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cycle cost and/or expand the performance envelope. The ultimate goal
is to develop biologically inspired multifunctional materials with the
capability to adapt their structural characteristics (stiffness, damping,
viscosity, etc.) as required, monitor their health condition, perform self-
diagnosis and self-repair, morph their shape, and undergo significant
controlled motion over a wide range of operating conditions.
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Preface

In 1990, a pilot project was started at the Alfred Gessow Rotorcraft Center (Univer-
sity of Maryland) to build a smart rotor with embedded piezoelectric strips. Soon, it
attracted the attention of Dr. Gary Anderson of the Army Research Office (ARO).
He encouraged us to put together outlines for a major initiative in the smart struc-
tures area, which subsequently resulted in the award of a multi-year (1992–97) URI
(University Research Initiative). This provided us an opportunity to develop an
effective team of interdisciplinary faculty respectively from Aerospace, Mechanical,
Electrical and Material Engineering. As a result, there was an enormous growth of
smart structures research activities on our campus. Following the success of this URI,
we were awarded another multi-year (1996–2001) MURI (Multi University Research
Initiative) in smart structures by ARO. For this major program, we collaborated
with Penn State and Cornell University. This further nurtured the ongoing smart
structures activities at Maryland. We deeply acknowledge the support and friend-
ship of many faculty colleagues at Maryland: Appa Anjannappa, Bala Balachan-
dran, James Baeder, Amr Baz, Roberto Celi, Ramesh Chandra, Abhijit Dasgupta,
Allison Flatau, James Hubbard, P. S. Krishnaprasad, Gordon Leishman, V. T.
Nagaraj, Darryll Pines, Don Robbins, Jim Sirkis, Fred Tasker, Norman Wereley,
Manfred Wuttig.

While the research frontier in smart structures was expanding at the Alfred
Gessow Rotorcraft Center, we also initiated classroom teaching at the graduate level
in the smart structures area. This textbook was developed from material covered
in early versions of these class notes, and aims to give a broad overview of smart
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1 Historical Developments and Potential
Applications: Smart Materials and Structures

The quest for superior capability in both civil and military products has been a key
impetus for the discovery of high performance new materials. In fact, the standard
of living has been impacted by the emergence of high performance materials. There
is no doubt that the early history of civilization is intertwined with the evolution
of new materials. For example, different eras of civilization are branded with their
material capabilities, and these periods are referred to as: the Stone Age, the Bronze
Age, the Iron Age, and the Synthetic Material Age. The Stone Age represents the
earliest known period of human civilization that stretches back to one million years
BC, when tools and weapons were made out of stone. The Bronze Age (sometimes
called the Copper Age) spans 3500–1000 BC. Weapons and implements were made
of bronze (an alloy of copper and tin) during this period. The alloy is stronger than
either of its constituents. Bronze was used to build weapons such as swords, axes,
and arrowheads; implements such as utensils and sculptures; and other industrial
products. The Iron Age followed the Bronze Age around 1000 BC and was char-
acterized by the introduction of iron metallurgy. Iron ores were plentiful (cheap),
but required high temperature (2800◦F) furnaces as compared to copper, which
required lower temperature (1900◦F) furnaces. The Iron Age was the age of the
industrial revolution, and many of the initial design tools, mechanics-based analyses,
and material characterizations were formulated during this period. The Synthetic
Material Age started in the early part of the twentieth century with the development
of a wide range of man-made synthetic materials. This era saw an explosion of tech-
nological developments that touched every phase of human endeavor. Most of the
high-performance engineering products, such as aerospace, computers, telecommu-
nication, medical and power systems were the result of the development of advanced
materials. This was an era of consolidation in terms of the development of compre-
hensive design tools, material characteristics, and mechanics-based analyses. During
this period the aerospace industry pioneered the development of composite mate-
rials and structures that had direct impact on structural capability (such as specific
strength and specific stiffness), as well as on manufacturing and maintenance costs.
This translated into an increase in performance, payload, speed and range and a
reduction in life-cycle cost.

The twenty-first century may be visualized as the Multifunctional Materials
Age. The inspiration for multifunctional materials comes from nature; hence, these
are often referred to as bio-inspired materials. This category encompasses smart
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materials and structures, multifunctional materials, and nano-structured materials.
This is a dawn of revolutionary materials that may provide a “quantum jump” in
performance and multi-capability. This book will focus only on smart materials
and structures. These are also referred to as intelligent, adaptive, active, sensory,
and metamorphic structures and materials and/or systems. The purpose of these
materials from the perspective of smart systems is their ability to minimize life-
cycle cost and/or expand the performance envelope. The ultimate goal is to develop
biologically inspired multifunctional materials with the capability to adapt their
structural characteristics (stiffness, damping, viscosity, etc.) as required, monitor
their health condition, perform self-diagnosis and self-repair, morph their shape, and
undergo significant controlled motion over a wide range of operating conditions.

Since the 1990s, there has been a major growth in smart structures technology, in
both individual technological constituents and in their applications in various disci-
plines. Applications include vibration and noise suppression, stability and damping
augmentation, shape control, structural integrity monitoring, and condition-based
maintenance. Relevant disciplines include space vehicles, fixed-wing aircraft, rotary-
wing aircraft, civil structures, marine systems, automotive systems, robotic systems,
machine tools, and medical systems. Major goals have been to enhance system per-
formance (beyond current levels) at a low cost, increase comfort level (minimize
noise and vibration) with minimum weight penalty, reduce life-cycle cost (decrease
vibratory loads, perform condition-based maintenance), improve precision point-
ing (space telescope), improve low observable characteristics, and increase product
reliability (damage detection, mitigation, and repair).

Development of smart materials and structures is possible through one of three
approaches. In the first approach, the new materials with smart functionality can be
synthesized at the atomic and molecular level. Sometimes, this is referred to as a
nano-structured material. A lot of the relevant methodology is hypothesized and is
in an embryonic state at this time. In the second approach, actuators and sensors
are attached to a conventional structure, which adaptively responds to external
disturbances. The actuators and sensors normally do not constitute the load carrying
structure. Even though this is a relatively mature methodology, it is not expected
to be a structurally efficient scheme. In the third approach, active plies representing
actuators and sensors are synthesized with non-active plies to form a laminated
structure. A major drawback is that once the structure is cured, it is not possible to
replace non-functional plies. Even though this approach appears attractive in terms
of structural efficiency, there are issues related to the integrity of the system.

The key elements of smart structures are: actuators, sensors, power condition-
ing, control logics, and computers. Conventional displacement actuators are: electro-
magnetic (including voice coils), hydraulic, and servo- or stepper motors. The princi-
pal disadvantages of conventional actuators are their weight, size, and slow response
time. Their advantages are their large stroke, reliability, familiarity, and low cost.
Smart material actuators are normally compact and change their characteristics
under external fields such as electric, magnetic and thermal. Typical smart material
actuators are: piezoelectric, electrostrictive, magnetostrictive, shape memory alloys,
and Electrorheological/Magnetorheological (ER/MR) fluids. Conventional sensors
are strain gauges, accelerometers, and potentiometers, whereas smart materials sen-
sors can be fiber optics, piezoelectrics (ceramics and polymers), and magnetostric-
tives. There is a wide variation of power requirements for different actuators. Key
factors for a power conditioning system are compactness efficiency, and cost. For an
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efficient adaptive system, the modeling and implementation of robust feedback con-
trol strategies is important. A centralized, compact, and lightweight computer is vital
to generate input signals for actuators, perform system identification techniques with
output data from sensors, and implement control feedback strategies.

The basic idea of the synthesis of smart structures appears to have been first
conceptualized by Clauser in 1968 [1]. Seven years later, Clauser himself demon-
strated the concept [2]. After this work, activity in this area started increasing and
grew rapidly in the 1990s.

The historical development of key smart materials will be discussed first, fol-
lowed by their applications in various industrial disciplines. Even though the discov-
ery of many of the smart materials took place during the past century, the commercial
availability, cost and understanding of their behavior have been major inhibitions to
their widespread use in commercial products. Today, one of the most popular smart
materials is polycrystalline piezoceramic, which exhibits strong piezoelectric prop-
erties. Other popular smart materials include electrostrictives, magnetostrictives,
shape memory alloys, and electrorheological/magnetorheological fluids.

1.1 Smart Structures

A smart structure involves distributed actuators and sensors, and one or more micro-
processors that analyze the responses from the sensors and use integrated control
theory to command the actuators to apply localized strains or displacements to alter
system response. A smart structure has the capability to respond to a changing exter-
nal environment (such as load or shape change) as well as to a changing internal
environment (such as damage or failure). It incorporates smart material actuators
that allow the alteration of system characteristics (such as stiffness or damping) as
well as of system response (such as strain or shape) in a controlled manner. Thus,
a smart structure involves five key elements: actuators, sensors, control strategies,
power and signal conditioning electronics, and a computer. Many types of actuators
and sensors, such as piezoelectric materials, shape memory alloys, electrostrictive
materials, magnetostrictive materials, electro- and magneto-rheological fluids, and
fiber optics, are being considered for various applications. These can be integrated
with main load carrying structures by surface bonding or embedding without causing
any significant changes in the mass or structural stiffness of the system.

Numerous applications of smart structures technology to various physical sys-
tems are evolving to actively control vibration, noise, aeroelastic stability, damp-
ing, shape change, and stress distribution. Applications range from space systems
to fixed-wing and rotary-wing aircraft, automotive, civil structures, machine tools,
and medical systems. At this time, servovalve hydraulic actuators are widely used
in aerospace and other applications because of their reliable performance over a
large range of force, stroke, and bandwidth. Their drawbacks, such as mechanical
complexity, need for hydraulic tubing and reservoir, and size and weight, present an
opportunity to search for light weight compact actuators such as smart material actu-
ators. A smart material is defined as a material that transforms its characteristics,
such as mechanical states (strain, position or velocity) or material characteristics,
(stiffness, damping, or viscosity) under external field (electric, magnetic, or ther-
mal). Much of the early development of smart structures methodology was driven
by space applications such as vibration and shape control of large flexible space struc-
tures, but now wider applications are envisaged for aeronautical and other systems.
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A B

C

D

E Figure 1.1. Classification of smart structures.

Embedded or surface-bonded smart actuators on an airplane wing or a helicopter
blade, for example, can induce airfoil twist/camber change that in turn can cause
a variation of lift distribution and may help control static and dynamic aeroelastic
problems.

Applications of smart structures technology to aerospace and other systems
are expanding rapidly. Major barriers include low actuator stroke, the lack of a
reliable smart material characteristics database, non-availability of robust distributed
adaptive control strategies, and inadequate mathematical modeling and analysis of
smart systems.

A smart or intelligent structure incorporates distributed actuators and sensors
as well as control logic, processors, and power electronics. Fig. 1.1 defines various
types of structures.

Adaptive Structures (A): have distributed actuators to alter characteristics in a
prescribed manner. They may not have sensors. Examples are conventional
aircraft wings with flaps and ailerons, and rotor blades with servo-flaps.

Sensory Structures (B): have distributed sensors to monitor the characteris-
tics of the structure (health monitoring). Sensors may detect strain, displace-
ment, acceleration, temperature, electromagnetic properties, and extent of
damage.

Controlled Structures (C): overlap both adaptive and sensory structures. These
constitute actuators, sensors, and a feedback control system to actively control
the characteristics of the structure.

Active Structures (D): are a subset of controlled structures. Integrated actuators
and sensors have load carrying capability (structural functionality).

Intelligent or Smart Structures (E): are a subset of active structures. Additionally,
they have highly integrated control logic and power electronics.

1.1.1 Smart Material Actuators and Sensors

Piezoelectrics are the most popular smart materials. They undergo deformation
(strain) when an electric field is applied across them and conversely produce volt-
age when strain is applied, and thus can be used as both actuators and sensors.
Under an applied field, these materials generate a very low strain but cover a wide
range of actuation frequency. Piezoelectric materials are relatively linear (at low
fields) and bipolar (positive and negative strain) but exhibit hysteresis. To achieve
high actuation force, piezoceramics (ferroelectric ceramic materials) are used. The
most widely used piezoceramics (such as lead zirconate titanate or PZT) are mostly
available in the form of thin sheets that can be readily attached or embedded in
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Figure 1.2. Typical piezoceramic actuators.

composite structures or stacked to form discrete piezostack actuators (Fig. 1.2).
These sheets generate isotropic strains on the surface and a non-Poisson strain
across the thickness. It is, however, possible to generate directional in-plane induced
strains with piezoceramics using electrode arrangement, specially shaped piezos,
bonding arrangement, and embedded fibers (Fig. 1.2). Electrostrictives such as lead
magnesium niobate (PMN) also require electric field to cause induced strain and
have about the same induced strain capability as piezoelectric materials. However,
they are a nonlinear function of field (typically varying a quadratically with field)
and monopolar. Also, electrostrictive materials are very sensitive to temperature
but exhibit negligible hysterisis.

Piezoelectric and electrostrictive materials are also available in the form of
“stacks” where many layers of materials and electrodes are assembled together.
Typically, stacks are built using one of two methods. In the first method, the sheets
of active material and electrodes are bonded together using an adhesive (normally
of lower stiffness than the active material). In the second method, the layers of
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active material and the electodes are co-fired in the presence of high isostatic
pressure. The stacks generate large forces but small displacements in the direc-
tion normal to the top and bottom surfaces. Piezo stack actuators are further divided
into two categories: low voltage devices (about 100 volts) and high voltage devices
(about 1000 volts). Since the maximum electrical field for PZT is on the order of
1 to 2 kV/mm, low voltage devices are comprised of 20 to 100 μm thickness sheets
and high voltage devices are comprised of 0.5 of 1.0 mm sheets. Bimorphs or bend-
ing actuators are also available commercially, where two layers of these materials
(piezoceramic) are stacked with a thin shim (typically of brass) between them. If
an opposite polarity is applied to two sheets, a bending action is created. Bimorphs
cause larger displacement and smaller force as compared to single piezo elements.
The bending displacement is the highest at the tip of the cantilevered bimorph actu-
ator. To increase the actuation force, multi-layered bimorphs (or multimorphs) are
used.

Among other smart materials, shape memory alloys (SMA) appear attractive
as actuators because of the possibility of achieving large excitation forces and dis-
placements. These materials undergo phase transformation at a specific temper-
ature. When plastically deformed at a low temperature, these alloys will recover
their original undeformed condition if their temperature is raised above the trans-
formation temperature. This process is reversible. A remarkable characteristic of
SMA is its large change of modulus of elasticity when heated above phase trans-
formation temperature (typically 2 to 4 times the room temperature value). The
most common SMA material is Nitinol (nickel titanium alloy), which is typically
available in the form of wires of different diameters . Heating of an SMA can be
carried out both internally (electrical resistance) and externally (using coils), but
the response is very slow (less than 1 Hz). It is sometimes possible to speed up
the response through forced convective or conductive cooling of material. Magne-
tostrictive materials such as Terfenol-D elongate when exposed to a magnetic field.
These materials are monopolar and nonlinear, and exhibit some hysteresis (less than
piezoelectric). These materials generate low strains and moderate forces over a wide
frequency range. Because of the required coil and magnetic return path, these actu-
ators are often bulky. Electro-rheological (ER) fluid consists of suspensions of fine
dielectric particles in an insulating fluid that exhibits controlled rheological behavior
in the presence of large applied electric fields (up to 1–4 KV/mm). Application of
an electric field results in a significant change of shear loss factor (fluid viscosity)
that helps alter damping of the system. Magneto-rheological (MR) fluid consists of
suspensions of ferrous particles in fluid and exhibits change in shear loss factor due
to magnetic fields (low fields but moderately large currents). MR fluids, like ER
fluids, are primarily envisaged as augmenting damping in a system. Fiber optics are
becoming popular as sensors because they can be easily embedded in composite
structures with little effect on structural integrity, and they also have the potential
of multiplexing.

Smart structures are becoming feasible because of the (1) availability of smart
materials commercially, (2) ease of embedding devices in laminated structures, (3)
exploitation of material couplings such as between mechanical and electrical prop-
erties, (4) potential of a substantial increase in performance at a small price (say,
weight penalty), and (5) advances in microelectronics, information processing and
sensor technology. Key elements in the application of smart structures technology
to a system are: actuators, sensors, control methodology, and hardware (computer
and power electronics).
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Table 1.1. Comparison of actuators

Actuators Piezoceramic Piezofilm Electrostrictive Magnetostrictive Shape Memory
PZT PVDF PMN Terfenol-D Nitinol

Ferroic class Ferroelectric Ferroelectric Ferroelectric Ferromagnetic Ferroelastic
Field Electric Electric Electric Magnetic Thermal
Maximum Free 0.1 0.07 0.1 0.2 8

Strain %
Response time μs μs μs μs s
Young’s Modulus 68.9 2.1 117.2 48.3 27.6 for martensite

E (GPa) 89.6 for austenite
Strain-voltage First-order First-order Nonlinear Nonlinear Nonlinear

characteristic linear linear

1.1.2 Smart Actuators

Typical actuators consist of piezoceramics, magnetostrictives, electrostrictives, and
shape memory alloys. These normally convert electric/magnetic/thermal inputs into
actuation strain/displacement that is transmitted to the host structure, affecting
its mechanical state. Piezoelectrics and electrostrictors are available as ceramics,
whereas magnetostrictors and shape memory alloys are available as metal alloys.
Piezoelectrics are also available in polymer form as thin soft film. Important perfor-
mance parameters of actuators include maximum stroke or strain (free condition),
maximum block force (restrained condition), stiffness, and bandwidth. Somewhat
less important parameters include linearity, sensitivity to temperature, brittleness
and fracture toughness (fatigue life), repeatability and reliability, power density,
compactness, heat generation, field requirement, and efficiency. The induced strain
is often treated like thermal strain. The total strain in the actuator is assumed to be
the sum of the mechanical strain caused by the stress plus the induced strain caused
by the electric field. The strain in the host structure is obtained by establishing the
displacement compatibility between the host material and the actuator. In a piezo-
electric material, when an electric field is applied, the dipoles of the material try
to orient themselves along the field, causing strain in the material. This relation of
strain versus voltage is linear to the first order. In an electrostrictive material, there
is an interaction between the electric field and electric dipoles, which is inherently
nonlinear. The magnetostrictive response is based on the coupling of magnetic field
and magnetic dipoles in the material, again a nonlinear effect. Shape memory is a
result of phase transformation due to temperature change of the material (caused
by a thermal field). Phase transformation is very much a nonlinear phenomenon.

A common piezoceramic material is lead zirconate titanate (PZT), and its max-
imum actuation strain is about one-thousand microstrain. Polyvinylidenefluoride
(PVDF) is a polymer piezoelectric film and its maximum actuation strain is about
seven-hundred microstrain. A common ceramic electrostrictive material is lead mag-
nesium niobate (PMN) and its maximum actuation strain is about one-thousand
microstrain. PZT and PMN are available in the form of thin sheets, which can be
either bonded or embedded in a structure.

The PZTs require initial polarization (with high electric field) whereas no such
polarization is needed for PMNs. Terfenol, a rare earth material, can create a maxi-
mum actuation strain of about two-thousand microstrain. It needs a large magnetic
field in the axial direction to cause this actuation strain. Nitinol (nickel titanium
alloy), normally available in the form of wires, can create free strain from 20,000
to 60,000 microstrain (2–6%). Table 1.1 shows a comparison of characteristics for
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Table 1.2. Comparison of sensors

Sensor Resistance Semiconductor Fiber Optics Piezofilm Piezoceramics
gauge gauge 0.04′′ .001′′ .001′′

10 V 10 V interferometer thickness thickness
excitation excitation gauge length

Sensitivity 30 V/ε 1000 V/ε 106 deg/ε 104 V/ε 2 × 104 V/ε
Localization 0.008 0.03 0.04 <.04 <.04

(inches)
Bandwidth 0 Hz-acoustic 0 Hz-acoustic 0 Hz-acoustic .1 Hz-GHz .1 Hz-GHz-GHz

different smart actuators. Giurgiutiu et al. [3] compared the characteristics of vari-
ous commercially available piezoelectric, electrostrictive, and magnetostrictive actu-
ators. The comparison was carried out in terms of output energy density. Typically,
the energy density per unit mass was found to be in the range of 0.233 to 0.900 J/kg.
There is a wide variation in the performance of actuators between manufacturers.
Near [4] provided an overview on the piezoelectric actuator technology.

