dtic.mil web site. 

Essentially a standard is used like a contract between a supplier and a buyer. T h e  
two sides agree on a price and both sides agree the buyer will accept the product 
according to the procedures carefully set out in the standard. These procedures 
essentially punish the supplier if he produces an unreasonably high proportion of 
defective or nonconforming units. On the other hand he is rewarded if he produces 
a reasonably low proportion of nonconforming units. The key word is reasonable, 
and this is spelled out by the concept of acceptable quality level - AQL. 

The AQL, agreed to contractually by the supplier and the buyer, is the per- 
centage of nonconforming units in lots that will be accepted most of the time by 
the sampling scheme. In other words, if the lots submitted have a percentage of 
nonconforming units no greater than the AQL then the sampling scheme will accept 
the great majority of these lots. In practice the great majority means about 95%. 
The standard does caution however that this does not give the supplier the right to 
knowingly supply any nonconforming unit of product! 

Imagine that a supplier produces resist,ors in large batches and a buyer wants 
to  sign a long term contract for one lot of resistors every working day. The first 
step is to agree on an AQL. The buyer would like an AQL of 0 of course but the 
supplier knows he can't meet that standard at least not at a reasonable price. They 
settle on an AQL of 2.5% since the buyer knows he can easily detect the defective 
resistors in the process of building his product and therefore he is willing to  do the 
necesmry screening for a lower price. 

They next, agree that all lots will contain 1000 units. This determines tjhe sample 
size code letter. Therefore the sample size code letter J is picked from the table 
below. 
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Lot size 
2 to 8 \ A  

I General inspection level I1 

9 
16 
26 
51 
91 
151 
28 1 
501 
1,201 
3,201 
10,001 
35,001 
150,001 
500001 

to 
to 
to 
to 
to 
to 
to 
to 
to 
to 
to 
to 
to  
and 

15 
25 
50 
90 
150 
280 
500 
1,200 
3,200 
10,000 
35,000 
150,000 
500;000 
over 

B 
C 
D 
E 
F 
G 
H 
J 
K 
L 
M 
N 

R 
Q 

Next look at Figure 1.4. This outline describes four regimes for the scheme. 
The usual regime is normal inspection. If the supplier delivers very good quality a 
level of trust is established and the regime of reduced inspection is entered. This 
reduces the cost of sampling to the buyer. If the supplier delivers poor quality he 
is punished and the regime of tightened inspection is entered. If he doesn’t pull up 
his socks while in tightened inspection, the inspection scheme is discontinued and 
its time to call in the lawyers to cancel the whole contract. 

---Preceding 10 lots inspected under 
normal inspection. and 

---preceding 10 lots accepted with total 
number of nonconforming units (or 
nonconformities)equaI to or less than 
the limit number, and 

---production steady. and 
---approved by the responsible authority 

1 --Lot not accepted, or 
.--iot accepted but the number of noncon 

forming units(or noncon1ormities)lies 
between acceptance (Ac) and rejection 
(Re) of the plan, or 

--production irregular. or 
--other conditions warrant switch 

Discontinue 
inspection 

Tightened 
inspection 0 

5 Consecutive Supplier improves 
lots accepted 

Fig. 1.4 The regimes of inspection under MIL-STD-105D. 
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Suppose we start with normal inspection. We read off the paranieters from 
the Table 11-A on page 10 across from code letter J. The sample size from each 
lot should be 80 and we accept the lot if no more than c=5 nonconfornling units 
are in the sample. If there are 6 or more we reject the lot and send it back to 
the supplier. We stay with normal inspection until one of the conditions is met in 
Figure 1.4. Suppose the conditions for tightened inspection are met; that is two out 
of five or worse consecutive lots have been non-acceptable. In this case the sampling 
scheme given in Table 11-B on page 11 applies to subsequent lots. Reading off the 
parameters we see the sample size is still 80 but the buyer accepts the lot if no more 
than c=3 nonconforming units are in the sample; otherwise the buyer rejects the 
lot. This puts the supplier in a tight spot. He knows that while in tight inspection 
he dare not have 5 more lots rejected or the sampling plan will be suspended and 
his contract is at risk. He will try very hard to supply good quality and return to 
normal inspection by having 5 lots in a row accepted. 

The conditions for entering the reduced inspection regime are rather stringent. 
The preceding 10 lots inspected under normal inspection must be accepted. Next, 
the total number of nonconforming units in these 10 samples must be less than 
or equal the limit number in Table 11-D on page 13. Hence the total number of 
nonconforming units in these 10 lots must be less than or equal to 14 since 10 
samples of size 80 units or 800 in all were sampled. Moreover the production 
must be at a steady rate and finally some responsible authority must give an OK. 
Suppose the conditions for reduced inspection are met. In this case the sampling 
scheme given in Table 11-C on page 12 applies to subsequent lots. Reading off the 
parameters we see the sample size is 32. This means less work for the buyer because 
he trusts the supplier. The buyer rejects the lot and returns to normal inspection 
if there are 5 or more nonconforming units. If no more than c=4 nonconforming 
units are in the sample the buyer accepts the lot but only remains in the rediiced 
inspection regime if the number of nonconforming units is no more than 2 and 
production is regular and no unwarranted conditions are observed. 

The process average is the percentage of nonconforming units found in the sam- 
ples submitted. If the proportion of nonconforming units in a lot is p%, the OC 
curve at p% gives the probability the lot will be accepted. Hence, if the process 
average is p% then in the long run a proportion OC(p%) of the lots will be accepted. 
The OC curves determined for the normal, tightened and reduced sampling plans 
are such that OC(2.5%) M 95%. The precise values can be calculated as we do 
for the scheme for testing shells in Example 3.4. This means that if the supplier 
maintains a process average of at most 2.5% nonconforming then 95% of his lots 
will be accepted. 
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4 = Use first sampling plan below arrow. If sample size equals or exceeds, lot or batch size, carry out 100 % inspection 
fi = Use first sampling plan above arrow. 
Ac = Acceptance number, Re = Rejection number 
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Table 11-C - Single sampling plans for reduced inspection 
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4 = Use first sampling plan below arrow. If sample size equals or exceeds, lot or batch size, carry out 100 % inspection. 
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t = If the acceptance number has been exceeded, but the rejection number has not been reached, 

accept the lot, but revert to normal inspection (see 11.1.4). 
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Table II-D - Limit numbers for reduced inspection 

Acceptable quality levels (reduced inspection)i 

* Denotes the number of sample unik from the last ten lots is not sufficient for reduced inspection for this AQL. 
In this case more than 10 lots must be used for the calculation provided that, the lots used are the most 
recent ones in sequence. Of course all were subject to normal inspection and none were rejected while on inspection. 



14 E l e m e n t s  of Applied Probabili ty 

In some cases a rejected lot is not sent back to the supplier but is instead subject 
to 100% inspection and all nonconforming units are replaced by conforming units. 
In this case the average outgoing quality - AOQ - given the process average is p%, 
is the average quality of the outgoing product. This includes all accepted lots, 
plus all lots which were not initially accepted and from which all nonconforming 
units were replaced by conforming units. Clearly AOQ(p%) = OC(y%) . (p%)  since 
a proportion (I ~ OC(p%)) of outgoing product has no nonconforming units. If, 
in fact, rejected lots are repaired then the value of the AOQ at the AQL is a 
useful parameter when originally negociating the AQL since it represents the true 
proportion of nonconforming units arriving on the factory floor. Another useful 
parameter, when lots are repaired, is the Average Outgoing Quality Limit - AOQL. 
The AOQL is the maximum of the AOQ’s for all possible process averages; i.e. 
AOQL = max{OC(p%) . (p%)/O 5 p% 5 100%). This is the worst case scenario for 
measuring the true proportion of nonconforming units arriving on the factory floor. 

The AOQ associated with the sample size and sampling limits in Table 11-B, 
Table 11-C and Table 11-D was calculated by computer simulations. In the exercises 
we suggest some term projects which illustrate just how to go about analyzing 
quality control schemes by simulation. It is not, however, our goal to understand the 
precise workings of this or any other quality control procedures through simulation 
but rather to develop mathematical tools for the analysis of quality control schemes. 
Our credo is that one theorem is worth a thousand simulations! 

1.4 Exercises 

The following projects may be assigned at  the beginning of term. Students should 
form teams. It is preferable that each team have at least one member with computer 
experience. The main mathematical work involves concepts in Chapter 5 but the 
simulation part can be started immediately. 

Exercise 1.1 [ATM buffer management] We shall consider a simple 2 x 2 ATM 
multiplexor. Two input trunk lines carrying noisy ATM traffic enter the switch at  
input ports A and B and leave from ports X and Y. The cells from input port A 
that exit from port X are stored in buffer AX. Those from input port B that exit 
from port X are stored in buffer BX. The cells from input port A that exit from 
port Y are stored in buffer AY. Those froin input port B that exit from port Y are 
stored in buffer BY. All four buffers have a maximum capacity of 5 cells and excess 
cells are lost. 

Every time slot the controller at output port X performs a round robin polling 
of the two buffers AX and BX. The head-of-line cell is sent from one queue and then 
the other. If no cell is queued at  the polled buffer the second buffer is immediately 
polled. If it is also empty then the pointer returns to the first buffer polled. We 
assume the arrivals at buffers AX and BX form independent Bernoulli processes 
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Fig. 1.5 A two by two switch 

with probabilities p~ and p~ of having a cell in a given time slot. 
a) Model the queue size AX and BX plus a controller pointer as a Markov chain. 
Write a Mathernatica program to calculate the (72 x 72) transition matrix K .  Cal- 
culate the cell loss probability of cells traversing output port X using K .  
b) Write a computer simulation of output port X and estimate the cell loss proba- 
bility. Compare with the results in a). 
c) Is it possible to use another buffer management protocol other than round robin 
which gives a smaller cell loss probability? Make a suggestion and calculate the new 
cell loss probability (analytically if possible but in any case by simulation). Sugges- 
tions: Serve the Longest Queue or Serve the Oldest Cell. Discuss the disadvantages 
of the new protocol. 
d) Discuss the difficulties of evaluating a 16 x 16 ATM switch. 

Note that if P A  + p~ > 1 then on average more cells arrive than can be served. 
This means the buffers will tend to be overloaded and lots of cells will be lost. 
When P A  + p~ is small however cell losses will be small. It is suggested that the 
simulations be done for a variety of values of P A  and p~ to get an overall picture. 

Exercise 1.2 
a) Find the mean time until the first cell is lost given the buffers start out empty. 
b) Calculate the mean busy period which is the mean time for an empty system to 
become empty again. 
c) Calculate the mean delay experienced by a cell which passes through buffer A. 
d) Calculate the mean delay for buffer B. Use Little’s law (see Chapter 6). 
e )  Use the simulator already developed to obtain estimates for the performance 
measures calculated analytically in a), b) and c ) .  Note that the Little’s law applies 
to cells that are queued in the system not those that are discarded so Little’s law 
fails when the buffer is overloaded, i.e. P A  + p ~  > 1. 

Exercise 1.3 [On-line Quality Control] 
a) Imagine you are to  receive batches of 1000 items every week. Design a sampling 
acceptance scheme based on MIL-STD-105D ( IS0 2859) which for an AQL of 2.5%. 

[ATM buffer management continued] 
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b) Write a simulation for this acceptance sampling scheme. Check that the AQL of 
2.5% is indeed the highest percentage of defectives acceptable as a process average. 
Estimate the percentage of lots rejected if this average is maintained. Next experi- 
ment to find the lot tolerance percent defective LTPD specified by this scheme. The 
LTPD is usually taken to be that incoming quality above which there is less than a 
10% chance a lot will be accepted. 
c) Suppose now that you are the manufacturer producing the above items. Suppose 
long experience has taught that a 1% rate of defective items is inevitable without an 
expensive redesign of the plan. To monitor production a item is selected at random 
out of every 10 items produced. Once 5 items have been selected, the items are 
inspected for defects. Design a Shewhart p-chart (see Example 3.27) to monitor 
that production is in control with a 1% rate of defectives. What, is the distribution 
of the number of items produced before a false alarm is signaled. 
d) Suppose that at some point in the future the process goes out of control and the 
rate of defectives increases to 5%. What is the distribution of the number of items 
produced after this change point before an out of control alarm is signaled. 
e) Write a simulation to design a Cusum procedure (see Example 5.39) based on 
the lengths of runs of nondefective items inspected between occurrences of defective 
items. Set the on-target run length to be the same as for the p-chart. 
f )  Design the anchor value to minimize the mean time to signal an out of control 
situation if indeed the rate of defectives suddenly jumps to 5%. 
g) The above Cusum procedure can be modelled by a Markov chain with forbidden 
out of control states. Use Mathematica to calculate the expected on-target and off- 
target run lengths of the procedure you have designed and check that these agree 
with simulation results. 
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1.5 A Probability Primer 

We describe the equiprobable model associated with an example in data trans- 
mission. Imagine that data is generated in one, five or ten kilobit packets. On 
average one kilobit packets are three times more likely than ten kilobit packets and 
five kilobit packets are four times as likely as ten kilobit packets. Of course the 
transmissions might be strictly deterministic. It might be that the pattern of trans- 
missions is always 5,1,5,1,5,1,5,10 kilobit packets repeated over and over. This 
deterministic model certainly describes the average flow of bytes across the network 
but it misses an essential component. Suppose a node in the network receives and 
retransmits the packets and at all times stores the last three packets. Suppose the 
capacity of the node is 25 kilobits. The deterministic flow poses no problem since at 
the worst the node must store 20 kilobits. The problem of congestion occurs when 
the packets arrive in random order and in this case the node might need a capacity 
of 30 kilobits. 

Suppose we wish to describe the outcome of ten consecutive transmissions with 
a random arrival of packets. We do a thought experiment. Consider the experiment 
of drawing ten times with replacement from a bag containing three pennies (each 
penny represents a one kilobit pa,cket), four nickels (each nickel represents a five 
kilobit packet) and a dime (representing a ten kilobit packet). Each of the eight 
coins is assumed to have an equal chance of being picked in any given draw. This is 
the model of random or probability sampling. The probabilist’s job is to describe 
the likelihood of possible outcomes of this sampling procedure given the contents 
of the bag. The statistician’s job is much harder since he is not told the contents of 
the bag and must infer its contents from the sample. In other words the probabilist 
usually knows the distribution of the values of the coins. 

The outcome of such an experiment is random or stochastic since it can’t be 
predicted. If we put imaginary numbers on the three pennies and the four nickels 
we get a list or population 

of possible equally likely outcomes from a single draw. We are only interested in a 
single aspect of each element of this population; namely the monetary value. The 
distribution of any aspect of a population is often represented by the mass function 
which is simply a function p giving the proportion p ( z )  of the population having 
value IC. In this case, p is given by the proportions of the number of pennies, nickels 
and dimes: 

z : 1 5 10 otherwise 
p ( z )  : $ ; 0 

We often summarize this information in the population histogram as shown in 
Figure 1.6. 
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Fig. 1.6 The population histogram 

The mean p of the population is just the average value of the population which 
is 

p = (1 + 1 + 1 + 5 + 5 + 5 + 5 + 10)/8 = 33/8. 

We remark that this is just x x p ( x ) .  The variance of the population u’ is the 
average squared deviation of the population values from the population average: 

2 3(1 - p)’ + 4(5 - p)’ + (10 - p)2  
I T =  

8 
= c(z - p)’p(z) = 8.359375 

The mean is a kind of center of the population histogram. The standard devia- 
tion IT is a measure of the sprea,d. If, in general, the aspect values of the elements of 
the population are a list of numbers (s1, s2,. . . , SN) (instead of (1 ,1 ,1 ,5 ,5 ,5 ,5 ,  lo)) ,  
we could again construct the population histogram and the corresponding popula- 
tion mass function p.  In general, 

N N 

p = c si /N = c q ( z )  and uz = c ( s i  - p) ’ /N = c(z - p)’p(z ) .  
i=l X i=l X 

Chebyshev’s lemma provides a precise description of the spread of values around 
the mean of the list: 

Lemma 1.1 
ations from the m e a n  is less t h a n  1/k2  for any  I; > 0.  

Proof: Those elements of the list of values lying at least k standard deviations 
from the mean may be written as F := ( s  : 1s - pl 2 k .  u). The proportion of 

T h e  proportion of the values in a last lying at least k standard devi- 
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elements in the list in F is # ( F ) / N  where # ( F )  denotes the number of elements in 
F .  Now by definition 

Now divide through by k2a2 and we have # ( F ) / N  5 l / k 2  as desired. I 

Applying Chebyshev's lemma to the above population we get that the proportion 
of the population lying at least 2 standard deviations from the mean = 33/8 = 

4.125 is less than 114. Since cr = 2.8912 approximately, we see p + 20 = 9.9075 
hence only the value 10 lies this far from the mean. The element 10 represents only 
1/8 of the list so the inequality is verified. 

Now suppose we wish to describe 10 draws from L. A list of all possible outcomes 
is called the sample space and is described by 

R = {w = ( 5 1 , 2 2 , .  . . , 5 1 0 )  : zi E c; i  = 1 ,2 , .  . . , lo} 

where w is used to denote a typical outcome or sample point and p1 denotes the 
first penny, p2 the second and so on. One particular sample point might be 

w0 = ( P I ,  4 P2,122,  d ,  P1, P 3 , % ,  1 2 2 , 1 2 3 ) .  

This corresponds to first drawing penny number 1 then the dime and then penny 
number 2 and so on up to nickel number 3 on tenth draw. Later we will call R a 
product space and we will use the notation 

Q = (pl ,p2,p3,nl ,n2,n~,n~,d}" = Ll0. 

By symmetry each outcome is equally likely. The number of points in R is 
#(a) = 81° since each of the 10 draws could be one element of the 8 element set 
C. Hence, intuitively, the probability of each sample point is 8-l'. The probability 
of an event of interest like the probability of getting at least one dime is clearly 
proportional to the number of sample points in the event. Let A represent the 
event or subset of R corresponding to getting at least one dime. The sample point 
wo,  for instance, is in A. Let P(A) denote the probability that the outcome of the 
random experiment falls in the event A; so 

For equiprobable models such as this one, calculating probabilities reduces to count- 
ing. This is the reason we chose the sample space R above. If, instead, we had chosen 
fl = { ~ , n , d } ~ '  we would not have an equiprobable model and the construction of 
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the appropriate P to describe random drawing requires more care (see the product 
probability in Chapter 2). 

Counting is not so easy! We shall assume everybody knows permutations and 
combinations but it is not immediately clear how to easily calculate the probabil- 
ity of getting at least one dime. It is useful to develop a series of axioms about 
probabilities to make things easier. This will be done systematically in Chapter 2. 

First, P(G) = 1. Next, if two events A and B are disjoint, that is they have 
no elements in common, then the probability of their union is the sum of their 
probabilities, i.e. P ( A  U B )  = P(A)  + P(B) .  This follows since 

P ( A U B )  = 

- - 

The complement of A, i.e. 
has probability P(A’) = 1 

P(A) + P(B) .  

those points which are not in A, is denoted by A’. A’ 
~ P(A) .  This follows immediately from the fact that 

1 = P ( R )  = P ( A  + A’) = P(A) + P(A’) since A and A’ are disjoint. Consequently, 
if A’ represents the event where no dimes are drawn then P(A)  = 1 ~ (7/8)1° 

since the number of sample points in A’ is 71° (each draw can be chosen from 

The intuitive use of conditional probabilities is what separates probabilists from 
measure theorists. If, in our example, we know that the event B of drawing exactly 
3 dimes has occurred (or exactly 3 ten kilobit packets have arrived among the last 
10 packets), what is the probability of the event C that we draw 3 dimes in a row 
(or equivalently, that the node is overloaded by 3 ten kilobit packets in a row)? By 
symmetry, the probability that an outcome in C occurs given that B has occurred 
is the proportion of the number of sample points in both B and C divided by the 
number in B; that is we define the conditional probability of C given B to be 

{pl, p2 ,1)3 , 121 , 11’2 1 123 , 1241). 

If we work this out we see # ( B )  is the number 
from the 10 draws times the number of ways 
coins from {pl , ~ 2 ,  ~3 I 121,122, 123, n4 1. Hence, 

# ( B )  = ( y )  x 77 so P ( B )  = 

of ways of choosing exactly 3 dimes 
of drawing each of the remaining 7 

(:) (33 ($ 
Similarly #(BnC)  is the number of ways of choosing 3 consecutive draws to be dimes; 
that is 8 ways times 77, the number of ways of drawing each of the remaining 7 
coins from {p l  ,p2,  ~3,121~~~2,123,  nq}. Hence, # ( B  n C )  = 8 x 77. We conclude 

1 
P(CIB) = 8/ (1:) = E. 
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Fig. 1.7 A random variable 

The idea of independence is obvious. We say an event F is independent of an 
event E if the probability that F will occur is independent of knowing whether 
E occurred or not; that is P(FIE) = P ( F ) .  Multiplying by P(E) and using the 
definition P ( P J E )  := P(E  n F ) / P ( E ) ,  we see this is equivalent to P(E n F )  = 

P ( E )  . P ( E ) .  In particular if E is the event that the first coin is a nickel and F is 
the event that the second coin is a dime then clearly we have independent events 
and this can be checked by calculation. 

1.6 A Random Sample 

Let X1,. . . , Xlo represent the values of the coins drawn (or packets transmitted) 
during the first, through tenth draws. These random variables are defined on 
the sample space 0. For the sample point wo = (pl , d ,  p z ,  m, d ,  PI, p 3 ,  n4,n2, n3), 

Xl(wo) = l , X z ( w o )  = 10,X3(wo) = 1 and so on. In general a random variable 
calculates some aspect of a sample point. For instance we might define X to be 
the total number of dimes drawn so X(w0)  = 2 .  Figure 1.7 illustrates a random 
variable X defined at each point w of a sample space. 

The description of a random variable starts with the range, Rx, of values taken 
on. For instance R x  = {0,1 ,2 , .  . . , lo}. Next we specify the likelihood of these 
values by constructing the histogram of the list of values X ( w )  for w E 0. Since 
this list has 8'' elements this might seem difficult but when we group w's giving the 
same X value we see the histogram is equivalent to the probability mass function 
or p.m.f. 

p x ( z )  := P ( { w  : X ( w )  = x}) = P ( X  = x), for z E Rx. 

For instance, p x ( 3 )  is the probability precisely three dimes are drawn and this has 
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Fig. 1.8 The histogram of X 

been calculated above. By the same reasoning we can get 

This is a binomial distribution investigated more thoroughly later. The histogram 
of the random variable X is given in Figure 1.8. 

The p.m.f of X I  is obviously 

2 : 1 5 10 otherwise 
3 4  1 0  

P X , ( X )  : g g g . 
Formally we may get these probabilities by counting. Recall that we denote an 
arbitrary point (x1,x2,. . . , 2 1 0 )  E R by w. Hence 

P(X1 = 5 )  = P ( { w  : 5 1  E (121,122, 123, nq}, 5, E L; i = 2 , .  . . , lo}) 

= #({w : 21 E (121, 122,123,12*}, 2, E c; 2 = 2 , .  . . , lO}) /# ( f l )  
= 4 x 8 x 8 x . . .  x 8/81° 

= 418. 

By similar reasoning we see the p.m.f.’s of X I ,  X z ,  . . . , Xlo are all the same and are 
equal to the p.m.f. of the population p .  This is the link between the real and perhaps 
unknown ( to  the statistician) distribution of the population and the sample which 
we observe. Each of the sampled values represents the population in the sense that 
its distribution or p.m.f. is that of the population. 

The sequence of random variables X I ,  X z ,  . . . , Xlo is an 2.i.d. sequence; that 
is the random variables are independent and identically distributed where we say 
random variables are independent if events generated by the individual Xi’s are 
independent in the sense given above. To be more precise we let .(Xi) be the 
collection of events in R of the form { X i  E Hi}  where Hi is some subset of real 
numbers R. For instance take H1 = (5). Then the event { X I  E H I }  = {w : 
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X I  ( w )  = 5) is the set investigated above. The event of drawing a nickel on the first 
draw is therefore in .(XI). Similarly, taking H1 = (1, lo}, we see that the event of 
not drawing a nickel on the first draw is also in .(XI). If we let H2 = {lo} then 

{X, EH,)={w=(x1,22, . . . ,  2 1 0 ) : X 2 ( w ) = l O )  

= { w : 2 2 = d , 2 2  d ; i = 1 , 3 , 4  , . . . )  lo} 

is in a(X2). Clearly P(X2  E H2) = 1/8. Moreover 

This is the formal proof that the event of drawing a nickel on the first draw and 
a dime on the second are independent. It is clear that any events of the form 
{ X I  E H I }  and { X ,  E H2)  are independent by the same reasoning and we therefore 
declare the random variables X1 and X2 to be independent. By the same token we 
see all the Xi’s are mutually independent. 

We shall need to express the collection of events that are determined by observing 
a sequence of random variables. Define .Fm := a ( X 1 ,  X a ,  . . . , X , )  to be the set of 
events of the form 

where H is a subset of %?m. This just means we can determine if an w is in E or not 
by observing the values of Xl(w), . . . ,X,(w). We call .Em the past of the random 
sequence up to observation or time m. 

The expected value of a random variable is the average of the list of its values: 

The latter equality is obtained by grouping together all those w which are sent to 
a common value 2; i.e. {w : X ( w )  = x}. Clearly the contribution of these points 
to the average is just x .  #({w : X ( w )  = x}). However p x ( z )  = P ( X  = 2 )  = #( {w : 
X ( w )  = .})/#(a) which gives the result. For instance, if X represents the number 
of dimes drawn then 

7 10 

E X  = c2 (:”> ($)‘($10-X 
x=o 
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This result had better be 10/8 (and it is) since there is one chance in eight of 
drawing a dime and we draw ten times. The expected value of X 1  is clearly equal 
to p = 33/8 since the histogram of X 1  is the same its that of the population. 

The expected value is useful because it measures the center of the histogram of 
X .  We can also calculate the expected value of the sum X + Y where Y is another 
random variable. By definition 

= E X  + EY. 

Also, if c is a constant value 

This linearity is a very useful property of the expectation. The 50t” percentile (the 
median) also measures the center of the histogram of X but does not have this 
linearity property so it is much less useful. If T represents the total value of the 
ten draws then ET = E(X1  + . . .  + X l o )  = E X 1  + . . .  + EX10 = 1 0 .  p again by 
linearity. Also if x := ( X I  + . ’ .  + Xlo) / lO then again by linearity EX = p. This 
means the histogram of the random variable x is centered at the population mean 

We can make new random variables from old by defining functions of X like 
h(z )  = x2 or h(x) = max(z2, 5). The expectation is still given from the definition: 

and x is what we call an unbiased estimator of p. 

by again grouping those w which are sent to the same value x. This expression is 
called the l a w  of the unconscious statistician. For instance, if X is the number of 
dimes drawn. then 

The most important application of the law of the unconscious statistician is the 
definition of the variance of a random variable: 0: := E(X - p ~ ) ’ .  Since the 
variance of X is precisely the variance of the list X ( w )  we have, by Chebyshev’s 
lemma, that the proportion of this list at least k standard deviations ox from the 
mean of the list px is less than 1/k2. However the proportion of the list at least 
k standard deviations from the mean is precisely P( IX - pxl 2 k . 0 ~ )  so we have 
Chebyshev’s lemma for random variables: 

Lemma 1.2 
ation ox we have P(IX - pzl 2 k . ox) 5 l / k 2 .  

For any random variable with expected value px and standard devi- 
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1.7 Joint Distributions 

The joint behavior of random variables and vectors is discussed in detail in Chapter 
2 but here let us focus on the simple case of two variables. To be concrete let X be 
the number of dimes drawn and let T be the total value of the coins drawn. The 
joint p.m.f. is defined to be 

~x,T(z, t )  = P ( X  = x and T = t )  = P ( { w  : X ( w )  = 2 ,  T ( w )  = t } )  

where x E Rx and t E RT. With this we can repeat most of the calculations 
done for one variable. In particular, if we create a new random variable such as 
h ( X ,  7’) where h is a function like h(z ,  y) = z + 2y then we again have a law of the 
unconscious statistician: 

E h ( X ,  T )  = c h(z ,  t ) P X , T ( Z ,  t ) .  

c h , ( X ( w ) ,  Y ( w ) ) / # ( f l ) .  

X E R X , t E R T  

This is proved just as before since the expected value is by definition 

wER 

Calculating the joint p.m.f. could prove to be a lot of work. There are a few 
short cuts. Define the conditional p.m.f. of T given X to be 

pTIX(tlz) := P(T = t / X  = z) = P(T = t ,  x = z ) / P ( X  = z) 

= PX,T(x, t)/pX(x). 

If we use the law of the unconscious statistician given above we see 

E W ,  T )  = c h(z ,  t ) P X , T ( Z ,  t )  
X E R X , t E R T  

where E ( h ( z , T ) / X  = z) denotes the expectation of the random variable h(z ,T )  
relative to the conditional probability P(.IX = z); that is the probability given 
by P ( A J X  = z) = P ( A  n { X  = z } ) / P ( X  z). Sometimes we can apply our 
intuition to discover pTlx(tlx) or perhaps E(TIX = z). For instance, if the number 
of dimes drawn i s  x = 3 then we know for sure T > 30. In fact the conditional 
distribution of T is the same as drawing 7 times from a similar sack without a dime 
and adding 30; that is 30+x1=,  denotes the value of the j t h  draw with 
replacement from a sack containing { P I ,  p2,  p3 ,  ~ ~ 1 , 7 2 2 , 1 1 3 ,  nq}. Clearly EY, = 23/7 

where 

SO E ( T ( X  = 3) = 30 + 7.23/7. 
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In the case of independent variables everything simplifies. If the variables X 
and Y are independent, then the events { X  = x} and {Y = u }  are independent for 
any choice of 2,  y .  Consequently 

P X , Y  ( 2 ,  Y) = P ( { X  = .} f-l {Y = Y } )  
= P ( X  = x ) P ( Y  = y) 

= p x ( z )  . P y ( Y Y ) ;  

that is the joint p.m.f. is a product of the one dimensional or marginal p.m.f.'s. 

variables is the product of the expectations: 
A major bonus is the fact that the expectation of a product of independent 

As a corollary, we easily see that the variance of a sum of independent variables 
is the sum of the variances. This is discussed in Chapter 2 and it bears repeating 
since this is the essential reason for defining the variance in the first place. In fact, 
it follows that the variance of T = X I  +.  . . + XIo is the sum of the variances of the 
components, therefore a$ = 10 . a2. Since x = T/10 and since 

:= E(T/10 - /LT/l0)2 = & / l o 2  = 02/10 

it fGllOWS that cr~-= a / m .  Now apply Chebyshev's Lemma to x with k = €/ax 
and remember E X  = to get 

u2 
5 -  10€2 

where t is any small number. 
The result for a sample of size n. instead of 10 is 

P ( ( X  - pcL/ 2 E )  5 02 / (n2 )  

The statistician who doesn't know the contents of the bag uses x as a guess for the 
mean value of the coins in the bag. We have shown this is an unbiased estimator, 
but the above shows that if the sample size is large enough, x is probably very close 
to the population mean p. In fact as n + 00 the probability that the guess misses 
by more than E tends to 0 no matter how small t is! Moreover, the statistician 
can guess the population histogram from the histogram of the sample. The sample 
histogram is the histogram produced from the list X , ( w ) ,  X , (w) ,  . . . , Xn(w). It is 
equivalent to the sample p.m.f. given by p,(x) := #(i : X i ( w )  = x ) / n ;  that is 
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Fig. 1.9 The sample histogram 

the proportion of the sample which takes on the value z. The sample histogram 
associated with the realization wo is given in Figure 1.9. 

It is reasonable to guess that the sample proportions should be close to the 
population proportions. If we define the random variables e i  to be 1 if X i  = z and 

Moreover pn(z)  = cy=l e i / n  so Epn(z)  = (Eel + . . . + Ee,)/n = Eel.  However 
0 otherwise, we have pet( l )  = P(ei = 1) = p ( x )  and p,,(O) = P(ei = 0) = 1 - P ( Z ) .  

Eel = 1 . P ( X i  = z) + 0 .  P(X7,  # z) = p ( z )  

so p, (z )  is an unbiased estimator of the population proportion. Also the variance of 
p n ( z ) ,  by the argument used above for x, is o&/n. However ozl = (1 -p(~))2p(z)+ 
(0 - p ( ~ ) ) ~ ( 1  - p(x)) = p(z)(1 - p ( z ) )  so we conclude the variance of p n ( z )  is 
p(z)(l - p ( z ) ) / n  which tends to 0 as n --t 00. Using Chebyshev's lemma as above, 
we conclude that for n large enough, the probability the sample proportion pn, (x )  
differs from the population proportion p ( z )  by more than E is vanishingly small. 

This is the basis of statistical inference! Since the histogram of the sample is 
close to the population histogram for large n, any population parameter may be 
estimated by the corresponding sample parameter. The population mean p may be 
estimated by the sample mean x; the percentiles of the population histogram may 
be estimated by the sample percentiles and so on. We shall assume throughout this 
text that the hard work of estimating the parameters of our models has been done 
by somebody else, but in the real world that somebody might be you! 

Even beyond the question of estimating parameters is the larger question; is the 
model appropriate? The arrival of packets at  a node is probably not a deterministic 
string nicely planned to  be in repeat patterns of 5 ,1 ,5 ,1 ,5 ,1 ,5 ,10 kilobit packets. 
Neither are the arrivals likely to  be as random as drawing witjh replacement from a 
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sack. The truth will lie somewhere in between. At best we can calculate the level 
of congestion associated with different models of the arrival process and make a 
reasonable compromise in designing the system. 

1.8 Exercises 

Exercise 1.1 There are 6 horses in a race. What is the probability we can correctly 
predict the horses that win, place and show if we pick 3 of the six horses at  random? 

Exercise 1.2 Let E ,  F ,  and G be three events. Express the following events in 
symbolic notation. 
a) At least one event occurs. 
b) None of these events occur. 
c) At most one of these events occurs. 
d)  G occurs but not E or F .  
e) All three events occur. 
f )  At most two of these events occur. 

Exercise 1.3 
show that P ( E  U F )  5 P ( E )  + P ( F )  for all events E and F .  

Exercise 1.4 

Exercise 1.5 
two or more students have the same birthday. 

Exercise 1.6 
equal probability. We take a random sample of 100 families with two children. 
a) Construct a sample space which will describe the possible outcomes. 
b) How many points are in this sample space? 
c) Let X i ;  i = 1,. . . ,100 be random variables which denote the number of girls in 
each of the sample families. Sketch a likely sample histogram. 
d) What is the approximate mean and standard deviation of this sample histogram? 

Exercise 1.7 A student is writing a multiple choice exam containing 6 questions. 
Each question has 6 possible responses, exactly one of which is correct. The student 
has spent the semester partying, and has no idea what the correct answers are. He 
selects answers at  random from the 6 alternatives. What is the probability that he 
will pass the test (i.e. give 3 or more correct answers)? 

Exercise 1.8 Suppose ten percent of Ford Escorts have defective head gaskets. 
What is the approximate probability that a dealer who buys 7 Escorts has no 
defective head gaskets among the 7? 

Exercise 1.9 A production line produces bearings. Each bearing has a probability 
of 0.13 of being defective. We shall assume defects occur independently among the 
bearings. 

For the counting or equiprobable model introduced in this chapter 

What is the chance of dealing a poker hand with four kings? 

Your probability class has n students. What is the probability that 

Genetic theory says that the sex of a child is male or female with 
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a) A lot contains 13 bearings. Find the probability that this lot contains more than 
2 defedive bearings. 
b) The production line has been in production since 8 a.m. If a bearing is produced 
each minute, how long would one expect to wait until the first defective bearing is 
produced? 

Exercise 1.10 Below are the descriptive statistics of the weights of 2000 sacks of 
potatoes selected at random by the quality control department. The associated 
histogram has two bumps because there are two filling machines filling these sacks 
to a nominal weight of 5 kilograms. One underfills the sacks and one overfills the 
sacks so the histogram is really the superposition of two histograms and hence has 
two bumps. Shipments are made in lots of 100 sacks on a skid (you can assume the 
fill weights are independent). 

Variable  N Mean Median TrMean StDev SE Mean 
CI 2000 4.9961 4.9916 4.9969 0.5496 0.0123 

Variable Minimum Maximum 41 43 
c1 3.6911 6.1061 4.4998 5.4880 

Answer the questions in brac.kets below: 
a) If a buyer takes a lot at random and makes a histogram of the weights of t,he 
individual sacks then this histograni will follow the normal curve (yes or no). 
b) The average of this sample will be approximately (number). 
c) The standard deviation of this sample hist,ogram will be (number). 
The buyer is really concerned about the total weight on a skid. Suppose he takes 
75 skids at random and makes a histogram of the total weight of the sacks on each 
of the 75 skids then 
d) this histogram will necessarily follow a normal curve (yes or no). 
e) The expected value of this sample histogram will be approximately (number). 
f )  The standard deviation of this sample histograni will be (number). 
g) What proportion of skids have a total net weight greater than 400 kilograms 
(number) ? 
11) What is the 10"' percentile of the total net weight on the skids (number)? 

Exercise 1.11 Your company buys 70% of its light bulbs from supplier A, 20% 
from supplier B and 10% from supplier C. Past data has shown that 5% of the 
bulbs supplied by A are defective, that 3% of those supplied by B are defective and 
that 20% of those supplied by C are defective (company C belongs to the owner's 
brother-in-law). 
a) A light bulb is chosen at random from your stock. What is the probability that 
the bulb is defective? 
b) Given that the bulb chosen was in fact defective, find the probability that it 
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came from your brother-in-law’s company. 

Exercise 1.12 Past experience has shown that the parts of supplier A are just as 
likely to be defective as those of supplier B but those of supplier C are 3 times more 
likely to be defective. Purchasing records show that we have bought 20% of our 
parts from A, 50% from B and 30% from C. An article has been returned because 
of a faulty part. What is the probability that the part came from supplier A? 

Exercise 1.13 
and variance 16, what is the probability 17 - 11 is greater than 0.5? 

Exercise 1.14 Suppose 30 packets are stored at a DataPac node. These packets 
are randomly distributed according to the distribution of Figure 1.6. Give an upper 
bound on the probability that more than 235 kilobytes of storage will be required. 

If we take a sample of size 1,000 from a population with mean 1 



Chapter 2 

Modelling a Stochastic Process 

2.1 The Probability Space 

The equiprobable model discussed in the probability primer is quite limiting. How, 
for instance, could we represent the experiment of throwing a weighted coin which 
has a probability of 1/& of coming up heads? We would have to draw from a 
box containing an infinite nuniher of 0’s and 1’s. Clearly we need a model allowing 
different probabilities to be associated with different sample points so let’s begin 
afresh with a more general model. As before, the description of an experiment 
with unpredictable or stochastic outcomes starts with a list or set of all possible 
outcomes. We call this set the sample space and denote it by R. Each outcome is 
represented by an element of this sample space and this sample point is denoted by 
w. Consider the following examples: 

Example 2.1 
An appropriate sample space might be 

Toss a coin then a die 

where h denotes heads and t denotes tails. 

Example 2.2 
Suppose an urn contains two red balls, one white ball and one blue ball and balls are 
drawn at random without replacement until the blue one is drawn. An appropriatc 
sample space might be 

Draw balls from an urn 

where the order in which the balls are drawn is indicated by the vector notation. 

31
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Example 2.3 
An appropriate sample space might be 

Toss a coin until it turns up heads 

0 = { ( 2 1 , 2 2 , 2 3 , . . . )  : J z  E { h , t } )  

where h denotes heads and t denotes tails. 

The sample spaces are certainly not unique. For one thing we might denote 
heads by H or 1 rather than h. Moreover, the experiment in Example 2.3 could be 
represented more efficiently by a sample space 

0 = { ( z 1 , 2 2 , 2 3 , .  . . , X n - 1 , X n )  : zz = t,i E { 1 , 2 , 3 , .  . . , n  ~ l } , X ,  = h}. 

Even this efficient sample space is infinite so we prefer the sample space given in 
Example 2.3 which will serve in future examples. Of course all experiments end in 
a finite time so this sample space is just a mathematical convenience. 

Example 2.4 A stochastic process 
A stochastic or random process taking values in a countable state space S has a 
canonical sample space R = S x S x S x . . . . We may, for instance, wish to describe 
the weekly demand for a certain product. The possible demands are elements of 
S and a sample point w is an (theoretically) infinite sequence of weekly demands. 
Alternatively we might wish to describe the one byte measurements between 0 and 
255 of a voice signal intensity taken every 8,000 times a second every time you make 
a telephone call. Hence a sample point w = ( Q , X ~ .  2 2 ,  . . .) represents measurements 
zn  E { 0 , 1 , 2 , .  . . ,255) taken every 1.25 milliseconds; thus the index represents mil- 
liseconds. Another term for such a stochastic process is a time series. 

~ 

Example 2.5 ATM networks - Section 1.2 continued 

An ATM network was discussed in Chapter 1. Let’s focus on the mathematical 
problems associated with the performance analysis of one switch in such a network. 
In particular let’s concentrate on the buffer for the output port to Kingston in 
the Toronto switch. Suppose evcry unit of time (5 nanoseconds perhaps) an ATAl 
multiplexor may receive, with probability p = 1/10, a cell from any of n = 5 trunk 
lines. Every unit of time, one cell is transmitted, so if more than one cell arrives 
simultaneously, it joins a first-in, first-out queue. The number of cells waiting in 
the queue at time [t] is denoted by Q [ t ~ ,  where we write [t] to emphasize that t is 
measured in multiples of the unit time. The number of cells arriving at  time unit 
[t] is denoted by and the departure process at  time [t] is denoted by Dl,] (D,,] 
is either 0 or 1). 

The description of the appropriate sample space for this model begins with 
a description of the arrival process. Let S = {0,1,2,3,4,5} denote the possible 
number of arrivals at each time unit. Let No = { 0 , 1 , 2 , .  . .} denote the possible 
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number of cells in the queue at  the start of period 0. Let R = No x S x S x S x . . . . 
A sample point w E R will describe a starting queue size along with a sequence of 
possible arrivals. 

A number of engineering problems arise in designing such a switch. Every mi- 
crosecond a cell spends in the queue results in delayed reception at the receiving 
end. This is not a big problem for data cells but it is for voice cells. Since multi- 
plexors will be cascaded at a switching node and since a call will pass through many 
nodes between its point of emission and point of reception these microsecond delays 
start to  add up. Since the delay for a given cell is proportional to the number of 
cells queued in the buffer when that cell joins the queue, one needs a description of 
the queue size; the mean queue size is certainly one parameter of interest. 

Excess voice cells may be discarded 
without much loss of clarity but all the cells in a data stream must arrive intact 
and in sequential order. If, by pure chance, each input stream is at peak capacity 
the buffer in the multiplexor will start to fill up. In the example above, all 5 lines 
may simultaneously present a cell to the multiplexor with probability 1/10’, One 
cell is transmitted so the buffer must store the other four. If this continues for 10 
time slots in a row then at the end of that period there would be 40 cells in the 
buffcr perhaps exceeding the buffer capacity. True, the chance of this is 1/1050 but 
it could happen; it is a necessasy evil associated with statistical multiplexing. 

Another problem is buffer overloading. 
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The next step in the construction of the probabilistic model is the identification 
of events or collections of outcomes of interest with subsets of 0. Suppose the ex- 
perimenter can verify whether or not the outcome of an experiment falls in any one 
of a collection of subsets or events of R. At the grossest level the collection of events 
might be (0, n}; in which case the experimenter gets no information upon perform- 
ing the experiment. At the finest level the collection of events might be ?(a), the 
set of all subsets of 0. In this case the experimenter obtains perfect information 
~ we can determine if the exact outcome w satisfies any arbitrary condition! To 
represent the partial information that might be available to an experimenter we 
define a- algebras. 

Definition 2.6 (a-Algebras) A collection F of events or subsets of R i s  called a 
a-algebra if 

0, s1 E F. 
I f A E F t h e n A " E F .  
Urz1An E F zf A, E F fo r  n = 1 , 2 , 3 ,  

Example 2.7 
Take .F = P(s1) in Example 2.1 so F describes the knowledge of the exact outcome 
of the experiment. If, for instance, an experimcnter only knows about the result of 
the coin flip this partial knowledge is described by the a-algebra 'Ft which is given 
explicitly by 

Toss a coin then a die - (2.1) continued 

{0,Q { h )  x {1,2,3,4,5,61,  { t}  x {I , ?  3,4,5,6)). 

On the other hand, if the experimenter only knows about tlie result of the toss of 
the die, this partial knowledge is given by the a-algebra G which is given explicitly 
by 

(0, a, {t ,  h )  x P((1, 2,3,4,5,6})}. 

For instance, G contains the event {t, h }  x {2,4 ,  S} which describes when the die 
turns up even. 

Example 2.8 
For Example 2.2 take F = ?(a). 

Draw balls from an urn - (2.2) continued 

Example 2.9 
The a-algebra P ( a )  in Example 2.3 turns out to be mathematically intractable 
since there are simply too many subsets! Instead we define Fn which represents the 
partial knowledge of tlie first n coin flips. Explicitly an atomic event A in Fn may 
be represented as follows: 

Toss a coin until it turns up heads - (2.3) continued 

A = {{(a, X Z , Q ,  ' ' ' 1 Zn)) x {h,  t )  x {h ,  t> x . . 
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where (x1,22,53,. . . , z,) is some specific sequence of elements from {h ,  t } .  Other 
events in Fn are constructed by taking all possible unions of atomic events. It is 
easy to see 3n is indeed a a-algebra for each n. We define 3 to be the smallest 
a-algebra which contains all the Fn, This o-algebra is much smaller t,hm ?(a) but 
contains all events of practical interest. 

Example 2.10 
For a general product space define Fn to be the set of all unions of atomic events 
of the form 

A stochastic process - (2.4) continued 

A =  ( { ( X I , X ~ , X ~ ,  . . . ,  x,)} x S X  5' x . . . }  

where (XI, 2 2 , 2 3 , .  . . , xn) is some specific sequence in S". As above we define 3 to 
be tlie smallest a-algebra which contains all the .En. 

Example 2.11 
The past of tlie arrival process Aft]  up to time [t] is, as above, described by the 
smallest a-algebra containing all atomic events of the form 

ATM networks - (2.5) continued 

A = { { ( T L ,  5 1 , ~ 2 ,  5 3 , .  . . , ~ [ t l ) }  x S x S x . . . } .  
Here the n is the initial number of cells in the queue and the 2 , ' s  are the numbers 
of arrivals per time period. 

The next ingredient of our probabilistic model is the probability measure P. P(A)  
models tlie probability or likelihood that an outcome w ,  in the event A, occurs when 
the experiment is performed. For intuitive reasons we demand that the probability 
of a disjoint union of events be the sum of the probabilities. The mathematical 
definition was given by Kolmogorov as follows: 

Definition 2.12 
function such that 

A probability measure P on a a-algebra .F is a real valued 

(a) 0 5 P ( A )  5 1 for all A E F. 
(b) P ( R )  = 1. 
(c) If {Al,  A2, As , .  . .} are disjoint sets all in 3 then 

n=J 

Condition (b) expresses the fact that something must occur when the experiment 
is done. In fact, when the probability of an event is one we say that the event occurs 
almost surely or for almost all w .  

Condition (c) is called a-additivity and is an extrapolation of a property that 
holds in the following equiprobable models. In an equiprobable model each sample 
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Fig. 2.2 A is a disjoint union of A l ,  A2 , . .. 

point, for reasons of symmetry, has the same probability. The following is a typical 
equiprobable model. 

Example 2.13 Toss a coin then a die - (2.7) continued 
In Examples 2.1 and 2.7 we might hope both the die and the coin were fair. Hence 
the only difference between the sample points is the label and consequently the 
sample points should be equiprobable. Since the union of the twelve sample points 
gives all of R it follows that each sample point has probability 1/12. Hence if #(A) 
denotes the number of elements in A then P(A)  1 C,,EAP({~,}) = #(A)/12 de- 
fines a probability measure on F := P(R) .  

Definition 2.14 
A E F, P ( A )  = # ( A ) / # ( O )  where # ( A )  is the number of elements in A. 

{O,.F,P} is an equiprobable niodel if R is finite and for all 

Proposition 2.15 Equiprobable models satisfy the conditions of Definition 2.12. 

Proof: Conditions a) and b) are obvious from the definition. Let {AI,  AZ,AS,. . .} 
be disjoint sets. Sincc R is a finite set, it follows that all but a finite number of these 
sets are empty. By reordering we may assume {Al ,  A2, AS, . . . , Ak} are nonempty. 
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Therefore U,”,lAn, = UkX1An, so 

since the probability of the empty set is 0 (see Exercise 2.9). I 

The probability measure we construct for our model depends on the nature of 
the experiment but if one can embed the sample space in an equiprobability model 
it is easy to calculate probabilities. 

Example 2.16 
We may embed the sample space in the space 

Draw balls from an urn - (2.8) continued 

R’ = { ( 2 1 , 2 2 , 2 3 , x 4 )  : x i  E (7’1 7 r2, w, 6); x i  # xj  , i # j }  

where 7-1 and 7’2 are imaginary labels which distinguish the two red balls. By 
symmetry it follows that each sample point in R’ has equal probability so we define 
the equiprobability measure P’ on 3’ = P(Q’). To calculate the probability of 
sample points in R we just add up the associated probabilities of corresponding 
points in 0’. For instance, P({(T ,  6 ) ) )  is given by 

4 
24 P’({(7‘1, b,7’2,  p11) ,  (T1, b,  w , r 2 ) ,  (7-2, b , 7 - l , . w ) ,  (Ti, b; w , r1 ) )  = - 

so P is given, in tabular form, by: 

w : b rb wb Vrrb rwb 7urb rvrwb rwrb wrrb 
p ( { w } ) :  2 4 L 2 1 4 4 2 2 

24 24 24 24 24 24 24 24 24 

Let us assume thc coin in Examples 2.3 and 2.9 is biased and in the long run it 
seems a proportion p of the tosses turn up heads. Let us also assume the tosses are 
zndependent which at this point means intuitively that the result of one toss does 
not affect another. We construct a probability measure which will be seen later to 
incorporate these features. 

Example 2.17 
Define P ( A )  for atomic events A E Fn as follows: 

Toss a coin until it turns up heads - (2.9) continued 

P ( A )  = ~ “ ( 1 ~  p)”-” 

where p is the probability a coin turns up heads and x is the number of heads in the 
sequence of 2,’s. The probability of general events in .En is then forced by condition 
( c )  in Definition 2.12; that is, we just add together the probabilities of the atomic 
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events whose disjoint union is the general event. 

Example 2.18 
For the atomic event defined in Example 2.10 

An independent sequence of random variables 

P(A)  =p1(x1) 'P2(~2)''.Pn(Z,) 

where pz(x,) is the probability the demand in week z is xz units. Again the proba- 
bility of general events in .Fn is forced by condition (c) in Definition 2.12. 

Example 2.19 
We may define the probability of an atomic event as in Example 2.18; that is 

ATM networks - (2.11) continued 

P(A)  = po(n.1 .P(Zl) ' P ( Z 2 )  . .  4 7 + ] ) .  

As mentioned above, this implies the number of arrivals at time [t] is independent of 
the number of arrivals at any other time and also the queue size at time 0. Taking 
the p 's  to be the same after po will ensure that the arrival process is homogeneous 
in time (as we shall see). 

The definitions in Exaniples 2.17 to 2.19 are riot complete of course since we 
have not defined P on all of .F. This involves the Kolrnogorov extension theorem 
which is discussed in Section 2.8. 

The following properties of probability measures are left as exercises. 

Proposition 2.20 Let  P be a probability measure o n  a 0-algebra F. T h e n  

(a)  P(A") = 1 - P ( A )  f o r  all A E 3. 
(b)  P ( A  u B )  = P(A)  + P ( B )  - P ( B  n A) .  
(c) If A c B with A and B in F t h e n  P (A)  5 P ( B ) .  
(d) If {Al,  A2, AS,. . .} are sets in 3 then  

n= 1 

2.2 Random Variables 

The last major ingredient in our probability model is that of a random variable. 
Random variables, X ,  Y say, measure different aspects of each sample point. 

Definition 2.21 A random variable X is a function defined on R taking values in 
the real line such that { X  5 x }  := {w : X ( w )  5 x }  E F for all real z. Notation like 
{ X  5 x} (or { X  = x}) is often used and should always be interpreted as a set of 
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w'. Let FX denote the smallest u-algebra inside 3 containing events like { X  5 x} 
or {X = x}. 

We shall mainly restrict ourselves to discrete random variables; that is random 
variables taking on at most a denumerable number of values in a range denoted by 
Rx. For discrete random variables 

{w : X ( w )  I .} = U,<,{W : X ( w )  = g; y E Rx} 

so for X to be a random variable it suffices that {LJ : X ( w )  = x} E 3 for any real 
z. .Fx is called the family of events generated by X .  

I 6 X 

Fig. 2 .3  A random variable 

Example 2.22 Toss a coin then a die - (2.13) continued 
Define X to be 1 if the coin turns up heads and 0 otherwise. Define Y to be the 
value that turns up on the die. Clearly the range of values of both X and Y is finite 
and both are random variables. 

Example 2.23 
Let X denote the number of red balls drawn and let Y be the number of white balls 
drawn. 

Draw balls from an urn - (2.16) continued 

Example 2.24 
Define T to be the number of coin tosses until a head turns up. Clearly T takes 

Toss a coin until it turns up heads - (2.17) continued 
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on a dcnumerable number of values - RT = {I,  2 , 3 ,  . . .}. Moreover, for n E RT we 
have 

{w : T ( w )  = n }  = { ( t , t , t , .  . .  , t , h )  x { h , t }  x { h , t }  x . . . }  

where there arc n - 1 t ’ s  before the first h. This event is in .Fn by definition and 
hence is also in F. It follows that T is a random variable. 

Example 2.25 A stochastic process - (2.10) continued 
For any sample point w = (z1, 2 2 , .  . . , z,, . . .) define X,(w) = z,. Clearly any atomic 
event in 3?, is of the form {w : X,(w) = XI,. . . ,X,(w) = zn}. 

Example 2.26 
The stochastic process QO, Al,  Az, . . . is now seen as a sequence of random vari- 
ables defined on the sample space R as in Example 2.25. In particular, if 
w = ( ~ , X ~ , X Z , .  . .) then Q a ( w )  = n and Al(w) = 1c1. As mentioned above, this 
implies the number of arrivals at  time [t] is independent of the number of arrivals 
at  any other time and also of the number of cells in the queue at  time 0. 

ATM networks - (2.19) continued 

We may, moreover, define the queue & I t ,  on R recursively as 

Q[t+il ( w )  = max{Q[tl (w) + A[t+i] (w) - 1,0}. 

The queue size at  time [t + I] is equal to the queue size at  time [t] plus the number 
of arrivals during period [t + I] minus 1 since one cell is transmitted per period. Of 
course the queue can only be reduced to 0, hence the maximum with 0. Similarly 
we may define the departure process D[,+1] = x{Qpl + A[,+~I  > 0); that is Dp+l] is 
1 if the queue at  tinie [t] plus the new arrivals during the time period [t] to [t + 11 
is not 0, otherwise D[t+l~  = 0. 

It is interesting to  consider the a-algebra FF generated by atomic events asso- 
ciated with departures up to time [t]:  

{w : D l ( w )  = d l , D 2 ( w )  = dz, .  . . ,D[,](w) = drtl} where d, E {O,l},s = 1 , 2 . .  . . 

This is the past of the departure process and is the information which is available to 
the next node in the network receiving cells from the ATM multiplexor. It is a sub- 
g-algebra since it does riot give the queueing process and, as we shall see, the past 
of the departure process Fp is often independent of the queue size Q, t~  at time [t]. 

Definition 2.27 Formally a stochastic process is a collection of random variables 
{Xt}, defined on a probability space indexed by a parameter t (often representing 
time). For each sample point w,  the coordinate functions {X,(w), Xz(w), . . .} specify 
the trajectory of the stochastic process. The past of the process until index t is thc 
a-algebra FF generated by thc atomic events {w : X,(w) = z1,. . . , X,(w) = x,}. 
One can write F? = a{Xo,X1,. . . ,x~}. 
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Definition 2.28 Given an increasing sequence of a-algebras Ft inside a proba- 
bility spacc {R ,F} ,  define a stopping time T to be a random variable such that 
(T 5 t }  E .Ft for all t .  

A stopping time models the realistic situation where a decision to continue or not, 
at time t is based on the information available up to time t ;  that is Fi. Suppose we 
model the result of a sequence of coin tosses as a stochastic process. All we need 
to do is replace h by 1 and t by 0 in Example 2.24. Hence the coordinate functions 
in Example 2.25 above associate a head with the value 1 and a tail with 0. Clearly 
the number of tosses of a coin required to get the first head considered in Example 
2.24 is a stopping time for the sequence of a-algebras defined by the coordinate 
functions. 

Example 2.29 
Let 7 denote the first time a cell i s  lost because Q,7--1~ + A, - 1 > B where B is 
the buffer space available. 7 is a stopping time. 

ATM networks - (2.26) continued 

In order to summarize the description of a random variable we define the asso- 
ciated probability distribution function. 

Definition 2.30 The probability mass function or p.m.f. associated with the 
random variable X is p ~ ( z )  = P ( { w  : X ( w )  = x}) for any T E Rx. The distribution 
function associated with X is a function of a real variable (t in this case) given by 
F x ( t )  = P({w : X ( w )  5 t } ) .  

Henceforth, we shall not write w explicitly so we might write simply px (x) = P ( X  = 

x) or F x ( t )  = P(X 5 t ) .  We note that both these expressions make sense when X is 
a random variable since by definition {w : X ( w )  5 t }  6 F (that {w  : X(w) = x} E F 
if X is a random variable is left as an exercise). 

Example 2.31 Toss a coin then a die - (2.22) continued 

p,y(l) = P({w : X ( w )  = 1}) = P ( { ( h ,  l), (h ,  a) ,  ' .  ' , (b 6))) = 1/2. 

Similarly p x ( 0 )  = 1/2. In tabular form this may be written 

Similarly 

y . 1 2 3 4 5  6 
p y ( y )  : I 1 I I 1 I 

6 6 6 6 6 6' 
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Example 2.32 Draw balls from an urn - (2.23) continued 

In tabular form this may be written 

Similarly 

y : o  1 
P Y ( Y )  : ; ;. 

Example 2.33 
For z E RT 

Toss a coin until it turns up heads - (2.24) continued 

P T ( Z )  = P ( { ( t , t ,  t , .  . . , t ,  h )  x {h , t }  x {h ,  t }  x . . . }) 
= (1 ~ p)”- lp  

by Example 2.24. This is the probability mass function of a geometric random 
variable. 

In order to  describe the bivariate or multivariate nature of random variables, we 
define the joint probability mass function (joint p.m.f.): 

Definition 2.34 (The joint probability mass function) For 
variables X and Y define 

random 

P X , Y  (x, Y) = P ( { w  : X ( w )  = 2, Y ( w )  = Y}) 

*where x E Ex, y E R y .  In general, .for vector valued random variables 2 = 

( X l ,  . . . , X n ) ,  &fine the joint  probability mass function by 

pg (z l , .  . . ,xn) = P({w : X , ( w )  = 2 1 , .  . . , X , ( w )  = Z T L } ) .  
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Definition 2.35 (The joint distribution function) For  random uariables X ,  
Y and r a n d o m  vector 2, def ine 

FX,Y (x, Y) = P ( X  5 2 ,  y 5 Y) 

and 

f o r  all choices of real numbers x, y, 5 1 , .  . . , x, 

\ 

Fig. 2.4 Jointly distributed random variables. 

The properties of F,Y,Y and Fg are similar to those of Fx. An immediate 
observation is that we can get the marginal p.m.f. from the joint p.m.f. as follows: 

Theorem 2.36 

c PX,Y (z, Y) = PY (YY) 
X E R X  

and similarly,  
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More generally, 

c P & b . , % . . . , 4  =Px, ,,,,, Tk , ,_ , )  x,(Zl,...,Zk,...,Zn), 
X k E R X k  

where ,.. over a variable means this variable i s  omitted f rom the sequence. 

Proof: We just prove the first statement. Note 

where 0 denotes the disjoint union. Hence, by Definition 2.12, 

p y ( y )  = P(Y = y )  = c P({w : X ( w )  = .,Y(w) = y}) 
X € R X  

X E R X  

Example 2.37 
By Theorem 2.36 the p.m.f. of coordinate Xi is 

An independent sequence - (2.18) continued 

where we used the fact that 

We see the marginal distributions of the coordinate functions in this construction 
of a stochastic process have specified p.m.f.’s given by p i .  Later we shall see that 
the Xi’s are independent for the product probability P specified here. 

2.3 Expectation 

We work up to a general definition of expectation by starting with simple random 
variables. 

Definition 2.38 
is called simple if it takes on only a finite number of values; i.e. R x  is finite. 

A random variable X defined on a probability space (R, F, P }  
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Definition 2.39 The expected value of a simple random variable X is 

This definition will be extended to general random variables but at this point let 
us just state that for discrete random variables this extension yields the same ex- 
pression as above; that is 

E X  = zpx(z )  provided EIXI = Izlpx(z) < 00. 
X E R X  X E R X  

R.andom variables such that E(XI < 00 are called integrable. 

The expected value measures the location of the center of mass of the distribution 
and has the following monotonicity and linearity properties: 

Theorem 2.40 (Monotonicity) I f X  5 Y ,  that is  X ( w )  5 Y ( w )  for  all w then 
E X  5 EY. 

Proof: We only give the proof for simple random variables. 

P ( X  = x) = c P ( X  = 5 , Y  = y). 

Note that if x > y then P ( X  = x , Y  = y) = 0 so by the definition of expectation 

E X =  c z P ( X = x ) .  
X E R X  

= c c z P ( X = z , Y  = y )  

X E R X  YERY 

= EY. 

Theorem 2.41 (Linearity) If a and ,O are constants then 

Proof: Again we only give the proof for simple random variables. The random 
variable a X + P Y  takes the value x = ax+& on the set {w : X ( w )  = x , Y ( w )  = y}. 
Let x{az+py = z }  be the indicator function which takes the value 1 if the equality 
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ax + Py = z is satisfied and 0 otherwise. By definition then 

E ( a X  + PY) = c z P ( a X  + PY = 2) 

X Y 

= CUEX + PEY 

where we used Theorem 2.36. I 

Taking an abstract point of view we see that any probability P on (0, F} is associ- 
ated with an expectation E( . )  which acts as a linear operator on the (vector) space 
of random variables. 

The following law of the unconscious statistician will prove very useful. 

Theorem 2.42 
respectively, so hl ( X ) ,  h,z(X, Y )  and h,(X) are discrete random variables and 

Let h l ,  hz and h, be real valued funct ions of 1, 2 and n iiariables 
+ 

E h l ( X )  = C hl(.)PX(Z) 
X E R X  

X l E R X ,  x,ERx, 

Proof: Again we only show this result for simple random variables and we will 
only establish the first expression since the others follow in the same way. Let 
2 = h l ( X ) .  By definition 

= c h l (X)P(X  = Z )  

X E R X  

X E R X  
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The law of the unconscious statistician allows us to calculate the expected value 
of functions of a discrete random variable. 

Definition 2.43 
and the variance is 

The mean of a random variable X is p x  z EX = c l c p x ( x )  

U; E ( X  - E X ) 2  = X ( X  - p ~ ) ~ p x ( ~ ) .  

The standard deviation is OX. 

Theorem 2.44 If X is  a positive random variable wzth ,finite m e a n  p x  then  

P ( X  2 e )  5 !+c (Marlcov’s Inequality). e 
If X has a f ini te  m e a n  and variance then  

n 

P(jX - ,uxJ 2 !) 5 G (Chebyshev’s Inequality). 
e 

Proof: Markov’s Inequality is immediate since 

E X  2 C zpx(x> 2 t * P ( X  2 1) 

The result follows by dividing both sides by 1. Chebyshev’s inequality follows anal- 

X 2 L  

ogously. I 

Example 2.45 
In this example 

Draw balls from an urn - (2.32) continued 

1 1 
3 3 

E X  = 0 .  p x ( 0 )  + 1 . px(1) + 2 . px ( 2 )  = 1 . - + 2 . - = 1. 

Similarly EY = 0 ’ p y ( 0 )  + 1 . p y ( l )  = 1 . 
and Y is given by 

= i. The joint p.m.f. p x , y ( z ,  y) for X 

: y = O y = l  

x = 1 :  2/12 2/12 
x = O :  3/12 1/12 

z = 2 :  1/12 3/12 

On the other hand the law of the unconscious statistician applied to  the function 
H2(x ,  y) = z + y allows us to evaluate E ( X  + Y )  as 

3 2 1 1 2 3 
(0 + 0112 + (1 + 0)s + ( 2  + 0 1 5  + (0 + qE + (1 + 1)- 12 + ( 2  + 1)- 12 
18 
1 2 ’  
- - - 

It is interesting to verify that E ( X  + Y )  = E X  + E Y .  
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2.4 Conditional Probabilities 

Consider an eqiiiprobable measure P on a finite probability space { Q , F }  where 
F = P ( R ) .  The probability of an event A is therefore given by 

where d(A) denotes the number of elements in A. If the experimenter knows A has 
occurred arid wishes to  know the probability another event B has also occurred, it 
follows from symmetry that each of the sample points in A is equally likely with 
probability l /#(A) so that the conditional probability of B occurring is 

Fig. 2.5 Conditional probabilities 

This definition is extended to general probability spaces: 

Definition 2.46 

P ( A  n B )  
P(A)  

P(BIA) = 

defines the conditional probability of an event B occurring, given the event A has 
occurred. P( .JA)  defines a probability measure on {a, F}. Since P(.IA) does satisfy 
all the conditions of Definition 2.12 it follows that we may define the associated 
expectation denoted E(.IA). To be precise, if X is a random variable then 

P ( { X  = Z)n A )  
P (  A 1  

E ( X / A )  = C z P ( X  = z ~ A )  = C z 
\ 'I1 X E R X  X E R X  
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Proposition 2.47 I f X  is a random variable and A a n  event then  E(X1A) = 

E ( X  . X A ) / P ( A )  where X A  denotes the indicator func t ion  o f  the set A; that is 
X A ( W )  = 1 if w E A and is 0 otherwise. 

Proof: First assume X is simple and nonnegative 

E(X1A) = C x P ( X  = xlA) 
X E R X  

= C z:P({w : X ( W )  = 2, w E A}) /P(A)  

= E(x ’ X A ) / P ( A )  
X € R X  

since X . X A ( W )  = CzERx X .  x { X ( ~ ) = ~ , ~ ~ A } ;  that is X . X A  takes the value 2 on 
{ X ( w )  = ic,w E A}. Now extend the result by taking monotone limits of simple 
functions. The signed case follows by linearity. I 

Definition 2.48 
bility mass function (conditional p.m.f.) of J? given 2 by 

Let 2, ? be random vectors. We define the conditional proba- 

f - P ( 2  = z,? = f )  
p?;&&?) = P(Y = g1x = 2) = 

P ( 2  = 2) 

In general, P(.lg = .’) is the conditional probability given 2 = 2. The definition for 
random variables is simply the non-vector version of this definition. The conditional 
distribution function of given 2 is defined by 

f + 

where Y 5 Qmeans Y is less than f ,  component by component. 

As in Definition 2.46, P( .J2 = 2) has an associated expectation denoted E( . l2  = 

2). For instance 

Theorem 2.49 Let X be a random variable and f o r  each x E Rx let H ( x )  := 
h(x, w )  be a random variable (assuming a denumerable number of values). Consider 
the random variable h ( X ( w ) , w )  such that E l h ( X ( w ) , w ) l  < 00. Then  

E h ( X ( w ) , w )  = c E ( h ( z , w ) ( X  = .)px(x). 
X E R X  
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Proof: Using the fact that s1 = U z c ~ x { ~  : X ( w )  = z} we have by Corollary 2.68 
that 

E M X ( w ) ,  w) = c E [h(X(4 ,  w) ' X { X = x ) ( 4 ]  
zERx 

= c E [ h ( z , 4  ' X ( X = . T } ( 4 ]  
X E R X  

= E(h(z ,  w)jX = z ) P ( X  = z) by Proposition 2.47. 
X € R X  

Corollary 2.50 
E l f ( X , Y ) I  < 03 then 

If f i s  a real-valued funct ion of two real variables such that 

E f ( X ,  Y )  = c Elf(? Y)IX = 4 P x ( X ) .  
X € R X  

Analogous formulae hold f o r  random vectors. 

Proof: Let h(z ,w)  = f ( z ,  Y ( w ) )  and apply Theorem 2.49. 

Example 2.51 
The conditional p.m.f. for X given Y is pxly(x.(y) given by 

Draw balls from an urn - (2.45) continued 

z: 0 1 2  z: 0 1 2  
P X ~ Y  (~11) : 1/6 1/3 1/2 P X ~ Y  (.lo) : 1/2 1/3 1/6 

Hence 

and 

It is interesting to verify that 

I 

It is useful to define the conditional probability given events defined by random 
variables or random vectors. 

Definition 2.52 Let X be a random variable and let 2 = ( X I , .  . . , X,) be a 
random vector. Denote by P ( , J X )  = P(.J.Fx) the conditional probability measure 
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defined as follows. For any event A E .F and any sample point w such that X ( w )  = x, 
define 

P(AIX)(w) = P(A(X  = .) = P(A({X  = x}). 

Note that P(A(X) (w)  is constant for w E { X  = z}. Let E( . IX)  = E(. iFx)  be the 
associated expectation. These definitions can also be extended to vectors: for any 
event A E F and any sample point w such that g ( w )  = 2, define 

-, 
P(AIZ)(w) = P(A/X  = 2) = P ( A l { g  = 2)). 

Again, let E(.j2?) = E(.IF') be the associated expectation. 

Rewriting Corollary 2.50 we have 

Corollary 2.53 
Elf(X,Y)l < 00 then 

If f i s  a real valued func t ion  of two real variables such that 

E . f ( X ,  Y) = E ( E [ . f ( X ,  Y ) l X ] )  = E ( E [ f ( X ,  Y ) IFXI ) .  

Analogous formulae hold for random vectors. 

Example 2.54 Consider an on-line file updating system. Let p ,  be the proba- 
bility that a transaction is of type i where i E { 1 ,2 ,  . . . , n}. The size in bytes of the 
record of transaction type a to be inserted into a file may be represented by a random 
variable Y,, which has mean p7 and variance 0;. Determine the expected number 
of bytes per transaction and the variance of the number of bytes per transaction. 

It is best to define a random variable T having probability mass function p ~ ( i )  = 

p ,  for i = 1, . . . , n. Hence the number of bytes in a transaction may be represented 
by YT. Now setting h(i, w )  = x ( w )  and applying Theorem 2.49 we have 

n 

EYT = Eh(T, w )  = c E (KIT = i )  . P(T = 2)  

2=1  

n n 

i=l i=7 

The second moment follows in a similar fashion since 
n 

i=l 
n 

i=l i=l 

The variance calculation is immediate. 
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2.5 Independence 

The assumption of independence leads to enormous simplifications in our calcu- 
lations. First of all we say two events F and G are independent if P ( F  n G) = 

P ( F ) P ( G ) .  knowing A has 
occurred tells you nothing about the probability of B occurring. 

This is equivalent to saying P(BIA) = P ( B ) ;  i.e. 

Example 2.55 Toss a coin then a die - (2.31) continued 
If F represents the event the coins is heads and G represents the event the die 
gives a 4 then it is easy to check P ( F )  = P ( { { h }  x (1,. . . ,6}) = 1/2 and P(G) = 

P({h,  t }{  x {4}) = 1/6. Moreover, 

P ( F  n G) = P ( { ( h , 4 } )  = 1/12 = P ( F ) .  P ( F ) .  

We now extend the notion of independence to discrete random variables. 

Definition 2.56 Two discrete random variables X and Y are independent if 
p ~ , y ( z ,  y) = p x ( z )  . p y ( y )  for all LZ: E Rx and all y E R y .  Similarly two discrete 
random vectors X and ? are independent if 

We remark that this definition doesn’t work for random variables that aren’t dis- 
crete. The notion of independence is extended to general random variables in the 
Appendix. 

Proposition 2.57 If X and Y are independent then E [ X  . Y ]  = EX . E Y .  

Proof: Since X and Y are independent 

X E R X  Y E R Y  

= E X .  EY. 

Corollary 2.58 If Y is independent of 2 then E ( Y / g )  = EY.  
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Proof: 

E ( Y J 2  = 2) = c yP(Y = y 1 2  = ?) 

P ( 2  = 2,Y = y) 

Y E R Y  

P2,Y(?> Y) =cY y E R y  %f=?) y € R y  c P 2 ( 2 )  

= ypy(y) = EY by independence. 
g E R Y  

I 

Corollary 2.59 Suppose X = f ( X I , .  . . , X T L )  and the r a n d o m  vector X = 

( X I , .  . . , X,) is independent  of t h e  Y .  T h e n  X i s  independent  of Y .  

Proof: 

+ 

z f ( S )  =z 2 f ( S )  =5 

= P ( X  = .) . PY (!I) = Px . PY (Y) 

for any choices of z E Rx and all y E R y .  It follows that X and Y are independent. 
I 

Corollary 2.60 If X and Y are independent  r a n d o m  variables then, t h e  variance 
of X +Y which we  denote  by V a r ( X  + Y) i s  t he  sum of t h e  variances,  V a r ( X )  and 
V n r ( Y ) ,  of X and Y respectively. 

Proof: 

V a r ( X  + Y )  

= E ( ( X  - I L X )  + (Y - ILuy))2 

= E ( X  - p x ) 2  + E ( Y  - + 2E( (X  - px) ' (Y ~ P Y ) )  

= V a r ( X )  + V a r ( Y )  + 2E(X - p,y) E(Y - p y )  

= V a r ( X )  + V a r ( Y )  

( X  - p x )  generates the same a-algebra as X and (Y - p y )  generates the same 
a-algebra as Y and so are independent. I 

Example 2.61 A stochastic process - (2.37) continued 
By Example 2.37 the p.m.f. of coordinate X ;  i s  p i .  The joint p.m.f. of 2 is, by 
construction, 
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Consequently, 
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It follows that X I ,  X2 , .  . . , X ,  are independent random variables since the above 
implies the events {XI  = XI}, . . . , { X ,  = z,} are independent for all choiccs of 
XI,. . . ,xn. Since this is true for every n, we have by definition that the sequence 
{ X I ,  X2, . . .} is a sequence of independent random variables. 

We shall have to extend the notion of independence to an infinite sequence of 
random variables. 

Definition 2.62 The components of a random vector 2 = ( X I ,  X2 , .  . . , X n )  
are independent if p ~ ( 2 )  = pxl(zI)...px,(zn). The components of an infinite 
sequence X I ,  X2,  . . . are independent if every finite subset of components is inde- 
pendent. Finally, a random variable Y or vector ? is independent of the infinite 
sequence X I ,  X2 , .  . . if Y ,  respectively Y ,  is independent of the vector made from 
any finite subset of the sequence. 

+ 

Example 2.63 
The stochastic process Al ,  A z ,  . . . is now seen to be a sequence of independent ran- 
dom variables each having p.m.f. p ,  which are all independent of the initial queue 
size Qo, which has p.m.f. po. On the other hand, the sequence Qrtl is certainly not 
an independent sequence since clearly a large queue at time [t] means there will be 
a large queue at time [t + 11. It is an interesting question if the departure process 
D1, D2, . . . is an independent sequence. 

ATM networks - (2.26) continued 

Example 2.64 Total service required by a random number of customers 
The number of customers that arrive at a server is a random variable N with mean 
/LN and standard deviation O N .  The service required by a customer is a random 
variable with mean a and standard deviation /3 minutes. Calculate the mean and 
variance of the number of minutes the server is busy until all the customers are 
served. We shall suppose the service times of the customers are represented by an 
independent, identically distributed sequence of random variables Yl, Yz,  . . . having 
mean Q and standard deviation p. Consequently the total service time is represented 

by 

We shall also suppose N is independent of .F the 0-algebra generated by X I ,  X z ,  . . .. 
Note that T ( w )  is of the form h(N(w) ,  w )  where h(n, w )  = Cy=l Y ,  so using Theorem 
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2.49 
n 

ET = E h ( N , w )  = C E ( C x I N  = n ) P ( N  = n)  
n t R N  i=l 

n, 

= E ( c  Y,)P(N = sn) by Corollaries 2.58 and 2.59 
n t R N  i=l 

= naP(N = V n )  = p ~ 0 1 -  E N .  EYl 
,ERN 

The calculation of the variance of T is left as an exercise. 

