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Preface

This text in applied probability is designed for senior engineering, mathematics and
systems science students. In addition I have used the optional, advanced sections
as the basis of graduate courses in quality control and queueing. It is assumed the
students have had a first course in probability but that some need a review. Discrete
models are emphasized and examples have been chosen from the areas of quality
control and telecommunications. The text provides correct, modern mathematical
methods and at the same time conveys the excitement of real applications.

No physical measurement is infinitely precise and so, at some scale, is a discrete
measurement. Here we take the point of view that the most interesting concepts
in applied probability are discrete in nature and hence the description should not
be complicated by measurability conditions implicit in a continuous model. The
discrete model also has tremendous advantages. The complexity of conditioning
continuous random variables disappears. Conditioning on the past of a random
sequence becomes a simple application of Bayes’ formula rather than a projection
onto an L2 space! Moreover, the discrete model allows one to do coupling in a
transparent way and coupling methods are used throughout the book. Of course,
continuous approximations may offer simplified descriptions and easier computa-
tions so naturally we will use this tool. We do not, however, pursue the theory to
cover the continuous case. On the other hand, within the constraints of the discrete
model, the most modern methods are presented.

Painful experience over the years has shown that the abstract model and es-
pecially the definition of o-fields on probability spaces given in Chapter 2 is not
everyone’s cup of tea. The probability primer in Chapter 1 provides an overview
of Chapter 2 by giving an equiprobability model describing a random experiment
associated with a no-frills example. In some cases it may therefore be advisable to
assign the primer as background reading and then skip directly to Chapter 3. The
results in Chapter 2 are then referenced as needed. A first course might then be
completed by covering Chapter 3 and the first few sections of Chapters 4, 5 and 7
or Chapter 4, 5 and 8. Proofs are kept to a minimum in these sections but the main
computational tools are given. This results in the condensed version of the course

vii



viii Elements of Applied Probability

described as the Systems Science course in the following diagram. The sections
which are marked with a star give the proofs and more advanced material.

An advanced class would read Chapter 1 for the background on the “information
highway” but the instructor would start in Chapter 2. Following the Flow Chart
for the Mathematics Course below the instructor might complete most of the book
in two quarters or perhaps one semester. The sections marked with a star give the
proofs and advanced material while those marked with two stars are more advanced
or on special topics.

On-line quality control procedures are emphasized and the Cusum is treated
including a proof of optimality to cap off the last chapter. The “information high-
way” is described in the introductory Chapter 1 and used as an example throughout
the book. Some examples are worked out using Mathematica and the commands
are given in the text. These topics are received enthusiastically by the students
and while some students don’t have access to Mathematica, 1 think it essential to
illustrate the interplay between the theory and the enormous computational power

4

available today.

This book is my best effort at trying to sell the subject of applied probability
to a rather diverse audience. I believe the result is a course which is modern and
mathematically sound but without too many prerequisites. It is my hope that this
text will provide engineering, mathematics and systems science students with an
accessible introduction to modern techniques in quality control and the performance
analysis of computer and telecommunication systems.

David McDonald
Ottawa, 2003
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Chapter 1

Introduction

1.1 Telecommunications and Quality Control

A book on applied probability would be pointless without applications. There are
a huge number of possibilities including applications to the biological sciences, to
manufacturing or to the behavioural sciences but here we emphasize applications
to telecommunications and to quality control.

1.2 The Digital Network

Real world applications of applied probability are as near at hand as your telephone.
The information revolution is upon us. The integration of computing and telecom-
munications will change the way people live and work. Traditional services such as
mail, bank transactions and newspaper subscriptions will be delivered electronically
directly to the home along with telephone services. New services will emerge that
we can’t imagine. These services will be delivered on the information highway built
on a network of fiber optical cables.

The traffic laws for this highway are hotly debated. Asynchronous transfer mode
or ATM was conceived in the late nineteen eighties as international standard for
the integrated services digital networks or ISDN networks capable of carrying the
above mixture of services. This standard was designed to deliver the quality of
service we expect from a telephone network. However, the advent of the world wide
web changed everything! The light and easy internet protocol TCP/IP (Transfer
Control Protocol over the Internet Protocol) was better adapted for delivering web
pages. Today the TCP/IP protocol dominates but so far falls short in delivering
the quality of service envisaged for ATM.

Both protocols are based on sending information in packets across the network.
Under both ATM and TCP/IP, multimedia services such as digitized voice, text,
image, video and computer communications are supported by dividing the data
stream into ATM cells or TCP/IP packets. ATM cells are short, 53 byte packets
while TCP/IP packets are of different sizes. These heterogeneous data streams can
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be multiplexed together over a common transmission medium such as an optical
cable. Consequently this high capacity medium must no longer be dedicated to a
single data source.

In both protocols the routing information is in the header and the data follows.
The format of an ATM cell is given in Figure 1.1 below:

byte
1 2 3 4 5 6 53
8 CLP
7 RES
VPl | VCI
6
PT
5
bit HEC |data (e e @ e ®e|data
4
3
GFC| VPI Vel
2
1

Fig. 1.1 The ATM cell

Ottawa

Montreal

Kingston

Toronto

Toronto Local
Detroit

Buffalo
Fig. 1.2 An ATM network

On the information highway, asphalt and cement are replaced by fiber optical
cables. Motor vehicles become cells or packets and the highway interchange is
replaced by an electronic ATM switch or packet router. If vehicle traffic obeyed the
laws of an ATM network then all vehicles would be of the same size and capacity
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and they would carry passengers or cargo. A big delivery from Toronto to Ottawa
could consist of a series or convoy of vehicles merged or multiplexed onto the high
capacity 401 highway leading to Kingston along with all other vehicles headed that
way. The drivers of the vehicles wouldn’t know the destination but would carry an
identifier which a dispatcher in Kingston would recognize. The dispatcher at the
Kingston interchange would be looking for vehicles with this identifier and would
know that these vehicles should be switched onto highway 15 toward Ottawa. There
is in fact a virtual connection for all the vehicles involved in this delivery maintained
by the dispatchers along the path. In an ATM cell in Figure 1.1 the passengers or
cargo are the data in the 48 byte data field. The cell identifier is given in fields VPI
(Virtual Path Indicator) and VCI (Virtual Channel Indicator).

If vehicle traffic obeyed the laws of a TCP/IP network then vehicles would come
in variable sizes and capacities. A big delivery from Toronto to Ottawa would consist
of a convoy of vehicles with drivers who know their final destination. When the
vehicles arrive at the Kingston interchange the driver would tell the dispatcher his
destination and the dispatcher would look up the best road in a routing table. The
vehicle would then merge onto highway 15 if directed to do so. There is no virtual
connection so in this sense an TCP/IP network is more like a real vehicle highway
than an ATM network. TCP/IP is light and easy with no prearranged virtual
path but as with the real traffic network there is no way to limit access to avoid
traffic jambs! This is the first major difference between ATM and TCP /IP. Finally,
under TCP/IP, when each vehicle arrives Ottawa a small vehicle is dispatched back
to Toronto acknowledging that this portion of the delivery was successfully made.
This acknowledgement feedback in TCP/IP is another major difference between
ATM and TCP/IP.

Let’s consider what happens in an ATM network when a long distance telephone
call is made from Toronto to Ottawa. When the number is dialed the signalling
system called SS7 must set up the call. SS7 alerts the ATM switches in Toronto,
Kingston and Ottawa that it has a call requiring a capacity of 64,000 bits a second
plus the same amount to carry the other party’s voice back to the caller. If that
capacity is not available then the caller gets a busy signal. If the call is accepted
SS7 ties up the resources and rings the other party. If the other party doesn’t
answer and the caller hangs up then SS7 will release the resources. If the other
party answers, the ATM switches are notified to expect cells with given VCI-VPI
identifiers. The Toronto switch knows it must send cells with this identifier to
Kingston while the Kingston switch knows it must send such cells to Ottawa (not
Montreal for instance). The Ottawa switch knows it sends cells with this identifier
to a specific telephone number in Ottawa. This completes the ATM virtual circuit.

The mechanics of the same call on a TCP/IP network are still in flux. When
conceived in 1983, TCP/IP was designed to deliver packets like registered letters
sent through the postal service. Packets pass through a series of routers, are stored
and then sorted and then sent on their way. When a letter is successfully delivered
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an acknowledgement is returned to the source. This protocol was designed for
reliable delivery over a failure prone network with military applications in mind.
The concept of virtual circuits is foreign to TCP/IP and this prevents telephone
operators from guaranteeing high quality calls. Nevertheless by tweaking TCP/IP,
voice over TCP/IP is becoming common and this is pushing down the cost of
personal communication.

For simplicity we will mostly consider ATM here since switching fixed length
cells is easier to analyze than routing variable length packets (in fact some TCP/IP
routers break packets in fixed length cells for switching purposes and then reassem-
ble the packet at the output port). One should bear in mind that technological
changes like optical switching will eventually make both these protocols obsolete.
Nevertheless, if past history is any guide, the mathematical concepts studied here
will remain relevant for evaluating the performance of newer technologies.

Time » /r\

%

Band Limited Speech Waveform

Sus

| —

-« 155 >

PAM Pulses for a Single Channel

Fig. 1.3 Speech sampling

The mechanics of converting voice to information hasn’t changed in 40 years.
The caller’s voice compresses a diaphragm in the mouth piece of the telephone which
generates an electric current which is detected at the local telephone wire center.
This signal voltage is measured or sampled at the wire center every 125 microseconds
or 8,000 times a second. The voltage is quantized and encoded into 8 bits or 1
byte; that is 64,000 bits or 8000 bytes are produced every second. Six milliseconds
worth of speech makes 48 bytes which is exactly the data content of an ATM cell.
This is about right because the human ear can’t distinguish delays shorter than 6
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milliseconds. Similarly TCP/IP packets may carry about 6 milliseconds worth of
voice data from a single source. Hence each speaker would produce a steam of cells
or packets at a rate of about 6 per millisecond.

Alternatively the cell may serve as a frame to carry one byte from 48 different
speakers between the same two points on the network. lf 48 customers were simulta-
neously calling Ottawa from Toronto they each would produce a byte every 1/8000
of a second and these bytes would be assembled into one cell and sent. At the
receiving end these bytes would be disassembled and send to the separate receivers.
This would produce a stream of cells at a rate of 8000 per second. In this way ATM
can emulate the TDM (Time Division Multiplexing) system currently in use around
the world. Naturally more customers can be accommodated by managing separate
streams of frames. The same techniques can be used to carry voice over IP (VoIP).

The cells associated with our speaker arrive in Kingston, the header is identified
and the ATM switch in Kingston switches these cells onto the Ottawa trunk. On
arrival in Ottawa the header is again identified and the switch routes these cells to
the local wire center in Ottawa. At the local wire center the digitization procedure
is reversed and a voltage is sent down the line to the other party. This voltage drives
the speaker in the other party’s telephone and the speaker’s words are received.

The projected rate of the trunk lines is 10 gigabytes per second; that is around
10,000,000,000 bytes per second or around 200,000,000 cells per second. On an
ATM network this means that between consecutive cells from our speaker the switch
sends out roughly 1,000,000 cells. These cells could be used for other speakers so
in principal a million other callers could be using this trunk simultaneously! The
enormous trunk capacity will of course be used for other kinds of traffic. Combining
the cells or packets of various sources onto a single trunk is called multiplexing and
this multiplexing of traffic results in a substantial increase in the carrying capacity
of a single trunk. In fact since no source books a particular time slot, if a source has
no cell or packet to send in a given time slot then this spare capacity can be used
by somebody else. This is exactly what occurs in a telephone conversation. There
are silence periods when the other party is talking. This means in fact that several
million callers could use the same trunk line because most of any conversation is
silence. Of course if everyone were speaking simultaneously and generating cells or
packet at the peak rate then the trunk capacity will be inadequate. We hope this
has small probability!

This is the basis of statistical multiplexing. More sources are accepted than
could be handled if all sources transmit at peak rate and this increases the revenues
of the telephone company. There is however an inevitable cost to pay. Conflicts or
contention for resources will arise. A videoconference will generate about a million
cells a second so a service of this kind will occupy a nonnegligable part of the trunk
capacity. Hence the question of call admission becomes critical because too many
videoconferences would disrupt telephone service to thousands of customers. A
large computer file transfer might have the same effect but since a data transfer
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is not usually time critical such a call might be accepted but delayed at a switch
if that switch gets too busy. Telephone calls are very delay sensitive however so
they must get high priority. On the other hand if the switch is really overloaded it
might simply drop a few cells associated with a telephone call and nobody would
ever notice. Dropping a few cells in a data transfer would would be costly however,
as the correct data might have to be retransmitted. Dropping the formatting cells
in a video message might produce nonsense at the other end.

A simple large switch or router has no queueing at the input ports. Cells or
packets are routed through the switch without queueing delay directly to buffers
(or to a common buffer) at the appropriate output port. The cells or packets are
then scheduled for transmission along the output link. In Exercise 1.1 we consider
one output port comprising two buffers and a link in a 2 x 2 ATM switch. The
point of the exercise to investigate the impact of different scheduling protocols for
cells queued at the two competing output buffers. In fact modern switches now
run more sophisticated protocols designed not only to reduce queue lengths and
the associated delay but also to reduce the variability of the queueing delay so cells
eventually arrive at the destination in a steady predictable stream.

The net effect of multiplexing many streams of data through a switch is clearly
enormously complicated. It must be understood however because it is essential to
decide ahead of time just how many traflic sources can be routed through this switch
in order to avoid unacceptable delays and cell losses. This problem of admission
control is still being hotly disputed. The problem is further complicated by the fact
that a switch is receiving traffic directly from local sources or even local networks
and also from other switches.

The performance of the ATM switch or the TCP/IP router will be judged not
only on the average amount of traffic carried. It is also important to predict the
proportion of cells or packets dropped as well as the average delay and the cell delay
variation of cells or packets traversing the network . This results in complicated (but
interesting) problems in queueing theory: the mathematical (and often probabilistic)
theory of queues.

1.3 Quality Control

Many maintain the catastrophic decline of the North American automobile industry
in the nineteen seventies and eighties resulted partly from the fact that foreign
competitors adopted military quality control standards while the North American
companies forgot all about quality. Quality control has many aspects. Acceptance
sampling described below can be used by a buyer to force a supplier to deliver
product of a specified quality. The supplier can avoid poor quality product by
monitoring the production line using the on-line quality control schemes described
in future chapters. The supplier can also design his product in such a way that minor
imperfections in production do not result a poor quality product. The search for
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these robust production regimes is called off-line quality control and is not treated
in this book.

The most famous military acceptance standards are MIL-STD-414 for accep-
tance sampling by variables and MIL-STD-105D for acceptance sampling by at-
tributes. The former is used when a quality measurement is available for elements
of the sample. The later is used when one can only determine if the elements of the
sample are defective or not. We consider MIL-STD-105D for historical reasons since
MIL-STD-105D was replaced by MIL-STD-105E in 1989 and then by MIL-STD-
1916 in 2001. MIL-STD-105D has also been incorporated into the International
Standards Organization (ISO) standard called ISO 2859. Department of Defence
(DOD) Specifications and Standards are available for public use through the DOD
Scientific and Technical Information Network at the http://stinet.dtic.mil web site.

Essentially a standard is used like a contract between a supplier and a buyer. The
two sides agree on a price and both sides agree the buyer will accept the product
according to the procedures carefully set out in the standard. These procedures
essentially punish the supplier if he produces an unreasonably high proportion of
defective or nonconforming units. On the other hand he is rewarded if he produces
a reasonably low proportion of nonconforming units. The key word is reasonable,
and this is spelled out by the concept of acceptable quality level - AQL.

The AQL, agreed to contractually by the supplier and the buyer, is the per-
centage of nonconforming units in lots that will be accepted most of the time by
the sampling scheme. In other words, if the lots submitted have a percentage of
nonconforming units no greater than the AQL then the sampling scheme will accept
the great majority of these lots. In practice the great majority means about 95%.
The standard does caution however that this does not give the supplier the right to
knowingly supply any nonconforming unit of product!

Imagine that a supplier produces resistors in large batches and a buyer wants
to sign a long term contract for one lot of resistors every working day. The first
step is to agree on an AQL. The buyer would like an AQL of 0 of course but the
supplier knows he can’t meet that standard at least not at a reasonable price. They
settle on an AQL of 2.5% since the buyer knows he can easily detect the defective
resistors in the process of building his product and therefore he is willing to do the
necessary screening for a lower price.

They next agree that all lots will contain 1000 units. This determines the sample
size code letter. Therefore the sample size code letter J is picked from the table
below.
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Lot size General inspection level 11
2 to 3 A
9 to 15 B
16 to 25 C
26 to 50 D
51 to 90 E
91 to 150 F
151 to 280 G
281 to 500 H
501 to 1,200 J
1,201 to 3,200 K
3,201 to 10,000 L
10,001 to 35,000 M
35,001 to 150,000 | N
150,001 to 500,000 | Q
500001 and over R

Next look at Figure 1.4.

This outline describes four regimes for the scheme.

The usual regime is normal inspection. If the supplier delivers very good quality a
level of trust is established and the regime of reduced inspection is entered. This
reduces the cost of sampling to the buyer. If the supplier delivers poor quality he
is punished and the regime of tightened inspection is entered. If he doesn’t pull up
his socks while in tightened inspection, the inspection scheme is discontinued and
its time to call in the lawyers to cancel the whole contract.

---Preceding 10 lots inspected under
normal inspection, and

---preceding 10 lots accepted with total
number of nonconforming units (or
nonconformities)equal to or less than
the limit number, and

---production steady, and

Reduced
inspection

/ ---approved by the responsible authority
\ Jr

--Lot not accepted, or
}»--lot accepted but the number of noncon-
torming units(or nonconformities)lies
between acceptance (Ac) and rejection
(Re) of the plan, or
F--production irregular, or
F--other conditions warrant switch

2 outof 5orless
consecutive lots
not accepted

5 consecutive
lots accepted

5 lots not accepted
while on tightened
inspection

Tightened
inspection

Discontinue’
inspection

Supplier improves
quality

/

Fig. 1.4 The regimes of inspection under MIL-STD-105D.
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Suppose we start with normal inspection. We read off the parameters from
the Table II-A on page 10 across from code letter J. The sample size from each
lot should be 80 and we accept the lot if no more than ¢=5 nonconforming units
are in the sample. If there are 6 or more we reject the lot and send it back to
the supplier. We stay with normal inspection until one of the conditions is met in
Figure 1.4. Suppose the conditions for tightened inspection are met; that is two out
of five or worse consecutive lots have been non-acceptable. In this case the sampling
scheme given in Table II-B on page 11 applies to subsequent lots. Reading off the
parameters we see the sample size is still 80 but the buyer accepts the lot if no more
than ¢=3 nonconforming units are in the sample; otherwise the buyer rejects the
lot. This puts the supplier in a tight spot. He knows that while in tight inspection
he dare not have 5 more lots rejected or the sampling plan will be suspended and
his contract is at risk. He will try very hard to supply good quality and return to
normal inspection by having 5 lots in a row accepted.

The conditions for entering the reduced inspection regime are rather stringent.
The preceding 10 lots inspected under normal inspection must be accepted. Next,
the total number of nonconforming units in these 10 samples must be less than
or equal the limit number in Table II-D on page 13. Hence the total number of
nonconforming units in these 10 lots must be less than or equal to 14 since 10
samples of size 80 units or 800 in all were sampled. Moreover the production
must be at a steady rate and finally some responsible authority must give an OK.
Suppose the conditions for reduced inspection are met. In this case the sampling
scheme given in Table II-C on page 12 applies to subsequent lots. Reading off the
parameters we see the sample size is 32. This means less work for the buyer because
he trusts the supplier. The buyer rejects the lot and returns to normal inspection
if there are 5 or more nonconforming units. If no more than ¢=4 nonconforming
units are in the sample the buyer accepts the lot but only remains in the reduced
inspection regime if the number of nonconforming units is no more than 2 and
production is regular and no unwarranted conditions are observed.

The process average is the percentage of nonconforming units found in the sam-
ples submitted. If the proportion of nonconforming units in a lot is p%, the OC
curve at p% gives the probability the lot will be accepted. Hence, if the process
average is p% then in the long run a proportion OC(p%) of the lots will be accepted.
The OC curves determined for the normal, tightened and reduced sampling plans
are such that OC(2.5%) =~ 95%. The precise values can be calculated as we do
for the scheme for testing shells in Example 3.4. This means that if the supplier
maintains a process average of at most 2.5% nonconforming then 95% of his lots
will be accepted.



Table IT-A - Single sampling plans for normal inspection

Acceptable quality levels (normal inspection)

sample size sample 019 .01 029 .04 06§ 210] .15] 25] 40] 65] 1.0] 1.5] B3 5] 4.0] 6.5] 10 | 15 | 25 | 40 | 65 | 100 | 150 | 250 | 400 | 650 | 1000

code letter size Acl Ac| Ac| Ac| Ac| Ac| Bc | Ac| Bc ] Ac | Ac| Ac| Ac| Ac| Ac| Ac| Ac| Ac| Ac | Ac | Ac Ac Ac Ac Ac Ac
Re | Re| Re| Re| Rc| Re| Re | Re| Re| Re| Re| Re| Re| Re| Re| Re| Re| Re| Re| Re| Re Re Re Re Re Re

A 2 [ m [ T T [ [ [ T [0 [ I T [ [} T T 1 2 3 56 78 10 14 21 30
3 2 3 4 11 15 22 31

B 3 4 4 4 4 4 4 4 4 4 4 ¢ 4 4 [¢) T il 1 2 3 5 78 10 14 21 30 44
1 2 3 4 6 11 15 22 31 45

c 5 4 4 4 4 4 L 4 4 I 4 4 I 0 1 I 1 2 3 5 7 10 14 21 30 44 1

1 2 3 4 6 8 11 15 22 31 45
D g 4 4 ! A i 4 u u U I 4 0 T T T p 3 5 7 10 | 14 21 30 4 T Tr
1 2 3 4 6 8 11 | 15 22 31 45
E 13 4 4 ! 4 U s I I ¢ 4 0 T [ 1 2 3 5 7 10 | 14 | 21 30 44 ﬂ~ T f
1 2 3 4 6 8 11 15 | 22 31 45
¥ 20 4 4 4 4 4 4 4 4 4 0 T 4 1 2 3 5 7 10 14 21 f T T T f T
1 2 3 4 6 8 11 15 | 22
G 32 4 4 4 ¢ 4 4 4 4 0 i T T B3 3 5 7 10 | 14 | 21 T T T T 1 T T
1 2 3 4 [§ 8 1 lois |22
H 50 4 4 ¢ 4 4 4 4 0 T ¢ 1 2 3 5 7 10 14 21 T T T T fr T T T
1 2 3 4 6 8 11 | 15 | 22
J 80 4 4 ¢ 4+ 4 4 0 1 4 1 2 3 5 7 10 14 21 T iy T T 1 T T T T
1 2 3 4 6 8 11 15 | 22
K 125 4 4 4 4 4 0 T 4 1 2 3 5 7 10 14 21 T T T T T T by T T T
1 2 3 4 6 8 11 15 | 22
L 200 4 4 ¢ 4 0 f 4 1 2 3 3 7 10 14 21 T T iy T T f T T f T ki
1 2 3 4 6 3 11| 15 ] 22
M 315 4 4 4 o i 4 1 2 3 5 7 10 14 21 T T i f T i i T f T T T
1 2 3 4 6 8 11 | 15 | 22
N 500 4 4 0 T 12 1 2 3 5 7 10 14 21 T i T T T iy T By f T f T T
1 2 3 4 6 8 11 15 | 22
P 800 4 0 1 4 1 2 3 5 7 10 | 14 | 21 | ¢ 1T 1 T T I 1 i T T 1 T 1T 1
1 2 3 4 6 8 11 | 15 | 22
Q 1,250 0 f 4 1 2 3 5 7 10 14 21 T f T fr T T T T T T i3 f iy T T
1 2 3 4 6 8 11 15 | 22
R | 2,000 T 1 1 2 3 5 7 10 14 721 T T T T T T T T T T T T T T i i
3 4 6 8 11 | 15 | 22

I = Use first sampling plan below arrow. If sample size equals or exceeds, lot or batch size, carry out 100 % inspection.

ft = Use first sampling plan above arrow.
Ac = Acceptance number, Re = Rejection number

01

firrquqoad payddy fo spuswiaysg



Table II-B - Single sampling plans for tightened inspection

Acceptable quality levels (tightened inspection)
rample size | sample | .01( .015 .029 040 06§ .10] .15] 25] 40| 65| 1.0] 1.5] 25] 4.0 65] 10 | 15 [ 25 | 40 | 65 | 100 | 150 [ 250 | 400 | 650 | 1000
code letter size Ac | Ac| Ac| Ac| Ac| Ac [ Ac| Ac| Ac| Ac| Ac| Ac| Ac| Ac¢| Ac | Ac | Ac| Ac| Ac| Ac| Ac Ac Ac Ac Ac Ac
Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re
2 4 4+ 4 4 4 4 4 i) 4 4 4 4 4 4 4 4 4 4 1 2 34 56 89 12 18 27
2 3 13 19 28
B 3 4 I s 3 I i i i U I & 3 s U o I i 1 2 3 56 | 89 | 12 18 27 41
1 2 3 4 13 19 28 42
c 5 U N 4 i i U U U 4 i 4 0 U 0 N u 1 2 3 5 89 | 12 18 27 41 1
1 2 3 4 6 13 19 28 42
D 8 4 4 {4 4 4 4 4 4 4 4 {4 4 9 3 ¢ 1 2 3 3 8 12 18 27 41 T T
1 2 3 4 6 9 13 19 28 42
E 13 3 4 4 4 4 4 1 4 4 4 4 0 4 4 1 2 3 5 8 12 18 27 41 i 1 1
1 2 3 4 6 9 13 | 19 28 42
F 20 4 4 4 4 4 4 4 4 4 4 a 4 4 1 2 3 5 B 12 18 T i f r f i
1 2 3 4 6 9 13 19
G 32 4 4 4 4 L 4 4 4 ¢ 9 I 4 1 2 3 5 8 12 1 T T T T Ry T T
1 2 3 4 6 9 13 19
H 50 4 4 4 ¥ 3 4 4 i 0 ¢ 4 1 2 3 5 8 12 18 T T T T o o T m
1 2 3 4 6 9 13 19
J 80 4 4 4 4 4 4 4 o 4 4 1 2 3 5 8 12 18 i i T T T T T f T
1 2 3 4 6 9 13 19
K 123 4 4 ¥ ¢ 4 4 0 i 4 1 2 3 5 8 12 18 T T T T T T i T T T
1 2 3 4 6 9 13 19
L 200 4 4 4 4 4 0 4 T 1 2 3 5 8 12 18 f T T T i T T L T T T
1 2 3 4 6 9 13 ] 19
M 315 4 4 4 4 g 4 4 1 2 3 5 8 iz 18 T 1 T T T T T T 1 T+ T *
1 2 3 4 6 9 13 19
N 500 4 4 4 0 T 4 T 2 3 5 B 2 [ 18 | T [ T b T ki ki T b bl 1 i
1 2 3 4 6 9 13 19
800 13 {4 0 4 L i 2 3 5 8 12 18 T T T f il T T T T T T I T T
1 2 3 4 6 9 13 19
Q 1,250 4 0 4 4 1 2 3 5 8 12 18 fr i T T T fr T T T T 1t T T f 1
1 L 2 3 4 6 9 13 19
4 T T T T t 1 T f i f T 1t T T f T
R 2,000 0 T 4 1 2 3 5 8 12 18 T T ki iy i T T f T T fr T T T f T
1 2 3 4 6 9 13 | 19
s 3,150 1
2

| = Use first sampling plan below arrow. If sample size equals or exceeds, lot or batch size, carry out 100 % inspection.
1 = Use first sampling plan above arrow.

Ac = Acceptance number, Re = Rejection number
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Table II-C - Single sampling plans for reduced inspection

Acceptable quality levels (reduced inspection)t

sample size sample .01d .01§ .023 .04 .06 .10 .15 .25 .40 .65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

code letter size Ac Ac Ac Ac Ac Ac Ac Ac Ac Ac Ac Ac Ac Ac Ac c Ac Ac Ac Ac Ac Ac Ac Ac Ac Ac
Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re

A 2 4 U 4 4 4 4 4 4 4 4 4 4 4 4 Q 4 1 2 3 56 78 10 14 21 30
1 2 3 4 11 15 22 31

B 2 4 4 4 4 4 4 4 4 4 4 4 4 4 0 T 4 o] 1 2 3 56 78 10 14 21 30
1 2 3 4 5 11 15 22 31

C 2 4 4 4 K 4 4 N3 4 4 4 4 4 o] i 4 0 1 1 2 3 58 7 10 14 21 fr

F 1 2 3 4 5 6 10 13 17 24
i) 3 U U m U m U i i m I m ] T T ] T 1 2 3 5 7 0 T2 21 7 7
1 2 3 4 5 6 8 10 13 17 24
E 5 4 4 4 4 i 4 4 4 U 4 0 1 4 0 1 1 2 3 5 7 10 14 21 f 1 I
1 2 3 4 5 6 8 10 13 17 24
F 8 4 U 4 4 4 4 4 4 4 0 T 4 0 1 1 2 3 s 7 10 T f T T r T
i 2 3 4 5 6 8 10 13
G 13 4 4 4 4 4 4 4+ 4 0 T 3 0 1 1 2 3 5 7 10 T 1 T 1 1 T T
3 2 3 4 5 6 8 10 13
H 20 ¥ 4+ 4 + 4 4 + a T 4 0 1 1 2 3 5 7 10 1 ki T ki f f ks T
1 2 3 4 S5 [ 8 10 13
J 32 4 4 4 4 4 4 0 T 4 0 1 1 2 3 5 7 10 T T T T T T ki T T
1 2 3 4 5 6 8 10 13
K 50 4 4 4 4 U 0 T 4 0 1 1 2 3 3 7 10 T T T T iy T T T T T
1 2 3 4 5 6 8 10 13
L 80 4 v 4 4 Q T 1 9 1 1 2 3 5 7 0| 1 T t T T T T T T T T
1 2 3 4 5 6 8 10 13
M 125 4 4 4 0 i3 4 0 1 1 2 3 5 7 10 T T ™ T T T T T T T T T
1 2 3 4 5 6 8 10 13
N 200 4 4 0 [ i3 0 1 1 2 3 5 7 10 T T f T T T T By T T 1 T T
1 2 3 4 5 6 8 10 13
P 315 4 o T 4 0 1 1 2 3 5 7 10 T T T T T T T T T T T T T T
1 2 3 4 5 6 8 10 13
Q 500 0 ﬁ 4 0 1 1 2 3 5 7 10 T iy i T i i T T L T T T T T T
1 2 a 4 5 6 8 10 13
i i T T T T T T T T f T T T T T T T
R 800 T T 0 1 1 2 3 5 7 10 T T T T T T T T T i T T T T T T
2 3 4 5 6 8 10 13

—+ = =

Use first sampling plan below arrow. If sample size equals or exceeds, lot or batch size, carry out 100 % inspection.
Use first sampling plan above arrow, Ac = Acceptance number, Re = Rejection number

If the acceptance number has been exceeded, but the rejection number has not been reached,

accept the lot, but revert to normal inspection (see 11.1.4).

1)
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Table II-D - Limit numbers for reduced inspection

Acceptable quality levels (reduced inspection)f

Number of
units sampled AQL | AQL | AQL | AQL | AQL | AQL
in last 10 lots 0.1 | 0.25 1.0 2.5 4.0 | 10.0
20 to 29 * *] * * * 0
30 to 49 * * * * * 0
50 to 79 * * * * 0 2
80 to 129 * * * * 0 4
130 to 199 * * * 0 2 7
200 to 319 * * 0 2 4 14
320 to 499 * * 0 4 8 24
500 to 799 * * 2 7 14 40
800 to 1,249 * 0 4 14 24 68
1,250 to 1,999 * 0 7 24 40 110
2,000 to 3,149 0 2 14 40 68 181
3,150 to 4,999 0] 4 24 67 111
5,000 to 7,999 2 7 40 110 181
8,000 to 12,499 4 14 68 181
12,500 to 19,999 4 24 110
20,000 to 31,499 14 40 181
31,500 to 49,999 24 67 68 181
50,000 over 40 110

* Denotes the number of sample units from the last ten lots is not sufficient for reduced inspection for this AQL.
In this case more than 10 lots must be used for the calculation provided that the lots used are the most
recent ones in sequence. Of course all were subject to normal inspection and none were rejected while on inspection.

UOLPINPOLIUT
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14 Elements of Applied Probability

In some cases a rejected lot is not sent back to the supplier but is instead subject
to 100% inspection and all nonconforming units are replaced by conforming units.
In this case the average outgoing quality - AOQ - given the process average is p%,
is the average quality of the outgoing product. This includes all accepted lots,
plus all lots which were not initially accepted and from which all nonconforming
units were replaced by conforming units. Clearly AOQ(p%) = OC(p%) - (p%) since
a proportion (1 — OC(p%)) of outgoing product has no nonconforming units. If,
in fact, rejected lots are repaired then the value of the AOQ) at the AQL is a
useful parameter when originally negociating the AQL since it represents the true
proportion of nonconforming units arriving on the factory floor. Another useful
parameter, when lots are repaired, is the Average Outgoing Quality Limit - AOQL.
The AOQL is the maximum of the AOQ’s for all possible process averages; i.e.
AOQL = max{OC(p%) - (p%)|0 < p% < 100%}. This is the worst case scenario for
measuring the true proportion of nonconforming units arriving on the factory floor.

The AOQ associated with the sample size and sampling limits in Table II-B,
Table II-C and Table II-D was calculated by computer simulations. In the exercises
we suggest some term projects which illustrate just how to go about analyzing
quality control schemes by simulation. It is not, however, our goal to understand the
precise workings of this or any other quality control procedures through simulation
but rather to develop mathematical tools for the analysis of quality control schemes.
Our credo is that one theorem is worth a thousand simulations!

1.4 Exercises

The following projects may be assigned at the beginning of term. Students should
form teams. It is preferable that each team have at least one member with computer
experience. The main mathematical work involves concepts in Chapter 5 but the
simulation part can be started immediately.

Exercise 1.1 [ATM buffer management] We shall consider a simple 2 x 2 ATM
multiplexor. Two input trunk lines carrying noisy ATM traffic enter the switch at
input ports A and B and leave from ports X and Y. The cells from input port A
that exit from port X are stored in buffer AX. Those from input port B that exit
from port X are stored in buffer BX. The cells from input port A that exit from
port Y are stored in buffer AY. Those from input port B that exit from port Y are
stored in buffer BY. All four buffers have a maximum capacity of 5 cells and excess
cells are lost.

Every time slot the controller at output port X performs a round robin polling
of the two buffers AX and BX. The head-of-line cell is sent from one queue and then
the other. If no cell is queued at the polled buffer the second buffer is immediately
polled. If it is also empty then the pointer returns to the first buffer polled. We
assume the arrivals at buffers AX and BX form independent Bernoulli processes
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Input Output
AX
Port A L ] Port X
-] [
BX
— ] AY
\ L 1rory
Port B BIY:

Fig. 1.5 A two by two switch

with probabilities p4 and pp of having a cell in a given time slot.

a) Model the queue size AX and BX plus a controller pointer as a Markov chain.
Write a Mathematica program to calculate the (72 x 72) transition matrix K. Cal-
culate the cell loss probability of cells traversing output port X using K.

b) Write a computer simulation of output port X and estimate the cell loss proba-
bility. Compare with the results in a).

¢) Is it possible to use another buffer management protocol other than round robin
which gives a smaller cell loss probability? Make a suggestion and calculate the new
cell loss probability (analytically if possible but in any case by simulation). Sugges-
tions: Serve the Longest Queue or Serve the Oldest Cell. Discuss the disadvantages
of the new protocol.

d) Discuss the difficulties of evaluating a 16 x 16 ATM switch.

Note that if p4 +pp > 1 then on average more cells arrive than can be served.
This means the buffers will tend to be overloaded and lots of cells will be lost.
‘When pa + pp is small however cell losses will be small. It is suggested that the
simulations be done for a variety of values of p4 and pg to get an overall picture.

Exercise 1.2 [ATM buffer management continued|

a) Find the mean time until the first cell is lost given the buffers start out empty.
b) Calculate the mean busy period which is the mean time for an empty system to
become empty again.

c¢) Calculate the mean delay experienced by a cell which passes through buffer A.
d) Calculate the mean delay for buffer B. Use Little’s law (see Chapter 6).

e) Use the simulator already developed to obtain estimates for the performance
measures calculated analytically in a), b) and ¢). Note that the Little’s law applies
to cells that are queued in the system not those that are discarded so Little’s law
fails when the buffer is overloaded, i.e. p4 + pg > 1.

Exercise 1.3 [On-line Quality Control]
a) Imagine you are to receive batches of 1000 items every week. Design a sampling
acceptance scheme based on MIL-STD-105D ( ISO 2859) which for an AQL of 2.5%.
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b) Write a simulation for this acceptance sampling scheme. Check that the AQL of
2.5% is indeed the highest percentage of defectives acceptable as a process average.
Estimate the percentage of lots rejected if this average is maintained. Next experi-
ment to find the lot tolerance percent defective LTPD specified by this scheme. The
LTPD is usually taken to be that incoming quality above which there is less than a
10% chance a lot will be accepted.

¢) Suppose now that you are the manufacturer producing the above items. Suppose
long experience has taught that a 1% rate of defective items is inevitable without an
expensive redesign of the plan. To monitor production a item is selected at random
out of every 10 items produced. Once 5 items have been selected, the items are
inspected for defects. Design a Shewhart p-chart (see Example 3.27) to monitor
that production is in control with a 1% rate of defectives. What is the distribution
of the number of items produced before a false alarm is signaled.

d) Suppose that at some point in the future the process goes out of control and the
rate of defectives increases to 5%. What is the distribution of the number of items
produced after this change point before an out of control alarm is signaled.

&) Write a simulation to design a Cusum procedure {see Example 5.39) based on
the lengths of runs of nondefective items inspected between occurrences of defective
items. Set the on-target run length to be the same as for the p-chart.

f} Design the anchor value to minimize the mean time to signal an out of control
situation if indeed the rate of defectives suddenly jumps to 5%.

g) The above Cusum procedure can be modelled by a Markov chain with forbidden
out of control states. Use Mathematica to calculate the expected on-target and off-
target run lengths of the procedure you have designed and check that these agree
with simulation results.
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1.5 A Probability Primer

We describe the equiprobable model associated with an example in data trans-
mission. Imagine that data is generated in one, five or ten kilobit packets. On
average one kilobit packets are three times more likely than ten kilobit packets and
five kilobit packets are four times as likely as ten kilobit packets. Of course the
transmissions might be strictly deterministic. It might be that the pattern of trans-
missions is always 5,1,5,1,5,1 5, 10 kilobit packets repeated over and over. This
deterministic model certainly describes the average flow of bytes across the network
but it misses an essential component. Suppose a node in the network receives and
retransmits the packets and at all times stores the last three packets. Suppose the
capacity of the node is 25 kilobits. The deterministic flow poses no problem since at
the worst the node must store 20 kilobits. The problem of congestion occurs when
the packets arrive in random order and in this case the node might need a capacity
of 30 kilobits.

Suppose we wish to describe the outcome of ten consecutive transmissions with
a random arrival of packets. We do a thought experiment. Consider the experiment
of drawing ten times with replacement from a bag containing three pennies (each
penny represents a one kilobit packet), four nickels (each nickel represents a five
kilobit packet) and a dime (representing a ten kilobit packet). Each of the eight
coins is assumed to have an equal chance of being picked in any given draw. This is
the model of random or probability sampling. The probabilist’s job is to describe
the likelihood of possible outcomes of this sampling procedure given the contents
of the bag. The statistician’s job is much harder since he is not told the contents of
the bag and must infer its contents from the sample. In other words the probabilist
usually knows the distribution of the values of the coins.

The outcome of such an experiment is random or stochastic since it can’t be
predicted. If we put imaginary numbers on the three pennies and the four nickels
we get a list or population

L= {plaPZap3anlan27n3a Ny, d}

of possible equally likely outcomes from a single draw. We are only interested in a
single aspect of each element of this population; namely the monetary value. The
distribution of any aspect of a population is often represented by the mass function
which is simply a function p giving the proportion p(z) of the population having
value . In this case, p is given by the proportions of the number of pennies, nickels
and dimes:

10 otherwise

£ 0

x:159H
p(z): g 5
We often summarize this information in the population histogram as shown in
Figure 1.6.
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6/8

p(x)
4/8 -

2/8

Fig. 1.6 The population histogram

The mean p of the population is just the average value of the population which
is
p=01+1+14+5+5+5+5+10)/8=33/8.

We remark that this is just S xp(z). The variance of the population o2 is the
average squared deviation of the population values from the population average:

o 3(1—p)* +4(5 — 1) + (10 — p)?

g =
8

= (z - p)’p(z) = 8.359375.

The mean is a kind of center of the population histogram. The standard devia-
tion ¢ is a measure of the spread. If, in general, the aspect values of the elements of
the population are a list of numbers (31, $2, ..., sx) (instead of (1,1, 1,5, 5,5, 5, 10)),
we could again construct the population histogram and the corresponding popula-
tion mass function p. In general,

N

p=> s/N=2) ap(z)and o® = (s; — u)’/N = " (z — p)°p(x).
=1 z

=1 z
Chebyshev’s lemma provides a precise description of the spread of values around

the mean of the list:

Lemma 1.1  The proportion of the values in a list lying at least k standard devi-
ations from the mean is less than 1/k? for any k > 0.

Proof: Those elements of the list of values lying at least k standard deviations
from the mean may be written as F := (s : |s — p| > k- ). The proportion of
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elements in the list in F is §(F)/N where §(F) denotes the number of elements in
F. Now by definition

N
o? = Zi:1(5i - p)? > ZsiEF(Si —u?
N - N
> ZsleF(ko—)Q
- N
F)
— k?2 2&( .
7N
Now divide through by k%0® and we have §(F)/N < 1/k?* as desired. -
Applying Chebyshev’s lemma to the above population we get that the proportion
of the population lying at least 2 standard deviations from the mean u = 33/8 =
4.125 is less than 1/4. Since o = 2.8912 approximately, we see u + 20 = 9.9075
hence only the value 10 lies this far from the mean. The element 10 represents only
1/8 of the list so the inequality is verified.
Now suppose we wish to describe 10 draws from L. A list of all possible outcomes
is called the sample space and is described by

Q:{w:(xl,fl?g,...,il}lo)ZJJiE,C;i:LQ,...,IO}

where w is used to denote a typical outcome or sample point and p; denotes the
first penny, p, the second and so on. One particular sample point might be

wo = (p1,d, p2,n2,d, p1,p3, 14, N2, N3).

This corresponds to first drawing penny number 1 then the dime and then penny
number 2 and so on up to nickel number 3 on tenth draw. Later we will call £ a
product space and we will use the notation

Q= {plap27p3an17n27n37n47d}10 = Llo.

By symmetry each outcome is equally likely. The number of points in € is
#(92) = 80 since each of the 10 draws could be one element of the 8 element set
L. Hence, intuitively, the probability of each sample point is 87 '°. The probability
of an event of interest like the probability of getting at least one dime is clearly
proportional to the number of sample points in the event. Let A represent the
event or subset of {2 corresponding to getting at least one dime. The sample point
wy, for instance, is in A. Let P{A) denote the probability that the outcome of the
random experiment falls in the event A; so

8(A)
P(A) ok
For equiprobable models such as this one, calculating probabilities reduces to count-
ing. This is the reason we chose the sample space 2 above. If, instead, we had chosen
Q = {p,n,d}'® we would not have an equiprobable model and the construction of
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the appropriate P to describe random drawing requires more care (see the product
probability in Chapter 2).

Counting is not so easy! We shall assume everybody knows permutations and
combinations but it is not immediately clear how to easily calculate the probabil-
ity of getting at least one dime. It is useful to develop a series of axioms about
probabilities to make things easier. This will be done systematically in Chapter 2.

First, P(2) = 1. Next, if two events A and B are disjoint, that is they have
no elements in common, then the probability of their union is the sum of their
probabilities, i.e. P(AU B) = P(A) + P(B). This follows since

CHAUB)  HA)THB) HA) | KB)
PAVE ="y = ) @ T
— P(4) + P(B).

The complement of A, i.e. those points which are not in A, is denoted by A’. A’
has probability P(A’) = 1 — P(A). This follows immediately from the fact that
1=P(Q)=P(A+A") = P(A)+ P(A') since A and A’ are disjoint. Consequently,
if A’ represents the event where no dimes are drawn then P(A) = 1 — (7/8)10
since the number of sample points in A’ is 7'% (each draw can be chosen from
{p1,p2,p3, M1, M2, 3,14 }).

The intuitive use of conditional probabilities is what separates probabilists from
measure theorists. If, in our example, we know that the event B of drawing exactly
3 dimes has occurred (or exactly 3 ten kilobit packets have arrived among the last
10 packets), what is the probability of the event C that we draw 3 dimes in a row
(or equivalently, that the node is overloaded by 3 ten kilobit packets in a row)? By
symmetry, the probability that an outcome in C occurs given that B has occurred
is the proportion of the number of sample points in both B and C divided by the
number in B; that is we define the conditional probability of C given B to be

H(BNC)  #(BNO)/HY  PBNC)
i(B) §(B)/H(€2) P(B)
If we work this out we see §(B) is the number of ways of choosing exactly 3 dimes

from the 10 draws times the number of ways of drawing each of the remaining 7
coins from {p1, p2, p3, M1, N2, N3, Ny }. Hence,

10 . 10\ /1\* /7\7
B) = = = -] .
=)= (V) (5) ()
Similarly §( BNC) is the number of ways of choosing 3 consecutive draws to be dimes;

that is 8 ways times 77, the number of ways of drawing each of the remaining 7
coins from {py,pz, p3,n1,M2,n3,n4}. Hence, §(BNC) =8 x 77. We conclude

P(C|B) =

P(C|B) =8/ (13(’) - %
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Fig. 1.7 A random variable

The idea of independence is obvious. We say an event F is independent of an
event F if the probability that F will occur is independent of knowing whether
E occurred or not; that is P(F|E) = P(F). Multiplying by P(E) and using the
definition P(F|E) := P(FE N F)/P(F), we see this is equivalent to P(FNF) =
P(E)- P(F). In particular if E is the event that the first coin is a nickel and F is
the event that the second coin is a dime then clearly we have independent events
and this can be checked by calculation.

1.6 A Random Sample

Let Xi,..., X0 represent the values of the coins drawn (or packets transmitted)
during the first, through tenth draws. These random variables are defined on
the sample space §2. For the sample point wy = (p1,d, p2, n2,d, p1, P3, 4, N2, N3),
Xi{wp) = 1, Xo(wo) = 10, X3(wg) = 1 and so on. In general a random variable
calculates some aspect of a sample point. For instance we might define X to be
the total number of dimes drawn so X{wg) = 2. Figure 1.7 illustrates a random
variable X defined at each point w of a sample space.

The description of a random variable starts with the range, R x, of values taken
on. For instance Rx = {0,1,2,...,10}. Next we specify the likelihood of these
values by constructing the histogram of the list of values X (w) for w € €. Since
this list has 8° elements this might seem difficult but when we group w’s giving the
same X value we see the histogram is equivalent to the probability mass function
or p.m.f.

px(z)=PHw: X(w)=z})=P(X =1x), forz e Rx.

For instance, px(3) is the probability precisely three dimes are drawn and this has
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Fig. 1.8 The histogram of X

been calculated above. By the same reasoning we can get

px(z) = @0) (%)z(g)w*w for z € {0,1,...,10}.

This is a binomial distribution investigated more thoroughly later. The histogram
of the random variable X is given in Figure 1.8.
The p.m.f of X is obviously
z: 1 510 otherwise
px,(x): % % %0.
Formally we may get these probabilities by counting. Recall that we denote an
arbitrary point (z1,za,...,210) € by w. Hence

P(X;=5)=P{w:z € {n1,na,n3,mu},z; € L54=2,...,10})
=t#({w: 71 € {n1,n9,n3, 04}, 25 € L;0=2,...,10})/4()
=4x8x8x---x8/810
= 4/8.

By similar reasoning we see the p.m.f.’s of X7, Xo,..., Xig are all the same and are
equal to the p.m.f. of the population p. This is the link between the real and perhaps
unknown (to the statistician) distribution of the population and the sample which
we observe. BEach of the sampled values represents the population in the sense that
its distribution or p.m.f. is that of the population.

The sequence of random variables X, Xs,..., X310 is an 4.7.d. sequence; that
is the random variables are independent and identically distributed where we say
random variables are independent if events generated by the individual X;’s are
independent in the sense given above. To be more precise we let o(X;) be the
collection of events in Q of the form {X; € H;} where H,; is some subset of real
numbers R. For instance take H; = {5}. Then the event {X; € H;} = {w :
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X1(w) = 5} is the set investigated above. The event of drawing a nickel on the first
draw is therefore in o(X1). Similarly, taking H; = {1,10}, we see that the event of
not drawing a nickel on the first draw is also in o(X;). If we let Hy = {10} then

{Xs € Hy} = {w=(z1,m2,...,210) : Xo(w) =10}
={w:zo=d,x; € L;0=1,3,4,...,10}

is in o(Xs). Clearly P(Xy € Hy) = 1/8. Moreover

PUX, € Hi} O {Xs € Hs))
:P({wiml E{nl,ng,ng,m},m:d,xiEﬁ;i23})
CAx1Ix8x---x8
O 8x8xX8x---x8
4 1
8 8
:P(X1€H1)~P(X2€H2).

This is the formal proof that the event of drawing a nickel on the first draw and
a dime on the second are independent. It is clear that any events of the form
{X1 € Hi} and { X3 € H,} are independent by the same reasoning and we therefore
declare the random variables X; and X5 to be independent. By the same token we
see all the X;’s are mutually independent.

We shall need to express the collection of events that are determined by observing
a sequence of random variables. Define F,, := ¢(X1, Xo,..., X;,) to be the set of
events of the form

E={w: (X1(w), X2(w),..., Xmw)) € H}

where H is a subset of . This just means we can determine if an w is in £ or not
by observing the values of X;(w), ..., Xn(w). We call F,, the past of the random
sequence up to observation or time m.

The expected value of a random variable is the average of the list of its values:

EX = pux = ;"E?ﬂ—))((wl = Z xpx(z).

zER x

The latter equality is obtained by grouping together all those w which are sent to
a common value z; i.e. {w: X(w) = z}. Clearly the contribution of these points
to the average is just = - f({w : X(w) = z}). However px(z) = P(X = z) = f({w:
X (w) = x})/#(€2) which gives the result. For instance, if X represents the number
of dimes drawn then

Engjow () @@
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This result had better be 10/8 (and it is) since there is one chance in eight of
drawing a dime and we draw ten times. The expected value of X, is clearly equal
to pu = 33/8 since the histogram of X is the same as that of the population.

The expected value is useful because it measures the center of the histogram of
X. We can also calculate the expected value of the sum X + Y where Y is another
random variable. By definition

2weoX (@) +Y W) 0 X@) | PpeaYW)

E(X+Y)= +

3(62) (%) 1(62)
=FEX + EY.
Also, if ¢ is a constant value
Blex) — Zwea X @) | PoeaXW) oy

) B T(9)!

This linearity is a very useful property of the expectation. The 50" percentile (the
median) also measures the center of the histogram of X but does not have this
linearity property so it is much less useful. If T represents the total value of the
ten draws then FT = E(X; + -+ Xi0) = EX; + -+ + EXy0 = 10 - i again by
linearity. Also if X := (X; + --- + X10)/10 then again by linearity EX = p. This
means the histogram of the random variable X is centered at the population mean
w and X is what we call an unbiased estimator of y.

We can make new random variables from old by defining functions of X like
h(x) = 22 or h(z) = max(z?,5). The expectation is still given from the definition:

Eh(X):;L— > h(@)px(x

ﬁ( rzER x

by again grouping those w which are sent to the same value x. This expression is
called the law of the unconscious statistician. For instance, if X is the number of
dimes drawn, then

2 10 7 10—z S 2 (10N 1\ 702
E max(X?, Z5< ) () +I§::3x <I>(§) ()"

The most important application of the law of the unconscious statistician is the
definition of the variance of a random variable: % := E(X — px)?. Since the
variance of X is precisely the variance of the list X(w) we have, by Chebyshev’s
lemma, that the proportion of this list at least k& standard deviations oy from the
mean of the list px is less than 1/k?. However the proportion of the list at least
k standard deviations from the mean is precisely P(|X — uz| > k- 0x) so we have

Chebyshev’s lemma, for random variables:

Lemma 1.2  For any random variable with expected value ux and standard deuvi-
ation ox we have P(|X — p.| > k-ox) < 1/k2.
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1.7 Joint Distributions

The joint behavior of random variables and vectors is discussed in detail in Chapter
2 but here let us focus on the simple case of two variables. To be concrete let X be
the number of dimes drawn and let T be the total value of the coins drawn. The
joint p.m.f. is defined to be

pxr(z,t)=P(X =zand T =t) = Pw: X(w) = z,T(w) =t})

where * € Rx and t € Ry. With this we can repeat most of the calculations
done for one variable. In particular, if we create a new random variable such as
R(X,T) where h is a function like A(z,y) = x + 2y then we again have a law of the
unconscious statistician:

EWX.T)= Y h(zOpxr(zt).
rERx teERT

This is proved just as before since the expected value is by definition

> hx w))/4(82).

weN

Calculating the joint p.m.f. could prove to be a lot of work. There are a few
short cuts. Define the conditional p.m.f. of 7" given X to be

prix(tle) = P(T =t X =x)=P(T =t,X =x)/P(X =)
= pxr(z,t)/px(z).

If we use the law of the unconscious statistician given above we see

EMX,T)= > hz,tpxr(a,t)
zERx IERT
= > 1D bz t)prix(te))px (=)
TERx tERT
= Y B(h(z,T)|X = z)px («)
zER x

where E(h(z,T)|X = z) denotes the expectation of the random variable h(x,T)
relative to the conditional probability P(-|X = «); that is the probability given

P(A|X =2) = P(AN{X = z})/P(X = x). Sometimes we can apply our
intuition to discover pr|x (t|x) or perhaps E(T|X = z). For instance, if the number
of dimes drawn is x = 3 then we know for sure 7" > 30. In fact the conditional
distribution of T is the same as drawing 7 times from a similar sack without a dime
and adding 30; that is 30+ZZ:1 Y; where Y; denotes the value of the j th draw with
replacement from a sack containing {p1, p2, ps, n1, n2,n3,nq}. Clearly EY; = 23/7
so B(T|X = 3) =30+ 7-23/7.
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In the case of independent variables everything simplifies. If the variables X
and Y are independent, then the events {X = z} and {Y = y} are independent for
any choice of z,y. Consequently

pxy(zy) = PUX =z} N{Y =y})
=P(X =z)P(Y =y)
= px(z) - py (y);

that is the joint p.m.f. is a product of the one dimensional or marginal p.m.f.’s.
A major bonus is the fact that the expectation of a product of independent
variables is the product of the expectations:

E[X~Y Zx y px.y (T, y) ZJC y px (z)py (y)

z,y

=> apx (@) > ypy (v)
@ y

— EX - EY.

As a corollary, we easily see that the variance of a sum of independent variables
is the sum of the variances. This is discussed in Chapter 2 and it bears repeating
since this is the essential reason for defining the variance in the first place. In fact,
it follows that the variance of T'= X; + - - - + X is the sum of the variances of the
components, therefore o2 = 10 - ¢%. Since X = 7'/10 and since

0% 10 = E(T/10 = 7 /10)? = 0%,/10° = 6 /10

it follows that o = o/ v10. Now apply Chebyshev’s Lemma to X with k = ¢/ox
and remember EX = u to get

PIX — pl > ) = P(X - > (222 - o/vT0))
P
~ 10¢2

where ¢ is any small number.
The result for a sample of size n instead of 10 is

P(X — 4l 2 ¢) < 0%/ (n®).

The statistician who doesn’t know the contents of the bag uses X as a guess for the
mean value of the coins in the bag. We have shown this is an unbiased estimator,
but the above shows that if the sample size is large enough, X is probably very close
to the population mean p. In fact as n — oo the probability that the guess misses
by more than ¢ tends to 0 no matter how small € is! Moreover, the statistician
can guess the population histogram from the histogram of the sample. The sample
histogram is the histogram produced from the list X3 (w), Xo(w),..., X (w). It is
equivalent to the sample p.m.f. given by p,(z) := #(i : X;(w) = x)/n; that is
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Fig. 1.9 The sample histogram

the proportion of the sample which takes on the value z. The sample histogram
associated with the realization wy is given in Figure 1.9.

It is reasonable to guess that the sample proportions should be close to the
population proportions. If we define the random variables e; to be 1 if X; = z and
0 otherwise, we have p., (1) = P(e; = 1) = p(z) and p,(0) = P(e; = 0) = 1 — p(x).
Moreover py(z) = >.7 , e;/n so Ep,(z) = (Eej + -+ Ee,)/n = Ee;. However

Eei =1-P(X, =z)+ 0 P(X; # z) = p(x)

80 pp, () is an unbiased estimator of the population proportion. Also the variance of
Pn(z), by the argument used above for X, is 02, /n. However 02, = (1—p(z))?p(z)+
(0 — p(x))?(1 — p(x)) = p(z)(1 — p(x)) so we conclude the variance of p,(z) is
p(z)(1 — p(x))/n which tends to 0 as n — oo. Using Chebyshev’s lemma as above,
we conclude that for n large enough, the probability the sample proportion p,,(z)
differs from the population proportion p(z) by more than € is vanishingly small.

This is the basis of statistical inference! Since the histogram of the sample is
close to the population histogram for large n, any population parameter may be
estimated by the corresponding sample parameter. The population mean p may be
estimated by the sample mean X; the percentiles of the population histogram may
be estimated by the sample percentiles and so on. We shall assume throughout this
text that the hard work of estimating the parameters of our models has been done
by somebody else, but in the real world that somebody might be you!

Even beyond the question of estimating parameters is the larger question; is the
model appropriate? The arrival of packets at a node is probably not a deterministic
string nicely planned to be in repeat patterns of 5,1,5,1,5, 1,5, 10 kilobit packets.
Neither are the arrivals likely to be as random as drawing with replacement from a
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sack. The truth will lie somewhere in between. At best we can calculate the level
of congestion associated with different models of the arrival process and make a
reasonable compromise in designing the system.

1.8 Exercises

Exercise 1.1  There are 6 horses in a race. What is the probability we can correctly
predict the horses that win, place and show if we pick 3 of the six horses at random?

Exercise 1.2  Let E, F, and G be three events. Express the following events in
symbolic notation.

a) At least one event occurs.

b) None of these events occur.

¢) At most one of these events occurs.

d) G occurs but not £ or F.

e) All three events occur.

f) At most two of these events occur.

Exercise 1.3 For the counting or equiprobable model introduced in this chapter
show that P(E U F) < P(E)+ P(F) for all events F and F.

Exercise 1.4 What is the chance of dealing a poker hand with four kings?

Exercise 1.5 Your probability class has n students. What is the probability that
two or more students have the same birthday.

Exercise 1.6  Genetic theory says that the sex of a child is male or female with
equal probability. We take a random sample of 100 families with two children.

a) Construct a sample space which will describe the possible outcomes.

b) How many points are in this sample space?

¢) Let X3¢ =1,...,100 be random variables which denote the number of girls in
each of the sample families. Sketch a likely sample histogram.

d) What is the approximate mean and standard deviation of this sample histogram?

Exercise 1.7 A student is writing a multiple choice exam containing 6 questions.
Each question has 6 possible responses, exactly one of which is correct. The student
has spent the semester partying, and has no idea what the correct answers are. He
selects answers at random from the 6 alternatives. What is the probability that he
will pass the test (i.e. give 3 or more correct answers)?

Exercise 1.8  Suppose ten percent of Ford Escorts have defective head gaskets.
What is the approximate probability that a dealer who buys 7 Escorts has no
defective head gaskets among the 77

Exercise 1.9 A production line produces bearings. Each bearing has a probability
of 0.13 of being defective. We shall assume defects occur independently among the
bearings.
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a) A lot contains 13 bearings. Find the probability that this lot contains more than
2 defective bearings.

b) The production line has been in production since 8 a.m. If a bearing is produced
each minute, how long would one expect to wait until the first defective bearing is
produced?

Exercise 1.10 Below are the descriptive statistics of the weights of 2000 sacks of
potatoes selected at random by the quality control department. The associated
histogram has two bumps because there are two filling machines filling these sacks
to a nominal weight of 5 kilograms. Omne underfills the sacks and one overfills the
sacks so the histogram is really the superposition of two histograms and hence has
two bumps. Shipments are made in lots of 100 sacks on a skid (you can assume the
fill weights are independent).

Variable N Mean Median TrMean StDev SE Mean

C1 2000 4.9961 4.9916 4.9969 0.5496 0.0123
Variable Minimum Maximum Q1 Q3
Cc1 3.6911 6.1061 4.4998 5.4880

Answer the questions in brackets below:

a) If a buyer takes a lot at random and makes a histogram of the weights of the
individual sacks then this histogram will follow the normal curve (yes or no).

b) The average of this sample will be approximately (number).

c¢) The standard deviation of this sample histogram will be (number).

The buyer is really concerned about the total weight on a skid. Suppose he takes
75 skids at random and makes a histogram of the total weight of the sacks on each
of the 75 skids then

d) this histogram will necessarily follow a normal curve (yes or no).

e) The expected value of this sample histogram will be approximately (number).
f) The standard deviation of this sample histogram will be (number).

g) What proportion of skids have a total net weight greater than 400 kilograms
(number)?

h) What is the 10" percentile of the total net weight on the skids (number)?

Exercise 1.11  Your company buys 70% of its light bulbs from supplier A, 20%
from supplier B and 10% from supplier C. Past data has shown that 5% of the
bulbs supplied by A are defective, that 3% of those supplied by B are defective and
that 20% of those supplied by C are defective (company C belongs to the owner’s
brother-in-law).

a) A light bulb is chosen at random from your stock. What is the probability that
the bulb is defective?

b) Given that the bulb chosen was in fact defective, find the probability that it



30 Elements of Applied Probability

came from your brother-in-law’s company.

Exercise 1.12  Past experience has shown that the parts of supplier A are just as
likely to be defective as those of supplier B but those of supplier C are 3 times more
likely to be defective. Purchasing records show that we have bought 20% of our
parts from A, 50% from B and 30% from C. An article has been returned because
of a faulty part. What is the probability that the part came from supplier A?

Exercise 1.13  If we take a sample of size 1,000 from a population with mean 1
and variance 16, what is the probability |X — 1| is greater than 0.5?

Exercise 1.14  Suppose 30 packets are stored at a DataPac node. These packets
are randomly distributed according to the distribution of Figure 1.6. Give an upper
bound on the probability that more than 235 kilobytes of storage will be required.



Chapter 2

Modelling a Stochastic Process

2.1 The Probability Space

The equiprobable model discussed in the probability primer is quite limiting. How,
for instance, could we represent the experiment of throwing a weighted coin which
has a probability of 1/4/2 of coming up heads? We would have to draw from a
box containing an infinite number of 0’s and 1’s. Clearly we need a model allowing
different probabilities to be associated with different sample points so let’s begin
afresh with a more general model. As before, the description of an experiment
with unpredictable or stochastic outcomes starts with a list or set of all possible
outcomes. We call this set the sample space and denote it by 2. Each outcome is
represented by an element of this sample space and this sample point is denoted by
w. Consider the following examples:

Example 2.1 Toss a coin then a die
An appropriate sample space might be

Q= {h,t} x {1,2,3,4,5,6}
= {(h, 1), (1,2),...,(h,6),(t,1),(£,2), ..., (t,6)}

where h denoctes heads and ¢ denotes tails.

Example 2.2 Draw balls from an urn

Suppose an urn contains two red balls, one white ball and one blue ball and balls are
drawn at random without replacement until the blue one is drawn. An appropriatc
sample space might be

Q= {(®), (r,), (w,b), (r,1,b), (r,w,b),
(w,r,b), (r,7,w,b), (r,w,r,b), (w,r,r,b)}

where the order in which the balls are drawn is indicated by the vector notation.

31
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Example 2.3 Toss a coin until it turns up heads
An appropriate sample space might be
Q= {(.7)1,.7327.T3, .. ) X € {h,t}}

where h denotes heads and ¢ denotes tails.

The sample spaces are certainly not unique. For one thing we might denote
heads by H or 1 rather than h. Moreover, the experiment in Example 2.3 could be
represented more efficiently by a sample space

Q= {(z1,22,23, ..., Tne1,Tn) 1 2 = t,4 € {1,2,3,...,n — 1}, z, = h}.

Even this efficient sample space is infinite so we prefer the sample space given in
Example 2.3 which will serve in future examples. Of course all experiments end in
a finite time so this sample space is just a mathematical convenience.

Example 2.4 A stochastic process

A stochastic or random process taking values in a countable state space S has a
canonical sample space = § x § x 8 x---. We may, for instance, wish to describe
the weekly demand for a certain product. The possible demands are elements of
S and a sample point w is an (theoretically) infinite sequence of weekly demands.
Alternatively we might wish to describe the one byte measurements between 0 and
255 of a voice signal intensity taken every 8,000 times a second every time you make
a telephone call. Hence a sample point w = (xqg, 1, To, .. .) represents measurements
z, €{0,1,2,...,255} taken every 1.25 milliseconds; thus the index represents mil-
liseconds. Another term for such a stochastic process is a time series.

Example 2.5 ATM networks - Section 1.2 continued

An ATM network was discussed in Chapter 1. Let’s focus on the mathematical
problems associated with the performance analysis of one switch in such a network.
In particular let’s concentrate on the buffer for the output port to Kingston in
the Toronto switch. Suppose every unit of time (5 nanoseconds perhaps) an ATM
multiplexor may receive, with probability p = 1/10, a cell from any of n = 5 trunk
lines. Every unit of time, one cell is transmitted, so if more than one cell arrives
simultaneously, it joins a first-in, first-out queue. The number of cells waiting in
the queue at time [t] is denoted by @), where we write [t] to emphasize that ¢ is
measured in multiples of the unit time. The number of cells arriving at time unit
t] is denoted by Ap) and the departure process at time [t] is denoted by Dy (Dpy
is either 0 or 1).

The description of the appropriate sample space for this model begins with
a description of the arrival process. Let § = {0,1,2,3,4,5} denote the possible
number of arrivals at each time unit. Let Ny = {0,1,2,...} denote the possible
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of aming calls etk

Input Port Output to
Toronto Local @ Toronto Local
Sudbury /y{:l D @) Sudbury
Kingston /K/D @ Kingston
Buffalo ,/ (4) Buffalo
Detroit [z L1L1[]|® Detroit

Spare Spare

Spare Spare

Spare Spare

Fig. 2.1 An 8 x 8 switch

number of cells in the queue at the start of period 0. Let @ = Ngx S XS xS x---.
A sample point w €  will describe a starting queue size along with a sequence of
possible arrivals.

A number of engineering problems arise in designing such a switch. Every mi-
crosecond a cell spends in the queue results in delayed reception at the receiving
end. This is not a big problem for data cells but it is for voice cells. Since multi-
plexors will be cascaded at a switching node and since a call will pass through many
nodes between its point of emission and point of reception these microsecond delays
start to add up. Since the delay for a given cell is proportional to the number of
cells queued in the buffer when that cell joins the queue, one needs a description of
the queue size; the mean queue size is certainly one parameter of interest.

Another problem is buffer overloading. FExcess voice cells may be discarded
without much loss of clarity but all the cells in a data stream must arrive intact
and in sequential order. If, by pure chance, each input stream is at peak capacity
the buffer in the multiplexor will start to fill up. In the example above, all 5 lines
may simultaneously present a cell to the multiplexor with probability 1/10°%. One
cell is transmitted so the buffer must store the other four. If this continues for 10
time slots in a row then at the end of that period there would be 40 cells in the
buffer perhaps exceeding the buffer capacity. True, the chance of this is 1/10%0 but
it could happen; it is a necessary evil associated with statistical multiplexing.
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The next step in the construction of the probabilistic model is the identification
of events or collections of outcomes of interest with subsets of 2. Suppose the ex-
perimenter can verify whether or not the outcome of an experiment falls in any one
of a collection of subsets or events of ). At the grossest level the collection of events
might be {0, 2}; in which case the experimenter gets no information upon perform-
ing the experiment. At the finest level the collection of events might be P(1), the
set of all subsets of €1. In this case the experimenter obtains perfect information
— we can determine if the exact outcome w satisfies any arbitrary condition! To
represent the partial information that might be available to an experimenter we
define o- algebras.

Definition 2.6 (o-Algebras) A collection F of events or subsets of §) is called a
o-algebra if

o ),Qc F.
o IfAc F then A € F.
e UX A, e FifA,eF forn=12]3,....

Example 2.7 Toss a coin then a die - (2.1) continued

Take F = P(£2) in Example 2.1 so F describes the knowledge of the exact outcome
of the experiment. If, for instance, an experimenter only knows about the result of
the coin flip this partial knowledge is described by the o-algebra H which is given
explicitly by

{0,Q,{h} x {1,2,3,4,5,6}, {t} x {1,2,3,4,5,6}}.

On the other hand, if the experimenter only knows about the result of the toss of
the die, this partial knowledge is given by the o-algebra G which is given explicitly
by

{0,9.{t,h} x P({1,2,3,4,5,6})}.

For instance, G contains the event {¢,h} x {2,4,6} which describes when the die
turns up even.

Example 2.8 Draw balls from an urn - (2.2) continued
For Example 2.2 take F = P(£2).

Example 2.9 Toss a coin until it turns up heads - (2.3) continued

The c-algebra P(2) in Example 2.3 turns out to be mathematically intractable
since there are simply too many subsets! Instead we define F,, which represents the
partial knowledge of the first » coin flips. Explicitly an atomic event A in F,, may
be represented as follows:

A={{(z1, 22,25, )} X {ht} x {hyt} x -}



Modelling a Stochastic Process 35

where (21,22, 3,...,T,) is some specific sequence of elements from {h,t}. Other
events in JF,, are constructed by taking all possible unions of atomic events. It is
easy to see F,, is indeed a o-algebra for each n. We define F to be the smallest
o-algebra which contains all the F,,. This o-algebra is much smaller than P(2) but
contains all events of practical interest.

Example 2.10 A stochastic process - (2.4) continued
For a general product space define F,, to be the set of all unions of atomic events
of the form

A:{{(x17m27x37---7xn)}XSXSX-“}

where (21, 22,23, ...,%y,) is some specific sequence in S™. As above we define F to
be the smallest o-algebra which contains all the F,,.

Example 2.11 ATM networks - (2.5) continued
The past of the arrival process Ay up to time [t] is, as above, described by the
smallest o-algebra containing all atomic events of the form

A= {{(n, 71,22, 73, ..., 2p)} x SX S X}

Here the n is the initial number of cells in the queue and the z;’s are the numbers
of arrivals per time period.

The next ingredient of our probabilistic model is the probability measure P. P(4)
models the probability or likelihood that an outcome w, in the event A4, occurs when
the experiment is performed. For intuitive reasons we demand that the probability
of a disjoint union of events be the sum of the probabilities. The mathematical
definition was given by Kolmogorov as follows:

Definition 2.12 A probability measure P on a o-algebra F is a real valued
function such that

(a) 0K P(A)<1forall AcF.
(b} P(Q2)=1.
(c) If {A1, Ay, Az, ...} are disjoint sets all in F then

P, An) = 3 P(AL).
n=1

Condition (b) expresses the fact that something must occur when the experiment
is done. In fact, when the probability of an event is one we say that the event occurs
almost surely or for almost all w.

Condition (c¢) is called g-additivity and is an extrapolation of a property that
holds in the following equiprobable models. In an equiprobable model each sample
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Fig. 2.2 A is a disjoint union of Ay, Ay .. ..

point, for reasons of symmetry, has the same probability. The following is a typical
equiprobable model.

Example 2.13 Toss a coin then a die - (2.7) continued

In Examples 2.1 and 2.7 we might hope both the die and the coin were fair. Hence
the only difference between the sample points is the label and consequently the
sample points should be equiprobable. Since the union of the twelve sample points
gives all of Q) it follows that each sample point has probability 1/12. Hence if #(A4)
denotes the number of elements in A then P(A) = > P({wi}) = £(A)/12 de-
fines a probability measure on F = P(£1).

w;CA

Definition 2.14 {Q,F, P} is an equiprobable model if € is finite and for all
Ae F, P(A) =4(A4)/8(Q) where #(A) is the number of elements in A.

Proposition 2.15 Fquiprobable models satisfy the conditions of Definition 2.12.

Proof: Conditions a) and b) are obvious from the definition. Let {41, A5, A3,...}
be disjoint sets. Since € is a finite set, it follows that all but a finite number of these
sets are empty. By reordering we may assume {Aj, A, As, ..., Ax} are nonempty.
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Therefore U2, A,, = Ufi:lAn 80

k

#(UE_14n) H(A,)
P(U;L.O: An) =P UI:?: An = Tn=
1 S £(Q) ; Q)
=3 P(4) =Y P(A,)
n=1 n=1
since the probability of the empty set is 0 (see Exercise 2.9). -

The probability measure we construct for our model depends on the nature of
the experiment but if one can embed the sample space in an equiprobability model
it is easy to calculate probabilities.

Example 2.16 Draw balls from an urn - (2.8) continued
We may embed the sample space in the space

Q ={(21,22,23,24) s ; € {r1, 70, w,b};2; # 15,1 # j}

where 71 and 7 are imaginary labels which distinguish the two red balls. By
symmetry it follows that each sample point in €’ has equal probability so we define
the equiprobability measure P’ on F' = P(§)). To calculate the probability of
sample points in 2 we just add up the associated probabilities of corresponding
points in . For instance, P({(r,b)}) is given by

4
P/({(Tla b» o, QU), (7’1, b7 w, 7.2), (T27 ba 1, UJ), (TZa b7 w, Tl)} = ﬂ
so P is given, in tabular form, by:
w: brbwbrrb rwb wrb rrwdb rwrb wrrb

.6 4 2 2 2 2 2 2 2
PRwY) i 5555 37 22 51 51 55 34 o4

Let us assume the coin in Examples 2.3 and 2.9 is biased and in the long run it
seems a proportion p of the tosses turn up heads. Let us also assume the tosses are
independent which at this point means intuitively that the result of one toss does
not affect another. We construct a probability measure which will be seen later to
incorporate these features.

Example 2.17 Toss a coin until it turns up heads - (2.9) continued
Define P(A) for atomic events A € F,, as follows:

P(A)=p"(1—p)""

where p is the probability a coin turns up heads and z is the number of heads in the
sequence of z,;’s. The probability of general events in JF,, is then forced by condition
(¢) in Definition 2.12; that is, we just add together the probabilities of the atomic
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events whose disjoint union is the general event.

Example 2.18 An independent sequence of random variables
For the atomic event defined in Example 2.10

P(A) = p1(z1) 'P2($2) e pn(xn)

where p;(z;) is the probability the demand in week 7 is x; units. Again the proba-
bility of general events in JF,, is forced by condition (c¢) in Definition 2.12.

Example 2.19 ATM networks - (2.11) continued
We may define the probability of an atomic event as in Example 2.18; that is

P(A) = po(n) - p(z1) - p(x2) - - - plT[y)-

As mentioned above, this implies the number of arrivals at time [¢] is independent of
the number of arrivals at any other time and also the queue size at time 0. Taking
the p’s to be the same after pg will ensure that the arrival process is homogeneous
in time (as we shall see).

The definitions in Examples 2.17 to 2.19 are not complete of course since we
have not defined P on all of F. This involves the Kolmogorov extension theorem
which is discussed in Section 2.8.

The following properties of probability measures are left as exercises.

Proposition 2.20 Let P be a probability measure on a o-algebra F. Then

(a) P(ASY=1—P(A) forall Ac F.

(b) P(AuB)=P(A)+ P(B)— P(BnA).

(¢) If AC B with A and B in F then P(A) < P(B).
(d) If {Ay, Aa, As, ...} are sets in F then

P(Up2 A,) < i P(An).

2.2 Random Variables

The last major ingredient in our probability model is that of a random variable.
Random variables, X, Y say, measure different aspects of each sample point.

Definition 2.21 A random variable X is a function defined on €1 taking values in
the real line such that {X <z} :={w: X(w) <z} € F for all real z. Notation like
{X <z} (or {X = z}) is often used and should always be interpreted as a set of
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w. Let FX denote the smallest g-algebra inside F containing events like {X < }
or {X =z}

We shall mainly restrict ourselves to discrete random variables; that is random
variables taking on at most a denumerable number of values in a range denoted by
R x. For discrete random variables

{w: X(w) <2} =Up<a{w : X(w) = y;y € Rx}

so for X to be a random variable it suffices that {w : X(w) = a2} € F for any real
z. FX is called the family of events generated by X.

 iXsx

Fig. 2.3 A random variable.

Example 2.22 Toss a coin then a die - (2.13) continued

Define X to be 1 if the coin turns up heads and 0 otherwise. Define Y to be the
value that turns up on the die. Clearly the range of values of both X and Y is finite
and both are random variables.

Example 2.23 Draw balls from an urn - (2.16) continued
Let X denote the number of red balls drawn and let Y be the number of white balls
drawn.

Example 2.24 Toss a coin until it turns up heads - (2.17) continued
Define T to be the number of coin tosses until a head turns up. Clearly 7' takes
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on a denumerable number of values - Ry = {1,2,3,...}. Moreover, for n € Ry we
have

(w:T(w) =n}={(t,t,t,...,t,h) x {h,t} x {h,t} x -}

where there are n — 1 t's before the first A. This event is in F,, by definition and
hence is also in F. It follows that T is a random variable.

Example 2.25 A stochastic process - (2.10) continued
For any sample point w = (21,3, ...,2;,...) define X;(w) = z;. Clearly any atomic
event in F,, is of the form {w: X1{(w) = z1,..., Xn(w) = z,}.

Example 2.26 ATM networks - (2.19) continued
The stochastic process (g, A1, A2, ... is now seen as a sequence of random vari-
ables defined on the sample space € as in Example 2.25. In particular, if
w = (n,x1,%2,...) then Qolw) = n and A;(w) = z1. As mentioned above, this
implies the number of arrivals at time [¢] is independent of the number of arrivals
at any other time and also of the number of cells in the queue at time 0.

We may, moreover, define the queue Q) on Q recursively as

Qpe+1)(w) = max{Qp(w) + Apyqy(w) — 1,0}

The queue size at time [t + 1] is equal to the queue size at time [t] plus the number
of arrivals during period [t + 1] minus 1 since one cell is transmitted per period. Of
course the queue can only be reduced to 0, hence the maximum with 0. Similarly
we may define the departure process Dy, 1) = x{Qy + Ajs51) > 0}; that is D1y is
1 if the queue at time [¢] plus the new arrivals during the time period [t] to [t + 1]
is not 0, otherwise Dj;4q) = 0.

It is interesting to consider the o-algebra FP generated by atomic events asso-
clated with departures up to time [t]:

{w:Di(w) =di, Da(w) = da, ..., Dy(w) = dpy} where d, € {0,1},s=1,2....

This is the past of the departure process and is the information which is available to
the next node in the network receiving cells from the ATM multiplexor. It is a sub-
o-algebra since it does not give the queueing process and, as we shall see, the past
of the departure process FP is often independent of the queue size Qjy at time [t].

Definition 2.27 Formally a stochastic process is a collection of random variables
{X.}, defined on a probability space indexed by a parameter ¢ (often representing
time). For each sample point w, the coordinate functions { X7 (w), Xa(w), ...} specify
the trajectory of the stochastic process. The past of the process until index ¢ is the
o-algebra F;¥ generated by the atomic events {w : Xi(w) =21,..., X (w) =z, }.
One can write FX = o{Xo, X1,..., X;}.
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Definition 2.28 Given an increasing sequence of o-algebras F; inside a proba-
bility space {Q, F}, define a stopping time 7" to be a random variable such that
{T <t} e F, for all t.