1.1.3 Sensors

Typical sensors consist of strain gauges, accelerometers, fiber optics, piezoelec-
tric films, and piezoceramics. Sensors convert strain or displacement (or their time
derivatives) into an electric field. Resistance (foil) and semiconductor strain gauges
depend on a change of resistance due to the strain, and these require a DC excita-
tion field for measurement. Piezoceramics and piezofilms are based on the variation
of piezoelectric charge generated as a result of change in strain, and these do not
require any external field. Fiber optic gauges rely on a mechanical/optical coupling
effect where output is expressed in terms of the phase lag of a monochromatic wave
passed through the fiber as a result of the strain.

Piezoelectric strain sensors are generally made of polymers such as polyvinyli-
dene fluoride (PVDF), and are very flexible (low stiffness). They can be easily formed
into very thin sheets (films) and adhered to any surface. Key factors for sensors are
their sensitivity to strain or displacement, bandwidth, and size. Other less important
factors include temperature sensitivity, linearity, hysteresis, repeatability, electro-
magnetic compatibility, embeddibility, and associated electronics (size and power
requirement). Typically, the sensitivity for a resistor gauge is around 30 volts per
strain; for a semiconductor gauge, it is 103 volts per strain; and for piezoceramic
gauges, it is 104 volts per strain. The sensitivity of fiber optic sensors is defined differ-
ently, and is about 106 degrees per strain. Associated electronics may weigh against
fiber optic sensors. Discrete shaped sensors that apply weighting to the sensors’
output can help increase sensitivity for a specific application. For example, a modal
sensor can magnify the strain of a particular mode. Table 1.2 shows a comparison of
characteristics of different sensors for typical excitation voltages, gauge lengths, and
sensor thicknesses.

1.1.4 Actuator-Sensor Synthesis

In some cases, the same device can be used simultaneously as both an actuator and
a sensor. This is referred to as self-sensing actuation, and can be quite advantageous
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for active control applications since actuation and sensing actions are perfectly
collocated [5]. For example, the piezoelectric material can be considered as a
transformer between the structural states (stress and strain) and the electric states
(voltage and charge). A piezoelectric self-sensing actuator can be created by incor-
porating two identical piezoelectric elements in a bridge circuit. The objective is
to identify the difference in the charge components created by the applied elec-
tric field and the mechanical strain. Actuation force can be in the form of force,
moment; or distributed strain and sensing can be in the form of displacement, slope
or strain, and their derivatives. For example, displacement, velocity, and acceler-
ation are three separate output components. Hence, there can be a total of nine
sensor output components and three force input components. Gupta et al. [6]
outlined six criteria for optimal placement of piezoelectric actuators and sensors.
These included: (1) maximizing modal forces/moments, (2) maximizing deflection
of the host structure, (3) minimizing control effort, (4) maximizing degree of con-
trollability, (5) maximizing observability, and (6) minimizing spillover effects. It is
important to place piezoelectric actuators in the region where the average modal
strains are highest, which would result in maximum modal forces/moments. Plac-
ing actuators at the antinodes results in maximum deflection. It is advisable to
place sensors at locations where the observability can be maximized. Boundary
conditions also play an important role in the optimal placement of actuators and
sensors.

1.1.5 Control Methodologies

For smart material applications, distributed control functionality is a key ingredient.
There are three levels of control strategies: local control, global control, and higher
cognitive functions. In local control, the objectives can be to augment damping,
absorb energy, and minimize residual displacements. The objectives of global control
can be to stabilize structural response, control shape, and minimize disturbances. The
objectives of cognitive functions could be the ability to diagnose component failure
and reconfigure and adapt after failures.

In the case of a system with single input and single output, local control can be
established through a transfer function. The phase and amplitude of input actuation
are adjusted to minimize the single output. Local control is used for adding damping
and for low authority control. For the global control, there are several limiting cases
of distributed control. The first one is a centralized controller in which the output
from all sensors are processed by a centralized processor that provides control
outputs to the distributed actuators. The second one is a decentralized controller
in which the local control is carried out in an independent manner. However, it
is computationally inefficient. On the other hand, in the centralized controller, the
computer has to process signals at rates corresponding to the highest mode of interest.
To avoid these issues, one can arrive at a compromise controller straddling the two
approaches of completely centralized and completely decentralized controllers –
this is referred to as hierarchical or multilevel control architecture. This control
strategy features a centralized controller for overall performance and a distributed
processor for localized control. An average response within each element is then
passed on to the global processor. This approach appears quite practical for many
applications [7].
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1.2 Manufacturing Issues

There are several issues concerning building of smart structures. These are:

1. Electrical contact on both sides of the piezo is required. One way to overcome
this problem can be to drill a hole in the substructure and use conducting epoxy.
The second way is to introduce a thin layer of conductor between the piezo and
the substructure and use a conducting bond layer.

2. the piezo has to be insulated from the structure. By anodizing or coating the
structure, this problem can be solved.

3. For proper transfer of induced strain to main structure, bond layer thickness
needs to be thin and uniform. For this, pressure is applied during curing.

Embedding vs. Surface-Mounting: With surface-mounted actuators, there is
an ease of manufacturing, access for inspection, and less maintenance cost.
Because of exposure, the actuators are more susceptible to damage. Also,
the functioning of the actuators is dependent on the structural surface. With
embedded actuators, the piezo becomes inaccessible for inspection. The
devices are, however, better protected and interconnections with other devices
become easy.

Embedding Electronics: For embedding integrated circuits, it is essential to
ensure their electrical insulation and mechanical isolation. For minimal degra-
dation of structure, it is important to have minimum ply interruption.

1.3 Piezoelectricity

Pierre and Paul-Jacques Curie (Fig. 1.3) discovered in 1880 (at the Sorbonne, France)
that some crystals (such as Rochelle salt, topaz, tourmaline, cane sugar, quartz,
sodium chlorate, and zinc blende), when compressed in certain directions, produce
electric charges (positive and negative) on specific parts of their surfaces. The elec-
tric charges were found to be proportional to the applied pressure and vanished
when pressure was removed. Further, if the sign of pressure or strain was changed
(say from compression to tension), the developed charges also changed sign. This
phenomenon was subsequently named piezoelectricity (pressure electricity, as piezo
is a Greek word meaning “to press”). Piezoelectricity is different from contact and
friction electricity. This effect of generation of charges due to applied pressure or
stress is referred to as the “direct effect.” In piezoelectric materials, there is also a
“converse effect” (sometime referred to as reciprocal or inverse effect) wherein a
strain (or deformation) is caused in the material when it is exposed to an electric
field. Again, induced strain is proportional to applied electric charge (polarizing
field). Even though the converse effect in piezoelectric crystals was first mathemat-
ically predicted by Lippmann in 1881 using fundamental laws of thermodynamics,
the Curie brothers experimentally demonstrated it in the same year. To demonstrate
this, flat plates were cut according to a specific crystal orientation and surface bonded
with tin foils as electrodes. For thirty years following its invention, up until the First
World War, piezoelectricity remained a scientific curiosity. Then there was a spurt
of research activities in piezoelectricity, especially for applications in underwater
ultrasonic detection. Using the converse effect, quartz and Rochelle-salt plates were
excited at high frequencies (in the range of million Hz) to produce high frequency
sound waves for underwater detection. Paul Langevin and his co-workers in France
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(a) Pierre Curie (1859–1906)
was born in Paris and became
Professor of Physics in the
Sorbonne. He was a pioneer in
crystallography, magnetism, and
radioactivity. He, along with his
older brother Jacques, discovered
piezoelectricity; direct effect in
1880 and converse effect in 1881.
He married Marie Sklodowska in
1895 and they together shared a
Nobel prize in Physics in 1903 for
their work on radioactive elements.

(b) Paul-Jacques Curie
(1856–1941) was born in Paris
and became Professor of Physics
at the University of Montpellier.
He, along with his brother Pierre,
discovered piezoelectricity in 1880.

Figure 1.3. The Curie brothers.

developed ultrasonic submarine detectors using piezoelectricity. These transducers
were built out of quartz crystals and were excited near their resonance frequency
(about 50 kHz) to transmit high frequency chirp signals into the water, and the
location of submarines as measured from the timing of return echos. However, they
could not perfect this device until the end of First World War. This echo method
became a valuable tool to locate immersed objects as well as to explore the bottom
of the ocean. Between the two World Wars, there were other applications using
piezoelectric resonators and oscillators in chemistry, biology, and industry. Applica-
tions ranged from radio transmitter stations and explosive pressure measurement to
many kinds of electrical measurements, microphones, and accelerometers. Around
the Second World War, the discovery of polycrystalline piezoceramic materials pro-
vided tremendous momentum to this field. These materials with high dielectric
constants could be manufactured in high volumes. However, the raw piezoceramics
are isotropic and do not possess piezoelectric properties. These ceramics need to be
polarized with the application of strong electric field for a short period of time and
then these materials become anisotropic. The advent of piezoceramics expanded the
domain of their applications to powerful sonar, ignition systems, hydrophones, and
phono cartridges.
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Beginning about 1925, Bell Telephone Laboratories used piezoelectric crystals
to develop wave filters for multichannel telephony. The behavior of exceptionally
high dielectric-constant and dielectric hysteresis in Rochelle salt was discovered by
P. Seignette in 1917. In the early years, the substance was referred to as Seignette
salt, and it was widely used in microphones and phonograph pickups. Brush Devel-
opment Company (Cleveland, Ohio) played a major role in the growth of these
applications in the 1930s. During the Second World War, research groups in the
United States, Russia, and Japan independently discovered new man-made mate-
rials, often referred to as ferroelectrics, which exhibited piezoelectric effects many
times higher than those found in natural materials. Around the 1940s, Arthur von
Hippel and coworkers at MIT discovered the ferroelectric characteristics of a refrac-
tory material, barium titanate (BaTiO3), and a relative permittivity in excess of 1000
was determined in this material. Also, it was found that this ceramic material could
be depolarized and subsequently repolarized in the opposite direction by applying a
high electric field. This discovery was the beginning of the commercial development
of piezoelectric crystals in a range of shapes and sizes. This material loses its piezo-
electric characteristics at a temperature above 120◦C (called Curie temperature).
This limitation was overcome in the late 1950s with the discovery of piezoelectric
effects in lead metaniobate (PbNb2O6) and lead zirconate titanate [Pb(Ti,Zr)O6],
which had a Curie temperature about 250◦C. By the late 1950s, ceramic materials
with piezoelectric characteristics started becoming available commercially, spurring
the growth of their applications.

Polymer polyvinylidene fluoride (PVDF) (CH2CF2)n- was discovered in 1969 by
Kawai [8]. It is elastically a very soft material with strong piezoelectric effects, and
is often referred to as piezoelectric film or ferroelectric fluoride. PVDF is a semi-
crystalline material and is available in a broad range of thin sheets with thickness
ranging from sub-micron to 1 mm. It can be easily cast into different geometric
shapes. Because of their low stiffness, PVDFs are normally used as sensors.

Initially, the basic thermodynamics-based phenomenological theory of piezo-
electricity was enunciated by Lord Kelvin (born in Scotland in 1824). Woldemar
Voigt (born in Germany in 1850) formulated a comprehensive set of phenomenono-
logically based constitutive relations for piezoelectric crystals in 1894 using electric
(field and polarization), elastic (stress and strain), and piezoelectric coefficients. Out
of the 32 crystal classes, only 20 possess the piezoelectric characteristics, and Voigt
identified their non-zero piezoelectric coefficients among a maximum number of
18 coefficients relating six mechanical stress components to three electric polariza-
tion components. In these crystals, the unit cells are non-symmetric about at least
one axis. During the first thirty years after the invention of piezoelectricity, there
were major developments in thermodynamic-based tools to describe the behavior
of piezoelectric crystals.

In the early years, there was a confusion between piezoelectricity and pyroelec-
tricity. Soon it became clear that piezoelectricity is different from pyroelectricity,
contact electricity, and electrostriction. Pyroelectricity is a state of electric polarity
produced in certain crystals due to a change in temperature. Pyroelectricity has been
observed since medieval times (several hundred BC). For example, tourmaline pow-
der, when placed in hot ashes, produced sparks. This effect was recorded in Europe
in 1703 when Dutch merchants brought tourmaline powder from Ceylon and India.
The contact electricity is static electricity generated by friction. Again, this effect has
been observed since the Stone Age and was referred to as amber (electron) by the
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Figure 1.4. Induced free strain in piezoelectric materials.

ancient Greeks. Electrostriction is induced deformations in dielectrics due to elec-
tric field, and deformation is a quadratic function of electric field (same for positive
and negative charge). It is especially important in materials with a large dielectric
constant. Ferroelectricity has a close analogy to ferromagnetism; the spontaneous
creation of electric moment in a crystal by the application of external electric field.
Even though electrostriction is evident in piezoelectric materials, its magnitude is
negligible, especially at low electric fields.

Piezoelectric materials belong to a major class of materials called ferroelectrics,
which consist of randomly oriented dipoles (local charge separation). When the
material is heated above a certain temperature (Curie temperature) and a very
strong electric field is applied, the electric dipoles reorient themselves relative to the
electric field. This is called poling. Once the material is poled, an applied electric
field on any one of the surfaces induces an expansion or contraction of the material.

A piezoelectric crystal has a certain “one-wayness,” bias, or polarity in its inter-
nal crystal structure, which determines whether a specific region on the surface shows
a positive or negative charge on compression; or alternatively which determines the
sign of deflection when an electric field is applied to the crystal. Although this polar-
ity is inherent in piezoelectric crystals, it is absent in polycrystalline piezoceramics
in their virgin form. Hence these materials need to be initially polarized, typically
by applying a large DC field for a brief period of time. Piezoelectric materials can
be broadly classified into three categories: natural crystals, ceramic-based materi-
als, and electro-polymers. Piezoelectric materials are relatively linear and bipolar,
but exhibit hysteresis (Fig. 1.4). Due to the converse effect, the induced strain is
extensional for a positive field in the polarization direction and compressional in the
direction normal to the polarization direction. They exhibit small strains and large
bandwidth. The piezoelectric coupling coefficients depend on the level of impurities
present in the material, preparation procedure, the size and frequency of applied
electric/mechanical field, temperature, and aging time.

Piezoelectric materials have been widely used in sensors that include strain
gauges, pressure transducers, and accelerometers. Piezoceramics (such as PZT) are
stiffer than piezoelectrics and are extensively used as compact actuators in a wide
range of applications. Piezoelectric films (such as PVDF), because of their very
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low stiffness, are normally used as sensors. Today, piezoelectric transducers are
used in a wide range of applications that include structural vibration control, pre-
cision positioning, active control of noise, shape control to enhance performance;
sensors to determine local strain, acceleration or velocity, and many other indus-
trial applications such as crystal oscillators, Surface Acoustic Wave (SAW) devices,
piezoelectric inkjet printer heads, and piezoelectric accelerometers. In comparison
to other smart materials, piezoelectrics have a higher bandwidth than shape mem-
ory alloys, are more compact than magnetostrictives, and are bidirectional, unlike
electrostrictives. Piezoelectric materials are insensitive to electromagnetic fields and
radiation, enabling applications in harsh environments. One major disadvantage of
these materials is that they normally cannot be used for static response and mea-
surements because of the leakage of charge with time.

1.4 Shape Memory Alloys

A shape memory alloy (SMA) refers to a specific category of material that has
the ability to remember a specific shape even after severe deformation at low tem-
peratures. These materials stay deformed until heated to a moderate increase in
temperature, whereupon they recover their original pre-deformation shape. The
parent state of the material is at high temperatures and it is referred to as the austen-
ite state, whereas at low temperatures, the material is considered to be in martensite
state. The austenite phase exhibits a cubic crystalline structure and the martensite
phase exhibits a tetragonal or monoclinic crystalline structure. From the austenite
phase, the transformation to martensite is a shear-dominated diffusionless transfor-
mation and may lead to twinned martensite in the absence of stress and detwinned
martensite in the presence a sufficient level of stress. The material shows a marked
difference in mechanical behavior in the two states. The shape memory effect occurs
as a consequence of a crystallographically reversible phase transformation in solid
state.

The discovery of the shape memory effect was made in 1932 by Swedish
researcher Arne Olander in a Gold-Cadmium alloy. Greninger and Moordian
observed the formation of and disappearance of the martensite phase in a copper-
zinc alloy through the variation of temperature in 1938. The next discovery of SMA
appears to have been reported in 1951 by Chang and Read [9], who found the shape
memory effect in a Gold (Au) and Cadmium (Cd) alloy. Buehler et al. [10] (Fig. 1.5),
and Buehler and Wiley [11] at Naval Ordnance Laboratory showed the shape mem-
ory effect in a Nickel (Ni) and Titanium (Ti) alloy in 1962. It is reported that the
discovery of Nitinol occured by accident, when a strip of Nickel-Titanium alloy was
bent out of shape. When subsequently heated (by David Muzzey with his pipe lighter
at a laboratory meeting), the strip stretched back to its original form.

Since that time, the shape memory effect has been observed in many other alloys,
which include Copper (Cu) and Zinc (Zn) alloys [12], Copper (Cu), Aluminum
(Al) and Nickel (Ni) alloys [13], and Indium (In) and Thallium (Tl) alloys [14, 15].
Buehler and Wiley [11] received a patent on a nickel-titanium alloy called Nitinol
(nickel-titanium alloy developed at Naval Ordinance Laboratory) in 1965. Among
the many different SMAs, Nitinol attracted the most attention because of its superior
mechanical characteristics (strength, electric resistivity) in comparison with other
SMA materials. Nitinol has a very high recovery strain up to 8% or a very high
recovery stress up to 800 MPa, a very high ultimate tensile stress of up to 1000 MPa,
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Figure 1.5. William J. Buehler was born in 1923 in
Detroit, Michigan. He, along with his coworkers at
Naval Ordinance Lab (NOL, later called NSWC) in
White Oak, Maryland, discovered Nickel-Titanium
alloy (later named Nitinol) in 1962.

a large elongation prior to failure reaching up to 50%, higher corrosion resistance,
easy workability, and great damping capacity. Besides Nitinol, copper-based shape
memory alloys, such as Cu-Zn-Al and Cu-Al-Ni, are also available commercially.

Including copper as a ternary element in binary Nitinol, results in a reduction
of the hysteresis effect and a significant reduction in yield stress. A small addition
(1–3%) of ternary elements that are chemically similar to Ti or Ni such as Co, Fe
or Cr are shown to lower the martensite transformation temperature such that the
shape memory effect can occur below ambient condition.

Two key characteristics of SMAs are “shape memory effect” (SME) and “pseu-
doelasticity” (or superelasticity). Both of these diffusionless (displacive) phase trans-
formation effects are induced by temperature and stress. After deformation at low
temperature (formation of residual plastic strain after loading and unloading), a
shape memory effect allows the material to regain its original shape when heated
above the phase transition temperature. The basis of the shape memory effect is the
crystalline phase change upon heating and cooling. In Nitinol, this phase change is
from an ordered body-centered cubic structure in the austenite phase (at high tem-
perature), to a face centered cubic structure (monoclinic structure) in the martensite
phase (at low temperature). Nitinol exhibits not only high SME effect, but also
high strength, ductility, and resistance to corrosion. The formation of stress-induced
martensite from the austenite phase is referred to as pseudoelasticity or superelastic-
ity. This means that at high temperature, a specimen exhibits a large apparent plastic
strain upon loading, which is fully recovered in a hysteresis loop upon unloading. The
behavior is not triggered by temperature and is only stress dependent. The hysteresis
behavior is due to the forward phase transformation from austenite to stress-induced
martensite taking place at high stress level and the reverse phase transformation to
austenite phase taking place at low stress level. One of the widely exploited concepts
in SMAs is constrained recovery force. If an initially deformed SMA specimen is
constrained to return to its original shape upon heating, it will generate high recovery
force. As a consequence of this, the first successful commercial applications were
pipe couplings and mechanical fasteners.

Phase transformation in SMA can be induced by the application of change of
temperature or stress, or by a combination of both. In the absence of an applied
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stress, transformation through temperature is characterized by four characteristic
temperatures; the martensite start temperature Ms, martensite finish temperature
Mf , austenite start temperature As, and austenite finish temperature Af . These
transformation temperatures change with the presence of applied stress, normally
increasing with tensile stress. The temperature affects the chemical free energy, the
applied stress affects mechanical potential energy, and the sum total of two types of
energy determines the state of phase transformation of SMA. The parent phase of the
material is austenite (A). When the temperature is reduced, the material transforms
into martensite (M); this isothermal process is called forward phase transformation
(A → M). The reverse phase transformation (M → A) is endothermal. During the
phase transformation, there is an evolution or absorption of a significant amount
of latent heat. The martensite phase consists of a total of 24 different variants.
An untrained nitinol wire, when cooled from the parent phase, will revert to a
combination of several variants of martensite and form twin bands in the material,
and there is no net change of overall shape of the specimen. A key feature of
an SMA is that the theromelastic properties such as Young’s modulus, electric
resistivity, thermal conductivity, and heat capacity are different in both transformed
states. These properties, including transformation temperatures, can be a function
of chemical composition, cold work, heat treatment, and thermo-mechanical cycling.
Since the variation of these characteristics takes place in a very narrow change of
temperatures (based on stress level), SMAs actuators are often called “bang-bang”
and “off-on” actuators. In some cases, an intermediate R-phase (rhombohedral
structure) is also present but normally this is not a major phase to describe the
behavior of SMA.