2.6 General Random Variables 

We must extend our definition of expectation to discrete random variables taking on 
a countable number of values. We will even have occasion to use random variables 
which are not discrete but rather take on a continuum of values. Definition 2.21 
is still valid but such variables do not have a p.m.f. since the probability such 
a random variable takes on a specific value is 0. Nevertheless the distribution 
function is always well defined. The extension of the expectation given below is due 
to H. Lebesgue and involves constructing approximating simple random variables. 
Further results on the Lebesgue integral are given in the Appendix. This section 
and the Appendix are rather abstract so at first reading, it would be best to skip 
over it and concentrate on the proofs for simple random variables. 

If X 2 0 is a random variable defined on a probability space {Q, F, P } ,  define 

Clearly, as n + 00 the sequence X ,  of simple random variables increases monoton- 
ically to X as is seen in Figure 2.6. Hence, E X ,  1'. 

Definition 2.65 If X 2 0 then define E X  = lim,,,EXn. If X takes both 
positive and negative values then use the decomposition X = X +  - X -  where 
X +  = max(0,X) and X- = -min(O,X) to  define E X  G p x  := E X t  - E X -  
whenever it is well defined (integrable); that is whenever EIXI = EX++EX- < 00. 

With this definition we have extended the domain of the expectation operator E 
associated with the probability P from simple random variables to the space of 
integrable random variables. 

The following theorem justifies the above definition. A more general form is 
stated in the Appendix (see Billingsley (1979) for a proof). 
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I 
Fig. 2.6 Lebesgue's discrete approximation of a continuous variable 

Theorem 2.66 (Monotone Convergence) If Y, i s  a sequence of random vari- 
ables such that  0 5 Y,(w) 1' X ( w )  for almost all w then  

lim EY, = E X .  

It follows that the approximating sequence is arbitrary and leads to the same value 
of the expectation. 

Theorems 2.40, 2.41 and 2.42 now follow for general random variables. First 
consider the case of nonnegative random variables. Approximate by simple random 
variables for which these theorems have been shown to hold. Now pass to the limit. 
The signed case holds by additivity. 

We can prove the expectation of a discrete random variable taking on a countable 
number of values is calculated as forecast after Definition 2.38. 

Corollary 2.67 
integrable, i.e. CzERx Ixlpx(x) < 00, t h e n  E X  = CzERx z p x ( x ) .  

Proof: It suffices to prove the Corollary for X 2 0 since the signed case follows 
by additivity. Pick a sequence of finite subsets A, such that A, 1' Rx. Define 
Y, = X . XA,.  Clearly Y, is simple and Y, I' X ;  so CZtA, x p ~ ( x )  = EY, E X  
by monotone convergence. On the other hand the sum CzERx q x ( z )  is de- 
fined precisely as the (unique) limit of finite sums like CzEA, x p x ( x ) .  Therefore 

,'Oo 

If X zs a discrete random variable with a p.m.f .  px and zs 

E X  = CztRx Z P X ( 2 ) .  I 
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Using this technique we can prove the following Corollary which will be used 
again and again. 

Corollary 2.68 
F then 

If X is integrable and {A ,  : i = I, 2,. . . } are disjoint subsets in 

i=l 

where, in general, the indicator function XA of any measurable set  A is defined to 
be 1 if w E A and 0 otherwise. 

Proof: Again it suffices to consider X 2 0. Note that 

Moreover, by linearity, E [ X  . = Cy=, E [X . X A , ] ;  so the result follows 
from monotone convergence. 

2.7 Independence of GeneraCRandom Variables 

Definition 2.69 The o-algebra 3x generated by a random variable X is the 
smallest a-algebra which contains all the events of the form { X  5 x}. More gen- 
erally, the a-algebra Fg generated by a random vector X = ( X I , .  . . , X n )  is the 
smallest a-algebra which containing events of the form { X I  5 2 1 ,  . . . , X ,  5 x,}. 

We remark that if X is discrete then any event in 3 x  is a countable union of events 
of the form { X  = x}. Similarly any event in Fg is a countable union of events like 

+ 

{ X ,  = 2 1 , .  . . ,x, = x,}. 

Definition 2.70 

0 Two events F and G are independent if P ( F  fl G) = P ( F ) P ( G ) .  
0 Two cr-algebras 3 and 4 are independent if all events F E F and all events 

0 Similarly a-algebras XI, Xz, . . . , RFt, are independent if and only if all H,  E 
G E 6 are independent. 

x,,i =1, . . . ,  72, 

P(H1 n Hz n . . . fl H,) = P(H1)  . P ( H 2 ) .  . . P ( H n )  

where H,  E XF. 

algebras Fx% are independent. 

dent of G. 

0 Random variables XI, X,, . . . , X ,  are independent if their generated o- 

0 X ,  respectively 2, is independent of 6 if Fx, respectively 32, is indepen- 
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Two random vectors 2 and ? are independent if and only if their generated 

A sequence of random variables is independent if every finite subset is. 

Naturally it is impossible to check the independence of two a--algebras F and 4 
by checking that all the events F E F and all events G E 4 are independent. It is 
enough to show independence of the events which generate these a-algebras. This 
point is illustrated in the following Proposition. 

Proposition 2.71 
and ? are independent i f  and only zf 

a-algebras Fz and F? are independent. 

Let 2 and J? be vectors of discrete random variables then d 

Proof: Clearly if d and J? are independent 

p z , p ( G )  = P({xI = w . .  . ,xn = 2 , )  n {YI = w,. . . ,y, = ym>)  

= P(X1 = 2 1 , .  . . , x, = x,) ' P(Y1 = y1,.  . . , Y, = y m )  

= Pz (%p (!3. 
On the other hand all events in F-2 are unions of events of the form { X I  = 

21,. . . , X, = 2, )  while events in F p  are unions of events in {Yl = y1,. . . , Y, = 

y,}. If the joint probability mass function is a product of the marginal prob- 
ability mass functions, we have, as above, the independence of these generating 
events. It follows that all events F E Fg and G E F? are independent since 
F = U,-,K{X = 2) and G = U ~ € L ( Y  = $} for some countable subsets K and L. 
Hence, 

+ + 

P ( F  n G) = (uZEK{2 = 2)) n (uGEL{? = g}) 

? € K  GEL 

= P ( F ) .  P(G).  

I 

Example 2.72 Toss a coin then a die - (2.55) continued 
We defined the a-algebra 'H which represents the partial knowledge about the coin 
flip and 4 which represents the partial knowledge about the toss of the die. It is 
easy to check the independence of 'H and 4 when P is the equiprobability measure. 
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2.8 The Kolrnogorov Extension Theorem 

In this section we describe a particular stochastic process taking values in a count- 
able state space S - a sequence of independent random variables. As in Example 
2.4, we construct a sample space R = S x S x S x . . . and as in Example 2.10, we 
construct the siibalgebra .En of all unions of atomic events of the form 

where (xl, x2, 2 3 ,  . . . , 2,)  is some specific sequence in S.  As before, we define .F to 
be the smallest 0-algebra which contains all the 3rL. 

Many probability measures may be constructed on this canonical space but 
here we consider the product measure defined below. If { p t }  is a given countable 
sequence of probability mass functions concentrated on S then, as in Example 2.18, 
for A given above define Pn(A) = p l ( q )  .p~(zz) . . .p,(z,). Again the probability of 
general events in F, is forced by condition (c) in Definition 2.12. The fundamental 
problem of extending the above probability P, defined on each .F, to a probability 
on .F is resolved by the following theorem which is stated without proof. 

Theorem 2.73 (The Kolmogorov Extension Theorem) I f  a sequence of  
probability measures P, defined on Fn satisfies the compatibility condition that  
Pn+l(A) = Pn(A) i f  A E FTL, t h e n  one m a y  construct a probability measure P 
on F which agrees with each P, on F,. 

The product measures Pn on .En clearly satisfy the compatibility condition. This 
follows since any atomic event in .FTL is of the form A := ( 2 1 ,  2 2 , .  . . ~ z,} x S x S X .  . . 
and 

By additivity, the compatibility condition may now be verified for all sets in 3n. 
Hence, by the Kolmogorov extension theorem, there exists a product measure P 

on F. If, as in Example 2.25, we consider the coordinate functions { X I ,  X a ,  . . .}, it 
follows from Example 2.61 that for each n, X I ,  X2, . . . , X ,  are independent random 
variables. 

Example 2.74 
By the above, we have constructed a stochastic process of independent random 
variables XI, X 2 ,  . . . , X ,  such that the p.1n.f. of coordinate X i  is pi .  

An independent sequence - (2.18) continued 
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If pi = p for all a ,  then the above construction yields an i.i.d. sequence; that is a 
sequence of independent, identically distributed random variables. A special case 
is the following. 

Example 2.75 
111 this example the marginal distribution pi  of X i  is the same for each i and 

Toss a coin until it turns up heads - (2.33) continued 

It follows that the product measure P,(A) of atomic events A E Fn of the form 

where xi is some specific sequence of 0’s and 1’s is precisely 

P(A)  ~ “ ( 1  -p)”-”, 

where II: is the number of heads in the sequence of xi’s. This is the answer we 
predicted in Example 2.17. 

Theorem 2.76 Dynkin’s Formula Let { Z k ,  k = 0 , 1 , .  . .} be a sequence of in- 
te,grable r a n d o m  variables and let r be a stopping t i m e  for t h e  sequence F f  = 

a{&, . . . , Zk}  of a-algebras generated by t h e  past  of Z u,p t o  t i m e  k .  T h e n ,  for  
all SrL 2 0, 

k = l  

Proof: For each n, 

k = I  
71 

k = l  
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Note that {r A n 2 k }  = (7 A n  > k - 1) E Ff-l so we can take expectations to  get 

Suppose 2, 20 + C;=, Xk where { X , }  represent the wins or losses in a series 
of gambles and 20 is our initial fortune. One might hope to  design an optimal 
stopping plan which would lead to a positive expected value for the return up to  
this stopping time. Unless the gambler is clairvoyant, such a plan which tells you to 
stop after the nth gamble must depeiid on F: so the plan is a stopping time in the 
technical sense given here. The above theorem dashes all hope for a money making 
stopping time. In general, the expected value of any gamble is negative so 

If r is bounded then r An = r for some ‘n. Hence, by Dynkin’s formula, E Z ,  5 EZo; 
i.e. your expected fortune when you stop playing is less than you started with. 

The following theorem allows infinite stopping times and again shows gambling 
doesn’t pay. 

Theorem 2.77 Wald’s Lemma Consider a sequence of independent> identically 
distributed random variables {X ,} ,  wi th  c o m m o n  f ini te  expectation p. Let  Fr> = 

a ( X 1 ,  X 2 , .  . . X,) .  Suppose r i s  a stopping time for  this sequence such that Er < 00 
then 

E k X k :  = pEr. 
k=l 
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T A n  

= E [ 1 p] by independence 
k = l  

= pE [T A n] . 

As n tends to infinity, pE [r A n] tends to pEr  by the monotone convergence 
theorem. The convergence 

r A n  T 

k = l  k=l 

requires a little more work. Clearly Ei!7 x k  tends to EL=, XI, but it is not clear 
we can take the limit through the expectation symbol. 

By the same application of Dynkin’s formula as above, with E l X k l  in place of 
Xk 1 

r A n  

k = l  

By monotone convergence, 

7 

E x l x k l  = E I X 1 I E [ r A n ]  <m. 
k=l  

Since, 
in the Appendix that 

X I ,  5 Xi=,   XI,^ it follows from the dominated convergence theorem 

T A n  

k=l 

Example 2.78 Drunkard’s walk 
Consider a sequence of i.i.d. random variables { x k }  having common probability 
mass function 

2: -1 I 
f(.): ; ; 

Proof: As above define By Dynkin's formula
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Suppose we consider sums, S, = C:=oXk where Xo = z. 
location of a random walk with independent steps of size { X k }  starting at x. 

bounds for this random walk. Define T to be 

S, represents the 

Suppose also there are two integers L 5 x 5 U which are lower and upper 

~ ( w )  = rnin (x + S, E { L ,  U } )  
n20 

Clearly T is a stopping time since {T > n} is equivalent to the n conditions; L < 
x + XI < U, L < x + X I  + X z  < U et cetera L < 5 + X I  + X 2  + . . .  + X ,  < U ;  so 
{T > n}  E Fn where Fn = u { X I , .  . . , X n }  (see Definition 2.28). 

Now consider the question of whether the random walk starting at J: hits L before 
U .  If L = 0 and U = 1000000 then the question takes on additional significance in 
a gambling context. If we start out with n: dollars and we bet one dollar at a time 
on the flip of a fair coin, then hitting L constitutes ruin while hitting U constitutes 
walking away a millionaire. It is imperative that we calculate f(x) = P ( z + S r  = L )  
and 1 - f(z) = P(z  + ST = U ) .  

Suppose we can apply Wald’s Lemma 2.77. If this theorem applies and assuming 
T is finite 

T 

since E X  = 0. Hence. 

Solving for f ( z )  gives f (z )  = (U - n:)/(U - L ) .  
To apply Wald’s Lemma we require ET < 00 and this will imply that T is finite! 

We see that S, is a binomial random variable which is treated in detail in the next 
chapter. Letting D = U - L we can ensure that P(lS,l 5 D )  5 1 - Q < 1 by 
picking m larger than D since 

P(IS,I > D )  2 P ( S ,  = rn) = 1 /2m =: a. 

Hence uniformly for L 5 z 5 U we have P ( L  5 J: + S,  5 U )  5 /? z 1 - Q < 1. 
Consequently starting from any point in [L,  U ]  there is at most probability /3 that 
we stay in the interval up to time m. 

Now let us estimate the probability of staying in the interval at least up to time 
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k m ;  that is P(T > km). Clearly, 

using the independence of the { X k }  and the fact that Si, - S(i-l), has the same 
distribution as SnL. 

By the above and using Exercise 2.13, we have 

k = l  
03 

where we used the fact that P(T 2 k )  2 P(T 2 j ~ 1) for each of the m, terms in 
the jth block: { k  : (, j  ~ 1)m. I k < j m } .  We conclude Wald's Lemma applies and 
we have our result. 

2.9 Exercises 

Exercise 2.1 Suppose the joint density of ( X ,  Y )  is given by 

f (x, y) 7J = -1 y = 0 y = 1 y = 2 
2 = -1 1/18 1/18 1/9 1/9 
x = O  1/8 1/18 1/12 118 
z = 1 1/12 1/18 1/12 1/18 

a) Calculate the probability mass function for X .  
b) Calculate E(YIX = x). 
c) Is X independent of Y? 
CI) Calculate E&. 
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Exercise 2.2 Suppose the joint density of (X, Y )  is given by 

f(z,y) y = 0 y = 1 y = 2 
z = 1 1/6 1/6 0 
z = 2 1/6 0 l / 6  
z = 3 1/12 1/6 1/12 

a) Calculate the probability mass function for X .  
b) Calculate P ( X  < Y ) .  
c) Calculate fulx(ylX = 3 ) .  
d) Calculate E ( Y 2 J X  = 3).  
e) Calculate E ( ( X  + Yj21X = 3).  
f )  Is X independent of Y? Explain. 

Exercise 2.3 A circle is drawn by choosing a radius from the uniform distribution 
on interval (0,l) .  
a) Find the cumulative probability function for the area of the circle. Calculate the 
probability that the area of the circle is less than 0.785. 
b) Find the probability density function for the area of the circle. Find the expected 
value for this area. 

Exercise 2.4 A continuous random variable X has the probability density function 

1/3 if - 2 < x < - 1  
k if 1 < x < 4 
0 otherwise. 

a) Find the value of k. 
b) Find the cumulative probability function of X. 
c) Find the expected value for X. 
d) Let Y = X 2  + 2 find the cumulative probability fiinction of Y and its expected 
value. 

Exercise 2.5  The purity I.’ of each batch of a certain enzyme varies uniforiiily 
between 0 to 1 (i.e. 100%). Divide the interval [0,1) into n equal intervals. If 
Y falls in an interval with left end point k / n  assign this value to a new random 
variable Y,. 
a) Show the probability mass function of the random variable Y, assigns mass 1/n 
to the points k / n  for k = 0..  . . n - 1. 
b) The value (in hundreds of dollars) of a batch is determined by the purity and 
is given by V = 10 + 20Y + 4Y2. Find the expected value of Y, and of V, = 

c )  Write down the distribution function F, for Y,. 
d)  In the next chapter we will see the discrete random variable Y,, approximates 

10 + sou, + 4Y2. 
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the continuous random variable Y having distribution 

Show that F,(s) converges to F ( s )  for all s.  
e) In the next section we will show that the calculation of EV is much simpler than 
the calculation of EV, since the summation is replaced by the integral 

1 1 (10 + 209 + 49') . ldy since Y has density 1 on [0,1]. 
7J=O 

Exercise 2.6 Show Theorems 2.40 and 2.41 hold for general random variables. 

Exercise 2.7 Show, 

00 (u,=lEz) n F = u z l  (Ez  n F )  and (nzlEz) u F = ng, (E, u F )  . 

Exercisc 2.8 
independent of H2 E R2. 

If the o-algebras X ~ , ' H Z , X ~  are independent show H I  E X 1  is 

Exercise 2.9 Prove P(0) = 0. 

Exercise 2.10 Suppose you are given a list of n items to sort. The bubble sort 
starts at the bottom of the list and successively inserts item k + 1 into the list of 
the k items already sorted where k = 1,.  . . n - 1. To insert item k + 1 one must 
make comparisons starting from the bottom of the k items already sorted. When 
the proper place is found the item is inserted. We wish to describe the number of 
comparisons needed by the bubble sort so we assume all possible lists are equally 
likely. 
a) Describe an appropriate probability model for the above experiment along with 
a random variable X which describes the number of comparisons needed by the 
bubble sort. 
b) Which sample points give the largest and sniallest values of the random variable 
X .  
c) Can you write down a recursive formula for the expected value of X as a function 
of n.. What is E X ?  
d)  How would you determine the distribution of X ?  

Exercise 2.11 For any sequence of events E,, show that we can represent those 
sample points which are in an infinite number of the E,'s by n g ,  U g n  E,. We 
denote this event by lim sup E,. 

Exercise 2.12 Show that if c,"=, P(E,) < 00 then P(1imsup E,)  : 0. 
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Exercise 2.13 
F ,  show 

If N is a positive, integer valued random variable having distribution 

w 00 

E N  = C(1 - F ( k ) )  = C P ( N  2 j ) .  
k=O j=1 

Let X be a nonnegative random variable and let Exercise 2.14 

X i f X < k  
k i f X > k ,  

XI, = min{X, k }  = 

where k is a given constant. Express the expectation E [ X k ]  in terms of the cumu- 
lative distribution function F ( z )  = P T { X  5 x} 

Exercise 2.15 If X has expectation px, show E ( X J X  > s )  2 , L L ~  and E ( X J X  < 
s )  5 px for any value s.  Do it for discrete variables first. Extend to general random 
variables if you can. 

Exercise 2.16 An urn contains three chips, two marked Good and one marked 
Bad. Players A and B take turns drawing one chip from the urn, that chip being 
returned to the urn before the next player draws. The winner of the game is the 
first player to draw a chip marked Good. The game continues until someone wins. 
If A draws first, what is his/her probability of winning? 

Exercise 2.17 The emergency control circuits on an aircraft are so vital that 
redundant components are installed to  minimize the chance of catastrophic failure. 
One circuit has two components. The first components has a main A1 and an 
alternate A2 in case of failure. The second component has a main B1 and an 
alternate B2. The circuit will fail only if both A1 and A2 or both B1 and B2 have 
failed. After an emergency use of this circuit all the components of the emergency 
control circuit is replaced. The times until failure of each of A1 or A2 during an 
emergency are described by an exponential distribution with mean 4 hours. The 
times until failure of each of B1 and B2 are described by a normal with mean 6 
hours and standard deviation 1 hour (for the moment we don’t care what a normal 
distribution is as long as it can be simulated by Minitab or some other statistical 
package). Describe how to use a Minitab simulation to calculate the probability the 
emergency control circuit will not fail during a 10 hour emergency. 

Exercise 2.18 Suppose Yl, Yz, . . . , Y, are independent identically distributed ran- 
dom variables. Suppose that U l ,  Uz, , U, is a sequence of independent identically 
distributed uniform random variables independent of the Y’s. Let N ( k )  denote the 
index of the kth largest U ;  i.e. it might be that U, is the smallest of all the U’s so 
N ( 1 )  = 3.  Prove that Y N ( ~ ) ,  Y N ( ~ ) ,  . . . , Y N ( 7 1 )  is a sequence of independent, random 
variables with tlie same distribution as Yl, Y2, . . . , Y,. 

Exercise 2.19 A multiple choice examination has fifteen questions, each with five 
possible mswers, only one of which is correct. Suppose that one of tlie students 
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taking the examination must answer each question with a complete guess. What is 
the probability the student gets no questions right? 

Exercise 2.20 Kits of resistances used for making a certain circuit board are 
produced by factories A and B. We buy 40% of our kits from A and 60% from B. 
The percentage of defective resistances from factory A is 5% and from B is 2%. A 
board is picked at  random and two resistances are tested. The first resistance is 
good; so what is the probability these resistanccs came in a kit from factory A? 

Exercise 2.21 The air rescue service of the armed forces divides the flight path 
of a downed plane into search sectors. In one mission a search plane will overfly 
cvery square kilometer of the designated sector. From past experience one knows 
however that in one mission there is only a 50% chance of spotting a plane down 
in a sector of tundra. There is a 40% chance of spotting a plane down in a forested 
sector and a 15% chance of spotting a plane down in a lake sector. 

0 A small plme is down in an area containing two sectors of tundra, one lake 
sector and one forested sector and a priori the plane has an equal chance 
of being down in any one of the four sectors. The mission director decides 
to use the first two missions to successively search the sectors of tundra. 
What is his chance of spotting the downed plane? 

0 The first two missions have failed. Calculate the (a posteriori) probability 
the plane is 
- in each of the tundra sectors? 
- in the forest sector? 
- in the lake sector? 

0 Where should the mission director send the third search mission to niaxi- 
mize the probability of finding the downed plane? 

Exercise 2.22 A disease progresses through two stages - a latent stage and an 
active stage. If this disease is present in the latent stage, a diagnostic test yields a 
positive result with 50% probability. If this disease is present in the active stage, 
this diagnostic test yields a positive result with 90% probability. The test is always 
negative if the discme is not present in the patient. We know that 4% of the 
population is afflicted with the latent form of this disease, and that 1% of the 
population has the active form of the disease. If a patient takes the test and has a 
positive result, what is the conditional probability that the patient has the active 
form of the disease? 

Exercise 2.23 
sufficiently large then P(lSnxl > D )  > 0. 

Exercise 2.24 Two players, Mr. Jones and A h .  Smith are playing a trick shot in 
the pool room. Mr. Jones starts and has probability PJ of making the shot. If he 
fails Mr. Smith takes over. Mr. Smith has probability Ps of making the shot and 
if he fails Mr. Jones takes over again. Calculate the probability that Mr. Jones is 

In Example 2.78, use Chebyshev’s Lemma to show that if m is 



Modellzng a Stoclrastrc Process 6 9 

the winner under each of the following scenarios. 
a) The winner is the first to make three trick shots in a row. 
b) The winner is the first to make a total of three trick shots 

For the first question one should define the probability V that Jones wins and then 
write a recursive expression for V. The second question is trickier. Define a function 
V ( k ,  7n) to be the probability that Jones wins given that Jones has the cue and that 
Jones now needs k trick shots while Smith needs m trick shots to win. Similarly 
define the function U ( k , m )  as the probability that Jones wins given that Smith 
has the cue and Jones needs k trick shots to win and Smith needs m. Now write a 
recursion for these functions. The recursion can be solved for V(3,3)  by hand but 
it is interesting to program this into Mathematica. 

V [O ,m-l=l U[k-, 01 =O 
V[k-,m-l :=V[k,ml =(l-(l-PJ) (1-PS)) - G l )  

U[k- ,m-1 : =U [k,ml =(l- (1-PS) (1-PJ) )-{-ll 

Simplify [V [3,311 

(PJ V[k-l,ml+(l-PJ) PS U[k,m-l]) 

(PS U[k,m-l]+(l-PS) PJ V[k-l,rn]) 

{(PJA3*(-PJ-2 - 5*PJ*PS + 5*PJe2*PS - 10*PS-2 + 
20*PJ*PSA2 - 1O*PJ-2*PS-2 + 12*PS-3 - 
21*PJ*PS-3 + 9*PJn2*PS-3 - 3*PS-4 + 
6*PJ*PS-4 - 3*PJ^2*PS^4))/(-PJ - PS + PJ*PS)-5} 

Exercise 2.25 Mr. Jones has two favorite chocolate shops. One is uptown: one 
is downtown. Hunger strikes randomly at any time, day or night, and Jones jumps 
on the first bus going uptown or downtown. Uptown and downtown buses come at 
a rate of 5 per hour but over time, Mr. Jones finds he visits the uptown shop three 
times as often as the downtown shop. Dcscribe a scenario which would account for 
this. 

Exercise 2.26 In Example 2.64, we suppose the time N is the first time n the 
service requirement Y, exceeds q at which t h e  the server quits from overwork! 
Show N is a stopping time which is dependent on F, the a-algebra generated by 
the service time@ Yl,  Yz,. . . . Nevertheless, show the expected total service time ET 
is still E N  . EY . 

Exercise 2.27 Consider the random walk whose step p.1n.f. is 
2:  -1 1 

f(x): ; ; 
like that discussed in Example 2.78. Write down a recursion relation like (5.10) 
for m(z)  = ET,  the expected time until the upper or lower boundary is reached, 
starting with a fortune 2 .  Find m ( x ) .  

Exercise 2.28 
p.m.f. is 

Generalize the results in Example 2.78 to the case when the step 
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X: -1 1 
f(.): 1 - P  P 

Exercise 2.29 
given in Exercise 2.28. 

Exercise 2.30 Somebody offers to pay you in dollars the sum of the values you 
roll with one die but each roll cost 3.50. You know the expected value of this game 
is zcro but suppose you decide to using the following martingale (a martingale is 
simply a gambling strategy but to a mathematician the word means a fair game). 
You will play the game until you roll a six and then stop with this last big payoff. 
Show that your expected return is still zero. 

Exercise 2.31 Somebody offers to pay you in dollars the average of the values you 
roll with one die but playing the game has a one time cost of 3.50. You know the 
expected value of this game is zero if you roll a fixed number of times. Can you 
give a gambling strategy that has a positive expected value? 

Generalize Exercise 2.27 to the case when the step p.m.f. is as 
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Variables and Limit Theorems 

3.1 Discrete Random Variables 

Let us suppose each independent observation of a stochastic process is a Bernoulli 
trial and hence can be classified as success or failure; true or false; heads or tails; 
1 or 0. Consider the packet storage example in Chapter 1 which is equivalent to 
drawing at random with replacement from a box containing three pennies, four 
nickels and a dime. Suppose drawing a dime (or getting a 10 kilobit packet) is 
considered a success while anything else is a failure. To model this sequence of 
n independent, identically distributed Bernoulli trials we define the product space 
0 = {pllp2,p3,n1, n2,n3,n4,d),. Let {Xi):==, be a sequence of random variables 
such that Xi(w) = 1 if the iLh packet associated with the sample point w E s1 is 
d ;  Xi(w) = 0 otherwise. .Fn = o ( X l , X z , .  . . ,X,)  and P is the equiprobability 
measure so the marginal distributions are P ( X i  = 1) = 1 - P ( X i  = 0) = p = 1/8. 

Another example is the model for flipping a coin in Example 2.3. There we saw 
that to model a sequence of n independent, identically distributed Bernoulli trials 
we define the product space s1 = (0, l}” on which the coordinate functions {X,}:=, 
are defined. .F, = a ( X I ,  X z ,  . . . , X,) and P is the product measure having marginal 
distributions P ( X i  = 1) = 1 - P ( X i  = 0) = p .  

Generally we are interested in the number of successes in n Bernoulli trials and 
this is modelled by B, = XI + X 2  + .  . . + X,. Clearly RB, = (0,. . . , n}. Moreover 

{ B ,  = k }  = ((21,. . . , z,)l exactly k of the xi’s are ones}. 

By counting when P is the equiprobability measure or using the product measure 
as in Example 2.33; P(X1 = zl, . . . , X ,  = z,) = p’(1 - p)”-’ for any sequence of 
z’s with exactly k 1’s. Moreover the number of different sequences of 0’s and 1’s 

with exactly k 1’s is ( y  ) .  Hence, 

It follows that B, is a Binomial random variable by the following definition. 

71 
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Definition 3.1 
bility mass function: 

A Binomial random variable with pararnetcrs (n,p) has a proba- 

for k E ( 0 , .  . . , n} .  

In siimniary then, a Binomial random variable is the number of successes in n in- 
dependent? identically distributed random trials, each having probability of succcss 
p .  Since a Binomial random variable is a slim of independent Bernoulli random 
variables it is a, simple calculation to verify that the expectation of B, is rip and 
the variance of B, is np( 1 ~ p ) .  

Example 3.2 
If the 5 input trunk lines to the ATM niultiplexor are independent and each has 
probability p of having a cell at  time [t] then A,,,], the number of arrivals at  time [t] ,  
is a Binomial random variable with n = 5. Consequently the mean number of cells 
arriving at  the switch per time unit is 5p.  A maximum of one cell is transmitted 
per time unit. Hence we must have 51, < 1 or else the queue will gradually fill up 
with more and more cells. The time until the switch is overloaded is an important 
design characteristic which we shall study later. 

ATM networks - (2.5) continued 

Example 3.3 No-shows 
A typical application of the Binomial distribution involves the planned overbooking 
of seats on a business flight. Suppose a plane has 180 seats but past experience 
has shown that ten percent of thc customcrs with rescrvations are “no-shows”; that 
is they don’t show up to check in at flight time. Let us suppose that on a certain 
airline, it is common practice to accept more than 180 reservations in order to avoid 
losing revenue. On the other hand the number of reservations should be limited to 
ensure that the probability of actually leaving behind a dissatisfied customer with 
a reservation is less than one percent. How many reservations may be taken? 

If we suppose that n rcservations are t,aken, it is reasonable to regard the event 
that a customer turns up as a Bernoulli trial with probability p = 0.9 of success. The 
independericc of the trials is somewhat dubious ~ what if a family was travelling 
together? ~ but we shall assume independence. The total number to show up 
may then be represented by a Binomial random variable B,, and the probability 
of leaving at  least one dissatisfied customer on the ground is P(B,  > 180). This 
number is given by 

2 (;) (0.9)yO.l),-k 
k=181 

At this point a short computer program will churn through increasing n 2 180 
until we find the first unacceptable n + 1 such that P(B,+1 > 180) > 0.01. The 
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0.008: 

0.006- 

value n. is the largest feasible number of reservations to be taken and in fact n = 190. 
That number can be determined by using Muthemntica as in Figure 3.1. 

f ac C0-l : =f ac [Ol=1 
f ac [n-1 : =f ac Cnl =n f ac Cn-11 
binom [n- , k-] : =binom [n, k] =f ac [n] / (f ac [kl f ac En-kl 
unhappy[n-] :=Sum[binom[n,k] 0.9-k O.l^(n-k) ,Ik,l8l,n>l 
Listplot [Table [Cn,unhappy En1 1 ,  Cn, 181,191~11 

i 0.012 

0.004 

0.002 , _ , , I  . , , ; ,  - , , ,  , 

184 186 188 190 

Fig. 3.1 The probability of stranding a customer 

Example 3.4 
In Section 1.3 we saw how to implement MIL-STD-l05D, a sampling plan designed 
to assure a desired level of quality from a producer. We now calculate the OC- 
curvc associated with a simple sampling plan. One of the major problems in quality 
control is cost of inspection. When items (like screws or bullets) arrive in lots of 
size N it is often impractical to test if each item is defective or nondefective. When 
the testing is destructive, as in the case of bullets, 100% inspcction is obviously 
impossible. The simplest sampling plan is to select n (say 20) iterns at raridoni 
from the lot and inspect these. If the number of defects D is less than or equal to 
the acceptance number c (say 6) then we accept the lot (but we replace or throw 
away the defectives we did find). If the number of defectives found in the sample is 
greater than c, then we reject the whole lot and send it back to the manufacturer. 

To evaluate such a plan we suppose the proportion of defectives in the lot is p .  
Since iterns are chosen at random, if we put imaginary numbers on the itenis we 
must choose combinations of n different items from N .  The number of ways that 

Lot-by-lot sampling inspection by attributes 
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D = k is the number of ways of selecting k from N p  and n - k from N - Np. Hence 

as N + 00 (this is left as an exercise). Hence if N is large enough (but p is fixed), 
the distribution of D is approximately binomial. 

oc[p-,n-,c-] :=Sum[Binomial[n,kl p-k (l-p)-(n-k) ,(k,O,c)l 
Plot [oc [p, 20,61 , Cp, 0,111 

I 0.2 0.4 0.6 0.8 1 

Fig. 3.2 The OC curve with n = 20, c = 6. 

To describe the sampling plan we define the operating characteristic (OC) curve 
as OC(p)  = P ( D  5 clp); that is the probability of acceptance as a function of the 
lot quality. The OC curve is given in Figure 3.2 and with it we can evaluate if the 
inspection plan protects us sufficiently against poor quality. This plan, for instance, 
will let lots with 40% defectives go through 20% of the time. 

Legend has it that a soldier was ordered to test a lot of shells using a similar 
sampling plan. His first 7 shells were defective! He therefore asked if he really had 
to fire off the other 13 from the sample. Logically he should stop his testing at  
this point arid reject the lot. This could have been the birth of sequential sampling 
methods where the sample size depends on the results of the preceding observations. 
Naturally the soldier was ordered to fire off all 20 shells. 

One mustn't take this anecdote too seriously because many of the quality assur- 
ance plans developed by the military are still used today! 
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Another common random variable counts the number of independent, identically 
distributed Bernoulli trials required to obtain a first success. Suppose we wish to 
describe the number of packets coming to the packet storage node depicted in 
Chapter 1 between successive arrivals of 10 kilobit packets. A packet is a "success" 
(10 kilobits) with probability p = 1/8 and a failure otherwise. Imagine any infinite 
sequence of packet arrivals, denoted by w E R,  where 

R = (xl,x2,. . .) : zi E C where C := {pl,p2,p3, nl, n2,n3,n4, d } .  

We set Xi(w) = 1 if the it" packet is d which represents 10 kilobits and Xi(w) = 0 
otherwise. By 
counting, P(T = k )  = (1 - p)"-lp. 

A more explicit model is given in Example 2.33. The model for such an infinite 
sequence of Bernoulli trials is given by R = (0, 1} x {0,1} x . . . upon which we 
define the coordinate functions {Xk}r=l. Also .Fn = a(Xl,Xz,.  . . ,Xn , )  and P is 
the product measure on F, the smallest a-algebra containing all the 3%'~ where P 
gives marginal distributions P ( X i  = 1) = 1 ~ P ( X i  = 0) = p .  As in Example 2.24 
we define T ( w )  = k if w = (x1,z2,. . . , xk-1,1,. . .) where xi = 0 for i = 1,. . . , k -  1. 
It follows that T has a geometric distribution: 

Definition 3.5 

Define T ( w )  = k if X,(w) = 0, .  . . ,Xk-l(w) = O , X k ( w )  z 1. 

A random variable T is called geometric if 

for k E 'RT = {1,2 , .  . .}. 

If T is geometric then P(T > z + y lT  > z) = P(T > y) .  This curious property 
called memorylessness. and it follows immediately from the fact that 

k P(T > k )  = P(X1  = 0,. . . ,XI ,  = 0) = (1 - p )  

We can appreciate the irony of using the geometric distribution to describe the 
duration of telephone calls. Even given the fact that a caller has already spoken 
for 5 seconds, the probability he (or she) will speak at least 7~ seconds more is 
still P(Y > y).  It is as if the first z seconds are forgotten since this is the initial 
probability of speaking at least y seconds! 

Example 3.6 
One might consider the number of failures required to obtain T successes. Clearly 
the number of trials until the first success is a geometric random variable TI. After 
this first success the number of independent trials until the second success is another 
identically distributed random variable T2. Continuing in this way it is easy to see 
that the number of failures required before obtaining T successes may be represented 
by C,'=, Ti - 'r. 

Time until r successes 
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The independence of the infinite sequence {Ti; i = 1 ,2 ,  . . .} follows since {Ti; i = 

1 , 2 , .  . . n} are independent for any n and this is true because 

P(T1 = t l ,  Tz = t2,. . . Tn = tn )  

= P(X1 = 0 , .  . . ,X(t1-1) = 0,xt, = l , x ( t l + q  = 0 , .  . . , 
' ..X(tl+tz-l) = 0,X(t,+tZ) = 1, .  . . ,X(tl+...+t,_l+l) = 0 , .  . . 
. . . > X(tl+...+tn-l) = 0, X(,,+ ...+,,) = 1) 

= P(X1 = 0, .  . . , X @ - l )  = 0, xt, = 1) 

.P(X(t,+l) = 0,. . . 3 X(tl+tz-l) = 0, X(tl+t2) = 1) 

' ' ' P(X(t1+.-+tn-,+l) = 0, .  ' ' 1 X(t,+ ...+t,- 1) = 0, X(,,+ ...+,,) = 1) 
= P(T1 = tl)P(T2 = t z )  . . . P(T2 = t z ) .  

On the other hand it is clear that the probability that k failures occur before 
the rth success is given by the probability that the ( k  + T ) ~ ~  trial is a success and 
exactly k of the preceding k + T - 1 trials are failures. Hence 

T 

P ( C T 2  = k + r )  = ( /c + ; - 1) p T (  1 - p ) k .  
i=l 

This is an example of the Pascal distribution listed in the table at the end of this 
chapter. 

The Poisson is another ubiquitous discrete distribution. 

Definition 3.7 
X ifpN(k) = e- 'Xk /k !  for Ic E RN = (0, I , .  . .}. 

We say a random variable N has a Poisson distribution with rate 

It is left to Exercise 3.11 to show the expected value and the variance of N are both 
A. 

3.2 Continuous Random Variables 

While we emphasize that, from a practical point of view, only discrete distributions 
are necessary, nevertheless computational simplifications sometimes follow when we 
make continuous approximations. The distribution function F of a discrete random 
variable is a step function with jumps determined by the probability mass function. 
Hence if f is the p.m.f. corresponding to F then F jumps up an amount f ( z )  at 
the point z. A continuous distribution function F ( t )  may have no jumps. It is just 
a continuous nondecreasing function which tends to 0 as t + 00 and to 1 as t + 00. 

The simplest example is the uniform distribution. 
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Definition 3.8 The distribution F defined by 

0 for t < 0 
t for 0 < t 5 1 { 1 for t > 1. 

F ( t )  = 

is called the continuous uniform distribution on [O, 11. A random variable X with 
such a distribution is said to be uniformly distributed on [O, 11. 

Definition 3.9 We say a sequence of random variables {X,} converges in distri- 
bution as 77 --f 00 if FT,(t) = F x ,  ( t )  i F ( t )  at each point t such that F is continuous 
at t .  Convergence in distribution is denoted F, +. E.  

Consider a discrete uniform random variable X, on [0,1]; that is 

for k = 1,. . . , q. Fx, ( t )  measures the probability of points { (5) ;  ( e )  5 t }  so 

0 for t 5 0 
rC-1 for a 5 t < L 1 for t > 1. 

Fx,,(t)  = where k = 1, .  . . , q  
7 71 

As 7 + 00 we see Fx, (t> + F ( t )  at all points t where F is the uniform distribution 
on [0,1] defined in Definition 3.8. Consequently we have that F, + F .  

The condition that F,(t) + F ( t )  at each point 1,  such that F is continuous at 
t ,  is just a technical nuisance. Consider for instance a sequence of discrete random 
variables X,, with distributions F,, such that P ( X ,  = 0) = 1/2 = P ( X ,  = l + l / q ) .  
As q --j 00 it is clear this sequence converges in distribution to the discrete Bernoulli 
random variable with distribution F ,  such that P ( X  = 0) = P ( X  = 1) = l/2. 
However, P,(1) = l/2 and this does not converge to F(1) .  Nevertheless, since 1 is 
not a point of continuity of F ,  this doesn’t matter. 

Next we consider the continuous approximation to the random variables T,/q 
where T, is a geometric random variable with p = $. Clearly for t 2 0 

Tv P(-  5 t )  = 1 - P(T, > tq )  
rl 

where, in general, [ s ] ~  denotes the greatest integer in s.  As rl -+ 00 the above 
expression tends to 1 - exp(-At) (see Exercise 3.10). 

Definition 3.10 FT is an exponential distribution with parameter X if 
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A random variable T with distribution FT is called an exponential. 

Consequently we have shown FT,17 + FT when FT is exponential with parameter 
X and we may say the random variable TV/q is approximately exponential. 

Most computer languages provide functions like random in Pascal which gen- 
erate pseudo-random uniform variables on [0,1]. Each pseudo-random uniform has 
a discrete uniform distribution which is approximately a continuous uniform as 
above. A series of pseudo-random numbers generated by such a function will pass 
most statistical tests for a sample of i.i.d. uniform random variables. To generate a 
discrete random variable having probability mass function p(x) for z E R where R 
is finite we need only divide up [0,1] into intervals of length p(x), one interval for 
each z E R. Now assign a value x to a random variable X if the pseudo-random 
number falls in the corresponding interval of length p ( z ) .  This happens with a 
probability equal to the length of the interval since the pseudo-random number is 
uniform on [0,1]; that is X takes the value x with probability p ( z )  as required. 

This approach collapses when we consider the problem of simulating a random 
variable such as the above approximately exponential TV/q. There are simply too 
many tiny intervals to consider. It is better to simply generate an exponential 
random variable T. We first generate a pseudo-random uniform U then set T = 

( - l / A )  log U .  T is clearly nonnegative since 0 5 U 5 1 and nioreover for t 2 0 

1 
x P(T 5 t )  = P(-- logU 5 t )  

= P(U 2 e-") 
- - 1 - ,-At 

using the uniform distribution of U .  The extension of this method of simulation to 
general continuous distributions is given as Exercise 3.3. 

The chief application of convergence in distribution is the central limit theorem. 

L e t  X 1 , .  . . , X ,  be independent ,  identically distributed r a n d o m  Theorem 3.11 
variables w i th  c o m m o n  m e a n  p and c o m m o n  variance 02 .  T h e n  lett ing 

we  have Fz, + Fz where FZ is a standard normal  distribution having m e a n  0 and 
variance 1; t ha t  is 

Definition 3.12 If a random variable X has a distribution FX such that 
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for -cc < t < 00 then X is called a normal random variable with expectation p 
and variance g'. If a random variable Z is normal and p = 0 and o = 1 as in the 
above Theorem 3.11 then 2 is called a standard normal. 

By a simple change of variable in the above integral it is easy to check that X has 
the same distribution as p + aZ.  In other words, to simulate a general normal 
random variable it suffices to expand by a factor 

Example 3.13 
Let XI, be a Bernoulli random variable which takes the value 1 if the kth customer 
shows up and 0 otherwise. We shall assume as before the X k ' s  arc i.i.d. with mean 
p = .9 and variance p(l  - p )  = .09. Hence 

and translate by the mean IL. 

No-shows - (3.3) continued 

n 

P(B,  > 180) = P ( C X k  > 180) 
k = l  

1 .3& 
180 - 0.9n 

= P(2 ,  > 

using the central limit theorem. Now the 9gth percentile of the standard normal 
distribution is given in tables to be 2.33; that is P(Z > 2.33)  = .01. Hence take 

180 - 0.9n 2 2.33. 
.3fi 

Letting 2 = fi and solving the resulting quadratic equation we get x 5 13.77; that 
is n 5 189.3. Hence we must take n = 189 which is not quite right since the exact 
calculation gave 190. The central limit theorem is an asymptotic result which only 
gives approximate results for moderate n. 

The continuous distributions we shall deal with all have densities 

Definition 3.14 If the distribution function, F x ,  of a random variable X is given 
by 

1 

F x ( t )  = lm f ( x ) d z  

we say X has a density. These integrals involving densities are assumed to be Rie- 
mann integrals and we usually deal with densities which are piecewise continuous. 

In particular the density of the standard normal distribution is f z ( z )  = 

2 exp(-z2/2). Other densities are listed in the table at the end of this chap- Jz;; 
ter. 
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Fig. 3.3 Fx( t )  is the area under the density left of t 

If a random variable X has a distribution with density f then we may connect 
the definition of expectation described in Definition 2.65 with standard Riemann 
integrals. 

Theorem 3.15 (The Law of the Unconscious Statistician) 
Suppose X is a continuous random variable whose distribution has density f. Sup- 
pose,  moreover, that h is a piecewise continuous function on the line. Then, if 
J-", lh(z)lf(z)dz < 00, 

00 

E h ( X )  = h(z)f(z)dz. L 
Proof: For simplicity assume h is nonnegative. Let y = F ( z )  and let h(y)  := 
h o F-' (y). B y  the change of variable formula for Riemann integrals 

Let U := F ( X )  so U is  uniform on [0, I] and E h ( X )  = Ek(U). Now by dcfinition, 

n k - 1  1 
= lim EX(- 
= 1 k(y)dy by the definition of n Riemann integral. 

n i c x  n ); k=1 
1 

Putting these results together establishes the theorem. 
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Using the Law of the Unconscious Statistician we see continuous mndom vari- 
ables may be described in the same way we described discrete random variables. If 
X has density f we may calculate the mean value, px := E X  = z f ( z ) d x  and the 
variance, 0: := E ( X  - p x ) 2  = J(z - p)2f(z)dz.  

We shall not attempt a general description of jointly varying random variables 
which are not discrete. In particular we will avoid conditional probabilities for these 
variables. Nevertheless, we can easily describe the joint behavior of independent 
random variables X = ( X I ,  X 2 , .  . . , X,) with densities fx , ,  fx,, . . . , fx,. The joint 
distribution is defined for any point ( t l ,  t2, . . . , t,) E R" by 

4 

Fg(tl,t2Y'>GL) 
= P(X1 I t l ,  X', 5 t 2 , .  . . , X ,  5 t,) 
= P(X1 5 tl)P(X2 5 t 2 ) .  . . P ( X ,  5 t,) by independence 

t l  t 2  
- fx, (z l )dzl  . Lm fx, (22)dzz.. . l; f x ,  (z1)dzn. 
- L,  

Thus we see the joint distribution may be expressed as the multiple integral of a 
density function, fz ,  which is simply the product of the marginal densities fx ,  . 
fx, " . fx , .  If we retrace the steps in the proof of the Law of the Unconscious 
Statistician we get the following extension. 

Corollary 3.16 Suppose ( X I ,  X2,. . . , X,) are independent continuous random 
variables whose distributions h.ave density f .  Let h, be a piecewise continuous func- 
tion on 72%. If 

J-, J-, 

then 

E h ( 2 )  = /- . . . h(Xl,Z2,. . . , z,)fx, (21) ' ' ' f x ,  (Zl)dZl ' .  ' dz,. 
-oo 

Example 3.17 John Von Neumann proposed the following acceptance rejection 
method for generating pseudo-random numbers. Suppose we wish to generate a ran- 
dom variable X having a density f x  (x). Suppose we can easily generate independent 
pseudo-random variables U and Y where IJ is uniform on (0 , l )  and Y has density 
h~~(x);x E I .  Finally suppose C 2 1 is a constant such that f x ( z )  = Chy(z)g(z )  
where 0 < g(z) 5 1. We now generate U and Y and test if U 5 g(1'). If so we 
accept the value and set X = Y; if not we reject the value and we generate another 
independent pair U ,  Y and try again. Using Corollary 3.16 we show in Exercise 
3.25 that X does indeed have density f! We could, as a special case, set Y to be 
pseudo-uniform on I so g is simply a multiple of f .  It is not very efficient however 
since the number of trials before we get an acceptance has a large expected value. 
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3.3 Generating Functions 

Definition 3.18 
is 

The moment generating function $x, of a random variable X ,  

eSkppx(Ic) if X is discrete 
e s z f x ( x )  dx if X is continuous 

q5x(s) := EeSX = { ffRx 
The probability generating function or z-transform $x, is sometimes useful for 
integer valued random variables: For z > 0 

00 

+ x ( ~ )  := E Z ~  = C z k p p X ( k )  = $x(In(z)). 
k=O 

The probability generating function is aptly named and we note that $x (1) = 1. 
The moment generating function derives its name from the following theorem. 

Theorem 3.19 I f41xl(s)  < 00 for -SO < s < S O  for some SO > 0 then 

Hence the moment generating function dx has derivatives of all orders at s = 0 
and 

dk  
- d x ( s )  ls=o= E (Xk). dsk  

Proof: By definition 

xk 
n'm Ic! e s x  = lim C -sk. 

k=O 

Taking the expectation of both sides yields the result, although passing the expec- 
tation through the limit requires the Dominated Convergence Theorem 9.7. 

Example 3.20 
ment generating function of X is 

Consider a Poisson random variable X having rate A. The mo- 

= exp(A(es - I)). 

Similarly + ( z )  = exp(A(z - I)). Since X is positive it is clear $lxl(s) < 00 for all s. 
Hence, taking the first derivative we see 

d 
E X  = -q5x( ds 3 )  Is=o= A.  
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Example 3.21 For the standa.rd normal 2: 

where we used a change of variable 

since exp(-uz/2)/(&) is a density. Sirice a nornial random variable with mean 
p and variance u2 may be represented by 1-1 + a2 where 2 is a standard normal it 
follows that d X ( s )  = exp(sp + s2a2/2) .  

One major advantage of the moment generating function is that it completely char- 
acterizes the distribution function: 

Theorem 3.22 If two random variables have the same moment generating func- 
tion 4 such that $(s) < 00 for -so < s < S O  for some S O  > 0 then the two variables 
h a w  the same distribution,. 

The proof is beyond the scope of this book. On the other hand, if two nonnegative, 
int,eger valued random variables have the sa.mo probability generating function hav- 
ing a positive radius of convergence around 0 then by the uniqueness of the power 
series expansion, the two random variables have the same p.m.f. 

Now consider a sequence of independent random variables XI, . . . , X, and de- 
note the sum by S. The moment generating function of S is given by 

4s(s)  = Eexp(s(X1+ . . . + X,)) 
n 

This follows since for each k ,  exp(sXk) is measurable with respect to o ( X k )  which 
are independent by hypothesis and consequently the expectation of the product is 
the product of the expectations using Proposition 2.57. By the same reasoning, 
the probability generating function of a sum of independent, integer valued random 
variables is the product of the probability generating functions of the summands. 

Example 3.23 If we now consider the sum of n independent Poisson random 
variables X1, . . . , X n  having rates XI, . . . , A, then by the above result the sum S has 
a probability generating function given by the product of the probability generating 
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functions. Hence 
n n, 

~ s ( z )  = n exp(Xk(z - 1)) = e x p ( C  ~ k ( z  - 1 ) )  
k=l k=l 

This probability generating function has a positive (in fact infinite) radius of con- 
vergence so it completely identifies the distribution of s. Inspection reveals however 
that the above probability generating function is precisely that of a Poisson random 
variable having rate C:=, Xk. We conclude that the sum of independent Poisson 
random variables is again a Poisson random variable. 

Example 3.24 
Consider independent, identically distributed Bernoulli trials X I ,  X z ,  . . . each hav- 
ing probability p of success. Let T represent the number of tries until we obtain 
T successes in a row. The problem is to calculate the moment generating function 
for T. Let N represent the number of tries until the first failure. Clearly N is a 
geometric random variable such that P ( N  = k )  = ~ " ' ( 1  - p ) .  

Throw r heads in a row 

Using conditional expectations, 

Eexp(sT) = E (E(exp(sT)lN)). 

However E(exp(sT)IN = k )  = exp(sr) if k 2 T + 1. Moreover if N = k 5 T then 
the first k tries have been wasted and clearly 

E(exp(sT)IN = k )  = Eexp(s(T + k ) ) .  (3.1) 

To be more precise we have 

E(exp(sT)X{N = k } )  = E(exp(s(k + T'))x{N = k } )  

where TI is the first time T successes in a row occur with time starting from trial 
k + 1. Since the event { N  = k }  is independent of T' it follows that 

E(esTX{N = IC}) = e s k ~ ( e S T '  ) P ( N  = k )  = eS"(e"T)P(N = k )  

since T and T' clearly have the same distribution. Now divide both sides of the 
above by P ( N  = k )  and using Proposition 2.47 we get (3.1). 

Now we can calculate: 
r M 

f' k = l  

1 - p ( 1  - (pes) ' )peS 
= E(e"T)- + esrpT.  

P 1 - pe" 



Variables and Limit Theorems 85 

Now solving for E exp sT which is on both sides of the above equation and simpli- 
fying we get 

This somewhat formidable expression can now be used to calculate the moments 
of T .  Taking derivatives gives 

It is also instructive to remark that by taking z es the above expression becomes 

Hence, expanding this rational function out in a power series in x, we can identify 
the coefficients p ~ ( k )  of the term in xk. This can be accomplished by remembering 
that 1/(1- y) = 1 + y + y2 +.  . . . Letting g = (z - (1 - p)p'z '+l)  and substituting 
we can expand this to whatever power we wish (it would help to use Mathemat i ca  
though). For example the coefficient of ~7.' is pr  which corresponds to  the probability 
of immediately having T successes. 

3.4 Law of Large Numbers 

Another fundamental result is the law of large numbers 

Theorem 3.25 (Law of large numbers) L e t  {X ,}  be independent ,  identically 
distributed r a n d o m  variables having c o m m o n  m e a n  p x .  Define the  partial  sums 

S, = X I  + . . . + X,. T h e n  with probability one  

n-cc n n+wn 
k=l 

This is a mathematically pleasing result which as stated is not very practical. 
First of all to make sense of this result one must construct a probability space 
(0, F, P }  and then an inf ini te  sequence of i.i.d. random variables with a given 
distribution. Next one must realize that for w chosen from a set of probability 1, 
the average of the partial sums x n ( w )  := Sn(w)/n does converge to ,UX but without 
a rate of convergence we don't know how big n should be to ensure S,(w)/n stays 
within t of p x .  This is particularly unsettling because in principle n depends on w !  
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It is perhaps more instructive to state a result that provides a rate of conver- 
gence. Suppose the standard deviation of X ,  O X  is finite. For any E > 0, 

by Chebyshev’s inequality (see Theorem 2.44). Next use the fact that the variance of 
a sum of independent random variables is the sum of the variances so E ( S ,  - n ~ ) ~  = 

no$. We conclude that 

Hence, by taking n large, we can ensure that the probability x, is within E of p 
is as close to 1 as we like. This result is sometimes called the weak law of large 
numbers. 

Example 3.26 
Consider the problem of inspecting items which arrive not in lots but rather on a 
conveyor belt in a continuous flow. Each item is classified as defective or nonde- 
fective. In many cases the cost of inspecting every item is prohibitive. In the case 
of destructive testing 100% inspection is impossible. Dodge (1943) proposed the 
following continuous sampling plan called CSP-1. Start with tight inspection and 
inspect 100% of the units consecutively and continue in this manner until i items in 
succession are nondefective. At this time, as a reward, switch to reduced inspection. 
Here only one item is inspected out of segments of f items. This item is selected at 
random from the f units in the segment. If the item is nondefective continue with 
reduced inspection. If, however, the item is defective, as a punishment, switch back 
to tight inspection and continue until i nondefective items in succession are found 
again. We shall assume defective items, once discovered, are removed and replaced 
by nondefective ones. The case where such items are not replaced can be treated 
analogously. 

The performance of any continuous sampling plan may be described by two 
parameters. The first relates to the cost of sampling and is given by the AFI or 
average fraction inspected. The quality of the output is measured by the AOQL, 
which is defined as the worst average outgoing quality that will result from using a 
continuous sampling acceptance plan over a long-run period, regardless of present 
quality. These parameters are calculated under the hypothesis the process is in 
control; that is the quality of the items may be described as a sequence of i.i.d. 
Bernoulli random variables with constant parameter p denoting the probability an 
item is defective. 

Break the process into cycles where one complete cycle starts with tight inspec- 
tion, continues with reduced inspection and then stops the moment we switch back 
to tight inspection. Let N I  represent the number of items inspected until i items in 
succession are nondefective. Let M I  denote the number of segments o f f  items that 

Continuous sampling inspection by attribute 
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are subject to reduce inspection until a defective is found. The total length of the 
first cycle then is IVl + fM1 items. Similarly for the k th  cycle define the length of 
the tight inspection period to be Nk items and the number of segments subject to 
reduced inspection to be Mk. The length of the kth cycle is Nk + f h f k  items. After 
n cycles the average fraction inspected 

as n + 03 by the law of large numbers where p~ is the common expected value of 
the N's  and /AM is the common expected value of the M's. 

Define Dk(l), Dk(2) ,  . . . , Dk(Mk) to be the number of defectives missed during 
the Mk segments inspected during the reduced inspection period of the kt" cycle. 
Call = EDk(1)  for all k .  Since no defectives are missed during the tight in- 
spection period it follows that after n cycles the AOQn or average outgoing quality 
is 

again by the law of large numbers since E zz, Dk(i)  = p ~ p ~  = p ~ (  f - 1)p. 
This latter result follows from the calculation in Example 2.64 using D's instead 
of Y ' s .  We also used the fact that = (f - 1)p which follows since f - 1 items 
are left uninspected in each segment so Dl(1) is a Binomial random variable with 
parameters p and f - 1. 

The expected length of the tight inspection period was given in Example 3.24. 
Taking r = i we get 

Note that here a success is the detection of a defective which has probability p .  
The number of segments inspected during the reduced inspection period of a cycle 
is geometric with probability of success, that is detecting a defective, equal to  p so 
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1 - (1 -PIZ 

p(l--P)% P 

P ( 1 -PI +; 
A F I =  lim A F I  ~ 

11 - l - ( l -PY + 1 11-00 

and 

One may quibble that the averages should not be taken 
but rather at a sequence of times T tending to infinity. This 

at the ends of cycles 
question is addressed 

in the chapter on renewal theory so suffice it to say that the result remains the 
same. At this point the AOQL may be determined by maximizing the AOQ above 
as a function of 0 5 p 5 1. For a given value of AOQL the best procedure is the 
one which minimizes the A F I .  Tables have been constructed by Dodge and Romig 
(1959) for choosing the optimal parameters i and f .  

Example 3.27 Control charts 
In contrast to the preceding example we are concerned here with controlling the 
production process, not inspecting it. If we conclude that the process is producing 
poor quality we stop the process and make adjustments. In a sense we have changed 
our perspective from the consumer to the producer. Consider the production of 
electrical resistors. The desired resistance is specified but from past experience we 
know that there is a random variation due to impurities in the raw materials and 
small fluctuations in the production environment. These variations are essentially 
unavoidable and must be distinguished from assignable causes of variation due to 
operator error or poor quality raw materials. When these assignable or preventable 
errors occur we say the process is out of control and we must design a scheme to 
detect this anomaly and correct it as soon as possible. 

We say a sequence of quality measurements is in control if the sequence may be 
modelled by an i.i.d. sequence of random variables. The Shewhart control chart is a 
tried and true method developed by W. A. Shewhart at the Bell Labs in the 1920’s. 
Suppose the nominal value for a resistance is po = 1,000 ohms and past experience 
has shown that there is an intrinsic standard deviation in our production process of 
CT = 50 ohms. Let us suppose that n = 5 resistors are measured every ten minutes 
and denote the average of the five resistances measured at the ith inspection by 
X ,  and let the difference between the largest and smallest of these five resistances 
be denoted by Ri, the range. If the process is in control the deviations from the 
nominal value are the result of many tiny random errors with no bias; that is with 
mean 0. By the central limit theorem we would expect the sum of these errors to 
follow the normal distribution and certainly the average of five resistances should 
further reinforce this trend. Consequently the distribution of x, is approximately 

- 
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normal with mean po and standard deviation o/fi. The Shewhart 3-chart given 
in figure 3.4 consists of three control lines: the nominal value po and the 3-0 limits, 
PO - 3 a / f i  and po + 3 a / f i .  

UCL = 1067 . 
b 

*. 0. . 
b .  

e .  

. *  b 

. * .  
- - . 

. *  . CL = 1000 . 0 .  . . 
940 - 

LCL = 999 

Fig. 3.4 Z-chart 

The observed values T1 have been plotted. The values are in control up to 
observation 39 but from observation 40 on the mean is shifted to 1,020. When the 
process is in control there is a probability of 0.0026 of falling outside the control lines. 
The real out-of-control situation starting at observation 40 is not detected. The poor 
performance of the Shewhart chart in the above example should be contrasted with 
the performance of the more modern CusuIn procedure discussed in Example 5.36,  
which quickly detects the out-of-control situation after observation 40. 

An increase in standard deviation of the observations may indicate the pro- 
duction process is becoming more variable and this may be even worse than a 
systematic shift of the process mean! The r-chart is designed to detect this increase 
in the standard deviation. The values R, are plotted on the r-chart in Figure 3.5 .  
For any inspection, the difference R := z ( ~ )  - z ( ~ )  between the largest and smallest 
resistances has a distribution which only depends on n and 0 since 
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0 
25 50 75 

Fig. 3.5 r-chart. 

where Z(n)  and Z(l) are the largest and smallest of n standard normals. 
The expected value and standard deviation of Z(n) - Z(1) can be tabulated for 

each n and are usually denoted by dz and d3 by the quality control engineers. 
Therefore the mean along with the upper and lower three standard deviation limits 
of R are given by adz, a(& - 3 4 )  and a(& + 3d3) respectively. These control 
lines have been plotted on the r-chart although the lower control limit is omitted 
since it is negative. Again, an out-of-control alarm should be signalled as soon as 
an R, falls outside the control lines. This means the variability of the process has 
suddenly changed and one should determine the assignable cause of this deviation. 
In this example the range values are always in control since the standard deviation 
is constant but as luck would have it, an out-of-control alarm is signalled at  the 
45th hour (in fact a false alarm) arid the quality control team would start looking 
for the assignable cause of the error. 

There is a trade-off involved in process control. We wish to detect the out-of- 
control situat,ion as soon as possible but on the other hand we don’t want to signal 
too many false alarms! The 3-0 limits will eventually be exceeded even for a process 
in control, just by chance variability. This will generate a false alarm which will slow 
down production. In Exercise 3.26 the run length of an in-control process before a 
false alarm is shown to have a geometric distribution and the average run length 
ARL is given. When the process is out-of-control the run length is also shown to 
be geometric with a much shorter run average run length. 

One should not leave the impression that the Shewhart chart is a useless antique! 
On the contrary, it is a subtle statistical tool which is especially useful when one 
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doesn't have nominal values for p and u. Imagine the assembly line has been 
retooled. Suppose we make 250 observations in 50 blocks of n = 5 and we wish to 
decide if the production mechanism is under control. The empirical Shewhart chart 
is a good method to use. 

For block i calculate the average, - x,, of n = 5 observations. Take the average 
of these 50 x,'s and call this x. This is a good cstimate for the unknown value p .  
Next, for block 7, calculate the estimated standard deviation 

Clearly, 

Let the expectation of JcExI (Zk - z)2 / n  be denoted by c2 = cz(n) .  The quality 
control engineers have produced tables for these constants; for instance c5 = 0.8407. 
This means E6/c2 = 0.  Define 77 = (61 + i rZ + . . . + dn)/n which means a /cz  is an 
unbiased estimator of a, the unknown - standard deviation of the process. 

We can now draw the center line, x, and the 3 sigma lower and upper control 
limits, 

along with all the block averages xi. This is called the empirical Shewhart chart. 
If the process is really in control none of the block averages should fall outside 
the control limits. Moreover the control engineers have various syniptoms of loss 
of control which can quickly be identified from t,he Shewhart chart. For instance, 
an alarm would be signalled if 7 points in a row were on one side of the center 
line or if 7 successive points plot as an upward or downward trend. The control 
engineer could even detect if an operator is overcorrecting the production process 
if the control points see-saw above and below the center line. Figure 3.6 is the 
empirical Shewhart chart of 50 blocks of n = 5 observations of a normal with mean 
1000 and standard deviation u = 50. 

There are also charts to test if the standard deviation of the observations is in 
control. This amounts to plotting i'?i along with the center line at and the 3 sigma 
limits. We won't do this here because other statistical techniques are certainly bet- 
ter. Indeed the whole question of whether or not the limits should be calculated 
based on assuming the observations are normal is open to debate. The F-chart 
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Fig. 3.6 The empirical - c h a r t .  

works well because the distribution of the average already tends to be normal by 
the central limit theorem. Nevertheless the statistical significance of an alarm is 
uncertain. The control limits for the a-chart are even more problematic. More 
research is needed to provide charts which are not so heavily dependent on the 
normality assumption. 

3.5 Exercises 

Exercise 3.1 
without replacement from a large lot is approximately Binomial. 

Exercise 3.2 A random variable X has a Poisson distribution with mean A. Given 
X = n, B has a binomial distribution with parameters n and p .  
a) Using the relation Eexp(tB) = E(E(exp( tB)(X))  and the uniqueness of moment 
generating functions show that B is Poisson with mean Xp. 
b) Show that B and X - B are independent and find the conditional distribution 
of X given B = b. 

Exercisc 3.3 If F is a continuous distribution function define the inverse function 
F - l ( s )  = min{t : F ( t )  2 s} .  Let U be a pseudo-random uniform on [0,1]. Show 

Complete Example 3.4. Show that the number of defectives drawn 



Variables a n d  Limit Theorems  93 

Fp l (U)  has distribution F .  

Exercise 3.4 Show that if X is a positive random variable thcn 
03 

EX = 1 (1 - F ( z ) ) d z .  

Exercise 3.5 The lifetime of an electronic component has a density given by 

1/5000 for 0 5 LC 5 1000 hours 
'(.) = { 20000 exp(-(2 - 1000)/4000) for 2 > 1000 hours 

a) Calculate the expected lifetime of the component. 
b) What is the probability the component last longer than 3000 hours? 
c) Write down the moment generating function of this density. 
d) If I measure the lifetime of 1,000 of these components and plot a histogram will 
the histogram follow the normal curve? 
e) If I take the average of these 1,000 components what value will I obtain approx- 
imately? 
f )  Four of these components are wired into a parallel redundant system. What the 
probability at least one works after 3,000 hours. 

Exercise 3.6 
of 0.60 inches. 
histogram and calculate the average length of the pipes in this sample. 
a) Will the sample histogram will necessarily follow the normal curve? 
b) Calculate the expected value of the sample average. 
c) Calciilat,e the standard deviation of the sample average. 

Exercise 3.7 We say a random variable X with distribution F is stochastically 
larger than a random variable Y with distributioil G if for all t ,  F ( t )  5 G( t ) .  
Construct X = F p l ( U )  and Y = G-' (U)  using the same pseudo-random uniform 
U on [0,1]. Show X 2 Y and show that if u is an increasing function then Eu(Y)  5 
Eu(X) .  

Exercise 3.8 Let W be the number of white balls selected when k balls are chosen 
at random from an urn containing n white balls and m black balls. Calculate EW 
and V a r  ( W )  . 

Exercise 3.9 A company has N empIoyees who must submit a sample for drug 
testing. The N employees are divided into n groups of k people and everybody is 
sampled. The samples from the people in a group are mixed together and tested. 
If the k people in the group are free of drugs then the test for the mixture will 
be negative. If the mixture tests positive however, the remaining portion of the 
sample from each member of the group is tested individually. In this case a total 
of k + 1 tests are done. Past experience shows one should expect a proportion p of 
the employees are drug users. 

A machine cuts pipe in lengths of 40 inches with a standard deviation 
We draw the sample We take a sample of 100 pieces of pipe. 
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a) What is the probability any given group will test positive? 
b) What is thc expected number of tests done? 
c) If p is small, find the k which approximately minimizes the expectation in part 
b). 

Exercise 3.10 Note that [tq]- = tq  - b where 0 < S < 1. Use this, plus the fact 
that linis+m(l - X/S)' = exp(-X) to complete the proof that T,,/q converges in 
distribution to the exponential where T7, is the geometric with p = X/q. 

Exercise 3.11 
with rate A. 

Exercise 3.12 Let X I ,  X z ,  Xs, . , , , X, be independent normal random variables 
such that X i  has mean pi and variance cr: for i = 1 , 2 ,  ,n. Show that the sum 
S, = XI  + . . . + X ,  is a normal random variable with mean 111 + p2 + . . . + p, and 
variance of + o: + 
Exercise 3.13 A tiny circuit board must physically hold 3 components across the 
back end of the board which measures 10mni. Unfortunately the size of the compo- 
nents are highly variable. All three follow a normal distribution. The first compo- 
nent has a mean of 4mm with a standard deviation of .5mm; the second and third 
have a mean of 2mm with a standard deviation of .4mm. 
a) What is the distribution of the combined length of three components taken at 
random from their respective populations. 
b) What proportion of the circuit hoards are defective because the components were 
improperly mounted because they didn't fit? 

Exercise 3.14 Let X I ,  X z ,  X 3 ,  . . . , X, be independent random variables uniformly 
distributed on [O, 11. Show that the distribution function of the maximum, S = 

max(X1, X z , .  . . ,X,}  is F s ( t )  = t7' for 0 5 t 5 1. 

Exercise 3.15 Prove that E ( X 2 )  2 ( E ( X ) ) 2 .  In general, if 4 is a nondecreasing 
function, use the mean value theorem to show E + ( X )  2 + ( E X ) .  Now check that 
the function x2 has a nondecreasing derivative. 

Exercise 3.16 
AX and Xy-. Calculate the conditional distribution of X, given X + Y = n. 

Exercise 3.17 Let X and Y be independent exponential random variables with 
means AX and Xy. Find the distribution of min{X, Y }  and max{X, Y } ,  as well as 
the respective means and variances. 

Exercise 3.18 
X using the moment generating function. 

Exercise 3.19 
p ~ ( z ) .  Find the generating functions of X + 1 and 3 X .  

Calculate the expectation arid variance of a Poisson random variable 

Let X and Y be independent Poisson random variables with means 

Calculate all the moments of a Poisson random variable with mean 

Let X bc a ra,ndom variable with probability generating function 
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z operations: 
probability f(x): 

Exercise 3.20 Let Vk be the Probability that the number of successes in k Bernoulli 
trials is divisible by 3.  Find a recursion relation for v k  (express u k  in terms of 
' ~ k - 1 ,  vk-2,. . .) and from this find the generating function p ( z )  := Ck vkz ' .  

1 2 3 4 5  
.I .2  .2 .3 .2  

Exercise 3.21 Let X be a nonnegative random variable with distribution function 
F and let X ,  = niin{X,c} where c is a given constant. Express the expectation 
E X ,  in terms of the distribution function F .  

Exercise 3.22 Let X be a nonnegative integer-valued random variable with prob- 
ability generating function d(s) = C,"==, a,sn. After observing X ,  then perform X 
independent Bernoulli trials each having probability p of success. Let T represent 
the resulting number of successes. 
a) Determine the probability generating function of T .  
b) If X is a Poisson random variable with mean X show T is also Poisson with mean 
h. 

Exercise 3.23 100 picces arrive at a computer controlled drill each requiring a 
different number of operations. Each operation involves orienting the piece and 
placing the drill bit and takes 3 minutes. Empirical experience has shown the 
probability mass function of the number of operations is given (approximately) by 
the following table. What is the chance the batch of 100 pieces will take more than 
16 hours to process? 

Exercise 3.24 Suppose hamburger is packaged by machine into patties but due to 
the variable fat content the actual weight of a patty can be described by a normal 
random variable N ( p ,  (0.2)') where p is the desired mean weight of a patty which 
can be typed into the controls of the packaging machine. We package 50 patties 
into a carton but if the net weight of the carton is less than 200 oiinces the carton 
must be rejected. What weight p should we type into the controls to ensure that 
only 1 carton in 100 is rejected? 

Exercise 3.25 
formula: 

Show that the acceptance-rejection method works hy using Bayes' 
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However, 
1 

P(Y 5 t ;  u 5 g ( Y ) )  = J: 1 x y l t , u l g ( y )  (u, y)fy(y)dudy 

t 

= 1, d Y ) f Y ( Y ) ~ Y  

using Corollary 3.16. Calculate P ( U  5 g (Y) )  in a similar way. Now identify the 
density of F x .  

Exercise 3.26 Show that the run length of the Shewhart 3 procedure is geometric 
and calculate the expected run length, both when the process is in-control and when 
the process is out-of-control and the mean value of the process has changed to p1. 

Exercise 3.27 The number of customers entering the Price Club on a given day 
is a Poisson random variable with mean X = 2,000. The amount of money spent 
by any customer is approximately normally distributed with a mean of 110 dollars 
and a standard deviation of 20 dollars. Find the mean and standard deviation of 
the amount of money that the store takes in on a given day. 

Exercise 3.28 Stocking a remote oil drilling camp is impossible during the summer 
months except by air. During the winter an ice road can be built but this requires a 
convoy headed by a big plow to clear the snow followed by the heavy trucks (which 
may or may not fa,ll through the ice!). Past experience has shown that the fuel 
consumed by the convoy varies from kilometer to kilometer depending on snow and 
ice conditions but on average 28 liters is consumed per kilometer with a standard 
deviation of 5 liters. Suppose the return trip is 600 kilometers. Obviously if more 
fuel is carried less cargo can be hauled. On the other hand running out would be a 
rnajor embarrassment! How much fuel should be allocated at  the start of the trip 
to be 99.9% sure there is enough to make the return trip? 

Exercise 3.29 
of the rejection method. 

We can generate normal randorn variables with the following version 

(1) Generate a uniform random variable U1 on [O, 11. 
(2) Set X1 = -ln(Ul). 
(3) Next generate another independent uniform random variable Uz on [0,1]. 

If Uz 5 exp(-(X1 - l)’//a), accept X I .  Otherwise reject X1 and go back 
to step (a). 

(4) Generate a sign of plus or minus for XI with equal probability and output 
X as X1 with the resulting sign. 

a) Show that if X1 is accepted, then its density corresponds to the density of the 
absolute value of a standard normal random variable (with mean 0 and variance 1). 
b) Show that X is a standard normal random variable. 
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Discrete Distributions 

moment 
generating 

Discrete p.m.f. function mean variance 
Distribution p(x) 4(t)  

, -Ax"  
k !  Poisson 

rate X 

Geometric p(1 - p)'-' 

O < p < l  
lc = 1 , 2 , 3 , .  . 

Pascal 

,&&I) x x 
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a > 0,0  < p < 1 
k = 0 , 1 , .  . . 

q = l - p  
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Continuous Distributions 

moment 
generating 

Continuous density function mean variance 
Distribution f ( z )  4 ( t )  

(b-a)' 
12 

x 
Exponential Xe-xs A - t  

x > 0,x 2 0 

1 1 
x A 2  

- - 

oi A* - Gamma +j(xx)~-1e-Xr ~ ( A - t ) "  x 
x > O , a  > 0 
x > 0 

Uniform
overover (a,b)

Normal



Chapter 4 

The Poisson Process 

4.1 Introduction 

We describe the structure of a simple point process on the line. Consider a strictly 
increasing sequence of random variables {T{}Pxo_, defined on a probability space 
{R, F, P } .  The {TK}T=o_m represent the arrival times of certain events o_ say an 
incoming signal to a network measured in seconds before or after some fixed time 
which we take to be 0. We suppose that T f  5 0 < TT.  The sojourn times or 
interarrival times relative to 0 are denoted: 

Except for n = 0 and n = 1, the X f  represents the interarrival time betwecn the 
n - lth and the nth arrivals. X [  represents the time since the last arrival before 0, 
and Xf represents the time until the first arrival after time 0. If multiple arrivals 

Fig. 4.1 A trajectory of a simple point process 

99 
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may occur at  the same {TE}, we call this a multiple point process. We shall give a 
description of these point processes under various dependence structures. 

Throughout we shall assume that time is measured in seconds with 
nanosecond precision; hence precise to nine decimal places. The opera- 
tion of converting any time t measured in seconds to nanoseconds and 
rounding up to the next nanosecond is denoted by i!. Square brackets 
denote rounding up to the next integer but they sometimes remind US 

when a measurement is in nanoseconds. Hence t seconds converts to 
t ^ =  [qt] nanoseconds where 7 is the number of nanoseconds in a second. 

We take the point of view that no simulation or real measurenient is taken in 
smaller units than nanoseconds so there are no continuous time processes. This will 
riot preclude us froin making continuous approximations as we shall see. 

4.2 Bernoulli Point Processes 

In the time interval between [ k  - 11 and [ k ]  nanoseconds we perform an independent 
Bernoulli trial L k ,  to decide the presence (with probability p k )  or absence (with 
probability 1 ~ pk) of an arrival by the end of that interval of time. Let {?n},"=pm 
denote the arrival times generated. These times measured in seconds are denoted 
V n  >r= - m . 