A stopping time models the realistic situation where a decision to continue or not
at time ¢ is based on the information available up to time ¢; that is ;. Suppose we
model the result of a sequence of coin tosses as a stochastic process. All we need
to do is replace h by 1 and t by 0 in Example 2.24. Hence the coordinate functions
in Example 2.25 above associate a head with the value 1 and a tail with 0. Clearly
the number of tosses of a coin required to get the first head considered in Example
2.24 is a stopping time for the sequence of o-algebras defined by the coordinate
functions.

Example 2.29 ATM networks - (2.26) continued
Let 7 denote the first time a cell is lost because Q;_1) + A; —1 > B where B is
the buffer space available. 7 is a stopping time.

In order to summarize the description of a random variable we define the asso-
ciated probability distribution function.

Definition 2.30 The probability mass function or p.m.f. associated with the
random variable X is px (z) = P({w : X(w) = 2}) for any x € Rx. The distribution
function associated with X is a function of a real variable (¢ in this case) given by
Fx(t) = P({w: X(w) < t}).

Henceforth, we shall not write w explicitly so we might write simply px (z) = P(X =
z)or Fx(t) = P(X <t). We note that both these expressions make sense when X is
a random variable since by definition {w : X (w) <t} € F (that {w: X(w) =2} € F
if X is a random variable is left as an exercise).

Example 2.31 Toss a coin then a die - (2.22) continued

px(1) = P({w: X(w) =1}) = P({(h, 1), (h,2), ..., (h,6)}) = 1/2.
Similarly px(0) = 1/2. In tabular form this may be written

px(z)

Similarly
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Example 2.32 Draw balls from an urn - (2.23) continued

px(0) = P{w : X(w)
px(l) = P({w: X(w) =
=1/3.

0}) = P({(b), (w,0)}) = 1/3
1}) - P({(T, b)’ (vav b)’ (r,w, b)})

px(2) = P({w: X(w) =2})
= P({(r,r,b), (r,r,w,b), (r,w,r,b), (w,r,7,b)}) = 1/3.

In tabular form this may be written

z:01 2
px(@): 5 5 5
Similarly
y: 0 1
py(y): % %

Example 2.33 Toss a coin until it turns up heads - (2.24) continued
For z € Ry

pr(x) = Pt 6t 6 h) x (Bt} x (Bt} x -+ })
=(1-p)*'p

by Example 2.24. This is the probability mass function of a geometric random
variable.

In order to describe the bivariate or multivariate nature of random variables, we
define the joint probability mass function (joint p.m.f.):

Definition 2.34 (The joint probability mass function) For random
variables X and Y define

pxy(@y) = P{w: X(w) =2,V (w) = y})

where x € Rx, y € Ry. In general, for vector valued random variables X =
(X1,...,Xy), define the joint probability mass function by

pe(ey, .. xn) = P{w: Xi(w) = 21,..., Xp(w) = 2, }).
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Definition 2.35 (The joint distribution function) For random wvariables X,
Y and random vector X, define

Fxy(zy)=PX<zY <y
and

F)_('(xlv"wxn):P(XllewuaXnSIn)

{m: X(®) <X, Y(®) <y}

Fig. 2.4 Jointly distributed random variables.

The properties of Fxy and Fy are similar to those of Fx. An immediate
observation is that we can get the marginal p.m.f. from the joint p.m.f. as follows:

Theorem 2.36

> pxy(@y) =y ()

zER x

and stmilarly,

> pxy(@,y) = px(@).

YyERy
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More generally,

Z p;’(’(xla"-axka"' 7‘Z'n) :pthy)fk ..... Xn(xla"')ﬁa---»xn)»
Tk ER X,

where ~ over a variable means this variable ts omitted from the sequence.
Proof: We just prove the first statement. Note
{w:Y(w) =y} = Uperx {X(w) = 2,Y(w) =y}

where U denotes the disjoint union. Hence, by Definition 2.12,

pr(y) =P(Y =y) = > P({w: X(w) =2,Y(w) =y}

TER x

Z pX,Y(xvy)'

TER x

Example 2.37 An independent sequence - (2.18) continued
By Theorem 2.36 the p.m.f. of coordinate X is

px,(x;) = Z Z py(T1,. .. Tn)

JFE T ERX,
=3 Y pi@)-opilai) o palzn)
FED) IjGij
= pi(w;)
where we used the fact that
> piz) =1
:tjERxJ

We see the marginal distributions of the coordinate functions in this construction
of a stochastic process have specified p.m.f.’s given by p;. Later we shall see that
the X;’s are independent for the product probability P specified here.

2.3 Expectation
We work up to a general definition of expectation by starting with simple random
variables.

Definition 2.38 A random variable X defined on a probability space {2, F, P}
is called simple if it takes on only a finite number of values; i.e. R is finite.
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Definition 2.39 The expected value of a simple random variable X is

EX = Z 2P(X =2) = Z oy (T).

TERx r€Rx

This definition will be extended to general random variables but at this point let
us just state that for discrete random variables this extension yields the same ex-
pression as above; that is

EX = Z xpx () provided E|X| = Z lzlpx (%) < o0.
zERx TER x

Random variables such that E|X| < oo are called integrable.

The expected value measures the location of the center of mass of the distribution
and has the following monotonicity and linearity properties:

Theorem 2.40 (Monotonicity) If X <Y, that is X(w) < Y(w) for all w then
EX < EY.

Proof: We only give the proof for simple random variables.

PX=xz)= > PX=zY=y).

yeRYy

Note that if >y then P(X = 2,Y =y) = 0 so by the definition of expectation

EX= Y zP(X =ux)
zER x

Z Z P(X =2,Y =y)

T€ERx YyERy

I

<D D wPX =Y =y
z€ERx YyERy
= EY.

Theorem 2.41 (Linearity) If o and 3 are constants then
E(aX + pY) =aEX + BEY.
Proof: Again we only give the proof for simple random variables. The random

variable aX 4+ 3Y takes the value z = az + 3y on the set {w : X (w) = z,Y(w) = y}.
Let x{ax+ By = z} be the indicator function which takes the value 1 if the equality
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ax + By = z is satisfied and 0 otherwise. By definition then
E(aX +8Y) =) 2P(aX +fY = z)

=Y ) x{az+8y=2}P({w: X(w) =2,Y(w) = y})

T,y

= Z(am + By)pxy (@, y)

z,Y

= O(ZLUPX,Y(x,y) + BZyPX,Y(%y)

T,y T,y
=ay apx(z) 15 ypy(y)
@ y
=aFX + BEY
where we used Theorem 2.36. [

Taking an abstract point of view we see that any probability P on {Q, F} is associ-
ated with an expectation E(-) which acts as a linear operator on the (vector) space
of random variables.

The following law of the unconscious statistician will prove very useful.

Theorem 2.42 Let hy, hy and h,, be real valued functions of 1, 2 and n variables
respectively, so hy(X), ho(X,Y) and h,(X) are discrete random variables and

Bhi(X)= Y hi(z)px(z)

rERx

Eha(X,Y)= Y halz,w)pxy(2,y)
z€Rx; yERy

Bho(X)= > ... ) ha(zr,. o 2n)pg(@n,. ., 20).

z1E€R x4 Tn€RX,

Proof: Again we only show this result for simple random variables and we will
only establish the first expression since the others follow in the same way. Let
7 = hi(X). By definition

Eh(X)= Y 2P(Z=z)= ) Y m@PEX =z

2ERz 2€Rz x€R x;h1(x)=2
= Y m(@)P(X =)

TER X
= Z hai(@)px (z).

rCRx
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The law of the unconscious statistician allows us to calculate the expected value
of functions of a discrete random variable.

Definition 2.43 The mean of a random variable X is ux = EX = ) apx(z)
and the variance is

0% = B(X - EX)> =) (z — ux)’px(e).
The standard deviation is ox.

Theorem 2.44 If X is a positive random variable with finite mean ux then
PX >0 < Hgﬁ (Markov’s Inequality).

If X has a finite mean and variance then

2
P(X —px| >0 < (2—;( (Chebyshev’s Inequality).
Proof: Markov’s Inequality is immediate since

EX > Z:ﬂpx(x) >0 -P(X >14).
x>/
The result follows by dividing both sides by £. Chebyshev’s inequality follows anal-
ogously. ]

Example 2.45 Draw balls from an urn - (2.32) continued
In this example

EX=0-px(0) +1-px(1) +2 - px(2)=1-

Similarly EY = 0-py(0) +1-py(1)=1-1 = % The joint p.an.f. px y(z,y) for X
and Y is given by

ry=0y=1
z=0: 3/12 1/12
z=1: 2/12 2/12
x=2: 1/12 3/12

On the other hand the law of the unconscious statistician applied to the function
Hy(z,y) = z +y allows us to evaluate F(X +7Y) as

3 2 1 1 2 3
(0+0)E+(1+0)1§+(2+0)ﬁ+(0+1)ﬁ+(1+1)E+(2+1)1—2-

18

=13

It is interesting to verify that F(X +Y) = EX + EY.
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2.4 Conditional Probabilities

Consider an equiprobable measure P on a finite probability space {Q, F} where
F = P(Q). The probability of an event A is therefore given by

8(A)
1)
where (A) denotes the number of elements in A. If the experimenter knows A has
occurred and wishes to know the probability another event B has also occurred, it
follows from symmetry that each of the sample points in A4 is equally likely with
probability 1/4(A) so that the conditional probability of B occurring is
{(ANB)

_#(AnB)

P(BIA)

Fig. 2.5 Conditional probabilities.

This definition is extended to general probability spaces:

Definition 2.46
P(ANB)

PBIA) = =50

defines the conditional probability of an event B occurring, given the event A has
occurred. P(:|A) defines a probability measure on {Q, F}. Since P(-]A) does satisty
all the conditions of Definition 2.12 it follows that we may define the associated
expectation denoted F(-|A4). To be precise, if X is a random variable then

P{X =z}nA)
E(X1A) = zP(X =z|A) = roo———
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Proposition 2.47 If X is a random variable and A an event then E(X|A) =
E(X - xa)/P(A) where x4 denotes the indicator function of the set A; that is
xalw)=1ifwe A and is 0 otherwise.

Proof: First assume X is simple and nonnegative

E(X|4A) = ) 2P(X =z|4)
TER x
= Y aP({w: X(w) = z,w € A})/P(A)

= FE(X -xa)/P(A)

since X - xa(w) = Y cr, T X{X(w)=zwea}; that I8 X - xa takes the value z on
{X(w) = z,w € A}. Now extend the result by taking monotone limits of simple
functions. The signed case follows by linearity. ]

Definition 2.48 Let X , Y be random vectors. We define the conditional proba-
bility mass function {(conditional p.m.f.) of Y given X by

X - T Y = 7
5= PE=52Y =9
P

Py (1) = PV =X = o7

In general, P(-| X = Z) is the conditional probability given X = Z. The definition for
random variables is simply the non-vector version of this definition. The conditional
distribution function of ¥ given X is defined by

qux( ‘ ) (? |X:f)

where ¥ < i means Y is less than iy, component by component.

—

As in Definition 2.46, P(-|X = &) has an associated expectation denoted F(-|X =
#). For instance

EY|X =) Z =yl X =2)= > ypyix(yla).

ERy yERy

Theorem 2.49 Let X be o random variable and for each x € Rx let H(z) =
h{z,w) be a random variable (assuming a denumerable number of values). Consider
the random variable h(X (w),w) such that E|h(X (w),w)| < co. Then

Eh(X(w),w) = Y E(h(z,w)|X = 2)px(x).
TER x
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Proof: Using the fact that Q = Ugenr, {w : X(w) = =} we have by Corollary 2.68
that

EM(X(w),w) = > E[MX(w),w) x{x=} ()]

rER x

= Y E[hx,w)  X{x=a}(W)]
zeERx

= Z E(h({z,w)|X = z)P(X = z) by Proposition 2.47.
zER x

Corollary 2.50 If f is a real-valued function of two real variables such that
E|f(X,Y)| < o then

Ef(X,Y)= > E[f(Y)|X = alpx ().
TERx

Analogous formulae hold for random vectors.

Proof: Let h(z,w) = f(2,Y (w)) and apply Theorem 2.49. [ |

Example 2.51 Draw balls from an urn - (2.45) continued
The conditional p.m.f. for X given Y is px)y (z|y) given by

x: 0 1 2 z: 0 1 2
pxy(xl0):1/21/31/6 pX|y(x11) :1/61/31/2
Hence

1 1 2

E —N=0--+1--+2.2==

(X|Y =0)=0 + 3+ 673

and

1 1 4

E =1)=0-=-4+1-=+2-— ==,

(XY )=0 + 3+ 573

It is interesting to verify that

E(X+Y)=EX +0]Y =0)py(0) + E(X + 1Y = 1)py (1) = 1.5.

It is useful to define the conditional probability given events defined by random
variables or random vectors.

Definition 2.52 Let X be a random variable and let X = (X1,...,X,) be a
random vector. Denote by P(-|X) = P(-|FX) the conditional probability measure
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defined as follows. For any event A € F and any sample point w such that X(w) = «
define

bl

PAIX)(w) = P(AIX = x) = P(A{{X = z}).

Note that P(A|X)(w) is constant for w € {X = z}. Let E(-|X) = E(-|F¥) be the
associated expectation. These definitions can also be extended to vectors: for any
event A € F and any sample point w such that X (w) = &, define

P(AIR)(w) = P(AIX = &) = P(A[{X = 7).
Again, let E(]}?) = E(]]:X) be the associated expectation.
Rewriting Corollary 2.50 we have

Corollary 2.53 If f is a real valued function of two real variables such that
E|f(X,Y)] < oo then

Ef(X,Y) = B(E[f(X,Y)|X]) = B(E[f(X,Y)IF*]).
Analogous formulae hold for random vectors.

Example 2.54  Consider an on-line file updating system. Let p; be the proba-
bility that a transaction is of type ¢ where ¢ € {1,2,...,n}. The size in bytes of the
record of transaction type i to be inserted into a file may be represented by a random
variable Y;, which has mean y; and variance 0?. Determine the expected number
of bytes per transaction and the variance of the number of bytes per transaction.

It is best to define a random variable T having probability mass function pp(i) =
p; for i = 1,...,n. Hence the number of bytes in a transaction may be represented
by Yr. Now setting h(i,w) = Y;(w) and applying Theorem 2.49 we have

EYr = Eh(T,w) = ZEY|T—1 P(T =)

= ZE(Yi) pi = Zuipi.
=1 =1

The second moment follows in a similar fashion since

EY? = iE(YﬂT =1) - P(T =)

i=1
= ZE (Y?) Z 0 -+ MZ
=1 =1

The variance calculation is immediate.
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2.5 Independence

The assumption of independence leads to enormous simplifications in our calcu-
lations. First of all we say two events F' and G are independent if P(F N G) =
P(F)P(GR). This is equivalent to saying P(B|A) = P(B); i.e. knowing A has
occurred tells you nothing about the probability of B occurring.

Example 2.55 Toss a coin then a die - (2.31) continued

If F represents the event the coins is heads and G represents the event the die
gives a 4 then it is easy to check P(F) = P({{h} x {1,...,6}) = 1/2 and P(G) =
P({h,t}{x{4}) = 1/6. Moreover,

P(FNG) = P({(h,4}) = 1/12 = P(F) - P(F).

We now extend the notion of independence to discrete random variables.

Definition 2.56 Two discrete random variables X and Y are independent if
pxv(z,y) = px(x) py(y) for all z € Rx and all y € Ry. Similarly two discrete

—

random vectors X and Y are independent if

- -

Pz ¢(L,9) = px(D)ps(¥)-

<

‘We remark that this definition doesn’t work for random variables that aren’t dis-
crete. The notion of independence is extended to general random variables in the
Appendix.

Proposition 2.57 If X and Y are independent then E[X - Y] = EX - EY.

Proof: Since X and Y are independent

EX-Y]= Z Z z - yPxy(2,y)

zER x yERy
= > apx() Y ypv(y)
TER x YERY
=FEX. LY.

Corollary 2.58 IfY is independent of X then E(Y|X) =EY.
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Proof:

yeRy P(X =) YERY rx(@
= Z ypy (y) = EY by independence.
yERY

Corollary 2.59 Suppose X = f(X1,...,X,,) and the random wvector X =
(X1,...,X,) is independent of the Y. Then X is independent of Y.

Proof:
P(X =z,Y = 'l/) - P(U:EERi;f(f):z{Xl = X1y y X = xn} N {Y = y})
= Y pgy@y) = Y px@pr(y)
T f(f)=x T f(Lf)=x
= P(X =x) py(y) =px(x) py(y)

for any choices of x € Rx and all y € Ry. It follows that X and Y are independent.
u

Corollary 2.60 If X andY are independent random variables then the variance
of X +Y which we denote by Var(X +Y) is the sum of the variances, Var(X) and
Var(Y), of X and Y respectively.

Proof:

Var(X +Y)

= B (X — px) 4 (Y - o))’

= E(X = px)* + B(Y — py)* + 2B((X — px) - (Y — py))
=Var(X)+ Var(Y) +2E(X —px) - E(Y — pny)
=Var(X)+ Var(Y)

(X — px) generates the same o-algebra as X and (Y — py) generates the same
o—algebra as ¥ and so are independent. [ |

Example 2.61 A stochastic process - (2.37) continued
By Example 2.37 the p.m.f. of coordinate X; is p;. The joint p.m.f. of X is, by
construction,

pe(@, .. xn) = pi(z1) - Pr(2n).



54 Elements of Applied Probability

Consequently,

P, @) =px, (1) - px, (Tn)-

It follows that X3, Xo,..., X, are independent random variables since the above
implies the events {X; = z1},...,{X, = z,} are independent for all choices of
T1,...,Ln. Oince this is true for every n, we have by definition that the sequence
{X1,X3,...} is a sequence of independent random variables.

We shall have to extend the notion of independence to an infinite sequence of
random variables.

Definition 2.62 The components of a random vector X = (X1, Xo,...,X,)
are independent if p ¢(Z) = px, (1) px,(zn). The components of an infinite
sequence Xi, Xo,... are independent if every finite subset of components is inde-
pendent. Finally, a random variable Y or vector Y is independent of the infinite
sequence Xj, Xo,... if Y, respectively }7, is independent of the vector made from
any finite subset of the sequence.

Example 2.63 ATM networks - (2.26) continued

The stochastic process Aj, Ag, ... is now seen to be a sequence of independent ran-
dom variables each having p.m.f. p, which are all independent of the initial queue
size (o, which has p.m.f. po. On the other hand, the sequence Q1 is certainly not
an independent sequence since clearly a large queue at time [t] means there will be
a large queue at time [t + 1]. It is an interesting question if the departure process
D1, Dy, ... is an independent sequence.

Example 2.64 Total service required by a random number of customers
The number of customers that arrive at a server is a random variable N with mean
p#n and standard deviation opn. The service required by a customer is a random
variable with mean « and standard deviation S minutes. Calculate the mean and
variance of the number of minutes the server is busy until all the customers are
served. We shall suppose the service times of the customers are represented by an
independent, identically distributed sequence of random variables Y1, Y5, ... having
mean « and standard deviation 5. Consequently the total service time is represented
by

We shall also suppose N is independent of F the o-algebra generated by X, Xo, .. ..
Note that T'(w) is of the form h(N(w),w) where h(n,w) = 37| Y; so using Theorem
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2.49

Eh(N,w)= Y EQ) YN =n)P(N =n)

neERN =1

ET

n
= Y. EQQ_Y)P(N=n) by Corollaries 2.58 and 2.59
nERN =1

= Z naP(N =n)=una — EN - EY;.

nERN

The calculation of the variance of T is left as an exercise.

2.6 General Random Variables

We must extend our definition of expectation to discrete random variables taking on
a countable number of values. We will even have occasion to use random variables
which are not discrete but rather take on a continuum of values. Definition 2.21
is still valid but such variables do not have a p.m.f. since the probability such
a random variable takes on a specific value is 0. Nevertheless the distribution
function is always well defined. The extension of the expectation given below is due
to H. Lebesgue and involves constructing approximating simple random variables.
Further results on the Lebesgue integral are given in the Appendix. This section
and the Appendix are rather abstract so at first reading, it would be best to skip
over it and concentrate on the proofs for simple random variables.
If X > 0is a random variable defined on a probability space {2, F, P}, define

k=L if Bl < X(w) < £ where k=1,...,n2"

n on

Xn(w) = {nZn if n < X{w).

Clearly, as n — oo the sequence X, of sitmple random variables increases monoton-
ically to X as is seen in Figure 2.6. Hence, £ X,, 7.

Definition 2.65 If X > 0 then define EX = lim,_o EX,. If X takes both
positive and negative values then use the decomposition X = X — X~ where
Xt = max(0,X) and X~ = —min(0, X) to define EX = ux = EXT — EX"~
whenever it is well defined (integrable); that is whenever E|X| = EXT+EX ™~ < .

With this definition we have extended the domain of the expectation operator E
assoclated with the probability P from simple random variables to the space of
integrable random variables.

The following theorem justifies the above definition. A more general form is
stated in the Appendix (see Billingsley (1979) for a proof).
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_ A
NV A
(k+1 &Z: /Q l\

(k-1)/2n

0 Q

Fig. 2.6 Lebesgue’s discrete approximation of a continuous variable.

Theorem 2.66 (Monotone Convergence) If Y, is a sequence of random vari-
ables such that 0 < Y, {(w) T X (w) for almost all w then
lim EY, = EX.

n—od

It follows that the approximating sequence is arbitrary and leads to the same value
of the expectation.

Theorems 2.40, 2.41 and 2.42 now follow for general random variables. First
consider the case of nonnegative random variables. Approximate by simple random
variables for which these theorems have been shown to hold. Now pass to the limit.
The signed case holds by additivity.

We can prove the expectation of a discrete random variable taking on a countable
number of values is calculated as forecast after Definition 2.38.

Corollary 2.67 If X is a discrete random wvariable with a p.m.f. px and is
integrable, i.e. 3 p |xlpx(x) < oo, then EX =3 .n apx(z).

Proof: It suflices to prove the Corollary for X > 0 since the signed case follows
by additivity. Pick a sequence of finite subsets A, such that A, T Ryx. Define
Y, = X - xa,. Clearly Y, is simple and Y,, T X; so ZzeAn rpx(z) = EY, T EX
by monotone convergence. On the other hand the sum 37 . apx(z) is de-
fined precisely as the (unique) limit of finite sums like 3 . 4, Tpx (). Therefore

EX =3 er, 2x(2). |
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Using this technique we can prove the following Corollary which will be used
again and again.

Corollary 2.68 If X is integrable and {A; : i =1,2,---} are disjoint subsets in
F then

o

E[X xuz,al =) BIX xal
i=1
where, in general, the indicator function x4 of any measurable set A is defined to
be 1 if w € A and 0 otherwise.

Proof: Again it suffices to consider X > (. Note that

V=X xur A, TY =X xue a4,

1

Moreover, by linearity, £ [X XUz, A = XL E[X - xa]; so the result follows
from monotone convergence. |

2.7 Independence of GeneralRandom Variables

Definition 2.69 The o-algebra Fx generated by a random variable X is the
smallest o-algebra which contains all the events of the form {X < z}. More gen-
erally, the o-algebra F ¢ generated by a random vector X = (X3,...,X,) is the
smallest o—algebra which containing events of the form {X; < z1,..., X, <ap}.

We remark that if X is discrete then any event in Fx is a countable union of events
of the form {X = z}. Similarly any event in F¢ is a countable union of events like
{Xl = T1,..- ,Xn = a:n}

Definition 2.70

e Two events F and G are independent if P(F N G) = P(F)P(G).

o Two o—algebras F and G are independent if all events F' € F and all events
G € G are independent.

e Similarly o—algebras H1, Ha, . .., H, are independent if and only if all H; €
Hiyi=1,...,n,

P(H,NHyN---NH,)=P(H,) - P(Hy)---P(H,)

where H; € H;.

e Random variables X, Xa,..., X, are independent if their generated o—
algebras Fy, are independent.

o X, respectively X, is independent of G if Fyx, respectively Fg, is indepen-
dent of G.
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e Two random vectors X and Y are independent if and only if their generated
o-algebras Fy and Fy; are independent.
e A sequence of random variables is independent if every finite subset is.

Naturally it is impossible to check the independence of two o—algebras F and G
by checking that all the events F € F and all events G € § are independent. It is
enough to show independence of the events which generate these o—algebras. This
point is illustrated in the following Proposition.

Proposition 2.71  Let X and Y be vectors of discrete random variables then X
and Y are independent if and only if

—

px (& ¥) = pg(@)py (¥)-

Proof: Clearly if X and Y are independent

PRy (Z,79) = P({Xy xl,...,Xn:acn}ﬁ{Yl:yl,...,Ym:ym})
= ( Ti,- ~7Xn:xn)'P(Yl:ylv"'aym:ym)
= (f)P;?(??-

On the other hand all events in Fg are unions of events of the form {X; =
Z1,...,Xn = xp} while events in Fy are unions of events in {Y; = yy,..., Y, =
Ym}. If the joint probability mass function is a product of the marginal prob-
ability mass functions, we have, as above, the independence of these generating
events. It follows that all events F' € F¢ and G € Fy are independent since
F = Ugex{X = &} and G = Uge{¥Y = §} for some countable subsets K and L.
Hence,

P(FNG)= <UfeK{X = #}) N (Uy*eLﬂ7 = 37})
=Y Y P )
FEK jeL
=Y Y PX=2)P(Y =7
FEK geL
=> P(X=2)> Py =y
TEK cL

— P(F)- P(Q).

z,Y

Il
gy

<y

Example 2.72 Toss a coin then a die - (2.55) continued

We defined the o—algebra H which represents the partial knowledge about the coin
flip and G which represents the partial knowledge about the toss of the die. It is
easy to check the independence of H and G when P is the equiprobability measure.
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2.8 The Kolmogorov Extension Theorem

In this section we describe a particular stochastic process taking values in a count-
able state space S — a sequence of independent random variables. As in Example
2.4, we construct a sample space 2 =85 x § x § x .-+ and as in Example 2.10, we
construct the subalgebra F,, of all unions of atomic events of the form

A={{(z1, 22,23, .., 2p)} xS xS x--}

where (2, 12,73, ...,Tp,) is some specific sequence in S. As before, we define F to
be the smallest o-algebra which contains all the F,,.

Many probability measures may be constructed on this canonical space but
here we consider the product measure defined below. If {p;} is a given countable
sequence of probability mass functions concentrated on S then, as in Example 2.18,
for A given above define P,,(A) = p1(21)-pa(x2) - - pp(Zn). Again the probability of
general events in JF,, is forced by condition (c) in Definition 2.12. The fundamental
problem of extending the above probability P, defined on each F,, to a probability
on F is resolved by the following theorem which is stated without proof.

Theorem 2.73 (The Kolmogorov Extension Theorem) If a sequence of
probability measures P, defined on F, satisfies the compatibility condition that
Poi1(A) = P(A) if A € F,, then one may construct a probability measure P
on F which agrees with each P, on F,.

The product measures P, on F,, clearly satisfy the compatibility condition. This
follows since any atomic event in F, is of the form A := {z1, T2, ..., 2o} x SX S X --
and

Pn+1(A) = Pn+1({$1,132,...$n} x 8 x 8 x )
Y pil@n) - pa(az) - palen) pori(@nin)

Tn41 es

pi(z1) - pa(w2) - polen) = P,(A).

I

By additivity, the compatibility condition may now be verified for all sets in F,.

Hence, by the Kolmogorov extension theorem, there exists a product measure P
on F. If, as in Example 2.25, we consider the coordinate functions { X, X5,...}, it
follows from Example 2.61 that for each n, Xy, Xo,..., X, are independent random
variables.

Example 2.74 An independent sequence - (2.18) continued
By the above, we have constructed a stochastic process of independent random
variables X, X, ..., X,, such that the p.m.f. of coordinate X; is p;.
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If p; = p for all 4, then the above construction yields an i.i.d. sequence; that is a
sequence of independent, identically distributed random variables. A special case
is the following.

Example 2.75 Toss a coin until it turns up heads - (2.33) continued
In this example the marginal distribution p; of X; is the same for each 7 and

T 01
pi{z):1—pp.

It follows that the product measure P,(A) of atomic events A € F,, of the form

A= {{(31,22, 55, )} % S x S 5o+

where x; is some specific sequence of 0’s and 1’s is precisely

P(A)=p*(1-p)" 7,

where z is the number of heads in the sequence of z;’s. This is the answer we
predicted in Example 2.17.

Theorem 2.76 Dynkin’s Formula Let {7,k = 0,1,...} be a sequence of in-
tegrable random wvariables and let 7 be a stopping time for the sequence FkZ =
c{Zy,...,Zr} of c-algebras generated by the past of Z up to time k. Then, for
alln >0,

TAN .
EZipy = EZy+ E]Y |E(ZW|FE-1) — Zk—1] -
k=1
Proof: For each n,
TAN
Zonn=Zo+ Y _(Zk— Z-1)
k=1

= Zo+ Y x{TAn 2k} (Z — Zk-1).
k=1
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Note that {r An >k} = {TAn >k—1} € FZ | so we can take expectations to get

EZT/\TL =FEZ + K Z (Zk — Zkfl)X{T An > k}}
Lk=1

=FEZy+FE ZE ((Zk = Zr) x{T An > k}|-7:kZ~1)):’
k=1

Il

M-

=EZy+E

(BZWFED) = Zea)xlrnn > k}}

',
G
>

3 =

= EZy,+FE \E(Z4|FE) — Ziv]

o
Il
=

Suppose Z,, = Zo+ Y p_; X where { Xy} represent the wins or losses in a series
of gambles and Zj is our initial fortune. Omne might hope to design an optimal
stopping plan which would lead to a positive expected value for the return up to
this stopping time. Unless the gambler is clairvoyant, such a plan which tells you to
stop after the n'” gamble must depend on .7~'nZ so the plan is a stopping time in the
technical sense given here. The above theorem dashes all hope for a money making
stopping time. In general, the expected value of any gamble is negative so

E(Zy| FE)) = Zie1 = B(Zy — Zia|FZ_y) = E(Xp)FE 1) <0.

If 7 is bounded then 7 An = 7 for some n. Hence, by Dynkin’s formula, EZ, < EZg;
i.e. your expected fortune when you stop playing is less than you started with.

The following theorem allows infinite stopping times and again shows gambling
doesn’t pay.

Theorem 2.77 Wald’s Lemma Consider a sequence of independent, identically
distributed random variables {X,}, with common finite expectation p. Let F,, =
o(X1, Xo,..., X,). SupposeT is a stopping time for this sequence such that ET < oo
then

E i X, = pEr.
k=1
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Proof: As above define Z,, = >_;_, Xj. By Dynkin’s formula

TAT TAN
EZXk =F Z (E(Zg|Fk-1) — Zi—1]
k=1 k=1
TANR TAT
=E Y [B(Zk1 + Xkl Fi1) = Zua]| = E | ) [E(Xk|fk—1)]}
k=1 k=1
TAT
=F [Z ] by independence
k=1
= pF [T An].

As n tends to infinity, ¢F [r A n] tends to pFT by the monotone convergence
theorem. The convergence

TAT T
S SLOS b
k=1 k=1
requires a little more work. Clearly "7 X}, tends to 3, _; X, but it is not clear
we can take the limit through the expectation symbol.

By the same application of Dynkin’s formula as above, with E|X;| in place of
le

ETZW\XH = EIX1|E[rAn].

k=1
By monotone convergence,

EY |Xp| = E[X1|E [r An] < oo
k=1

Since, > ;M X < Y7, |Xk| it follows from the dominated convergence theorem
in the Appendix that

TAR
RIL%OE;X’“:E{TA”]'

Example 2.78 Drunkard’s walk
Consider a sequence of 1.i.d. random variables {X} having common probability
mass function

[(z):

NI =
DO
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Suppose we consider sums, S, = Y, _, X where Xq = x. S, represents the
location of a random walk with independent steps of size {X}} starting at x.

Suppose also there are two integers L < x < U which are lower and upper
bounds for this random walk. Define T to be

T(w) = 15121{)1 (x+ S, e{L,U}).

Clearly T is a stopping time since {T" > n} is equivalent to the n conditions; L <
r+Xi<U, L<z+Xi+Xo<UetceteralL <o +X +Xo+ - +X, <U;s0
{T > n} € F, where F,, = 0 {X1,..., X, } (see Definition 2.28).

Now consider the question of whether the random walk starting at x hits L before
U. If L =0 and U = 1000000 then the question takes on additional significance in
a gambling context. If we start out with z dollars and we bet one dollar at a time
on the flip of a fair coin, then hitting L constitutes ruin while hitting U constitutes
walking away a millionaire. It is imperative that we calculate f(z) = P(x+ St = L)
and 1 — f(z) = Pz + Sy =U).

Suppose we can apply Wald’s Lemma, 2.77. If this theorem applies and assuming
T is finite

T
ESp=EY Xy=EX-ET =0,
k=1

since KX = 0. Hence,

£E=E(CC+ST):LP(1'+ST:L)+UP(1‘+ST:U)
= Lf(x) +U(1 - f(z)).

Solving for f(z) gives f(z) = (U —z)/(U — L).

To apply Wald’s Lemma we require ET < oo and this will imply that 1" is finite!
We see that S, is a binomial random variable which is treated in detail in the next
chapter. Letting D = U — L we can ensure that P(]S,;,] < D) <1~a <1 by
picking m larger than D since

P(Sy| > D) > P(Sy,=m) =1/2™ = a.

Hence uniformly for L <z < U we have P(L <z + S5, <U)<f=1—a <1
Consequently starting from any point in [L, U] there is at most probability 3 that
we stay in the interval up to time m.

Now let us estimate the probability of staying in the interval at least up to time
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km; that is P(T > km). Clearly,

P(T > km)

=Plx+8S,c{LU}n=1,...,kn)
<Plx+S,€{L,U};n=m,2m,....km)

< P(1S] < D, |S2m — Sl < D,y |Skm — Ste-1yml < D)

= P(|Sm| < D)P(|S2m = S| < D)+ P(ISkm = Sk-1ym| < D)

< gF

using the independence of the {Xx} and the fact that Sim — Si;—1)m has the same
distribution as S,,.
By the above and using Exercise 2.13, we have

where we used the fact that P(T > k) > P(T > j — 1) for each of the m terms in
the jth block: {k: (j —1)m <k < jm}. We conclude Wald’s Lemma applies and
we have our result.

2.9 Exercises

Exercise 2.1  Suppose the joint density of (X,Y) is given by

fle,y)y=-1y=0y=1y=2
r=-1 1/18 1/18 1/9 1/9
x=0 1/8 1/18 1/12 1/8
z=1 1/12 1/18 1/12 1/18

a) Calculate the probability mass function for X.
b) Calculate E(Y|X = z).
¢) Is X independent of Y7

d) Calculate £ XL+2
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Exercise 2.2 Suppose the joint density of (X,Y) is given by

fly)y=0y=1y=2
=1 1/6 1/6 0
t=21/6 0 1/6
r=31/12 1/6 1/12

a) Calculate the probability mass function for X.
b) Calculate P(X < Y).

c) Calculate fy|x(y|X = 3).

d) Calculate E(Y?|X = 3).

e) Calculate F((X +Y)?|X = 3).

f) Is X independent of Y7 Explain.

Exercise 2.3 A circle is drawn by choosing a radius from the uniform distribution
on interval (0,1).

a) Find the cumulative probability function for the area of the circle. Calculate the
probability that the area of the circle is less than 0.785.

b) Find the probability density function for the area of the circle. Find the expected
value for this area.

Exercise 2.4 A continuous random variable X has the probability density function

1/3 if —2<z<-—1
fley=9 Kk if l<ax<4
0 otherwise.

a) Find the value of k.

b) Find the cumulative probability function of X.

¢) Find the expected value for X.

d) Let Y = X? + 2 find the cumulative probability function of Y and its expected
value.

Exercise 2.5  The purity Y of each batch of a certain enzyme varies uniformly
between 0 to 1 (i.e. 100%). Divide the interval [0,1) into n equal intervals. If
Y falls in an interval with left end point k/n assign this value to a new random
variable Y.

a) Show the probability mass function of the random variable Y,, assigns mass 1/n
to the points k/n for k=0,...n — L

b) The value (in hundreds of dollars) of a batch is determined by the purity and
is given by V = 10 + 20Y + 4Y2. Find the expected value of Y;, and of V,, =
10 + 20Y,, + 4Y,2.

¢) Write down the distribution function Fi, for Y.

d) In the next chapter we will see the discrete random variable Y, approximates
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the continuous random variable Y having distribution

0 ify <0,
F(s)=4 s if0<s<1,
1 if1<s.

Show that F,(s) converges to F(s) for all s.
¢} In the next section we will show that the calculation of E'V is much simpler than
the calculation of F'V,, since the summation is replaced by the integral

1
/ (10 + 20y + 4y?) - 1dy since Y has density 1 on [0, 1].
y=0

Exercise 2.6 Show Theorems 2.40 and 2.41 hold for general random variables.

Exercise 2.7  Show,
(U1 EB)NE =U2  (E;NF) and (N2 E)UF =2, (B, UF).

Exercise 2.8 If the o—algebras Hy,Hz, H3 are independent show H; € H; is
independent of Hy € Ho.

Exercise 2.9 Prove P(0) = 0.

FExercise 2,10  Suppose you are given a list of n items to sort. The bubble sort
starts at the bottom of the list and successively inserts item & -+ 1 into the list of
the k items already sorted where k = 1,...n — 1. To insert item &k + 1 one must
make comparisons starting from the bottom of the k items already sorted. When
the proper place is found the item is inserted. We wish to describe the number of
comparisons needed by the bubble sort so we assume all possible lists are equally
likely.

a) Describe an appropriate probability model for the above experiment along with
a random variable X which describes the number of comparisons needed by the
bubble sort. .

b) Which sample points give the largest and smallest values of the random variable
X.

¢) Can you write down a recursive formula for the expected value of X as a function
of n. What is EX7?

d) How would you determine the distribution of X?

Exercise 2.11  For any sequence of events F;, show that we can represent those
sample points which are in an infinite number of the E;’s by NS>, U2, FE,. We
denote this event by limsup F;.

Exercise 2.12  Show that if Y.;°, P(E;) < oo then P(limsup E;) = 0.
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Exercise 2.13  If N is a positive, integer valued random variable having distribution
F', show

EN =Y (1-F(k) = ZP(N > j)-

k=0
Exercise 2.14 Let X be a nonnegative random variable and let

X X<k

X’“:mm{X’k}:{k if X >k

where k is a given constant. Express the expectation F[X] in terms of the cumu-
lative distribution function F(z) = Pr{X <z}

Exercise 2.15 If X has expectation px, show E(X|X > s) > px and E(X|X <
s) < px for any value s. Do it for discrete variables first. Extend to general random
variables if you can.

Exercise 2.16  An urn contains three chips, two marked Good and one marked
Bad. Players A and B take turns drawing one chip from the urn, that chip being
returned to the urn before the next player draws. The winner of the game is the
first player to draw a chip marked Good. The game continues until someone wins.
If A draws first, what is his/her probability of winning?

Exercise 2.17  The emergency control circuits on an aircraft are so vital that
redundant components are installed to minimize the chance of catastrophic failure.
One circuit has two components. The first components has a main Al and an
alternate A2 in case of failure. The second component has a main Bl and an
alternate B2. The circuit will fail only if both Al and A2 or both Bl and B2 have
failed. After an emergency use of this circuit all the components of the emergency
control circuit is replaced. The times until failure of each of Al or A2 during an
emergency are described by an exponential distribution with mean 4 hours. The
times until failure of each of B1 and B2 are described by a normal with mean 6
hours and standard deviation 1 hour (for the moment we don’t care what a normal
distribution is as long as it can be simulated by Minitab or some other statistical
package). Describe how to use a Minitab simulation to calculate the probability the
emergency control circuit will not fail during a 10 hour emergency.

Exercise 2.18 Suppose Y1, Ys, ..., Y, are independent identically distributed ran-
dom variables. Suppose that Uy, Us,. .., U, is a sequence of independent identically
distributed uniform random variables independent of the Y’s. Let N (k) denote the
index of the k** largest U; i.e. it might be that Us is the smallest of all the U’s so
N(1) = 3. Prove that Yy (1), Yn(2)s- -, Yn(n) is @ sequence of independent random
variables with the same distribution as Y¥7,Y%,...,Y,,.

Exercise 2.19 A multiple choice examination has fifteen questions, each with five
possible answers, only one of which is correct. Suppose that one of the students
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taking the examination must answer each question with a complete guess. What is
the probability the student gets no questions right?

Exercise 2.20  Kits of resistances used for making a certain circuit board are
produced by factories A and B. We buy 40% of our kits from A and 60% from B.
The percentage of defective resistances from factory A is 5% and from B is 2%. A
board is picked at random and two resistances are tested. The first resistance is
good; so what is the probability these resistances came in a kit from factory A?

Exercise 2.21  The air rescue service of the armed forces divides the flight path
of a downed plane into search sectors. In one mission a search plane will overfly
every square kilometer of the designated sector. From past experience one knows
however that in one mission there is only a 50% chance of spotting a plane down
in a sector of tundra. There is a 40% chance of spotting a plane down in a forested
sector and a 15% chance of spotting a plane down in a lake sector.

e A small plane is down in an area containing two sectors of tundra, one lake
sector and one forested sector and a priori the plane has an equal chance
of being down in any one of the four sectors. The mission director decides
to use the first two missions to successively search the sectors of tundra.
What is his chance of spotting the downed plane?

e The first two missions have failed. Calculate the (a posteriori) probability
the plane is
- in each of the tundra sectors?

- in the forest sector?
- in the lake sector?

e Where should the mission director send the third search mission to maxi-

mize the probability of finding the downed plane?

Exercise 2.22 A disease progresses through two stages - a latent stage and an
active stage. If this disease is present in the latent stage, a diagnostic test yields a
positive result with 50% probability. If this disease is present in the active stage,
this diagnostic test yields a positive result with 90% probability. The test is always
negative if the discase is not present in the patient. We know that 4% of the
population is afflicted with the latent form of this disease, and that 1% of the
population has the active form of the disease. If a patient takes the test and has a
positive result, what is the conditional probability that the patient has the active
form of the disease?

Exercise 2.23  In Example 2.78, use Chebyshev’s Lemma to show that if m is
sufficiently large then P(|S,,| > D) > 0.

Exercise 2.24  Two players, Mr. Jones and Mr. Smith are playing a trick shot in
the pool room. Mr. Jones starts and has probability P; of making the shot. If he
fails Mr. Smith takes over. Mr. Smith has probability Ps of making the shot and
if he fails Mr. Jones takes over again. Calculate the probability that Mr. Jones is
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the winner under each of the following scenarios.
a) The winner is the first to make three trick shots in a row.
b) The winner is the first to make a total of three trick shots.
For the first question one should define the probability V' that Jones wins and then
write a recursive expression for V. The second question is trickier. Define a function
V' (k,m) to be the probability that Jones wins given that Jones has the cue and that
Jones now needs k trick shots while Smith needs m trick shots to win. Similarly
define the function U(k,m) as the probability that Jones wins given that Smith
has the cue and Jones needs k trick shots to win and Smith needs m. Now write a
recursion for these functions. The recursion can be solved for V(3,3) by hand but
it is interesting to program this into Mathematica.
V[0,m_}=1 Ulk_,0]=0
Vik_,m_1:=V[lk,m]=(1-(1-P3) (1-PS))~{-1}
(PJ V[k-1,m]+(1-PJ) PS Ulk,m-11)
Ulk_,m_]:=Ulk,m}J=(1-(1-PS) (1-PJ))"~{-1}
(PS Ulk,m-1]1+(1-PS) PJ V[k~1,m])
Simplify([V[3,3]]

{(PJ~3%(-PJ"2 - 5*PJ*PS + B#PJ"2#PS - 10%PS"2 +
20*PJ*PS~2 - 10%PJ"2%PS"2 + 12%PS"3 -
21*%PJ*PS"3 + 9%PJ"2*PS~3 - 3%PS"4 +
6%PJ*P3"4 - 3%PJ"2%PS~4))/(-PJ - PS + PJ*PS)"5}

Exercise 2.25  Mr. Jones has two favorite chocolate shops. One is uptown; one
is downtown. Hunger strikes randomly at any time, day or night, and Jones jumps
on the first bus going uptown or downtown. Uptown and downtown buses come at
a rate of 5 per hour but over time, Mr. Jones finds he visits the uptown shop three
times as often as the downtown shop. Describe a scenario which would account for
this.

Exercise 2.26  In Example 2.64, we suppose the time N is the first time n the
service requirement Y, exceeds g at which time the server quits from overwork!
Show N is a stopping time which is dependent on F, the o-algebra generated by
the service times Y7, Ys, - --. Nevertheless, show the expected total service time ET
is still EN - BY .

Exercise 2.27 Consider the random walk whose step p.m.f. is
z =1 1
fl): 3 3
like that discussed in Example 2.78. Write down a recursion relation like (5.10)
for m(x) = E7, the expected time until the upper or lower boundary is rcached,
starting with a fortune z. Find m(z).

Exercise 2.28 Generalize the results in Example 2.78 to the case when the step
p.m.f. is
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T: -1 1
fl@): 1-p p
Exercise 2.29 Generalize Exercise 2.27 to the case when the step p.m.f. is as
given in Exercise 2.28.

Exercise 2.30 Somebody offers to pay you in dollars the sum of the values you
roll with one die but each roll cost 3.50. You know the expected value of this game
is zero but suppose you decide to using the following martingale (a martingale is
simply a gambling strategy but to a mathematician the word means a fair game).
You will play the game until you roll a six and then stop with this last big payoff.
Show that your expected return is still zero.

Exercise 2.31  Somebody offers to pay you in dollars the average of the values you
roll with one die but playing the game has a one time cost of 3.50. You know the
expected value of this game is zero if you roll a fixed number of times. Can you
give a gambling strategy that has a positive expected value?



Chapter 3

Variables and Limit Theorems

3.1 Discrete Random Variables

Let us suppose each independent observation of a stochastic process is a Bernoulli
trial and hence can be classified as success or failure; true or false; heads or tails;
1 or 0. Consider the packet storage example in Chapter 1 which is equivalent to
drawing at random with replacement from a box containing three pennies, four
nickels and a dime. Suppose drawing a dime (or getting a 10 kilobit packet) is
considered a success while anything else is a failure. To model this sequence of
n independent, identically distributed Bernoulli trials we define the product space
Q = {p1,p2,p3,n1,n2,n3,n4,d}™. Let {X;}? ;| be a sequence of random variables
such that X;(w) = 1 if the i*" packet associated with the sample point w € Q is
d; X;(w) = 0 otherwise. F, = o(Xi,X2,...,X,) and P is the equiprobability
measure so the marginal distributions are P(X; =1)=1- P(X; =0) =p=1/8.

Another example is the model for flipping a coin in Example 2.3. There we saw
that to model a sequence of n independent, identically distributed Bernoulli trials
we define the product space Q! = {0,1}" on which the coordinate functions { X}, _,
are defined. F,, = o(X;, X3,...,X},) and P is the product measure having marginal
distributions P(X; =1)=1- P(X; =0) = p.

Generally we are interested in the number of successes in n Bernoulli trials and
this is modelled by B, = X1 + X5+ -+ X,,. Clearly Rp, = {0,...,n}. Moreover

{B, =k} ={(z1,...,2,)| exactly k of the z;’s are ones} .

By counting when P is the equiprobability measure or using the product measure
as in Example 2.33; P(X; = z1,..., X, = x,) = p*(1 — p)"~F for any sequence of
x’s with exactly & 1’s. Moreover the number of different sequences of 0’s and 1’s

with exactly &k 1’s is (Z) Hence,

n _
P(B, = k) = (k) pr(L—p)n k.
1t follows that B,, is a Binomial random variable by the following definition.

71
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Definition 3.1 A Binomial random variable with parameters (n,p) has a proba-
bility mass function:

for k € {0,...,n}.

In summary then, a Binomial random variable is the number of successes in n in-
dependent, identically distributed random trials, each having probability of success
p. Since a Binomial random variable is a sum of independent Bernoulli random
variables it is a simple calculation to verify that the expectation of B, is np and
the variance of By, is np(1 — p).

Example 3.2 ATM networks - (2.5) continued

If the 5 input trunk lines to the ATM multiplexor are independent and each has
probability p of having a cell at time [t] then Ay, the number of arrivals at time [t],
is a Binomial random variable with n = 5. Consequently the mean number of cells
arriving at the switch per time unit is 5p. A maximum of one cell is transmitted
per time unit. Hence we must have 5p < 1 or else the queue will gradually fill up
with more and more cells. The time until the switch is overloaded is an important
design characteristic which we shall study later.

Example 3.3 No-shows

A typical application of the Binomial distribution involves the planned overbooking
of seats on a business flight. Suppose a plane has 180 seats but past experience
has shown that ten percent of the customers with reservations are “no-shows”; that
is they don’t show up to check in at flight time. Let us suppose that on a certain
airline, it is common practice to accept more than 180 reservations in order to avoid
losing revenue. On the other hand the number of reservations should be limited to
ensure that the probability of actually leaving behind a dissatisfied customer with
a reservation is less than one percent. How many reservations may be taken?

If we suppose that n reservations are taken, it is reasonable to regard the event
that a customer turns up as a Bernoulli trial with probability p = 0.9 of success. The
independence of the trials is somewhat dubious — what if a family was travelling
together? — but we shall assume independence. The total number to show up
may then be represented by a Binomial random variable B,,, and the probability
of leaving at least one dissatisfied customer on the ground is P(B, > 180). This
number is given by

n
3 (Z) (0.9)(0.1)"*.
k=181

At this point a short computer program will churn through increasing n > 180
until we find the first unacceptable n + 1 such that P(B,.; > 180) > 0.01. The
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value n is the largest feasible number of reservations to be taken and in fact n = 190.
That number can be determined by using Mathematica as in Figure 3.1.

fac[0_] :=fac[0]=1

fac[n_]:=fac[n]=n fac[n-1]
binom[n_,k_]:=binom[n,k]=fac[n]/(fac[k] facln-k])
unhappy [n_] :=Sum[binom[n,k] 0.9°k 0.1~ (n-k),{k,181,n}]
Listplot[Table[{n,unhappy[nl},{n,181,191}]1]

0.012¢

0.008t
0.0067
0.004¢

0.002¢

| . .

184 186 188 190

Fig. 3.1 The probability of stranding a customer.

Example 3.4 Lot-by-lot sampling inspection by attributes
In Section 1.3 we saw how to implement MIL-STD-105D, a sampling plan designed
to assure a desired level of quality from a producer. We now calculate the OC-
curve associated with a simple sampling plan. One of the major problems in quality
control is cost of inspection. When items (like screws or bullets) arrive in lots of
size N it is often impractical to test if each item is defective or nondefective. When
the testing is destructive, as in the case of bullets, 100% inspection is obviously
impossible. The simplest sampling plan is to select n (say 20) items at random
from the lot and inspect these. If the number of defects D is less than or equal to
the acceptance number ¢ (say 6) then we accept the lot (but we replace or throw
away the defectives we did find). If the number of defectives found in the sample is
greater than ¢, then we reject the whole lot and send it back to the manufacturer.
To evaluate such a plan we suppose the proportion of defectives in the lot is p.
Since items are chosen at randomni, if we put imaginary numbers on the items we
must choose combinations of n different items from N. The number of ways that
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D = k is the number of ways of selecting & from Np and n—& from N — Np. Hence
() C)
k n—k n k k
1—p)""

- - (3)ra-»

n
as N — oo (this is left as an exercise). Hence if N is large enough (but p is fixed),
the distribution of D is approximately binomial.

P(D=k)=

oclp_,n_,c_]:=Sum{Binomialln,k] p~k (1-p)~(n-k),{k,0,c}]
Plotloclp,20,61,{p,0,1}]

1

0.2 0.4 0.6 0.8 1

Fig. 3.2 The OC curve with n = 20, c = 6.

To describe the sampling plan we define the operating characteristic (OC') curve
as OC(p) = P(D < ¢|p); that is the probability of acceptance as a function of the
lot quality. The OC' curve is given in Figure 3.2 and with it we can evaluate if the
inspection plan protects us sufficiently against poor quality. This plan, for instance,
will let lots with 40% defectives go through 20% of the time.

Legend has it that a soldier was ordered to test a lot of shells using a similar
sampling plan. His first 7 shells were defective! He therefore asked if he really had
to fire off the other 13 from the sample. Logically he should stop his testing at
this point and reject the lot. This could have been the birth of sequential sampling
methods where the sample size depends on the results of the preceding observations.
Naturally the soldier was ordered to fire off all 20 shells.

Omne mustn’t take this anecdote too seriously because many of the quality assur-
ance plans developed by the military are still used today!
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Another common random variable counts the number of independent, identically
distributed Bernoulli trials required to obtain a first success. Suppose we wish to
describe the number of packets coming to the packet storage node depicted in
Chapter 1 between successive arrivals of 10 kilobit packets. A packet is a "success”
(10 kilobits) with probability p = 1/8 and a failure otherwise. Imagine any infinite
sequence of packet arrivals, denoted by w € 2, where

Q= (x1,29,...):z; € L where L := {p1, pa, P3,n1, N2, N3, Ng, d}.

We set X;(w) = 1 if the i*" packet is d which represents 10 kilobits and X;(w) = 0
otherwise. Define T(w) = &k if X1(w) = 0,...,Xp_1(w) = 0, Xp(w) = 1. By
counting, P(T = k) = (1 — p)F~'p.

A more explicit model is given in Example 2.33. The model for such an infinite
sequence of Bernoulli trials is given by @ = {0,1} x {0,1} X --- upon which we
define the coordinate functions {Xk};o:l. Also F,, = 0(X1,Xe,..., X,,) and P is
the product measure on F, the smallest g-algebra containing all the F,,’s where P
gives marginal distributions P(X; = 1) =1 — P(X; = 0) = p. As in Example 2.24
we define T(w) = k if w = (21,22, ...,2k-1,1,...) wherez; =0foréi=1,...,k— 1.
It follows that T has a geometric distribution:

Definition 3.5 A random variable T is called geometric if
pr(k)=(1-p)*"p
for ke Rr ={1,2,...}.

If T is geometric then P(T > z + y|T > z) = P(T > y). This curious property
called memorylessness. and it follows immediately from the fact that

P(T>k)=P(X,=0,...,X;, =0) = (1 - p)~.

We can appreciate the irony of using the geometric distribution to describe the
duration of telephone calls. Even given the fact that a caller has already spoken
for x seconds, the probability he (or she) will speak at least y seconds more is
still P(Y > y). It is as if the first & seconds are forgotten since this is the initial
probability of speaking at least y seconds!

Example 3.6 Time until r successes

One might consider the number of failures required to obtain r successes. Clearly
the number of trials until the first success is a geometric random variable T;. After
this first success the number of independent trials until the second success is another
identically distributed random variable 75. Continuing in this way it is easy to see
that the number of failures required before obtaining r successes may be represented

by z:zl T —r.
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The independence of the infinite sequence {T;;i = 1,2, ...} follows since {T;;i =
1,2,...n} are independent for any n and this is true because

P(Ty =t1,Ty = ty,... Ty = ty,)
= P(X1=0,...,X(-1) =0, X, =1, X(,11) = 0,...,

Xt 1) =0 X = Loy Xty gt s 1) = 0.

oo Xyt ) = 0, X pgty = 1)
— P(X1=0,..., X4 _1)=0,X,, =1)

P(Xt11) =0, oy Xty 11a-1) = 0, Xty 1) = 1)

o P(X (gt 11y = Oy oy Xttt 1) = 0, Xty sty = 1)

=P(Ty =t )P(Ty=t5)... P(Ty = t).

On the other hand it is clear that the probability that k failures occur before

the r** success is given by the probability that the (k + r)** trial is a success and
exactly k of the preceding k + r — 1 trials are failures. Hence

PO Ti=k+r)= (k+;_1>pr(1~p)'“-
i=1

This is an example of the Pascal distribution listed in the table at the end of this
chapter.

The Poisson is another ubiquitous discrete distribution.

Definition 3.7 We say a random variable N has a Poisson distribution with rate
Aif pN(k) = B_A)\k/k‘! forke Ry = {0, 1,.. }

It is left to Exercise 3.11 to show the expected value and the variance of N are both
A

3.2 Continuous Random Variables

While we emphasize that, from a practical point of view, only discrete distributions
are necessary, nevertheless computational simplifications sometimes follow when we
make continuous approximations. The distribution function F of a discrete random
variable is a step function with jumps determined by the probability mass function.
Hence if f is the p.m.f. corresponding to F' then F' jumps up an amount f(z) at
the point 2. A continuous distribution function F(t) may have no jumps. It is just
a continuous nondecreasing function which tends to 0 as t — oo and to 1 as t — oo.
The simplest example is the uniform distribution.
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Definition 3.8 The distribution F' defined by

0fort <0
Ft)=({tfor0<t<1
1fort>1.

is called the continuous uniform distribution on [0,1]. A random variable X with
such a distribution is said to be uniformly distributed on [0, 1].

Definition 3.9 We say a sequence of random variables {X,,} converges in distri-
bution as n — oo if F}(t) = Fx, (t) — F(t) at each point ¢ such that F' is continuous
at ¢. Convergence in distribution is denoted F,, = F.

Consider a discrete uniform random variable X, on [0, 1]; that is

k 1
pxn(—) = -
i 1
for k =1,...,n. Fx,(t) measures the probability of points {(%), (%) < t} S0
0 fort<0
Fx (t) = %for %§t< % where k=1,...,7
1 fort> 1

As 11— oo we see Fx, (t) — F(t) at all points ¢ where F is the uniform distribution
on [0, 1] defined in Definition 3.8. Consequently we have that F;, = F.

The condition that F,(t) — F(t) at each point ¢, such that F' is continuous at
t, is just a technical nuisance. Consider for instance a sequence of discrete random
variables X,,, with distributions F,,, such that P(X,, =0) =1/2 = P(X, = 1+1/n).
As 1 — oo it is clear this sequence converges in distribution to the discrete Bernoulli
random variable with distribution F', such that P(X = 0) = P(X = 1) = 1/2.
However, Fy,(1) = 1/2 and this does not converge to F(1). Nevertheless, since 1 is
not a point of continuity of F', this doesn’t matter.

Next we consider the continuous approximation to the random variables T, /7
where T, is a geometric random variable with p = % Clearly for ¢t > 0

T,
P(;” <t)=1-P(T, > tn)

=1-(1- é)[“l]*
n
where, in general, [s]_ denotes the greatest integer in s. As 7 — oo the above

expression tends to 1 — exp(—At) (see Exercise 3.10).
Definition 3.10 Fr is an exponential distribution with parameter A if

0 t<0
1—eMt>0.

Fr(t) = {
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A random variable T" with distribution Fr is called an exponential.

Consequently we have shown Fr, /, => Fr when Fr is exponential with parameter
A and we may say the random variable T}, /7 is approximately exponential.

Most computer languages provide functions like random in Pascal which gen-
erate pseudo-random uniform variables on [0, 1]. Each pseudo-random uniform has
a discrete uniform distribution which is approximately a continuous uniform as
above. A series of pseudo-random numbers generated by such a function will pass
most statistical tests for a sample of i.i.d. uniform random variables. To generate a
discrete random variable having probability mass function p(z) for z € R where R
is finite we need only divide up [0, 1] into intervals of length p(z), one interval for
each z € R. Now assign a value = to a random variable X if the pseudo-random
number falls in the corresponding interval of length p(z). This happens with a
probability equal to the length of the interval since the pseudo-random number is
uniform on [0, 1]; that is X takes the value z with probability p(z) as required.

This approach collapses when we consider the problem of simulating a random
variable such as the above approximately exponential T, /7. There are simply too
many tiny intervals to counsider. It is better to simply generate an exponential
random variable 7. We first generate a pseudo-random uniform U then set T =
(—=1/X)1logU. T is clearly nonnegative since 0 < U < 1 and moreover for t > 0

1
P(T<t)= P(—XlogU <t)
= P(U > e ™M)

using the uniform distribution of U. The extension of this method of simulation to
general continuous distributions is given as Exercise 3.3.
The chief application of convergence in distribution is the central limit theorem.

Theorem 3.11 Let Xy,..., X, be independent, identically distributed random
variables with common mean p and common variance o2. Then letting

7 = 22:1 X’f Ny
" o\/n

we have Fiz, = Fyz where Fz is a standard normal distribution having mean 0 and
variance 1; that is

£ 22
Fz(t):/ ‘TdiL‘.

——e
oo V2T

Definition 3.12 If a random variable X has a distribution F'x such that

Fxe(t) :/; e C%)
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for —oo < t < oo then X is called a normal random variable with expectation p
and variance ¢?. If a random variable Z is normal and g = 0 and ¢ = 1 as in the
above Theorem 3.11 then Z is called a standard normal.

By a simple change of variable in the above integral it is easy to check that X has
the same distribution as 4 + 0Z. In other words, to simulate a general normal
random variable it suffices to expand by a factor ¢ and translate by the mean p.

Example 3.13 No-shows — (3.3) continued

Let X; be a Bernoulli random variable which takes the value 1 if the k" customer
shows up and 0 otherwise. We shall assume as before the X;’s are i.i.d. with mean
p = .9 and variance p(1 — p) = .09. Hence

P(B, > 180) = P(>_ X; > 180)
k=1
S ohey Xk —np N 180 — 0.9n

=& avn 3vn

)

180 — 0.9n
=PZ, > ——
180 — 0.9n
A1 = Fp(—m)

3V

using the central limit theorem. Now the 99** percentile of the standard normal
distribution is given in tables to be 2.33; that is P(Z > 2.33) = .01. Hence take

180 — 0.9n
T >2.33.
B3vn T

Letting = = +/n and solving the resulting quadratic equation we get x < 13.77; that
is n < 189.3. Hence we must take n = 189 which is not quite right since the exact
calculation gave 190. The central limit theorem is an asymptotic result which only
gives approximate results for moderate n.

The continuous distributions we shall deal with all have densities.

Definition 3.14 If the distribution function, F'x, of a random variable X is given
by

Fx(t) = /_ fla)de

we say X has a density. These integrals involving densities are assumed to be Rie-
mann integrals and we usually deal with densities which are piecewise continuous.

In particular the density of the standard normal distribution is fz(z) =
\/% exp(—2z2/2). Other densities are listed in the table at the end of this chap-
ter.
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f(x)

‘ 0 t X

Fig. 3.3 Fyx(t) is the area under the density left of ¢

If a random variable X has a distribution with density f then we may connect
the definition of expectation described in Definition 2.65 with standard Riemann
integrals.

Theorem 3.15 (The Law of the Unconscious Statistician)
Suppose X is a continuous random variable whose distribution has density f. Sup-
pose, moreover, that h is a piecewise continuous function on the line. Then, if

S @) f(z)dz < 0,

Eh(X) = /OO h{z)f(z)dz.

—o0

Proof: For simplicity assume A is nonnegative. Let y = F(z) and let h(y) :=
h o F~1(y). By the change of variable formula for Riemann integrals

| w@swe = [ Ry

Let U := F(X) so U is uniform on [0,1] and ER(X) = Eh(U). Now by definition,

_ " _ k-1, k-1 k
Eh(zf):nlln;th( —)P(—— < U< )
k=1
I e B |
= Jim > h=——)0
k=1

1
= / h(y)dy by the definition of a Riemann integral.
0

Putting these results together establishes the theorem. |
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Using the Law of the Unconscious Statistician we see continuous random vari-
ables may be described in the same way we described discrete random variables. If
X has density f we may calculate the mean value, ux := FX = [zf(z)dr and the
variance, 0% = B(X — px)* = [(z — p)? f(z)dx.

We shall not attempt a general description of jointly varying random variables
which are not discrete. In particular we will avoid conditional probabilities for these
variables. Nevertheless, we can easily describe the joint behavior of independent
random variables X = (X1, X2, ..., X,) with densities fx,, fx;,--., fx.. The joint
distribution is defined for any point (t1,t2,...,t,) € R™ by

F)Z(tl,tz,...,tn)
:P(Xl gtlaX2 §t277Xn§tn)
= P(X) <t1)P(X3 <t9)...P(X, <tp) by independence

tq to tn

= le (xl)dml . fX2 (xz)dﬂﬁg ce an (xl)dasn.
— 00 — 00 — 0
Thus we see the joint distribution may be expressed as the multiple integral of a
density function, fg, which is simply the product of the marginal densities fy, -
fx, - fx,. If we retrace the steps in the proof of the Law of the Unconscious
Statistician we get the following extension.

Corollary 3.16 Suppose (X1,X3,...,X,) are independent continuous random
variobles whose distributions have density f. Let h be a piecewise continuous func-
tion on R™. If

/ / [Py, Ta, . o) fx, (z1) - fx, (x1)d@r - - dzy, < 00
then
Eh(f):/ / B, 22y fs (21) -+ i, (01 )y - - .

Example 3.17  John Von Neumann proposed the following acceptance rejection
method for generating pseudo-random numbers. Suppose we wish to generate a ran-
dom variable X having a density fx(x). Suppose we can easily generate independent
pseudo-random variables U and Y where U is uniform on (0,1) and Y has density
hy(z);x & I. Finally suppose C > 1 is a constant such that fx(z) = Chy (z)g(x)
where 0 < g(z) < 1. We now generate U and Y and test if U < g(Y). If so we
accept the value and set X = Y7; if not we reject the value and we generate another
independent pair U, Y and try again. Using Corollary 3.16 we show in Exercise
3.25 that X does indeed have density f! We could, as a special case, set Y to be
pseudo-uniform on I so g is simply a multiple of f. It is not very efficient however
since the number of trials before we get an acceptance has a large expected value.
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3.3 Generating Functions

Definition 3.18 The moment generating function ¢x, of a random variable X,
is

Yokery € px (k) if X is discrete
[7 e fx(x) da if X is continuous.

A

The probability generating function or z-transform ¥x, is sometimes useful for
integer valued random variables: For z > 0

Ux(z) = B2X =" Fpy(k) = ¢x(In(z)).
k=0

The probability generating function is aptly named and we note that ¥ x (1) = 1.
The moment generating function derives its name from the following theorem.

Theorem 3.19 If ¢ x|(s) < oo for —so < s < 8¢ for some s9 > 0 then

- k
ox(s) = E(),( )

A sk, |s| < sp.
k=0 ’

Hence the moment generating function ¢x has derivatives of all orders at s = 0
and

dk
gr X (8) [s=o= B (XF).
Proof: By definition
sX _ s ok
e nlingo s
k=0

Taking the expectation of both sides yields the result, although passing the expec-
tation through the limit requires the Dominated Convergence Theorem 9.7. |

Example 3.20  Consider a Poisson random variable X having rate A. The mo-
ment generating function of X is
> Ak L (eSN)k
_ sk,—AN =
T
k=0 k=0
= exp(A(e’ — 1)).

Similarly ¥(z) = exp(A(z — 1)). Since X is positive it is clear ¢|x|(s) < oo for all s.
Hence, taking the first derivative we see

d
EX = E(bx(s) .s:O: A
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Example 3.21  For the standard normal Z:

o0 * 1 2
s) = Ee’? :/ e’ fz(x)dx :/ T 2y
¢z(s) . fz(x) B~

=€ —(z s) /de_€2/2

eI

where we used a change of variable

1 e __(I_S)2/2d 1 > ruz/Qd 1
—_ (&4 r = ——— € U =
V2 J o V2m ) s

since exp(~u?/2)/(v/2r) is a density. Since a normal random variable with mean
p and variance o2 may be represented by i + 0Z where Z is a standard normal it
follows that ¢x (s) = exp(su + s202/2).

One major advantage of the moment generating function is that it completely char-
acterizes the distribution function:

Theorem 3.22 If two random variables have the same moment generaling func-
tion ¢ such that ¢(s) < 0o for —so < s < 8o for some sg > 0 then the two variables
have the same distribution.

The proof is beyond the scope of this book. On the other hand, if two nonnegative,
integer valued random variables have the same probability generating function hav-
ing a positive radius of convergence around 0 then by the uniqueness of the power
series expansion, the two random variables have the same p.m.f.

Now consider a sequence of independent random variables Xy,..., X, and de-
note the sum by S. The moment generating function of S is given by

$s(s) = Eexp(s(Xy + -+ X»n))
= H EesXx
k=1
= ¢x,(s)+ bx,(s).

This follows since for each k, exp(sX}) is measurable with respect to o(X},) which
are independent by hypothesis and consequently the expectation of the product is
the product of the expectations using Proposition 2.57. By the same reasoning,
the probability generating function of a sum of independent, integer valued random
variables is the product of the probability generating functions of the summands.

Example 3.23 If we now consider the sum of n independent Poisson random
variables X, ..., X,, having rates A1, ..., A,, then by the above result the sum S has
a probability generating function given by the product of the probability generating
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functions. Hence

Ps(z I_Iexp()\;c (z —1)) —expz/\;C 2~ 1))

k=1

This probability generating function has a positive (in fact infinite) radius of con-
vergence so it completely identifies the distribution of S. Inspection reveals however
that the above probability generating function is precisely that of a Poisson random
variable having rate > ., Ay. We conclude that the sum of independent Poisson
random variables is again a Poisson random variable.

Example 3.24 Throw r heads in a row
Consider independent, identically distributed Bernoulli trials X, X5, ... each hav-
ing probability p of success. Let T represent the number of tries until we obtain
7 successes in a row. The problem is to calculate the moment generating function
for T'. Let N represent the number of tries until the first failure. Clearly N is a
geometric random variable such that P(N = k) = p*~1(1 — p).

Using conditional expectations,

Eexp(sT) = E(E(exp(sT)|N)).

However E(exp(sT)|N = k) = exp(sr) if k > r + 1. Moreover if N = k < r then
the first k tries have been wasted and clearly

E(exp(sT)|N = k) = Eexp(s(T + k)). (3.1)
To be more precise we have
E(exp(sT)x{N = k}) = E(exp(s(k + T"))x{N = k})

where T is the first time r successes in a row occur with time starting from trial
k+ 1. Since the event {IV = k} is independent of 7" it follows that

E(eTX{N =k}) = e**E(e’T)P(N = k) = e** E(e*T)P(N = k)

since T and 7" clearly have the same distribution. Now divide both sides of the
above by P(N = k) and using Proposition 2.47 we get (3.1).
Now we can calculate:

ZeskE sT k 1 Z esrk 1 p)

k=r+1

1—
5 D Z(pe 4 esrpr
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Now solving for £ exp sT which is on both sides of the above equation and simpli-
fying we get

_ pesT _ e ) e’ — 1)
Prls) =B = ST @ peey

This somewhat formidable expression can now be used to calculate the moments
of T'. Taking derivatives gives

Li=p VarT — 1 o 2r+1 V4
(1—pp’ (L=ppm)? (1-pp~ (1-p?

It is also instructive to remark that by taking # = e® the above expression becomes

ET =

- . pz) (1 —px)
kZ:lpT(k)xk Sl e oy

Hence, expanding this rational function out in a power series in x, we can identify
the coefficients pr(k) of the term in 2*. This can be accomplished by remembering
that 1/(1 —y) = 1+y+y*+---. Letting y = (x — (1 — p)p"z" ") and substituting
we can expand this to whatever power we wish (it would help to use Mathematica
though). For example the coeflicient of 2" is p” which corresponds to the probability
of immediately having r successes.

3.4 Law of Large Numbers

Another fundamental result is the law of large numbers.

Theorem 3.25 (Law of large numbers) Let {X,} be independent, identically
distributed random variables having common mean ux. Define the partial sums
Sp = X1+ -+ X,. Then with probability one

S 1o
Jim =l 5 D X = px
k=1

This is a mathematically pleasing result which as stated is not very practical.
First of all to make sense of this result one must construct a probability space
{Q,F, P} and then an infinite sequence of i.i.d. random variables with a given
distribution. Next one must realize that for w chosen from a set of probability 1,
the average of the partial sums X ,(w) := Sy, (w)/n does converge to ux but without
a rate of convergence we don’t know how big n should be to ensure S, (w)/n stays
within € of p1x. This is particularly unsettling because in principle n depends on w!
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It is perhaps more instructive to state a result that provides a rate of conver-
gence. Suppose the standard deviation of X, ox is finite. For any ¢ > 0,

Sn 1
2 ) = g E(S, — )?

Sh 1
on < -E
Pt =l > ) < 5 B(= —

by Chebyshev’s inequality (see Theorem 2.44). Next use the fact that the variance of
a sum of independent random variables is the sum of the variances so E(S,, —nu)? =
no%. We conclude that

Sn o3

P(l— —pl > ¢) <= —.

(22—l > ) 5= 2

Hence, by taking n large, we can ensure that the probability X, is within ¢ of p

is as close to 1 as we like. This result is sometimes called the weak law of large
numbers.

Example 3.26 Continuous sampling inspection by attribute

Consider the problem of inspecting items which arrive not in lots but rather on a
conveyor belt in a continuous flow. Each item is classified as defective or nonde-
fective. In many cases the cost of inspecting every item is prohibitive. In the case
of destructive testing 100% inspection is impossible. Dodge (1943) proposed the
following continuous sampling plan called CSP-1. Start with tight inspection and
inspect 100% of the units consecutively and continue in this manner until 4 items in
succession are nondefective. At this time, as a reward, switch to reduced inspection.
Here only one item is inspected out of segments of f items. This item is selected at
random from the f units in the segment. If the item is nondefective continue with
reduced inspection. If, however, the item is defective, as a punishment, switch back
to tight inspection and continue until ¢ nondefective items in succession are found
again. We shall assume defective items, once discovered, are removed and replaced
by nondefective ones. The case where such items are not replaced can be treated
analogously.

The performance of any continuous sampling plan may be described by two
parameters. The first relates to the cost of sampling and is given by the AFI or
average fraction inspected. The quality of the output is measured by the AOQL,
which is defined as the worst average outgoing quality that will result from using a
continuous sampling acceptance plan over a long-run period, regardless of present
quality. These parameters are calculated under the hypothesis the process is in
control; that is the quality of the items may be described as a sequence of i.i.d.
Bernoulli random variables with constant parameter p denoting the probability an
item is defective.

Break the process into cycles where one complete cycle starts with tight inspec-
tion, continues with reduced inspection and then stops the moment we switch back
to tight inspection. Let N; represent the number of items inspected until ¢ items in
succession are nondefective. Let M7 denote the number of segments of f items that



Variables and Limit Theorems 87

are subject to reduce inspection until a defective is found. The total length of the
first cycle then is Ny + fM, items. Similarly for the k" cycle define the length of
the tight inspection period to be Ny items and the number of segments subject to
reduced inspection to be Mj. The length of the &** cycle is Ny + f M), items. After
n cycles the average fraction inspected

_ EZ:1(Nk+Mk)
ZZ:1(Nk "’ka)
T2 opet Ve + 2300 My
%Zﬁzl Ni, + f% D1 M
UN + par

_, N T A
pN + fua

AFI,

as n — oo by the law of large numbers where py is the common expected value of
the N’s and 1y is the common expected value of the M’s.

Define Dy(1), Dy(2),..., Dx(My) to be the number of defectives missed during
the M), segments inspected during the reduced inspection period of the k** cycle.
Call up = EDg(1) for all k. Since no defectives are missed during the tight in-
spection period it follows that after n cycles the AOQ,, or average outgoing quality
is

S M D)
AOQ,, = = L
On = 0= (Ne 4 M)
EDIND S N()
% > p=1 Ve + f% D he1 M
par(f —1)p
un + fua

again by the law of large numbers since EZZAi’“l Di(i) = pprpp = py(f — 1)p.
This latter result follows from the calculation in Example 2.64 using D’s instead
of Y’s. We also used the fact that up = (f — 1)p which follows since f — 1 items
are left uninspected in each segment so D;(1) is a Binomial random variable with
parameters p and f — 1.

The expected length of the tight inspection period was given in Example 3.24.
Taking r = ¢ we get

1—(1-p)
gy = Lm0 =)
p(1—p)
Note that here a success is the detection of a defective which has probability p.
The number of segments inspected during the reduced inspection period of a cycle
is geometric with probability of success, that is detecting a defective, equal to p so
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pp = 1/p. Hence

1-0-p) 1
AFT = lim AFI, = %ﬂj)‘p
Jm 10-p) S
p(1—p)? P
and
p(1—p)° P

One may quibble that the averages should not be taken at the ends of cycles
but rather at a sequence of times T tending to infinity. This question is addressed
in the chapter on renewal theory so suffice it to say that the result remains the
same. At this point the AOQL may be determined by maximizing the AOQ above
as a function of 0 < p < 1. For a given value of AOQL the best procedure is the
one which minimizes the AF'I. Tables have been constructed by Dodge and Romig
(1959) for choosing the optimal parameters ¢ and f.

Example 3.27 Control charts

In contrast to the preceding example we are concerned here with controlling the
production process, not inspecting it. If we conclude that the process is producing
poor quality we stop the process and make adjustments. In a sense we have changed
our perspective from the consumer to the producer. Consider the production of
electrical resistors. The desired resistance is specified but from past experience we
know that there is a random variation due to impurities in the raw materials and
small fluctuations in the production environment. These variations are essentially
unavoidable and must be distinguished from assignable causes of variation due to
operator error or poor quality raw materials. When these assignable or preventable
errors occur we say the process is out of control and we must design a scheme to
detect this anomaly and correct it as soon as possible.

We say a sequence of quality measurements is in control if the sequence may be
modelled by an i.i.d. sequence of random variables. The Shewhart control chart is a
tried and true method developed by W. A. Shewhart at the Bell Labs in the 1920’s.
Suppose the nominal value for a resistance is pip = 1,000 ohms and past experience
has shown that there is an intrinsic standard deviation in our production process of
o = 50 ohms. Let us suppose that n = 5 resistors are measured every ten minutes
and denote the average of the five resistances measured at the ith inspection by
X, and let the difference between the largest and smallest of these five resistances
be denoted by R;, the range. If the process is in control the deviations from the
nominal value are the result of many tiny random errors with no bias; that is with
mean 0. By the central limit theorem we would expect the sum of these errors to
follow the normal distribution and certainly the average of five resistances should
further reinforce this trend. Consequently the distribution of X; is approximately
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normal with mean py and standard deviation o/+/n. The Shewhart F-chart given
in figure 3.4 consists of three control lines: the nominal value 1o and the 3-¢ limits,

po — 30 /y/n and pg + 30/ /n.

1080

1060 W UCL = 1067

1040 ®e ., °

1020 —

1000 B -2

® e . CL =1000
980 .

960 ®

940 -

LCL =999
25 50 75

920

Fig. 3.4 T-chart.

The observed values T; have been plotted. The values are in control up to
observation 39 but from observation 40 on the mean is shifted to 1,020. When the
process is in control there is a probability of 0.0026 of falling outside the control lines.
The real out-of-control situation starting at observation 40 is not detected. The poor
performance of the Shewhart chart in the above example should be contrasted with
the performance of the more modern Cusum procedure discussed in Example 5.36,
which quickly detects the out-of-control situation after observation 40.

An increase in standard deviation of the observations may indicate the pro-
duction process is becoming more variable and this may be even worse than a
systematic shift of the process mean! The r-chart is designed to detect this increase
in the standard deviation. The values R; are plotted on the r-chart in Figure 3.5.
For any inspection, the difference R := z(,) — x(1) between the largest and smallest
resistances has a distribution which only depends on n and ¢ since

P(R<t) = P(Xny - X <)
_p (U {(X(n)a“ fo) (X(na— #o)} < t>

= P(Zn) — 21y < t/o)
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Fig. 3.5 r-chart.

where Z(,) and Z(;) are the largest and smallest of n standard normals.