Since the 1990’s, applications of SMAs in the mechanical, medical, and aerospace
systems have proliferated Specific applications include appliance controllers, eye-
glass frames, medical wires, electrical switches, pipe couplings, and electronic con-
nectors. Most of these applications have been 1-D in nature where wires, rods/tubes
and strips are used as active actuators, primarily to cause static induced deflections.
One of the major inhibitions of a widespread use of SMAs in commercial appli-
cations has been the inadequate understanding and repeatability of their thermo-
mechanical characteristics, especially under a range of loading conditions. Most of
the shape memory phenomena are related to one-way shape memory effect. The
material initially deformed at low temperature (martensite state) recovers its orig-
inal shape on heating (austenite state). Upon cooling from high temperature state,
there is no apparent change of shape of the material. This is one-way shape memory
effect. The undeformed shape remains constant when the sample is subjected to
thermal cycling. It appears possible to condition a two-way shape memory effect
in SMAs, where the material remembers both a high temperature shape and a low
temperature shape. This means a specimen is deformed one way on heating and
deformed the other way on cooling.

Two-way shape memory effect arises as a result of cyclic thermomechanical
transformation, i.e., training, which induces a favorable residual stress field within
the material. Hebda and White [16] showed that it requires about 2000 thermal
cycles to achieve stable two-way effect, which can last up to 10,000 actuation cycles.
Further, it was shown that a very small bias stress during cycling can enhance
the amount of retention of transformation strain in the wire. Another potential
application of an SMA is for passive damping augmentation in a structure. SMA
can provide damping capacities on the order of 10% [17]. In metallic materials,
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dissipation mechanisms include viscoelastic effects, Coulomb friction, and plastic
deformation. For an SMA, the time delay of strain with respect to stress results
in a dissipation of energy. Oberaigner et al. [18] showed that dissipation rate and
dissipation energy become maximum at a certain fixed temperature between the
martnesite start and the martensite finish temperatures.

For various applications, it is important to have comprehensive constitutive mod-
els of shape memory alloys, which can accurately represent the thermo-mechanical
behavior of the materials in a mathematical form that is readily amenable for
inclusion into engineering analyses. Most of these models describe quasi-static
(thermodynamic equilibrium), one-way shape memory behavior under uniaxial
loading, and these are broadly classified into three categories: phenomenology
based macro-mechanics models, thermodynamic-based micro-mechanics models,
and micromechanics-based macroscopic models. First category models are built
on phenomenological thermodynamics and are expressed in terms of engineering
material constants. These are mostly defined using experimental test data (curve
fitting to test data), and are quite amenable for inclusion in engineering analyses.
In general, the behavior of the material is primarily a nonlinear function of three
variables (assumed independent) and their associated rates of change: stress, strain,
and temperature. The properties of a particular alloy depend on the composition
of constituent elements, the processing technique, and factors involving manufac-
turing and heat treatment. Typically, the volume fraction of the martensite phase is
used as the internal variable, and most of these models are perfected for uniaxial
loading. Under the first category, some of the models are due to Tanaka [19], Liang
and Rogers [20], Brinson [21], Boyd and Lagoudas [22], and Ivshin and Pence [23].
In these models, it is assumed that strain, temperature, and the martensite volume
fraction are the only state variables. One of the pioneering models is due to Tanaka,
which was derived from second law of thermodynamics expressed in Helmholtz free
energy format, and in which the variation of martensite volume fraction with stress
and temperature is expressed in exponential form. It is based on the Clausius-Duhem
inequality. Liang and Rogers made a change to the development of martensite vol-
ume fraction from exponential form (Tanaka) to cosine format. Neither of these
models capture the stress-induced detwinning of the martensite phase. The Tanaka
model was modified by Tobushi et al. [24] to include R-phase transformations that
are often seen in SMAs. In this model, there are two distinct variables for R-phase
and detwinning martensite, which makes it possible to predict the R-phase and shape
memory effect simultaneously.

Brinson divided martensite volume fraction into two parts; stress-induced and
temperature-induced, and modified the Tanaka model accordingly. This model cap-
tured the detwinning effect. Epps and Chopra [25], Prahlad and Chopra [26], and
Zak et al. [27] made a comparison of these three models with test data obtained
from Nitinol wires. The deficiency of prediction of shape memory effect using the
Tanaka model and the Liang and Rogers model can be overcome if the variation
of transformation temperature at low stress (introduced by Brinson) is included.
Under this category, Malovrh and Gandhi [28] developed a hierarchy of mechanism-
based phenomenological models, comprising linear, piece-wise linear, and nonlinear
springs and friction elements to represent the pseudoelastic behavior of SMAs. This
approaches is similar to the followed in elastomeric materials and ER/MR fluids,
and the model parameters are identified using experimental test data (hysteresis
cycles). The three-element model (comprising a lead spring in series with a unit
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consisting of a spring in parallel with a friction element) was the most basic model
that could reproduce the generic hysteresis behavior. Chang et al. [29] developed
a comprehensive coupled thermodynamic model for an SMA wire under uniaxial
loading in a finite element framework and validated it systematically with mechani-
cal and infrared experimental test data obtained from a typical polycrystalline NiTi
wire. This one-dimensional strain-gradient continuum model was used to satisfac-
torily validate the shape memory effect and pseudoelastic behavior as a function of
applied displacement rate and environmental parameters.

Second category models are detailed, often quite complex, and are constructed
using thermodynamics phenomena. They are less amenable for inclusion in engi-
neering analyses. These are focused on micro-scale behavior such as nucleation,
interface motion, and growth of martensite state. Under the second category, some
of the models are due to Falk [30], Ball and James [31], Abeyaratne and Knowles [32],
Barsch and Krumhansl [33], and Sadjadpour and Bhattacharya [34].

Third category models are hybrids of the first two categories, which use thermo-
dynamic phenomena to describe transformation and incorporate several assump-
tions to simplify micromechanics. Typical models in this category are due to Patoor
et al. [35], Sun and Hwang [36, 37], and Huang and Brinson [38].

Most of the constitutive models of SMA are developed for uniaxial loading
condition. It is important that the models should be simple and capable of being
implemented in standard structural mechanics analyses; they should incorporate
realistic physics and be applicable in a wide range of temperatures and stresses
to capture both the shape memory effect and pseudoelasticity. They should be
adaptable to a wide range of materials and textures in both single crystals and
polycrystals. However, in some applications, material may be subjected to a three-
dimensional (3-D) stress condition and as such, a one-dimensional (1-D) model may
not be able to estimate precise behavior. There are some 3-D models available such
as those developed by Sun and Hwang [36, 37], Boyd and Lagoudas [39], Graesser
and Cozzarelli [40], and Patoor et al. [41]. For example, Boyd and Lagoudas derived
the model from free energy and a dissipation potential; they utilized the Gibbs free
energy instead of the Helmholtz free energy (utilized by Tanaka). Zhou et al. [42]
developed a three-dimensional constitutive model for shape memory alloys based
on the results of Differential Scanning Calorinetry (DSC) tests and Brinson’s phase
transformation relations. It appears attractive to utilize the vast methodology of
plasticity available in the literature; however there are significant differences in the
underlying mechanisms affecting material behavior.

By embedding SMA wires in composite laminates, it may be possible to
control the structural properties of such shape memory alloy hybrid composites
(SMAHC) [43]. There are two issues: the bonding of SMA with the composite resin
and curing temperature far above austenite temperature. To overcome the first prob-
lem, one needs to incorporate an effective surface bonding treatment. Jonnalagadda
et al. [44] tried four surface treatments: untreated, acid etched, hand sanded, and
sand blasted. Using standard axial tensile tests, the average interfacial bond strength
of SMA wires embedded in an epoxy matrix was measured. Sand blasting signif-
icantly increased the bond shear strength, whereas hand sanding and acid etching
reduced the interface strength. Using photoelasticity and heterodyne interferometry,
the resulting stresses induced in the polymer matrix were measured. Increased wire
adhesion resulted in lower axial wire displacement and higher interfacial stresses.



1.5 Electrostrictives 19

If the prestrained SMA needs to be embedded in a laminated structure, there are
at least three possible ways: (i) hold each SMA wire at two ends during curing, (ii)
cure at room temperature using special resins, and (iii) use silica or teflon tubes
with inserted steel wires during curing. For the third method, once the composite
structure is cured, replace the steel wires with prestrained SMA wires [45]. Ogisu
et al. [46] investigated carbon fiber–reinforced plastic (CFRP) laminates with embed-
ded prestrained SMA foils for their fatigue characteristics. Using a prestrain of 2%,
there was a remarkable delay in transverse crack onset strain (over 30%) and the
delamination onset fatigue cycles.

It is now well established that unstable mechanical behavior in SMA can take
place during stress-induced transformations in uniaxial loading [47]. Hence, the
material behavior is extremely sensitive to the ambient environment and loading
rate. The transformation processes often lead to distinctly non-uniform deforma-
tion and temperature fields, which in turn can lead to mechanical instabilities and
phase transformation fronts. Iadicola and Shaw [48] used optical and infrared imag-
ing techniques to determine specimen deformation and temperature fields. It was
shown that the grips of the testing machine had a major influence on the induced tem-
perature field. It was also shown that nucleation events for the forward and reverse
pseudoelastic transformation can be measured in a single experiment as long as the
measurements are made on a part of the specimen that is free of residual strain.

Some researchers examined the concept of a solid engine using SMA to convert
low-grade thermal energy into mechanical energy [49]. There are numerous patents
on this topic in 1980s. The underlying principle is a solid-state phase transformation
that converts heat into motion. The source of thermal energy can be solar, geothermal
or industrial exhaust. However, this concept has limitations that include the low
energy conversion efficiency and fatigue life of the material.

1.5 Electrostrictives

The electrostriction effect is an induced deformation in a dielectric material under
the influence of applied electric field. However, this effect is present in almost all
materials, though it is normally very small for any practical application. Unlike the
piezoelectric effect, which is linear with electric field, the electrostrictive effect is
quadratic with electric field. This is a property found primarily in centrosymmet-
ric dielectric materials. All ceramic piezoelectrics are in fact polarization-biased
electrostrictors. The pioneering work towards the direct use of electrostriction in
transducers was carried out by Nomura et al. [50], Jang et al. [51]. Lead magnesium
niobate (PMN) and its doped derivatives are normally referred to as electrostrictive
materials. The relaxor ferroelectric, lead magnesium niobate in solid solution with
lead titanate (PMN-PT), was the key breakthrough to develop large electrostric-
tion. It was a very difficult material to make without pyrochlore contamination until
the breakthrough by Swartz and Shrout [52], introducing the Columbite method.
A second key advance occurred due to Pan [53], who showed that unlike all piezo-
electric ceramics which are poled into a metastable domain state, relaxor PMN is a
compound which is used in its ground state and can be fabricated to be free from
aging.

Among the derivatives, the solid solution of PMN and lead titanate is the most
popular one and is called PMN-PT. These are categorized as relaxor ferroelectrics
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Figure 1.6. L. E. Cross is a recognized authority in fer-
roelectricity and dielectric materials. He, along with his
co-workers at Penn State, pioneered numerous develop-
ments towards the development of PMN-PT (Lead Mag-
nesium Niobate-Lead Titanate).

and not only have very high electrostrictive coefficients, but also possess high relative
permittivities (20,000 to 35,000). These materials show induced strains due to elec-
tric field quite comparable to piezoelectrics (0.1%). Unlike piezoelectrics, however,
they do not show spontaneous polarization and as a result they display a very low
hysteresis effect even at high operating frequencies. Electrostrictors normally elon-
gate in the direction of field and contract normal to the field, irrespective whether
field is positive or negative (Fig. 1.7). A major limitation of electrostrictive materials
is their temperature sensitivity. For most applications, the temperature needs to be
maintained within ±10◦. As a result, electrostrictives are often used in underwater
and in vivo applications. As the temperature goes up, the induced strain decreases.

Even though electrostrictive materials are nonlinear and monopolar, they
exhibit negligible hysteresis and creep. For motion control applications such as
micropositioning systems, one can expect repeatable performance (contrary to piezo-
electrics). The electrostrictive coupling coefficients depend on the level of impurities
present in the material, preparation procedure, size and frequency of applied elec-
tric/mechanical field, temperature, and aging time.

Scortesse et al. [54] found that electrostrictive ceramics such as 0.9PMN-0.1PT
undergo a large reduction of the apparent Young’s modulus (more than 50%) as a
function of the static electric field, but there is an increase of modulus (over 20%)
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Figure 1.7. Induced free strain in elec-
trostrictive materials.
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Figure 1.8. James Prescott Joule (1818–1889) was born in
Salford, UK and formulated the theory of conservation of
energy (first law of thermodynamics). He discovered ferro-
magnetism in an iron bar in 1842. Also, in 1840, he formu-
lated Joule’s Law of electric heating (heat generated in a
wire is the product of the square of current and resistance).

with an application of axial compressive stress (say 30 MPa). The change of elastic
modulus in the direction perpendicular to the electric field was found to be small
(less than 6%).

Electrostictive materials are described by an even rank tensor; the electrostric-
tive effect is limited by symmetry and as such is nonlinear (quadratic). The elec-
trostrictive actuator may consist of a multi-layered configuration in the form of a
stack consisting of many thin layers (125 to 250 ) that are diffusion bonded during
the manufacturing process. Unlike piezoelectrics, PMN is not initially poled. Hence,
for both positive and negative voltage, elongation takes place along the applied field
direction. Also, PMN actuators show an electric capacitance four to five times as
high as that of piezoelectric actuators. Applications include sensors, transducers,
actuators, robotics, and artificial muscles.

A good example of the application of electrostrictives is Telescope to tilt mir-
rors built into the wide field and planetary camera II in the Hubble Space. Initially,
Hubble was launched into space with an incorrectly configured primary mirror. Sub-
sequently, Hubble was repaired with six PMN-PT actuators that provided full ground
control of the two tilt mirrors in the camera II replacement unit. This feat saved an
investment of 7 billion dollars. Stability, no aging and very low thermal expansion
more than compensate for the nonlinear and hysteretic response in applications to
optical systems where PMN based compositions are still widely used. However, these
actuators have not yet penetrated widely into other application areas.

1.6 Magnetostrictives

Magnetostriction is the phenomenon associated with ferromagnetic materials that
undergo deformation (or strain) when magnetized (i.e., in response to a change in its
magnetic state). The magnetostriction strain arises from a reorientation of the atomic
magnetic moments. James Joule (Fig. 1.8), who first reported this phenomenon in
1842, found that an iron bar underwent a change of length when magnetized. This
effect can be used in actuator applications. Villari discovered a reciprocal effect in
the 1900s, where the stress induced dimensional change (or strain) in a ferromagnetic
material results in a change in its magnetization. This behavior is called the Villari
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effect and it can be used in sensor applications. Thus, magnetostrictive materials can
convert magnetic energy into mechanical energy and vice versa, which provides capa-
bility for both actuation and sensing. Early examples of magnetostrictive materials
were iron (Fe), nickel (Ni), cobalt (Co) and their alloys. These materials have very
low magnetostriction, defined in terms of maximum strain (ppm: part per million).
In spite of their low magnetostiction, these materials were used in many applica-
tions in the first half of the twentieth century; these included telephone receivers,
hydrophones, sonar, torque meters, oscillators, and foghorns. In fact, Philipp Reis
tested the first telephone receiver in the 1860s based on magnetostriction. In 1888,
Ewing used a magnetostrictive device made of iron and nickel as a force sensor.
During the Second World War, sonar transducers were built using nickel with a
magnetostriction of about −40 ppm.

1.6.1 Terfenol-D

Around 1963 and 1964, it was discovered that rare earth metals such as dysprosium
(Dy) and terbium (Tb) exhibit giant magnetostriction (>10,000 ppm) at cryogenic
temperatures. However, this limitation of very low temperatures hindered their
widespread application. During this period, a major effort was undertaken by US
Navy to enhance sonar technology through the development of new magnetostrictive
materials that have large magnetostriction at room temperature. In 1971, Clark and
Belson at the Naval Ordinance Laboratory (NOL, later called the Naval Surface
Warfare Center) and Koon, Schindler, and Carter at Naval Research Laboratory
(NRL) discovered an alloy of rare earth metals that had a giant magnetostriction at
room temperature. This magnetostrictive material is now referred to as Terfenol-
D (Te for Terbium, Fe for iron, NOL for Naval Ordinance Laboratory and D for
Dysprosium). This alloy exhibited a maximum strain of 2000 ppm (0.2%) at room
temperature. The stochiometry of Terfenol-D is TbxDy1−xFey where x varies from
0.27 to 0.3 and y varies from 1.9 to 2.0. With a change in stoichiometry, a wide range
of properties could be achieved. Terfenol became commercially available through
ETREMA (a company in Iowa) in the 1980’s. It is now used in a wide range of
applications that include sonar (low frequency underwater communication), hearing
aids, load sensors, accelerometers, torque sensors, proximity sensors, active vibration
and noise control, ultrasonic cleaning, machining and welding, micropositioning; and
linear and rotational motors and sensors to detect motion, force, and magnetic field.
Furthermore, magnetostrictive amorphous wire and thin film are being used in a
wide variety of sensing applications. Calkins et al. [55] provided an overview of
commercial magnetostrictive applications that includes noncontact torque sensors,
motion and position sensors, magnetoelastic strain gauge, force and stress sensors,
material characterizing sensors, and magnetic field sensors.

Magnetostrictive materials elongate in the direction of the applied field, whether
positive or negative, and contract along the direction normal to the applied field such
that the net change in volume is nearly invariant (Fig. 1.9). Magnetostrictive materials
exhibit a change in magnetic permeability, magnetomechanical coupling, piezomag-
netic coefficients, and mechanical damping with variation of applied DC and AC
magnetic fields, static and dynamic structural loads, and temperature. The magne-
tization is expressed in terms of the volume density of atomic magnetic moment
changes as a result of the reorientation of magnetic moments in the material through
the application of magnetic fields, thermal energy or stresses. There is a significant
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Figure 1.9. Induced strain in magne-
tostrictive materials.

change in the stiffness characteristics of magnetostrictive materials when the alloy
is magnetized, called �-E effect. For example, the Young’s modulus is higher under
the application of DC magnetic field than under no field. The stiffness of the mag-
netostrictive material also depends on the state of material; it appears stiffer in a
mechanically clamped condition (zero strain) than in a mechanically free condition
(zero external force). The behavior of magnetostictive material depends on type of
energy applied (electromagnetic, elastic, or thermal) and how it is applied. In order
to fully utilize the desirable characteristics of magnetistrictive materials, it is impor-
tant to characterize their electric, magnetic, thermal, and elastic behavior. A simple
constitutive model for magnetostrictive material is the one most commonly used,
the linear piezomagnetic model. Even though the actual behavior is intrinsically
nonlinear and hysteretic, this quasi-linear model is quite insightful, especially at low
signal regimes. Accurate comprehensive models of magnetostrictive models cover-
ing precise coupling between the electric, magnetic, thermal, and elastic regimes
at all levels are not readily available. Carman and Mitrovic [56] and Kannan and
Dasgupta [57] extended the linear constitutive modeling by including specific non-
linear effects. Another approach to modeling nonlinear dynamic behavior is to use a
phenomenological approach following a generalized Preisach operator [58, 59, 60].
These models are normally restrictive and cumbersome.

In 1978, Clark (Fig. 1.10) and coworkers developed another new magnetostric-
tive material, as an alloy of amorphous metal (produced by rapid cooling) of iron,
nickel, and cobalt together with one or more of the elements of silicon, boron, and
phosphorus. This alloy is commercially known as metglas (metallic glass) and is
normally produced in thin ribbons. This material has an extremely high coupling
coefficient (greater than 0.92 for metglas versus 0.7 for Terfenol-D). As a result,
metglas is the preferred material for sensor applications.