Definition 4.1 
Bernoiilli trials, define 

For the point process of arrival tinies generated by independent 

Also define < N ( t )  >= E N ( t )  = ~ O < k i , 7 t l  p k .  For each t ,  N ( t )  counts the number 
of successes between time 0 and time < and is called a discrete Bernoulli process 
with compensator < N ( t )  >. If pk = p = A / q  for all k then N ( t )  is called a discrete 
homogencous Bernoulli process having rate A. 

Example 4.2 Call acceptance 
Wheii a customer dials a telephone number a signaling network called SS7 must 
decide if there is enough spare capacity to accept this new call and set up a route 
across the network. This may mean searching for a route through a sequence of 
switches right across the country. The telephone system has been designed so that 
a customer has a low probability of getting the dreaded busy signal. This means 
sufficient capacity has been installed to service the projected stochastic demand. 
Let's examinc a simple model for determining this required capacity. 

The first step is to model the incoming calls at  an access switch. Thousands 
of customers are wired to this switch and in a given nanosecond any one of those 
customers may pick up the phone t,o start a call. Let the probability of this event be 
p = X/v. Since the customers make their decision to place a call independently of 
each other it is rcasonable to assume that what happens in one nanosecond does not 
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influence what happens in another nanosecond. Consequently in each nanosecond a 
Bernoulli trial with probability of success p determines if a call arrives or not. This 
means the incoming calls can be modelled as a Bernoulli point process N ( t )  with 
rate A. 

The telephone companies have done a thorough statistical analysis of thc dis- 
tribution G of the duration of telephone calls. The average duration of calls has 
been estimated and the histogram of call durations has been plotted. In fact this 
histogram has historically been well approximated by either a geometric or expo- 
nential distribution. This is surprising a,nd embarrassing because the both these 
distributions are memoryless as seen in Propositions 4.4 and 4.5 below. This means 
that a conversation which has already lasted 10 minutes say, will (statistically) carry 
on as if' it just startcd. 

The next step is to model the stochastic process Q ( t )  which represents the 
number of calls in progress at time t given calls arrive according to a Bernoulli 
process with rate X and stay connected for a random d u d i o n  having distribution 
G arid mean ~ L G .  Let Y k  be the duration of tlie kth call. Hence, 

N ( t )  

Q( t )  = C x{& > t - Tk} 

where x{Yk > t - T k }  is the indicator random variable which takes the value 1 if 
the kth call is still in progress at time t arid 0 otherwise. 

The distribution of Q ( t )  is of paramount importance for deterrniriiiig the desired 
trunk capacity. The telephone company must put in place sufficient capacity K so 
that P ( Q ( t )  > K )  is sufficiently small. In recent years the advent of modems, faxes 
and the internet have drastically altered the distribution of call durations. Some 
researchers believe the distribution of G now has an infinite variance and there is 
a wave of new research to analyze t,he impact on the perform of tlie tcleplione net- 
work. 

k=l 

Bernoulli processes can occur in contexts. 

Example 4.3 
Character recognition systems scan printed text letter by letter in order to convert 
old books to an electronic format for archival purposes. Smudges on the page some- 
times cause scanning errors. Let p be the probability a given letter is read in error. 
We will assume 17 is 10000 letters (about 5 pages) and p = A/v so A represents the 
mean number of errors per ten thousand letters. Let N [ z ]  represent the number of 
errors after reading in the first z letters in a book. It is not unreasonable to assume 
an error in scanning one letter doesn't affect the scanning of other letters (although 
it might be argued that adjacent letters are affected). Consequently we can assume 
N is a Bernoulli process with rate A. 

Control charts for attributes 
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Proposition 4.4 For a homogeneous Bernoulli process 

a The interarriwad times {Xn}r=l are i . i .d .  with a. geometric distribution 
having parameter p .  

0 N ( 0 )  = 0. 
a N ( t )  has independent increm,en,ts; that is ( N ( t 2 )  - N(t1)  = i }  and 

{ N ( s 2 )  - N(s1) = j }  are independent events if ( t l , t 2 ]  and (sl,s2] u,re 
disjoint intervals. 

a N ( t )  has stationary increments; that is 

P ( N ( s  + t )  - N ( s )  = 2) = P ( N ( t )  = i )  = ( y )  - p)lTtl--i. 

k-1 Proof: XI = [k]  if the Bernoulli trials in time intervals { ( [ i  - I], [i]]}i=I are failures 
and the trial in time interval ( [ k  - 11, [ k ] ]  is a success. Hence X I  has a geometric 
distribution. The independence of { Xn}rZ2 and X I  follows from the independence 
of the Bernoulli trials. For example 

P(& = [.1],X2 = [521) 

= P(L1 = 0 , .  . . , LiS1-1 = 0, L,, = 1, 

= P(L1 = 0 , .  . . , LZ1-l = 0, L,, = 1) 

= P(X1 = [q ] )P(X2 = [Q]). 

L , + 1  = 0, ’ .  ‘ , JL1+za- l  = 0, Lc1+z2 = 1) 

.P(L,+l = 0, ’ ‘ ’ , Lz1+z2-1 = 0, L l + Z 2  = 1) 

Moreover, P(X1 = [ 2 1 ] , X 2  = [x21) = (1 - p)[”lI-lp(l - p ) [ z 2 ] - 1 p  so it also follows 
that X 2  is geometric. Next N ( 0 )  = 0 by definition. Moreover ( N ( t 2 )  - N ( t l )  = i }  
depends only on trials in time interval ( t ^ I , t ^ Z ]  while ( N ( s 2 )  ~ N(sl) = j} depends 
only on the trials in time interval ( a l , & ] .  Since these intervals are disjoint, the 
corresponding trials are independent and so the increments are independent. Finally 
N ( s  + t )  - N ( s )  is a binomial random variable since it is the number of successes 

Proposition 4.4 gives an alternate means of generating the points of a homoge- 
neous Bernoulli process. Construct an i.i.d. sequence of geometric random variables 
wit>li parameter p and use these to define ?I and the interarrival times {Xn}z=2. 

We recall that the geometric distribution has a memorylessness property: 

in rlt trials. w 

Proposition 4.5 

P(T1 > Ic + ylT1 > .) = P(TI > y) 

Proof: Since P(F1 > y) = (1 ~ p)G the proof i s  obvious. I 

Thc memorylessness property is particularly strange when one considers that 
we have used the geometric distribution to model the duration of telephone calls! 
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Another consequence of the memorylessness property is the following waiting 
time paradox. At any time t (including 1 = 0), denote the forward recurrence time 
or excess time at t by 

Y ( t )  = G ( t ) + l  - t .  

If the mean interarrival time is 1 / X  seconds (or [77/X] nanoseconds) then one might 
expect that the mean excess time at t is one half of this. On the other hand, 

P(Y( t )  > [XI) = P(L,,I1] = 0 , .  . . L,+[zl = 0) = (1 - p)'"' 

which reflects the fact that no mattes what happened up to t the excess at t ,  Y ( t ) ,  is 
a geometric random variable with mean [l/p] = [q/X] nanoseconds or 1 /X  seconds. 

To reconcile these two calculations it suffices to remark that the interarrival 
period to which t belongs, namely T p ~ ( t ) + ~  - T N ( t ) ,  is the sum of Y ( t )  and the age 
at t defined by 

Z ( t )  := t ~ T N ( t ) .  

Now, 

P ( Z ( t )  > [ z ] )  = P(L i  = 0 , .  . . , L,-_[,] = 0) = (I  - p )  ([21+1) 

where [z]  = 0 , 1 , 2 , .  . .; hence Z ( t )  + 1 is also a geometric random variable with 
mean [l/p] = [ r i /X ]  nanoseconds or l / X  seconds. It follows that the mean of Z( t )  is 
[q/X-l] nanoseconds or I/X-l/q seconds. Hence half the mean of TpJ( t )+l -T~( t )  = 
Z ( t )  + Y ( t )  is about 1 /X  seconds. 

.. . 
t- Z(t) + L Y(t) + 

Fig. 4.2 The age and excess time at t .  

The fact is that by selecting the interarrival period containing a specific time we 
have favored the selection of a longer interarrival period since longer periods have a 
higher probability of containing a given time point. An arbitrary interarrival period 
has a geometric distribution as shown in Proposition 4.4 but an interarrival period 
chosen to contain a given time point is approximately twice as long. This is the 
explanation of the waiting time paradox. This point will be considered again in 
Chapter 6 on renewal theory. 
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4.3 The Poisson Process 

Throughout this section we shall assume that N is a homogeneous Bernoulli process 
with rate A. This process is characterized by Proposition 4.4 but the Binomial 
expression 

P ( N ( t )  = i )  = (‘;!) pi(1 - 

is rather hard to  calculate. Our first step is to find an approximation for this 
expression for large 7. Recall that p = A/q and assume t is an integer number of 
nanoscconds. 

exp (- A t )  
(A t ) - i  

N-- 

i! 

since in general (1 - + exp(-a) as N 4 00. We conclude the distribution 
of N ( t )  is approximately Poisson with a mean At.  

In fact we will show the homo- 
geneous Bernoulli process N is approximated by a Poisson process with rate A. 
For the monierit however let’s just calculate probabilities with the above Poisson 
approximation and neglect the error (which is order of l /q).  

Example 4.6 Consider a homogeneous Bernoulli process representing the arrival 
of telephone calls at  a wire center at a rate of A = 5 calls per second. For arguments 
sake let’s calculate the probability three calls arrive in the first second and ten calls 
arrivc in the first four seconds. In order to calculate P(N(1) = 3 and N(4) = 10) 
we first recognize that 

In Corollary 4.24 wc will show much more. 

P ( N ( 1 )  = 3 and N(4) = 10) = P ( N ( 1 )  = 3,N(4) - N(l)  = 7) 

which by the property of independent increments is 

P ( N ( 1 )  = 3)P(N(4)  - N(l)  = 7). 

Next, by stationarity, P ( N ( 4 )  - N ( l )  = 7 )  = P ( N ( 3 )  = 7). Hence, using the 
Poisson approximation of binomial random variables, 

5 3  157 
3! 7! 

P ( N ( 1 )  = 3 and N(4) = 10) x e-5-e-15-. 
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I w5 w2 w6 w1 w7 w4 w3 I 

Fig. 4.3 Order statistics 

We now construct the continuous Poisson process mentioned above which with 
high probability agrees with the Bernoulli process on each nanosecond. For the 
moment we consider only the homogeneous case. We generalize the basic property 
that the arrival times of the Bernoulli process occur independently and uniformly 
across a given time period. 

Definition 4.7 Let W1, Wz, . . . , W, be a sequence of independent, identically 
distributed random variables with a continuous distribution. Then the At'' smallest, 
W,,), is called the kth  order statistic. 

W,,) does not have the same distribution as the W's, as shown in Figure 4.3. For 
instance, the largest or nth order statistic W,,, is certainly bigger than a typical 
W. In fact 

P(W(,,, I t )  = P(W1 I t ,  . . . , w, I t )  = F$(t)  

where Pw is the common distribution function of W's. 

Definition 4.8 T by 
first constructing a Poisson variable with mean AT called N P ( T ) .  Then, conditioned 
on the event N P ( T )  = n, the distribution of the arrival times { T l  : k = 1,. . . , T L }  

is that of the order statistics of n i.i.d. uniform random variables on [0, TI. 

This means that given there are n arrivals in [0, TI, the arrival times are uniformly 
and independently distributed on [0, TI. It is easy to see (do Exercise 4.4) that the 
joint density of {TL : k = 1,. . . , n} is 

We const,ruct, a cont,inuous Poisson process N P ( t )  on 0 5 t 

This construction immediately leads to the following characterization which is 
the analogue of Proposition 4.4 for the BernoulIi process. 

Proposition 4.9 
and only if 

A process N P  is a homogeneous Poisson process o n  [O,T] if 

0 N P ( 0 )  = 0. 
0 N P ( t )  has independent increments; that i s  { N P ( t 2 )  ~ N P ( t l )  = i }  and 

{ N P ( s 2 )  - N P ( s l )  = j >  are independent events if ( t l , t z ]  and ( S ~ , S Z ]  are 
disjoint intervals. 
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a N P  has stationaq Poisson increments; that is 

P(NP(S  + t )  - N P ( S )  = i )  = P ( N P ( t )  = i) = e - @ L  
i !  

Proof: Let N P  be a continuous Poisson process. Since uniform random variables 
are continuous there is no chance T r  = 0 so N p ( 0 )  = 0. Next, let At := t 2  - tl 
and As := s2 - s1. Conditioning on N P ( T )  = n we see that i of the arrivals must 
fall in the interval ( t l , t 2 ]  and this has probability (AtlT)';  j must fall in (s1, s2] 

and this has probability (As /T )J  and the rest must fall outside both intervals with 
probability (T - At - A s / T ) ~ - - ~ - J .  The points which fall in the prescribed intervals 
may be chosen randomly from the n arrivals. Hence 

~ - ______ (AAt)i (AAs)j exp(-AT) exp(A(T - At - As)) 
i !  j !  

(AAS)j 
exp(-)\At)- exp ( - A&). 

(AAt)i 
- 

i! j !  

It follows that NP( t2 )  - N P ( t l )  and NP(s2)  - N P ( s l )  are independent Poisson 
random variables with means A ( t 2  - t l )  and X(s2 - s1) respectively. 

The proof of the converse that a processes with independent Poisson increments 
is a Poisson processes is delayed until Section 4.5. 

I 
If a number of independent Poisson processes with the same rate X on contiguous 

dis,joint intervals are stuck together to create a point process on one large interval 
then by Proposition 4.9 this process has independent Poisson increments and must 
therefore bc a Poisson process. Similarly, the points of a Poisson process generated 
on [O, T ]  which fall in a subinterval [0, t]  form a Poisson process on [0, t ] .  

Our definition of a Poisson process can be generalized to multidimensional 
spaces. Given a continuous probability distribution on a region S in R2 say, we 
can first generate a Poisson random variable N and if N = n distribute n points in 
an i.i.d fashion over the region S according to the given distribution. If the given 
distribution is the uniform distribution this gives a homogeneous Poisson process 
on the region S. 

Definition 4.8 provides a means of testing if a point process is Poisson. Given 
N ( T )  = n, test if the n arrival times are uniformly distributed on the interval [0, TI. 
The best choice is probably a Kolmogorov-Sniirnov test for the distribution function 
F ( s )  = s/T for 0 5 s 5 T .  This test is described in Feller Volume I1 (1971). 
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Example 4.10 Consider the superposition of two indcpendent Poisson processes 
N y  and N .  on [O,T]. These two processes may represent the arrivals of calls at 
a telephone switch from two cities so I ( t )  := N y ( t )  + N { ( t )  represents the total 
number of calls by time t where 0 5 t 5 T. The distribution of I ( T )  is Poisson 
since I ( T )  is the sum of N r ( T )  and N T ( T ) ,  which are independent Poisson random 
variables. Next, given that I ( T )  = n, N [ ( T )  and N , f ( T )  take values i and j where 
i + j = IZ according to a multinomial distribution. Regardless of the values i and 
j ,  the points of the process NF given N F ( T )  = i are independent and uniformly 
distributed on [O,T]. The same is true of the points of N;. Consequently, given 
I ( T )  = n, the points of the process I ( t )  are independent and uniformly distributed 
on [0, TI. By definition this means I ( t )  is a Poisson process. 

4.4 Applications of the Poisson Process 

We have already seen that the distribution of the homogeneous Bernoulli process 
N ( t )  is binomial and that this distribution may be approximated by a Poisson 
distribution with parameter A. This approximation goes much further and we can 
state the following result which follows from Theorem 4.22: 

Theorem 4.11 
coupled t o  a Poisson process N p ( s )  = Np[qs]  o n  [ O , t ]  such that 

A homogeneous Bernoulli process N ( s )  = "qs]  on, [O, t]  may be 

Since 77 is so large the above theorem implies the two processes N and N P  agree on 
the nanoseconds with very high probability over intervals of reasonable length. 

Example 4.12 
As we have seen, when the possibility of a call arrival in any given instant (nanosec- 
ond) is very small (X/V) and the arrivals are independent, then we have an ap- 
proximate Bernoulli process with rate A. Theorem 4.11 implies that this Bernoulli 
process is approximately a Poisson process with rate A. Hence it is not a t  all un- 
reasonable to assume that the arrival stream of calls to a telephone exchange is 
Poisson. Let us suppose that any call requires a certain service time which has a 
general distribution G. Finally, for simplicity, we shall assume that every call is 
immediately served; that is, there are an infinite number of servers. Such a queue 
is called an M / G / m  queue. 

Let the number of calls by time t be represented by a Poisson process N P ( t ) .  Let 
us calculate the moment generating function of Q ( t ) ,  the number of calls in progress 

Call acceptance - (4.2) continued 
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at time t .  As in Example 4.2 let Y k  be the service period of the k th  customer. Hence, 

N P ( t )  

Q( t )  = C x { Y ~  > t - T,P} 
k = l  

Next 
00 

4 Q ( t ) ( S )  = esQ( t )  = E (eYQ( t ) lNP( t )  = n)  P ( N P ( t )  = n).  (4.2) 

Now from Definition 4.8, given N P ( t )  = n, the conditional distribution of the arrival 
times {T: : k = 1, . . . , n} is that of the order statistics of n i.i.d. uniforms on [0, t ] ;  
say {Uk  : k = I,. . . , n}; i.e. TL = U ( k )  = U R ( ~ )  where R ( k )  is the rank of Uk. Let 
Y,* = YR(k). By Exercise 2.18 the sequence Yz has the same distribution as the 
sequence Y k .  Hence, 

n=O 

E ( e s ~ ( t ) l ~ ~ ( t j  = .) = E ( e sc I=I  x { y k > t - C )  INP(t)  = n) (4.3) 
n 

- - EeSCZ=l X{YL>t-UF} = n Ee"X{YL>t -Uk> 

k=l 

since the service periods are independent of each other and of the arrival times. We 
can now condition on Uk to get 

Ee"X{Y;>t -Uk l  = &sx{Y;>t-"}  -du 1 
t 

Using this and (4.3) we have 

Using this and the fact that P ( N P ( t )  = n) = exp(-Xt)(Xt)n/n! we get 

This is the moment generating function of a Poisson random variable. Also 
as t + 00 we see that the moment generating function of Q ( t )  tends to 
exp (Xrnc je"  - 1)) since JF(l - G(s ) )ds  = r n ~  by Exercise 3.4. We conclude that 
in the long run, the distribution of the number of calls in progress at a fixed time has 
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a Poisson distribution with mean Xmc. Calls arrive at a rate of X per second arid 
each call requires VLG seconds of work from the network on average hence p := X r n ~  
is the mean amount of work arriving at the switch per second. p is called the load 
on the system. Hence the mean of the distribution of the number of calls in progress 
is equal to the load on the system. The telephone engineer can estimate X based 
on the number of local subscribers and rnG is known from past statistical studies. 
It therefore suffices to put in sufficient trunking capacity K so that the probability 
a Poisson variable with mean Xmc exceeds K is as small as required. 

In fact if K is the maximum number of calls that can be carried simultaneously 
then the above model is inadequate. In reality we rnust study a truncated process 
Q K ( ~ )  which is at capacity when Q K ( ~ )  = K .  A call which arrives when & ~ ( t )  = K 
receives a busy signal and is effectively rejected. We will study the distribution of 
Q K ( ~ )  later. Also note that we have only considered the distribution of the riuniber 
of calls in progress at a fixed time t .  In reality we would like a worst case analysis; 
i.e. the probability that, over some period of time, the number of calls in progress 
reaches K thereby causing calls to be dropped. 

Example 4.13 
Consider an ATM access switch which is connected to thousands of customers. 
Under ATM, these customers transmit cells asynchronously so conflicts must be re- 
solved by buffering simultaneous arrivals of cells. Different customers transmit cells 
at different rates so, for instance, a video customer sends cells thousands of times 
more frequently than a simple phone customer. Assume customer i sends a cell 
in a given nanosecond with probability pi  = X i / q  and hence generates a, Bernoulli 
process N,. By Theorem 4.11 this process is approximately Poisson with a mean 
rate of X,/q cells per nanosecond. Since the sum of independent Poisson processes 
is a Poisson process, it follows that the total number of cells arriving at the switch 
from all the customers is approximately Poisson with a mean rate of Ci Xi /q  cells 
per nanosecond or xi X i  cells per second. If we assume the link rate of the switch 
is one cell per nanosecond, the mean arrival rate per nanosecond had better be less 
than one or the switch will gradually be overwhelmed with buffered cells! 

ATM networks - (2.63) continued 

Example 4.14 
One must expect about one error per page during scanning. If the error rate exceeds 
this an adjustment should be made. One way to control the qnality of the scanner 
is to verify the scan of five pages chosen at random in every book being scanned. 
This gives a sequence of quality measurements which can be sequentially plotted 
on a Shewhart quality control chart. If the process is in-control the distribution of 
the number of errors in any five page segment should be approximately a Poisson 
random variable with mean 5. One can plot the upper control line on this chart 
so that if the number of errors in the chosen five pages exceeds this control limit 
an out-of-control alarm is sounded. The upper control line is fixed so one should 

Control charts for attributes - (4.3) continued 
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expect a false alarm only once in 10000 measuremerits or once in 10000 books. The 
probability a Poisson random variable with mean 5 exceeds 15 is exactly 0.000069 
so we should use 15 as the upper control line on the Shewhart chart. 

4.5 A F'urther Characterization 

In the previous section we have seen that a homogeneous Bernoulli process hav- 
ing rate A has geometric interarrival times having parameter p = A/Q. The kth 
interarrival time X I ,  satisfies 

which is approximately e x p ( - A t )  since q is large. It follows that the interarrival 
times of the Bernoulli process are approximately exponential with parameter A. 
Since the Poisson process N P  agrees with the Bernoulli process with high probability 
it follows that the interarrival times of the Poisson process should have a exponential 
distribution. 

Suppose we construct a simple point process by specifying the interarrival times 
to be independent exponential random variables. Not surprisingly this produces a 
Poisson process. 

Theorem 4.15 
terarriual t i m e s  m u s t  be a Po i s son  process! 

Proof: Note that the time T," until the nth, arrival of this process is the sum 
of n independent interarrival times each having an exponential distribution. The 
moment generating function of an exponential random variable with mean 1 / X  is 
X/(A - t )  so the moment generating function of the sum is Xn/(A - t ) " .  It follows 
that the sum has a Gamma distribution with density 

A simple po in t  process M ( t )  having independent ,  exponential  in- 

(Xz)n-le--Xz 
x 

(n  - I)! 

which is called is the Erlang-n density. Hence T," has the Erlang-n distribution. If 
we take the derivative in J: of 1 - exp(-Xz)(Az)'//k! we get 

(XJ:)n-le--Xz 
x 

(n - l)! 
- - 

It follows that P(TF I z) = 1 - C;IAexp(-Xz)(Xz)k/k! which isn't really a 
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surprise if M is indeed a Poisson process since then 

Since the nlh arrival time T,” has the Erlang-n distribution, 

AT” 
n! 

= exp(-AT)-. 

Hence the number of arrivals in the time interval [O,T] has a Poisson distribution 
with parameter AT just like N P ( T ) .  To prove M ( t )  really is a Poisson process 
we must now check that, given there are n arrivals in [O,T], the distribution of 
these arrival times is that of the order statistics of n independent uniform random 
variables on [0, TI. 

For times tl < t z  . . . < t ,  5 T ,  

Evaluating the numerator of the above we get 

after we integrate out zn+l and use the fact that 

Now do a change of variable by letting 
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Fig. 4.4 A typical trajectory. 

Since the Jacobian of this transformation is 1 the above integral is equal to  

using symmetry to break up the above integral into n! possible orderirigs of y1,. . . yn. 
This last integral is precisely, 

where V( , ) ,  . . . 
formly distributed on [0, TI. Evaluating (4.4) we now get that 

are the order statistics of n independent random variables uni- 

P ( T y  < t l , T p  < t 2 ,  . . .  T, i t , I M ( T ) = n )  
= P(U(1) I t l ,  U(2) I t Z ,  ‘ ’ ’ , U,,) I t n )  

and this is what we wanted to  show. 

Example 4.16 
We have seen that the number of calls in progress at a telephone switch may be 
described as a MlGloo queue. The arrivals at an MIGloo queue form a Poisson 
process and from the above we know that the interarrival times are exponentially 
distributcd. The M in the acronym MIG(oo reminds us that the exponential dis- 
tribution is memoryless. 

1 

Call acceptance - (4.12) continued 

Continuation of the proof of Theorem 4.11: Suppose that { I ( t )  : 0 5 t 5 T }  is 
a point process, as in Figure 4.4 having stationary independent Poisson increments 
such that I ( 0 )  = 0. It follows that I ( t )  is a Poisson process! For any increment 
( t , ~ ]  denote AI(t+] := I ( s )  - I ( t ) .  Clearly I ( T )  is Poisson. Let the arrival times 
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This is precisely the probability that n i.i.d. uniform random variables on [0, T] 
fall into the subintervals { ( t k , t k  + h k ]  : tl < t 2  < . . .  < t ,  < T} of [O,T]. We 
conclude that given I ( T )  = n, the arrival times are the order statistics of i.i.d. 
uniform random variables on [0, TI. This completes the characterization of a Poisson 
process since I ( T )  is a Poisson random variable. We conclude I is a Poisson process 
on [0, TI. 

I 

Theorem 4.17 
stationary, independent increments such that M ( 0 )  = 0 .  Further suppose 

Suppose M ( t )  is u simple continuous time point process with 

P ( M ( h )  = 1) 
h 

= X and P ( M ( h )  > 1) = o(h)  lim 
h-0 

where X is a constant. Then M is a Poisson process with rate A. 

Proof: Represent M [ s ]  := C k L 1 ( M [ k ]  - M [ k  ~ 11) where each time interval has 
length 1/17. By the above we can now couple M [ s ]  to a Poisson process N P [ s ]  with 
rate A. At any time t ,  the two processes differ with a probability which tends to 0 
as 17 + 03. Since 17 is arbitrarily large it follows that M ( t )  agrees perfectly with a 

I Poisson process with rate A. 

4.6 The Poisson Approximation 

The term Poisson is derived from the approximation of the binomial distribution 
by a Poisson distribution. We shall give a more general approximation which will 
be helpful even for nonhomogeneous Bernoulli processes. To this end we introduce 
a coupling. 

Let f and g be two probability mass functions. 

Definition 4.18 The total variation between the p.m.f.s f and g is 

I l f  - 911 := c If(.) - g(z)l. 
X 

of I be denoted so for any disjoint time intervals
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Proposition 4.19 
probability space h,aving probability m a s s  f u n c t i o n s  f and  g respectively, t h e n  

If X and Y are t w o  r a n d o m  variables defined on  t h e  s a m e  

Proof: Using the fact that 

P(X = %) = P ( X  = z , Y  # %) + P ( X  = z , Y  = 2 )  

and 

P(Y = z) = P ( X  # %,Y = 2 )  + P ( X  = z , Y  = z) 

we have 

C I P ( X  = %) - P ( Y  = %)I  = C I P ( X  = z , Y  # %) - P ( X  # z , Y  = z)l 
z f 

5 C P ( X  = z , Y  # z )  + C P ( X  # z , Y  = z )  
z 2 

= 2P(X  # Y ) .  

m 
The following proposition shows that X and Y may be judiciously coupled to- 

gether so that the total variation is given by 2P(X # y ) .  

Proposition 4.20 There  exist  t w o  discrete r a n d o m  variables X and  Y defined 
on the  s a m e  probability space (0, F, P }  having marginal  probability m u s s  f u n c t i o n s  
f and  g respectively, such  tha t  

-- ' I f  - gl l  - P ( X  # Y ) .  
2 

We say X and Y are coupled together.  

Proof: Let c = c, min{f(z), g(z)} and define a probability mass function 

c measures the mass f and g have in common (if c = 0 let c ( x )  = 0). Moreover 
define the probability mass function 

Similarly define the probability mass function 
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Note that the support of u (which is {z : u(z)  > 0)) and the support of II ({x : 

u ( z )  > 0)) are disjoint. Note, moreover, that min{u, b }  = (u+  b ~ la - b l ) / 2  for any 
a ,  b so 

Now construct four independent random variables, L, U ,  V and C on the same 
product probability space (0, F, P } ,  such that L is a Bernoulli random variable 
with P ( L  = 1) = c and U ,  V and C have probability mass functions u(z ) ,  u ( z )  and 
c(x) respectively. Now let us defineX = L.C+(l-L).U and Y = L.C+(l-L).V. It 
is easy to check that X and Y have probability mass functions f and g respectively. 
For instance, 

Moreover 

P ( X  # Y )  = 

where we used the fact that U and V are never equal since their probability mass 
functions have disjoint support. This follows by simply observing that if f(z) < g(z) 
then U ( X )  = 0 and ~ ( 2 )  > 0 while if f ( x )  > g(z) then ~ ( 2 )  = 0 and u(x) > 0. I 

Definition 4.21 Let Y k  : k. = 1 , 2 , 3 , .  . . be a sequence of independent Poisson ran- 
dom variables such that Y k  has mean PI,. For any time t ,  let N P ( t )  := xt!l1 Y k  be a 
discrete (nonhomogeneous) Poisson process with intensity < N P ( t )  >:= EF!l1 p k .  

Theorem 4.22 
a dzscrete (nonhomogeneous) Potsson process N P  ( t )  such that 

A (nonhomogeneous) Bernoullz process N ( t )  may be coupled to 

P ( N ( ~ )  # ~ ~ ( s )  for  some s 5 t )  5 C p i .  
0 < k l  [vtl 

Proof: Using Proposition 4.20 construct a probability space having an independent 
sequence of coupled bivariate random variables X k ,  Yk, for every time interval ( [ k  - 
11, [ A ] ] ,  such that XI, has the same distribution as L k ;  that is a Bernoulli random 
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variable with P(Lk = I) = pk and Y k  has a Poisson distribution with mean p k .  

Since 

we have 

where we have used the subadditivity of the probability measure. By Proposition 
4.20 

In the above we have used the fact that exp(-pk) - (1 -PI,) 2 0 which follows since 

p 2 / 2 !  - p 3 / 3 !  + p4/4! - p5/5!  + ‘ ’ ‘ 
> - p2/2! - p 3 / 2 !  + p4/4! - P5/4! + . . . 
= (1 - p ) ( p 2 / 2 !  +p4/4! +. . . )  2 0. 

The result follows. I 

Notice that Theorem 4.22 is a statement about distributions. We start with a 
Bernoulli process N [ s ]  but we actually construct another Bernoulli process ctLl X I ,  
having thc same distribution as N [ s ] .  A discrete Poisson process N p [ s ]  is con- 
structed to be close to this new Bernoulli process in a pathwise sense; that is as 
random variables. It follows that {ZkL, XI,;  0 5 [s] 5 T }  and { N P [ s ] ;  0 5 [s] 5 T }  
are also close in a distributional sense. Consequently { N [ s ] ;  0 5 [s] 5 T }  is close 
to {Np[s] ;O  5 [s] 5 T }  in a distributional sense but not as sequences of random 
variables. The statement of Theorem 4.22 is therefore a bit sloppy because we have 
confounded N and its copy. 

Suppose we had a discrete point process M [ s ]  which might allow multiple ar- 
rivals in one nanosecond. Suppose nevertheless that the nanosecond increments are 
independent. The above Poisson coupling would still be valid if P(M[lc] - M [ k - l ]  = 

I) = pk  and P ( M [ k ]  - M [ k  - I] > 2) = o ( p k )  where o(z)/z + 0 as z --f 0. It 
suffices to define X I ,  = M [ k ]  - M [ k  - 11 while YI, is as above. Let the p.m.f. of X I ,  
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be f k  and let the Poissoii p.m.f. of Y k  be g. Remark that 

X 

I ( ePpn  - (1 - p k  - o h ) )  + (m - p k e - P n )  + ( o ( p k )  + I - p k  - e : - - ~ k )  

= ~ k ( 1  - e- -Pk)  + o ( p k )  i p i  + o ( p k ) .  

We can now couple N P [ s ]  := ckL1Yk to M [ s ]  by making copies of N P  and M 
which are close: 

P(M[sI # NPbl for Some 1.1 I [ V t ] )  I c ( P i  -t O ( P k ) ) .  

O < k l  [ V t l  

If the process M is homogeneous the above estimate is equal to 

Theorem 4.23 If N ( t )  is a (nonhomogeneous) Bernoulli process then 

Proof: Recall that a sum of independent Poisson variables is Poisson (see Example 
3.23). Hence N P ( t )  is Poisson with mean < N ( t )  > and 

00 

= C I P (  x k = x ) - P P (  C Y k = 2 ) /  

x=n O < k l [ V t l  O < k l  [at ]  

5 2P( X I ,  # Y k )  by Proposition 4.19 

I 2 c p$  by Theorem 4.22. 

o< k< [ V t l  O<k 5 [at1 

O<k<[Tlt] 

The result follows. I 
Proof of Theorem 4.11: We can represent N P  as the sun1 of its nanosecond 
increments: that is 

NP[s]  = C ( N " k ]  - N P [ k  - 11) = C Y k  
k=l k = l  

where Y k ,  k = 1,. . . is a sequence of independent Poisson random variables with 
mean p = X/q. Using Theorem 4.22 we may construct sequences { ( L k ,  Y k ) ) P ! ' ,  
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such that the Bernoulli process N [ s ]  := ELLisl, LI, and the discrete Poisson process 
N [ s ]  := C;i1 Y k  are closely coupled together. In fact 

I 

Corollary 4.24 If N ( t )  is  a homogeneous Bernoulli process with rate X then 

Proof: The result follows immediately from Proposition 4.23 since 

We conclude that the probability mass function of the Bernoulli process is ap- 
proximately Poisson and the order of the error is l /q ;  that is, extremely small. 

I 

Corollary 4.25 
T, is the tirne of the rnth arrival measured in seconds, then 

If N ( t )  is  a homogeneous Bernoulli process with rate X and zf 

Proof: Since {T, 5 t }  = { N ( t )  2 m} the result follows easily from Corollary 4.24. 
I 

Recall that the continuous distribution 1 - CFi: exp(-Xt)(Xt)”/x! is called the 
Erlang-m distribution. 

Example 4.26 Let N ( t )  represent a Bernoulli process and let N P  represent the 
approximating Poisson process. Suppose the arrival of an event at time t from the 
Poisson process implies a cost C. Assume that there is a constant interest rate cy 
so that the present value of C dollars spent at time t is only Cexp(-at) at time 0. 
The present value of future costs up to time T is represented by an integral. 

[ V T I  lT c exp( -a t )dN~( t )  M c exp(-at)dN(t) = c c exp(-ak/v)lk .I’ k = l  

where in every time interval ( [ k  - 11, [k]], we perform an independent Bernoulli 
trial LI, to decide the presence (with probability X/q) or absence (with probability 
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1 - X / r / )  of an arrival by the end of that unit of time. The expected future cost is 
then 

We conclude the future expected cost to time T for the stream of Poisson arrivals 
is Jc Cexp(-at)Xdt. Similarly, using the independence of the Bernoulli trials, the 
variance of the future cost for the Bernoulli process is 

Again, passing to  the limit, we conclude 

var  [iT C e x p ( - a t ) d N ~ ( t )  = ~ e x p ( - 2 a t ) X c i t .  ] Ir 
The above is a typical stochastic integral with respect to a point process. The 

calculation may also be generalized to stochastic integrands. Suppose for instance 
that arrivals wait at a M/M/cm queue of size Q(t) ,  at time t ,  and the cost of an 
arrival at time t is given by cQ(t-); that is c dollars times the number of customers 
already waiting. The future cost to time T associated with arrivals of the Poisson 
process N P  is 

Again using independence the expected future cost is 

The expected number of customers in an M / M / m  queue may be calculated using 
Example 4.12. 

4.7 Nonhomogeneous Poisson Processes 

Let X ( t )  be a nonnegative, piecewise continuous function on [0, T ]  and let 

R(t)  = X(s)ds < 00. / S=O 
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Definition 4.27 For a Poisson process N P  having arrival rate 1, define 

N"( t )  = N ( A ( t ) )  

to be a nonhomogeneous Poisson process with intensity function X ( t ) .  

Suppose some individual has a faulty watch which records t seconds when in fact 
A ( t )  seconds have passed, as in Figure 4.5. Suppose now he watches a homogeneous 
Poisson process having rate 1 for t seconds of time according to his watch. In fact 
A@) seconds will have passed and so he will have seen N ( h ( t ) )  arrivals. Hence the 
process N A ( t )  is simply a homogeneous Poisson process as seen by someone with a 
defective watch. We may derive the properties of this process. 

........ ....... 

I 

0 T 

Fig. 4.5 Time measured with a broken watch 

Proposition 4.28 For a nonhomogeneous Poisson process 

0 N y O )  = 0. 
0 N A ( t )  has independent increments. 

p ( ~ " ( .  + t )  - N A ( ~ )  = i) = e- (A(s+t ) -A(s) )  ( A ( s + t ) - A ( s ) ) i .  
i! 

Proof: These properties follow immediately from those of homogeneous Poisson 
processes. We shall do one calculation. 

P ( N A ( t )  = i) = P ( N ( A ( t ) )  = i) 
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The nonhomogeneous Poisson process is a more realistic description of an arrival 
process particularly over a long period of time. If, for instance, one wished to 
describe the arrival stream of visitors to  a bank it is clear the intensity of arrivals 
is higher around noon than at two p.m. 

Proposition 4.29 Conditioned on the event { N * ( t )  = n} ,  the distribution of the 
arrival tames { T t  : k = 1,. . . , n} is that of the order statistics of n i.i .d.  random 
variables on [0, t ] ,  having distribution F ( s )  = A(s ) /A( t )  for 0 5 s 5 t. 

Proof: Since the nonhomogeneous Poisson process is simply a homogeneous Poisson 
process looked at with a broken watch, we know the conditional arrival times are 
really the order statistics of n independent variables {Uk : k = I, . . . , n} uniformly 
distributed on [0, h(t)] .  When viewed with the broken watch, these times are still 
independent but are transformed to Y k  = h - l ( U k )  : k = 1,.  . . ,'n. For any 0 5 s 5 t 
the distribution of the times Y k  is given by 

P(Yk 5 S )  = P ( A - l ( U k )  5 S )  

= W J k  5 Ns))  
= h(s ) /A ( t ) .  

Hence t,he arrivals of N" are simply the times Y k  arranged in increasing order and 
the result follows. I 

Consider a nonhomogeneous Poisson process rounded up to the next nanosecond. 
Only count one arrival if two or more arrivals are rounded up to the same nanosec- 
ond. The resulting process is a nonhomogeneous Bernoulli process. This follows by 
the memorylessness property of the Poisson process as before. In fact the proba- 
bility there is no arrival in the ith nanosecond is 1 - p = exp(-(A(t) - h ( t  - 1/17)) 
which to first order is exp(-A(t)/q). Consequently, to first order, the probability 
p of an arrival is A(t) /q .  Hence, to first order, this is the kind of nonhomogeneous 
Bernoulli process discussed in Section 1 of this chapter. We see, moreover, the ap- 
proximation Theorem 4.23 is simply a precise statement of the approximation of a 
nonhomogeneous Bernoulli process by a noiilioniogeiieous Poisson process. 

Proposition 4.29 provides some insight into the problem of testing if a point 
process is a nonhomogeneous Poisson process. Suppose we have q independent 
replications {Ni, i = 1,. . . , q }  of the point process on [0, TI, as in Figure 4.6. First we 
must test if the variables {N,(T) ,  i = 1,. . . , q }  are i.i.d. Poisson random variables. 
A chi-squared test might be easiest. Next, as we have seen, the nonhomogeneous 
Poisson process is simply a homogeneous Poisson process observed by someone 
with a broken watch. Hence this class of processes is invariant under monotonic 
transformations of the time axis (since this amounts to swapping broken watches). 
Consequently the exact arrival times of these replications provide no information 
about the Poisson nature of the process. However the relative rankings of the 
points do since the ranking of the arrival times among themselves is invariant under 
monotonic transformations. We conclude from Proposition 4.29 that we should test 
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Fig. 4.6 Only the relative ranks of arrival times are invariant 

if the arrival times of all the replications are identically distributed but the above 
argument shows this test should be based only on the ranks of the arrival times. Such 
nonparametric tests exist and the Cramer-Von Mises q-sample statistics are a good 
choice. Competing models are often also invariant under monotonic transformations 
of the time axis. A cluster process in which arrival times tend to cluster together 
will still have this property when regarded with a broken watch. Such models will 
consequently be easily distinguished by the Cramer-Von Mises q-sample statistics 
(see Chouinard and McDonald (1985)). 

Proposition 4.29 is useful for simulating nonhomogeneous Bernoulli processes. It 
is clearly impossible to simulate the qt independent Bernoulli random variables, each 
having probability of success p i  = A ( t ) / q ,  which make up N ( s )  : 0 5 s 5 t .  Instead 
we generate a Poisson random variable N A ( t )  and then if N A ( t )  = n, generate n 
independent random variables having distribution F ( s )  = R ( s ) / A ( i )  for 0 2 s 5 t .  
By Proposition 4.29 the points generated, viewed in increasing order, give a point 
process T,^ which is Poisson. The corresponding Bernoulli process is then obtained 
by rounding these arrival times up to the next nanosecond and ignoring multiple 
arrivals in the same nanosecond. This Bernoulli process is, to first order, the one 
desired. 
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4.8 Exercises 

Exercise 4.1 Let N ( t )  be a Bernoulli point process with the probability of an 
arrival in any nanosecond being p = A/q. Let L k  be 1 if there is an arrival between 
nanoseconds [k  - 11 and [ k ]  and 0 otherwise. Suppose we observe 

L-3 = 0,L-2 = 1,L-1 =0,Lo = 0 , L 1 =  1,Lz =0,L3 = 1. 

a) Give the values of N[t^j, Z[q,Y[f l  for 
b) Give the values of T,, X ,  for n E (0, I,  2). 

Exercise 4.2 
N,  has mean arrival rate A,. 
Calculate the probability that Nl has the first arrival of all. 

Exercise 4.3 If {Wl,  WJ, . . . , IVn} are i.i.d. with common density fw, give the 
density of the lcth order statistic W(k,. 

Exercise 4.4 Prove (4.1). 

Exercise 4.5 

Exercise 4.6 
process having an intensity of 100 calls per hour. 
a) In the first ten minutes what is the probability of 2 or more calls? 
b) What is the probability there were exactly 2 calls in the first ten minutes arid 
exactly 4 calls in the first twenty minutes? 
c) Calculate the distribution of the time until two calls arrive. 

E {-3, -2, -1,0, 1 ,2 ,3} .  

Let { N L ( t )  : i = 1, . . . , d }  be independent Bernoulli processes where 

If N P  is a Poisson process with rate X calculate E [ N P ( t )  .NP( t+ l l ) ] .  

Model the number of calls to a telephone exchange by a Poisson 

Exercise 4.7 Suppose the stream of customers arriving in a store may be described 
by a Poisson process with a rate of 15 customers per hour. 
a) Calculate the probability that there are less than 2 customers in the first 20 
minutes of the day, but more than 3 customers in the first 30 minutes. 
b) Given there were less than 2 customers in the first 20 minutes. what is the 
expected number of customers within the first hour? 

Exercise 4.8 A resistor in an integrated circuit for a compact disk player has 
a resistance which may be represented by 10 + R micro-ohms, where R is the 
random exponential error in building the resistor (resistors having resistances of 
less than 10 micro-ohms are discarded). Assume the mean error is 0.1 micro-ohms. 
Unfortunately this error will introduce random digital errors in the sound track 
(resulting in a tiny clicking sound) which occur according to a Poisson process at 
rate 0.002 x R per second. 
a) Calculate the distribution of a Poisson variable with parameter X, which itself is 
random with exponential distribution of mean l /c .  
b) What is the probability one hour of play will be recorded without error? 
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Exercise 4.9 Suppose blocks of customers arrive according to a Poisson stream 
of rate A. The number of customers in a block is random and the probability of Ic 
customers is f ( k ) .  Customers join a queue with a single server and general service 
distribution G. Let M ( t )  denote the number of customers that have arrived by time 
t .  
a) What is E[M(t )]?  
b) Is M ( t )  Poisson distributed? 

Exercise 4.10 Suppose that cars enter a one-way toll highway at mile 0 at a Poisson 
rate A. Each car independently chooses a speed according to a common distribution 
G. Assuming cars of higher speeds can pass (without changing speed) derive the 
distribution of the number of cars in the interval between mile A and mile B at 
time t .  Derive the steady state distribution by letting t + co. 

Exercise 4.11 
with means l / A l ,  l / A z , .  . . , l / A T L .  Show that 

Let El .  Ez, . . . , En be independent, exponential random variables 

n 

P ( E ~  = min{E,; i = I, 2 , .  . . , n) ,  ~j > t )  = 7 4 exp(-t C xi). cz=1 A2 k l  

Exercise 4.12 Let Nl ( t ) ,  N2 ( t ) ,  . . . , N,  ( t )  denote n independent Poisson streams 
with rates X I ,  Az, . . . , A,. Show that N1 ( t )  + Nz(t)  +.  . . + N,(t) is a Poisson stream 
with rate C:kl Xi .  Using Exercise 4.11 show that the probability the first event of 
the combined process comes from N1 ( t )  is A,/ cy=, X i  independent of the time of 
the event. 

Exercise 4.13 Suppose calls arrive at the 911 emergency desk at a mean rate of 
10 per hour day or night. 
a) Explain why it is appropriate to describe the process of call arrivals as a Bernoulli 
process that can be approximated by a Poisson process. When would this descrip- 
tion be inappropriate? 
b) What is the probability 12 calls arrive between lam and 2am. 
c) What is the probability 12 calls arrive between lam and 2am and 16 calls arrive 
between lam and 3am. 
d) Given that 12 calls arrived between lam and 2am, what is the probability that 
no calls arrived bctween l a m  and l:i5am. 
e) Each emergency call ties up one operator. The duration of calls is well described 
by a Weibull distribution with a mean of 6.2 minutes. At precisely lam, what is 
the probability that 3 operators are busy? 
f )  How many operators should be on duty to ensure that all calls ongoing at lam 
are handled immediately with a probability exeeding 99%. 
g) Actually we want to be 99% sure that all calls in a 24 hour period are handled 
immediately. Should the number of operators on duty be the same as in f ) ?  

Exercise 4.14 a) Model the number of calls to a telephone exchange by a Poisson 
process having an intensity of 100 calls per hour. Suppose that every loth call is 
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analyzed for statistical purposes. How many calls should we expect to analyze in 
an 8-hour period? 
b) What is the distribution of the time interval bet'weeri calls which must be ana- 
lyzed? 
c) Is the stream of calls that must be analyzed a Poisson process? 

Exercise 4.15 For a Poisson process N P ,  show that for u < t 

Exercise 4.16 
mogeneous Poisson process having intensity A ( t ) .  
a) Are the S, independent? 
b) Are the S, identically distributed? 
c) Find the distribution of SI. 
d) Find the distribution of S2. 

Exercise 4.17 a) Customers arrive at the museum according to an unknown point 
process. For security purposes the time of arrival of each visitor is recorded at the 
front desk as is the time of departure of a visitor. No names are taken of course 
so it is not possible to connect the departure time with the corresponding arrival 
time. The museum director wants to have some statistics on the distribution of 
time spent by each visitor to the museum. Show that the average departure time 
minus the average arrival time is a good estimate of the mean viewing time. 
b) Now suppose visitors arrive at the museum according to a nonhomogeneous 
Poisson process with intensity X ( t )  and suppose that the distribution of the viewing 
time is F .  If there n arrivals in total (on days with intensity A) then the distribution 
of these arrivals is the order statistics of n i.i.d. random variables T k  having density 
X(t)/h(T) where h(T)  is the cumulative intensity of one day. In addition we measure 
the associated departure times Sk = T k  + Vj where Vj is the associated viewing 
time. 

Of course we don't really know the value of Sj that corresponds to T k .  Never- 
theless we can estimate ~ T ( s ) ,  the generating function of the T k ' s ,  and ~ T ( s ) ,  the 
generating function of the S k ' s .  by 

Let Sl,Sa,. . . denote the successive interarrival times of a nonho- 

n 

&s)  = exp(sTk)/n and &s) = cxp(sSk)/n. 
k=l k=l 

Since #s(s) = & ( s ) . 4 V ( s )  we can therefore estimate q h ~ ( s ) ,  the generating function 
of the viewing times. Show how to estimate the variance of F .  

Exercise 4.18 Suppose that failures occur at a Poisson rate X = 2 pcr week. If 
the number of defective items generated by each failure is independent and takes on 
the values 1 , 2 , 3 , 4  with respective probabilities i, i, i, i, then what is the expected 
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value and variance of the number of defective itenis produced during a fixed five 
week period? 

Exercise 4.19 A store opens at 8 in the morning. From 8 until 10, customers arrive 
at a Poisson rate of six an hour. Between 10 and 12 they arrive at a Poisson rate 
of ten an hour. From 12 to 2 ,  the store closes for lunch. Finally, from 2 to 5, the 
arrival rate drops linearly from ten per hour at 2 to four per hour at 5. Determine 
the probability distribution of the number of customers that enter the store on a 
given day. 

Exercise 4.20 Telephone calls arrive at the call center at a rate of 10 calls per 
second. The duration of calls seems to follow a Weibull distribution with a mean 
of 2.3 minutes and a standard deviation of .6 minutes. 
a) Calculate the probability 5 calls arrive in the first ten seconds after 1 prri but 
30 calls arrive in the first 20 seconds after lpm. (Just write down an expression - 
don’t evaluate it). 
b) What is the probability there are more than 1500 calls in progress at lpm. (Just 
write down an expression - don’t evaluate it). 
c) If we look at the point process of departures when calls end do we see a Poisson 
process? 

Exercise 4.21 Simulate the arrival process at the store described in Exercise 4.19. 
Make a histogram of the daily customer arrivals for 500 days and compare this with 
the theoretical distribution derived in Exercise 4.19. 
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Markov Chains 

5.1 Introduction 

Consider a stochastic process {Xn; n = 0,1 , .  . .} defined on a probability space 
{a, F, P } ,  taking values in a countable set or state space S, which we will assume to 
be a subset of the nonnegative integers {0,1, .  . .} unless explicitly defined otherwise. 
If X ,  = Xn(w) = i we say the process is in state i at time n. 

Fig. 5.1 Transitions from state z to state J have probability K,, . 

Definition 5.1 We say the proccss X ,  is a homogeneous Markov chain defined 
on (0, F, P } ,  if for all n 3 0 and for any state J and any sequence of preceding 
states { z o , z ~ , .  . . , z n - l ,  z}, we have 

P(X,+l = a]& 1 2 ,  Xn-l = ~ ~ - 1 , .  . . , Xo 2 0 )  KtJ.  

127 
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K is called the probability transition kernel of the Markov chain. We say the initial 
distribution is Q if P(X0 = i )  = a( i )  and we sometimes denote P by Pa. If a ( i 0 )  = 1 
then denote P by Pi,,. Similarly, if the initial distribution is Q or if c r ( i 0 )  = 1 we 
denote the associated expectations by E, or Ei, respectively. 

Intuitively the above conditions mean that knowing the chain is in state i at time 
n summarizes the entire past up t,o time n; that is the conditional probability the 
chain jumps next to state j ,  given the chain is in state i at time n, does not depend 
on X,-,,. . . , Xo. Moreover, the distribution of this jump is time independent as it 
does not depend on n. Indeed this conditional probability is given by the probability 
transition kernel Kij. Clearly the kernel K is represented by a nonncgative matrix 

/KO0 KO1 KO2 ' 

Klo K11 K12 ' 

K2o h i 1  K22 ' 

. . .  . . .  
Kio Kii Ki2 

\ '  ' 

. .  

. .  

. .  . .  
K . .  . . .  

. .  . .  . .  

A homogeneous Markov chain satisfies the Markov property 

P(X,+I = j1XTL = i ,  . . . , x o  = 20)  = P(X,+l = j(X, = i) = K,, 

Conditioning on the past, up to jump n, 

so summing over all possible values of i o ,  i l ,  . . . , i,-l we have 

P(X,+l = j ,  x, = i )  = K%,,P(X, = i ) ;  

that is. 

P ( X , + l  = jJX, = 1:) = K,,. 

Sincc this doesn't depend on n we conclude 

P(X,+I = j IX ,  = i,xn-l = 2,-1,. . . , xo = 20) 

= P(X,+I = jjx, = i) 

= Kij = P(X1 = jJX,  i ) .  

Example 5.2 Bursty ATM traffic 
Until now we have considered sources where cells arrive independently with prob- 
ability p during each time interval. This is somewhat naive. Typically, a source i 
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alternates between silent periods, when no cells are emitted, and bursts, when cells 
are generated at regularly spaced time intervals at a peak rate of R, cells per second. 
If the output rate is L cells per second we may define a time slot of 1/L seconds. 
Hence a burst on source i may be viewed as a sequence of cells arriving every L J  R,  
time slots. If C,"=, R, 5 L it is clear that N sources may be multiplexed together 
provided a buffer can temporarily queue cells that arrive in the same time slot. A 
small delay results which is called a jitter and the maximum cell delay variation 
should not be large. 

Fig. 5.2 A chain representing idle and peak transmission. 

A bursty traffic source i such as digitized voice transmissions may in general be 
described as an mstate Markov chain. Such sources are called Markov modulated 
sources. A two state model has an idle state 0 and a burst state 1 as in Figure 
5.2. In the idle state no cells are transmitted while in the burst state, cells are 
transmitted with peak rate P.  Every time slot a transition is made between these 
two states according to the following transition kernel: 

Given the chain starts in the idle state, the probability it jumps to  the burst 
state in the nth time slot is 

KooKoo.. . KooKol = (1 - o , ) ~ - - ~ u .  

Consequently, the sojourn in the idle state is a geometric random variable with 
mean A = 1 / u  time slots. Similarly, the sojourn in the burst state is a geometric 
random variable with mean B = l / b  time slots. 

ATM takes advantage of the idle periods of bursty sources since it may be that 
the sum of the peak source rates R, of N sources exceeds the link rate L. This 
is called statistical multiplexing and it provides a substantial improvement in car- 
rying capacity. On the other hand, when the output link capacity is exceeded the 
buffer at the link will quickly overflow and cells will be lost. The task of the traffic 
engineer is to manage the link to ensure these losses occur with very low probability. 
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Example 5.3 
Consider the ATM multiplexor which multiplexes 5 trunk lines carrying noisy ATbI 
traffic. As before we assume that in each time slot a trunk line presents a cell to 
the multiplexor with probability 1/10, During the time slot the head of the line cell 
in the queue is transmitted to the output link while arriving cells are added to the 
queue. Q, t~  represents the number of cells waiting in the queue at the end of each 
time slot. We assume a cell arriving at  an empty queue is queued for one time slot. 
Qrtl is a Markov chain on the state space S = {0,1 ,2 , .  . .}. In Figure 5.3, the queue 
initially contains two cells 

ATM multiplexor - - (3.2) continued 

0 1 2 3 4 5 6  PI 

Fig. 5.3 A typical arrival stream driving an (infinite) ATM queue. 

Clearly the number of cells that may arrive at  time [t] is a Binomial random 
variable Bit] with n = 5 and p = 1/10, Let b(k ;5 ,0 .1 )  := P(Bit] = k ) .  The 
transition kernel is given by { ;(j:5,0.1) i f i = O  

rC,, = b ( j - i + 1 ; 5 , 0 . 1 )  i > O , - l < j - 2 < 4  
otherwise. 

Now assume the multiplexor buffer holds only 6 cells because a delay longer than 
6 time slots is unacceptable. If more cells arrive than can be stored then these cells 
are lost! Note that that the transfer of the head of the line cell to the output link 
is complete at  the end of the time slot so that buffer was unavailable for arrivals. 
Consequently there are never more than 5 cells in the queue at  the end of a time 
slot. 

In Figure 5.3  an overload occurs during the qth time unit so in fact one cells is 
lost. Let Q;, represents the number of cells waiting in this finite buffer queue at  the 
end of each time slot. The state space for Q i ,  is {0 ,1 ,2 ,3 ,4 ,5}  and the transition 
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kernel is given by 

b ( j ;  5,O.l) i f i = O  
b ( j  -it 1;5,0.1) K" = if i > 0,-1 < j  - i  5 4, j  < 5 { ~ k = , - ,  b(k ;  .5,0.1) if i > 0 , j  = 5 .  

ZJ 

The matrix K B  defined above may be calculated using Mathernatica as below. 

L=6 (*We assume the b u f f e r  only holds 5 c e l l s * )  
M = 5  (*There are 5 input  t r u n k  l i n e s * )  
p=1/10 (*Each l i n e  d e l i v e r s  a c e l l  with p r o b a b i l i t y  p*) 
bin[x-] :=bin[x]=Binomial[M,x] p- (x)  (l-p)-(M-x) 
f [x-] :=bin[x+l] 
f i n t  [x-1 :=Which Cx<-l, 0,  x>L-2, 0, True,  f [XI 1 
hitmax [d-1 : =Sum [f [d+kl , {k, 0 ,  L)] 
coord[i- , j - ]  :=Which[i < 1/2, f i n t  [j-11 ,j==L-1,hitmaxCj-i] ,True,  f i n t  [j-i]] 
matrixcoordCi-, j-] :=coord[i-1, j-11 
KB=Array[matrixcoord, cL,L)I (*This i s  t h e  mat r ix  KB*) 
MatrixForm [KBI 

(*f i s  t h e  p . m . f .  of t h e  random walk*) 

1 0  1 2 3 4 5 

Since a chain takes values only in S we have 

x~ij = 1, for a11 i E S. 

Recall that the probability measure a represents the random initial stat,e of the 
chain. It could, of course, be a delta function giving probability one to some initial 
state, i 0 .  A random initial state may result from the past 
history of the process, or may result from an explicit randomization of the starting 
point. Given a probability transition kernel Kij and an initial probability measure 
a,  we may construct the Markov chain X n  and the probability space {0,3, Pe}. 
The construction is given in full in Section 5.10. We do note however that the 

j € S  

Hence a(i0) = 1. 
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probability of any given trajectory ( i o ,  i l ,  . . . , in) of the Markov chain is determined 
by the kernel K and a as follows: 

Proposition 5.4 

P,(XO = io,x1 = il,. . . ,xn-l = in-l,X, = in)  

= ~ ( i ~ ) K i , ) i ~ K i ~ , ~  . . . Kim-zin-lKi,n-lin. 

Proof: By conditioning, 

P,(XO = i0,Xl = i l , .  . . ,Xn- l  = &I, x, = in) 
= P,(XO = i(),x1 = 2 1 , .  . . ,Xn - l  = 2,-1) 

.P,(Xn = i,(Xo = i0,XI = il,. . . ,xn-, = i,-l) 
= P,(XO = i(),x1 = il,. . . , xn-l = i,-l) . Kz,,-,an 

where the last eqiiality followed from the Markov property. Iterating we get 

Remark that K i  E ( K z ) 7 J  = CkEs KzkKkJ and similarly 

are the matrix products of K times itself, 2 , .  . . , n times. 

Proposition 5.5 P,(X, = j lX0 = i )  = KG for any  initial distribution a .  

Proof: By conditioning arid summing over all possible trajectories between i and 
j we have 

P,(XO = i ,  x, = j )  
P,(Xo = i) 

P,(X, = j/x, = 2) = 
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We may immediately establish the Chapman-Kolmogorov equation: 

Proposition 5.6 For any  !m 5 a ,  

k t S  

Proof: The process must be at some k E S at time m, so 

K?. = P,(X, = j lX0  = i) 
Z J  

- - c P,(X, = j,x, = k / X o  = i) 
k E S  

Example 5.7 
By the above 

Bursty ATM traffic - (5 .2 )  continued 

K n =  ( I - a  a )" 
b 1 - b  

One may diagonalize the matrix K with a similarity transformation. The eigenval- 
ues of K are 1 and 1 - a - b (note 11 - a - bl < I). The associated eigenvectors 
are 

The standard basis vectors e l  and e2 are: 

We may transform our standard basis vectors e l ,  e2 into a basis of eigenvectors by 
multiplication by U where 

The image of e l  under U P I K U  is 1 . el while the image of e2 under U P I K U  is 
(1 - a, - b )  . e2. Hence U P I K U  = D where 
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Hence, K = UDU-I .  Next, by telescoping, K" = U D " U p l .  Since D is diagonal, 

1 0  D " =  ( 
0 (1 - a - b)" 

so we conclude 

1 (1 - a - b)" ( :b ;u) 
a + b  u + b 

Example 5.8 
Consider a processor which cycles every nanosecond. Suppose that customers arrive 
at the processor according to a Bernoulli process having arrival rate p customers per 
unit time (where p = X/q per second). The first M in MIMI1 stands for the fact 
that the interarrival times are geometric and hence memoryless. The customers 
are served one at a time in order of arrival and if the processor is busy when a 
customer arrives he joins the end of the queue. The service time for each customer is 
iridependcnt of the arrival process and has a geometric distribution with probability 
y of completing service in any nanosecond cycle (where q = p/q) .  This service time 
distribution is again memoryless and hence the second M in MIMIl .  Let M [ t ]  
denotc the number of customers in the queue at time unit [t].  

If the queue is empty when a customer arrives, this customer's service begins in 
the next time slot so 

The discrete MIMI1 queue 

If the queue is not empty then the queue decreases by one if there is a service and 
no arrival. It increases by one if there is an arrival without a service. Otherwise it 
remains the same. Hence, for i 2 1, 

and Ki,i = 0 otherwise. Notice that we might have chosen a slightly different model 
if we imagine that service takes place at the end of the time period in which case a 
customer entering an empty system might immediately be cleared. In this case we 
would have to make a small change to the transition probabilities from thc state 0: 

Example 5.9 
Consider a processor like that in Example 5.8 except that now the service time for 
each customer has distribution G, where the G stands for general service distribu- 
tion. We assume the service distribution has p.m.f. g[x]  at nanosecond [XI.  The 1 

The discrete M1G11 queue 
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stands for one server, so an M(G(n  queue differs from an n/l(G(1 queue only in that 
there are n servers. 

Let Q,  denote the number of customers left in the system after the nth service 
completion. At this time the entire past of the system is summarized by the value 
Q,. This follows because there is nobody being served at this time and the knowl- 
edge of when the last arrival of the discrete Bernoulli process occurred does not 
affect future arrivals since the Bernoulli process is memoryless. Let Y, denote the 
number of customers who arrive between the nLh and (n + l ) th  service completion. 
Clearly, Qn+l I= (Qn + Y, - 1) V 0. This representation allows us to specify the 
transition probabilities. While we wait [x] time units for the next customer to he 
served, k new customers arrive with probability 

This follows since we wait [x] time units with probability g[z] and during each of 
these time units, a new ciistonier arrives with probability p .  

In the case when Qn = 0, we wait until the next, ciistomer arrives and with 
thc above probability we see k more customers arrive while he or she gets served. 
Consequently, for i = 1 ,2 ,  . . . 

k = i - 1, i , i  + 1,. . . 
while 

(5.2) 

This chain is called the embedded Markov chain and as we shall see, is useful in 
describing the stationary or steady-st,a,te regime of the queue. 

5.2 Steady-State Markov Chains 

Consider a probability transition kernel Kt3 on a state space S. We say a state j 
is accessible from state i if for some n 2 0, KG > 0. We say two states i and j 
communicate if each is accessible from the other. 

Proposition 5.10 
municat ion  classes. States  wi thin a communicat ion class all communicate .  

T h e  state space m a y  be divided in to  disjoint sets  called com- 
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Proof: Suppose k communicates with both i and j .  Therefore there exist n and m 
such that Icz > 0 and K& > 0. Now by the Chapman-Kolmogorov equation 

K 7 y "  = c KZK,", 2 K2KFj > 0. 
ets 

Hence j is accessible from i .  Similarly .i is accessible from j ,  so i and j communicate. 
Communicating states form an equivalence class so sets of communicating states 
are necessarily equal or disjoint. (The notion of equivalence class is reviewed in the 
Appendix.) I 

Example 5.11 A reducible chain 
Consider the probabiIity kernel 

0 1  0 0 tZ1 0 0 1 /2  1 /2  ' 

Clearly K has two communication classes, the first two states and the last two. 

Definition 5.12 
mimication class. 

We say a Markov chain is irreducible if therc is only one corn- 

Definition 5.13 We say a positive measure a on 5' is stationary if 

k t S  

and is a stationary probability measure if in addition ci a( i )  = 1. 

If the initial distribution of a Markov chain is stationary probability measure n then 

P,(X, = i) = C7r(k)Iqi 
k € S  

= n(i)  

by iteration. Hence if we start out according to a stationary initial distribution 
then X ,  has this same distribution for all n. This does not mean the chain stops 
juniping from state to state! This is statistical equilibrium; only the probabilities 
of being in a given state are fixed. 

Definition 5.14 
chain is stable. 

If a chain has a stationary probabilit,y distribution 7r we say the 

Example 5.15 
This is a stable, irreducible Markov chain. The unique stationary measure 7r is a 

Bursty ATM traffic - (5.7) continued 
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vector 7~ := (r(O), ~ ( 1 ) ) ~  satisfying r ( 0 )  + n(1) = 1 and the matrix equation 

Solving this system gives (n(O), ~ ( 1 ) )  = ( b / ( a  + b), a/(. + b)) .  

Example 5.16 
We easily check that 

A reducible chain - (5.11) continued 

or any convex combination of these two are stationary measures. The two disjoint 
communication classes have individual stationary measures so we may create lots 
of stationary measures by weighing them in different proportions. 

Example 5.17 
Our ATM multiplexor multiplexes 5 trunk lines carrying noisy ATM traffic. In each 
time slot of one microsecond a trunk line prescnts a cell to the multiplexor with 
probability 1/10. The multiplexor sends one cell every time unit and stores the 
rest up to  a maximum of 5 cells. Qf, represents the number of cells waiting in the 
queue at the end of each time slot (after the multiplexor has cleared one cell). Qfi 
is a Markov chain with state space {0,1,2,3,4,5} and we calculated the transition 
kernel K B  of this chain. 

We can solve the equation 7r = 7rKB by writing it as r(K” - I )  = 0 or ( K B  ~ 

I)T7rT = 0 where T deriotcs the transpose. Consequently the colunin vector rT 
is in the null space of ( K B  - I ) T .  We can find a vector in this null space using 
Mathernatzca. 

ATM multiplexor - - (5.3) continued 

dif f =Transpose [KB-IdentityMatrix [L] 1 
eig=NullSpace [dif f 1 
sol=First [eigl 
total=SumCsol[Cill ,{i,1,611 
pi=N [sol/total, 31 

The last couple steps above simply normalized the eigenvector into a probability 
giving t,he result: 
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It is possible to study the long run average behavior of a Markov chain using 
renewal theory. By Corollary 6.25, 

Theorem 5.18 
distribution n. L e t  h be a real valued f u n c t i o n  such that 
w i th  probability 1, 

Le t  X ,  be an irreducible Markov cha in  *with stat ionary probability 
lh(i)ln(i) < 00 then 

Example 5.19 
Our ATM multiplexor multiplexes 5 trunk lilies carrying noisy ATM traffic. IKI each 
time slot of one microsecond a trunk line presents a cell to the multiplexor with 
probability 1/10, The multiplexor sends one cell every time unit and stores the rest 
up to a maxirnurn of 5 cells. Q B  represents the number of cells waiting in the queue 
at  the end of each time slot (after the multiplexor has cleared one cell). 

One important consideration is the lorig run proportion of time the multiplexor 
is idle; that is the long run proportion of time the queue is empty because no cell 
is served if the queue starts out empty at  the beginning of a time slot. According 
to Theorem 5.18 this long run proportion is given by 

ATM multiplexor - - (5.17) continued 

[tl 

1 T - l  
lim - x{Qtl = 0} = ~(0) = 0.500196 

T-cc T 
S=O 

so we see the multiplexor is idle slightly more than 50% of the time. Another 
important parameter is the utilization of the multiplexor which is the long run 
proportion of time the multiplexor is busy. Clearly the utilization is 

1 T--l 
lirri - x{QEI > 0} = 1 ~ n(0) = 0.499804 

T-cc T 
S=O 

Proposition 5.18 can be generalized: 

Proposition 5.20 Let X ,  be an irreducible Markov  cha in  w i th  s tat ionary prob- 
ability distribution T .  Le t  V[n]  be a stochastic process defined recursively by 
V[n] = h(X,-1, X,, Un-l) .  T h e  distribution of t h e  r a n d o m  variable (or vector) 
U,-1 is determined by the  s tates  X,-1 and X ,  but is otherwzse independent  of t he  
trajectory o,f t he  cha in  { X n ,  n = 0, 1,. . .}. In other  words if X,-1 = i and X ,  = j 

In particular,
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The above proposition shows that for most practical purposes the steady state 
determines the long run behavior of a Markov chain. 

To apply Theorem 5.18 or Proposition 5.20 we need to show the chain is stable. 
Often the steady state probabilities ?r can be given by exact calculation from the 
equilibrium equations as in the examples in this section but when the state space 
is countable this may not be possible. 

Theorem 5.21 Le t  X ,  be a n  irreducible M a r k o v  chain.  If there exis ts  a recurrent 
s tate  i ;  i.e. such  tha t  t he  re turn  t i m e  t o  i i s  f i n i t e  w i th  probability one  t h e n  there 
exists a s tat ionary dis tr ibut ion which i s  unique u p  t o  constant  multiples.  If,  in 
addi t ion,  pii < 00, where pii is t h e  m e a n  re turn  t i m e  t o  a ,  t h e n  pj j  < 00 f o r  all j and 
X ,  i s  stable w i th  un ique  s tat ionary probability dis tr ibut ion ~ ( j )  = 1 / p j j  = ~ ( i )  iGij 

where iGij i s  t he  expected n u m b e r  of visits  t o  j before a re turn  to i .  

We prove this theorem in Section 5.9 and in Section 5.10 we will provide a means 
of checking the mean return time to some state is finite. 

Example 5.22 
Our ATM multiplexor multiplexes 5 trunk lines carrying noisy ATM traffic. In each 
time slot of one microsecond a trunk line presents a cell to the multiplexor with 
probability 1/10. The multiplexor sends one cell every time unit and stores the rest 
up to  a maximum of 5 cells. QE represents the number of cells waiting in the queue 
at the end of each time slot (after the multiplexor has cleared one cell). 

The cell loss rate is an important measure of the performance of the multiplexer. 
Let r/, denote the number of cells lost in the nth time slot. Clearly if QgPl, = i and 
QKj = j then the number of cells that were lost in time slot [n] is h(z , j ,  Un-l)  = 

X { J  = 5}(Un ~ j + i - 1) where Un-l is a binomial random variable representing 
the number of arrivals in the nth time slot. The long run average number of cells 
lost per time slot is 

ATM multiplexor - - (5.19) continued 

where V ,  = h(QB [n-11 i QEl, UnP1) .  Since 

then thethen the p.m.f. of is If then
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so the long run average number of cells lost per time slot is 

5 c 7r(i)K$(UO - j + i - 1)+ 

= 7r(2)K,B,E(UrJ - 4)f + 7r(3)K&E(UrJ - 3)+ 

+ . (4)K3(UO - 2 ) f  + .(S)K,B,E(UO - 1)+ 

%=O 

= (.ll6858)(.00026)(.00001) + . . . (.00138232)(.40951)(.09049) 

= 0.0000559522 

Since an average of n p  = 5(0.1) = 0.5 cells arrive per time slot we conclude 
that the long run proportion of cells lost is twice the above value. This loss rate 
seems incredibly small but in fact it is much too high! A cell loss rate of about one 
cell in a billion might be more acceptable. There is a delicate balance inside the 
multiplexor. A cell arriving at the end of a queue with z cells in it must wait z 
time slots to be transmitted. Hence the buffer cannot be too large or else the delay 
across the multiplexor is too long. On the other hand if the buffer is too small then 
the cell loss rate will be too large. The above calculations will help to strike the 
proper balance but bear in mind that our calculation depends on the noisy traffic 
assumption. What would happen if the traffic was bursty! 

5.3 Convergence to Steady-State 

The convergence of long run time averages to steady state investigated in the last 
section can be sharpened. For many chains, regardless of the initial distribution, the 
distribution after a very few transitions is approximately the stationary distribution! 

Example 5.23 
By the explicit calculation of K n  we see that as n ---f 00 

Bursty ATM traffic - (5.15) continued 

In other words, it doesn't matter whether we started in 0 or 1, after some time we 
are in state 0 with approximate probability b/ (u  + b)  and in state 1 with approxi- 
mate probability u / ( u  + b) .  These are precisely the steady state probabilities of the 
ATM chain. We note, moreover, that it doesn't take long to enter the stationary 
regime since the term (1 - a ~ b)n converges to 0 exponentially fast.-- 
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Things don’t always work out so nicely even if a chain is irreducible. Consider 
a chain having kernel 

Clearly, starting in state 0, after n steps we are in state 0 with probability 1 if n, is 
even and 0 if n is odd. Similarly, st>arting in state 1, after n, steps we are in state 1 
with probability 1 if n is even and 0 if n is odd. It is clear K$o does not converge 
(but K$ does) and this is a nuisance we will have to watch out for. 

Definition 5.24 A state i has period d if d is the greatest common divisor of the 
set {n : K,”, > O}. This means that if p is any other integer which divides every 
element of the set { n  : K: > O} then d is divisible by p .  Hence, KE = 0, except 
for some times n of the form n = d ,  2d, 3 4 .  . .. and d is the largest integer with this 
property. A state with period 1 is called aperiodic. Denote the period of state i by 
d ( i ) .  

Proposition 5.25 If i and j belong to  the same communication class then  d ( i )  = 

d ( j ) .  

Proof: Since i and j are in the same communication class there must exist integers 
m and n such that K; > 0 and KZ > 0. Suppose K,”, > 0 then by the Chapman- 
Kolmogorov equation 

Similarly, K,”,” 2 KEKL > 0 so 

It follows that d ( j )  divides rn + p + n and m + 2p + n and hence d ( j )  divides 
the difference which is p .  By definition, d ( i )  is the greatest common divisor of all 
{ p  : K,”, > O} so d ( j )  must be a divisor of d ( i ) .  By symmetry d ( i )  must be a divisor 

I 

If we avoid periodicity we have the following results whose proofs are deferred 
of d ( j ) .  Hence d ( i )  = d ( j ) .  

to the next section: 

Theorem 5.26 If X n , n  2 0 is a n  irreducible, aperiodic Markov chain having 
stationary probability distribution ?r, then ~ ( j )  = l /pj j  where p j j  < 00 is the mean 
return t ime  to  j .  Hence T is unique. Moreover 
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Corollary 5.27 
stat ionary probability dis tr ibut ion T .  If ties I f ( j ) l ~ ( j )  < 00 t h e n  

L e t  X n , n  2 0 be a n  irreducible, aperiodic Markov cha in  having 

Example 5.28 
One can check by matrix multiplication that the stationary probability measure of 
the MI M 11 queue with p < y is given by 

The discrete MIMI1 queue - (5.8) continued 

One just checks that T = T K .  For i 2 2 :  

= 7r(i) 

For i = I: 

= T(1) .  

For i = 0: 

= 7r(O)-. 

We also have to  check that Czl ~ ( i )  = 1. This is easy to check as long as 
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This makes good sense because p is mean arrival rate per time slot and q is the 
mean service rate per time slot. Customers must be served faster than they arrive 
or the queue will tend to grow without bound. 

From Theorem 5.26 the stationary probability distribution we have calculated 
is unique. We just have to check that the chain is irreducible and aperiodic. From 
any state i there is a transition to i - 1 or i + 1. A series of such transitions will 
obviously take us from any state to any other so the chain is irreducible. The number 
of transitions to return to  0 could be 1 with probability q or 2 with Probability pq. 
The state 0 is therefore aperiodic and so is the chain. 

It follows from Corollary 5.18 that the average number of time slots the queue 
is empty is ~ ( 0 )  = (1 - p / q )  Since p = X/v and q = p /v  where 17 is huge, it follows 
that as 17 --f 00, ~ ( i )  - (1 - p ) p i  for n = 0,1 , .  . . where p = X/p. 