The expected value and standard deviation of Z(,) — Z(1) can be tabulated for
each n and are usually denoted by dy and d3 by the quality control engineers.
Therefore the mean along with the upper and lower three standard deviation limits
of R are given by ods, o(ds — 3d3) and o(dy 4+ 3ds) respectively. These control
lines have been plotted on the r-chart although the lower control limit is omitted
since it is negative. Again, an out-of-control alarm should be signalled as soon as
an R; falls outside the control lines. This means the variability of the process has
suddenly changed and one should determine the assignable cause of this deviation.
In this example the range values are always in control since the standard deviation
is constant but as luck would have it, an out-of-control alarm is signalled at the
45th hour (in fact a false alarm) and the quality control team would start looking
for the assignable cause of the error.

There is a trade-off involved in process control. We wish to detect the out-of-
control situation as soon as possible but on the other hand we don’t want to signal
too many false alarms! The 3-o limits will eventually be exceeded even for a process
in control, just by chance variability. This will generate a false alarm which will slow
down production. In Exercise 3.26 the run length of an in-control process before a
false alarm is shown to have a geometric distribution and the average run length
ARL is given. When the process is out-of-control the run length is also shown to
be geometric with a much shorter run average run length.

One should not leave the impression that the Shewhart chart is a useless antique!
On the contrary, it is a subtle statistical tool which is especially useful when one
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doesn’t have nominal values for p and o. Imagine the assembly line has been
retooled. Suppose we make 250 observations in 50 blocks of n = 5 and we wish to
decide if the production mechanism is under control. The empirical Shewhart chart
is a good method to use.

For block ¢ calculate the average, X, of n = 5 observations. Take the average
of these 50 X;’s and call this X. This is a good estimate for the unknown value .
Next, for block ¢, calculate the estimated standard deviation

&i = \/EZ:I(Xk — Y)Q

Clearly,

= 2
n X, X
> ket (% - %)

n

Sia (7).

g™

Let the expectation of \/22‘11 (2 - 7)2 /n be denoted by ¢z = c2(n). The quality
control engineers have produced tables for these constants; for instance c5 = 0.8407.
This means Ed/co = 0. Define @ = (61 + 2 + ...+ ,)/n which means &/cs is an
unbiased estimator of o, the unknown standard deviation of the process.

We can now draw the center line, X, and the 3 sigma lower and upper control
limits,

c = o
=X
o and UCL +362\/H

along with all the block averages X;. This is called the empirical Shewhart chart.

LCL =X —3

If the process is really in control none of the block averages should fall outside
the control limits. Moreover the control engineers have various symptoms of loss
of control which can quickly be identified from the Shewhart chart. For instance,
an alarm would be signalled if 7 points in a row were on one side of the center
line or if 7 successive points plot as an upward or downward trend. The control
engineer could even detect if an operator is overcorrecting the production process
if the control points see-saw above and below the center line. Figure 3.6 is the
empirical Shewhart chart of 50 blocks of n = 5 e¢bservations of a normal with mean
1000 and standard deviation ¢ = 50.

There are also charts to test if the standard deviation of the observations is in
control. This amounts to plotting &; along with the center line at o and the 3 sigma
limits. We won’t do this here because other statistical techniques are certainly bet-
ter. Indeed the whole question of whether or not the limits should be calculated
based on assuming the observations are normal is open to debate. The Z-chart
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Fig. 3.6 The empirical Z-chart.

works well because the distribution of the average already tends to be normal by
the central limit theorem. Nevertheless the statistical significance of an alarm is
uncertain. The control limits for the F-chart are even more problematic. More
research is needed to provide charts which are not so heavily dependent on the
normality assumption.

3.5 Exercises

Exercise 3.1 Complete Example 3.4. Show that the number of defectives drawn
without replacement from a large lot is approximately Binomial.

Exercise 3.2 A random variable X has a Poisson distribution with mean A. Given
X =n, B has a binomial distribution with parameters n and p.

a) Using the relation Eexp(tB) = E(FE(exp(tB)|X)) and the uniqueness of moment
generating functions show that B is Poisson with mean Ap.

b) Show that B and X — B are independent and find the conditional distribution
of X given B = 0.

Exercise 3.3 If F is a continuous distribution function define the inverse function
F~Y(s) = min{t : F(t) > s}. Let U be a pseudo-random uniform on [0, 1]. Show



Variables and Limit Theorems 93

F~Y(U) has distribution F.

Exercise 3.4 Show that if X is a positive random variable then

oo
EX :/ (1 — F(x))dz.
0
Exercise 3.5  The lifetime of an electronic component has a density given by

flz) = { 1/5000 for 0 < z < 1000 hours
s exp(—(z — 1000)/4000)  for z > 1000 hours

a) Calculate the expected lifetime of the component.

b) What is the probability the component last longer than 3000 hours?

¢) Write down the moment generating function of this density.

d) If I measure the lifetime of 1,000 of these components and plot a histogram will
the histogram follow the normal curve?

e) If I take the average of these 1,000 components what value will I obtain approx-
imately?

f) Four of these components are wired into a parallel redundant system. What the
probability at least one works after 3,000 hours.

Exercise 3.6 A machine cuts pipe in lengths of 40 inches with a standard deviation
of 0.60 inches. We take a sample of 100 pieces of pipe. We draw the sample
histogram and calculate the average length of the pipes in this sample.

a) Will the sample histogram will necessarily follow the normal curve?

b) Calculate the expected value of the sample average.

¢) Calculate the standard deviation of the sample average.

Exercise 3.7 We say a random variable X with distribution F' is stochastically
larger than a random variable Y with distribution G if for all ¢, F(t) < G(t).
Construct X = F~*(U) and Y = G~}(U) using the same pseudo-random uniform
U on [0,1]. Show X > Y and show that if u is an increasing function then Eu(Y") <
Fu(X).

Exercise 3.8 Let W be the number of white balls selected when & balls are chosen
at random from an urn containing n white balls and m black balls. Calculate EW
and Var(W).

Exercise 3.9 A company has N employees who must submit a sample for drug
testing. The N employees are divided into n groups of & people and everybody is
sampled. The samples from the people in a group are mixed together and tested.
If the k& people in the group are free of drugs then the test for the mixture will
be negative. If the mixture tests positive however, the remaining portion of the
sample from each member of the group is tested individually. In this case a total
of k& + 1 tests are done. Past experience shows one should expect a proportion p of
the employees are drug users.
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a) What is the probability any given group will test positive?
b) What is the expected number of tests done?
¢) If p is small, find the k which approximately minimizes the expectation in part

)

Exercise 3.10 Note that [tn] = #n — § where 0 < § < 1. Use this, plus the fact
that lim,_,oo(1 — A/8)® = exp(—A) to complete the proof that T}, /n converges in
distribution to the exponential where T}, is the geometric with p = A/7.

o

Exercise 3.11  Calculate the expectation and variance of a Poisson random variable
with rate A.

Exercise 3.12  Let X, X2, X3,...,X,, be independent normal random variables
such that X; has mean p; and variance o2 for i = 1,2,...,n. Show that the sum
S, = X1 +---+ X, is a normal random variable with mean iy + po + - - - + pr, and
variance g% + a3 + - + g2.

Exercise 3.13 A tiny circuit board must physically hold 3 components across the
back end of the board which measures 10mm. Unfortunately the size of the compo-
nents are highly variable. All three follow a normal distribution. The first compo-
nent has a mean of 4mm with a standard deviation of .5mm; the second and third
have a mean of 2mm with a standard deviation of .4mm.

a) What is the distribution of the combined length of three components taken at
random from their respective populations.

b) What proportion of the circuit boards are defective because the components were
improperly mounted because they didn’t fit?

Exercise 3.14 Let X1, X5, X3,..., X, be independent random variables uniformly
distributed on [0,1]. Show that the distribution function of the maximum, S =
max{Xy, Xo,..., X, }is Fg(t) =t" for 0 <t < 1.

Exercise 3.15  Prove that E(X?) > (E(X))?. In general, if ¢ is a nondecreasing
function, use the mean value theorem to show E¢(X) > ¢(EX). Now check that
the function z? has a nondecreasing derivative.

Exercise 3.16 Let X and Y be independent Poisson random variables with means
Ax and Ay. Calculate the conditional distribution of X, given X +Y =n.

Exercise 3.17  Let X and Y be independent exponential random variables with
means Ax and Ay. Find the distribution of min{X, Y} and max{X,Y}, as well as
the respective means and variances.

Exercise 3.18 Calculate all the moments of a Poisson random variable with mean
A using the moment generating function.

Exercise 3.19  Let X be a random variable with probability generating function
px(2). Find the generating functions of X + 1 and 3X.
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Exercise 3.20  Let ug be the probability that the number of successes in k Bernoulli
trials is divisible by 3. Find a recursion relation for vy (express v in terms of
Uk—1,Vk—2,...) and from this find the generating function p(z) := Y, viz*.

Exercise 3.21  Let X be a nonnegative random variable with distribution function
F and let X, = min{X, c} where c is a given constant. Express the expectation
E X, in terms of the distribution function F'.

Exercise 3.22  Let X be a nonnegative integer-valued random variable with prob-
ability generating function ¢(s) = >_ 7 a,s". After observing X, then perform X
independent Bernoulli trials each having probability p of success. Let 1" represent
the resulting number of successes.

a) Determine the probability generating function of T.

b) If X is a Poisson random variable with mean X\ show 7' is also Poisson with mean
Ap.

Exercise 3.23 100 pieces arrive at a computer controlled drill each requiring a
different number of operations. Each operation involves orienting the piece and
placing the drill bit and takes 3 minutes. Empirical experience has shown the
probability mass function of the number of operations is given (approximately) by
the following table. What is the chance the batch of 100 pieces will take more than
16 hours to process?

x operations:
probability f{x):

|2]3]4]5]
2

2[3]2]

Exercise 3.24  Suppose hamburger is packaged by machine into patties but due to
the variable fat content the actual weight of a patty can be described by a normal
random variable N (j, (0.2)?) where y is the desired mean weight of a patty which
can be typed into the controls of the packaging machine. We package 50 patties
into a carton but if the net weight of the carton is less than 200 ounces the carton
must be rejected. What weight p should we type into the controls to ensure that

e

only 1 carton in 100 is rejected?

Exercise 3.25 Show that the acceptance-rejection method works by using Bayes’
formula:

Fx() = P(Y <tlU < g(Y)) = P(Y;Ut;gUgfyi()Y))
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However,

o0 1
PY < U < g(¥)) = / / Xo<tuzatn) () fy (4)dudy
—o0 JO

= / | g(y) fy (v)dy

—0

using Corollary 3.16. Calculate P(U < ¢(Y)) in a similar way. Now identify the
density of Fx.

Exercise 3.26  Show that the run length of the Shewhart  procedure is geometric
and calculate the expected run length, both when the process is in-control and when
the process is out-of-control and the mean value of the process has changed to u;.

Exercise 3.27 The number of customers entering the Price Club on a given day
is a Poisson random variable with mean A = 2,000. The amount of money spent
by any customer is approximately normally distributed with a mean of 110 dollars
and a standard deviation of 20 dollars. Find the mean and standard deviation of
the amount of money that the store takes in on a given day.

Exercise 3.28  Stocking a remote oil drilling camp is impossible during the summer
months except by air. During the winter an ice road can be built but this requires a
convoy headed by a big plow to clear the snow followed by the heavy trucks (which
may or may not fall through the ice!). Past experience has shown that the fuel
consumed by the convoy varies from kilometer to kilometer depending on snow and
ice conditions but on average 28 liters is consumed per kilometer with a standard
deviation of 5 liters. Suppose the return trip is 600 kilometers. Obviously if more
fuel is carried less cargo can be hauled. On the other hand running out would be a
major embarrassment! How much fuel should be allocated at the start of the trip
to be 99.9% sure there is enough to make the return trip?

Exercise 3.29  We can generate normal random variables with the following version
of the rejection method.

(1) Generate a uniform random variable Uy on [0, 1].

(2) Set X1 - ﬁlIl(Ul).

(3) Next generate another independent uniform random variable Us on [0, 1].
If Uy < exp(—(X; — 1)%/2), accept X;. Otherwise reject X; and go back
to step (a).

(4) Generate a sign of plus or minus for X; with equal probability and output
X as X7 with the resulting sign.

a) Show that if X; is accepted, then its density corresponds to the density of the
absolute value of a standard normal random variable (with mean 0 and variance 1).
b) Show that X is a standard normal random variable.
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moment
generating
Discrete p.m.f. function mean variance
Distribution  p(z) B(t)
Bi . n Kk n—k t n
inomial < k) p*(1—p) (pe' +q) np npq
(n7p) k:0717' R q:lh—p
Poisson eN)“\,;T A=) A A
rate A
Geometric p(1 —p)F? p(fip)et le 1;2;;
0<p<l1
k=1,2,3,...
@+ k' -1 o o @
Pascal ( k ) p*(1 —p)F (1_11—3) ?q p_g
a>00<p<l1 g=1-p

k=0,1,...
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Continuous Distributions

moment
generating
Continuous  density function mean  variance
Distribution  f(z) o(t)
a N2
Uniform a—ib, a<xr<b % QQ_Q (b 1;)
over (a,b)
Exponential e ?® % % /\_12
A>0x>0
Normal in? o—(@—1)? /207 exp(ut + #) y o2
—00 < & < 00
; A —1 . —X\x AS
Gamma  pigy(Ae)* '™ g § %

A>0,0>0
x>0



Chapter 4

The Poisson Process

4.1 Introduction

We describe the structure of a simple point process oun the line. Consider a strictly
2o defined on a probability space
{Q,F,P}. The {TF}%. . represent the arrival times of certain events — say an
incoming signal to a network measured in seconds before or after some fixed time
which we take to be 0. We suppose that TOP <0< T1P . The sojourn times or

interarrival times relative to 0 are denoted:

increasing sequence of random variables {77}

TP —TP n>2
7Tr n=1
XP: 1
& —Téj n=40
TE, -TPn< -1

Except for n = 0 and n = 1, the X represents the interarrival time between the
n — 1" and the nt* arrivals. X/ represents the time since the last arrival before 0,
and X{ represents the time until the first arrival after time 0. If multiple arrivals

X sex) sexio x5 c— X5 —>
-
P P P
To 0 Ty Ts

Iig. 4.1 A trajectory of a simple point process

99
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may occur at the same {7T.F'}, we call this a multiple point process. We shall give a
description of these point processes under various dependence structures.

Throughout we shall assume that time is measured in seconds with
nanosecond precision; hence precise to nine decimal places. The opera-
tion of converting any time ¢ measured in seconds to nanoseconds and
rounding up to the next nanosecond is denoted by {. Square brackets
denote rounding up to the next integer but they sometimes remind us
when a measurement is in nanoseconds. Hence t seconds converts to
t = [nt] nanoseconds where 7 is the number of nanoseconds in a second.

We take the point of view that no simulation or real measurement is taken in
smaller units than nanoseconds so there are no continuous time processes. This will
not preclude us from making continuous approximations as we shall see.

4.2 Bernoulli Point Processes

In the time interval between [k — 1] and [k] nanoseconds we perform an independent
Bernoulli trial Ly, to decide the presence (with probability py) or absence (with
probability 1 — py) of an arrival by the end of that interval of time. Let {T5,}5% .
denote the arrival times generated. These times measured in seconds are denoted

{Tn}(:z,c:~oo'

Definition 4.1 For the point process of arrival times generated by independent
Bernoulli trials, define

Nt)=n—1iTp_y <t<Tp.

Also define < N(t) >= EN(t) = 20<k§[nt] pi. For each t, N(t) counts the number
of successes between time 0 and time ¢, and is called a discrete Bernoulli process
with compensator < N(¢) >. If py = p = A\/n for all k then N () is called a discrete
homogeneous Bernoulli process having rate A.

Example 4.2 Call acceptance

When a customer dials a telephone number a signaling network called SS7 must
decide if there is enough spare capacity to accept this new call and set up a route
across the network. This may mean searching for a route through a sequence of
switches right across the country. The telephone system has been designed so that
a customer has a low probability of getting the dreaded busy signal. This means
sufficient capacity has been installed to service the projected stochastic demand.
Let’s examine a simple model for determining this required capacity.

The first step is to model the incoming calls at an access switch. Thousands
of customers are wired to this switch and in a given nanosecond any one of those
customers may pick up the phone to start a call. Let the probability of this event be
p = A/n. Since the customers make their decision to place a call independently of
each other it is reasonable to assume that what happens in one nanosecond does not
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influence what happens in another nanosecond. Consequently in each nanosecond a
Bernoulli trial with probability of success p determines if a call arrives or not. This
means the incoming calls can be modelled as a Bernoulli point process N(t) with
rate A.

The telephone companies have done a thorough statistical analysis of the dis-
tribution G of the duration of telephone calls. The average duration of calls has
been estimated and the histogram of call durations has been plotted. In fact this
histogram has historically been well approximated by either a geometric or expo-
nential distribution. This is surprising and embarrassing because the both these
distributions are memoryless as seen in Propesitions 4.4 and 4.5 below. This means
that a conversation which has already lasted 10 minutes say, will (statistically) carry
on as if it just started.

The next step is to model the stochastic process ((¢) which represents the
number of calls in progress at time ¢ given calls arrive according to a Bernoulli
process with rate A and stay connected for a random duration having distribution
G and mean pg. Let Yy be the duration of the k** call. Hence,

N()
Q) =Y x{Vi >t-Ti}
k=1
where x{Yy >t — T} is the indicator random variable which takes the value 1 if
the k" call is still in progress at time ¢ and 0 otherwise.

The distribution of Q(¢) is of paramount importance for determining the desired
trunk capacity. The telephone company must put in place sufficient capacity K so
that P(Q(t) > K) is sufficiently small. In recent years the advent of moderms, faxes
and the internet have drastically altered the distribution of call durations. Some
researchers believe the distribution of G now has an infinite variance and there is
a wave of new research to analyze the impact on the perform of the telephone net-
work.

Bernoulli processes can occur in contexts.

Example 4.3 Control charts for attributes

Character recognition systems scan printed text letter by letter in order to convert
old books to an electronic format for archival purposes. Smudges on the page some-
times cause scanning errors. Let p be the probability a given letter is read in error.
We will assume 77 is 10000 letters (about 5 pages) and p = A/ so X represents the
mean number of errors pet ten thousand letters. Let N{x] represent the number of
errors after reading in the first z letters in a book. It is not unreasonable to assuine
an error in scanning one letter doesn’t affect the scanning of other letters (although
it might be argued that adjacent letters are affected). Consequently we can assume
N is a Bernoulli process with rate A.
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Proposition 4.4 For a homogeneous Bernoulli process

o The interarrival times {X,}°2, are i.i.d. with a geometric distribution
having parameter p.

e N(0)=0.

o N(t) has independent increments; that is {N(t2) — N(t1) = i} and
{N(s2) — N(s1) = j} are independent events if (ti,t2] and (si,sq] are
disjoint intervals.

o N(t) has stationary increments; that is

, a\ »

P(N(s+1) — N(s) = i) = P(N(t) = 1) = (“; 1) Pl - )
Proof: X, = [k] if the Bernoulli trials in time intervals {([i — 1], [i]]}*=! are failures
and the trial in time interval ([k — 1],[k]] is a success. Hence X; has a geometric

distribution. The independence of {X,,}22., and X; follows from the independence
of the Bernoulli trials. For example

P(X; = [11], X = [22])

— P(Ly=0,...,L0, 1 =0,L,, =1,
Leiy1=0,. ., Loy yaoy1 =0, Ly, 40, = 1)

— P(Ly=0,..., L0, 1 =0,L,, =1)
P(Lgy1=0, .., Lay4oy1=0,Lu; 40, = 1)

= P(X, = [11]) P(X; = [2)).

Moreover, P(X, = [z1], Xy = [z2]) = (1 — p)[=)=1p(1 — p)[#21=1p 50 it also follows
that X, is geometric. Next N(0) = 0 by definition. Moreover {N(t2) — N(t1) = i}
depends only on trials in time interval (£,%5] while {N(s2) — N(s1) = j} depends
only on the trials in time interval (31, 32]. Since these intervals are disjoint, the
corresponding trials are independent and so the increments are independent. Finally
N(s+1t) — N(s) is a binomial random variable since it is the number of successes
in nt trials. |
Proposition 4.4 gives an alternate means of generating the points of a homoge-
neous Bernoulli process. Construct an i.i.d. sequence of geometric random variables
with parameter p and use these to define 77 and the interarrival times {X,}>°,.
We recall that the geometric distribution has a memorylessness property:

Proposition 4.5
P(Ty >z +y|Th > z) = P(Ty > y)

Proof: Since P(T} > §j) = (1 — p)? the proof is obvious. |
The memorylessness property is particularly strange when one considers that
we have used the geometric distribution to model the duration of telephone calls!
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Another consequence of the memorylessness property is the following waiting
time paradox. At any time ¢ (including ¢ = 0), denote the forward recurrence time
or excess time at ¢ by

V(t) =Tnwyn —

If the mean interarrival time is 1/X seconds (or [/A] nanoseconds) then one might
expect that the mean excess time at ¢ is one half of this. On the other hand,

P(V(t) > [a) = P(Liyy =0, Ly py = 0) = (1— p)l*)

which reflects the fact that no matter what happened up to ¢ the excess at ¢, Y(t), is
a geometric random variable with mean (1/p] = [n/)\] nanoseconds or 1/X seconds.

To reconcile these two calculations it suffices to remark that the interarrival
period to which ¢ belongs, namely T'n ()41 — T, is the sum of Y (¢) and the age
at t defined by

Now,
PZ(t) > [2]) = P(L; =0, Ly_y = 0) = (1 - p){E1+D)

where [2] = 0,1,2,...; hence Z(t) + 1 is also a geometric random variable with
mean [1/p] = [n/A] nanoseconds or 1/A seconds. It follows that the mean of Z(¢) is
[n/A—1] nanoseconds or 1/A—1/n seconds. Hence half the mean of Ty )11 —T ) =
Z(t) + Y(t) is about 1/) seconds.

Xn
S
T, t T,
—— Z{) —> ¢ Y@)

Fig. 4.2 The age and excess time at ¢.

The fact is that by selecting the interarrival period containing a specific time we
have favored the selection of a longer interarrival period since longer periods have a
higher probability of containing a given time point. An arbitrary interarrival period
has a geometric distribution as shown in Proposition 4.4 but an interarrival period
chosen to contain a given time point is approximately twice as long. This is the
explanation of the waiting time paradox. This point will be considered again in
Chapter 6 on renewal theory.
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4.3 The Poisson Process

Throughout this section we shall assume that N is a homogeneons Bernoulli process
with rate A. This process is characterized by Proposition 4.4 but the Binomial
expression

P(N(t) =) = (W) (L - plmi-i

2

is rather hard to calculate. Our first step is to find an approximation for this
expression for large 1. Recall that p = \/n and assume ¢ is an integer number of
nanoseconds.

(%ﬂ ) p(1—p)i~

ntpt—1)---(nt —i+1) p

- (1 —p)"
5 (1_p)l( P)
Cogtpt -1 ot —i+1 1 i(ntp)’: 1_& K
ot oyt nt 1—=A/n ! 7t
At)?
~ ( ) exp(—At)

21

since in general (1 — a/N)" — exp(—a) as N — co. We conclude the distribution
of N(t) is approximately Poisson with a mean Af.

In Corollary 4.24 we will show much more. In fact we will show the homo-
geneous Bernoulli process N is approximated by a Poisson process with rate A.
For the moment however let’s just calculate probabilities with the above Poisson
approximation and neglect the error (which is order of 1/n).

Example 4.6  Consider a homogeneous Bernoulli process representing the arrival
of telephone calls at a wire center at a rate of A = 5 calls per second. For arguments
sake let’s calculate the probability three calls arrive in the first second and ten calls
arrive in the first four seconds. In order to calculate P(N(1) = 3 and N(4) = 10)
we first recognize that

P(N(1) =3 and N(4) = 10) = P(N(1) = 3, N(4) - N(1) = 7)
which by the property of independent increments is
P(N(1)=3)P(N4) - N(1)=17).

Next, by stationarity, P(N(4) — N(1) = 7) = P(N(3) = 7). Hence, using the
Poisson approximation of binomial random variables,

3 7
P(N(1) = 3 and N(4) = 10) ~ =52 ¢=1515",
| 3¢ T
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Fig. 4.3 Order statistics.

We now construct the continuous Poisson process mentioned above which with
high probability agrees with the Bernoulli process on each nanosecond. For the
moment we consider only the homogeneous case. We generalize the basic property
that the arrival times of the Bernoulli process occur independently and uniformly
across a given time period.

Definition 4.7 Let Wy, Wy, ..., W, be a sequence of independent, identically
distributed random variables with a continuous distribution. Then the k** smallest,
Wk, is called the k' order statistic.

W(x) does not have the same distribution as the W’s, as shown in Figure 4.3. For
instance, the largest or n'? order statistic Winy is certainly bigger than a typical
W. In fact

P(W,y <t)=P(W, <t,... W, <t)=Fy(t)
where Iy is the common distribution function of W's.

Definition 4.8 We construct a continuous Poisson process N7 () on 0 < ¢ < T by
first constructing a Poisson variable with mean AT called N¥(T'). Then, conditioned
on the event N¥'(T) = n, the distribution of the arrival times {T}7 : k =1,...,n}
is that of the order statistics of n i.i.d. uniform random variables on [0, T].

This means that given there are n arrivals in [0,77], the arrival times are uniformly
and independently distributed on [0, T]. 1t is easy to see (do Exercise 4.4) that the
joint density of {7 : k=1,...,n} is
nl
lepyTQP Tf(tl,tg,...,t,,,)zﬁon0§t1 <tg << t, <T. (41)

,,,,,

This construction immediately leads to the following characterization which is
the analogue of Proposition 4.4 for the Bernoulli process.

Proposition 4.9 A process N is a homogeneous Poisson process on [0,T] if
and only if

e NP(0)=0.

e NP(t) has independent increments; that is {NT(tz) — NT(t,) = i} and
{NF(s9) — NF(s1) = j} are independent events if (t1,t2] and (sy,sq] are
disjoint intervals.
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o NP has stationary Poisson increments; that is

oMt ()\t)i.

P(N"(s+1) = N"(s) =9) = P(N"(1) = i) = ]

Proof: Let N¥ be a continuous Poisson process. Since uniform random variables
are continuous there is no chance T} = 0 so N¥(0) = 0. Next, let At := ty — t;
and As := sg — s;. Conditioning on N¥(T) = n we see that i of the arrivals must
fall in the interval ({,t2] and this has probability (At/T)%; j must fall in (sy, s2]
and this has probability (As/T")7 and the rest must fall outside both intervals with
probability (T — At — As/T)"~=7. The points which fall in the prescribed intervals
may be chosen randomly from the n arrivals. Hence

P(N(ta) = NP(t1) =i, N"(s2) = NF(s1) = j)

>3 n! Aty As s T—At—As o\ (AT)"
:n;j T ) (g ) M
Aty As o 1 o= [\T(F-AL-as)n—isy
- (T) (_]T) (AT +i exp(—/\T)m n;j @ —Tz )
= (Aﬁt)z L?'S)i exp(—AT) exp(A(T — At — As))
= (/\ﬁt)i exp(—AAL) (/\?'S)j exp(—AAs).

It follows that N¥(ty) — NF(t1) and N¥(sy) — NP (s;) are independent Poisson
random variables with means A(t2 — ¢1) and A(se — s1) respectively.

The proof of the converse that a processes with independent Poisson increments
is a Poisson processes is delayed until Section 4.5.

|

If a number of independent Poisson processes with the same rate A on contiguous
disjoint intervals are stuck together to create a point process on one large interval
then by Proposition 4.9 this process has independent Poisson increments and must
therefore be a Poisson process. Similarly, the points of a Poisson process generated
on [0, 7] which fall in a subinterval [0, {] form a Poisson process on [0,].

Our definition of a Poisson process can be generalized to multidimensional
spaces. Given a continuous probability distribution on a region S in R? say, we
can first generate a Poisson random variable N and if N = n distribute n points in
an i.i.d fashion over the region S according to the given distribution. If the given
distribution is the uniform distribution this gives a homogeneous Poisson process
on the region S.

Definition 4.8 provides a means of testing if a point process is Poisson. Given
N(T) = n, test if the n arrival times are uniformly distributed on the interval [0, 7.
The best choice is probably a Kolmogorov-Smirnov test for the distribution function
F(s) =s/T for 0 < s <T. This test is described in Feller Volume 1T (1971).
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Example 4.10  Consider the superposition of two independent Poisson processes
Ny and N on [0,T]. These two processes may represent the arrivals of calls at
a telephone switch from two cities so I(t) := N{ (t) + NI'(t) represents the total
number of calls by time ¢ where 0 < ¢ < T. The distribution of I(T) is Poisson
since I(T) is the sum of N{'(T') and NJ'(T), which are independent Poisson random
variables. Next, given that I(T) = n, NF(T) and Nf'(T') take values i and j where
i+ 7 = n according to a multinomial distribution. Regardless of the values ¢ and
j, the points of the process NP given N{ (T) = i are independent and uniformly
distributed on [0, T]. The same is true of the points of N4. Consequently, given
I(T) = n, the points of the process I(t) are independent and uniformly distributed
on [0,7]. By definition this means I(t) is a Poisson process.

4.4 Applications of the Poisson Process

We have already seen that the distribution of the homogeneous Bernoulli process
N(#) is binomial and that this distribution may be approximated by a Poisson
distribution with parameter A. This approximation goes much further and we can
state the following result which follows from Theorem 4.22:

Theorem 4.11 A homogeneous Bernoulli process N(s) = N|ns] on [0,t] may be
coupled to a Poisson process N¥(s) = NF[ns] on [0,t] such that

P(N[k] # NT[k] for some k < [nt]) < %t

Since 7 is so large the above theorem implies the two processes NV and IV P agree on
the nanoseconds with very high probability over intervals of reasonable length.

Example 4.12 Call acceptance - (4.2) continued
As we have seen, when the possibility of a call arrival in any given instant (nanosec-
ond) is very small (\/n) and the arrivals are independent, then we have an ap-
proximate Bernoulli process with rate A. Theorem 4.11 implies that this Bernoulli
process is approximately a Poisson process with rate A. Hence it is not at all un-
reasonable to assume that the arrival stream of calls to a telephone exchange is
Poisson. Let us suppose that any call requires a certain service time which has a
general distribution G. Finally, for simplicity, we shall assume that every call is
immediately served; that is, there are an infinite number of servers. Such a queue
is called an M/G/oo queue.

Let the number of calls by time t be represented by a Poisson process N¥ (¢). Let
us calculate the moment generating function of Q(t), the number of calls in progress
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at time t. As in Example 4.2 let Y be the service period of the k% customer. Hence,

NP

Q)= > x{Vi>t-TF}

k=1

Next
ba(s) = B0 = ST B (e QOINT () =n) P(N"(#) =n).  (42)
n=0

Now from Definition 4.8, given N ¥ (¢) = n, the conditional distribution of the arrival
times {TF : k= 1,...,n} is that of the order statistics of n i.i.d. uniforms on [0, t];
say {Ug: k=1,...,n}; ie. T} = Uky = Urr) where R(k) is the rank of Uy. Let
Y, = Yru)- By Exercise 2.18 the sequence Y;* has the same distribution as the
sequence Yx. Hence,

E (20N (t) = n)=E (s TR x M =TEN NP (1) n) (4.3)

T
— FetTro x{Y>t=Us} __ H Fes Y >t=Ux}
k=1

since the service periods are independent of each other and of the arrival times. We
can now condition on Uy to get

t
Eesx{Yk* >t—Ug} _ / Eesx{yk* >t—u} ldu
t

u=0

_ / (1-Glt = w) + (1~ Glt —w)) 1

=0

=14(e"~1) /t (1- G(t—u))%du.

Using this and (4.3) we have

B (90N (t) = n) = [1 +(e* 1) /to(l - G(t - U))%dur :

Using this and the fact that P(N(t) = n) = exp(—At)(\)"/n! we get

Paw(s) =) el {At(l + (e* — 1)/ (1-G(t— U))%du}

n=0 n! u=0

= exp {)\t(es —1) /:_0(1 - G(s))%ds} .

This is the moment generating function of a Poisson random variable. Also
as t — oo we see that the moment generating function of Q(t) tends to
exp (Amg(e® — 1)) since j;)oo(l — G(s))ds = m¢ by Exercise 3.4. We conclude that
in the Jong run, the distribution of the number of calls in progress at a fixed time has
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a Poisson distribution with mean Amg. Calls arrive at a rate of \ per second and
each call requires m¢ seconds of work from the network on average hence p := Amg
is the mean amount of work arriving at the switch per second. p is called the load
on the system. Hence the mean of the distribution of the number of calls in progress
is equal to the load on the system. The telephone engineer can estimate A based
on the number of local subscribers and m¢ is known from past statistical studies.
It therefore suffices to put in sufficient trunking capacity K so that the probability
a Poisson variable with mean Amg exceeds K is as small as required.

In fact if K is the maximum number of calls that can be carried simultaneously
then the above model is inadequate. In reality we must study a truncated process
Qi (t) which is at capacity when Qg (¢) = K. A call which arrives when Qk () = K
receives a busy signal and is effectively rejected. We will study the distribution of
Qx (t) later. Also note that we have only considered the distribution of the number
of calls in progress at a fixed time ¢. In reality we would like a worst case analysis;
i.e. the probability that, over some period of time, the number of calls in progress
reaches K thereby causing calls to be dropped.

Example 4.13 ATM networks - (2.63) continued

Consider an ATM access switch which is connected to thousands of customers.
Under ATM, these customers transmit cells agynchronously so conflicts must be re-
solved by buffering simultaneous arrivals of cells. Different customers transmit cells
at different rates so, for instance, a video customer sends cells thousands of times
more frequently than a simple phone customer. Assume customer ¢ sends a cell
in a given nanosecond with probability p, = A;/n and hence generates a Bernoulli
process N;. By Theorem 4.11 this process is approximately Poisson with a mean
rate of A;/n cells per nanosecond. Since the sum of independent Poisson processes
is a Poisson process, it follows that the total number of cells arriving at the switch
from all the customers is approximately Poisson with a mean rate of . X;/n cells
per nanosecond or »_, A; cells per second. If we assume the link rate of the switch
is one cell per nanosecond, the mean arrival rate per nanosecond had better be less
than one or the switch will gradually be overwhelmed with buffered cells!

Example 4.14 Control charts for attributes - (4.3) continued

One must expect about one error per page during scanning. If the error rate exceeds
this an adjustment should be made. One way to control the quality of the scanner
is to verify the scan of five pages chosen at random in every book being scanned.
This gives a sequence of quality measurements which can be sequentially plotted
on & Shewhart quality control chart. If the process is in-control the distribution of
the number of errors in any five page segment should be approximately a Poisson
random variable with mean 5. One can plot the upper control line on this chart
80 that if the number of errors in the chosen five pages exceeds this control limit
an out-of-control alarm is sounded. The upper control line is fixed so one should
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expect a false alarm only once in 10000 measurements or once in 10000 books. The
probability a Poisson random variable with mean 5 exceeds 15 is exactly 0.000069
so we should use 15 as the upper control line on the Shewhart chart.

4.5 A Further Characterization

In the previous section we have seen that a homogeneous Bernoulli process hav-
ing rate A has geometric interarrival times having parameter p = A/n. The k"
interarrival time X, satisfies

P(Xp>t)=PT, >1) =1~ %)[ﬁﬂ

which is approximately exp(—At) since 7 is large. It follows that the interarrival
times of the Bernoulli process are approximately exponential with parameter .
Since the Poisson process N agrees with the Bernoulli process with high probability
it follows that the interarrival times of the Poisson process should have a exponential
distribution.

Suppose we construct a simple point process by specifying the interarrival times
to be independent exponential random variables. Not surprisingly this produces a
Poisson process.

Theorem 4.15 A simple point process M(t) having independent, exponential in-
terarrival times must be a Poisson process!

Proof: Note that the time T} until the n** arrival of this process is the sum
of n independent interarrival times each having an exponential distribution. The
moment generating function of an exponential random variable with mean 1/X is
A/(X —t) so the moment generating function of the sum is A /(A — ¢)". It follows
that the sum has a Gamma distribution with density

A

RS

which is called is the Erlang-n density. Hence ¥ has the Erlang-n distribution. If
n—1

we take the derivative in x of 1 — Y7 exp(~Az)(Az)*/k! we get

A i: exp(—Az)(Ax)* /Kt — X z_: exp(—Az)(Az)F~D /(K — 1)
; =1

It follows that P(TM < z) = 1 — Zz;é exp(—Az)(Az)*/k! which isn’t really a
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surprise if M is indeed a Poisson process since then

P(T; > ) = P(N"(z) <n) = ni: exp( ) (A]:)k
k=0 :

Since the n‘* arrival time 7 has the Erlang-n distribution,

PM(T)=n)=PTM <T<TM))=P@M <T)- P(TM, <T)
AT™

nl

= exp(—AT)

Hence the number of arrivals in the time interval [0, 7] has a Poisson distribution
with parameter AT just like N¥(T). To prove M(t) really is a Poisson process
we must now check that, given there are n arrivals in [0,7], the distribution of
these arrival times is that of the order statistics of n independent uniform random
variables on [0, 7.

For times t1 < tg... <t, <T,

P(TM <6, T <ty Ty < 1| M(T) = )
_ P <0, T <ty T < tn, Tpy > 1)
= P(M(T) =) '

Evaluating the numerator of the above we get

/ / / X{{El§t1’$1+$2Stg,...,m1+..~+mn§tna
x>0 2,20 J2,1120

Top1 > T — (214 ... +22)} - e Mdzy e\ dr,e " de,

:e_’\T)\”’/ / X{l‘lgtl,...,$1+...+$nStn}dl’l...dl'n
@1 >0 Ty >0
after we integrate out z,4; and use the fact that
/ tpg1 >T ~(z1+ ...+ xn)}e*’\z"“dxmrl = e AT (21t dwn))
Tn+120

Now do a change of variable by letting

Y =2, Y2 =21+ 2a,. .Y =21 + T2+ ... + Tn.
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Fig. 4.4 A typical trajectory.

Since the Jacobian of this transformation is 1 the above integral is equal to

e 2T \n / / e
0<y1 <T Jy1 <ya <T

/ x{y1 <t1,y2 <toyoo o yn < toldyrdys .. dy,
Yn—1SYn <T

Ll
nt Jocy, <1 Jo<y. <1
dyy dys dyn

. <t ys <toyo oY Slpf——— ... —
/()SyngTX{yl_ 1,Y2 S 1 Yn n} T T T

using symmetry to break up the above integral into n! possible orderings of y1, . . . Y-
This last integral is precisely,
Sy (AT)™
e AT(—n,—)P(Uu) <t1,U) <ta,. o, Uy S t)

where Uy, ... U, are the order statistics of n independent random variables uni-
formly distributed on [0, 7]. Evaluating (4.4) we now get that

PTM <, T <ts,...Tn < t,|M(T) = n)
=PUny <t1,Ug) <tg,..., Uy < tn)

and this is what we wanted to show. | |

Example 4.16 Call acceptance - {4.12) continued

We have seen that the number of calls in progress at a telephone switch may be
described as a M|G|oo queue. The arrivals at an M|G|oo queue form a Poisson
process and from the above we know that the interarrival times are exponentially
distributed. The M in the acronym AM|G|oo reminds us that the exponential dis-
tribution is memoryless.

Continuation of the proof of Theorem 4.11: Suppose that {I(t): 0 <t < T}is
a point process, as in Figure 4.4 having stationary independent Poisson increments
such that I(0) = 0. It follows that I(t) is a Poisson process! For any increment
(t,5] denote AI™*l := I(s) — I(t). Clearly I(T) is Poisson. Let the arrival times
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of I be denoted 17, T4,T4,... so for any disjoint time intervals {(tx,t, + hy| : ty <
ty < - <ty < T},

P(TE € (tiyti + ) k=1,2,...,n|I(T) = n)
P(I(t;) = 0, ATttvbvt] — 1 Apththatel — o AJ( R T] 2 )
P(I(T) =n)
e—At1€~,\h1)\hlef,\(trtl—hl) o= M )\hnef)\(Tftn—hn)
exp(—AT)(=AT)"/n!

=gtz ln (4.5)

This is precisely the probability that n i.i.d. uniform random variables on [0, T
fall into the subintervals {(tx,tx + hi] 1 t1 < t2 < -+ < t, < T} of [0,T]. We
conclude that given I{T) = n, the arrival times are the order statistics of i.i.d.
uniform random variables on [0, T]. This completes the characterization of a Poisson
process since I(T") is a Poisson random variable. We conclude I is a Poisson process
ou [0,7].

|

Theorem 4.17 Suppose M(t) is a simple continuous time point process with
stationary, independent increments such that M(0) = 0. Further suppose

lim P(M(h)=1)

TR =X and P(M(h) > 1) = o(h)

where X is a constant. Then M is a Poisson process with rate .

Proof: Represent M[s] := Zlezl(M[k] — Mk — 1]) where each time interval has
length 1/7. By the above we can now couple M[s] to a Poisson process N¥[s] with
rate A. At any time ¢, the two processes differ with a probability which tends to 0
as 1 — o0o. Since 7 is arbitrarily large it follows that M (t) agrees perfectly with a
Poisson process with rate A. m

4.6 The Poisson Approximation

The term Poisson is derived from the approximation of the binomial distribution
by a Poisson distribution. We shall give a more general approximation which will
be helpful even for nonhomogeneous Bernoulli processes. To this end we introduce
a coupling.

Let f and g be two probability mass functions.

Definition 4.18 The total variation between the p.m.f.s f and g is

17 = gll = 3" 1f(@) - g(a)]
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Proposition 4.19 If X and Y are two random variables defined on the same
probability space having probability mass functions f and g respectively, then

IIf ~gll <2P(X #Y).
Proof: Using the fact that
PX=2)=P(X =2zY #2)+P(X=2Y =2)
and
PY=2)=P(X #2Y=2)+P(X=2Y=2)
we have

N IP(X =2)=P(Y =2)| =) |P(X =2,Y #2) - P(X #2,Y = 2)|

< ZP(X:z7Y7éz)+ZP(X7éz,Y:z)
:2;()(7&1/). Z

]
The following proposition shows that X and Y may be judiciously coupled to-
gether so that the total variation is given by 2P(X #Y').

Proposition 4.20 There exist two discrete random variables X and Y defined
on the same probability space {2, F, P} having marginal probability mass functions
J/ and g respectively, such that

f —gll
2

=P(X#Y).
We say X and Y are coupled together.

Proof: Let ¢ = > min{f(z),g(x)} and define a probability mass function

min{ f(z), (@)}

C

ofr) =

¢ measures the mass f and ¢ have in common (if ¢ = 0 let ¢(z) = 0). Moreover
define the probability mass function

(f(z) — min{f(z), g(z)})
1—¢ '

u(z) =
Similarly define the probability mass function

_ (g(z) — min{f(z), g(z)})
v(r) = e :
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Note that the support of u (which is {x : w(xz) > 0}) and the support of v ({z :
v(z) > 0}) are disjoint. Note, moreover, that min{a,b} = (a+b—|a—b|)/2 for any
a,bso

—Z 21f() ()l)
—1— > 1 f(x) = g(x)]

2
f—gll
—

—~1—

Now construct four independent random variables, L, U, V and C on the same
product probability space {€, F, P}, such that L is a Bernoulli random variable
with P(L = 1) = cand U, V and C have probability mass functions u(z), v(x) and
cz) respectively. Now let us define X = L-C+(1-L)-Uand Y = L-C+(1-L)-V. It
is easy to check that X and Y have probability mass functions f and g respectively.
For instance,

PX=zx)=PX=z,L=0+PX=zL=1)
=PU=z,L=0))+PC=zL=1)
= (1= cJu(z) +c- c(z)
= fz) — min{f(z), g(z)} + min{f(z), g(x)}
= f(=).

Moreover

If —gll

P(X#Y)=P(L=0X#Y)=1 c= "'

where we used the fact that U and V are never equal since their probability mass
functions have disjoint support. This follows by simply observing that if f(z) < g(x)
then u(z) = 0 and v(z) > 0 while if f(z) > g(z) then v(z) = 0 and u(z) >0. m

Definition 4.21 Let Y : k =1,2,3,... be a sequence of independent Poisson ran-
dom variables such that Y has mean py. For any time ¢, let N¥(t) := L" 1 Y: bea
discrete (nonhomogeneous) Poisson process with intensity < N (t) >:= ch"t]l Pk-
Theorem 4.22 A (nonhomogeneous) Bernoulli process N(t) may be coupled to
a discrete (nonhomogeneous) Poisson process NT (t) such that

P(N(s) # NP (s) for some s < t) < Z pa.

0<k<[nt]

Proof: Using Proposition 4.20 construct a probability space having an independent
sequence of coupled bivariate random variables X, Yy, for every time interval ([k —
1], [#]], such that X} has the same distribution as Lj; that is a Bernoulli random
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variable with P(L; = 1) = py and Y} has a Poisson distribution with mean ps.
Since

{ Z Xy # Z Y}, for some 0 < § < ¢} C Uo<k<ing { Xk # Yi}
0<k<3 0<k<3d

we have
P(N(s) # N¥(s) for some § < 1) < P(Upck<[py{ Xk # Y&})
< ) PXy#Yi)

0<k<nt]

where we have used the subadditivity of the probability measure. By Proposition
4.20

2NPXy =z) — P(Yy = )

P(Xy #Yi) = 5
= %(I(l — pr) — exp(—pr)| + [P — Prexp(—pi))|
+|1 — exp(—px) — pr exp(—px)|)
= pr(1 — exp(—px))
< p.

In the above we have used the fact that exp(—px) — (1 —px) > 0 which follows since

p2/2! — p3 /3t + p*/al — pP /5l + -
> p?/2t— pP /24 pt/al —pP /At -
=(1—p)(p*/2t +p*/Al+--) > 0.

The result follows. [

Notice that Theorem 4.22 is a statement about distributions. We start with a
Bernoulli process N|[s] but we actually construct another Bernoulli process 251:1 Xk
having the same distribution as N[s]. A discrete Poisson process N¥[s] is con-
structed to be close to this new Bernoulli process in a pathwise sense; that is as
random variables. It follows that {ZE:]Zl Xp;0<[s] <T}and {NP[s];0< [s] < T}
are also close in a distributional sense. Consequently {N[s];0 < [s] < T} is close
to {NF[s];0 < [s] < T} in a distributional sense but not as sequences of random
variables. The statement of Theorem 4.22 is therefore a bit sloppy because we have
confounded N and its copy.

Suppose we had a discrete point process M[s] which might allow multiple ar-
rivals in one nanosecond. Suppose nevertheless that the nanosecond increments are
independent. The above Poisson coupling would still be valid if P(M[k}]—M[k—1] =
1) = pr and P(M[k] — Mk — 1] > 2) = o(px) where o(z)/x — 0 as z — 0. It
suffices to define X = M[k] — M|k — 1] while Y}, is as above. Let the p.m.f. of X}
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be fr and let the Poisson p.m.f. of Y} be g. Remark that

PMHOE
< (e — (1 pr —olp)) + (e — pre™™) + (o(pr) +1 — pr — e77)
= pr(1 — e77*) +o(p) < pi +0(p).
We can now couple N[s] := ZLS]ZI Y: to M|[s| by making copies of N¥ and M

which are close:

P(M([s] # N"[s] for some [s] < [pt]) < > (b} + olp).
0< k<[]

If the process M is homogeneous the above estimate is equal to
Nt/n+ Mo(A/n)/(A/n) — 0 as n — oo.

Theorem 4.23 If N(t) is a (nonhomogeneous) Bernoulli process then

S IPING) =) expl— < N1 ») U <o 3 g

0<k<[nt]

Proof: Recall that a sum of independent Poisson variables is Poisson (see Example
3.23). Hence N (t) is Poisson with mean < N(t) > and

i PN = 2) - exp(— < V(1) ») =2 T,

P( Y Xpe=a)-P( Y Yi=2z)

:0 0<k<[nt] 0<k< [nt]
2P( Z Xy # Z Yi:) by Proposition 4.19
0<k<nt] 0<k<[nt)

<2 Z p2 by Theorem 4.22.
0<k<[nt]

Mg

IN

The result follows. [ |
Proof of Theorem 4.11: We can represent N as the sum of its nanosecond
increments; that is

(s [s]
Plsl =Y (NPlk] - NPk — 1)) = > Y&
k=1 k=1

where Y,k = 1,... is a sequence of independent Poisson random variables with

mean p = A/n. Using Theorem 4.22 we may construct sequences {(Lg,Y%)}; W]
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such that the Bernoulli process Ns] := [S] 1 L and the discrete Poisson process

N[s] := Zk:l Y} are closely coupled together. In fact

P(N(s) # NF(s) for some s < t) < Z <é> :)\—QE.

AN\ A%

0<k<[tn)

We conclude that the probability mass function of the Bernoulli process is ap-
proximately Poisson and the order of the error is 1/5; that is, extremely small.
]

Corollary 4.25 If N(t) is a homogeneous Bernoulli process with rate X and if
Ty, is the time of the m*" arrival measured in seconds, then

|P(T < 1) — (1 - mzlexp (a2 ) < 2% 22t

$
z=0 n

Proof: Since {1, <t} = {N({) > m} the result follows easily from Corollary 4.24.

|

Recall that the continuous distribution 1 -3 7 " exp(—At)(At)* /2! is called the
Erlang-m distribution.

Example 4.26  Let N(t) represent a Bernoulli process and let N represent the
approximating Poisson process. Suppose the arrival of an event at time ¢ from the
Poisson process implies a cost C. Assume that there is a constant interest rate a
so that the present value of C' dollars spent at time ¢ is only Cexp(—at) at time 0.
The present value of future costs up to time 7' is represented by an integral.

[nT]

/C’exp —at)dNP(t) /Cexp —at)dN(t ZCexp —ak/n)Ly,

where in every time interval ([k — 1], [k]], we perform an independent Bernoulli
trial Ly, to decide the presence (with probability A/n) or absence (with probability
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1 — A/n) of an arrival by the end of that unit of time. The expected future cost is
then

[nT]

]:/ Cexp(—at)dNF(t) :l ZC’exp ak/n / Cexp(—at)Adt.

We conclude the future expected cost to time T for the stream of Poisson arrivals
is fOT C exp(—at)Adt. Similarly, using the independence of the Bernoulli trials, the
variance of the future cost for the Bernoulli process is

[(nT7] Al —

Z C? exp(—2ak/n) ——=

/ C? exp(—2at)\dt.
k=1

Again, passing to the limit, we conclude

T T
Var [/0 Oexp(ﬂat)dNP(t)} :/0 C* exp(—2at)Adt.

The above is a typical stochastic integral with respect to a point process. The
calculation may also be generalized to stochastic integrands. Suppose for instance
that arrivals wait at a M/M /oo queue of size Q(t), at time ¢, and the cost of an
arrival at time ¢ is given by eQ(¢7); that is ¢ dollars times the number of customers
already waiting. The future cost to time T associated with arrivals of the Poisson
process N is

/0 cQ(t™) exp(—at)dNF (1) ZQ ~ 1)/n)exp(—ak/n) Ly

Again using independence the expected future cost is

[(nT]

T - , A
E {/0 c@Q(t™) exp(—at)dN } ZEQ —1)/mn) exp( ak/n);

— /0 cEQ(t7) exp{—at)Adt.

The expected number of customers in an M/M /oo queue may be calculated using
Example 4.12.

4.7 Nonhomogeneous Poisson Processes

Let A(t) be a nonnegative, piecewise continuous function on [0, 7] and let

A(t) = /t A(s)ds < oo.

§=0
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Definition 4.27 For a Poisson process N¥ having arrival rate 1, define
NMt) = N(A(®))
to be a nonhomogeneous Poisson process with intensity function A(t).

Suppose some individual has a faulty watch which records ¢ seconds when in fact
A(t) seconds have passed, as in Figure 4.5. Suppose now he watches a homogeneous
Poisson process having rate 1 for ¢ seconds of time according to his watch. In fact
A(t) seconds will have passed and so he will have seen N(A(¢)) arrivals. Hence the
process N2 (t) is simply a homogeneous Poisson process as seen by someone with a
defective watch. We may derive the properties of this process.

Afs)

:
¢ //

Fig. 4.5 Time measured with a broken watch.

Proposition 4.28 For a nonhomogeneous Poisson process

e N*0)=0.

o NA(t) has independent increments. _

o P(NMs+1t) = NA(s) = i) = e~ (As+D)=A(s) Al —As))'
1!

Proof: These properties follow immediately from those of homogeneous Poisson
processes. We shall do one calculation.

P(N(t) =14) = P(N(A(®))

= exp(—A(t))

i)
(A@)

i!
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The nonhomogeneous Poisson process is a more realistic description of an arrival
process particularly over a long period of time. If, for instance, one wished to
describe the arrival stream of visitors to a bank it is clear the intensity of arrivals
is higher around noon than at two p.m.

Proposition 4.29  Conditioned on the event {N*(t) = n}, the distribution of the
arrival times {T . k = 1,...,n} is that of the order statistics of n i.i.d. random
variables on [0,t], having distribution F(s) = A(s)/A(t) for 0 < s < 1.

Proof: Since the nonhomogeneous Poisson process is simply a homogeneous Poisson
process looked at with a broken watch, we know the conditional arrival times are
really the order statistics of n independent variables {Uy : k = 1,...,n} uniformly
distributed on [0, A(f)]. When viewed with the broken watch, these times are still
independent but are transformed to Y, = A"Y(Uy) : k=1,...,n. Forany 0 < s <t
the distribution of the times Y} is given by

P(Y) < s) = P(A"}U) < )
= P(Ui, < A(s))
= A(s)/A(2).

Hence the arrivals of N are simply the times Y, arranged in increasing order and
the result follows. |
Consider a nonhomogeneous Poisson process rounded up to the next nanosecond.
Only count one arrival if two or more arrivals are rounded up to the same nanosec-
ond. The resulting process is a nonhomogeneous Bernoulli process. This follows by
the memorylessness property of the Poisson process as before. In fact the proba-
bility there is no arrival in the £** nanosecond is 1 — p = exp(—(A(t) — A(t — 1/n))
which to first order is exp(—A(t)/n). Consequently, to first order, the probability
p of an arrival is A(t)/n. Hence, to first order, this is the kind of nonhomogeneous
Bernoulli process discussed in Section 1 of this chapter. We see, moreover, the ap-
proximation Theorem 4.23 is simply a precise statement of the approximation of a
nonhomogeneous Bernoulli process by a nonhomogeneous Poisson process.
Proposition 4.29 provides some insight into the problem of testing if a point
process is a nonhomogeneous Poisson process. Suppose we have ¢ independent
replications {N;,4 = 1,..., ¢} of the point process on [0, T], as in Figure 4.6. First we
must test if the variables {N;(T),s =1,...,q} are i.i.d. Poisson random variables.
A chi-squared test might be easiest. Next, as we have seen, the nonhomogeneous
Poisson process is simply a homogeneous Poisson process observed by someone
with a broken watch. Hence this class of processes is invariant under monotonic
transformations of the time axis (since this amounts to swapping broken watches).
Consequently the exact arrival times of these replications provide no information
about the Poisson nature of the process. However the relative rankings of the
points do since the ranking of the arrival times among themselves is invariant under
monotonic transformations. We conclude from Proposition 4.29 that we should test
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T T
1 L - n(1)=
2 —= - S
3 - — ==
) - - - n(l)=3

Fig. 4.6 Only the relative ranks of arrival times are invariant.

if the arrival times of all the replications are identically distributed but the above
argument shows this test should be based only on the ranks of the arrival times. Such
nonparametric tests exist and the Cramer-Von Mises g-sample statistics are a good
choice. Competing models are often also invariant under monotonic transformations
of the time axis. A cluster process in which arrival times tend to cluster together
will still have this property when regarded with a broken watch. Such models will
consequently be easily distinguished by the Cramer-Von Mises g-sample statistics
(see Chouinard and McDonald (1985)).

Proposition 4.29 is useful for simulating nonhomogeneous Bernoulli processes. It
is clearly impossible to simulate the 7t independent Bernoulli random variables, each
having probability of success p; = A(t)/n, which make up N(s): 0 < s < ¢. Instead
we generate a Poisson random variable N(¢) and then if N*(t) = n, generate n
independent random variables having distribution F(s) = A(s)/A(t) for 0 < s < ¢.
By Proposition 4.29 the points generated, viewed in increasing order, give a point
process T} which is Poisson. The corresponding Bernoulli process is then obtained
by rounding these arrival times up to the next nanosecond and ignoring multiple
arrivals in the same nanosecond. This Bernoulli process is, to first order, the one
desired.
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4.8 Exercises

Exercise 4.1  Let N(t) be a Bernoulli point process with the probability of an
arrival in any nanosecond being p = A/n. Let L be 1 if there is an arrival between
nanoseconds [k — 1] and [k] and 0 otherwise. Suppose we observe

L 3=0L 9=1L_1=0Ly=0IL=11L,=0Ls=1.

a) Give the values of N[f}, Z[t],Y[f] for € {-3,-2,-1,0,1,2,3}.
b) Give the values of 7, X, for n € {0, 1,2}.

Exercise 4.2  Let {N,(¢t):i=1,...,d} be independent Bernoulli processes where
N; has mean arrival rate A;.
Calculate the probability that N7 has the first arrival of all.

Exercise 4.3 If {W1, W, ..., W, } are i.i.d. with common density fi, give the
density of the k** order statistic Wiy

Exercise 4.4 Prove (4.1).
Exercise 4.5 If N¥ is a Poisson process with rate A calculate E[NT(¢)- NF (t+u)].

Exercise 4.6 Model the number of calls to a telephone exchange by a Poisson
process having an intensity of 100 calls per hour.

a) In the first ten minutes what is the probability of 2 or more calls?

b) What is the probability there were exactly 2 calls in the first ten minutes and
exactly 4 calls in the first twenty minutes?

c) Calculate the distribution of the time until two calls arrive.

Exercise 4.7  Suppose the stream of customers arriving in a store may be described
by a Poisson process with a rate of 15 customers per hour.

a) Calculate the probability that there are less than 2 customers in the first 20
minutes of the day, but more than 3 customers in the first 30 minutes.

b) Given there were less than 2 customers in the first 20 minutes, what is the
expected number of customers within the first hour?

Exercise 4.8 A resistor in an integrated circuit for a compact disk player has
a resistance which may be represented by 10 + R micro-ohms, where R is the
random exponential error in building the resistor (resistors having resistances of
less than 10 micro-ohms are discarded). Assume the mean error is 0.1 micro-ohms.
Unfortunately this error will introduce random digital errors in the sound track
(resulting in a tiny clicking sound) which occur according to a Poisson process at
rate 0.002 x R per second.

a) Calculate the distribution of a Poisson variable with parameter A, which itself is
random with exponential distribution of mean 1/c.

b) What is the probability one hour of play will be recorded without error?
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Exercise 4.9  Suppose blocks of customers arrive according to a Poisson stream
of rate A. The number of customers in a block is random and the probability of &
customers is f(k). Customers join a queue with a single server and general service
distribution G. Let M (¢) denote the number of customers that have arrived by time
t.

a) What is E[M (t)]?

b) Is M(#) Poisson distributed?

Exercise 4.10  Suppose that cars enter a one-way toll highway at mile 0 at a Poisson
rate A\. Each car independently chooses a speed according to a common distribution
(. Assuming cars of higher speeds can pass (without changing speed) derive the
distribution of the number of cars in the interval between mile A and mile B at
time ¢. Derive the steady state distribution by letting ¢ — oc.

Exercise 4.11 Let E4, E-, ..., E, be independent, exponential random variables
with means 1/A1,1/Az,...,1/\,. Show that
)\ . n
P(E; =min{E;;i=1,2,...,n},E; > t) = —=n>— exp(ftZ)\i).

Zi:l )\i i=1
Exercise 4.12  Let Ny(t), Na(t),..., N,(t) denote n independent Poisson streams
with rates A1, Ag, ..., Ap. Show that Ny () + No(t) +-- -+ Ny (t) is a Poisson stream
with rate Y 7" | ;. Using Exercise 4.11 show that the probability the first event of
the combined process comes from Nj(t) is A1/ >, A; independent of the time of
the event.

Exercise 4.13  Suppose calls arrive at the 911 emergency desk at a mean rate of
10 per hour day or night.

a) Explain why it is appropriate to describe the process of call arrivals as a Bernoulli
process that can be approximated by a Poisson process. When would this descrip-
tion be inappropriate?

b) What is the probability 12 calls arrive between lam and 2am.

¢) What is the probability 12 calls arrive between lam and 2am and 16 calls arrive
between lam and 3am.

d) Given that 12 calls arrived between lam and 2am, what is the probability that
no calls arrived between lam and 1:15am.

e} Each emergency call ties up one operator. The duration of calls is well described
by a Weibull distribution with a mean of 6.2 minutes. At precisely lam, what is
the probability that 3 operators are busy?

f) How many operators should be on duty to ensure that all calls ongoing at lam
are handled immediately with a probability exeeding 99%.

g) Actually we want to be 99% sure that all calls in a 24 hour period are handled
immediately. Should the number of operators on duty be the same as in f)?

Exercise 4.14 a) Model the number of calls to a telephone exchange by a Poisson
process having an intensity of 100 calls per hour. Suppose that every 10** call is
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analyzed for statistical purposes. How many calls should we expect to analyze in
an 8-hour period?

b) What is the distribution of the time interval between calls which must be ana-
lyzed?

¢) Is the stream of calls that must be analyzed a Poisson process?

Exercise 4.15  For a Poisson process N, show that for u < ¢

P(NP(u) = k|NP(t) =n) = <Z> (%)k (1 _ %)H, k=0,1,....n.

Exercise 4.16  Let 51,55, ... denote the successive interarrival times of a nonho-
mogeneous Poisson process having intensity A(t).

a) Are the S; independent?

b) Are the S; identically distributed?

¢) Find the distribution of ;.

d) Find the distribution of 5.

Exercise 4.17  a) Customers arrive at the museum according to an unknown point
process. For security purposes the time of arrival of each visitor is recorded at the
front desk as is the time of departure of a visitor. No names are taken of course
so it is not possible to connect the departure time with the corresponding arrival
time. The museum director wants to have some statistics on the distribution of
time spent by each visitor to the museum. Show that the average departure time
minus the average arrival time is a good estimate of the mean viewing time.
b) Now suppose visitors arrive at the museum according to a nonhomogeneous
Poisson process with intensity A(t) and suppose that the distribution of the viewing
time is . If there n arrivals in total (on days with intensity A) then the distribution
of these arrivals is the order statistics of n 1.i.d. random variables T} having density
A(#)/A(T) where A(T) is the cumulative intensity of one day. In addition we measure
the associated departure times Si = Ty + Vi where Vj is the associated viewing
time.

Of course we don’t really know the value of Sy that corresponds to T%. Never-
theless we can estimate ¢7(s), the generating function of the T%’s, and ¢7(s), the
generating function of the S’s, by

n

Bs) = 3 exp(sTk)/n and d(s) = 3 exp(sSk)/n

k=1 k=1

Since ¢5(s) = ¢7(s) v (s) we can therefore estimate ¢y (s), the generating function
of the viewing times. Show how to estimate the variance of F.

Exercise 4.18  Suppose that failures occur at a Poisson rate A = 2 per week. If
the number of defective items generated by each failure is independent and takes on

the values 1,2,3,4 with respective probabilities £, £, £, &, then what is the expected
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value and variance of the number of defective items produced during a fixed five
week period?

Exercise 4.19 A store opens at 8 in the morning. From 8 until 10, customers arrive
at a Poisson rate of six an hour. Between 10 and 12 they arrive at a Poisson rate
of ten an hour. From 12 to 2, the store closes for lunch. Finally, from 2 to 5, the
arrival rate drops linearly from ten per hour at 2 to four per hour at 5. Determine
the probability distribution of the number of customers that enter the store on a
given day.

Exercise 4.20 Telephone calls arrive at the call center at a rate of 10 calls per
second. The duration of calls seems to follow a Weibull distribution with a mean
of 2.3 minutes and a standard deviation of .6 minutes.

a) Calculate the probability 5 calls arrive in the first ten seconds after 1 pm but
30 calls arrive in the first 20 seconds after 1pm. (Just write down an expression -
don’t evaluate it).

b) What is the probability there are more than 1500 calls in progress at 1pm. (Just
write down an expression - don’t evaluate it).

¢) If we look at the point process of departures when calls end do we see a Poisson
process?

Exercise 4.21  Simulate the arrival process at the store described in Exercise 4.19.
Make a histogram of the daily customer arrivals for 500 days and compare this with
the theoretical distribution derived in Exercise 4.19.



Chapter 5

Markov Chains

5.1 Introduction

Consider a stochastic process {X,;n = 0,1,...} defined on a probability space
{1, F, P}, taking values in a countable set or state space S, which we will assume to
be a subset of the nonnegative integers {0, 1, ...} unless explicitly defined otherwise.
If X, = X, (w) = i we say the process is in state ¢ at time n.

Fig. 5.1 Transitions from state i to state j have probability K;;.

Definition 5.1 We say the process X,, is a homogeneous Markov chain defined
on {Q,F, P}, if for all n > 0 and for any state j and any sequencc of preceding
states {ig,%1,--.,%n-1,1}, We have

P(Xpi1 =1 Xn =4, Xn1 =ip_1,...,Xp =10) = K.

127
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K is called the probability transition kernel of the Markov chain. We say the initial
distribution is a if P(Xo = 1) = «(i) and we sometimes denote P by Py. If a(ip) =1
then denote P by P;,. Similarly, if the initial distribution is o or if a(ig) = 1 we
denote the associated expectations by E, or E;, respectively.

Intuitively the above conditions mean that knowing the chain is in state ¢ at time
n summarizes the entire past up to time n; that is the conditional probability the
chain jumps next to state j, given the chain is in state ¢ at time n, does not depend
on Xp_1,...,Xo. Moreover, the distribution of this jump is time independent as it
does not depend on n. Indeed this conditional probability is given by the probability
transition kernel K;;. Clearly the kernel K is represented by a nonnegative matrix

Koo Koy Koz -+ Koj -+
Kig Kyy Kyg -0 Kyj -
Koo Koy Ko -+ Kaj -

Kio Kip Kig -+ Kyj -+

A homogeneous Markov chain satisfies the Markov property
P Xy =31Xn=1,..., X0 =1) = P(Xpt1 = j|X,, = 1) = Kj;.
Conditioning on the past, up to jump n,

P(X’VH‘l :ja Xﬂ = Z.aanl - in*la ces 7XO = ZO)
e K’L]P(X'n = i,Xn—l = in_17. o ,XO = ZO)

so summing over all possible values of io,41,...,4,—1 we have
P(X,41 = j, X0 =1) = Kj; P(X,, = 1);
that is,
P(X, 11 = j|1X, =1) = K.
Since this doesn’t depend on n we conclude

P(Xny1=71Xn =4, Xp 1 =tin-1,...,Xo =10)
= P(Xn+1 = j| X, = 1)
= Ki; = P(X, = j|Xo = 9).

Example 5.2 Bursty ATM traffic

Until now we have considered sources where cells arrive independently with prob-
ability p during each time interval. This is somewhat naive. Typically, a source i
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alternates between silent periods, when no cells are emitted, and bursts, when cells
are generated at regularly spaced time intervals at a peak rate of R; cells per second.
If the output rate is L cells per second we may define a time slot of 1/L seconds.
Hence a burst on source ¢ may be viewed as a sequence of cells arriving every L/R;
time slots. If Zf\il R; < L it is clear that N sources may be multiplexed together
provided a buffer can temporarily queue cells that arrive in the same time slot. A
small delay results which is called a jitter and the maximum cell delay variation
should not be large.

/\/\/\
\/\/\/

Fig. 5.2 A chain representing idle and peak transmission.

A bursty traffic source ¢ such as digitized voice transmissions may in general be
described as an n-state Markov chain. Such sources are called Markov modulated
sources. A two state model has an idle state 0 and a burst state 1 as in Figure
5.2. In the idle state no cells are transmitted while in the burst state, cells are
transmitted with peak rate P. Every time slot a transition is made between these
two states according to the following transition kernel:

l—a a
K‘( b 1—b>'

Given the chain starts in the idle state, the probability it jumps to the burst
state in the nt" time slot is

KooKoo -+ Ko Kop1 = (1 — a)"’la.

Consequently, the sojourn in the idle state is a geometric random variable with
mean A = 1/a time slots. Similarly, the sojourn in the burst state is a geometric
random variable with mean B = 1/b time slots.

ATM takes advantage of the idle periods of bursty sources since it may be that
the sum of the peak source rates R; of N sources exceeds the link rate L. This
is called statistical multiplexing and it provides a substantial improvement in car-
rying capacity. On the other hand, when the output link capacity is exceeded the
buffer at the link will quickly overflow and cells will be lost. The task of the traffic
engineer is to manage the link to ensure these losses occur with very low probability.
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Example 5.3 ATM multiplexor - - (3.2) continued

Consider the ATM multiplexor which multiplexes 5 trunk lines carrying noisy ATM
traffic. As before we assume that in each time slot a trunk line presents a cell to
the multiplexor with probability 1/10. During the time slot the head of the line cell
in the queue is transmitted to the output link while arriving cells are added to the
queue. Q) represents the number of cells waiting in the queue at the end of each
time slot. We assume a cell arriving at an empty queue is quetled for one time slot.
Qy is a Markov chain on the state space § = {0,1,2,...}. In Figure 5.3, the queue
initially contains two cells.

|
;

7T
H+ S N |
1
M 6 5 4 3 2 1 0 01234586 (t]

Fig. 5.3 A typical arrival stream driving an (infinite) ATM queue.

Clearly the number of cells that may arrive at time [t] is a Binomial random
variable By with n = 5 and p = 1/10. Let b(k;5,0.1) := P(By = k). The
transition kernel is given by

b(4;5,0.1) ifi=0
Kij=b(j—i+1;501) i>0,-1<j—i<4
0 otherwise.

Now agsume the multiplexor buffer holds only 6 cells because a delay longer than
6 time slots is unacceptable. If more cells arrive than can be stored then these cells
are lost! Note that that the transfer of the head of the line cell to the output link
is complete at the end of the time slot so that buffer was unavailable for arrivals.
Consequently there are never more than 5 cells in the queue at the end of a time
slot.

In Figure 5.3 an overload occurs during the 4** time unit so in fact one cells is
lost. Let Qﬁ] represents the number of cells waiting in this finite buffer queue at the

end of each time slot. The state space for Qﬁ”] is {0,1,2,3,4,5} and the transition
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kernel is given by

b(j§5,0.1) ifi=0
KB ={b(j—i+1;501) ifi>0-1<j-i<4j<5
22:6—2' b(k;.5,0.1) if i > 0,7 = 5.

The matrix K defined above may be calculated using Mathematica as below.

L=6 (#We assume the buffer only holds 5 cellsx)

M=5 (*There are 5 input trunk lines*)

p=1/10 (*Each line delivers a cell with probability px)

binlx_] :=bin[x]=BinomiallM,x] p~(x) (1-p)~(M-x)

f[x_]:=binlx+1] (xf is the p.m.f. of the random walk+)
fint[x_]:=Whichl[x<-1, 0, x>L-2, 0, True, flx]]

hitmax[d_J:=Sum(f [d+k],{k,0,L}]

coord[i_,j_l:=Which[i < 1/2, fint[j-1],j==L-1,hitmax[j-i],True, fint[j-i]]
matrixcoord[i_,j_J:=coord[i-1,j-1]

KB=Array[matrixcoord, {L,L}] (*This is the matrix KBx*)
MatrixForm[KB]
0 1 2 3 4 5
0 59049 6561 729 81 9 1
100000 20000 10000 10000 20000 100000
1 58049 6561 729 81 9 1
100000 20000 10000 10000 20000 100000
2 0 59049 6561 729 81 46
100000 20000 10000 10000 100000
3 0 0 59049 6561 729 856
100000 20000 10000 100000

59049 6561 8146
4 0 0 0 100000 20000 100000

59049 40951
5 0 0 0 0 100000 100000

Since a chain takes values only in S we have

Y Ki=1, foralliesS.

jes
Recall that the probability measure o represents the random initial state of the
chain. It could, of course, be a delta function giving probability one to some initial
state, ig. Hence a(ip) = 1. A random initial state may result from the past
history of the process, or may result from an explicit randomization of the starting
point. Given a probability transition kernel K;; and an initial probability measure
a, we may construct the Markov chain X,, and the probability space {Q, F, P, }.
The construction is given in full in Section 5.10. We do note however that the
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probability of any given trajectory (4o, 1, .., 4, ) of the Markov chain is determined
by the kernel K and « as follows:

Proposition 5.4

P (Xo=1i0, X1 =11,..., Xn 1 =tn 1, Xn = in)
= a(iO)KinilKilh e K’in—Zinle'i/n—lin'

Proof: By conditioning,

P(Xo=10, X1 =%1,..., Xn 1= ln-1,Xpn, = ip)
= Po(Xp =10, X3 =11,..., Xp1 = in_1)

Po( X = in|Xo =0, X1 =41, -, Xp1 = tn_1)
=P (Xo=idg, X1 =i1,..., X 1 =ip_1) K,

n—1tn

where the last equality followed from the Markov property. Iterating we get

Py Xog=1ip, X1 =1d1,....Xp_1 =tn_1,Xp = in)
= PQ(XO = 20) . Kio’hK’hw .. Kin¥2ir,,,1Kin71in
= a(iO)KiOilKiliQ PN K KZ

in—20n—143n 1%

Remark that K7, = (K?) ;= > pes KKy and similarly

I(inj = Z Z e Z KiilKili‘z T Kin72in—lKin71j
11 €5 1268 in_1E€S
are the matrix products of K times itself, 2,...,n times.
Proposition 5.5 Py (X, = j|Xo = i) = K]} for any initial distribution o.
Proof: By conditioning and summing over all possible trajectories between 4 and
7 we have
Pa(XO - inn - ])
Py (Xo=1)
Z Pa(Xo:i,Xl—’—il,...,Xn_l:Zln_l,Xn :])
Py (Xo=1)

Po(Xn =jlXo=1) =

11,82, in— 1 €S

B )y (1) Kiiy Kiyi - Ky 1 Ky

N P (Xo=1

1,82, rin_1ES a(Xo =1)

= E KiiyKiyiy - Kiy g Kin g
iy igyin 1€8

n
K.
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We may immediately establish the Chapman-Kolmogorov equation:
Proposition 5.6 For any m < n,
K= Z KiK.
kes
Proof: The process must be at some k € S at time m, so
K7 = Po(Xn = jlXo =1)

=) Pu(Xn =, X = k| Xo = i)
keS

=3 PalXp = j|Xon =k, Xo = i) - Pa(X = k| Xo = i)
kES

=Y Pa(Xp = j| X = k) - Pa(Xp, = k| Xo = 1)
keS

_ m n—m
=) KRE;™

kes
Example 5.7 Bursty ATM traffic - (5.2) continued

By the above
1“01 a T
no_.
= (00)

One may diagonalize the matrix K with a similarity transformation. The eigenval-
ues of K are 1 and 1 —a — b (note |1 —a — b| < 1). The associated eigenvectors

G ()

The standard basis vectors e; and ey are:
0
1]

(o)

We may transform our standard basis vectors e;, es into a basis of eigenvectors by

(1)

The image of e; under U 'KU is 1 - e; while the image of ey under U 1KU is
(1—a—10b)-ey. Hence U 'KU = D where

1 (ba 10
v *a+b<l~1>’ b (01—a—b>'

are

multiplication by U where
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Hence, K = UDU™!. Next, by telescoping, K™ = UD™U~!. Since D is diagonal,

2= (50 _arsy)

o1 ba 1-a—-b)"{a —a
B *a+b<ba>+ a+b (—b b>'

so we conclude

Example 5.8 The discrete M|M|1 queue
Consider a processor which cycles every nanosecond. Suppose that customers arrive
at the processor according to a Bernoulli process having arrival rate p customers per
unit time (where p = A/n per second). The first M in M|M]|1l stands for the fact
that the interarrival times are geometric and hence memoryless. The customers
are served one at a time in order of arrival and if the processor is busy when a
customer arrives he joins the end of the queue. The service time for each customer is
independent of the arrival process and has a geometric distribution with probability
g of completing service in any nanosecond cycle (where g = 11/n). This service time
distribution is again memoryless and hence the second M in M|M|1. Let M|t]
denote the number of customers in the queue at time unit [¢].

If the queue is empty when a customer arrives, this customer’s service begins in
the next time slot so

Koo =1—p,Kop =pand Ko; =0 for j > 2.

If the queue is not empty then the queue decreases by one if there is a service and
no arrival. It increases by one if there is an arrival without a service. Otherwise it
remains the same. Hence, for 7 > 1,

Kii1=0-p)qKiir1=p(1—q),Kis=(1-p)(1—q)+pg

and K;; = 0 otherwise. Notice that we might have chosen a slightly different model
if we imagine that service takes place at the end of the time period in which case a
customer entering an empty system might immediately be cleared. In this case we
would have to make a small change to the transition probabilities from the state 0:

Koo =1—p(1 —q),Kor = p(1 - q) and Ko; =0 for j > 2.

Example 5.9 The discrete M|G|1 queue

Consider a processor like that in Example 5.8 except that now the service time for
each customer has distribution G, where the G stands for general service distribu-
tion. We assume the service distribution has p.m.f. g[z] at nanosecond [z]. The 1
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stands for one server, so an M|G|n queue differs from an M|G|1 queue only in that
there are n servers.

Let Q,, denote the number of customers left in the system after the n'® service
completion. At this time the entire past of the system is summarized by the value
Q. This follows because there is nobody being served at this time and the knowl-
edge of when the last arrival of the discrete Bernoulli process occurred does not
affect future arrivals since the Bernoulli process is memoryless. Let Y, denote the
number of customers who arrive between the n!* and (n 4 1) service completion.
Clearly, Q1 = (@, + Y, — 1) vV 0. This representation allows us to specify the
transition probabilities. While we wait [z time units for the next customer to be
served, k new customers arrive with probability

éil (T ) p*(1 — p)FIFgla] where <[‘Z]> = 0if [z] < k.

This follows since we wait [z] time units with probability g[x] and during each of
these time units, a new customer arrives with probability p.

In the case when Q,, = 0, we wait until the next customer arrives and with
the above probability we see k more customers arrive while he or she gets served.
Consequently, for ¢ = 1,2, ...

- > z —i x| —k+i—
Aik = Z <k [ ] )pk +1(14p)[] e lg[x]a (5'1>
k=i-144+1,...

while

>3

Kok = Z <[i]>pk(l — ) kgla], k=0,1,2,.... (5.2)

[z]=1

This chain is called the embedded Markov chain and as we shall see, is useful in
describing the stationary or steady-state regime of the queue.

5.2 Steady-State Markov Chains

Consider a probability transition kernel K;; on a state space 5. We say a state j
is accessible from state i if for some n > 0, K, > 0. We say two states i and j
communicate if each is accessible from the other.

Proposition 5.10 The state space may be divided into disjoint sets called com-
munication classes. States within a communication class all communicate.
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Proof: Suppose k communicates with both ¢ and j. Therefore there exist n and m
such that K7} > 0 and Ky, > 0. Now by the Chapman-Kolmogorov equation

Kyt = ZK;}?KZ > KK}, > 0.
eSS

Hence 7 is accessible from 4. Similarly i is accessible from j, so i and j communicate.
Communicating states form an equivalence class so sets of communicating states
are necessarily equal or disjoint. (The notion of equivalence class is reviewed in the
Appendix.) [ |

Example 5.11 A reducible chain
Consider the probability kernel

01 0 0
100 0
001/21/2
001/43/4

Clearly K has two communication classes, the first two states and the last two.

Definition 5.12 We say a Markov chain is irreducible if there is only one com-
munication class.

Definition 5.13 We say a positive measure « on S is stationary if

ali) =Y alk) Ky

kes
and is a stationary probability measure if in addition ", (i) = 1.

If the initial distribution of a Markov chain is stationary probability measure = then

Pr(Xn =) = Y w(k) K},

kcS

= 7(i)

by iteration. Hence if we start out according to a stationary initial distribution
then X, has this same distribution for all n. This does not mean the chain stops
jumping from state to state! This is statistical equilibrium; only the probabilities
of being in a given state are fixed.