Because of the bidirectional exchange of energy between elastic and magnetic
states, magnnetostrictive materials can be used for both actuation and sensing appli-
cations. Due to the requirement of magnetic field generation components, magne-
tostrictive transducers are usually heavy and bulky in comparison to piezoelectric
and electrostrictive counterparts. Hence, these materials are mostly used in applica-
tions where weight is not a primary issue and high forces and strains are required.
Furthermore, the presence of a magnetic field–generating coil induces noise into
adjacent electronic circuits and devices.
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Figure 1.10. Arthur E. Clark, along with his cowork-
ers at Naval Ordinance Lab (later called NSWC) dis-
covered Terfenol-D in the 1970s. Their group also
discovered metglas in 1978 and Galfenol in 1998.

Advanced crystalline materials are often manufactured using crystal growth
techniques to achieve directional solidification along the drive axis, and these pro-
cesses plus the requirement of precision machining increase the cost of transducers.
These technological and cost issues have mitigated towards the development of
alternate manufacturing techniques and materials, including crystalline thin films,
magnetostrictive sintered powder, and particle-aligned polymer composite struc-
tures. Recent advances offer the prospect of new compounds to minimize magnetic
anisotropy and hysteresis, and new fabrication processes to produce Terfenol-D
thin films efficiently. As a result, quaternary compounds Terfenol-DH are being
developed in which Terbium and Dysprosium are substituted with Holmium. Also,
manufacturing processes are being refined to build multi-layered driver rods that
lead to reduced dynamic losses, especially for operation in the high frequency spec-
trum (in MHz range).

1.6.2 Galfenol

A new class of magnetostrictive alloys called Iron-Gallium alloys (known as FeGa
alloys or Galfenol) has recently been developed by researchers at the Naval Surface
Warfare Center [61]. These alloys exhibit moderate magnetostriction (∼350 × 10−6)
under very low magnetic fields (∼100 Oe), have very low hysteresis, demonstrate high
tensile strength (∼500 MPa) and exhibit limited variation in magneto-mechanical
properties for temperatures between −20◦C and 80◦C [62, 63, 64].

Atulasimha and Flatau [65] reviewed developments in iron-gallium alloys and
described challenges in their processing, methods of characterizing and modeling
these materials as well as actuation and sensing applications. In contrast to conven-
tional magnetostrictive materials like Terfenol, Galfenol is highly ductile, machin-
able and weldable. In addition, Galfenol can withstand shock loads, has a high Curie
temperature and is resistant to corrosion. As a result, there have been increas-
ing applications of magnetostrictive materials in a wide range of fields, including
areas where they need to be attached to other components or used as load bearing
structures.

Sensing applications of magnetostrictive FeGa alloys include torque sensors
in rotor and automobile transmission shafts and sonar devices for detection in of
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underwater explosions. The low bias field required for Galfenol can be achieved
with a small permanent magnet, enabling it to be used in compact devices. Galfenol
can be deposited epitaxially on a silicon substrate, which makes it well suited for
microscale sensing applications. Electrodeposited nanowires made of Galfenol or
FeGa/NiFe and FeGa/CoFeB can be used for miniature acoustic and tactile sensors.

The magnetostriction of Galfenol depends strongly on the content of Ga in the
alloy, as well as the heat treatment and the applied compressive stress. This compli-
cated dependence on different parameters makes it challenging to characterize the
actuation and sensing properties of Galfenol for use in engineering analyses. For
sensing applications, characterization of the interaction between the transducer and
the sample is very important. Typically, the high permeability of Galfenol makes its
reluctance comparable to that of the magnetic circuit.

Most of the material characterization is performed on single-crystal samples of
Galfenol; however, polycrystalline material will be necessary for use in real world
applications. There are several ongoing research efforts for processing and fabrica-
tion of polycrystalline Galfenol sheets, ribbons and rods. Early efforts focused on
directional solidification, followed by investigations into extrusion, forging, rolling,
and sintering. Currently, production grade polycrystal rods are produced using free-
standing zone melting or directional solidification.

1.7 ER and MR Fluids

The basics of electro-rheological (ER) and magneto-rheological (MR) fluids were
discovered in the late 1940s and early 1950s [66, 67, 68, 69]; however, the early focus
has been primarily on ER fluids due to their ready availability in the laboratories. A
key characteristic of these fluids has been a dramatic change in fluid viscosity with
the application of electric and magnetic field respectively for ER and MR fluids.
When there is no field (electric/magnetic), the suspended particles are randomly
distributed in the fluid in the presence of field, they form chains. As a result, the
rheological properties change with applied field; these fluids can change from liquid
to gel and back with response times on the order of milliseconds. They are also
called smart fluids. ER consists of a low-viscosity insulating base fluid, mixed with
non-conducting particles typically in the range of 1–10 μm diameter. On application
of electric field, these particles become polarized and increase the yield stress in shear
(typically about 10 kPa for static loading and 5 kPa for dynamic loading). Since the
initial patent by Willis Winslow in 1947 (mixing of starch with mineral oil), there have
been numerous patents over the years on ER fluids. In early investigations, Winslow
(Fig. 1.11) used a range of solid particulates (for example, starch, lime, gypsum,
silica, and carbon) dispersed in a variety of insulating oils (for example, mineral oil,
paraffin, and kerosene) to show significant electrorheological characteristics. Water
was also added to ER fluid to modify its electrical resistivity as well as to bond
together the constituents. These ER fluids suffered from abrasiveness, chemical
instability and rapid deterioration in properties with time. As a result, there were
few commercial applications of ER fluids early on. However, in the 1980s, there were
significant improvements in both solid particulates and insulating oil. For example,
Stangroom [70] demonstrated the use of non-abrasive polymer particles dispersed
in silicon oil to achieve significant ER characteristics. Brooks [71] reported the
application of new generation ER fluids in various devices. Particles ranging from
5μm to 50μm dispersed in oil constituted the ER fluid. Larger size particles are more
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Figure 1.11. Willis M. Winslow was born in Wheat Ridge,
Colorado in 1904. While working in Public Service Com-
pany at Denver, he discovered the ER effect in 1942 and
received his first patent in 1947.

liable to sedimentation, whereas smaller particles are liable to execute Brownian
motion.

Since the addition of water can have detrimental effects due to the varying
thermal environment (below freezing point and above boiling point), modern ER
fluids do not include water. It has been suggested that acenequinone radical polymers
(PARQRs), when dispersed in silicone or partially chlorinated petroleum, result in
a good ER fluid [72]. It has been shown that an increase in temperature dramatically
increases the current drawn and may be detrimental to the operational integrity of
ER fluid. The recommended concentration of particles in carrier fluid is about 40%
by volume in order to achieve large shear stress. Increasing the volume fraction
increases the zero-field viscous characteristics as well as affects current drawn and
heat generation. There is a decrease in ER effect at high frequencies because of
insufficient time for particles to polarize. Powell [73] showed that in activated ER
fluids, the sustainable yield stress increased linearly as a function of the square of the
electric field strength. For very large strain amplitudes, the magnitude of the yield
stress rate decreased somewhat. Below a certain threshold electric field, no viscous
forces were produced, and the ER fluid behaved as an elastic solid. An elastic force
was generated on the application of an electric field, and this behavior was quite
nonlinear in nature; the equivalent modulus decreased with increasing amplitude. In
2003, the giant electrorheological effect (GER) was discovered, capable of sustaining
higher yield strengths at lower fields (lower current densities) than widely used ER
fluids [74]. The GER fluid consists of urea-coated nanoparticles of barium titanate
oxalate suspended in silicone oil. The urea-coated small size particles result in a high
yield stress due to increased dielectric constant.

ER fluids are being used in a wide range of applications that include valves with
no moving parts [Phillips 1989], clutches and brakes [67], tunable engine mounts,
shock absorbers [75, 76], robotic devices [77], machine tools, and aerospace struc-
tures [78].

MR fluids consist of noncolloidal suspensions of micron-sized, paramagnetic
particles dispersed in a carrier fluid such as silicone or mineral oil. Since the 1990s, the
focus has shifted to MR fluids because of their maximum yield stress is 20 to 50 times
larger than that of ER fluids and they can operate in a wide range of temperatures
(−40◦C to 150◦C). Also, the ER fluids require a very high voltage (about 4 KV/mm),
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Figure 1.12. Jacob Rabinow (1910–1999)
was born in Kharkov, Ukraine. He moved
to China in 1919 and then to USA two years
later. He discovered the MR effect in 1948.
He worked at NIST and received 230 US
patents as well as 70 international patents.

whereas the MR fluids can be controlled with a low field (12–24 V with current
1–2 amp). Furthermore, MR fluids are less sensitive to impurities or additives needed
to enhance some characteristics. MR materials show yield stress of up to 100 kPa
for an applied magnetic field of 0.5–1.0 T and thereby impact the viscosity of the
fluid [79]. The credit for the discovery of MR fluid goes to Jacob Rabinow in 1948 [80].
A typical MR fluid developed and used by Rabinow (Fig. 1.12) consisted of 9–10
parts by weight of carbonyl iron to one part of silicone oil, mineral oil, or kerosene,
with a small addition of grease or other thixotropic additive to improve settling
stability. This resulted in a yield strength of about 100 kPa. If the applied magnetic
field is reduced, the yield stress also diminishes. Without the magnetic field, yield
stress is about 2–3 kPa. With the change of magnetic field, the viscosity changes too;
it varies from 0.1 to 1.0 Pa-s for field from 0 to 1.0 T. Since commercial availability
of MR fluid is quite recent (under trademark of Lord Corporation), there has been
a growing number of applications. There is no doubt that MR is now preferred over
ER fluid in most applications that include rotary brakes and linear dampers.

MR fluids have many attractive features that include high yield stress, low off-
state viscosity, and stable hysteretic behavior over a broad temperature range. How-
ever, they are more expensive than ER fluids. Both ER and MR fluids have quick
response, reversible behavioral changes when subjected to electric or magnetic fields.
Another desirable characteristic of ER/MR fluids is non-settling of suspended par-
ticles. However, except for very special cases such as seismic dampers (devices sit
quiescent for long periods), suspension stability is not an overriding issue. Durability
and longevity of the fluid are other important considerations. In the past decade,
many different devices have been built using ER/MR fluids for industrial applica-
tions. These devices work according to one of the three flow modes: the shear mode
(Couette flow), the flow mode (Poiseuille flow) and the squeeze mode. Jordan and
Shaw [81] innovated ER technology towards the development of a flow control
valve by controlling the resistance to flow by changing the applied electric field.
The conductors are stationary and the flow passes between them; this is referred to
as flow mode. If the electrodes are moving or rotating with respect to each other
(with constant gap), this results in shearing of the fluid and is referred to as shear
mode. Most of the devices use one of these two modes of operation. A third mode of
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operation is squeeze mode, where the conductors move with respect to each other
in the direction of the field (varying the gap). Some experimental validation of the
three modes emerged in the 1990s; flow mode [82], shear mode [83], and squeeze
mode [84].

The general force-velocity characteristics of both ER and MR fluids are quite
nonlinear. Two classes of models are used to characterize ER/MR devices; these
are first-principle–based models and phenomenological-based models. The first-
principle models are based on fundamental fluid mechanics principles (conservation
of mass, momentum, and energy) and these are quite complex as well as less tractable
for specific devices. One has to incorporate many heuristic assumptions to make
these practicable. These models require systematic validation studies to make them
robust as design tools. On the other hand, phenomenological-based models are
widely adopted for their simplicity and adoptability to a specific device. These models
consist of building blocks such as masses, springs, and dashpots arranged in series
and parallel configurations, and their characteristics are normally identified from test
data. A simple model to characterize the behavior of ER/MR fluids is the Bingham
plastic model, a combination of both viscous and Coulomb damping effects. An
alternate scheme to represent phenomenological-based models can be an electrical
paradigm involving resistors, capacitors, and inductors.

Stanway et al. [85] attempted to model the response of an ER shear-type damper
by modeling it as a viscous damper and a Coulomb damper in parallel, and a non-
linear filtering technique was used to estimate friction force and damping force,
which were functions of electric field. Ehrgott and Masri [86] used three approaches
to model the oscillatory dynamic behavior of the ER damper: first, a global equivalent
linear system approach; second, a parametric identification model; and third, a non-
parametric method which approximates the experimentally measured non-linear
response force.

In his very first patent, Winslow [66] described the ER phenomenon with ref-
erence to a brake/clutch mechanism. In his later patent in 1953, Winslow described
a field-controlled hydraulic device which can act as a vibration damper [87]. There
were numerous other attempts in the 1960s and 1970s to apply ER technology in
commercial devices but only limited success was achieved. Since the 1990s, there has
been a growing application of ER technology in commercial devices.

The MR fluid technology is scalable, and as an example, a 20-ton MR fluid
damper has been designed and successfully built for civil engineering applications.
This damper is of simple geometry in which the outer cylindrical housing is the
magnetic circuit and the effective fluid orifice is the entire annular space between the
piston’s outside diameter and cylindrical housing. Controllable shock absorbers are
being examined for potential applications in automotive systems, sports equipment,
wind turbines, armament, steering wheels, and washing machines. For example, MR
dampers are being examined to control gun recoil on naval gun turrets and field
artillery.

The MR Sponge consists of MR fluid constrained by capillary action in an
absorbent matrix such as sponge (open-celled foam), which allows a minimum vol-
ume of MR fluid to be operated in a direct shear mode without seals or precision
mechanical tolerances and is less susceptible to sedimentation of suspension parti-
cles [88]. Shen et al. [89] introduced fabrication techniques to develop two different
MR elastomers. One elastomer was made of polyurethane and the second was
made of natural rubber. There was a significant change of Young’s modulus of the
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polyurethane elastomer (about 30%) under a strong magnetic field, whereas there
was a minimal chage of modulus of the rubber elastomer.

In parallel, there have been foundational developments in control theory. The
developments in linear system theory and its application to vibration control and
structural dynamics took place in the first half of the twentieth century. A major
impetus for these developments has been to improve ride quality in airplanes and
automobiles. In fact, it was during the Second World War that concepts such as
vibration isolators and absorbers and vibration dampers were effectively applied in
aeronautical systems. Design requirements for strength and safety may often conflict
with demands for low vibration and extended fatigue life.

The shear mode is probably most widely investigated and the squeeze mode is
less understood. The forces experienced through the ER fluid with AC field excita-
tion are less than those experienced with DC field; however, the forces are function
of voltage amplitude, excitation frequency and shape of input waveform. The ER flu-
ids are normally more resistant to compressive forces than tensile forces. ER-based
devices require a large applied electric field of up to 8 kV/mm of inter-electrode gap.
To produce this level of field strength requires a very high voltage (in kV), which
deters many potential users because of safety issues. On the other hand, MR-based
devices requires low electric voltage (on the order of tens of volts) to generate a
magnetic field of the required field strength. Also, MR fluids generate significantly
larger dynamic force level than ER fluids. As a result of these two factors, today
we have a large number of commercial applications of MR fluids. After repeated
use, the MR fluid progressively thickenss until it eventually becomes an unworkable
paste. This problem is called “in-use thickening,” and it was a major barrier in many
early applications. Eventually, Lord Corporation solved this problem, and now MR
fluids can operate for a long time [90].

1.8 Capability of Currently Available Smart Materials

Displacement transducers are tpically classified into two categories, conventional
displacement transducers and solid-state transducers. Smart material actuators fall
under the category of solid-state actuators. The capabilities of currently available
smart materials are limited. Ferromagnetics such as Terfenol-D have a fast response
(60 kHz), but their maximum actuation strain is about 0.2%. Ferroelectrics such as
PZT can achieve very high frequency (MHz), but their maximum induced strain is
less than 0.1%. SMAs such as Nitinol can achieve large recoverable strains of about
6–8%, but at a very low frequency (less than 1 Hz) due to slow heating and cooling
process.

Smart material actuators are superior to traditional electrodynamic and
hydraulic actuators in terms of compactness and adaptability to laminated structures,
but lack the wide knowledge base of their basic characteristics. Most of the smart
materials cause low strain output, and as such, internal or external amplifying mech-
anisms are needed to increase the stroke, or output displacement, for most applica-
tions. Energy is transformed from the active element to the load through a number
of stroke amplification stages. A wide variety of structural amplification mechanisms
are used, which include flextensional shells, two-layered or multi-layered bimorphs,
Rainbow actuators, and C-block actuators [91, 92, 93].

Flextensional actuators are kinematic amplifiers, which couple the longitudi-
nal displacement of active ceramic material in the form of a disk or bar to the
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Figure 1.13. Flextensional transducers, from Ref. [91].

radial flexure of a metallic shell (Figure 1.13). The concept of flextensional trans-
ducer was originated in the early 1920s and applied to an electroacoustic foghorn
for ship navigation [94]. The basic principles of the flextensional transducer, espe-
cially using magnetostrictive materials, were explained by Hayes in 1936 [95]. Toulis
expanded the application of flextensional transducers to underwater acoustic detec-
tion in 1966 [96]. Flextensional transducers are classified into five categories based on
their shape and mode of operation [94]. Widely used and simplified versions of the
flextensional transducer emerged in 1990 in the form of RAINBOW, THUNDER
and Moonie actuators. Newnham et al. [97] devised a compact moonie actuator.
A moonie actuator consists of a piezoceramic or electrostrive ceramic disk sand-
wiched between two metal endcaps, each having a moon-shaped cavity on its inner
surface. The two endcaps serve as displacement amplifiers to transform the lateral
displacement of active disk piezoceramic (d31 effect) into a large axial displacement
normal to the end caps. On top of this, the “d33 effect” of the disk is also super-
posed. Stroke increases exponentially with an increase in cavity diameter, increases
linearly with an increase in cavity depth, and is inversely proportional to the endcap
thickness. An improved version of the moonie actuator was devised as a cymbal
actuator with higher efficiency, more displacement and larger generative force [98].
The moonie and cymbal have been used as hydrophones, transceivers, and actuators.
Another flextensional design, referred to as the RAINBOW actuator, is constructed
by bonding a piezoceramic layer and a chemically reduced layer [99]. The chemically
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reduced layer is formed using an oxidizing atmosphere at an elevated temperature
as it loses its piezoelectric property, and acts like the shim of a unimorph. They
are also categorized as monomorph actuators. It is a pre-stressed, monolithic, axial-
mode bender and because of its dome or saddle-shaped configuration, it is able to
produce more displacement and a moderate block force. The RAINBOW actuator
is dome-shaped (circular) with the piezoelectric layer on the convex side. Although
this actuator can produce large axial displacement (normal to dome surface), it has
structural integrity problems under cyclic loading. Another flextensional actuator
is the unimorph-type THUNDER actuator, initially developed by National Aero-
nautics and Space Administration (NASA) (Langley) [100, 101]. THUNDER is a
curved device composed of three layers; a metallic layer (typically aluminum) at
the top bonded to a pre-stressed piezoceramic layer using high performance epoxy
(LaRC-SI), and a metallic layer (typically steel) at the bottom surface. Because of the
difference in the coefficients of thermal expansion and Young’s modulus between
materials, the composite actuator deforms to a shallow dome shape during the cool-
ing process. THUNDER is expected to be an improved version of RAINBOW with
10–25% improved performance. To achieve a positive longitudinal displacement,
the applied field will be in the opposite direction to the polarization in the RAIN-
BOWs and THUNDERs, but in the same direction as polarization in the moonie
and cymbal designs. All these flextensional actuators provide moderate generative
force and displacement values, and their actuation capabilities lie between those of
multilayer stacks and bimorph actuators.

1.9 Smart Structures Programs

Applications of smart structures cover a wide range of areas that includes aerospace
systems (spacecraft, airplanes, helicopters and jet engines), civil structures (build-
ings and bridges), machine tools, pipelines, automotives, marine systems (ships and
submarines), and medical devices. During the 1990s, there were focused sponsored
activities in the United States, Europe, and Asia to foster smart structures activities
in the respective regions. In the United States, the basic research activities were car-
ried out through DoD funding agencies such as the Army Research Office (ARO),
the Office of Naval Research (ONR), and the Air Force Office of Scientific Research
(AFOSR), whereas applications-oriented research activities were carried out by the
Defense Advanced Research Project Agency (DARPA). Most of the early research
programs in smart structures were initiated by ARO, and supplemented by DARPA.
The following were the early major programs focused on smart structures.

URI in Smart Structures: ARO initiated multidisciplinary research programs
in smart structures under URI (the University Research Initiative) in 1992. These
were five-year (1992–1997) programs, and three teams headed respectively by the
University of Maryland, the Virginia Polytechnic Institute and State University,
and Rensselaer Polytechnic Institute were selected to foster basic smart structures
technology. This truly seeded smart structures activities in the United States.