Given the queue starts out with i customers, the expected number of customers 
in the queue at time n is E,X, = ClEs K z j .  Define the function f ( i )  := i on the 
state space S = {0,1 ,2 , .  . .} then from Theorem 5.27, the expected number of cells 
in the queue is j 7 r ( j )  which simplifies to 

P 
00 3 

1 - P  P ( 1 - Y )  1----- 
j=1 c,,(,-> - 1 - q  1 - p  1 - P  1 - P  

Example 5.29 
It is easy to check that the M ( G / l  queue is irreducible since a transition from 0 
to any state i has positive probability while from i we can jump to i - 1 with 
positive probability and so on down to 0. The state 0 is certainly aperiodic since 
we can return in 1 step (or 2 or 3). The existence of a stationary distribution 
7r for the number of customers left behind after a service completion leads to the 
Pollaczek-Khinchin equation. Suppose 7r has z-transform 

The discrete MIGI1 queue - (5.9) continued 

k=O 

Denote the probability generating function of the service distribution G by 

$ C ( t )  := c t ' " ' g [2 ] .  
[x]=1 

Now ~ ( i )  = z k 7 r ( k ) K k i  so multiplying both sides by zz and summing over i, we 
have 
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Now, using (5.2), 

? 
\ " /  i [3-]=1 

M 

Now, using (5.1), 

k>O 2 

9 [XI 
(zp)i-k+l(l - p)["l- i+k-l  

i - k + l  '.I 1 = C n ( k ) z " '  c c ( 0 3 0 0  

k>O [z]=12=k-l  
m 

= C T ( k ) Z " l  c (1 - p + zp)'"] g[z] = X T ( k ) z k - l , $ G ( l  - p + z p )  
k>o [5]=1 k>O 

- - '(') -"(')'f+!)G(l - p + z p ) .  z 
Adding the above expressions we get the equation 

Denote ~ ( 0 )  = 1 - p and solve to get the discrete Pollaczek-Khinchin equation 

We must check that Q ( z )  is in fact the z-transform of a probability distribution, 
or, equivalently, that Q(1) = C k  ~ ( k )  = 1. We take the limit as z --i 1. First 

Evaluating at  z = 1 or y = 1 gives 

t=1 = p m  ,%=I = ~ 

d@G(t)  1 

where m is the mean service time measured in units. 

d'd'G(1 - P  + z p ) ,  
dz d t  
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Let mG denote the mean service time measured in seconds so mG = m/q. Next 
using L'Hospital's rule 

= I .  -(I - P )  
p m - 1  

This expression can equal 1 if and only if p = pm = X m G .  Hence the probability the 
steady state queue is empty is ~ ( 0 )  = 1 - p = 1 - X m G .  Moreover, 1 - p = ~ ( 0 )  > 0 
so Xmc < 1. This is quite reasonable since the mean time between arrivals is 1/X, 
so we are simply requiring that on average customers are served a little faster than 
they arrive. If this is not true then clearly it won't be long before the queue grows 
without bound! 

We can obtain the mean qav ( L  in seconds) of an M(G11 queue by evaluating 
Q(1) to obtain q,, = p + m z p 2 / ( 2 ( 1  - p ) )  where m2 is the second moment of the 
distribution G (see Exercise 5.13). We can also give the distribution of the time 
an tagged arriving customer will spend in the system until service completion. We 
observe that the distribution of the number of customers the tagged customer leaves 
behind has distribution 7r and that this number is precisely the number of customers 
who arrived during the tagged customers system time. Let S represent the system 
time and let S ( z )  be the transform of S. The number of customers that arrive 
during time S is a Binomial with parameters p and S and n ( k )  is the probability 
this Binomial takes the value k .  Hence, conditioning on S = t ,  

w t  

= Z C ( l - p + p z ) ' P ( S = t )  = S ( 1 - p + p z ) .  
t = l  k=O 

Consequently we can obtain the generating function S ( z )  = Q ( ( z  - (1 - p ) ) / p ) .  
We have now characterized the stationary measure at the time of service depar- 

ture and by Theorem 5.26, the embedded M(G(1 queue may start out in any state 
or any initial distribution but after a few departures the distribution of the queue 
size after a service will tend to the stationary distribution n. On the other hand we 
are really interested in the stationary distribution at any time t not at a stopping 
time. The distribution at stopping times can be anything. For instance, we know 
the distribution of the queue at those random times when it empties completely - 
it is empty! Nevertheless, since the arrival process is memoryless, the state of the 
queue at an arbitrary fixed time does turn out to have stationary distribution n! 

To show this we first remark that the BASTA property holds; that is Bernoulli 
Arrivals See Time Averages (the PASTA property holds for Poisson processes). Let 
X [ t ]  be the queue size at time slot [t] and suppose a customer arrives in time slot 



146 E l e m e n t s  of Applied Probabili ty 

[t + 11; that is L[t+l~ = 1. Then 

because future arrivals are independent of the past. Hence, if X is in steady state 
then a Bernoulli arrival sees the queue in steady state, i.e. it sees the time average. 
If we can now show that the distribution of a, the chain Xp]  left behind by service 
completions is the same the distribution seen by arrivals (which is steady state) 
then the above embedded process has the same steady state as X [ t ] .  We leave this 
for the continuation of this example at (6.16). 

Example 5.30 
A simple example of a discrete time queue is the discrete time nirlkfll queue where 
the interarrival times and the service distribution are geometric with mean l / p  and 
7n = l / q  respectively where q = p/r] (recall p = A/q).  In this case, 

The discrete MIMI1 queue - (5 .28)  continued 

Substituting in the Pollaczek-Khinchin equation and simplifying we get 

Expanding this in powers of z we see that,  for q > p ,  

7r(k)  = (-p)k (;J (-) 1 - P / q  "N (pJ (1 - ;) 
1 -  1 - q  

as q 4 00. This is the formula we found in Example 5.28. 
We can also rewrite Q ( z )  above as 

so 

-1 

S ( z )  = 
(1 -P )= l  

- - 4-pz (1 - (1 - ").) 
l - p - ( l - q ) z  1 - p  1 - P  

This means the distribution of the system time for an MlMll  queue is geometric 
with a mean of (1 - p ) / ( q  - p )  nanoseconds or approximately an exponential with 
a mean of l/(p - A) seconds. 
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5.4 Reversible Markov Chains 

Consider a stationary Markov chain {X,; 0 5 n 5 T }  on a countable state space 
S having stationary probability measure 7r and transition kernel Kij for i , j  E S .  
If we fix any time T ,  we may consider the time reversal of the original process, 
{ X z  = XT-~, , ;  0 5 n 5 T } ,  still defined on the same probability space. The 
evolution of this process is what we would get if we filmed the original chain from 
time 0 to T and then ran the film backward! Everyone knows this produces very 
strange results like the spilled glass of milk that reassembles itself from a million 
pieces and leaps up to a table top. In equilibrium however the time reversal is not 
so strange and is in fact just another Markov chain! 

It is easy to establish the Markov property for the time reversed process and to 
identify the corresponding transition kernel. The Markov property holds since for 
O _ < r n < n < T  

This means the conditional probability that the time reversed chain is in state j at 
time n, given the past at time m, depends only on the state at time m; i.e. on the 
fact that XA = i. Hence, 

This is precisely the Markov property and taking n = m f 1 we see the transition 
probabilities are homogeneous and equal and given by 
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Example 5.31 
Consider the probability kernel K 

A time reversed chain 

1/3 1/3 1/3 
1/2 114 1/4 

With a little calculation we have n = (10/23,9/23,4/23) and we see K* is 

l / 2  3/10 1/5 
5/9 113 1/9 . ( 0 314 111) 

Note that the steady state of the time reversed chain is exactly the same as the 
original chain since 

In some cases the time reversed chain has the same transition kernel as the original 
chain, i.e. K:J = Kt3. In this case we call the chain X reversible and we see this 
implies 7r(z)KtJ = 7r(j)KJt since in this case 

and the result holds by multiplying by n(i). 

Example 5.32 
The steady state of the MIMI1 queue is 

The discrete MlMll queue - (5.30) continued 

i 

~ ( 0 )  = 1 - P - and ~ ( i )  = ( 1 - :) - ~ l r ,  (P#) f o r i = 1 , 2 ,  . . .  
4 

Let's show this chain is reversible. We need to show T ( ~ ) K ~ , ~ + ~  = 7r(z + l)Ki+l,i 
for i 2 0. For i L 1, substituting in the transition probabilities, we see that this is 
equivalent to  

and this is true by cancellation. We may check the case i = 0 separately. By 
substitution 
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which brings us back to T ( O ) K ~ , ~  = T ( ~ ) K ~ , ~ .  
We conclude the discrete MIMI1 queue is reversible and so will look the same 

(in a distributional sense) viewed either forward or backward in time! However the 
time between arrivals to the chain is geometrically distributed. Viewed backward 
in time these arrivals look like departures and so we conclude the time between 
departures is also geometrically distributed! 

Example 5.33 A time reversed chain - (5.31) continued 
Note that the kernel K" we explicitly calculated above is not equal to K so the 
associated chain is not reversible. This is not surprising since K13 = 0 which 
means there can never be a transition from 1 directly to 3. On the other hand 
K s ~  > 0 which means that the time reversed process can jump from 1 to 3 since 
11T3 = 7r(3)1131/7r(1) > 0. The time reversed process and the original process can- 
not be the same and so our original chain is not reversible. 

Suppose we have a reversible Markov chain on a state space S which is divided 
into a forbidden set F ,  and its complement B. Let i7 denote the stationary distri- 
bution of the kernel K of this chain. Suppose those transitions from B to F are 
suppressed or truncated so a transition from i E B is suppressed and then redirected 
back to i .  Hence, for i E B,  we can define a new transition kernel 

if i , j  E B and j # i I(z, = { Ki.i 
Kii + CeEF Kit if i E B and i = j 

Lemma 5.34 T h e  stationary distribution of the truncated reversible Markov chain 
o n  B with transition kernel K has stationary distribution given by 7r(i)/7r(B) f o r  
i E B. 

Proof: The proof is immediate by simple calculation. Pick j E B so 

since 7r is the stationary distribution. Finally the factor x(B) normalizes the mea- 
I sure 7 r ,  restricted to B,  to be a probability. 

using reversibility
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Example 5.35 
Consider two MIMI1 queues. The first has independent arrivals with probability 
p i  = X l / q  per time slot and services are completed with probability q1 = p l / q  in 
any time slot (when there are customers in the queue). The second has independent 
arrivals with probability p2 = X z / q  per time slot and services are completed with 
probability q 2  = p 2 / q  in any time slot. Let the pair of queues X1 and X 2  have 
kernels K1 and K 2  as given in Example 5.8. Together they may be viewed as a 
Markov chain ( X I ,  X 2 )  having kernel 

The discrete MlMl l  queue - (5.32) continued 

and state space {0,1, .  . .} x {0,1,. . .>. It is immediate that the stationary distribu- 
tion T for the joint chain is the product of the stationary distributions T’ and 7r2 

of the marginal chains. It is also immediate that the joint chain is reversible with 
respect to T !  

Let’s suppose the two queues share a common customer waiting room, which 
seats fewer than L customers including those being served. If L - 1 seats are filled 
(so both servers are busy) then new arrivals to either queue are sent away without 
service. To calculate the stationary distribution of this shared buffer we first remark 
that transitions to F := {(i, k )  : i + k 2 L )  are suppressed. By Lemma 5.34 the 
stationary distribution of the truncated chain on B := { (i, k )  : i + k < L }  has a 
stationary distribution 7rB given by the restriction of 7r to B, renormalized by n(B) 
to be a probability. This is rather remarkable since the joint behavior of the shared 
queue is very complicated! 

5.5 Hitting Probabilities 

Example 5.36 
The Shewhart control chart is rather slow to react to a shift in the process mean. 
The fact is, most of the control procedures in today’s standards manuals are ob- 
solete since they were designed to minimize computation rather than have optimal 
statistical properties. There were no calculators and certainly no personal comput- 
ers in the 1920’s! The Cusum or cumulative sum procedure was proposed by Page 
in 1954 and has gradually been replacing Shewhart charts. It has been adopted as 
standard BS5703 by the British Standards Institute and surprisingly this procedure 
has only recently been shown to be optimal (see Moustakides (1986)). 

Consider the data from Example 3.27 which has a nominal value po.  Let the 
observed values (which are in fact the average of 5 observations) be denoted by 
X,; n = 1 ’ 2 , .  . . (we drop the bar). When the process is in control the X i  have 
mean ,UO = 1000 and standard deviation 50/&. Suppose we particularly wish to 
guard against a positive increase or shift in the mean to p1 = 1020, the so-called 

Control charts - (3.27) continued 



Markov Chains 151 

rejection quality level. Define a reference parameter k and define the one-sided 
Cusum: 

Cn+l = max{C, + X ,  - k ,  O}, Co = 0. 

We sound an out-of-control alarm at the first n such that C, > h where h is the 
signal level. 

150 

100 

50 

0 

0. . . 
0 .  

h=lO8 

. . 

. 
. 

0 .  

. . . a 
0. . ....*. .........- em.. 0. 0 .  

I I I I I I I I I I 
0 10 20 30 40 50 

Fig. 5.4 A Cusum chart. 

The reference or anchor value k is picked so that while the process in control 
the quantities X ,  - k tend to be negative. For instance if k = (p l  + p 0 ) / 2  (in the 
example we take k = 1010) then X ,  - k has a negative mean when the process is in 
control. Consequently the Cusum C, tends to drift down to 0 again and again and 
so will cross the signal level only after a long time. On the other hand, k is picked 
so that in the out-of-control situation the values X ,  - k tend to be positive. This 
holds, for instance, if k = ( p l  + po)/2 since this is less than the shifted mean P I .  
Consequently the Cusum C, tends to drift up to the signal level so an alarm will 
soon be signalled. 

The sequence C, is a Markov chain. In Figure 5.4, the signal level is h = 108 
and it might be reasonable to have a level of discretization d = 10. In this case, we 
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divide the real line into intervals of length 6 = h / (d -0 .5 )  = 11.37. Then we identify 
the states {0 ,1 ,2 , .  . . ,9} with the centers of the intervals at 0,6 ,26 , .  . . , (d  ~ l ) b  ; 
that is with 0,11.37,22.74,. . . ,102.33 and h = (8/2) + center of the last interval. 
We can add a state F = (10) as a forbidden state which represents the interval 
(108,00]. 

In the above example, the on-target distribution, F ,  of X is a normal with mean 
1000 and standard deviation 50/&. We calculate the discretized probabilities of 
X - k by f(j) = P ( X  - k E ( j 8  - 6 / 2 , j 6  + 6/21 for j = . . . , -2, -1,0, 1 , 2 , .  . . We 
now wish to describe the transition kernel for the discretized chain on 0 , 1 , 2 , .  . . , l o .  
Let 

f (j - 2) for 0 5 i < d , j  > 0 
Ck<-,  f ( k )  for 0 5 i < d , j  = 0 
Ck>+, - f ( k )  for 0 C i < d , j  = d 

for i = d , j  = d. 

- 

{1 

KLJ := 

We can also calculate the transition kernel for the discretized chain when the process 
is off-target. In this case the distribution of X is a normal with mean 1020 and 
standard deviation 50/&. Plugging in this new distribution gives the off-target 
discretized transition kernel. 

The task is now to calculate the expected number of transitions before C, enters 
the interval (h ,  m). This is equivalent to the discretized chain entering the forbid- 
den state 10. We are consequently interested in describing the transient behavior 
of a chain before it enters the forbidden state. This requires a bit more theory. 
With this theory we can pick the reference and signal parameters to fix the average 
run length of the procedure when the process is on-target and off-target. In this 
example the in-control average run length is set to  be 500 observations. 

Consider a Markov chain which starts out in a set B but which eventually jumps 
out of B into an absorbing set F where B U F = S. The hitting time TF is defined 
by TF := min{n > 0; X ,  E F }  and we assume P(TF < m) = 1. 

Also for i , j  E B define AYJ := P,(rF > n , X ,  = J ) ,  the probability of visiting 
J on the nth step before being absorbed into F having started in i. For i , ~  E B ,  
A,, := A:, can be viewed as the transition kernel of the chain on B. Of course the 
rows of this kernel do not add to 1 since eventually the chain jumps to F .  Once the 
chain enters F we stop it. Represent K as 

K : =  (2;) 
where A is a kernel on B ,  N is a kernel on F and H specifies the transition proba- 
bilities from B to F .  The stopped chain has kernel I?: 

K : = ( O  A H  I )  
( 5 . 3 )  
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Fig. 5.5 TF is the time to hit F 

where the identity matrix I causes the states in F to be absorbing. 

Example 5.37 
Consider the ATM multiplexor which multiplexes 5 trunk lines carrying noisy ATM 
traffic. As before we assume that in each time slot of one microsecond a trunk line 
presents a cell to the multiplexor with probability 1/10, Qrtl represents the number 
of cells waiting in the queue at the end of each time slot (after the multiplexor has 
cleared one cell). Q[t] is a Markov chain on the state space S = {0,1,2,. . .}. In 
Figure 5.3,  the queue initially contains two cells and reaches overload after 4 time 
slots. 

We saw the number of cells that may arrive at time [t] is a Binomial random 
variable Bp] with n = 5 and p = 1/10. The 
transition kernel is given by 

ATM multiplexor - (5.22) continued 

Let b(k ;5 ,0 .1 )  := P(Brt] = k ) .  

{ pir i ;5 ,04 if i = 0, 

otherwise. 
Kij = b ( j  - i f  1;5,0.1) i > 0,-1 5 j - i  5 4 

Let the forbidden set be F = {6,7,8, . . .} and let B = {0, I,  2,3,4,5}. This corre- 
sponds to having a multiplexor buffer which holds only 5 cells (presumably because 
a delay longer than 5 time units is unacceptable). The matrix A defined above may 
be calculated using Mathematica as in Figure 5.6. 

By matrix multiplication we see 

Consequently A; gives the probability of starting at i 
n and entering j E B at time n. 

B ,  staying in B up to time 

Markov Chains
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0 

L=6 
M=5 
p=1/10 

(*We assume t h e  b u f f e r  only holds  5 c e l l s * )  
(*There a r e  5 input  t r u n k  l i n e s * )  
(*Each l i n e  d e l i v e r s  a c e l l  wi th  p r o b a b i l i t y  p*) 

59049 6561 729 - 81 ~ 9 __ 1 

1 5 9 0 4 " 6 l - - -  729 81 9 1 

100000 20000 10000 10000 20000 100000 

100000 20000 10000 10000 20000 100000 

binCx-1 :=bin[x] =Binomial [M,xl p ^ ( x )  (l-p)-(M-x) 
f Ex-] :=bin[x+l]  (*f i s  t h e  p .m.f .  of t h e  random walk*) 
f i n t  [x-1 : =Which Cxc-1, 0 ,x>4, 0 ,  True,  f [XI I 
coord [i- , j -1 :=Which [i < 1/2, f i n t  [ j  -11 , True,  
f i n t  [ j- i l l  matrixA[i-, j-l :=coord[i-1, j-11 A=Array[matrixA, cL,L)]  
(*This i s  t h e  mat r ix  A*) MatrixFormCAl 

I 0  1 2 3 4 5 

59049 6561 729 81 9 
100000 20000 10000 10000 20000 

0 ~ _ _ - ~ _ _  

0 ~ - _ _ _ _  0 

0 0 

0 0 0 

59049 6561 729 81 
100000 20000 10000 10000 

0 590496561- 729 
100000 20000 10000 

59049 6561 
100000 20000 0 ~ _ _  

Fig. 5.6 Create the transition matrix A. 

The chance of staying in B up until time n and then jumping to j E F at time 
n + 1 is given by C k E B  A y k H k j .  Consequently, the probability of hitting j E F the 
first time we leave B is given by 

where 

Note that in the special case where F = { j }  
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As usual, let r~ be the time to hit F .  Note that for i E B 

This means we can calculate the mean time to  hit F from any starting point. 
Let this time be denoted by m ~ ( i ) .  By the Markov property it follows that for 
i E B, m ~ ( i )  = 1 + C,,sAi3mr.(j) since to reach F ,  one must take one step to a 
point j and from j it will take a time m ~ ( j )  to reach F .  Since mr;.(i) = 0 for i E F 
it follows that m ~ ( i )  = 1 + CjEB A i j ? * ~ ~ ( j ) .  If we rewrite this equation we get 

c ( I i j  - Ai j )mF( j )  = 1 or ( I  - A)mF = 1 
j € B  

in matrix form. The solution to  this matrix equation is precisely pG1 where 1 is 
a column of ones. 

Example 5.38 
Applying the above result to the ATNI examplc we may calculate the mean time 
until the queue exceeds 5 cells. The ta.ble below gives the time until overload 
starting with (0, .  . . ,5} cells. We remark that the mean hitting time is practically 
independent of the starting point i E B. This is because the chain returns to 0 many 
times before finally exiting B so in fact we need only consider the mean hitting time 
from i = 0. 

ATM networks - (5.37) continued 

potential=N [Inverse [IdentityMatrix [L] -A] ,61 
MatrixForm [potential] 
vectorones=Table[l,Ci,6>1 
ulttime=N[potential . vectorones,61 
MatrixForm [ulttimel 

The preceding code gives the following table of the mean time to overload start- 
ing with 0 to 5 cells in the queue: 

0 1 2 3 4 5 
6531.79 G531.79 6524.75 6485.72 6301.92 5539.43 

Example 5.39 
Applying the above methods to the Cusiim allows us to calculate the on and off- 
target run lengths for any given reference arid signal values k and h. The corre- 
sponding Matheniatica code to generate the transition matrix A according to the 

Control charts - (5.36) continued 
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recipe in Example 5.36 is given below. 

n=5 (* Sample size *> 
mu=1000 (* Expected average *) 
sigma=50.O /Sqrt[nl (* Standard deviation of the sample *> 
k=1010 (* Reference parameter *) 
h=108 (* Signal level *) 
d=10 (* Level of discretization *) 
delta=h/(d-0.5) (* Length of intervals *) 

(* Normal distribution function *) 
Gaussian[x-l :=Exp[-(x+k-mu)-2/(2 sigma-2)I /(Sqrt [2 Pi] sigma) 

(* Discretized probability *) 
f [ j -3 : = NIntegrate [Gaussian [XI , 

{x,j*delta-delta/2,j*delta+delta/2)1 
(* Left tail probability *) 

Lef tSum [ j -1 : =NIntegrate [Gaussian [XI , 

(* Right tail probability *) 
Cx,-Infinity,j*delta+delta/2)1 

RightSum [ j -1 : =NIntegrate [Gaussian [XI , 
(x,j*delta-delta/2,Infinity)3 

(* Transition kernel *) 
K[i-,j-] :=  If [i==d && j<d,O,If [i==d && j==d,l, 

If [i<d && j==d, RightSumCd-i] , 
If [i<d && j==O, Leftsum[-il, f [j-i111]1 

JumpMatrix=Table [Kci, jl ,{i,O,d-l),Cj ,O,d-l>l ; 
MinusOneVector=Table [-I, Cd)] ; 
RunLengths=LinearSolve[JumpMatrix-IdentityMatrix~d~, 

MinusOneVectorl 

Executing this program we get the on-target run lengths for all initial states 
i = 0,1,. . . , 9  which correspond to starting the Cusum with a headstart of 
0,11.37,22.74,. . .: 

C489.5, 488.1,  485.5,  480.7,  472.6,  459.4,  438.0,  404.2,  353.6,  285.2) 

We remark that the signal level h did indeed set the on-target run length at 
approximately 500 when the Cusum has no headstart. With a finer discretization it 
would be exactly 500. Modifying this program we can get the off-target run lengths 
for all initial headstarts: 

ClO.99, 10.35, 9 .55,  8 .63 ,  7 .63,  6 .58,  5 .50,  4 .40,  3 .35,  2.441 

Sometimes it makes sense to start the Cusum with a nonzero headstart. This 
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might be the case when there is a substantial chance at startup that the production 
equipment is not regulated properly. If we start at i = 6 which corresponds to 
starting thc Cusum at 70.2 the on-target run length is still 438.0 but the off-target 
run length is reduced by half. 

Example 5.40 Nonparametric control charts 
The run length distribution for both in and out of control cases depend on the 
on-target and off-target distributions. It may be unrealistic, particularly during a 
start-up phase of production, to assume these are known. We can always plot an 
empirical Shewhart - c h a r t  but this depends heavily on the assumption of normality 
so we can’t fix the on-target run length. 

One solution is to design a nonparametric Cusum procedure whose on-target 
run length distribution does not depend on the unknown on-target distribution F ,  
which we do assume to be continuous. This can be accomplished by sequentially 
ranking the quality measurements. Define the sequent,ial ranks 

i-1 

Ri = 1 + C X { X , ,  -x, < 0 j  
k=l  

It is an interesting exercise (see Exercise 5.26) to  show that, when the process is 
in control, the sequential ranks Ri take the values {1 ,2 , .  . . , i) with probability l/i  
and form an independent sequence of random variables. If the process is in control 
the variables Ui = & / ( i  + 1) are therefore independent and uniformly distributed 
on 

1 2  i {m>x > . . . ,  =}. 
We may now construct a Cusum procedure using the Ui: 

Ni+l = max{Ni + Ui - k ,  0}, No = 0 where k is some anchor value. 

Since the lJi are essentially uniform on [0,1], we can approxima.te the run length 
distribution until this nonparametric Cusum exceeds a signal level h, by calculating 
thc run length distribution for a Cusum with uniformly distributed quality mea- 
surements. Since t,he mean on-target run length should be large, the difference 
between these two Cusums will be negligible. The anchor value k will be greater 
than 0.5 since we wish the Cusum to drift downward when the process is on-target. 
This will be so since EU, = 0.5. The nonparametric Ciisuni for the same data set 
yielding the parametric Cusum in Figure 5.4 is given in Figure 5.7. A signal level 
of h = 1.20 will yield an on-target run length of 500 so we see an alarm is indeed 
signalled soon after the point of change. 

The above procedure is sequential and if the process is in control, then the av- 
erage run length does not depend on the distribution of the quality measurements. 
If, however, the process goes out of control and the distribution changes abruptly to 
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Fig. 5.7 A nonpararnetric Cusum chart. 

a stochastically larger distribution, G say, then the sequential ranks will be higher 
than expected. Consequently, the U, will be larger than expected, with a mean 
greater than .5 - k and if this mean is positive the Cusum will drift up to h and an 
alarm will be signalled. 

Example 5.41 Rare Events 
Let (Mn)E=o be an irreducible, recurrent Markov chain with kernel K and stationary 
distribution 7r .  Let F be a forbidden set such that r ( F )  is very small. In this 
example we consider a sequence of forbidden sets such that 7r(F) + 0 and we show 
the hitting time TF is approximately exponentially distributed. For notational ease 
we suppress F from our notation. Fix i o  E B = F" to be a regeneration point. Let 
the return tinie X to  io have p.m.f. g and mean p. Denote the sequence of i.i.d. 
return times as {X,}.  Each of these excursions can be classified as a success or 
failure depending on whether we hit F or not. Let p denote the probability of a 
success and let M denote the number of trials until success. Since the generations 
are independent, M is geometric with parameter p .  Note that the expected number 
of visits to F before returning to i o  is r ( F ) / p  by Proposition 5.21 so certainly p 0 
as T ( F )  + 0. 

The return time p.m.f g can be decomposed in two parts. Let gf denote the 
conditional return distribution given the generation is a failure; that is we don't hit 
F ,  and let gs denote the conditional return distribution given the generation is a 
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success: that is we do hit F .  Hence 

9 = (1 - p ) s f  + pgS. 

p = ( 1 - p ) p f + p p S .  

If the mean of gf is pf and the mean of y" is p s ,  then 

Note also that since the mean of g is finite we can pick an z o  such that 

where e is arbitrarily small. Hence 

This means that 

Since p ---t 0 as T ( F )  --f 0 and since E is arbitrarily small we conclude pp" 4 0 as 
T ( F )  ---f 0. This means that asymptotically those trajectories which reach F albeit 
long and strange trajectories nevertheless contribute nothing to the mean return 
time p; that is p/pf  + 1. 

Let 7 denote the first time we hit F and let R denote the return time to io after 
first hitting F .  Since this time occurs after A4 - 1 generations of failure but before 
the Mth  return we have 

M-1 M 

n=l  n=l  

Taking the expectation of both sides and conditioning on &I we get 
00 oc) c (1 - p)"- 'p(m - 1)pf < p7 < c (1 - p)"-lp[(m, - 1)pf + p."] 

37l=l m = l  

1 1 
P P 

f (- - 1 ) p  < pT < (-  - l )p f  + p s  = E,,,R. 

Note that since p + 0 as r ( F )  i 0, it follows from the above that pT 4 m. 
Multiplying through by p and recalling p/p f  + 1 and pp' --f 0 as n ( F )  i 0 we get 

Proposition 5.42 If the s tat ionary probability n ( F )  of a sequence of forbidden 
sets  F t end  t o  0 ,  t h e n  the probability p of hitting F before a re turn  t o  io t ends  t o  0 

or
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und the mem time pT to  hit the forbidden set tends to  03. Moreover, 

PpT E R  
lim ~ and lim =I. 

4 F ) - O  P d n - 0  PT 

Finally, the distribution of r /p,  converges weakly t o  a,n exponential distribution. 

Proof: The asymptotic behavior of pLT and E,,R has been established above and 
the only part left to prove is the asymptotic exponentiality of r / p T  and we can only 
give a plausibility argument here. Just calculate the moment generating function 
of the expressions in (5.5). Conditioning on M and remembering that the cycles 
are independent we get, as above, 

M-1 

where q5f ( t )  is the moment generating function of g f .  Since we are only dealing with 
positive random variables the above expression is certainly finite if 1 < 0. Similarly, 
since the last successful generation is also independent of the previous generations 
we have 

n=1 n=l 

where @(t)  is the momcnt generating function of gs .  Multiplying by t < 0 reverses 
the inequalitics in (5.5) so when we take transforms 

where 4T(t )  is the moment generating function of the time r. 
NOW we want to  investigate the moment generating function of p r / p  and this is 

Substituting t = w p / p  into (5.6) we get 

P > 
((1 - P ) ( l -  cbf(y) + P I .  

Now as r ( F )  + 0, p i 0 and p ,  i 00. Therefore by the properties of the 
moment generating function qY(wp/p)  + 1, @ f ( w p / p )  + 1 and ( d f ) ’ ( 0 )  = pf so it 
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follows that 

1 Pf -($f(P) - 1) - w- + w 
P P P 

since p/pf 4 1. From the above we get 

PWT 1 
lim E exp( -) = ~ 

n(F)+O I-1 1 - w  

since both the upper and lower bound tend to this value. We have shown above 
that ppT /p  --f 1 so this gives 

w r  1 
lim Eexp(-) = -. 

.ir(F)-O PLT 1 - w  

The function (1 - u)-’ is the moment generating function of an exponential 
random variable with mean 1. We conclude that the time r scaled by its mean 
p T  has a moment generating function which is asymptotically equal to that of an 
exponential. It therefore seems reasonable that r / p T  should be converge weakly to 
an exponential random variable. This is true but to  prove it we must appeal to the 
continuity theorem for moment generating functions and this is slightly beyond the 
scope of this text. I 

5.6 Proofs of Convergence to Steady State 

Consider an irreducible Markov chain on a countable (or finite) state space. We 
show Theorem 5.26 holds using results from the chapter on renewal theory. 

Lemma 5.43 
th,en a ( i )  > 0 for all i E S and 

Suppose Q i s  a stationary measure. If a ( j )  > 0 for  some j E S 

Proof: 

a( i )  = C a ( k ) ~ ; %  2 c x ( j ) ~ ~  for all n. 

Since i is accessible from any j E S there exists an n such that Kg > 0. Hence if 
~ ( j )  > 0 then a( i )  > 0 for any i E S .  Using stationarity, 

k E S  

(5.7) 

This upper bound is independent of j so we have our result. 
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We now establish the fact that after a few transitions the chain is close to its 
steady state. 

Theorem 5.44 If A&, , n 2 0 i s  a n  irreducible, aperiodic Markov chain then  

1 lim K?. = - 
PLj3 n-00 ' J  

where pL3j  i s  the m e a n  recurrence t i m e  to j ;  that  i s ,  pjj = E(rjlM0 = j )  where 
rJ = min{n Mn, = j } .  If p k k  < 00 f o r  some state k t h e n  pj j  < 03 .for all j and n 
defined by n ( j )  = l /pjj  for  all j E S is  the unique stationary probability. 

Proof: 
(5.8) follows from Theorem 6.43 in Section 6.4 in the chapter on renewal theory. 

Above we used Fatou's Lemma 9.5 with KYk = u n ( k )  and KG = v(k). 
If ~ ( k )  > 0 for some k thcn ~ ( j )  > 0 for all j by the above. In this case 

KFjl 
n ( j )  = lim = lim C = lim C 7 i ( k . ! . i r ( k ) ~ k J  

n-oo 12-00 n-oo 
k€S k € S  

using dominated convergence since K;;'/T(~) tends to 1 and is uniformly bounded 
in k by Leirirna 5.43 and CkES n(lc)Kkj 5 ~ ( j ) .  At this point we have shown that 
i7 is stationary. 

Again by Fatou's Lemma, 

so Cjts n ( j )  L 1. Moreover, given ~ ( j )  > 0 for all j ,  we get 

where the above limit may be taken outside the sum since K,",/i7(j) taken as a 
function of j is bounded by the constant l / ~ ( i )  by Lemma 5.43. A constant function 
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is of course integrable with respect to T which we now know is finite. Hence, 

Coiisequently rr is a probability measure when the mean return times are finite. 
Suppose a is another stationary probability. For any n we have ~ , a ( z ) K ~  = 

a ( j ) .  Now for j fixed, K; is a bounded function in a converging pointwise, so by 
the Dominated Convergence Theorem 

Hence Q is equal to 7r so T must be the unique stationary probability. I 

Example 5.45 
The stationary measure of the bursty ATM source is 

ATM networks - (5.15) continued 

@/(a + b ) ,  a/( .  + b ) ) .  

This agrees with the above result since the mean return time to state 0 for the 
kernel 

1-a a ( b I - b )  

may be calculated by conditioning on the first transition. If the jump is from 0 to 
0 then the time is 1. If however the jump is to state 1 then the mean return time 
to  0 is 1 plus the mean time to leave state 1. The time to leave state 1 and return 
to 0 is a geometric random variable wit,h mean l / b .  Hence the mean return time is 

(1 - u )  ' 1 + a  ' (1 + l / b )  = (a + b ) / b  = 1/7r(O) 

Example 5.46 
Define the busy period to be those times when the queue is not empty. I t  follows 
from Theorem 5.44 that the mean busy p00 is 7r(0)-' = (1 - p / q ) - l .  

The discrete MIMI1 queue - (5.30) continued 

Proof of Theorem 5.26: 
K?. 

lim C 1 ~ ;  - n(j)l = lim C 14 - ~ l ~ ( j ) .  

By Theorem 6.43 limn-oo KLn; = 7rj so KLn;/7r(j) 4 1. Since the function lK,G/n(j)- 
11 is bounded by the constant 1 + I/n(z) by (5.7) dominated convergence gives the 
result,. I 

n-cc j € S  n-mjts 4 3 )  
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Proof of Corollary 5.27: By the definition of the expectation 

j € S  j t S  

Using Theorem 5.26 we know that for any j, KG/7r(j) --7' 1. If the state space is 
finite then the conclusion follows immediately. 

If S is infinite we can use Lemma 5.43 to show 

and by hypothesis the above function of j is integrable with respect to 7r. The result 
I follows from the Dominated Convergence Theorem 9.7. 

Theorem 5.47 
aperiodic, irreducible Markov chain o n  a f ini te  state space. 

The conclusions of Theorem 5.26 and Corollary 5.27 hold for a n  

Proof: We must show pJ3 < 00 for some state 3. Denote the return time to J by rJ .  
From any initial state i there exists some N, such that K: > 0. Let N = nbtS N, 
and N is finite since S is finite. Hence for all z E S ,  K t  > E for some E > 0. 

Hence, 

since clearly P(7j > n) is decreasing for n between mN and ( m  + l ) N  - 1 

using the hypothesis. Hence, 

m=O m=O 
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5.7 Transience and Recurrence 

Definition 5.48 
the chain lands in or hits F .  rp is defined by 

Let F be a subset of ' s .  The hitting time T F  is the first time 

TF := min{n > O;X,  E F }  

if X, E F for some n > 0, and by r F  = co if X ,  6 F for all 71 > 0. If F = { j }  
we denote the hitting time by rj. Also define fi"; := Pz(r7 = n) ,  the probability of 
visiting j for the first positive time on the nth, step having started in i .  Since rJ > 0 
by definition it follows that f z  = 0 for all j, even j = %. Lastly let f i j  := C,r=l f$ 
denote t,he probabilit,y of ever hitting j frorn i,. 

We now give a, version of the Markov property for hitting times. This will be 
extended to the strong Markov property in Theorem 5.58. To state this result it is 
best to define precisely what we niean by the past before some stopping time. 

Definition 5.49 Let r be a stopping time relative to  the sequence of 0-algebras 
Fn = ~ ( X O ,  X I ,  . . . , X n ) .  A K ~  event A belongs to the past before r, which is denoted 
by .FT, if for all times n,, the event A n {r 5 n} belongs to .En,. 

Intuitively, A 6 FT means that, if r = n, we can decide whether or not a sample 
point w is in A based only on knowing X ' O  (w), X I  (w) , . . . , X ,  (w). 

Proposition 5.50 Let A be an event an the past before r then 

P ( A  n { X ,  = i; X,+, = . j } )  = P(A n { X ,  = i})Kz;. 

In particular, let 7 be the hitting time T F  above. This proposition then states that, 
given we hit the set F first at state i E F ,  n, steps later we are at  state .j with 
probability KZr;. In other words, the past up to time r F  = i is summarized by the 
present state at time T F ,  i.e. X ,  = i and given the present, the future is independent 
of the past. 
Proof: Conditioning on r ,  we get 

P(A n { X ,  = i ;  X,+n = j}) 
00 

= C P ( A  n (7 = m, x, = i,; x,+, = j } )  
m=O 

sirice by definition the event A n {T = m} is in 37, arid so may be expressed 
as {(XO, X I , .  . . , Xm) E N}, where H is a subset of Sm+'. The indicator X H  is 
a deterministic function which is either 1 or 0 depending on whether or not the 
sequence (20,  il, . . . , i )  is in H or not. 
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Now, conditioning on X O  = i o ,  X I  = i l ,  . . . , X ,  = i and using the Markov 
property we have 

P ( A  n { X ,  = i ;  X,+n = j } )  
30 

= K; c c XH(iO,il,. . . , i)P(XO = io, . . . ,x, = i ; 7  = m) 
7n=O i o  , i l  , .. , ;i,-l 

= K;P(A n {x, = i}) 

Lemma 5.51 

m = O  

Proof: Since we started in i we must reach j for the first time at rj. Condition on 
ri and we get, 

= c P2(Xn = jlTj = rn) ' Pi(Tj = rn) 
m = l  
n 

m = l  

by Proposition 5.50 and the Markov property. I 
We define the z-transform or probability generating function of KZ and of f;: 

Definition 5.52 For /z/ 5 1 

n = O  n = O  

Proposition 5.53 For Iz/ 5 1 

1 
h j j  ( 2 )  = and Ki,j(.) = f&)Kjj(Z) Zfi # j .  1 ~ f j j ( Z )  

Proof: For n > 0 the coefficient of z" in f j j ( z ) K j j ( z )  is 

n 

m=l  
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which by Lemma 5.51 is 
f:J = 0 but KiJ = 1, so 
first result. Similarly, for 

precisely the coefficient of zn in KJJ(,z). By definition 
f J J  ( z )KJ3 ( z )  = KJJ ( z )  - 1. Solving for KJJ ( z )  gives the 
i # 1, the coefficient of zn in the product f i J ( z ) K J 3 ( z )  is 

71 

m=l 

which by Lemma 5.51 is precisely the coefficient of z” in Kij(z) .  This is the second 
equality. I 

Definition 5.54 A state j is called recurrent if PJ(7j < cm) = 1; that is f j j  = 1. 
It is called transient if P j ( ~ j  < m) < 1; that is f j j  < 1. State j is positive recurrent 
if p j j  < 00. If a state j is recurrent but p j j  = 00 we say the state j is null recurrent. 

Let N ( j )  be the total number of visits to j and let G ( i , j )  denote the expected 
number of visits to j for a Markov chain starting in i; so G ( i , j )  = E ( N ( j ) ( X o  = i ) .  
To calculate this quantity we first represent the number of visits to j by 

where the function x { ~ }  (X,) counts 1 if the chain is at  j at time n and 0 otherwise. 
Taking the expectation we get 

n = O  
00 

n=O 
00 

n=O 

Proposition 5.55 A state j is recurrent zf and only if G ( j , j )  = 00. 

Proof: By the monotone convergeiice theorem 

By 5.53 ,  for 121 5 1, K J J ( z )  = 1/(1 - f J J ( z ) ) .  It follows that G ( j , j )  is infinite if and 
I only if fJ3 = I; that is if and only if j is recurrent. 

Proposition 5.56 
i i s  recurrent af j as. Also p.ii < 00 i fpJ j  < m. 

Suppose i and , j  are in the same communication class. Then  
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Proof: Let m and TI be such that K r  > 0 and K$ > 0. Now, using the Chapman- 
Kolrriogorov relation, KGfk+n > - KF K: KG. Hence, 

M Ix: 

k=O k=O 

using Proposition 5.55. The proof that all states in a communication class have 
I 

We see therefore that, for an irreducible chain, all the states are recurrent if one 
is! We also see that a recurrent state is visited infinitely often. A transient state 
is visited only a finite (stochastic) number of times and moreover, the expected 
number of visits is finite. 

If the chain is not irreducible then some states may be transient while others 
are recurrent. Nevertheless, starting from i,, we either never visit a recurrent state 
j or we visit an infinite number of times. This is not really surprising since once 
the chain rnakcs it to j the strong Markov property implies that the starting point 
i is forgottcn and we know we return infinitely often to  j. 

Example 5.57 Drunkard's walk - (2.78) Consider a drunk constrained to walk 
unit steps on a straight line. Starting from 0, the drunk takes steps of +1 or -1 
every time unit in a totally random fashion. The drunk will almost certainly return 
at some time to his starting point! This follows from the above characterization of 
recurrence. Indeed Ki:" = 0, 

finite means if one does is delayed to  Section 5.9. 

n, = 0 , 1 , 2 , .  . . arid 

Using Stirling's formula (we shall assume this without proof but see Feller Volume 
I for the full story): 

we get 

Therefore 

n=O 

We conclude by Proposition 5.55 that 0 is a recurrent state. 
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By a similar calculation one may prove that a drunk walking on a plane who 
randomly takes steps of size 1, north, south, east or west every time unit necessar- 
ily returns to the origin. A drunk astronaut is not so fortunate. He has a nonzero 
probability of simply wandering away to infinity on the three dimensional lattice! 

5.8 Existence and the Strong Markov Property 

We now consider the construction of a Markov chain { X n ;  n = 0 , 1 , 2 , .  . .} taking 
values in a countable state space S along with the probability space {R, 3, Pa} on 
which X ,  is defined, given an initial distribution a and a probability transition 
kernel K .  As in Example 2.4 we construct a canonical sample space R = S x S x 
S x . . . , and as in Example 2.10 we construct the subalgebra .Fn of all unions of 
atomic events of the form 

A = {{(irJ)il,&. . . , in)}  x s x s x . . . } 

where a k ,  k = 0 , 1 , 2 , .  . . is some specific sequence in S. As before we define F to 
be the smallest a-algebra which contains all the 3". X , ,  the state of the Markov 
chain at time n, is simply the nth coordinate function defined on R. 

According to Proposition 5.4 we niust define the probability of these atomic 
events as follows: 

The probability of an arbitrary event in Fn is given by additivity. To check that 
there exists a probability Pa on {R, F} which agrees with P" on Fn, we must check 
the compatibility condition in the Kolmogorov Extension Theorem 2.73. We recall 
that a sequence of probability measures P" defined on .Fn satisfies the compatibility 
condition if Pn+l(A) = P"(A) if A E .En. It suffices to check this for atomic events 
since events in F,, are countable unions of atomic events. Let 

Hence, 

The compatibility condition therefore is verified so Pa exists. 
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By the definition of P, we have 

P,(Xo = 2)  = P,({Z} x s x s x " ' )  
= P"{i} x s x s x " ' )  
= a( i ) .  

Therefore the chain we have constructed does have initial distribution a.  The 
Markov property follows in a similar manner (see Exercise 5.5). 

Using Kolmogorov's extension theorem we may prove the definitive strong 
Markov property. First, consider any random variable Y = f ( X o , X i ; . . )  and 
define the shift to time t of Y by OtY = f ( X t , X t + l , . . . )  . Hence QtY depends on 
the future of the Markov chain X ,  beyond time t .  

Theorem 5.58 (The Strong Markov Property) L e t  T be a stopping t i m e  for  
t he  sequence of a-algebras F, = a ( X o , X l , .  . . , X n )  and  let E E F,. If ElYl < 00, 
i.e. Y is integrable, t h e n  

E ( X ~ .  O,Y) = C P ( E  n {x, = ~ ] ) E , Y .  
j t S  

Corollary 5.59 Under  the  hypotheses of 5.58 

E(O,YlX, = j )  = EjY. 

This means the future evolution of the process beyond time T is entirely determined 
by the fact that the state at  time T is j .  The process restarts anew as if at time 0 
it started in state j .  
Proof of Theorem 5.58: If we refer to the proof of Proposition 5.50 we get an 
immediate extension. 

P ( E  n { X ,  = i ,  Xr+i = ji, . . . , Xr+m = j m } )  
= P ( E  n { X ,  = i})KijlKllj2 . . . Kjm-l,jm 

= P ( E  n {X, = i } ) p i ( X 0  = jo, xl = j , ,  . . . , X ,  = jTn,).  

Next consider a set A E .Em so Y = X A  = x~(X0, Xi, .  . . , X m )  where H E Srn+l. 
Moreover 8,Y is the indicator of the shift to time T of A which we denote by 
8,A. This event is in the future of time T and Q,Y can be represented by 
X I I ( X , , X ~ + ~ ,  . . . ,XT+m).  Summing over the points ( j o , j l , .  . . , j m )  E H in the 
above equation, we get 

P(E  n {X, = i} n &A) = P(E  n {X, = i})Pi(A).  

The above equality may now be extended to arbitrary A E F since it holds for 
all cylinder sets. Next consider simple functions of the form Y = C ~ ~ XBy 
linearity it follows that 
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Now use monotone convergence to extend the result to all positive random variables 
Y and finally use linearity to get the result for integrable random variables. 

Example 5.60 Drunkard's walk - (2.78) continued 
M, = x + S, is a Markov chain with Mo = z. T is the stopping time when M ,  
first hits the boundary L or U .  Let f ( x )  = P(MT = L ) .  Assume L < z < U ,  so it 
takes at  least one step to reach the boundary. Hence, S,n/r,  = MT.  By the Markov 
property 

f ( z )  = P(MT = L )  = E[Q,X{MT = L}] 
= c P(Ml = Y)Ey[X{I1.fT = L ) ]  

Y 
= P(Ml = IL: - l ) f ( .  - 1) + P(Ml  = z + l ) f (x  + 1) 

We conclude from equation (5.9) that for L < x < U 

f ( z )  = -f(. 1 - 1) + -f(. 1 + 1). (5.10) 
2 2 

Clearly f ( L )  = 1 and f ( U )  = 0. One solution of this linear system satisfying the 
boundary conditions of f ( L )  = 1 and f ( U )  = 0 is f ( z )  = (U - z ) / ( U  - L).  If there 
were another solution, say 9,  then h(z)  = f ( z )  - g(z) is also a solution of equation 
(5.10), such that h(L)  = 0 and h ( U )  = 0. Equation (5.10) clearly cannot have a 
local maximum at any point IL:O in ( L ,  U ) ,  for otherwise h(z0) would be the average 
of two smaller values, an impossibility. Hence the maximum of h is attained on the 
boundary { L ,  U }  so h 5 0. Repeating the argument with -h yields h 2 0, so h is 
0 everywhere. Hence f is unique. We conclude the probability the random walk, 
starting at  2 ,  hits L before U is (U - z ) / ( U  - L). This is the result we already 
obtained in Example 2.78. 

The limit of this probability as U + 00 is 1. Hence the probability of the walk 
wandering gradually away to 00 is 0. The walk returns with probability one to L 
and we conclude that this simple random walk is recurrent. In fact we will see it is 
null recurrent! 

5.9 The Watched Process 

Consider an irreducible, recurrent Markov chain X ,  and consider some subset A in 
the state space. If we watch the chain X ,  only when it returns to A ,  we obtain the 
process watched on A. More precisely define ~ ~ ( 1 2 )  to be the nth return time to A 
where r ~ ( 0 )  = 0. Let W, = XTA(,). Take i,j E A. Take Y = x { X T A ( l )  = j }  so 

@rA(n)Y = x { X T A ( ~ + I )  j )  = x{J+'n+l = j )  
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since the shift R,,,(,) cuts off the trajectory of X before time ~ ~ ( 1 2 ) .  By Theorem 
5.58, with T taken to be TA(TL) ,  

Hence, conditioning on the event {Wo = io, . . . , Wn-l = zn,-l, W, = i} we get 

P(W,+1 = jlW, = i ,  W,-, = &I,. . . , W, = 2,) = PZ(W1 = j ) .  

This means the process W, is a Markov chain with a stationary transition kernel. 
We next examine the transition kernel AK for the process on A. Define 

which gives the probability, starting in i ,  of hitting j (which may or may not be in 
A)  on the mth step, having stayed in A" in the preceding steps. Next extend the 
definition of ~ G i j :  

For j @ A this represents the expected number of visits to j after time 0 before 
hitting A. If j E A then this represents the probability of hitting the set A at j 
having started at i. Note that ~ G i j  is the transition probability ~ K i j  between 
two states, i and j in A, of the process on A. 

Lemma 5.61 
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Proof: Recall that, by definition, any matrix to the power 0 is the identity. 

LYI 

~ G i j  = KikKG-' where K was defined at (5.3) 
m = l  k g S  

03 

m=2 kEAC 
M 

m=2 k E A C  m E A C  
03 

I 

Theorem 5.62 Suppose the process on A has an invariant measure T A  so 

T A ( ~ )  = c~.4(i) .4GZ3 f o r j  E A. 

Define a ( k )  := CzGA7r~(i) ~ G i k  fo r  any k E S .  Then a ( j )  = 7 r ~ ( j )  f o r  all j E A 
and o i s  invariant for K .  

Proof: ~ ( j )  = 7 r ~ ( j )  for all j E A by definition. For l E B ,  

a E A  

k E S  L E A  

i t A  i E A  k E A C  
r 1 

2 E A  L k E A C  

= X T A ( ~ )  A G ~ P  by Lemma 5.61 

= o(e) by definition. 
aEA 

I 

Theorem 5.63 
measure a. I fa (A)  = 1 then a ( j )  = CiEA a( i )  ~ G i j .  

Suppose an irreducible, recurrent Markou chain has an invariant 
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Proof: We first show 
n 

a ( j )  = c CU(2) AX; + c a( i )  AKZ". (5.12) 
m = l  i E A  itAC 

For n = 1, (5.12) follows from the definition of an inva,riant measure. Now suppose 
(5.12) holds for some n. The last term in (5.12) can be written 

k € A C  ?€A" 

k € A  kEA' 

Now using (5.12) one obtains that (5.12) holds for n + 1. 
Letting n + co we get 

a ( j )  2 Ca(i) ~ G i j  for all j E S .  
i E A  

(5.13) 

However for j 
(5.13) is an inequality for some j E A then 

A, ~ G i j  = ~ K i j  and CjrA ~ K i j  = 1 by recurrence. Hence if 

This is impossible so a ( j )  = xcEAcr(i) A K % ~  for all j E A. This means that cr is 
the stationary probability for the process on A. 

Now suppose there exists a j E A" and a subsequence n k  such that the second 
term in (5.12) does not go to zero. Pick some m and io E A such that A K ; ~  2 
t > 0. Hence, 

i€A" 

(5.15) 

This contradicts the above result so we conclude xitAc a( i )  AK; --f 0 for all j E S .  
Therefore taking the limit as n ---f 00 in (5.12) we have our result. I 

Corollary 5.64 
each other. 

Proof: Pick A = {i}. By division we can normalize each measure so p(A) = a(A) = 

1. Hence, by Theorem 5.63, p ( j )  = ~ G i j  and cr(j) = ~ G i j .  In other words, before 
I 

Proof of Theorem 5.21: Again take A = { i } .  Of course c r ~ ( j )  = x{i = j }  is a 
stationary probability measure for the watched process on A. Theorem 5.62 allows 

Any two invariant measures p and cr are constant multiples of 

normalization a and p are multiples. 
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us to extend to an invariant measure 0 such that ~ ( j )  = o ~ ( j )  = 1. Note that by 
irreducible a ( j )  > 0 for all j .  

The chain must be recurrent if pcLz2 < 00 because otherwise there is a positive 
probability r3 = m. Hence we again can construct and invariant measure o. Note 
that AGtk is the expected number of visits to k before hitting A. Now sum over 
all the states k E A“, and we get the expected number of jumps after starting from 
i until a return visit to i; that is Ep,.  Hence 

Hence, 

, ~ E A  k E S  

Consequently c is a finite invariant measure so n ( j )  = o ( j ) / o ( S )  is a stationary 
probability and consequently X ,  is stable. Moreover, n(i) = 1/pii and by symmetry 

I 
Proof of Proposition 5.56: By the preceding proof of Theorem 5.21 knowing 
pii < 00 means we have a unique strictly positive probability measure T and n( j )  = 

I 

this is true for all states i E S .  By division, n ( j )  = n(i) ~ G i j  = ~ G i j / p , i .  

1 / p j j  for all j .  Since ~ ( j )  > 0 ,  p j j  < 00. 

5.10 Foster’s Criterion for Stability 

Theorems 5.21 and 5.44 appear quite general since the existence of a stationary 
distribution T is a consequence of the theorem, not a hypothesis. On the other hand 
how can one check that a chain with a countable state space is positive recurrent? 
Below we review the Liapunov function technique for establishing the stability or 
positive recurrence of a Markov chain. We won’t have space to  investigate the recent 
developments in the fluid limit approach to stability but an interested reader can 
consult Dai (1996). 

We say a chain X ,  satisfies Foster’s criterion if there exists a finite set A, a 
constant b < 00 and a nonnegative real valued function V such that 

x~ij~(j) - ~ ( i )  5 -1 + b .  x A ( i )  for all i E S. 
j € S  

Theorem 5.65 
criterion. Then  E z [ r ~ ]  5 V ( i )  + b . X A ( ~ )  where 7 A  i s  the return tim,e to  A. 

Let X ,  be an  irreducible Markov chain which satisfies Foster’s 

Apply Dynkin’s formula to the sequence 2, = V(Xk). Consequently, for any 
i E S and any n 2 0, 

1 
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By hypothesis then 

x~(Xk-1) = 0 for 2 5 k 5 TA A n .  Consequently, summing from k = 1 to k = n, 

Ez(VTAAn) - V(i) I &[TA A n] + b .  X A ( ~ )  

which means Ei[7~ An] 5 V ( i )  + b .  xA(i)  since V is nonnegative. Take the limit as 
n 4 00 and use monotone convergence and we get E 7 , [ r ~ ]  I V(i) + b .  x ~ ( i ) .  

Note that if A = {i} then the existence of a Lyapunov function implies X ,  is 
positive recurrent. 

Corollary 5.66 
then X n  i s  positive recurrent. 

Proof: Since A is finite there exists an M such tha.t EkL7.41 < M < 00 for all k E A. 
Let 7-2 be the time of the nth return to A and let Y, = 72" - 72. By the strong 
Markov property 

I f  the hypotheses of Theorem 5.65 hold and Zf A i s  a finite set 

since Ek[Y1] = E ~ [ T A ]  < M for all k .  Hence Ei[Y,IX,; 
of returns to A until a return occurs at  state j E A. 

J 

5 M .  Let J be the number 

n=l n=l 

We have used Dynkin's formula since 

k+l k 

n=l n=l  

Finally the mean time for the process on A to return to ,j is finite by Theorem 
I 5.47 so E,J < 00. We conclude pJJ < 00 so the chain is positive recurrent. 

By the Markov property,
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The above result may be applied to  a discrete M ( M / 1  queue for instance. From 
Example 5.8 we get 

y ( i )  = E[X,+I ~ X ,  IX, = i] = (1 - q ) p  - (1 - p ) g  = p - q < 0 for all i > 0 

Take A = (0) and let V ( i )  = i / ( p  - 4 ) .  We immediately get stability and con- 
sequently the existence of a stationary distribution, but in this case we had one 
already! 

Example 5.67 
The drunkard’s walk on the line is null recurrent. Suppose, on the contrary, that all 
states are positive recurrent and rr is the associated stationary probability measure. 
Since the recurrence time p J J  is the same for all initial states j ,  by homogeneity, 
it follows that ~ ( j )  = 1/pJ3 is a constant. This can’t be because there are an infi- 
nite number of states and T is supposed to be a stationary probability distribution. 

Drunkard’s walk - (5.60) continued 

5.11 Exercises 

Exercise 5.1 Consider a probability transition kernel K on three states: 0,1,2. Let 
the initial distribution be cx = ( .a ,  .1, .7) and let the probability transition kernel K 
be 

K = .4 .2 .4 . ( :: :; I:) 
a) Compute P(X1  = 21x0 = I). 
b) Compute P(X21 = 21x20 = 1). 
c) Compute P ( X 3  = 0,  X5 = 2, X e  = 11x0 = I). 
d) Compute EXo.  
e) Compute E(XoIX0 = 1). 
f )  Compute P ( X 1  = 1). 
g) Compute EX1. 
h) Compute E(X1IXo = 1). 
i) Compute E X ; .  
j )  Compute E ( X t j X 0  = 1). 
k) Compute Var(X1IXo = 1). 
1) Compute P(X0 = 11x1 = 2 ) .  
m) Calculate the stationary probability measure associated with K 
n) Calculate the mean number of transitions to  return to 0. 

Exercise 5 . 2  Consider the Markov chain X ,  in Exercise 5.1. Define Y, = x { X ,  E 

{1,2}), that is define Y, to be 1 if X ,  is either 1 or 2 and 0 if X, = 0. Is Y, a 
Markov chain? 
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Exercise 5.3 Consider a probability transition kernel I( on four states: a,b,c,d. 

1/4 1/4 0 l / 2  ’ 

1/5 2/5 2/5 0 

a) Calculate the probability the chain is in state b after 10 transitions, given that 
after 8 transitions it is in state a. 
b) Calculate the probability the chain is in state b after 10 transitions, given that 
after 8 transitions it is in state a or b and that after 6 transitions it was in state c. 
c) Calculate the stationary probability measure associated with P. 
d) Calculate the mean number of transitions to return to a. 

Exercise 5.4 Consider a Markov chain X ,  started in state 1 with a kernel 

1/3 1/3 1/3 

I( = :: 
defined on the states {0,1,2} as usual. 
a) Calculate 
b) Calculate P(X31 = 21x30 = 1). 
c) What is the period of this chain? 
d) Calculate E(X2IXo = 1). 
e) Calculate P(X1  = 21x2 = 1). 

Exercise 5.5 
mogorov extension theorem. 

Exercise 5.6 

Exercise 5.7 
time in the sense of Definition 2.28. 

Establish the Markov property of the chain constructed by the Kol- 

Complete the beginning of Theorem 5.59. 

Show that a hitting time defined in Definition 5.48 is a stopping 

Exercise 5.8 
n all the entries of K” are positive. 

Exercise 5.9 
away from his starting point! 

Exercise 5.10 
the chain is in state c and the preceding state was a. 

Exercise 5.11 Let X ,  be an irreducible recurrent Markov chain with a stationary 
distribution T. Show that the process W, of the X, observed when it enters the 
set A has a stationary distribution T(Z)/T(A) for i E A. 

Given a finite aperiodic irreducible Markov chain, prove that for some 

Show that a drunk astronaut has a nonzero probability of wandering 

For the kernel given in Exercise 5.3 calculate the limiting probability 
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Exercise 5.12 Consider a probability transition kernel I( on four states: a,b,c,d. 

114 1/4 1/4 1/4 

114 1/4 0 112 ‘ 

K =  i 115 2/52/5 0 

Let F = { a ,  b}  and B = {c ,  d } .  Calculate the BG”. Check that the process on 
F has a stationary distribution proportional to  the stationary distribution of K 
restricted to F .  

Exercise 5.13 
system. Calculate the mean number queued. 

Exercise 5.14 Show that the mean system time t ,  (W in seconds) in a steady 
state M(GJ1 queue satisfies qav = p t ,  (or L = XW in seconds). This is called Little’s 
Law. 

Exercise 5.15 The (s,S) ordering policy is a conimon stock management technique 
which strikes a balance between having too much stock on hand and being unable 
to meet customer demand. Suppose daily demand for cans of soup are independent 
and equal to k cans with probability p k .  At the end of each day, stock is taken 
and if the stock is less than s cans we order enough to bring the level up to S cans; 
otherwise we do nothing. Delivery takes place before the store opens the next day, 
but unmet demand during the day is lost. Show that X,, the inventory level at the 
end of the nth day, is a Markov chain and compute the transition kernel. 

Exercise 5.16 Consider a probability transition kernel K on three states: 0,1,2. 
Let the initial distribution be 01 = (.4, .l, .5) and let the probability transition kernel 
K be 

Calculate the mean number of customers in a steady state MlGll 

h‘= . 3 . 2 . 5  . c:: d )  
a) Compute P(X23 = O,X25 = 2,X26 = ljX20 = 0). 
b) Compute E(IX1 - 211x0 = 1). 
c) Compute EX?. 
d) Calculate the stationary probability measure associated with K .  
e) You receive a 10 dollars every time the chain is in state one, 25 dollars every time 
the chain is in state two and nothing in state 0. Calculate the long run average 
amount of money received per transition. 
f )  If the chain starts in state 0, what is the expected number of transitions until 
the chain reach state 2 .  
g) If the chain starts in state 0, what is the probability it has not reached state 2 
by n transitions 
h) Calculate ~(0) = limn-m P ( X n  = 0JXk # 2, Ic = 1,. . . n, Xo = 0) and a(1) = 
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lim,,,P(X, = 1 I X k  # 2 , k  = 1, . . .  n,Xo = 0) and lim,,,P(X, = 0IXk # 
2, k = 1,. . . n, Xo = 1) and limn+, P(X, = 1 I X k  # 2, k = 1,. . . n, XO = 1). 
i) (a( ( ) ) ,  a ( ( ) ) )  is called the quasistationary distribution. How do you interpret the 
results in h)? 

Exercise 5.17 A machine tool takes a machine cycle of exactly 45 seconds to load 
and drill a hole in a particular part. When the machine tool is properly adjusted the 
holes are drilled perfectly but there is a 2% chance that the machine tool will become 
misaligned when a part is loaded into place before drilling. When the machine is 
misaligned it stays misaligned for this and the following cycles and there is a one 
in 5 chance that the drill hole will be off center. All the holes are automatically 
scanned for proper positioning so as soon one drill hole is off center the machine 
is taken off-line and the operator realigns the machine. The realignment takes 6 
minutes. During the realignment phase no drilling takes place. 
a) Model the above production process as a Markov chain. Write down the state 
space and the transition kernel. 
b) Calculate the steady state of this Markov chain. 
c) What is the long run proportion of defective parts produced? 
d) What is the long run average number of nondefective parts drilled every hour. 

Exercise 5.18 A special IC is produced one at a time by the firing of the silicon 
wafer in an oven. There are two production regimes, fast firing and slow firing. 
Fast firing takes 2 hours while slow firing takes 5 hours. If the components of the 
wafer have the right composition only 5% of the IC’s are defective on average at 
the normal fast firing temperature. If the components are contaminated in some 
way on average 20% of the IC’s are defectives. If the components of the wafer 
have the right composition on average 1% of the wafers are defective in the slow 
firing regime. If the components are contaminated there is still an average of 20% 
defectives produced in the slow firing regime. 

Each IC is tested and defective ICs are discarded. Production continues 24 hours 
a day every day. The following quality control scheme is followed. 
1) Start with the normal fast firing temperature. 
2) If a defective is found the oven is switched to a slow firing temperature. 
3) If the next 3 IC’s are nondefective then the oven is switched back to fast firing 
but if a defective is found the quality control engineers stop production and replace 
the components to eliminate contamination. This repair regime takes 3 hours. 
4) When the engineers are finished they start up production at the slow firing 
temperature. 
a) Give the state space of a Markov chain describing the transitions between the 
various operating regimes if the components remain uncontaminated. (Hint: don’t 
model the time between transitions.) Give the corresponding transition kernel K .  
b) Calculate the steady state of the above kernel. 
c) Calculate the long run average number of hours per transition of the kernel K 
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(Hint: Consider the time between each transition as a reward; i.e. the reward in 
the fast firing state is 2 hours while the reward in the repair state is 3 hours.) 
d) Calculate the long run proportion of time spent in the fast firing regime. 
e) Calculate the long run proportion of defective IC’s produced. 
f )  Assuming we start of in the slow firing regime calculate the on-target AR.L, that 
is the mean number of IC’s produced until a false alarm when the repair team re- 
places the components (uselessly) (just show how to perform the calculation but 
don’t carry it out). 
g) Assuming we are in the fast firing regime when the components become contama- 
nated calculate the off-target ARL, that is the mean number of IC’s produced until 
an alarm (just show how to perform the calculation but don’t carry it out). 

Exercise 5.19 A piece of production machinery is inspected after 100 hours of 
production. The inspection takes an hour. About 20% of the inspections find a 
defect that requires the machine to be repaired immediately. The repair period 
takes 1,2 or 3 hours with equal probability. After a repair the machine restarts the 
production cycle. If no defect is found during the inspection period then production 
resumes immediately. 
a) Model the evolution of the production machinery as a Markov chain Write down 
the state space and the transition kernel. 
b) Calculate the steady state of this Markov chain. 
c) What is the long run proportion of time the machine is in the inspection phase. 

Exercise 5.20 Every 10 minutes a controller decides whether or not to select a 
sample from the production line for inspection. The decision to select the sample is 
taken randomly with probability 10%. Selected samples are stored in a queue until 
they are inspected. The quality control engineer takes either 10, 20 or 30 minutes 
wit,h equal probability to do the inspection. He works as long as there are samples 
to be inspected. 
a) What is the long run proportion of time the quality control engineer is idle. 
b) Can you write down an expression for determining the steady state distribution 
of the number of samples in the queue (including the one being inspected). 

Exercise 5.21 Show that there are no null recurrent states in a finite Markov 
chain; that is show the expected return time to any state is either infinite and the 
state is transient or the expected return time is finite and the state is (positive) 
recurrent. 

Exercise 5.22 Suppose Kij  > 0, and let T be the exit time from state i: 

T = inf{n 2 1 : X n  # i}. 

Show that T has a geometric distribution with respect to  Pi. 

Exercise 5.23 Consider a gambling game where a player has probability p of win- 
ning a dollar and probability q = 1 - p of losing one. Suppose the initial fortune 
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of the player is i dollars and he (or she) plays either until he (or she) is ruined or 
until he (or she) has earned U dollars which is enough to buy a plane ticket home. 
Calculate the probability of ruin. It is best to define a function R(i) to be the 
probability of ruin starting with i dollars. Write a recursion relation for R(i)  and 
then show this relation is satisfied if 

The fortune of the player can be described as a Markov chain. Give the transition 
probabilities and phrase the above absorption problem in terms of matrix multipli- 
cation. 

Exercise 5.24 
the player will play. 

Exercise 5.25 Consider a sequence of independent, positive, integer valued ran- 
dom variables { X I ,  X z ,  X s ,  . . .} with common distribution F and common p.m.f. 
f .  Consider the { X I ,  X z ,  X s ,  . . .} to be the interarrival times of a point process 
(0, Sl,Sz,. . .} where S, = CT=l X i .  Define the age at  integer time t for the point 
process to be: Z ( t )  := t - S,-l if S,-l 5 t < S,. Z ( t )  represents the time since 
the last arrival before time t .  
a) Show that Z ( t )  is a Markov chain with state space {0,1,2,. . .}. 
b) Give the transition matrix. 
c) Calculate the stationary distribution. Remember that 

Calculate the expected number of games described in Exercise 5.23 

Px = EX1 = C(1 - F ( Y ) ) .  
y=o 

Exercise 5.26 Show that the sequential ranks of a sequence of i i d .  random vari- 
ables X,, having a continuous distribution function F ,  are independent and that 
the distribution of R, is uniform on the integers 1 ,2 ,  . . . , i. 

Exercise 5.27 Write a Mathemutica program to calculate the approximate average 
on-target run length for the nonparametric cusum procedure. Use the fact that the 
observations U, are essentially independent uniforms. 

Exercise 5.28 Consider the transition kernel K given in Example 5.31. 
a) Write a simulation for a Markov chain with this transition kernel. Let the 
simulation run for 1000 transitions. Compare the proportion of time spent in the 
three states with the stationary distribution 7r. 

b) Calculate the proportion of transitions which go from i to j for each pair of 
states. Compare this with 7r(Z)KzJ. 
c) For each pair of states i and j compare the results in b) with the proportion of 
transitions which go from to j to i .  
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Renewal Theory 

6.1 Introduction 

In this chapter, as in Chapter 4, we start with a simple point process {Tn}F=-oo; 
that is a strictly increasing sequence of random variables such that To 5 0 < TI. 

The interarrival or sojourn times relative to 0 are denoted: 

( T, - T,-1 n 2 2 

T,+1 - T, n 5 -1. 

As in Chapter 4 we assume that T,’s cannot be measured more preciselg than 
integer multiples of some time unit which might be nanoseconds. However, since 
every measurement in this chapter (except in Section 6.5) is  in units we may  as well 
just  assume our measurements are integer valued and we suppress the notation. 
A value measured in units may  be written with brackets when confusion is possible; 
hence [l] means one nanosecond unit. Functions and processes like fn[x] and N[ t ]  
below have square brackets to emphasize that they are defined only at nanosecond 
units and x and t are assumed to be measured in nanosecond units. 

Definition 6.1 A simple point process, {T,}, is called a renewal process if the 
increments {T, -T,-I}:=-~ are independent, strictly positive, unit-valued random 
variables and TO = 0. The point process is called a delayed renewal process if To 5 0. 
We denote the distribution of X ,  by F, having p.m.f. f n  and mean p,. Note that 
fn [O] = 0. 

Many complicated stochastic processes have the structure of a renewal process em- 
bedded in them. At the renewal times T,, these processes regenerate and the future 
is stochastically independent of the past. Such would be the case in a machine re- 
pair model. Each time the machine is reset the process starts afresh, independent 
of the past. 

Let us define the number of renewals up to and including time t :  

183 
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b
Fig. 6.1 A trajectory of the renewal process 

Definition 6.2 Let 

N [ t ]  := SUP { n  : T,, 5 t }  . 

The counting process N [ t ]  is called a renewal counting process or often simply the 
renewal process thereby confounding it with {T,}. 

Since we are assuming the interarrival times {A',] are strictly positive and lierice 
always greater than or equal to [l], it follows that N [ t ]  5 t / [ l ]  < 00 for t fixed. In 
fact we can give the distribution of N [ t ]  as follows. Clearly if there are n or more 
renewals at time t then the nth renewal occurs before or at time t .  In symbols 

N [ t ]  2 n e T, 5 t .  

Consequently, 

and 

P("t] = n) = P ( N [ t ]  2 n) - P("t] 2 n + 1) 

= P ( T ,  I t )  - P(Tn+1 I t ) .  

Denote the distribution function of Tn by H,. Since the interarrival times are 
independent it follows that H ,  may be calculated (by convolution) from the distri- 
butions {Fk}  of the {X,} .  Consequently, P ( N [ t ]  = n) = Hn[t]  - H,,+l[t]. We can, 
moreover, use Exercise 2.13 and (6.1) to calculate E N [ t ] :  

E"t] = c P("t] 2 n) 
n=l 
M 

= H,[t] 
n=l 
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This expectation is of course finite since N [ t ]  is bounded by t /[ l] .  
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T"-l t T" 
t Z(t) __+ - Y(t) - 

Fig. 6.2 The age and excess at time t 

Definition 6.3 Define the age at t ,  to be 

Z[t]  = t - Tn-l when Tn-l 5 t < T, 

and define the excess at t to be 

Y[t]  = T, - t when T,-1 5 t < T,. 

Definition 6.4 
layed) renewal process {T,} if 

A process {V[t]}  is a regenerative process with embedded (de- 

n=l 

where {V"[s] : 0 5 n < m} is a sequence of stochastic processes defined at  each 
time unit, s 2 0, such that {T, -TnP1, Vn}F?p=l forms an independent sequence. The 
process P [ s ]  is called the nth cycle of the regenerative process and i s  of duration 

We say a regenerative process is homogeneous if all the cycles after the first are 
identically distributed. These cycles have the same distribution as the canonical 
cycle ( X * ,  V" ) .  

Intuitively, the process V is simply the sequence of independent processes V" stuck 
end to end. At time t ,  first determine the cycle, i.e. T,-1 5 t < T,, then the age 
of that cycle at time t ,  i.e. Z[t] ,  and finally the state of that cycle a t  time t ,  i.e. 

T, - Tn-l. 

vn[z[tll. 
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Proposition 6.5 If V[t]  i s  a regeneratilie process then 

P(V[t]  E AlZ[t] = 2 ,  N[t]  = n - I) = P(V"[z]  E AIX, > z). 

Proof: 

P(V[t]  E AIZ[t] = .,N[t] = 'TL - 1) 

1 P(V"[Z] E AITT,-l = t - x , X ,  > X) 
= P(V"[2] E AIX, > X) 

Example 6.6 Alternating renewal processes 
Imagine that when a machine breaks down we pick out a new machine from a 
series of different models; the nth having a lifetime {U,} with mean pTL. Suppose, 
moreover, the replacement period of the nth machine is a random time, R, having 
mean r, (RTL may depend on U, - if the machine breaks in some spectacular way 
it may take longer to replace!). In this case let 

1 if 0 5 s 5 U ,  i 0 if U, < s < U, f R, V , [ S ]  = 

and let 
n 

X ,  = U ,  + R,,To = 0 and T, = E X k  for n 2 1 

(we do not need to construct the past of this process). Let V[ t ]  be as in Definition 
6.4. Then if T,-1 5 t < T,, we are on our nth generation and, moreover, 

k = l  

1 if the nth machine is working at time t 
0 if not. 

V[ t ]  = V"[t  - T,-1] = { 
Hence V [ t ]  is 1 if a machine is working at time t and 0 if a machine is being replaced 
at time t .  

Example 6.7 
The continuous inspection procedure developed by Dodge may be analyzed as a 
renewal process. It is clear that every time the process reverts to tight inspection 
the entire past is forgotten and a new cycle starts. 

Continuous sampling inspection - (3.26) continued 

Example 6.8 Markov Chains 
The most familiar example of a regenerative process is a recurrent Markov chain. 
Consider an irreducible, recurrent Markov chain M,  and denote the time of the nth 
visit to  state i by T,. Let the interarrival times between return n - 1 and the return 
n to  a be denoted by X,; that is X ,  := T, - Tn-l. 
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Lemma 6.9 The sojourn times S,,,, n = 1 , 2 , .  . ., are independent and, more- 
over, X,, n = 2 , 3 , .  . ., are identically distributed with p.m.f. f i t ,  the interarrival 
distribution of state i .  

This is intuitively obvious from the Markov property. Whenever the chain returns 
to the state i ,  all the past is forgotten except i; that is the previous interarrival 
times are forgotten and don't influence the future evolution of the process or, in 
particular, the future interarrival times. 
Proof: We start by considering atomic events 

P(X1 = w1, x2 = w2,. . . , x, = 'W,, Xn+l = W,+I) 

= P(X,+l = W , + l / X 1  = w1, x, = w,,. . , ,x, = 211,) 

.P(X1 = w1, x2 = w2,. . . ,x, = w,). 

Now if we let t k  := w1 + w2 + . . . + wk for all k then t k  is the value of the stopping 
time T k .  The event { X I  = w l ,  Xz = w2,. . . , X ,  = w,} is in .FT~ and on this event 
T, = t ,  and M T ~ ~  = i .  Hence, by the strong Markov property, 

P(X,+i = W,+I 1x1 = W I ,  X2 = ~ 2 , .  . . , X, = w,, Mt,, = i) 
= Pt(X1 = 'W,+1). 

Now by induction we can get 

We conclude that the W's are independent and for n 2 2 

P(X, = w) = P2(X1 = w) = ft2(w). 

6.2 Renewal Reward Processes 

Definition 6.10 We say a renewal process {T,} is a honiogeneous renewal process 
with p.m.f. f if {X,} are identically distributed for R = 2 , 3 , .  . . with p.m.f. f and 
mean p. 