Definition 5.14 If a chain has a stationary probability distribution 7 we say the
chain is stable.

Example 5.15 Bursty ATM traffic - (5.7) continued

This is a stable, irreducible Markov chain. The unique stationary measure 7 is a
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vector 7 := (w(0), 7(1)), satisfying 7(0) + 7(1) = 1 and the mairix equation

(w(0), 7(1)) = (x(0), 7(1)) <1 ; ! 1 ¢ b) .

Solving this system gives (7(0),7(1)) = (b/{a + b),a/{a + b)).

Example 5.16 A reducible chain - (5.11) continued
We easily check that

(1/2,1/2,0,0) or (0,0,1/3,2/3)

or any convex combination of these two are stationary measures. The two disjoint
communication classes have individual stationary measures so we may create lots
of stationary measures by weighing them in different proportious.

Example 5.17 ATM multiplexor - - (5.3) continued
Our ATM multiplexor multiplexes 5 trunk lines carrying noisy ATM traffic. In each
time slot of one microsecond a trunk line presents a cell to the multiplexor with
probability 1/10. The multiplexor sends one cell every time unit and stores the
rest up to a maximum of 5 cells. Qﬁ] represents the number of cells waiting in the
queue at the end of each time slot (after the multiplexor has cleared one cell). Qf)
is a Markov chain with state space {0,1,2,3,4,5} and we calculated the transition
kernel KZ of this chain.

We can solve the equation 7 = KB by writing it as 7(KP —I) =0 or (K? —
DNT#rT = 0 where T denotes the transpose. Consequently the column vector w7
is in the null space of (K” — I)T. We can find a vector in this null space using

Mathematica.

diff=Transpose [KB-IdentityMatrix[L]]
eig=NullSpace[diff]

sol=First[eig]
total=Sum[sol[[i]],{i,1,6}]
pi=N[sol/total, 3]

The last couple steps above simply normalized the eigenvector into a probability
giving the result:

m = {7 (0), 7(1), 7(2), 7(3), 7(4), 7(5)}
= {0.500196, 0.34689, 0.116858, 0.0284007, 0.00627189, 0.00138232}.
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It is possible to study the long run average behavior of a Markov chain using
renewal theory. By Corollary 6.25,

Theorem 5.18 Let X, be an irreducible Markov chain with stationary probability
distribution 7. Let h be a real valued function such that ), o |h(i)|m(i) < oo then
with probability 1,

Jim % > h(Xs) = Exh(Xo) = > h(i)m(i).

s=0 icS
In particular, limy oo 7 ZST;()l x{Xs € A} = w(A).

Example 5.19 ATM multiplexor - - (5.17) continued

Our ATM multiplexor multiplexes 5 trunk lines carrying noisy ATM traffic. In each
time slot of one microsecond a trunk line presents a cell to the multiplexor with
probability 1/10. The multiplexor sends one cell every time unit and stores the rest
up to a maximum of 5 cells. Qﬁ} represents the number of cells waiting in the queue
at the end of each time slot (after the multiplexor has cleared one cell).

One important consideration is the long run proportion of time the multiplexor
is idle; that is the long run proportion of time the queue is empty because no cell
is served if the queue starts out empty at the beginning of a time slot. According
to Theorem 5.18 this long run proportion is given by

T—1
.1 B
Jim E_O {Qf =0} = 7(0) = 0.500196

so we see the multiplexor is idle slightly more than 50% of the time. Another
important parameter is the utilization of the multiplexor which is the long run
proportion of time the multiplexor is busy. Clearly the utilization is

T-1
o] B
TIEI;O T E,O x{Qp > 0} =1 —7(0) = 0.499804

Proposition 5.18 can be generalized:

Proposition 5.20 Let X, be an irreducible Markov chain with stationary prob-
ability distribution w. Let Vn| be a stochastic process defined recursively by
Vin] = MXn_—1,Xn, Un—1). The distribution of the random wvariable (or vector)
U1 is determined by the states X, _1 and X,, but is otherwise independent of the
trajectory of the chain {X,,n=0,1,...}. In other words if X,,_1 =1 and X,, = j
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then the p.m.f. of Un—y is fi;(-). If 32; seqm(i) Kiy E|R(i, j, Up)| < oo then

Jim % > Vin) = EV[0] = Y w(i)B(h(i, X1, Up)| Xo = i)
n=0 €S
= Y 7Ky ER(,5,U0)|Xo =4, X1 = j] = Y_ w())Ki; Y _ (i, 5,2) fi5(z)
5,jES i,7€8 x

The above proposition shows that for most practical purposes the steady state
determines the long run behavior of a Markov chain.

To apply Theorem 5.18 or Proposition 5.20 we need to show the chain is stable.
Often the steady state probabilities 7 can be given by exact calculation from the
equilibrium equations as in the examples in this section but when the state space
is countable this may not be possible.

Theorem 5.21  Let X, be an irreducible Markov chain. If there exists a recurrent
state i; i.e. such that the return time to 1 is finite with probability one then there
exists a stationary distribution which is unique up to constant multiples. If, in
addition, p; < oo, where [1;; is the mean return time to i, then p;; < oo for all j and
X, is stable with unique stationary probability distribution w(j) = 1/p;; = w(i) Gy
where ;G; is the expected number of visits to j before a return to 4.

We prove this theorem in Section 5.9 and in Section 5.10 we will provide a means
of checking the mean return time to some state is finite.

Example 5.22 ATM multiplexor - - (5.19) continued

Our ATM multiplexor multiplexes 5 trunk lines carrying noisy ATM traffic. In each
time slot of one microsecond a trunk line presents a cell to the multiplexor with
probability 1/10. The multiplexor sends one cell every time unit and stores the rest
up to a maximum of 5 cells. Qﬁ] represents the number of cells waiting in the queue
at the end of each time slot (after the multiplexor has cleared one cell).

The cell loss rate is an important measure of the performance of the multiplexer.
Let V,, denote the number of cells lost in the n*® time slot. Clearly if Qﬁ_l} = ¢ and
Qﬁ] = 7 then the number of cells that were lost in time slot [n] is k¢, 7,Up_1) =
x{7 = 5}(U, — j +i — 1) where U, _1 is a binomial random variable representing
the number of arrivals in the nt* time slot. The long run average number of cells
lost per time slot is

1 ) , .
lim T Z Vin] = Z m(1)Ki; E[h(i, , U0)|Q[](3)] =1 Qﬁ] = j]

T—oo ijes
where V,, —h(Qn 1] Q[n], n—1). Since
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so the long run average number of cells lost per time slot is

5
N wi)KEEUy —j+i—1)"
=0
=n1(QKEEUy —4)" +n(3) Kt E(Uy — 3)"
+ m(AKEEWU - 2)* + (5 K B(Uo — 1)
= (.116858)(.00026)(.00001) + ... (.00138232)(.40951)(.09049)
= 0.0000559522

Since an average of np = 5(0.1) = 0.5 cells arrive per time slot we conclude
that the long run proportion of cells lost is twice the above value. This loss rate
seems incredibly small but in fact it is much too high! A cell loss rate of about one
cell in a billion might be more acceptable. There is a delicate balance inside the
multiplexor. A cell arriving at the end of a queue with x cells in it must wait =
time slots to be transmitted. Hence the buffer cannot be too large or else the delay
across the multiplexor is too long. On the other hand if the buffer is too small then
the cell loss rate will be too large. The above calculations will help to strike the
proper balance but bear in mind that our calculation depends on the noisy traffic
assumption. What would happen if the traffic was bursty!

5.3 Convergence to Steady-State

The convergence of long run time averages to steady state investigated in the last
section can be sharpened. For many chains, regardless of the initial distribution, the
distribution after a very few transitions is approximately the stationary distribution!

Example 5.23 Bursty ATM traffic - (5.15) continued
By the explicit calculation of K™ we see that as n — oo

(To, K7 —, .
( 10 11)H(a+b a+b>
In other words, it doesn’t matter whether we started in 0 or 1, after some time we
are in state 0 with approximate probability b/(a + b) and in state 1 with approxi-
mate probability a/(a + b). These are precisely the steady state probabilities of the
ATM chain. We note, moreover, that it doesn’t take long to enter the stationary

regime since the term (1 — a — b)™ converges to 0 exponentially fast.-
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Things don’t always work out so nicely even if a chain is irreducible. Consider
a chain having kernel
K= 01 .
10

Clearly, starting in state 0, after n steps we are in state 0 with probability 1 if n is
even and 0 if n is odd. Similarly, starting in state 1, after n steps we are in state 1
with probability 1 if n is even and 0 if n is odd. It is clear K{, does not converge
(but K23 does) and this is a nuisance we will have to watch out for.

Definition 5.24 A state ¢ has period d if d is the greatest common divisor of the
set {n : K% > 0}. This means that if p is any other integer which divides every
element of the set {n : Kt > 0} then d is divisible by p. Hence, K]} = 0, except
for some times n of the form n = d,2d, 3d, . ... and d is the largest integer with this
property. A state with period 1 is called aperiodic. Denote the period of state ¢ by
d(1).

Proposition 5.25 Ifi and j belong to the same communication class then d(i) =

d(j)-

Proof: Since 7 and j are in the sarme communication class there must exist integers
m and n such that K3 > 0 and KJ7 > 0. Suppose K? > 0 then by the Chapman-
Kolmogorov equation

+p+ ,
K;’} prn KJ’-QLKZK;} > 0.
Similarly, K22 > KLKL > 0 so
m+2pt+n m P P N
ij 2 sz‘ KiiKiiKij > 0.

It follows that d(j) divides m + p + n and m + 2p + n and hence d(j) divides
the difference which is p. By definition, d(i) is the greatest common divisor of all
{p: KE. > 0} so d(j) must be a divisor of d(¢). By symmetry d(i) must be a divisor
of d(j). Hence d(i) = d(j). [

If we avoid periodicity we have the following results whose proofs are deferred
to the next section:

Theorem 5.26 If X,,,n > 0 is an irreducible, aperiodic Markov chain having
stationary probability distribution , then w(j) = 1/p;; where pj; < oo is the mean
return time to j. Hence 7 is unigue. Moreover

lim Y KT ()] = 0.
JES
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Corollary 5.27 Let X,,n > 0 be an irreducible, aperiodic Markov chain having
stationary probability distribution 7. If 37 |f(5)|7(j) < oo then

Jim (B f(X0) =) f()m(5)] = 0.
JjES

Example 5.28 The discrete M|M|1 queue - (5.8) continued
One can check by matrix multiplication that the stationary probability measure of
the M|M|1 queue with p < ¢ is given by

W(O)zl—gand (i) = <1w—> 1iq (Zﬁ:g;)z fori=1,2,...

One just checks that m = 7K. For i > 2:

71'(i - 1)K7;—1,i + F(Z)KLZ + 7T(i -+ 1)Kz‘+1,i

C1-plg (p0-\""
=Ty <<1— ) w0

1—p/q (p(l —q)

T (q( p)> (pg + (1 -p)(1 —q))
1-p/g {p(1—q)

Ty <q(1—p)> d1-p)

= 7 (i).
For i = 1:
m(0)Kp1 +7(1)K11 +7(2)Ka,

1
= (- Dy L8 (z“q)) (pa+ (1 p)(1 —q))

1—¢g \q(1-p)
1-p/q (p(1—q)\?
* 1—gq <q(1p)> a1 -p)
=7(1).

Fori=0:
7(0)Ko,0 + m(1) K10

S 1-p/g (pA—)\' .
== p e (P0G

We also have to check that Y5 (i) = 1. This is easy to check as long as

p(l-¢q)
q(1~p)

<lie p<agq.
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This makes good sense because p is mean arrival rate per time slot and q is the
mean service rate per time slot. Customers must be served faster than they arrive
or the queue will tend to grow without bound.

From Theorem 5.26 the stationary probability distribution we have calculated
is unique. We just have to check that the chain is irreducible and aperiodic. From
any state ¢ there is a transition to ¢ — 1 or ¢ 4 1. A series of such transitions will
obviously take us from any state to any other so the chain is irreducible. The number
of transitions to return to 0 could be 1 with probability g or 2 with probability pg.
The state 0 is therefore aperiodic and so is the chain.

It follows from Corollary 5.18 that the average number of time slots the queue
is empty is #(0) = (1 — p/q) Since p = \/n and ¢ = p/n where 5 is huge, it follows
that as 7 — oo, m(i) ~ (1 — p)p’ for n = 0,1,... where p = \/p.

Given the queue starts out with 4 customers, the expected number of customers
in the queue at time n is E; X, = )~ ¢ K[3j. Define the function f(i) := ¢ on the
state space S = {0,1,2,...} then from Theorem 5.27, the expected number of cells
in the queue is 3 ¢ jm(j) which simplifies to

ijlfp <p(1—q)>j: (1 =p)p(1—q) <1ﬁ P(l—Q)>12_> Ip_

—il-g\ 1-p l—q 1-p 1-p —p

Example 5.29 The discrete M|G|1 queue - (5.9) continued

It is easy to check that the |G|l queue is irreducible since a transition from 0
to any state ¢ has positive probability while from ¢ we can jump to ¢ — 1 with
positive probability and so on down to 0. The state 0 is certainly aperiodic since
we can return in 1 step (or 2 or 3). The existence of a stationary distribution
7 for the number of customers left behind after a service completion leads to the
Pollaczek-Khinchin equation. Suppose 7 has z-transform

x
Qz) = sz’ﬂ'(k).
k=0
Denote the probability generating function of the service distribution G by

Ya(t) = tgla].
[z}=1

Now 7(i) = 3, 7(k)Kj; so multiplying both sides by 2z’ and summing over i, we
have

Qz) =Y 2"y m(k)Kwi
i k
= 7((0) Z ZiKoi + ZW(’{I) Z ZiK]”‘.

k>0 i



144 Elements of Applied Probability

Now, using (5.2),

w0 Y Ko =0 X S (8- p# gl

i i [x]=1
= Z > ‘(L= )i gla]
Y y()en
=n(0) > (1 —p+2p)! gla]
[z]=1

m(0)Ya(l —p + 2p).

Il

Now, using (5.1),

k>0 i

= kzww(k) i:;lzi g;l (2 _[:]Jr 1) pimRHL(L — p)lel-itE=T g

— ];)W(k’)zk_l [;1 i/kzzl <Z _[]f]+ 1) (Zp)i—k+1(1 _ p)[ﬂiprkilg{m]

_ZW<I€ k— 12(1—P+zp [w] glz] = Z (k)zk_lwc(l—p—i—zp)
k>0 =

- chu —p+ )

Adding the above expressions we get the equation

%) =)}

¥4

Q) = vo(l - p+ 2p) (w<o> 4

Denote m(0) = 1 — p and solve to get the discrete Pollaczek-Khinchin equation
(1—-p)(1 -2
Ye(l —p+zp) — 2
We must check that Q(z) is in fact the z-transform of a probability distribution
or, equivalently, that Q(1) = >~ w(k) = 1. We take the limit as z — 1. First

dpa(l—p+zp) _ dwc(y)|
dz p dy v=loptEr

Q(z) =vYa(l —p+zp)

?

Evaluating at z = 1 or y = 1 gives
dya(1 -p+2p)| _ dye(t)
dz = dt

where m is the mean service time measured in units.

}t:l =pm
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Let mg denote the mean service time measured in seconds so mg = m/n. Next
using L’Hospital’s rule

| | A -pa-2)
lim Q(z) = lim Y(L - p+2p) - lim %{2@(1 o+ 2p) — 7]
I )]

N pm—1"

This expression can equal 1 if and only if p = pm = Am. Hence the probability the
steady state queue is empty is 7(0) = 1 —p = 1 — Amg. Moreover, 1 —p =7(0) >0
so Am¢g < 1. This is quite reasonable since the mean time between arrivals is 1/,
so we are simply requiring that on average customers are served a little faster than
they arrive. If this is not true then clearly it won’t be long before the queue grows
without bound!

We can obtain the mean qq, (L in seconds) of an M|G|1 queue by evaluating
Q(1) to obtain qu, = p + map?/(2(1 — p)) where ms is the second moment of the
distribution G (see Exercise 5.13). We can also give the distribution of the time
an tagged arriving customer will spend in the system until service completion. We
observe that the distribution of the number of customers the tagged customer leaves
behind has distribution 7 and that this number is precisely the number of customers
who arrived during the tagged customers system time. Let S represent the system
time and let S(z) be the transform of S. The number of customers that arrive
during time $ is a Binomial with parameters p and S and =(k) is the probability
this Binomial takes the value k. Hence, conditioning on S = t,

Q=33+ (;) PE(L— )" EP(S = 1
=SS (U pp P(S = ) = S(1—p +p2).

Consequently we can obtain the generating function S(z) = Q((z — (1 — p))/p).
We have now characterized the stationary measure at the fime of service depar-
ture and by Theorem 5.26, the embedded M[G|1 queue may start out in any state
or any initial distribution but after a few departures the distribution of the queue
size after a service will tend to the stationary distribution 7. On the other hand we
are really interested in the stationary distribution at any time ¢ not at a stopping
time. The distribution at stopping times can be anything. For instance, we know
the distribution of the queue at those random times when it empties completely —
it is empty! Nevertheless, since the arrival process is memoryless, the state of the
queue at an arbitrary fixed time does turn out to have stationary distribution 7!
To show this we first remark that the BASTA property holds; that is Bernoulli
Arrivals See Time Averages (the PASTA property holds for Poisson processes). Let
X[t] be the queue size at time slot [t] and suppose a customer arrives in time slot
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[t 4+ 1]; that is L1 = 1. Then

P(X[t] = k»L[tHJ = 1)
P(Ligyq) = 1)

P(X[t] = k|Ljyy = 1) = = P(X[t] = k)

because future arrivals are independent of the past. Hence, if X is in steady state
then a Bernoulli arrival sees the queue in steady state, i.e. it sees the time average.
If we can now show that the distribution of a the chain X7, left behind by service
completions is the same the distribution seen by arrivals (which is steady state)
then the above embedded process has the same steady state as X [t]. We leave this
for the continuation of this example at (6.16).

Example 5.30 The discrete M{M|1 queue - (5.28) continued

A simple example of a discrete time queue is the discrete time M |M |1 queue where
the interarrival times and the service distribution are geometric with mean 1/p and
m = 1/q respectively where ¢ = /7 (recall p = A/n). In this case,

tq

Ya(t) = T —q)

Substituting in the Pollaczek-Khinchin equation and simplifying we get

Q=) = IT__p—f(l—p+pZ) (1 —HZ)_ :

Expanding this in powers of z we see that, for ¢ > p,

- (22) (0 (229 (-2

as 1) — oo. This is the formula we found in Example 5.28.

We can also rewrite Q(z) above as

Ao —p-p+pz)g B
Sl ey T Bl St A o

80

__(-px _g-p ¢-» \"
S(Z)_lp—(l—q)z_1—pz<1_(1_1—p)z> |

This means the distribution of the system time for an M|M|1 queue is geometric
with a mean of (1 — p)/(q — p) nanoseconds or approximately an exponential with
a mean of 1/(u — A) seconds.
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5.4 Reversible Markov Chains

Consider a stationary Markov chain {X,,; 0 < n < T} on a countable state space
S having stationary probability measure 7 and transition kernel K,; for i,7 € S.
If we fix any time 7', we may consider the time reversal of the original process,
{X} = Xr_p; 0 < n < T}, still defined on the same probability space. The
evolution of this process is what we would get if we filmed the original chain from
time 0 to T' and then ran the film backward! Everyone knows this produces very
strange results like the spilled glass of milk that reassembles itself from a million
pieces and leaps up to a table top. In equilibrium however the time reversal is not
so strange and is in fact just another Markov chain!

It is easy to establish the Markov property for the time reversed process and to
identify the corresponding transition kernel. The Markov property holds since for
0<m<n<T

P.(X; =X, =6, X 1 =im—1,...,Xp = 40)
=Pr(Xr—n = X1-m =1, Xr—mi1 = im—1,..., X1 = ip)
_ PTK'(XT—TL = j; XT—m - i>XT—m+1 - im—la S XT = Z.0)

Po(Xp—m =16, X1 my1 = Im—1,.-., XT = o)
_ W(])PJ(Xn—m - Z.>)(n~m+l =ty ,Xn - 7’0)
TF(’i)Pi(Xn,erl = ’L'mfl, PN ,Xn = 10)
by stationarity and the Markov property
T(j)K;-Lmei(Xn_mJﬂ = p—1,. .., Xn =1g)
W(i)f)i(anm+1 =1,y X = ZO)
by the Markov property
()K"
LONE

This means the conditional probability that the time reversed chain is in state j at
time n, given the past at time m, depends only on the state at time m; i.e. on the
fact that X, = i. Hence,

P(X:=41X) =4,Xm_1 =tm-1,..., X3 = 10)
() K™
(%)
This is precisely the Markov property and taking n = m + 1 we see the transition
probabilities are homogeneous and equal and given by

. iy
K = ——=—
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Example 5.31 A time reversed chain
Consider the probability kernel K

1/21/2 0
1/31/31/3
1/21/41/4
With a little calculation we have m = (10/23,9/23,4/23) and we see K™ is
1/23/10 1/5
5/9 1/3 1/9
0 3/41/4

Note that the steady state of the time reversed chain is exactly the same as the
original chain since

Sl = 3 w0) ™IS = 3 )y = ().

In some cases the time reversed chain has the same transition kernel as the original
chain, i.e. K; = K;;. In this case we call the chain X reversible and we see this

implies 7(4)K;; = 7(j)Kj; since in this case

() Kji

Kij = Kij = 7(4)
and the result holds by multiplying by = (%).

Example 5.32 The discrete M|M|l queue - (5.30) continued
The steady state of the M|M|1 queue is

ﬂmzlgamhm)=(1—3) ! (gL:Q>iMM:12P”

q) 1—q \q(l-p)

Let’s show this chain is reversible. We need to show 7())K; ;41 = 7(t + 1) K14
for 4 > 0. For 7 > 1, substituting in the transition probabilities, we see that this is

equivalent to
(1-2) 5 (25=2) -

- (-2) ()

and this is true by cancellation. We may check the case ¢ = 0 separately. By

substitution
i (0 )
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which brings us back to 7(0)Kg1 = w(1) Ky o.

We conclude the discrete M|M|1 queue is reversible and so will look the same
(in a distributional sense) viewed either forward or backward in time! However the
time between arrivals to the chain is geometrically distributed. Viewed backward
in time these arrivals look like departures and so we conclude the time between
departures is also geometrically distributed!

Example 5.33 A time reversed chain - (5.31) continued

Note that the kernel K* we explicitly calculated above is not equal to K so the
associated chain is not reversible. This is not surprising since Kj3 = 0 which
means there can never be a transition from 1 directly to 3. On the other hand
K31 > 0 which means that the time reversed process can jump from 1 to 3 since
Ky = 7(3)K31/7(1) > 0. The time reversed process and the original process can-
not be the same and so our original chain is not reversible.

Suppose we have a reversible Markov chain on a state space S which is divided
into a forbidden set F', and its complement B. Let 7 denote the stationary distri-
bution of the kernel K of this chain. Suppose those transitions from B to F' are
suppressed or truncated so a transition from ¢ € B is suppressed and then redirected
back to i. Hence, for ¢ € B, we can define a new transition kernel

i K;; ifi,je Band j#1
TN K+ Y pep Kipifi€ Bandi=j
Lemma 5.34  The stationary distribution of the truncated reversible Markov chain

on B with transition kernel K has stationary distribution given by w(i)/m(B) for
i€ B.

Proof: The proof is immediate by simple calculation. Pick j € B so

Z ;f((;;) f(z'j — 77-(13) Z ‘ﬂ(i)Kij + ﬂ(j)ij

i€EB
(K +7(y ZKW)

|
=3
a»-a
/—\H
M

i€EB icF
1
= — Zﬂ(i)Kij—{—Zw(i)Kij using reversibility
m(B) icB icF

TSN}
= & " = 1

ieS
since 7 is the stationary distribution. Finally the factor n(B) normalizes the mea-
sure 7, restricted to B, to be a probability. |
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Example 5.35 The discrete M|M|1 queue - (5.32) continued

Consider two M|M|1 queues. The first has independent arrivals with probability
p1 = A1/m per time slot and services are completed with probability ¢; = p1 /7 in
any time slot (when there are customers in the queue). The second has independent
arrivals with probability ps = A3/7 per time slot and services are completed with
probability g2 = ps/n in any time slot. Let the pair of queues X! and X2 have
kernels K' and K? as given in Example 5.8. Together they may be viewed as a
Markov chain (X!, X?) having kernel

1 32
K(Lk),(jl) = Kinu

and state space {0,1,...} x {0,1,...}. It is immediate that the stationary distribu-
tion 7 for the joint chain is the product of the stationary distributions 7 and 72
of the marginal chains. It is also immediate that the joint chain is reversible with
respect to 7!

Let’s suppose the two queues share a common customer waiting room, which
seats fewer than L customers including those being served. If L — 1 seats are filled
(so both servers are busy) then new arrivals to either queune are sent away without
service. To calculate the stationary distribution of this shared buffer we first remark
that transitions to F' := {(i,k) : i + k > L} are suppressed. By Lemma 5.34 the
stationary distribution of the truncated chain on B := {(i,k) : i + kK < L} has a
stationary distribution 77 given by the restriction of 7 to B, renormalized by m(B)
to be a probability. This is rather remarkable since the joint behavior of the shared
queue is very complicated!

5.5 Hitting Probabilities

Example 5.36 Control charts - (3.27) continued

The Shewhart control chart is rather slow to react to a shift in the process mean.
The fact is, most of the control procedures in today’s standards manuals are ob-
solete since they were designed to minimize computation rather than have optimal
statistical properties. There were no calculators and certainly no personal comput-
ers in the 1920’s! The Cusum or cumulative sum procedure was proposed by Page
in 1954 and has gradually been replacing Shewhart charts. It has been adopted as
standard BS5703 by the British Standards Institute and surprisingly this procedure
has only recently been shown to be optimal (see Moustakides (1986)).

Consider the data from Example 3.27 which has a nominal value po. Let the
observed values (which are in fact the average of 5 observations) be denoted by
Xn;n = 1,2,... (we drop the bar). When the process is in control the X; have
mean po = 1000 and standard deviation 50/+/5. Suppose we particularly wish to
guard against a positive increase or shift in the mean to p; = 1020, the so-called
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rejection quality level. Define a reference parameter & and define the one-sided
Cusum:

Chy1 = max{C, + X, — k,0},Cy = 0.

We sound an out-of-control alarm at the first n such that C,, > h where h is the
signal level.

°®
150 4
.
°
o o
h=108
100 S
.
1
.
50
.
. Ce
4 °
* o o°
® .
° . .
[ ] [
O1ee o eeecee 000000000 0000 00 o0
T ] T | T T T | T I
0 10 20 30 40 50

Fig. 5.4 A Cusum chart.

The reference or anchor value & is picked so that while the process in control
the quantities X, — k tend to be negative. For instance if k = (u1 + 10)/2 (in the
example we take k = 1010) then X,, —k has a negative mean when the process is in
control. Consequently the Cusum €, tends to drift down to 0 again and again and
so will cross the signal level only after a long time. On the other hand, k is picked
so that in the out-of-control situation the values X,, — k tend to be positive. This
holds, for instance, if k = (u1 + pig)/2 since this is less than the shifted mean p.
Consequently the Cusum C,, tends to drift up to the signal level so an alarm will
soon be signalled.

The sequence C,, is a Markov chain. In Figure 5.4, the signal level is A = 108
and it might be reasonable to have a level of discretization d = 10. In this case, we
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divide the real line into intervals of length § = h/(d—0.5) = 11.37. Then we identify
the states {0,1,2,...,9} with the centers of the intervals at 0,4,24,...,(d — 1)d ;
that is with 0,11.37,22.74,...,102.33 and h = (6/2) 4+ center of the last interval.
We can add a state F' = {10} as a forbidden state which represents the interval
(108, x].

In the above example, the on-target distribution, F', of X is a normal with mean
1000 and standard deviation 50/v/5. We calculate the discretized probabilities of

X -—kby f(j)= P(X —k € (j6 —6/2,j6 +6/2) for j = ..., —2,—1,0,1,2,... We
now wish to describe the transition kernel for the discretized chain on 0,1,2,...,10.
Let

fG—1) for0<i<d,j>0

o Zkgﬂ.f(k) for0<i<d,j=0
v Zkzd_if(k) for0<i<d,j=d
1 fori=d,j=d.

We can also calculate the transition kernel for the discretized chain when the process
is off-target. In this case the distribution of X is a normal with mean 1020 and
standard deviation 50/+/5. Plugging in this new distribution gives the off-target
discretized transition kernel.

The task is now to calculate the expected number of transitions before C,, enters
the interval (h,c0). This is equivalent to the discretized chain entering the forbid-
den state 10. We are consequently interested in describing the transient behavior
of a chain before it enters the forbidden state. This requires a bit more theory.
With this theory we can pick the reference and signal parameters to fix the average
run length of the procedure when the process is on-target and off-target. In this
example the in-control average run length is set to be 500 observations.

Consider a Markov chain which starts out in a set B but which eventually jumps
out of B into an absorbing set F' where BU F = S. The hitting time 77 is defined
by 7 := min{n > 0; X,, € F'} and we assume P(rr < c0) = 1.

Also for 4,5 € B define A}, := Pi(tp > n, X,, = j), the probability of visiting
j on the n'”* step before being absorbed into F' having started in i. For 4,5 € B,
Ayj = A}; can be viewed as the transition kernel of the chain on B. Of course the
rows of this kernel do not add to 1 since eventually the chain jumps to F. Once the
chain enters F' we stop it. Represent K as

AH
- (41)
where A is a kernel on B, N is a kernel on F and H specifies the transition proba-
bilities from B to F. The stopped chain bas kernel K:

K= (é ?) (5.3)
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Fig. 5.5 7F is the time to hit F.

where the identity matrix [ causes the states in F' to be absorbing.

Example 5.37 ATM multiplexor - (5.22) continued
Consider the ATM multiplexor which multiplexes 5 trunk lines carrying noisy ATM
traffic. As before we assume that in each time slot of one microsecond a trunk line
presents a cell to the multiplexor with probability 1/10. Qp; represents the number
of cells waiting in the queue at the end of each time slot (after the multiplexor has
cleared one cell). @y is a Markov chain on the state space S = {0,1,2,...}. In
Figure 5.3, the queue initially contains two cells and reaches overload after 4 time
slots.

We saw the number of cells that may arrive at time [¢] is a Binomial random
variable By with n = 5 and p = 1/10. Let b(k;5,0.1) := P(Bp) = k). The
transition kernel is given by

b(j;5,0.1) if i =0,
Kijj=¢b[ji—i+1501) i>0,-1<j—-i<4
0 otherwise.

Let the forbidden set be F = {6,7,8,...} and let B ={0,1,2,3,4,5}. This corre-
sponds to having a multiplexor buffer which holds only 5 cells (presumably because
a delay longer than 5 time units is unacceptable). The matrix A defined above may
be calculated using Mathematica as in Figure 5.6.

By matrix multiplication we see

on (AT ARH
o (AT AT,

Consequently A7, gives the probability of starting at i € B, staying in B up to time
n and entering j € B at time n.
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L=6 (#We assume the buffer only holds 5 cellsx)
M=5 (#*There are 5 input trunk linesx*)
p=1/10 (*Each line delivers a cell with probability p*)

bin[x_] :=bin{x]=Binomial[M,x] p~(x) (1-p)~(M-x)

flx_]:=bin[x+1] (*¥f is the p.m.f. of the random walk#)
fint[x_]:=Which[x<-1, 0,x>4, 0, True, f[x]]

coord[i_,j_J:=Which[i < 1/2, fint[j-1], True,

fint[j-i]] matrixA[i_,j_]:=coordl[i-1,j-1] A=Array[matrixA, {L,L}]
(*This is the matrix A*) MatrixForm[A]

0 1 2 3 4 5]
0 59049 6561 729 81 9 1
100000 20000 10000 10000 20000 100000
1 59049 6561 729 31 9 1
100000 20000 10000 10000 20000 100000
2 0 59049 6561 729 81 9
100000 20000 10000 10000 20000
3 0 0 59049 6561 729 81
100000 20000 10000 10000
59049 6561 729
4 0 0 0 100000 20000 10000
59049 6561
2 0 0 0 0 100000 20000

Fig. 5.6 Create the transition matrix A.

The chance of staying in B up until time n and then jumping to j € F at time
n+11is given by » ;- 5 A% Hy;. Consequently, the probability of hitting j € F the
first time we leave B is given by

Z Z A Hyj = Z(I — A); Hyj = Z FGiHy; (5.4)
n—0 ke B keB keB

where
I+ A+ A%+ =T -A)""= pG.
Note that in the special case where F' = {j}

f;’;*l =Plrr=n+1,X,41=j|Xo=1) = Z AfHy;.
keB
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As usual, let Tp be the time to hit #'. Note that for i € B

P(TF>’I”L[X0:i)

222 :Zi<A”>ij:Z<FA>Zﬁ
>

jE€B n=0 jeB

This means we can calculate the mean time to hit F' from any starting point.
Let this time be denoted by mg(:). By the Markov property it follows that for
i€ B,mp(i) =1+ 3. .gAiymp(j) since to reach F, one must take one step to a
point j and from j it will take a time mp(j) to reach F. Since mp(i) =0fori € F
it follows that mp(i) =1+ 3_;cp Aiymr(j). If we rewrite this equation we get

> Iy — Aiyymp(j) =1or (I — Amp =1

jeB

in matrix form. The solution to this matrix equation is precisely pG1 where 1 is
a column of ones.

Example 5.38 ATM networks - (5.37) continued

Applying the above result to the ATM example we may calculate the mean time
until the queue exceeds 5 cells. The table below gives the time until overload
starting with {0,...,5} cells. We remark that the mean hitting time is practically
independent of the starting point ¢ € B. This is because the chain returns to 0 many
times before finally exiting B so in fact we need only consider the mean hitting time
from i = 0.

potential=N[Inverse[IdentityMatrix[L]-A],6]
MatrixForm[potentiall
vectorones=Table[1,{i,6}]
ulttime=N[potential . vectorones,6]
MatrixForm[ulttime]

The preceding code gives the following table of the mean time to overload start-
ing with 0 to 5 cells in the queue:

0 1 2 3 4 5
6531.79 6531.79 6524.75 6485.72 6301.92 5539.43

Example 5.39 Control charts -~ (5.36) continued

Applying the above methods to the Cusum allows us to calculate the on and off-
target run lengths for any given reference and signal values k and h. The corre-
sponding Mathematica code to generate the transition matrix A according to the



156 Elements of Applied Probability

recipe in Example 5.36 is given below.

n=5 (* Sample size *)

mu=1000 (* Expected average *)

sigma=50.0 /Sqrtin] (* Standard deviation of the sample *)
k=1010 (* Reference parameter *)

h=108 (* Signal level *)

d=10 (* Level of discretization *)
delta=h/(d-0.5) (* Length of intervals x)

(* Normal distribution functiomn *)
Gaussian(x_] :=Exp[-(x+k-mu) "2/(2 sigma~2)]/(Sqrtl2 Pi] sigma)

(* Discretized probability *)
f[j_]:= NIntegratel[Gaussian[x],
{x,j*delta-delta/2, jxdelta+delta/2}]
(* Left tail probability *)
LeftSum[j_] :=NIntegrate [Gaussian[x],
{x,-Infinity, j*delta+delta/2}]
(* Right tail probability *)
RightSum[j_] :=NIntegrate[Gaussian[x],
{x,j*delta-delta/2,Infinity}]
(* Transition kernel *)
K[i_,j_1:= If [i==d &% j<d4,0,If [i==d && j==4,1,
If [i<d &% j==d, RightSum[d-i],
If [i<d && j==0, LeftSum[-il, £{j-i111]]

JumpMatrix=Table[X[i,j],{i,0,d~1},{j,0,d-1}];

MinusOneVector=Table[-1,{d}];

RunLengths=LinearSolve [JumpMatrix-IdentityMatrix[d],
MinusOneVector]

Executing this program we get the on-target run lengths for all initial states
i = 0,1,...,9 which correspond to starting the Cusum with a headstart of
0,11.37,22.74, . . .:

{489.5, 488.1, 485.5, 480.7, 472.6, 459.4, 438.0, 404.2, 353.6, 285.2}

We remark that the signal level i did indeed set the on-target run length at
approximately 500 when the Cusum has no headstart. With a finer discretization it
would be exactly 500. Modifying this program we can get the off-target run lengths
for all initial headstarts:

{10.99, 10.35, 9.55, 8.63, 7.63, 6.58, 5.50, 4.40, 3.35, 2.44}

Sometimes it makes sense to start the Cusum with a nonzero headstart. This
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might be the case when there is a substantial chance at startup that the production
equipment is not regulated properly. If we start at i = 6 which corresponds to
starting the Cusum at 70.2 the on-target run length is still 438.0 but the off-target
run length is reduced by half.

Example 5.40 Nonparametric control charts

The run length distribution for both in and out of control cases depend on the
on-target and off-target distributions. It may be unrealistic, particularly during a
start-up phase of production, to assume these are known. We can always plot an
empirical Shewhart Z-chart but this depends heavily on the assumption of normality
so we can’t fix the on-target run length.

One solution is to design a nonparametric Cusum procedure whose on-target
run length distribution does not depend on the unknown on-target distribution F
which we do assume to be continuous. This can be accomplished by sequentially
ranking the quality measurements. Define the sequential ranks

i—1
Ry =14 x{X¢—X; <0},
k=1
It is an interesting exercise (see Exercise 5.26) to show that, when the process is
in control, the sequential ranks R, take the values {1,2,...,4} with probability 1/4
and form an independent sequence of random variables. If the process is in control
the variables U; = R;/(i + 1) are therefore independent and uniformly distributed

on
1 2 1
i+17d+1"" i1

We may now construct a Cusum procedure using the U;:

Nip1 = max{N; + U, — k,0}, Ny = 0 where k is some anchor value.

Since the U; are essentially uniform on [0, 1], we can approximate the run length
distribution until this nonparametric Cusum exceeds a signal level h, by calculating
the run length distribution for a Cusum with uniformly distributed quality mea-
surements. Since the mean on-target run length should be large, the difference
between these two Cusums will be negligible. The anchor value k& will be greater
than 0.5 since we wish the Cusum to drift downward when the process is on-target.
This will be so since EU; = 0.5. The nonparametric Cusum for the same data set
yielding the parametric Cusum in Figure 5.4 is given in Figure 5.7. A signal level
of h = 1.20 will yield an on-target run length of 500 so we see an alarm is indeed
signalled soon after the point of change.

The above procedure is sequential and if the process is in control, then the av-
erage run length does not depend on the distribution of the quality measurements.
I, however, the process goes out of control and the distribution changes abruptly to
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Fig. 5.7 A nonparametric Cusum chart.

a stochastically larger distribution, G say, then the sequential ranks will be higher
than expected. Consequently, the U; will be larger than expected, with a mean
greater than .5 — k and if this mean is positive the Cusum will drift up to h and an
alarm will be signalled.

Example 5.41 Rare Events
Let (M,,)5° , be an irreducible, recurrent Markov chain with kernel K and stationary
distribution 7. Let F be a forbidden set such that 7(F) is very small. In this
example we consider a sequence of forbidden sets such that 7(F) — 0 and we show
the hitting time 77 is approximately exponentially distributed. For notational ease
we suppress F' from our notation. Fix iy € B = F° to be a regeneration point. Let
the return time X to ig have p.m.f. ¢ and mean px. Denote the sequence of i.i.d.
return times as {X,}. Each of these excursions can be classified as a success or
failure depending on whether we hit ' or not. Let p denote the probability of a
success and let M denote the number of trials until success. Since the generations
are independent, M is geometric with parameter p. Note that the expected number
of visits to F before returning to ig is w(F')/u by Proposition 5.21 so certainly p — 0
as T{F) — 0.

The return time p.m.f g can be decomposed in two parts. Let g/ denote the
conditional return distribution given the generation is a failure; that is we don’t hit
I", and let g° denote the conditional return distribution given the generation is a
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success; that is we do hit . Hence

g=(1-p)g’ +pg".
If the mean of ¢/ is p/ and the mean of ¢g° is u°, then

p=01-pp +pp.

Note also that since the mean of g is finite we can pick an z such that

D wgle] <e

>

where € is arbitrarily small. Hence

S apg'lal < 3 wgla] < e

T>T T>xg

This means that

= > apg’la]+ > apg’|

rz<zg T>Tq

< pxg + €.

Since p — 0 as n(#) — 0 and since ¢ is arbitrarily small we conclude ppu® — 0 as
7(F) — 0. This means that asymptotically those trajectories which reach /' albeit
long and strange trajectories nevertheless contribute nothing to the mean return
time y; that is p/pf — 1.

Let 7 denote the first time we hit F and let R denote the return time to i after
first hitting F. Since this time occurs after M — 1 generations of failure but before
the Mth return we have

M-1

H\

(5.5)

M
X, <T Z
=1

Taking the expectation of both sides and conditioning on M we get

n=1

Z(l -0 < p. < Zu p)™ " 'pl(m — D + ]

m=1

or
1 7 1 f s
(1—) = Dp? <pr < (1—) — Dy’ +p® = E; R

Note that since p — 0 as w(F) — 0, it follows from the above that p, — oc.
Multiplying through by p and recalling 1i/u/ — 1 and pu® — 0 as 7(F) — 0 we get

Proposition 5.42 [If the stationary probability w(F') of a sequence of forbidden
sets F tend to 0, then the probability p of hitting F before a return to ig tends to 0
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and the mean time . to hit the forbidden set tends to oo. Moreover,

T . E. R
lim Pz _ 1 and lim =0 =1,
w(F)—0 K 7(F)—0 [y

Finally, the distribution of 7/pr converges weakly to an exponential distribution.

Proof: The asymptotic behavior of u, and E; R has been established above and
the only part left to prove is the asymptotic exponentiality of 7/4, and we can only
give a plausibility argument here. Just calculate the moment generating function
of the expressions in (5.5). Conditioning on M and remembering that the cycles
are independent we get, as above,

M-1 o5}
Bexp(t Y Xo)= > (1—p)™ 'p(e (&)™

n=1 m=1

_ p
11— -pe/(t)
where ¢7 (t) is the moment generating function of g¢. Since we are only dealing with
positive random variables the above expression is certainly finite if ¢ < 0. Similarly,

since the last successful generation is also independent of the previous generations
we have

M-
FEexp(t Z Xpn) = Eexp(t Z n) Eexp(tXa)

_ p s
“T-a-peat Y

where ¢°(t) is the moment generating function of g*. Multiplying by ¢ < 0 reverses
the inequalities in (5.5) so when we take transforms

R D s
(1—(1—p)pf(t)) > ¢-(t) > 0= —pel @) ¢°(t) (5.6)

where ¢, (t) is the moment generating function of the time 7.

Now we want to investigate the moment generating function of pr/u and this is
up
Bexp("T) — 4, (1)

Substituting ¢ = wp/p into (5.6) we get

p
(1 =p)A =/ (57) +p)

pwT

pY
¢(M)>E><p(“)

p
T -p - (B4 )

Now as w(F) — 0, p — 0 and p, — oco. Therefore by the properties of the
moment generating function ¢*(wp/u) — 1, ¢/ (wp/u) — 1 and (¢7)(0) = uf so it
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follows that

1 W
(' (D) D~ s w
p H M
since p/puf — 1. From the above we get
. pwT 1
lim FEexp(~—)=-——
(F)—0 7 l-—w
since both the upper and lower bound tend to this value. We have shown above
that pu,/p — 1 so this gives
lim FEex (WT) !
i —)=—
T(F)—0 P Lr 1—w
The function (1 — u)~! is the moment generating function of an exponential
random variable with mean 1. We conclude that the time 7 scaled by its mean
it Das a moment generating function which is asymptotically equal to that of an
exponential. It therefore seems reasonable that 7/u, should be converge weakly to
an exponential random variable. This is true but to prove it we must appeal to the
continuity theorem for moment generating functions and this is slightly beyond the
scope of this text. |

5.6 Proofs of Convergence to Steady State

Consider an irreducible Markov chain on a countable (or finite) state space. We
show Theorem 5.26 holds using results from the chapter on renewal theory.

Lemma 5.43 Suppose a is a stationary measure. If a(j) > 0 for some j € S
then a(i) > 0 for alli € S and

Kp _ 1
a(j) = (i)

uniformly in j.

Proof:
ali) = alk)K}, > a(j)K for all n.
kecS

Since i is accessible from any j € S there exists an n such that K7, > 0. Hence if
a(7) > 0 then a(i) > 0 for any ¢ € S. Using stationarity,

K3 K7 < K7 1
ali)  DXies a(k)KI?j B Q(Z)KZ (i)

This upper bound is independent of 7 so we have our result. [ |

(5.7)
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We now establish the fact that after a few transitions the chain is close to its
steady state.

Theorem 5.44 If M,,,n > 0 is an irreducible, aperiodic Markov chain then

1
lim K= — (5.8)
n—o0 oy
where p;; is the mean recurrence time to j; that is, puj; = E(7;|Mg = j) where
7, = min{n : M, = j}. If pgr < oo for some state k then p;; < oo for all j and 7
defined by w(j) = 1/p;; for all j € S is the unique stationary probability.

Proof:
(5.8) follows from Theorem 6.43 in Section 6.4 in the chapter on renewal theory.

1
W(?) = = lim K%' = lim ZankKIg

/u,j] T—>00 27 n—o00 kES
= liminf > KGKYG 2 3 lm inf LK
kcS kes
1
=D K =) (kK.
kes HEk kes

Above we used Fatou’s Lemma 9.5 with K7} = u,(k) and K7} = v(k).
If w(k) > 0 for some k then 7(j) > 0 for all 7 by the above. In this case

. . . n— . K
w(j) = nlin;o K} = nlirréoZKjk 'Ky = nler;OZ 7rj(k) (k) Ky;

kes kcS

=Y w(k)Ky,

keS

using dominated convergence since Kj’-lk_1 /7(k) tends to 1 and is uniformly bounded
in k by Lemma 5.43 and ), ¢ 7(k)Ky; < m(j). At this point we have shown that
7 is stationary.

Again by Fatou’s Lemma,

> w(j) =) liminf K <liminf Y K75 = liminf 1 =1
e jeS n— n—oo JES n—00
SO Zjes m(7) < 1. Moreover, given 7(j) > 0 for all 7, we get

Kn Kn
Soml) = 3 Jim K3 =3 lim Zkn() = lim 3 ()
JjES j

jes jes m(7) jes

where the above limit may be taken outside the sum since K7%/m(j) taken as a

function of j is bounded by the constant 1/ (i) by Lemma 5.43. A constant function
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is of course integrable with respect to = which we now know is finite. Hence,
N N _
2 m0)= Jim 3 K = i 1= 1
jes jes
Consequently 7 is a probability measure when the mean return times are finite.
Suppose « is another stationary probability. For any n we have ). «(i) K7 =

a(j). Now for j fixed, K} is a bounded function in i converging pointwise, so by
the Dominated Convergence Theorem

1 1
a(j) = lim a(i)KF = a(i)— = —.
n—o0 Xlz ! ZZ: Bij Ry
Hence « is equal to 7 so m must be the unique stationary probability. [ ]

Example 5.45 ATM networks - (5.15) continued
The stationary measure of the bursty ATM source is

(b/(a+b),a/(a+b)).

This agrees with the above result since the mean return time to state 0 for the

kernel
l—-a a
b 1-b

may be calculated by conditioning on the first transition. If the jump is from 0 to
0 then the time is 1. If however the jump is to state 1 then the mean return time
to 0 is 1 plus the mean time to leave state 1. The time to leave state 1 and return
to 0 is a geometric random variable with mean 1/b. Hence the mean return time is

(1—a)-1+a-(1+1/b) = (a+b)/b=1/7(0).

Example 5.46 The discrete M|M|1 queue - (5.30) continued
Define the busy period to be those times when the queue is not empty. It follows
from Theorem 5.44 that the mean busy pgg is 7(0) ™1 = (1 — p/q)™*

Proof of Theorem 5.26:

Jim > 187 Jm m(j):

jeSs

By Theorem 6.43 lim,, oo Kjj = 7; s0 K73 /7(j) — 1. Since the function |K7: /7(j)—
1] is bounded by the constant 14+1/7(i ) by (5.7) dominated convergence gives the
result. m
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Proof of Corollary 5.27: By the definition of the expectation

=3 FG) = YD — 7))

JES JjES
LN
:jezs(ﬂj) DG G):

Using Theorem 5.26 we know that for any j, K[:/m(j) — 1. If the state space is
finite then the conclusion follows immediately.
If S is infinite we can use Lemma 5.43 to show

n

Kn
(% =D fU)] < (

. + 116

1
7(7)
and by hypothesis the above function of j is integrable with respect to m. The result
follows from the Dominated Convergence Theorem 9.7. |

Theorem 5.47  The conclusions of Theorem 5.26 and Corollary 5.27 hold for an
apertodic, irreducible Markov chain on a finite state space.

Proof: We must show p;; < oo for some state j. Denote the return time to j by ’T]

From any initial state ¢ there exists some N; such that K N 5 0. Let N = 11

and NN is finite since S is finite. Hence for all ¢ € S, K > ¢ for some € > 0.
Hence,

zGS

s :EjTj :ZP(T]' >n) < ZNP(T]‘ >mN)

n=0 m=0

since clearly P(7; > n) is decreasing for n between mN and (m + 1)N — 1.

P(Tj>mN)§Pj(MkN7£j7k::1 m)
‘ N N N
- Z KJ 11]T1 zp Kﬂﬂm 1H,%m

zl,ftz,»-uT/m?éJ

<(1-qgm

using the hypothesis. Hence,

E;Tj < Y NP(r; >mN) < 3 N(1— o™ < oo
m=0

m=0
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5.7 Transience and Recurrence

Definition 5.48 Let F be a subset of S. The hitting time 77 is the first time
the chain lands in or hits I. 7p is defined by

7p = min{n > 0; X,, € F'}

if X,, € F for somen >0, and by 7p = o0 if X, ¢ F for alln > 0. If I’ = {5}
we denote the hitting time by 7;. Also define f]; := P;(1; = n), the probability of
visiting 7 for the first positive time on the n‘" step having started in i. Since 7; > 0
by definition it follows that [ = 0 for all 7, even j = 4. Lastly let fi; := > " f1
denote the probability of ever hitting § from 3.

We now give a version of the Markov property for hitting times. This will be
extended to the strong Markov property in Theorem 5.58. To state this result it is
best to define precisely what we mean by the past before some stopping time.

Definition 5.49 Let 7 be a stopping time relative to the sequence of o-algebras
Fpn=0(Xo,X1,...,X,). An event A belongs to the past before 7, which is denoted
by F., if for all times n, the event A N {7 < n} belongs to F,.

Intuitively, A € F. means that, if 7 = n, we can decide whether or not a sample
point w is in A based only on knowing Xo{w), X1(w), ..., Xp(w).

Proposition 5.50 Let A be an event in the past before T then
PAN{X, =i; X740 =j}) = PAN{X, = i}) K.

In particular, let 7 be the hitting time 7 above. This proposition then states that,
given we hit the set F first at state ¢ € F, n steps later we are at state j with
probability Ki. In other words, the past up to time 7p = ¢ is summarized by the
present state at time 7p, i.e. X, = 7 and given the present, the future is independent
of the past.

Proof: Conditioning on 7, we get

P(A n {X‘r =1 X'r+n - j})

= T P(AN{T = m, X = 5 Xmin = 5})

m=0

= Z Z X]{(io,il,...,i)P(Xo:io,...,Xm,:i;Xm+7l:j)

m=010,i1,...,5m—1

since by definition the event A N {7 = m} is in %, and so may be expressed
as {(Xo,X1,...,Xm) € H}, where H is a subset of S™*!. The indicator xp is
a deterministic function which is either 1 or 0 depending on whether or not the
sequence (%9,41,...,%) is in H or not.
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Now, conditioning on Xg = i, X7 = i1,

X =
property we have

1 and using the Markov
PAN{X; =4X;4n=7})
o0

=3 > xulioyir,...,)KEP(Xo = dg,..., Xnm

= z)
m=010,91,...,8m_1
(oo}
= Kjj E E X (o i1, ..., 0)P(Xo =1g,..., X;n =4, 7 =m)
m=0140,i1,...;¢m—1

= K P(AN{X, =1i}).

Lemma 5.51

KZ:Zf K™ forn > 1.

m=0

Proof: Since we started in ¢ we must reach j for the first time at 7;. Condition on
7; and we get

= Z-Pz(Xn =77 =m)
m=1
= Z Pi(Xy = jlry =m) - Pi(r; = m)

*Z mKnm

by Proposition 5.50 and the Markov property.

|
We define the z-transform or probability generating function of K7 and of f7:

Definition 5.52 For |z| <1

Kij(z) = ZK" ", fii(z :—Z HEA
n=0

Proposition 5.53 For |z] <1

Kisl2) = 1y and Kig(e) = foy(a) fi 4.

Proof: For n > 0 the coefficient of 2™ in f,;(2)K;;(z) is

Z mKnm
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which by Lemma 5.51 is precisely the coefficient of z™ in K;(z). By definition
= 0but K9, =1, s0 f;;(2)Kj;(2) = K;;(2) — 1. Solving for K;(z) gives the
first result. S1rn11ar1y, for i # j, the coefficient of 2™ in the product f;;(2)K;;(2) is

Z mKnm

which by Lemma 5.51 is precisely the coefficient of 2™ in K;;(z). This is the second
equality. |

Definition 5.54 A state j is called recurrent if P;(7; < co) = 1; that is f;; = 1.
It is called transient if P;(7; < co) < I; that is f;; < 1. State j is positive recurrent
if 17; < oo. If a state j is recurrent but j¢;; = 0o we say the state j is null recurrent.

Let N(j) be the total number of visits to j and let G(i,j) denote the expected
number of visits to j for a Markov chain starting in i; so G(4,7) = E(N ()| Xo = 7).
To calculate this quantity we first represent the number of visits to j by

)= X (Xa)

where the function ;3 (X,) counts 1 if the chain is at j at time n and 0 otherwise.
Taking the expectation we get

Gi.j) = ) Blxi(Xn)lXo =19)

s

!
gk
s
5
I
=

3
Il
o

i
NE
e

3
i
=}

Proposition 5.55 A state j is recurrent if and only if G(j,7) =

Proof: By the monotone convergence theorem
lim Kj;(2) = G(5,5) and 1im £;(z) = P;(7j < 00) = fij.

By 5.53, for 2| < 1, Kj;(2) = 1/(1— f;;(2)). It follows that G(3,7) is infinite if and
only if f;; = 1; that is if and only if j is recurrent. |

Proposition 5.56 Suppose i and j are in the same communication class. Then
i 18 recurrent if j is. Also py; < 00 if py; < 00.
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Proof: Let m and n be such that K[? > 0 and K}; > 0. Now, using the Chapman-
Kolmogorov relation, K;?+k+" > K}’;Kﬁ[(z Hence,

G(] J Z incher > KmKn Z
k=0

using Proposition 5.55. The proof that all states in a communication class have
finite means if one does is delayed to Section 5.9. ]

We see therefore that, for an irreducible chain, all the states are recurrent if one
is! We also see that a recurrent state is visited infinitely often. A transient state
is visited only a finite (stochastic) number of times and moreover, the expected
number of visits is finite.

If the chain is not irreducible then some states may be transient while others
are recurrent. Nevertheless, starting from i, we either never visit a recurrent state
j or we visit an infinite number of times. This is not really surprising since once
the chain makes it to j the strong Markov property implies that the starting point
1 is forgotten and we know we return infinitely often to j.

Example 5.57 Drunkard’s walk - (2.78) Consider a drunk constrained to walk
unit steps on a straight line. Starting from 0, the drunk takes steps of +1 or —1
every time unit in a totally random fashion. The drunk will almost certainly return
at some time to his starting point! This follows from the above characterization of
recurrence. Indeed K%H 0, n=0,1,2,... and

- (2)(3) ()
-2

Using Stirling’s formula (we shall assume this without proof but see Feller Volume
I for the full story):

1
nl~n"T2e 97
we get

1

2n
Kog’vﬁ

Therefore
Z Kgg =

We conclude by Proposition 5.55 that 0 is a recurrent state.



Markov Chains 169

By a similar calculation one may prove that a drunk walking on a plane who
randomly takes steps of size 1, north, south, east or west every time unit necessar-
ily returns to the origin. A drunk astronaut is not so fortunate. He has a nonzero
probability of simply wandering away to infinity on the three dimensional lattice!

5.8 Existence and the Strong Markov Property

We now consider the construction of a Markov chain {X,;n = 0,1,2,...} taking
values in a countable state space S along with the probability space {Q, F, P, } on
which X, is defined, given an initial distribution « and a probability transition
kernel K. As in Example 2.4 we construct a canonical sample space £ = § x § x
S x ---, and as in Example 2.10 we construct the subalgebra F,, of all unions of
atomic events of the form

A:{{(iﬂailvi27"'7in)} X §x 8% }

where i,k = 0,1,2,... is some specific sequence in S. As before we define F to
be the smallest o-algebra which contains all the F,,. X,,, the state of the Markov
chain at time n, is simply the n** coordinate function defined on €.

According to Proposition 5.4 we must define the probability of these atomic
events as follows:

Pn(XO - io,Xl - 'L'1, PP 7Xn‘1 = in_th - Zn)

= a(io) Kigiy Kiyin ++ Koy _ging 1 Ky iy
The probability of an arbitrary event in F,, is given by additivity. To check that
there exists a probability P, on {Q, F} which agrees with P" on F,,, we must check
the compatibility condition in the Kolmogorov Extension Theorem 2.73. We recall
that a sequence of probability measures P" defined on F,, satisfies the compatibility
condition if P+ (A) = P*(A) if A € F,,. It suffices to check this for atomic events
since events in JF,, are countable unions of atomic events. Let

A= {{ligyinsige - i)} X Sx Sx .

Hence,
PrA) = N alio) K Kiis -+ Ky Kiyin K
int1€S
= a(iO)KioilKillé T Kin«Qin—l‘KVinA—lin
= P"(A).

The compatibility condition therefore is verified so P, exists.
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By the definition of P, we have

Pa(Xo = i) = Pa({i} x S x S x )
=PO{i} x Sx S x--)

= af1).

Therefore the chain we have constructed does have initial distribution «. The
Markov property follows in a similar manner (see Exercise 5.5).

Using Kolmogorov’s extension theorem we may prove the definitive strong
Markov property. First, consider any random variable ¥ = f(Xo, Xy,---) and
define the shift to time ¢ of Y by 6,Y = f(X¢, X441, ). Hence 6,Y depends on
the future of the Markov chain X,, beyond time ¢.

Theorem 5.58 (The Strong Markov Property) Let 7 be a stopping time for
the sequence of o-algebras F,, = 0(Xo, X1,...,Xy) and let E € F,. If E|Y]| < 00,
i.e. Y is integrable, then

E(xg-0:Y) =Y _ PEN{X, =j}E;Y.
Jjes
Corollary 5.59  Under the hypotheses of 5.58
E@0.Y|X; =j)=E;Y.

This means the future evolution of the process beyond time 7 is entirely determined
by the fact that the state at time 7 is j. The process restarts anew as if at time 0
it started in state j.

Proof of Theorem 5.58: If we refer to the proof of Proposition 5.50 we get an
immediate extension.

PEA{X, =i, Xei1 = j1re ey Xyt = jm})

= P(EN{Xr =1} Kij K55 K1,

= P(Em {X"’ = Z})PI(XO = jO’Xl = jla B ’XTTL = jm,)-
Next consider a set A € F,, s0 Y = xa = yu(Xo, X1,..., X;m) where H € §™FL
Moreover 0,Y is the indicator of the shift to time 7 of A which we denote by
0,A. This event is in the future of time 7 and 6.Y can be represented by

xu(Xr, Xri1s-o oy, Xedm). Summing over the points (jo,J1,..-,Jm) € H in the
above equation, we get

P(EN{X, =i} n6.A) = P(En{X, =i})P.(A).

The above equality may now be extended to arbitrary A € F since it holds for
all cylinder sets. Next consider simple functions of the form Y = > ygxa,. By
linearity it follows that

E(xpnix,—i 0:Y) = P(EN{X, =i} E(Y).
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Now use monotone convergence to extend the result to all positive random variables
Y and finally use linearity to get the result for integrable random variables. |

Example 5.60 Drunkard’s walk - (2.78) continued

M, = z + 5, is a Markov chain with My = z. T is the stopping time when M,
first hits the boundary L or U. Let f(z) = P(Mp = L). Assume L <z < U, so it
takes at least one step to reach the boundary. Hence, 6; M1 = Mr. By the Markov
property

f(x) = P(My = L) = El61x{Mp = L}]
=Y P(Mi = y)Ey[}{Mr = L}]

Y
=PM =z-1)fzx—-1)+PM =2+ 1)f(z+1)
= fe D+ St ), (5.9)

We conclude from equation (5.9) that for L <z < U

Fla) = %f(:c S %f(z 1), (5.10)

Clearly f(L) = 1 and f(U) = 0. One solution of this linear system satisfying the
boundary conditions of f(L) =1 and f(U) =0is f(z) = (U — 2)/(U — L). If there
were another solution, say g, then h(z) = f(x) ~ g(z) is also a solution of equation
(5.10), such that A(L) = 0 and A(U) = 0. Equation (5.10) clearly cannot have a
local maximum at any point zg in (L, U), for otherwise h(xo) would be the average
of two smaller values, an impossibility. Hence the maximum of A is attained on the
boundary {L,U} so h < 0. Repeating the argument with —h yields A > 0, so h is
0 everywhere. Hence f is unique. We conclude the probability the random walk,
starting at «, hits L before U is (U — x)/(U — L). This is the result we already
obtained in Example 2.78.

The limit of this probability as U — oo is 1. Hence the probability of the walk
wandering gradually away to oo is 0. The walk returns with probability one to L
and we conclude that this simple random walk is recurrent. In fact we will see it is
null recurrent!

5.9 The Watched Process

Consider an irreducible, recurrent Markov chain X, and consider some subset 4 in
the state space. If we watch the chain X, only when it returns to 4, we obtain the
process watched on A. More precisely define 74(n) to be the nt® return time to A
where 74(0) = 0. Let W,, = X (). Take i,j € A. Take Y = x{X,,(1) = j} so

GTA(”)Y = X{XTA(TH-I) - J} = X{Wn+1 = _]}
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since the shift 6, () cuts off the trajectory of X before time 74(n). By Theorem
5.58, with 7 taken to be 74(n),

P(Wo =io,...,Wy_y =in_1,Wn =i, Wni1 = j)

= P(Wo=1io,..., W1 =in 1, Xps(m) = 0,0, (myY)

= P(Wo =i, .., Wn 1 =in 1, Xrsm) = DP(Xrr1) = 4)
— P(Wy =g, ..., Wn_1 = in-1, Wy = i)Pi(W1 = j).

Hence, conditioning on the event {Wy = ig,..., Wy_1 =ip_1, Wy, =i} we get
PWyy1 =§|Wn =4, Wy_1 = inp_1,..., Wy =ig) = P,(W1 = j).

This means the process W, is a Markov chain with a stationary transition kernel.
We next examine the transition kernel 4K for the process on A. Define

aKl = Pi(Xm = j; Xp € A1 <n<m) = Pi(Xpn = j,7a 2m)  (5.11)

which gives the probability, starting in 7, of hitting j (which may or may not be in
A) on the mth step, having stayed in A° in the preceding steps. Next extend the
definition of 4Gij:

oo

aGij =Y aKJ.

m=1

For j ¢ A this represents the expected number of visits to j after time 0 before
hitting A. If j € A then this represents the probability of hitting the set A at j
having started at 7. Note that AGj; is the transition probability 4K;; between
two states, i and j in A, of the process on A.

Lemma 5.61

AGij =K + Z AGikKkj foric A.

ke Ac
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Proof: Recall that, by definition, any matrix to the power 0 is the identity.

AGi; = Z ZK”CK,Z?1 where K was defined at (5.3)
m=1kecS

= Ki; + Z Z KikK’,Z}*l

m=2keAc

o0
=K+ Y. Y ) KAl Kp,

m=2keEAc meAc

=K+ Y aKp 'Ky,

m=2 (€ A"

= K;; + Z Z AK;?KZJ'

LeAcm=1

= K,; + Z AG%R’@]’.
e Ac

Theorem 5.62 Suppose the process on A has an invariant measure ™4 S0

Ta(j) = Zﬂfl(i) aGj for j € A.

iCA

Define a(k) := 3 .c 4 wa(i) aGi for any k € S. Then o(j) = wa(j) for all j € A
and o is invariant for K.

Proof: o(j) = wa(j) for all j € A by definition. For £ € B,

S ok Kee =Y malk)Kue+ > o(k)Kie

kes ke A kcAe
= ZWA(i)Kie -+ ZWA(i) Z AGik Ky
€A icA ke Ac
= ZWA(i) K + Z AGiEK e
ieA keAe
= Z?TA(i) 4Gy by Lemma 5.61
ieA

= o(¢) by definition.
n

Theorem 5.63 Suppose an irreducible, recurrent Markov chain has an invariant
measure 0. If o(A) =1 then a(j) = 3 ,c 4 0(i) aGij.
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Proof: We first show
o) =SS () aKT + > oli) KL (5.12)
m=13iC A i€ Ac

For n = 1, (5.12) follows from the definition of an invariant measure. Now suppose
(5.12) holds for some n. The last term in (5.12) can be written

Z o(i) aKy; = Za(kz) Z K aK;

i€ A° kesS 1EA®

= Z o(k) Z Ky AK" Z Z Ky AKz’nj
ke A i€ A ke Ac i€ Ac

. n+1 n+1

S olh) KR Y o) AREP
keA ke Ac

Now using (5.12) one obtains that (5.12) holds for n + 1.
Letting n — oo we get

o(j) = > (i) aGy for all j € S. (5.13)
icA
However for j € A, aGi; = aKj;; and ZjeA 4Ki; = 1 by recurrence. Hence if
(5.13) is an inequality for some j € A then

1= o) > > oli) aKiy = oli).

JjEA JEALEA i€EA

This is impossible so o(j) = > ;.4 0(i) 4K;; for all j € A. This means that o is
the stationary probability for the process on A.

Now suppose there exists a j € A° and a subsequence ny such that the second
term in (5.12) does not go to zero. Pick some m and ig € A such that oK} >
€ > 0. Hence,

Do) aKpEt™ > Y a(i) aK2F AKT (5.14)
i€ A" i€A°C
> e > 0. (5.15)

This contradicts the above result so we conclude >, .. (i) 4K]; — Oforallje S.
Therefore taking the limit as n — oo in (5.12) we have our result. |

Corollary 5.64 Any two invariant measures p and o are constant multiples of
each other.

Proof: Pick A = {i}. By division we can normalize each measure so p(A) = o(A) =
1. Hence, by Theorem 5.63, p(j) = aG;j and 0(j) = 4G;;. In other words, before
normalization o and p are multiples. [ |
Proof of Theorem 5.21: Again take A = {i}. Of course ca(j) =x{i=j}tisa
stationary probability measure for the watched process on A. Theorem 5.62 allows
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us to extend to an invariant measure ¢ such that o(j) = 04(j) = 1. Note that by
irreducible o(j) > 0 for all j.

The chain must be recurrent if u;; < oo because otherwise there is a positive
probability 7; = oo. Hence we again can construct and invariant measure 0. Note
that 4Gy is the expected number of visits to & before hitting A. Now sum over
all the states k € A€, and we get the expected number of jumps after starting from
7 until a return visit to ¢; that is E;7;,. Hence

> G = Eimi = s < o0,
kes

Hence,

o(8) = 0ali) Y, aGix =0a()piu = pis < 00.

€A keS

Consequently ¢ is a finite invariant measure so 7(j) = o(j)/c{S) is a stationary
probability and consequently X, is stable. Moreover, 7(i) = 1/1;; and by symmetry
this is true for all states ¢ € S. By division, n(j) = 7(i) aGij = aGij/ s ]
Proof of Proposition 5.56: By the preceding proof of Theorem 5.21 knowing
fii < 00 means we have a unique strictly positive probability measure 7 and 7 (j) =
1/p;; for all j. Since 7(j) > 0, pj; < oo. -

5.10 Foster’s Criterion for Stability

Theorems 5.21 and 5.44 appear quite general since the existence of a stationary
distribution 7 is a consequence of the theorem, not a hypothesis. On the other hand
how can one check that a chain with a countable state space is positive recurrent?
Below we review the Liapunov function technique for establishing the stability or
positive recurrence of a Markov chain. We won’t have space to investigate the recent
developments in the fluid limit approach to stability but an interested reader can
consult Dai (1996).

We say a chain X, satisfies Foster’s criterion if there exists a finite set A, a
constant b < oo and a nonnegative real valued function V such that

Y KiV(§) = V(i) < —1+b-xa(i) foralli € S.

jes
Theorem 5.65 Let X,, be an irreducible Markov chain which satisfies Foster’s
criterion. Then E;[t4] < V(i) +b- xa(i) where T4 is the return time to A.

Apply Dynkin’s formula to the sequence 7, = V(X;). Consequently, for any
7€ .S and any n > 0,

NAn
E,‘ZTA/\n =FZy+ F; Z [Ei(ZkLFAk*l) - Zkfl]
k=1
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By the Markov property,

Ei(Zi\Ax—1) — Zxo1 = B (V(Xe)| Xi—1) — V(Xk—1)

=Y Kx V() - V(Xeo)
jES
= LV (Xk-1)

By hypothesis then
EilZy|Fry — Zr-1) < =1+ b xa(Xp—1).
xa(Xi_1) = 0for 2 <k < 74 An. Consequently, summing from k = 1to k =n,
Ei(Veynan) — V(@) < EifltaAn]+b-xa(i)

which means F;[ta An] < V(i) +b-x4(i) since V is nonnegative. Take the limit as
n — oo and use monotone convergence and we get E;{ra] < V(i) +b- xa(i). |

Note that if A = {i} then the existence of a Lyapunov function implies X, is
positive recurrent.

Corollary 5.66 If the hypotheses of Theorem 5.65 hold and if A is a finite set
then X,, is positive recurrent.

Proof: Since A is finite there exists an M such that Ex[74] < M < oo forall k € A.
Let 7% be the time of the n** return to A and let Y, = TX_H — 7%4. By the strong
Markov property

Ei[Yu|X.n = k] = Bi[0,2Y1]| Xy = k] = ZP o= k) B[] <
keS

since B [V1] = Ex|ta]l < M for all k. Hence E; [Yn|Xrg] < M. Let .J be the number
of returns to A until a return occurs at state j € A.

J
pig = Bi() Yl =

J
Z EY,| X, |
n=1 n=1
J
B[y M =
n=1
We have used Dynkin’s formula since
k+1
ZY ) = Z w] = ElYi|Fr] = ElYa| X, ]

n=1

Finally the mean time for the process on A to return to 7 is finite by Theorem
5.47 so E;J < oo. We conclude p;; < 0o so the chain is positive recurrent. m
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The above result may be applied to a discrete M{M|1 queue for instance. From
Example 5.8 we get

Wi) = EXny1 — X Xn =il =(1-gp—(1-plg=p—g<0forali>0.

Take A = {0} and let V(i) = i/(p — q). We immediately get stability and con-
sequently the existence of a stationary distribution, but in this case we had one
already!

Example 5.67 Drunkard’s walk - (5.60) continued

The drunkard’s walk on the line is null recurrent. Suppose, on the contrary, that all
states are positive recurrent and = is the associated stationary probability measure.
Since the recurrence timepjj is the same for all initial states j, by homogeneity,
it. follows that 7(j) = 1/pu;; is a constant. This can’t be because there are an infi-
nite number of states and 7 is supposed to be a stationary probability distribution.

5.11 Exercises

Exercise 5.1  Consider a probability transition kernel K on three states: 0,1,2. Let
the initial distribution be o = (.2,.1,.7) and let the probability transition kernel K
be

I
W
RN

a) Compute P(X; = 2|Xy = 1).

b) Compute P(X21 = 2|X20 = 1)

C) Compute P(Xg = O,Xg, - 2,X5 = HXD = 1)

d) Compute EXj.

e) Compute E(Xo|Xo =1).

f) Compute P(X; =1).

g) Compute £.X;.

h) Compute E(X;|Xo = 1).

i) Compute EX7.

j) Compute E(X?|Xo = 1).

k) Compute Var(X;|Xo =1).

1) Compute P(Xp = 1|X; = 2).

m) Calculate the stationary probability measure associated with K.
n) Calculate the mean number of transitions to return to 0.

Exercise 5.2 Consider the Markov chain X, in Exercise 5.1. Define Y,, = x{X,, €
{1,2}}, that is define Y, to be 1 if X, is either lor 2and 0 if X, = 0. s Y, a
Markov chain?
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Exercise 5.3 Consider a probability transition kernel K on four states: a,b,c,d.

0 0 1/21/2
0 0 1/32/3
1/41/4 0 1/2
1/52/52/5 0

K=

a) Calculate the probability the chain is in state b after 10 transitions, given that
after 8 transitions it is in state a.

b) Calculate the probability the chain is in state b after 10 transitions, given that
after 8 transitions it is in state a or b and that after 6 transitions it was in state c.
¢) Calculate the stationary probability measure associated with P.

d) Calculate the mean number of transitions to return to a.

Exercise 5.4  Counsider a Markov chain X,, started in state 1 with a kernel

1/31/31/3
K=| 0 1/21/2
1/21/2 0

defined on the states {0,1,2} as usual.
a) Calculate K7 ,.

b) Calculate P(X31 = 2| X350 = 1).

¢) What is the period of this chain?
d) Calculate E(X3| Xy = 1).

e) Calculate P(X,; = 2| Xy =1).

Exercise 5.5 Establish the Markov property of the chain constructed by the Kol-
mogorov extension theorem.

Exercise 5.6 Complete the beginning of Theorem 5.59.

Exercise 5.7  Show that a hitting time defined in Definition 5.48 is a stopping
time in the sense of Definition 2.28.

Exercise 5.8  Given a finite aperiodic irreducible Markov chain, prove that for some
n all the entries of K™ are positive.

Exercise 5.9  Show that a drunk astronaut has a nonzero probability of wandering
away from his starting point!

Exercise 5.10  For the kernel given in Exercise 5.3 calculate the limiting probability
the chain is in state ¢ and the preceding state was a.

Exercise 5.11 Let X,, be an irreducible recurrent Markov chain with a stationary
distribution 7. Show that the process W, of the X, observed when it enters the
set A has a stationary distribution #(¢)/7(4) for i € A.
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Exercise 5.12  Consider a probability transition kernel K on four states: a,b,c,d.

1/41/41/41/4
0 0 1/32/3
1/41/4 0 1/2
1/52/52/5 0

Let F = {a,b} and B = {c,d}. Calculate the pG;;. Check that the process on
F has a stationary distribution proportional to the stationary distribution of K
restricted to F.

K=

Exercise 5.13  Calculate the mean number of customers in a steady state M|G|1
system. Calculate the mean number queued.

Exercise 5.14  Show that the mean system time t, (W in seconds) in a steady
state M|G|1 queue satisfies q,,, = pt, (or L = AW in seconds). This is called Little’s
Law.

Exercise 5.15  The (s,S) ordering policy is a common stock management technique
which strikes a balance between having too much stock on hand and being unable
to meet customer demand. Suppose daily demand for cans of soup are independent
and equal to k cans with probability px. At the end of each day, stock is taken
and if the stock is less than s cans we order enough to bring the level up to S cans;
otherwise we do nothing. Delivery takes place before the store opens the next day,
but unmet demand during the day is lost. Show that X,,, the inventory level at the
end of the n'* day, is a Markov chain and compute the transition kernel.

Exercise 5.16  Consider a probability transition kernel K on three states: 0,1,2.
Let the initial distribution be a = (.4, .1, .5) and let the probability transition kernel
K be

a) Compute P(Xo3 = 0, Xo5 = 2, Xog = 11X = 0).

b) Compute E(|X; —2[| X, =1).

c) Compute EX?Z.

d) Calculate the stationary probability measure associated with K.

e) You receive a 10 dollars every time the chain is in state one, 25 dollars every time
the chain is in state two and nothing in state 0. Calculate the long run average
amount of money received per transition.

f) If the chain starts in state 0, what is the expected number of transitions until
the chain reach state 2.

g) If the chain starts in state 0, what is the probability it has not reached state 2
by n transitions

h) Calculate o(0) = limp—oo P(Xp = 0|X; #£ 2,k =1,...n,X0 = 0) and o(1) =
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limg, oo P(X, = 1Xg # 2,k = 1,...n, X = 0) and lim,,_, P(X, = 0|X; #
2,k=1,...n,Xp=1) and limy, ,o P(X, =1|Xr #2,k=1,...n,Xp=1).

i) (¢(0),0(0)) is called the quasistationary distribution. How do you interpret the
results in h)?

Exercise 5.17 A machine tool takes a machine cycle of exactly 45 seconds to load
and drill a hole in a particular part. When the machine tool is properly adjusted the
holes are drilled perfectly but there is a 2% chance that the machine tool will become
misaligned when a part is loaded into place before drilling. When the machine is
misaligned it stays misaligned for this and the following cycles and there is a one
in 5 chance that the drill hole will be off center. All the holes are automatically
scanned for proper positioning so as soon one drill hole is off center the machine
is taken off-line and the operator realigns the machine. The realignment takes 6
minutes. During the realignment phase no drilling takes place.

a) Model the above production process as a Markov chain. Write down the state
space and the transition kernel.

b) Calculate the steady state of this Markov chain.

¢) What is the long run proportion of defective parts produced?

d) What is the long run average number of nondefective parts drilled every hour.

Exercise 5.18 A special IC is produced one at a time by the firing of the silicon
wafer in an oven. There are two production regimes, fast firing and slow firing.
Fast firing takes 2 hours while slow firing takes 5 hours. If the components of the
wafer have the right composition only 5% of the IC’s are defective on average at
the normal fast firing temperature. If the components are contaminated in some
way on average 20% of the IC’s are defectives. If the components of the wafer
have the right composition on average 1% of the wafers are defective in the slow
firing regime. If the components are contaminated there is still an average of 20%
defectives produced in the slow firing regime.

Each IC is tested and defective ICs are discarded. Production continues 24 hours
a day every day. The following quality control scheme is followed.
1) Start with the normal fast firing temperature.
2) If a defective is found the oven is switched to a slow firing temperature.
3) If the next 3 IC’s are nondefective then the oven is switched back to fast firing
but if a defective is found the quality control engineers stop production and replace
the components to eliminate contamination. This repair regime takes 3 hours.
4) When the engineers are finished they start up production at the slow firing
temperature.
a) Give the state space of a Markov chain describing the transitions between the
various operating regimes if the components remain uncontaminated. (Hint: don’t
model the time between transitions.) Give the corresponding transition kernel K.
b) Calculate the steady state of the above kernel.
¢) Calculate the long run average number of hours per transition of the kernel K
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(Hint: Consider the time between each transition as a reward; i.e. the reward in
the fast firing state is 2 hours while the reward in the repair state is 3 hours.)

d) Calculate the long run proportion of time spent in the fast firing regime.

e) Calculate the long run proportion of defective IC’s produced.

f) Assuming we start of in the slow firing regime calculate the on-target ARL, that
is the mean number of IC’s produced until a false alarm when the repair team re-
places the components (uselessly) (just show how to perform the calculation but
don’t carry it out).

g) Assuming we are in the fast firing regime when the components becorne contami-
nated calculate the off-target ARL, that is the mean number of IC’s produced until
an alarm (just show how to perform the calculation but don't carry it out).

Exercise 5.19 A piece of production machinery is inspected after 100 hours of
production. The inspection takes an hour. About 20% of the inspections find a
defect that requires the machine to be repaired immediately. The repair period
takes 1,2 or 3 hours with equal probability. After a repair the machine restarts the
production cycle. If no defect is found during the inspection period then production
resumes immediately.

a) Model the evolution of the production machinery as a Markov chain Write down
the state space and the transition kernel.

b) Calculate the steady state of this Markov chain.