SPICES: A two-year program (1993–95) called the Synthesis and Processing
of Intelligent Cost Effective Structures (SPICES) was sponsored by the Advanced
Research Project Agency (ARPA) and was led by McDonnell Douglas (East) [102].
The objective of the consortium, consisting of 10 different organizations, was to
establish cost effective design processes using this multidisciplinary technology
for each member’s respective product lines, involving manufacturing, modeling,
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actuation, sensing, signal processing, and control. To demonstrate the technology
transition, two tasks were carried out. The first task consisted of an active panel to
reduce transmission of broadband high frequency vibration in the range 1–4 kHz
by 30 dB. The second task consisted of a pair of active rails designed to isolate
low-frequency modal excitation in the range 5–100 Hz. The first task covered three
different composite plates containing a combination of piezoelectric actuators, fiber
optic sensors, shape memory alloys, and piezoelectric shunts, and tests were carried
out for damping augmentation, frequency shifting, and active vibration control. The
second task covered two composite trapezoidal rails containing a combination of
piezoelectric vibration control, piezoelectric shunting, SMA positioning, and fre-
quency shifting. The program successfully demonstrated several test configurations.

ASSET: Applications for Smart Structures in Engineering and Technology was
set up to exploit the smart structures technologies within the European Union under
the IMT (Industrial Materials and Technologies) research program [103]. About fifty
organizations (academia, government research institutes and industry) participated
in this program with the principal objectives of providing a forum and funds for
communication, infrastructure and exchange of information among partners. There
was a strong representation from the UK, France, Germany and Italy.

CHAP: Compact Hybrid Actuator Program (2000–03): Smart material actuators
such as piezoelectric, electrostrictive and magnetostrictive have a high energy density
but suffer from low stroke. They have been successfully integrated into systems that
require low stroke and low force such as the fine positioning of optics and sonar
array. The goal of this darpa sponsored program was to exploit them in devices
that require transducers with high power density or high specific power (superior to
traditional electromagnetic and hydraulic-based actuation).

ADAPTRONIK (1998–2002): This program it involved 24 partners from indus-
try and research institutions and was conducted under the leadership of the German
Aerospace Center (DLR) (see Fig. 1.14) [104]. The objective of the program was to
develop new self-adapting smart structures with integrated piezoelectric fibers and
patches and control logics for active vibration and noise control, shape deforma-
tion and stabilization, micro-positioning and ultrasonic sensing for various industrial
applications including aerospace, automotive, rail vehicles, medical and machine
tools.

CLAS: Conformal Load-bearing Antenna Structures: These it involve concur-
rent consideration of structural and antenna issues, such that a load carrying struc-
tural panel also carries antenna elements and is placed at an appropriate location
for superior performance. For this study, a fuselage panel of F/A-18 was selected.
It was shown that a large complex RF antenna panel could sustain severe struc-
tural loads without loss of avionics performance. This study was carried out by
Northrop Grumman under the sponsorship of Air Force Research Laboratory’s
(AFRL) Smart Skins Structures Technology Demonstrator (S3TD) program [105].
Several issues were identified, which included airframe panel location, airframe con-
figuration, EMI/lightning, repairabilty and risk.

Smart structures research activities in Japan, which started at the same time as
in the United States in the early 1980s, initially focused mostly on deployable space
structures such as variable-geometry truss (VGT) structures, and hingeless masts.
A large number of space-related adaptive structures activities were carried out at
the Institute of Space and Astronautical Science (ISAS), and these were reported
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Figure 1.14. Scientific and industrial
implementation of ADAPTRONIK
program, from Ref. [104].

by Miura [106] for a period from 1984 to 1990. Utku and Wada [107] provided
an overview of early smart structures activities in Japan stretching to 1991–92.
Matsuzaki [108] presented smart structures research and development activities in
Japan for the following period between 1992 to 1996. During this period, the breadth
and depth of research activities dramatically increased. In 1996, MITI (the Ministry of
International Trade and Industry) funded a major eight-year national project of SSS
(Smart Structural Systems) involving 50 members from national research institutes,
universities, and industry (aerospace, automobile, machine tools, construction, steel,
and materials companies). MITI adopted a five-year university-based international
R&D program on Smart Materials and Structural Systems (SMSS) in 1998 [109].
Four teams were selected to carry out this program: (1) Health Monitoring Group
centered at University of Tokyo, (2) Smart Manufacturing Group at Osaka City
University, (3) Active/Adaptive Structures Group at Nagoya University, and (4)
Actuator Materials Group at Tohoku University. As an example, Active/Adaptive
Structures program was actively coordinated between Nagoya University and Daim-
lerChrysler in Munich (Germany). The goal of this research was to examine pas-
sive and active vibration control of beams using surface-bonded/embedded SMA
wires/films.
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Figure 1.15. NASA Morphing Project, adapted from McGowan et al. [110].

In the 1990’s, NASA (especially Langley) initiated a morphing project with
the objective of developing and assessing advanced technologies and integrated
component concepts to achieve efficient, multipoint mission adaptability in air and
space vehicles. Morphing is generically defined as a significant shape change or
transfiguration. Three focus areas were pursued, which included adaptive struc-
tural morphing, micro-aero adaptive control, and biologically inspired flight systems
(Fig. 1.15). These areas were supported by the core enabling areas of smart nano-
and biological- inspired materials, multidisciplinary optimization, controls, and elec-
tronics [110]. Some of the major barriers towards the advancement of morphing
were identified. These included insufficient authority and compactness of actuators,
inadequate robustness of sensors, and insufficient understanding of associated phe-
nomena. Technology roadmaps were prepared to address technical challenges such
as actuators, design tools, control approaches, electronics, and integrated hardware
products. Smart materials were viewed as the foundation of the morphing project;
focused research activities were undertaken towards the application of smart adap-
tive materials and structures in aerospace systems.

For example, vibration control of a flexible structure can be carried using one
of three approaches, namely passive, active, and semi-active controls. Applications
include: automobiles (in the chassis from the engine and tires), helicopters (in the
airframe, rotor-induced), aircraft (in the airframe, engine-induced and due to gust),
and ships (in the cabin, induced by marine engine and waves). In a passive approach,
dissipation mechanisms such as viscous dampers, frictional dampers, and composite
damping are introduced though off-line design techniques and remain invariant with
operating environment. Since this is a fixed design approach, the damping will not
be optimal when the operating conditions change. In an active vibration control
system, force inputs from actuators are used to suppress vibration based on online
measurements from sensors. The controllers provide input signals to actuators to
minimize a performance function, such as a weighted sum of vibration amplitudes,
at selected stations. The advantage of an active system over a passive system is that
it can adapt to system changes and is expected to be more effective in controlling
vibration. However, the controller is modeled on the basis of an approximate model
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ers attached. (b) Schematic of actua-
tors, sensors and feedback loop, from
Ref. [111].

as a discretized representation consisting of a few key degrees of freedom. Hence, it
may sometimes result in undesirable spillover problems in which the structure could
get excited due to the interaction between the controlled and uncontrolled modes
(residual or un-modeled modes). Additionally, there can be uncertainties in struc-
tural parameters and external disturbances, which can further complicate vibration
control. In some problems, there is a merit of combining the two approaches of
active feedback system and adaptable energy dissipation. In this approach, damping
and stiffness characteristics are varied according to the control commands. Such an
approach is expected to have fewer spillover problems.

1.9.1 Space Systems

Many of the early developments in smart structures technology were driven by
space applications. One of the key applications in aerospace systems has been active
vibration control, especially of large, lightweight truss structures. Because of their
high specific actuation energy, compactness, and moderate field requirements, smart
material actuators appeared appropriate for space applications. Major drawbacks
were the lack of a database of material characteristics, inadequate understanding
of material behavior and modeling, structural integrity and reliability issues, and
insufficient stroke of actuators. Pioneering work on the modeling of smart structures
was carried out by Forward [111], Bailey and Hubbard [112], and Crawley and de
Luis [113]. The primary goal of these studies was to sense and control dynamic
strains caused by structural vibrations using piezoelectric devices. This approach
was sometimes referred to as “electronic damping control.”

Forward [111] carried out an experimental investigation of actively controlling
the damping of two closely-spaced bending modes in an end-supported cylindrical
mast using four pairs of co-located piezoceramic plate elements (Fig. 1.16). Four
piezoceramics were used as sensors while other four acted as actuators. Despite the
proximity of modal frequencies (33.85 and 34.12 Hz), a decrease of over 30 dB in the
peak vibration amplitude was demonstrated. Bailey and Hubbard [112] implemented
an electronic damping control in the first bending mode of a cantilevered beam
using distributed piezoelectric polymer film (PVF2). Through an application of the
distributed-parameter control theory, a significant augmentation of damping from
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the baseline value (inherent material damping) was demonstrated experimentally
(double for large vibration amplitude and 40 times for small amplitude). Also, a
consistent beam model with induced strain actuation was formulated.

Crawley and de Luis [113] formulated a systematic model of a beam with induced
strain actuation with both surface-bonded and embedded segmented-piezoelectric
actuators including the shear lag effect of the finite thickness bond layer. Both bend-
ing and extension of substructure was considered. The optimal spanwise location of
piezoelectric actuators to minimize response of a selected mode was predicted to
occur be at regions of high average strains, away from areas of zero strains. Also, the
justification of segmented actuation over continuous–over-the-length actuation to
control the dynamic response of flexible structure was pointed out. For the selection
of piezoelectric material to achieve a high effectiveness in actuation, the important
factors were identified as maximum free strain, high modulus of elasticity, and large
piezoelectric coefficient (d31). To validate the analytical model, three cantilevered
beams were built: an aluminum beam with four pairs (8 elements) of surface bonded
actuators (G-1195), a glass/epoxy beam (non-conducting) with two pairs of embed-
ded actuators, and a graphite/epoxy beam with one pair of embedded actuators
(insulated with Kapton film). The predicted resonance response of beams for the
first two modes compared well with test data. Further, even though the embedded
actuators reduced the ultimate strength of the laminate by 20%, there was very little
effect on the global stiffness of the beam. Hanagud et al. [114] and Baz and Poh [115]
developed numerical simulations for a cantilevered elastic beam with surface-bonded
piezoelectric actuators and demonstrated the effectiveness of closed-loop adaptive
systems to actively control structural vibrations (vibration amplitudes).

The shunted piezoelectric damping concept was initially introduced by Forward
[116] and later expanded by Hagood and Crawley [117] to add damping to a specific
mode of vibration. This concept is also referred to as passive electronic damping. It
is implemented by suitably matching the mechanical and electrical impedances and
tuning the electrical circuit to the desired frequency. If damping is to be introduced
in more than one mode, then several shunted piezoelectric damping circuits are
needed, respectively one for each mode.

In addition to active control of the vibration of large space structures, appli-
cations for space systems include adaptive geometric truss configuration, posi-
tion pointing of telescopes and mirrors, and structural-integrity monitoring and
condition-based maintenance. Large space structures consist of multi-member
lightweight flexible trusses as sub-structures for the support of precision equip-
ment to carry out various space related missions. The dimensions of many of these
space structures such as the space station may range up to 100 meters, as shown
in Fig. 1.17 [118]. These structures consist of a large number of closely-spaced low
frequency natural modes that continually change with changing payload. To achieve
a high degree of performance due to changing external environments (such as ther-
mal gradients) and internal disturbances (such as loose joints), it appeared attractive
to incorporate compact smart material actuators at discrete locations to adaptively
control the geometry, stiffness, and damping of truss members. The goal was to
control both the rigid body and the elastic deformations of large precision space
structures using an array of distributed compact actuators, sensors, and processor
networks, in conjunction with feedback control strategies. In fact, the application of
compact lightweight actuators in large space structures pioneered the area of smart
structures in the late 1980s and early 1990s [119, 120, 121].
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Figure 1.17. Example of a system assembled in space, from Ref. [118].

Using a distributed network of lightweight, compact smart material actuators
and sensors, the structural efficiency and performance, such as the pointing accuracy,
of a large space antenna could be enhanced. The application of a large number of
piezoelectric actuators to actively control a space structure to meet the precision
requirements of mirror pointing was first reported in 1974 [122]. Sato et al. [123]
demonstrated a 1-D compact deformable mirror control using multilayered PVDF
films. Early efforts were focused on the development of basic technology to actively
control the damping and stiffness of space structures using piezoelectric-type mate-
rials and other actuators [124, 125, 126, 127, 128]. At the Jet Propulsion Laboratory,
two active space-truss model structures were built, incorporating active load-carrying
truss members using piezoceramic actuators.

Fanson et al. [129] successfully carried out precision control of a truss in the
laboratory. The truss contains two active piezoelectric struts, and each strut has a
collocated displacement and force feedback. The objective of the control strategy
was rejection of disturbances in a precision interferometer due to onboard machinery
in a spacecraft. Using the two strut-closed loop responses, both the first and second
structural-modes response was reduced by 40 dB.

Deployable space structures such as space antennas often undergo large con-
trolled kinematic changes from an initially compact configuration to a final geomet-
rically expanded configuration [130]. These structures normally have the capability
to adjust the length of individual truss members, to achieve the final compatible
configuration and/or have the capability to adjust axial preloads in individual truss
members, to alleviate undesirable vibratory motions and stresses. The variable geom-
etry (VG) adaptive truss consists of a repetition of an octahedral truss module in
which the lengths of some of the truss members can be continuously adjusted using
actuators. For the structure to be adaptive, the necessary condition for a statically
determinate truss is M − 3J + 6 = 0, where M is the number of truss members and J
is the number of joints. This provides a tool for deducing the topological construction
of an adaptive truss.
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Figure 1.18. The Sandia Gamma Truss
Controlled Structure Testbed, from Ref.
[135].

Pyrotechnic shock-release mechanisms are quite prevalent in the design of space-
craft. Up to 1984, about 15% of space missions experienced some type of shock
failures that resulted in the aborting of half of the missions. SMA appears to be a
natural replacement for pyrotechnics, which can be used to develop compact, grad-
ual release mechanisms for satellites [131]. SMA based release devices such as Micro
Sep-Nut and QWKNUT were developed for micro-satellites. In both devices, the
active members were initially deformed (detwinned), and upon heat activation, their
shapes were recovered due to shape memory effect. Another application of the SMA
wire-actuated stepper motor for the orientation of solar flaps in a spacecraft was suc-
cessfully demonstrated [131]. An identical effort was carried out by NASA Goddard
and Lockheed Martin, called the shape memory alloy thermal tailoring experiment
(SMATTE) [132]. It demonstrated that a panel can achieve bistable shape via actu-
ation of an SMA foil attached to only one surface of the panel. This could facilitate
tailoring of the shape of spacecraft antennas. Hartl and Lagoudas [132] also identified
many more applications of SMAs in spacecraft.

To minimize the possibility of tensile stress in piezoceramic elements, the active
members were preloaded with compressive stress. Fanson et al. [133] and Chen [134]
successfully demonstrated active shape control and active damping control, respec-
tively using digital control and analogue control feedback schemes. At Sandia
National Laboratory, a space truss model was built, which incorporated surface-
bonded piezoceramic actuators in outer truss elements in conjunction with collocated
piezoelectric polymer film sensors. Peterson et al. [135] successfully demonstrated
active shape control of a truss (Fig. 1.18). Using a realistic space-erectable truss
structure, Salama et al. [136] demonstrated the ability of a limited number of actu-
ator/sensor pairs to achieve the desired shape correction with good accuracy. In a
few cases, micron-level nonlinearities, were observed in the truss behavior, which
could be corrected adaptively by the active members to the desired degree of accu-
racy, Hom et al. [137] examined an adaptive deformable mirror using distributed
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Figure 1.19. Deformable mirror actuated by array of electrostrictive stacks, from Ref. [137].

multilayered electrostrictive actuators. A fully coupled analysis simulating the non-
linear, electromechanical behavior of the actuators and a finite element model of
the continuous mirrored face sheet were developed to estimate the system level per-
formance of the deformable mirror, and the commanded voltages required. Each
electrostrictive stack consisted of 425 layers of PMN sandwiched between alternating
positive and negative electrodes using a co-fired processing, and 21 actuators were
used to adaptively control the mirror-face sheet shown in Fig. 1.19.

Inflatable space structures such as solar antennas and optical mirrors are sub-
jected to high vibrations caused by changing external environment (direct sunlight),
impacts with space debris, time-varying guiding force, and transient states during
inflation. Control of the vibration and shape of space structures is critical to their
performance. Because of their extremely flexible, lightweight, and high damping
properties, these inflatable structures pose problems to control their vibration. Park
et al. [138] used PVDF films as both actuators and sensors to control vibration of an
inflated structure, and showed promising results. If the actuators and sensors are not
placed judiciously, it can lead to a loss of observability and controllability. Jha and
Inman [139] carried out a study to find the optimal sizes and placements of piezo-
electric actuators and sensors for an inflated torus using a genetic algorithm. Using
a cumulative performance index for all the controlled and observed modes, optimal
design solutions to suppress vibration were obtained. Attenuation of vibration was
successfully demonstrated using five optimal actuators and five optimal sensors.

Martin and Main [140] used a noncontact electric-gun actuation of a bimorph
mirror structure composed of two polyvinylidene flouride (PVDF) layers to induce
controlled bending strain. The charge was applied to the PVDF by controlling the
potential of a nickel-copper electrode (reflecting surface) on one side and subjecting
the opposite side of the thin film mirror to an electron flux. Sufficient actuation
authority of thin film mirror was demonstrated (deflection of 1/2 cm in a 10 cm long
mirror). An electron gun provided actuation capability over a discrete area in a
mirror. However, PVDF does not have the capability to sustain changing temper-
ature environment in space. Andoh et al. [141] examined active shape control of
distributed-reflector antennas using a limited number of discrete actuators. To opti-
mize the actuator locations, reference input was represented in terms of eigenfunc-
tions and maximization of controllability was performed through the maximization
of singular values of the controllability matrix. A stereo photogrammetry system
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was successfully used to measure the steady-state deflection field of a doubly curved
reflector antenna prototype. Gaudenzi and Giarda [142] carried out a feasibility study
for the vibration control of the SILEX optical payload installed on the European
ARTEMIS telecommunication satellite using piezoceramic strain actuators bonded
on the surface of the support structure. The goal was to achieve desired pointing
accuracy (within a few microradians) in the presence of microvibration disturbances.
The authors applied a finite element analysis and showed a significant improvement
in system performance using a full-state feedback–linear quadratic regulator.

Acoustic levels inside fairings of a space vehicle can be excessive (over 140 dB)
during the initial seconds of launch. Such a vibroacoustic environment can dam-
age the payload, degrading the performance of instrumentation. Typically, acoustic
blankets are attached to fairings to minimize the impact of these acoustics. Not only
does this result in a weight penalty, but such passive techniques are also less effective
at low frequency. The Air Force Research Laboratory initiated a study in the late
1990s to apply active structural-acoustic control to mitigate interior noise over 0-300
Hz bandwidth in fairings. Lane et al. [143, 144] developed fully coupled structural-
acoustic models of a composite fairing using conventional piezoelectric actuators
and single-crystal piezoelectric actuators. Simulation results using full-state feed-
back control showed a reduction of about 10 dB in the internal acoustics response
for the complete frequency range.

Niezrecki and Cudney [145] carried out a feasibility study to control inter-
nal acoustics in a launch vehicle using piezoelectric actuators. To demonstrate the
concept, the internal acoustic response of a closed simply-supported cylinder was
investigated with PZT actuation at frequencies between 35 and 400 Hz. The sound
pressure levels at the acoustic resonant frequencies were only mildly reduced. This
study showed that PZT actuators do not have the ability to control the payload-
fairing internal acoustics below about 400 Hz.

A health monitoring system to monitor the thermal and structural condition of
a satellite with a view to reducing the life cycle cost and increasing the reliability
of the system was investigated using FBG (fiber Bragg grating) sensors. Damage
due to thermal stress was successfully detected in a typical satellite structure. For
this, three critical technologies were developed that included: an embeddable optical
fiber connector for composite laminated structure, a FBG sensor system to measure
strain and temperature, and a damage detection algorithm.

The Air Force Research Laboratory (AFRL) in collaboration with other federal
agencies (NASA, DARPA and Balistic Missile Defense Organization (BMDO)),
industry and academia, demonstrated the potential of smart structures technology
in three space applications: (i) vibration isolation, suppression, and steering (VISS),
(ii) space experiment and mid-deck active control experiment (MACE) and (iii)
satellite ultra-quiet isolation technology experiment (SUITE) [146]. The goal of
VISS was to demonstrate the vibration isolation of an optical system from broad-
base disturbances by a minimum of 20 dB over 1–200 Hz for a space telescope.
It was the first successful space-related demonstration of active-vibration isolation
using a hexapod Stewart platform. The SUITE consisted of a hexapod assembly of
six hybrid active/passive struts involving piezostacks to provide vibration isolation
as well as six degrees of controlled motion of the platform.