Throughout this section we assume {T,} is a homogeneous renewal process. 
We can use the law of large iiurnbers to see how fast N [ t ]  goes to infinity as 

t + 00. First we must show N [ t ]  does indeed tend to  infinity with t .  If not, there is 
an n < 00 such that N [ t ]  < n for all t with positive probability. This follows since 

{N[oo] < m} = u:=~ { N [ t ]  < n for all t } ,  
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so if P(N[ca] < co) > 0 at  least one of P(N[t]  < n for all t) > 0. However, for any 
fixed s ,  

P ( N [ t ]  < n for all t )  5 P ( N [ s ]  < n) = 1 - H,[s] 

by (6.1) and this later expression tends to 0 as s + 00. We conclude that P(N[ca] < 
m) = 0. 

Proposition 6.11 For homogeneous renewal processes 

with probability 1 

Proof: From the definition of N [ t ]  we have TNlt] 5 t < T"t~+l so 

Now since 

n-1 1 1 1 I n  1 
-T, = -XI  + - C X k  = -xl + _____ 
72 n n n n n - 1  k = 2  k = 2  

and since { X n }  are i.i.d. for n, = 2,3, .  . . with common mean 1-1, it follows by the 
law of large numbers that T,/n -+ ,!L with probability 1. Now the sequence N[t]  as 
t 4 00 is just another way of going to infinity so 

Also if we write 

we have by the same rea,soning 

The proof now follows since t / N [ t ]  is caught above and below by p as t -+ 00. 1 
The conclusion of the preceding proposition is quite natural. If the mean inter- 

arrival time is p it stands to  reason that the number of renewals up to  time t should 
be roughly t / p .  We call 1/p the rate of the renewal process. 

Proposition 6.12 
m e a n  p < 00 then 

If {T,,} i s  a homogeneous renewal process having p .m. f .  f ,  

1 1 
lim -EN[ t ]  = -. 

I-L t-m t 
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Proof: Since X, 2 [l] it follows that N[t] 5 t so N [ t ] / t  _< 1 and by Proposition 6.11, 
N [ t ] / t  + p- ’ .  The result now follows by the Dominated Convergence Theorem 9.7. 

I 
Consider a homogeneous renewal process {T,} and imagine that each generation 

has an associated reward and that the reward associated with the n,th generation 
is R”. We assume {T, - Tn-l, R”},“2 forms an independent sequence, each pair 
of which has the same distribution as a canonical generation { X ” ,  R*}. This means 
the rate of reward restarts in an independent and identically distributed fashion at 
every renewal time (the first renewal period may be different). 

Now the average reward for completed cycles by time t is given by 

n=l 

The sequence {R”} is i.i.d. for {n = 2 , 3 , .  . .} so assuming EIR*I < 00 the law of 
large numbers gives 

1 
i -ER* 

I* 

as t 4 00. Finally, we denote by a the expected reward of the nth renewal cycle; 
that is a = ER* since all the cycles after the first are assumed to have the canonical 
distribution. Hence, the average reward for completed cycles by time t tends to a / p  
where p = E X * .  

Let the rate of return of s o ~ m  
reward process be described by a function V[t] measuring the reward in the time 
interval [t, t + 111). We assume V[t] is a regenerative process with an embedded 
renewal process {Tn}. As usual we denote the canonical cycle of V[t]  by V [ s ]  
for 0 5 s < X*. For the moment we will consider the positive reward V+[t]  = 

max{V[t], 0) which is also a regenerative process. Let R[t] = C:=!’ V[S]+ represent 
the total (positive) reward earned by time t .  Define the reward earned up until time 
z E [O,Tn - Tnpl) in the nth renewal period to be 

Let’s consider an additive reward structure. 

The reward earned in the complete nth renewal period is R”[X,] = R“ and this 
has the same distribution as the canonical reward R* for n > 1. 
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Now use the same argument as in Proposition 6.11. 

since the rewards are positive. Assuming EIR*I < 00 and using the law of large 
numbers, 

X*-[l]  where CY = ER”. We conclude that if EJR*J  = ECs=o (V*)+[s] < 00 then 

x*-[l] 1 
-E c (V*)+[S] 

t-111 

lim - c V+[S] 
t-m t 

S=O s=o 

We can now repeat the above argument for the total negative reward process 
V-[ t]  = max{-V[t],O}. We conclude that if E C f ~ G [ l l ( V * ) - [ s ]  < 00 then 

Since V[t]  = V+[t] - V [ t ]  we may combine these results in the following The- 
orem. 

Theorem 6.13 
cycle { V * [ s ] ;  O 5 s < X ” } .  Assuming 

Let  V[ t ]  be a homogeneous regenerative process wi th  canonical 

E I V * [ s ] I < o o  
oss<x* 

t h e n  

where a = E CfIi“] V* [s] and ,LL = E X * .  

Example 6.14 
We might consider the inspection of an item to yield a (negative) reward of 1. If an 
item is not inspected the reward is 0. In this case, the long run average reward is 
precisely the average fraction of items inspected, which was evaluated in Example 
3.26. 

Continuous sampling inspection - (6.7) continued 

Example 6.15 
If we suppose the joint distribution of the machine lifetime and the replacement 
period {U,,R,} are identical for all cycles, then V [ t ] ,  as defined in Example 6.6, 

Alternating renewal processes - (6.6) continued 
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is a regenerative process with a homogeneous embedded renewal process. The 
preceding theory then applies and we conclude the long run average time spent 
with the machine working is the mean time the machine works per cycle divided by 
the mean length of a cycle, that is; 

where p is the common mean lifetime of a machine and r' is the common mean 
replacement period. 

Example 6.16 
The times when a departure leaves the queue empty or when a customer arrives 
to find a queue empty form embedded renewal processes! This is a consequence 
of the memorylessness property of the arrival stream. Consequently, if we define 
V[t]  = x { X [ t ]  = k } ;  i.e. whenever there are exactly k customers in the queue, we 
see that V[t]  is a regenerative process. By the above then we know that in the long 
run, the average time the queue has exactly k customers waiting tends to ~ ( k ) ,  the 
steady state probability the queue has k customers. Below we show (II: = T where 
~ ( k ) )  is the density was given in (5.29). 

Denote the sequence of customer arrival times by {Tk; n = 1, . . . , m} and denote 
the sequence of customer departure times by { T t ;  n = 1,. . . , m}. The queue size 
X [ T f ]  watched along the sequence {T:; rL = 1, . . . , m} is a regenerative process 
because there is an embedded renewal sequence of times when a departure leaves 
the queue empty. Hence, 

The discrete MlGll queue - (5.29) continued 

where I I (k  - 1) is the steady state probability the queue size at  service completion 
times is less than k .  The generating function for ~ ( k )  = n ( k )  - II(k - 1) was given 
in (5.29). Similarly, if we watch {X[T:  - 11; n = 1,. . . , a}, the sequence of queue 
sizes seen by arriving customers then 

N 

where A(k: - 1) is the steady state probability the queue size seen by customer 
arrivals is less than k .  A is the cumulative distribution of the queue in steady state 
at  any fixed time by the BASTA property in (5.29); i.e. A has density a. Below we 
show A = II and we conclude that the distribution of the queue size left behind by 
service departures is indeed the steady state distribution of the queue. 

To show A = II we first show {X[T:] < k }  and {X[T;+, ~ 11 < k }  are the samc 
event if the queue is empty at  time [O]; i.e. X[O] = 0. Suppose X [ T $ ] ,  the number 
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in tlie queue after the nth departure, is less than k; i.e. X [ T g ]  < k .  This means 
the number of arrivals up to time T," is less than n + k .  This, in turn, means that 
T," < T,A+k so X[T,Atk - 11 5 n + k - 1 - n = k - 1 (because the queue started out 
empty). On the other hand, if X[T:+, - 11 < k then T," < TnAk and this implies 
X[T:] < k .  Hence the two events are the same. Finally, 

= A ( k  - 1). 

If we can prove a process regenerates then the steady state exists. The idea 
of regencration has even been extended to Markov chains on a general state space 
which have zero probability of recurring to  a given point. For coupling on general 
spaces one can consult the text by Meyn and Tweedie (1993) which describes tlie 
splitting technology which creates an artificial atom to force a regeneration. 

6.3 Stationary Renewal Processes 

Consider a simple point process. We now consider the distribution of points around 
an arbitrary point in time, t .  

Definition 6.17 Define the interarrival times relative to time t by 

We say a point process is stationary if the distribution of the interarrival times 
around any time point t is the same! 

It is not a t  all clear if simple, stationary point processes even exist! The first 
thing we do then is construct a stationary, homogeneous (necessarily delayed) re- 
newal process. 
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Theorem 6.18 
arri,ual times b y  

We may construct a stationary renewal process b y  defining inter- 

P ( X - ,  = 2 - n , .  . . ,X-1 = 2-1,Xo = 2 0  

and XI = xl, X 2  = x2,. . . , X ,  = 2,) 

where X - ~ , L , + ~ ,  . . . , x - l , xo ,  X I ,  2 2 , .  . . , x, is  any sequence of integer valued, non- 
negative interarrival tames. 

Of course we have only defined the probability of cylinder sets specified by a finite 
number of interarrival times, but by the Kolmogorov extension theorem this may 
be extended to a probability on all the interarrival times. 
Proof: We show that the distribution of points around an arbitrary point in time 
t and around [O] is the same. Consider the interarrival times measured relative to t 
defined in Definition 6.17. Now let t = [I] and take the case where 20 > 0 

P(X-,[l] = x-,,. . . ,X-,[l] = 2-1,Xo[l] = zo,  

= P(X-,[O] = X - n , .  . . ,X-,[O] = x-l,Xo[o] = 5 0  - [l], 

and X1[l] = x 1 , X ~ [ l ]  = 2 2 , .  . . ,X,[l] = 2,) 

and X1[O] = x1 + [I], X2[O] = z2,. . . , X,[O] = 2,)  

= P(X-,[O] = x p n , .  . . >X_,[O] = 2-1,Xo[O] = z o  

and XI [0] = 2 1 ,  X Z  [O] = x2, . . . , X,,[O] = x r L ) .  

If on the other hand 50 = 0, then 

P(X-,[ l]  = x-,, . . . ,X-,[l] = 2-1,XO[l] = [O] 

andX1[1] =21,X2[1] = x ~ ,  . . . ,X, [ l ]  = 2 ,  1 
= P(X-,+,[O] = 2 - , , .  . . ,X-,[O] = z-2,X,[O] = 2 - 1  - [I] 

and X1[0] = [1],X2[0] = 2 1 , .  . . ,X,+1[0] = 2,)  

= P(X-,[O] = 2- , ,  . . . ,X-,[O] = 2_1,XO[O] = [O] 

and X1 [O] = 2 1 ,  X2[O] = z2, , , . , X ,  [O] = zn) .  

We have now shown that the distribution of points around [l] is the same as 
around [O]. Now repeat the argument to show the distribution of points around [a] 
is the same as around 111. Continuing in this way we see the distribution of points 

I around [t] is the same as around [O]. 



194 Elements of Applied Probability 

Next remark that by summing out the possible values of the sequence 
x-,,. . . , 2-1, 22, . . . , z,, we get the marginal distribution of X o ,  X1 to be 

That this is a joint p.m.f. follows since 

c c f [ z  + Y1 = - F[zI) = P 
220 y>o Z>O 

by Exercise 2.13. Hence, given the the length of the interarrival interval containing 
0 is l, the age a,t 0 is uniformly distributed on [ O , l  - 11. 

We note that the interarrival times {X,}  for n = 2 , 3 , .  . . and n = -1, -2 , .  . . 
have common p.m.f. f (with distribution F )  and are independent. This follows by 
summing over all possible values of 2 0  and 2 1  which gives 

P(X-,, = Z p n , .  . . ,x-1 = xp1,X2 = 2 2 , .  . . ,x, = 2,) 

= f[x-,]  ' . . f [ x - l ] f [ ~ z ]  ' ' ' fixn]. 

We may extend this probability on the coordinates {X-, ,  . . . , X,} to a probability 
on the infinite sequence by the Kolmogorov extension theorem. 

Definition 6.19 
distribution for the homogeneous renewal process having distribution F. 

For the stationary renewal process, the distribution of the age at 0, Z[0], which by 
definition is the same as XO, has the equilibrium p.m.f.: 

We call the p.m.f. e[x] := (1 - F [ z ] ) / p  for z 2 0 the equilibrium 

for z 2 0. This follows by summing out 2 1  in the joint p.m.f. of X O ,  X I .  Similarly 
the excess at 0, Y[O], has the same distribution as X1 which is 

for 7~ 2 [I]. 
Another way of describing the equilibrium renewal process is to write 

= P(X = 2 0  + z l / X  > xo)e[xO], (6 .3 )  

where X is a random variable with distribution F .  In practice then, we could 
simulate an equilibrium renewal process by generating the age at 0, Z[0] = XO 
with the equilibrium p.ni.f. and then generating a series of random variables having 
distribution F .  By the We pick the first one larger than X O  to be XO + XI. 
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above, Xo and XI have the required distribution. The other interarrival times are 
independent with distribution F .  

It is interesting to note that the renewal period Containing 0 has length XO + X I  

which does not have distribution F .  This follows by calculation: 

- x f  [XI _ _ _ _  
I-1 

The latter expression is indeed a p.m.f. since xr=l x f [ x ]  = ,u arid it is easy to see 
that XO + XI is stochastically larger than an interarrival period with distribution 
F .  This means that for any t the probability XO + X 1  exceeds t is greater than 
1 - F [ t ] .  This follows since 

P ( X o + X 1 > t ) = C - -  x f b l  
z>t 

where X is a random variable having p.m.f. f and we used the fact that E(X(X > 
t )  > ,a (see Exercise 2.15). This result is related to the renewal paradox discussed in 
Chapter 4. The condition that the interval [To, TI) contains 0 makes it different than 
other intervals. In fact, since a longer interval has a greater probability of containing 
0, it follows that [To, T I )  is stochastically larger t8han an ordinary interarrival period 
having distribution F .  

Theorem 6.20 
is  the unique stationary point process such that  

T h e  stationary point  process {T,} constructed in Theorern 6.18 

P(X-,[l] = x-,,. . . ,X-,[l] = 2-1, 

= f[x-nI ' ' ' f[.-llf[.ll. ' .  f [ % I  
and X1[1] = zl,Xz[l] = Z Z , .  . . ,X,[1] = z,lT~ = 0) 

f o r  all n and f o r  all possible past and future interarrival t imes  

x - ~ ,  . . . , xP l  and 2 1 , .  . . ,xn,. 
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In other words there is  a unique stationary point  process whose Palm measure is 
that of a homogeneous rene,wal process wi th  n o  delay. 

In general a simple stationary point process conditioned on having a point at 0 is 
said to be a Palm process. 
Proof: Consider any stationary point process {T,} whose Palm measure is a ho- 
mogeneous renewal process with no delay. For simplicity we will simply calculate 
the p.m.f. of interarrival times X = ( X I ,  Xo, X I ,  X,) since the distribution of an 
arbitrary number of interarrival times will follow immediat,ely. By hypothesis 

d 

P(X-1 = 2-1,xz = 21,X2 = 221x0 = 0) = f[Z-l]f[.l]f[.2]; 

so 

Next, if zo # 0, we have by stationarity that 

If we now sum the joint p.m.f. on x - ~ ,  xO,z1,22 we conclude that 1 = p ' P ( X 0  = 0). 
It follows that 

f b 2 1  
fI.0 + 4 

which is precisely the p.m.f. of the stationary process we constructed. 

P(X-I  = 2 - 1 ,  x, = 2 0 ,  x1 = q , X 2  = z2) = , f [ X - I ]  
P 

I 

We summarize tbe result's in the following theorem. 

Theorem 6.21 If {T,} is a stationary, homogeneous renewal process then  for all 
t imes  t ,  the point  process { T N [ ~ I + ~  ~ t }  has the same distribution. In particular the 
age at  t ,  Z[t] has a fixed p.m.f. - the equilibrium p.m.f.. 

Corollary 6.22 For a stationary, homogeneous renewal process 

t 
P 

E"t] = -. 

Proof: For any time t ,  

t 

" t]  = c x {Z[n]  = 0). 
n=[l] 
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Hence, 

t 
P P  

t 
E"t] = c P(Z[n]  = 0) = c - = -. 

n=[1] n=[l] 

I 
Now consider a stationary regenerative process V" [t] with an embedded station- 

ary, homogeneous renewal process { X , } .  To construct such a process consider, as 
in Definition 6.4, a sequence of independent identically distributed processes. These 
are the cycles of the regenerative process. Let V * [ s ]  be a canonical member of the 
sequence and let X *  denote the cycle length of V* [s] having distribution E .  Pick Xo 
according to the equilibrium p.rr1.f. and then generate independent cycles having 
the canonical distribution V*[s], until we find one whose cycle length exceeds Xo.  
Denote this cycle by V1 and denote the cycle length by X O  + X I .  The next cycle 
V 2  is independent with the canonical distribution V*[s] .  Denote t,he cycle t,irne by 
X2.  Contiriuc in this way for the cycles (V3 ,  X 3 ) ,  (V4, X4), . . . . Finally construct 
V" by starting V1 at time To = -Xo followed by V2 started at  time TI = X I ,  V3  
started at time T2 = X I  + X2 and so on. By a,ssembling tJl-iese independent cycles 
we have built a regenerative process as in Definition 6.4. 

The joint p.m.f. of ( X 0 , X I )  is 

f (20  + 21) P(X0 = xo; XI = q) = e(x0)  ' P ( X *  = z o  + Z I / X *  > 2 0 )  = 
P 

using (6.3). It is cleas the distribution of the pair X0,Xl is precisely that of an 
equilibrium renewal process. Hence the embedded renewal process is stationary and 
homogeneous. 

We remark that this construction relates V" to V*. In particular we show 

Corollary 6.23 For all x 2 0 and n 2 1, 

P(Ve[t]  E AjZ[t] = 2 ,  N [ t ]  = TZ - 1) = P(V*[z]  E AIX* > x). 

Proof: V" [t] is a homogeneous delayed regenerative process. By Proposition 6.5; 

P(V[t] € A(Z[ t]  = z, "t] = 12 - 1) = P(V"[2] E A(,'i, > z) 
= P(V*[z]  E A ( X *  > X) 

for n 2 2. 
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If, however, N [ t ]  = 0 then we are still on the first cycle and 

P(Ve[t] E AIZ[t] = z , N [ t ]  = 0) 
= P ( V e [ t ]  E A l X o = s - t , X o + X 1  > x )  
- P(V" [t] E A, X o  = 2 - t ,  Xo  + X i  > X) 
- 

P(X0 = 2 - t ,  xo + XI > Z) 

P(X0 + XI  > Z ( X 0  = 2 - t )  

P ( X *  > ZlX* > 2 - t )  

- P ( V " [ t ]  E A, Xo + X i  > 21x0 = z - t )  
- 

- P(V*[Z] E A , X *  > z ( X *  > 2 - t )  
- 

by the construction of V1 
= P(V*[z]  E A l X *  > x). 

I 
We can, moreover, show that such an equilibrium regenerative process is sta- 

t ionary. 

Theorem 6.24 If V"[t]  is a sta,tionary regenerative process with a n  embedded, 
stationary, homogeneous renewal process {T,} then  f o r  any t ime  t and f o r  any set 
A 

Hence the probability the equilibrium regenerative process is in A at t ime  C is the 
mean t ime per cycle the canonical process V * [ s ]  is in A divided by the mean length 
of a canonical cycle. 

If V" is  a real valued regenerative process such that EIVe[O]( < 00 then, f o r  any 
t ime  t .  

Proof: We condition on N[t ]  and the age at t :  

P(V"[t] E A )  
o o c o  

= C C P(Ve[t]  E AIZ[t] = Z, N [ t ]  = n - 1)P(Z[t]  = z, N [ t ]  = n3 - I) 
n=l  s=o 
o o c c  

= P(V*[,] E AIX* > ~ ) P ( z [ t ]  = Z, N[t]  = 11 - 1) 
n,=l x=O 

by Corollary 6.23 
ix 

= C P(V*[Z]  E AIX* > z )P(Z[ t ]  = z ) .  
:r=O 
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Hence, since the p.m.f. of Z[t]  is e ,  the equilibrium p.m.f., we have 

P(V*[z] E A , X *  > X) (1 - F [ x ] )  
x=o 1 - F[x] P 

1 
= - CEx{V*[.r]  E A,z < X * }  

x=o 
1 

= -E C x{V*[$] E A } .  
o<x<x* 

The second result follows from the above by linearity. First establish the result 

for simple functions s. Then using monotone convergence show the result, holds 
for (V")+ and (V")-, the positive arid negative parts of V". Next note that the 
right hand side is independent of t ,  so E(V"[t])+ = E(V"[O])+ and E(V"[t])-  = 

E(V"[O])-. By hypothesis Ve[O] is integrable so the result holds by linearity. I 

Corollary 6.25 Let V[t] be a real valued regenerative process hawing identically 
distributed regenerative cycles where {V*[s]; 0 5 s < X * }  denotes a canonical cycle. 
IfEIVe[O]I < 00 then 

= EVe[O] c::b" V[S] 
lim 

t-cu t 
where V" is the associated stationary regenerative process. 

Proof: By Theorem 6.24, EV"[O] = E Cosz<x. V*[x]/p so the latt,er is integrable. 
By Theorem 6.13 then 

where a = E Cols<x* V*[s] and p = E X * .  Combining these facts gives the result. 
I 

If V[t] is a regenerative process then so is {V[t]  E A} where A is some (mea- 
surable) set. Hence the long run average time the regenerative process spends in 
A, i.e. limT,, TP1 CT--[ll t=o x{V"[t] E A} is equal to the probability a stationary 
regenerative process is in A at any time t ,  i.e. P(V'[t] E A) = P(V"[O] E A), 
and this in turn is precisely the mean time the process spends in the set per cycle 
divided by the mean length of a cycle, i.e. 

1 
-E {V*[IL] € A } .  

O<x<X* 
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Example 6.26 Little’s Theorem 
Consider a queue Q[t] with an embedded renewal process N[t]  (for the n/IlGll queue 
N [ t ]  would be the number of times the queue empties). The mean arrival rate of 
the arrival process A[t] is assumed to be limtico A[t]/ t  = A. Let {Wn} represent 
the sequence of customer waiting times (including the service and queueing time). 
Let us make the mild assumption that limniw Wn/n = 0. 

By Theorem 6.25, 

where L is the average queue length. If we stop admitting customers after time t 
and we regard the queue size Q[s] at time s as a renewal reward process, then the 
total reward by time t is the total time spent waiting by customers who arrive by 
time t ,  minus the time to clear the queue which is left over at time t .  If we denote 
by 5’; the service times of the customers remaining at time t then c,7,,Q= 

CfL], W,, - CfIi Sk. Hencc, 
- 

Remark that WA[~I  is the waiting time of the last customer to arrive before time 
t .  Hence, c:Il sk 5 WA[t] since some of the work has been cleared out between 
time t and the time of this last arrival. It follows that 

where we used our assumption that limn-m Wn/n = 0. 
We know the limit of the right side of (6.4) exists and hence so does 

1 ‘rrl w : =  lim - C w n .  
m-co m n=l 

Moreover, L = XW. 
We conclude that Little’s formula holds and L = XW; that is, the average queue 

length equals the product of the average arrival rate and the average waiting time 
in the queue. This result is very useful in converting the knowledge we already 
have about the mean queue length of an MlGll queue, for example, into knowl- 
edge about the average waiting time in the queue. The only thing to check is that 
limn+m WT,/n = 0. For an MIGIl queue this is easy since the waiting time of any 
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customer is less than the time after he arrives until the queue empties. This is less 
than the ("t] i- l ) th  cycle length for the MlGll queue where N [ t ]  counts the num- 
ber of departures which leave behind an empty queue by time t .  If X N [ i ] + 1  denotes 
this cycle length then limt,oo X ~ [ ~ l + ~ / t  = 0 by the argument in Proposition 6.11. 

Example 6.27 
Consider a transition kernel K with stationary distribution 7r. We may construct 
a stationary Markov chain {Mn; -cc  < n < m}. We only need to define the 
distribution of each cylinder set 

Markov Chains ~ (6.8) continued 

P7r(M-, = i-,, +,+I] = i[-n+l], . . . 

= 4-n)KiLnz[Ln+1, . ' . KL1Z" . . ' ~ z , , ~ 1 j 2 , ~  

. . . M-1 = i - 1 ,  Mo = i o ,  . . . , Mn = in) 

It is easy to check that this definition is consistent so we may construct a mea- 
sure on doubly infinite sequences using the Kolmogorov extension theorem. By 
construction, the distribution of Mn is T for all n,. Now define the point process 
{TTX; --oo < n < m} of return times to  j .  We have seen this is a renewal process 
with renewal p.rn.f. f j j .  

This renewal process is also stationary! To show this we need to calculate the 
distribution of points around time 0. Let F = { j } .  By the construction of &Ir, 

P(T0 = -zfJ,T1 = 2 1 )  

= P(X0 = Q , X I  = 2 1 )  

= P(M[-zol 
= ~(j)P(M[-,~+11 # j ,  . . . , M-1 # j ,  MO # j ,  . . . ,  Mzl = jIM[-zU] = J') 

j ,  M[-,,+11 # j ,  . . . , M-1 # j ,  MO # j ,  . . . , Mzl = j )  

- f j j  ( 2 0  + 2 1 )  - 
P.3j 

We have therefore shown the distribution of points around time 0 is precisely that 
of the stationary process since the other interarrival times are i.i.d. with p.ni.f. fJj. 

Using Theorem 6.13 we can now prove Proposition 5.20 and its simpler form, 
Corollary 5.18: 
Proof of Proposition 5.20: The process V[n]  := h(M,-l, M,, U,) was defined 
iteratively where U, has a p.m.f. determined by the states of M at times n - 1 and 
n,. This is a regenerative process with embedded renewal process T,. The (n  - l)t'L 
cycle ends at some time T,-l - 1 = k when Mk = J'. Subsequently, for 0 5 s < X,,  
Ifn[,] s V[k  + 1 + s] is determined by the chain Mk+l+s where M k  = j and the 
sequence Uk+l+s. Both these sequence {Mk+l+s, Uk+1+,; s 2 0) are independent 
of the past before time k given J l k  = j .  Consequently I/" is indeed independent of 
the previous generations so V is a regenerative process. 
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Let V" be the associated stationary regenerative process. Note that 

by Corollary 6.25 

Example 6.28 
We can use renewal theory to give an expression for the mean hitting time of a set 
of small probability. Let dF denote those points in F which can be reached from 
B = F" in a single jump. The theory below says that the mean time to hit F is of 
the same order as the reciprocal of the stationary measure of d F ,  i.e. i7(dF).  

Let io E B = F" and denote by f ( j )  the probability the chain M starting from 
j E B hits io before F .  

Theorem 6.29 

Rare Events - (5.41) continued 

Let R be the time to return to io after ,first hitting F .  Then, 

1 -l c~(i) C Kz j f ( j )  
i E F  j t B  

Proof: Consider cycles where the chain starts in i O ,  eventually hits F and then 
returns to i ~ .  These cycles have the same distribution as R and the same mean p. 
Now, once per cycle the chain must leave F for the last time; that is, the chain must 
junip from i E F to j E B and then return directly to i o  without first hitting F 
again. Give a reward 1 only when this event occurs. The long run average expected 
reward is therefore l /Ei,R since there is one reward per cycle. 

On the other hand, consider the reward process 

V[ t ]  = { M [ t ]  E F, M [ t  + 11 E B ,  M [ t  + k]  $! F for 1 < k 5 Rt} 

where Rt is the first time after time t that the chain returns to i O .  Even though 
the process at  time t depends on the future after time t ,  it does regenerate with a 
return to i ~ .  The long run average expected reward is given by Theorem 6.25: 

If i E F and the next jump is to B and there are no further visits to F before 
hitting io then there is a reward. The probability of this is precisely CJEB K z 3 f ( j ) .  

and
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which is the result we want. 

Corollary 6.30 

Proof: By Proposition 5.42, lima(F)+O EioR/pT = 1. The result now follows from 
the preceding theorem. I 

One might well ask why the equilibrium regenerative process and its embedded 
equilibrium renewal process should be studied at all! After all they come about only 
if we start off a homogeneous regenerative process in a very particular way! The 
answer is that the distribution of points of any stationary renewal process around a 
sufficiently large fixed time t is approximately the same as the distribution of points 
around t (or 0) for an equilibrium renewal process. We establish this result in the 
next section using a coupling argument. This means we may as well assume we are 
dealing with an equilibrium regenerative process in the first place (at least if the 
process has been running for some time). 

6.4 Convergence to  Stationarity 

Consider two simple point processes {??n}r?-w and {?n}r=--03 defined on the same 
probability space. 

Definition 6.31 The point processes {Fn} and {Tn} are coupled - together (at 
different generations) 7 and p if with probability one TT+n = Tp+lL for n, = 0, 1, . . .. 

Lemma 6.32 If two point processes {TTl} and {T,} can be coupled together then 
the distributions of the age at t ime t ,  Z[t] and Z[t] respectively, converge. In fac t  

x=o 
= 0. 

Therefore
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Tp-1 TP Tp+l 

Fig. 6.3 Trajectories coupled before time t .  

Proof: Let r and p be the coupling generations. If TT 5 !?fi[tl where f ' ~ [ ~ ,  5 t < 
Tfi[,]+, then the two point processes have coupled before time t .  Consequently the 
age back to the last point before t is the same for both processes! Hence if coupling 
is successful before time t then Z[t]  = Z[t] .  Hence, 

w c lP(Z[t]  = z) - P(Z[t ]  = .)I 
x=o 

co 

x=o 
00 

x=o 
M M 

Now, as t i 00, 5?filtl tends to infinity since f i [ t ]  does. Hence P ( f T  > TR[,]) --+ 0 
I 

The above argument may be extended to show that if two point processes can 
be coupled together then in fact the distribution of the last n points before t and 
all those after will asymptotically be the same. 

We now proceed to apply this general coupling method to renewal processes. 
First we note that if the interarrival times are always even multiples of [l] then it 
would be impossible to couple two trajectories if one started on the even units and 
one started on the odd units. To avoid this difficulty we make a definition. 

as does P(T, > Tfiitl). 
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Definition 6.33 
is the largest common divisor of the support of f ,  i.e. of the set {z : f [ x ]  > O}. 

Lemma 6.34 Consider  two homogeneous renewal processes {Tn}rZ1 and 
{TA},"==, having different delays but the same interarrival p.m.f .f having period 
[I]. There exist two point  processes {Tn}r=l and {T,,}rZ1 $which are equal in dis- 
tribution t o  {Tn}E=l and {TA}Z=3=, respectively, and which are coupled together. 

We say a random variable X or its p.m.f. f has period [d] if d 

The proof of this proposition is deferred until Section 6.8 so we may see some 
of the consequences. 

Theorem 6.35 Let  Z[ t ]  and Z '[ t]  denote the respective ages at t of two homoge- 
neous renewal processes { T , }  and {TA} having different delays but the same inter-  
arrival p.m.f. f having period [l]. T h e n  

Proof: By Lemma 6.34 we have two processes T, and T, having the samc distribu- 
tion as {T,} and {TA} which are coupled. If Z[t] and Z[t] are the age processes of 
Tn and 5?, then P ( Z [ t ]  = x) = P(Z[ t]  = x) and P(Z[ t]  = z) = P(Z[ t]  = x ) .  Since 

lini I I P ( S [ ~ ]  = .) - ~ ( Z [ t l  = .)II  = o 
t-oo 

by Lemma 6.32 the result follows. I 

Theorem 6.36 
h.asiin,g p.m,.f. f ,  m e a n  p < 00 and period [l]. I f  Z[ t ]  is  thw age of {T,} at t t h e n  

Consider  a homogeneous (possibly delayed) renewal process {T,} 

lim lIP(Z[t] = .) - e[.]II = 0. 
t-oo 

Proof: Consider the equilibrium renewal process {TA} associated with {Tn}. By 
Proposition 6.35 limt,, IIP(Z[t] = .) - P(Z'[ t]  = .)I1 = 0 where Z'[ t]  is the age of 
the equilibrium renewal process at t .  The result now follows from the fact that the 
distribution of the age at t for the equilibrium renewal process is precisely e. I 

Corollary 6.37 (Feller's renewal theorem) If {T,} is  a homogeneous (possibly 
delayed) renewal process having p.m.f .  f ,  m e a n  p < 00 and period [ l]  then  the 
probability of a renewal a t  t ,  that  is P(Tn = t ;  for s o m e  n),  a s  in Figure 6.4, tends 
t o  I/p as t + 00. 

Proof: 

{ Z [ t ]  = 0} = {T, = t ;  for some n}. 

By Theorem 6.36, however, P(Z[ t]  = 0) + e[O] = I/p as t + 00. I 
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I Xl 

Fig. 6.4 A renewal at time t .  

Corollary 6.38 
i n g  p .m . f .  f ,  m e a n  p < 00 and period [ l]  t h e n  

If {T,) i s  a homogeneous (possibly delayed) renewal process hav- 

e 
lim E ( N [ t  + 4 - N [ t ] )  = - 

P t i c €  

Proof: C ~ ~ ~ , ,  x{Z[x]  = 0} represents the number of renewals in (t ,  t + ! I .  Hence 

t+e t t Q  

E("t + C ]  - " t ] )  = c Ex(Z[z]  = O} = c P(Z[X] = 0) .  
x=t+l x=t+l 

By Theorem 6.36, however, P ( Z [ z ]  = 0) + l /p  as t t 03 so the result follows 
I passing the limit through the summation sign. 

We now prove a somewhat impractical result which completes the above. 

Corollary 6.39 If {T,) i s  a homogeneous (possibly delayed) renewal process a s  
in T h e o r e m  6.36 but m e a n  p = 03, t h e n  t h e  probability of a renewal a t  t t ends  t o  0 
a s t i m , .  

The proof is deferred until Section 6.8. 
Consider a homogeneous regenerative process V[ t ]  with embedded homogeneous 

renewal process {Tn}, having canonical generations { V " )  and canonical cycle length 
X * .  Let V" denote the corresponding equilibrium regenemtive process. 

Corollary 6.40 
i ng  p.m.f. f ,  m e a n  p and  period [l] t h e n  for  a n y  se t  A ,  

If {T,} i s  a homogeneous (possibly delayed) renewal process haw- 

an other  words, the limit is t h e  m e a n  t i m e  p e r  canonical cycle tha t  V is in A divided 
by the  m e a n  cycle length.  
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Proof: We only give the proof for a renewal process without delay. By Proposition 
6.5, for n 2 1 

P(VIt] € AJZIt] = z , N [ t ]  = n - 1) 

= P(V"[x] E AIX, > x) = P(V*[z] E AIX* > x). 

Hence, by conditioning on Z[t] and N [ t ] ,  it follows that 

00 

= C P ( V * [ x ]  E A(X* > x)P(.Z[t] = x). 
x=o 

Hence we have 
cy) 

lim P(V[t]  E A) = lim c P ( V * [ z ]  E AIX* > x ) P ( Z [ t ]  = x) 
t-m t-00 

2=0 
.30 

= c P ( V * [ z ]  E AIX* > z ) e [ x ]  by Theorem 6.36 
x=o 

O0 P(V*[z] E A , X *  > x) 1 - F [ x ]  
P x=o 

1 
= -E C x{V*[x]  E A} 

[ 0 ] 5 Z < X *  

I 
Similarly, using Theorem 6.24 we can show 

Corollary 6.41 Let V[ t]  be a real valued regenerative process having identically 
distributed regenerative cycles where {V*[s];O 5 s < X " }  denotes a canonical cycle. 
I fE)V"[O])  < 00 then 

where V" is the associated stationary regenerative process. 

We have come to the conclusion that after a sufficiently large time t ,  the homo- 
geneous regenerative process V[t]  is distributed like the corresponding stationary 
regenerative process. If, therefore, we can show the existence of an embedded 
renewal process inside a stochastic process, no matter how complicated, we can 
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conclude that after a sufficiently long time the process reaches a state of statisti- 
cal equilibrium. The process continues to fluctuate, of course, but the probability 
V [ t ]  E A is approximately constant and is approximately the long run proportion 
of time the process spends in A ,  which equals the mean time per cycle the process 
spends in A divided by the mean length of a cycle. 

Example 6.42 Markov Chains ~ (6.27) continued 

We have already identified the sequcnce of return times to a state as a renewal 
process. We can therefore apply the preceding asymptotic results. 

Theorem 6.43 If Mn,  n 2 0 is a recurrent, aperiodic Marlcov chain then 

where p j ,  i s  the mean recurrence t i m e  to  j .  

Proof: If { X n ,  n 2 0} is a recurrent, aperiodic Markov chain, necessarily the chain 
returns infinitely often to  state j and by Lemma 6.9 these interarrival tinies are 
independent and aperiodic. Let Z[t]  denote the age since the last visit to 3 .  
a regenerative process so for all initial states 7, 

lim KtY = lim P(Z[n]  = O / Z O  = 1)  = l/,uJJ 
n-oo n+m 

where pJ3 is the mean recurrence time to j. Here we have used Theorem 
pJ3  < 00 and Corollary 6.39 if p J 3  = 00. 

Example 6.44 
Suppose the joint distribution of the machine lifetime and the replacement 

Alternating renewal processes - (6.15) continued 

Z[t]  is 

6.36 if 
I 

period 
{Un, R,} are identical for all cycles as in Example 6.15. The preceding theory then 
applies and we conclude the probability the machine is working at time t tends 
to the long run proportion of time spent with the machine working, which equals 
the mean time the machine works per cycle divided by the mean length of a cycle. 
That is, limttW P(V[t]  = 1) = p / ( p  + r )  where p is the common mean lifetime of 
a machine and r is the common mean replacement period. 

Example 6.45 
Consider the example of the M/G/oo queue discussed in Example 4.12. We saw 
the times {T,} when a customer arrives to  find a queue empty are an embedded 
renewal process! Consequently if we define V[t]  = 1 whenever there are exactly k 
customers in the queue we see that V [ t ]  is a regenerative process. By the above 
then we know that as t 4 00 the probability there are exactly k customers in the 
queue tends to a limit. 

The MlGl00 queue -(4.12) continued 
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6.5 Renewal with Nonlattice Variables 

We could generalize all the preceding results to real-valued homogeneous renewal 
processes {T:} having interarrival times {X,"} with a common continuous or non- 
lattice distribution function F R  having mean p R .  Certainly the proofs of Propo- 
sitions 6.11 and 6.12 do not depend on the discrete nature of the distributions. 
We can also define the age Z R ( t )  and excess YR( t )  at time t and we can prove 
convergence to  the renewal equilibrium distribution. 

To do this recall the notation that denotes t seconds converted and rounded up 
to the nearest nanosecond by t^ and for the remainder of this section we use the 
notation developed in Chapter 4. We can define an approximate discrete renewal 
process by letting {Xi,} denote the sequence of na.nosecond valued interarrival times 
given by Xn = [qX,"]. The distribution of these interarrival times is E[2] = F R ( x ) .  
The age of this discrete renewal process is Z[fl as defined in Definition 6.3. By 
Theorem 6.36 the age distribution converges to e ( 2 )  = (1 ~ F ( 2 ) ) / p  as t 4 00. 

Consequently as t --f 00 

We conclude that asymptotically the age distribution has a density e R ( z )  = 

(1 - F R ( z ) ) / p R .  There is, however, a nasty complication. Suppose the interarrival 
times [Xn] have p.m.f. f R  given by f R ( l )  = f n ( f i )  = 1/2. If we pick a sequence 
of times t tending to infinity of the form m + n f i  where m and n are integers, it is 
clear that the age at t is also of this form. Hence the distribution of the age is stuck 
on this subgroup of the reals and consequently the age process does not even have 
a density while the equilibrium measure does. Hence we don't have convergence 
of densities in a total variation sense (unlike the discrete case). We have, however, 
sketched how the age converges in distribution to e. 

Bearing in mind this complication we simply state an extension of Corollary 6.40 
for general regenerative processes having an embedded renewal sequence which is 
not concentrated on any sublattice like the nanoseconds. 

Theorem 6.46 (Extension to non-lattice interarrival times) I i  for  some 
measurable set A, the funct ion given by P (V(s )  E A,s  < X " )  i s  R iemann  inte- 
grable in s then 

lim P(V( t )  E A) = a / p  
t-rn 

where p is the mean cycle len,gth and a is  the mean t ime  V ( s )  is in A per cycle; 
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X' 

a = E J' x{V(s )  E A)ds. 

This result includes the convergence in distribution of the age and the proof is riot 
unlike that sketched above. 

S=O 

6.6 Homogeneous Coupling 

We now couple homogeneous renewal processes that start out [d] units apart. 

Proposition 6.47 Consider a homogeneous renewal process {T,} such that To = 

0 having p.m.f. f ,  and period [ l ] .  W e  m a y  construct two copies (i.e. having the 
surrie distribution) {U,} and {Vn} such tliut {Un}  and {V, + [ d ] }  m a y  be coupled 
together. 

Note that the coupling may occur a different generations. Consider a p.m.f. 
with period [l] that puts probability 1 /2  at the values 3 and 5. Clearly a copy of 
the renewal process started at 0 can't be coupled at the same generation with a 
copy started at [l] but if the first copy takes one extra step then they can. 
Proof: By hypothesis the largest common divisor of the {x : f[x] > 0) is 1. Let [d]  
be any unit. From the lemma in the Appendix we have positive integers {pz}:L1, 
{ T L ~ } ~ ~ ~  and units {xz}:L1, {yz}{zl from the support o f f  such that 

e2 

i=l i=l 

e Define n := p i  and rn := cf., ni and construct a series of blocks for 
b = 1,2,. . . made from a series of i.i.d. random variables with p.m.f. f: 

For good measure we also construct an additional independent sequence {X," : k = 

1 , 2 , .  . .} having p.m.f. f .  Define 

m, m+n 

k=m+l k=l 

It follows that 
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and 

i=l i= l  

SO P(A(b) = B(b) + [$I) > 0. 
Let N = b if b is the first block such that 

el e2 
A(b) = c p t z ,  and B(b) = x n i y t .  

i=l i=l 

Since the blocks are independent, N is a geometric random variable and P ( N  < 

To construct the point processes { U n }  and {Vn) define Uo = VO = 0 and define 
03) = 1. 

the respective interarrival times 

X k ( b )  for z = k + ( b  - l ) (m + n)  where 

X k ( N )  for z = k + ( N  - I)(m + n); k = I,. . . ,m 
X i  

k = 1, . . . ,  m+n;  b =  1, . . . ,  N - 1  xt= { 
for t = m + k + ( N  - l)(m + n); k = 1 ,2 ,  . . 

Hence in block b < N ,  k(b-- l ) (n+m)+k = Xk(b)  for k = 1,2 , .  . . , m + n;  that is, the 
X t  j;llst march through the succession of values in each block. In block N the values 
of X ,  march through the first m values of the block and 

e ,  

t=l+(N- l ) ( rn+n)  2'1 

After that the values of Xz are those of an independent sequence X i .  Note that 
the distribution of the sequence Xt  is not conditioned by the value of N since we 
switch to the X i  sequence @er N is determined. 

Next, 

X m + k ( b )  for i = k + ( b  - l ) (m + n) where 
k =  1, . . . , n ;  b = 1 ,  . . . ,  N 

Xt = ~ k ( b )  for i = n + k + ( b  - l ) (m + n) where 
k = I,.. . ,m; b =  1,. . . , N  - 1 (1: f o r i = n + I c + ( N - l ) ( m + n ) ;  k = 1 , 2 ,  . . .  

Hence we assign the X, in block b < N according to the following table: 

X(b-l)(m+n)+l .. X(b-l)(m+n)+n X(b-l)(m+n)+n+l .. X(b-l)(m+n)+n+m 

1 I L 1 
Xm+l ( b )  '. Xm+n(b) X1 (b)  X m  ( b )  

Hence for b < N we first march through the last n values in block b and then 
through the first m. If N = b then we still march through the last n values in block 
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N ( m + n )  e2 

X, = C na,. 
2=1 

c 
2=m+l+(N- l)(m+n) 

After that the values of X2 are those of an independent sequence X z .  Note that 
the distribution of the sequence Xz is not  conditioned by the value of N since we 
switch to the X i  sequence after N is determined. 

In fact the above definitions simply make the sum of the interarrivals in a block 
the same for {V,} and {V,} up until we have a success at the Nth  block. After 
that we define the interarrival times to be the same. To recapitulate, for each block 
b, we first assign X ( b - I ) ( n + m ) + k ;  I; = 1,. . . , m and X ( b - l ) ( m + n ) + k ;  k = 1,. . . , n. If 

- 

then we say N = b and (in a Markovian way) we define future interarrival times 
to be common, i.e. X i ,  so the processes U, and V, + [d] are coupled thereafter. If 
A(b) # B(b) + [d] then we complete the assignment in such a way that Ub(m+n) = 

Qm+,); that is Ub(m+n) and Vb(m+n) + [d] are still d units apart. 
We can define r = ( N -  1) .  (n+m) + m  and p = ( N -  1) .  (n+m)  +n .  From 

the above U, = V, + [d] so we have achieved our coupling. We do emphasize that 
the processes constructed are renewal processes with p.m.f. f ,  since we have simply 

I 
Proof of Proposition 6.34: Let D = Ti ~ TI and for each value D = [d] use 
Proposition 6.47 to construct two copies {U,}, {V,} of a homogeneous renewal 
process with UO = Vo = 0 with the same interarrival distribution as {T,} and 
{TA} such that {UTu+k = Vpv+k + [ d ] }  where ru and pv are random indices which 
depend on d. Since D is random this means constructing an infinite family of pairs 
of processes, a pair for each D = [d] .  

Now the point process {Tn}pZ1 has the same distribution as {Fn := TI + 
U n - l } p ? I  since both are homogeneous renewal sequences and TI  = TI. Similarly 
{TA}T=I has the same distribution as {f', := 2'; + Vn-l}p=I. Let r := ru + 1 and 
p := pv + 1. However 

put together independent interarrival times. 

- 
T, = TI + U,, = Ti - D + V,, + D = Tp 

so we have built the required coupling. i 
Closer inspection of Proposition 6.47 reveals the following refinement: 

Proposition 6.48 If  1 5 [ S ]  5 l are displacements we m a y  construct e renewal 
processes {V,"} and a process {Un}  all having the same distribution as {T,} such 
that {V," + [S]; 1 5 [S]  5 l} m a y  be all coupled together wi th  {U,}. T h a t  is ,  there 
exist stopping t imes  p1 < p2 < . . . < pe and stopping t imes  r1 < r2 < . . . < re such 
that  for  all 1 5 [S] 5 t, v$+~ + [s] = u++~, k = 0, 1 , 2 , .  . .. 
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Proof: By Proposition 6.47 with d = 1 we can can construct {V:} and {Un}  up 
to coupling times p1 and r1 respectively. Now define the process {V,} to be equal 
to {V'} until time p l .  Next repeat the construction in Proposition 6.47. Tack this 
construction on the end of the processes we have already constructed; that is define 
{V,"} up until time p2 and { U n }  up until r2. We may also go back and extend the 
definition of { V i }  to equal {U++n} for p1 < n 5 7'. We may continue in this way 
to complete the construction. I 

Proof of Corollary 6.39: Let us suppose the corollary is false so there must exist 
some E > 0 and a sequence of { t3;  j = 1 ,2 ,3 , .  . .} such that for all t, in the sequence, 
P(Z[t,]  = 0) 2 E .  Now consider a truncated renewal process {T,"} with increments 
X,.l := min{Xi, a}.  Since p = 00 we can pick a large enough so that 

Denote the number of renewals of the truncated process up to time t by N"[ t ] .  By 
Proposition 6.12 limt,, E N " [ t ] / t  = 1/p" so there exists an integer l such that 

By stationarity, E(N[t+C]-"t]) 5 EN[t]+l and since {T,"} is a truncated renewal 
processit is obvious that EN[C]+l 5 EN"[l]+l .  Hence E(N[t+C]-N[t]) 5 !e/2+l 
for all t .  

Assuming, without loss of generality, that {T,} has 0 delay we may, by Propo- 
sition 6.48, construct renewal processes {V,"; 1 5 [S]  5 !} and {Un}  which all have 
the same distribution as {T,} such that {V," + [ S ] }  may be simultaneously coupled 
with {U,}. Hence if t is chosen large enough we can ensure that the probability 
that all ! processes have coupled before time t is greater than 1 - d where t' is 
arbitrarily small; that is P(U+ > t )  5 d.  Now the probability of renewal by the 
process {T7,} at t + [6] is the same as the probability of renewal of the process {V,"} 
at t + [6]. Let 2' denote the age process of the point process {V:}, while 2 denotes 
the age process for the process {U,}. Hence 

e 
E ( N [ t  + t] - N [ t ] )  = E x {Z [ t  + 61 = 0). 

6=1 



214 

However, 

E l e m e n t s  of Appl ied Probabili ty 

IE("t +-el - " t ] )  - l P ( Z [ t ]  = 0)l 
e 

= I E - y X { i [ t + 6 ]  =Oj - !P(Z[ t ]  = O ) I  
6=1 

e 

6 = 1  6=1 

using the fact that the ages Z[t + 61 and Z6[t]  are the same for 6 = 1,.  . . ,! if U+ 
is less than t because {V,} stays exactly 6 units behind {Un}  after this time. 

Hence if we choose t = t j  then by hypothesis P(Z[ t j ]  = 0) 2 E ,  so by the above 
we have E ( N [ t j  + l] - N [ t 3 ] )  2 l e  - !E'. This leads to  a contradiction since we 
have already shown that E ( N [ t  + e] - " t ] )  5 l c / 2  + 1 for all t and this would 
imply l~ - ed 5 &/2 + 1 or .t 5 (2/c) / ( l  - d ( 2 / c ) .  Since E' is arbitrarily small, this 
contradicts our assumption that l > 1 + a/€. We conclude that the sequence { t j }  

where P(Z[ t j ]  = 0) 2 E cannot exist and it therefore follows that P(Z[ t]  = 0) + 0 
a s t i o o .  

6.7 The Bernoulli Part and Coupling 

Consider the p.m.f., fx, of some unit-valued random variable X 

Definition 6.49 (The Bernoulli Part) 

M 

By a slight abuse of notation let b ( X )  = b(fx). Note that 0 5 b ( X )  5 1 

Lemma 6.50 (The Bernoulli Part Decomposition) 
There exist random variables Y ,  E and L such that X and Y + E .  L have the same 
distribution where Y and L are unit-valued random variables and E is integer valued 
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such that 

L is independent of (Y,E)  
1 
2 

P ( L  = [l]) = P ( L  = 101) = - 

P(€  = 1) = 1 - P ( €  = 0) = b ( X ) .  

Proof: Assume b ( X )  > 0; otherwise the representation is trivial. Construct inde- 
pendent random variables V, U,  E and L such that V has density 

U has density 

fx[kl - b(X)(fv[k] + fv[k - 1])/2 
(1 - b ( X ) )  

f u [ 4  := 

and such that L and E are Bernoulli random variables as given above. By evaluat,ion 
we see (1 - E)U + E(V + L )  has the same law as X (see Exercise 6.1). Hence, letting 

I (1 - E)U + EV = Y we have the desired representation. 

Theorem 6.51 (The Coupling Theorem) If {T,} i s  a renewal process such 

that C b ( X n )  = 00 then there exists a renewal process {Tn} and a delayed re- 

newal process {T,} defined on  the same probability space such that {T,} is equal an 
distribution to {T,} and {T,} is equal in distribution to  {T, + [l]} and such that 
{T,} and {T,} are coupled at the same generation T .  

00 

n=l 

We defer the proof of this theorem while we discuss its consequences and develop 
lemmas to be used in the proof. 

The Bernoulli part in Lemma 6.50 may be thought of as an extra, independent 

Bernoulli step hidden inside X .  The condition C b(X,) = oc? in Theorem 6.51 

requires that there be sufficient Bernoulli steps to ensure coupling. Suppose, for 
example, f x [ 2 ]  = f x [ 3 ]  = f x [ 4 ]  = $. The Bernoulli part is b ( X )  = 2 / 3 .  A sum 
T, = E:=l XI, of independent Xk’s with the same distribution as this X clearly 
has a Bernoulli equal to Cz=,  XI,) = 2n/3. Theorem 6.51 therefore holds as does 
Proposition 6.47. 

On the other hand suppose f x [ 2 ]  = f x [ 4 ]  = i. There is no Bernoulli part. 
A sum T, = C:=, Xk of independent Xk’s  with the same distribution as this X 
clearly has no Bernoulli part: C:=, b ( X k )  = 0. For such a sequence Theorem 6.51 
clearly fails as does Proposition 6.47! 

When the random variables are not identically distributed we can have an in 
between case. Suppose the p.m.f of X k  is f I , [2]  = 

In this case b(X,k) = $ so Ek=l  XI,) < 00 and Theorem 6.51 fails! 

co 

n=l  

1 
- &, f k [ 3 ]  = and f1,[4] = 1 2’ 

Renewal Theory
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Finally if fx [3] = fx [5] 1 $ there is no Bernoulli part so Theorem 6.51 fails but 
the period is [I] so Propositioll 6.47 holds. This is not surprising since the Bernoulli 
part allows two copies of the renewal process to be coupled at the same generation 
and this is not always possible. 

Corollary 6.52 
00 

If {T,} is a renewal process such that  C b(X,) = 00 then  
n=l 

Proof: We use Theorem 6.51 to construct a renewal process {Fn} equal in distri- 
bution to {T,} and a delayed renewal process {T,} which is equal in distribution 
to {T, + [l]}. Hence 

c IP(T. = t )  - P(T, + [I] = t ) (  
7 ~ = 1  

00 =c 
5x 

n=l 
00 

n=l 

P(Fn = t )  - P(Tn = t)l 

00 

+ c lP(Fn = t ,  Tr > t )  - P(Tn = t ,  T, > t ) )  
n=l 

5 P(TT > t )  + P(T, > t ) .  

This follows since (6.5) is 0, because T, = ?, if Tr 5 t .  The sequence of sets 
{F, = t}T=l (respectively {FT = t}r=l) are disjoint so 

M M 
I- 

P(Pr > t )  = c(fn = t ,Tr > t )  and P(Fr > t )  = c(?, = t,TT > t ) .  
71, = 1 n=l 

The result now follows since 7 is finite. I 

Corollary 6.52 illustrates the power of the coupling method. With probability 
P(?, 5 t )  the two renewal processes {Fn}  and {f,} meet before t and stay together 
afterward. Since {F,} (respectively {T,}) is identical in distribution to {T,} (re- 
spectively {T, + [l]}) we see that after a long time t ,  we cannot distinguish the 
distribution of points of {T,} near t from those of {T, + [l]} near t .  

The presence of a Bernoulli part prevents {T,} from staying on some sublattice 
of the units. Suppose, however, 

1 
3 fx[ai = ~ 4 1  = f X v i  = -. 

Again b ( X )  = 0 but, in fact, Corollary 6.52 is true! This awkward situation neces- 
sitates the following definition. 
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Definition 6.53 
there exists a partition l o  = 0 < l ,  < & < . . . such that if 

We say the (delayed) renewal process (TrL} is spread-out if 

then Cr=I”=, b(W,) = 00 

Clearly if (X , }  is i.i.d. with density f ( 2 )  = f(4) = f ( 7 )  = 1/3 then t ,  = 2n 
provides a proper partition so {T, := C:=, X k }  is spread-out. 

Corollary 6.54 
pling Theorem 6.51 holds and 

If {T,) as a spread-out (delayed) renewal process then  the Co,u- 

Proof: First take d =l. Since {T,} is spread-out we may set 

and cr=l b ( W k )  = 00. Now redo the proof of Corollary 6.52 except that we couple 
{?en} (which has the same distribution as {Ten}) and ??en (which has the same 
distribution as {Ten + [l]}). Moreover once {f’ln} and {?en} are coupled at time 7 

it is clear we may couple {F ,  : n 2 T }  and {F, : n 2 T } .  The rest of the proof is 
the same. 

Next, 

d-1 

P(T, = t )  - P(T, + Id] = t )  = C [ P ( T ,  + k = t )  - P(T, + k + [l] = t ) ]  
k=O 

and for each k 

by the above. The result now follows by the triangle inequality. 

6.8 Proof of the Coupling Theorem 

We state a preliminary lemma before proving Theorem 6.51. 
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Lemma 6.55 
{J,, L,, N,}F=l such that T, has the same distribuhon as 

If {T,}F=l is a renewal process then f o r  71 2 1 we may  construct 

k=l 

where: 

{Ln}r=l is independent O~{(J~,N,)}:=~, 
L, ,is a Bernoulli random variable with parameter 1/2, 

n 

k = l  

Here { tk} rZ l  is a sequence of independent Bernoulli random variables such that 
EQ = b ( X k )  as in the Bernoulli Part Decomposition 6.50. 

Proof: Using Lemma 6.50 we can construct a sequence of independent triples 
{ Y , , F , , ~ ~ } ~ ? ~  such that X, is equal in distribution to Y, + tL,. Hence T, = x:=, XI, is equal in distribution to 

k = l  k = l  k = l  

Define N, := x:=l ~k and construct a new totally independent sequence {Ll;}E
having the same distribution as {zk}p=O=l. Now using the independence of { E k } g O = l  

and {(Irk, tk)}'& we check that c:=, Y k  + Cz=, c k i k  is equal in distribution to 
X;=O=l Y k  + Crzl LI, (see Exercise 6.3). Finally setting J ,  = x:=l Y k  we have the 
proof. I 

The following lemma shows the power of the Bernoulli part decomposition and 
is used later. 

Lemma 6.56 Consider a renewal process {T,} and let  0 = t?, < el < !, < . . . 
be a partition such that Wi = ~ ~ = e , _ , + l  X I ,  has Bernoulli part b(Wi). If M is any 
index such that M 2 !, then 

M 

2=-CC 

where N ,  = C;=, ~k and where { ~ k } r = ~  is a sequence of independent Bernoulli 
random variables such that E E ~  = b ( W k ) .  
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Proof: First let TAP = Ten + U where U := T&l - Tf,. As before, decompose 
Ttn = J ,  + Crzl LI,. NOW 

[ P ( C L k  = 2 - j  - u) - P(CL.k  = 5 - j  - u - [l])] 
k=l k = l  

The last inequality holds since the distribution of cr=l LI, is a binomial so for 

5 5 [ y ]  ( [.I- is the greatest integer function) we have 

while for z > [7] - 

The inequality follows by telescoping. Finally by Stirling's inequality (see Exercise 
6.4) 
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where c is a universal constant. Hence 

Taking C = 2c we have the result. I 

Proof of 6.51: Use Lemma 6.55 to construct {F, = J ,  + Ef21 L k } r ? l  which 
is equal in distribution to {Tn}F=l. Next using a totally independent sequence 
{L&}r=l equal in distribution to { L k } g 1  define 

TA := J ,  + C LL. + [l]. 
k = l  

Clearly {TA} is equal in distribution to  {T, + [l]}. Moreover 

N" 
Tn, - TA = C(Lk - L & )  - [I]. 

Now W, = c:=l(L~ - Lk) - [I] is a simple symmetric random walk on the 
units so by Example 5.67, Wn hits 0 at some finite random time r (r  = inf{n, > 
0 : W, = 0)). Moreover N,  = C',"=, ~k + 00 as n + 00 using the Borel-Cantelli 
lemma (see the Appendix) and the fact that EEI, = b ( X k )  and C;=, b ( X k )  + 00 
iw n + cx). Hence {Pn}  and {TA} are coupled at the same time r and, moreover, 
7 is a stopping time for the filtration { F t } ~ o  where Ft = o { X k ,  Xk : k 5 t } .  This 
follows since { r  = t }  = { T k  # TL for k 5 t - 1, Tt = Ti} and this event certainly 
lies in Ft. Now define a new point process T,: 

TA for n 5 r 
T, for n > r. T, = 
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Now we check {T,} is equal in distribution to  {TA}. First Tn = TA for n 5 7 .  Next 
for n > 7 ,  f, = T: + c:=,+, X k .  However, 

(since the interarrival times of {T,} equal those of {TA}). 
Hence {p , }  is equal in distribution to {TA} which in turn is equal in distribution 

I to  {T,L + 111) and T, = T, for n 2 7 by construction. 

6.9 Regenerative Processes 

Let 1 1 .  I ]  denote the total variation of a measure on {1, 2 , 3 , .  . .} x {[0], [l], [a ] ,  . . .} so 

n = l  s=o 

Theorem 6.57 Let {T,} be a delayed renewal process which is spread-out. W e  
recall that the nLh interarrival tame has distributaon F, and mean p,. If, f o r  all n 
and 2, 1 - F,[x] _< H[x] ,  where H is such that c,"=, H [ z ]  < 00, then 

tends to 0 as t ---f m. 

This means that for large t ,  the joint distribution of the cycle number and the age, 
(n, x), is close in total variation to the product measure of marginal distribution of 
the cycle number, P ( N [ t ]  = n - 1) = P (Tn-l 5 t < T,) and the stationary renewal 
measure associated with this cycle, (1 - F, [ 2 ] ) / p n .  
Proof: First, notice that 
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n=l s=O 

x=o n,=l 

Now for any x ,  

as t + 00 by Corollary 6.54. Moreover if we define the summand in (6.8) as 

00 

a ( x ,  t )  = H [ z ]  c IP(Tn-l = t - x )  - P(Tn-l = t)I 
n=l  

then In(x,t)l 5 2H[x] since 

00 00 

n= 1 n,=l 

because {T,} is strictly increasing. Equation (6.9) shows that for each 2,  

limt-OO a(2, t )  = 0. Finally, since cp=O 2H[x] < 00, we conclude that (6.8) tends 
to 0 as t + 00 by dominated convergence. It follows that expression (6.7) also tends 
to 0 as t i 00. 

Next summing (6.7) in x we get 

n=l 

Now, 

P(Z[ t ]  = J-,Tn_l 5 t < T,) - (1 - Fn,[x])P(Tn-l = t)I 

(6.10) 
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lim 
t+m 

Clearly the first term of this inequality tends to 0 as t + 00 by (6.7). The second 
term is bounded by 

P(renewa1 at t )  - 

I c HbI c IP(Tn-1 I t < Tn) - ILnP(T,-1 = t ) /  
x=o n=l 

since p, 2 [ l ]  and the above tends to 0 using (6.10). This proves tlie theorem. 

sup 

Corollary 6.58 úLet {Tn} be a delayed renewal process which is spread-out. Then

I 

Remark that the condition 1 - F,[2] 5 H [ 2 ]  would hold if for instance 
< 00 (see Exercise 6.2). 

n 

Let {T,} be a delayed renewal process which is spread-out. Then 

and 

where ZA are measurable subsets such that {V[t]  E A} E F and an = Cz",o{Vn [t] E 
A,t  < X,}; that is a, is the mean time V[t]  spends in A during the nth cycle. 

Proof: 

P(V[t] E A,Tn-l 5 t < Tn) = P(V"[Z[t]]  € A,Tn-l 5 t < T,) 
00 

= c P(Z[t]  = 2 ,  T,-1 5 t < T,)P(V [x] E A(& > z) 
x=o 

since tlie event 

It all the then

Proof: The first limit is obtained by taking the summation in n Theorem 6.57
Inside the absolute value sign. The secone limit is obtained from the first by taking

eorem 6.57

Theorem 6.59 IRV[t] is a regenerative process with embedded (delayed) renewal
process {Tn} which is spread-out then
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and Vn[z]  depends only on X,. Hence 

= 0  

by Theorem 6.57 and the fact that  P ( V [ x ]  t AIX, > x )  5 1. Finally, 
w '' ~ F7c'z1)P(T;,-1 5 t < T,)P(Vn[x] E AIX,  > x )  

a=O Pn 
" W  

This completes the proof. 

Corollary 6.60 Under the hypotheses of Theorem 6.59 

I 

Proof: Simply take the summation in n, in Theorem 6.59 inside the absolute value 
sign. I 

Example 6.61 
We may apply Corollary 6.60 to Example 6.6 by taking A = { I }  so a ,  = Elln, and 
pn = EU, + ER,. I've conclude 

Alternating renewal processes ~ (6.6) continued 

00 

lim IP(a machine is working at  t )  - %P(Tn-l 5 t < Tn)l = 0. 
,=I 

t-00 

This is a very pleasing answer since we should expect that given the process V[t]  
is on the nth cycle, the probability machine n is working should be a,/p, ~- the 
ratio of the mean working time to  the mean cycle length p, 3 EX,. This ratio is 
weighted by P(TnP1 5 t < Tn);  the probability that we are in the nth' cycle at time 
t .  
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6.10 Exercises 

Exercise 6.1 

Exercise 6.2 

such that xi=, H [ z ]  < 00. 

Exercise 6.3 

Complete the proof of Lemma 6.50. 

If supEXAf6 < co show that 1 - F,[z] 5 H [ z ]  for some function H 
n 

In Lemma 6.55 prove c;=, Y k  + xi=, t k i k  is equal in distribution 
to c:=, y k  + cfz, L k .  

Exercise 6.4 Consult Feller Volume I for Stirling’s formula: 

n! N ( 2 * ) 1 / 2 n w 2 e - - n ,  

Show (6.6) using Stirling’s formula. 

Exercise 6.5 
geneous renewal process N ( t )  are p and a’ respectively show that 

If the mean and variance of the interarrival distribution of a homo- 

where + N(O,1) denotes convergence in distribution to a standard normal. 

Exercise 6.6 If the mean and variance of the iiiterarrival distribution of a homo- 
geneous renewal process are p and o2 show that the limiting distribution of the age 
Z[ t ]  at t has mean (az + p2) /2p - [1]/2. 

Exercise 6.7 A cop on subway patrol starts and finishes his day at union station. 
His duty is to hop aboard the first train entering the station and to do a complete 
return trip to union station and then repeat the process again and again. Assume 
there are three different lines. Line A takes 20 minutes round trip, line B takes 15 
minutes and line C takes 30 minutes. The trains arrive according to a Bernoulli 
(Poisson) process. Those of line A arrive at a rate of 20 per hour; those of line B 
at 50 per hour and those of line C at 20 per hour. 
a)What is the long run proportion of the times the cop hops onto train B? 
b) What is the long run proportion of time spent waiting at union station? 

Exercise 6.8 
elevator moves from floor to floor according to the matrix P: 

Consider an elevator with three stops G (for ground), 1 and 2. The 

(;;; ;;; i!:) 
The time to  move from one floor to  another is proportional to the distance travelled 
and is 10 seconds per floor. 
a) Assuming the elevator spends 30 seconds at each stop find an expression for the 
long run proportion of time spent moving directly from the ground floor to the 
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second floor. 
b) Give the numerical value. Hint: define a function h(z )  : x E {G, 1, 2 }  where h ( r )  
is the mean time to return to G starting from x. Write down a system of equations 
for h using the Markov property. 

Exercise 6.9 Mail trucks leave the postal depot according to a renewal process 
with interarrival distribution F and mean p while letters arrive at the postal depot 
according to a Poisson process with rate A. What is the long run fraction of letters 
which arrive which wait in the depot for a time not exceeding !. 

Exercise 6.10 Containers arrive at a depot according to a Poisson process at a 
rate of 3 per hour day and night. When there are 10 containers at the depot a truck 
is called. The truck arrives after one hour and takes one hour to load and then 
leaves. The t,ruck takes the 10 containers plus any that arrive before departure. 
a) What is the long run average number of trucks called per day? 
b) If we rush to the depot with a container, what is the probability there is a truck 
waiting there now? 

Exercise 6.11 
random number months which we denote by T .  T has a distribution 

A taxi company knows by past experience that a taxi will run for a 

t < l  

t 2 21. 

A taxi that breaks down is worth nothing and a replacement costs $30,000. The 
company has a policy of replacing a taxi after p = 14 months of use (if it hasn’t 
broken down first). The used taxi may be sold for $D where D is a random variable 
with mean $IO,OOO. 
a) Calculate the long-run average cost cost of keeping one taxi in service using this 
replacement policy. 
b) Find a value p which minimizes the long-run average cost per taxi. 

The taxi company has just gone bankrupt. You wish to buy one of the taxis 
still in service but you don’t know how long any of these taxis have been used. 
c) Find the approximate distribution of the number of months use you will get out 
of the used taxi until it breaks down. 

Exercise 6.12 The police department keeps 100 cars in service at all times. Past 
studies across the country have shown that the number of months a police car can 
remain roadworthy has a geometric distribution with a mean of 2 years due to 
accidents and hard usage. In this department, a car still in service after 18 months 
is sold off and replaced by a new car. This maintenance policy has been followed for 
many years hut today the mayor has declared a financial emergency and declared 
no new cars will be bought for the foreseeable future. What is the probability more 
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3: hours 1 2 
f ( 3 : )  .1 .2  

than 30 of the cars now in service are over one year old and what is the mean age 
of the cars now in service? 

Exercise 6.13 An Ace airport shuttle bus which has a capacity of ten leaves 
whenever 10 customers are in the queue or 15 minutes after the previous shuttle 
bus left whichever comes first. The customer arrivals may be modelled by a Poisson 
process with a mean arrival rate of 30 per hour. 
a) What is the long run average number of shuttle buses dispatched per hour? 
b) What is the approximate probability that at a given time, say 2:13 P M  there 
will be nobody in the queue? 

Exercise 6.14 The time to wire a specialized circuit board cannot be predicted 
because several steps may have to be repeated when a component breaks during 
soldering. The empirical histogram of the wiring times is approximately given by 
the following probability mass function f(x): 

3 4 5 6 
.2 .3 .1 .1 

There is only one work position for wiring this kind of circuit board but pro- 
duction goes on 24 hours a day. As soon as one worker finishes a shift of 8 hours 
another worker takes his or her place. 
a) Calculate the expected amount of time to produce this circuit board. 
b) Calculate the long run average number of circuit boards produced per shift. 
c) When a worker ends a shift a circuit board may be left incomplete. The next 
worker just takes over at the point where the last worker left off (or takes over a new 
board if the last worker just completed his). Give the distribution of the number 
of hours of work already done on the board the next worker takes over. 
d) Give the mean amount of work already done on the boards the next worker takes 
over. 
e )  Give the distribution of the amount of work left to do on the boards the next 
worker takes over. 
f )  Give the mean amount of work left to be done on the board the next worker 
takes over. 
g) Why is the sum of part e) and part c )  not equal to the mean calculated in a). 

Exercise 6.15 One can simulate the regeneration intervals of an MlGll queue 
by starting the queue off empty and simulating until it empties out again. Given 
the length of the interarrival interval containing 0 is l ,  the age at 0 is uniformly 
distributed on [0, t ~ 11. Use this fact to simulate an MIGI1 queue in equilibrium. 
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Do this for G uniform. Estimate the equilibrium probability the queue is empty 
and compare this with the theoretical value. 

Exercise 6.16 Consider a process X [ t ]  which alternates between two states, on 
and off. The distribution of the on and off periods are F and G respectively and we 
consider these periods independent. Find the steady state distribution of the excess 
time in an on period; that is given the process is in steady state and given we are in 
an on period, calculate the distribution of the time until the next off period starts. 

Exercise 6.17 A DNS (Domain Name Server) translates web addresses into do- 
main names. Each request for a web page generates a request at the DNS server. 
We can assume there is always a queue of requests. Lookups take a variable amount 
of time. To simplify we can say 50% take one time unit, 25% take 2 time units and 
25% take three time units. Occasionally priority requests are received and these go 
immediately to the head of the queue but don’t preempt the lookup in progress. 
We are interested in the (potential) delay D ( t )  if a priority request did arrive at 
time unit t .  
a) Model the delay process D(t) as a Markov chain. Write down the state space 
and the transition kernel. 
b) Calculate the stationary distribution of D ( t ) .  
c) What is the long run proportion of priority requests which are processed imme- 
diately. 

Exercise 6.18 A processor receives work from two independent Poisson streams 
of jobs, one low priority and one high priority. The length of time to process any 
job is exponentially distributed with a mean of 1 minute. The high priority jobs 
arrive at a rate of 10 per hour while the low priority jobs arrive at  a rate of 20 per 
hour. High priority jobs always go first and even preempt low priority jobs (i.e. a 
low priority job is stopped if a high priority job arrives). Jobs wait in a queue until 
served (assume any number of jobs can be queued). We assume the system is in 
steady state. 
a) If we ignore the priority of the jobs how can we describe this queueing system? 
b) What is the mean number of jobs in the system at a given time. 
c) What proportion of the time is the server idle? 
d) What is the mean system time in this system. 
e) What is the mean number of high priority jobs in the system at a given time? 
f )  What proportion of the time is the server busy with high priority jobs? 
g) What is the mean system time for high priority jobs? 
h) What is the mean waiting time for high priority jobs? 
i) What is the mean number of low priority jobs in the system at a given time? 
j )  What proportion of the time is the server busy with low priority jobs? 
k) What is the mean system time of low priority jobs? 
1) What is the mean waiting time of low priority jobs? 
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Markov Processes 

7.1 Introduction 

A Markov process visits a state for a random sojourn time having an exponential 
distribution before jumping to the next state. These processes can be used to 
approximate Markov chains just as the Poisson process approximates the Bernoulli 
process. The advant,age of the approximation is that we can often give the transient 
behavior of the Markov process explicitly. Markov processes are commonly used for 
describing queues when customers arrive according to Poisson processes or when 
service t,ime distributions are exponential. Networks of such queues are widely used 
to model manufacturing and telecommunication systems and we will a t  least get an 
introduction to this interesting area of queueing networks. 

We let X ( t )  represent the state at time t measured in seconds in a countable 
state space S which we may take to be {0,1,2, .  . .}. We proceed as with the Poisson 
process; that is, we approximate a discrete time Markov chain by a continuous time 
Markov process. The notion of norms described below will be very useful when we 
try to  measure the accuracy of the approximation! 

We shall assume that time is measured in multiples of a time unit 
which may be taken to be nanoseconds. We keep the notation developed 
in Chapter 4 and use square brackets to indicate both rounding up to 
the next integer and that a measurement is in nanoseconds. Any time t 
measured in seconds is denoted by t^ = [qt] when measured in nanoseconds. 

Functions defined on S taking real values may be thought of as vectors having a 
countable number of components. The natural addition of functions, (u + v ) ( i )  := 
u(i)  + v ( i )  and the multiplication by real numbers, (au)( i )  = au(i) ,  makes the 
set of such functions a vector space. If v is a function defined on S we define 
/(v(I  := supics ( u ( i ) ( .  It is easy to check that IIv(I is a length or norm of 'u. It suffices 
to verify the following conditions satisfied by any norm. For any two vectors u,v 
and any real number a 
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and moreover llz,ll = 0 implies z, = 0. For instance 

The set B,  of functions on S, having finite norm forms a Banach space, a com- 
plete normed vector space. This is shown in the Appendix. Another normed vector 
space is formed by linear transformations T of B into itself. T transforms the vector 
u E B into the vector Tu, where Tu(i)  = C, Tiju(j) .  Since the space S is always 
countable, then T niay he represented as a matrix multiplying vectors u. The norm 
is defined by IITII := sup{llTvll : 1 1 ~ 1 1  5 l}. Note that 

if 1 1 ~ 1 1  5 1 and the equality C, T,,v(j) = C, lTt,l is attained by letting ~ ( j )  denote 
the sign of T73. Consequently 

in this norm. 
As an example note that if T is a Markov transition kernel on S ,  then IITII = 1. 

To show this take v = 1, the vector of 1's. Since T is a Markov transition kernel, 
T1 = 1 and since by definition 11111 = 1, it follows that /IT11 2 llTlil = )/1)1 = 1. It 
is also clear IlTll 5 1 so IlTll = 1. 

This space of transformations again forms a Banach space with the given norm 
but we won't show this here. Instead, we show that convergence of a sequence of 
transforniations T" to T in this norm, implies the components of the transforma- 
tions converge. Pick e3 to be the function which is 1 at state j and 0 elsewhere. It 
follows that 1)e,7)/ = 1. Hence 

If 
that is the ijth component of T" converges. 

IIT" ~ TI/ = 0, it follows that the i j t h  component of T" - T tends to  0; 
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7.2 The Generator of a Markov Process 

We start with the description of a Markov chain which may jump every nanosecond 
(or picosecond or ... ) but with very small probability. We consider transition 
kernels of the following general form: 

Definition 7.1 T ,  is the probability transition of a discrete-time Markov chain, 
with generator G on a countable state space S, if the transition in each time unit 
(1 /q  seconds) may be represented by a kernel T ,  of the form: 

1 1 T” = I +  -G+ -L, 
1? v2 

where I is the identity matrix, G is a matrix such that I1G1 I < 00 and L,  is a matrix 
which may depend on q such that llL,ll < 00 uniformly in q. 