¢) What is the long run proportion of time the machine is in the inspection phase.

Exercise 5.20  Every 10 minutes a controller decides whether or not to select a
sample from the production line for inspection. The decision to select the sample is
taken randomly with probability 10%. Selected samples are stored in a queue until
they are inspected. The quality control engineer takes either 10, 20 or 30 minutes
with equal probability to do the inspection. He works as long as there are samples
to be inspected.

a) What is the long run proportion of time the quality control engineer is idle.

b) Can you write down an expression for determining the steady state distribution
of the number of samples in the queue (including the one being inspected).

Exercise 5.21  Show that there are no null recurrent states in a finite Markov
chain; that is show the expected return time to any state is either infinite and the
state is transient or the expected return time is finite and the state is (positive)
recurrent.

Exercise 5.22  Suppose K;; > 0, and let 7 be the exit time from state i:
T=inf{n>1:X, #1i}.
Show that 7 has a geometric distribution with respect to P;.

Exercise 5.23 Consider a gambling game where a player has probability p of win-
ning a dollar and probability ¢ = 1 — p of losing one. Suppose the initial fortune
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of the player is ¢ dollars and he (or she) plays either until he (or she) is ruined or
until he (or she) has earned U dollars which is enough to buy a plane ticket home.
Calculate the probability of ruin. It is best to define a function R() to be the
probability of ruin starting with ¢ dollars. Write a recursion relation for R(i) and
then show this relation is satisfied if

R(i) = % if p#1/2.

The fortune of the player can be described as a Markov chain. Give the transition
probabilities and phrase the above absorption problem in terms of matrix multipli-
cation.

Exercise 5.24  Calculate the expected number of games described in Exercise 5.23
the player will play.

Exercise 5.25 Counsider a sequence of independent, positive, integer valued ran-
dom variables {X7, X2, X3, ...} with common distribution # and common p.m.f.
f. Consider the {X;, X3, X3,...} to be the interarrival times of a point process
{0,541, Sz,...} where S, =37 | X;. Define the age at integer time ¢ for the point
process to be: Z{t) =t — S,_1if Sp_1 <t < S,. Z(t) represents the time since
the last arrival before time ¢.

a) Show that Z(¢) is a Markov chain with state space {0,1,2,...}.

b) Give the transition matrix.

¢) Calculate the stationary distribution. Remember that

o0

px =EX; =Y (1- F(y)).
y=0
Exercise 5.26 Show that the sequential ranks of a sequence of i.i.d. random vari-
ables X,,, having a continuous distribution function F', are independent and that
the distribution of R; is uniform on the integers 1,2,...,1.

Exercise 5.27  Write a Mathematica program to calculate the approximate average
on-target run length for the nonparametric cusum procedure. Use the fact that the
observations U; are essentially independent uniforms.

Exercise 5.28  Consider the transition kernel K given in Example 5.31.

a) Write a simulation for a Markov chain with this transition kernel. Let the
simulation run for 1000 transitions. Compare the proportion of time spent in the
three states with the stationary distribution 7.

b) Calculate the proportion of transitions which go from ¢ to j for each pair of
states. Compare this with 7(¢)K;;.

c¢) For each pair of states ¢ and j compare the results in b) with the proportion of
transitions which go from to j to i.



Chapter 6

Renewal Theory

6.1 Introduction

In this chapter, as in Chapter 4, we start with a simple point process {T,}5° _;
that is a strictly increasing sequence of random variables such that Ty < 0 < T7.
The interarrival or sojourn times relative to 0 are denoted:

Tn—Tn,1n22
T1 n=1
—T5 n=>0
Tn+1—Tnn§ —1.

X, =

As in Chapter 4 we assume that T, s cannot be measured more precisely than
integer multiples of some time unit which might be nanoseconds. However, since
every measurement in this chapter (except in Section 6.5) is in units we may as well
just assume our measurements are integer valued and we suppress the - notation.
A value measured in units may be written with brackets when confusion is possible;
hence [1] means one nanosecond unit. Functions and processes like f,[z] and N]t]
below have square brackets to emphasize that they are defined only at nanosecond
units and x and t are assumed to be measured in nanosecond units.

Definition 6.1 A simple point process, {7}, is called a renewal process if the
increments {T,, —T,,—1}32 _ . are independent, strictly positive, unit-valued random
variables and Ty = 0. The point process is called a delayed renewal process if T < 0.
We denote the distribution of X,, by F, having p.m.f. f, and mean p,. Note that

fal0] =0,

Many complicated stochastic processes have the structure of a renewal process em-
bedded in them. At the renewal times T),, these processes regenerate and the future
is stochastically independent of the past. Such would be the case in a machine re-
pair model. Each time the machine is reset the process starts afresh, independent
of the past.

Let us define the number of renewals up to and including time ?:

183
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X XXX, > X, —>

Fig. 6.1 A trajectory of the renewal process.

Definition 6.2 Let
N[t] :=sup{n: T, <t}.

The counting process N|t] is called a renewal counting process or often simply the
renewal process thereby confounding it with {77, }.

Since we are assuming the interarrival times { X, } are strictly positive and hence
always greater than or equal to [1], it follows that N[t] < ¢/[1] < oo for ¢ fixed. In
fact we can give the distribution of N[t] as follows. Clearly if there are n or more
renewals at time ¢ then the n'® renewal occurs before or at time ¢. In symbols

N[tl>n& T, <t
Consequently,

P(N[t] > n) = P(T, < 1) (6.1)

and

P(N[t] =n) = P(N[t] >n) - P(N[t] > n+1)
Denote the distribution function of T,, by H,. Since the interarrival times are
independent it follows that H,, may be calculated (by convolution) from the distri-
butions {F},} of the {X;}. Consequently, P(N[t] = n) = H,[t] — H,.1[t]. We can,
moreover, use Exercise 2.13 and (6.1) to calculate ENJt]:
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This expectation is of course finite since N{t] is bounded by t/[1].

—

T4 t T,

«—— Z{t) —«—— Y1) ———>

Fig. 6.2 The age and excess at timne t.

Definition 6.3 Define the age at ¢, to be
Zt]=t—Th-1 whenT,_1 <t < Ty
and define the excess at ¢ to be
Y| =T, —twhen T, _; <t <T,.

Definition 6.4 A process {V[t]} is a regenerative process with embedded (de-
layed) renewal process {7} if

Vit = i VIZIE] - x{Tn1 <t < T,

where {V"[s] : 0 < n < oo} is a sequence of stochastic processes defined at each
time unit s > 0, such that {7, — T —1, V™ }2 | forms an independent sequence. The
process V"[s] is called the n' cycle of the regenerative process and is of duration
Ty — T

We say a regenerative process is homogeneous if all the cycles after the first are
identically distributed. These cycles have the same distribution as the canonical
cycle (X*, V™).

Intuitively, the process V is simply the sequence of independent processes V'™ stuck
end to end. At time ¢, first determine the cycle, i.e. T, -1 <t < T, then the age
of that cycle at time ¢, i.e. Z[t], and finally the state of that cycle at time 1, i.e.
vrZi).
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Proposition 6.5 If V[t] is a regenerative process then
P(V[t] € AlZ[t] =z, N[tl=n—-1) = P(V"[z] € A|X,, > ).
Proof:

PVl e AlZ[t] =z, N[t) =n—1)
=P(V"xle ATy =t —z,X, > 1)
= P(V"z] € A| X, > x)

Example 6.6 Alternating renewal processes

Imagine that when a machine breaks down we pick out a new machine from a
series of different models; the nt® having a lifetime {U,,} with mean u,,. Suppose,
moreover, the replacement period of the nth machine is a random time, R, having
mean r,, (R, may depend on U, — if the machine breaks in some spectacular way
it may take longer to replace!). In this case let

1if0<s<U
k4 - — = n
v [5}‘{01fUn<s<Un+Rn
and let
Xn:Un+Rn,TO:0andTn:Zxkfomz1
k=1

(we do not need to construct the past of this process). Let V[{] be as in Definition
6.4. Then if T,,_; < t < T, we are on our n*” generation and, moreover,

1 if the n** machine is working at time ¢

VIl =Vt —Th ] = {o if not.

Hence V[t] is 1 if a machine is working at time ¢ and 0 if a machine is being replaced
at time ¢,

Example 6.7 Continuous sampling inspection — (3.26) continued

The continuous inspection procedure developed by Dodge may be analyzed as a
renewal process. It is clear that every time the process reverts to tight inspection
the entire past is forgotten and a new cycle starts.

Example 6.8 Markov Chains

The most familiar example of a regenerative process is a recurrent Markov chain.
Consider an irreducible, recurrent Markov chain M,, and denote the time of the nt"
visit to state ¢ by T),. Let the interarrival times between return n —1 and the return
n to i be denoted by X,,; that is X, :=T,, — T},_1.
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Lemma 6.9 The sojourn times X, n = 1,2,..., are independent and, more-
over, X, n = 2,3,..., are identically distributed with p.m.f. fi, the interarrwal
distribution of state 1.

This is intuitively obvious from the Markov property. Whenever the chain returns
to the state 4, all the past is forgotten except ¢; that is the previous interarrival
times are forgotten and don’t influence the future evolution of the process or, in
particular, the future interarrival times.

Proof: We start by considering atomic events

P(Xy=w,Xo=w,...,Xpn =Wn, Xnp1 = Wni1)
= P(Xn+l = wn+1}X1 = w17X2 = w2, ... 7Xn - ’wn)
P(X1 = wl,Xg = UJQ,...,Xn = U)n).

Now if we let ¢, 1= wy + wq + - - - + wy, for all k then #; is the value of the stopping
time T}. The event {X; = w1, Xo = ws,..., X, = wy} is in Fr, and on this event
T, =t, and M7, =i. Hence, by the strong Markov property,

P(Xng1 = wnpr| X1 = wy, Xo = wa, ..., Xp = wp, My, =1)
= P(X1 = wpy1)-

Now by induction we can get

P(Xl = wl;XZ = W2,... ,Xn = wn)
= Pi(X1 = wn)Pi(X1 = wn_1) - Pi(Xy = w2) P(X) = wy).

We conclude that the W’s are independent and for n > 2

6.2 Renewal Reward Processes

Definition 6.10 We say a renewal process {7}, } is a homogeneous renewal process
with p.m.f. fif {X,,} are identically distributed for n = 2,3,... with p.m.f. f and
mean /.

Throughout this section we assume {7}, } is a homogeneous renewal process.

We can use the law of large numbers to see how fast N[t] goes to infinity as
t — oo. First we must show NV [{] does indeed tend to infinity with ¢. If not, there is
an n < oo such that N[t] < n for all ¢t with positive probability. This follows since

{N]oo] < oo} =UpZ, {N[t] <n for all t},
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so if P(N[oo] < 00) > 0 at least one of P(N[t] < n for all t) > 0. However, for any
fixed s,

P(N[t] < n for all t) < P(N[s| < n) =1 — Hyls]
by (6.1) and this later expression tends to 0 as s — 0o. We conclude that P(N[oo] <
o) =0.
Proposition 6.11  For homogeneous renewal processes

lim {V_[ﬂ = l
t—oo t 7

with probability 1.

Proof: From the definition of N[t] we have Ty <t < Tnig+1 SO

T T
NI[t] < i < g
N[t] — NiY NIt
Now since
1 1 I 1 n-1 1
ST = iX =N X=X X
n " n 1+nk§;2 P Lt n n~1kZ:2 g
and since {X,,} are i.i.d. for n = 2,3,... with common mean g, it follows by the

law of large numbers that T}, /n — y with probability 1. Now the sequence N[t] as
t — oo is just another way of going to infinity so

T
N[

— pgast — oo.
Also if we write
Ini+r T N[+ 1

Nl T Ni+1 NE

we have by the same reasoning

M - ast — 00

N '
The proof now follows since t/N{t] is caught above and below by past —oco. =
The conclusion of the preceding proposition is quite natural. If the mean inter-
arrival time is p it stands to reason that the number of renewals up to time ¢ should

be roughly t/u. We call 1/u the rate of the renewal process.

Proposition 6.12 If {T},} is a homogeneous renewal process having p.m.f. f,
mean p < oo then

1
lim ~EN] = ~.

t—oo § [
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Proof: Since X; > [1] it follows that N[{] < ¢ so N[t]/t < 1 and by Proposition 6.11,
N{t]/t — p~!. The result now follows by the Dominated Convergence Theorem 9.7.
N

Consider a homogeneous renewal process {7}, } and imagine that each generation
has an associated reward and that the reward associated with the n'l
is R*. We assume {T,, — T}, 1, R"}2°, forms an independent sequence, each pair
of which has the same distribution as a canonical generation {X*, B*}. This means
the rate of reward restarts in an independent and identically distributed fashion at

every renewal time (the first renewal period may be different).

generation

Now the average reward for completed cycles by time ¢ is given by
N [¢]
n
DI
n=1

The sequence {R"} is i.i.d. for {n =2,3,...} so assuming E|R*| < oo the law of
large numbers gives

L5 e N TR
t 4 -t N[
n=1
S Ll
T

as t — oo. Finally, we denote by « the expected reward of the n'" renewal cycle;
that is a = ER* since all the cycles after the first are assumed to have the canonical
distribution. Hence, the average reward for completed cycles by time ¢ tends to a/p
where p = EX*.

Let’s consider an additive reward structure. Let the rate of return of some
reward process be described by a function V[t] measuring the reward in the time
interval [¢,t + [1]). We assume V[t] is a regenerative process with an embedded
renewal process {7,,}. As usual we denote the canonical cycle of V[t] by V*[s]
for 0 < s < X*. For the moment we will consider the positive reward V[t =
max{V[t],0} which is also a regenerative process. Let R[t| = ZZ;[O” V[s]* represent
the total (positive) reward earned by time ¢. Define the reward earned up until time
2 €[0,T,, —T,_1) in the n'* renewal period to be

(4 Tn- AT —[1])

R"[z] = > V™.

s=Tn -1

The reward earned in the complete nt renewal period is R"[X,] = R™ and this
has the same distribution as the canonical reward R* for n > 1.
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Now use the same argument as in Proposition 6.11.

= (1] N[t J+1

—ZR” ZV <—ZR"

since the rewards are positive. Assuming E|R*| < oo and using the law of large
numbers,

N[f] 1 N[t]+1 N
~ZR” EX* and - Z R" =

where o = ER*. We conclude that if E|R*| = EZ?:O_M (V*)*[s} < oo then

T[]

X
tlggj—ZVﬂs —E 2::0 (V*)*ts

We can now repeat the above argument for the total negative reward process
V=[t] = max{~V][t],0}. We conclude that if E 32 "[ll(V*) [s] < oo then

t—[1] | Xo-n
thm—zv :;E Z (v~
s=0

Since V|t] = V*it] — V~[t] we may combine these results in the following The-
orem.

Theorem 6.13 Let V[t] be a homogeneous regenerative process with canonical
cycle {V*[s];0 < s < X*}. Assuming

E Z [V*[s]] < o0

0<s<X*

then

lim SV«
t—oo t il

where o = F Zf:*o_[l] V*[s] and p= EX*.

Example 6.14 Continuous sampling inspection — (6.7) continued
We might consider the inspection of an item to yield a (negative) reward of 1. If an
item is not inspected the reward is 0. In this case, the long run average reward is

precisely the average fraction of items inspected, which was evaluated in Example
3.26.

Example 6.15 Alternating renewal processes — (6.6) continued
If we suppose the joint distribution of the machine lifetime and the replacement
period {U,, R, } are identical for all cycles, then VJt|, as defined in Example 6.6,
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is a regenerative process with a homogeneous embedded renewal process. The
preceding theory then applies and we conclude the long run average time spent
with the machine working is the mean time the machine works per cycle divided by
the mean length of a cycle, that is;

g Zemox {(VIsI =1} _ n
t—o0 t w+r

where £ is the common mean lifetime of a machine and r is the common mean
replacement period.

Example 6.16 The discrete M|G|1 queue - (5.29) continued

The times when a departure leaves the queue empty or when a customer arrives
to find a queue empty form embedded renewal processes! This is a consequence
of the memorylessness property of the arrival stream. Consequently, if we define
Vt] = x{X[t] = k}; i.e. whenever there are exactly k customers in the queue, we
see that V[t] is a regenerative process. By the above then we know that in the long
run, the average time the queue has exactly k customers waiting tends to a(k), the
steady state probability the queue has & customers. Below we show o = 7 where
m(k)) is the density was given in (5.29).

Denote the sequence of customer arrival times by {T;‘; n=1,..., oo} and denote
the sequence of customer departure times by {Tf?; n=1,..., oo}. The queue size
X[TP] watched along the sequence {T Dop=1,..., oo} is a regenerative process

because there is an embedded renewal sequence of times when a departure leaves
the queue empty. Hence,

N
1 D
" Tk —
Jim e DX <) =TG- )
where II(k — 1) is the steady state probability the queue size at service completion
times is less than k. The generating function for 7 (k) = II(k) — II(k — 1) was given
in (5.29). Similarly, if we watch {X[T2 —1];n = 1,...,00}, the sequence of queue
sizes seen by arriving customers then

1 N
Jim S OX{XITE -1 <k} = A(k— 1)
n=1

T N

where A(k — 1) is the steady state probability the queue size seen by customer
arrivals is less than k. A is the cumulative distribution of the queue in steady state
at any fixed time by the BASTA property in (5.29); i.e. A has density a. Below we
show A = II and we conclude that the distribution of the queue size left behind by
service departures is indeed the steady state distribution of the queue.

To show A = IT we first show {X[T'P] < k} and {X[T* , — 1] < k} are the same
event if the queue is empty at time [0]; i.e. X[0] = 0. Suppose X[T'P], the number
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in the queue after the n'* departure, is less than k; i.e. X[TTP] < k. This means
the number of arrivals up to time T,° is less than n + k. This, in turn, means that
TP < T4, so X[T2, 1] <n+k—1-n=k—1 (because the queue started out
empty). On the other hand, if X[TA , —1] < k then T” < T2, and this implies
X[TP] < k. Hence the two events are the same. Finally,

N
1
Mk 1) = lim - S OAXITP) < k)
n=1

N
1 3
= Jim > 1X{X[Tn+k —1] <k}
n=

N+k k
1
— lim — A ~ lim — TA 1
i 5 > X~ 1] < k) = fim § DX -1 <k}
= A(k - 1).

If we can prove a process regenerates then the steady state exists. The idea
of regencration has even been extended to Markov chains on a general state space
which have zero probability of recurring to a given point. For coupling on general
spaces one can consult the text by Meyn and Tweedie (1993) which describes the
splitting technology which creates an artificial atom to force a regeneration.

6.3 Stationary Renewal Processes

Consider a simple point process. We now consider the distribution of points around
an arbitrary point in time, t.

Definition 6.17 Define the interarrival times relative to time ¢ by

Xnlt] =

We say a point process is stationary if the distribution of the interarrival times
around any time point ¢ is the same!

It is not at all clear if simple, stationary point processes even exist! The first
thing we do then is construct a stationary, homogeneous (necessarily delayed) re-
newal process.
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Theorem 6.18 We may construct a stationary renewal process by defining inter-
arriwal times by

P(X__n :l‘-n,...,X_l :x_l,Xo = Zp

and X1 = a1, X = 29,..., X, = ,)

= flee] - fle PO ) (6.2)

WHETE Ty T i1y s L1, L0, L1, L2, ..., Ly 18 any sequence of integer valued, non-
negative interarrival times.

Of course we have only defined the probability of cylinder sets specified by a finite
number of interarrival times, but by the Kolmogorov extension theorem this may
be extended to a probability on all the interarrival times.

Proof: We show that the distribution of points around an arbitrary point in time
t and around [0] is the same. Consider the interarrival times measured relative to t
defined in Definition 6.17. Now let ¢ = [1] and take the case where zg > 0

PX_,ll=2_pn,..., X 4[] =21, Xo[1] = x0,
and X;[1] = z1, Xo[l] = @2, ..., Xu[1] = z,)
=P(X_n0)=2_p,..., X 1[0 =21, X0[0] = zo — [1],
and X;[0] = 21 + [1], X2[0] = z2,..., Xn[0] = z,)

= flo ] f[l,_ﬂf[mo — [1]: z1 + [1”]‘[951] o flwn)

- P(Xgn[O] =T —pyeo- ,X_.l[O] = .’Efl,XO[O} = Iy
and Xl[O] = .Z‘l,XQ[O] = To,... ,X,L[O] = Cl?n).

If on the other hand zy = 0, then

P(X_n[l] =T _pn,.. .,X_l[]_] = l‘,l,XQ{l] = [O}

= P(Xﬁnjul[()] =T _p,y--- ,X,ﬂ()] = CCVQ,X()[O
and X;[0] = [1], Xo[0] = 21, ..., Xp31[0] = zp)
= flz_,]- ..f[x%]wf[m] o flan)

yu
= P(X_n[O] =T _p,y... ,X_l[O] = Ifl,X()[O] = [O]

and XI[O} 1,X2[0J ::1:2,...,Xn[0] :”En>

We have now shown that the distribution of points around [1] is the same as
around [0]. Now repeat the argument to show the distribution of points around [2]
is the same as around [1]. Continuing in this way we see the distribution of points
around [t] is the same as around [0]. ]
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Next remark that by summing out the possible values of the sequence
Tpyeroy T 1,T2,...,Tn, we get the marginal distribution of Xg, X; to be

flxo +
fxox, (xo,21) = fwo ],

]
That this is a joint p.m.f. follows since

Y Y JEryl=) (- Fl)=p

z>0y>0 z>0

by Exercise 2.13. Hence, given the the length of the interarrival interval containing
0 is ¢, the age at 0 is uniformly distributed on [0, ¢ — 1].

We note that the interarrival times {X,,} forn = 2,3,... and n = —1,-2,...
have common p.m.f. f (with distribution F') and are independent. This follows by
summing over all possible values of zg and z; which gives

P(X_n ::E,n,...,X_l :.’L’,l,Xz :IQ,...7XTL :In)
= flz—n] -+ fl—a]flza] - -~ flzal.

We may extend this probability on the coordinates {X_,,..., X,} to a probability
on the infinite sequence by the Kolmogorov extension theorem.

Definition 6.19 We call the p.m.f. e[z] := (1— Fl[z])/u for z > 0 the equilibrium
distribution for the homogeneous renewal process having distribution F'.

For the stationary renewal process, the distribution of the age at 0, Z[0], which by
definition is the same as X, has the equilibrium p.m.f.:

flztyl  1-F[
P(Z[0] = 2) = -
g [ I

for z > 0. This follows by summing out x; in the joint p.m.f. of Xy, X;. Similarly
the excess at 0, Y[0], has the same distribution as Xy which is

P =y = L=l
m
for y > [1].
Another way of describing the equilibrium renewal process is to write
PXo=up, X1 =a1) = %e[xo]
= P(X =z + x1|X > x0)e[zo], (6.3)

where X is a random variable with distribution F'. In practice then, we could
simulate an equilibrium renewal process by generating the age at 0, Z[0] = X,
with the equilibrium p.m.f. and then generating a series of random variables having
distribution F. We pick the first one larger than X to be X3 + X;. By the
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above, X and X; have the required distribution. The other interarrival times are
independent with distribution F'.

It is interesting to note that the renewal period containing 0 has length X¢ + X;
which does not have distribution F. This follows by calculation:

T

£}
P(X0“|-X1:33): P(Xo:k,Xli"E—k)

—I

Eod
- O

8

' 1]

7

I
i

8 o
= |

]

1t

The latter expression is indeed a p.m.f. since Y - zf[z] = p and it is easy to see
that Xy + X7 is stochastically larger than an interarrival period with distribution
F. This means that for any ¢ the probability Xy + X exceeds t is greater than
1 — F[t]. This follows since

P(XO+X1>t):ZEf—N[$—]
\?1*FM) xflz]
o Z;(l-FM)
(1 - F[t))

=" FX|X >t
i
> 1 Flt]
where X is a random variable having p.m.[. f and we used the fact that E(X|X >
t) > 1+ (see Exercise 2.15). This result is related to the renewal paradox discussed in
Chapter 4. The condition that the interval [Tp, T}) contains 0 makes it different than
other intervals. In fact, since a longer interval has a greater probability of containing

0, it follows that [Ty, T1) is stochastically larger than an ordinary interarrival period
having distribution F.

Theorem 6.20 The stationary point process {T,} constructed in Theorem 6.18
18 the unique stationary point process such that

PX M=z _pn,...., X 1l =21,
and Xl[l] = .Il,Xz[]_] = T2,... ,Xn[l] = CLTJTO = O)
= flenl - flealfiea] - flaa)

for all n and for all possible past and future interarrival times

Topy-- s Ty QA Ty, ..., Ty
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In other words there is a unique stationary point process whose Palm measure is
that of a homogeneous renewal process with no delay.

In general a simple stationary point process conditioned on having a point at 0 is
said to be a Palm process.

Proof: Consider any stationary point process {1, } whose Palm measure is a ho-
mogeneous renewal process with no delay. For simplicity we will simply calculate
the p.m.f. of interarrival times X = (X_4,Xo, X1, X2) since the distribution of an
arbitrary number of interarrival times will follow immediately. By hypothesis

P(X_ | =z_1,X) =21, Xs = 22| X = 0) = fla_1]flz1]flzz],
S0
f)z[x—boathﬁﬂ = flz1]P(Xo = 0) flz1]flz2]-

Next, if zg # 0, we have by stationarity that

f;z[iﬂflyxo,ﬂ?hl”z]

= P(Xkl[l] = .’L‘fl,Xo[H = xo,Xﬂl] = 1’1,X2[1] = 132)

= P(X 1[0] = -1, Xo[0] = wo — [1], X1[0] = z1 + [1], X2[0] = 22)

=P(X_1=x_1,X0=0,X; =20+ x1, Xo = z2) by iteration

= ff[x~1703$0 +Z’1,I2]

= flz_1]P(Xq = 0) flxo + z1] f[z2] by the above.
If we now sum the joint p.m.f. on z_1, zg, 1, 22 we conclude that 1 = p-P(Xy = 0).
It follows that

]f[iUo + 2]

PX_1=2_1,X0o=20, X1 =21, X0 =22) = flz_4 flzo]

which is precisely the p.m.f. of the stationary process we constructed. |
We summarize the results in the following theorem.

Theorem 6.21  [f{T,} is a stationary, homogeneous renewal process then for all
times t, the point process {TN[t]+n — t} has the same distribution. In particular the
age at t, Z[t] has o fived p.m.f. — the equilibrium p.m.f..

Corollary 6.22 For o stationary, homogeneous renewal process

Proof: For any time t,
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Hence,

t 4

ENH =Y P(ZIn]=0)= Y

B t
n=[1] n=[1] H

==

|
Now consider a stationary regenerative process V ¢[t] with an embedded station-
ary, homogeneous renewal process {X,}. To construct such a process consider, as
in Definition 6.4, a sequence of independent identically distributed processes. These
are the cycles of the regenerative process. Let V*[s| be a canonical member of the
sequence and let X™* denote the cycle length of V*[s] having distribution F'. Pick Xg
according to the equilibrium p.m.f. and then generate independent cycles having
the canonical distribution V*[s], until we find one whose cycle length exceeds Xo.
Denote this cycle by V! and denote the cycle length by Xg + X;1. The next cycle
V2 is independent with the canonical distribution V*[s]. Denote the cycle time by
X5. Continue in this way for the cycles (V3, X3), (V4, X,),... . Finally construct
Ve by starting V! at time Ty = — X followed by V?2 started at time T}, = X3, V3
started at time T3 = X; + X2 and so on. By assembling these independent cycles
we have built a regenerative process as in Definition 6.4.
The joint p.m.f. of (X, X;) is

flzo+ 1)

P(Xy =m0, X1 =m1) =e(xg) - P(XT =z + 31| X" > 20) = p

using (6.3). It is clear the distribution of the pair Xp, X is precisely that of an
equilibrium renewal process. Hence the embedded renewal process is stationary and
homogeneous.

We remark that this construction relates V¢ to V*. In particular we show

Corollary 6.23 Forallz >0 andn > 1,
P(Vetl € AlZlt] =z, Nt =n—1) = P(V"[z] € 4| X~ > z).
Proof: V¢[t] is a homogeneous delayed regenerative process. By Proposition 6.5,

PVt € AlZlt] = 2, N[t] =n — 1) = P(V"[z] € A|X,, > z)
= P(V*[z] € A|X" > z)

for n > 2.
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If, however, N[t] = 0 then we are still on the first cycle and

P(V°[t] € A|Z[t] = z,N[t] = 0)
= P(Vet]e Al Xo =z —t, X0+ X1 > )
P(Ve[ﬂ cAXyg=0v—-tXeg+ X1 > .%‘)
P(Xog=x—t Xo+ X1 > z)
_PVetle A, Xo+ Xy > z|Xo =2 —t)
P(Xo+ X, > 2| Xo =2 —1)
P(V*z] € A, X* > z|X* > x —t)
- P(X*>a|X* >z —1)
by the construction of V!
= P(V*[z] € A|IX* > z).

|
We can, moreover, show that such an equilibrium regenerative process is sta-
tionary.

Theorem 6.24 If V¢[t] is a stationary regenerative process with an embedded,
stationary, homogeneous renewal process {T,} then for any time t and for any set

A

b EO§7;<X* x{V*(a] € A}.
i

PVetle A) =

Hence the probability the equilibrium regenerative process is in A at time t is the
mean time per cycle the canonical process V*[s| is in A divided by the mean length
of a eanonical cycle.

If Ve is a real valued regenerative process such that E|V¢[0]| < oo then, for any
time t,

EZO§m<X* vzl
. )

EVe[t] = BVE[0] =

Proof: We condition on N[t} and the age at ¢

Z Z P(V*[z] € A|IX* > 2)P(Z[t] = 2, N[t] =n — 1)
by Corollary 6.23

= Z P(V*[z] € A|X* > 2)P(Z[t] = ).
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Hence, since the p.m.f. of Z[t] is e, the equilibrium p.m.f., we have

¢

PVet e A) = P(V*z] € A|X™ > x)elz]

0

8
i

PV*z)e A, X* > z) (1 - Flz})
1= Flz] 2

p'%g

0

8
il

I

== tl>—‘

i x{V¥zl e Az < X*}

E Z x{V*z] € A}.

O0<e << X ™

The second result follows from the above by linearity. First establish the result

ZO<$<X* s(V*[z])
1

for simple functions s. Then using monotone convergence show the result holds
for (Ve)* and (V*°)~, the positive and negative parts of V°. Next note that the
right hand side is independent of ¢, so E(Ve[t))" = E(VE[0))* and E(Ve[t])” =
E(Ve[0])~. By hypothesis V*[0] is integrable so the result holds by linearity. =

Es(Ve[t]) =

Corollary 6.25 Let V[t] be a real valued regenerative process having identically
distributed regenerative cycles where {V*[s];0 < s < X*} denotes a canonical cycle.
If E|Ve[0]] < oo then

where V° is the associated stationary regenerative process.

Proof: By Theorem 6.24, EV[0] = B} . V"[z]/p so the latter is integrable.
By Theorem 6.13 then
t—[1
o Dm0 VI _ @
t—o00 t H
where a« = EY "y ..y~ V*[s] and p = EX". Combining these facts gives the result.
|
If V[t] is a regenerative process then so is {V[t] € A} where A is some (mea-
surable) set. Hence the long run average time the regenerative process spends in
A de limp_ T ! Zzﬂ;‘om x{V*¢[t] € A} is equal to the probability a stationary
regenerative process is in A at any time ¢, i.e. P(V°[t] € 4) = P(V°[0] € A),
and this in turn is precisely the mean time the process spends in the set per cycle
divided by the mean length of a cycle, i.e.

—E > {Viaje A},

0L X*
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Example 6.26 Little’s Theorem
Consider a queue @}[t] with an embedded renewal process N[t] (for the M|G|1 queue
N{t] would be the number of times the queue empties). The mean arrival rate of
the arrival process A[t] is assumed to be limi—. A[t]/t = A. Let {W,} represent
the sequence of customer waiting times (including the service and queueing time).
Let us make the mild assumption that lim,, .., W,,/n = 0.

By Theorem 6.25,

Jm g 3 Qi
s<t—[1]
where L is the average queue length. If we stop admitting customers after time ¢
and we regard the queue size Q[s] at time s as a renewal reward process, then the
total reward by time ¢ is the total time spent waiting by customers who arrive by
time ¢, minus the time to clear the queue which is left over at time ¢. If we denote
by Si the service times of the customers remaining at time ¢ then 3 _, Q[s] =

YA W, - 9 St Hence,

L (A Q1]
- _ t
Jfgot;Q =l | 2 M-S
Nli] Qlt)
, N[t] 1 1
=1 — == £, 6.4
Pl B N[t};W tkzzlsk (64)

Remark that W, is the waiting time of the last customer to arrive before time

t. Hence, Zgﬂ St < W apy since some of the work has been cleared out between
time ¢ and the time of this last arrival. It follows that

& Alt] Wap

Jim Zsk Jim WAH Jim == =0

where we used our assumption that lim,, ., W, /n = 0.
We know the limit of the right side of (6.4) exists and hence so does

m

. 1
W .= w}linoo . Z:I W,.
—

Moreover, L = A\W.

We conclude that Little’s formula holds and L = AW; that is, the average queue
length equals the product of the average arrival rate and the average waiting time
in the queue. This result is very useful in converting the knowledge we already
have about the mean queue length of an M|G|1 queue, for example, into knowl-
edge about the average waiting time in the queue. The only thing to check is that
limy, oo Wy /n = 0. For an M|G|1 queue this is easy since the waiting time of any



Renewal Theory 201

customer is less than the time after he arrives until the queune empties. This is less
than the (N[t] + 1) cycle length for the M|G|1 queue where N[t] counts the num-
ber of departures which leave behind an empty queue by time ¢. If X y[11 denotes
this cycle length then lim; oo Xyp41 /t = 0 by the argument in Proposition 6.11.

Example 6.27 Markov Chains — (6.8) continued

Consider a transition kernel K with stationary distribution 7. We may construct
a stationary Markov chain {M,;—oc0 < n < oo}. We only need to define the
distribution of each cylinder set

PW(M\’!I =1 _n, M[fn—l-—l] = i[4n+1]7 e
Moy — i1, My =g, ..., My = i)
= ﬂ—(i—n)Kifni{ : 'KiAliO K

—at1] Ln—1}in"

It is easy to check that this definition is consistent so we may construct a mea-
sure on doubly infinite sequences using the Kolmogorov extension theorem. By
construction, the distribution of M, is 7 for all n. Now define the point process
{T,; —00 < m < oo} of return times to j. We have seen this is a renewal process
with renewal p.m.f. f;;.

This renewal process is also stationary! To show this we need to calculate the
distribution of points around time 0. Let F' = {j}. By the construction of A,

P(TO = —ZL‘o,Tl = 1‘1)
= P(X() = Io,Xl = xl)
= P(M[—wo] :jaM[fo—H] # gy Moy F G, Mo # G,y My, =7)
= T(P(M_ggi1) # Jr-- s M1 # 5 Mo # 5§y, May = §IM[2) = J)
_ Jij(wo+ 1)
Hijq
We have therefore shown the distribution of points around time 0 is precisely that
of the stationary process since the other interarrival times are i.i.d. with p.m.f. f;;.
Using Theorem 6.13 we can now prove Proposition 5.20 and its simpler form,
Corollary 5.18:
Proof of Proposition 5.20: The process V[n] := h(M,_1, My, Uy,) was defined
iteratively where U,, has a p.m.f. determined by the states of M at times n— 1 and
n. This is a regenerative process with embedded renewal process T,,. The (n — 1)t
cycle ends at some time T;,_; — 1 = k when My = j. Subsequently, for 0 < s < X,
V™[s] = V[k + 1 + ] is determined by the chain My 1. where My = j and the
sequence Ug.1,s. Both these sequence {My 145, Ukri4s;8 > 0} are independent
of the past before time k given M; = j. Consequently V" is indeed independent of
the previous generations so V is a regenerative process.



202 Elements of Applied Probability

Let V¢ be the associated stationary regenerative process. Note that

Eﬂ—Ve[O] = Z W(l)K(ZaJ)Ef(l»]’ UO)
i,j€S

and Er|Ve[0]] = >, ;e m(@) K (4, 7)) E|f (3,5, Uo)| < oo. Hence by Corollary 6.25

lim — = B Ve0l = Y a(i)K (6, §)ELf (i, 5, Uo)| Mo = i, My = j].

t—oco S
1,j€S

Yo Vsl
t

Example 6.28 Rare Events - (5.41) continued
We can use renewal theory to give an expression for the mean hitting time of a set
of small probability. Let 0F denote those points in F' which can be reached from
B = F€ in a single jump. The theory below says that the mean time to hit F is of
the same order as the reciprocal of the stationary measure of 9F, i.e. 7(3F).

Let i € B = F* and denote by f(j) the probability the chain M starting from
j € B hits ig before F.

Theorem 6.29 Let R be the time to return to i after first hitting F'. Then,

-1

E,R= > n(i)> Kif(j)

ieF jEB

Proof: Consider cycles where the chain starts in iy, eventually hits I’ and then
returns to ig. These cycles have the same distribution as R and the same mean u.
Now, once per cycle the chain must leave F for the last time; that is, the chain must
jump from ¢ € F' to j € B and then return directly to ig without first hitting F
again. Give a reward 1 only when this event occurs. The long run average expected
reward is therefore 1/E; R since there is one reward per cycle.

On the other hand, consider the reward process

V] = {M[t|c FEMt+1) ¢ B M[t+kl ¢ Ffor1 <k < Ry}

where R, is the first time after time £ that the chain returns to ¢g. Even though
the process at time t depends on the future after time ¢, it does regenerate with a
return to 4p. The long run average expected reward is given by Theorem 6.25:

i Sheg PVIsI =)

t—o0 t

= " w(i)P(V]0] = 1).

ieS

If ¢ € F and the next jump is to B and there are no further visits to I before
hitting 4 then there is a reward. The probability of this is precisely ZjeB K f(7)-
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Consequently
o w@PV] =1) =Y 7)Y Ki;f()).
ics icF jeB
Therefore
1 Y POAVIs = 1) , ,
EyR - tlggo t - ZW(Z) Z Kyt )
i€F jeB
which is the result we want. ||

Corollary 6.30
~1
ﬂ(g?:OEioT = Z?T(i) Z Ki;f(5)
EF JEB

Proof: By Proposition 5.42, limypy—q Ei, B/t = 1. The result now follows from
the preceding theorem. [ |

One might well ask why the equilibrium regenerative process and its embedded
equilibrium renewal process should be studied at all! After all they come about only
if we start off a homogeneous regenerative process in a very particular way! The
answer is that the distribution of points of any stationary renewal process around a
sufficiently large fixed time ¢ is approximately the same as the distribution of points
around ¢ (or 0) for an equilibrium renewal process. We establish this result in the
next section using a coupling argument. This means we may as well assume we are
dealing with an equilibrium regenerative process in the first place (at least if the
process has been running for some time).

6.4 Convergence to Stationarity
Consider two simple point processes {7,,}5° _ o and {T,,}32 _ defined on the same
probability space.

Definition 6.31 The point processes {7y} and {T } are coupled together (a (
different generations) 7 and p if with probability one Trin = pen forn=0,1,.

Lemma 6.32 If two point processes {Tn} and {T,,} can be coupled together then
the distributions of the age at time t, Z[ | and Z( | respectively, converge. In fact

Jim |P(Z[t] =) — P(Z]t] = )|

t—o0

= lim > |P(Z[t] = z) - P(Z[t] = @)|
=0
=0.
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T‘C-1 T‘C Tm/\
t
Tp-1 p p+1

Fig. 6.3 Trajectories coupled before time t.

Proof: Let 7 and p be the coupling generations. If T, < TN[t] where TN[t] <t <

TN[ 141 then the two point processes have coupled before time ¢. Consequently the
age back to the last point before t is the same for both processes! Hence if coupling

is successful before time ¢ then Z[t] = Z[t]. Hence,

i) |P(Z[t] = ) — P(Z[t] = z)|

< }2 \P(Z[t] = o, Tr < Tyyy) — P(Z1] = 2,T, < Ty,
+§) \P(ZIt) = 2, Ty > Tgyy) = P(ZI1) = 2,T, > Tygpy))|

< iP(Z[t] =, T, > Ty + i P(Z[t) = 2, T, > Txyy)

_ P > Ty + P, > Ty,

Now, as t — 00, TNM tends to infinity since N[t] does. Hence P(Ty, > ANM) -0
as does P(T, > TN[t])' [ ]

The above argument may be extended to show that if two point processes can
be coupled together then in fact the distribution of the last n points before ¢ and
all those after will asymptotically be the same.

We now proceed to apply this general coupling method to renewal processes.
First we note that if the interarrival times are always even multiples of [1] then it
would be impossible to couple two trajectories if one started on the even units and

one started on the odd units. To avoid this difficulty we make a definition.
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Definition 6.33 We say a random variable X or its p.m.f. f has period [d] if d
is the largest common divisor of the support of f, i.e. of the set {z : f|x] > 0}.

Lemma 6.34 Consider two homogeneous renewal processes {T,}152, and
{T7 352, having different delays but the same interarrival p.m.f. f having period
(1. There exist two point processes {1,,}5°, and {T,,}°%, which are equal in dis-

tribution to {T,}52, and {T),}°2, respectively, and which are coupled together.

The proof of this proposition is deferred until Section 6.8 so we may see some
of the consequences.

Theorem 6.35 Let Z[t] and Z'[t] denote the respective ages at t of two homoge-
neous renewal processes {T,,} and {1} having different delays but the same inter-
arrival p.m.f. f having period [1]. Then

lim [|P(Z]t] =)~ P(Z'1] = )] = 0.

t—o00

Proof: By Lemma 6.34 we have two processes T), and T}, having the same distribu-
tion as {7T),} and {7} which are coupled. If Z[t] and Z[t] are the age processes of
T, and T, then P(Z[t| = z) = P(Z[t| = z) and P(Z[t] = z) = P(Z]t] = x). Since

Jim [|P(Z[1] = )~ P(Z[) = )| =0
by Lemma 6.32 the result follows. ]

Theorem 6.36  Consider a homogeneous (possibly delayed) renewal process {1}
having p.m.f. f, mean p < oo and period [1]. If Z[t] is the age of {T,} att then
lim |[P(Z]t] =) = e[]ll = 0.

t—o0

Proof: Consider the equilibrium renewal process {7,} associated with {7}, }. By
Proposition 6.35 lim—.« ||P(Z[t] = ) — P(Z'[t] = -)|| = 0 where Z’[t] is the age of
the equilibrium renewal process at ¢. The result now follows from the fact that the
distribution of the age at ¢ for the equilibrium renewal process is precisely e. |

Corollary 6.37 (Feller’s renewal theorem) If {7} is a homogeneous (possibly
delayed) renewal process having p.m.f. f, mean p < oo and period [1] then the
probability of a renewal at t, that is P(T,, =t; for somen), as in Figure 6.4, tends
to 1/p ast — oc.

Proof:
{Z[t] =0} = {T,, = ¢; for some n}.

By Theorem 6.36, however, P(Z[t] = 0) — €]0] = 1/p as t — oo. [ |
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Fig. 6.4 A renewal at time t.

Corollary 6.38 If{T},} is a homogeneous (possibly delayed) renewal process hav-
ing p.m.f. f, mean u < oo and period [1] then

Jim B(N[t+¢] - N[t]) = —.

Proof: Z t+1 x{Z[z] = 0} represents the number of renewals in (¢, + £]. Hence

t+4 t+£
E(N[t+ 4] - = Y Ex{Zlg)=0}= > P(Z[z]=
r=t+1 r=t+1

By Theorem 6.36, however, P(Z[z] = 0) — 1/u as t — oo so the result follows
passing the limit through the summation sign. |
We now prove a somewhat impractical result which completes the above.

Corollary 6.39 If {T,} is a homogeneous (possibly delayed) renewal process as
in Theorem 6.36 but mean p = oo, then the probability of a renewal at t tends to 0
as t — 0o,

The proof is deferred until Section 6.8.

Consider a homogeneous regenerative process V[t] with embedded homogeneous
renewal process {1}, having canonical generations {V*} and canonical cycle length
X*. Let V¢ denote the corresponding equilibrium regenerative process.

Corollary 6.40 If {T,} is a homogeneous (possibly delayed) renewal process hav-
ing p.m.f. f, mean p and period [1] then for any set A,
Jim P(V[t] € A) = AE > x{V'z] € 4};
0] <z<X™

in other words, the limit is the mean time per canonical cycle that V is in A divided
by the mean cycle length.
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Proof: We only give the proof for a renewal process without delay. By Proposition
6.5, forn>1

P(V[f] € A\Z}t] = =, N[f] = n — 1)
= P(V"z] € A|X,, > z) = P(V*[z] € A|X* > x).

Hence, by conditioning on Z[t] and N, it follows that

)
P(VIH] € A|Z[t] = 2, N[t] = n — VP(Z[t] = z, N[t} = n — 1)

PV

m
N

]38
NE

3
Il
-
8
i
o

P(V*[z) € A|X* > 2)P(Z]t] = 2, N|t) =n - 1)

e
L

0]

3
Il
i
8
Il

I
[]8

P(V*[z] € AIX* > 2)P(Z[t] = ).
0

&
i

Hence we have

o0

lim P(Vf] € A) = lim 3" P(V*[a] € AIX" > 2)P(7[t] = )
=0

= ZP(V*[I] € A|X* > z)e[z] by Theorem 6.36
x=0

iP(V*[Z'] €EAX*>zx)1— Flz]

= 1— Fla] I
1 *

=-FE Z x{V™[z] € A}.
H [0]€z<X*

Similarly, using Theorem 6.24 we can show

Corollary 6.41 Let V[t] be a real valued regenerative process having identically
distributed regenerative cycles where {V*[s];0 < s < X*} denotes a canonical cycle.
If E|Ve[0]| < oo then

SO VI _ ey = Zogzex VI

t—o0 t H

where V¢ is the associated stationary regenerative process.

We have come to the conclusion that after a sufficiently large time ¢, the homo-
geneous regenerative process V[t] is distributed like the corresponding stationary
regenerative process. If, therefore, we can show the existence of an embedded
renewal process inside a stochastic process, no matter how complicated, we can
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conclude that after a sufficiently long time the process reaches a state of statisti-
cal equilibrium. The process continues to fluctuate, of course, but the probability
V[t] € A is approximately constant and is approximately the long run proportion
of time the process spends in A, which equals the mean time per cycle the process
spends in A divided by the mean length of a cycle.

Example 6.42 Markov Chains — (6.27) continued

We have already identified the sequence of return times to a state as a renewal
process. We can therefore apply the preceding asymptotic results.

Theorem 6.43 If M,,n > 0 is a recurrent, aperiodic Markov chain then

. 1
lim KZ = -
noo 145

where p;; is the mean recurrence time to j.

Proof: If {X,,n > 0} is a recurrent, aperiodic Markov chain, necessarily the chain
returns infinitely often to state j and by Lemma 6.9 these interarrival times are
independent and aperiodic. Let Z[t] denote the age since the last visit to j. Z[t] is
a regenerative process so for all initial states ¢,

lim K7 = lim P(Z[n] =0lzo =14) = 1/p,;

n—oo n—oc

where fi;; is the mean recurrence time to j. Here we have used Theorem 6.36 if
5 < oo and Corollary 6.39 if p1;; = oo. -

Example 6.44 Alternating renewal processes — (6.15) continued
Suppose the joint distribution of the machine lifetime and the replacement period
{Upn, Ry, } are identical for all cycles as in Example 6.15. The preceding theory then
applies and we conclude the probability the machine is working at time ¢ tends
to the long run proportion of time spent with the machine working, which equals
the mean time the machine works per cycle divided by the mean length of a cycle.
That is, limy_,o P(V[t] = 1) = p/( + r) where p is the common mean. lifetime of
a machine and r is the common mean replacement period.

Example 6.45 The M|G|oo queue —(4.12) continued

Consider the example of the M/G/oc queue discussed in Example 4.12. We saw
the times {T},} when a customer arrives to find a queue empty are an embedded
renewal process! Consequently if we define V[t] = 1 whenever there are exactly k
customers in the queue we see that V[t] is a regenerative process. By the above
then we know that as ¢ — oo the probability there are exactly & customers in the
queue tends to a limit.
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6.5 Renewal with Nonlattice Variables

We could generalize all the preceding results to real-valued homogeneous renewal
processes {177} having interarrival times { X} with a common continuous or non-
lattice distribution function F'f* having mean pft. Certainly the proofs of Propo-
sitions 6.11 and 6.12 do not depend on the discrete nature of the distributions.
We can also define the age Z2(t) and excess YF(¢) at time ¢ and we can prove
convergence to the renewal equilibrium distribution.

To do this recall the notation that denotes t seconds converted and rounded up
to the nearest nanosecond by £ and for the remainder of this section we use the
notation developed in Chapter 4. We can define an approximate discrete renewal
process by letting {Xn} denote the sequence of nanosecond valued interarrival times
given by X,, = [nX£]. The distribution of these interarrival times is F[2] = FF(z).
The age of this discrete renewal process is Z[f] as defined in Definition 6.3. By
Theorem 6.36 the age distribution converges to e(2) = (1 — F(&))/p as t — oo.
Consequently as ¢ — oo

P(ZRU) <) = P(ZH|<2)~ Y 1 — Flk]

0<k<2 H
1 — FE(z/n) #1— FER(s)
~ E 5 ~ = ds.
Uis 0 H

0<k<nz

We conclude that asymptotically the age distribution has a density ef(z) =
(1 — FB(z))/uf. There is, however, a nasty complication. Suppose the interarrival
times [X,] have p.m.f. f¥ given by f(1) = f(v/2) = 1/2. If we pick a sequence
of times ¢ tending to infinity of the form m + n+/2 where m and n are integers, it is
clear that the age at ¢ is also of this form. Hence the distribution of the age is stuck
on this subgroup of the reals and consequently the age process does not even have
a density while the equilibrium measure does. Hence we don’t have convergence
of densities in a total variation sense (unlike the discrete case). We have, however,
sketched how the age converges in distribution to e.

Bearing in mind this complication we simply state an extension of Corollary 6.40
for general regenerative processes having an embedded renewal sequence which is
not concentrated on any sublattice like the nanoseconds.

Theorem 6.46 (Extension to non-lattice interarrival times) If, for some
measurable set A, the function given by P(V(s) € A,s < X*) is Riemann inte-
grable in s then

lim P(V(t) € A) = a/p

t—o0

where p is the mean cycle length and o is the mean time V(s) is in A per cycle;
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that is

x>

o= E/ x{V(s) € A}ds.
s=0

This result includes the convergence in distribution of the age and the proof is not

unlike that sketched above.

6.6 Homogeneous Coupling

We now couple homogeneous renewal processes that start out [d] units apart.

Proposition 6.47  Consider a homogeneous renewal process {T,} such that Ty =
0 having p.m.f. f, and period [1]. We may construct two copies (i.e. having the
same distribution) {Up} and {Vo} such that {U,} and {V,, + [d]} may be coupled
together.

Note that the coupling may occur a different generations. Consider a p.m.f.
with period [1] that puts probability 1/2 at the values 3 and 5. Clearly a copy of
the renewal process started at 0 can’t be coupled at the same generation with a
copy started at [1] but if the first copy takes one extra step then they can.

Proof: By hypothesis the largest common divisor of the {z : f{z] > 0} is 1. Let |d]
be any unit. From the lemma in the Appendix we have positive integers {pi}flzl,
{ni}fil and units {xi}flzl, {yi}fil from the support of f such that

& £
Zpifvz‘ - an‘yz‘ = [d].
i=1 i=1
Define n := Zflzl p; and m = fil n; and construct a series of blocks for
b=1,2,... made from a series of i.i.d. random variables with p.m.f. f:
{Xl (b)> X2(b)7 cee 7Xm(b)§ Xm+1(b)a Xm+2 (b)’ T aXm—i—n(b)}l?il'

For good measure we also construct an additional independent sequence {X} : k =
1,2,...} having p.m.f. f. Define

m m+n
A(b) =) Xi(b) and B(b) = > Xi(b).
k=1 k=m+1

It follows that

£ I3
P(A(b) = Zpixi) > Hf(a:i)p" >0
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and

so P(A(b) = B(b) + [d]) > 0.
Let N = b if b is the first block such that

12 L3
A(b) = Zpixi and B(b) = Zniyi.
i=1 i=1
Since the blocks are independent, IV is a geometric random variable and P(N <
o) = 1.
To construct the point processes {U,} and {V,,} define Uy = V5 = 0 and define
the respective interarrival times

Xi(b) fori=k+ (b—1)(m +n) where
o k=1,....m+n;b=1...,N—-1
) XN fori=k+(N-D{m+n)k=1,...,m
X; fori=mA+Ek+(N-1(m+n) k=12,...

Hence in block b < N, X(b_1)<n+m)+k = Xi(b) for k =1,2,...,m + n; that is, the

X just march through the succession of values in each block. In block N the values
of X; march through the first m values of the block and

m+(N—~1)(m+n)

£
Z Xz = lezwz
i=1

i=14+(N=1)(m+n)

After that the values of X; are those of an independent sequence X;. Note that
the distribution of the sequence X; is not conditioned by the value of N since we
switch to the X} sequence after N is determined.

Next,

Xmtr(b) for i = k+ (b— 1)(m + n) where
k=1,....,.n;b=1,...,N
X;=1¢ Xp(b) fori=n+k+(b—1)(m+n) where
k=1,....m;b=1,...,.N -1
X fori=n+k+(N-1D(m+n) k=12,...

Hence we assign the X; in block b < N according to the following table:

X(b—l)(m+n)+1 - X(bAl)(ern)—kn X(b—l)(m+n)+n+1 - X(bAl)(m+n)+n+m

] ! ! !
X1 (®) o Xmyn(d) X1 (b) . X, (b)

Hence for b < N we first march through the last n values in block b and then
through the first m. If N = b then we still march through the last n values in block
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N and
N(m+n)

£
Z Xi = anyz
i=1

i=m+1+(N—1)(m+n)

After that the values of X, are those of an independent sequence X & Note that
the distribution of the sequence )2'1- is not conditioned by the value of N since we
switch to the X} sequence after N is determined.

In fact the above definitions simply make the sum of the interarrivals in a block
the same for {U,} and {V,,} up until we have a success at the N*" block. After
that we define the interarrival times to be the same. To recapitulate, for each block
b, we first assign X(b D(n4m)+ki £ =1,...,m and X(b Dim+n)+ki b =1,...,n. If

ZX b-1yntmyrk = AB) = BO) +[d] =D Xp—1)mnysx + 1d]
k=1 =

k=1

then we say N = b and (in a Markovian way) we define future interarrival times
to be common, i.e. X}, so the processes U, and V,, + [d] are coupled thereafter. If
A(b) # B(b) + [d] then we complete the assignment in such a way that Up(;mqn) =
Vi(m+n); that is Up(min) and Vy(miny + [d] are still d units apart.

Wecan define r= (N —-1)-(n+m)+mand p=(N—-1)- (n+m) +n. From
the above U; = V, + [d] so we have achieved our coupling. We do emphasize that
the processes constructed are renewal processes with p.m.f. f, since we have simply
put together independent interarrival times. |
Proof of Proposition 6.34: Let D = 7] — T} and for each value D = [d] use
Proposition 6.47 to construct two copies {U,}, {V,} of a homogeneous renewal
process with Uy = V = 0 with the same interarrival distribution as {7, } and
{T}} such that {U,, +x = V,, +x + [d]} where 7y and pv are random indices which
depend on d. Since D is random this means constructing an infinite family of pairs
of processes, a pair for each D = [d].

Now the point process {T,,}3, has the same distribution as {T,, = T} +
U,—1}2; since both are homogeneous renewal sequences and T; = Tl. Similarly
{T" 12 | has the same distribution as {T}, := T} + Vy,_1}52,. Let 7 := 7y + 1 and
p = pv + 1. However

T.=T+Uy =T, -D+V,, + D=T,

so we have built the required coupling. ]
Closer inspection of Proposition 6.47 reveals the following refinement:

Proposition 6.48 If1 < [§] < £ are displacements we may construct £ renewal
processes {V,°} and a process {U,} all having the same distribution as {T},} such
that {V? +[8);1 < [(5] < E} may be all coupled together with {U,}. That s, there
exist stopping times p' < p* < --- < p® and stopping times 71 < 72 < --- < 7% such
that for all 1 < [0] < ¥, V sop T[] = Urs ik =0,1,2,.. ..
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Proof: By Proposition 6.47 with d = 1 we can can construct {V,}} and {U,} up
to coupling times p' and 7! respectively. Now define the process {V.2} to be equal
to {V,!} until time p'. Next repeat the construction in Proposition 6.47. Tack this
construction on the end of the processes we have already constructed; that is define
{V,2} up until time p? and {U, } up until 72. We may also go back and extend the
definition of {V,!} to equal {U,1,,} for p! < n < 72. We may continue in this way
to complete the construction. |

Proof of Corollary 6.39: Let us suppose the corollary is false so there must exist
some € > 0 and a sequence of {¢;;7 =1,2,3,...} such that for all ¢; in the sequence,
P(Z[t;] = 0) > e. Now consider a truncated renewal process {7} with increments
X2 := min{X;,a}. Since u = oo we can pick « large enough so that

p=EX}>4/e1=2,3,....

Denote the number of renewals of the truncated process up to time ¢ by N*[t]. By
Proposition 6.12 lim;_, o, EN*[t]/t = 1/u®™ so there exists an integer £ such that

£>1+42/cand EN®[{]/f < 2/p~ < ¢€/2.

By stationarity, E(N[t+£]—NJt]) < EN[]+1 and since {T)3} is a truncated renewal
process it is obvious that EN[f]+1 < EN*[{]+1. Hence E(N[t+{]~N[t]) < le/2+1
for all ¢.

Assuming, without loss of generality, that {T),} has 0 delay we may, by Propo-
sition 6.48, construct renewal processes {V,%;1 < [§] < ¢} and {U,} which all have
the same distribution as {T),} such that {V,? + [§]} may be simultaneously coupled
with {U,}. Hence if ¢ is chosen large enough we can ensure that the probability
that all £ processes have coupled before time ¢ is greater than 1 — ¢’ where € is
arbitrarily small; that is P(U,. > t) < ¢/. Now the probability of renewal by the
process {T,,} at t+ [6] is the same as the probability of renewal of the process {V,°}
at t+[8]. Let Z9 denote the age process of the point process {V;’}, while Z denotes
the age process for the process {U,}. Hence

14
E(N[t+ 0 — N[t]) = ED>_ x{Z[t + 6] = 0}.
s=1
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However,

|E(N[t+ 4] — N[t]) — £P(Z]t] = 0)]
‘

=|EY_ x{Z[t + 0] = 0} — £P(Z[t] = 0)]
6=1

? ¢
=By x{Z[t+38] =0} — EY_x{Z°[t] = 0}]
5=1 6=1

IA

Elx{ 2]t + ] = 0} = x{Z°[t] = 0}

- 10

IN

Ex{Z[t+ 8] # Z°[t]}

1
PUpe>t)<tl-€,

IN
~ o

using the fact that the ages Z[t + 6] and Z%[t] are the same for § = 1,..., £ if U,
is less than t because {V;?} stays exactly § units behind {U,} after this time.
Hence if we choose t = t; then by hypothesis P(Z [t;] = 0) > €, so by the above
we have E(N[t; + 4] — Nt;]) > fe — £e’. This leads to a contradiction since we
have already shown that E(N[t + ¢] — N[t]) < fe/2 + 1 for all ¢ and this would
imply fe — e’ < fle/2+ 1 or £ < (2/€)/(1 —€'(2/€). Since € is arbitrarily small, this
contradicts our assumption that £ > 1+ 2/e. We conclude that the sequence {;}

where P(Z[t;] = 0) > € cannot exist and it therefore follows that P(Z[t] =0) — 0
as t — oo. |

6.7 The Bernoulli Part and Coupling
Consider the p.m.f., fx, of some unit-valued random variable X.

Definition 6.49 (The Bernoulli Part)

X0

b(fx)= Y min(fx[k], fx[k+1]).

k=—o0

By a slight abuse of notation let b(X) = b(fx). Note that 0 < b(X) < 1.

Lemma 6.50 (The Bernoulli Part Decomposition)
There exist random variables Y, € and L such that X and Y + ¢ - L have the same
distribution whereY and L are unit-valued random variables and € is integer valued
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such that

L is independent of (Y,¢)

Proof: Assume (X ) > 0; otherwise the representation is trivial. Construct inde-
pendent random variables V, U, € and L such that V has density

Jv k] = min(fx[k], fx [k +1])/b(X),
U has density

[x (K] = BX)(fv[k] + fr[k —1])/2
(1-5(X))

fulk] =

and such that L and e are Bernoulli random variables as given above. By evaluation
we see (1 —€)U + €(V + L) has the same law as X (see Exercise 6.1). Hence, letting
(1 = €)U + €V =Y we have the desired representation. .

Theorem 6.51 (The Coupling Theorem) If {T,,} is a renewal process such

that Y b(X,) = oo then there exists a renewal process {T,} and a delayed re-
n=1

newal process {Ty,} defined on the same probability space such that {1} is equal in

distribution to {T,,} and {T,,} is equal in distribution to {T,, + [1]} and such that

{T.} and {T,} are coupled at the same generation .

We defer the proof of this theorem while we discuss its consequences and develop
lemmas to be used in the proof.
The Bernoulli part in Lemma 6.50 may be thought of as an extra, independent
o0
Bernoulli step hidden inside X. The condition ) #(X,) = oo in Theorem 6.51

n=1
requires that there be sufficient Bernoulli steps to ensure coupling. Suppose, for

example, fx[2] = fx[3] = fx[4] = % The Bernoulli part is b(X) = 2/3. A sum
Tn = > n_, X, of independent Xj’s with the same distribution as this X clearly
has a Bernoulli equal to >°7_, b(Xx) = 2n/3. Theorem 6.51 therefore holds as does
Proposition 6.47.

On the other hand suppose fx[2] = fx[4] = % There is no Bernoulli part.
A sum 7, = >} | X of independent Xj’s with the same distribution as this X
clearly has no Bernoulli part: Y ,_; b(Xx) = 0. For such a sequence Theorem 6.51
clearly fails as does Proposition 6.47!

When the random variables are not identically distributed we can have an in
between case. Suppose the p.m.f of Xy is fx[2] = 3 — 2, fx[3] = 7% and fe[4] = 1.
In this case b(X,k) = & so Y., _; b(Xk) < co and Theorem 6.51 fails!
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Finally if fx[3] = fx[5] = 3 there is no Bernoulli part so Theorem 6.51 fails but
the period is [1] so Proposition 6.47 holds. This is not surprising since the Bernoulli
part allows two copies of the renewal process to be coupled at the same generation
and this is not always possible.

Corollary 6.52 If {T,} is a renewal process such that > b(X,) = oo then

n=1

i =1) — =1)| = 0.
i D IP(T =) = P(T -+ 1) = )] = 0
Proof: We use Theorem 6.51 to construct a renewal process {Tn} equal in distri-
bution to {T,,} and a delayed renewal process {T},} which is equal in distribution
to {7, + [1]}. Hence

D IP(Tn =) — P(Ty + [1] = 1))
=Y |P(T, =t) - P(T, =1t)|
< f: |P(T = t,T, <t) = P(T, = t,T; <1)] (6.5)

< P(T> > t)+ P(T: > t).

This follows since (6.5) is 0, because T, = T, if T, < t. The sequence of sets
{T, =t} (vespectively {T, = t}5> ;) are disjoint so
P(T, > 1) =% (T =t,T, > t) and P(T; > t) Z > ).
n=1 n=1
The result now follows since 7 is finite. (|

Corollary 6.52 illustrates the power of the coupling method. With probability
P(T, < t) the two renewal processes {1},} and {7T},} meet before ¢ and stay together
afterward. Since {T},} (respectively {T,}) is identical in distribution to {T},} (re-
spectively {7}, + [1]}) we see that after a long time t, we cannot distinguish the
distribution of points of {71}, } near ¢ from those of {T}, + [1]} near ¢.

The presence of a Bernoulli part prevents {7},} from staying on some sublattice
of the units. Suppose, however,

1
fx[2 = fxl4] = fx[7] = 3
Again 5(X) = 0 but, in fact, Corollary 6.52 is true! This awkward situation neces-
sitates the following definition.
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Definition 6.53 We say the (delayed) renewal process {T},} is spread-out if
there exists a partition o = 0 < 1 < €5 < ... such that if

then 30 | b(W,,) = oo.

Clearly if {X,} is 1i.d. with density f(2) = f(4) = f(7) = 1/3 then £, = 2n
provides a proper partition so {7, := »_,_, Xy} is spread-out.

Corollary 6.54 If {T},} s a spread-out (delayed) renewal process then the Cou-
pling Theorem 6.51 holds and

lim Z|P P(T, +[d] = t)] = 0.

t—0o0

Proof: First take d =1. Since {7},} is spread-out we may set
Z W}, where Wy, = Z X
=Lk _1+1

and 3.7, b(Wy) = oo. Now redo the proof of Corollary 6.52 except that we couple
{T.} (which has the same distribution as {Te., }) and Ty, (which has the same
distribution as {7y, + [1]}). Moreover once {Tg } and {7y, } are coupled at time 7
it is clear we may couple {7}, : n > 7} and {T,, : n > 7}. The rest of the proof is
the same.

Next,

d—
P(T, =t) - P(T, :Z (Tn+k=1)— P(T, +k+ 1] =)
k=0
and for each &

S IP(T,+k=t)~ P(T, +k+[1] =) - 0ast — o0
n=1

by the above. The result now follows by the triangle inequality. -

6.8 Proof of the Coupling Theorem

We state a preliminary lemma before proving Theorem 6.51.
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Lemma 6.55 [f {1,,}5° is a renewal process then for n > 1 we may construct
{Jns Ly, Np } 2y such that T, has the same distribution as

Np,
JIn + Z Ly
k=1
where:

{Ln}22 is independent of {(Jn, Np) b1,

L, is a Bernoulli random variable with parameter 1/2,

and N,, = Zek.
k=1

Here {er}72, is a sequence of independent Bernoulli random variables such that
Eer = b(Xy) as in the Bernoulli Part Decomposition 6.50.

Proof: Using Lemma 6.50 we can construct a sequence of independent triples
{Ya,en, Lo}, such that X, is equal in distribution to Y,, + €L,,. Hence T}, =
>, Xk is equal in distribution to

n

Z(Yk + ekik) = ZYk + Zekﬂk.
k=1 k=1

k=1

Define N, := Y ,_, € and construct a new totally independent sequence {L;}$° ,
having the same distribution as {L;}22;. Now using the independence of {L4}52,
and {(Vi,ex)}p>, we check that > ¢ | Vi + 30 er Ly, is equal in distribution to
Soro e+ 21&1 Ly (see Exercise 6.3). Finally setting J,, = >_,_, ¥ we have the
proof. m

The following lemma shows the power of the Bernoulli part decomposition and
is used later.

Lemma 6.56 Consider a renewal process {T,,} and let 0 = £y < {1 < fy < ...
be a partition such that W; = Z%:ei Xy has Bernoulli part b(W;). If M is any

141
index such that M > £, then
> P(Ty =) — P(Ty + [1] = )] < CE(1 — N,,)™/?
T=—00

where Ny, = Y ¢ _, e and where {c}3°, is a sequence of independent Bernoulli
random variables such that Fe, = b(Wy).
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Proof: First let Thy = Ty, + U where U := Ty — Ty,. As before, decompose
Ty, = Jn+ Zg;l L. Now

> |P(Ty = 2) = P(Ty + (1] = 2)]

T=—00

N, Ny,
PU T+ Y Ly=x)— PU+Ju+ Y Lg+[1] =2)

—00 k=1 k=1

Z ZZP(J =4, Ny, =m,U =u) -

—00 ju=—00 j=0m=0

ZLk:x j—u) ZLk)iE ]'U_m)],

7=0 m=0

P(ZLk—x~j~u ZLk—x—j—uf[l])

=Y PN, = Z ZLk—x P(ZLH[U:
<> P(N,=m)-2- ([my/’;])rm.

I
)2

Il

X

[
L

I

x

m=0 T=—00

The last inequality holds since the distribution of > ;- L is a binomial so for

x < [—72’—’] ~ ([]- is the greatest integer function) we have

P <iLk = x) > P (iLker :ac)
k=1 k=1

while for z > [Z]_

P[] <o (Snmer)
k=1 k=1

The inequality follows by telescoping. Finally by Stirling’s inequality (see Exercise
6.4)
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where ¢ is a universal constant. Hence

o0

> IP(Ty =) — P(Tu + [1] = z)]

T—=—0C

< P(N,
Z ( \/1‘+—
= 2(:E(1 + N,) V2

Taking C' = 2¢ we have the result. [ ]
Proof of 6.51: Use Lemma 6.55 to construct {1, = J, + ZkNgl Ly }e° ; which
is equal in distribution to {7,,}52;. Next using a totally independent sequence
{L,}%°, equal in distribution to {Lz}72; define

Now W,, = > p_,(Ly — L}) — [1] is a simple symmetric random walk on the
units so by Example 5.67, W, hits 0 at some finite random time 7 (7 = inf{n >
0: W, = 0}). Moreover N,, = Y}’ | ex — 0o as n — oo using the Borel-Cantelli
lemma (see the Appendix) and the fact that Eeg = b(Xy) and 7", b(Xg) —
as n — oo. Hence {T,,} and {T"} are coupled at the same time 7 and, moreover,
7T is a stopping time for the filtration {F;}2, where F; = O'{Xk, X}, :k <t} This
follows since {7 =t} = {Ty # T, for k <t —1, T; =T}} and this event certainly
lies in F;. Now define a new point process T,

7o T forn <7
"\ T, forn>T.
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Now we check {T} is equal in distribution to {T!}. First T), = T, for n < 7. Next
forn > 7T, =T, +> ., Xi. However,

P( 2”: Xk:x,r<n>

k=71+1
n—1 n
=) Pr=5P| > Xy=zlr=j
j=1 k=j+1
n—1 n
=) Plr=4P| > Xy=uz| since {r=j} €7
j=1 k=j+1
n—1 n
=) Plr=j)P| > Xi=u=
j=1 k=j+1
n
:P( Z X, =z, T<n>
k=71+1

(since the interarrival times of {T} equal those of {T},}).
Hence {T},} is equal in distribution to {7, } which in turn is equal in distribution
to {T}, + [1]} and T,, = T,, for n > 7 by construction. [

6.9 Regenerative Processes

Let || - |] denote the total variation of a measure on {1,2,3,...} x {[0],[1],[2],-..} so
lam )l =3 fa(n, o)l
n=1x=0

Theorem 6.57 Let {T},} be a delayed renewal process which is spread-out. We

recall that the n'™ interarrival time has distribution F,, and mean . If, for all n

and x, 1 — F,[x] < H|z|, where H is such that .- o H|z] < oo, then

(1 — Fylx])
L,

WP (2] =2, Ty <t < Tp) — P(Ty .y <t<Ty)]]

tends to 0 as t — oo.

This means that for large ¢, the joint distribution of the cycle number and the age,
(n, ), is close in total variation to the product measure of marginal distribution of
the cycle number, P(N[t] = n—1) = P(T,,_1 <t < T,,) and the stationary renewal
measure associated with this cycle, (1 — Fplz])/pn.

Proof: First, notice that

PZlt| =2,Th1 <t <T,) =1 - F,[z])PTph1 =t —x).
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Next,
SOS P = T 1 <1< T)— (1 Ff)P(Tus =0 (67)
n=1zx=0
<> Hz]Y |P(Tpy =t —2) = P(T,o1 = 1) (6.8)

Now for any x,
S IP(Thy =t—a) = P(Tyy =1)| =0 (6.9)
n=1

as t — oo by Corollary 6.54. Moreover if we define the summand in (6.8) as

a(z,t) = Ha] S |P(Ty 1 =t — @) — P(Ty_y = 1)

n=1

then |a(x,t)| < 2H[x] since

Y P(Ihy=t-z)<land Y P(T,1=1)<1
n=1

n=1

because {T,} is strictly increasing. Equation (6.9) shows that for each =z,
lim; o0 (2, 2) = 0. Finally, since > 7~ 2H[z] < oo, we conclude that (6.8) tends
to 0 as t — oo by dominated convergence. It follows that expression (6.7) also tends
to 0 ast — oo.

Next summing (6.7) in z we get

Jim S NP(Tooy £t <To) = pn P(Thy = 1) = 0. (6.10)

n=1
Now,

i i \P(Zt) =2, Th1 <t <Tp,) - U—_/f—”[@P(Tn_l <t <T)

(1 - Fulz])

3 P(Tnfl §t<Tn)|
0 .u’TL
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Clearly the first term of this inequality tends to 0 as ¢t — oo by (6.7). The second
term is bounded by

iH[w] i |P(Tq =1t) — MiP(TM <t <Ty)

o

<§:f{ }: Ty <t <T,)— pnP(Thoy = 1)
z=0

=1

since (i, > [1] and the above tends to 0 using (6.10). This proves the theorem. =
Remark that the condition 1 — F,[z] < Hiz] would hold if for instance
sup EX11? < 0o (see Exercise 6.2).

Corollary 6.58 Let {T,,} be a delayed renewal process which is spread-out. Then

e N1~ Fylz]
lim S |P(Zl] =2) - Y — P, <t <T,)| =0
b0 =0 n=1 ,U/n
and
”1
. 1 < .
tlirrolo P(renewal at t) E_ o Tno1 <t<Typ)i=0

If all the u, = u then

lim
{—00

1
P(renewal at t) — —l = 0.
@

Proof: The first limit is obtained by taking the summation in » in Theorem 6.57
inside the absolute value sign. The second limit is obtained from the first by taking
z =0. ]
Theorem 6.59 If V[t] is a regenerative process with embedded (delayed) renewal
process {T,,} which is spread-out then

lim sup Z IP(V[] € AT, 1 St <T,)— 2P(T, s <t<T,)|=0,

t—oo Acid Hn

where U are measurable subsets such that {V[t] € A} € F and o, = 3,2 {V"[t] €
At < X,}; that is o, is the mean time Vt] spends in A during the n'h cycle.

Proof:
PV € AT 1 <t<T,)=PV"Z[t]| € A, T,_1 Lt <T,)
= iP(Z(t] =x,Th-1 <t <T)P(V"[z] € Al X, > z)

since the event

{Zt] =2, Thor <t <Tp} ={Th1=t—z,X, >}
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and V™[z] depends only on X,. Hence

lim su PVtle AT, 1 <t<T,
HOOAEle\ ( 1 )

5 E;F_n@P(Tnfl <t<T)P(V'[z] € AlXy > o)

< lim supZZPV" e AlX, > z)

b0 Acl T
(1~ Fylx])

AP ZH =2, Thor <t <Ty) — p

P(ﬂz—l S t < Tn)l
=0

by Theorem 6.57 and the fact that P(V"[z] € AlX, > z) < 1. Finally,

i Q’_F"[@p(Tn,l <t < Tn)P(V'z] € AlX,, > )

:———ZPV” e A X, >x) P(Thy <t<Tp,)
Hn 70
On

= = P(T,3 <t<Ty).
Hn

This completes the proof. [ |

Corollary 6.60 Under the hypotheses of Theorem 6.59

X3
1 PV < T.)| =
Jim g IP(VI € )= 3 UAP(Tns SE< Tl =

Proof: Simply take the summation in n in Theorem 6.59 inside the absolute value
sign. |

Example 6.61 Alternating renewal processes — (6.6) continued
We may apply Corollary 6.60 to Example 6.6 by taking 4 = {1} so a,, = EU,, and
tn = EU, + ER,,. We conclude

oo
lim |P(a machine is working at ¢) — Z 37lP(Tnﬂ <t<T,)l=0.
tmoo oot Hn

This is a very pleasing answer since we should expect that given the process V[t]
is on the n** cycle, the probability machine n is working should be ay,/u, —~ the
ratio of the mean working time to the mean cycle length y,, = EX,,. This ratio is
weighted by P(T,_; <t < T},); the probability that we are in the n*" cycle at time
t.
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6.10 Exercises

Fxercise 6.1  Complete the proof of Lemma 6.50.
Exercise 6.2 If sup EX. ™ < 0o show that 1 — F,[z] < H|[z] for some function H
T
such that 37, Hlz] < oo.
Exercise 6.3 InNLemma 6.55 prove ZZ:I Y. + ZZ:1 ex Ly, is equal in distribution
to Zk:l Y. + Zk:nl L.
Exercise 6.4  Consult Feller Volume I for Stirling’s formula:
nl ~ (2m)1/2pntl/2emn,
Show (6.6) using Stirling’s formula.

Exercise 6.5 If the mean and variance of the interarrival distribution of a homo-
geneous renewal process N(t) are u and o? respectively show that

N(t) - (t/p)

Vio?/ud

where — N(0,1) denotes convergence in distribution to a standard normal.

— N(0,1)

Exercise 6.6  If the mean and variance of the interarrival distribution of a homo-
geneous renewal process are p and o2 show that the limiting distribution of the age
Z]t] at ¢ has mean (02 + p?)/2u — [1]/2.

Exercise 6.7 A cop on subway patrol starts and finishes his day at union station.
His duty is to hop aboard the first train entering the station and to do a complete
return trip to union station and then repeat the process again and again. Assume
there are three different lines. Line A takes 20 minutes round trip, line B takes 15
minutes and line C takes 30 minutes. The trains arrive according to a Bernoulli
(Poisson) process. Those of line A arrive at a rate of 20 per hour; those of line B
at 50 per hour and those of line C at 20 per hour.

a)What is the long run proportion of the times the cop hops onto train B?

b) What is the long run proportion of time spent waiting at union station?

Exercise 6.8 Consider an elevator with three stops G (for ground), 1 and 2. The
elevator moves from floor to floor according to the matrix P:

0 1/21/2
3/4 0 1/4
4/51/5 0

The time to move from one floor to another is proportional to the distance travelled
and is 10 seconds per floor.

a) Assuming the elevator spends 30 seconds at each stop find an expression for the
long run proportion of time spent moving directly from the ground floor to the
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second floor.

b) Give the numerical value. Hint: define a function h(z) : z € {G,1,2} where h(z)
is the mean time to return to G starting from z. Write down a system of equations
for h using the Markov property.

Exercise 6.9  Mail trucks leave the postal depot according to a renewal process
with interarrival distribution F and mean g while letters arrive at the postal depot
according to a Poisson process with rate A. What is the long run fraction of letters
which arrive which wait in the depot for a time not exceeding 2.

Exercise 6.10  Containers arrive at a depot according to a Poisson process at a
rate of 3 per hour day and night. When there are 10 containers at the depot a truck
is called. The truck arrives after one hour and takes one hour to load and then
leaves. The truck takes the 10 containers plus any that arrive before departure.

a) What is the long run average number of trucks called per day?

b) If we rush to the depot with a container, what is the probability there is a truck
waiting there now?

Exercise 6.11 A taxi company knows by past experience that a taxi will run for a
random number months which we denote by T'. T' has a distribution

0 t<1
Fty=1R Z(1-LHi1<i<2l
1 t>21.

A taxi that breaks down is worth nothing and a replacement costs $30,000. The
company has a policy of replacing a taxi after p = 14 months of use (if it hasn’t
broken down first). The used taxi may be sold for $0 where D is a random variable
with mean $10,000.

a) Calculate the long-run average cost cost of keeping one taxi in service using this
replacement policy.

b) Find a value p which minimizes the long-run average cost per taxi.

The taxi company has just gone bankrupt. You wish to buy one of the taxis
still in service but you don’t know how long any of these taxis have been used.
¢) Find the approximate distribution of the number of months use you will get out
of the used taxi until it breaks down.

Exercise 6.12  The police department keeps 100 cars in service at all times. Past
studies across the country have shown that the number of months a police car can
remain roadworthy has a geometric distribution with a mean of 2 years due to
accidents and hard usage. In this department, a car still in service after 18 months
is sold off and replaced by a new car. This maintenance policy has been followed for
many vears but today the mayor has declared a financial emergency and declared
no new cars will be bought for the foreseeable future. What is the probability more



Renewal Theory 227

than 30 of the cars now in service are over one year old and what is the mean age
of the cars now in service?