The objective of the MACE program was to demonstrate adaptive structural
control in a micro-gravity space environment. The follow-up to the VISS pro-
gram was the miniature vibration isolation system (MVIS) for space applications
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incorporating piezoelectric actuators, hexapod mounts, microelectronics and Micro
Electro Mechanical System (MEMS) sensors.

Adaptive Reflector: Orbital structures are subject to harsh temperature cycles
in the range of ±150◦C. For a lightweight reflector, holding the fixed geom-
etry contour is an enormously challenging task. Increasing stiffness results in
weight penalty. Monner and Breitbach [147] described the development of
an active satellite structure for shape control with piezoceramic actuators and
sensors.

Adaptive Satellite Mirror: High-resolution interferometric optical and infrared
astronomical instruments for space missions require optical path length accu-
racy in the order of a few nanometers in mirrors of structural dimension of
several meters. This puts extreme requirements on structural deformations
under static and dynamic loads. Durr et al. [148, 149] evaluated two different
structural designs in an adaptive mirror, one using carbon fiber – reinforced
plastics and another using carbon fiber reinforced ceramics, in conjunction
with piezoceramic actuators for shape control. The second design was unable
to meet the requirements satisfactorily. This study was a part of the German
ADAPTRONIK effort.

These are some sample applications to space systems. Many of these studies
have demonstrated the potential of smart structures technology in space systems to
enhance performance, improve payload, increase structural integrity, and increase
mission adaptability. Before this technology gains wide acceptance in space systems,
it is important to demonstrate system reliability and robustness.

1.9.2 Fixed-Wing Aircraft

For fixed-wing aircraft, applications include active vibration control, gust allevi-
ation, wing-flutter stability augmentation, increasing static divergence, increasing
panel flutter stability, stabilizing tail buffeting, interior noise control, shape control
for performance enhancement, and structural integrity monitoring. Applications of
smart structures technology in fixed-wing aircraft are envisaged to help increase the
payload or alternately enhance range and endurance, allow condition-based mainte-
nance encompassing damage detection, mitigation and repair and thereby increase
system reliability; minimize downtime and improve operating cost, enhance passen-
ger and crew comfort by reducing cabin vibration and noise, increase the structural
life of components by reducing vibratory loads and response due to buffet, panel
flutter, and gust response; increase position pointing and accuracy of weapons (i.e.,
airborne missiles) in military aircraft; increase performance, maneuverability, and
flight envelope by delaying stall and compressibility effects through active shape
and twist control, and increase speed by stabilizing wing flutter. Before these smart
concepts may gain wide acceptance in production aircraft, there are many issues
that need to be addressed, which include inadequate materials and devices char-
acterization and documentation, lack of designer familiarity with this technology;
inadequate understanding of materials under combined electrical, thermal, mechan-
ical, and aerodynamic loading, and insufficient information on the system-weight
and cost penalties, reliability, and serviceability of such devices. Other concerns are
power requirements and conditioning, the robustness of adaptive control strategies,
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and data acquisition and processing. There is no doubt that airplanes with fixed-
geometry wings result in suboptimal response for a wide range of flight conditions.
To overcome this problem, a variable-geometry adaptive wing that includes wing
warping, camber shaping, leading and trailing edge shape control, variable sweep,
and spanwise twist distribution may be needed for different flight modes. For exam-
ple, to obtain a high lift coefficient in low-speed flight, an airfoil shape with large
camber and leading-edge radius and thickness are needed. On the other hand, in
high-speed flight, low camber, leading edge radius, and thickness are needed to
reduce drag. At flow conditions with high angle-of-attack, it may be desirable to stall
the inboard sections of the wing as compared to the outboard sections where the
ailerons are located. Induced washout twist (lower angles of attack at the tip) using
smart actuators may be beneficial. Spanwise redistribution of lift will also be ben-
eficial from a structural point of view (lower root bending moments). Wing shape
control can also be used to reduce drag. Barbarino et al. [150] used SMA actua-
tors to induce a bump on an airfoil profile to reduce transonic drag. This concept
can help to maximize the aerodynamic efficiency in different flight conditions. Note
that the very first application of smart materials in fixed-wing aircraft took place in
1971 when the hydraulic tubing coupling used in the F-14 was replaced with SMA
coupling [151].

Early applications in fixed-wing aircraft include active control of wing flutter,
increasing static divergence, panel flutter control, and interior structure-borne noise
control. Panel flutter is the dynamic aeroelastic instability of a thin skin panel of a
flight vehicle exposed to the supersonic flow on one of its surfaces, and it results
in limit-cycle oscillations. A small amount of damping can often delay the onset of
this instability. Hajela and Glowasky [152] conducted a parametric study to control
panel flutter using piezoelectric sheet actuators in conjunction with an optimization
technique. They determined the best panel configuration and actuator thickness for
both structural weight reduction and maximum flutter speed. Using numerical sim-
ulation, Frampton et al. [153] examined active control of panel flutter with surface-
bonded piezoelectric sheets that are used both as actuators and sensing elements.
It was shown that with closed-loop control, a significant increase of flutter-dynamic
pressure with piezoelectric actuation is possible. Through analysis, Scott and Weis-
shaar [154] demonstrated the control of panel flutter actively, using embedded piezo-
electric sheet actuators, (PZT and PVDF) as well as passively using shape memory
alloy actuators (Nitinol) by stiffness variation and recovery forces. Suleman and
Venkayya [155] carried out flutter analysis of composite panels with piezoelectric
actuators/sensors. An active control of panel flutter using a smart material patch can
be “retrofit solution” on an operational aircraft.

Two major aeroelastic instabilities of an airplane wing are static divergence and
bending-torsion flutter. Using a numerical study, Ehlers and Weisshaar [156] exam-
ined static aeroelastic (such as lift effectiveness, divergence and roll effectiveness)
control of an airplane wing using embedded sheets of piezoelectric actuators in an
idealized laminated-composite wing structure (box beam). The amount of lift change
due to induced strain actuation was found to be small because of constraints due
to limited piezoelectric stiffness (low), low electromechanical coupling, and limited
maximum applied field. It was pointed out that available active materials fall short
of the actuation authority expected from them for active divergence control of a full-
scale wing. Lazarus and Crawley [157] examined aeroelastic stability via active strain
actuation using PZT patches, both analytically as well as through low-speed wind
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Figure 1.20. Schematic of strain-actuated active aeroelastic wing, from Ref. [159].

tunnel tests on a uniform cantilevered wing. A typical high-performance wing was
built out of a graphite epoxy laminate with three banks of piezoceramic actuators
distributed over about 70% of its surface. The three tip displacement measurements
were used in a feedback controller implemented in a reduced-order 14-state Linear
Quadratic Guassian (LQG) controller. The control objective was gust disturbance
alleviation and flutter suppression. Using induced strain actuation, the flutter speed
was increased by 11%. The Root Mean Square (RMS) response, covering a band-
width of 100 Hz, was reduced by 8 dB.

Nam et al. [158] investigated active flutter suppression of a composite plate wing
with segmented piezoelectric sheet actuators bonded on its top and bottom surfaces.
The optimization methodology was applied to determine the best size (length, width
and thickness) and placement of piezo actuators for flutter suppression. This numer-
ical study demonstrated a substantial increase in flutter speed (over 50%) as well
as savings in control effort with optimal actuation. Lin, Crawley and Heeg [159]
demonstrated the use of piezoelectric actuation (induced strain) technology for flut-
ter suppression and gust alleviation on a model wing, shown in Fig. 1.20. Open and
closed-loop tests were carried out in NASA’s Transonic Dynamics Tunnel. Signif-
icant vibration suppression and load alleviation were demonstrated, reducing the
power-spectral density of response of first mode by an order of magnitude. The
flutter dynamic pressure was increased by 12%. The actuation authority of piezo-
electric actuators was identified as one of the key barriers to this technology’s is for
implementation in full-scale systems.

Suleman et al. [160] carried out wind tunnel testing on a wing model with
adaptive-stressed skin using embedded PZT sheet actuators. There were two
ailerons, pivoted about their 30% chord point, which were actuated in phase with
each other by two servos located outside of the wing. Thus using an adaptive skin, the
control authority of the ailerons was supplemented. Another problem that has been
examined using smart actuation is tail buffeting. It is an aerodynamically forced vibra-
tion of the vertical or horizontal tail surfaces caused by impinging of the unsteady
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shedding of wake from the wings and fuselage components. This problem can become
a serious issue at high angle of attack, roll, and/or yaw flights.

To achieve optimum performance from a wing under varying flow environments,
it is imperative to morph its cross-sectional shape (airfoil profile) based on the flow
condition. Airfoils are normally designed for cruise condition and they perform sub-
optimally at other flight conditions such as takeoff, landing, climb, descent, and other
flight maneuvers. The adaptation of airfoil profile can be achieved in two ways: struc-
tural and aerodynamic. In the first approach, the physical airfoil profile is altered,
resulting in a reconfigurable wing. Such a technology can increase aerodynamic effi-
ciency, maneuverability, and control authority, but it may result in a weight penalty,
additional cost, and structural restraints. A major barrier has been the unavailability
of compact large-stroke actuators. Strelec et al. [161] used the two-way effect in
SMA wires to develop a reconfigurable wing. The SMA wires are attached to points
on the inside of the airfoil (NACA 0012) and the airfoil profile was altered upon
heating and cooling, thereby achieving an increase in lift-to-drag ratio at subsonic
flow conditions. A wind tunnel model was built and test results demonstrated the
potential of this concept. A 9% increase in lift at a constant angle of attack of 5◦

was measured in the tunnel. Rossi et al. [162] reduced the drag of a fighter aircraft
wing in the transonic regime by altering the airfoil profile using a magnetostrictive
adaptive truss for a wing rib. In the second approach, aerodynamic shape control
is achieved by a virtual change of shape. The flow is affected using either synthetic
jets or circulation control. For morphing of the wing, one of the key challenges
is a flexible skin [163]. For an application where camber change is desired, strain
requirements are modest, and stretched-elastomers with fiber reinforcement may be
adequate. On the other hand, large area morphing applications such as variable span,
chord, or sweep, require a flexible skin that undergoes large in-plane strain with low
actuation force. Simultaneously, the skin should be capable of carrying large out-of-
plane aerodynamic loads. One possible solution includes a stretchable elastomeric
face sheet with fiber reinforcement supported by a deformable under-structure. A
small panel size is preferred to limit the unsupported area and maximum out-of-
plane deflection. High face-sheet pretension is needed to alleviate wrinkling during
morphing, but this also increases the actuation force requirement. The behavior and
reliability of the elastomeric face sheet in an operational environment is a major
issue. Shape memory polymer flexible skins that can be soft during morphing and
stiff while bearing loads are attractive [164]. Other material considerations such as
toughness; resistance to erosion, fatigue, and weather, and repeatable recovery of
high strain are also important for practical applications.

Integrated vehicle health management (IVHM) is now recognized by commer-
cial and military aircraft users of both new and aging fleets as a way of reducing vehi-
cles’ the total life-cycle cost despite IVHM’s higher initial acquisition cost. IVHM
not only increases flight safety, system reliability, and efficiency, but also results in
savings in operational and support (O&S) cost as well as decreasing the cost and time
of inspection and maintenance and extending the life of an aging aircraft. A key ele-
ment of IVHM is structural health monitoring (SHM) of the system involving a very
large number of sensors at appropriate locations, data processing and interpretation
techniques, and automated filteration of false signals. The prognostics methodology
monitors the usage and damage, enabling condition-based inspection and mainte-
nance. Even though IVHM originated with military aircraft, it was subsequently
implemented in commercial aircraft. Smart material sensors can play a major role in
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Figure 1.21. Active microstrip patch
antenna, adapted from Kiely et al. [166].

IVHM implementation. For example, Boeing used smart patch technology consist-
ing of an array of piezoelectric sensors and actuators to assess bond-line integrity,
especially in areas that are inaccessible to conventional NDI (non-destructive inspec-
tion) methods [165]. Using piezoelectric actuators, controlled diagnostic signals are
generated and collected using built in sensors and analyzed using signal processing
techniques to detect faults.

Multifunctional structures can undertake multiple roles in addition to load car-
rying capability, such as radio frequency antennas, signal processors, and sensors.
A conformal structure is a smart skin. A military aircraft carries a large number of
antennas: the F-18 has 66 antenna apertures located at 37 sites covering a frequency
band from 200 MHz to 18 GHz. These antenna apertures, located at a myriad of
sites, can degrade structural integrity. Also, these antennas require local structural
reinforcements, resulting in weight and drag penalties as well as increased main-
tenance cost and vehicle signature. Conformal-load carrying antennas can provide
mission flexibility, reduced drag, lower weight penalty, and low observability. Candi-
date sites for smart antennas (skin panels) in aircraft are: the dorsal deck, centerline,
weapon bay door, front landing gear bay door, outer wing, radome, forward wing,
wing root lower surface, trailing-edge flaps, and vertical tail. Typically, the mechan-
ical vibration spectrum has a bandwidth of 10-2000 Hz and amplitude could be
as large as a few millimeters. On the other hand, the transmission frequencies of
antennas are normally above 3 GHz and deformations less than a millimeter. High
reliability, structural integrity, and survivability of embedded devices are key fac-
tors for successful operation of these antennas. Kiely et al. [166] carried out the
design, modeling and testing of adaptive materials – based smart electromagnetic
antennas. Four proof-of-concept designs were considered, which included an active
aperture PVDF antenna, an active aperture PZT antenna, an active micro-strip patch
antenna, and an electrically active – conformal patch antenna (Fig. 1.21). The design
objective of these antennas was to achieve the multifunctional capability of vari-
able scanning, variable focusing, and variable resonance frequency. High-precision
reflector surfaces for radio frequency antennas and the resulting radiation patterns
were systematically evaluated.

To exploit unsteady aerodynamics, the key is the development and integration of
innovative, compact, and lightweight actuators and sensors, as well as novel control
strategies. Many dynamic actuation concepts for application to active flow control
are investigated, which include synthetic jets, pulsed jets, active control surfaces, and
plasma jets. The synthetic jet consists of vibrating a thin member in a cavity in an
airfoil, pumping fluid in and out of the orifice (jet-like flow), resulting in a zero–net-
mass flux. Synthetic jets are found to be effective to control boundary layer mixing
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and flow separation [167]. Compact smart material actuators are key to the success-
ful operation of synthetic jets. Major design factors are: diaphragm motion, tuning
of cavity resonance frequency with diaphragm frequency, cavity size and shape, and
membrane stiffness. Synthetic jets have the potential of active control of separation
and turbulence in boundary layers, mixing enhancement and thrust vectoring. Piezo-
electric disks used as oscillating diaphragms offer the potential for lightweight, high
bandwidth, and efficient synthetic jets to cause volumetric displacement within a fluid
filled cavity [168, 169, 170]. As the piezoelectric actuates, it alternately draws in and
blows out the ambient fluid in the cavity. Mane et al. [171] used piezoelectric compos-
ite diaphragms (bimorph and THUNDER) to develop synthetic jets. This provides
structural stiffness and durability to the system. They systematically examined the
effect of cavity size (height and orifice diameter) on synthetic jet peak velocities,
numerically and experimentally. With bimorph actuation, only orifice diameter was
found to be important. Schaeffler et al. [172] developed several synthetic jet designs
with the goal of integrating them into an airfoil for wind tunnel testing. Tests have
shown a lot of potential for these devices.

“Active flow control (AFC),” also known as “adaptive flow control,” or “micro-
adaptive flow control,” in an aircraft appears to show promise of enhancing perfor-
mance and capability and reducing lifecycle cost through the application of smart
structures technology [173, 174]. Active flow control introduces small amounts of
energy locally in an adaptive manner to attempt non-local changes in the flow field
with possible performance gains. It is an interdisciplinary field involving fluid dynam-
ics, material science, and structural mechanics and control theory. Targeted goals
could include: noise control, flutter and gust alleviation, performance enhancement,
increased maneuverability, damage tolerance and increased safety, and improved
reliability. However, active-flow control devices add complexity to the design and
increase life cycle cost (acquisition and operational cost). The goal should be to
develop active flow control devices that are easy to build, compact, inexpensive,
and require low power to operate. The basic idea is to cause local flow control,
and thereby result in delay in flow separation, viscous drag reduction, and control
of shock/boundary layer interaction, as well as transition to turbulent state and
noise-generating shear layer.

Compact smart actuation is being investigated in the development of microsys-
tems, especially micro-aerial vehicles. Towards the development of an insect mimick-
ing flapping wing system, Nguyen et al. [175] used piezoceramic unimorph actuators.

Since the 1990s, DARPA has played a leading role towards the development of
smart structures technology, especially towards the application of smart structures
technology in fixed-wing and rotary-wing systems [176]. DARPA categorized these
programs as Smart Materials Demonstration Programs. Other groups such as DLR
(Germany), the Air Force Research Laboratory (AFRL), and NASA also had their
own major programs in aeronautical systems.

Smart Wing Program: This program, consisting of two phases, was initiated by
DARPA in 1995 to develop smart material–based control surfaces that could
provide improved aerodynamic and aeroelastic performance [177] (Fig. 1.22).
The work was carried out by a team led by Northrop Grumman. In first phase
(1995–99), two issues were investigated: active wing twist control using SMA
torque tubes and control of hingeless smooth contoured trailing-edge surfaces
using SMA wires. To demonstrate the concept, two 16% scale models of a
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Figure 1.22. Wind tunnel model scales and test parameters for Phases 1 and 2, from Ref.
[177].

typical fighter wing (wing semi-span 3.1 ft, wing area 5.92 ft2) were fabricated
and tested in the NASA Langley Transonic Dynamics Tunnel (TDT) (16 ft
diameter test section). A tip twist from 1.4◦ to 3.6◦ was achieved in the wind
tunnel tests, with a maximum increase of lift of 11.5%. Tests demonstrated
the effectiveness of the contoured, hingeless control surfaces with embedded
actuation in comparison to conventional hinged design. A major limitation of
this methodology was a low bandwidth (less than 1 Hz) with SMA actuation.

In the second phase (1997–2001), a 30% scale full-span model represen-
tative of unmanned combat air vehicle (UCAV) (wing span 9.2 ft, wing area
34.3 ft2 and maximum wing thickness 3.4 in) was built for an active smart
control surface on the right wing and a conventional control surface on the
left wing (Fig. 1.23). The hingeless control system concept and the distributed
deflections and vertical forces were created by a transmission technique called
eccentuation. To reduce the actuation requirement, the flexible skin-flexcore
trailing-edge surface was designed, which consisted of three parts: elastomeric
outer skin, flexible honeycomb and a central fiberglass-leaf spring. In the first
test in the NASA Langley Transonic Dynamics Tunnel, SMA-actuated hin-
geless, smoothly contoured, flexible leading and trailing-edge control surfaces
evaluated for Mach numbers varying from 0.3 to 0.8. This test demonstrated
the effectiveness of leading control surface to compensate for the loss of
aileron effectiveness at high dynamic pressures.

In the second test, the desired combination of bending and twisting defor-
mation of trailing-edge control surface was achieved by two eccentuators
(Fig. 1.24) actuated respectively with piezoelectric-based ultrasonic motors
(SPL-801 by Sensei Corp.). This test demonstrated spanwise and chordwise
shape control with smart trailing-edge control surface at deflection rates
as high as 80◦ per second and a maximum deflection of 20◦. This Mach-
scale aeroelastic model was quite heavily instrumented, consisting of 160
pressure transducers, 16 fiber-optic strain guages, 10 accelerometers and 6
inclinometers. Also, this phase demonstrated performance enhancements in
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Figure 1.23. Phase 2 wind tunnel model structural layout, from Ref. [177].

terms of increased rolling and pitching moments and lower control surface
deflections. Several key issues were identified, which needed to be addressed
before the smart wing concept could be implemented in an operational vehi-
cle. These included: power supplies, cost, the fatigue life of the piezoelec-
tric motor (friction-based), system reliability, and overall system integration.
More details about this program including design, fabrication, wind tunnel
testing, performance evaluation, and power requirement can be found in the
literature [178, 179, 180, 181].

AAW: The Active Aeroelastic Wing program was envisioned to be a multidis-
ciplinary approach that could integrate wing flexibility, a distributed actua-
tion system, and aeroelasic couplings in order to simultaneously control the
camber and twist of a thin high–aspect ratio wing. The program was led by
Boeing Phantom Works and was supported by AFRL and NASA Dryden
(1984–93). The goal was to enhance maneuver performance and minimize
induced drag by controlling the lift distribution of a lightweight flexible wing.
Also, it could lead to a more efficient structural design. The technology was
flight demonstrated on an F/A-18 wing using integrated actuators and sensors.
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Figure 1.24. Trailing edge segment design incorporating two eccentuators, from Ref. [177].
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Figure 1.25. 1/6-scale F/A-18 Model
Mounted in the Transonic Dynamics
Tunnel, from Ref. [185].