Example 7.2 Contending processors 
A computer has two processors. Jobs arrive according to a Bernoulli process with 
a rate of 10 per second and grab one of the processors if one is free; if not the 
job is lost. The processing time of a job is random having a, geometric (discret,e 
exponcntial) distribution with a mean of one quarter of a second. Let the state of 
the system at time t be the number of busy processors. We calculate the transition 
kernel T ,  describing the transitions that, occur in one nanosecond. Suppose there 
are 0 jobs being processed. Since the time between arrivals is a geometric (discrete 
exponential) distribution having mean 1/10 of a second ([q/10] nanoseconds) it 
follows that, in the next nanosecond an arrival occurs with probability p = 10/q 
(or else there is no arrival). Hence T& = 1 - 10/q, T:l = 10/q and T& = 0. 
If one of the processors is occupied there are two things that might happen in 
one nanosecond. A job may arrive to grab the free processor with probability 
1 0 / ~  or the busy processor may finish its job with probability 4/77. If neither of 
these independent events occurs or if both occur we stay in state 1 hence T:l = 

(I - 10/~)(1 - 4/17) + 1 0 / ~  . 4/7 = 1 - 14/17 + 2(l0/17 . 4/17). There is an arrival 
without a departure with probability 10/q . (I - 4/q) and there is a departure 
without an arrival with probability 4/17 . (1 - 1O/q). Hence T:2 = lO/q . (I - 4/,rl) 
and T& = 4/17 . (1 - 10,’~). With both processors busy, we may in one nanosecond 
see 1 or 2 departures with probabilities 2.4/77 or ( 4 / ~ ) ~ .  If none of the processors 
gets free or if one gets free and a job arrives, we remain in state 2. Hence T22 = 

1 - 2.4 , ’~  - ( 4 / ~ ) ~  + 2.4/q.10/77 = 1 - 2.4/77 + 64/q2. If one processor gets free and 
there are no arrivals or if there are two departures and one arrival, we jump to state 
1. Thus T21 = (2.4/*r1)(1 - l O / , r ) )  + (4/~)~10/q = 2.4/17 - 80/v2 + 160/q3. Finally 
there are two departures and no arrival with probability T2, = (4/q)’(1 - 10/q) 
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( 4 / ~ ) ~  - 160/v3. We summarize by writing out the transition kernel T V  as a matrix. 

1 - l O / V  10/v 0 
1 - 14/17 + 80/v2 (1 - 1 0 / ~ ) 4 / 7  (1 - 4/77)10/v 

(4/v)' - 160/$ 2 . 4 / q  - 80/q2  + 160/q3 1 - 2 . 4 , ' ~  + 64/q2 

where 

0 0 0 

16 - 160,'~ -80 + 160/q 64 
L,= ( -40 80 

and the generator G is given by 

-10 10 0 
G = (  ; -;4:). 

Here we restrict ourselves to generators such that IIGll < 00. Since the vector 1 
is a right eigenvector for T T  having eigeiivalue 1 it follows from (7.2) that 

1 1 
-GI  + -L 1 = 0. v v2 17 

(7 .3)  

Multiplying (7 .3)  by 71 and letting tend to 00 it follows that G 1  = 0 since by 
hypothesis I I L, 1 I is uniformly bounded. We conclude the row sums of the generator 
G are 0. Further rearranging (7.2) and multiplying by 7 we get 

Since T T  -I has non-negative elements off the diagonal and non-positive elements on 
the diagonal, letting q tend to 00 we see G has the same property (the components 
of i L ,  tend to 0). 

Since only the diagonals of G are negative the ith component of Gv is maximized 
by the vector 

ith component 

among all vectors v having norm 1 (* denotes the transpose). In this case (Gu), = 

21 G,, 1 .  Hence 
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Definition 7.3 In general, a generator has non-negative off-diagonal elements 
and the row sums are 0. We denote the transition rate from state i to state j 
( i  # j )  by q ( i , j ) ;  that is q ( i , j )  = GtJ .  The total transition rate from state i is 
denoted by q ( i ) ;  that is q ( i )  = -G,? = C3ES,(,) q( i , j ) .  The proportion of the 
transition rate directed from i to j ( i  # j )  is K,, := q ( i , j ) / q ( i ) .  Set K,, = 0 and 
call K the transition kernel of the embedded chain. 

Since T V  = I + $G, we see that after one nanosecond the probability there is a 
transition from i to j is approximately q ( i ,  j )  $ and the probability of a jump from 
i is approximately q ( i ) i .  Given there is a jump from i ,  the probability the jump is 
to j is therefore approximately 

We now derive an approximation for the time evolution of discrete-time Markov 
chains by a continuous time Markov process which has transition kernel P( t )  := 
exp(tG). We start by showing the kernel TV[[rlt] = (Tq) [V t ]  which gives state prob- 
abilities of the chain after t seconds, or [7t] nanoseconds, is closely approximated 
by exp(tG). Obviously we have to give a meaning to exp(tG). Since G1 = G and 
Gk := G . Gkpl ,  we must simply show that the partial sums 

form a Cauchy sequence. We note that by the properties of the norm 

Since the series expansion for exp(t 1 /GI I )  is absolutely convergent, assuming 1 \GI 1 < 
00, we see immediately that the partial sums do form a Cauchy sequence. By 
completeness, the limit exists and we call it exp(tG). 

Example 7.4 
We may calculate the semi-group P ( t )  for the generator given in Example 7.2. 
We need only diagonalize the matrix G into the form G = UplDU where D is 
a diagonal matrix whose diagonal elements are the eigenvalues of G which are 0, 
-16 - 2 f i  and -16 + 2 a  (see Figure 7.1). It follows that Gk = U-'DkU 
where, of course, Dk is a diagonal matrix whose elements are the k f h  powers of the 

Contending processors - (7.2) continued 
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eigenvalues. Consequently exp(tG) = U-' exp(tD)U. However 

0 0 
0 

CEO $(-16 + 
0 0 

0 
+ am)) 

This whole operation can be quickly done using Mathematzca as in Figure 7.2. 

generator=C(-lO, 10, OI,C4, -14, l o ) ,  ( 0 ,  8, -81); 
(rvals,rvecs1=Eigensystem~generatorl ; 
rvals (*Display eigenvalues* 

(0, -16 - 2Sqrt[ll], -16 + 2Sqrt[ll]} 

MatrixForm[rvecsl (*Display eigenvectors *) 

Fig. 7.1 Calculate the eigensystem for G 

u=Transpose [rvecsl ; 
uinverse=Inverse [ul ; 
eigendiag=DiagonalMatrix [Table [Exp [t Part [rvals, i] 1 , (i ,1,3>]1 ; 
semi=MatrixForm[N[u.eigendiag.uinverse,2]] 

0.42 0.051 

0.3 

0.33 0.G9 0.49 0.11 0.15 + && + 0.38 - 2.723t + 0.47 + p - 
0.15 0.19 0.044 0.62 0.007 2,723t + 2.79.4t 0.38 + 2.723t + 2.79.4t 0.47 - - 

0.26 0.34 
0.15 + 2,723t 0.47 + &% + - ~ r __ 

2.72% 2.79.4t 0.38 - __ - 

Fig. 7.2 Calculate the semi-group P ( t )  
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The following theorem shows how the chain with kernel T V ,  having generator G 
which evolves for t seconds or [qt] transitions, may be approximated by e x p ( t G ) .  

Theorem 7.5 
with generator G,  then 

If Tq is the probability transition of a discrete t ime Markov chain 

where 

The proof of the theorem is left to Sect,ion 7.6. We will first investigate exp(tG). 

Let G be a generator of a discrete-time Markov chain ( / )G / )  < m) Theorem 7.6 
and let P ( t )  = exp(tG). 

a P( t ) , t  2 0 ,  is a continuous semi-group of probability transition kernels on  
S ;  that is 

(1) P ( 0 )  = I 

(3) limb-o l)P(h) - I / )  = 0 
(2) Chapman-Kolmogorov equation: Pi3 ( t  + s) = Cp=o P i k ( t ) P k j ( ~ )  

b If 7r is  a stationary probability measure for T V  then .irG = 0 which is equiv- 
alent to 

% €  s\ { j  1 

Moreover .irP(t) = 7r for all t so 7r is  the stationary distribution for  the 
semi-group P ( t ) .  

c The semi-group P ( t ) , t  2 0 ,  satisfies Kolmogorov's backward equations: 

which is equivalent to 

Pz,(t) = Cq(i,k&(t) - q( i )Pz j ( t ) .  
k f z  

d The semi-group P ( t ) ,  t 2 0 ,  satisfies Kolmogorov's forward equations: 
P(t)  = P(t)G which is equivalent to 

Pij(t) := X d k , d P i k ( t )  - q ( . w i j ( o  
k# j  



236 Elements of Appl ied Probability 

Proof: It follows from Theorem 7.5 that the components of T77[$] converge to 
those of P( t ) .  Hence P( t )  is a probability transition kernel since Tv[[rlt] is. Part 
a.1 follows since Go = I .  The semi-group property, a.2, results from purely formal 
power series calculations. The details are given in the Appendix where the fact that 
G has a finite norm is used. Part a.3 follows since 

and this tends to 0 as h + 0. By the representation (7.2) it follows that if 7r is a 
stationary probability measure for T V  then 

Hence, cancelling 7r from both sides and multiplying by q we get 

1 
[rl 

TG + -TL, = 0. 

Since 7 is arbitrarily small and llL,ll is bounded as [rl + 00 it follows that rG = 0. 
Next 

tk  
= C I;i7rGk 

k=O 

O0 tk 
= 7r + Z % O  = n. 

k = l  

Formal differentiation, by t ,  of the power series 

O0 t k  
exp(tG) = g G k  

k=O 

yields 

Gk 
( k  - l)! 

k = l  

so factoring out G on the left gives P ( t )  = GP(t )  and on the right gives P( t )  = 
P(t)G.  The differentiation through the summation sign follows using the dominated 

I 

Lemma 7.7 Let X = CiEsr(i)q(i) < 00 be the mean event rate and define 
rK(i)  = 7r ( i )q ( i ) /X .  Then nK is  the stationary distribution of the embedded chain 
having transition kernel K .  

convergence theorem and the fact that IlGll < 00. 
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Proof: Since TG = 0 we have Cies T ( i ) q ( i , j )  = n( j )q( j ) .  So substituting q ( i , j )  = 

q(i)Kij we get 

c T ( i ) d i ) & j  = T ( j ) d j )  
i E S  

Dividing by X gives the result. 

Example 7.8 
The stationary probability measure satisfying 

Contending processors - (7.4) continued 

i7G = ( ~ ( 0 ) , ~ ( 1 ) , ~ ( 2 ) )  

and ~ ( 0 )  + ~ ( 1 )  + ~ ( 2 )  = 1 is (8/53,20/53,25/53). 

I 

We now investigate the behavior of P( t )  when t tends to 00. 

Definition 7.9 
there exists a smallest n, and a sequence of states 

We say the generator G is irreducible if for all states i and j ,  

{ i  = i o ,  i l l  i 2 , .  . . , 2, = j )  

such that 

Proposition 7.10 
for all t > 0 .  

Proof. Consider any two states i # j in S. The irreducibility of G means there 
must exist a smallest n arid a sequence of states { i  = i o ,  il, 2 2 ,  . . . , i, = j }  such that 

If G is irreducible t h e n  t h e  e l emen t s  of P ( t )  are strictly posit ive 

7 1 ? 1 G L  0. G. . G. . . .  .Gi 

Since n is assumed to be as small as possible it follows that the states {i = 

i o ,  i l ,  22, . . . , in = j }  are disjoint. Now 

Z O Z l  7,122 

since n is the smallest integer such that G; > 0. Hence for t small enough, the 
dominantj term is (G")i jt"/n! which is positive. Hence Pij ( t )  > 0 for t small enough. 
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Next Pii(t) + 1 as t + 0, so Pii(t) > 0 for t sufficiently small. Hence for any t ,  by 
the Chapman-Kolmogorov equation, 

PZj(t) = (P(t/rn))Z 2 PiZ(t/rn)P,i(t/rn) ’ .  . Pii(t/rn)P,j(t/rn) > 0 

for m large enough. This gives the result. 

Theorem 7.11 
so  T P ( ~ )  = 7 r .  Then 

I 

Suppose a generatorG, with IlGll < 00, is irreducible and TG = 0 

that is, no  matter what the initial state, the distribution at time t tends to  the 
stationary distribution in total variation norm. 

Proof: If G is irreducible then the Markov chain with kernel P(1) is irreducible 
by the preceding proposition. Moreover, by Theorem 7.6 TP(  1) = T .  Therefore, by 
Theorem 5.26 

+ 0. 

Hence if t goes to infinity along the natural numbers (t = n), the theorem holds. 
Now we must show the limit holds as t + 03 arbitrarily. For any arbitrary time 
t ,  we simply take n to be the smallest integer in t (n  5 t < n + 1) so Pij(t) = 

Pik(n)Pkj(t - n). Hence, 

k E S  j € S  

= C l ~ , k ( n )  - r ( k ) /  + 0 as n + m. 
k E S  

This gives the result. I 

Example 7.12 Contending processors - (7.8) continued 
We see from the Mathernatica calculation in Figure 7.2 that as t + 03 the rows of 
the matrix P( t )  each tend to 7r = (8/53,20/53,25/53). Therefore, no matter what 
the initial state, the probability the processors are both busy tends to 25/53. This 
convergence is also very fast since the eigenvalues of G other than 0 are so negative. 
The exponential transients die out very fast in the matrix for P( t )  given in Figure 
7.2. 
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We shall construct a continuous time Markov process M ( t )  having transition 
kernel exp(tG). First recall from (7.4) that q = maxi q ( i )  = maxi[-Gii] and define 
the transition kernel 

Note that ql? = ( 4 1  + G), so 

~ l ?  = (l /q)~(qR) = ( l / y ) ~ ( q l +  G) = T + ( l / q ) ~ G  = T .  

Hence, T is the stationary distribution for K. 
Next construct a Poisson process N ( t )  with rate q. Then construct an indepen- 

dent Markov chain J with kernel K. Define M ( t )  = J ( N ( t ) ) .  In other words at 
each arrival or jump of the Poisson process, perform a transition according to the 
kernel I?. This is, in fact, a practical means of simulating a Markov process M ( t )  
on a computer. 

Theorem 7.13 
chain K and transition kernel 

The uniformized Markow Process M ( t )  = J ( N ( t ) )  has imbedded 

Proof: We first check that this process evolves as it should: 

P ( M ( t )  = jlM[O] = 2 )  

00 

= 1 P ( J [ k ]  = j ,  N ( t )  = kIJ[O] = 2) 

k=O 
00 

= P(.I[k]  = j l J [ O ]  = i ) P ( N ( t )  = k )  by construction 
k=O 

k=O 

= exp(tq(l? - ~ ) ) i j  

= exp(tG)ij. 

Here we used the fact that  I commutes with the matrix I? so 

exp(tql? + ( - tq) I )  = exp(tqK) exp(-tqI) = exp(-tq) exp(tqK) 

That the process is Markovian follows fairly easily. Let the past of M at s be 
denoted by .Fs, so a typical event in A, E Fs might be defined by 

{ N ( s )  = n , T ,  = t,, .I, = in, .  . . ,TI = t l ,  51 = i ~ ,  JO = i o } ,  
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where {TI, Tz, . . . , T,} are the arrival times of the Poisson process. Therefore, for 
t > s, 

P ( M ( t )  = jlA,) = C P ( M ( t )  = j ,  N ( t )  - N ( s )  = klA,) 
k=O 
03 

= C P ( J ( n  + k )  = j ,  N ( t )  - N ( s )  = klA,) 
k=O 
00 

k=O 

= exp((t - s)G)i,j from the above 

= P ( M ( t  ~ s) = j l M ( 0 )  = in). 

Similarly, P ( M ( t )  = j l M ( s )  = i n )  = P ( M ( t  - s )  = j l M ( 0 )  = in) so we have 
P ( M ( t )  = j lAs)  = P ( M ( t )  = j l M ( s )  = in); that is we have the Markov property. 
In conclusion then, we have shown there does indeed exist a continuous time Markov 

I 

The path properties of the process M ( t )  are exactly what one expects considering 
M ( t )  approximates the Markov chain X [ t ] .  X [ t ]  holds a geometric amount of time 
in any state i with mean l / q ( i )  and then jumps to state j with probability K t j .  
We show below that M ( t )  has a sojourn in state i of exponential distribution with 
mean l / q ( i )  before jumping to state j with probability K t j .  The jump times of 
M ( t )  are defined iteratively by 

process M ( t )  with transition kernel exp(Gt). 

T, := inf{t > Tn-l : M ( t )  # M(T,-l)} 

and the nth holding time is defined as W, = T,+1 ~ T,. In fact, we know from the 
construction of M ( t )  that a sojourn in any state i is given by the interarrival time of 
the Poisson process N ( t ) ,  except that fictitious jumps of i to itself are ignored. The 
number of fictitious jumps is geometric with mean q / q ( i )  by the Markov property 
of the chain J .  Since the Poisson process has independent increments it follows 
that given any past of M ( t )  up to time T, such that M ( T , )  = i, we have Wn = 

El + E2 + . . . + Ec, where the E’s are interarrival times of the Poisson process 
N ( t ) ,  that is, independent exponential random variables with mean l / q  and C is 
the number of jumps required until the chain jumps away from i ,  that is a geometric 
random variable with mean q / q ( i ) .  The moment generating function of W, can be 
calculated by conditioning on F :  for It1 < q ( i )  

Hence W, is exponential with mean l / q ( i )  as expected and W, only depends on 
the current state occupied through its mean. 
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The above description comes in handy for identifying the generator as is seen in 
Example 7.15. We may also describe the transient behavior of a chain rather easily. 
Let F denote a set of forbidden states and let m(i) denote the mean time uiitil the 
process reaches F starting from state i .  Clearly m(i) = 0 if i E F .  Moreover the 
time to reach F may be represented by X i  + R ( J )  where X i  represents the sojourn 
in state i ,  J represents the state entered after the sojourn in i and R ( J )  represents 
the remaining time required to reach F after jumping to J .  By the above path 
description 

m(i)  = E X ,  + C P ( J  = j ) E ( R ( j ) l J  = j )  = l / q ( i )  + C K,jm(j)  
j € S  j € S  

= l / q ( i )  + Km(i ) ,  

where we have used the fact that the remaining time to reach F given we have just 
entered state j is independent of the past. We may rearrange this system as 

1 
( I  - K)m(i )  = - for i E E" and m(i) = 0 for i E F. (7.6) 

q ( 2 )  

If we multiply through by -q( i )  and rearrange the equation for m, we have another 
useful form 

Gm(i) = -1 for i E F" and m(i) = 0 for z E I? (7.7) 

The uniqueness of the solution to the above systems follows by contradiction. If 
there is another solution, ml, to system (7.6) then the function defined by u ( i )  = 

m(i) - ml(i) satisfies 

Gv(i) = 0 for i E F" and u ( i )  = 0 for i E F. 

This system satisfies a maximum principle like the one at (5.10). Since the maximum 
is attained at the boundary F ;  u 5 0. Applying the same reasoning to -v gives 
'u 2 0. Hence u = 0 so the solution is unique. 

Example 7.14 Contending processors - (7.12) continued 
We might be interested in the mean time until both processors are free given both 
are occupied at the present time. The mean time until both processors are free 
starting in the three states: empty, one busy and both busy will be denoted by 
(m(O),m(l),m(2)). Naturally m(0) = 0 and we must solve the linear system: 

The solution is (m(O),m(l),m(2)) = (0, 9 3,s) 11 
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0 1 i-1 I i+l 

Fig. 7 .3  A Birth and Death process 

For a general generator G the norm is not necessarily finite. A natural example 
is the MIMloo queue! Nevertheless, the semi-group of probability transition kernels 
exp(tG) may still be defined but the power series calculations needed to establish (c) 
and (d) in Theorem 7.6 require extra conditions. In fact the solutions to the forward 
and backward equations are not necessarily unique and so do not necessarily define 
exp(tG). The detailed study of such generators has led to a deeper understanding 
of Markov processes. 

7.3 Queues and Time Reversal 

Many problems in queueing can be reduced to the study of a continuous time Markov 
chain on S = {0,1 ,2 , .  . .}, with jumps to the nearest neighbour only. This gives a 
generator of the form 

-A0 A0 0 0 
G = [  . -(A1 +p1) A 1  0 . . .  : o . . .  0:). 

. pi -(Xi +pi) X i  0 ' 0 
. .  

Hence Ki,i+1 = p i / (&  +p i )  and l<i,z+l = &/(&+p i ) .  This means that the process 
sojourns in state i for an exponential amount of time with mean l/(Xi + p i )  and 
then jumps either left or right to i - 1 or i + 1 with probabilities Ki,i+l or Ki,i+1. 

From state 0 we can only jump to the right so we assume po = 0, therefore KO1 = 1. 
These processes are named birth and death processes for the obvious reason that 
jumps from i to i - 1 represent a death and jumps from i to i + 1 represent a birth. 

Our standing assumption IlGll < co just means sup{& + p i }  < co. The kernel 
exp(tG) is hard to calculate but the stationary measure 7r can easily be found. Let 
u be a function on S satisfying vG = 0 so 
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Taking vo = 1 we see by induction that 

Now if ~ ~ o w i  < 00, then the stationary distribution x is given by ~ ( i )  = 

.z/ c,"=, 7Jj < 00. 

Example 7.15 The MIMIl-queue 
Consider a Poisson arrival stream of customers arriving at a single server at a rate 
of X customers per minute. Suppose customers are served in turn with independent 
service times which are exponentially distributed with mean l/p. Let M ( t )  denote 
the number of customers in the queue at time t ,  including the customer being 
served. If a customer has just joined the queue and there are now i customers, then 
the duration of the sojourn in state i is the minimum between the time until the 
next service completion or the next arrival. Since these times are independent and 
exponentially distributed with means l/p and 1/X, it follows that the sojourn time 
in state i is also exponential with mean l / ( X  + p ) .  Moreover, the probability the 
process jumps next to state a + 1 is simply the probability the next arrival comes 
before the service completion and this is A/(A+fi).  It follows that M is a continuous 
time Markov process with state space S = {0,1,2,. . .}, whose generator is that of 
a birth and death process with constant birth and death rates. 

From the above, the stationary distribution is given by 

X 
P, 

~ ( i )  = (1 - p)pz where p = -. 

p = X/p is called the load on the system and it is clear p must be less than 1 
or else no stationary distribution exists because c~(i)  would be infinite. This is 
no surprise because customers are arriving at  a rate of X per second and, on av- 
erage, each customer generates l/p seconds of work at the server. Hence work is 
arriving at the server at rate of p = A / p  seconds of work per second. The server 
does at most one second of work per second so if the load is greater than 1 then 
customers are arriving faster than they can be served and the queue must explode. 

For a general birth and death process we may consider a forbidden set of states 
F := {!,t+ 1,. . .}. The mean time m(i) to reach the forbidden set from i < I? is 
the same as the mean time to hit t. The function rn satisfies (7.7) which means 
m(i) = 0 for i 2 C and 

m(i) = l / q ( 2 )  + ~ m(2 - 1) + ___ rn(i + 1)) ( X i  pi + Pi X i  +pi 
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for 0 < i < .!?. If we define 

i - l  M ( j )  
j = O  j = O  X j 4 d  ' 

2 

M ( i )  := c7r(j) and v( i )  := ~ 

where v(0) is equal to 0, then we see m(i) = v(!) ~ ~ ( i )  by substitution in (7.8). 

Example 7.16 
Since 7 r ( j )  = (1 - p)p j  it follows by summing thc gcomctric scqucncc that M ( i )  = 

1 - pi+'. Next for j > 0 

The MIMIl-queue - (7.15) continued 

It follows, for instance, that the mean time for the MIMIl-queue to reach level !, 
starting from an empty queue, is 

Similarly, the mean time to overload the MIM/l-queue from any initial queue can 
be calculated from the formula m(i) = @) - ~ ( i ) .  

Consider a stationary continuous time Markov process { M ( t ) ;  0 2 t 5 T }  on 
a countable state space S having stationary probability measure 7r and transition 
rates q ( i , j )  for i , j  E S. If we fix any time T ,  we may consider the time reversal 
of the original process, { M * ( t )  = M ( T  - t ) ;  0 5 t 5 T } ,  still defined on the same 
probability space. For stationary Markov processes the situation is the same as 
for Markov chains: the time reversal is again a Markov process. To show this, 
recall that P ( t )  denotes the semi-group of the forward process with generator G. 
Construct a new semi-group with generator GZj = ~ ( j ) G j i / ~ ( i ) .  That this is indeed 
a generator follows since the matrix G* is negative only for diagonal elements and 

since 7r is the stationary distribution so 7rG = 0. By matrix multiplication it follows 
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that 

Moreover the semi-group associated with G* is 

using the above expression for (G*)k.  The following theorem shows that P* is the 
semi-group of the transitions of the process M *  and consequently, M* really is a 
Markov process. 

Theorem 7.17 The time reversed process { M * ( t )  := M ( T  - t ) ;  0 5 C 5 T }  
i s  a stationary Markov process with stationary distribution T ,  serni-grosup PG ( t )  = 

r ( j )Pj%(t ) / r ( i )  and transition rates 

or, what i s  equivalent, generator Glj = ~ ( j ) G j i / n ( i ) .  

Proof: It suffices to show that the joint distribution of the time reversed process 
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viewed at times 0 5 tl < t 2  < . . . < t ,  5 T is that of a Markov process. 

It follows that the process M *  does evolve like a Markov process with transition 
kernel P*, at least between a fixed finite set of observation times 0 5 tl < t z  < 
. . .  < t ,  5 T .  Hence M *  is Markov at least down to the nanoseconds. The result 
also holds in continuous time, but it requires a little measure theory to show the 
probability induced by M *  on the set of continuous time trajectories in the state 
space S, is determined by the probability of sets of trajectories determined at a 

I fixed finite number of time points like 0 5 tl < t z  < . . .  < t ,  5 T .  
We next state an innocuous little lemma which is the key to this section. 

Lemma 7.18 (Kelly's Lemma) Let { M ( t ) ;  0 5 t 5 T }  be a stationary Markov 
process with transition rates q ( i , j )  for i , j  E S .  Suppose we can invent a non- 
negative matrix { q * ( i , j ) ;  i,j e S }  and a non-negative vector { ~ ( j )  : j E S }  whose 
components sum to  1 such that 

and such that 

x ( i ) q ( i , j )  = T ( j ) q * ( j , i )  for  i , j  E S , j  # i .  (7.10) 

Then { q * ( i , j ) ; i , j  E S , j  # i }  are the transition rates of the time reversed process 
{n/!(T - t ) ;  0 5 t 5 T }  and, more importantly, { 7 r ( j )  : j E S }  i s  the equilibrium 
distribution for both processes. 
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Proof: By equation (7.10) we have 

c 7r( i )q( i , j )  
i€S\Ij} 

Therefore by part (b) of Theorem 7.6, T is the stationary measure for M(t). Re-
peating the argument shows CjGs,(i) 7 r ( j ) q * ( j ,  i) = 7r ( i )q* ( i )  so 7r is also the sta- 
tionary measure for the Markov process with transition rates q* ( j ,  i). By The- 
orem 7.17 we see q * ( i , j )  gives the transition rates for the time reversed process 

I 
The transition rates of the time reversal of a stationary birth and death process 

are given by q * ( i , i  + 1) = ~ ( i  + l ) p i + l / 7 r ( i )  = X i  and for i > 0, q*( i , i  - 1) = 
7r(i - l ) X i - I / ~ ( i )  = pi. In other words the process evolves according to the same 
stochastic mechanism when regarded backward in time! We call such processes 
reversible. 

Example 7.19 
The implication of the reversibility of the MIMIl-queue is quite striking. Fix a 
time T .  Relative to time T ,  the past departures from the forward queue are future 
arrivals of the time reversed process since when the forward process decreases by 
one, the time reversed process increases by one. However the future arrival times 
of the time reversed process are those of a Poisson process with rate X and are 
independent to the current number of customers in the queue at time T since the 
time reversed process is an MIMIl-queue. We conclude, the past departure times of 
the forward process are those of a Poisson process with rate X and are independent 
of the current number of customers in the queue. 

We must quickly point out, however, that the current number of customers in 
the queue does influence the future departure process. If in fact there are no cus- 
tomers in the queue none is likely to depart! First one must wait for an arrival and 
then a service. The mean time until this occurs is 1 / X  + l / p  while the mean time 
for a Poisson arrival to occur is 1 /X .  Nevertheless, on average, the input and out- 
put of an MIMIl-queue is a Poisson process of the same rate. This has important 
consequences when we make a network of such queues. 

{ M ( T  - t ) ;  0 5 t 5 T } .  

The MIMIl-queue - (7.16) continued 

Example 7.20 hf(Ml1 multiclass queues 
Imagine a machine tool in a factory which performs a particular operation like 
soldering a chip to a circuit board. Imagine that a finite number of different classes, 
C ,  of boards arrive at  the machine according to  independent Poisson processes with 
rates A" where c E C. The boards are serviced on a first in first out basis (FIFO). 
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We assume we can speed up service depending on the number of boards in the 
queue, so when n are present, the service time is exponential with mean l/p,. Let 

If there are n boards in the queue at any time t ,  we describe the state of the 
x = CCEC A". 

system by the vector 

where z1 is the class of the first board in the queue (actually being served), IC;! is 
the class of the second board in the queue and so on. The arrival of a new board 
of class c causes a transition to a new state AcZ  = ( z 1 , 2 2 , .  . . , x,, c )  with a rate 

q(2, A Y )  = A" 

The completion of a board causes a transition to the state DZ = ( 2 2 , .  . . ,z,) with 
a rate 

Define 

X " k  

n (2 )  = f n - 
pk k=l 

where we assume 
M n. 

n=O k= l  

The factor f makes 7r a probability as is seen below. 

possible queues containing n boards, we get 
Let's calculate the probability the queue contains n boards. Summing over all 

The probability there are no boards in the queue is f .  Now summing n from 0 to 
03 we must get 1 and the definition of f makes this work out: 

f f& = 1 by definition. 
n=O k=l 

Hence ?r is a probability and we show below that 7r is the steady state for this 
MIMI1 multiclass queue. 

Before doing so, however, we remark that, given the number of boards in the 
queue, the positions of the queue are independent. For example, given there are 2 
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boards in the queue, the probability the first position has a class c board and the 
second has a class d board is 

This is clearly a product measure so the classes of the two boards are independent. 
The trick to proving T is the steady state is to guess the transition rates of 

the time reversed process. Intuitively this process should have departures from 
the end of the queue and arrivals should come at the front of the queue. Suppose 
Ic' = ( 2 1 ,  2 2 , .  . . , z,) and XI = d. By time reversal, the transition rates of the time 
reversed process should be 

and 

Hence, departures occur at rate p, if there are n boards in the queue and arrivals 
of class d occur at rate Ad,  just like for the forward time process. Next, 

y*(Z) = p, + c Ad = pn + A  = q(?) 
d t C  

as long as the queue is nonempty. y*(?) = xcEC A" = X = q(?) if it is empty. The 
conditions 

7r(AC2)y* (A"?, 2) = 7r(Z)q(?, A"?) and 7r(D?)q* ( D Z ,  2) = 7r(Z)q(Z,  DZ) 

are automatic from the definition. 
We have therefore verified the conditions of Kelly's Lemma and we conclude we 

have correctly guessed the transition rates of the time reversed process and that 
T is the stationary distribution. In fact we have shown more since the transition 
rates of the time reversal are the same as the forward process. We might even think 
the process is reversible! This is not quite true because the time reversed process 
receives new boards at the beginning of the queue and serves them from the end. 
Modulo this mirror reflection of the queue, the two queues evolve according to the 
same rates. We say this queue is dynamically reversible. As in the MIMI1 example, 
we may therefore conclude that, when this Markov process is in equilibrium, the 
departure processes of the various classes are independent Poisson processes and 
their past up to  any time t is independent of the state at time t .  Stationary queues 
having classes with independent Poisson arrivals whose departure processes are also 
independent Poisson processes having a past independent of the current state are 
called quasi-reversible queues. 
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If the service rate is a constant p, then f = 1 - p where p := A/p. Hence 
the queue is stable only if p < 1. This means the load or average amount of work 
arriving per unit time is less than the service rate, so the queue should not overload. 
Moreover, if Ic' = ( z l , ~ ,  . . . , z,), then 

" X X k  

x .(2) = (1 - p)p" rI -. 
k=l  

(7.11) 

Summing over the various classes of customers we see the probability of having n 
customers in the queue is (1 - p)p". 

It would have been nice if the service rate could depend on the class of the 
customer being served! Denote the departure of a class c customer by D" then if 
z = (xl ,  2 2 , .  . . ,x,) and x1 = c then q(Z,  D'Z) = &. We can, of course write down 
the equilibrium equations: 

+ 

n(Z)[X + &] = x ~ ( A ~ Z ) p f i + ~  + n(D"Z)X". 

However, it is clear that if a class c customer has a very slow service rate, it will 
leave behind a relatively long queue. Hence the present state of the queue will not 
be independent of past departures! 

d 

7.4 Jackson Networks 

A Jackson network consists of m nodes each having a server and a first-in, first- 
out queue of customers. Customers arrive from outside the network according to 
independent Poisson processes and the arrival rate at node i is 1,. The service 
times at node a are exponential with a rate pt. When a service is completed at node 
i the customer moves with a fixed probability ry to node J E (1,. . . , m}, or else 
leaves the system with probability r, = 1 - C, r,,. We say the network is open if 
a customer at any node k can leave the network possibly via transitions to other 
nodes. By the memoryless property of the exponential distribution, the state space 
of the Jackson network can be simply a vector (XI, ~ 2 , .  . . , xm), where 2, denotes 
the number of customers waiting or being served at node i. 

There are many extensions of this model. The service rate might depend on the 
number of customers in the queue or in all the queues. Customers may be classi- 
fied as requiring a specified sequence of service delivered by a prescribed sequence 
of nodes in the network. A more intractable model might require the transition 
probabilities r,, to depend on the current state of the network; i.e. don't send cus- 
tomers to node j if j is too busy. We shall restrict ourselves to the above simple 
open Jackson network and shall shortly see it's not so simple! 

We first find the stationary distribution of a Jackson network and the solution is 
very elegant. If one defines the rate at which customers arrive at  node j on average 
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M 

I 

I 

Fig. 7.4 An open Jackson network 

to be A,, it follows intuitively that this rate should satisfy the flow equation 

(7.12) 
i 

since the proportion of the flow X i  into node i which flows next to node j is rij. 

Now viewing the node j in isolation and bearing in mind the previous results that 
the output of the MjMjl-queue at node i is a Poisson process with rate Xi ,  it is 
reasonable to  assume the input to node j is the sum of incoming Poisson processes 
and hence the input is Poisson with rate X j  because of (7.12). Consequently, viewed 
in isolation node j should be an MIMIl-queue and this we know has stationary 
distribution nj(le) = ( l - p j ) ~ ? .  The nicest possible result then is true; the stationary 
distribution 7r, of the whole Jackson network has a product form 

~ ( ~ 1 , ~ 2 , ' . ' , ~ 7 n , )  = 7r1(3a)7rz(x2) ~ " ~ i T , ( & n ) .  

This means that at a fixed tinie the number of customers at any node is independent 
of the numbers at other nodes and the distribution is that of a stationary A 4 ~ M ~ l -  
queue. 

This remarkable result follows by using KelIy's Lemma. We shall in fact show the 
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time reversed process of the Jackson network is another Jackson network with the 
same service rates and the same stationary distribution. Let the operator A.i applied 
to a state 2 = ( x l , ~ , .  . . ,xi,. . . ,x,) denote the transition from the state d to the 
state A.i(d) given by (zl, 2 2 , .  . . ,xi + 1,. . . ,x,); that is an arrival has occurred at 
node i .  Similarly let the operator Di. applied to a state Z denote the transition 
to the state Di.(.') = (x1,22,. . . , z i  - 1,. . . , x,); that is a departure has occurred 
at node i and the customer leaves the system. F'inally, let Tij applied to a state 2 
dcnote the transition to  the state T Z J ( Z )  = ( 5 1 ,  ~ 2 , .  . . ,xi - 1,. . . , x 3  + 1,. . . , zm) ;  
that is a departure has occurred at node i and the customer has entered the queue 
at node j .  

Let p i ( z i )  = pi if xi > 0 and 0 otherwise. Hence the transition rates are 

If the time reversed process is indeed a Jackson network with the same service 
rates and 7r is indeed the stationary distribution, then the arrival rate to node i 
from the outside of the network for the time reversed process should be 

Similarly, the departure rate from node i to outside the network for the time 
reversed process should be (when x i  > 0) 

Pi  - 
= -A2 .  

X i  

Since the service rates of the time reversed Jackson network are the same we con- 
clude r: must equal Xi /X i .  

Finally, the transition rate from node i to node j (when 5,  > 0) for the time 
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reversed process should be 

Again since we are supposing the service rates of the time reversed Jackson network 
are the same, we conclude r; must be equal to X j r j i l X i .  This is consistent since 
by summation, 

?-; = 1 - c = 1 - c X J T J Z / X Z  = 1 - (A, - XZ)/XZ = 1 7 / X 7 .  
3 3 

To iisc Kelly’s Lemma, we need only show (7.9) and (7.10). The second is true 
by construction. Since q(2) = c, (1% + ,u2 . y{zz # 0 ) )  and 

q*(Z)  = c (1; +p i  ‘ x(z2 # 0)) 

(7.9) follows from the flow equation 

i j i 

We conclude the time reversed Jackson network is another Jackson network with 
the same stationary distribution 7r .  It follows, moreover, that the solution of the 
flow equations for the time reversed process gives flows = Xi,  in order that the 
stationary distributions be the same. 

We have arrived at a very satisfactory description of the network in steady state 
but let’s not get carried away. The number of customers at node i ,  at time t ,  may 
be independent of the number of customers at the other nodes at time t but it 
certainly influences the future evolution of the other nodes! If node i has lots of 
customers, it will drive the other nodes as fast as it can serve customers; that is the 
flow into node j say will have rate pirij  not Airij! If the service rate pj at node j is 
close to  X j  it may well be that this extra flow from node i will overcome the service 
rate at node j and it will start to fill as well. This transient behavior is crucial for 
designing the network but is not well understood at present. 
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7.5 Kelly or BCMP Networks 

Imagine that a factory has J machine tools like that in Example 7.20, each one of 
which performs a specific operation. Now imagine that the factory produces many 
different kinds of circuit boards each requiring a series of operations performed by 
the machine tools. In fact if one tool solders on resistors it may be necessary for 
tlie same board to revisit the same machine tool several times at different phases of 
its construction cycle. The new boards may in principle start their cycle at any of 
the machine tools and finish at any machine tool. 

To model this factory we consider J FIFO MIMI1 multitype queues representing 
the J machine tools. New circuit boards of class c arrive on the shop floor at queue 
i according to a Poisson process with rate X " ( i ) .  These new boards join the queue 
at that machine. All classes of boards are serviced at a rate which may depend on 
the number of boards in the queue. Hence if there are n boards at machine i ,  then 
the service rate is pn(i) .  When a board of class c leaves queue i it is sent to queue 
j and changes to class d with probability ri;. With probability r t  := 1 - xjdrit 
the board leaves the factory. Such a scheme is called Markov routing. 

These routing probabilities from one machine are independent of the state of 
the other machines in the network so we can't reroute a board if the destination 
machine is too busy. Moreover we are assuming the queues are FIFO l l l ) M ) l  
niultitype queues and this means each of the classes of board has the same service 
time distribution and we can't give priority to different types of boards. This makes 
the model a little unrealistic. On the other hand this model is quite powerful. 
Suppose one kind of board must visit machines (i, j ,  i, k ,  j ,  i) in that order. Define 
a class c1 to be this kind of board at its first visit to machine i. Define c2 to be 
tlie class of this board at the second stage of its route, i.e. at machine j .  Define 
CQ to be the class of this board at the third stage of its route, i.e. at machine i 
for the second time. Continuing in this way we describe the route of the board by 
a sequence of changes of class arid the class of the board completely describes its 
current stage on its route. Naturally r:jc2 = 1, r;,2c3 = 1, 7-Zic4 = 1 arid so on. 
Also, xc'(i) > 0 while x"'((j) = 0, X"'((i) = 0 since the boards start out in class 
c1 and do not cnter the system otherwise. Consequently, if we allow ourselves a 
large number of classes, this model incorporates a detailed description of the flow 
of boards through the network and the calculation of queue sizes at the different 
machines has a definite interest. Surprisingly, this is possible and in fact the best 
possible answer is true. The stationary distribution of the network is the product 
of the stationary distributions of the individual queues taken in isolation just like 
the Jackson network. 

The state of the network is described by 

where 2% is thc state of queue i as defined in Examplc 7.20. If the current state is 2 
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and a new board of class c arrives from outside the network to queue i ,  we denote 
the new state of the network by If a class c board departs the network from 
queue i, we denote the new state by D:.?. Finally, if a class c board has been served 
at queue i and is transferred to queue j as a class d board, we denote the new state 
by TGd2. If there are ! ( i )  boards in queue i, the transition rates of the network are 
given by 

q(2 ,  = ?(i) 

q(2 ,  T&%) = pq&)r;j  

q(2 ,  q . 2 )  = PLg(i)(i)Ti. 

The stationary distribution ~ ( i )  of queue i as given in Example 7.20 depends on 
the arrival rates of the various classes. The total arrival rate of class c boards must 
be the sum of the arrival rate from outside the factory plus the arrival rates from 
other machine tools. In other words, the arrival rate of class c boards at queue i, 
which we call X " ( i ) ,  must satisfy the flow conservation equations: 

j E J d t C  

We shall assume we have a solution to this linear system. Also note that 

i c  j d  ic 

= c X C ( i )  - c ( X " ( i )  - X"(2)) 

Z C  iC 

= Cx"(i). (7.13) 
iC 

To show just; how easy it is to give the steady state of a Kelly network, consider 
the following example. 

Example 7.21 
Imagine a factory with three machines, as in Figure 7.5. Number 1 prints a circuit 
on a board. Number 2 solders connections and number 3 staples in IC's (integrated 
circuits). The factory has two products, widgets and gadgets. Widget boards arrive 
at machine 1 according to a Poisson process at a rate of one a minute while gadget 
boards arrive at machine 1 according to another independent process at a rate of 
two per minute. 

Solving a small Kelly network 
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gadgets ---+ 
widgets - 

Fig. 7.5 A network of multitype queues. 

A widget board visits machines 1, 2 and 3 in that order twice and then is finished. 
Call a widget board class a if it is on its first pass through 1, 2 and 3 and class b 
if it is on its second pass. The flows of widgets through the queues is described by 
X"(l), X a ( 2 ) ,  X"(3) and X h ( l ) ,  X b ( 2 ) ,  Xb(3).  Each of these flows is equal to  x"(1) = 1 
by the flow conservation equations. 

A gadget board visits machine 1 then machine 2 twice to avoid overheating 
the board by doing too much soldering in one pass. The gadget board then visits 
machine 3 and then is finished. Call a gadget board class c before the second visit 
to machine 2 arid class d after. The flows of gadgets through the queues is described 
by X"(1), Xc(2), X d ( 2 )  and X d ( 3 ) .  Each of these flows is equal to xc(l) = 2 by the 
flow conservation equations. 

Suppose that the service rates at machines 1, 2 and 3 are p1 = 5, p2 = 10 and 
p3 = 5 respectively, independent of the queue sizes. We suppose the queues are 
FIFO. The total flow into queues 1, 2 and 3 are 

X(1) = X"(1) + P(1) + X"(1) 

X(3) = X"(3) + Xb(3) + Xd(3) = 4. 

4 
X(2) = X"(2) + X b ( 2 )  + Xc(2) + X'(2) = 6 

Hence the loads on queues I, 2 and 3 are p1 = 4/5, p2 = 6/10 and p3 = 415 
respectively. Since the queues at the three machines are MIMI1 multiclass queues, 
the load determines the distribution. Queue 1, for instance, has a probability of 
(1 - p l )p f  of holding k boards and the mean number of boards is 

Hence, in steady state the mean number of customers at queues 1, 2 and 3 at a 
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fixed time are respectively p l / ( l -  p1) 4, p a / ( l -  p 2 )  = 1.5 and p3/(1 - p3) = 4. 
By (7.11), the steady state probability that, for instance, the first two queues are 
empty and the third queue contains a gadget followed by a widget on its second 
pass is 

(1 - P d ( 1  ~ P 2 ) P  - 

To show 

J 

T (2 )  := 7 r z ( & )  

i=l 

we again turn to Kelly's Lemma and start by guessing the transition rates of the 
time reversed process. Naturally we guess the time reversed network is composed 
of time reversed queues as in Example 7.20, which add new customers at the front 
of the queue and serve them from the end. The flow of customers into the queues 
of the time reversed network remain the same but the Markov routing is altered. 
Let f ;  denote the proportion of boards that leave the factory from queue i of the 
time reversed network. The flow Xc(i)TI,C of class c boards from the time reversed 
queue i, to outside the factory, should equal the flow of class c boards from outside 
the factory to queue i ;  that is 

Similarly let x"(i) denote the arrival rate of class c boards to queue i from outside 
the network. Since the flow of class c boards into the time reversed queue a from 
outside the factory should equal the flow of class c boards from queue i to outside 
the factory, we have 

X"(i) = XC(i).,". 

Finally, let f$ be the proportion of class d boards at queue j which are routed as 
class c jobs at queue i in the time reversed network. The flow of class d 4 c boards 
from ,j 4 i in the time reversed network should equal the flow of class c 4 d boards 
from i i j in the original network so 
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-c . X " ( i )  - X " ( i )  x (2) +- X"(i)  Xc(i) 
- - 

= 1  

by the flow conservation equations. We conclude tha,t f $  and T,C are Markov routing 
probabilities. 

Hence, if there are ((i) = n hoards in queue i and l(j) = 'm boards in queue j 
when the network is in state 2 ,  the transition rate of the time reversed network is 
given by 

We can now verify the conditions of Kelly's Lemma. First, if there are [(i) = n 
boards in queue i and ! ( j )  = rn boards in queue j when the network is in state 2, 
then 

by equation (7.13). 
Next we may consider 

The other required relations: 
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are proved in a similar way. We conclude, therefore, that 7r ,  which is a product of 
the stationary distributions of the individual queues taken in isolation, is indeed 
the stationary distribution of the network. 

The Jackson product formula may be extended beyond a network of MlMll  
multiclass queues with the service rates of each queue depending on the number 
of customers in it. In fact, any network of quasi-reversible queues will have a 
product form stationary distribution! This allows extensions to various interesting 
special cases but one should not lose sight of the fact that these results are very 
fragile. Priorities are not allowed and the service rates can't depend on the class of a 
customer. To see this, recall from Exarnple 7.20, that if an MIMI1 multiclass queue 
has service rates depending on the class of the customer being served, then the 
state of the queue left behind at a departure depends on the class of the customer 
just served. If this queue is in a network then the arrival of this customer at some 
other node would condition the queue left behind. In other words, the queues 
are dependent and the product formula must be false. Priorities create similar 
dependencies between queues in a network. 

To show exactly how fragile our theory is, let's discuss the following example. 

Example 7.22 Bramson Networks 
Consider a network with two FIFO queues. Customers (or boards) arrive only at the 
first queue at a rate oE 1 per unit time. The customers visit the queues 1 ,2 ,2 ,2 ,2 ,1  
and then leave the network as shown in Figure 7.6. Let these visits correspond to 
classes a ,  b, c, d,  e ,  f .  Hence X a ( l )  = 1 and 

Solving the flow conservation equations it follows that 

Aa(l) = T(l) = 1 

A"2) = A"(1)r;"; = 1 
A C ( 2 )  = Ab(2)4c ,  = 1 

A f ( 1 )  = A y 2 ) T g  = 1. 

~ ' ( 2 )  = ~ ~ ( 2 ) r $  = 1 

~ ~ ( 2 )  = xd(2)r,d,e = 1 

Let us suppose the mean service time of queue 1 is m,(l) = 1/3 and the service 
time of queue 2 is m(2) = 1/5. We may then model this network as two AdJMJ1 
multiclass queues and conclude the total flow into queue 1 is 

A U ( l )  + A f ( 1 )  = 2 

and the total flow into queue 2 is 

Ab(2) + AC(2) + P ( 2 )  + A e ( 2 )  = 4. 
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departures 

arrivals 
1 2 

Fig. 7.6 A Bramson network. 

This means the network is stable since the load on queue 1 is p(1) = 2 / 3  < 1 and 
the load on queue 2 is p(2 )  = 41.5 < 1. The stationary distribution of a network 
of multiclass queues with service rates independent of the customer being served 
has a product form determined by the p’s, so we can give the entire steady state 
dist’ribution. 

Now let us alter the mean service times according to the class of the customer 
being served. Let ma = 0.001, mb = 0.897, me = 0.001, rnd = 0.001, me = 0.001, 
rnf = 0.899 denote the mean service times of the six classes. From the above arrival 
rates we see the load on queue 1 is 

p(1) = ma,Aa(l) + m f A f ( 1 )  = 0.9 

while the load on queue 2 is 

p(2) = r n b ~ b ( 2 )  + m ‘ ~ ~ ( 2 )  + rn’~’(2) + ,rnexe(2) = 0.9. 

Since the service rates depend on the class of the customer being served, we can’t 
expect there to be a stationary distribution which is a product as above. However, 
it seems reasonable that since the load on each of the queues in a network is less 
than 1, the network must at least be stable and there should exist some stationary 
distribution. Intuitively, any unstable network must have a bottleneck, i.e. a queue 
which can’t keep up with the workload and this is not the case here. 

Surprise! This network is unstable! Bramson (1994) has shown the queue sizes 
build up and up and tend to infinity! Imagine a slight buildup of class b customers 
at node 2. Since this is a slow class this buildup dribbles into classes c, d and e but 
gets stuck there even though these are fast classes. This is because queue 2 is FIFO 
so everybody is waiting at the end of the queue for the slow class b customers. When 
the last class b customer clears out however there is a rush over to queue l! Since 
class f at queue 1 is also slow there is a temporary bottleneck! New customers 
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of class a arriving from outside the network go to the end of queue 1 and can't 
get through to queue 2 which is starved for customers and becomes idle. Finally, 
the temporary bottleneck of class f customers is cleared out and the buildup of 
class a customers is quickly transferred to queue 2. This gives a buildup of class b 
customers again only now the buildup is worse than before! Going round and round 
like this causes bigger and bigger buildups and the queue becomes unstable. The 
fact that the load on each queue is less than one only means the queue can keep up 
with tlie average inflow of new work if it works all the time. Both queues here are 
starved during part of each cycle and so can't keep up with the load when they are 
working. 

This example is designed to make us humble! Clearly we don't really even un- 
derstand when a network has a steady state. The Jackson product formula and its 
extension to a network of quasi-reversible queues must be viewed as a minor miracle 
and the description of a real network will almost invariably be far more complex. 
When we also remember that the steady state tells us nothing about the network as 
it evolves in time, we should conclude that the study of networks will keep engineers 
and mathematicians busy for decades to come. 

7.6 Approximation by a Markov Process 

Recall our assumptions on the transition kernel T'j: 

1 1 
T ' = I + - G + - L , ,  

rl v 2  (7.14) 

where I is the identity matrix, G is a matrix such that I (GI I < 00 and L,  is a matrix 
which may depend on q such that liL,ll < 00 uniformly in 7.  The transition kernel 
T" has a first order part, namely TG := I + G/T. We assume r,~ >> maxi Gii so TG 
is associated with a Markov chain which jumps every nanosecond. We start with an 
intuitive description of this discrete-time Markov chain on S = {0,1 ,2 ,  . . .}. Imagine 
the chain is in state i E 5' and imagine that every nanosecond during tJhe sojourn in 
i ,  a Bernoulli trial is performed having probability p = q ( i ) / q  of success. If a trial is 
a success, then tlie sojourn ends at the end of that nanosecond and the chain jumps 
to state , j  E S with probability Kzl.  If the trial is a failure, the chain does not jump 
away from i .  It follows that the sojourn in state i is a geometric random variable 
having mean l / p  = q / q ( i )  nanoseconds or l / q ( i )  seconds. Hence the sojourn is 
memoryless and approxima,tely exponential! This discrete-time Markov chain has 
a probability transition kernel given by 

\ '  ' /  
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Wc now proceed in a manner analogous to Proposition 4.20. 

Theorem 7.23 
with the chain Y[s] having kernel T G ,  such that 

The discrete Murkov chain X [ s ]  having kernel TV can be coupled 

t 
7l 

P ( X [ s ]  # Y [ s ]  for  some 0 5 [s] I I $ ] )  I - - ~ ~ L V ~ ~ .  

Proof: Consider any state i .  The distributions after one step have probabilities 
f ( j )  := qy and g ( j )  := q:. By Proposition 4.20 there exist two random variables 
XI ( i )  and Yl(i) defined on the same probability space having marginal probability 
mass functions f and g such that P ( X , ( i )  # Yl( i ) )  = i l f  - g11/2. For any i 

By constructing a product space, we can in fact define a sequence of independent 
random variables {X , ( i )  : s = 1 , 2 , .  . .}, all with the same marginal distribution as 
X I  (i) arid a sequence of independent random variables {Y, ( i )  : s = 1,2, . . .}, all with 
the same marginal distribution as Yl(i). Moreover, by taking the product of product 
spaces, we can define such sequences for each i all on the same probability space. 
We have therefore constructed a large probability space { S, F, P }  with sequences 

{ X S ( i ) ,  K ( i ) ;  i € s, s € (0, 1 , 2 , .  . .}}, 

such that P ( X , ( i )  = j) = TZ and P(Ys(i)  = j )  = TG and such that 

1 
P(X , ( i )  # Ys(i)) 5 -IILV1l for all i .  (7.15) 

v2 

We now construct our Markov chains starting at X [ 0 ]  = i o  and Y[O] = io 
by recursively piecing together these variables as follows: if X [ s  - 11 = i then 
X [s] = X ,  (i) and if 1’1s - 11 = i then Y [s] = Y, (i) . These are indeed Markov chains 
with the required transition probabilities since for instance 

P ( X [ s ]  = j l X [ s  - 11 = i ,  X [ s  - a]  = i s p 2 , .  . . , X[O] = i o )  

= P ( X , ( i )  = jlX[s - 11 = i , X [ s  - a] = i s p 2 , .  . . , X[O] = 20) 

= TZ. 

In the same way, Y[s] is seen to be a Markov chain with transition kernel T G  
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Now, 
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P ( X [ s ]  # Y [ s ]  for some 0 I [s] I [ v t ] )  
[Vt I  

s=[l] 

[Vt I  

s=[1] i 

Iatl 

= c P ( X [ s ]  # Y [ S ] , X [ k ]  = Y [ k ] ;  [ I ]  I k I [s  - 11) 

= c c P(“1 # Y [ S I l  

= c C P ( X [ s ]  # Y [ s ] l X [ s  - 11 = Y [ s  - 11 = i) 

= c C P ( X , ( i )  # Ys(i)) 

X [ S  - 11 = Y [ s  - 1] = i , X [ k ]  = Y [ k ] ;  [I] I k I [s - 

s=[l] i 

XP(X[S  ~ I] = Y [ s  - I] = i , X [ k ]  = Y [ k ] ;  [l] I it L [s - 
[all 

9=[1] 2 

x P ( X [ s  - 11 = Y [ s  - I] = i , X [ k ]  = Y [ k ] ;  [I] I k 5 [s  - 

5 - llL,ll c ‘vtl C P ( X [ S  - 11 = Y [ s  - 11 = i , X [ k ]  = Y [ k ] ;  k 

q2 s=[l] i 

by (7.15) 

I 

From the previous result, we see that the two chains X I S ]  having kernel T q  and 
Y [s] having kernel TG are essentially indistinguishable as they evolve over time 
measured every nanosecond. Henceforth, we will assume our discrete time Markov 
chain has kernel TG and we now turn to approximating the time evolution of Y [ s ]  
by a continuous process having probability transitioii semi-group exp(ZG). By the 
semi-group property this continuous process observed every nanosecond will be a 
Markov chain with kernel exp(G/v). 

We now uniformize the Markov chain Y [ s ] .  Construct the Markov chain U[s]  
by performing a Bernoulli trial at each nanosecond such that, with probability q/q,  
we jump with transition probabilities I?- (see (7.5)) and with probability 1 - q/v  
we stay put. First note that the kernel of this new chain is (1 - q/q)1+ ( q / v ) k  = 
I + G/,q = TG. In fact the two chains Y [ s ]  and U [ s ]  are indistinguishable. The 
only difference is that U [ s ]  has fictitious jumps; that is K:% > 0 for some i so the 
uniformization construction puts in jiimps that really aren’t there. The advantage 
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of this description is that each Bernoulli trial is ident,ical and docs not depend on 
the state! 

The continuous Markov process M ( t )  defined in Theorem 7.13 approximates 
Y [ s ]  = U [ s ]  and hence X [ s ] .  To prove this we show this process observed on the 
nanoseconds and therefore denoted M [ s ]  can he coupled to the chain Y [ s ] .  The 
construction is slightly different from that of Theorem 7.23 since the process M ( t )  
has already been constructed. 

Theorem 7.24 The discrete Markov chain Y [ s ]  having kernel T" can be coupled 
with the chain n/f [s] having kernel exp(G/q) m c h  that 

tl IGI l 2  
817 

P ( Y [ s ]  # M [ s ]  for some 0 5 [s] 5 [qt]) 5 -. 

Proof: Since we are rounding off to the nearest nanosecond, recursively define 

In cffect N R  only counts one arrival in a given nanosecond. Now define the chain 
Y [ s ]  := J ( N R [ s ] )  at each nanosecond. Clearly Y[s]  has transition kernel ( l - q / v ) I +  
(q /q ) I (  = I + G/rj = TG.  It clearly is equal to M [ s ]  up to the moment when there 
are two Poisson arrivals in the same nanosecond This has low probability as seen 
next. 

P ( N ~ [ ~ I  - ~ ~ [ s  - 11 # ~ [ s ]  - ~ [ s  - 11 for some [I] i [s] 5 [qt])  
[Vt l  

s=[1] 

5 c P("s] ~ " s  - 11 2 2) 

We conclude, 

tlIG1l2 
87 

P ( Y [ s ]  # M [ s ]  for some 0 _< [s] 5 [qt]) 5 -. 

I 

The discrete Markou chain X I S ]  having kernel T V  can be coupled Corollary 7.25 
,with the chain M [ s ]  having kernel exp(G/V) such that 
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Proof: The proof is immediate by combining Theorems 7.23 and 7.24. I 
Proof of Theorem 7.5: The proof is immediate from the preceding since by (7.1) 

= s u p c  IP,(X(t) = j )  - Pz(M(t )  = j ) l  
i 

.I 

by Corollary 7.25 and this tends to zero as 7 tends to infinity. I 

7.7 Exercises 

Exercise 7.1 The process 
stays an exponential amount of time in each state with a mean holding time of 2 , 3  
seconds respectively. At the end of the holding time the process jumps according 
to the matrix 

A Markov process is defined on two states {0,1}. 

a) Give the generator of this Markov process. 
b) Calculate the stationary distribution of this process. 
c) Calculate the mean recurrence time to state 0. 
d)  Calculate the average amount of time spent in state 2 .  
e) Calculate the long run probability of being in state 2 having last visited state 0. 
f )  Calculate the transition kernel of the process. 
g) Write down the backward and forward equations and solve them. 

Exercise 7.2 A Markov process is defined on three states {0,1,2}. The process 
stays an exponential amount of time in each state with a mean holding time of 1 , 5 , 2  
seconds respectively. At the end of the holding time the process jumps according 
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to the matrix 
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0 l / 2  l / 2  

(::: 3;* ,,,i . 
a) Give the generator of this Markov process. 
b) Calculate the stationary distribution of this process. 
c) Calculate the mean recurrence time to state 0. 
d) Calculate the average amount of time spent in state 2. 
e) Calculate the long run probability of being in state 2 having last visited state 0. 
f )  Calculate the transition kernel of the process. 
g) Write down the backward and forward equations and solve them. 

Exercise 7.3 Consider the following matrix 

a) Show P( t )  is a senii-group of probability transition matrices. 
b) Find the generator of this semi-group. 
c) Describe thc transitions of the the associated Markov process. 
d) Find the stationary distribution of P(2). 

Exercise 7.4 Three terminals are attached to a Vax under a timesharing system. 
The terminals work independently. The duration of a job in nanoseconds is a geo- 
metric random variable (or approximately exponential) with a mean of ten seconds. 
The duration of an idle period in nanoseconds is a geometric random variable with a 
mean of thirty seconds. Describe the state of the system at time t to be the number 
of busy terminals. 
a) Give the generator of this Markov process. 
b) Give the stationary distribution of this Markov process. 

Exercise 7.5 Consider a bursty source. The silence period of the source is ex- 
ponentially distributed with a mean of s = 1.4 seconds. The burst period is ex- 
ponentially distributed with a mean of b = .6 seconds. Let the silence state be 
represented by 0 and let the burst state be represented by 1. Let the steady state 

a) Write down a system of equations for (r(O),z(l)). 
b) Calculate ( ~ ( 0 ) ’  ~ ( 1 ) ) .  
c) Why is it useful to calculate ~ ( l ) ?  
d) Suppose that during a burst period the soiircc delivers cells at a PCR Peak Cell 
Rate of 1000/6 cells per second (rounded off at some point). Calculate the MBS 
(Mean Burst Size) and the SCR (Sustainable Cell Rate). 
e) If 5,000 VC’s are established with the above statistical behavior then what is the 
bandwidth we must allocate if we assume all of them are peak rate. 

be ( 4 0 ) , 4 1 ) ) .  
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f )  If 5,000 VC’s are established with the above statistical behavior then what is the 
distribution of the number of burst on-going at a given time. 
g) What is the approximate probability the 5,000 VC’s will require a bandwidth of 
more than 300,000 cells per second. 

Exercise 7.6 All the 5,000 sources described above feed an ATM multiplexor. 
We model these aggregated sources as one Poisson stream having the same com- 
bined SCR. We model the link of the mult,iplexor as an exponential server with rate 
353,208 cells per second. 
a) What is the load on the server? 
b) What is the average number of cells in the multiplexor? 
c) What is the average number of cells in the multiplexor and what is the average 
delay across the multiplexor? 
d) If the niultiplexor can only queue 20 cells, what is the CLP (Cell Loss Probabil- 
ity)? 
e) Since the sources are really bursty is this calculated CLP higher or lower than 
the real CLP? Why? 

Exercise 7.7 Consider a multiplexor with M input lines. We assume each line 
is busy or idle intermittently. The duration of a busy period is random with an 
exponential distribution with a mean of l/p seconds. The duration of an idle 
period is exponential with a mean of 1 /X  seconds. Assume all busy and idle periods 
are independent of each other. Let X ( t )  denote the number of busy lines at any 
time t .  
a) What is the key element in the above model that makes X ( t )  a Markov process? 
b) Give the state space and write down the backward equation for the probability 
transition kernel for this Markov chain. 
c) Give the generator G of this Markov chain as a matrix. 
d) Check that the vector e := (eo,  e l ,  e2 , .  . . , e N )  defined by 

satisfies eG = 0. 
e) What does part d) imply about the proportion of time up to some large time T 
that half the access lines are busy? 

Exercise 7.8 Recall Exercise 6.18. Now suppose that at most two jobs can be 
queued including the job being serviced. Jobs that cannot be queued are lost! 
a) Define the state space for a Markov process that models all the aspects of the 
above low and high priority queueing system. 
b) Write down a generator for this Markov process. 
c )  What is the steady state probability this system is idle at a given time? 

Exercise 7.9 Consider a Markov process with states S = {0,1,2,3}. The states 
{0 ,3}  are absorbing. The mean holding time before a jump in state 1 is 2 units 
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and the process jumps to states 0, 1, 2 and 3 with probabilities 1/4, 1/3, 1/6 and 
1/4 respectively. The mean holding time before a jump in state 2 is 3 units and 
the process jumps to states 0, 1, 2 and 3 with probabilities 1/4, 1/4, 1/4 and 1/4 
respectively. 
a) Write down the generator G of this process. 
b) Calculate the probability the process started in state 1 is eventually absorbed in 
state 3. 
c) Calculate the mean time until absorbtion starting in state 1.) 
d) Calculate the transition kernel P( t )  = exp(tG). 

Exercise 7.10 Suppose jobs arrive at a machine shop according to a Poisson process 
at a rate of 3 per week. The shop finishes a job in a time that closely follows an 
exponential distribution with a mean of 2 days. If a job arrives when the shop is 
busy, the job is sent to a subcontractor who completes the job in a time that closely 
follows an exponential distribution with a m e m  of 5 days. If both shops are busy 
then orders are simply lost. 
a) Model this process as a Markov process and give the generator. 
b) Calculate the steady state. 
c) What proportion of the time is the subcontractor busy? 

Exercise 7.11 Imagine customers arrive in their cars at a take-out restaurant 
according to a Poisson process with a mean rate of 100 per hour. Suppose the order 
is taken immediately upon parking at one of N numbered spots. The time to fill 
the order is exponential with a mean of 5 minutes. When an order is filled the 
customer must leave the numbered spot for the next customer. Unfortunately, if a 
customer arrives to find all the spots occupied, the customer will give up since there 
is no parking nearby. Calculate (using Mathernatica) the number of spots required 
to ensure the proportion of customers who have to go home dissatisfied is less than 
one percent. 

Exercise 7.12 An tax team is made up of a junior accountant and a senior ac- 
countant. Unprocessed income tax forms arrive at the junior accountants in-box at 
a rate of 10 per hour. The junior accountant processes items in the in-box in the 
order of arrival. He classifies incoming forms in about 3 minutes on average. About 
six in ten forms are complicated cases which are sent to the senior accountant. The 
other four in ten are simple cases that the junior accountant puts back in his own 
in-box. These simple cases take about 3 minutes each. The senior accountant takes 
about 4 minutes to handle the complicated forms. 

Assuming all the processing times have an exponential distribution, calculate 
the probability that at the noon break the junior accountant has 3 forms for clas- 
sification a.s well as two simple files on his desk waiting to be processed while the 
senior accountant has just one complicated case on his desk. 

Suppose the junior accountant takes 4 minutes to handle simple cases. What 
can we say about the steady state of the system then? 
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Exercise 7.13 There are three main attractions for children at the fair. There 
is the ferris wheel, a water ride and a toy train. Children arrive at the fair at the 
rate of 20 per hour. and with equal probability join the queue one of the three 
attractions. We can model the time enjoying the ferris wheel, the water ride and 
the toy train by exponential times with means three minutes, two minutes and four 
minutes respectively. After finishing the ferris wheel a child will be terrified and 
go home with probability l / 2 ,  join the queue a,t the water ride with probability 
1/5 or join the queue at the train with probability 3 / 7 .  After finishing the water 
ride a child will be soaked and go home with probability l / 2 ,  join the queue at the 
ferris wheel with probability 1/4 or join the queue at the train with probability 3/4. 
After finishing the train ride a child will get bored and go home with probability 
l /2 ,  join the queue at the water ride with probability 1/3 or join the queue at the 
ferris wheel with probability 1/6. 
a) Calculate the probability that in steady state there are two children either queue- 
ing for or riding the ferris wheel. 
b) Calculate the probability there is nobody near the water ride at exactly 12 noon. 
c) Suppose that children arriving at the fair join the shortest queue when they arrive 
and then proceed as above. What can you say about the steady state? 

Exercise 7.14 Consider a network with two nodes. Customers arrive from outside 
the network at node 1 according to a Poisson process at a rate of 1 every two minutes. 
Customers arrive from outside the network at node 2 according to a Poisson process 
at a rate of 3 every two minutes. The service time at node 1 is exponential with 
mean 1 minute and after service, customers leave the network with probability .5 
or join the queue at node 2 with probability 0.5. The service time at node 2 is 
exponential with mean 30 seconds and after service, customers leave the network 
with probability .75 or join the queue at  node 1 with probability 0.25. 
a) Calculate the probability the queue at node 2 exceeds 5 customers when the 
system is in its steady state. 
b) What is the probability that an arrival from outside the network to node 1 does 
not have to  wait before being served? 
c) If the network is in its steady state what is the probability there are 2 customers 
at node 2 given there are two customers in the queue at node 1'? 
c) Describe the departure process from node 2. 
d)  Calculate the time reversal of this chain and comment on your results. 

Exercise 7.15 Consider a closed Jackson network with m nodes and xi = 0 and 
~ i .  = 0 for all nodes. This means that if n customers are present, these customers 
stay forever, bouncing around from node to node! We wish to show that there is a 
steady state for this closed system! 
a) Consider any Markov process (or chain) with stationary distribution 7r and states 
E such that 

q ( i , j )  = 0 if ( i , j )  E E x E~ U E ~  x E. 
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7r(i)x{ i  € E }  . . 
7rE( i )  = is invariant. 

7r ( E )  
b) Return to  the closed Jackson network. We can write down the light traffic 
equations X j  = xi Xiri,j or XT(I  - T )  = 0. Show this system has at least one 
non-zero solution. 
c) Define the Jackson product 

and show that it is a stationary distribution. (Perturb the closed Jackson network 
with a fake outside input xi and a fake rj.. Solve the perturbed system and then 
let the perturbation tend to 0. Alternatively use brute force and calculate 

C T(Z)q(Z, g) = T ( i j ) q ( f )  for all states g.1 
X 

d) Use a), taking E = (2 : 
closed network. 

xi = u} to calculate the stationary distribution of the 
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Markov Decision Theory 

8.1 Introduction 

We consider a Markov chain whose transition probabilities are decided at each 
transition according to the actions of a controller. Each action has an associated 
cost and the goal of the controller is to minimize the expected cost up to a finite 
horizon N .  Let S be a countable state space of the Markov chain. If the chain is in 
state i at time t and the controller picks an action at from a finite action set A(t, i) 
associated with state i then two things occur: 

0 The transition probabilities from state i to state j are then given by Kij ( t ,  u t ) .  
0 A cost C(t , i ,a t )  is incurred. 

Let Xt  represent the state at time t and let At represent the action taken at 
time t .  Define the past or history up to time t by 

X t ,  At ( ( X o ,  Xi, . . . , X t ) ,  (Ao, A i ,  . . . , At)) . ( -  -1 

( 
The preceding assumptions imply 

4 4 

P Xt+l = j lX t  = &,At = Lit) = Kij ( t ,u t )  

where Zt = (q,, q, . . . , xt), xt = i and Zt = (ao,  a l ,  . . . , a t )  are the sequence of states 
and actions taken until time t .  This Markovian structure leads to a considerable 
simplification of the decision making process as we shall see. 

The controller who is not clairvoyant must operate according to some policy 
4 E CI, which at each time t assigns an action At depending on the past up to t and 
the time to the horizon; that is 

At = 4t,N ((L L) 1 xt) 

This policy may, in principal, even depend on an additional randomization ~ when 
in doubt flip a coin! In this case, given Xt  and At-1, 4 is a random variable with 
a p.m.f. which gives the probability of choosing one action in At. Once the policy 
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Fig. 8.1 A controlled Markov chain 

q5 has been chosen the transition probabilities are determined and we can construct 
the probability measure F‘4 and the expectation Ed associated with this policy. 

The set M of Markovian policies is of particular interest. A policy p E M if 

Such a policy only depends on the time t ,  the current state and the time remaining 
to the horizon. 

The total cost associated with a policy 4 is 

N 

t=O 

where C ( t , X t , A t )  is the cost of the tth decision. To compare various policies we 
compare expected values although the variance of the total cost associated with a 
policy is also an issue. The goal then of this chapter is to find a strategy to minimize 
the expected total cost. 

In Section 8.2 we shall establish the existence of an optimal Markovian policy 
that minimizes the expected total cost along with an algorithm based on backwards 
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induction for computing the policy and the associated costs. This policy will be 
shown to be optimal even among policies in CP. In Section 8.3 we shall consider 
the infinite horizon case and show when an explicit solution to this problem may 
approximate the solution of the finite horizon problem. In section 8.5 we study 
another tractable infinite horizon problem, that, of optimal stopping. Finally, in 
Section 8.6 we establish the optimality of the Cusum quality control procedure 
defined in Example 5.36. 

Example 8.1 Optimal parking 
Consider the problem of parking your car in a long underground parking garage, 
as in Figure 8.2. There are N + 1 parking spots one after the other and you want 
to park as close as possible to the elevator opposite the last parking space. You 
start opposite the first spot, labelled spot 0. If this spot is empty you must decide 
to park or not. Unfortunately in the darkness you can’t see beyond your present 
location so you can’t see if spots closer to the elevator are free or not. If you don’t 
park you have to a.dvance your car to the next spot and decide again and since there 
are other cars after you, you can’t back up. 

If you drive down the entire aisle without parking you will give up in frustration 
which represents a cost of F dollars. If you park in spot n, you have to walk to 
the elevator at a cost of d [ n ]  dollars, where d[n]  decreases with n (the closer the 
better). We assume spot n is empty with probability pin] and we assume the spots 
are empty or full independently of each other. The question is, what is the optimal 
parking strategy to minimize the expected cost? 

Fig. 8.2 Optimal parking 
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To model this problem we define a state space as follows: let e represent the 
state where you are opposite an empty spot. Let f represent the state where you are 
opposite a full spot. In this example we can identify time with the corresponding 
number of the parking spot; consequently, the horizon is N. For completeness, we 
shall introduce a terminal state A which indicates you have parked or gone home 
in frustration. The cost associated with state A is defined to be 0 and we treat this 
state as absorbing. At time t < N you have two actions associated with state e: s 
for stop and park or c for continue. Hence A(t, e) = { s ,  c}. The transition kernels 
and costs corresponding to action s are K , , ~ ( t , s )  = 1 arid C ( t , e , s )  = d [ t ] .  The 
transition kernels and costs corresponding to action c are 

I<e,e(t, c) = p [ t  + I], Ke, f ( t ,  c) = I - p [ t  + 11 for t 5 N - 1; 

K e , A ( N ,  c) = 1 

and C(t ,  e, c) = 0 for t < N while C ( N ,  e, c) = F .  Associated with state f you have 
only action c. The corresponding transition kernel is 

K J , ~ ( ~ ,  c )  = p [ t  + I] ,  K f , f ( t ,  c )  = 1 - p [ t  + 11 for t 5 N - 1 

Kf,A(N,  c) = 1 

and the cost is C(t ,  f ,  c) = 0 for t < N while C ( N ,  f ,  c) = F .  

It may be that the cost incurred in taking an action a at time t while in state i ,  
may depend upon extra random variables like the next state entered or an indepen- 
dent coin flip. Hence the cost would be C(t ,  i ,  Y, a )  where Y is a random variable 
whose distribution is determined by ( t ,  i, u) .  Since we will be comparing policies 
like 4 by their expected cost, this means we must calculate 

N 

Now conditioning on Xt  and At we see this cost is equal to 

N 

t=O 

For instance, if the cost depends on the next state entered then C(t , i ,Y ,a)  = 

C(t ,  i , j ,  a ) ,  if the next state entered is j .  Hence 

j 

In other words, we have reduced to the case where C does not depend on the extra 
variable Y by replacing C(t ,  i ,  Y,  a )  by 

C(t ,  i ,  a )  := E (C(t,  i ,  Y, a)lXt = i ,  At = a )  



Markov Decision Theory 2 75 

since the two problems have the same expected costs. 

Example 8.2 Buffer control 
A server is driven by an input process of queries. In each time slot or time interval 
there is probability p of a query arrival and the server completes service on the head 
of the line query with probability q. We assume p < q. Some servers will queue 
all incoming queries until the buffer space is exhausted. If there is no buffer space 
available then the incoming query is destroyed or dropped. Some routers perform 
active queue management. When a query arrives a decision is made whether or not 
to drop the query long before the buffer overloads. 

Part of the advantage of active queue management is the reduction in query 
delay. i f  the duration of a time slot is C microseconds then we incur a delay of C 
microseconds for each time slot a query is kept waiting. Let the number of queries 
waiting or being served at time t be Q[t]  so keeping Q[t]  queries waiting will cost 
C . Q[t]  during the time slot t .  If a query is dropped at the server the source will 
eventually retransmit the query. This query will therefore suffer a large one time 
delay of M microseconds. We wish to determine the optimal policy for minimizing 
the expected total delay over the next N time slots. 

Since the arrival process has geometric interarrival times and since the service 
times are geometric, the entire past of the process is summarized by the state x, 
which represents having Q[t]  = x queries in the queue. At each time unit we have 
an action space A = (0 , l )  which denotes the actions of respectively accepting or 
rejecting an arriving query. Let q(x) = q if x > 0 and 0 if x = 0. Given the action 
chosen is 0, the transition x + x + 1 occurs during one time unit when there is an 
arrival without any service completions. Hence, 

The transitions for action 1 are analogous. 
The cost, if action 0 is taken, is Cx if 5 queries are in the buffer; i.e. C(t ,  z, 0) = 

Cx. i f  action 1 is taken then there is a cost of Cx plus the cost M if a query is 
dropped. Let Yt denote the event that a query arrives at time t ;  that is Yt = 1 
if a query arrives at time t and 0 otherwise. Hence, C ( t , x , Y t ,  1) = Cx + A4 . &. 
Consequently we study the expected cost 
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8.2 The Optimality Equation 

In principle the expected value of the total cost of a policy q5 

may not even exist! However, since we have only a finite capital to risk we shall 
assume it only feasible to use policies in 4 E I? C @ such that 

/ N  

\t=o 

We assume throughout that there exists at least one Markovian policy 4 E I?. If 
in fact C(t ,  i, a )  is uniformly bounded or if the range of the Markov chain over N 
periods is finite then all policies would be in I?. 