Exercise 6.13  An Ace airport shuttle bus which has a capacity of ten leaves
whenever 10 customers are in the queue or 15 minutes after the previous shuttle
bus left whichever comes first. The customer arrivals may be modelled by a Poisson
process with a mean arrival rate of 30 per hour.

a) What is the long run average number of shuttle buses dispatched per hour?

b) What is the approximate probability that at a given time, say 2:13 PM there
will be nobody in the queue?

Txercise 6.14  The time to wire a specialized circuit board cannot be predicted
because several steps may have to be repeated when a component breaks during
soldering. The empirical histogram of the wiring times is approximately given by
the following probability mass function f{(z):

zhours [ 1 |2 | 3145 |6
f(z) dJir.2012131.11].1

There is only one work position for wiring this kind of circuit board but pro-
duction goes on 24 hours a day. As soon as one worker finishes a shift of 8 hours
another worker takes his or her place.

a) Calculate the expected amount of time to produce this circuit board.

b) Calculate the long run average number of circuit boards produced per shift.

¢) When a worker ends a shift a circuit board may be left incomplete. The next
worker just takes over at the point where the last worker left off (or takes over a new
board if the last worker just completed his). Give the distribution of the number
of hours of work already done on the board the next worker takes over.

d) Give the mean amount of work already done on the boards the next worker takes
over.

e) Give the distribution of the amount of work left to do on the boards the next
worker takes over.

f) Give the mean amount of work left to be done on the board the next worker
takes over.

g) Why is the sum of part ) and part ¢) not equal to the mean calculated in a).

Exercise 6.15  One can simulate the regeneration intervals of an M|G|1 queue
by starting the queue off empty and simulating until it empties out again. Given
the length of the interarrival interval containing 0 is £, the age at 0 is uniformly
distributed on [0,¢ — 1]. Use this fact to simulate an M|G|1 queue in equilibrium.
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Do this for G uniform. Estimate the equilibrium probability the queue is empty
and compare this with the theoretical value.

Exercise 6.16  Consider a process X [t| which alternates between two states, on
and off. The distribution of the on and off periods are F' and G respectively and we
consider these periods independent. Find the steady state distribution of the excess
time in an on period; that is given the process is in steady state and given we are in
an on period, calculate the distribution of the time until the next off period starts.

Exercise 6.17 A DNS (Domain Name Server) translates web addresses into do-
main names. Each request for a web page generates a request at the DNS server.
‘We can assume there is always a queue of requests. Lookups take a variable amount
of time. To simplify we can say 50% take one time unit, 25% take 2 time units and
25% take three time units. Occasionally priority requests are received and these go
immediately to the head of the queue but don’t preempt the lookup in progress.
We are interested in the (potential) delay D(¢) if a priority request did arrive at
time unit, ?.

a} Model the delay process D(t) as a Markov chain. Write down the state space
and the transition kernel.

b) Calculate the stationary distribution of D(t).

¢) What is the long run proportion of priority requests which are processed imme-
diately.

Exercise 6.18 A processor receives work from two independent Poisson streams
of jobs, one low priority and one high priority. The length of time to process any
job is exponentially distributed with a mean of 1 minute. The high priority jobs
arrive at a rate of 10 per hour while the low priority jobs arrive at a rate of 20 per
hour. High priority jobs always go first and even preempt low priority jobs (i.e. a
low priority job is stopped if a high priority job arrives). Jobs wait in a queue until
served (assume any number of jobs can be queued). We assume the system is in
steady state.

a) If we ignore the priority of the jobs how can we describe this queueing system?
b) What is the mean number of jobs in the system at a given time.

¢) What proportion of the time is the server idle?

d) What is the mean system time in this system.

e) What is the mean number of high priority jobs in the system at a given time?
f) What proportion of the time is the server busy with high priority jobs?

g) What is the mean system time for high priority jobs?

h) What is the mean waiting time for high priority jobs?

i) What is the mean number of low priority jobs in the system at a given time?

j) What proportion of the time is the server busy with low priority jobs?

k) What is the mean system time of low priority jobs?

1) What is the mean waiting time of low priority jobs?
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Markov Processes

7.1 Introduction

A Markov process visits a state for a random sojourn time having an exponential
distribution before jumping to the next state. These processes can be used to
approximate Markov chains just as the Poisson process approximates the Bernoulli
process. The advantage of the approximation is that we can often give the transient
behavior of the Markov process explicitly. Markov processes are commonly used for
describing queues when customers arrive according to Poisson processes or when
service time distributions are exponential. Networks of such queues are widely used
to model manufacturing and telecommunication systems and we will at least get an
introduction to this interesting area of queueing networks.

We let X (t) represent the state at time ¢ measured in seconds in a countable
state space S which we may take to be {0,1,2,...}. We proceed as with the Poisson
process; that is, we approximate a discrete time Markov chain by a continuous time
Markov process. The notion of norms described below will be very useful when we
try to measure the accuracy of the approximation!

We shall assume that time is measured in multiples of a time unit
which may be taken to be nanoseconds. We keep the notation developed
in Chapter 4 and use square brackets to indicate both rounding up to
the next integer and that a measurement is in nanoseconds. Any time ¢
measured in seconds is denoted by ¢ = [nt] when measured in nanoseconds.

Functions defined on S taking real values may be thought of as vectors having a
countable number of components. The natural addition of functions, (v + v){i) :=
u(i) + v(i) and the multiplication by real numbers, (au)(i) = au(i), makes the
set of such functions a vector space. If v is a function defined on S we define
[lv]| := sup,cg |v(i)|. It is easy to check that |[v|] is a length or norm of v. It suffices
to verify the following conditions satisfied by any norm. For any two vectors u,v
and any real number «

Wil 20, fju+ ol < [Jull + o]l {lewl] = fa] - [lv]]

229
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and moreover ||v|| = 0 implies v = 0. For instance

1w+ ol = sup fu() + v(0)
< sup(|u(i)| + |v(i)])
ieS
< sup Ju(i)| + sup [v (7))
€S €S
= {Jul] +{J]}.

The set B, of functions on S, having finite norm forms a Banach space, a com-
plete normed vector space. This is shown in the Appendix. Another normed vector
space is formed by linear transformations T of B into itself. 1" transforms the vector
u € B into the vector Tu, where T'u(i) = 3~ Ty;u(j). Since the space S is always
countable, then T may be represented as a matrix multiplying vectors v. The norm
is defined by ||T|| := sup{]|Tv|| : ||v|| < 1}. Note that

Tl = sup{ITo(i)]} = sup{] Y Tyyo()1} < sup{ 3 1T}

if [[v]] < 1 and the equality > Ti;v(j) = 3, |T};| is attained by letting v(j) denote
the sign of Tj;. Consequently

71 = sup(3 171} (7.)

in this norm.

As an example note that if T is a Markov transition kernel on S, then ||T|| = 1.
To show this take v = 1, the vector of 1’s. Since T is a Markov transition kernel,
71 = 1 and since by definition ||1]] = 1, it follows that ||T|| > ||T1{| = ||]1]| = 1. It
is also clear ||T]| <1 so0 ||T]| = 1.

This space of transformations again forms a Banach space with the given norm
but we won’t show this here. Instead, we show that convergence of a sequence of
transformations 7™ to T in this norm, implies the components of the transforma-
tions converge. Pick e; to be the function which is 1 at state j and 0 elsewhere. It
follows that ||e;|| = 1. Hence

T = Tij| = |T"e; (i) — Te;(i)|
< [|[T"e; — Tejl|
<™ =T

If limy, o0 ||[T™ — T|} = 0, it follows that the 95" component of T — T tends to 0;
that is the ij* component of T™ converges.
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7.2 The Generator of a Markov Process

We start with the description of a Markov chain which may jump every nanosecond
(or picosecond or ... ) but with very small probability. We consider transition
kernels of the following general form:

Definition 7.1 77 is the probability transition of a discrete-time Markov chain,
with generator G on a countable state space S, if the transition in each time unit
(1/n seconds) may be represented by a kernel 77 of the form:

1,1 ,
T"=1+~G+ —L 7.2
Rtk (7.2)

where [ is the identity matrix, G is a matrix such that ||G|| < oo and L,, is a matrix
which may depend on 7 such that ||L,|| < oo uniformly in 7.

Example 7.2 Contending processors

A computer has two processors. Jobs arrive according to a Bernoulli process with
a rate of 10 per second and grab one of the processors if one is free; if not the
job is lost. The processing time of a job is random having a geometric (discrete
exponential) distribution with a mean of one quarter of a second. Let the state of
the system at time t be the number of busy processors. We calculate the transition
kernel 77 describing the transitions that occur in one nanosecond. Suppose there
are 0 jobs being processed. Since the time between arrivals is a geometric (discrete
exponential) distribution having mean 1/10 of a second ([n/10] nanoseconds) it
follows that in the next nanosecond an arrival occurs with probability p = 10/7
(or else there is no arrival). Hence Ty, = 1 — 10/n, Ty, = 10/n and T, = 0.
If one of the processors is occupied there are two things that might happen in
one nanosecond. A job may arrive to grab the free processor with probability
10/n or the busy processor may finish its job with probability 4/n. If neither of
these independent events occurs or if both occur we stay in state 1 hence 7y, =
(1 —10/n)(1 —4/n) +10/n-4/n =1 — 14/n+ 2(10/n - 4/n). There is an arrival
without a departure with probability 10/n - (1 — 4/n) and there is a departure
without an arrival with probability 4/n - (1 — 10/n). Hence 17, = 10/n- (1 — 4/1)
and T} = 4/n - (1 — 10/n). With both processors busy, we may in one nanosecond
see 1 or 2 departures with probabilities 2 - 4/n or (4/n)%. If none of the processors
gets free or if one gets free and a job arrives, we remain in state 2. Hence 73, =
1—-2-4/n—(4/n)*+2-4/n-10/n = 1—2-4/n+64/n%. If one processor gets free and
there are no arrivals or if there are two departures and one arrival, we jump to state
1. Thus Ty) = (2-4/n)(1 = 10/n) + (4/1)*10/n = 2- 4/n — 80/n% + 160/n>. Finally
there are two departures and no arrival with probability Tgy = (4/1)%(1 — 10/n) =
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(4/1)? —~160/n®. We summarize by writing out the transition kernel 77 as a matrix.

1—10/7n 10/ 0
(1 —10/m)4/n 1 —14/n+80/n* (1 —4/m10/n
(4/m)% — 160/n° 2 4/n — 80/n* + 160/n> 1 — 2- 4/n + 64/7°

1 1
=I+-G+ L,
no o

where

0 0 0
L, = —40 80 —40
16 — 160/ —80 + 160/ 64

and the generator G is given by

—-10 10 0
G = 4 —14 10
0 8 -8

Here we restrict ourselves to generators such that ||G|| < co. Since the vector 1
is a right eigenvector for T having eigenvalue 1 it follows from (7.2) that

1 1

Multiplying (7.3) by n and letting n tend to oo it follows that G1 = 0 since by
hypothesis ||L,|| is uniformly bounded. We conclude the row sums of the generator
G are 0. Further rearranging (7.2) and multiplying by n we get

nT"— 1) =C+ 1,
n

Since T —I has non-negative elements off the diagonal and non-positive elements on
the diagonal, letting 7 tend to oo we see (G has the same property (the components
1
of Ly tend to 0).
Since only the diagonals of G are negative the i** component of Gv is maximized
by the vector

v =(1,1,...,1, -1 1,001
—~

i*" component
among all vectors v having norm 1 (* denotes the transpose). In this case (Gv); =
2|G;|. Hence

1

0= 361 = 5 supdGol : o] 1} = sup |Gl (74)
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Definition 7.3 1In general, a generator has non-negative off-diagonal elements
and the row sums are 0. We denote the transition rate from state i to state j
(¢ # j) by q(4,7); that is q(é,j) = G;;. The total transition rate from state i is
denoted by q(i); that is q(i) = —Gy = > jes\qiy 46, 7). The proportion of the
transition rate directed from ¢ to j (i # j) is K;; := q(i,7)/q(¢). Set K;; = 0 and
call K the transition kernel of the embedded chain.

Since T ~ I + %G, we see that after one nanosecond the probability there is a
transition from 4 to j is approximately ¢(7, j)% and the probability of a jump from
i is approximately q(z)% Given there is a jump from ¢, the probability the jump is
to j is therefore approximately

i )~ Jali) = a(i.)/a() = Ky
n n

We now derive an approximation for the time evolution of discrete-time Markov
chains by a continuous time Markov process which has transition kernel P(t) :=
exp(tG). We start by showing the kernel 77[nt] = (T")I"") which gives state prob-
abilities of the chain after ¢ seconds, or [nt] nanoseconds, is closely approximated
by exp(tG). Obviously we have to give a meaning to exp(tG). Since G! = G and
G* := G - G* ', we must simply show that the partial sums

form a Cauchy sequence. We note that by the properties of the norm

Eoo in < EOO‘ ltik HGHk
k! - k! ’
k=n+1 k=n-+1

Since the series expansion for exp(t ||G||) is absolutely convergent assuming ||G|| <
oo, we see immediately that the partial sums do form a Cauchy sequence. By
completeness, the limit exists and we call it exp(tG).

Example 7.4 Contending processors - (7.2) continued

We may calculate the semi-group P(t) for the generator given in Example 7.2.
We need only diagonalize the matrix G into the form G = U'DU where D is
a diagonal matrix whose diagonal elements are the eigenvalues of (G which are 0,
—~16 — 2¢/11 and —16 + 24/11 (see Figure 7.1). It follows that G¥ = U~ 'DFU

where, of course, D* is a diagonal matrix whose elements are the " powers of the
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eigenvalues. Consequently exp(tG) = U~ exp(tD)U. However

1 0 0
exp(tD) = | 0% £ (~16 — 2v/1T)* o0
0 0 S o L (16 + 2V/11)*
1 0 0
= | 0exp(t(—16 — 2/11)) 0
0 0 exp(t(—16 + 2V/11))

This whole operation can be quickly done using Mathematica as in Figure 7.2.
generator={{-10, 10, 0},{4, -14, 10}, {0, 8, -8}};

{rvals,rvecs}=Eigensystem[generator];
rvals (x¥Display eigenvaluesx*)

{0, —16 — 2Sqrt[11], —16 + 2Sqrt[11]}

MatrixForm[rvecs] (#Display eigenvectors *)

1 1 1

15-55qri[11] 1 —16+45grt[i1]
P) 5

15+55(rt[11] 1 —16—43qrt[11]
2 5

Fig. 7.1 Calculate the eigensystem for G.

u=Transpose [rvecs];

uinverse=Inverse[u];

eigendiag=DiagonalMatrix[Table[Explt Part [rvals,il],{i,1,3}]];
semi=MatrixForm[N[u.eigendiag.uinverse,2]]

0.15 0.69 0.49 0.11 0.33 0.8
0-15 + 247231/ + 2'79_4t 0.38 - Tﬂ'g_t + W 0.47+ 2‘723t - W

0.19 0.044 0.62 0.007 0.42 0.051
0.15 - o 723t -+ 2.79.4t 0.38 + 9723t + 2.79.4t 0.47 — 2723t~ 9794t

0.11 0.26 034 _ 0.041 0.23 0.3
015+ g5z — 550 038 — 3% — 5700 04T + 55w + 505w

Fig. 7.2 Calculate the semi-group P(t).




Markov Processes 235

The following theorem shows how the chain with kernel 7", having generator G
which evolves for ¢ seconds or [nt] transitions, may be approximated by exp(tG).

Theorem 7.5 If T is the probability transition of a discrete time Markov chain
with generator G, then

| T nt] — exp(tG)|] < — (HLnII HG;W)

where

exp(tG) i k—k
k=0

The proof of the theorem is left to Section 7.6. We will first investigate exp(tG).

Theorem 7.6 Let G be a generator of a discrete-time Markov chain ({|G{| < oo)
and let P(t) = exp(tG).

a P(i),t > 0, is a continuous semi-group of probability transition kernels on
S; that is
(1) P(0) =
(2) Chapman-Kolmogorov equation: Py;(t +s) = Y p o Pir(t) Pr;j(5)
(3) limp—o ||[P(R) —I]| = 0

b If 7w is a stationary probability measure for T then 7G = 0 which is equiv-
alent to

> wliati,g) = m()a().
i€S\{j}
Moreover mP(t) = m for all t so ™ is the stationary distribution for the
semi-group P(t).
¢ The semi-group P(t),t > 0, satisfies Kolmogorov’s backward equations:

dP(t)

P(t) =

= GP(t)
which is equivalent to
Py(t) =Y (i, k)P (t) — a()) P (0)-
ki

d The semi-group P(t),t > 0, satisfies Kolmogorov’s forward equations:
P(t) = P(t)G which is equivalent to

)= q(k,j)Pi(t) — () Pis (1)

k#j
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Proof: It follows from Theorem 7.5 that the components of T"[nt] converge to
those of P(t). Hence P(t) is a probability transition kernel since T7[nt| is. Part
a.l follows since G° = I. The semi-group property, a.2, results from purely formal
power series calculations. The details are given in the Appendix where the fact that
G has a finite norm is used. Part a.3 follows since

= hE =, hk
|P(R) —I]] < IIZEG"II SZFHGII’“Sexp(hIIGH)—l
k=1 k=1

and this tends to 0 as A — 0. By the representation (7.2} it follows that if 7 is a
stationary probability measure for 77 then

1 1
I =7+ —nG + S mly.
n n
Hence, cancelling 7 from both sides and multiplying by n we get
1
'/TG -+ ;T('Ln = 0

Since 7 is arbitrarily small and ||L|| is bounded as 7 — oo it follows that 7G = 0.
Next

Formal differentiation, by ¢, of the power series

exp(tG) = Z ﬁGk
k=0 "

vields

—1

. > k
P(t):;(kt—mck

so factoring out G on the left gives P(t) = GP(t) and on the right gives P(t) =
P(t)G. The differentiation through the summation sign follows using the dominated
convergence theorem and the fact that ||G|| < co. -

Lemma 7.7 Let A = 3, _o7(i)q(i) < oo be the mean event rate and define
7B (i) = n(i)q(i)/A. Then 75 is the stationary distribution of the embedded chain
having transition kernel K.
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Proof: Since #G = 0 we have ), 7(i)q(i, j) = 7(j)q(j). So substituting ¢(i,j) =
q(i)K;; we get

> w(i)g(i) Ki; = m(5)a(3).
€S

Dividing by A gives the result. -

Example 7.8 Contending processors - (7.4) continued
The stationary probability measure satisfying

—10 10 0
7G = (7(0),7(1),7(2)) | 4 -1410 ] =0
0 & -8

and 7(0) + 7(1) + 7(2) = 1 is (8/53,20/53, 25/53).

We now investigate the behavior of P(t) when ¢ tends to co.

Definition 7.9 We say the generator G is irreducible if for all states 7 and j,
there exists a smallest n and a sequence of states

{Z - iOvilaiQa“' ﬂiﬂ = .]}
such that
Givi,Giyin -Gy 14, > 0.

Proposition 7.10  IfG is irreducible then the elements of P(t) are strictly positive
for allt > 0.

Proof. Consider any two states ¢ # j in S. The irreducibility of G means there
must exist a smallest n and a sequence of states {7 = ig,%1,%2,...,%, = j} such that

GipiyGirip -G > Q.

tn—1%n

Since n is assumed to be as small as possible it follows that the states {i =

ig,41,92,...,1, = j} are disjoint. Now
Pij(t) = exp(tQ)y; = » 71(Gis
k=0
0k
t
= Z E(Gk)w
k=n

since n is the smallest integer such that G7; > 0. Hence for ¢ small enough, the
dominant term is {G™);,;t" /n! which is positive. Hence P;;(t) > 0 for ¢ small enough.
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Next Py{t) — 1 ast — 0, so F;;(t) > 0 for ¢ sufficiently small. Hence for any ¢, by
the Chapman-Kolmogorov equation,

Py (t) = (P(t/m))} = Pu(t/m)Pyu(t/m) - - Piu(t/m)Py;(t/m) > 0
for m large enough. This gives the result. |

Theorem 7.11  Suppose a generator G, with ||G|| < oo, is irreducible and nG = 0
so nP(t) = w. Then

Jim 1P (1) = ()| =0
jes

that is, no matter what the initial state, the distribution at time ¢ tends to the
stationary distribution in total variation norm.

Proof: If (G is irreducible then the Markov chain with kernel P(1) is irreducible
by the preceding proposition. Moreover, by Theorem 7.6 7 P(1) = . Therefore, by
Theorem 5.26

lim Y [Py(n) —w(j)l = lim D (PO — ()]
jeSs JES
— 0.

Hence if t goes to infinity along the natural numbers (¢ = n), the theorem holds.
Now we must show the limit holds as ¢t — oo arbitrarily. For any arbitrary time
t, we simply take n to be the smallest integer in t (n < t < n+ 1) so Py(t) =
ZkeS Pii(n)Py;(t — n). Hence,

DoIPG(t) — 7Dl = D1 (Pis(n) Pt — n) — w(k) Pej(t —m)) |

JjES jES keS
<> |Pk(n) — w(k)] > Peylt — n)
kes jes
=Y " [Pu(n) — m(k)| — 0 as n — oo.
keS
This gives the result. |

Example 7.12 Contending processors - (7.8) continued

We see from the Mathematica calculation in Figure 7.2 that as ¢ — oo the rows of
the matrix P(t) each tend to = = (8/53,20/53,25/53). Therefore, no matter what
the initial state, the probability the processors are both busy tends to 25/53. This
convergence is also very fast since the eigenvalues of G other than 0 are so negative.
The exponential transients die out very fast in the matrix for P(¢) given in Figure
7.2.




Markov Processes 239

We shall construct a continuous time Markov process M (¢) having transition
kernel exp(tG). First recall from (7.4) that ¢ = max; ¢(i) = max;|—G;] and define
the transition kernel

Ro=1- 1 g, = g izj (7.5)
q q

Note that ¢K = (¢I + G), so

= (1/q)7(¢K) = (1/g)n(¢l + G) = 7 + (1/g)nG = .

Hence, 7 is the stationary distribution for K.

Next construct a Poisson process N(¢) with rate g. Then construct an indepen-
dent Markov chain J with kernel K. Define M(t) = J(N(t)). In other words at
each arrival or jump of the Poisson process, perform a transition according to the
kernel K. This is, in fact, a practical means of simulating a Markov process M (t)
on a computer.

Theorem 7.13  The uniformized Markov Process M(t) = J(N(t)} has imbedded
chain K and transition kernel

SO gt o
n=0

Proof: We first check that this process evolves as it should:

P(M(t) = j|M[0] = %)

e

P(Jk] = j, N(t) = k|J[0] = 1)

£
1
<

I

P(Jk} = j|J[0] = )P(N(t) = k) by construction

k
()5 U cxp (gt

li

1107

0
xp(tg(K — I))y
= eXP(tG)ij-

(D?s-
I

Here we used the fact that I commutes with the matrix K so
exp(tgK + (—tq)I) = exp(tqK) exp(—tql) = exp(—tq) exp(tgK).

That the process is Markovian follows fairly easily. Let the past of M at s be
denoted by Fs, so a typical event in A, € F, might be defined by

{N(S) :n,Tn :tn,Jn:in,u-yTl :tl,Jl :il,JQZiO},
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where {Th,Ty,...,T,} are the arrival times of the Poisson process. Therefore, for
t> s,

P(M(t) = j|As) Z N(t) — N(s) = k|As)

=3 P+ ) =3,V = N = KA

I

> (K)ESPIN(t) ~ N(s) = k)
k=0
exp((t — 5)G),,,; from the above

= P(M(t —s) = j|M(0) = in).

Similarly, P(M(t) = j|M(s) = i,) = P(M(t — s) = j|M(0) = ,) so we have
P(M(t) = jlAs) = P(M(¢) = j|M(s) = i,); that is we have the Markov property.
In conclusion then, we have shown there does indeed exist a continuous time Markov
process M (t) with transition kernel exp(Gt). |

The path properties of the process M (t) are exactly what one expects considering
M (t) approximates the Markov chain X[t]. X[t] holds a geometric amount of time
in any state ¢ with mean 1/¢(i) and then jumps to state j with probability K;;.
We show below that A (t) has a sojourn in state ¢ of exponential distribution with
mean 1/q(i) before jumping to state j with probability K;;. The jump times of
M (t) are defined iteratively by

Tn = inf{t > Tn,—l : M(t) %’L M(Tn—l)}

and the nt" holding time is defined as W,, = T,, 11 — Ty,. In fact, we know from the
construction of M(¢) that a sojourn in any state 7 is given by the interarrival time of
the Poisson process N(t), except that fictitious jumps of ¢ to itself are ignored. The
number of fictitious jumps is geometric with mean ¢/q(z) by the Markov property
of the chain J. Since the Poisson process has independent increments it follows
that given any past of M(¢) up to time T, such that M(T},) = i, we have W,, =
Eiv+ By + - 4 E¢, where the E’s are interarrival times of the Poisson process
N(t), that is, independent exponential random variables with mean 1/q and C is
the number of jumps required until the chain jumps away from ¢, that is a geometric
random variable with mean ¢/q(i). The moment generating function of W,, can be
calculated by conditioning on F: for [¢| < g(4)

() £ () () -

k=1 m=1

Hence W), is exponential with mean 1/¢(i) as expected and W,, only depends on
the current state occupied through its mean.
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The above description comes in handy for identifying the generator as is seen in
Example 7.15. We may also describe the transient behavior of a chain rather easily.
Let F denote a set of forbidden states and let m(¢) denote the mean time until the
process reaches F' starting from state i. Clearly m(i) = 0 if i € F. Moreover the
time to reach F" may be represented by X; + R(J) where X; represents the sojourn
in state ¢, J represents the state entered after the sojourn in i and R(J) represents
the remaining time required to reach F' after jumping to J. By the above path
description

m(i) = EX; + Y P(J = )E(R()|J = j) = 1/q(i) + D _ Kiym(j)

jES JjES
— 1/q(6) + Km(i),

where we have used the fact that the remaining time to reach F' given we have just
entered state j is independent of the past. We may rearrange this system as

(I — K)m(i) = ()forzchandm()_()forieF. (7.6)

If we multiply through by —q(¢) and rearrange the equation for m, we have another
useful form

Gm(i)=—1fori € F°and m(i) =0 for i € F. (7.7)

The uniqueness of the solution to the above systems follows by contradiction. If
there is another solution, m1, to system (7.6) then the function defined by v(i) =
m(1) — mq (%) satisfies

Gu(i)=0forie F®and v(i) =0for¢ € F.

This system satisfies a maximum principle like the one at (5.10). Since the maximum
is attained at the boundary F; v < 0. Applying the same reasoning to —v gives
v > 0. Hence v = 0 so the solution is unique.

Example 7.14 Contending processors - (7.12) continued

We might be interested in the mean time until both processors are free given both
are occupied at the present time. The mean time until both processors are free
starting in the three states: empty, one busy and both busy will be denoted by
(m(0),m(1),m(2)). Naturally m(0) = 0 and we must solve the linear system:

(202) () - ()

The solution is (m(0), m(1), m(2)) = (0, 3%, 15)-

=[—
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A i Ai
0 i i1 i i+1

Fig. 7.3 A Birth and Death process

For a general generator G the norm is not necessarily finite. A natural example
is the M|M |oco queue! Nevertheless, the semi-group of probability transition kernels
exp(t(F) may still be defined but the power series calculations needed to establish (c)
and (d) in Theorem 7.6 require extra conditions. In fact the solutions to the forward
and backward equations are not necessarily unique and so do not necessarily define
exp(tG). The detailed study of such generators has led to a deeper understanding
of Markov processes.

7.3 Queues and Time Reversal
Many problems in queueing can be reduced to the study of a continuous time Markov

chain on S = {0,1,2,...}, with jumps to the nearest neighbour only. This gives a
generator of the form

X X 00 0

Hi A()\1+Iu/1))\1 0 e 0
a=1 - . . . o

0 : pi —(Xi + ) Ai 0

Hence K;; 1 = poi/(Ai+ ) and K ;11 = A /(A + pi). This means that the process
sojourns in state ¢ for an exponential amount of time with mean 1/(X; + 1;) and
then jumps either left or right to i — 1 or ¢ 4 1 with probabilities K ;.1 or K ;41.
From state 0 we can only jump to the right so we assume pg = 0, therefore Ko, = 1.
These processes are named birth and death processes for the obvious reason that
jumps from ¢ to 7 — 1 represent a death and jumps from ¢ to i+ 1 represent a birth.

Our standing assumption ||G|| < oo just means sup{\; + p;} < co. The kernel
exp(tG) is hard to calculate but the stationary measure 7 can easily be found. Let
v be a function on S satisfying vG = 0 so

oo + p1v1 = 0,
Ai-1%i—1 — (Ai + pa)vi + papavi1 =0, @ > 1
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Taking vg = 1 we see by induction that

v; = ———AO”\I"'/\"‘I, i> 1.
123N 2 R 17}

Now if 3 wv; < oo, then the stationary distribution 7 is given by =(i) =
>
'Ui/ E j=0 Vs < 00.

Example 7.15 The M|M|i-queue

Consider a Poisson arrival stream of customers arriving at a single server at a rate
of A\ customers per minute. Suppose customers are served in turn with independent
service times which are exponentially distributed with mean 1/p. Let M(t) denote
the number of customers in the queue at time ¢, including the customer being
served. If a customer has just joined the queue and there are now i customers, then
the duration of the sojourn in state ¢ is the minimum between the time until the
next service completion or the next arrival. Since these times are independent and
exponentially distributed with means 1/p and 1/2, it follows that the sojourn time
in state ¢ is also exponential with mean 1/(A + g). Moreover, the probability the
process jumps next to state i + 1 is simply the probability the next arrival comes
before the service completion and this is A/(A+ ). It follows that M is a continuous
time Markov process with state space § = {0,1,2,...}, whose generator is that of
a birth and death process with constant birth and death rates.

From the above, the stationary distribution is given by

; A
m(i) = (1 — p)p* where p = m

p = A/p is called the load on the system and it is clear p must be less than 1
or else no stationary distribution exists because > 7 (i) would be infinite. This is
no surprise because customers are arriving at a rate of A per second and, on av-
erage, each customer generates 1/y seconds of work at the server. Hence work is
arriving at the server at rate of p = A\/u seconds of work per second. The server
does at most one second of work per second so if the load is greater than 1 then
customers are arriving faster than they can be served and the queue must explode.

For a general birth and death process we may consider a forbidden set of states
F:={¢,£+1,...}. The mean time m(:) to reach the forbidden set from i < ¢ is
the same as the mean time to hit . The function m satisfies (7.7) which means
m(i) =0 for i > £ and

m(i) =1/q(z) + <)\iﬁ_imm(i -1+ y )_: Mm(i + 1)) (7.8)
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for 0 < i < £. If we define

R S M)
M(i) := w(7) and v(i):= s
=0 ’ P C)

where v(0) is equal to 0, then we see m(i) = v(£) — v(2) by substitution in (7.8).

Example 7.16 The M|M|l-queue - (7.15) continued
Since 7(j) = (1 — p)p? it follows by summing the gecometric sequence that M (¢) =
1 - pth Next for j >0

ji‘i 1— pk+1

vi) =) %

= A1 —p)p
P

It follows, for instance, that the mean time for the M|M|l-queue to reach level ¢,
starting from an empty queue, is

p 1 p 1
AL =p2 " ML =p)a(l)

m(0) = v(€) ~

Similarly, the mean time to overload the M|M|1-queue from any initial queue can
be calculated from the formula m(é) = v(£) — v(3).

Consider a stationary continuous time Markov process {M(t); 0 < ¢t < T} on
a countable state space S having stationary probability measure 7 and transition
rates ¢(i,7) for 4,5 € S. If we fix any time T, we may consider the time reversal
of the original process, {M*(¢t) = M(T —t); 0 < ¢ < T}, still defined on the same
probability space. For stationary Markov processes the situation is the same as
for Markov chains: the time reversal is again a Markov process. To show this,
recall that P(t) denotes the semi-group of the forward process with generator G.
Construct a new semi-group with generator G7; = 7(j)Gj;/m(i). That this is indeed
a generator follows since the matrix G* is negative only for diagonal elements and

ZG%:Z%:O

jeSs jES

since 7 is the stationary distribution so 7G = 0. By matrix multiplication it follows
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that

(G*)’Z = Z G;{’ilGZ’L‘z e G"erllj
21,82, 0tk—1ES
_ Z 7(41)Giyi w(i2)Gigiy o m(5)G iy,
T i)
7(f)

- Z ﬂ—(i_)MGjik¥l o Gligiy Gigi

214825000y ik_1E€ES

_ 70D oy
- 7{_(2) (G )Jl'

Moreover the semi-group associated with G* is

« ootk(G*fj 2w(f) R (GR)y 7 (G
5 () 1= ZT = Z ;(Z_))—(E')— = }%Pji(t)
k=0 k=0

using the above expression for (G*)*. The following theorem shows that P* is the
semi-group of the transitions of the process M™ and consequently, M* really is a
Markov process.

Theorem 7.17  The time reversed process {M*(t) .= M(T —t); 0 <t < T}
is a stationary Markov process with stationary distribution 7, semi-group P (1) =
7(§)Pyi(t)/m (i) and transition rotes

r6g) - 2000

—_

or, what is equivalent, generator G; = m(j)G /7 ().

Proof: It suffices to show that the joint distribution of the time reversed process
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viewed at times 0 <1 <t9 < --- < t, <T is that of a Markov process.

P(M*(tl) =1, M*(tQ) =19,..., M*(tn) = 1y)
= P(M(T —t1) =i, M(T —t3) =ig,...,M(T —t,) =i,)
=P(M(T —tp) =in, M(T —tp—1) =in-1,..-,
M(T —t3) = 4o, M(T — t1) = 1)
= (in) Pinin (T = tn1) = (T = tn))
Py i (T —tn2) = (T — 1))
Pii, (T = t1) — (T — ta))
= (i) Pinin (tn — tna1)Pi i o(tn-1 —tn-2) - Piyi (t2 — t1)
(i) Byiny (bn — tne1) T(in_1) Py 14, o (tne1 — tn—2)
T(in_1) T (in_2) o
)
=P it~ ta )P (bt — tao2) - Pl (t2 — ta)m(dn)
= W(il)P;;z'Q (t2 - tl) o 'Pizgzin,l(tnfl - tn—Z)Pi*n,lin (tn - tn—1)~

It follows that the process M* does evolve like a Markov process with transition
kernel P*, at least between a fixed finite set of observation times 0 < t; < ¢ <
v < tp, < T. Hence M* is Markov at least down to the nanoseconds. The result
also holds in continuous time, but it requires a little measure theory to show the
probability induced by M* on the set of continuous time trajectories in the state
space S, is determined by the probability of sets of trajectories determined at a
fixed finite number of time points like 0 < t) <to < --- < t, < T. |
We next state an innocuous little lemma which is the key to this section.

Lemma 7.18 (Kelly’s Lemma) Let {M(t); 0 <t < T} be a stationary Markov
process with transition rates q(i,7) for 1,7 € S. Suppose we can invent a non-
negative matriz {¢g*(¢,7);4,7 € S} and a non-negative vector {n(j) : j € S} whose
components sum to 1 such that

q"(i) = q(i) where q(i) == > q(i,4), ") = > q"(i7)  (7.9)

jes\{s} J€S\{i}
and such that
m(i)q(i, j) = 7(5)q" (4, i) fori,j € S,j # 1. (7.10)

Then {q*(4,7);4,5 € S,j # i} are the transition rates of the time reversed process
{M(T —1);0 <t <T} and, more importantly, {m(j) : j € S} is the equilibrium
distribution for both processes.
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Proof: By equation (7.10) we have

> wli)eld) = Y. @) (1)
i€ S\ {5} i€S\{j}
w@) Y. ¢ G

i€S\{j}

= n(7)q" ()
m(j)q(d) by (7.9).
Therefore by part (b) of Theorem 7.6, 7 is the stationary measure for M (¢). Re-
peating the argument shows 3. o\ 1y 7(7)q" (4. 1) = m(1)¢" (4) so 7 is also the sta-
tionary measure for the Markov process with transition rates ¢*(j,7). By The-

orem T7.17 we see ¢*(i,j) gives the transition rates for the time reversed process
{M(T —1);0<t<T}. -

The transition rates of the time reversal of a stationary birth and death process
are given by ¢*(i,4 + 1) = 7(i + Dpig1/7(@) = A and for i > 0, ¢*(4,i — 1) =
m(i — 1)X\i_1 /7 (i) = p;. In other words the process evolves according to the same
stochastic mechanism when regarded backward in time! We call such processes
reversible.

Example 7.19 The M|M|l-queue - (7.16) continued

The implication of the reversibility of the M|M|l-queue is quite striking. Fix a
time 7. Relative to time 7', the past departures from the forward queue are future
arrivals of the time reversed process since when the forward process decreases by
one, the time reversed process increases by one. However the future arrival times
of the time reversed process are those of a Poisson process with rate A and are
independent to the current number of customers in the queue at time T since the
time reversed process is an M| M |1-queue. We conclude, the past departure times of
the forward process are those of a Poisson process with rate A and are independent
of the current number of customers in the queue.

We must quickly point out, however, that the current number of customers in
the queue does influence the future departure process. If in fact there are no cus-
tomers in the queue none is likely to depart! First one must wait for an arrival and
then a service. The mean time until this occurs is 1/ + 1/p while the mean time
for a Poisson arrival to occur is 1/X. Nevertheless, on average, the input and out-
put of an M|M|1-queue is a Poisson process of the same rate. This has important
consequences when we make a network of such queues.

Example 7.20 M|M|1 multiclass queues

Imagine a machine tool in a factory which performs a particular operation like
soldering a chip to a circuit board. Imagine that a finite number of different classes,
C, of boards arrive at the machine according to independent Poisson processes with
rates A° where ¢ € C. The boards are serviced on a first in first out basis (FIFO).
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We assume we can speed up service depending on the number of boards in the
queue, so when n are present, the service time is exponential with mean 1/p,. Let

A= co A
If there are n boards in the queue at any time ¢, we describe the state of the
system by the vector

Z=(z1,22,...,Tn)

where 1 is the class of the first board in the queue (actually being served), z is
the class of the second board in the queue and so on. The arrival of a new board
of class ¢ causes a transition to a new state AT = (x(,%2,..., %y, ) With a rate

a(&, A°F) = \°.

The completion of a board causes a transition to the state D¥ = (x3,...,x,) with
a rate

q(&, DT) = pin
Define

where we assume
o0 n
= Z Hpk < oo and pg := /\/uk.
n=0 k=1

The factor f makes 7 a probability as is seen below.
Let’s calculate the probability the queue contains n boards. Summing over all
possible queues containing n boards, we get

Do H(Z ) fHﬁk

Ty1...Tp Ty k=1 k=1

The probability there are no boards in the queue is f. Now summing n from 0 to
oo we must get 1 and the definition of f makes this work out:

oo n
Z f H pr = 1 by definition.

n=0 k=1

Hence 7 is a probability and we show below that 7 is the steady state for this
M|M|1 multiclass queue.

Before doing so, however, we remark that, given the number of boards in the
queue, the positions of the queue are independent. For example, given there are 2
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boards in the queue, the probability the first position has a class ¢ board and the
second has a class d board is

FO )M pa) AN
fp1p2 AT

This is clearly a product measure so the classes of the two boards are independent.

The trick to proving m is the steady state is to guess the transition rates of
the time reversed process. Intuitively this process should have departures from
the end of the queue and arrivals should come at the front of the queue. Suppose
Z = (x1,%2,...,%,) and x1 = d. By time reversal, the transition rates of the time
reversed process should be

7 (T) _ 1

G (A%, T) = —q(T, A°F) = ————X° = iy
( ) 7T(AC£E) Q( ) )\C/Mn+1 Hn+1
and
()
“(Di. 3 — 5 v
7" (DZ, &) 7T(Df)t](av,D?ﬂ)

_ O )2 pa) - (A )
SN2/ pa) (A8 fpg) -+ (A% [ pin—1)
Hence, departures occur at rate p, if there are n boards in the queue and arrivals
of class d occur at rate A%, just like for the forward time process. Next,

(&) = pn + >N = pn + X = q(@)
deC

“HUn = Ad~

as long as the queue is nonempty. ¢*(Z) = >_ ..o A° = A = ¢() if it is empty. The
conditions

T(A°T) ¢ (A°Z, 7) = 7(F)q(F, A°F) and 7(DF)q"(DZ,7) = 7(F)q(Z, DI)

are automatic from the definition.

‘We have therefore verified the conditions of Kelly’s Lemma and we conclude we
have correctly guessed the transition rates of the time reversed process and that
7 is the stationary distribution. In fact we have shown more since the transition
rates of the time reversal are the same as the forward process. We might even think
the process is reversible! This is not quite true because the time reversed process
receives new boards at the beginning of the queue and serves them from the end.
Modulo this mirror reflection of the queue, the two queues evolve according to the
same rates. We say this queue is dynamically reversible. As in the M|M|1 example,
we may therefore conclude that, when this Markov process is in equilibrium, the
departure processes of the various classes are independent Poisson processes and
their past up to any time ¢ is independent of the state at time £. Stationary queues
having classes with independent Poisson arrivals whose departure processes are also
independent Poisson processes having a past independent of the current state are
called quasi-reversible queues.
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If the service rate is a constant u, then f = 1 — p where p := A/u. Hence
the queue is stable only if p < 1. This means the load or average amount of work
arriving per unit time is less than the service rate, so the queue should not overload.
Moreover, if & = (z1,%2,...,2Zy), then

w(#) = (1o [ 2 (7.11)
k=1

Summing over the various classes of customers we see the probability of having n
customers in the queue is (1 — p)p™.

It would have been nice if the service rate could depend on the class of the
customer being served! Denote the departure of a class ¢ customer by D¢ then if
T = (x1,T2,...,2n) and z; = ¢ then ¢(Z, D°Z) = pg,. We can, of course write down
the equilibrium equations:

r(@)A+ 5] = 3w (AB)d o+ (DN
d

However, it is clear that if a class ¢ customer has a very slow service rate, it will
leave behind a relatively long queue. Hence the present state of the queue will not
be independent of past departures!

7.4 Jackson Networks

A Jackson network consists of m nodes each having a server and a first-in, first-
out queue of customers. Customers arrive from outside the network according to
independent Poisson processes and the arrival rate at node i is X;. The service
times at node ¢ are exponential with a rate p;. When a service is completed at node
i the customer moves with a fixed probability r;; to node j € {1,...,m}, or else
leaves the system with probability r; =1~ ;Tij. We say the network is open if
a customer at any node k can leave the network possibly via transitions to other
nodes. By the memoryless property of the exponential distribution, the state space
of the Jackson network can be simply a vector (z1,%g,...,%y), where z; denotes
the number of customers waiting or being served at node 7.

There are many extensions of this model. The service rate might depend on the
number of customers in the queue or in all the queues. Customers may be classi-
fied as requiring a specified sequence of service delivered by a prescribed sequence
of nodes in the network. A more intractable model might require the transition
probabilities 7;; to depend on the current state of the network; i.e. don’t send cus-
tomers to node j if j is too busy. We shall restrict ourselves to the above simple
open Jackson network and shall shortly see it’s not so simple!

We first find the stationary distribution of a Jackson network and the solution is
very elegant. If one defines the rate at which customers arrive at node j on average
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Fig. 7.4 An open Jackson network
to be Ay, it follows intuitively that this rate should satisfy the flow equation
)\j = Xj + Z )\ﬂ'ij (712)
i

since the proportion of the flow A; into node ¢ which flows next to node j is ry;.
Now viewing the node j in isolation and bearing in mind the previous results that
the output of the M|M|l-queue at node i is a Poisson process with rate A;, it is
reasonable to assume the input to node j is the sum of incoming Poisson processes
and hence the input is Poisson with rate ), because of (7.12). Consequently, viewed
in isolation node j should be an M|M|l-queue and this we know has stationary
distribution 7;(x) = (1—p;)p%. The nicest possible result then is true; the stationary
distribution =, of the whole Jackson network has a product form

(X1, 22y Tm) = my(T1)m2(22) < - T (Tim)-

This means that at a fixed time the number of customers at any node is independent
of the numbers at other nodes and the distribution is that of a stationary M |M]1-
queue.

This remarkable result follows by using Kelly’s Lemma. We shall in fact show the
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time reversed process of the Jackson network is another Jackson network with the
same service rates and the same stationary distribution. Let the operator A.; applied
to a state ¥ = (z1,Z2,...,%i,..., Ty ) denote the transition from the state & to the
state A.;(T) given by (z1,22,...,2; + 1,...,2,); that is an arrival has occurred at
node 7. Similarly let the operator D, applied to a state Z denote the transition
to the state D;.(Z) = (x1,®2,...,2; — 1,...,xy); that is a departure has occurred
at node i and the customer leaves the system. Finally, let T;; applied to a state &
denote the transition to the state T,,;(z) = (@1, 22,...,2; — L,...,2z; + 1,...,Zm);
that is a departure has occurred at node ¢ and the customer has entered the queue

at node j.
Let pi(x;) = p; if x; > 0 and 0 otherwise. Hence the transition rates are

q(Z, A(D) = N
¢(Z, Di (2)) = pa(zi)ri
q(Z, Ty (Z)) = pa(zi)ray-

If the time reversed process is indeed a Jackson network with the same service
rates and 7 is indeed the stationary distribution, then the arrival rate to node ¢
from the outside of the network for the time reversed process should be

—*

1= q"(7, A4(T))
(A (F))
)

i

B

—

(&
m(xi + 1)
(@)
= "——iuiTi = \;7;-

i

Similarly, the departure rate from node i to outside the network for the time
reversed process should be (when z; > 0)

wir? = q"(& D;.(T))
7(D;.(Z))
(&)

I
I

Since the service rates of the time reversed Jackson network are the same we con-
clude r} must equal A\;/A;.
Finally, the transition rate from node ¢ to node j (when x; > 0) for the time
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reversed process should be

pirs; = ¢ (T, T ()

|

[Ree}
—~~
=

o,
—
8y
s
83
N

Again since we are supposing the service rates of the time reversed Jackson network
are the same, we conclude r;; must be equal to A;r;;/A;. This is consistent since
by summation,

7‘;-‘ =1 —ZT’;} =1 “Z/\j?’jz’/)\i =1 (/\1 —Xz)/)\l :X,//\7
J

J

To use Kelly’s Lemma, we need only show (7.9) and (7.10). The second is true
by construction. Since ¢(Z) = 3. (N + i - x{z; # 0}) and

@)= (Xf + pi - x{@i # 0})

(7.9) follows from the flow equation

in = Z}\Z —ZZAjT'ji
% i A 7
= Z/M - Z)\j(l — Tj) = Z)\iri-
i 7 %

We conclude the time reversed Jackson network is another Jackson network with
the same stationary distribution m. It follows, moreover, that the solution of the
flow equations for the time reversed process gives flows A} = J;, in order that the
stationary distributions be the same.

We have arrived at a very satisfactory description of the network in steady state
but let’s not get carried away. The number of customers at node ¢, at time ¢, may
be independent of the number of customers at the other nodes at time t but it
certainly influences the future evolution of the other nodes! If node ¢ has lots of
customers, it will drive the other nodes as fast as it can serve customers; that is the
flow into node j say will have rate p;r;; not A\;r;;! If the service rate y; at node j is
close to A; it may well be that this extra flow from node i will overcome the service
rate at node j and it will start to fill as well. This transient behavior is crucial for
designing the network but is not well understood at present.
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7.5 Kelly or BCMP Networks

Imagine that a factory has J machine tools like that in Example 7.20, each one of
which performs a specific operation. Now imagine that the factory produces many
different kinds of circuit boards each requiring a series of operations performed by
the machine tools. In fact if one tool solders on resistors it may be necessary for
the same board to revisit the same machine tool several times at different phases of
its construction cycle. The new boards may in principle start their cycle at any of
the machine tools and finish at any machine tool.

To model this factory we consider J FIFO M|M |1 multitype queues representing
the J machine tools. New circuit boards of class ¢ arrive on the shop floor at queue
1 according to a Poisson process with rate Xc(z’), These new boards join the queue
at that machine. All classes of boards are serviced at a rate which may depend on
the number of boards in the queue. Hence if there are n boards at machine i, then
the service rate is p,,(4). When a board of class ¢ leaves queue i it is sent to queue
j and changes to class d with probability ric]‘.i. With probability 7¢ :=1— > jd rf]d
the board leaves the factory. Such a scheme is called Markov routing.

These routing probabilities from one machine are independent of the state of
the other machines in the network so we can’t reroute a board if the destination
machine is too busy. Moreover we are assuming the queues are FIFO M|M|1
multitype queues and this means each of the classes of board has the same service
time distribution and we can’t give priority to different types of boards. This makes
the model a little unrealistic. On the other hand this model is quite powerful.
Suppose one kind of board must visit machines (i, 7,4, k, 7,4) in that order. Define
a class c¢; to be this kind of board at its first visit to machine ¢. Define ¢y to be
the class of this board at the second stage of its route, i.e. at machine j. Define
¢3 to be the class of this board at the third stage of its route, i.e. at machine i
for the second time. Continuing in this way we describe the route of the board by
a sequence of changes of class and the class of the board completely describes its
current stage on its route. Naturally rij® = 1, 77 = 1, r3* = 1 and so on.
Also, X7 (i) > 0 while X*(j) = 0, A* (1) = 0 since the boards start out in class
¢1 and do not enter the system otherwise. Consequently, if we allow ourselves a
large number of classes, this model incorporates a detailed description of the flow
of boards through the network and the calculation of queue sizes at the different
machines has a definite interest. Surprisingly, this is possible and in fact the best
possible answer is true. The stationary distribution of the network is the product
of the stationary distributions of the individual queues taken in isolation just like
the Jackson network.

The state of the network is described by

T = (fl,fg,...,f.])

where Z; is the state of queue ¢ as defined in Example 7.20. If the current state is =
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and a new board of class ¢ arrives from outside the network to queue 7, we denote
the new state of the network by A%z. If a class ¢ board departs the network from
queue i, we denote the new state by D{ 2. Finally, if a class ¢ board has been served
at queue ¢ and is transferred to queue 7 as a class d board, we denote the new state
by Ti&. If there are £(i) boards in queue 4, the transition rates of the network are
given by

The stationary distribution 7(7) of queue i as given in Example 7.20 depends on
the arrival rates of the various classes. The total arrival rate of class ¢ boards must
be the sum of the arrival rate from outside the factory plus the arrival rates from
other machine tools. In other words, the arrival rate of class ¢ boards at queue 1,
which we call A°(7), must satisfy the flow conservation equations:

X)) =X + > A

jeJdeC

We shall assume we have a solution to this linear system. Also note that

Z Xe(iyre = Z Xy [ 1=y red

jd

=D ON(E) = DD i)y
ic jd ic
=YX - Y (W) -36)

jd

= X0 - (x() - X))

c

- Zxc(i). (7.13)

To show just how easy it is to give the steady state of a Kelly network, consider
the following example.

Example 7.21 Solving a small Kelly network

Imagine a factory with three machines, as in Figure 7.5. Number 1 prints a circuit
on a board. Number 2 solders connections and number 3 staples in IC’s (integrated
circuits). The factory has two products, widgets and gadgets. Widget boards arrive
at machine 1 according to a Poisson process at a rate of one a minute while gadget
boards arrive at machine 1 according to another independent process at a rate of
two per minute.
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gadgets —» f;@
widgets ———> ‘\‘/ N

Fig. 7.5 A metwork of multitype queues.

A widget board visits machines 1, 2 and 3 in that order twice and then is finished.
Call a widget board class a if it is on its first pass through 1, 2 and 3 and class b
if it is on its second pass. The flows of widgets through the queues is described by
A%(1), A%(2), A%(3) and AP(1), A%(2), AP(3). Each of these flows is equal to A*(1) = 1
by the flow conservation equations.

A gadget board visits machine 1 then machine 2 twice to avoid overheating
the board by doing too much soldering in one pass. The gadget board then visits
machine 3 and then is finished. Call a gadget board class ¢ before the second visit
to machine 2 and class d after. The flows of gadgets through the queues is described
by A°(1), A%(2), A%(2) and A%(3). Each of these flows is equal to A (1) = 2 by the
flow conservation equations.

Suppose that the service rates at machines 1, 2 and 3 are 11 = 5, ug = 10 and
3 = 5 respectively, independent of the queue sizes. We suppose the queues are
FIFO. The total flow into queues 1, 2 and 3 are

I

ML) = X (1) + A1) + A%(1) =4

A(2) = A%(2) + A"(2) + X°(2) + A4(2) =

A(3) = A7(3) + A°(3) + A4(3) = 4.
Hence the loads on queues 1, 2 and 3 are p; = 4/5, pa = 6/10 and p3 = 4/5
respectively. Since the queues at the three machines are M |M |1 multiclass queues,

the load determines the distribution. Queue 1, for instance, has a probability of
(1 — p1)p¥ of holding k boards and the mean number of boards is

o0

> k(1 - ok =

= (1~p1)

Hence, in steady state the mean number of customers at queues 1, 2 and 3 at a
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fixed time are respectively p1/(1 — p1) =4, pa/(1 — p2) = 1.5 and p3/(1 — p3) = 4.
By (7.11), the steady state probability that, for instance, the first two queues are
empty and the third queue contains a gadget followed by a widget on its second
pass is

A S e e é%;(%) 2L

To show

J
(&) == [ [ mel@)

i=1

we again turn to Kelly’s Lemma and start by guessing the transition rates of the
time reversed process. Naturally we guess the time reversed network is composed
of time reversed queues as in Example 7.20, which add new customers at the front
of the queue and serve them from the end. The flow of customers into the queues
of the time reversed network remain the same but the Markov routing is altered.
Let 77 denote the proportion of boards that leave the factory from queue ¢ of the
time reversed network. The flow A°(3)7¢ of class ¢ boards from the time reversed
queue 1, to outside the factory, should equal the flow of class ¢ boards from outside
the factory to queue ¢; that is

Similarly let A°(7) denote the arrival rate of class ¢ boards to queue i from outside
the network. Since the flow of class ¢ boards into the time reversed queue 7 from
outside the factory should equal the flow of class ¢ boards from queue i to outside
the factory, we have

AS(i) = N°(i)re.

Finally, let f;-if be the proportion of class d boards at queue j which are routed as
class ¢ jobs at queue i in the time reversed network. The flow of class d — ¢ boards
from j§ — 1 in the time reversed network should equal the flow of class ¢ — d boards
from 7 — j in the original network so

; d
ca oy e _ TG

Y §)rde = A (i)r =
A (]) A () i 31 )\d(])

Jt
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Note that

- MG | N
Z 1Jd+’r1 = Z )\cj(z')J + )\CEZ.;

jd jd
LX) - A6) | A)
STl )
=1

by the flow conservation equations. We conclude that ffjd and 7¢ are Markov routing
probabilities.

Hence, if there are ¢(i} = n boards in queue i and 4(j) = m boards in queue j
when the network is in state £, the transition rate of the time reversed network is
given by

0 (A%, ) = pin 1 ()5 = iy ( >j8
¢ (DE#,2) = M(i) = A(i)rf
x(i)res

(T %, 8) = 1 ()75 = pm1 () g7 3G)
We can now verify the conditions of Kelly’s Lemma. First, if there are £(i) = n

boards in queue ¢ and ¢(f) = m boards in queue j when the network is in state 7,
then

¢ (@) = D | A0 + pagy ()7 +ZM (i)

by equation (7.13).
Next we may consider

cd 2, * o]t N -, )\d( )/H‘m 1(]) . )\C(Z)rlcjd
W(Tijdm)q (Tijd17x) —W(x)m"umﬂ(]) X(j)
= (@) (D

The other required relations:
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are proved in a similar way. We conclude, therefore, that 7, which is a product of
the stationary distributions of the individual queues taken in isolation, is indeed
the stationary distribution of the network.

The Jackson product formula may be extended beyond a network of M|AM|1
multiclass queues with the service rates of each queue depending on the number
of customers in it. In fact, any network of quasi-reversible queues will have a
product form stationary distribution! This allows extensions to various interesting
special cases but one should not lose sight of the fact that these results are very
fragile. Priorities are not allowed and the service rates can’t depend on the class of a
customer. To see this, recall from Example 7.20, that if an M|M |1 multiclass queue
has service rates depending on the class of the customer being served, then the
state of the queue left behind at a departure depends on the class of the customer
just served. If this queue is in a network then the arrival of this customer at some
other node would condition the queue left behind. In other words, the queues
are dependent and the product formula must be false. Priorities create similar
dependencies between queues in a network.

To show exactly how fragile our theory is, let’s discuss the following example.

Example 7.22 Bramson Networks

Consider a network with two FIFO queues. Customers (or boards) arrive only at the
first queue at a rate of 1 per unit time. The customers visit the queues 1,2,2,2,2,1
and then leave the network as shown in Figure 7.6. Let these visits correspond to
classes a, b, c,d, e, f. Hence Xa(l) =1 and

Pt = 1,785 = 1,058 = 1,78 =1, 7’21 =1 7'1 =1.
Solving the flow conservation equations it follows that

A1) =X =1

( )= Xl(l)ﬁz =1
)\0(2) = /\b( )722

(2) (2)7'22 =
A°(2) = AY(2)rds = 1

M) = x@)rs] = 1.

Let us suppose the mean service time of queue 1 is m(1) = 1/3 and the service
time of queue 2 is m(2) = 1/5. We may then model this network as two M|M|1
multiclass queues and conclude the total flow into queue 1 is

A+ 1 fay=2
and the total flow into queue 2 is

AP(2) + A°(2) + A%(2) + A°(2) = 4.



260 Elements of Applied Probability
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Fig. 7.6 A Bramson network.

This means the network is stable since the load on queue 11is p(1) = 2/3 < 1 and
the load on queue 2 is p(2) = 4/5 < 1. The stationary distribution of a network
of multiclass queues with service rates independent of the customer being served
has a product form determined by the p’s, so we can give the entire steady state
distribution.

Now let us alter the mean service times according to the class of the customer
being served. Let m® = 0.001, m® = 0.897, m¢ = 0.001, m? = 0.001, m® = 0.001,
m? = 0.899 denote the mean service times of the six classes. From the above arrival
rates we see the load on queue 1 is

p(1) = mA\* (1) +m/ N (1) = 0.9
while the load on queue 2 is
p(2) = mPAb(2) + meA°(2) + mINI(2) + mENE(2) = 0.9.

Since the service rates depend on the class of the customer being served, we can’t
expect there to be a stationary distribution which is a product as above. However,
it seems reasonable that since the load on each of the queues in a network is less
than 1, the network must at least be stable and there should exist some stationary
distribution. Intuitively, any unstable network must have a bottleneck, i.e. a queue
which can’t keep up with the workload and this is not the case here.

Surprise! This network is unstable! Bramson (1994) has shown the queue sizes
build up and up and tend to infinity! Imagine a slight buildup of class b customers
at node 2. Since this is a slow class this buildup dribbles into classes ¢, d and e but
gets stuck there even though these are fast classes. This is because queue 2 is FIFO
so everybody is waiting at the end of the queue for the slow class b customers. When
the last class b customer clears out however there is a rush over to queue 1! Since
class f at queue 1 is also slow there is a temporary bottleneck! New customers
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of class @ arriving from outside the network go to the end of queue 1 and can’t
get through to queue 2 which is starved for customers and becomes idle. Finally,
the temporary bottleneck of class f customers is cleared out and the buildup of
class a customers is quickly transferred to queue 2. This gives a buildup of class b
customers again only now the buildup is worse than before! Going round and round
like this causes bigger and bigger buildups and the queue becomes unstable. The
fact that the load on each queue is less than one only means the queue can keep up
with the average inflow of new work if it works all the time. Both queues here are
starved during part of each cycle and so can’t keep up with the load when they are
working.

This example is designed to make us humble! Clearly we don’t really even un-
derstand when a network has a steady state. The Jackson product formula and its
extension to a network of quasi-reversible queues must be viewed as a minor miracle
and the description of a real network will almost invariably be far more complex.
When we also remember that the steady state tells us nothing about the network as
it evolves in time, we should conclude that the study of networks will keep engineers
and mathematicians busy for decades to come.

7.6 Approximation by a Markov Process

Recall our assumptions on the transition kernel T77:
" 1 1
T :I+5G+Fan (7.14)

where I is the identity matrix, G is a matrix such that ||G|| < oo and L, is a matrix
which may depend on 1 such that ||L,|| < oo uniformly in 1. The transition kernel
T has a first order part, namely TC := I +-G/n. We assume 5 >> max; Gy; so TC
is associated with a Markov chain which jumps every nanosecond. We start with an
intuitive description of this discrete-time Markov chainon S = {0,1,2,...}. Imagine
the chain is in state 7 € S and imagine that every nanosecond during the sojourn in
i, a Bernoulli trial is performed having probability p = q(i)/n of success. If a trial is
a success, then the sojourn ends at the end of that nanosecond and the chain jumps
to state j € S with probability K;. If the trial is a failure, the chain does not jump
away from i. It follows that the sojourn in state 7 is a geometric random variable
having mean 1/p = 1/q(4) nanoseconds or 1/q(i) seconds. Hence the sojourn is
memoryless and approximately exponentiall This discrete-time Markov chain has
a probability transition kernel given by

1~q(0)/n --- Koiq(0)/n --- Kozq(0)/n ---

Kiog(i) -+ 1—q(@d)/n-- Kiq@)/n - | n
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We now proceed in a manner analogous to Proposition 4.20.

Theorem 7.23  The discrete Markov chain X|[s] having kernel T can be coupled
with the chain Y[s] having kernel TS, such that

P(X[s] # Y(s] for some 0 < [s] < [nt]) < —HLnH

Proof: Consider any state i. The distributions after one step have probabilities
f() = TZ and g(j) = Tg By Proposition 4.20 there exist two random variables
X1(3) and Y7 (4) defined on the same probability space having marginal probability
mass functions f and ¢ such that P(X1(i) # Y1(4)) = ||f — gl|/2. For any ¢

ZI
sup Z |T;} ~

= n—QHLnll by (7.1).

i

1f = gll

IA

By constructing a product space, we can in fact define a sequence of independent
random variables {X (i) : s = 1,2,...}, all with the same marginal distribution as
X1 (2) and a sequence of independent random variables {Y,(i) : s = 1,2,...}, all with
the same marginal distribution as Y7 (¢). Moreover, by taking the product of product
spaces, we can define such sequences for each 7 all on the same probability space.
We have therefore constructed a large probability space {5, F, P} with sequences

{X:(0),Y:(4);i € S,s € {0,1,2,...}},

such that P(X(i) = j) = T} and P(Ys(i) = j) = Tg and such that

) . 1
P(X,(i) #Ys(i)) < —E”LnH for all . (7.15)
We now construct our Markov chains starting at X[0] = ip and Y[0] = i
by recursively piecing together these variables as follows: if X[s — 1] = ¢ then

Xs] = X{t) and f Y[s — 1] = i then Y|s] = Y;(%). These are indeed Markov chains
with the required transition probabilities since for instance
P(X[s]=j|X[s—1]=4,X[s—2] =i5 g,...,X[0] = ip)
= P(X,(i) = j|X[s = 1] =4, X[s — 2] = i5-2,...,X][0] =1p)
=T"
(¥ :

In the same way, Ys] is seen to be a Markov chain with transition kernel T°C.
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Now,

P(X|s] # Y]s] for some 0 < [s] < [nt))

= Z P(X[s] # Y], X[k] = YIk]; [1] <k < [s —1])

nt]

}:E:mx ] # Y(s],

XF—H—YB*H:%XM:Y%HUSkSB—W

nt)
NN P(X[s| £ Y[$s)|X[s — 1] =Y[s — 1] =)
s=[1] i

xP(X[s 1] =Y[s—1] =4, X[k = Y[k [1] <k < [s — 1])

l

[nt]
=Y ) P(XL(i) # Yi(i))
s=[1] i
xP(X[s =1 =Y[s — 1] =4, X[k] = Y[k];[1]] <k < [s —1])

{nt]

”Ln“ Z ZP s =10 = Ys — 1] = i, X[k] = Y{kl;k < [s — 1])

b(7m)
<l Zl
. lngll

n

m

From the previous result, we see that the two chains X{s] having kernel T" and
Y[s] having kernel T are essentially indistinguishable as they evolve over time
measured every nanosecond. Henceforth, we will assume our discrete time Markov
chain has kernel T¢ and we now turn to approximating the time evolution of ¥[s]
by a contimious process having probability transition semi-group exp(tG). By the
semi-group property this continuous process observed every nanosecond will be a
Markov chain with kernel exp(G/n).

We now uniformize the Markov chain Y[s]. Construct the Markov chain Uls]
by performing a Bernoulli trial at each nanosecond such that, with probability ¢/7,
we jump with transition probabilities K (see (7.5)) and with probability 1 — ¢/n
we stay put. First note that the kernel of this new chain is (1 — g¢/n) + (¢/n) K =
I+G/n =T In fact the two chains Y[s] and U[s] are indistinguishable. The
only difference is that Uls] has fictitious jumps; that is K} > 0 for some i so the
uniformization construction puts in jumps that really aren’t there. The advantage
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of this description is that each Bernoulli trial is identical and does not depend on
the state!

The continuous Markov process M(t) defined in Theorem 7.13 approximates
Y[s] = Uls] and hence X[s]. To prove this we show this process observed on the
nanoseconds and therefore denoted M|s| can be coupled to the chain Y{s]. The
construction is slightly different from that of Theorem 7.23 since the process M (t)
has already been constructed.

Theorem 7.24 The discrete Markov chain Y[s] having kernel TS can be coupled
with the chain M|s] having kernel exp(G/n) such that

LG
81
Proof: Since we are rounding off to the nearest nanosecond, recursively define

NE[s] if N[s+1] = N
NE[s]+1 if N[s+ 1] # Nis].

P(Y[s] # M(s| for some 0 < [s] < [nt]) <

NEs+1] = {

In effect N2 only counts one arrival in a given nanosecond. Now define the chain
Y[s] := J(N%[s]) at each nanosecond. Clearly Y [s] has transition kernel (1—q/n)I+
(¢/n)K =T+ G/n="TEC. Tt clearly is equal to M[s] up to the moment when there
are two Poisson arrivals in the same nanosecond. This has low probability as seen
next.

P(N%®[s] — NT[s — 1] # N[s] — N[s — 1] for some [1] < [s] < [nt])

[nt]

<> P(Nls] = N[s -1 >2)
s=[1]

=ty %(g)’“em(—q/n)

k=2 n

_ gt > 1 q

- —n_ kZ:O (k 4 2)' (;)k eXP(_‘]/U)
Pt 4GP

< 2‘7] i by (7.4).

We conclude,

tGl?
8n

P(Y[s] # M]|s] for some 0 < [s] < [nt]) <

Corollary 7.25 The discrete Markov chain X|[s| having kernel T" can be coupled
with the chain M|s] having kernel exp(G/n) such that

¢ I
PUXE] # Ml forsome 0 < [ < o) < £ (11 50
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Proof: The proof is immediate by combining Theorems 7.23 and 7.24. n
Proof of Theorem 7.5: The proof is immediate from the preceding since by (7.1)

[[T7[nt] — exp(tG)]|
= SUP Z , 77t - eXp(tG)Ul

= supZ |Pi(X ~ P(M() = )|

_SUPZIZ X(t) =j,M(t) = k) — Py(X(t) =k, M(t) = j)]|

Yd k#g
<sgp ZZ M(t) =k) + P;(X(t) =k, M(t) = j))

J k#j
= 2sup P;(X(t) # M(t))

t IGI”
2— ([ IL,|| +

by Corollary 7.25 and this tends to zero as 7 tends to infinity. m

7.7 Exercises

Exercise 7.1 A Markov process is defined on two states {0,1}. The process
stays an exponential amount of time in each state with a mean holding time of 2,3
seconds respectively. At the end of the holding time the process jumps according

to the matrix
1/21/2
1/43/4)°

a) Give the generator of this Markov process.
b) Calculate the stationary distribution of this process.
¢) Calculate the mean recurrence time to state 0.

e) Calculate the long run probability of being in state 2 having last visited state 0.
f) Calculate the transition kernel of the process.
g) Write down the backward and forward equations and solve them.

d) Calculate the average amount of time spent in state 2.
)
)

Exercise 7.2 A Markov process is defined on three states {0,1,2}. The process
stays an exponential amount of time in each state with a mean holding time of 1, 5, 2
seconds respectively. At the end of the holding time the process jumps according
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to the matrix

0 1/21/2
2/3 0 1/3
1/43/4 0

a) Give the generator of this Markov process.

b) Calculate the stationary distribution of this process.

¢) Calculate the mean recurrence time to state 0.

d) Calculate the average amount of time spent in state 2.

e) Calculate the long run probability of being in state 2 having last visited state 0.
) Calculate the transition kernel of the process.

g) Write down the backward and forward equations and solve them.

Exercise 7.3  Consider the following matrix

1 (4+3e*” 3 3e7t>

Pt = 7\4—4e" 7 34 46T

a) Show P(t) is a semi-group of probability transition matrices.
b) Find the generator of this semi-group.

c) Describe the transitions of the the associated Markov process.
d) Find the stationary distribution of P(t).

FExercise 7.4  Three terminals are attached to a Vax under a timesharing system.
The terminals work independently. The duration of a job in nanoseconds is a geo-
metric random variable (or approximately exponential) with a mean of ten seconds.
The duration of an idle period in nanoseconds is a geometric random variable with a
mean of thirty seconds. Describe the state of the system at time t to be the number
of busy terminals.

a) Give the generator of this Markov process.

b) Give the stationary distribution of this Markov process.

Exercise 7.5  Consider a bursty source. The silence period of the source is ex-
ponentially distributed with a mean of s = 1.4 seconds. The burst period is ex-
ponentially distributed with a mean of b = .6 seconds. Let the silence state be
represented by 0 and let the burst state be represented by 1. Let the steady state
be (7 (0),7(1)).

a) Write down a system of equations for (m{0),w(1)).

b) Calculate (7(0), 7(1)).

¢) Why is it useful to calculate 7(1)?

d) Suppose that during a burst period the source delivers cells at a PCR Peak Cell
Rate of 1000/6 cells per second (rounded off at some point). Calculate the MBS
(Mean Burst Size) and the SCR (Sustainable Cell Rate).

e) If 5,000 VC’s are established with the above statistical behavior then what is the
bandwidth we must allocate if we assume all of them are peak rate.
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f) If 5,000 VC's are established with the above statistical behavior then what is the
distribution of the number of burst on-going at a given time.

g) What is the approximate probability the 5,000 VC’s will require a bandwidth of
more than 300,000 cells per second.

Exercise 7.6  All the 5,000 sources described above feed an ATM multiplexor.
We model these aggregated sources as one Poisson stream having the same com-
bined SCR. We model the link of the multiplexor as an exponential server with rate
353, 208 cells per second.

a) What is the load on the server?

b) What is the average number of cells in the multiplexor?

¢) What is the average number of cells in the multiplexor and what is the average
delay across the multiplexor?

d) If the multiplexor can only queue 20 cells, what is the CLP (Cell Loss Probabil-
ity)?

e) Since the sources are really bursty is this calculated CLP higher or lower than
the real CLP? Why?

Exercise 7.7  Consider a multiplexor with M input lines. We assume each line
is busy or idle intermittently. The duration of a busy period is random with an
exponential distribution with a mean of 1/u seconds. The duration of an idle
period is exponential with a mean of 1/X seconds. Assume all busy and idle periods
are independent of each other. Let X(t) denote the number of busy lines at any
time ¢.

a) What is the key element in the above model that makes X (¢) a Markov process?
b) Give the state space and write down the backward equation for the probability
transition kernel for this Markov chain.

¢) Give the generator GG of this Markov chain as a matrix.

d) Check that the vector e := (e, €1, €2,...,en) defined by

o <N ( A n L N-—n
"\ n A+p A
satisfies eG = 0.

e) What does part d) imply about the proportion of time up to some large time 1’
that half the access lines are busy?

Exercise 7.8  Recall Exercise 6.18. Now suppose that at most two jobs can be
queued including the job being serviced. Jobs that cannot be queued are lost!

a) Define the state space for a Markov process that models all the aspects of the
above low and high priority queueing system.

b) Write down a generator for this Markov process.

c) What is the steady state probability this system is idle at a given time?

Exercise 7.9  Consider a Markov process with states S = {0,1,2,3}. The states
{0,3} are absorbing. The mean holding time before a jump in state 1 is 2 units
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and the process jumps to states 0, 1, 2 and 3 with probabilities 1/4, 1/3, 1/6 and
1/4 respectively. The mean holding time before a jump in state 2 is 3 units and
the process jumps to states 0, 1, 2 and 3 with probabilities 1/4, 1/4, 1/4 and 1/4
respectively.

a) Write down the generator G of this process.

b) Calculate the probability the process started in state 1 is eventually absorbed in
state 3.

¢) Calculate the mean time until absorbtion starting in state 1.)

d) Calculate the transition kernel P(t) = exp(tG).

Exercise 7.10  Suppose jobs arrive at a machine shop according to a Poisson process
at a rate of 3 per week. The shop finishes a job in a time that closely follows an
exponential distribution with a mean of 2 days. If a job arrives when the shop is
busy, the job is sent to a subcontractor who completes the job in a time that closely
follows an exponential distribution with a mean of 5 days. If both shops are busy
then orders are simply lost.

a) Model this process as a Markov process and give the generator.

b) Calculate the steady state.

c) What proportion of the time is the subcontractor busy?

Exercise 7.11  Imagine customers arrive in their cars at a take-out restauramnt
according to a Poisson process with a mean rate of 100 per hour. Suppose the order
is taken immediately upon parking at one of N numbered spots. The time to fill
the order is exponential with a mean of 5 minutes. When an order is filled the
customer must leave the numbered spot for the next customer. Unfortunately, if a
customer arrives to find all the spots occupied, the customer will give up since there
is no parking nearby. Calculate (using Mathematica) the number of spots required
to ensure the proportion of customers who have to go home dissatisfied is less than
one percent.

Exercise 7.12 An tax team is made up of a junior accountant and a senior ac-
countant. Unprocessed income tax forms arrive at the junior accountants in-box at
a rate of 10 per hour. The junior accountant processes items in the in-box in the
order of arrival. He classifies incoming forms in about 3 minutes on average. About
six in ten forms are complicated cases which are sent to the senior accountant. The
other four in ten are simple cases that the junior accountant puts back in his own
in-box. These simple cases take about 3 minutes each. The senior accountant takes
about 4 minutes to handle the complicated forms.

Assuming all the processing times have an exponential distribution, calculate
the probability that at the noon break the junior accountant has 3 forms for clas-
sification as well as two simple files on his desk waiting to be processed while the
senior accountant has just one complicated case on his desk.

Suppose the junior accountant takes 4 minutes to handle simple cases. What
can we say about the steady state of the system then?
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Exercise 7.13  There are three main attractions for children at the fair. There
is the ferris wheel, a water ride and a toy train. Children arrive at the fair at the
rate of 20 per hour. and with equal probability join the queue one of the three
attractions. We can model the time enjoying the ferris wheel, the water ride and
the toy train by exponential times with means three minutes, two minutes and four
minutes respectively. After finishing the ferris wheel a child will be terrified and
go home with probability 1/2, join the queue at the water ride with probability
1/5 or join the queue at the train with probability 3/7. After finishing the water
ride a child will be soaked and go home with probability 1/2, join the queue at the
ferris wheel with probability 1/4 or join the queue at the train with probability 3/4.
After finishing the train ride a child will get bored and go home with probability
1/2, join the queue at the water ride with probability 1/3 or join the queue at the
ferris wheel with probability 1/6.

a) Calculate the probability that in steady state there are two children either queue-
ing for or riding the ferris wheel.

b) Calculate the probability there is nobody near the water ride at exactly 12 noon.
¢) Suppose that children arriving at the fair join the shortest queue when they arrive
and then proceed as above. What can you say about the steady state?

Exercise 7.14  Consider a network with two nodes. Customers arrive from outside
the network at node 1 according to a Poisson process at a rate of 1 every two minutes.
Customers arrive from outside the network at node 2 according to a Poisson process
at a rate of 3 every two minutes. The service time at node 1 is exponential with
mean 1 minute and after service, customers leave the network with probability .5
or join the queue at node 2 with probability 0.5. The service time at node 2 is
exponential with mean 30 seconds and after service, customers leave the network
with probability .75 or join the queue at node 1 with probability 0.25.

a) Calculate the probability the queue at node 2 exceeds 5 customers when the
system is in its steady state.

b) What is the probability that an arrival from outside the network to node 1 does
not have to wait before being served?

c) If the network is in its steady state what is the probability there are 2 customers
at node 2 given there are two customers in the queue at node 17

¢) Describe the departure process from node 2.

d) Calculate the time reversal of this chain and comment on your results.

Exercise 7.15  Consider a closed Jackson network with m nodes and X; = 0 and
r;. = 0 for all nodes. This means that if n customers are present, these customers
stay forever, bouncing around from node to node! We wish to show that there is a
steady state for this closed system!

a) Consider any Markov process (or chain) with stationary distribution = and states
E such that

q(i,j) =01if (i,j) € Ex EC UE® x E.
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Show

_ w(i)x{i € £}

(i) = (B is invariant.

b) Return to the closed Jackson network. We can write down the light traffic
equations A; = >, A7y ; or AT(I —r) = 0. Show this system has at least one
non-zero solution.

¢) Define the Jackson product

o-1(-5) ()

and show that it is a stationary distribution. (Perturb the closed Jackson network
with a fake outside input \; and a fake r;.. Solve the perturbed system and then
let the perturbation tend to 0. Alternatively use brute force and calculate

Zw(f)q(f, ¥) = m(§)q(7) for all states y.)
X

d) Use a), taking £ = {Z : ) z; = u} to calculate the stationary distribution of the
closed network.



Chapter 8

Markov Decision Theory

8.1 Introduction

‘We consider a Markov chain whose transition probabilities are decided at each
transition according to the actions of a controller. Each action has an associated
cost and the goal of the controller is to minimize the expected cost up to a finite
horizon N. Let S be a countable state space of the Markov chain. If the chain is in
state 7 at time ¢ and the controller picks an action a; from a finite action set A(t, )
associated with state ¢ then two things occur:

e The transition probabilities from state ¢ to state j are then given by K (¢, as).
o A cost C(t,4,a;) is incurred.

Let X, represent the state at time ¢ and let A; represent the action taken at
time ¢. Define the past or history up to time ¢ by

()Ztv A’t) - ((X07X17 e 7Xt)7 (A07A17 ... 7At)) .
The preceding assumptions imply
P (Xt+1 = ],Xt = ftagt = [1}) = Kij(t,at)

where & = (zo,z1,...,2¢), z, = ¢ and @; = (ag, a1, - . ., a;) are the sequence of states
and actions taken until time ¢. This Markovian structure leads to a considerable
simplification of the decision making process as we shall see.

The controller who is not clairvoyant must operate according to some policy
¢ € ® which at each time ¢ assigns an action A; depending on the past up to t and
the time to the horizon; that is

Ay = ¢t’N ((Xt\l,gt—l) 7Xt) -

This policy may, in principal, even depend on an additional randomization — when
in doubt flip a coin! In this case, given X; and A;_q, ¢ is a random variable with
a p.an.f. which gives the probability of choosing one action in A;. Once the policy

271
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Fig. 8.1 A controlled Markov chain

¢ has been chosen the transition probabilities are determined and we can construct
the probability measure P, and the expectation Ey associated with this policy.
The set M of Markovian policies is of particular interest. A policy p € M if

A = ,Ut’N ((Xt~1a A_'t—l) 7Xt) = Ht’N(Xt)~

Such a policy only depends on the time ¢, the current state and the time remaining
to the horizon.
The total cost associated with a policy ¢ is

N
> O, Xy, Ar),

t=0

where C(t, X, A¢) is the cost of the t*" decision. To compare various policies we
compare expected values although the variance of the total cost associated with a
policy is also an issue. The goal then of this chapter is to find a strategy to minimize
the expected total cost.