The wings were modified with additional actuators to differentially control
the split leading-edge flaps, and had thinner skins at the outer wing panels to
twist the wing up to five degrees. In this case, in addition to the traditional
trailing-edge ailerons, the leading and trailing edge flaps are used to provide
aerodynamic forces to twist or warp the wing. In two phases of the project, 80
flights were successfully flown, covering a number of subsonic and supersonic
flight conditions.

ENABLE (Evaluation of New Actuators in Buffet Loads Environment): This
program was led by US Air Force (USAF) with participation from Boeing,
NASA, Australia and Canada. High performance aircraft at high angle of
attack emanates strong vortices from wing leading edge extensions, which
often burst and immerse the vertical tail and fin into their wakes. These
leading edge vortices (LEX) can cause enormous buffet loads (unsteady dif-
ferential pressures) on the tail, which can cause premature fatigue to the
airframe structure and also can increase maintenance cost (inspection and
repair cost). Extensive flight and wind tunnel tests were carried out to quan-
tify buffet loads on the vertical tail of the high performance aircraft, the F-15,
F/A-18 and F-22 [182, 183, 184]. Sometimes, these vortices, in combination
with other vortices emanating from the engine inlets and airframe, can cause
even more severe dynamic loads on tail surfaces. In order to alleviate buffet
loads or the structural response (buffeting) of the fins, a variety of techniques
have been attempted. One technique is to actively control the fins’ structural
response using piezoelectric actuators. In early studies, piezoelectric sheet
elements were surface-mounted on the full-scale fin. Ground tests showed
that these actuators did not have enough authority to suppress buffeting.
The objective of the ENABLE program was to examine the performance of
two embedded sheet actuators: Macro-Fiber Composite (MFC) actuator and
Active Fiber Composite (AFC) actuators. The ground tests using simulated
aerodynamic loads on a full-scale fin showed that both type of actuators satis-
factorily reduced the structural response due to buffet loads. During the wind
tunnel tests (Fig. 1.25), peak values of power spectral–density fluctuations for
tip acceleration due to wing buffeting were reduced by 85% [185]. Two draw-
backs with embedded sheet actuators were pointed out to be the inaccessibility
of actuators in case of any repair and their high voltage (in kV) requirement.

ACROBAT (Actively Controlled Response of Buffet Affected Tail): It was
sponsored by NASA and was carried out jointly by Wright Laboratory and
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Daimler-Chrysler using 1/6th scale model of F/A-18 wing model, which was
built with piezoelectric sheet actuators placed at an angle at its root to cause
bending and torsion deflection. It was tested in the NASA Langley Transonic
Dynamics Tunnel in 1995–96. A single input/single output control resulted
in a significant alleviation of buffet loads over the entire range of-angle of-
attack [186]. To supplement this program, there was an Active Vertical Tail
(AVT) program led by McDonnell Douglas Aerospace to actively reduce
buffet loads in a 5% scale, aeroelastically scaled tail representative of a typical
fighter aircraft. The piezoelectric actuators were attached to the spar to control
the first two bending and first torsion modes. A twin-tail aircraft model was
tested in a low-speed wind tunnel and successful (up to 65%) alleviation of
vibratory peak strain was achieved for a range of flight conditions [187].

German Buffet Suppression Program: Fighter aircraft suffer from severe
dynamic loads when flying at high angles of attack. These loads are caused by
flow fluctuations at the wing or from the bursting of vortices emanating from
the leading edge of the wing or from the fuselage. Using piezoelectric patch
actuators distributed across the surface on a full-scale vertical tail, Suleman
et al. [188] carried out experimental investigation of active suppression of wing
flutter and vertical tail buffet. Wind tunnel tests on simplified wing models
demonstrated a 30% reduction in buffeting attenuation and a 6% increase in
critical flutter speed.

NASA’s Morphing Program: This program was initiated in the early 1990’s by
Langley Research Center and was focused on the development and assess-
ment of advanced technologies to enable efficient, multi-point adaptability
in aerospace vehicles [110]. This encompassed smart materials, nanotechnol-
ogy, adaptive structures, micro flow control, biomimetic devices, structural
optimization, controls, and electronics. The goal was for vehicles to efficiently
adapt to diverse mission scenarios. Major issues were identified: insufficient
understanding of unsteady and nonlinear aerodynamics and their interaction
with actuation, adequately energy-efficient flow-control actuators with suffi-
cient authority, a lack of robust sensors and non-intrusive electronics, a weak
knowledge base on reliability and maintainability issues, and unavailability
of non-traditional design practices to exploit the tailoring of composite cou-
plings, rapid prototyping and new actuation approaches. It was concluded
that interdisciplinary interaction between adaptive structures, smart materi-
als, flow control, and biological systems may provide a fascinating palette for
future innovations in aerospace systems.

Active Interior Noise Control: Major sources of noise in the interior of an aircraft
are: the engine, the turbulent boundary layer, and avionics/air conditioning.
Turboprop engines produce low frequency noise (less than 100 to 500 Hz),
whereas turbofan noise is quite different. The turbulent boundary–layer noise
is generated by unsteady pressure that induces high frequency vibration in the
fuselage structure, which in turn produces a sound field. This noise is random
in nature, with a bandwidth from medium to high frequency (less than 1000
Hz). The third source is the forced-air convection system, especially as used
to cool down avionics and the air conditioning of cabin. While random in
nature, this noise has a narrow frequency band. The level of noise is different
at different stations in the aircraft. For a propeller driven aircraft, the cxci-
tation frequencies are the blade-passage frequency and its higher harmonics.
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The high tonal-noise levels occur at these frequencies. In order to obtain an
acceptable noise level inside the cabin for the comfort of passengers, and
to ensure work-safety in the cabin, passive noise suppression methods are
routinely used. These include cabin linings with high damping or vibration
absorption materials. This helps to reduce low frequency noise, but results
in a significant weight penalty. Smart structures have emerged as a promis-
ing active technique to minimize radiated noise. In active noise control, one
deploys actuators and sensors in conjunction with a controller. There have
been only a few commercial applications of active noise control. Key issues
are: system integration, limitation of control algorithms, limited actuators
authority, and bulkiness of power electronics (amplifiers, controllers and real-
time computing platform) and acquisition cost. An active noise control in the
form of noise cancellation using loudspeakers (located behind the trim pan-
els), called UltraquietTM was used in Dash 8 and Saab 2000. This anti-sound
system works in the low frequency domain. Piezoelectric materials are widely
used as actuators and sensors in such a structure [189]. Such an approach
becomes less effective at high frequencies due to the complexity of the con-
troller and the low actuation authority of the actuators. It appears attractive
to combine both passive and active techniques, where the passive technique
is effective at high frequencies and the active technique becomes effective at
low frequencies. Gentry et al. [190] used this approach in the development of
a smart foam that uses polyurethane foam and PVDF actuators with a con-
troller. Kim and Lee [191, 192] developed piezoelectric smart panels featuring
piezoelectric shunt damping and passive sound-absorbing material. When the
sound impinges on a panel, it starts vibrating and the attached piezoelectric
patch produces electric charge, which is effectively dissipated as heat via an
electric shunt circuit.

Petitjean and Greffe [193] used active trim panels to actively control noise
in an aircraft cabin. An active trim panel consists of a sandwich structure with a
lightweight honeycomb core and outer fiberglass skins with embedded piezoelectric
patches. Exciting panels at high frequency generates acoustics signals that help to
cancel noise at a station. Single frequency sound levels were reduced by 20 to 49 dB.
Because of the large number of actuators and sensors involved, their positioning
in the airframe plays a major role on the overall performance of the active noise-
reduction system. Bohme, Sachau and Breitbach [194] used a cooperative simulated
annealing (COSA) algorithm to minimize noise in a cabin.

1.9.3 Jet Engines

A fixed-geometry engine inlet results in suboptimal response for a wide range of
operational flight conditions (Mach number, altitude, angle of attack, angle-of-slip,
and engine airflow condition). To overcome this problem, variable shape control of
the engine inlet, such as inlet lip blunting and inlet wall shaping, is used. At low
speeds, large inlets with very blunt lips are needed to obtain high inflows without
flow separation, especially during a takeoff condition. On the other hand, at sub-
sonic cruise condition, sharp inlet lips are desired to reduce drag. At supersonic
flight condition, the flow needs to be decelerated to subsonic condition in the inlet,
because a rapid deceleration can result in a substantial loss in pressure and thrust.
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Figure 1.26. Variable geometry chevron
using SMA actuators by Boeing, from
Ref. [132].

Mechanical complexity, weight penalty, acquisition cost, and actuators, authority
and reliability are some of the critical issues for the implementation of smart struc-
tures to build variable-geometry nozzles. Turner et al. [195] carried out fabrication,
benchtop testing, and numerical validation of an adaptive jet-engine chevron con-
cept with embedded prestrained to shape-memory alloy actuators in a composite
laminate. Nitinol ribbons were embedded on one-side of the mid-plane of the com-
posite laminate such that thermal excitation induced bending deflection. During
the fabrication of the laminate using a hot press, an integrated end constraint was
included to restrain the Nitinol at elevated temperature. Satisfactory agreement was
achieved between the predicted and the measured chevron deflection.

Variable Geometry Chevrons (VGC): The objective is to autonomously morph
the shape of chevrons using compact SMA actuators in order to optimize the acous-
tics and performance of a jet engine for multiple flight conditions. One of the goals
is to reduce operational noise during aircraft takeoff and landing conditions. For a
commercial jetliner involving high-bypass ratio turbofan engines, one of the major
sources of noise is the turbulent mixing of the hot jet exhaust, fan stream, and
ambient air. Serrated aerodynamics surfaces, found to reduce shock-cell noise and
located along the trailing edge of jet engine primary and secondary nozzles, are
referred to as chevrons. However, chevrons also result in drag or thrust losses as
they are normally immersed into the fan flow. Crucial challenges involve the harsh
environment of elevated temperature, loads via vibration levels, via high integrity,
lightweight, aerodynamic, and structurally efficient design. With VGC, the surfaces
are morphed using SMA actuators autonomously by heating with exhaust tempera-
ture (Fig. 1.26). They are immersed into the flow during takeoff to lower noise, and
retracted at cruise to reduce thrust losses. This concept was successfully flight tested
on a Boeing 777-300ER with GE-115B engines using 60 Nitinol strip actuators [196].
Hartl et al. [197, 198] carried out the training and thermomechanical characteriza-
tion of nickel rich Nitinol (Ni60Ti) for application in the Boeing VGC. After 50
thermomechanical cycles, the response was found to be quite stable with repeatable
strain up to 1.6% over a wide range of applied stresses.

Webster [199] has examined a similar type of approach for Rolls-Royce engines.
Schiller et al. [200] developed a piezoelectric actuated–liquid-fuel modulation sys-
tem for active combustion control applications. Through a systematic performance
evaluation, a piezoelectric stack actuator was found to be superior for combustion
control due to its compact size, high bandwidth and relatively low cost. It was pos-
sible to achieve a fuel modulation of more than 75% of the mean flow rate and
successfully stabilize a single nozzle kerosene combustor.

The SAMPSON Program (Smart Aircraft and Marine Propulsion System
demONstration (SAMPSON) project) (1997–2000) was carried out to explore
concepts for shape control using smart structures technology for gas turbine engine
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Figure 1.27. F-15 engine inlet used in the
SAMPSON project, from Ref. [176].

inlets for a typical tactical aircraft (F-15 Eagle) and applications for a large-scale
marine propulsion system and a hydrodynamic maneuvering system. A team led by
Boeing carried out this three-year program. Potential envisaged benefits included a
20% increase in range, enhanced maneuverability, and reduced noise signature. The
engine inlet is expected to have a direct impact on the vehicle’s flight performance,
mission effectiveness, and life cycle cost. Fixed inlet geometry cannot provide the
best performance under all flight conditions. For example, at low speed takeoff con-
ditions, large inlets with blunt lips appear suited to cause high inflow without flow
separation. For subsonic cruise flight conditions, sharp inlet lips are needed to reduce
drag as well as radar cross-section (RCS). At a supersonic flight condition, variable
geometry inlets are again needed to reduce losses in pressure recovery and to min-
imize induced drag from rapidly decelerating inlet flow. A full-scale adaptive inlet
(16 ft long, 3.5 ft high and 3 ft wide) of F-15 Eagle aircraft was built using SMA wire
actuators in an antagonistic manner (one SMA cable is set in opposition to another
using SME), and actuated using internal heating to control inlet area, leading edge
blunting, and inlet contour (Fig. 1.27). The SMA actuator concept (consisting of
34 wires/rod actuator) had the capability of up to 20,000 lb of force and 6 inches
of displacement. The concept was flight tested successfully over a range of Mach
numbers. Also, two wind tunnel tests, which were carried out in the NASA Langley
16-ft Transonic Dynamics Tunnel (TDT), demonstrated the desired two-way con-
trol of the inlet cowl and lower lip (extension and retraction). It took 30 seconds to
move the cowl by 9 degrees; however, uniformity of temperatures among wires and
cooling time were major concerns [201, 202]. Additionally, as part of the SAMPSON
project, the use of SMA cables wrapped circumferentially around the aft portion of
the fan cowling of a high-bypass turbine engine to change fan nozzle area was exam-
ined [203]. The high exhaust temperature during takeoff and landing was used to
transform the SMAs into austenite phase, thus providing recovery forces to open the
nozzle to its maximum cross-sectional area. In high-altitude cruise flight conditions,
the exhaust temperature becomes lower, transforming the SMAs into martensite
phase, which allows the nozzle to close. Optimum performance was obtained over a
wide range of flight conditions.

1.9.4 Rotary-Wing Aircraft

The structural, mechanical, and aerodynamic complexity and the interdisciplinary
nature of rotorcraft offers numerous opportunities for the application of smart
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structures technologies with the potential for substantial payoffs in system effec-
tiveness [204, 205]. Compared to fixed-wing aircraft, helicopters suffer from severe
vibration and fatigue loads, more susceptibility to aeromechanical instability, exces-
sive noise levels, poor flight stability characteristics, weak aerodynamic performance,
and a restricted flight envelope. To reduce these problems to an acceptable level,
numerous passive and active devices, and many ad hoc design fixes, are resorted
to with resultant weight penalties and reduced payloads. The primary source for all
these problems is the main rotor, which operates in an unsteady and complex aerody-
namic environment leading to stalled and reversed flow on the retreating side of the
disk, transonic flow on the advancing blade tips, highly yawed flow on the front and
rear part of the disk, and blade-vortex interactions under certain flight conditions.
Hence, most of the research activities are focused on the application of smart struc-
tures technology to rotor systems to improve their performance and effectiveness.
Because the rotor is a flexible structure, changes in shape, mechanical properties,
and stress/strain fields can be imposed upon it. These in turn will alter the vibra-
tory modes, aeroelastic interactions, aerodynamic properties, and dynamic stresses
of the rotor. Smart structures technologies may enable these imposed changes to
be tailored to conditions sensed in the rotor itself. Furthermore, because the smart
actuators and sensors can be distributed over each individual rotor blade, control
can be imposed over a much larger bandwidth than with current swashplate-based
controls, which are limited to N/rev for an N-bladed rotor. This opens up a hitherto
unavailable domain for vibration control, aeromechanical stability augmentation,
handling qualities enhancement, stall alleviation, and acoustic suppression. The use
of smart structures also offers the prospect of in-flight tracking of main rotor blades
and detection of structural damage in the rotor, drivetrain, and other critical compo-
nents. The pilot can then be alerted to take suitable action. A further very promising
application of smart structures is to actively control the interior noise of a rotorcraft.
Structure-borne noise can be minimized by actively controlling the response of air-
frame panels [206]. A source of high-frequency interior noise can be the drive-train
system (gearbox-meshing tonal frequencies). Actively tuning transmission strut sys-
tems with smart actuators may minimize noise in the cabin (high frequency noise
cancellation) [207].

Three types of smart-rotor concepts have been developed: leading- and trailing-
edge flaps actuated with smart material actuators, controllable camber/twist blades
with embedded piezoelectric elements/fibers, and active blade tips actuated with
tailored smart actuators. The performance of these actuation systems degrades
rapidly at high rotational speeds because of increased centrifugal force, dynamic
pressure, and frictional moments. For flap actuation, actuators range from piezo-
bimorphs to piezostacks and piezoelectric-/magnetostrictive-induced composite cou-
pled systems. Most of these concepts were demonstrated on scaled rotor models (for
example, Froude- and Mach-scaled), and a few were also attempted in full-scale
rotor systems. Most smart material actuators are moderate-force and extremely
small-stroke devices; hence, some form of mechanical/fluidic/hybrid amplification
of stroke is needed to achieve practicable flap deflections. Because of compactness
and weight considerations, the stroke amplification mechanism and high energy
density–actuators have been key barriers for application to rotor blades.

Koratkar et al. [208, 209, 210] and Roget and Chopra [B. Roget and I. Chopra,
individual blade control methodology of a rotor with dissimilar blades, Journal
of the American helicopter society, vol. 48, no. 3, July 2003, pp. 176–185] built 6 ft
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Figure 1.28. Froude-scale rotor model (6 ft diameter) on hover tower with piezobimorph
actuated flaps, from Ref. [205].

diameter, dynamically scaled rotor models with trailing-edge flaps actuated by multi-
layered piezo-bimorphs. Initially, Froude-scaled rotor models were built and success-
fully tested in a vacuum chamber and on a hover tower(Fig. 1.28). Finally, Mach-
scaled rotor models were demonstrated in closed-loop testing in the wind tunnel
(Fig. 1.29). The flaps spanned about 10% of rotor radius, were centered at 75% of
blade length, and showed over ±3◦ deflection at 4/rev excitation using 3:1 AC bias
(3 to 1 field in the polarized direction) at an RPM of 2150. Using a neural-network
based–adaptive feedback controller, individual blade control resulted in over 80%
reduction in vibratory hub loads in the Glenn L. Martin wind tunnel. A Froude-
scaled rotor model was also tested successfully in an open-loop investigation by
Fulton and Ormiston [211].

Lee et al. [212, 213, 214] built a model of blade section of length 12 in and chord
12 in with trailing-edge flap (span 4 in and chord 3 in) actuated by piezostacks in
conjunction with double-lever (L-L) amplification mechanism. The model was tested

Figure 1.29. Piezobimorph-actuated flap: 6 ft diameter rotor model test in Glenn L. Martin
wind tunnel; successfully tested in both open and closed loop studies, from Ref. [205].
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Figure 1.30. Piezostack-actuated flap: full scale wing section model tested in open-jet wind
tunnel; produced ±6 deg flap deflection, from Ref. [205].

in a vacuum chamber to simulate the full-scale centrifugal field (600 g) and showed
the desired stroke-amplification factor of about 20 at all rotor harmonics (up to 6).
The model was tested in an open-jet wind tunnel and successfully demonstrated flap
performance of about ±10◦ at 120 ft/sec. To improve bi-directional performance
of this actuation device, a dual L-L amplification system was built and successfully
tested in a vacuum chamber and a wind tunnel (Fig. 1.30). This new actuation
system showed a significant improvement in flap performance at different operating
conditions [214]. Straub et al. [215] built a full-scale smart rotor system for the MD-
900 Explorer (5-bladed, 34 ft diameter) with piezostack-actuated flaps to actively
control its vibration and noise. To amplify the stroke of piezostacks, a biaxial X-frame
mechanism is incorporated. The system was successfully tested on a hover stand to
check its performance in rotating environment. Hall and Prechtl [216] built a 1/6th
Mach scale rotor model with trailing-edge flaps actuated with X-frame actuators
and successfully tested it on a hover stand. Flap deflections of ±2.4◦ were achieved.
Also, Janker et al. [217] developed a novel piezostack-based flexural actuator for
the actuation of trailing-edge flaps.

Bernhard et al. [218, 219, 220] built a 6 ft diameter Mach-scaled smart active blade
tip (10%) rotor actuated with piezo-induced bending-torsion coupled composite
beam (Fig. 1.31). A novel spanwise variation in the ply lay-up of the composite
beam phasing of surface-mounted piezoceramic actuators was used with to convert
the bending-torsion coupled beam into a pure twist actuator. At 2000 RPM in hover,
blade tip deflections of 1.7◦ to 2.9◦ were achieved at the first four harmonics (for
an excitation of 125 Vrms). The associated changes in blade lift corresponded to an
aerodynamic thrust authority of up to 30%. This concept appears promising as an
auxiliary device for the partial control of noise and vibration.