Example 8.3 Pathological Cases 
Consider a Markov chain on the integers S = {. . . , - 1 , O ,  1,. . .} with two actions c 
and s at time t = 0 and only action s at time t = 1. Suppose N = 1. Suppose that 
K o , ~ ( O ,  c) = (106n(n+1))-l for n = 1 , 2 , .  . ., Ko,o(O, c )  = 1 - and Ko,o(O, s )  = 
1. Suppose C(O,O, s )  = 0, C(O,O, c )  = -lo8, C(l ,n ,  s )  = n for n = 0 , 1 , 2 , .  . .. Note 
that 

1 “ 1  1 
Dc) 

=C(;-n+l)=l C n(n, + 1) 
n=l  n=l 

so K is a transition kernel. If we decide on action c at time t = 0 it is almost certain 
that we will gain one hundred million. Nevertheless this strategy is not permitted 
(it is not in r) because C(O,O, c)+ + EC(1, X I ,  s)+ = +co. We just can’t play the 
game and we get nothing. Of course nobody would offer to play this game with us 
because it’s pretty clear we would default if by bad luck we had to pay a large cost. 

For simplicity we first consider Markovian policies. The expected cost from time 
n to the horizon associated with a finite horizon Markovian policy p E M c I? given 
the chain starts in state i is 

r N  1 

The optimal cost associated with policies in M is 

By our hypothesis Wn,N( i )  exists but it is not clear at this point that there is 
indeed a Markovian policy which yields these expected costs or if the expected cost 
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is miniis infinity. If the state space is finite or if t,he range of the Markov chain over 
N periods is finite then the minimum cost would be finite. 

The following functional equation for the optirnal cost associated with Markovian 
policies is often called the Bellman optimality equation. 

Theorem 8.4 

~ " > " ( i >  = min {c(N,  i ,  u ) }  
a €  A( N , i )  

We defer the proof until we have made some use of the theorem. 

The Markovian policy p defined by  Corollary 8.5 

p""(i) =pn,"  ( ( ~ ~ , - ~ , x , ~ l )  ,x, = i )  =u* 

where a* i s  the choice ofa that minimizes 

C(n ,  2,  u )  + c K,j(?L, U ) W " + ' J V ( j )  (8.2) 
j t S  

is an optimal Markovian policy and W:>N(,i) = IVnlN(i) for  all 71. 

Proof: We proceed by induction. Clearly, by definition, p N i N  minimizes C ( N ,  i ,  u ) .  
It follows that WF>N(i) = W N > N ( i ) .  Next suppose that the corollary holds for all 
{m + 1,. . . , N } .  Then evaluating as in (8.3) we have 

W / y y i )  = C ( m ,  i, a*)  + c Kij(rn, u*)W, m+l,N(,j) 

j € S  

= C(m,  i ,  a*)  + Kij(rn, u*)Wm,+l,N(j) by hypothesis 
j € S  

- ~ min {C(rn,i ,a) + Kij(rn,a)Wmfl"( j )}  by definition 
j € S  a E A(m ,i) 

- - W T m . N ( i )  by Theorem 8.4. 

The result now follows by induction on m. I 

We should remark that the above optimal Markovian policy is not always unique. 
In the parking example, suppose there is a cost of one dollar to park anywhere and 
the cost of going home in frustration F is also one dollar. In this case it doesn't 
matter what strategy we take and WniN(e) W n > N ( f )  = 1. Even worse there is 
no guarantee that p E I?. 

Example 8.6 Pathological Cases - (8.3) continued Consider a Markov chain 
on the integers S = {. . . , -1,0, 1,. . .} with one action c at time 1 = 0, actions s and 
c at time 1 and action s at time 2. N = 2. Suppose that Ko,,(O, c)  = (n(n + 1))-l 
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for n = 1 , 2 , .  . .. For all n, Kn,n( l ,c)  = Kn,-zn( l ,c)  = 1/2 and Kn,,(2,s) = 1. 
Further, for all n, C(0,0, c )  = 0, C(1, n, c )  = C(1, n, s )  = 0 and C(2, n, s )  = n. 

A Markovian policy p~ in r might be to take action c at time t = 1 if X I  5 N 
and action s otherwise. The expected cost of p~ is 

Clearly Woi2(0) = -cx and the optimal policy p always takes action c a t  time t = 1. 
p is the policy obtained by backward induction but p is not in l7. 

This theorem and its corollary provides a practical method of determining the 
minimum possible cost Wo,"(i) at least when the set of points accessible from i in 
N steps is finite; i.e. if the set RN defined below is finite: 

R," = { j  : Ki,il(O,ao) . K i ~ , i ~ ( l , a i ) . . . K i ~ - ~ , ~ ( ~ -  1,an-i) > 0) 

for some (ao, a l ,  . . . 
The optimal policy at the horizon N is the myopic strategy to  minimize the 

cost on the last step. Calculate the value of the myopic strategy on RN. Next, use 
Bellman's optimality equation to work backward to calculate the minimum cost on 
RFpl and so on down from the horizon until, after N iterations, we can determine 
Wo,N(i)  on RY = { i } .  This is called backward induction. 

Example 8.7 
At any time n there are only two actions - drop or accept an incoming query. Note 
that the policy 4 of always rejecting queries has bounded costs so r is not empty. 
We can therefore talk about expected costs. If W n l N ( x )  denotes the minimum 
expected cost starting at time n, with IC queries in the queue, then the Bellman 
optimality equation says 

and ( i ,  21,. . . , i n - l , j ) .  

Buffer control - (8.2) continued 

where the operators To and Ti associated with accepting or rejecting queries re- 
spectively operate on any function u by 

To[UI(Z) = P ( 1  - d Z ) ) U ( Z  + 1) + (1 - P H I  - d Z ) ) U ( Z )  

+PY(Z)U(Z) + (1 - P ) q ( Z ) U ( z  - 1) 

Tl[UI(Z) = P ( 1  - Y(Z))4.) + (1 - P ) ( l  - 4 ( Z ) ) U ( Z )  

+ P d Z ) U ( Z  - 1) + (1 - P)dIC)U( l z :  - 1). 

At time N it is clearly best to use action 0 since don't drop a query and we don't 
have to worry about future costs due to long queues; that is W N > N ( z )  = Cx. 

Since the cost structure and the transition probabilities are time invariant it 
follows that W n l N ( x )  = W o , N - n ( ~ ) .  Consequently, if we define W"(X) = WoiN(z) 
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to be the minimum cost over the next N transitions, then we can rewrite the Bellman 
optimality equation as 

~ " ( 2 )  = min{Cz + T ~ [ w " - ~ ] ( z ) ,  cz + p ~  + T ~ [ W " - ~ ] ( Z ) } .  

Suppose we wish to start with an empty queue so we want to calculate W"(0). 
To do backward induction from the horizon at time N back to time 0, we must 
start with calculating (and saving in computer memory) Wo(x)  = Gx for all 
z E RON = {z : 0 5 z 5 N }  since only these states can be reached from 0 in time N .  
Similarly, working backward we only need calculate Wn(z)  for all 0 5 z 5 N - n. 
Proceeding in this way, the last step of the backward induction gives precisely what 
we want; that is WN(0) .  Since we are doing these calculations iteratively we only 
need store the results for W" in order t,o calculate Wnfl so these computations are 
feasible. The optimal policy p given by backward induction is necessarily in I' since 
the queue size and hence the costs remain bounded over N transitions. We do note 
that if we want to calculate WN+l(0) we almost have to start all over again. 

Example 8.8 
First note that the total cost is bounded so all strategies are in I?. If we define 
Wn,N(e)  to be the optimal cost starting from state e opposite spot n, the Bellman 
optimality equation becomes 

Optimal parking - (8.1) continued 

W n i N ( e )  = min{d[n],p[n + 1]~"+ '1"(e)  + (1 -p[n + 1 ] ) ~ ~ + ' 7 " ( f ) }  

for n 5 N - 1. Moreover, 

WN>"(e)  = m i n { d [ ~ ] , ~ } .  

Define Wn,"( f )  to  be optimal cost starting from state f ,  opposite spot rc. For 
n 5 N - 1 the Bellman optimality equation becomes 

WnjN( f )  = p [ n  + I ] W " + ' > ~ ( ~ )  + (1 - p [ n  + 1 ] ) ~ ~ + l J " f ) .  

Moreover, 

For completeness, define k P N ( A )  = 0 for all n. 
In any reasonable situation, d [ n ] ,  the cost of walking to the elevator from spot 

n decreases as n increases to N since everyone would like to park near the elevator. 
Finally, F > d[N]  since otherwise it would always be best to go home without 
parking. If these natural conditions hold, we argue below that WniN ( f )  is increasing 
in n and WnlN ( e )  is decreasing. 

First we remark that from the Bellman optimality equation W n > N ( f )  2 
WniN(e).  Now we use induction to show the required monotonicity. Suppose for 
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R 2 m + 1 we have Wn,N ( f )  is increasing in R and Wn,N ( e )  is decreasing. Clearly, 

~ ~ > ~ ( f )  = p [ m  + 1 ] ~ ~ + ~ i ~ ( e )  + (1 - p [ m  + 1 ] ) ~ " + ' 1 ~ ( f )  

5 p [ m  + 1 ] W m + l q f )  + (1 - p[m + l])W"+'Jqf) = W"+IJyf )  

and 

~ ~ , ~ ( e )  = min{d[m],p[m + 1 ] ~ ~ + ~ 3 ( e )  + (1 - p [ m  + 1 ] ) ~ ~ + ' "  (f )> 
2 min{d[m],p[m + 
= min{d[m], ~ ~ + l > ~ ( e ) }  2 min{d[m + 1 ] , ~ ~ + l > ~ ( e ) )  
= p+l'ye) 

+ (1 - p [ m  + 1 ] ) ~ ~ + ' > ~ ( e ) }  

since d[m] 2 d[m + 11 by hypothesis and d[m + 11 2 W " + ' > N ( e )  by Bellman's 
equation. The monotonicity is automatically true if m = N so by the induction 
principle it is true for all n. 

is increasing and W n > N ( e )  is decreasing that we may have equality up to some no 
but for R > no W n , N ( f )  > W n i N ( e ) .  By Corollary 8.5 below this means it is opti- 
mal to continue for n 5 no but for n > no it is optimal to stop as soon as possible. 

We therefore conclude that L P N ( f )  2 Wn>N(e)  for all n and since 

Proof of Theorem 8.4: The proof of (8.1) is immediate: with only one decision 
to make, a nearsighted policy is optimal. Let p be a Markovian policy in I?. If p 
chooses action u at time n while in state i .  

j € S  Lt =n, + 1 

= C ( n ,  2 ,  u)  + c Kq(n ,  U ) W , " + 1 > N ( j )  

j € S  

where we have used the Markovian nature of p and the transition mechanism. 
Hence, 

j € S  

Since 
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we have, by taking the infimum of both sides of (8.4), that 

To prove the reverse inequality let a* be the action such that 

C(n,  2 ,  a*) + c IT&, . * ) W " + l l N  ( j )  = 
jGS 

rnin { ~ ( n ,  i, a )  + C ~ i ~ ( n ,  a ) ~ " + ' > ~ ( j ) > .  
a E A ( n , i )  

j € S  

Now define a policy p,  starting with action a* in state i at time n, such that if the 
next state is j the policy p; is followed from then on. 

If W"+l>N(j) > --oo for all j then the policy p5 may be chosen such that for all 
j and E arbitrarily small 

W n t 1 , N  ( j )  5 W"+lJyj)  + E .  4 
Hence, by (8.4) 

wn>"(i) f i  = C(n, i, a*> + C ~ , ? ( n ,  a * ) ~ r ? ' > ~ ( . j )  3 

j ES 

- < C(n,  i ,  a*)  + c &(n, a * ) W n + l , N ( j )  + E .  

W"*"(i) 5 C(n, 2 ,  a*)  + c &j(n, U * ) W " + ' , N ( j )  + E. 

j t S  

Hence, by the definition of the infimum, we have 

jtS 

Now since E is arbitrary the reverse inequality follows. 

the policy p; such that 

fi.; 

Even if W " + l ~ N ( j )  = --oo for j in some set In+l then for those j E In+l pick 

WTn+'>N(j)  5 -L where L is arbitrarily large. 

Hence, by the definition of a*, 

W / y ( i )  = C(n,  i ,  a*) + c K,j(n, a * ) W / y J ( j )  
j € S  

5 C(n , i ,a*)  + c Kik(n,a*)W;?'~N(j) + c IGk.(n,a*)(-L). 

W y i )  I C(n, i ,  a * )  + c &(n, U*)W;:lJyj) 3 + c Kik(n,U*)(-L). 

WIn+1 &In+, 

Hence, 

k@In+l  &I,+, 

Since L is arbitrarily large, V V N ( i )  = --oo so the reverse inequality follows. I 
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Example 8.9 
Consider a special case where N = 50, p [ n ]  = 1 - n/(N + l), d[n] = N - n and 
F = 50. Clearly we should not park in spot 0 even if it is empty since we would 
pay a cost of 50 which is just as bad as giving up and going home. The following 
graphs of W n , N ( f )  and W n , N ( e )  are equal for n 5 no = 35,  but after that F P N ( e )  
decreases to 0 while W n i N ( f )  increases. This is just what we would expect! By 
the Bellman optimality equation we know that if it is optimal not to park in spot 
n then 

Optimal parking - (8.8) continued 

W"JV(e)  = p [ n  + I]W"fl"(e) + (1 ~ p [ n  + l])W"+',"(f) = W " J y f ) .  

On the other hand, if it is optimal to park at n, then W n i N ( e )  = d[n] < WnlN( f ) .  

Using the following program in Muthemutica we may easily solve for P V N ( e )  de- 
noted by WE[n] and W n i N ( f )  denoted by WF[n] .  

N u n  : =50 F : =50 d [n-1 =Num-n 
p [n-] =I- (n/ (Num+l) ) WF [Numl : =F WE [Numl : =d [Nun] 
WE [n-] :=WE [nl =Min [p [n+1] WE [n+l]+ (1-p [n+l] ) WF [n+ll , d [n l l  
WF [n-1 : =WF [n] =p [n+l l  WE [n+l l  + ( l - p  [ n + l l )  WF [n+11 
twe=Table [WE [n] , {n, N u n ) ]  twf =Table [WF [nl , {n, Nun>] 

3 0  ! 

Fig. 8.3 ListPlot[twe] gives the expected cost if n is empty. 

The optimal policy is to park in the first empty spot after spot 35 as can be 
seen from Figures 8.3 and 8.4. For n 5 35 we never park so the expected cost 

= Wn)N(e)  = 14.4745. 

We now establish the intuitively obvious: the Markovian policies are op- 
timal among all policies 4 E I?. The past up to time n is given by 
( (~" -1 ,  ~ " - 1 )  , Z, = i )  where x,-1 = (ZO, ~ 1 , .  . . , ~ " - 1 )  are the states entered and 
a,-l = (ao, a1,.  . . , un-l)  are the actions taken from time 0 to time n - 1. The 

+ + + 

+ 
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Fig. 8.4 ListPlot[twf] gives the expected cost if n is full 

expected cost from time n to the horizon associated with a finite horizon policy 4, 
given the past up to n, ((Z,-1,Zn-1), z, = i ) ,  is denoted by: 

The optimal cost from time n to the horizon, given the past up to n, among policies 
in I? is 

Theorem 8.10 

Proof: For n = N the proof is obvious since the myopic policy is best. Assume the 
theorem is true for k 2 n + 1. Consider any policy q5 taking action a* followed by a 
policy 4; if Xn+l = j .  Use the notation V i to denote (Q ,z~ , .  . . , ~ , - 1 ?  i )  and 

V a* to denote (ao,al,. . . ,u,-1, a*). Hence, using the development at (8.3) 



284 E l e m e n t s  of Appl ied Probabili ty 

we see 

v;qzn-l, Zn-l),i) 
= C(n, i ,u*)  + C~~,(.,U*)v~+',"((~~-l Vi,Zn-l v u * ) , j )  

2 C(n, i ,a*)  + C1(,,(71,u*)Vn+llhi((SII-1 v Z,Zn-I v a * ) , j )  

3 
j € S  

by the definition of 4; 

j € S  

since Vnfl ,N is the least possible cost 

= C(n,  i ,  a*) + 

- > min{C(n,, i ,  u )  + C ~ i j ( n ,  u ) ~ ~ + ~ > ~ ( j ) }  

- - W",N(i)  by Theorem 8.4. 

Kij(n, U*)W~+'>~(~) by hypothesis 
j € S  

a 
3 € S  

Taking the infimum over all policies in r it follows that 

Finally, since the IVlarkovian policies in r are only a subset of the policies in r, the 

One might imagine, for instance, that in the buffer control example the input 
stream is not Bernoulli so the interarrival time between queries is not geometric. 
Without the memoryless property the transitions from state to state are no longer 
Markovian! One might also imagine that it might be impossible to  change from 
rejecting queries to accepting queries in fewer than 10 time units. This delay means 
the action space depends on the actions in the past. Finally, one might imagine that 
the cost of queueing queries is dependent on the time since last taking the action 
of rejecting a query. None of these cases can be treated with the theory developed 
so far. 

On the other hand, it is not hard to see the above theory could be extended 
to these cases. If the transition to the next state is no longer Markovian then the 
transition from time period t to t + 1, given action a is taken, is of the form 

reverse inequality is automatic. I 

and the associated cost is C(t ,  Zt, Zt-1, u ) .  Moreover, if the actions available depend 
on the entire past, the action space at time t might be A(&,i&-l), but we shall 
assume for simplicity that these actions are all contained in a finite set A. As 
before, a policy 4 E @ assigns action At at time t dependent on the entire past: 

. Once a policy is given the stochastic processes, X t  and At 
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are determined, and we may try to minimize 

This can be done with backwards induction. We first generalize the problem. 
Instead of just looking at the cost from time 0 to time N we consider a whole 
sequence of minimization problems. Given the past to time n, the cost of the policy 
4 from time n to time N is 

r N  1 

The optimal cost associated with policies in CP is 

R.epeating the above arguments, we can establish Bellman’s equation in this gener- 
alized setting 

where the minimum costs beyond time n -t 1 are given by FnC’,N, 

It we can minimize withwith n=0 then we have a solution. means
no information is given.)

Clearly, if then
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and where 
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Unfortunately Bellman's equation is nearly useless in the general situation! Suppose 
we wanted to minimize some cost for the buffer control example given that we 
start with an empty queue. To begin the backward induction we have to store 
in computer memory all the values W N > N ( ? ~ , Z ~ - l )  for all the trajectories and 
actions (ZN,ZN-~) such that 0 5 ZN,YN 5 N .  This is an enormous number of 
possibilities and too much for the computer. Unless we can write down some kind 
of formula we are stuck! 

8.3 Infinite Horizon Decision Problems 

We now consider infinite horizon problems. Such problems make sense only if there 
exist policies which have a finite expected total cost. One category of infinite horizon 
problem involves discounted costs. If we suppose (rather unrealistically) that the 
interest rate T is constant, a dollar earned today will be worth (I + T )  dollars next 
year. Conversely a dollar earned next year has a present value of only a := 1/(1 + T )  

dollars today. Similarly a dollar earned t years (or periods) from now has a present 
value of only at dollars. Now suppose the cost associated with a decision a while 
in state i at time t is given by 

C ( t ,  i, a )  := &(i, a )  

This is just the present value of C(i ,  a )  dollars earned at time t .  
We shall assume that if we are in state i at any time t then we can make a decision 

a E A, where A is a finite fixed set and we jump to state j with probability K,j(a)  
which does not depend on t .  Given a policy q5 this transition kernel determines 
a Markov chain X t  and we are interested in minimizing the expected value of the 
present value of the total cost associated with policies 4 E r which satisfy 

t=O 

For simplicity we will assume in this section that IC(i,a)I 5 c for all states i and 
all actions a so all policies are in I?. 

First, we artificially impose a horizon N and as before we define Wn,N(i) to be 
the minimal cost from time n to the horizon. From the Bellman optimality equation 
we have 
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wNlN(i) = min{olNC(i, a ) } .  
a E A  

Let U n ) N ( i )  denote the future value of the minimal cost from time n to the horizon. 
Hence UniN( i )  = ~ y - ~ W ~ . ~ ( i ) .  We may, therefore, rewrite the Bellman optimality 
equation as 

uN>"(i) = min{C(i, a E A  a ) } .  (8.5) 

Let B represent the set of bounded real valued functions defined on the state 
space S.  We define a map of B into itself as follows: for f E B define Tf by 

Clearly, for n < N ,  we may write the above Bellman optimality equation as UniN = 
TUnt'iN. By recursion we have 

so U'(i)  = minaEA{C(i, a ) }  is a function in B which we can calculate. 

Lemma 8.11 
norm: IIu1I = supiEs Iu(i)l. 

Proof: Simply consider u, u E B. For any given i pick action a so that 

T is a con.traction opemtor on, B with respect to  the supremum 

T u ( i )  = C(i ,  a*)  + Q c Kij(CL*)U(j). 

i E S  

Hence, 
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By symmetry it also follows that 

so we conclude 

Next, 

We conclude that T is indeed a contraction map. I 
Clearly Wn,N = Uo,N = T N U o .  By the fixed point theorem in the Appendix 

we know T N U o  converges in the supremum norm, that is uniformly in i E S ,  as 
N + 00, to the unique fixed point of T. Denote this fixed point by W so 

Since IC(i, .)I 5 c the expected total cost of any policy is finite. Consequently 
the costs associated with any policy beyond time N are less than t for N large. 
Consequently, the optimal strategy starting from state i will have a cost no more 
than Wo>N(i )  + t since Wo>N is the minimum cost associated with the horizon N .  
But as N + GO, Wo,N( i )  = T N U o ( i )  is arbitra.rily close to W ( i )  so we conclude 
W ( i )  is the cost of the optimal strategy starting from state i .  

What is this optimal stra,tegy? 

Definition 8.12 
the state is i ,  where o(i) minimizes the right hand side of (8.7). 

Let W, represent the expected cost associated with this policy. Hence, 

The stationary, Markovian policy o takes action ~ ( i )  whenever 

Wg(i) = E, (ga tC(x t ,A t : l xn  = 2)  

= C(i ,  a ( i ) )  + E,, 

/ w  

j € S  \t=1 
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using the Markov property and changing the index of summation. But 

so Mi, satisfies 

Now define a new transformation on u E B by 

T,u(i) := C(i ,  ~ ( i ) )  + cy C Kt3 (u(z))u(,j).  

It is easy to see T, is also a contraction operator and W, is the unique fixed point. 
However, from (8.7),  

W ( i )  = C(i ,  a( i ) )  + Q c Kz3 (.(i))W(j) = T,W(i) 
3 E S  

which means W = T,W. However W, is the unique fixed point of T,. Hence 
W = W,; i.e. policy o is optimal. 

We summarize our results. 

Theorem 8.13 T h e  optimal policy cr i s  a stationary, Markovian policy which, 
when in state i ,  has associated cost W ( i )  and prescribes action ~ ( i )  where a ( i )  
minimizes  the right hand side of the Bel lman optimality equation 

Example 8.14 
Suppose we consider the buffer control problem without a horizon but with a dis- 
count factor a. Let I.Vv(x) denote the minimum cost or total delay assuming we 
start with x >_ 0 queries in the queue. The Bellman optimality equation becomes 

Buffer control - (8.7) continued 

W,(x) = min{Cx+aTo[W,](z),Cx+pM+cuT~[W,](z)} (8.8) 

where To and TI are defined in Example 8.7. 
Define an operator T on functions defined on the nonnegative integers by 

We have seen above that this is a contraction but it is not true that if u E B then 
T ( u )  E 8. For instance if u = 0 then Tu(x )  = Cx and this is not, bounded. Hence 
the above theory does not apply! 
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It is possible to construct a weaker norm to enlarge the space B so that T is still 
a contraction on t?. However we will simply change the cost function. Define 

Cx for x < xu, { Cx 5 p M  for x < xu, 
C for z 2 xu C for x 2 xu. and C(Z, 1) = 

We will assume c > M p  + Cxu. Redefine the operator T by 

Now the theory applies and limniw Tnu(x)  = WD(x). 
There is, moreover, a stationary optimal policy and this means there is a smallest 

ZR such that it is optimal to reject queries when the queue builds up to ZR queries. 
We can therefore reduce our problem to the finite state space So = {x : 0 5 x 5 ZR} 
since starting with an empty queue we will never exceed XR queries. Finally we 
remark that if xu is taken bigger than x~ then under the above optimal policy 
C(X,, 0) = CX,,  and C(X,, 1) = C X ,  + pM for all n. This means that we have 
also discovered the optimal policy for the unbounded cost problem. 

A discount factor and the equivalent interest rate focuses attention on short 
term policies. One might prefer a policy which minimizes the long run average cost. 
Consider a time homogeneous Markov decision problem. For any policy 4 ,  define 

Aq(i) = lim sup 
N-CC N + l  

A$((i) represents the average expected cost for the policy 4 starting from state i. 
Now consider the associated Markov decision problem with discount rate Q which 
has a minimum expected cost Wm(i) ,  where we replace the index CT by 01 to  remind 
us of the discount rate. W, satisfies the Bellman optimality equation 

When the discount rate a tends to 1, the short term costs become less and less 
important so it seems reasonable that the optimal decision for such a discounted 
problem should be close to the optimal decision for the long run average expected 
cost problem. 

To establish this, define the function ~ , ( i )  = W,(i) - Wcy(io) where i n  is some 
fixed state. Subtracting aWa(iO) from both sides of Bellman’s equation we get 
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Assuming rcy( i )  -+ r ( i )  for each i as a + 1, it follows by taking the limit of (8.9) 
that the limit A := lima+l(l - a)Wa(i0) exists. Moreover, 

If we have the candidates r ( i )  and A then we can find the optimal policy. 

Theorem 8.15 
all policies 6, and  all Init ial  s tates  %, 

Suppose there exists a constant  A and f u n c t i o n  r such  tha t  for 

lim E#r(XN) /N  = 0 
N--oo 

and 

(8.10) 

T h e n  the stat ionary policy $ ,which takes  the  ac t ion  min imi z ing  the above ercpression 
is such  that  

A = A$(i) = inf A$(i)  for all s tates  i .  

T h e  r ( i )  are only  determined u p  to a n  additive constant  so w e  can  f ix  r( i0)  = 0 for 
s o m e  chosen  s tate  i o .  

Proof: Let 4 represent any policy and as usual, let gt,Ai denote the history to 
time t .  Note that 

4 

and the above is an equality if a Hence,

with equality if Now since

it follows that
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with equality if 4 = $. Summing from t = 1 to N and telescoping we get 

N 

~q C c(xt-1, ~ t - 1 )  + ~ q r ( x N )  - E $ T ( x n )  2 N A  

with equality if (b = $. Adding the initial term C(i ,  Ao), if the initial state is i ,  and 
dividing by N + 1 we get 

t=l 

Ad(i) 2 A 

since by hypothesis E+r(XN) /N  i 0. Also, since we have equality if 4 = 4 it 
I 

The preceding theory calls for the construction of the constant A and the func- 
tion r'. If this can be done by directly solving equations (8.10) then the problem is 
solved. Unfortunately this is often not possible and one first tries to prove a solution 
exists. Our intuitive explanation of the theorem and equation (8.9) suggests 

follows that A, (i) = A. 

~ ( i )  = lim W,(i) - W,(io) and A = lim (1 - a)W,(io). 

To best understand when these limits exist we will restrict ourselves to studying our 
queueing example. We could formulate a general theorem based on this example. 
The key is finding an apriori bound on W,(x) - Wa(0) which is uniform in a.  
However, each case usually has its own special twist so let's be satisfied with this. 

Example 8.16 
In this example io = 0 and we know Wa(i)  2 Wa(0).  If we define 'T to be the first 
t such that X t  = 0, we can decompose the costs of the optimal policy CT as before 
and after time 'T so 

a-1 a-1 

Buffer control - (8.14) continued 

Hence, since Q 5 1 and C(z, 0) arid C ( x ,  1) positive and less than Cz+pM we have 

T-1  

W a ( X )  -W,(O) F ( C + P M ) E U C X i  -%( l -aT )Wa(0 )  
t = O  
T-1  

Let policy v be the policy of always accepting a query. Under the policy u the 
process Xt  is stochastically larger than under 0. To show this just define a joint 
transition kernel for a pair of chains (x, y') whose marginal distributions arc those 
of X t  under the policy CT and v respectively. The two chains will be forced to stick 
together as much as possible but otherwise the chain Y' jumps to  the right of Y .  
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Now define r to be the first time t when Yt = 0 and let r’ be the first time q‘ 
hits 0. Clearly, 

E,[T] = E(,,,)T 5 E(,,,)T’ = E,T. 

Similarly, 

t =o t=O 

r‘-1 7-1 

t=O t = O  

We conclude that 
T - 1  

wCy(x) - Wa(0) 5 (C + p M ) f ( n - )  where f(z) := E , [ x  X + ( X O  = 4. 
t=O 

f ( z )  satisfies f ( 0 )  = 0 and by the Markov property 

f(.) = 5 + 4 1  - P ) f ( Z  - 1) + (Pq + (1 - P)(l - 4 ) ) f ( z )  + P ( 1  - d f ( z  + 1). 

By inspection the unique solution to the above is 

41 - P )  - P ( 1  - 4 )  %2 + 4 ( 1  - P )  + P(1 - 4 )  2,  

2 4(1 - P )  - P ( 1  - 4 )  
f ( n - 1  = 

Hence, uniformly in a,  

0 I W n ( X )  - Wa(0) 5 M ( z )  = ( C + p M ) f ( x ) .  

Since W c y ( x )  - W,(O) is bounded for each 5,  we may pick a subsequence of a’s such 
that WCy(x)  - Wa(0) converges for each 2 .  The technique to do this is the Cauchy 
diagonalization method. Start with 2 = 1. Pick a convergent subsequence a1, 

for n = 1,.  . . for Wcy(l) - Wa(0) using the Bolzano-Weierstrass theorem. Of this 
subsequence pick a subsequence 0 1 2 ~  for n = 1, . . . where W, (2) - W, (0) converges 
and on and on. Now consider the subsequence arm. On this subsequence all the 
I/vn(x) - W a ( 0 )  converge to a finite limit which we call r (z ) .  Note that W,(x) is 
increasing by Example 8.14. These properties are preserved in the limit as N 4 1 
so r(x) is increasing and by construction ~ ( x )  5 (C + p M ) f ( z ) .  

Clearly, in this case, the right hand side of (8.9) converges to 

inin{Cz C K ~ ~ ( ~ ) T ( Y ) ,  cx + PM + C 1(~~(1)r(~)} 
Y Y 

since the kernel K admits jumps to at most two states. The left hand side of (8.9) 
must, therefore, also converge so (1 - a)W,(iO) has a limit which we call A. The 
key to this calculation is the apriori bound on W,(z) - Wa(0) which is uniform in 
N (but not necessarily in x). 
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To apply Theorem 8.15 we need only check 

for any policy 4. Since r ( x )  is increasing, it is clear it suffices to show 

lim E,,[T(XN)/NIX~ = X] = O or Iini E,[M(XN)/NiXo = X] = 0. 
N-03 N-03 

Under the stationary policy u,  the Markov chain is positive recurrent so when 
N is big the distribution of X N  tends to the stationary distribution T given in 
Example 5.28 on the discrete MIMI1 queue. The tail of the distribution 7r decreases 
exponentially like p z  N (((1 - q)p)/((l - p ) q ) ) " .  Hence, if K is the transition kernel 
of an MIMII queue, 

by dominated convergence since K&/7r(y) 4 1/7r(x) by (5.7) and the quadratic 
function M ( z )  is integrable with respect to T which has an exponential tail. It 
follows that limNim E+[M(XN)/N\X~ = x] = 0. 

We have therefore established the conditions of Theorem 8.15, so there exists a 
stationary policy $ which minimizes 

among all policies 4. As before there must be a threshold ZR where it is optimal to 
drop queries. 

This 
threshold may make some kind of sense for suggesting an optimal buffer size. The 
long run expected average delay is just C times the expected queue size plus M p  
times the probability the queue size is XR. The nearest neighbor transition rates 
are approximately p = X / q  for an increase of 1 and q = p / q  for a decrease of 1 
if we take a time unit to be q = C.  The steady state probability the unbounded 
queue holds x queries is approximately 7rn(x) = (1 - p)p" where p = A/p  as seen 
in Example 5.28. Since the MlMll  queue is time reversible the steady state for the 
threshold limited queue is given by 

We can calculate this optimal threshold directly using Theorem 5.18. 
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ConsequentIy the long run expected average delay is 

X R  

c C Z T R ( 5 )  + P M " R ( Z R )  
x=o 

Also, C ~ ~ o ~ ( l  - p)p" = "(1 - Z R ~ ~ ~ - ~  + (ZR - 1 ) p " R ) .  
1-P  

Typically M is given by a round trip time for a query which might be a million 
times greater than the time to service a query. Hence M = 1061/q so pM/C = 

106X/p. Therefore we want to minimize 

For large ZR the first term is practically invariant and equal to p/(l  - p)  so it 
is essentially optimal to chose ZR to make these two terms approximately equal. 
Therefore take M p106(1 - p)p"R; i.e. p"R M 10W6/(1 - p)'. 

8.4 Continuous Time Decision Problems 

Let us turn to approximating these discrete decision problems by cont,inuous time 
problems. Suppose that units of time are measured in nanoseconds and that the 
discount rate per time unit is 1 - P / T ~ .  We suppose that the cost of an action a 
in state i is C(i ,  u ) / q  and that,  to first order, the transition kernel is I + G(a) /q .  
Substituting into the Bellman optimality equation we see that to first order the 
minimum cost satisfies 

Hence, eliminating higher order terms and multiplying through by q we get 

pw(i) = min{C(i, a )  + C ~ i j ( a ) ~ ( j ) } .  (8.11) 
U E A  

j € S  

Remark that the optimal policy is stationary and so once we enter state i the same 
action is taken until a jump occurs. 

Define q = maxi,,(q+,(a) = -Gii(a)} and define the transition kernel of the 
Markov process with uniform jump rate q:  
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where Kij(n) = Gij(a)/qi(a) if i # j and Kii(a) = 0. Now rewriting (8.11) we see 

Dividing by (p + q )  we get 

(8.12) 

where cy := q / ( P  + 4). Hence, we have replaced the continuous time problem by 
another discrete time problem. 

To better understand equation (8.121 consider the continuous time optimization 
problem that approximates the original discrete problem. Let Y, denote a uni- 
formized Markov process with constant jump rate q and transition kernel k. & 
closely approximates the original discrete time chain on the nanoseconds. The cost 
associated with an action a taken at time t is 

so as 7 + 00 the expected discounted cost of a policy 4 starting from state i is 

W++(i) Eq 1:” exp(-Pt)C(Yt,Atjdt. 

This cost can be broken down into the costs incurred between jumps. Let T ,  denote 
the time of the nfh nonfictitious jump; that is a jump from one state to a different 
state. Let rO = 0. Assuming the policy 4 is stationary in the sense that the action 
remains the same until a jump, it follows that 

00 

W,(i) = E+ exp(-/%,) /7n+1 exp(-Pt)C(Y,,Al)dt 
n = O  T n  

since the jump times for the uniformized Markov chain occur after i.i.d. exponential 
times independent of the state of the chain. Letting a = q / ( q  + p)  and Mn, = Y,, 
be the state of the jump chain, we see 
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The minimum cost W, for this problem, given by the optimal policy D ,  satisfies the 
Bellman optimality equation: 

This is precisely equation (8.12). 
The uniformized Markov process yt is equal to the Markov process X t ,  having 

generator G, except for the introduction of fictitious jumps (from a state to itself) 
which have no associated cost. We have really shown equation (8.12) is a Bellman 
optimality equation for the continuous time minimization problem with costs: 

Example 8.17 
Consider the cost associated with controlling an MIMI1 queue with arrival rate X 
and service rate p, when our control consists of accepting or rejecting queries. The 
delay of queueing x queries is C x  per unit time and cost of dropping a query is a 
delay of M .  This problem approximates the discrete time problem discussed before 
when the arrival rate at the queue was p = X / I I  and the service rate was y = p/v .  
The holding cost per nanosecond for x queries is Cx/q  and the expected payment 
for accepting a query is pM = XM/q. The total event rate v = X + IL and the 
effective discount rate is Q = (A + p) / (X  + p + p) .  

For action 0, when we accept queries, the kernel k z , J + l ( 0 )  = X/(X + p )  and 
kr,z-l(0) = p/(X + p ) ,  except at T = 0 when k o o ( 0 )  = p/(X + p) .  For action 1 
when queries are rejected kzT(l) = X/(X + p) and kz,z-l(l) = p/(X + p ) ,  except 
at x = 0 when KOo(1) = 1. 

Buffer control - (8.16) continued 

- 

The Bellman optimality equation (8.12) gives 

where RO and R1 are 

where p(z) = p if z > 0 and p ( 0 )  = 0. Once again the optimal policy is to start 
rejecting queries when the queue reaches some threshold. 
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8.5 Optimal Stopping 

There is another natural class of infinite horizon problems. Consider a Markov 
decision problem such that for all t ,  the action set is A = {s, c} where s means stop 
and c means continue. If at time t we are in state i when the action s is taken, we 
pay a stopping cost of C(t ,  i, s) and jump with probability 1 to a terminal absorbing 
state A, where we stay paying no further costs. On the other hand, if the action c is 
taken, we pay a cost C(t, i ,  c)  and then make a transition t o  state j with probability 
Kij(t) .  Hence, we continue to incur (possibly negative) costs if we do not stop. 
Such Markov decision problems are called optimal stopping problems. 

A policy for an optimal stopping problem is simply a stopping time 7 which 
specifies the first time the action of stopping was taken. Note that for any stopping 
time r, 

because any action is chosen according to the past. Denote the family of stopping 
times by 7. The cost associated with a stopping time 7 is 

t=O 

where we assume C(7, X,, s )  = 0 if r = 00. 

V,n (6- 1 1 i;, - 1 , i 1 

I 4 + + 
= E C C ( t , X , , c )  +C(T,X, ,S) IX , - -~  =x,-i,A,-1 =a',-l,X, = i  [::: 

represents the cost beyond time n for the stopping policy 7. Unless i = A it is 
clear that r 2 n on the set {X, = i}. By hypothesis, V ? ( Z n - l ,  & - 1 ,  A) = 0 which 
means of coursc that r < n. 

Our goal is to find the stopping time which minimizes 

1 V T ( i ) ~ V , ( z ) = E  0 '  C C ( t , X , , c ) + C ( r , X , , s ) I X O = i  . [::: 
In order that the expectation exists we will restrict attention to stopping times 
7 E r such that 

E ~ c ( t , X ~ , c ) + + c ( r , X , , ~ ) + / X ' o = ~  < m. 

The policy of stopping immediately is clearly in I?. Moreover, any practical stopping 
time will be uniformly bounded (as Keynes said "In the long run, we are a11 dead.") 

[::i 1 
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so let P i N  represent the family of stopping times T E r such that n 5 T 5 N and 
let 7" = UG=, 'PN. We will therefore consider 

Example 8.18 Pathological Cases - (8.6) continued Consider a gamble 
based on a fair coin. If the coin shows heads yott win and tails YOU lose. The win- 
ner takes all. Suppose your opponent will accept any bet. You might consider the 
following strategy. Bet one dollar. If you win, stop but if you lose, bet two dollars. 
If you win, stop but if you lose, bet four dollars. Keep doubling your bet until you 
finally win. Let T be the number of tosses until a win. Let X,, n = 1 , 2 , .  . ., be i.i.d. 
random variables with equal probabilities of getting -1 or 1. X ,  is Markov chain 
on the state space {-1, l} determined by the action c to keep playing. Take X o  = 0 
and head is represented by the state -1. Let C(n,  X,, c )  = C(n,  X,, s )  = X,2". 
The cost of the strategy of stopping at the first win is 

7 Ex,,, = (1 + 2 + . ' ' + 27-1) - 2' = -1 
n = O  

so this looks like a sure way to  make a buck. This strategy is however ruled out 
because 

1 
E C(X,2") '  = E(2' - 1) = x 2 k F  - 1 = CO. 

Y 

n=O k=O 

Our method is to approximate the infinite horizon problem with a finite horizon 
problem. First we define 

+ Vn(Zn-l,Zn-l)z) = inf V~(Zn-~,u,-1)i) 
T E T T "  

which represents the minimum expected cost of continuing beyond time n. 

Theorem 8.19 
with the optimal finite horizon Marlcovian policy pn ,N  E 

The expected cost from time n to the horizon N associated 
given gn-l = 

4 
+ 

4 

~ ~ - 1 ,  An-1 = an-l and X ,  = i, i s  

1 pn"- l  

W"'N(i)  = E c ( t , x t , C )  + C ( p n ' N , X p n , ~ , S ) I X ,  = 2 . [ t=n 

Then  

Vn(Znn-1, &-l, i )  = Wn( i )  where Wn( i )  = lim WnlN(i); 
N-IX 
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that i s  the minimum cost i s  the limit of the minimum costs associated with the 
finite horizon Markovian stopping times. Moreover, the Bellman optimality equation 
holds: 

wn(i) = min{C(n, i ,  s ) ,  C(n ,  i, c) + C ~ ~ ~ ( c ,  n)wn+l(j)). (8.13) 
i € S  

Proof: Clearly, WniN(i)  is a decreasing sequence as N increases since the policies 
in In>N are in In,N+" so the limit 

exists. Obviously 

We therefore have 

+ W.(i) 2 vn(z,-l,un-l,i) 

Moreover, since Wn>"(i) is the optimal cost for the finite horizon problem, it satisfies 
the Bellman optimality equation 

~ ~ > ~ ( i )  = m i n ~ ~ ( n , i , s ) , ~ ( n , i , c )  + E ~ ~ ~ ( c , n ) ~ ~

W N J y i )  = C ( N ,  i, s ) .  
3 es 

(8.14) 

It follows by the Monotone Convergence Theorem that by letting N + 00 in (8.14) 
we get 

wn(i) = min{C(n, i ,  s ) ,  ~ ( n ,  i ,  c> + C ~ , , ( n ) ~ ~ + ' ( j ) ) .  
3ES 

The main thing left to show now is that Wn(i)  5 Vn(Zn-l,Zn-l,i) since the 
reverse inequality is automatic as remarked above. If Vn(lC;l-l, a,-,, i )  > -cc then 
by definition there exists a stopping time r in In.N such that 

E C C ( t , X t , c ) + C ( . T , X , , s ) l ~ n - I , X n = i  5 V n ( & - i , & - i , i ) + ~ .  

However the optimal policy for minimizing the left hand side above is Markovian 
so W n ( i )  5 Vn(Znn-l, i )  + c and the result follows. 

If Vn(Zn-l,Zn-l,i) = -a then by definition there exists a stopping time T in 
such that 

[::: 1 
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where L is arbitrarily large. However the optimal policy for minimizing the left 
hand side above is Markovian so W n ( i )  5 -L for all L. It follows that Wn( i )  = 

+ 
--oo = Vn'(2,-1,Zin-1,i). I 

Example 8.20 
Suppose there is only action c at time t = 0 and suppose Ko,,(c, 0) = (1O6n(n+l))-' 
for n. = 1 , 2 , .  . . and Ko,o(c, 0) = 1 - l op6 .  Moreover suppose N = 1, C(0,0,  s )  = 

-10') C(O,O,c) = 0, C(l ,n,s)  = -n for n = 0 , 1 , 2 , .  . .. In this case we can play 
and in fact the optimal strategy is to do so because W'(0) = -m. This is a bit 
crazy because we forgo one hundred million and have too a high probability of get- 
t8ing nothing in return. In real life we would take the one hundred million because 
we would never trust a game that promises a gain (negative cost) of infinity. This 
shows the limitations of measuring optimality only in terms of expectation. 

Pathological Cases - (8.18) continued 

We now turn to the optimal strategy. Let p n , N ( i )  E be the optimal 
Markovian stopping time starting in state i at time n if the horizon is N .  Naturally, 

Define the policy 

p n ( i )  = min{m : n 5 m, W"(X,) 2 C(m, X,, s )  j .  

For N > m, W k , N ( i )  J, W k ( i )  for all k 5 'm so necessarily pn(i)  2 p n i N ( i ) .  To be 
more precise 

Proposition 8.21 p.">"(i) pLn( i ) .  

Proof: On the set { p L n ( i )  = m}, W k ( X , )  < C ( k , X k ,  s )  for k = 0 , 1 , .  . . m - 1 and 
Wm(X,)  2 C ( m ,  X,, s ) .  Consequently, for all N sufficiently large, w ' J ( x ~ )  < 
C ( k ,  X k ,  s) for k = 0 , 1 , .  . . m-1 and W"iN(Xm)  2 C(m, X,, s) on the set {p " ( i )  = 

m}. Consequently for N sufficiently large pLn iN( i )  = m on the set { p n ( i )  = m). 
Similarly for N sufficiently large ~ , ) ~ ( i . )  > m, on the set {p" ( i )  > m}. 

I 

The policy pn is only useful if it is almost surely finite. 

Theorem 8.22 If, s tart ing from a n y  s tate  i a t  a n y  t i m e  t ,  C( t ,  i, s ) -  2 Lo an,d 

C ( N ,  X N ,  s)', N = t , t  + 1,. . . are un i formly  integrable (8.15) 

(or we could just a s s u m e  h0 5 C( t ,  i ,  s )  5 LO for all t and i) and i f  

/ N  \ 

(8.16) 
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and for all B 

N 
lim P(C C(t ,  X t ,  c )  < B )  = o for any starting state, (8.17) 

N - w  
t=O 

then P(pn  = co) = 0.  Moreover Wn( i )  i s  the expected cost associated with p n  and 
Wn( i )  is the unique solution to  the Bellman optirnality equation (8.13) which is 
uniformly bounded below in n and i E S .  

Proof: 
First, 

r N-1 1 

Therefore, taking the limit inferior as N + 00 and using (8.16), 

r N-1 1 

Let s n , N  = xEn ~ ( t ,  xt, c) so for any large B 

Next, 
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Since S n , ~  = SO,M -  SO,^-^ we see 

and both the terms on the right have an expectation less than infinity by hypothesis. 
Consequently E (infM Sn,n/l)- < 03. Using Condition (8.17), P ( S n , ~ - l  5 B )  + 0 
as N + m. Hence, using Lemma 9.4, 

lim E(x{pn" = N }  n {Sn,N-l 5 B} inf S n , ~ )  = 0. 
N - i w  M 

Therefore, by (8.19), 

Now as B -+ 00 the term BP(pn = 00) tends to infinity if P(pn = m) > 0 and 
this implies WniN(i)  = 00. We know this is false since Wn,N( i )  5 C(n,i, s) so we 
conclude P(pn = m) = 0. 

Next, let Vn( i )  be another finite solution to the Bellman optimality equation 
(8.13) which is bounded below by La uniformly in n and i E S .  Define the policy 

Using backwards induction from a time horizon N we see Vn( i )  is the cost associated 
with this stopping time if the cost of stopping in state j at the horizon time N is 
V N ( j ) .  That is, 

(8.20) 

Because of (8.13), V N ( j )  5 C ( N , j , s )  so necessarily Vn( i )  5 W'L)N(i). Since 
N is arbitrary, we conclude Vn( i )  5 Wn(i) .  Now we need to prove the reverse 
inequality. 

If we now repeat the above argument and use the hypothesis that V N ( X , )  2 
La we conclude P ( P  = m) = 0. Therefore, P ( P  2 N )  --f 0. We want to 
replace V N ( X , )  by C ( N , X N , S )  in (8.20). We know V N ( X , )  5 C ( N , X N , S )  
therefore the difference between the two is less than the maximum possible value of 
C ( N ,  X N ,  s) minus the minimum possible value of V N ( X ~ ) ;  that, is C ( N ,  X N ,  s)+ - 
L2. However, by hypothesis 8.15, the sequence X N  = C ( N ,  X N ,  s)' - La indexed 
by N is uniformly integrable. Hence, again using Lemma 9.4, 

I B'& V N - 1 

Vn( i )  = E C C ( t , X t , c )  + E [x{V  < N } C ( O n , X p , ~ ) ]  I t=n 

+E [ X W  2 N ) V N ( X N ) ] .  

- 
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Replacing VFN(X,) by C ( N ,  X N ,  s )  in (8.20) we get 

1 BnVN-l  

V"( i )  2 E [ C(t ,  X t ,  c) + E [x{O" < N } C ( V ,  X p ,  s)] 
t=71 

4-E [x{en 2 N } C ( N ,  XN, S ) ]  - drv 

Next WniN(i) is the optimal optimal cost for the finite horizon optimal stopping 
problem with a cost o f  stopping in state j at the horizon equal to C ( N ,  j ,  s). Hence, 
Vn( i )  2 - d~ so letting N i 03 we get Vn( i )  2 Wn(i) .  This proves the 
reverse inequality. 

Finally, k t  V7'(i) be the expected cost associated with the policy p n .  Note that 

P " ( % ) - l  

V"(i) = E c C ( i , X b , c )  +C( . r , .Xp( , ) , s ) /X ,  = i 
t=71 [ 1 

uniformly in n and i E S because of (8.16). Clearly Vn( i )  satisfies the Bellman 
optimality equa,tion so by uniqueness we have Vn( i )  = Wn(i )  so the policy pn does 

I 

Corollary 8.23 I n  addition to the hypotheses of Theorem 8.22 we assume the 
costs are time homogeneous so C( t ,  i ,  c )  = C(i ,  c )  and C( t ,  i ,  s )  = C(i ,  s )  and also 
that the transition kernel is t ime homogeneous so Kij  = K i j ( c )  = K i j ( c , n ) .  Then  
there exists a n  optimal Markovian stopping t ime p. I t  follows that W ( i )  = W,'(i) = 

Wn( i )  and W ( i )  satisfies 

indeed yield the minimal expected cost. 

and it is optirnnl to stop at state i i f  W ( i )  = C(i ,  s). 

Moreover, if we define the transformation R of a bounded function u on  S b y  

Ru(i) := rnin{C(i, s), C(i ,  c) + c K i j U ( j ) }  

j € S  

then i f  uo(i) = C ( i , s ) ,  RNuo(i) = WoiN(i) + Wo(i )  = W ( i )  as N + 00. Finally 
W(i) is the unique fixed point of R which i s  uniformly bounded below in i .  

Proof: If future costs are independent of time, then the Markovian nature of 
the optimal solution means that W" ( i )  is time independent and therefore equal 
to W(i). It is easy to  check that RNuo(i) satisfies Bellman's optimality equation 
for the stopping problem with horizon N and consequently, is the minimal cost 
and therefore equals W')N(i) .  The transformation R is equivalent to backward 
induction by one step! I 



Markov Decision Theory 305 

Consider a positive recurrent, aperiodic Markov chain X ,  with a stationary 
probability distribution 7r .  Further, suppose the conditional distribution K,, = 

P(X1 = ~1x0 = z) is stochastically increasing in 2. This just means that for any 
t ,  P(X1 > t(XO = x) is an increasing function of 2 .  Now let 4 be a positive, 
nondecreasing function on (-00, 00) and let us consider the optimal stopping rule 
r which minimizes 

t=O 

In t-his case the t,erminal cost is C ( x ,  s) = 0 and C(2,  c) = 4(x) -X .  Clearly if X = 0 
then r = 0 since in this case the minimum is 0. We suppose, henceforth, that X > 0 
and we proceed by checking the conditions of Corollary 8.23. 

We may apply Theorem 5.18 (even if E , ~ ( X O )  = +m.): 

1 
lim S, = E, ( ~ ( X O )  - A) with probability one where S, = - ( 4 ( X t )  - A) n-oo 

t=O 

Therefore, if we pick X < 1 := EF,4(X0) we can be sure limn-mS, = 00 with 
probability one. Consequently, we can check both conditions in Corollary 8.22. 

In particular, to check Condition 8.16 note that because SN + 00, infN SN > 
-cm with probability one. However this doesn’t quite prove E(infNSN)- < 00. 
Note that ( X N , S N )  is a transient Markov chain (actually, it’s called a Markov 
additive process) and infN SN is bounded below by -A times the number of visits 
by ( X N ,  S N )  to the set where {z, s) : s < 0). One can bound this expectation using 
Lyapounov function techniques. Alternatively, to calculate this expected value it 
suffices to estimate P(SN < 0). Calculating the probability of large deviations away 
from the mean is another entire subject which we can’t include here (see Dembo 
and Zeitouni). 

On the contrary, if X 2 1 then 

This is obvious by the law of large numbers if X > x. The more subtle case of X = x 
follows from the law of the iterated logarithm which we will not discuss here. 

We assume, henceforth, that X < x so W ( z )  z W(z,X) > --oo. Since the cost 
structure and transition rates are independent of time we may apply Corollary 8.23. 
Hence, there exists a Markovian stopping time p which minimizes the expected loss. 
Moreover, this minimum expected loss, ~ Y ( I I : ) ,  incurred starting from II: is the limit 
of the policy iteration procedure RNuo(z) where ug(z) = C(z, s )  = 0 and 

~ u ( z )  := minfo, - x + C ~ , , u ( y ) ) .  
Y 
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Certainly ug is nondecreasing. Suppose now u is any nondecreasing function. 
It is easy to  see that Ru is also nondecreasing. First, 4 is nondecreasing in x by 
hypothesis. Also, E(u(X1)IXo = x) is nondecreasing in x by Exercise 3.7 since 
by hypothesis the conditional distribution of X I  given Xo = x is stochastically 
increasing in x. Hence the two parts of Ru are increasing. Hence, all the iterates 
RNuo are increasing in x, so W(x,A) is also. In fact, if 4 is strictly increasing at 
some point x then we also have that 

is also strictly increasing in 2 at  this point. 
Clearly, W(x,A) I 0 since one policy is to stop immediately and this yields a 

cost of 0. If W is strictly negative, however, it would never be optimal to stop and 
we have ruled this out by picking X < x. We conclude there must exist a smallest 
t := t ( A )  such that W(t) = 0 and since W(x) is increasing in x it follows that 
W(x) = 0 for all II: 2 l. Consequently, the optimal policy is to stop as soon as 
X ,  2 e. At this point t 

~ ( e )  = 0 I 4(!) - + C KeyW(y). 
2/ 

If, moreover, 4 is strictly increasing at l, it follows that 

for x > l. In other words, there is no indifference region and the optimal stopping 
level is unique; it is optimal to stop at or above the level t and to continue below 
this level. 

We may also investigate W(x) as a function of A and we denote it by W ( z ,  A). 
Suppose u(x ,X)  is a function which is concave and decreasing in X for each fixed 
x. Consider the new function Ru. By inspection this function is also concave 
and decreasing in A. Wow, since for any fixed X the iterates RNuo converge to 
W(x, A) and since uo = 0 is both concave and decreasing (where decreasing means 
nonincreasing), we conclude that for any fixed z, W(z,A) is concave (and hence 
continuous) and decreasing in A. It also follows that for any fixed x, W(x,A) is a 
continuous, decreasing function in X which decreases to  -cx as X T 1. 

As a function of A. the function 

is convex and p ( x ,  0) = $(x). Since W(y, A) + --oo as X x so does p ( x ,  A). For 
any L we can therefore solve the equation p(L ,  X(L)) = 0 with 0 < X(L) < x. Next, 
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by the Bellman optimality equation 

Moreover it is optimal to stop when W ( z ,  X(L)) = 0. Since W ( x ,  X(L)) is increasing 
in z this will be the case when 5 2 l! for some L. 

Clearly .t 5 L because W(L,X(L) )  = 0. But .t can’t be strictly less than L 
because then 

or 

This can’t be because 4(z) +xu K,,W(y, X(L)) is an increasing function of z which 
is strictly increasing at L if q5(x) is strictly increasing at L.  

We summarize the above results: 

Proposition 8.24 
x 2 L and W ( x , X ( L ) )  < 0 for x < L. 

For any L we can pick X(L) < so that W(z ,X(L) )  = 0 for 

Theorem 8.25 Let X,n be a positive recurrent, aperiodic Marlcov chain such thast 
the conditional distribution in y of Kz ,  = P(X1 = ylX0 = x) is stochastically in- 
creasing in x. Let 4 be a positive, nondecreasing function which is strictly increasing 
at some level L.  Suppose that E 0 r ~  = y, then among all stopping times r such that 
Eor 2 y, the stopping time T L  is the one that minimizes 

r-1 

t=O 

Proof: Consider the unconstrained optimal stopping problem of minimizing the 
sum 

7 - 1  7 - 1  

over stopping times r .  By the above theory, the optimal time is precisely T L .  
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Consequently, for any stopping time r such that Eor 2 y we have 

T L - 1  TL-1 

Eo c 4(&) - yX(L) = EO c 4 ( X t )  - EO7L ' X(L) 
t = O  t=O 

T L - 1  

t =o 
7-1 

5 Eo c ( 4 ( X L )  ~ X(L)) since r~ minimizes the above, 
t=O 

since Eor 2 y. Comparing the first and last members of this string of inequalities 
shows that for any stopping time 7 such that Eor 2 y, 

T L - 1  T-I 

that is TL solves the constrained optimization problem! I 

8.6 Quality Control - a Worst Case Analysis 

A practicing quality control engineer usually desires to minimize the average off- 
target run length subject to the constraint that the average on-target run length 
is greater than some acceptable minimum. The Cusum procedure was invented 
by Page in 1954 and engineers have assumed since the sixties that this procedure 
should do very well in detecting a sudden change in mean. It was a pleasant surprise 
that the Cusum was finally shown to be optimal in 1986 (see Moustakides (1986)). 

The Cusum is optimal but only in a worst case sense which must be made 
precise. We shall assume the quality variables V1, Vz, . . . are measured sequentially 
one at a time. LJntil the change point at time m, the quality variables V1,. . . , Vm-l 
have p.m.f. f ~ ,  while after the change point the quality variables V,, Vm+l, . . . have 
p.m.f. f l .  These distributions are assumed known. For instance, the on-target 
distribution fo might be normal with mean p and standard deviation is, while the 
off-target distribution f l  might also be normal with mean p + So and standard 
deviation 0.  

Denote the joint distribution of the above change point variables by P, and let 
Em denote the associated expectation. If there is no change point, all the variables 
have p.m.f. fo and we denote the product probability and associated expectation by 
P, and E,. Let F, denote the a-algebra generated by the observations V1,. . . , V,. 
A stopping time 'T relative to the family of a-algebras Fn is such that 'T = n can be 
determined by cn = (VI, V,, . . . , Vn). For such a stopping time we can define the 
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worst case off-target run length given the past before the change point at time m 
as follows: 

(8.21) 

Since the change point can occur at any point in time m, we again consider the 
worst case and define 

D ( r )  = sup Dm(r ) .  
m > l  

(8.22) 

Page’s procedure is optimal in the sense that it has the best worst case behavior! 
This obviously appeals to the most pessimistic engineers. 

Theorem 8.26 Page’s procedure, which is  of ten called the Cusum, minimizes  
D ( T )  among all stopping times r whose on-target run length, Ewr, i s  greater than  
7. 

The first task is to state exactly what we mean by Page’s procedure. First define 
the likelihood ratio l ( z )  = f l ( z ) / f o ( z )  and then, by recursion, define 

Lo = 0, L, = max{L,-l, l}t(V,) for n 2 1. 

Page’s stopping time is defined to be 

P := minfn 2 1 : L,  2 exp(h)}. 

We will assume h > 0 although in general it could be negative. 
This doesn’t look much like the Cusum we have discussed in previous chap- 

ters. To make the connection we first define T, := max{L,, 1). Note that 
T, = max{T,-ll(V,),l}. Note that if h > 0, Page’s stopping time is precisely 
the first time T, crosses the level exp(h) since T,, = L, if L ,  > 1. Now define 
C, = log(T,) and let Y, = log(l(Vn)). It follows that 

Co = 0, C, = max{C,-I+ Y,, O}. 

In other words, Page’s stopping time is min{n 2 1 : C, 2 h }  and this is closer to 
the definition of the Cusum we have seen before. 

To complete the connection let us try a special case. Suppose f o  is a discrete 
normal p.m.f. with mean po and variance 02. This just means the continuous 
normal density is discretized and taken as a p.m.f. at some small scale. Suppose f l  

is a discrete normal p.m.f. with mean > po and variance 02.  
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This means that, up to a constant factor, 

Po + Pl Y, = v, - ~ 

2 ‘  
Taking k = (p.0 + p1)/2 as the anchor value we see the Ciisum is defined by 

Co = 0, C, = max{C,-, + V, - k ,  0) 

and Page’s stopping time is defined as the first time C, 2 H where 

The level H is now determined by the average on-target run length as was discussed 
in Chapter 5 .  Besides the fact that the Cusum is optimal, we now see that when 
detecting a change in mean of a normal distribution, the optimal anchor value is 
exactly half-way between the on and off-target means! 

We now work our way up to a proof of Theorem 8.26. First we need some 
technical lemmas. 

Lemma 8.27 
is a nondecreasing function of T,. Also, T, can be written as 

For any n > m 2 1 and for  fixed {Vm+l,.  . . , V,}, the quantity L ,  

,,+I n 

(8.23) 
3=1 k = j  

where we define nIk+l . = 1 and [r]+ = max{O,r}. 

Proof: Both the above statements are proved by induction. First remark that by 
definition L, = max{L,-1,l}!(V,) = T,-l!(V,) so L, is a nondecreasing function 
of Tn-l. Next, again by definition, 

k 

L,  = max{L,-1,l}l(V,) = max{T,-2!(V,_1), l}!(V,). 

Again, for fixed values of Vn-l, V,, we see L, is a nondecreasing function of T,-2 

since the function max{., l} is nondecreasing. Iterating in this way we see why L ,  
is a nondecreasing function of T, and we can see how to prove it using induction. 

The second statement follows in a similar way: 

T, = max{L,, l} = L,  + [I - L,]’ = max{L,-1,I}l(V,) + [I - L,]’ 
- - (L,-1 + [I- L,_l]+) qv,) + [ l ~  L,]+ 

n t l  n 

by iteration. I 
In the event rp 2 m, the above lemma shows L, is a nondecreasing function 

of T,-1 for R = m, m + I , .  . . given a fixed sequence V,, Vm+l,. . . This means 
that to maximize the time until Page’s stopping time exceeds the level exp(h) we 
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should have Tm-l = 1; that is Cm-l = 0. This makes sense since. in this case, 
the random walk C, has to climb the maximum distance h. This means, moreover, 
that D m ( r P )  = E " ( T ~ )  for any m since the worst place the Cusum Lm-l can be if 
the disruption occurs at time m is less than 1 (Tm-l = 1 and Cwz-l = 0). 

Lemma 8.28 For a n y  s t o p p i n g  t i m e  r 

k=O m=l 

where Brn(7) := E,([T - m + l]+l&-i). 

Proof: An event E in 3 k P 1  may be represented by a function e(V1,.  . . , I T k - i ) .  

Consequently, for k > m 

For any stopping time T ,  the event {T 2 k }  is in F k - 1  so using the above we 
have 

w 

k = m  
M k-1 
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Hence, for a.ny stopping time 7 ,  

00 

Em c ([l - Lm-1]+x{T 2 m)Bm(T)) 
m=1 

Lemma 8.29 rp minimizes the following cost 

(8.25) 

subject to the constru,int that E,r 2 y and moreover the cost associated with rp is 

) Em (gmax{Lk, 11 - -r’c[1 - &I+ 
r-1 

k=O 

ze7-0. 

Proof: Recall that if C, = log(T,), it follows that Co = 0, C, = max{Cn-l +Y,, 0) 
where Y, = log(t(Vn)). Note that because the log function is strictly concave, 

= log(1) = 0. 

Hence, the walk C, has steps with mean less than zero so the Markov chain 
C, = log(T,) is positive recurrent to zero. Hence, the Markov chain T k  is posi- 
tive recurrent. Since thc chain LI, equals TI, at  least when L k  > 1, it follows that 
Lk is also positive rccurrent since this is a class property. 

The function Inax{., l} is increasing as is the function -[1-.]+. Therefore, since 
the distribution of LI, : max{Lk-1, l}!(Vk), given L k - 1  = z, is clearly stochasti- 
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cally increasing in 5 ,  it follows by Theorem 8.25 that the stopping time r p  mini- 
mizes the cost in (8.25) subject to the constraint that ,907 > y. Moreover, since 
Bm(rP) = Eo(rP) on the event (7‘ 2 rn; L,-l 5 l}, using the equality (8.24) we 
have 

k=O k=O 

which means the cost in (8.25) has a minimum of 0 when the stopping time is rp, 

Proof of Theorem 8.26: Suppose h > 0 is such that E x r P  = y but suppose 
there exists another stopping time p such that E,p 2 y and D ( p )  < D ( r p ) .  It 
follows that on the event L,-1 5 1 that, for all disruption times m, 

If B,(p) < EO(rp) then again by the equality (8.24) we have 

/0-1 0- 1 \ 

\k=O k=O 

m = l  k=O 

oc. P- 1 

= YE, c (11 - LTT-1]+x{p 2 m}) - yE, C[l- L k ] +  
m=l k=O 

= 0. 

We have, therefore, obtained a contradiction since by Lemma 8.29, r p  gives a 

It’s true the Page’s procedure is only optimal in a worst case sense. On the 
other hand, the Cusurn has many other advantages. It is easy to plot on a computer 
since it, aut,ornat>ic,ally rescales itself by drifting continually back to  0. It is easy to 
give the Cusum a headstart by starting at  a value above 0 and so causing a quick 
reaction to a faulty initial setting of the production mechanism. Finally, the run 
length properties of the Cusum are relatively easy to compute as we have seen in 
the chapter on Markov chains. It is fair to  say the Cusum is slowly becoming the 
industry standard for all the above reasons. 

minimum cost of zero among st,opping times satisfying the constraint. 
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8.7 Exercises 

Exercise 8.1 Consider the transition matrices 

Each transition can be made according to K(a)  or K(b).  If we visit state 0, 1 or 2 
we pay 30, 5 or 20 dollars respectively. 
a) What is the policy for minimizing the expected discounted costs if the discount 
rate is 01 = 0.1? 
b) What is this cost? 

Exercise 8.2 
minimizing the long run average costs and what is this average cost? 

For the decision problem in Exercise 8.1 what is the policy for 

Exercise 8.3 Consider the transition matrix 

If we stop in state 0, 1, 2 or 3 we pay 20, 5, 10 or 0 dollars respectively. We start in 
state 1. What is the optimal stfopping policy and how much is the expected cost? 

Exercise 8.4 The cost of action 0 in state 0 is $1 and in state 1 is $2. The cost of 
action 1 in state 0 is $0.5 and in state 1 is $3. The transition kernel between states 
0 and 1 is 

K(0)  = (1 f ) and K(1) = (1 i) 
a) If money is discounted at a rate Q = l / 2  per transition, 
and the optimal expected return. 

find the optimal policy 

b) Find the optimal policy to minimize the long run average cost. What is this 
average cost. 

Exercise 8.5 We have to siipply dinner for a long haul flight. The initial order to 
the meal service depends on the R number of reservations. This is a maximum of 
100 since there are 100 seats. The initial order is made 20 hours before departure 
and each meal costs $5 dollars to prepare. Three hours before departure therc 
is a better estimate S of the required number of meals based on the number of 
ciist,omers checked in and information about impending failed connections. Past 
experience has shown this new estimate is uniformly distributed from R - 30 to 
min{R + 10, loo}. At this state there is a chance to add more meals to the order 
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but this is a rush order so additional meals c05t $12 each. Finally at  departure time 
we know the real number of meals M required. From past experience we know M is 
uniformly distributed from S - 5 to min{S + 5, loo}. Any missing meals are made 
up by very expensive frozen meals which cost $20 each when time and effort are 
counted in. 
a) You wish to  minimize costs. Suppose the number of reservations for a flight is 
80. How many meals should be prepared 20 hours before the flight? 
b) Three hours before the flight the estimate for the number of mcals is 76. How 
many additional fast order meals should be prepared. 
c) It turns out 78 ciistoniers actually board the flight. What is the total cost of 
meals? 

Exercise 8.6 Whenever the city purchases a new bus it must prescribe a mainte- 
nance program. At the start of each month a decision must be made whether the 
motor of the bus must be overhauled. The overhaul takes a day. After an overhaul 
the motor is like new but the overhaul costs $5,000 payable immediately. If a bus 
has gone z months since an overhaul then the probability it will break down during 
the next month of service is min(1, .1 t0 .05z) .  If it does break down during service 
there is a bill of $7,000 payable at  the end of the month for an emergency overhaul. 
Assume the interest rate on money is 0.5% per month. Formulate a maintenance 
program to minimize the expected discounted cost of keeping the bus running. 

a) Give the appropriate state space and action space. 
b) Give the transition kernel associated with the actions. 
c) Write down the Bellman optimality equation. 
d) Give the form of the optimal policy. Explain how you would calculate this policy 
exactly. 

Exercise 8.7 
the queueing Example 8.16 as discussed at  the end of that example. 

Exercise 8.8 a) A record is stored on one of two magnetic tapes. The probability 
it is on tape I is while the probability it is on tape I1 is &. The first tape has 
three segments: 11, 12, 13. Given tJhe record is on tape I, the probability of being 
in one of these segments is given by 

Evaluate the long run average cost of the optimal policy for governing 

I1 I 2  I3  
1 1 1  
2 3 6 '  

The second tape has three segments: 111, 112, 113. Given the record is on tape 11, 
the probability of being in one of these segments is given by 

111 1 1 2  I13 
1 1 1  
3 3 3 '  
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The search starts at the beginning of a segment and each segment takes an hour 
to search. One search procedure is to completely search the segments of one tape 
in order and then the other until the record is found. If you decide to use this 
procedure starting on tape I what is the expected time to find the record? 
b) If we wish to minimize the expected time to find the record we could formulate 
this as a finite horizon Markov decision problem. Let the state X ,  be the vector 
of aposterior probabilities the the record is in segment 11, I2 through 113. Hence 

c) What is the optimal action for the first search. Prove it. 
d) If this first search fails, what is the optimal action for the second search? 

Exercise 8.9 The dollar value of a night’s work by a second stlory man is described 
by a random variable X with p.m.f. f .  The thief has probability p of getting caught 
on any given caper. If the thief is caught all his ill-gotten gains are confiscated and 
he is put out of business. Describe the optimal policy so that the thief can retire 
with the maximum expected total gain. Presumably, if the thief gets caught he will 
try this optinial strategy again when he gets out. 

Exercise 8.10 With probability pi there are i orders in any given day. Right 
after the daily orders arrive a decision is made whether or nor to immediately fill 
the orders. The cost of filling the orders is $K (no matter how many orders are 
stockpiled) and the order is filled by the end of the day. If it is decided not to fill the 
orders that day then the orders wait but you pay a cost of $c per waiting order for 
each day the order is delayed. All orders must be cleared by the end of the month; 
i.e. every 30 days all waiting orders are filled. Write down Bellman’s optimality 
equations for the minimal expected cost. Define any symbol used. Guess the form 
of the optimal policy. Can you prove it? 

Exercise 8.11 An investor starts with Co dollars of capital. His investment strategy 
changes each day and at the rith day, his capital of C, dollars is allocated as follows: 
he spends S, dollars and he invests I ,  dollars in the stock market. The I ,  dollars 
invested will yield a total of V,I, where V, is a random variable having p.m.f. f 
which is independent of the entire past. The name of the game is to maximize the 
expected discounted expenditures E aTLSn. 
(a) Set up the Bellman optimality equation. 
(b) What is the form of the optimal policy? 

Exercise 8.12 
wants to maximize his long run average expenditures? 

Exercise 8.13 The book by Dubins and Savage (1965) describes a situation where 
it makes sense to gamble. Suppose you have 20 left and you are stranded in Las 
Vegas. You need 500 to buy an airplane ticket back home. If you go to the roulette 
table you can gamble any amount on red or black (dollars, no change). If the ball 
falls into a red pocket and you bet on red then you double your money. If it falls 

Xo = (3/10,1/5, 2/15). Fully explain the cost structure. 

What is the optimal policy for the investor in Exercise 8.11 who 
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into a black pocket then you lose your money. The wheel has pockets numbered 
from 1 to 36, plus 0 and 00, for a total of 38 pockets. Eighteen pockets are red and 
eighteen are black. This is not a fair game because the pockets 0 and 00 are neither 
red nor black. Nevertheless it makes sense to gamble because that is the only way 
we will get home. What is the optimal way to gamble if the only objective is to get 
$500 for a ticket. 

Exercise 8.14 For the decision problem in Exercise 8.1 suppose that in addition to 
the action a or b there is the option of leaving the system and receiving a payment of 
$100, $200 or $300 if we exit from state 0, 1 or 2 respectively. What is the optimal 
policy if we start in state 0. 

Exercise 8.15 
It is common practice in financial markets to sell call options to businesses 

wishing to reduce their uncertainty about the future. Suppose company A needs to 
buy 1000 shares of company B before the end of the year. It might purchase a call 
option to buy the 1000 shares of company B at  a strike price of $50 each at  any 
time before the end of the year. If the stock price stays below $50 company A will 
not exercise the option and the option will be worthless. Company A will just buy 
the 1,000 shares at a convenient time for a price below $50 per share. If the share 
price rises above $50 then company A is protected because at  the end of the year 
it can exercise the option and pay $50,000 for the 1,000 shares. 

Suppose the share price 
is now $40 and we expect the price to stay roughly the same for the next two 
months until the end of the year. There is however one major uncertainty. An 
announcement from the Fed (the US Federal Reserve) might cause the price to 
increase by 50% or decrease by 25% or stay the same with probabilities 0.3, 0.2 and 
0.5. The announcement could come on any day without warning. What is the price 
of the option? 

Exercise 8.16 Suppose we are selling a car and the offers come in according to 
a Markov chain with transition kernel K .  Hence, if we have an offer of i dollars 
today then the probability of an offer of j dollars tomorrow is Ki,. Each day the 
car remains unsold we spend M dollars in additional interest charges. To do this 
problem assume that for each k ,  CjZk  Kij is nondecreasing in i as is cj(,j - i)Kij 
which means the future prospects with a good offer in hand are better than those 
when a poor offer is in hand. What is the Bellman optimality equation for accepting 
an offer if we wish to maximize the difference between the selling price and the total 
interest charges? What is the optimal policy? 

Exercise 8.17 Two soft drink dispensers stand side by side. One has probability 
a of taking your money and giving you a soft drink (and probability 1 - a of giving 
you nothing but frustration). The other has probability b of giving you a soft drink. 
Long hard experience has shown that b > a but you have forgotten which machine 
is which. You tend to believe the one on the left is the better one and in fact you 

The question is, what should such an option cost? 
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would give this belief an a priori probability of PO. Your objective is to maximize 
your long run success rate. 
a) Determine the optimality equation for the associated discounted problem. 
b) Guess the optimal policy. 
c) Guess the optimal policy to maximize the long run success rate. 

Exercise 8.18 Consider the following game. You throw a die as often as you wish 
and when you stop you receive in dollars the average of the throws you made. What 
is the optimal stopping rule? Is this a Markov decision problem? Can you solve it? 

Exercise 8.19 Suppose that under normal operating conditions a 1% of items pro- 
duced are defective. Every item is inspected so this means that there is a geometric 
number of itenis with mean 100 produced until a defective is found. Design an 
optimal on-line procedure to detect when the proportion of defective items changes 
suddenly to 5%. Fix the on-target run length to be 500. What is the associated 
off-target run length? 