In Section 8.2 we shall establish the existence of an optimal Markovian policy
that minimizes the expected total cost along with an algorithm based on backwards
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induction for computing the policy and the associated costs. This policy will be
shown to be optimal even among policies in ®. In Section 8.3 we shall consider
the infinite horizon case and show when an explicit solution to this problem may
approximate the solution of the finite horizon problem. In section 8.5 we study
another tractable infinite horizon problem, that of optimal stopping. Finally, in
Section 8.6 we establish the optimality of the Cusum quality control procedure
defined in Example 5.36.

Example 8.1 Optimal parking

Consider the problem of parking your car in a long underground parking garage,
as in Figure 8.2. There are N + 1 parking spots one after the other and you want
to park as close as possible to the elevator opposite the last parking space. You
start opposite the first spot, labelled spot 0. If this spot is empty you must decide
to park or not. Unfortunately in the darkness you can’t see beyond your present
location so you can’t see if spots closer to the elevator are free or not. If you don’t
park you have to advance your car to the next spot and decide again and since there
are other cars after you, you can’t back up.

If you drive down the entire aisle without parking you will give up in frustration
which represents a cost of F' dollars. If you park in spot n, you have to walk to
the elevator at a cost of d[n] dollars, where d[n] decreases with n (the closer the
better). We assume spot n is empty with probability p[n] and we assume the spots
are empty or full independently of each other. The question is, what is the optimal
parking strategy to minimize the expected cost?

exit 4—\

; S
n-1 I%:bj}l
— =
. =

0 o |

Fig. 8.2 Optimal parking
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To model this problem we define a state space as follows: let e represent the
state where you are opposite an empty spot. Let f represent the state where you are
opposite a full spot. In this example we can identify time with the corresponding
number of the parking spot; consequently, the horizon is N. For completeness, we
shall introduce a terminal state A which indicates you have parked or gone home
in frustration. The cost associated with state A is defined to be 0 and we treat this
state as absorbing. At time ¢ < N you have two actions associated with state e: s
for stop and park or ¢ for continue. Hence A(t,e) = {s,c}. The transition kernels
and costs corresponding to action s are K. a(f,s) = 1 and C(t,e,s) = djt]. The
transition kernels and costs corresponding to action c¢ are

K. lt,e)=plt+1], K, s(t,e)=1—plt +1] for t <N — 1,
KE’A(N,C) =1

and C(t,e,c) =0 for t < N while C(N,e,c) = F. Associated with state f you have
only action c¢. The corresponding transition kernel is

Kie(tye) =plt+ 1], K¢ f(t,e)=1—plt+1] fort <N -1
KfyA(N,C) =1

and the cost is C'(t, f,c) = 0 for t < N while C(N, f,c) = F.

It may be that the cost incurred in taking an action a at time ¢ while in state ¢,
may depend upon extra random variables like the next state entered or an indepen-
dent coin flip. Hence the cost would be C(¢,4,Y,a) where Y is a random variable
whose distribution is determined by (¢,4,a). Since we will be comparing policies
like ¢ by their expected cost, this means we must calculate

N
E¢ Z C(taXbY;fa Af)

t=0

Now conditioning on X; and A; we see this cost is equal to
N
Ey Z E(C(t, Xy, Yi, Ap)| Xe, As) .
t=0

For instance, if the cost depends on the next state entered then C(t,7,Y,a) =
C(t,1,7,a), if the next state entered is j. Hence

E (C(ta Xt7 Yt7 At)’Xh At) - Z KXt,j (t7 At)c(ta Xt?j; At)
J
In other words, we have reduced to the case where C does not depend on the extra

variable Y by replacing C(¢,4,Y,a) by
C(t,i,a) == E(C(t,4,Y,a)| Xt =14,4; = a)
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since the two problems have the same expected costs.

Example 8.2 Buffer control

A server is driven by an input process of queries. In each time slot or time interval
there is probability p of a query arrival and the server completes service on the head
of the line query with probability g. We assume p < ¢q. Some servers will quene
all incoming queries until the buffer space is exhausted. If there is no buffer space
available then the incoming query is destroyed or dropped. Some routers perform
active queue management. When a query arrives a decision is made whether or not
to drop the query long before the buffer overloads.

Part of the advantage of active queue management is the reduction in query
delay. If the duration of a time slot is C' microseconds then we incur a delay of C'
microseconds for each time slot a query is kept waiting. Let the number of queries
waiting or being served at time ¢ be Q[t] so keeping Q[t] queries waiting will cost
C - Q[t] during the time slot ¢. If a query is dropped at the server the source will
eventually retransmit the query. This query will therefore suffer a large one time
delay of M microseconds. We wish to determine the optimal policy for minimizing
the expected total delay over the next N time slots.

Since the arrival process has geometric interarrival times and since the service
times are geometric, the entire past of the process is summarized by the state x,
which represents having Q[¢] = z queries in the queue. At each time unit we have
an action space A = {0,1} which denotes the actions of respectively accepting or
rejecting an arriving query. Let ¢(z) = ¢ if z > 0 and 0 if # = 0. Given the action
chosen is 0, the transition z — x + 1 occurs during one time unit when there is an
arrival without any service completions. Hence,

Ky 241(t,0) = p(1 — g(x)) and similarly,
Kx,z—l(tao) = (1 - P)Q(x)7
Kao(t,0) = (1= p)(1 - q(x)) + pg(z).

The transitions for action 1 are analogous.

The cost, if action 0 is taken, is Cx if  queries are in the buffer; i.e. C(¢t,%,0) =
Cz. If action 1 is taken then there is a cost of Cz plus the cost M if a query is
dropped. Let Y; denote the event that a query arrives at time ¢; that is ¥; = 1
if a query arrives at time ¢ and 0 otherwise. Hence, C'(t,z,Y;,1) = Cz + M - Y;.
Consequently we study the expected cost

Clt,z,1):=E(Ct,x,Y:,1)|Q[t] =z, A4, = 1) = Cxz + pM.
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8.2 The Optimality Equation

In principle the expected value of the total cost of a policy ¢

N
E, (Z C(t, Xe, A))| Xo = z) .

t=0
may not even exist! However, since we have only a finite capital to risk we shall
assume it only feasible to use policies in ¢ € I' C @ such that

N
Ed, (Z C(t, Xt7At)+rXO = Z> < 0.

t=0

We assume throughout that there exists at least one Markovian policy ¢ € I'. If
in fact C(t,4,a) is uniformly bounded or if the range of the Markov chain over N
periods is finite then all policies would be in .

Example 8.3 Pathological Cases

Consider a Markov chain on the integers S = {...,~1,0,1,...} with two actions ¢
and s at time ¢ = 0 and only action s at time ¢ = 1. Suppose N = 1. Suppose that
Kon(0,¢) = (10%(n+1))~" forn =1,2,..., Kon(0,c) = 1 — 107 and Ky (0, s) =
1. Suppose C(0,0,5) =0, C(0,0,c) = —108, C(1,n,s) = n for n = 0,1,2,.... Note
that

o0 >0 1
g n+1 gﬁ_n—l—l

so K is a transition kernel. If we decide on action ¢ at time ¢ = 0 it is almost certain
that we will gain one hundred million. Nevertheless this strategy is not permitted
(it is not in T') because C(0,0,¢)t + EC(1,X1,s)™ = +00. We just can’t play the
game and we get nothing. Of course nobody would offer to play this game with us
because it’s pretty clear we would default if by bad luck we had to pay a large cost.

For simplicity we first consider Markovian policies. The expected cost from time
n to the horizon associated with a finite horizon Markovian policy u € M C T given
the chain starts in state ¢ is

N
W@y =B, | Y Ct, Xi, A X, =

t=n

The optimal cost associated with policies in M is

n,N — n,N
W) < it W),

By our hypothesis W™ (4) exists but it is not clear at this point that there is
indeed a Markovian policy which yields these expected costs or if the expected cost
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is minus infinity. If the state space is finite or if the range of the Markov chain over
N periods is finite then the minimum cost would be finite.

The following functional equation for the optimal cost associated with Markovian
policies is often called the Bellman optimality equation.

Theorem 8.4
WV (@) = min {C(n,i,a) + Y Kij(n, o) W0V (5)}

a€A(n,i) ies
WNN() = mi N,i 1
0= 2, (cMha) 5
We defer the proof until we have made some use of the theorem.

Corollary 8.5 The Markovian policy p defined by
p (@) = p™ N (()?n_l,ﬁn,1> X = z) =aq"
where a* s the choice of a that minimizes
C(n,i,a) + Y Kij(n,a) W0V (j) (8.2)
jES
s an optimal Markovian policy and W;*N(z’) = WN () for all n.
Proof: We proceed by induction. Clearly, by definition, p*" minimizes C'(N, 3, a).

It follows that W[fv N () = WNN(G). Next suppose that the corollary holds for all
{m+1,...,N}. Then evaluating as in (8.3) we have

W (i) = Clmyi,a") + Y Kij(m,a" )W thlN ()
jes
= C(m,i,a") + Z Kij(m, a*)WmH’N(j) by hypothesis
jES

min {C(m,i,a) + Z Kij(m, @)W LN (5)} by definition
a€A(m,i) jes ‘

= W™ (i) by Theorem 8.4.

The result now follows by induction on m. ]

‘We should remark that the above optimal Markovian policy is not always unique.
In the parking example, suppose there is a cost of one dollar to park anywhere and
the cost of going home in frustration F' is also one dollar. In this case it doesn’t
matter what strategy we take and W™ (e) = W™N(f) = 1. Even worse there is
no guarantee that p € I

Example 8.6 Pathological Cases - (8.3) continued Consider a Markov chain
on the integers $ = {...,—1,0,1,...} with one action ¢ at time ¢ = 0, actions s and
c at time 1 and action s at time 2. N = 2. Suppose that Ky ,(0,¢) = (n(n +1))7*
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for n = 1,2,.... For all n, K, ,(1,¢) = Kn _2n(1,¢) = 1/2 and K, »(2,s) = 1.
Further, for all n, C(0,0,¢) =0, C(1,n,c) = C(1,n,s) =0 and C(2,n,s) = n.

A Markovian policy px in I' might be to take action c at time t =1if X3 < N
and action s otherwise. The expected cost of puy is

1
02 _
wo2( _—55 n(n + 1))

Clearly W%2(0) = —oo and the optimal policy p always takes action ¢ at time ¢ = 1.
p is the policy obtained by backward induction but p is not in T".

This theorem and its corollary provides a practical method of determining the
minimum possible cost W% (i) at least when the set of points accessible from ¢ in
N steps is finite; i.e. if the set RY defined below is finite:

R} ={j: Kii(0.a0) - Ky, iy (1,01) - K,y 5(n = 1, an1) > 0}

for some (ag,a1,...an_1) and (4,41, ...,9p-1,7)-

The optimal policy at the horizon N is the myopic strategy to minimize the
cost on the last step. Calculate the value of the myopic strategy on RY. Next, use
Bellman’s optimality equation to work backward to calculate the minimum cost on
RN ~! and so on down from the horizon until, after N iterations, we can determine
WO N(i) on RY = {i}. This is called backward induction.

Example 8.7 Buffer control - (8.2) continued

At any time n there are only two actions - drop or accept an incoming query. Note
that the policy ¢ of always rejecting queries has bounded costs so I is not empty.
We can therefore talk about expected costs. If W™ (z) denotes the minimum
expected cost starting at time n, with x queries in the queue, then the Bellman
optimality equation says

W™ N (z) = min{Cz + To[W" 1 N|(z), Cx + pM + TH [W™ N ()},

where the operators Ty and T associated with accepting or rejecting queries re-
spectively operate on any function u by

Tolul(z) = p(1 — q(@))u(z + 1) + (1 — p)(1 — g())u(z)
+pq(z)u(z) + (1 - plg(z)u(z — 1)
Tifu(z) = p(1 = q(z))u(z) + (1 - p)(1 — g(z))u(z)
+pg(z)ulc — 1) + (1 - ple(z)u(z — 1).
At time N it is clearly best to use action 0 since don’t drop a query and we don’t

have to worry about future costs due to long queues; that is W™V (z) = Cx.

Since the cost structure and the transition probabilities are time invariant it
follows that W™ N (z) = WON="(z). Consequently, if we define W (z) = WOV (z)
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to be the minimum cost over the next N transitions, then we can rewrite the Bellman
optimality equation as

WN(z) = min{Cz + To[WN")(z), Cz + pM + Ty [WV ] (2)}.

Suppose we wish to start with an empty queue so we want to calculate W (0).
To do backward induction from the horizon at time N back to time 0, we must
start with calculating (and saving in computer memory) W%z) = Cz for all
x € RY = {z:0 <z < N} since only these states can be reached from 0 in time N.
Similarly, working backward we only need calculate W™ (z) for all 0 <z < N —n.
Proceeding in this way, the last step of the backward induction gives precisely what
we want; that is W (0). Since we are doing these calculations iteratively we only
need store the results for W™ in order to calculate W"t! so these computations are
feasible. The optimal policy p given by backward induction is necessarily in I" since
the queue size and hence the costs remain bounded over N transitions. We do note
that if we want to calculate WY 11(0) we almost have to start all over again.

Example 8.8 Optimal parking - (8.1) continued

First note that the total cost is bounded so all strategies are in T'. If we define
W™ (e) to be the optimal cost starting from state e opposite spot n, the Bellman
optimality equation becomes

W™N(e) = min{d[n], p[n + W™ N (e) + (1 — pln + wrrEN )y
for n < N — 1. Moreover,
W (e) = min{d[N], F}.

Define W™V (f) to be optimal cost starting from state f, opposite spot n. For
n < N — 1 the Bellman optimality equation becomes

Wn’N(f) — p[’I’L + 1]WTL+1,N(€) + (1 * p[n + 1])Wn+1’N(f).
Moreover,
whN(f) = F.

For completeness, define W™V (A) = 0 for all n.
In any reasonable situation, d[n], the cost of walking to the elevator from spot
n decreases as n increases to N since everyone would like to park near the elevator.
Finally, F > d[N] since otherwise it would always be best to go home without
parking. If these natural conditions hold, we argue below that W™N(f) is increasing
in n and W™ (e) is decreasing.
First we remark that from the Bellman optimality equation W™N(f) >

W™ (e). Now we use induction to show the required monotonicity. Suppose for
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n > m+ 1 we have W™ (f) is increasing in n and W™ (e) is decreasing. Clearly,

W (f) = plm+ YWY () + (1= plm + LYWL ()
< plm+ UW™HEN(F) 4 (1 = plm + 1YW HEN(F) = wm LN (f)

and

W N (e) = min{d[m],p[m + JW™ 1N (e) + (1 — p[m + 1YWLV ()1
> min{d[m], plm + W™ (e) + (1 — plm + 1)W1 (e)}
= min{d{m], WV (e)} > min{d[m + 1], W1V ()}
= WmHLN ()

since d[m| > d[m + 1] by hypothesis and djm + 1] > W™+L¥(¢) by Bellman’s
equation. The monotonicity is automatically true if m = N so by the induction
principle it is true for all n.

We therefore conclude that W™ (f) > W™ (e) for all n and since W™V (f)
is increasing and W™ (e) is decreasing that we may have equality up to some ng
but for n > ng W™N(f) > W™ (e). By Corollary 8.5 below this means it is opti-
mal to continue for n < ng but for n > ng it is optimal to stop as soon as possible.

Proof of Theorem 8.4: The proof of (8.1) is immediate: with only one decision
to make, a nearsighted policy is optimal. Let u be a Markovian policy in T. If y
chooses action a at time n while in state 4.

N

> O Xy, A X =i

t=n-+1

WM (i) = C(n,i,a) + E,

= C(n,i,a)

N
+> Kij(n,a)E, [ > Ot X, A X =i, An = a, X1 = j
jes t=n-+1
= C(nyi,a) + > Kij(n, a)WiThN (j) (8.3)
jes
where we have used the Markovian nature of p and the transition mechanism.
Hence,

W”N()>C(n,z,a +ZK” (n a)Wn+1N( )
JES
> C(n,1, Kij(n,a)Wm BN () 8.4
100D b TR e

Since

n,N - f n,N
W) = inf W)
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we have, by taking the infimum of both sides of (8.4), that

wN@@) > min {C(n,i,a) + ZKij(n,a)W"“’N(j)}.
acA(n,i) fes

To prove the reverse inequality let a* be the action such that
Cln.iva®) + 3 Kij(n,a” )W () =
jes
min {C(n,i,a)+ ZKij(n,a)W"“’N(j)}.
a€.A(n,i) jrs

Now define a policy u, starting with action a* in state 7 at time n, such that if the
next state is j the policy ] is followed from then on.

If WnHbN(§) > —oo for all j then the policy w; may be chosen such that for all
7 and € arbitrarily small

Wﬂ+1N( ) W”+1N(j)+6.
Hence, by (8.4)
Wi (i) = Cln,i,a") + Y Kij(n, a*)WE’l’N(j)
JES
< Clnyiya*) + Y Kij(n, a”)W™HN () +e.
JjES
Hence, by the definition of the infimum, we have
WM (i) < Onyi,a") + Y Kig(n,a”)W"THN(j) + e
JES
Now since € is arbitrary the reverse inequality follows.

Even if WnT5N(5) = —oo for j in some set I,,4; then for those j € I,,+1 pick
the policy p such that

an+1,N

o 7 (j) £ —L where L is arbitrarily large.

Hence, by the definition of a*,
W"N() Cln,i,a* JrZKU (n, e )WY ()

3
jeS
< C’(n,i,a*) + Z Kik(n,a )Wn+1 N Z K1k n, a* )
k€1n+1 ke]n+1
Hence,
WN(i) < C(n,i,a") Z Kip(n,a® )W, "+1N Z Kik(n,a*)(—1L).
keln»{»l kGIn+1

Since L is arbitrarily large, W™ (i) = —oo so the reverse inequality follows. ]
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Example 8.9 Optimal parking - (8.8) continued

Consider a special case where N = 50, p[n] = 1 — n/(N + 1), d[n] = N —n and
F = 50. Clearly we should not park in spot 0 even if it is empty since we would
pay a cost of 50 which is just as bad as giving up and going home. The following
graphs of WV (f) and W™ (e) are equal for n < ng = 35, but after that W™ (e)
decreases to 0 while W™ (f) increases. This is just what we would expect! By
the Bellman optimality equation we know that if it is optimal not to park in spot
n then

W™ N (e) = pln + WV () + (1 pln + 1YWLV (f) = WY ().

On the other hand, if it is optimal to park at n, then W™ (e) = d[n] < W™N(f).
Using the following program in Mathematica we may easily solve for W™ (e) de-
noted by W E[n] and W™ (f) denoted by W F[n].

Num:=50 F:=50 d[n_]=Num-n

pln_l=1-(n/(Num+1)) WF[Num]:=F WE[Num] :=d[Num]l
WE[n_1:=WE[n]=Min(p[n+1] WE[n+1]1+(1-p[n+1]) WF[n+1],d[nl]
WF[n_] :=WF[n)=p[n+1] WE[n+1]1+(1-p[n+1]) WFin+1]
twe=Table[WE[n],{n,Num}] twf=Table[WF[n],{n,Num}]

50
40
30
20

....................................

10

10 20 30 40 50

Fig. 8.3 ListPlot{twe] gives the expected cost if n is empty.

The optimal policy is to park in the first empty spot after spot 35 as can be
seen from Figures 8.3 and 8.4. For n < 35 we never park so the expected cost

WN(f) = WnN(e) = 14.4745.

We now establish the intuitively obvious: the Markovian policies are op-
timal among all policies ¢ € I'. The past up to time n is given by
((Zn—1,8n-1) ,Zn = i) where Tn_1 = (29, 21,...,Zn_-1) are the states entered and
@n—1 = (@o,a,...,an_1) are the actions taken from time 0 to time n — 1. The
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50
40
30
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....................................

10

10 20 30 40 50

Fig. 8.4 ListPlot{twf] gives the expected cost if n is full.

expected cost from time n to the horizon associated with a finite horizon policy ¢,
given the past up to n, ((Z,_1,8dn-1), T, = 1), is denoted by:

Vg’N((fHAMdnfl)ai)
N
SO X A (Kt =F 1, Ay 1 = 1) Xn = } .

i=n

:E¢

The optimal cost from time n to the horizon, given the past up to n, among policies
in T is

VN (Zaey, @nn), i) = ég? VN (Eno1, Gne1), i)
Theorem 8.10
VN1, @n), i) = W (i)

Proof: For n = N the proof is obvious since the myopic policy is best. Assume the
theorem is true for k > n+1. Consider any policy ¢ taking action a* followed by a
policy é; if Xp41 = j. Use the notation &, Vi to denote (xg,21,...,2Z,—1,i) and
dp-1V a* to denote (agp,ai,...,a,-1,a*). Hence, using the development at (8.3)
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we see

VN (#ne1, G 1), )

= C(’I’L, i? a*) + Z Klj(n7 a'*)V,;erLN((fnfl \% ia 671——1 Vv a’*)aj)
3
jes
by the definition of ¢7
> C(n,i,a") + Y Kij(n,a V"N (@1 Vi, dny V a), j)
jes
since V"1 is the least possible cost
=C(n,i,a") + ZKij(n,a*)W”“’N(j) by hypothesis
j€S
> min{C(n,i,a) + Y Kij(n,a) W1V ()}
¢ j€s
= W™ (i) by Theorem 8.4.

Taking the infimum over all policies in I' it follows that
VN (F, @), 8) > W),

Finally, since the Markovian policies in ' are only a subset of the policies in ', the
reverse inequality is automatic. [

One might imagine, for instance, that in the buffer control example the input
stream is not Bernoulli so the interarrival time between queries is not geometric.
Without the memoryless property the transitions from state to state are no longer
Markovian! One might also imagine that it might be impossible to change from
rejecting queries to accepting queries in fewer than 10 time units. This delay means
the action space depends on the actions in the past. Finally, one might imagine that
the cost of queueing queries is dependent on the time since last taking the action
of rejecting a query. None of these cases can be treated with the theory developed
so far. '

On the other hand, it is not hard to see the above theory could be extended
to these cases. If the transition to the next state is no longer Markovian then the
transition from time period ¢ to t + 1, given action a is taken, is of the form

P(Xt+1 = ]IX{ = ft,jt = (_I't_l vV a)

and the associated cost is C(¢, ¢, @;—1, a). Moreover, if the actions available depend
on the entire past, the action space at time ¢ might be A(Z:,d;—1), but we shall
assume for simplicity that these actions are all contained in a finite set A. As
before, a policy ¢ € & assigns action A; at time ¢ dependent on the entire past:

A = obN X',,, A, 1). Once a policy is given the stochastic processes, X; and A
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are determined, and we may try to minimize

N
By Ot X1, Ar).
t=0
This can be done with backwards induction. We first generalize the problem.
Instead of just looking at the cost from time 0 to time N we consider a whole

sequence of minimization problems. Given the past to time 7, the cost of the policy
¢ from time n to time N is

VN (T, @01) = By

N
Z C(t7Xt7 At)pﬁa - jn>gn71 = awli] .

t=n

.. N, = . . o
If we can minimize V(;L’ (Zy, dn_1) with n = 0 then we have a solution. (@. ; means
no information is given.)

Clearly, if ¢™N (Z,,,dn_1) = a then

V$7N(fn> d’n,fl)

= C(n, fn, a:n—l Y a) + E¢

N
Z C(tvxtaAt”Xn - fnafzfn = &‘nfl \ ajl
t=n+1

= C(n, &y Bney V@) + > Py(Xnj1 = 1 Xn = &n, A = Gn 1V a)
JES

[ Z Ct Xt» |Xn+l—xn\/.77An:dn—l\/a:!
t=n+1

= C(n, &, n1 V@) + > Py(Xng1 = j1Xn = T, Ap = Gn1 V )
jES

VTH_1 N(x” Vg, @y 1 Va).

The optimal cost associated with policies in ® is
— — . N/ —
VN (&, dq) = égg Vi (o, Gnet).

Repeating the above arguments, we can establish Bellman’s equation in this gener-
alized setting

VoN(E, @)= min {C(n,&,, 0, 1,a) + FPHEY
acA(n,z,)

where the minimum costs beyond time n + 1 are given by F7+V

FrtlN — ZP(XWH = 1K = o, Ay = e V)V (@, Ve V)
jes
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and where

VNN(Ey,dy 1) = min  {C(N,Zn,dn-1Va)}.
a€A(N,xN)

Unfortunately Bellman’s equation is nearly useless in the general situation! Suppose
we wanted to minimize some cost for the buffer control example given that we
start with an empty queue. To begin the backward induction we have to store
in computer memory all the values W™ (Zn,dn_1) for all the trajectories and
actions (Zn,dn—1) such that 0 < zy,yy < N. This is an enormous number of
possibilities and too much for the computer. Unless we can write down some kind
of formula we are stuck!

8.3 Infinite Horizon Decision Problems

We now consider infinite horizon problems. Such problems make sense only if there
exist policies which have a finite expected total cost. One category of infinite horizon
problem involves discounted costs. If we suppose (rather unrealistically) that the
interest rate r is constant, a dollar earned today will be worth (1 + r) dollars next
year. Conversely a dollar earned next year has a present value of only o := 1/(1+47)
dollars today. Similarly a dollar earned ¢ years (or periods) from now has a present
value of only a! dollars. Now suppose the cost associated with a decision a while
in state ¢ at time ¢ is given by

C(t,i,a) == o'C(i,a).

This is just the present value of C(i,a) dollars earned at time ¢.

We shall assume that if we are in state ¢ at any time ¢ then we can make a decision
a € A, where A is a finite fixed set and we jump to state j with probability K,;(a)
which does not depend on t. Given a policy ¢ this transition kernel determines
a Markov chain X; and we are interested in minimizing the expected value of the
present value of the total cost associated with policies ¢ € I which satisfy

oo

By alC(Xy, AT < oo
t=0

For simplicity we will assume in this section that |C(i,a)] < C for all states i and
all actions a so all policies are in I'.

First, we artificially impose a horizon N and as before we define W™ (i) to be
the minimal cost from time n to the horizon. From the Bellman optimality equation
we have

W (i) = min{a”C(i,a) + > Ki(@Wwr N ()}
jES
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WNN (@) = raxéiﬁ{aNC’(i, a)}.

Let U™¥ (i) denote the future value of the minimal cost from time n to the horizon.
Hence U™N (i) = o "W™N (4). We may, therefore, rewrite the Bellinan optimality
equation as

UmN() = wing{Cli,a) + Y Ky (@)U (7))
JjES

UNN(4) = géiE{C(i,a)}. (8.5)

Let B represent the set of bounded real valued functions defined on the state
space S. We define a map of B into itself as follows: for f € B define T'f by

Tf(i) = min{C(i, a) + a Z Ki(@)f()}.
jeS
Clearly, for n < N, we may write the above Bellman optimality equation as U™ =
TU"+LN | By recursion we have
UnN = TN U0 where U° = UMY
so U%(i) = minge 4{C(i,a)} is a function in B which we can calculate.
Lemma 8.11 T is a contraction operator on B with respect to the supremum
norm: ||u|| = sup;cg |u(i)|.
Proof: Simply consider u,v € B. For any given ¢ pick action @ so that
To(i) = C(i,a*) + & Y _ Kij(a*)v(j).
JjeS
Hence,
Tu(i) — Tv(4)
= min{C(,a) + a > Ki(ayu()}] - [Cl,a") + o Ki(a*)v(j)]
JES JjES
<ay  Ki(a")u(i) —v(j)]
jES
taking a = a* in the first term of the above
<ay Kiah)u@) —v()|
jES
<oy Kij(a") - suplu(k) — v(k)|
jes kesS
= alju -]
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By symmetry it also follows that
To(i) — Tu(i) < aflu—v||

so we conclude

(Tu(i) — To(i)| < allu — o]l (8.6)
Next,
[|Tw — To|| = sup |Tu(i) — Tv(i)|
ies
< sup a|u — vl|| by (8.6)
€S
= ollu — vl
We conclude that T is indeed a contraction map. |

Clearly WOV = UON = TN[70 By the fixed point theorem in the Appendix
we know TNU? converges in the supremum norm, that is uniformly in ¢ € S, as
N — o0, to the unique fixed point of 7. Denote this fixed point by W so

W(i) = min{C(i,a) +a 3 Ki(@W()} (8.7)
JES

Since |C(i,a)] < C the expected total cost of any policy is finite. Consequently
the costs associated with any policy beyond time N are less than e for N large.
Consequently, the optimal strategy starting from state i will have a cost no more
than WV (i) + € since W%V is the minimum cost associated with the horizon N.
But as N — oo, WOV (4) = TNU(4) is arbitrarily close to W (i) so we conclude
W (i) is the cost of the optimal strategy starting from state ¢.

What is this optimal strategy?

Definition 8.12 The stationary, Markovian policy o takes action o(i) whenever
the state is 4, where o (i) minimizes the right hand side of (8.7).

Let W, represent the expected cost associated with this policy. Hence,

(ZO{ Xt,At ‘X() —2)
= C(i,of <Za (Xe, A)|Xo = z)
-I-ZK” o) E (Za C(Xe, A Xo =14, X3 = )

jES t=1

:C(’i,d(i>)+aZKij( (Z C(Xms Am )\X0:j>

jes
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using the Markov property and changing the index of summation. But

W,(j) = E, <Z A" C( X, Am)| Xo = j)

m=0

so W, satisfies

Wo (i) = C(i,0(i)) + @) Kij(0(i))Ws (5)-

JjES
Now define a new transformation on u € B by

Tou(i) == Cli,o(i)) + a Y Ki(o()ulj).

JjeS

Tt is easy to see T, is also a contraction operator and W, is the unique fixed point.
However, from (8.7),

W (i) = Cli,0(d)) + ay_ Kiy(a())W(j) = T,W (i)
jes
which means W = T,W. However W, is the unique fixed point of T,,. Hence
W = W,; i.e. policy o is optimal.
We summarize our results.

Theorem 8.13 The optimal policy o is a stationary, Markovian policy which,
when in state i, has associated cost W (i) and prescribes action o(i) where o(%)
minimizes the right hand side of the Bellman optimality equation

W(i) = min{CGi,a) + a Y Ki(a)W()}.
jes

Example 8.14 Buffer control - (8.7) continued

Suppose we consider the buffer control problem without a horizon but with a dis-
count factor a. Let W, (z) denote the minimum cost or total delay assuming we
start with = > 0 queries in the queue. The Bellman optimality equation becomes

W, (z) = min{Cz + oTp[W,](z), Cx + pM + oT1[W,](z)} (8.8)

where Ty and 75 are defined in Example 8.7.
Define an operator T' on functions defined on the nonnegative integers by

Tu(z) = min{Cz + aTplul(z), Cx + pM + oT) [u)(2) }.

We have seen above that this is a contraction but it is not true that if v € B then
T(u) € B. For instance if v = 0 then Tu(z) = Cz and this is not bounded. Hence
the above theory does not apply!
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Tt is possible to construct a weaker norm to enlarge the space B so that 7" is still
a contraction on B. However we will simply change the cost function. Define

_ [ Cz for x <y, [ Cx+pM for x <ay,
C(m,O)—{ﬁ for x > xy and C’(m,l)w{ c for x > zy.

We will assume C > Mp + Czy. Redefine the operator T by
Tu(z) = min{C(z,0) + aTolu](x), C(z,1) + T [u)(x)}.

Now the theory applies and lim, oo T"u(z) = Wq(z).

There is, moreover, a stationary optimal policy and this means there is a smallest
xr such that it is optimal to reject queries when the queue builds up to x g queries.
We can therefore reduce our problem to the finite state space S = {z: 0 < 2 < zg}
since starting with an empty queue we will never exceed xr queries. Finally we
remark that if z;; is taken bigger than zr then under the above optimal policy
C(X,,0) = CX, and C(X,,1) = CX,, + pM for all n. This means that we have
also discovered the optimal policy for the unbounded cost problem.

A discount factor and the equivalent interest rate focuses attention on short
term policies. One might prefer a policy which minimizes the long run average cost.
Consider a time homogeneous Markov decision problem. For any policy ¢, define

By [sN,cx,4)]
Ay(l) = h]f[n sup Nl

A, (i) represents the average expected cost for the policy ¢ starting from state 7.
Now consider the associated Markov decision problem with discount rate a which
has a minimum expected cost W, (i), where we replace the index ¢ by « to remind
us of the discount rate. W, satisfies the Bellman optimality equation

Wa(i) = min{C(i,a) + o Kij(a)Wa(j)}-
JES

When the discount rate « tends to 1, the short term costs become less and less
important so it seems reasonable that the optimal decision for such a discounted
problem should be close to the optimal decision for the long run average expected
cost problem.

To establish this, define the function r,(i) = W,(i) — W, (ig) where ig is some
fixed state. Subtracting oW, (ig) from both sides of Bellman’s equation we get

(1 = ) Walio) + ra(i) = min{C(i,a) + a Y Kis(@)ra(i)}. (8.9)
JES
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Assuming 1, (i) — r(7) for each i as o — 1, it follows by taking the limit of (8.9)
that the limit 4 := lim,,1(1 — @)W, (io) exists. Moreover,

A+r(i)= (rlréiE{C(i, a) + Z Kij(a)r(5)}-
jES

If we have the candidates r(i) and A then we can find the optimal policy.

Theorem 8.15 Suppose there exists a constant A and function v such that for
all policies ¢ and all initial states i,

Nlim Eyr(Xn)/N =0
and

At r(i) = min{C(i,a) + > Kij(a)r(i)}- (8.10)

jes
Then the stationary policy v which takes the action minimizing the above expression
1s such that

A=A, = igf Ay(7) for all states 1.

The 7(i) are only determined up to an additive constant so we can fix r(ig) = 0 for
some chosen state ig.

Proof: Let ¢ represent any policy and as usual, let X, A, denote the history to
time t. Note that

Eo(r(X)| Xim =i, A1 = a) = 3 Kigla)r(3)
— {Cli,a) + Y Kyylar ()} - Cliv)

2 min{Cli,a) + 3 Kigl)r(j)} = Clisa)
jES
=A+r@i)—C(i,a)
and the above is an equality if @ = 9 (i). Hence,
By(r(X)| X1, A1) 2 A+ r(Xy1) — O(Xew1, A1)
with equality if ¢ = +. Now since
Ey [Ey(r(X)| X1, An)] = Egr(Xy)
it follows that

By [r(Xy) — (A4 r(Xe1) — C(Xe—1, A1))] 2 O



292 Elements of Applied Probability

with equality if ¢ = 4. Summing from ¢ =1 to N and telescoping we get

N
Es» C(Xi1, A1) + Bgr(Xn) — Egr(Xo) > NA
t=1

with equality if ¢ = 1. Adding the initial term C(z, Ap), if the inijtial state is 4, and
dividing by N + 1 we get

A¢(Z) > A

since by hypothesis Eyr(Xn)/N — 0. Also, since we have equality if ¢ = ¢ it
follows that A, (1) = A. ]
The preceding theory calls for the construction of the constant A and the func-
tion 7. If this can be done by directly solving equations (8.10) then the problem is
solved. Unfortunately this is often not possible and one first tries to prove a solution
exists. Our intuitive explanation of the theorem and equation (8.9) suggests

r(i) = lim1 Wy (i) — Walip) and A = liml(l — a)W,(ip).

To best understand when these limits exist we will restrict ourselves to studying our
queueing example. We could formulate a general theorem based on this example.
The key is finding an apriori bound on W,(z) — W,(0) which is uniform in c.
However, each case usually has its own special twist so let’s be satisfied with this.

Example 8.16 Buffer control - (8.14) continued
In this example ig = 0 and we know W, (i) > W,(0). If we define 7 to be the first
t such that X; = 0, we can decompose the costs of the optimal policy o as before
and after time 7 so
7—1
Walz) = E,[Y_ o' C(Xy, Ar) + o™ Wa(0)| Xo = a].

t=0

Hence, since a < 1 and C(z,0) and C(z, 1) positive and less than Cx + pM we have

Walz) — Wa(0) < (C + pM) EUZXt E,(1— o)W, (0)

C+pM EO’ZXt

Let policy v be the policy of always accepting a query. Under the policy v the
process X; is stochastically larger than under o. To show this just define a joint
transition kernel for a pair of chains (Y;,Y)) whose marginal distributions are those
of X; under the policy ¢ and v respectively. The two chains will be forced to stick
together as much as possible but otherwise the chain Y’ jumps to the right of Y.
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Now define T to be the first time ¢ when ¥, = 0 and let 7/ be the first time Y/
hits 0. Clearly,
EG[T] = E(z,w)T S E(z,w)T/ = EVT.

Similarly,

T—1 71
E‘T[Z Xt(XO = CC] = E(z@) Z Yt
t=0 t=0

7' —1

T—1
< By Y = B[ Xl Xo = 2.
t=0 t=0
We conclude that
T—1
Walz) = Wa(0) < (C+ pM) f(ar) where f(z) = B[ | X|Xo = al.
t=0

f(z) satisfies f(0) = 0 and by the Markov property

fla)y=z+q1-p)fx - 1)+ g+ (1 -p)(1—-q)f(x)+p(l—q)f(z+1).

By inspection the unique solution to the above is

f(g:):w 2+Q(1“P)+p(1—q)

2 SPTG Ry G

Hence, uniformly in «,
0 < W,(x) — Wo(0) < M(x) =(C +pM)f(x).

Since W, (z) — W,(0) is bounded for each x, we may pick a subsequence of a’s such
that W, (x) — Wo(0) converges for each z. The technique to do this is the Cauchy
diagonalization method. Start with z = 1. Pick a convergent subsequence o,
for n = 1,... for W,(1) — W,(0) using the Bolzano-Weierstrass theorem. Of this
subsequence pick a subsequence ag,, for n = 1,... where W, (2) — W,(0) converges
and on and on. Now consider the subsequence «,,,. On this subsequence all the
W, (z) — Wo(0) converge to a finite limit which we call r(z). Note that W, (z) is
increasing by Example 8.14. These properties are preserved in the limit as oo — 1
so r(z) is increasing and by construction r(z) < (C + pM) f(z).

Clearly, in this case, the right hand side of (8.9) converges to

min{Cz Z K., (0)r(y), Cx + pM + Z Koy(Ur(y)}

Yy Yy

since the kernel K admits jumps to at most two states. The left hand side of (8.9)
must, therefore, also converge so (1 — )W, (4p) has a limit which we call A. The
key to this calculation is the apriori bound on W,(x) — W,(0) which is uniform in
a (but not necessarily in x).
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To apply Theorem 8.15 we need only check
]\}iinw Eyir(XnN)/N|Xog=2]=0
for any policy ¢. Since r(z) is increasing, it is clear it suffices to show
Nliinoo E,[r(Xn)/N|Xo=z]=0o0r ngllo E,[M(Xn)/N|Xo=xz] =0.

Under the stationary policy v, the Markov chain is positive recurrent so when
N is big the distribution of Xn tends to the stationary distribution = given in
Example 5.28 on the discrete M|M |1 queue. The tail of the distribution 7 decreases
exponentially like p* ~ (((1—¢)p)/((1 —p)q))®. Hence, if K is the transition kernel
of an M|M|1 queue,

N
B, IM(Xn)/NIXo = 2] = 3" Mp)KY, ZM@%W = 3 M)y
y y

by dominated convergence since K¥, /m(y) < 1/m(x) by (5.7) and the quadratic
function M(z) is integrable with respect to m which has an exponential tail. It
follows that limy oo Eg[M(Xn)/N|Xo =2z] =0.

We have therefore established the conditions of Theorem 8.15, so there exists a
stationary policy ¥ which minimizes

By [N O(X A
lim sup

among all policies ¢. As before there must be a threshold z g where it is optimal to
drop queries.

We can calculate this optimal threshold directly using Theorem 5.18. This
threshold may make some kind of sense for suggesting an optimal buffer size. The
long run expected average delay is just C' times the expected queue size plus Mp
times the probability the queue size is zz. The nearest neighbor transition rates
are approximately p = \/n for an increase of 1 and ¢ = u/n for a decrease of 1
if we take a time unit to be 5 = C. The steady state probability the unbounded
queue holds x queries is approximately mr(x) = (1 — p)p® where p = A/ as seen
in Example 5.28. Since the M|M|1 queue is time reversible the steady state for the
threshold limited queue is given by

e @) w@)  _ (A-p
7TR( ) ZxR()Tr(m) (1_pm3+1) (1_sz+l)p'

=
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Consequently the long run expected average delay is
CZxﬂ'R +pM7TR(I'R)

1 < (1-p)
e L 1— p)p° er,
(1—pratl) ;x( P MP T ey

Also, Y5 a1 — p)p* = 125 (1 —gp™ L + (g — L)p™™),

Typically M is given by a round trip time for a query which might be a million
times greater than the time to service a query. Hence M = 10°1/q so pM/C =
10°X/u. Therefore we want to minimize

1 P

1 —
(1 _ a;;H—l) 1— ( P) R

o rp—1 _ TR (s}
p(l TRP +{zr — 1)p*®) +p10 —“__(lfp“’R“)p
For large zp the first term is practically invariant and equal to p/(1 — p) so it
is essentially optimal to chose zg to make these two terms approximately equal.

Therefore take £ ~ p10%(1 — p)p®r; ie. p®F 2 107%/(1 — p)2.

8.4 Continuous Time Decision Problems

Let us turn to approximating these discrete decision problems by continuous time
problems. Suppose that units of time are measured in nanoseconds and that the
discount rate per time unit is 1 — /1. We suppose that the cost of an action a
in state i is C(i,a)/n and that, to first order, the transition kernel is I + G(a)/n.
Substituting into the Bellman optimality equation we see that to first order the
minimum cost satisfies

W (i) = mig{C(i,a)/n + (1 = B/u) D Uiy + Gi(a) /W (5)}-
Jj€S
Hence, eliminating higher order terms and multiplying through by 1 we get

BW (i) = mln{C’ (i,a) + ZG” YW} (8.11)
jES

Remark that the optimal policy is stationary and so once we enter state ¢ the same
action is taken until a jump occurs.

Define ¢ = max; .{gi(a) = —Gi;(a)} and define the transition kernel of the
Markov process with uniform jump rate ¢:

Kila)=1— @E;L) and Ki;(a) = qiéa) Kij(a), i#J
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where K;;(a) = Gy (a)/qi(a) if i # j and Kj;(a) = 0. Now rewriting (8.11) we see

(B+a)W (i) =min § Cli,a) + 4 Kig(a)W(j)

JjES
Dividing by (3 + ¢) we get
. N C(’Ls a) r .
W (i) = b4 Kij (@)W 8.12
(i) =min§ 5 +aj§ESﬁ H(@W(3) (8.12)

where a := q/(3 + q). Hence, we have replaced the continuous time problem by
another discrete time problem.

To better understand equation (8.12) consider the continuous time optimization
problem that approximates the original discrete problem. Let Y; denote a uni-
formized Markov process with constant jump rate g and transition kernel K. Y,
closely approximates the original discrete time chain on the nanoseconds. The cost
associated with an action a taken at time ¢ is

(1= B/m"C(Xe,a)/n ~ exp(—B)C(Yr, a) /7

50 as 1 — 0o the expected discounted cost of a policy ¢ starting from state ¢ is

Wy (i) ~ E¢/0 exp(—pFt)C(Yz, Ar)dt.

This cost can be broken down into the costs incurred between jumps. Let 7, denote
the time of the n** nonfictitious jump; that is a jump from one state to a different
state. Let 7 = 0. Assuming the policy ¢ is stationary in the sense that the action
remains the same until a jump, it follows that

Tn+1

Wa(i) = By Y exp(—fra) / exp(—B1)C(Y;, Ay)dt

n

C(Yy,, As,

)« B C(Ys,,Ar)
51 g —;E(j,exp( Brn)Ey——"—"

=FE, Z exp(—pft,) 314

n=0

o] q nC(YT ,A-r)

:E ki LAl
¢,;)<ﬂ+q> B+aq

since the jump times for the uniformized Markov chain occur after i.i.d. exponential
times independent of the state of the chain. Letting o = ¢/(q + ) and M,, = Y=,
be the state of the jump chain, we see

2. O(M,, A,
W¢(Z) = E¢Za"%q—).

n=0
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The minimum cost W, for this problem, given by the optimal policy o, satisfies the
Bellman optimality equation:

N C(Zaa) o :
Wo (i) = min Ew +aj€ZSKu(a)Wa(J)

This is precisely equation (8.12).

The uniformized Markov process Y; is equal to the Markov process X, having
generator G, except for the introduction of fictitious jumps (from a state to itself)
which have no associated cost. We have really shown equation (8.12) is a Bellman
optimality equation for the continuous time minimization problem with costs:

E¢A eXp(*,@t)C(Xt,At)dt

Example 8.17 Buffer control - (8.16) continued

Consider the cost associated with controlling an M|M|1 queue with arrival rate A
and service rate p, when our control consists of accepting or rejecting queries. The
delay of queueing x queries is Cz per unit time and cost of dropping a query is a
delay of M. This problem approximates the discrete time problem discussed before
when the arrival rate at the queue was p = \/r and the service rate was g = /7.
The holding cost per nanosecond for x queries is Cz/n and the expected payment
for accepting a query is pM = AM/n. The total event rate v = A + 1t and the
effective discount rate is o = (A + p)/ (A + p + ).

For action 0, when we accept queries, the kernel K, ,+1(0) = A/(A + ) and
Koo 1(0) = p/(A + p), except at x = 0 when Kpo(0) = p/(X + ). For action 1
when queries are rejected K(1) = M/ (A + 1) and K, »—1(1) = p/(A + p), except
at z = 0 when Kgo(1) = 1.

The Bellman optimality equation (8.12) gives

. Czx Co+ M
W, (x) = mm{m + aRp[W, (), m + R [W,](z)}
where Rg and R, are
Ro[Wg](l’) = mw—)wg((ﬂ + 1) + %WO(I - 1)
Rl[WU](l') = ﬁi\u(—xng({l?) + %Wg(iﬁ - ].)

where p(z) = p if z > 0 and p(0) = 0. Once again the optimal policy is to start
rejecting queries when the queue reaches some threshold.
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8.5 Optimal Stopping

There is another natural class of infinite horizon problems. Consider a Markov
decision problem such that for all ¢, the action set is A = {s, ¢} where s means stop
and ¢ means continue. If at time ¢ we are in state ¢ when the action s is taken, we
pay a stopping cost of C'(t,1, s) and jump with probability 1 to a terminal absorbing
state A, where we stay paying no further costs. On the other hand, if the action ¢ is
taken, we pay a cost C(t,1,c) and then make a transition to state j with probability
K;;(t). Hence, we continue to incur (possibly negative) costs if we do not stop.
Such Markov decision problems are called optimal stopping problems.

A policy for an optimal stopping problem is simply a stopping time 7 which
specifies the first time the action of stopping was taken. Note that for any stopping
time T,

{r=n} €eo{Xo, X1,..., Xn; A0, A1,..., An 1} = U{Xn—l,/fnfl,Xn}
because any action is chosen according to the past. Denote the family of stopping
times by 7. The cost associated with a stopping time 7 is

7—1

> Ct, Xi,¢) + C(, X, 5)

t=0

where we assume C(1,X,,s) =0 if 7 = c0.

VTn(fn—lvan——lai)
T—1
Z C(taXtv C) + C(T> X'r» S)IXn—l = fnfly A'n~1 = an—17Xn =1

t=n

=F

represents the cost beyond time n for the stopping policy 7. Unless 7 = A it is
clear that 7 > n on the set {X,, = i}. By hypothesis, V"*(#,_1,dn—1, ) = 0 which
means of course that 7 < n.

Our goal is to find the stopping time which minimizes

V(i) = V(i) = E f}—: C(t, Xy, ¢) + C(r, Xr, )| Xo = @} .

t=0

In order that the expectation exists we will restrict attention to stopping times
7 € I' such that

E

T—1
ZC’(t,Xt,c)+ +C(1,X,,8)T|Xo = 1} < 0.
t=0

The policy of stopping immediately is clearly in I". Moreover, any practical stopping
time will be uniformly bounded (as Keynes said “In the long run, we are all dead.”)
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so let 7™V represent the family of stopping times 7 € " such that n <7 < N and
let 77 = U_, T™". We will therefore consider

r—1
V(i) =Vo) = Tienrfo E (; C(t, Xy, ¢) +C(1, X+, 8)| Xo = z) .
Example 8.18 Pathological Cases - (8.6) continued Consider a gamble
based on a fair coin. If the coin shows heads you win and tails you lose. The win-
ner takes all. Suppose your opponent will accept any bet. You might consider the
following strategy. Bet one dollar. If you win, stop but if you lose, bet two dollars.
If you win, stop but if you lose, bet four dollars. Keep doubling your bet until you
finally win. Let 7 be the number of tosses until a win. Let X,, n =1,2,..., bei.i.d.
random variables with equal probabilities of getting —1 or 1. X,, is Markov chain
on the state space {—1, 1} determined by the action ¢ to keep playing. Take Xy =0
and head is represented by the state —1. Let C(n, X,,c) = C(n,X,,s) = Xp2™
The cost of the strategy of stopping at the first win is

X2t = (14244277 -2 =1
n=0

so this looks like a sure way to make a buck. This strategy is however ruled out
because

7—1 o0 1
EY (X.2M)" =E@ -1)=) 2"~ —1=o0c.
n=>0

Qur method is to approximate the infinite horizon problem with a finite horizon
problem. First we define

- ~ , . S S ,
VM (#n_1,8n1,1) = Inf V'{(Zno1,dn_1,1)
TET™
which represents the minimum expected cost of continuing beyond time n.

Theorem 8.19 The expected cost from time n to the horizon N associated
with the optimal finite horizon Markovian policy u™N € T™N, given X, 1 =
fn—bAnfl = 6n_1 and Xn = i, 18

w1
wrNG@) =E | Y Ot Xe,0) + C(p™Y, Xy, 8)| Xy = 0

t=n
Then

V™ Zpo1,8n1,1) = W"(i) where W"(i) = Jim W (5);
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that is the minimum cost is the limit of the mindémum costs associated with the
finite horizon Markovian stopping times. Moreover, the Bellman optimality equation
holds:

W™ (i) = min{C(n,i,s),C(n,i,c) + Y _ Kis(e, ) W™ (j)}. (8.13)
JjES
Proof: Clearly, W™ (i) is a decreasing sequence as N increases since the policies

in 77N are in 7™V +! 5o the limit

W"(i) ;= lim W™V (3)

N-—o00

exists. Obviously
Clnyi,s) > WY (@) > V™ (Zno1, Gno1,7)-
We therefore have
W™(i) 2 V" (Zn_1,dn-1,%).

Moreover, since W™ (7) is the optimal cost for the finite horizon problem, it satisfies
the Bellman optimality equation

Wn)N(i) = mln{C’(n, is 8)9 C(na ia C) + Z Kij(ca n)Wn_H’N(j)}
jes
WNN(@G) = C(N,i,s). (8.14)

It follows by the Monotone Convergence Theorem that by letting N — oo in (8.14)
we get

W"(i) = min{C(n,i,s),C(n,i,c) + Y Ki(mW™(5)}.
jes
The main thing left to show now is that W"(i) < V™(Zp—_1,dn—1,%) since the

reverse inequality is automatic as remarked above. If V™ (Z_1,@,-1,%) > —oo then
by definition there exists a stopping time 7 in T N such that

T—1
Ot Xi,¢) + C(F, Xy, 8)| X1, Xy = i

t=n

E < VM (Foot, G, ) T e

However the optimal policy for minimizing the left hand side above is Markovian
so Wn(i) < V™*(Zy—1,dn—1,1) + € and the result follows.

If V*(Z,_1,8n-1,1) = —00 then by definition there exists a stopping time 7 in
T™N such that

E

—1
D Ct, X e) + Clr, Xr, )| X1, X = 2} <-L

t=n
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where L is arbitrarily large. However the optimal policy for minimizing the left
hand side above is Markovian so W™ (i) < —L for all L. It follows that W™(i) =
—00 = V"’(fnfl,é’n,l,i). |

Example 8.20 Pathological Cases - (8.18) continued

Suppose there is only action ¢ at time ¢ = 0 and suppose K, (c,0) = (105n(n+1))?
for n =1,2,... and Ko(c,0) =1 — 1075 Moreover suppose N = 1, C(0,0,s) =
—10%, C(0,0,¢) = 0, C(1,n,8) = —n for n = 0,1,2,.... In this case we can play
and in fact the optimal strategy is to do so because W°(0) = —oc. This is a bit
crazy because we forgo one hundred million and have too a high probability of get-
ting nothing in return. In real life we would take the one hundred million because
we would never trust a game that promises a gain (negative cost) of infinity. This
shows the limitations of measuring optimality only in terms of expectation.

We now turn to the optimal strategy. Let p™Y (i) € 7™N be the optimal
Markovian stopping time starting in state ¢ at time n if the horizon is N. Naturally,

p"N (@) = min{m : n <m < N,W™N(X,,) > C(m, X, s)}.
Define the policy
p* (i) = min{m : n <m, W™(X,,) > C(m, X, s)}.

For N > m, WrN(i) | WE(i) for all k < m so necessarily u”(i) > N (i). To be
more precise

Proposition 8.21 ™M (i) T u"(i).

Proof: On the set {p"(i) = m}, WF(Xy) < C(k, X, s) for k =0,1,...m — 1 and
W™( X)) > C(m, X, s). Consequently, for all N sufficiently large, W5V (X}) <
C(k, Xy, s)fork=0,1,...m-1and W™N(X,,) > C(m, X,,, s) on the set {u" (1) =
m}. Consequently for N sufficiently large u™ (i) = m on the set {u"(i) = m}.
Similarly for N sufficiently large u™™ (i) > m on the set {u"(i) > m}.
|
The policy p™ is only useful if it is almost surely finite.

Theorem 8.22 If, starting from any state i at any time t, C(t,¢,5)” > L, and
C(N,Xpy,s)",N =t,t+1,... are uniformly integrable (8.15)

(or we could just assume Loy < C(t,i,8) < Lo for all t and i) and if

N
E (i}r\llftza‘C(t,Xt,c)lXO = z) < oo for all i, (8.16)
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and for all B

N
lim P( ZC t, Xy, ¢) < B) =0 for any starting state, (8.17)
t=0

N—oco

then P(u"™ = oo) = 0. Moreover W™(i) is the expected cost associated with u™ and
W™ (i) is the unique solution to the Bellman optimality equation (8.13) which is
uniformly bounded below inn and i € S.

Proof:
First,
N-1
WnN( > X{/U' N} Z C(t’Xt’c)}
t=n

[J.n’N—l
+ B ,:X{Mn’N < N} Z O(ta Xt,c) + O(l"n7N7Xu"vN7 8):'

t=n
N-1 M
> E |x{p"N =N} > C’(t,Xt,c)} + E | x{u™N < N}iJr\}fZC’(t,Xt,c)} + L
t=n t=n

N-1

M
> E |x{u™N =N} O, Xi,0)| — E(i?/[fZC(t,Xt,c»_
t=n t=n

Therefore, taking the limit inferior as N — oo and using (8.16),

N-1
W(i) 2 liminf B [X{u”’N =N} ) c Xt,C)} + L, + L (8.18)

Let Sy n = Zi\]:n C(t, X4, ¢) so for any large B

N—-1
E|x{p"N =N} > C(t,Xt,C)}
t=n

> BP(x{u™" = N} N {Sun-1> B}) + E(x{p™Y = N} N {Snn-1 < B}Snn_1)
> B(P(u™" = N) = P({p™" = N} N {Snn_1 < BY))
+ E({p™Y = Nyn{Syn 1 < Blinf S, ). (8.19)

Next,
E(X{:u'mN = N} N {Sn,Nfl < B} 111\1} Sn}M)

~B(clSnnv-1 < B} (inf Sunr) ).
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Since Sn,m = So.m — Son—1 We see

(i]r\/)[f Sn,M)_ < (l}&f 50,M>m + Cz_;l C(t,Xt,C)Jr)

and both the terms on the right have an expectation less than infinity by hypothesis.
Consequently E (infar Sp pr) < 00. Using Condition (8.17), P(Sp,nv—1 < B) — 0
as N — oc. Hence, using Lemma. 9.4,

Jim E({p™" = N} {Snn_1 < BYinf Spu) = 0.

Therefore, by (8.19),

N-1
liminf B | x{u™" = N} Y C(t,Xs,¢)| = Bliminf P(u™" = N) = BP(u" = o).
N—oo = N-—co

Now as B — oo the term BP(u™ = oo) tends to infinity if P(p" = co) > 0 and
this implies W™ (4) = co. We know this is false since W™V (i) < C(n,i,s) so we
conclude P(u"™ = o0) = 0.

Next, let V™(¢) be another finite solution to the Bellman optimality equation
(8.13) which is bounded below by L, uniformly in n and i € S. Define the policy

6" (i) = min{m : n < m, V™(X,,) > C(m, X,,, s)}.

Using backwards induction from a time horizon N we see V(%) is the cost associated
with this stopping time if the cost of stopping in state j at the horizon time N is
VN (4). That is,

6" VvIN—1
Viiy=E| Y CtX,c)| +E{6" < N}C(O", Xgn,s)]
t=n
+E [x{6" > N}VN(Xy)] . (8.20)

Because of (8.13), V¥ (5) < C(N, ,s) so necessarily V(i) < W™ (i). Since
N is arbitrary, we conclude V(i) < W"(i). Now we need to prove the reverse
inequality.

If we now repeat the above argument and use the hypothesis that VY (Xy) >
L, we conclude P(6" = oo) = 0. Therefore, P(¢" > N) — 0. We want to
replace V¥(Xy) by C(N,Xn,s) in (8.20). We know VN (Xn) < C(N,Xn,s)
therefore the difference between the two is less than the maximum possible value of
C(N, X, s) minus the minimum possible value of V¥ (X y); that is C(N, X, s)" —
L,. However, by hypothesis 8.15, the sequence Xy = C(N, Xy, s)" — L, indexed
by N is uniformly integrable. Hence, again using Lemma 9.4,

dy = E [x{0" > NHC(N, Xn,s) - VN (Xn))] = 0as N — oc.
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Replacing VY (Xx) by C(N, X, s) in (8.20) we get

0" VN-—1

Z C(taXtac)

t=n

+E[x{8" > N}C(N, Xn,s)] —dn

Vn(Z) > K +E [X{en < N}C(anX()"vS)]

Next W™ (i) is the optimal optimal cost for the finite horizon optimal stopping
problem with a cost of stopping in state j at the horizon equal to C(N, j, s). Hence,
V(i) > WM (i) — dn so letting N — oo we get V™(i) > W™(i). This proves the
reverse inequality.

Finally, let V"(z) be the expected cost associated with the policy u". Note that

wr(i)—1
V(i) =E C(t, X, 0) + C(1, Xpyn(iy, )| X = 1
t=n
M
>E i&f;C(t,Xt,c)an =il + Ly > —00

uniformly in n and i € S because of (8.16). Clearly V" (4) satisfies the Bellman
optimality equation so by uniqueness we have V(i) = W™ (i) so the policy u” does
indeed yield the minimal expected cost. |

Corollary 8.23 In addition to the hypotheses of Theorem 8.22 we assume the
costs are time homogeneous so C(t,i,c) = C(i,c) and C(t,i,s) = C(i,s) and also
that the transition kernel is time homogeneous so K;; = K;;(c) = Ki;(e,n). Then
there exists an optimal Markovian stopping time p. It follows that W (i) = W, (i) =
W™ (i) and W (i) satisfies

W (i) = min{C(i, ), C(i,c) + > KiyW(j)}
jes
and it is optimal to stop at state i if W(i) = C(i, s).
Moreover, if we define the transformation R of a bounded function u on S by

Ru(i) := min{C(i,s),C(i,c) + >_ Kiju(j)}
jeS
then if ug(i) = C(i,s), RNug(i) = WON() — WO(i) = W(i) as N — oo. Finally
W (i) is the unigue fized point of R which is uniformly bounded below in i.

Proof: If future costs are independent of time, then the Markovian nature of
the optimal solution means that W"(7) is time independent and therefore equal
to W(i). It is easy to check that RV ug(i) satisfies Bellman’s optimality equation
for the stopping problem with horizon N and consequently, is the minimal cost
and therefore equals W9V (). The transformation R is equivalent to backward
induction by one step! |
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Consider a positive recurrent, aperiodic Markov chain X,, with a stationary
probability distribution m. Further, suppose the conditional distribution K, =
P(X1 = y|Xo = z) is stochastically increasing in x. This just means that for any
t, P(X; > {|Xy = ) is an increasing function of . Now let ¢ be a positive,
nondecreasing function on (—00,00) and let us consider the optimal stopping rule
7 which minimizes

In this case the terminal cost is C(z,s) = 0 and C(z,¢c) = ¢(z) — X. Clearly if A =0
then 7 = 0 since in this case the minimum is 0. We suppose, henceforth, that A > 0
and we proceed by checking the conditions of Corollary 8.23.

We may apply Theorem 5.18 (even if E, ¢(Xp) = +00.):

n

lim S, = E; (¢(Xo) — A) with probability one where S,, = 1 Z (p(Xy) — A).
n

n—00
t=0

Therefore, if we pick A\ < X := E.¢(X() we can be sure lim, .o Sn, = oo with
probability one. Consequently, we can check both conditions in Corollary 8.22.

In particular, to check Condition 8.16 note that because Sy — oo, infy Sy >
—oo with probability one. However this doesn’t quite prove F(infy Sy)~ < oc.
Note that (Xy,Sy) is a transient Markov chain (actually, it’s called a Markov
additive process) and inf x Sy is bounded below by —\ times the number of visits
by (Xn, Sn) to the set where {z,s) : s < 0}. One can bound this expectation using
Lyapounov function techniques. Alternatively, to calculate this expected value it
suffices to estimate P(Sx < 0). Calculating the probability of large deviations away
from the mean is another entire subject which we can’t include here (see Dembo
and Zeitouni).

On the contrary, if A\ > X then

lirlrggfz (p(X) — A) = —o0.
t=0

This is obvious by the law of large numbers if A > X. The more subtle case of A = X
follows from the law of the iterated logarithm which we will not discuss here.

We assume, henceforth, that A < X so W(z) = W(x, \) > —oco. Since the cost
structure and transition rates are independent of time we may apply Corollary 8.23.
Hence, there exists a Markovian stopping time p which minimizes the expected loss.
Moreover, this minimum expected loss, W {z), incurred starting from z is the limit
of the policy iteration procedure RN ug(x) where ug(x) = C(z,s) = 0 and

Ru(z) := min{0, ¢(x) — X + Z Koyu(y)}.

Y
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Certainly up is nondecreasing. Suppose now v is any nondecreasing function.
It is easy to see that Ru is also nondecreasing. First, ¢ is nondecreasing in = by
hypothesis. Also, F(u(X1)|Xo = ) is nondecreasing in = by Exercise 3.7 since
by hypothesis the conditional distribution of X; given X, = =z is stochastically
increasing in z. Hence the two parts of Ru are increasing. Hence, all the iterates
RNy are increasing in z, so W{z, A) is also. In fact, if ¢ is strictly increasing at
some point x then we also have that

$x) — A+ KaeyW(y, \)

Y

is also strictly increasing in z at this point.

Clearly, W(x,\) < 0 since one policy is to stop immediately and this yields a
cost of 0. If W is strictly negative, however, it would never be optimal to stop and
we have ruled this out by picking A < X\. We conclude there must exist a smallest
£ := £(}) such that W(f) = 0 and since W{(x) is increasing in x it follows that
W{z) = 0 for all z > ¢. Consequently, the optimal policy is to stop as soon as
X, > £. At this point /

W) =0<¢(l) A+ Y Ke,W(y).

If, moreover, ¢ is strictly increasing at ¢, it follows that

$(z) = A4+ Y Koy W(y) >0

Y

for x > £. In other words, there is no indifference region and the optimal stopping
level is unique; it is optimal to stop at or above the level £ and to continue below
this level.

We may also investigate W{x) as a function of A and we denote it by W (z, A).
Suppose u(z, A) is a function which is concave and decreasing in A for each fixed
z. Consider the new function Ru. By inspection this function is also concave
and decreasing in A\. Now, since for any fixed \ the iterates RNuy converge to
W {z, ) and since ug = 0 is both concave and decreasing (where decreasing means
nonincreasing), we conclude that for any fixed =, W(z, ) is concave (and hence
continuous) and decreasing in A. It also follows that for any fixed z, W(z, ) is a
continuous, decreasing function in A which decreases to —0o as A ] \.

As a function of A, the function

Bla,A) = d(x) =2+ Y Koy W(y, A)

Y

is convex and 3(x,0) = ¢(x). Since W(y,A) — —oo as A T X so does 3(z, ). For
any L we can therefore solve the equation 3(L, A\(L)) = 0 with 0 < A\(L) < A. Next,
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by the Bellman optimality equation

Wiz, A(L)) = <¢(m) ~ ML)+ Y Koy Wiy, /\(L))) :

Y

Moreover it is optimal to stop when W (z, A(L)) = 0. Since W (z, \(L)) is increasing
in = this will be the case when z > ¢ for some £.

Clearly ¢ < L because W(L, (L)) = 0. But £ can’t be strictly less than L
because then

$0) = ML)+ Y Ke,W(y, ML) 2 0

Yy

or

S(L)+ > Kr,W(y, ML) < ¢(0) + Z Koy W (5, M(L)).

This can’t be because ¢(z)+>_, Kuy W (y, \(L)) is an increasing function of z which
is strictly increasing at L if ¢(z) is strictly increasing at L.
We summarize the above results:

Proposition 8.24 For any L we can pick ML) < X so that W(x, \(L)) = 0 for
x> L and W(z,\(L)) <0 for x < L.

Theorem 8.25 Let X, be a positive recurrent, aperiodic Markov chain such that
the conditional distribution in y of Ky, = P(X1 = y|Xo = x) is stochastically in-
creasing in . Let ¢ be a positive, nondecreasing function which is strictly increasing

at some level L. Suppose that Eygt, = v, then among all stopping times T such that
Eot > vy, the stopping time 7y, is the one that minimizes

7—1
Eo Y 6(Xy).
t=0

Proof: Consider the unconstrained optimal stopping problem of minimizing the
sum

Ey Z (H(Xy) — = Ey qu X;) — Eor - A(L)

over stopping times 7. By the above theory, the optimal time is precisely 7.
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Consequently, for any stopping time 7 such that Eg7 > v we have

7, —1 T —1

Eo > 6(Xi) —yMEL) = Eo » ¢(X¢) = Eorr, - A(L)
t=0 t=0

T—1
=By Y (&(Xs) — ML)
=0
‘rtfl
< Ep Y (6(Xy) — A(L)) since 7;, minimizes the above,
=0
:71 7—1
=By 6(Xy) — Bor ML) < Eop 3 (X;) —v- ML)
t=0 t=0

since Eg7 > . Comparing the first and last members of this string of inequalities
shows that for any stopping time 7 such that Ey7 > ~,

7, —1

mZd@s%iwm;
t=0

t=0

that is 77, solves the constrained optimization problem! |

8.6 Quality Control ~ a Worst Case Analysis

A practicing quality control engineer usually desires to minimize the average off-
target run length subject to the constraint that the average on-target run length
is greater than some acceptable minimum. The Cusum procedure was invented
by Page in 1954 and engineers have assumed since the sixties that this procedure
should do very well in detecting a sudden change in mean. It was a pleasant surprise
that the Cusum was finally shown to be optimal in 1986 (see Moustakides (1986)).

The Cusum is optimal but only in a worst case sense which must be made
precise. We shall assume the quality variables V1, Vs, ... are measured sequentially
one at a time. Until the change point at time m, the quality variables Vi, ..., V1
have p.m.f. fq, while after the change point the quality variables V,,,, Vj,,41, ... have
p.m.f. fi. These distributions are assumed known. For instance, the on-target
distribution fy might be normal with mean p and standard deviation o, while the
off-target distribution f; might also be normal with mean g + d¢ and standard
deviation o.

Denote the joint distribution of the above change point variables by P, and let
L, denote the associated expectation. If there is no change point, all the variables
have p.m.f. fy and we denote the product probability and associated expectation by
P, and E4,. Let F, denote the o-algebra generated by the observations V7,..., V,.
A stopping time 7 relative to the family of o-algebras F, is such that 7 = n can be
determined by 17" = (V1,Va,..., V). For such a stopping time we can define the
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worst case off-target run length given the past before the change point at time m
as follows:
D, (t) = sup E,, (maX{T —m+1,0}|Vyy = ﬁm_l) . (8.21)
Uim—1
Since the change point can occur at any point in time m we again consider the
worst case and define
D(7) = sup Dy, (7). (8.22)
m>1
Page’s procedure is optimal in the sense that it has the best worst case behavior!
This obviously appeals to the most pessimistic engineers.

Theorem 8.26 Page’s procedure, which is often called the Cusum, manimizes
D(7) among all stopping times T whose on-target run length, EoT, is greater than
5.

The first task is to state exactly what we mean by Page’s procedure. First define
the likelihood ratio £(z) = fi(z)/fo(z) and then, by recursion, define

Ly =0,L, = max{L,_1,1}£(V,,) for n > 1.
Page’s stopping time is defined to be
P i=min{n > 1: L, > exp(h)}.

We will assume h > 0 although in general it could be negative.

This doesn’t look much like the Cusum we have discussed in previous chap-
ters. To make the connection we first define T, := max{L,,1}. Note that
T, = max{T,—14(Vy,),1}. Note that if 1 > 0, Page’s stopping time is precisely
the first time T}, crosses the level exp(h) since T, = L, if L, > 1. Now define
C,, = log(Ty) and let ¥, = log(¢(V;,)). Tt follows that

Co=0,C, = max{C,_1 +Y,,0}.

In other words, Page’s stopping time is min{n > 1: C,, > h} and this is closer to
the definition of the Cusum we have seen before.

To complete the connection let us try a special case. Suppose fy is a discrete
normal p.m.f. with mean po and variance o2. This just means the continuous
normal density is discretized and taken as a p.m.f. at some small scale. Suppose f;

is a discrete normal p.m.f. with mean j; > uo and variance o2.

log(#(x)) = log <(\/217m exp(— (z ;0’;1)2)> <\/21—7m expl(— (z ;U,go)z)> 1)

= -2%15 (—2(p1 — po) (& — po) + (11 — 410)?)

(p1 — po) po +
- o2 (- 2 )-
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This means that, up to a constant factor,

Yn:vn—“‘);‘“.

Taking k = (uo + p1)/2 as the anchor value we see the Cusum is defined by

Co =0,Cp =max{Cp_1 + V,, — k,0}
and Page’s stopping time is defined as the first time C,, > H where

H = ("“—;“‘))h.
ot

The level H is now determined by the average on-target run length as was discussed
in Chapter 5. Besides the fact that the Cusum is optimal, we now see that when
detecting a change in mean of a normal distribution, the optimal anchor value is
exactly half-way between the on and off-target means!

We now work our way up to a proof of Theorem 8.26. First we need some
technical lemmas.

Lemma 8.27 For anyn >m > 1 and for fired {V,,i1,...,V,}, the quantity L,
ts a nondecreasing function of Tn,. Also, Ty, can be written as

n+1 n
To=> 11— L] [Tave), (8.23)
j=1 k=j

where we define H],:_H -=1 and [z]* = max{0,z}.

Proof: Both the above statements are proved by induction. First remark that by
definition L,, = max{L,,_1,1}¢(V,,) = T,,_14(V,,) so L,, is a nondecreasing function
of T,, ;. Next, again by definition,

Ly, = max{L, 1,1}4(V,) = max{T,, 2l(V,,_1), 1}4(V}.).

Again, for fixed values of V,,_1,V,,, we see L, is a nondecreasing function of T},_,

since the function max{-,1} is nondecreasing. [terating in this way we see why L,

is a nondecreasing function of T}, and we can see how to prove it using induction.
The second statement follows in a similar way:

T =max{Ln,1} = L, + {1 = L,|* = max{L,_1, 1}{(V;,) +[1 — L]t
= (Lpn1+ 1= Looa]T) €(VR) +[1 — L)t

n+1 n
o=y =L ] eve)
j=1 k=j
by iteration. |
In the event 78 > m, the above lemma shows L, is a nondecreasing function
of Tp,_1 for n = m,m +1,... given a fixed sequence V,,, Vini1,... This means

that to maximize the time until Page’s stopping time exceeds the level exp(h) we
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should have Ty,—1 = 1; that is C,,_1 = 0. This makes sense since, in this case,
the random walk C,, has to climb the maximum distance . This means, moreover,
that D,,(r7) = Eo(rF) for any m since the worst place the Cusum Ly, ; can be if
the disruption occurs at time m is less than 1 (T, ; =1 and Cp,—q = 0).

Lemma 8.28 For any stopping time T

T—1 o]
E, Z max{Ly, 1} = E }: (1 = Lin—1]"x{7 = m}Bp(7)) (8.24)

k=0 m=1

where By (1) i= B ([T —m + 1] Fp_1).

Proof: An event E in Fj,_; may be represented by a function e(Vi,...,Ve_1).
Consequently, for k& > m

m—1 k—1
Emx{E} = Z e(vi,. -, vk—1) H fo(vi) H fi(vy)
i=1 j=m

Vlseoes VUm—1iVmy-- V-1

k—1 k—1
_ 3 e(vr,- . vp-1) [ £0op) ] folws)
j=m =1

Vi Vm—1Vmyeeos V-1

= B | [ evi)x(5)

j=m

For any stopping time 7, the event {7 > k} is in Fj_; so using the above we
have

Bin(1) = En([r = m+ 17| Fpv)

o0

= Z Eo(x{m > k}Fm-1)
k=m

o

k—1
= 37 Eo(JT @Vixdr 2 kHFm 1)
k=m j=m

T

k—1
= Boo | 3 [T 4V)IFn

k=m j=m
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Hence, for any stopping time 7,

B (1= Lo a7 2 1) Bu(7)

m=1
= F. Z 1= Looa)t {7 > m}Ex Z H UV)| Foms
m=1 k=m j=m
00 T k-1
= B 3 | Boo [ 1= Ll x{r 2 m} D7 T €Vi)IFaus
m=1 k=m j=m
0 T k-1
= Fo 3 (1= L ™x{r>m} > ] 4V
m=1 k=m j=m
o7 k-1 j Tk
= Fu 1= L] [[ V) =B d D> 1 Ll J] ¢
m=1k=m j=m k=1m—

k=1
T—1

VEOOZT;CW ooZmax{Lk,l}
k=0 k=0

Lemma 8.29 7F minimizes the following cost

T—1 T—1
E <Z max{L;,1} — 'yZ[l - Lk]+> . (8.25)
k=0 k=0

subject to the constraint that Ex,T > v and moreover the cost associated with F s
2ero.

Proof: Recall that if C,, = log(T5,), it follows that Cy = 0, C,, = max{C,,_; +Y,,, 0}
where Y,, = log(#(V,,)). Note that because the log function is strictly concave,

Eoo log(£(Vy,)) < log(Eoel(V,)) = log (Ze v) fo(v )
= log(1) =0.

Hence, the walk C, has steps with mean less than zero so the Markov chain
C, = log(T,) is positive recurrent to zero. Hence, the Markov chain T} is posi-
tive recurrent. Since the chain Ly equals T} at least when Ly > 1, it follows that
L, is also positive recurrent since this is a class property.

The function max{-, 1} is increasing as is the function —[1—-]*. Therefore, since
the distribution of Ly = max{Lg_1,1}¢(V}), given Lp_1 = z, is clearly stochasti-
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cally increasing in z, it follows by Theorem 8.25 that the stopping time 7F mini-
mizes the cost in (8.25) subject to the constraint that Eq7 > 7. Moreover, since
B (t7) = Eo(rF) on the event {7 > m; L,,_y < 1}, using the equality (8.24) we

have

Fa o1

Foo Y max{Li, 1} =7vE. Y [1— Li]?
k=0 k=0

which means the cost in (8.25) has a minimum of 0 when the stopping time is 77.

|
Proof of Theorem 8.26: Suppose h > 0 is such that F.,77 = ~ but suppose
there exists another stopping time p such that E..p > v and D(p) < D(rF). It
follows that on the event L,,_; < 1 that, for all disruption times m,

B (p) £ Dim(p) < Di(p) < D(TP) = EOTP~

If B,(p) < Eo(7?) then again by the equality (8.24) we have

Eo (Z_: max{ Ly, 1} — i:[l — Lk]+>
k=0 k=0

o0 —
= Fy Z ([1 - Lm—1]+x{p > m}Bm(p)) —vFy Z[l _ Lk]+

m=l k=0

&S] o1
< B S (= LT hcdp 2 m}Egr?) — 7B S — L]
" k=0

I
2
=
8
[z =

(It = L1 " x{p 2 m}) — 7B i[l — Lyt
k=0

m=1

We have, therefore, obtained a contradiction since by Lemma 8.29, ¥ gives a
minimum cost of zero among stopping times satisfying the constraint. -

It’s true the Page’s procedure is only optimal in a worst case sense. On the
other hand, the Cusum has many other advantages. It is easy to plot on a computer
since it automatically rescales itself by drifting continually back to 0. It is easy to
give the Cusum a headstart by starting at a value above 0 and so causing a quick
reaction to a faulty initial setting of the production mechanism. Finally, the run
length properties of the Cusum are relatively easy to compute as we have seen in
the chapter on Markov chains. It is fair to say the Cusum is slowly becoming the
industry standard for all the above reasons.



314 Elements of Applied Probability

8.7 Exercises

Exercise 8.1 Consider the transition matrices

K(a) = K(b) =

NSRRI

N I
BN = =
W= LN
N[O ==
ENFE TPy Y P

Each transition can be made according to K(a) or K(b). If we visit state 0, 1 or 2
we pay 30, 5 or 20 dollars respectively.
a) What is the policy for minimizing the expected discounted costs if the discount

rate is « = 0.17
b) What is this cost?

Exercise 8.2 For the decision problem in Exercise 8.1 what is the policy for
minimizing the long run average costs and what is this average cost?

Exercise 8.3  Consider the transition matrix

1000
1 1 1
k-|3%33
11qg1
1452
55350

If we stop in state 0, 1, 2 or 3 we pay 20, 5, 10 or 0 dollars respectively. We start in
state 1. What is the optimal stopping policy and how much is the expected cost?

Exercise 8.4 The cost of action 0 in state 0 is $1 and in state 1 is $2. The cost of
action 1 in state 0 is $0.5 and in state 1 is $3. The transition kernel between states

0and 1is
1
) andK(l):(})1 )
B

a) If money is discounted at a rate & = 1/2 per transition, find the optimal policy

==
[’ [S1 N[\

and the optimal expected return.
b) Find the optimal policy to minimize the long run average cost. What is this
average cost.

Exercise 8.5  We have to supply dinner for a long haul flight. The initial order to
the meal service depends on the R number of reservations. This is a maximum of
100 since there are 100 seats. The initial order is made 20 hours before departure
and each meal costs $5 dollars to prepare. Three hours before departure there
is a better estimate S of the required number of meals based on the number of
customers checked in and information about impending failed connections. Past
experience has shown this new estimate is uniformly distributed from R — 30 to
min{R + 10,100}. At this state there is a chance to add more meals to the order
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but this is a rush order so additional meals cost $12 each. Finally at departure time
we know the real number of meals M required. From past experience we know M is
uniformly distributed from S — 5 to min{S + 5,100}. Any missing meals are made
up by very expensive frozen meals which cost $20 each when time and effort are
counted in.

a) You wish to minimize costs. Suppose the number of reservations for a flight is
80. How many meals should be prepared 20 hours before the flight?

b) Three hours before the flight the estimate for the number of meals is 76. How
many additional fast order meals should be prepared.

¢) It turns out 78 customers actually board the flight. What is the total cost of
meals?

Exercise 8.6 Whenever the city purchases a new bus it must prescribe a mainte-
nance program. At the start of each month a decision must be made whether the
motor of the bus must be overhauled. The overhaul takes a day. After an overhaul
the motor is like new but the overhaul costs $5,000 payable immediately. If a bus
has gone x months since an overhaul then the probability it will break down during
the next month of service is min{1,.1+0.05z}. If it does break down during service
there is a bill of $7,000 payable at the end of the month for an emergency overhaul.
Assume the interest rate on money is 0.5% per month. Formulate a maintenance
program to minimize the expected discounted cost of keeping the bus running.

a) Give the appropriate state space and action space.

b) Give the transition kernel associated with the actions.

¢) Write down the Bellman optimality equation.

d) Give the form of the optimal policy. Explain how you would calculate this policy
exactly.

Exercise 8.7 Evaluate the long run average cost of the optimal policy for governing
the queueing Example 8.16 as discussed at the end of that example.

Exercise 8.8 a) A record is stored on one of two magnetic tapes. The probability
it i1s on tape L is % while the probability it is on tape IT is % The first tape has
three segments: 11, 12, 13. Given the record is on tape I, the probability of being
in one of these segments is given by

111213
111
2 3 6

The second tape has three segments: 111, 112, II3. Given the record is on tape II,
the probability of being in one of these segments is given by

111112113
11 1

3 3 3
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The search starts at the beginning of a segment and each segment takes an hour
to search. One search procedure is to completely search the segments of one tape
in order and then the other until the record is found. If you decide to use this
procedure starting on tape I what is the expected time to find the record?

b) If we wish to minimize the expected time to find the record we could formulate
this as a finite horizon Markov decision problem. Let the state X,, be the vector
of aposterior probabilities the the record is in segment 11, 12 through II3. Hence
Xo = (3/10,1/5,...2/15). Fully explain the cost structure.

¢) What is the optimal action for the first search. Prove it.

d} If this first search fails, what is the optimal action for the second search?

Exercise 8.9  The dollar value of a night’s work by a second story man is described
by a random variable X with p.m.f. f. The thief has probability p of getting caught
on any given caper. If the thief is caught all his ill-gotten gains are confiscated and
he is put out of business. Describe the optimal policy so that the thief can retire
with the maximum expected total gain. Presumably, if the thief gets caught he will
try this optimal strategy again when he gets out.

Exercise 8.10  With probability p; there are i orders in any given day. Right
after the daily orders arrive a decision is made whether or nor to immediately fill
the orders. The cost of filling the orders is $K (no matter how many orders are
stockpiled) and the order is filled by the end of the day. If it is decided not to fill the
orders that day then the orders wait but you pay a cost of $¢ per waiting order for
each day the order is delayed. All orders must be cleared by the end of the month;
i.e. every 30 days all waiting orders are filled. Write down Bellman’s optimality
equations for the minimal expected cost. Define any symbol used. Guess the form
of the optimal policy. Can you prove it?

Exercise 8.11  An investor starts with Cy dollars of capital. His investment strategy
changes each day and at the nth day, his capital of C,, dollars is allocated as follows:
he spends S, dollars and he invests I,, dollars in the stock market. The I,, dollars
invested will yield a total of V,,I,, where V,, is a random variable having p.m.f. f
which is independent of the entire past. The name of the game is to maximize the
expected discounted expenditures E>" _, a™S,.

(a) Set up the Bellman optimality equation.

(b) What is the form of the optimal policy?

Exercise 8.12  What is the optimal policy for the investor in Exercise 8.11 who
wants to maximize his long run average expenditures?

Exercise 8.13  The book by Dubins and Savage (1965) describes a situation where
it makes sense to gamble. Suppose you have 20 left and you are stranded in Las
Vegas. You need 500 to buy an airplane ticket back home. If you go to the roulette
table you can gamble any amount on red or black (dollars, no change). If the ball
falls into a red pocket and you bet on red then you double your money. If it falls
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into a black pocket then you lose your money. The wheel has pockets numbered
from 1 to 36, plus 0 and 00, for a total of 38 pockets. Eighteen pockets are red and
eighteen are black. This is not a fair game because the pockets 0 and 00 are neither
red nor black. Nevertheless it makes sense to gamble because that is the only way
we will get home. What is the optimal way to gamble if the only objective is to get
$500 for a ticket.

Exercise 8.14  For the decision problem in Exercise 8.1 suppose that in addition to
the action a or b there is the option of leaving the system and receiving a payment of
$100, $200 or $300 if we exit from state 0, 1 or 2 respectively. What is the optimal
policy if we start in state 0.

Exercise 8.15

It is common practice in financial markets to sell call options to businesses
wishing to reduce their uncertainty about the future. Suppose company A needs to
buy 1000 shares of company B before the end of the year. It might purchase a call
option to buy the 1000 shares of company B at a strike price of $50 each at any
time before the end of the year. If the stock price stays below $50 company A will
not exercise the option and the option will be worthless. Company A will just buy
the 1,000 shares at a convenient time for a price below $50 per share. If the share
price rises above $50 then company A is protected because at the end of the year
it can exercise the option and pay $50,000 for the 1,000 shares.

The question is, what should such an option cost? Suppose the share price
is now $40 and we expect the price to stay roughly the same for the next two
months until the end of the year. There is however one major uncertainty. An
announcement from the Fed (the US Federal Reserve) might cause the price to
increase by 50% or decrease by 25% or stay the same with probabilities 0.3, 0.2 and
0.5. The announcement could come on any day without warning. What is the price
of the option?

Exercise 8.16  Suppose we are selling a car and the offers come in according to
a Markov chain with transition kernel &. Hence, if we have an offer of i dollars
today then the probability of an offer of j dollars tomorrow is K;;. FEach day the
car remains unsold we spend M dollars in additional interest charges. To do this
problem assume that for each k, »° .., Ki; is nondecreasing in ¢ as is -, (j — ) Ki;
which means the future prospects with a good offer in hand are better than those
when a poor offer is in hand. What is the Bellman optimality equation for accepting
an offer if we wish to maximize the difference between the selling price and the total
interest charges? What is the optimal policy?

Exercise 8.17  Two soft drink dispensers stand side by side. One has probability
a of taking your money and giving you a soft drink (and probability 1 — a of giving
you nothing but frustration). The other has probability b of giving you a soft drink.
Long hard experience has shown that b > a but you have forgotten which machine
is which. You tend to believe the one on the left is the better one and in fact you
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would give this belief an a priori probability of pg. Your objective is to maximize
your long run success rate.

a) Determine the optimality equation for the associated discounted problem.

b) Guess the optimal policy.

¢) Guess the optimal policy to maximize the long run success rate.

Exercise 8.18  Consider the following game. You throw a die as often as you wish
and when you stop you receive in dollars the average of the throws you made. What
is the optimal stopping rule? Is this a Markov decision problem? Can you solve it?

Exercise 8.19  Suppose that under normal operating conditions a 1% of items pro-
duced are defective. Every item is inspected so this means that there is a geometric
number of items with mean 100 produced until a defective is found. Design an
optimal on-line procedure to detect when the proportion of defective items changes
suddenly to 5%. Fix the on-target run length to be 500. What is the associated
off-target run length?

Exercise 8.20 A paper mill makes huge rolls of paper 2 meters wide. There is an .
electric eye focused on the output which measures the number of defects over the
last meter of paper; that is over a surface of 2 square meters. Defects are caused by
foreign object mixed in with the raw pulp like bark or even a plastic garbage bag
that is chewed up along with the timber. These small objects cause tiny discoloured
spots on the white background that are scattered randomly over the surface. Under
normal operating conditions these spots should arise at the mean rate of 1 per linear
meter. If, however, there is a failure in the mixing room the rate will increase to a
mean rate of 3 spots per linear meter. Design a quality control scheme to stop the
paper production if the the mean rate increases to 3 spots per linear meter. A false
alarm is very costly so design your procedure so the average on-target run length is
500 meters; that is 5 complete rolls.



Chapter 9

Appendix

9.1 Useful Results in Analysis

We first recall some elementary notation used in the book. For any real number
z, T = max{z,0} and 27 = max{-z,0} so z = z* — 7. When we write
X = Xt — X~ for a random variable X we simply mean that the functions are
defined for each w; ie. X(w) = X(w)* — X(w)~ . We also denote the infimum
and supremum of a sequence of real numbers {x,,n € N} with index set A" by
infz, = inf,en zn and supx, = sup,cp Tn respectively. The supremum is the
least upper bound of the set of x’s while the infimum is the greatest lower bound.
If U is the supremum then z, < U for all n and for any € no matter how small we
can find an m such that z,, > U —e. Similarly, if L is the infimum then x, > L for
all n and for any € no matter how small we can find an m such that z,, < L +e.

The limit of a sequence {z,,n € {1,2,...} is denoted by limz, = lim,_, 00 Zn.-
If the sequence is monotonically increasing or decreasing then we can write the
limit = as z,, T = or x, | x respectively. We also denote the limit inferior and
the limit superior of a sequence of real numbers x,,n = 0,1,2,... by liminf z,
and limsup z,, respectively. By definition limsupz, = limy_ o sup,sy z, and
liminf x,, = imy .00 infy> . This means that, if U = limsup z,, then for any €,
no matter how small, we can find an N such that for n > N, x,, < U + €. Similarly
if L = liminf z, then for any ¢, no matter how small, we can find an IV such that
forn > N, z, > L — e. For a sequence of random variables {X,,, n € A’} we can
define sup X, or limsup X,, sample point by sample point.

9.2 Integration and Expectation

The expectation of a random variable X, or equivalently the Lebesgue integral of
an F-measurable function X on a probability space {§}, F}, was defined in Section
2.2. The method is to first define the expectation of simple random variables and
then approximate more complicated ones. This extension does not require that P
be a probability measure but only that P be a positive measure. We continue to

319
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write EX = fﬂ XdP even if P is any positive measure. We will however restate
each theorem in terms of sums on a countable set like the integers. In these special
cases 0 = S and P({i}) = v(¢) where v(4) is a sequence of positive numbers indexed
by the S.

This integral is a great improvement over the Riemann integral because the
integral of the limit of a sequence of functions is often the limit of the integrals.
First let us restate the Monotone Convergence Theorem 2.66:

Theorem 9.1 (Monotone Convergence) If X, is a sequence of random vari-
ables such that X, (w) T X(w) for almost allw and EX| < oo then limy_,o X, =
EX (in fact EX,, T EX). Similarly, if X5, | X and EX{ < oo then EX,, | EX.

The proof may be found in Billingsley (1979).

Corollary 9.2 If for each n, u, (i) is a sequence of positive numbers such that
un (@) Tu(i) as n— oo, then >, cgun (Vv (i) 1 3 ,c g u(d)v(4).

Definition 9.3 A sequence of random variables X, is uniformly integrable if
lim sup E (|X,,| - x{|Xn| > a}) =0.

Note that a single, integrable random wvariable X is uniformly integrable; i.e. if
E|X| < oo then lim,—,o E (| X| - x{|X]| > a}) = 0. This follows from the Monotone
Convergence Theorem. We will also need the following lemma

Lemma 9.4 Let A, be a sequence of events such that P(Ap) — 0. If X,, is a
uniformly integrable sequence then

A sup B (1Xn | x{Am}) = 0.
Proof: For any € > 0, pick an @ such that sup,, E (| X,| - x{|Xn| > a}) < e. Hence
sup 2 (1Xa| - x{Am })
< sup B (|Xn| - x{dm} - x{|Xn] < a}) +sup B (|Xa] - x{Am} - x{|Xn| > a})
< asup P(An N {[Xn| < a}) + sup E (| Xn| - x{|Xn| > a})
< asSp P(Ap) +e=aP(An) +Z.
Hence, lim,, o0 sup,, E (| Xn| - X{Am}) < €. Since ¢ is arbitrarily small the result

follows. |
A consequence of the Monotone Convergence Theorem is

Theorem 9.5 (Fatou’s Lemma) If X,, is a sequence of random variables such
that the sequence X, is uniformly integrable (for instance when X, (w) > —L for
almost all w) then, if E(liminf X)) ezists,

liminf £X,, > Fliminf X,,.

n—oo n—00
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Equivalently, if X7 is a uniformly integrable sequence and E(limsup X,,) ezists
then

limsup EX,, < Flimsup X,,.
n—oo n—oo
Corollary 9.6  If for each n, u,(i) is a sequence of positive numbers then
lim ioréqun(z’)u(i) > Z%gf un (v (3).
€S €S
The following theorem and its corollary will be required throughout the text.
Theorem 9.7 (Dominated Convergence) Let X, be a sequence of random

variables such that |X,(w)] < Z where Z is an integrable random variable. If

Xn(w) — X{w) for almost all w then lim,_o EX, = EX.
Corollary 9.8 Suppose that uy, (i) is a function on i € S and that |u,(i)| < b(i)
where b(i) is a non-negative, bounding function, such that b:= 3, ¢ b(i)v(i) < oo.
Suppose, moreover, that for each i, lim, o0 u, (1) = u(i). Then
Jim > un (i) = uli)v(i).
ics i€s
The Dominated Convergence Theorem has a host of other applications. Define

the norm of a function uw on § = {0,1,2,...} to be |lul]| = 37, g |u(i)].

Theorem 9.9 (Scheffé’s Theorem) Let f, be a sequence of probability mass
functions on S; that is ) ,c¢ fa(i) = 1. Suppose fn(i) — f(i) as n — oo where f
is also a p.m.f. then ||fn — fll = 0 as n — oo.

Proof: Let 6, = f — fn 50 >, 6,(i) = 0. Let B, = {4 :5,(¢) > 0} so
(1= £l =D [6n ()]

i€S

PIRACES PG

i€E, icke

=2 Z 8, (7) since ZieEn n () + ZieE; 6n(i) =0

ek,

=2 5.()".

€S

However, §,", the positive part of §,,, is uniformly bounded by f and f is summable
(or integrable with respect to counting measure on the integers), so by Lebesgue’s
Dominated Convergence Theorem, lim )", 6,(2)" — 0 since 6,(i)T — 0 for all ;. m

Another measure theoretic result required in the text is the Borel-Cantelli

Lemma:

Lemma 9.10 If>° P(A,) converges then P(N52, U Ax) = 0.
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Proof: For any m, N5, U Ar C U2, Ag. It follows that

o

PN, U2 Ay) < P(U,, Ar) <ZPAk

and the final sum tends to 0 as m — oo if ), P(A,) converges. m
Intuitively this result just means that if the sum Y P(A,) is finite, the prob-
ability of those sample points which lie in an infinite number of the A,, is 0.

Theorem 9.11 (Fubini’s Theorem) Let F' and G be increasing right continuous
Sfunctions. Let h(z,y) be a measurable real valued function such that either h > 0
or one of the double Lebesgue integrals

/m(/ylh(wvy)JdG(yO dF(w),/y (/mlh(:r,yﬂdF(:r)) dG(y)

is finite. Then

L(/y h(x,y)dG(y)> dF(z) :/y</x h(:t,y)dF(a:)) i)

Corollary 9.12  Consider o sequence of real values h(m,n) having two indices
such that Y ° 1 (3°77, [h{m,n)]) < oo then

Z Zh(m,n) = Z Zh(m n)

m=1n=1

Proof: Take F(z) = [z] and G(y) = [y]; i.e. F(x) is the integer part of x and G(y)
is the integer part of y. In this case, for a,b € {1,2,...},

> h(m,b) = / h(z,b)dF(z) and Zh (a,n) / h(a,y)dG(y)
m=1 z>0 y>0
and the result follows. |

9.3 Convexity

Definition 9.13 A function ¢ defined on the real line is convex if for any two
points z and y and any 0 < & <1 we have

(L —a)z+ay) < (1 —a)é(z) + ad(y).
¢ is called concave if the reverse inequality holds.

If £ < y and we take s = (1 — &)z + oy then this condition is equivalent to the
following relationship between the slopes of line segments from (z, ¢(z)) to (s, #(s))
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and from (s, ¢(s)) to (y, o(y)):
#5) — 8(x) _ oly) — 9ls)

s—T o y— s

(9.1)

Using the mean value theorem it is easy to check that if ¢ has a derivative which
is monotonically increasing then ¢ is convex. Alternatively, convex functions may
be characterized by the following:

Theorem 9.14 A function ¢ is convex if and only if

¢(s) = sup{£(s) : £(y) < ¢(y) for all y,£(y) € L}
where L is the class of linear functions.

Proof: We only show convex functions may be classified this way. Let z < s < y
and define « so that s = (1 — o)z + ay. Let
0= sup{M cx < st
s—x
By (9.1) it follows that 8 < (é(y) — ¢(s))/(y — s). Now, for any ¢ > 0 no matter
how small, we pick a value h such that ¢(s) —e < h < ¢(s). Now draw a line, £,
through the point (s, h) with slope 5. If {(z) = ¢(x) for some z < s, this would
imply the slope of the line segment from (z, ¢(x)) to (s, ¢(s)) is greater than the
slope from (x, ¢(x)) to (s,h). However the latter slope is 3 so this is impossible.
We conclude £(z) # ¢(x) if z < s. Similarly, £(y) # ¢(y) if s < y.
We have therefore constructed ¢ € L such that #(y) < ¢(y) for all y. Moreover,
£(s) > ¢(s) — € where € is arbitrarily small. The result follows. -

Theorem 9.15  If ¢ is convex then E¢(X) > ¢(EX).

Proof: Since E4(X) = ¢£(EX) for any linear function £, the result follows from the
above characterization. ]

Theorem 9.16 (The Schwarz inequality) Let u be o positive measure on a
measurable space and suppose two measurable functions f and g are square inte-

grable; i.e. Y fA(x)u(z) < 0o and Y. ¢%(x)pu(x) < oo. Then

S @) lo@ine) < (X Pape) (3 d @)

Proof: Let Sy = f2(z)u(z) and Sy =3 ¢*(x)u(z). Define F = f/,/S; and G =
9/+/Sy, s0 3. F2(x)u(z) = 3 G*(z)u(x) = 1. By the convexity of the exponential
function we have

1/2

s t 1 1
exp(§ + 5) < 3 exp(s) + 3 exp(t).
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Letting exp(s/2) = |F(z)| and exp(t/2) = |G(z)| we get that, for all x,

1 1
[F(z)G(z)] < §F2($) + 5 G ().

Summing with respect to the positive measure p we get

1 ) 1 .
S IF@GE) ) < 5 30 F@)a@) + 5 3 G ajula) < 1

Now multiplying this inequality on both sides by Sy and S; we have our result. m

9.4 Norms and Fixed Points

Counsider a countable state space S. Functions defined on S taking real values may
be thought of as vectors having a countable number of components. If v is a function
defined on S, we define ||v}] := sup;cg [v(3)]. 1t is easy to check that ||v|| is a length
or norm of v. It suffices to verify the following conditions satisfied by any norm:

° [[o][ =20,
e For any two vectors u, v and any real number «

[l =+l < lull + ol [levlf < fed {lv]l,
e ||v|]| = 0 implies v = 0.

The set B of functions on S having a finite norm forms a Banach space. This
simply means that the vector space is complete with the given norm; that is a
Cauchy sequence of vectors {v, } necessarily has a limit. We recall a sequence is
Cauchy if for all € there exists an N such that for all n,m > N, [Jv, — vn|| < e
Having a limit means, of course, that there exists a function v such that ||v|| < oo

and lim, o ||vn — || = 0.
Clearly a Cauchy sequence {vy} has components {v,(7)} which form a Cauchy
sequence since [v,(5) — vm(J)| < supscg [Un(t) — vm(i)] = |[vn — vm||. Hence each

component converges by the completeness of the real line. Let v(j) be the limit of
the j** component and v the associated vector. In general for any double sequences
Tin, We have iy < Sup; Tsm, so imsup,, . Tjm < limsup,, ., sup; T;,. Hence
taking the supremum in j we get sup,limsup,, ,oo Tim < lmsup,,_, .. SUp; Tim.
Now, apply this to the double sequence |vn(2) — v, (i)| where we assume n > N
above:

sup |vp(4) — v(i)| = sup limsup |v, (4) — v ()]
i i m—oo
< limsupsup |vy, (1) — vy, (1)
m—oo i

< limsup ||v,, — vinl] <.

m—0o0
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We conclude that if {v,} is Cauchy then for an arbitrary ¢ we can find an N such
that for n > N, |lv, —v|| < e. This means v is the limit of the Cauchy sequence
and hence B is complete.

Define d(u,v) = |Ju — v]| to be the distance between two vectors u and v in B.
(d is called a metric and B becomes a complete metric space.) A mapping T of B
into itself is called a contraction if there exists a positive real number r < 1 with
the property that d(Tu,TV) < r - d(u,v) for all v and v in B. Any contraction is
obviously continuous.

Lemma 9.17 If T is a contraction defined on B (or in general on a complete
metric space), then T has a unique fized point; i.e. a point x € B such that Tx = x.

Proof: Let ug be an arbitrary point in B, and write
w1 = Tug, us = T2ug = Tuy and, in general , u, = T™ug = Ttip_1.

If m < n, then

I

d(T™ug, T"ug) = d(T"uo, T"T" " ug)

" d(uo, T ™) = 1" d(ug, Un—m)

(g, u1) + dur, ) + - A AUty Un—m)]
P d(uo, u)[L+ 2+ - "

d(tm, trm)

IAN N IA

A

™ d(ug, u1) -

Since r < 1, it is clear that u,, is a Cauchy sequence and, by the completeness of B,
there exists a point u in B such that u,, — w. Since T is continuous

Tu=T(lim u,) = lim T(up) = lim up41 = u.
n—oo n—oo TT— 00

We conclude the proof by showing v is the unique fixed point. Suppose v is also
a fixed point; that is Tv = v. Then d(u,v) = d(Tu, Tv) < rd(u,v). Since r < 1 this
means d(u,v) = 0 which means u = v. |

Recall the normed vector space formed by linear transformations T' of B into
itself, having a norm defined by ||| := sup{||/Tv|| : |Jv]| < 1}. We remark that

IT1] = sup{> _ IT5[}.
€S jes
It immediately follows that for any vector w, [[Tu|| < ||T|| |u]|. Also, if [|Al] < oo
and || B|| < co then

A - Bull < [|Al] || Bull < [|A]| | BI! [u]]

so [|[A- B|| < [|All [|BI].
It is also obvious that if 7™ forms a Cauchy sequence in this norm then so do
the components T}}. Hence we can define a transformation T' by the limit 75} — Tj;
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as n — oo for all ¢ and j. Next

T —T"| = sup{z T35 =
jEeS

< sup{limsup Z 7} — T}
1€S m—oo jes

< lim sup bup{z T ~ T3}

m—oo €S jes

= limsup |IT™ — T"||.

m—00

Hence, if 7™ forms a Cauchy sequence with the operator norm, then for an arbitrary
e we can find an NV such that |[T™ — T"|| < € for m,n > N. From the above we
conclude that for n > N, ||[T —T"|| < e. Hence lim,, . ||T — T"|| = 0 so the
sequence 7™ has a limit 7. Hence the space of transformations T with finite norm
is complete and forms a Banach space.

Lemma 9.18 If A and B are matrices of finite norm which commute; that is
AB — BA then

exp(A + B) = exp(A) exp(B).
Proof: Let S;(A4) := Zi:o AF[E! and S;(B) = Zi:o B*/k!. Clearly, by the
definition of the exponential,
[15;5(A) — exp(A)[| — 0 and |[5;(B) — exp(B)|| — 0 as j — cc.
By matrix multiplication,

BZAk
S (A)S;(B) - 54+ B) = Y T
where the sum is over all integers £ and k for which 1 < ¢ < 5,1 < k < j, and
j+1<Z+k <2j. Suppose [|A|| and ||B|| are less than b, then the norm of the

above difference is bounded by

bﬁrk

2. T T > ZM_

JRI<e4k<2; n= g+1z 1

This estimate goes to 0 as j — oo since (2b)"/n! is a term in the expansion of
exp(2b).



Appendiz 327

On the other hand,

115;(A4)S;(B) — exp(A) exp(B)]|
[lexp(A)]] - [1:5;(B) — exp(B)|l + [|5;(B)|] - 115;(A) — exp(A)|
exp(b)([15;(B) — exp(B)|[ + [[5;(A) — exp(A)[()

— 0.

IN A

Moreover [|Sj(A 4+ B) — exp(A + B)|| — 0 so by the triangle inequality the result
holds. =

The family of matrices P(t) = exp({G) is called a semigroup because P(0) = I
and P(t + s) = P(t)P(s). To see this, just remark that the matrices A = sG and
B = tG commute and apply the above lemma.

9.5 Algebraic Results

The notion of an equivalence class is used in the text. Consider a partition of some
non-empty set X. We define a relation on X by saying z ~ y, if « and y belong to
the same partition set. The relation ~ has the following properties

o z ~ z for every z (reflexivity);
o £~y =y~ x (symmetry);
e x~yandy~z=>x~ 2z (transitivity).

Any relation which possesses these three properties is called an equivalence relation
on X.

The following lemma is a well known consequence of the fact that the units over
the integers form a Euclidean ring (see Lemma 3.8 in Herstein (1975) for instance).

Lemma 9.19 If [1] is the greatest common divisor of the support of f; i.e. {x:
f(z) > 0}, then for any unit [d], there ezist positive integers {p;}2, and {n;}%2,
along with unils {1'1}55;1 and {y; f:’:) from the support of f such that

Proof: Since [1] is the greatest common divisor of the support of f there exist
a finite number of elements {v; : ¢ = 1,...,¢} in the support of f with greatest
common divisor equal to [1]. Consider the set A of all units represented by

¢
A= {Z m;v; : where m, is an integer}.
i=1
Let s be the smallest positive unit in A. Let x € A so by division x = ts + r where
the remainder r satisfies 0 < r < s. However s € A so x — ts € A which implies



328 Elements of Applied Probability

7 € A. This means » = 0 since s is the smallest positive unit in A! We conclude
the elements of A are multiples of s.

This means {v; =t;s:j=1,...,¢} since each v; € A because v; = Zle 8;(i)v;
where 6;(¢) is 1 only if 7 = j and 0 otherwise. If s is not [1] then all the v’s have a
common divisor. Since this is false we conclude s = [1] and hence A4 is all the units.

This means there exist integers m; such that Zle myv; = [d], where [d] is
any unit. Split this sum into the positive and negative coefficients so Zflzl DiTi —
252:1 n;y; = [d] where {xi}flzl and {y; 52:1 are in the support of f and {pi}flzl and
{ni}fil are positive integers. -

9.6 Further Reading

Feller Volume I is the best example of how much can be done with discrete random
variables. Any serious student of probability should own a copy. Ross’s Dover
Classic is a readable introduction to applied probability but is now somewhat dated.
The problem set is excellent. The book by Billingsley (1979) often referred to in
the text is an excellent introduction to measure theoretic probability. The ATM
standards are set by the ATM forum (www.atmforum.org) and TCP/IP standard
are set by the Internet Engineering Task Force (www.ietf.org) but almost any journal
treating computer communications will have some information. The quality control
standards are best read in the original so see the bibliography under Quality Control
Standards.

The approximation of the binomial by a Poisson random variable dates back
to Siméon D. Poisson (1781-1840) but the coupling approximation given here is
inspired by the paper by Hodges and LeCam (1960). The discrete approach taken
here is a bit unusual but it has the advantage of avoiding complicated conditioning
arguments. The Poisson process is a fundamental building block for constructing
other processes. For more on this, see the book by Brémaud.

The chapter on Markov chains is fairly standard. The seminal book by Orey
inspired the author’s treatment. Orey’s book gives extensions to Markov chains on
general state spaces. The classic book by Spitzer gives a modern potential theoretic
treatment which is of interest to queueing theorists. The nonparametric cusum is
developed in McDonald (1990) and an optimal choice for the anchor is discussed.

The original renewal theorem for discrete i.i.d. random variables is given in
Feller Volume 1. The coupling proof given here is just another in a long list going
back to Doeblin (1941). The text by Meyn and Tweedie summarizes ideas devel-
oped by Athreya, Ney and Nummelin. The author also played a part (see Athreya,
MecDonald and Ney (1978) in the American Mathematical Monthly and Athreya,
K.B., McDonald, D. and Ney, P. (1978)). The coupling proof using the Bernoulli
part decomposition for nonidentical, independent random variables is a simplifica-
tion of the results in McDonald (1978). Another interesting application is the proof
of the Local Limit Theorem as in McDonald (1979b) and Davis and McDonald
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(1994). The book by Asmussen (1987) gives a high level review of renewal theory
and semi-Markov processes with applications to queueing.

Feller Volume II is an encyclopedia of good ideas including an introduction to the
generator of a Markov process, although the emphasis is towards diffusions not jump
processes. The more modern book by Ethier and Kurz is recommended for obtaining
a solid foundation in continuous time Markov processes. The construction of Markov
processes with bounded jump rates based on uniformization has many advantages
and all the intricacies of explosions and non-uniqueness of the solution to the forward
equations are avoided. For the full story consult Chung (1967). The book by
Kelly (1979) contains lots of clever examples and problems for reversible processes.
Walrand’s book on queueing networks is an excellent survey of all the mathematical
tools used for studying networks. The bibliography there gives the state of the
art in queueing networks. The Kelly networks are often called BCMP networks
because they were discovered simultaneously by Kelly and Baskett, Chandy, Muntz
and Palacios. Also the Bramson network is a direct descendent of the unstable
deterministic networks proposed by Lu and Kumar (1991).

The chapter on Markov decision theory inspired by the book Great Expectations
by Chow Siegmund and Robbins. The book by Puterman provides a fairly recent
reference. The review article by Arapostathis et al provides up to date results on the
average cost criterion. Only Markovian problems are considered and martingales
have been avoided. The underlying principle is to solve finite horizon problems first
and then approximate infinite horizon problems. The crowning achievement is the
proof of the optimality of the Cusum as in Moustakides (1986).
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Quality Control Standards:

MIL-STD-105D: 1963 American national standard procedures and tables
for inspection by attributes, US Defense Department, 64 pp.
MIL-STD-1916: 1996 DOD Preferred methods for acceptance of produce,
US Defense Department, 33 pp.

MIL-STD-1235B: Single- and multi-level continuous sampling procedures
for attributes (US Department of Defense 1981b).

ISO 2859 Part 0: Sampling procedures for inspection by attributes - Intro-
duction to the ISO 2859 attribute sampling system.

I1SO 2859-1: 1989 Sampling procedures for inspection by attributes - Part
1: Sampling plans indexed by acceptable quality level (AQL) for lot-by-lot
inspection.

ISO 2859-2: 1985 Sampling procedures for inspection by attributes - Part 2:
Sampling plans indexed by limiting quality (LQ) for isolated lot inspection.
ISO 2859-3.2: Sampling procedures and charts for inspection by attributes
- Skip lot sampling procedures.

ISO 8258 Shewhart control charts.

BS 5700: 1984 Guide to process control using quality control chart methods
and CuSum techniques.

BS 5703: Part 1: 1980 Guide to data analysis and quality control using
CuSum techniques. Part 1. Introduction to CuSum charting.

BS 5703: Part 2: 1980 Guide to data analysis and quality control using
CuSum techniques. Part 2. Decision rules and statistical tests for CuSum
charts and tabulations.

BS 5703: Part 3: 1981 Guide to data analysis and quality control using
CuSum techniques. Part 3. CuSum methods for process/quality control
by measurement.

BS 5703: Part 4: 1982 Guide to data analysis and quality control using
CuSum techniques. Part 4. CuSums for counted/attributes data.

9.8 Solutions to Selected Problems

9.8.1 Solutions to Selected Exercises in Chapter 1

1.4: The key idea is to reduce the probability calculations to counting. We must
therefore construct an equiprobable model. One way would be to define the sample
space S as the set of all subsets of 5 distinct elements drawn from a deck of 52.
The associated o-algebra is the just the set of all subsets of S and is irrelevant for
our calculations. The equiprobable measure assigns an equal weight to each sample
point and since there are 52 choose 5 sample points in S each sample point has
probability 1/2598960. We are interested in the subset A of points which has 4
kings. The 5th card in the deck can be chosen in 48 different ways (other than
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being a king). Hence P(A) = #A/#S = 48/2598960.

1.5: This is a great way to make a bit of pocket money. If n is 50 or so make an
announcement that you are willing to bet even money that there are indeed people
with the same birthdate in the classroom. Circulate a sheet of paper and have each
person write down his birthday in the format (month, day). Look for a match. The
chances are you will win your bet.

To calculate the chance of winning the key idea is to reduce probability calcu-
lations to counting. One sheet of paper with n dates (x1, o, ...z, ) represents one
sample point. Each of the coordinates of this vector could be any one of 365 dates
(we will forget leap years as an approximation). The first coordinate can be chosen
in 365 ways and the second can be chosen in 365 ways so the first two can be chosen
in 365 x 365 ways. The third can be chosen in 365 ways so the first three can be
chosen in 365% ways. Continuing in this way, the number of different sample points
is 365™. We will assume each of these sample points is equally likely. This is a rea-
sonable approximation although we know very well that marriages often take place
in the spring so birthdays tend to fall eight months later. We therefore assume we
have an equiprobable model.

The event of interest is the set of sample points A with two or more coordinates
the same. It is easier to describe the complement A’ of sample points with no
coordinates the same and since P(A4) =1 — P(A’) we can get P(A) from P(A’).

A" = {(z1,72,...2,) : all the z;s are different}.

The first coordinate of a point in A’ can be chosen in 365 ways but the second can
only be chosen in 364 ways avoiding the first choice. This makes 365 x 364 ways.
Next the third coordinate can be chosen in 363 ways giving 365 x 364 x 363 ways.
Continuing in this way we see the number of points in A’ is 365x364x- - - (365—n+1).
Hence

365 % -+ x (365 —n +1) 365 % - x (365 —n+1)
365" 365" '

Get Mathematica to calculate this value for you. At n = 22 P(A) < 1/2 so
with only 22 people there is a better than even chance of a matched birthday. The
probability gets so big above 50 people that you are practically sure to win. Winning
is like taking candy from a baby.

1.10: a): No, the histogram of the sample will follow the histogram of the popu-
lation which in this case is not normal because of the two bumps. The expected
value of the sample average is the mean of the population; i.e. X is an unbiased
estimator of the mean of the population and the expected value of the sample stan-
dard deviation is approximately equal to the population standard deviation (in fact
a modified sample variance S? = 37_, (X) — X)%/(n — 1) is an unbiased estima-
tor of 02). We don’t exactly know the mean of the population or the population
standard deviation but the sample of 2,000 sacks gives a pretty good estimate. The
sample average of this large sample is 4.9961 with a sample standard deviation of

pPA) = so P(A)=1-
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0.5496. The standard error of the mean is 0.0123 so with 95 percent confidence the
true population mean lies within 4.9961 plus or minus 0.0246. Hence it is unwise
to report more than one decimal place. Hence the sample average of one lot will
hence be approximately b): 5.0 and the sample standard deviation is approximately
¢): 0.55 (We need a finer analysis to estimate the precision of the estimate for the
standard deviation).

The population of sums of the weights of 100 sacks on a skid will follow the
normal curve by the central limit theorem. The sample histogram of the total
weights of 75 skids will follow the population histogram; that is d): a normal
histogram. The expected value of the sample mean is equal to the population mean
and the population mean is the expected value of the weight of 100 sacks and that
is approximately e): 500. The standard deviation of this sample histogram will be
close to the standard deviation of the population of sums which is approximately
f): 4/100 - 0.55 = 5.5

The area under histogram of sums of weight of 100 sacks to the right of 400

kilograms is approximately equal to the area under a standard normal to the right
of (400-500)/5.5=-18.2 standard units. Hence g): 100% of the skids will have a
total weight greater than 400 kilograms. The 10*" percentile of a standard normal
is approximately -1.28 standard units by looking up in the normal table. This
corresponds to 500 — 1.28 - 5.5 = 492.96 or roughly h): 492 kilograms.
1.11: Define every event in sight! Let A, B, C represent the events that the bulb
chosen at random comes from supplier A, B or C respectively. Let D be the event
that this bulb is defective and let N be the complementary event the bulb is non-
defective. Let P represent the equiprobable measure of picking a bulb among all
possible bulbs. By hypothesis P(4) = .7, P(B) = .2 and P{C) = .1. Moreover
P(D|A) = 0.05, P(D|B) = 0.03 and P(D|C) = .2.

P(D)=P(DNA)+P(DNB)+P(DNC)
— P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C)
=0.05-0.74+0.03-.240.2-0.1 =0.061

Hence the probability a defective bulb is sampled is a 6.1%.

_P(CND) PD|C)P(C) 0.2-0.1
peip) = P(D) - P(D)  0.061

so the probability the defective bulb came from company C is 0.33.

9.8.2 Solutions to Selected Exercises in Chapter 2

2.1: a) The marginal pm.f. px(z) = > pxv(z,y) so px(—1) = 1/3, px(0) =
17/18, px (1) = 5/18.
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b) The conditional distribution py|x (y|z) = px.y (z,y)/px(z) so
Py|x(=1[ = 1) = 1/6,pyx (0] = 1) = 1/6,py|x (1] = 1) = 1/3,py|x (2| - 1) = 1/3.

Hence E(Y(|X = —1) = (—1)(1/6) + (0)(1/6) + (1)(1/3) + (2)(1/3). The other
conditional expectations are similar.

¢) X and Y are independent if and only if px vy (z,y) = px(z) - py(y) for all x and
y. This is false for z = —1 and y = 1 so X and Y are dependent.

d) EMX,Y) =3, M@, y)px,y(z,y) Hence,

g Y (1)1 0 1 1
X+2_(‘1+2>18+( 1+2> (— 1+2 >9 (— )5
R 0 1 )1
‘<m)§+<o+z> (0 )'2 ( 8
-1\ 1 1 1
—(HE)ﬁ*(Hg)“s ( )ﬁ*(fﬁ)ﬁ
= 181/432
a) fx(z) =3, fx,v(z,y) so adding across the rows we get
flz,y)y=0y=1y=2fx(z)
z=11/6 1/6 0 1/3
x=21/6 0 1/6|1/3
x=31/12 1/6 1/12] 1/3
ie.
r=1x=2x2=3
f@) 1/3 1/3 1/3
b) 0
o) frix(ylz) = fxv(x,y)/fx(x) so fyix(yI3) = fxv(3,y)/fx(3) and
y=0y=1y=2
frix(yl3) 1/4 1/2 1/4
d)
2 2 2 1 2 1 3
B(Y?|X =3) = nymym‘o g2 =3
e) Calculate
2x — 3) = gzl e 138
B(X+Y)IX =8) = Y@+ y) 2 rix(yld) =8 {447 5 4521 = 2

Yy
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f) X and Y are independent only if fx y(z,y) = fx(z) - fy(y) for all z and y.
Note that fx(1) = 1/3 and fy(2) = 1/4 but fx v(1,2) =0so X and Y are not
independent.

2.13:

EN = anN(n = Z Z{k < n}fn(n)

= n=1k=1
= Z Z {k < n}fn(n) by Fubini’s theorem
k=1n=1
oo (s @)
SRy - 30 -
k=1 k=0

2.14:; If X > 0 has distribution F and X} = min{X, k} then
o0 k o
EXy = / min{X, k}dF(z) = / zdF(z) + / kdF(x)
0 0 k
k
= zF(z)|k — / F(x)dz + k(1 — F(k)
0

e /OkF(:n)d:c

9.8.3 Solutions to Selected Exercises in Chapter 3
3.3: Let U be a uniform on [0, 1] and define Z = F~}(U). Note that

Fz(v) = P(Z < v) = p(Ey)
where p is Lebesgue measure on [0,1]; ie. 1 measures the lengths of intervals and
E,={s€[0,1]: F!(s) <v}={s€[0,1] : min{t : F(t) > s} < v}.

Note that if F' is strictly increasing then E, = {s < F(v)} so in that case Fz(v) =
u({s < F(s)}) = F(v) so Z really does have distribution F'.

In cases with jumps we have to be more careful. Let 7 = inf{z > v : F(z) >
F(v)}. Then F, = {s : s < F(77)} where F(v") = lim,1, F(2z). This is true
because if s < F(v~) then min{t : F(t) > s} < v so s € E,. Similarly if s € F,
then min{¢ : F(t) > s} <wvso s < F(T ). We conclude

Fzv)=p({s:0<s<F(@ )} =F@ )= F(v)

so again Z really does have distribution F.

3.5: There is one chance in 5 the component dies in the first 1,000 hours and 4
chances in 5 it dies after that. If it dies in the first 1,000 hours the distribution
is uniform. If it dies after that the lifetime is 1000 hours plus and exponential.
Let B be a Bernoulli random variable with probability 4/5 of taking the value one.
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Let U be uniform on [0,1000] and let X be exponential with mean 4000 hours.
Make B, U and X independent. We note that the lifetime can be represented as
L = {1 - B)U + B(1000 + X).

a) EL = E(1- B)- EU+ EB - E(1000+ X) = £ . 500 + £ (1000 + 4000) = 4100. Of
course if you want to do it the long way then

00 1000 o) 4
EL = / zf(z)dxr = /0 xmda@ +/1 % 50000 exp(—(z — 1000)/4000)dx

— 00 000

1

1 97 £=1000 oo 1
— = + = / x + 1000 exp(—x/4000)dz
5000 { 2 j}zzO 0 ( ) (e )

5 4000
~100+4(/oo -
- 5%, £4000

4
= 100 + (4000 + 1000) = 4100

exp(—xz/4000)dz + 1000/ exp(—x/4000)dx)
0

4000

b)
P(L > 3000) = / exp(—(x — 1000)/4000)dz
(L 3000) = [ oo exp(~(a ~ 1000)/4000)
4 x0
2 exp(—2/4000)d
5 /. 00g 2000 exp(—x/4000)dz

4 4
=z exp(—2000/4000) = £ exp(—1/2).

c)
Eexp(s)L = Eexp(s[(1 — B) - EU + EB - E(1000 + X)])
= Eexp(s(1 — B)U) - Eexp(sB(1000 + X))

= [%Eexp(sU) + %Eexp(())] + [%Eexp(()) + %E exp(s(1000 + X))]

= [%Eexp(SU) -+ gEexp(O)] + [%Eexp(()) + %exp(lOOOs)E exp(sX))]

11 000 1 1/4000
- 5 _ 14+ = 0g)—t "
5 70005 1) 14 g exp(1000s) 7505
for s < 1/4000 since
1/4000 1000 1 1 1000
= — = Sa',‘__d = — s 1 .
Eexp(sX) 172000 — 5 and Eexp(sU) /0 e T506% = 10005 (e )

Alternatively one could do the integrals

EL = /OO e** f(z)dz

— o0

1000 o0 4
- =g sz —( — 1000)/4000)dz.
/0 ¢ 5000 T /10006 26000 P (@ )/4000)dz
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d) Absolutely not. The sample histogram tends to follow the population histogram
i.e. f and this is not normal.

e) The law of numbers says the sample mean will be close to the population mean
and hence close to the answer in a)

f) Let the four lifetimes be Ly, Lo, L3 and L4. The probability at least one works
after 3,000 hours is one minus the probability they all fail before 3,000 hours.

P(Ly < 3000, Ly < 3000, Ly < 3000, Ly < 3000)
= P(L; < 3000)P(Ly < 3000) P(L3 < 3000)P(Ly < 3000)

= P(Ly < 3000)* = (1 — P(L, > 3000))* = (1 - %exp(—1/2))4

by part b). Hence the probability at least one keeps working is 1—(1— 2 exp(—1/2))%.
3.9: a) The probability that there are no drug users in a group of k is (1 — p)k so
the probability every member of the group must be tested is 1 — (1 — p)*

b) Hence the expected number of tests per group of kis 1- (1 — p)* + (k + 1)(1 —
(1 — p)k). For n groups the expected number of tests is the sum of the expected
values i.e. n (1- (1 —p)* + (k+1)(1— (1 —p)*)).

c) nk = N, the number of employees. If p is small then (1 — p)*¥ ~ 1 — kp so the
above expectation is approximately

n(L- (L~ pk) £ (k+ D(pk) = n+ nk’p = N/k + Npk.

We can minimize the expectation by find the derivative

d

d—k(N/k + Npk) = —N/k* + Np.

Setting this to zero gives k = 1/,/p so we take k to be the nearest integer to this
value.

3.13: Represent the three lengths by L, Lo and Lg respectively.

a) The total length is T'= L; + Lo 4 Ls. T is normal since a linear combination of
independent normals is normal. The mean is the sum of the means and the variance
is the sum of the variances. Hence ET = 4+2+2 = 8 mm and 07 = .52+ .42+ 42 =
0.57.

b) P(T < 10) = P((T — ET)/or < (10 — 8)/v0.57) = P(Z < 2.647) = 0.9960.
Hence the probability of a defective component is 1 — .9960 = 0.004

3.14:

Plmax{Xy,..., Xp} <t) = P(Xy1 <t,..., Xn <t) = P(X1 < 1)+ P(X, <1).

For 0 <t <1, P(X; <t) =t so the above probability is ¢"™.

3.16: The moment generating of X is ¢x(s) = exp(Ax(e® — 1)) and the moment
generating of Y is ¢y (s) = exp(Ay(e® — 1)). The moment generating function of
X +Y is ¢x(s)oy(s) = exp{(Ax + Ay )(e®* — 1)) because of independence and we
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recognize this to be the transform of a Poisson random variable with mean Ax + Ay.
We conclude X + Y is Poisson with this mean.

PX=zlX+Y=n)=PX=2,X+Y =n)/P(X +Y =n) by Bayes
=P(X =gz, Y:nd:r)/P(X—FY:n)
= P(X =z)P ~z)/P(X +Y = n) by independence

) Ay ® (Ax +2y)"

G
= exp(- /\X)Ai( (=) s /esp( =+ a)) P

[n ALATT®
T \=z ()\X + )\y)n
() &) )
x Ax + Ay Ax + Ay '
Hence the conditional distribution of X is binomial.
3.27: Let N be the number of customers who enter the price club and let X,

represent the amount spent by the n* customer. The total amount spent T is
given by T = ZnN:1 X,,. If we condition on N,

Z ZXn[N m)P{N = m)

(Z X.)P(N = m) by independence
n=1

tuﬁéﬁ ||

1

3
[

)

mEXP(N =m)=FENEX = 2000110
1

3
Il

Var(T) = ET* — (ET)? and

ET? = X,)%N = m)P(N =m)

gk
NgE

E((

3
I

E(Y X,)?P(N =m) by independence

i

Mg i uPnﬂg N\t
B

Il
-

n

( ZX2 > EX,»Xj) P(N =m)

1<i#i<m

Il

(mEX?* +m(m — 1)(EX)?) P(N =m)

3
l

NEX? + (EX)*(EN? - EN)

l
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Therefore,

Var(T) = ENEX? + (EX)*(EN? — EN) — (EN)}(EX)?
= (EX)*(EN? — (EN)*)+ EN(EX* - (FX)?%)
= (EX)?-Var(N) + EN -Var(X)

Hence

Var(T) = (Var(X) + (EX))Var(N) + EN - Var(X).

9.8.4 Solutions to Selected Fxercises in Chapter 4

4.5:

E[NP@) NP(t+u)] = ) - (NP(t+u) — NP(t) + NP ()]
NP(t) - (N"(t+u) = NP(1)] + E [N"(1)*]
(

t)] E[NP(t+u) — NP(@)] + Var(NF (1))

()\t)()\u) + )\t + (At)?

ll

4.6: The Poisson process has rate 100/60 per minute.

a)
P(N(10) > 2) = 1 — (P(N(10) = 0) + P(N(10) = 1))
= 1 — (exp(—10100/60) + exp(—10 - 100/60)(10 - 100/60)* /11)
=1 — (exp(—10 - 100/60) + exp(—10 - 100/60)(10 - 100,/60))
b)

P(N(10) = 2, N(20) = 4) = P(N(10) = 2, N(20) — N(10) = 2)
(N(10) = 2)P(N(20) — N(10) = 2)

(N(10) = 2)?

= (exp(—10-100/60)(10 - 100/60)*/2!)*

i

I
v

¢) The time in minutes until two calls arrives is an Erlang-2 distribution with
parameter A = 100/60.

4.10: Let the number of arrivals by time t be noted by N(¢). Given N(i) = n
denote the the arrival times by T(;y,7 = 1,..., n there 7(;) is the I" order statistic
of n i.i.d. random variables uniformly distributed on [0,¢]. Let V; be the speed of
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the i*" arrival. The number of cars in the interval [A, B| at time ¢ is

N(t)
> x{Vi- (t—Tw) € [A, B]}.
i=1
We calculate the Laplace transform of this random variable:
N(®)
Eexp(0(>_ x{Vi- (t - Ti»)) € [4, BI}))

=1

Z (xp@Zx{V t*T(Z)G[A,B]})|N(t):n>P(N(t)zn)

=1

i

n=0

<exp 0 Z x{Vi (¢ T) € (4, BIHING) = n> P(N(t) = n)

°© n

Z (B (expox{V - (1= T) € [4,BI})) ) PIN() = n)

where we have reordered the order statistics and thereby reordered by V; which we
r~elabel the V;. Since the V; are i.i.d. independent of the arrival times so are the
V; and the distribution is the same. Also let T be uniform on [0,¢] and let V be a
speed with distribution G. Next, let p = P(V-(t —T) € [4, B]) so the above reduces
to

D (L p) +pexp(6))” P(N(t) = n)

= exp(—At + At ((1 — p) + pexp(0)))
= exp(—Apt(1 — exp(F))).

We recognize that the number of cars in the interval follows the Poisson distri-
bution with mean Apt. Finally

p= / / & aa(s)
v=0 Jo<s<t,v-s€[A,B] T

:t/v 2 A t~é/\t)dG(s)

o U

Consequently the mean number of cars in the interval [A, B] is

A/OO(B tvé/\f)dG(s) (B — A)p

o v

as t — oo, where p = [ 1dG(s).
Now start out with cars distributed along the line according to a Poisson process
with intensity Ap having independent speeds with distribution H where H(v) =

fy 2dG(s)/p. Hence the number of cars in an interval [A, B] at time # consists of
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those already present at the start and those who arrive later. The distribution of
the latter is given above. Let N be the number of points already present between
[0, B] and denote the location of these points by 7};) and denote their speeds by V;
having distribution H. The Laplace transform of the distribution of the number of
points in the interval from those initially present is

Eexp(f Z x{Tw) +Vi+telA B}

n=1

M

B <exp<ezx{T<i) FVite [A BN = n) P(N(t) = n)

n

i

M

E (exp(9zn:><{T¢ +V;-te [A BN = n) P(N(t) =n)

n=0 i=1

(B (exp(@AT +V -t e [4, B]})))" P(N(t) = n)

n=0

where T is uniformly distributed on [0, B]. Letting
g=F (exp(ex{T +V telA, B]}))

we get the transform exp(—ApBg(l — exp(f))) as above. This is the transform of a
Poisson distribution with mean ApBgq.
Next,

oo B
g= L / / Y{A <zt vt <B)dedH(v)
B v=0 Jx=0

=L [T (Bt — (A= wty)dH )

B v=0

T[> 1
=By ), (B0t~ (A dG)

Hence the number of cars initially present in the interval at time ¢ is Poisson with
mean A [~ [(B — vt)* — (A — vt)T]LdG(v).
Hence the total number of customers in [A4, B] at time ¢ is Poisson with mean

> B A & n o1
A (= At——=At)dG(s) + A ((B—uvt)" — (A —vt)")—dG{(v)
v=0 U v v=0 v
=ANB-A4)p
since (EAt—2A)+(2-)f - (2 -t =L2_4
We conclude that if we start out with a distribution of cars and speeds as above
then the distribution of cars and speeds is the same at all times ¢. This is not to say

the system is now fixed, far from it. Cars continue to enter the system and move
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off along the highway. Only the distribution is fixed. This is called a statistical
equilibrium.

4.14:

a) The expected number of calls is 800 so we expect to analyze 80 calls. Actually
this is an approximation and to get an exact result we have to use renewal theory
for Erlang-10 random variables.

b) This is an Erlang-10 distribution with A = 100 hours

¢) It can’t be Poisson because the interarrival time is not exponential.

4.20: Let N (t) represent a Poisson process with rate A = 10 calls per second.

a)
P(N(10) = 5, N(20) = 30) = P(N(10) =

57
= P(N(10) = 5)P(N(20) — N(10) = 25)
— PIN(10) = 5)P(N(10) = 25)
= exp(~10-10) 100 xp(—lO-lO)lgg‘

b) The number of on-going calls follows a Poisson distribution with a mean equal to
the load p = Amg where mg = 138 seconds is the mean duration of a call. Hence
p = 10-138. Let T be the number of calls holding at 1pm. Since a Poisson is
approximately normal we can approximate

> 1380"
P(T > 1500) = exp(-1380) 80,
k!
k=1501
Just normalize
T —-ET 1500 — 1380
P(T > 1500) = P( > 01383 )~ P(Z > 3.23) = 0.0012
or

¢) At each arrival time of a Poisson process T,, we have an associated holding time
X,. We call X,, the mark associated with the arrival. If we look at the pair (T, X,,)
we have a point process in R%. Assume the X, have cumulative distribution F
then this two dimensional point process is in fact Poisson. The number of points in
[s,1] % [a, b] is Poisson since N (¢) — N(s) is Poisson with parameter A(t—s). Suppose
N = n then each of these points has probability p = F(b) — F(a) of falling in the
interval [a,b]. Hence the number B(n) of these n points which fall in the interval
has a binomial distribution with parameters p and n. It is easy to check that the
thinned process B(N) has a Poisson distribution with mean pA(t — s). It is fairly
easy to check that the numbers of points falling in disjoint regions are independent
so we have independent Poisson increments for rectangles. By cutting up any region
into intervals we can check that we have independent Poisson increments for disjoint
regions.

Now consider the image of this two dimensional process on the real line if we
project at 45 degrees; i.e. (T, X,) is projected to T,, + X,. This produces the
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point process of departures on the real line. This process is Poisson. It suffices
to remark that the number of departure points in disjoint intervals [u,v] and [s, ]
corresponds to disjoint regions in R%. The distribution of the number of points in
these regions is Poisson with a mean proportional to v — u and ¢ — s respectively.
Hence the departure process is a homogeneous Poisson process.

9.8.5 Solutions to Selected Exercises in Chapter 5

5.2: In general the image of a Markov chain is not Markovian. In this case it suffices
to check that the Markov property fails since

Po(Yo =0lY1 = 1,Y5 = 0) # P (Yo =0]Y; =1).

Just use the definition of conditional probabilities and express the events for Y in
terms of X. For example

Py(Y2=0,Y; = 1,Y; = 0)
P.(Y1 =1,Y,=0)
 Py(X2=0,X1 =1,X0=0) + Pa(X2=0,X; =2, X, =0)
B Po(X1=1,Xg=0)+ Py(X1 =2,X0 =0)
a(0)Ko1 K10 + (0)Koa K
(0) Koy + a(0) Koy

Pa(Ya=0]Y; =1,Yy =0) =

5.10:

lim P(X, =a,X,41 =c¢) = lim P(X,, =a)K, = 7(a)K,e.

n—o0 n—00
5.11: This problem is a converse to Theorem 5.21. The watched process W,, on A
discussed in Section 5.9 is certainly an irreducible stable Markov chain by Theorem
5.21 with stationary distribution 7 4. Let N(T") be the number of visits of I by X,
up to time 7T". By Theorem 5.18, for j € A,

1T—1
m(j) = lim — > x{X.=Jj}
s=0
N(T)
_ N(T)
= Am N Z X{W, =
:W(F)WF(J)-

Hence wp(j) = w(y)/m(F).
5.17: a) Let S = {0,1, 2} where state 0 represents the state of a properly aligned

machine just before it is loaded for a new part, where state 1 represents the state
of an improperly aligned machine just before a new part is loaded and where state
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2 represents the state when the machine is off-line and being repaired.

98 (.02)(8)  (.02)(.2)
K=|0 8 2
1 0 0

Note that even a properly aligned machine can be misaligned in loading and then
immediately drill off-center with probability (.02)(.2).
b) Solve for n K = w; i.e.

98 (.02)(.8)  (.02)(.2)
(7(0), 7 (1), 7(2)) = (= (0), x(1),72)) | 0 .8 2
1 0 0

or

w(0) = .987(0) + m(2)
(1) = .0167(0) + .87 (1)
7m(2) = .0047(0) + .27 (1).

Also impose 7, w(i) = 1 to get m = 5(1,.08,.02).
¢) Let X,, represent the state of the machine after n transitions. The long run
average of defective parts produced per transition is

lim ——Z{X =2} = m(2)

N—oc N

since the only way to get to state 2 is by producing a defective part in the previous
transition. The long run average number of parts produced per transition is

N-1

hm — Z{X € {0,1}} = w(0) + = (1)

because we don’t produce a part in the repair state. Consequently the long run
proportion of defective parts is the limit as NV tends to infinity of the ratio of the
number of defective parts produced in N transitions divided by the total number
of parts produced in N transitions; i.e.

o D 160 =2)
W S X € (0.1}
S X = 2N

N*WZ o {Xn €{0,13}/N
7(2) 02/1.1

7(0) +7(1)  1.08/1.1
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d) In N transitions the time elapsed is
N-1
B(N) = ()" [45-{X, € {0,1} + 360 - {X,, = 2}] /3600 hours

0=1

During this time the number of nondefectives drilled is
N-1
ANY =D ef{Xn =0,Xn 11 # 2} + x{X, = 1, X1 #2}].
n=1

The number of nondefectives produced per hour over this period is A(N)/B(N) =
(A(N)/N)/(B(N)/N). As N — oo,

Jim # — [45(7(0) + 7(1)) + 3607(2)] /3600
and
]\}1}3’100 A—(]V—Z = [(W(O)Koo + W(O)K(n) + (7T(1)K10 + 7T(].)K11)] .

Hence the long rate of nondefectives produced per hour is
[(m(0) Koo + 7(0)Ko1) + (m(1) K10 + 7(1)K11)] / ([45(=(0) 4+ 7 (1)) + 3607(2)] /3600) .

5.25: To show the Markov property consider a1, ...a,_1 such that ax > 0 for all k
and a1 +as+ ...+ ap_1 +x =t where z > 0. If the age at time £ — 1 is = then at
time t either the age increases by 1 or the age drops to 0. The probability of these
transitions are respectively

PZt)y=z2|Zt—-1)=2—-1,...Z(t—2)=0,Z(t~z—1)=a; — 1
yoeZ{t—x—an_1)=0,... Z(0) = 0)
B PZW) =2, Z(t— V) =a—1,... Z(t—z) = 0,..., Z(0) = 0)
S P(Z(t-V)=z—1,..2(t-2)=0,Z(t —x—1)=an 1 — 1,... Z(0) = 0)
P(X, >z, Xp1=0n-1,Xn—2=0an_2,..., X1 = a1)
T P(Xp S a-1,Xn1 = an-1,Xn2=an2,..., X1 = a1)
(L F@) e ) ) S )
(1= F(z—1))flan-1)flan—z) - f(a1)
_ (1-F@)
(1-Flx-1))
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and

PZH)y=07Zt-1)=xz—-1,... Z(t—2)=0,Z(t —x — 1) =a; — 1,
At —an1)=0,Z(t—z—an 1 —-1)=a,-2~1,...Z(0) = 0)
 PZt)=0,Z(t-1)=z-1,.. Z(t—2)=0,Z(t-2z—-1)=a, 1 —1,--)
CPZt-1)=x-1,..Z(t-2)=0,Z(t —x—1) =apn_1—1,...,Z(0) = 0)
P(Xn = x,Xn_l :CLnfl,XnAz = anfz,..‘,Xl = al)

T PXp>z-1,Xp1 =an1,Xn-2=ns,.-., X1 —a1)
_ f@)flan—1)f(an—2)--- fla1)

(1-F(z - 1))f(an-1)flan-2) - fla1)
 t)

(1—- F(x—1))

The Markov property is explicitly proved because the distribution at time ¢ only
depends on the state at time ¢ — 1 and we have calculated K1, and K, ;g
respectively.

Next remark that a(z) = 1 — F(x) is a stationary distribution by direct calcu-
lation. For z > 0,

o) = s~ Deore = (1~ Flo~ 1))(‘1(%%.

Also

S
S a0 =30~ F ey =1

Finally we remember that

Z Zl‘F(y»:ﬂX

so w(x) = 1;%@ defines a stationary probability distribution.

9.8.6 Solutions to Selected Exercises in Chapter 6
6.2: If X9 < B for all n then

B> E(X}MO\{X, > z}) > E(@ O x{X, > z}) > £*7(1 — F,(x))

for all = and all n. Hence, sup, (1 — Fp(z)) < 2=t AL Hiz] = 270 A1 s
clearly summable.

6.8: There is a renewal every time the elevator returns to the ground floor G. The
long run average time spent moving from G to the second floor is

mean time going from G to 2 per cycle

@
; " expected duration of a cycle
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We go from G to 2 at most once per cycle with probability 1/2 and the time spent
is 32 so the denominator is 3-2/2 = 3 minutes. To calculate the length of a cycle
define m(z) to be the mean time to return to G starting from position z € {G, 1,2}.
Using the Markov property

m(2) =1+ (6+0) + g<3+m<1))

Solving we get m(1) = 112/19, m(2) = 608/95 and

n(G);E+1112+ 1608
T T 29 T2y
This gives the denominator & = m(G).
6.11:
a) When a taxi is replaced we start a new cycle. Hence the total cost T'(¢) incurred
until time ¢ is a renewal reward process. Therefore,
. T() expected cost per cycle
lim —= =

tooo expected duration of a cycle

The paf. of T is

21 1

)= ———r =2,3,...,21.
fT() 20(t~1)t’ t y s

Using this, the expected duration of a cycle with replacement at p months is

P

21 1 21 p
i I e
;20(t~1)t+p<20 %)

The expected cost per cycle is

21, 1 21 p
—~ (1 - ==(1==))ED = 30000 — (5= — 5-)10000.
30000 - (1 - 55 ( p)) 30 (55 — 55)10000
Hence,
i T() _ 30000 (55 — £)1000
21 1 21 )
tmoo  f t—2 55 e + (55 — %)

b) The test replacement period occurs when the above fraction achieves a minimum.
The best way to find the minimum is to simply calculate the above expression for
p=2,3,...,21.
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c) For large t the age of a taxi Z(¢) has a limiting density fz(s) = (1 — Fp(s))/p
for 0 < 5 < 14 where I}, is the truncated distribution

0 t<1
Ft)y=¢ 30-1H1<t<14
1 t>14.
and F}, has mean p,. Hence,
m t=0
fz(s)=| (33 —55) 1 <t<14
0 t > 14.

If we purchase one of these taxis it will have an excess lifetime with a density
on [0,21 — 14] given by

P

Fr(@) = Frizw(s+ls)fz(s)
s=0

Il

fr(s+ )
< (1—Fr(s))

I
s

fZ(t)(S)

s

since the conditional density at s + z of the lifetime T given the age at time ¢ is s
is fr(s +2)/(1 = Fr(s)).

6.18:

a) All jobs taken together form an M|M|1 queue. Jobs arrive at the rate of 30 jobs
per hour so A = .5 jobs per minute while jobs are served at a rate of 60 jobs per
hour or p = 1 per minute. Hence the utilization p = 1/2.

b) The mean of an M|M|1 queve is L =p/(1 —p) =1

c¢) The proportion of time the server is idleis 1 — p = 1/2.

d) By Little’s law L = AW where W is the system time of a customer and A = 1/2
is the arrival rate in customers per hour. Hence, W = L/X = 2 minutes.

e) The high priority jobs don’t even notice the low priority jobs so they form an
M|M|1 gueue with arrival rate Ay = 1/6 per minute and service rate of 1 per
minute. Hence the utilization for high priority jobs is pgr = 1/6. The mean of an
M|M]1 queune is Ly = py /(1 — pgr) = 1/5 customers.

f) The utilization pg = 1/6 is the proportion of time spent on high priority cus-
tomers.

g) Again use Little’s formula so Wy = Ly /Ay = (1/5)/(1/6) i.e. 1.2 minutes.

h) The waiting time is the system time minus the mean service time. Hence the
expected walting time is Wy — 1 minutes; i.e. 0.2 minutes.

i) The difference between the global mean and the high priority mean is L, =
1 — .2 = .8 low priority customers.

j) The difference between the global utilization and the high priority utilization is
p — pe = .5 — 1/6 which is the proportion of time spent on low priority jobs.
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k) The low priority jobs do not form an M|M|1 queue. Nevertheless Little's law
applies. Let W represent the mean system time of low priority customers. System
time is generated by low priority customers at a rate % - Wi minutes of system
time per minute and by high priority customers at rate % Wy = 615—8— 1.2 =.2. The
work done by the system in one minute is the queue size; i.e. 1 from b). Hence,
%WL +.2 =1 so Wy = .04 hours or 2.4 minutes.

1) Again the queueing time of low priority customers is the system time minus the
service time; that is 2.4 — 1.0 minutes.

9.8.7 Solutions to Selected Exercises in Chapter 7

7.3:
a) Consider

1 <4+3e‘7t 3—36‘7t> 1 <4+36‘7S 3—36““)

P(t)P(S) = ? 4— 4e” Tt 3 —}—4677?’ ? 4 — 4e~7s 3+4e—7s

1[4+ 3e7(Fe) 3 — 3709

7 (4 e+ 3 4 geTern) | TP S)

after matrix multiplication and simplification. This gives the semigroup property.
The further property that lim;_o P(t) = I follows by inspection.

b)

d 1/-21 21
= —P 0 = — .
G =T Wl-0=7 < 28 —28>
¢) If the two states are 0 and 1 then the holding time in state 0 is exponential with
a mean of 1/21 followed by a transition to state 1. The holding time in state 1 is

exponential with a mean of 1/28. This is followed by a transition back to state 0.
d) Solving

(x(0), (1)) (‘2281 _2218) ~0

gives (m(0),7(1)) = (4/7,3/7). This is naturally the limiting value of the rows of
P(t).

7.10:

a) There are 4 possible states. State 0 represent the state when both operators are
idle, state 1 means the machine shop is busy but the subcontractor is idle, state 2
means both the machine shop and the subcontractor are busy while state 3 means
the machine shop is idle but the contractor is busy. The generator gives the rate of
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transition (with time measured in days) between the states:

-3/7 3/7 0 0
1/2 -13/14 3/7 0
0 1/ -7/10 1/2
/5 0 3/7 —22/35.

G =

The first row describes a the arrival of a job at rate 3/7 jobs per day when both
shops are idle. The second row describes transitions when the state is 1. With
rate 1/2 jobs per day the shop finishes the job and the state becomes 0 but a new
job arrives with rate 3/7 causing a transition to state 2. The third row describes
transitions when both shops are busy. Either the subcontractor finishes its job at
rate 1/5 jobs per day causing a jump to state 1 or the shop finishes its job at rate
1/2 jobs per day causing a jump to state 3. The fourth row describes the transitions
when only the subcontractor is busy. Either the subcontractor finishes its job at
rate 1/5 jobs per day causing a jump to state 0 or a new job arrives with rate 3/7
causing a jump to state 2.
b) We solve 7G = 0.
c) w(2) + = (3).
7.12: Denote the queue at the junior accountant by 1 and the queue at the senior
accountant by 2. We consider three classes of jobs. The complicated cases are called
class a and they arrive in the junior accountants in-box at a rate of A*(1) = 6 per
hour. After processing these class a jobs enter the senior accountants in-box at a
rate A%(2) = 6. Simple cases are called class b jobs and they arrive in the junior
accountants in-box at a rate of A\®(1) = 4 per hour. After classification class b job
become class ¢ jobs which enter the junior accountants in-box at a rate of A¢(1) = 4.
The total flows into queues 1 and 2 are

A1) = A1) AP (1) + A1) = 14
A(2) = \%(2) = 6.

The loads on queue 1 and 2 are respectively p1 = 14/20 and p; = 6/15. This
Kelly network has a steady state m. The probability the first queue has 3 forms for
classification as well as two simple files is

G e (B) (2D XWN (XY
PUPL 3 A1) O
The probability the second queue has two complicated forms to process is (1—p2)p3.
The probability we see is the product of these two marginals.
If the service rate depends on the class of customer then the system is no longer

a Kelly network and all bets are off. It’s appalling how easily one can go from a
simple problem to an intractable one.
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9.8.8 Solutions to Selected Ezxercises in Chapter 8

8.4:
a) Let W, () be the minimal discounted cost so the Bellman optimality equation
gives

W, (0) = min{l + 2(Koo( YWa(0) + Ko1(0)W, (1)),
15+ 1(K00(1)Wa(0) + Ko (1)Wa (1)}
Wa(l) = min{2 + = (Klo(O)W (0) + K11 (0)W, (1)),

v %(Kw(l)Wa(O) + Kiu(1)Wa(1))

We(0) = min{l + %(%W (0) + ;W (1)),1.5+ %(iWa( )+ zWa(l)) (9.2)
Woll) = minf2 + L Wal0) + 5Wa(1)),3 4 S(GWa(0) + TWa(1)) (93

There are in fact four possible equations and we must try them all. However it
looks like a good idea to avoid state one so first try the equations corresponding to
always using action 0. This gives

Wal0) = 1+ 5(Wal0) + 5Wal1)
Wall) = 24 (5 Wal0) + 5 Wal1)).

The solution is W, (0) = 5/2 and W,(0) = 7/2. Substitution shows these values
satisfy (9.2). Since the optimal return function is unique we conclude the optimal
policy is to always use action 0 and the minimum expected cost starting in state 0
is 5/2.

b) Let A be the minimum long run average return. We must find r(1) (assuming
without loss of generality (wolog) that 7{0) = 0) as in Theorem 8.15. The optimality
equations are

A+ 7(0) = min{1 + (Koo (0)7(0) + Ko1(0)r(1)), 1.5 + (Koo (1)r(0) + Ko1 (1)r(1))}
A+ T(l) = Hlln{2 + (Klo(O)T‘(O) + Kll(O)T(l)), 3+ (Klo(l)T(O) -+ Kll(l)r(l))}

or

A4 7(0) = minf1 + (3r(0) + Sr(), 15+ (ir(o) + %(1))} (9.4)

Ar() = minf2 + (3r(0) + 5r(1),3+ (5r(0) + 2r()}.
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Again we have four possible equations but it still seems like a good idea to avoid
state 1 so try action O in all states. The corresponding equation is

A+r(0) =1+ (%T(O) + Ly

2
A+r(l)=2+ (%T(O) + %T(l))

and the solution is A = 3/2, #(1) = 1 and 7(0) = 0. Substitution shows this solution
solves (9.4). Clearly r(Xy)/N — 0 so we conclude the long run average return is
3/2 and we should always use policy 0.

Notice that we can calculate the long run average return from kernel K(0) using
Theorem 5.18. The steady state of K(0) is m# = (1/2,1/2) so the long run average
is1-7(0) +2-7(1) = 3/2 which is A.

8.6:

a) The age of the bus in months represents the state so S = {0,1,2,...}. The action
is to decide at the beginning of the month to repair the bus or not so 4 = {0,1}
where 1 denotes the decision to repair the bus and 0 not to repair.

b) Let p(z) = min{1,.1 +0.05z} denote the probability the bus breaks if the age of
the bus is z at the start of the month. Hence, for all x € S,

Ky 0(1) =1,K,0(0) = p(z) and K, ,11(0) =1 — p(z).

c) Let a = 1/1.005 Let V(z) denote the minimum expected cost so V(z) =
min{ f(z,0), f(z,1)} where

f(z,0) = ap(x)- 7000+ a(p(z)V (0)+(1—p(z))V(z+1)) and f(z, 1) = 5000+aV(0).

f(z,1) is the cost if we repair immediately and then act optimally while f(x,0) is
the cost of continuing without repair and then acting optimally in future.
d) Note that for z > 18, p(z) = 1 so for x > 1

V(z) = min{5000 + oV (0), 7000 - o« + oV (0) };

that is V(z) = 5000 + aV(0) = f(x,1) and the optimal policy is to do a repair
immediately. Clearly f(z,0) < 5000+ «V (0) so it we can show f(x,0) is increasing
we know the optimal policy is to repair as soon as f(z,0) > 5000 + oV (0).

We first show V' (z) is increasing. Consider any positive, nondecreasing function
u and define the operators

Tou(z) = ap(z)- 7000+ a(p(z)u(0)+ (1 —p(z))u(z+1)) and Tiu(z) = 5000+ aV (0).
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Tyu(x) is obviously increasing.

Tou(z + 1) — Tou(z) = a((p(z + 1) — p(x))(7000 + u(0)) + (u(z + 2) — u(z + 1))
—(p(z + Du(z + 2) — p(z)u(z + 1))
> o(p(z + 1)  p(x)) (7000 + u(0)) = 0

since
(p(z+ Du(z+2) —p(r)u(z+1)) < p(z)(u(z+2) —ulz+1)) < (u(z+2) - u(z+1)).

This proves Tpu(z) is increasing in =z. So is the function Tu(z) =
min{Tou(x), Tiu(x)} since it is the minimum of two increasing functions. If we
start out with u = 0 then T"u(z) — V(z) and T™u is an increasing function. Since
the limit of increasing functions is increasing it follows that V(z) is increasing.
Finally, f(x,0) = T,V (z). By the above V(z) is increasing in z and then so is
ToV (x). We conclude f(z,0) is indeed increasing and we have proved the (intuitively
obvious) optimal policy is to repair as soon as the age reaches some value xo such
that f(zg,0) > 5000 + aV{(0).
8.19: We observe the number of items until the next defective. Hence we observe
a sequence of i.i.d. geometric random variables X,, with p.m.f. fo(z) = 0.01(1 —
0.01)*~1. After the change point the time between defectives is a geometric random
variable with f,(z) = 0.05(1 — 0.05)®~1. The log likelihood is

log(#(x)) = log (0.05(1 — 0.05)*~"/0.01(1 — 0.01)*~1)
1o (0:05)(0.99) 0.95
= 108({5.95)(0.99) 0.99
B 0.95 (0.05)(0.99) 0.95
= toa(am) (toa( (g o) on(ge) )
= 0.0179(71.39 — )

) + @ log(

Define V,, = 71.39 — X,,. This means that, up to a constant factor, the Cusum is
defined by Cy = 0, C,, = max{C,,_1 + V,,,0} and Page’s stopping time is defined as
the first time C,, > H. This is equivalent to stopping if D,, < —H where D,, = ~C,
so D, satisfies

Dy = 0,Dy,, = min{Dp_1 — V,,,0} = min{Dp_1 + X,, — 71.39,0}.

Such a control chart plotted below the axis is typically used for testing if the
mean of normally distributed quality measurements decreases from the nominal
value pg to p1. In fact it is common practice to plot two charts in one to detect an
increase or a decrease in the process mean.

To find H one could use Markov chain methods as we did for normal random
variables (except here discretization is not necessary). The simplest thing would be
to experiment using simulation.
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The Cumulative Standard Normal Distribution can be generated using the fol-
lowing Mathematica program:

flw_1=(E"(~u~2/2))/Sqrt[2 Pil;
normal=Table[PaddedForm[NIntegrate{%,{u,-Infinity,i+j}],
{4,4}1,4j,0,3,0.1},{1,0,0.09,0.01}];

output=TableForm[normal, TableSpacing -> {0,2},

TableHeadings ->
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M/G /oo queue, 107
R-chart, 89

o-algebra Fx generated by a random

variable X, 57
o-Algebras, 34
o-additivity, 35

accessible, 135

action, 271

AFI, 86

age, 185

Alternating renewal processes, 186
AOQL, 14, 86

aperiodic, 141

AQL, 7

asynchronous transfer mode, 1
ATM, 1

ATM networks, 32

ATM switch, 2

atomic, 34, 35

backward induction, 278

Banach space, 324

BASTA property, 145

Bellman optimality equation, 277
Bernoulli, 71

Bernoulli Part, 214

Bernoulli Part Decomposition, 214
Bernoulli Point Processes, 100
Binomial, 72

birth and death process, 242
Borel-Cantelli Lemma, 321
Bramson Networks, 259

Buffer control, 275

burst, 129

Bursty ATM traffic, 128

Index

calls in progress, 101

cell loss rate, 139

cells, 1

central limit theorem, 78

change point, 308

Chapman-Kolmogorov, 133

Chebyshev, 18

Chebyshev’s Inequality, 47

Communication classes, 135

commute, 326

complete metric space, 325

Concavity, 322

conditional probability, 48

conditional probability mass function, 49

conditional probability measure, 50

Contending processors, 231

Continuous sampling inspection by
attribute, 86

Continuous Time Decision Problems, 295

continuous uniform distribution, 77

contraction, 287, 325

Control charts, 88

controller, 271

converges in distribution as, 77

Convexity, 322

coupled, 203

Cusum, 150

Cusum procedure, 308

decision theory, 271

delayed renewal process, 183

density, 79

discounted costs, 286

discrete (nonhomogeneous) Poisson
process, 115

discrete random variables, 39
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distribution function, 41
DOD, 7

Dominated Convergence, 321
Drunkard’s walk, 62
Dynkin’s Formula, 60

equilibrium distribution for the
homogeneous renewal process, 194

equiprobable, 36

equivalence class, 327

equivalence relation, 327

Frlang-m distribution, 118

events, 34

excess, 185

expected value, 45

exponential distribution, 77

Fatou’s Lemma, 320
fictitious jumps, 263
fixed point, 325
Foster’s Criterion, 175
Fubini’s Theorem, 322

generator, 231
geometric, 75
greatest common divisor, 327

histogram, 17

hitting time, 152

homogeneous Markov chain, 127
homogeneous Poisson process, 105

independence, 52

independent events, 52
independent random variables, 52
indicator function, 49

infinite horizon, 286

initial distribution, 128
interarrival times, 99

IP router, 2

irreducible, 136, 237

Jackson network, 250
joint distribution function, 43
Jjoint probability mass function, 42

Kelly Networks, 254

Kelly’s Lemma, 246

Kolmogorov Extension Theorem, 59
Kolmogorov’s backward, 235

Kolmogorov’s forward, 235

Law of large numbers, 85

Law of the Unconscious Statistician, 80
Lebesgue integral, 55

linearity, 45

Little’s Theorem, 200

load, 243

long run average expected cost, 290

marginal p.m.f., 43

Markov process, 229

Markov property, 128

Markov’s Inequality, 47
Markovian policies, 272
memorylessness, 75
memorylessness property, 102
MIL-STD-105D, 7

moment generating function, 82
Monotone Convergence, 55, 320
monotonicity, 45

multiclass queues, 247

nanosecond precision, 100

No-shows, 79

nonhomogeneous Poisson process, 120
Nonparametric control charts, 157
normal random variable, 79

Norms, 324

null recurrent, 167

OC curve, 74

on and off-target run lengths, 155
optimal cost, 276

Optimal parking, 273

Optimal Stopping, 298

order statistic, 105

p-m.f., 41

packets, 1

Page’s procedure, 309

Palm process, 196

Pascal, 76

peak rate, 129

period, 141

Poisson, 76

policy, 271

Pollaczek-Khinchin equation, 143
positive recurrent, 167
probability generating function, 82



probability mass function, 41
probability measure, 35
probability transition kernel, 128
process, 171

product form, 251
pseudo-random numbers, 78

random variable, 38
recurrent, 167

reference or anchor value, 151
regenerative process, 185
rejection method, 81

renewal process, 183

renewal reward process, 189
reversible chain, 148

sample point, 31

sample space, 31

sampling inspection, 73
Scheffé’s Theorem, 321
Schwarz inequality, 323
semi-group, 235

Shewhart Z-chart, 89

simple point process, 183
simple random variable, 44
spread-out, 217

stable, 136

standard deviation, 47
standard normal distribution, 78
stationary, 136

stationary point processes, 192
statistical multiplexing, 5
Stirling, 225

stochastic integral, 119
stochastic process, 32, 40
stopping time, 41, 165
Strong Markov Property, 170
system time, 145

TCP/IP, 1

time reversal, 147, 244
time to the horizon, 271
total variation, 113
transient, 167
transition, 233

unconscious statistician, 46
uniform integrability, 320
uniformization, 263
uniformized Markov chain, 239

Index

uniformly distributed on [0, 1], 77
variance, 47

Wald’s Lemma, 61

watched process, 171

worst case, 309
worst case sense, 308

z-transform, 82
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