Exercise 8.20 A paper mill makes huge rolls of paper 2 meters wide. There is an 
electric eye focused on the output which measures the number of defects over the 
last meter of paper; that is over a surface of 2 square meters. Defects are caused by 
foreign object mixed in with the raw pulp like bark or even a plastic garbage bag 
that is chewed up along with the timber. These small objects cause tiny discoloured 
spots on the white background that are scattered randomly over the surface. Under 
normal operating conditions these spots should arise at the mean rate of 1 per linear 
meter. If, however, there is a failure in the mixing room the rate will increase to a 
mean rate of 3 spots per linear meter. Design a quality control scheme to stop the 
paper production if the the mean rate increases to 3 spots per linear meter. A false 
alarm is very costly so design your procedure so the average on-target run length is 
500 meters; that is 5 complete rolls. 
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Appendix 

9.1 Useful Results in Analysis 

We first recall some elementary notation used in the book. For any real number 
x, x+ = max{x,O} and x- = max{-x,O} so x = xc ~ x-. When we write 
X = X +  - X -  for a random variable X we simply mean that the functions are 
defined for each w; i.e. X ( w )  = X ( w ) +  - X ( w ) - .  We also denote the infimum 
and supremum of a sequence of real numbers {x,,n E N }  with index set N by 
infx, F infnENxn and supx, = sup,,-Nx, respectively. The supremum is the 
least upper bound of the set of x’s while the infimum is the greatest lower bound. 
If U is the supremum then I, 5 U for all n arid for any t no matter how small we 
can find an m such that x, 2 U - E .  Similarly, if L is the infimum then x, 2 L for 
all n and for any E no matter how small we can find an m such that x, 5 L -t E .  

The limit of a sequence {x,, n E {l, 2 , .  . .} is denoted by limx, E limn+m 5, .  

If the sequence is monotonically increasing or decreasing then we can write the 
limit z as z, T x or z, I 2 respectively. We also denote the limit inferior and 
the limit superior of a sequence of real numbers x,, n, = 0 , 1 , 2 , .  . . by liminf x, 
and lim sup x, respectively. By definition lim sup x, = limNioo x, and 
lirninf x, = limNim inf,yN 2,. This means that, if U = limsupx, then for any t, 
no matter how small, we can find an N such that for n 2 N ,  5, 5 U + t. Similarly 
if L = liminf x, then for any E, no matter how small, we can find an N such that 
for n 2 N ,  x, 2 L - E .  For a sequence of random variables {X,, n E N }  we can 
define sup X ,  or lim sup X ,  sample point by sample point. 

9.2 Integration and Expectation 

The expectation of a random variable X ,  or equivalently the Lebesgue integral of 
an F-measurable function X on a probability space (0,  F}, was defined in Section 
2.2. The method is to first define the expectation of simple random variables and 
then approximate more complicated ones. This extension does not require that P 
be a probability measure but only that P be a positive measure. We continue to 
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write E X  = J n X d P  even if P is any positive measure. We will however restate 
each theorem in terms of sums on a countable set like the integers. In these special 
cases R = S and P ( { i } )  = v( i )  where v( i )  is a sequence of positive numbers indexed 
by the S. 

This integral is a great improvement over the Riemann integral because the 
integral of the limit of a sequence of functions is often the limit of the integrals. 
First let us restate the Monotone Convergence Theorem 2.66: 

Theorem 9.1 (Monotone Convergence) If X ,  is a sequence of random vari- 
ables such that X,(w) 1' X ( w )  for almost all w and E X ,  < 00 then limniW E X ,  = 

E X  (in fac t  EXn 

The proof may be found in Billingsley (1979). 

Corollary 9.2 
un(i)  1' u( i )  as n + 00, then CzES un(i)v(i)  1' CaES u( i )v ( i ) .  

Definition 9.3 

E X ) .  Sirnzlarly, i f  Xn 1 X and EX: < 00 then EX,, J E X .  

If for each n, un(i)  i s  a sequence of positive numbers such that 

A sequence of random variables X ,  is uniformly integrable if 

lim supE(IX,I.x(IX,I > a } ) = ( ) .  
a i m  

Note that a single, integrable random variable X is uniformly integrable; i.e. if 
ElXl < 00 then lima-m E (1x1 . ~(1x1 > a } )  = 0. This follows from the Monotone 
Convergence Theorem. We will also need the following lemma 

Lemma 9.4 
uniformly integrable sequence then 

Let A ,  be a sequence of events such that P(A,) 4 0.  If X ,  is a 

lini supE(IX,I .x{A,}) = 0. 
m+m 

Proof: For any t > 0, pick an a such that supv, E (iX,l . x{lX,l > u} )  < t. Hence 

supE  (IXnl ' X{Am}) 

I supE(IXnl'X{A,}~X{IXn/ I ~ } ) + s ~p~(IXn/'X~A~~'X~I> a } )  
n 

n n 

I asupP(& 

5 a sup P(A,) + E = aP(A,) + E .  

{Ixnl 5 a } )  + s u p E  (IXnl. x{IXnI > a } )  
n n 

n 

Hence, limmioo supn E ( IX, I  . x{A , } )  5 E .  Since t is arbitrarily small the result 
follows. I 

A consequence of the Monotone Convergence Theorem is 

Theorem 9.5 (Fatou's Lemma) If X ,  is a sequence of random variables such 
that the sequence X ;  is uniformly integrable (for instance when X , ( w )  2 -L for 
almost all w) then, i f  E(1iminf X,) exists, 

lim inf E X ,  2 E lirn inf X,. 
n+m n+w 
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Equivalently, i f  X $  is a uni formly  integrable sequence and E(1im sup X,) exists 
then  

lim sup EX, 5 E lim sup X,. 
n - t m  n-oo 

Corollary 9.6 If f o r  each n, u,(i) is  a sequence of positive numbers  then 

The following theorem and its corollary will be required throughout the text. 

Theorem 9.7 (Dominated Convergence) Let  X ,  be a sequence of random 
variables ssuch that  IX,(w)/ 5 Z where Z is  a n  integrable random variable. If 
Xn (w)  + X ( w )  for almost all w then  limnim E X ,  = E X .  

Corollary 9.8 Suppose that  un( i )  is a f u n c t i o n  o n  i E S and that  iun(i)l 5 b ( i )  
where b ( i )  i s  a non-negative, boun,ding funct ion,  such that b := CiES b(i)v(i) < 00. 
Suppose, moreover, that  f o r  each i ,  u,(i) = u,(i). T h e n  

lim Eu,(i)v(i) = E u ( i j v ( i ) .  
n,-m 

i E S  i E S  

The Dominated Convergence Theorem has a host of other applications. Define 
the norm of a function u on S = {0,1 ,2 , .  . .} to be J J u / J  = CiEs /u ( i ) l .  

Theorem 9.9 (Scheff6’s Theorem) Let  f, be a sequence of probability m a s s  
funct ions on S ;  that i s  CiESfn(i)  = 1. Suppose f n ( i )  + f ( i )  as n + 00 where f 
i s  also a p .m. f .  t h e n  I l f ,  - f l l  * 0 as n + 00. 

Proof: Let S, = f - f n  so Ci S,(i) = 0. Let E, = { i  : 6,(i) 2 O} so 

llfn - f l l  = c IS,(i)l 
i E S  

i € S  

However, S?, the positive part of S,, is uniformly bounded by f and f is summable 
(or integrable with respect to counting measure on the integers), so by Lebesgue’s 
Dominated Convergence Theorem, lim Ci S,(i)+ + 0 since 6,(i)+ 4 0 for all i .  I 

Another measure theoretic result required in the text is the Borel-Cantelli 
Lemma: 

Lemma 9.10 If C,  P ( A , )  converges t h e n  P(np?=, LJE, A k )  = 0. 
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Proof: For any rn, n,M=, LITz.=, A k  c UP==mAk. It follows that 

w 

P(nrZl U?==, A k )  5 P ( U Z " , , A k )  I ~ ( A I ; ) ,  
k=m 

and the final sum tends to 0 as m, + 00 if En P(A,) converges. I 

Intuitively this result just means that if the sum C ,  P(An) is finite, the prob- 
ability of those sample points which lie in an infinite number of the A, is 0. 

Theorem 9.11 (F'ubini's Theorem) Let F and G be increasing right continuous 
functions. Let h (x ,  y) be a measumble real valued function such that either h 2 0 
or one of the double Lebesgue integrals 

is finite. Then 

Corollary 9.12 
such that C:=, (C,"==, Ih(m,n)I) < DC) then 

Consider a sequence of real values h(rn,n) huving two indices 

m = l  n=l n=l  m=l 

Proof: Take F ( z )  = [x] and G(y) = [y]; i.e. F ( x )  is the integer part of J: and G(y) 
is the integer part of y. In this case, for a, b E {1,2, .  . .}, 

00 w 

and the result follows. I 

9.3 Convexity 

Definition 9.13 
points x and y and any 0 5 a 5 1 we have 

A function @ defined on the real line is convex if for any two 

4 is called concave if the reverse inequality holds. 

If z < y and we take s = (1 - a ) z  + cuy then this condition is equivalent to the 
following relationship between the slopes of line segments from ( L C ,  4 ( x ) )  to ( s ,  $ ( s ) )  
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Using the mean value theorem it is easy to check that if 4 has a derivative which 
is monotonically increasing then 4 is convex. Alternatively, convex functions may 
be characterized by the following: 

Theorem 9.14 A function 4 is conwex zf-and only zf 

d(s) = sup{f(s) : f ( Y )  I 4(Y) for  Qll w ,  f (Y)  E L l  

where L is the class of linear functions. 

Proof: We only show convex functions may be classified this way. Let x < s < y 
and define a so that s = (1 - a)x + a y .  Let 

By (9.1) it follows that /3 5 (4(y) - 4(s))/(y - s). Now, for any c > 0 no matter 
how small, we pick a value h such that 4(s) - e < h < 4 ( s ) .  Now draw a line, !, 
through the point (s ,  h )  with slope p. If !(x) = d(x) for some x < s, this would 
imply the slope of the line segment from ( x , 4 ( x ) )  to  (s1q5(s)) is greater than the 
slope from ( x , $ ( x ) )  to ( s , h ) .  However the lattcr slope is /3 so this is impossible. 
We conclude !(z) # 4(x) if x < s. Similarly, !(y) # @(y) if s < y. 

We have therefore constructed ! E L such that k(y) 5 4(y)  for all 9. Moreover, 
I l ( s )  2 4(s )  - E where E is arbitrarily small. The result follows. 

Theorem 9.15 

Proof: Since E!(X)  = ! ( E X )  for any linear function !, the result follows from the 
above characterization. I 

If 4 is convex then E @ ( X )  2 4 ( E X ) .  

Theorem 9.16 (The Schwarz inequality) Let p be a positive measure on a 
measurable space and suppose two m,easurable functions f and g are square inte- 
grable; i e .  C f 2 ( x ) p ( x )  < 00 and C g 2 ( ( z ) p ( x )  < 00. Then 

Proof: Let Sf = ~ f 2 ( ( z ) p ( z )  and S, = C g 2 ( z ) p ( z ) .  Define F = ,f/R and G = 

g/&, so C F 2 ( x ) p ( x )  = C G2(x )p (x )  = 1. By the convexity of the exponential 
function we have 

s t  1 1 
2 2  2 

exp(- + -) I - exp(s) + 5 exp(t). 

and from
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Letting exp(s/2) = IF(x)I and exp(tl2) = /G(z)l we get that, for all 2,  

1 1 
2 IF(x)G(x)1 5 5 F 2 ( x )  + -G2(z). 

Summing with respect to the positive measure p we get 

Now multiplying this inequality on both sides by Sf and S, we have our result. 

9.4 Norms and Fixed Points 

Consider a countable state space S. Functions defined on S taking real values may 
be thought of as vectors having a countable number of components. If u is a function 
defined on S, we define ( ( v ( (  := supiEs \v(i)l.  It  is easy to  check that I JvJJ  is a length 
or norm of u. It suffices to  verify the following conditions satisfied by any norm: 

Ibll 2 0, 
0 For any two vectors u, v and any real number cy 

IIu+ull 5 I14 + 114, llQ4 5 la1 I14, 
0 Ilwil = 0 implies u = 0. 

The set B of functions on S having a finite norm forms a Banach space. This 
simply means that the vector space is complete with the given norm; that is a 
Cauchy sequence of vectors {v,} necessarily has a limit. We recall a sequence is 
Caiichy if for all E there existas an N such that for all n,m. 2 N ,  1 1 ~ ,  ~ tl,11 < E .  

Having a limit means, of course, that there exists a function w such that 11u11 < 00 
and 

Clearly a Cauchy sequence {un> has components { u n ( j ) }  which form a Cauchy 
sequence since Ivn(j) - ~l,(j)\ 5 supiEs l w n ( i )  - zlm(i)l = 1111, - u r n [ [ .  Hence each 
component converges by the completeness of the real line. Let v ( j )  be the limit of 
the jLh component and w the associated vector. In general for any double sequences 
xin, we have xjm 5 supi xim,, so limsup,,, xjm 5 limsup,,,, sup,i xirn. Hence 
taking the supremum in j we get supz lim supmlm xim 5 lim  SUP^,-^ supi xi,. 
Now, apply this to the double sequence lun( i )  - u,(i)( where we assume 7% > N 
above: 

IIv, - ' ~ 1 1  = 0. 
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We conclude that if ( ~ 1 ~ ~ )  is Cauchy then for an arbitrary F we can find an N such 
that for n > N ,  I\un ~ v I I  5 t. This means u is the limit of the Cauchy sequence 
and hence B is complete. 

Define d ( u ,  2 1 )  = IIu - 0 1 1  to be the distance between two vectors u and u in B. 
(d is called a metric and B becomes a complete metric space.) A mapping T of B 
into itself is called a contraction if there exists a positive real number r < 1 with 
the property that d(Tu, TV) 5 r . d(u, u) for all u and u in 8. Any contraction is 
obviously continuous. 

Lemma 9.17 If T i s  a contraction defined o n  B (or in general on a complete 
metric space), t h e n  T has a unique fixed point; i.e. a point x E I3 such that T x  = x .  

Proof: Let uo be an arbitrary point in B,  and write 

u1 = Tuo, u2 = T2uo = Tul and, in general , u, = Tnuo = T u - ~ .  

If m < n, then 

1 
1 - r  

< T m d ( U g , z L l ) -  

Since r < 1, it is clear that un is a Cauchy sequence and, by the conlpleteness of 13, 
there exists a point u in B such that PL, 4 u. Since T is continuous 

Tu = T (  lim u,) = lim T(u,) = lim u,,+1 = u. 
n-cc 7 2 - 0 0  n-cc 

We conclude the proof by showing u is the unique fixed point. Suppose u is also 
a fixed point; that is T v  = u. Then d ( u ,  u) = d(Tu, Tv) 5 rd(u,  u). Since r < 1 this 

I 

Recall the normed vector space formed by linear transformations T of B into 
means d(u, v) = 0 which means u = u. 

itself, having a norm defined by J1TJj := sup{J)TuJ] : j J w J 1  _< l}. We remark that 

It immediately follows that for any vector u, llTull 5 IlTIl IIuI(. Also, if IlAIl < 00 

and IlBll < 00 then 

l IA '  B 4  I IlAll IlBull 5 I14 IlBll IIulI 

so l IA '  BII 5 Il4 11B11. 
It is also obvious that if T" forms a Cauchy sequence in this norm then so do 

the components TG. Hence we can define a transformation T by the limit TG + Tt3 
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as n + 00 for all i arid j .  Next 

= limsup IIT" ~ T"II 
m i O O  

Hence, if T" forms a Cauchy sequence with the opcrator norm, then for an arbitrary 
F we can find an N such that l(T" - T"(/ 5 c for m, n > N .  From the above we 
conclude that for n > N ,  IIT - Tnl/ 5 t. Hence limn-oo I/T - Tnl/ = 0 so the 
sequence T" has a limit T .  Hence the space of transformations T with finitc norm 
is complete and forms a Banach space. 

Lemma 9.18 
A B  = BA t h e n  

If A and B are matrices of finite norm which comm~ute;  that  i s  

exp(A + B) = exp(A) exp(B). 

Proof: Let S,(A) := Ci=OAk/k !  and S,(B) := Ci=oB"/k!.  Clearly, by the 
definition of the exponential, 

IIS,(A) - exp(A)II + 0 and IiS,(B) ~ exp(B)il + 0 as j -+ 00. 

By matrix multiplication, 

B ~ A ~  
elk! 

Sj(A)Sj(B) - Sj(A + B )  = C - 
where the sum is over all integers t and k for which 1 5 e 5 j , l  5 k 5 j ,  and 
j + 1 5 l + k 5 2.7'. Suppose IlAll and 11B11 are less than b, then the norm of the 
above difference is bounded by 

n=j+l  

This estimate goes to 0 as j + 00 since (2b)"/n,! is a, term in the expansion of 
exp( 2 b)  . 
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On the other hand, 
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Moreover IIS,(A + B) - exp(A + B)ll 4 0 so by the triangle inequality the result 
holds. I 

The family of matrices P ( t )  = exp(tG) is called a semigroup because P(0)  = I 
and P(t  + s) = P ( t ) P ( s ) .  To see this, just remark that the matrices A = sG and 
B = tG commute and apply the above lemma. 

9.5 Algebraic Results 

The notion of an equivalence class is used in the text. Consider a partition of some 
non-empty set X. We define a relation 011 X by saying z N y, if z and y belong to 
the same partition set. The relation N has the following properties 

0 z N z for every x (reflexivity); 
0 2 - y + y N z (syrnnietry); 
0 z N y and y N z =+ z N z (transitivity). 

Any relation which possesses these three properties is called an equivalence relation 
on X .  

The following lemma is a well known consequence of the fact that the units over 
the integers form a Euclidean ring (see Lemma 3.8 in Herstein (1975) for instance). 

Lemma 9.19 If [l] is the greatest common divisor of the support o f f ;  i.e. {x : 
f(x) > 01, tken for  any unit [dl ,  there exist positive integers {pi}::, and {n2}fzl 
along with units a a,nd { I J ~ } ~ ~ ~  from the m p p o r t  o f f  such that 

2 = 1  2 = 1  

Proof: Since [I] is the greatest common divisor of the support of f there exist 
a finite number of elements {u2  : i = 1,. . . ,!} in the support of f with greatest 
common divisor equal to [l]. Consider the set A of all units represented by 

e 
A = {c m,v, : where m, is an integer}. 

Let s be the smallest positive unit in A. Let 5 E A so b y  division J: = t s  + r where 
the remainder T satisfies 0 5 T < s .  However s E A so J: - ts E A which implies 

2 = 1  
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r E A. This means r = 0 since s is the smallest positive unit in A! We conclude 
the elements of A are multiples of s. 

This means {vj : t j s  : j = 1, . . . , !} since each vi E A because wJ = C,=l Sj ( 4 7 4  

where S,( i )  is 1 only if i = j and 0 otherwise. If s is not [I] then all the v’s have a 
common divisor. Since this is false we conclude s = [l] and hence A is all the units. 

miwi = [d], where [d] is 
any unit. Split this sum into the positive and negative coefficients so pzx; - 
~~~1 niyi = [d] where and {yi}fLl are in the support o f f  and {pi}%:, and 
{ni>bzl are positive integers. m 

e 

e This means there exist integers ‘mi such that 

e 
e 

9.6 Further Reading 

Feller Volume I is the best example of how much can be done with discrete random 
variables. Any serious student of probability should own a copy. Ross’s Dover 
Classic is a readable introduction to applied probability but is now somewhat dated. 
The problem set is excellent. The book by Billingsley (1979) often referred to in 
the text is an excellent introduction to measure theoretic probability. The ATM 
standards are set by the ATM forum (www.atrnforum.org.) and TCP/IP standard 
are set by the Internet Engineering Task Force (www.ietf.org) but almost any journal 
treating computer communications will have some information. The quality control 
standards are best read in the original so see the bibliography under Quality Control 
Standards. 

The approximation of the binomial by a Poisson random variable dates back 
to Simkon D. Poisson (1781-1840) but the coupling approximation given here is 
inspired by the paper by Hodges and LeCam (1960). The discrete approach taken 
here is a bit unusual but it has the advantage of avoiding coniplicated conditioning 
arguments. The Poisson process is a fundamental building block for constructing 
other processes. For more on this, see the book by Brkmaud. 

The chapter on Markov chains is fairly standard. The seminal book by Orey 
inspired the author’s treatment. Orey’s book gives extensions to Markov chains on 
general state spaces. The classic hook by Spitzer gives a modern potential theoretic 
treatment which is of interest to queueing theorists. The nonparametric cusum is 
developed in McDonald (1990) and an optimal choice for the anchor is discussed. 

The original renewal theorem for discrete i.i.d. random variables is given in 
Feller Volume I. The coupling proof given here is just another in a long list going 
back to Doeblin (1941). The text by Meyn and Tweedie summarizes ideas devel- 
oped by Athreya, Ney and Nummelin. The author also played a part (see Athreya, 
McDonald and Ney (1978) in the American Mathematical Monthly and Athreya, 
K.B., McDonald, D. and Ney, P. (1978)). The coupling proof using the Bernoulli 
part decomposition for nonidentical, independent random variables is a simplifica- 
tion of the results in AkDonald (1978). Another interesting application is the proof 
of the Local Limit Theorem as in McDonald (197910) and Davis and McDonald 
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(1994). The book by Asmussen (1987) gives a high level review of renewal theory 
aad semi-Markov processes with applications to queueing. 

Feller Volume I1 is an encyclopedia of good ideas including an introduction to the 
generator of a Markov process, although the emphasis is towards diffusions not jump 
processes. The more modern book by Ethier and Kurz is recommended for obtaining 
a solid foundation in continuous time Markov processes. The construction of Markov 
processes with bounded jump rates based on uniformization has many advantages 
and all the intricacies of explosions and non-uniqueness of the solution to the forward 
equat,ions are avoided. For the full story consult Chung (1967). The book by 
Kelly (1979) contains lots of clever examples and problems for reversible processes, 
Walrand’s book on queueing networks is an excellent survey of all the mathematical 
tools used for studying networks. The bibliography there gives the state of the 
art in queueing networks. The Kelly networks are often called BCMP networks 
because they were discovered simultaneously by Kelly and Baskett, Chandy, Muntz 
and Palacios. Also the Bramson network is a direct descendent of the unstable 
deterniinistic networks proposed by Lu and Kumar (1991). 

The chapter on Markov decision theory inspired by the book Great Expectations 
by Chow Siegmund and Robbins. The book by Puterman provides a fairly recent 
reference. The review article by Arapostathis et al provides up to date results on the 
average cost criterion. Only Markovian problems are considered and martingales 
have been avoided. The underlying principle is to solve finite horizon problems first 
and then approximate infinite horizon problems. The crowning achievement is the 
proof of the optimality of the Cusum as in Moustakides (1986). 
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Quality Control Standards: 

MIL-STD- 105D: 1963 American national standard procedures and tables 
for inspection by attributes, US Defense Department, 64 pp. 
MIL-STD-1916: 1996 DOD Preferred methods for acceptance of produce, 
US Defense Department, 33 pp. 
MIL-STD-1235B: Single- and multi-level continuous sampling procedures 
for attributes (US Department of Defense 1981b). 
IS0  2859 Part 0: Sampling procedures for inspection by attributes - Intro- 
duction to the IS0 2859 attribute sampling system. 
IS0 2859-1: 1989 Sampling procedures for inspection by attributes - Part 
1: Sampling plans indexed by acceptable quality level (AQL) for lot-by-lot 
inspection. 
I S 0  2859-2: 1985 Sampling procedures for inspection by attributes - Part 2: 
Sampling plans indexed by limiting quality (LQ) for isolated lot inspection. 
IS0 2859-3.2: Sampling procedures and charts for inspection by attributes 
- Skip lot sampling procedures. 
IS0 8258 Shewhart control charts. 
BS 5700: 1984 Guide to process control using quality control chart methods 
and CuSum techniques. 
BS 5703: Part 1: 1980 Guide to data analysis and quality control using 
CuSum techniques. Part 1. Introduction to  CuSum charting. 
BS 5703: Part 2: 1980 Guide to data analysis and quality control using 
CuSum techniques. Part 2. Decision rules and statistical tests for CuSum 
charts and tabulations. 
BS 5703: Part 3: 1981 Guide to data analysis and quality control using 
CuSum techniques. Part 3 .  CuSum methods for process/quality control 
by measurement. 
BS 5703: Part 4: 1982 Guide to  data analysis and quality control using 
CuSum techniques. Part 4. CuSums for counted/attributes data. 

9.8 Solutions to Selected Problems 

9.8.1 

1.4: The key idea is to reduce the probability calculations to counting. We must 
therefore construct an equiprobable model. One way would be to define the sample 
space S as the set of all subsets of 5 distinct elements drawn from a deck of 52. 
The associated a-algebra is the just the set of all subsets of S and is irrelevant for 
our calculations. The equiprobable measure assigns an equal weight to each sample 
point and since there are 52 choose 5 sample points in S each sample point has 
probability 1/2598960. We are interested in the subset A of points which has 4 
kings. The 5th card in the deck can be chosen in 48 different ways (other than 

Solutions t o  Selected Exercises i n  Chapter 1 
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being a king). Hence P(A)  = #A/#S = 48/2598960. 
1.5: This is a great way to make a bit of pocket money. If n is 50 or so make an 
announcement that you are willing to bet even money that there are indeed people 
with the same birthdate in the classroom. Circulate a sheet of paper and have each 
person write down his birthday in the format (month, day). Look for a match. The 
chances are you will win your bet. 

To calculate the chance of winning the key idea is to reduce probability calcu- 
lations to counting. One sheet of paper with n dates ( ~ 1 ~ x 2 , .  . . 2,)  represents one 
sample point. Each of the coordinates of this vector could be any one of 365 dates 
(we will forget leap years as an approximation). The first coordinate can be chosen 
in 365 ways and the second can be chosen in 365 ways so the first two can be chosen 
in 365 x 365 ways. The third can be chosen in 365 ways so the first three can be 
chosen in 3653 ways. Continuing in this way, the number of different sample points 
is 365". We will assume each of these sample points is equally likely. This is a rea- 
sonable approximation although we know very well that marriages often take place 
in the spring so birthdays tend to  fall eight months later. We therefore assume we 
have an equiprobable model. 

The event of interest is the set of sample points A with two or more coordinates 
the same. It is easier to describe the complement A' of sample points with no 
coordinates the same and since P(A)  = 1 - P(A') we can get P(A)  from P(A').  

A' = {(XI, x 2 , .  . . z,) : all the xis are different}. 

The first coordinate of a point in A' can be chosen in 365 ways but the second can 
only be chosen in 364 ways avoiding the first choice. This makes 365 x 364 ways. 
Next the third coordinate can be chosen in 363 ways giving 365 x 364 x 363 ways. 
Continuing in this way we see the number of points in A' is 3 6 5 x 3 6 4 ~ .  . . (365-n-tl). 
Hence 

365 x ' .  . x (365 - n + 1) 365 x . . . x (365 - R + 1) 
SO P(A)  = 1 - 

365" 365" P(A') : 

Get Mathematica to calculate this value for you. At n = 22 P(A)  < l / 2  so 
with only 22 people there is a better than even chance of a matched birthday. The 
probability gets so big above 50 people that you are practically sure to win. Winning 
is like taking candy from a baby. 
1.10: a): No, the histogram of the sample will follow the histogram of the popu- 
lation which in this case is not normal because of the two bumps. The expected 
value of the sample average is the mean of the population; i.e. x is an unbiased 
estimator of the mean of the population and the expected value of the sample stan- 
dard deviation is approximately equal to the population standard deviation (in fact 
a modified sample variance S2 = Cr=,(Xk  - X) ' / (n  - 1) is an unbiased estima- 
tor of a2). We don't exactly know the mean of the population or the population 
standard deviation but the sample of 2,000 sacks gives a pretty good estimate. The 
sample average of this large sample is 4.9961 with a sample standard deviation of 
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0.5496. The standard error of the mean is 0.0123 so with 95 percent confidence the 
true population mean lies within 4.9961 plus or minus 0.0246. Hence it is unwise 
to report more than one decimal place. Hence the sample average of one lot will 
hence be approximately b): 5.0 and the sample stancard deviation is approximately 
c): 0.55 (We need a finer analysis to estimate the precision of the estimate for the 
standard deviation). 

The population of sunis of the weights of 100 sacks on a skid will follow the 
normal curve by the central limit theorem. The sample histogram of the total 
weights of 75 skids will follow the population histogram; that is d): a normal 
histogram. The expected value of the sample mean is equal to the population mean 
and the population mean is the expected value of the weight of 100 sacks and that 
is approximately e): 500. The standard deviation of this sample histogram will be 
close to the standard deviation of the population of sums which is approximately 
f) :  ~6%. 0.55 = 5.5 

The area under histogram of sums of weight of 100 sacks to the right of 400 
kilograms is approximately equal to the area under a standard normal to  the right 
of (400-500)/5.5=-18.2 standard units. Hence g): 100% of the skids will have a 
total weight greater than 400 kilograms. The loth percentile of a standard normal 
is approximately -1.28 standard units by looking up in the normal table. This 
corresponds to 500 - 1.28.5.5 = 492.96 or roughly h): 492 kilograms. 
1.11: Define every event in sight! Let A, B ,  C represent the events that the bulb 
chosen at random comes from supplier A, B or C respectively. Let D be the event 
that this bulb is defective and let N be the complementary event the bulb is non- 
defective. Let P represent the equiprobable nieasure of picking a bulb among all 
possible bulbs. By hypothesis P(A) = .7, P ( B )  = .2 and P(C)  = .l. Moreover 
P(DIA) = 0.05, P(DIB) = 0.03 and P(DIC) = .2. 

P ( D )  = P ( D  n A)  + P ( D  n B )  + P ( D  n C )  
= P(DIA)P(A) + P(DIB)P(B) + P(DIC)P(C) 
= 0.05.0.7+0.03. .2+0.2 .0 .1  = 0.061 

Hence the probability a defective bulb is sampled is a 6.1%. 

P(C n D )  P(DIC)P(C) - 0.2.0.1 
- - - 

P ( D )  P ( D )  0.061 
P(CID) = 

so the probability the defective bulb came from company C is 0.33. 

9.8.2 

2.1: a) The marginal p.m.f. p x ( z )  = C , p ~ , y ( x , y )  so px( - l )  = 1/3, p ~ ( 0 )  = 

Solutions t o  Selected Exercises in  Chapter 2 

17/18, px(1) = 5/18. 
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b) The conditional distribution p y j x ( y ( z )  = px,y(z, y)/px(z) so 

P Y ~ x ( - ~ I  - 1) = ~ / ~ , P Y I x ( ~ (  - 1) 

Hence E ( Y ( X  = -1) = (-1)(1/6) + (0)(1/6) + (1)(1/3) + (2)(1/3). The other 
conditional expectations are similar. 
c) X and Y are independent if and only i f p x , y ( z ,  y) = px(x) . p y ( y )  for all z and 
y. This is false for z = -1 and y = 1 so X and Y are dependent. 

~ / ~ , P Y I X ( ~ /  - 1) ~ / ~ , P Y I x ( ~ (  - 1) = 1/3. 

d) J W X ,  Y )  = cz,Y h(z ,  Y)PX,Y ( 2 ,  Y) Hence, 

-1 0 1 

2 

= (A) 1 + (L) 1 + (-) 1 1 + (L) - 1 1 + 2  12 l + 2  18 1 + 2  12 1 + 2  18 
= 181/432 

2.2: a) fx(z) = cy fx,y(z,y) so adding across the rows we get 

f ( z , y )  y 0 y = 1 y = 5 
x =  1 1/6 1/6 0 
x = 2  1/6 0 1/6 
~ = 3  1/12 1/6 1/12 

i.e. 

e )  Calculate 

1 2 1  1 33 + 4 . - + 52 . - z - E ( ( X  + Y)21x = 3) = C(3 + y)2fylx(y13) = 3 2  . 2 4 2  
Y 

b) 0

d)

c)
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f )  X and Y are independent only if fx,y(z, y) = fx(z) fy(y) for all z and y. 
Note that fx(1) = 1/3 and f y ( 2 )  = 1/4 but fx,y(1,2) = 0 so X and Y are not 
independent. 
2.13: 

M 0 3 0 0  

n= 1 n=l  k = l  
0 3 0 3  

= 7, x { k  <_ n}f~(n) by Fubini's theorem 
k = l  n=l  
M M 

= C(1- F ( k  - 1)) = C(1- F ( k ) ) .  
k=l k=O 

2.14: If X 2 0 has distribution F and XI, = min{X, k }  then 

9.8.3 Solutions t o  Selected Exercises in Chapter 3 

3.3: Let U be a uniform on [0,1] and define 2 = F - l ( U ) .  Note that 

Fz(v) = P ( Z  I u) = P(%) 

where p is Lebesgue measure on [0,1]; ie. p measures the lengths of intervals and 

E, = {s E [0,1] : F P 1 ( s )  5 u} = {s E [0,1] : min{t : F ( t )  2 s }  5 u}. 

Note that if F is strictly increasing then E, = { s  5 F(v)} so in that case Fz(v) = 
~ ( { s  5 F ( s ) } )  = F ( v )  so 2 really does have distribution F .  

In cases with jumps we have to be more careful. Let 6 = inf{z > v : F ( z )  > 
F ( v ) } .  Then E, = {s : s 5 F(Eii-)} where = lim,T,F(z). This is true 
because if s 5 F ( F )  then min{t : F ( t )  2 s} 5 'u so s E E,. Similarly if s E E, 
then min{t : F ( t )  2 s} 5 u so s I F(6- ) .  We conclude 

Fz(u) = p({s : 0 5 s 5 F ( v - ) } )  = F ( F )  = F ( v )  

so again 2 really does have distribution F .  
3.5: There is one chance in 5 the component dies in the first 1,000 hours and 4 
chances in 5 it dies after that. If it dies in the first 1,000 hours the distribution 
is uniform. If it dies after that the lifetime is 1000 hours plus and exponential. 
Let B be a Bernoulli random variable with probability 4/5 of taking the value one. 
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Let U be uniform on [0,1000] and let X be exponential with mean 4000 hours. 
Make B ,  U and X independent. We note that the lifetime can be represented as 

a) EL  = E(l- I?). E U  + EB . E(1000 + X )  = .500 + $(lo00 + 4000) = 4100. Of 
course if you want to do it the long way then 

L = (1 - B)U + B(1000 + X ) .  

00 .lo00 1 
X-dx + exp(-(z - 1000)/4000)dz 1 5000 

E L  = 1, z f ( z ) d z  = 

4 
5 

1 100 + -(4000 + 1000) = 4100 

P (L  > 3000) = exp(-(z - 1000)/4000)dz 

" 1  
- exp(-z/4000)dz 

= - 4 exp(-2OOO/4OOO) = - 4 exp(-1/2). 
5 5 

1 1  4 1/4000 
5 1000s 5 1/4000 - s 

- - -~ (elooos - 1) + 1 + - exp(1000s) 

for s < 1/4000 since 

1000 1 
1). 1/4000 dx = -(e 1 l O O 0 s  - 

1000s Eexp(sX) = and E exp(sU) = 
1/4000 - s 

Alternatively one could do the integrals 
00 

EL = 1, esx f (x)dz 
exp(-(z - 1000)/4000)dz. 

4 1000 1 

b)

c)
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d) Absolutely not. The sample histogram tends to follow the population histogram 
i.e. f and this is not normal. 
e) The law of numbers says the sample mean will be close to the population mean 
and hence close to the answer in a) 
f )  Let the four lifetimes be L1, L2, L3 and Lq. The probability at least one works 
after 3,000 hours is one minus the probability they all fail before 3,000 hours. 

P(L1 < 3000, L2 < 3000, L3 < 3000, L4 < 3000) 

= P(L1 < 3000)P(Lz < 3oOO)P(L3 < 3000)P(L4 < 3000) 
4 
5 = P(L1 < 3000)4 = (1 - P(L1 2 3000))4 = (1 - - e ~ p ( - l / 2 ) ) ~  

by part b). Hence the probability at least one keeps working is l-(l-g e ~ p ( - 1 / 2 ) ) ~ .  
3.9: a) The probability that there are no drug users in a group of k is (1 - p ) k  so 
the probability every member of the group must be tested is 1 - (1 - p)k 
b) Hence the expected number of tests per group of k is I . (1 - P ) ~  + ( k  + 1)(1 - 
(1 - p)')). For n groups the expected number of tests is the sum of the expected 
values i.e. n (I . (1 - p ) k  + ( k  + 1)(1 - (1 - p)')). 
c) n k  = N ,  the number of employees. If p is small then (1 - P ) ~  1 - k p  so the 
above expectation is approximately 

n (1 ' (1 - p k )  + ( k  + l ) (pk))  = n + n k 2 p  = N / k  + N p k .  

We can minimize the expectation by find the derivative 

Setting this to zero gives k = l/&i so we take k to be the nearest integer to this 
value. 
3.13: Represent the three lengths by L1, L2 and L3 respectively. 
a) The total length is T = L1 + L2 + Ls. T is normal since a linear combination of 
independent normals is normal. The mean is the sum of the means and the variance 
is the sum of the variances. Hence ET A 4+2+2 = 8 mm and CT$ = .52+ .42+.42 = 

0.57. 

Hence the probability of a defective component is 1 - .9960 = 0.004 
3.14: 

b) P(T 5 10) = P((T - ET)/cTT 5 (10 - 8 ) / 0 )  = P ( Z  5 2.647) = 0.9960. 

P(max(X1,.  . . , X , }  5 t )  = P ( X 1  5 t ,  . . . , X ,  5 t )  = P(X1 5 t )  . . .  P ( X ,  5 t) .  

For 0 5 t 5 1, P(X1  5 t )  = t so the above probability is tn. 
3.16: The moment generating of X is $ x ( s )  = exp()\x(eS - 1)) and the moment 
generating of Y is $y(s) = exp(Xy(eS - 1)). The moment generating function of 
X + Y is 4 x ( s ) $ y ( s )  = exp((Xx + Xy) (es  - 1)) because of independence and we 
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recognize this to be the transform of a Poisson random variable with mean A X  + X y .  
We conclude X + Y is Poisson with this mean. 

P ( X  = x 1X + Y z n) = P ( X  = x, X + Y = n) / P ( X  + Y = n) by Bayes 

= P ( X  = x, Y = n - X ) / P ( X  + Y = n) 

= P ( X  = x ) P ( Y  = n - z ) / P ( X  + Y = n) by independence 

Hence the conditional distribution of X is binomial. 
3.27: Let N be the number of customers who enter the price club and let X ,  
represent the amount spent by the nth customer. The total amount spent T is 
given by T = 

N X,. If we condition on N ,  

I32 7 n  

ET = E ( x X , / N  = 7n)P(N = m) 
m=l  n = l  
00 rn 

= R(x X,)P(N = m,) by independence 
m=l  n,=l 
00 

= m E X P ( N  = rn) = E N E X  = 2000.110 
m = l  

Var(T)  = E T 2  - ( J T T ) ~  and 

00 m 

E T ~  = C E((C x,)~)N = +(N = m)  
m=l  n=l  

w m 
= 

= 9 ( E ( e X : ) +  

= C ( m E X 2  + m(m - 1 ) ( E X ) 2 )  P ( N  = m) 

= E N E X 2  + ( E X ) 2 ( E N 2  - E N )  

E(x X,)’P(N = m) by independence 
m=l n = l  

E X i X j  P ( N  = m )  
m = l  n=l l<i#J<rn 1 
00 

m = l  
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Therefore. 

Vur(T)  = ENEX’ + (EX)’(EN’ - E N )  - (EN)’(EX)’ 

= (EX) ’ (EN2  - (EN)’) + E N ( E X 2  - (EX)’) 
= ( E X ) ’ .  V u r ( N )  + E N .  V a r ( X )  

Hence 

V a r ( T )  = ( V u r ( X )  + ( E X ) ’ ) V a r ( N )  + E N .  V a r ( X ) .  

9.8.4 

4.5: 

Solutions to Selected Exercises in Chapter 4 

E [N‘(t) . N P ( t  + u)]  = E [ N P ( t )  . ( N P ( t  + U )  ~ N P ( t )  + N P ( t ) ) ]  
= E [ N P ( t )  . ( N P ( t  + U )  - N P ( t ) ) ]  + E [Nr(t)’] 
= E [ N P ( t ) ]  E [ N P ( t  + U )  ~ N P ( t ) ]  + V a r ( N P ( t ) )  

+ [EN‘(”)]’ 
= ( A t )  (Xu) + At + (At)’ 

4.6: The Poisson process has rate 100/60 per minute. 

a) 

P(N(10)  2 2) = 1 - (P(N(10) = 0) + P(N(10) = 1)) 

= 1 - (exp(-10100/60) + exp(-10. 100/60)(10~ 100/60)1/1!) 

= 1 - (exp(-lO. 100/6O) + exp(-lO, 100/60)(1O~100/60)) 

P(N(10)  = 2, N(20)  = 4) = P ( N ( l 0 )  = 2, N(20) - N(10) = 2) 
= P(N(10)  = 2)P(N(20) - N(10) = a)  
= P(N(10) = 2)’ 

= (exp(-lO. 100/60)(10. 100/60)2/2!)2 

c) The time in minutes until two calls arrives is an Erlang-2 distribution with 
parameter A = 100/60. 
4.10: Let the number of arrivals by time t be noted by N ( t ) .  Given N ( t )  = n 
denote the the arrival times by T(%), i = I, . . . , n there T(%) is the I th  order statistic 
of n i.i.d. random variables uniformly distributed on [0, t] .  Let V, be the specd of 

b)
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the ith arrival. The number of cars in the interval [A, B] at time t is 

N ( t )  

i=l 

We calculate the Laplace transform of this random variable: 

N ( t )  

E e x p ( O ( C  x{v , .  (t - ~ ( i ) )  [A,BII)) 
Z Z l  

where we have reordered the order statistics and thereby reordered by Vi which we 
relabel the R .  Sirice the V,  are i.i.d. independent of the arrival times so are the 

and the distribution is the same. Also let T be uniform on [0, t]  and let V be a 
speed with distribution G. Next, let p = P ( V .  ( t  - T )  E [A, B ] )  so the above reduces 
to 

00 c ((1 ~ P) + p e x p ( W  P ( N t )  = n) 
n=O 

= exp(-Xt+Xt((l -p)+pexp(Q)) )  
= exp(-Apt(l - exp(0))). 

We recognize that the number of cars in the interval follows the Poisson distri- 
bution with mean Apt.  Finally 

Consequently the mean number of cars in the interval [A, B] is 

A 
v=o 2’ v X SW ( g  A t - - A t )dG(s)  + (B - A)Xp 

as t + 00, where p = JuzO i dG(s ) .  
Now start out with cars distributed along the line according to a Poisson process 

with intensity Xp having independent speeds with distribution H where H ( v )  = 

Jl i d G ( s ) / p .  Hence the number of cars in an interval [A,B] at time t consists of 
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those already present at the start and those who arrive later. The distribution of 
the latter is given above. Let N be the number of points already present between 
[0, B] a,nd denote the location of these points by T(q and denote their speeds by V,  
having distribution H .  The Laplace transform of the distribution of the nuniber of 
points in the interval from those initially present is 

N 

where T is uniformly distributed on [0, B].  Letting 

q = E exp(BX{T + v .  t E [A, 01 ) ) )  

we get the transform exp(-XpBq(1 - exp(8))) as above. This is the transform of a 
Poisson distribution with mean XpBq.  

( 

Next, 

x { A  5 z + ut 5 B } d z d H ( v )  

- - ((B - vt)' - ( A  - v t )+)dH(v )  

1 "  1 
BP . v=O U 

= - / ((B - ~ t ) +  - ( A  - v t ) + ) - d G ( ~ )  

Hence the number of cars initially present in the interval at  time t is Poisson with 
mean XJuTo[(B ~ vt)+ - ( A  ~ v t )+] idG(u) .  

Hcrice the total number of customers in [A, B] at time t is Poisson with mean 

1 00 A 
A t - - A t )dG(s )  + X ((B - vt)+ - ( A  - v t ) + ) - d G ( ~ )  

" B  
V 

X 

= X(B - A)p 

since (5 ~t ~ 6 ~ t )  + ((t ~ t)+ - (t - t)+ = $ - 4. 
Wc conclude that if we start out with a distribution of cars and speeds as above 

then the distribution of cars and speeds is the same at  all times t .  This is not to say 
the system is now fixed, far from it. Cars continue to enter the system and move 
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off along the highway. Only the distribution is fixed. This is called a statistical 
equilibrium. 
4.14: 
a) The expected number of calls is 800 so we expect to  analyze 80 calls. Actually 
this is an approximation and to get an exact result we have to use renewal theory 
for Erlang-10 random variables. 
b) This is an Erlang-10 distribution with X = 100 hours 
c) It can’t be Poisson because the interarrival time is not exponential. 
4.20: Let N ( t )  represent a Poisson process with rate X 2 10 calls per second. 

a) 

P(N(10)  = 5, N(20) = 30) = P(N(10)  = 5 , N ( 2 0 )  - N(10) = 25) 

= P(N(10) = 5)P(N(20) - N(10) = 25) 

= P(N(10) = 5)P(N(10)  = 25) 

b) The number of on-going calls follows a Poisson distribution with a mean equal to 
the load p = Xmc where m G  = 138 seconds is the mean duration of a call. Hence 
p = 10 . 138. Let T be the number of calls holding at lpm. Since a Poisson is 
approximately normal we can approximate 

1380k 
k !  

00 

P(T > 1500) = exp(-1380)-. 
k=1501 

Just normalize 

c) At each arrival time of a Poisson process T, we have an associated holding time 
X,. We c d l  X ,  the mark associated with the arrival. If we look at the pair (Tn,  X , )  
we have a point process in R2. Assume the X ,  have cumulative distribution F 
then this two dimensional point process is in fact Poisson. The number of points in 
[s ,  t]  x [a,  b] is Poisson since N ( t )  - N ( s )  is Poisson with parameter X ( t - s ) .  Suppose 
N = n then each of these points has probability p = F(b)  - F ( a )  of falling in the 
interval [u, b] .  Hence the number B(n) of these n points which fall in the interval 
has a binomial distribution with parameters p and n. It is easy to check that the 
thinned process B ( N )  has a Poisson distribution with mean pX(t - s ) .  It is fairly 
easy to  check that the numbers of points falling in disjoint regions are independent 
so we have independent Poisson increments for rectangles. By cutting up any region 
into intervals we can check that we have independent Poisson increments for disjoint 
regions. 

NOW consider the image of this two dimensional process on the real line if we 
project at 45 degrees; i.e. (T,, X,) is projected to T, + X,. This produces the 
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point process of departures on the real line. This process is Poisson. It suffices 
to remark that the number of departure points in disjoint intervals [u, u] and [s, t]  
corresponds to disjoint regions in R2. The distribution of the number of points in 
these regions is Poisson with a mean proportional to v - ZL and t - s respectively. 
Hence the departure process is a homogeneous Poisson process. 

9.8.5 

5.2: In general the image of a Markov chain is not Markovian. In this case it suffices 
to check that the Markov property fails since 

Solutions to Selected Exercises in Chapter  5 

Just use the definition of conditional probabilities and express the events for Y in 
terms of X .  For example 

P,(Y2 = 0,  Y1 = 1,Yo = 0) 
P,(Y, = 1,Yo = 0) 

P,(Y, = OlY, = 1,Yo = 0) = 

5.10: 

lim P ( X ,  = a,  X,+, = c) = lim P ( X ,  = a)Kac = n(a)Kac. 
n - a  72-a 

5.11: This problem is a converse to Theorem 5.21. The watched process Wn on A 
discussed in Section 5.9 is certainly an irreducible stable Markov chain by Theorem 
5.21 with stationary distribution T A .  Let N ( T )  be the number of visits of F by X ,  
up to time T. By Theorem 5.18, for j E A, 

Hence x ~ ( j )  = n ( j ) / n ( F ) .  
5.17: a) Let S {0,1,2} where state 0 represents the state of a properly aligned 
machine just before it is loaded for a new part, where state 1 represents the state 
of an improperly aligned machine just before a new part is loaded and where state 
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2 represents the state when the machine is off-line and being repaired. 

.98 ( .02)(.8) ( .02)(.2) 
K = ( 0  .8 .2 0 . 

1 0 

Note that even a properly aligned machine can be misaligned in loading and then 
immediately drill off-center with probability (.02) ( .a) .  
b) Solve for nK = T ;  i.e. 

or 

T ( 0 )  = .987r(0) + T ( 2 )  

n(1) = .016~(0)  + .8;7(1) 

~ ( 2 )  = .0047r(0) + .27r(l). 

Also impose xi ~ ( i )  = 1 to get T = A(1, .08, .02). 
c) Let X ,  represent the state of the machine after n transitions. The long run 
average of defective parts produced per transition is 

1 
lim ~ c { X ,  = a }  = ..(a) 

N+co N - 1 
n=l 

since the only way to  get to state 2 is by producing a defective part in the previous 
transition. The long run average number of parts produced per transition is 

. N - l  

because we don’t produce a part in the repair state. Consequently the long run 
proportion of defective parts is the limit as N tends to infinity of the ratio of the 
number of defective parts produced in N transitions divided by the total number 
of parts produced in N transitions; i.e. 

4 2 )  ~ .02/l.l  
- - - 

n(0)  + n(1) 1.08/1.1 
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d) In N transitions the time elapsed is 

N--l 

B ( N )  (c [45. { X ,  E (0, l} + 360. { X ,  = a}] /3600 hours 
0=1 

During this time the number of nondefectives drilled is 

The number of nondefectives produced per hour over this period is A ( N ) / B ( N )  = 

( A ( N ) / N ) / ( W N ) / N ) .  As N + 00, 

lim B(N) = [ 4 5 ( ~ ( 0 )  + ~ ( 1 ) )  + 360~(2 ) ]  /3600 
N-cc N 

and 

Hence the long rate of riondefectives produced per hour is 

5.25: To show the Markov property consider a l ,  . . . a,_l such that a k  > 0 for all k 
and a1 + a2 + . . . + a,-l + z = t where z 2 0. If the age at time t - 1 is then at 
time t either the age increases by 1 or the age drops to 0. The probability of these 
transitions are respectively 

P ( Z ( t )  = zlZ(t  - 1) = 2 - 1,. . . Z ( t  - 2 )  = O,Z(t - 5 - 1) = a1 - 1 

, . . . , Z ( t  - z - an-l)  = 0 , .  . . Z(0)  = 0) 
P ( Z ( t )  = 2 , Z ( t  - 1) = z - 1,. . . Z( t  - 2 )  = 0 , .  . . , Z ( 0 )  = 0) 

P ( Z ( t  - 1) = z - 1,. . . Z( t  - 5 )  = O,Z(C - 2 - 1) = an-l - 1,. . . Z(0)  = 0) 

P(Xn > 5 - 1, x,-1 = a,-1, xn-2  = aTL-2, . . . , XI = a l )  

(1 - F ( z ) ) f ( a n - l ) f ( a , - z ) .  ' ' f ( a 1 )  

(1 - F ( z  - I ) ) f ( a n , - l ) f ( a n - Z )  ' .  ' f(.l) 

(1 - F ( z  - 1)) 

- - 

- P(X, > z,X,-, = U ~ , - ~ , X ~ - - ~  = ~ ~ - 2 ~ .  . . , X I  = a l )  
- 

- - 

- (1 - F ( x ) )  - 
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and 

- P ( X ,  = Z , X n - l  = U , - l r X n - 2  = a,-2,. . . ,XI  = Ul) 

P ( X ,  > J: - l,X,-I = a,_1,Xn-2 = U n - 2 , .  . . , X I  = U l )  

(1 - F ( z  - 1 ) ) f ( & l ) . f ( G - 2 )  ' ' ' f(U1) 

(1 - F ( z  - 1))' 

- 

- f ( z ) f ( a , - l ) f ( a n - 2 )  ' ' .  f (a1)  

- f (x) - 

The Markov property is explicitly proved because the distribution at time t only 
depends on the state at time t - 1 and we have calculated Kz-l,z  and K,-l,o 
respectively. 

Next remark that a(.) = 1 - F ( z )  is a stationary distribution by direct calcu- 
lation. For z > 0, 

Also 

Finally we remember that 
00 w 

y=o y=o 

defines a stationary probability distribution I - f ( x )  so 7r(x) = ~ 

9.8.6 

6.2: If EX:+' < B for all n then 

Solutions to Selected Exercises in Chapter 6 

2 E(X;+"{X, > 2 ) )  2 E(.1+6X{Xn > z}) 2 xl+s(l - &(a)) 
for all z and all n. Hence, supn(l - Fn(z ) )  5 z-(l+') A 1. H [ z ]  = x-('+') A 1 is 
clearly summable. 
6.8: There is a renewal every time the elevator returns to the ground floor G. The 
long run average time spent moving from G to the second floor is 

Q 

P ' expected duration of a cycle 
mean time going from G to 2 per cycle - - -  



350 Elements of Applied Probability 

We go from G to 2 at most once per cycle with probability 112 and the time spent 
is 3 . 2  so the denominator is 3 . 2 / 2  = 3 minutes. To calculate the length of a cycle 
define m(z)  to be the mean time to return to G starting from position 5 E {G,  1, a } .  
Using the Markov property 

1 1 
2 
3 1 
4 
4 1 

m(2) = 1 + -(6 + 0) + g ( 3  + m(1)) 
5 

m(G) = 1 + - ( 3  + m(1)) + 5(6 + m(2)) 

m(1) = 1 + - ( 3  + 0) + 3 ( 3  + m(2)) 

Solving we get m(1) = 112/19, m ( 2 )  = 608/95 and 

11 1112 1608 
2 2 19 2 95 

m(G)  = - + -- + --. 

This gives the denominator p = m(G). 
6.11: 
a) When a taxi is replaced we start a new cycle. Hence the total cost T ( t )  incurred 
until time t is a renewal reward process. Therefore, 

T ( t )  - lim - - 
t-rn t expected duration of a cycle ' 

expected cost per cycle 

The p.m.f. of T is 

Using this, the expected duration of a cycle with replacement at p months is 

The expected cost per cycle is 

21 1 21 P 
20 20 20 P 

30000 - (1 - -(1- - ) ) E D  = 30000 - (- - -)10000. 

Hence, 

b) The test replacement period occurs when the above fraction achieves a minimum. 
The best way to find the niiiiimum is to simply calculate the above expression for 
p = 2 , 3  , . . . ,  21. 



Appendix  351 

c) For large t the age of a taxi Z ( t )  has a limiting density fz(s) = (1 - FP(s))/pP 
for 0 5 s 5 14 where FP is the truncated distribution 

t < l  

t 2 14. 

and FP has mean pip. Hence, 

t = O  
- &) 15 t < 14 

t 2 14. 

If we purchase one of these taxis it will have an excess lifetime with a density 
on [0,21 - 141 given by 

P 

since the conditional density at s + x of the lifetime T given the age at time t is s 
is ~ T ( s  + x)/(1 - F T ( s ) ) .  
6.18: 
a) All jobs taken together form an MlMl l  queue. Jobs arrive at the rate of 30 jobs 
per hour so X = .5 jobs per minute while jobs are served at a rate of 60 jobs per 
hour or p = 1 per minute. Hence the utilization p = l / 2 .  
b) The mean of an MIMI1 queue is L = p / ( l  - p) = 1 
c) The proportion of time the server is idle is 1 - p = 1/2. 
d) By Little’s law L = XW where W is the system time of a customer and X = 1/2 
is the arrival rate in customers per hour. Hence, W = L/X = 2 minutes. 
e) The high priority jobs don’t even notice the low priority jobs so they form an 
MIMI1 queue with arrival rate AH = 1/6 per minute and service rate of 1 per 
minute. Hence the utilization for high priority jobs is p~ = 1/6. The mean of an 
MIMI1 queue is LH = p ~ / ( 1  - P H )  = 1/5 customers. 
f )  The utilization p~ = 1/6 is the proportion of time spent on high priority cus- 
tomers. 
g) Again use Little’s formula so WH = LH/XH = (1/5)/(1/6) i.e. 1.2 minutes. 
h) The waiting time is the system time minus the mean service time. Hence the 
expected waiting time is WH - 1 minutes; i.e. 0.2 minutes. 
i) The difference between the global mean and the high priority mean is Lf = 

1 - .2 = .8 low priority customers. 
j )  The difference between the global utilization and the high priority utilization is 
p - pe = .5 ~ 1/6 which is the proportion of time spent on low priority jobs. 
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k) The low priority jobs do not form an MIMI1 queue. Nevertheless Little's law 
applies. Let W, represent the mean system time of low priority customers. System 
time is generated by low priority customers at  a rate . WL minutes of system 
time per minute and by high priority customers at  rate '1 .2  = .2. The 
work done by the system in one minute is the queue size; i.e. 1 from b). Hence, 
~ W L  + .2 = 1 so WL = .04 hours or 2.4 minutes. 
1) Again the queueing time of low priority customers is the system time minus the 
service time; that is 2.4 - 1.0 minutes. 

. W, = 

9.8.7 

7.3: 
a) Consider 

Solutions t o  Selected Exercises i n  Chapter 7 

after matrix multiplication and simplification. This gives the semigroup property. 
The further property that 1imt-o P( t )  = I follows by inspection. 

b) 

d -21 21 
dt  7 28 -28 G = -P(t)lt=o = 1 ( ) 

c) If the two states are 0 and 1 then the holding time in state 0 is exponential with 
a mean of 1/21 followed by a transition to state 1. The holding time in state 1 is 
exponential with a mean of 1/28. This is followed by a transition back to  state 0. 
d) Solving 

gives ( ~ ( o ) ,  ~ ( 1 ) )  = (4/7,3/7). This is naturally the limiting value of the rows of 

7.10: 
a) There are 4 possible states. State 0 represent the state when both operators are 
idle, state 1 means the machine shop is busy but the subcontractor is idle, state 2 
means both the machine shop and the subcontractor are busy while state 3 means 
the machine shop is idle but the contractor is busy. The generator gives the rate of 

P ( t ) .  
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transition (with time measured in days) between the states: 

l / 2  -13/14 3/7 0 
0 1/5 -7/10 l / 2  

1/5 0 3/7 -22/35. 

-3/7 3/7 0 

G =  [ 
The first row describes a the arrival of a job at rate 3/7 jobs per day when both 
shops are idle. The second row describes transitions when the state is 1. With 
rate 1/2 jobs per day the shop finishes the job and the state becomes 0 but a new 
job arrives with rate 3/7 causing a transition to state 2. The third row describes 
transitions when both shops are busy. Either the subcontractor finishes its job at 
rate 1/5 jobs per day causing a jump to state 1 or the shop finishes its job at rate 
1 / 2  jobs per day causing a jump to state 3. The fourth row describes the transitions 
when only the subcontractor is busy. Either the subcontractor finishes its job at 
rate 1/5 jobs per day causing a jump to state 0 or a new job arrives with rate 3/7 
causing a jump to state 2. 
b) We solve TG = 0. 

7.12: Denote the queue at the junior account,ant by 1 and the queue at the senior 
accountant by 2. We consider three classes of jobs. The complicated cases are called 
class a and they arrive in the junior accountants in-box at a rate of X"(1) = 6 per 
hour. After processing these class a jobs enter the senior accountants in-box at a 
rate ;\"(a) = 6. Simple cases are called class b jobs and they arrive in the junior 
accountants in-box at a rate of X b ( l )  = 4 per hour. After classification class b job 
become class c jobs which enter the junior accountants in-box at a rate of X'(1) = 4. 

c) T ( 2 )  + T ( 3 ) .  

The total flows into queues 1 and 2 are 

X(1) = X"(1) + X b ( l )  + X c ( l )  = 14 

X(2) = Xa(2)  = 6. 

The loads on queue 1 and 2 are respectively p1 = 14/20 and p2 = 6/15. This 
Kelly network has a steady state 7r.  The probability the first queue has 3 forms for 
classification as well as two simple files is 

The probability the second queue has two complicated forms to process is (1 - pz)p$. 
The probability we see is the product of these two marginals. 

If the service rate depends on the class of customer then the system is no longer 
a Kelly network and all bets are off. It's appalling how easily one can go from a 
simple problem to an intractable one. 
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9.8.8 

8.4: 
a) Let Wa(x) be the minimal discounted cost so the Bellman optimality equation 
gives 

Solutions to  Selected Exercises in  Chapter 8 

1 
2 ~ ~ ( 0 )  = min( l+  -(Koo(o)W,(O) + &i(0)Wa(l)), 

1 
1.5 + p(K00(1)M'i,(o) + K~l(l)wa(I))} 

1 
2 ~ ~ ( 1 )  = min{:! + -(KIo(O)W~(O) + Kli(0)Wa(1)), 

1 
3 + p(Klo(l)Wa(O) + K11(1)Wa(l)) 

or 

There are in fact four possible equations and we must try them all. However it 
looks like a good idea to avoid state one so first try the equations corresponding to 
always using action 0. This gives 

1 1  1 
2 2  Wa(0) = 1 + -(-Wa(0) + Z W ) )  

The solution is Wcy(0) = 5/2 and Wa(0) = 7/2. Substitution shows these values 
satisfy (9.2). Since the optimal return function is unique we conclude the optimal 
policy is to always use action 0 and the minimum expected cost starting in state 0 
is 5/2. 
b) Let A be the minimum long rim average return. We must find r(1) (assuming 
without loss of generality (wolog) that r (0)  = 0) as in Theorem 8.15. The optimality 
equations are 

or 

1 1 3 
(9.4) 

1 
2 2 
1 1 3 5 
2 2 8 

A + r (0)  = min(1 + ( - r (0 )  + -r(l)), 1.5 + ( q ~ ( 0 )  + 2 ~ ( 1 ) ) }  

A + r ( l )  = min{2+ (-r(O) + - ~ ( 1 ) ) , 3 +  ( g r ( 0 )  + -~(1))}. 
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Again we have four possible equations but it still seems like a good idea to avoid 
state 1 so try action 0 in all states. The corresponding equation i s  

1 1 
2 2 
1 1 
2 2 

A + ~(0) = 1 + (-r(O) + -.( 1)) 

A + ~ ( 1 )  = 2 + (-r(O) + -r(l)) 

and the solution is A = 3 / 2 ,  r(1) = 1 and r (0)  = 0. Substitution shows this solution 
solves (9.4). Clearly T ( X N ) / N  4 0 so we conclude the long run average return is 
312 and we should always use policy 0. 

Notice that we can calculate the long run average return from kernel K(0)  using 
Theorem 5.18. The steady state of K(0)  is 7r = (1/2,1/2) so the long run average 
is 1 .  ~ ( 0 )  + 2 .  ~ ( 1 )  = 312 which is A. 
8.6: 
a) The age of the bus in months represents the state so S = (0, 1 ,2 , .  . .}. The action 
is to decide at the beginning of the month to repair the bus or not so A = (0, l} 
where 1 denotes the decision to repair the bus and 0 not to repair. 
b) Let p(x) = min(1, . l+  0.052) denote the probability the bus breaks if the age of 
the bus is 2 at the start of the month. Hence, for all z E S, 

c) Let CY = 1/1.005 Let V ( x )  denote the minimum expected cost so V ( x )  = 

min(f(z, O) ,  f ( z ,  1)) where 

f ( z ,  0) = ~ ~ p ( ~ ) . 7 0 0 0 + a ( p ( z ) V ( 0 ) + ( l - p ( z ) ) V ( z + l ) )  and f(z,  1) = 5000+aV(O). 

f ( x ,  1) is the cost if we repair immediately and then act optimally while f ( x ,  0) is 
the cost of continuing without repair and then acting optimally in future. 
d) Note that for 3: 2 18, p ( z )  = 1 so for z 2 1 

V ( x )  = min(5000 + aV(O), 7000. CY + aV(0)); 

that is V(z) = 5000 + aV(0) = f ( z ,  1) and the optimal policy is to do a repair 
immediately. Clearly f ( z ,  0) 5 5000 + aV(0) so it we can show f ( z ,  0) is increasing 
we know the optimal policy i s  to repair as soon as f ( z ,  0) > 5000 + aV(0). 

We first show V(z) is increasing. Consider any positive, nondecreasing function 
u and define the operators 

Tau( 2) = ap( x) .7000 + a ( p (  z) u( 0) + ( 1 - p (  z))u( z + 1)) and TI u( z) = 5000 + aV( 0). 
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since 

( p ( z +  l )u(2+2)  -p(z)u(z+ 1)) I p(z) (u(z+2)  -u(z+ 1)) 5 (u(z+2) - u(z+ 1)). 

This proves TOU(Z) is increasing in z. So is the function Tu(z)  = 
min{Tou(z),Tlu(z)} since it is the minimum of two increasing functions. If we 
start out with u = 0 then Tnu(z)  + V(z) and T"u is an increasing function. Since 
the limit of increasing functions is increasing it follows that V(z) is increasing. 

Finally, f ( x , O )  = ToV(z). By the above V(z) is increasing in n: and then so is 
ToV(z). We conclude f(z, 0) is indeed increasing and we have proved the (intuitively 
obvious) optimal policy is to repair as soon as the age reaches some value 20 such 
that f ( ~ ,  0) > 5000 + aV(0). 
8.19: We observe the number of items until the next defective. Hence we observe 
a sequence of i.i.d. geometric random variables X ,  with p.m.f. fo(z) = O . O l ( 1  - 
O.O1)"-l. After the change point the time between defectives is a geometric random 
variable with fl(z) = 0.05(1 - 0.05)"p1. The log likelihood is 

log(t(x)) = log (0.05(1 - 0.05)z-1/0.01(1 - O.O1)z- l )  
(0.05)(0.99) 0.95 

= ":'"(0.96)(0.99)) + zlO%m) 

= 0.0179(71.39 - z) 

Define V, = 71.39 - X,. This means that, up to  a constant factor, the Cusum is 
defined by CO = 0, C, = max{C,-l+ V,, 0) and Page's stopping time is defined as 
the first time C, 2 H .  This is equivalent t)o stopping if D, 5 -H where D, = -C, 
so D, satisfies 

DO = 0, D, = min{D,-1 - V,, 0) = rnin{D,-l + X, - 71.39, O}. 

Such a control chart plotted below the axis is typically used for testing if the 
mean of normally distributed quality measurements decreases from the nominal 
value p g  to p1. In fact it is common practice to plot two charts in one to  detect an 
increase or a decrease in the process mean. 

To find H one could use Markov chain methods as we did for normal random 
variables (except here discretization is not necessary). The simplest thing would be 
to experiment using simulation. 

is obviously increasing.
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The Cumulative Standard Normal Distribution can be generated using the fol- 
lowing Mathematica program: 

c 
I 1  

0 . 0  
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 

f [w-1 =(E-  (-u-2/2) ) /Sqrt [2  Pi] ; 
normal=Table [PaddedForm "Integrate [%, {u, -1nf inity , i+j 11 , 

output=TableForm [normal, Tablespacing -> {0,2), 
TableHeadings -> 
{{"O.O1l, I IO. 1" , "0 .2"  J"0.3" , "0 .4" , "0 .5" , "0 .6" , "0 .7" , "0 .8" ,  
"0.9","1.0","1.1","1.2","1.3","1.4","1.5","1.6","1.7", 
"1 .8", "1 .9", "2.0", "2. I", "2.2", "2.3", "2.4", "2.5", "2.6", 
"2.7", "2.8", "2.9", "3. O " ) ,  

C4,4)1 , {j ,O ,3,0.11 ,(i, 0 , O .  09 ,O. 0 0 1  ; 

O.OO", I' 0.01", 0 . 0 2 " ,  I' 0.03", 0.04" ,'I 0.05",  
0.06" , 'I 0 . 0 7 " ,  I' 0 . 0 8 " ,  I' 0 .  0911))] 

0.00 
0.5000 
0.5398 
0.5793 
0.6179 
0.6554 
0.6915 
0.7257 

0.7881 
0.5159 
0.8413 
0.8643 
0.8849 
0.9032 
0.9192 
0.9332 
0.9452 
0.9554 
0.9641 
0.9713 
0.9772 
0.9821 
0.9861 
0.9893 
0.9918 
0.9938 
0.9953 
0.9965 
0.9974 
0.9981 
0.9987 

a. 7680 

0.01 0.02 
0.5040 0.5080 
0.5438 0.5478 
0.5832 0.5871 
0.6217 0.6255 
0.6591 0.6628 
0.6950 0.6986 
0.7291 0.7324 
0.7611 0.7642 
0.7910 0.7939 
0.8186 0.8212 
0.8438 0.8461 
0.8665 0.8686 
0.8869 0.8888 
0.9049 0.9066 
0.9207 0.9222 
0.9346 0.9357 
0.9463 0.9474 
0.9564 0.9573 
0.9649 0.9656 
0.9719 0.9726 
0.9778 0.9783 
0.9826 0.9830 
0.9864 0.9868 
0.9896 0.9898 
0.9920 0.9922 
0.9940 0.9941 
0.9955 0.9956 
0.9966 0.9967 
0.9975 0.9976 
0.9982 0.9982 
0.9987 0.9957 

0.03 0.04 
0.5120 0.5160 
0.5517 0.5557 
0.5910 0.5948 
0.6293 0.6331 
0.6664 0.6700 
0.7019 0.7054 
0.7357 0.7389 
0.7673 0.7704 
0.7967 0.7995 
0.8238 0.8264 
0.8485 0.8508 
0.8708 0.8729 
0.8907 0.8925 
0.9082 0.9099 
0.9236 0.9251 
0.9370 0.9382 
0.9484 0.9495 
0.9582 0.9591 
0.9664 0.9671 
0.9732 0.9738 
0.9788 0.9793 
0.9834 0.9838 
0.9871 0.9875 
0.9901 0.9904 
0.9925 0.9927 
0.9943 0.9945 
0.9957 0.9959 
0.9968 0.9969 
0.9977 0.9977 
0.9983 0.9984 
0.9988 0.9988 

0.05 0.06 
0.5199 0.5239 
0.5596 0.5636 
0.5987 0.6026 
0.6368 0.6406 
0.6736 0.6772 
0.7088 0.7123 
0.7422 0.7454 
0.7734 0.7764 
0.8023 0.8051 
0.8289 0,8315 
0.8531 0.8554 
0.8749 0.8770 
0.8944 0.8962 
0.9115 0.9131 
0.9265 0.9279 
0.9394 0.9406 
0.9505 0.9515 
0.9599 0.9608 
0.9678 0.9686 
0.9744 0.9750 
0.9798 0.9803 
0.9842 0.9846 
0.9878 0.9881 
0.9906 0,9909 
0.9929 0.9931 
0.9946 0.9948 
0.9960 0.9961 
0.9970 0.9971 
0.9978 0.9979 
0.9984 0.9985 
0.9989 0,9989 

0.07 0.08 0.09 
0.5279 0.5319 0.5359 
0.5675 0.5714 0,5753 
0.6064 0.6103 0.6141 
0.6443 0.6480 0.6517 
0.6808 0.6844 0.6879 
0.7157 0,7190 0.7224 
0.7486 0.7517 0.7549 
0.7794 0.7823 0.7852 
0.8078 0,8106 0.8133 
0.8340 0.8366 0.8389 
0.8577 0.8599 0.8621 
0.8790 0.8810 0.8830 
0.8980 0.8997 0.9015 
0.9147 0.9162 0.9177 
0.9292 0,9306 0.9319 
0.9418 0.9429 0.9441 
0.9525 0.9535 0.9545 
0.9616 0.9625 0.9633 
0.9693 0.9699 0.9706 
0.9756 0.9761 0.9767 
0.9808 0.9812 0.9817 
0.9850 0.9854 0.9857 
0.9884 0.9887 0.9890 
0.9911 0.9913 0.9916 
0.9932 0.9934 0.9936 
0.9949 0.9951 0.9952 
0.9962 0.9963 0.9964 
0.9972. 0.9973 0.9974 
0.9979 0.9980 0.9981 
0.9985 0.9986 0.9986 
0.9989 0.9990 0.9990 
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M / G / m  queue, 107 
R-chart, 89 
u-algebra FX generated by a random 

u-Algebras, 34 
u-additivity, 35 

variable X ,  57 

accessible, 135 
action, 271 
AFT, 86 
age, 185 
Alternating renewal processes, 186 
AOQL, 14, 86 
aperiodic, 141 
AQL, 7 
asynchronous transfer mode, 1 
ATM, 1 
ATM networks, 32 
ATM switch, 2 
atomic, 34, 35 

backward induction, 278 
Banach space, 324 
BASTA property, 145 
Bellman optimality equation, 277 
Bernoulli, 71 
Bernoulli Part, 214 
Bernoulli Part Decomposition, 214 
Bernoulli Point Processes, 100 
Binomial, 72 
birth and death process, 242 
Borel-Cantelli Lemma, 321 
Bramson Networks, 259 
Buffer control, 275 
burst, 129 
Bursty ATM traffic, 128 

calls in progress, 101 
cell loss rate, 139 
cells, 1 
central limit theorem, 78 
change point, 308 
Chapman-Kolmogorov, 133 
Chebyshev, 18 
Chebyshev’s Inequality, 47 
Communication classes, 135 
commute, 326 
complete metric space, 325 
Concavity, 322 
conditional probability, 48 
conditional probability mass function, 49 
conditional probability measure, 50 
Contending processors, 231 
Continuous sampling inspection by 

Continuous Time Decision Problems, 295 
continuous uniform distribution, 77 
contraction, 287, 325 
Control charts, 88 
controller, 271 
converges in distribution as, 77 
Convexity, 322 
coupled, 203 
Cusum, 150 
Cusum procedure, 308 

attribute, 86 

decision theory, 271 
delayed renewal process, 183 
density, 79 
discounted costs, 286 
discrete (nonhomogeneous) Poisson 

discrete random variables, 39 
process, 115 
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distribution function, 41 
DOD, 7 
Dominated Convergence, 321 
Drunkard’s walk, 62 
Dynkin’s Formula, 60 

equilibrium distribution for the 

equiprobable, 36 
equivalence class, 327 
equivalence relation, 327 
Erlang-m distribution, 118 
events, 34 
excess, 185 
expected value, 45 
exponential distribution, 77 

homogeneous renewal process, 194 

Fatou’s Lemma, 320 
fictitious jumps, 263 
fixed point, 325 
Foster’s Criterion, 175 
Fubini’s Theorem, 322 

generator, 231 
geometric, 75 
greatest common divisor, 327 

histogram, 17 
hitting time, 152 
homogeneous Markov chain, 127 
homogeneous Poisson process, 105 

independence, 52 
independent events, 52 
independent random variables, 52 
indicator function, 49 
infinite horizon, 286 
initial distribution, 128 
interarrival times, 99 
IP router, 2 
irreducible, 136, 237 

Jackson network, 250 
joint distribution function, 43 
joint probability mass function, 42 

Kelly Networks, 254 
Kelly’s Lemma, 246 
Kolmogorov Extension Theorem, 59 
Kolmogorov’s backward, 235 

Kolmogorov’s forward, 235 

Law of large numbers, 85 
Law of the Unconscious Statistician, 80 
Lebesgue integral, 55 
linearity, 45 
Little’s Theorem, 200 
load, 243 
long run average expected cost, 290 

marginal p.m.f., 43 
Markov process, 229 
Markov property, 128 
Markov’s Inequality, 47 
Markovian policies, 272 
memorylessness, 75 
rnemorylessness property, 102 
MIL-STD-105D, 7 
moment generating function, 82 
Monotone Convergence, 55, 320 
monotonicity, 45 
multiclass queues, 247 

nanosecond precision, 100 
No-shows, 79 
nonhomogeneous Poisson process, 120 
Nonparametric control charts, 157 
normal random variable, 79 
Norms, 324 
null recurrent. 167 

OC curve, 74 
on and off-target run lengths, 155 
optimal cost, 276 
Optimal parking, 273 
Optimal Stopping, 298 
order statistic, 105 

p.m.f., 41 
packets, 1 
Page’s procedure, 309 
Palm process, 196 
Pascal, 76 
peak rate, 129 
period, 141 
Poisson, 76 
policy, 271 
Pollaczek-Khinchin equation, 143 
positive recurrent, 167 
probability generating function, 82 
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probability mass function, 41 
probability measure, 35 
probability transition kernel, 128 
process, 171 
product form, 251 
pseudo-random numbers, 78 

random variable, 38 
recurrent, 167 
reference or anchor value, 151 
regenerative process, 185 
rejection method, 81 
renewal process, 183 
renewal reward process, 189 
reversible chain, 148 

sample point, 31 
sample space, 31 
sampling inspection, 73 
Scheffk’s Theorem, 321 
Schwarz inequality, 323 
semi-group, 235 
Shewhart %chart, 89 
simple point process, 183 
simple random variable, 44 
spread-out, 217 
stable, 136 
standard deviation, 47 
standard normal distribution, 78 
stationary, 136 
stationary point processes, 192 
statistical multiplexing, 5 
Stirling, 225 
stochastic integral, 119 
stochastic process, 32, 40 
stopping time, 41, 165 
Strong Markov Property, 170 
system time, 145 

TCP/IP, 1 
time reversal, 147, 244 
time to the horizon, 271 
total variation, 113 
transient, 167 
transition, 233 

uniformly distributed on [0,1], 77 

variance, 47 

Wald’s Lemma, 61 
watched process, 171 
worst case, 309 
worst case sense, 308 

z-transform, 82 

unconscious statistician, 46 
uniform integrability, 320 
uniformization, 263 
uniformized Markov chain, 239 