In the integral actuation concept, an array of actuators is embedded into the skin
or bonded to the spar to achieve a smooth-distributed induced twist, which in turn
changes the aerodynamic loads necessary to suppress rotor vibration. Distributed
actuators should have enough authority to overcome the inherent stiffness of the
blades. Chen et al. [221, 222] built a 6 ft diameter Froude-scaled rotor model with
controllable twist blades (Fig. 1.32). For this concept, banks of specially shaped
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Figure 1.31. Smart tip rotor model (dia. 6 ft) on hover stand, actuated with composite bending-
torsion coupled beam and piezos; produced ±2 deg tip deflections up to 5/rev excitation, from
Ref. [205].

(large aspect ratio) multi-layered piezoceramic elements were embedded at ±45◦

relative to blade axis, respectively, over the top and bottom surfaces; an in-phase
activation resulted in pure twist in the blade. The model was successfully tested on a
hover stand and in the Glenn L. Martin wind tunnel. Tip twist on the order of ±0.4◦

at 4/rev was obtained in both hover and forward flight (μ = 0.33) that amounted to
over 10% rotor vibratory thrust authority. Although the oscillatory twist amplitudes
attained in the forward flight experiments were less than the target value (1◦ of tip
twist for complete vibration suppression), these tests showed the potential for partial
vibration suppression. Hagood et al. [223, 224, 225] built a controllable-twist Mach-
scaled model rotor(1/6th scale of CH-47D) by embedding active fiber composite
(AFC) plies (four active plies, each consisting of six 45◦ AFC actuators) in the top
and bottom of spar laminate and tested on a hover stand. Even though it did not
achieve the projected tip twist of ±2◦, it showed enormous potential for full-scale
rotor applications. Cesnik et al. [226, 227] further improved this technology and
successfully tested a Mach-scaled rotor model with embedded active fibers in the
Transonic Dynamics wind tunnel in both open-loop and closed-loop investigations.
They also refined analytical tools related to this rotor system.

Shape memory alloys (SMA) show enormous potential in providing large
induced strains (up to 6%), but are limited to low frequency (less than 1 Hz) applica-
tions such as tab adjustment for rotor tracking. Epps et al. [228, 229] systematically

Figure 1.32. Active twist blade with embed-
ded piezo actuators (6 ft diameter) rotor
test in Glenn L. Martin wind tunnel; pro-
duced ±0.5 deg blade twist up to 5/rev exci-
tation, from Ref. [205].
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Figure 1.33. Blade tab actuated with shape memory alloys actuator, wing section tested in
open-jet wind tunnel; produced tab deflections of over 20 deg, from Ref. [205].

investigated the development of an SMA-actuated trailing-edge tab for in-flight
blade tracking. They built a model of the blade section of span and chord of 12 in
with a tab of span 4 in and chord 2.4 in, actuated with 2 to 5 Nitinol wires of diameter
0.015 on both the top and bottom surfaces (Fig. 1.33). To lock the tab at a desired
angle (in power-off condition), a gear-locking mechanism consisting of spur gears,
pulling solenoid, and pawl was built. A displacement feedback controller was devel-
oped to fine tune the tab deflection in about 10 seconds. This wing section was tested
in the open-jet wind tunnel and tab deflections on the order of 20◦ were obtained at
a speed of 120 ft/sec. Singh et al. [230] improved this design and successfully tested
in the wind tunnel for a repeatable open-loop and closed-loop performance.

Liang et al. [231] investigated the use of a pre-twisted SMA rod to torsionally
deflect the blade tab. Two concepts were examined using analysis respectively incor-
porating one-way and two-way memory actuators. In the first concept, one SMA rod
was used as actuator while the second one served as a restoring spring (differential
bias). In the second concept, one SMA rod in conjunction with a locking arrange-
ment was used. Another study [232] was undertaken to develop an SMA-actuated
trailing-edge tab (length 4% radius) for the MD-900 rotor system (5-bladed bear-
ingless rotor) for in-flight blade tracking (Fig. 1.34). This tab was located at 72%
radial position and was driven by a SMA torsional actuator (developed by Memry).
A locking mechanism was developed to keep the tab in position without power to
the actuator. It was designed to undergo ± 7.5◦ of twist in steps of 0.25◦. Maximum
torsional actuation moments expected were 5 in-lb during forward flight and 9 in-lb
during maneuvers. Improved fabrication of the SMA tubes, end attachments, and
loading system were developed. To overcome bias forces, two biaxial SMA tubes
were used. The actuator had its own integrated microprocessor control. Based on
bench-top tests using a spring to simulate aerodynamic forces, the concept appeared
feasible.

Prahlad and Chopra [233, 234] examined an SMA torsional tube actuator inte-
grated into the blade to actively control twist distribution in a tiltrotor between
hover and forward flight modes, providing improved aerodynamic performance in
both modes of flight. Benchtop testing of the actuator showed the feasibility of the
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Figure 1.34. SMART trim actuation system, from Ref. [232].

large recovery torques needed for this application. Torsional behavior of an SMA
tube actuator was influenced by heat treatment, twist rate, loading pattern, and two-
way shape memory effect. It was shown that two tube SMA actuators with an outer
diameter of 1.5 in CH could produce a twist of 10◦ in the XV-15 blade.

There are other potential applications of smart structures technology to rotary-
wing systems that may yield enormous payoffs in performance improvement and
cost savings. These include external noise suppression [235], internal noise suppres-
sion [206, 236], primary rotor controls [237, 238, 239, 240], performance enhance-
ment including dynamic stall delay [241], active transmission mounts [242, 243], and
active/passive damping augmentation [244, 245]. Kim et al. [246] examined the sta-
bilization of ground resonance instability using a piezoelectric lag damper (based on
piezoshunting) and compared its performance with elastomeric lag dampers. A two
bladed rotor was built and piezoceramic elements were bonded to the rotor flexure.
The piezoelectric lag damper showed superior performance in stabilizing the weakly
damped lag mode, compared to an elastomeric damper.

The interior noise in a helicopter can be divided into two parts: a frequency
range of 50 to 500 Hz; caused primarily by the main rotor, tail rotor, and engine,
and a frequency range above 500 Hz, generated primarily by the geartrains and
transmission system. The sound and vibration energy is propagated to cabin panels
either through structure-borne transmission or direct radiation. A likely approach
to minimize noise transmission in a cabin may use an active control approach in
the low-frequency range (below 500 Hz) and a hybrid active/passive approach for
the high-frequency range (above 500 Hz). Passive noise control is now widely used
to suppress vibration and noise in the cabin. The approaches include stiffening
and isolation of structures, damping augmentation, and sound-proofing treatments.
These methods result in a weight penalty and also a restriction of available space
for insulation and surface treatments. These passive control approaches normally
become less effective in the low frequency range. Sampath and Balachandran [247]
examined an active control of interior noise below Schroeder frequency (below
about 100 Hz) in a three-dimensional enclosure with surface-bonded PZT patches
on flexible panels. Three global and one local performance functions were examined.
Based on this numerical study with oscillatory excitation, it was concluded that
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Figure 1.35. MD900 blade with trailing-edge flap and trim tab, from Ref. [248].

energy-based performance functions resulted in superior sound pressure levels and
zones of quietness. The number and location of actuators and sensor play a major
role in noise reduction [247].

Smart Material Actuated Rotor Technology (SMART)

The objective was to demonstrate the feasibility of smart material actuated tabs and
flaps in a full-scale helicopter rotor system, in order to actively control vibration and
Blade Vortex Interaction (BVI) noise, and to perform in-flight blade tracking. The
program was sponsored by DARPA and the team was led by Boeing. A full-scale
MD900 light utility helicopter was chosen as the demonstration platform (Fig. 1.35).
Under Phase 1, two actuation concepts were examined: trailing-edge flaps actuated
with piezostacks and the active twisting of blades with embedded piezocomposite
fibers. In Phase 2, active flaps with X-frame actuators were used to control vibration
and noise. Several two-dimensional airfoil and flap/tab models were tested in the
wind tunnel, and test data were used to develop active flap and trim tab systems [248].
Initially, the flap actuation used two biaxial piezoelectric stack columns operating in
a push-pull arrangement with a stroke amplification mechanism (Fig. 1.36).

The flap system consisted of a span of 18% rotor radius, and a chord length of
35% of blade chord; it was located at 83% rotor radius. Each blade contained an
embedded 2X-Frame actuator with four piezoelectric stack columns. Each actuator
was located at 74% radius and connected to the flap by a mechanical linkage. The
actuators were powered by a two-channel switching power amplifier. The closed-loop
controller was implemented using a dSPACE 20-channel, single-board controller.
The smart rotor was tested successfully in the 40×80 ft wind tunnel at NASA Ames
in 2009, demonstrating the effectiveness of active flap control to suppress vibration
and noise. Results showed reductions of vibratory loads of about 80%, as well as
reductions up to 6 dB in blade-vortex interaction and in-plane noise. The impact of
the active flap on rotor performance, rotor smoothing, and control power was also
demonstrated.
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Figure 1.36. Biaxial piezoelectric flap actuator schematic, from Ref. [248].

Under the sponsorship of DARPA, Boeing showed the potential of active flow
control in a tiltrotor (V-22) to minimize hover download-lift on wings during takeoff
conditions and thereby significantly improve payload capability [249]. Using the
principle of the synthetic-jet, the flow separation over the airfoil is controlled with low
power, highly distributed, and redundant actuation systems. Two types of actuation
schemes were considered; a synthetic jet and a flaperon, mounted on the upper
surface near the trailing edge of the wing. The synthetic jet is located at the leading
edge of flaperon that is deflected up to 70◦ during hover. Using a vibrating membrane
(≈50 Hz) located in a cavity in the airfoil surface between the wing and flaperon, the
fluid is expelled and retracted periodically into the flow field, generating a zero–net-
mass flux. Two types of smart material actuators were used; a multilayered PVDF
cantilevered bender and a single-crystal (PMN-PT and PZN-PT) piezoelectric-poled
wafer on a cantilevered-spring steel substrate. The wind tunnel tests on a 1/10th scale
model with single crystal actuated flaperon demonstrated a 10% increase in lift and
a 20% increase in angle-of-attack capability [250].

Before this technology is implemented in a full-scale system, there are many
important issues that need to be resolved, which include structural integrity and
fatigue life of the actuators and built-up systems life-cycle cost, long term product
reliability, maintainability and robust, reliable design tools.

1.9.5 Civil Structures

Civil structures include bridges, buildings, dams, industrial chimneys, and nuclear
power plants. Applications of smart materials and structures in civil structures
include structural health monitoring, vibration monitoring and suppression, min-
imization of vibratory loads, and earthquake mitigation. Housner et al. [251] pro-
vided an extensive review of the structural control and monitoring of civil engineering
structures, as a part of new structures or retrofits of existing structures. Enormously
destructive seismic occurrences in Northridge, California in 1994 and Kobe (Japan)
in 1995 have demonstrated the importance and value of structural control in new
and existing civil structures. Through an application of adaptive structures technol-
ogy, the goal is to maximize civil structures’ performance, control their motion, and
monitor their health, thereby minimize their life-cycle cost and increase their overall
safety. Annamdas and Soh [252] provided a review of the advances in PZT-based
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structural health monitoring of engineering structures, including civil structures.
Using the self-actuating and sensing capabilities of PZT transducers, the electromag-
netic impedance and guided ultrasonic–wave propagation technique help provide in
real-time, in-service detection of loadings on, and damage in, the structure.

One of the key challenges for big civil structures has been the structural health
monitoring of internal damage that can be a detriment to the safety and comfort of
occupants, equipment and other adjoining structures. The civil infrastructure deteri-
orates with time as a result of aging of materials, overstress and fatigue, excessive use,
inadequate inspection and maintenance, and unexpected weather-related changes.
Health monitoring, repair, retrofitting, and replacement become necessary for safety.
It is envisaged to build intelligent civil structures with embedded distributed smart
material sensors such as fiber optic sensors to monitor the structural health of these
systems. Structural health monitoring of civil structures poses numerous challenges
due to their large size, the diversity and heterogeneity of their material components,
and their difficult construction environment. Monitoring of strains, deformations,
deflections, and frequencies provides clues about the health of structures. Hus-
ton et al. [253] showed the application of fiber optic sensors to monitor internal
structural damage and stresses and external applied loads for a wide range of civil
structures.

Fiber optic sensors can be embedded or attached to a structure, and they offer the
flexibility of size, the potential of multiplexing of sensing, power supply and commu-
nication signals, low weight, high bandwidth, resistance to corrosion, and immunity
from electromagnetic interference (EMI). The enormity of data processing, limited
knowledgebase and unproven reliable track records, wirings and integrity of sensors
during and after construction process has been pointed out. Structural damage may
result from gravity loading, the construction process, earthquakes, weather, traffic,
floods, fires, waves, and chemical attack (corrosion). The early application of fiber
optics to civil structures, for example, embedding them in concrete, was reported by
Mendez et al. [254] in 1989 and Houston et al. in 1992 [255]. In the 1990s, there was a
spur of deployment of a wide range of optical fiber sensors for civil-structure health
monitoring applications [256, 257]. Fiber optics were also embedded in full-scale
structures, such as dams, to measure shifting between segments [258], to measure
pressure and vibration [259] (Fig. 1.37), and into buildings (for example, the Stafford
Building, University of Vermont) [260] (Fig. 1.38) to determine their in-service load-
ing, vibratory response, wind pressures, and building health. deVries et al. [261]
have tabulated a comparison of the characteristics of commercially available fiber-
optic sensors. Depending on the application and prevailing environment, there are
many other smart material sensors that are used in civil structures [262, 263]. Zhou
et al. [264] used the particle-tagging approach to monitor the health of structural
systems. It is based on embedding micron-sized smart particles in host structure, for
example, one made of concrete or composite, which can be subsequently interro-
gated to assess its condition (for example, voids, internal stress, and delaminations).
To increase the reliability and safety as well as to expedite the structural health
monitoring of civil structures, smart sensors with embedded microprocessors and
wireless communication links were proposed [265].

Chong et al. [266] provided an overview of research activities in structural
health monitoring of civil infrastructures in the United States. First, the National
Science Foundation (NSF) sponsored research activities in NDE (non-destructive
evaluation) civil structures were described. Second, the research efforts of National
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Figure 1.37. Typical fiber optic photoelastic-based pressure sensor, adapted from Fuhr and
Huston [259].

Institute of Standards and Technology (NIST) to develop advanced NDE techniques
for the evaluation of concrete structures as well as advances in stress-wave methods
were presented. Third, research efforts of Federal Highway Administration towards
condition-based assessment technologies for highway bridges were described. Since
the collapse of Silver Bridge in Point Pleasant (West Virginia) in 1967, which resulted
in a loss of 46 lives, a database on size, construction and general condition of about
590,000 bridges and culverts in the USA has been maintained in the National Bridge
Inventory (NBI). At least 104,000 have been found to be structurally deficient.
These data provide a further evidence of the value and urgency of health monitor-
ing technologies. Tennyson et al. [267] provided an overview of structural health

(a) Schematic of the installation of
fiber optics into the rebar grid.

(b) Photograph of fiber installed in the
rebar grid.
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Figure 1.38. Fiber optic stress sensors embedded in concrete building wall to monitor the
structural health of the Stafford Building at the University of Vermont, from Ref. [260].
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Figure 1.39. Dynamic truck passage data measured by embedded fiber optic sensor, from
Ref. [267].

monitoring of bridges in Canada using fiber optic sensors. Fiber Bragg gratings with
guage lengths varying from 1–20 m were used to measure static and dynamic loads
on bridge decks and columns (Fig. 1.39). A total of 16 bridges were instrumented
across Canada with these sensors. Overall, performance of these sensors had been
quite satisfactory over a period of six years. Since the construction of the first modern
cable-stayed bridge, Stromsund Bridge (SB) in Sweden in 1958, more than 300 cable-
stayed bridges have been built all over the world. In the aftermath of the collapse
of the Rainbow Bridge in China (QuJiang county) in January 1999, the monitoring
of the safety and durability of bridges has become a major issue. This failure was
partly attributed to the insufficient load-carrying capability of the cables, and as
such, monitoring of cable tension could have provided sufficient warning before its
collapse.

The structural behavior, including automated real-time – integrating health mon-
itoring of cable-stayed suspension bridges, has been reported by several investiga-
tors. For example, Norway’s Skarnsundet Bridge was instrumented with 37 conven-
tional sensors, Korea’s Haengju Bridge was instrumented with 65 sensors, Korea’s
Namhae Bridge was instrumented with 82 sensors, Thailand’s Rama IX Bridge was
instrumented with 16 sensors, and Hong Kong’s Tsing Ma Bridge was instrumented
with 265 sensors. All of these were conventional sensors (strain guages, accelerome-
ters, inclinometers, etc.). Only recently has there been growing use of smart material
sensors. Examples include Switzerland’s Stork Bridge, which used 14 optical sensors
in conjunction with a remote wireless system. Wang et al. [268] carried out struc-
tural health monitoring of a cable-stayed bridge via in situ measurement of cable
tension using PVDF piezoelectric film sensors. PVDF film is not only flexible, but
it is also tough, corrosion resistant, and shock tolerant. The frequency analysis of
measured cable tension with PVDF films and comparison with accelerometer data
demonstrated the robustness of these sensors, especially in the case of cable sagging.
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Figure 1.40. Schematic of experimental set up of the two-span scaled bridge, from Ref. [276].

Liao et al. [269] used PVDF film sensors in cable-stayed bridges to wirelessly
monitor the dynamic response (i.e. tensile load distribution) of the stayed cables.
Betti and Testa [270] used both passive and active methods for the vibration and dam-
age control of long-span bridges. Ambrose et al. [271] used smart sensing networks
and techniques to monitor the construction-site shoring systems. This can help to
identify dangerous situations (structures ready to collapse due to overload and weak
shoring structure), so corrective action then be taken, thereby minimizing the risk of
injury or loss of life at construction sites. Soh et al. [272] carried out health monitor-
ing and damage detection of a reinforced concrete (RC) bridge instrumented with
PZT patches and built a prototype bridge to validate their predictions. The patches
were excited at high frequencies, on the order of kHz. The admittance (conductance)
response of patches located near the vicinity of the damage showed drastic changes
from the baseline response of a healthy bridge. Pines and Lovell [273] examined a
remote wireless damage detection approach to assess the structural integrity of large
civil structures using spreads spectrum wireless modems, a PC-based data acquisi-
tion system, communication software, and sensors. They successfully demonstrated
the remote monitoring system over a distance of one mile.

An application of the semi-active MR damper is in cable-stayed bridges (modern
bridge construction with span up to 1000 m) to stabilize large amplitude motions due
to high, gusty winds and traffic vehicles, thereby helping to decrease the fatigue and
corrosion of the strands and increase the safety and durability of bridges [274]. The
first application of the MR damper in a cable-stay bridge happened on the Dongting
Lake Bridge in Hunan, China [275]. A total of 312 MR dampers (Lord SD-1005
MR) were installed on 156 stayed cables.

Gordaninejad et al. [276] used MR dampers to control the vibration of a two
span, 1/12 scale bridge model using a combination of passive and semi-active damp-
ing capabilities (Fig. 1.40). The two MR dampers provided a controllable damping
capability and the steel and graphite/epoxy-concrete (G/E-C) columns provided
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Figure 1.41. Conventional traversing beam, from Ref. [277].

passive structural damping. The MR dampers proved very effective in reducing the
relative displacement between the deck and the abutments.

To model the launching and crossing over of operations over long support
bridges, Baz [277] formulated a finite element analysis for multi-segmented smart
traversing beams with built-in wires to monitor and control (actuators and sensors)
the beam deflection (Fig. 1.41). Optimal design strategies were applied to minimize
control actions at each segment to lessen stresses and deflections over the entire span
of beam. The numerical results show the potential of smart beam concept (bridge)
in providing lowweight, high strength, and low deflections.

Mitigation of structural disturbances in terms of the extreme loads and vibrations
produced by earthquake or winds in civil structures can be carried out by various
methods that include modification of stiffness, inertia, damping and shape distribu-
tions, and by passive and active actuation forces [278]. Many of these methods have
been used successfully, and many new methods offer the potential to increase the
efficiency and life of large civil structures. Housner et al. [251] carried out a compre-
hensive review on the assessment of the control and monitoring of civil engineering
structures and identified key points of comparison between civil structural control
and other fields of control theory. Among new methods, the application of smart
structures technology to civil structures is discussed. Since the 1995 Hyogoken-nanbu
(Kobe) earthquake, seismic isolation and passive response-control of buildings have
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become more prevalent in Japan. Passive response-control systems include seismic
isolators, tuned mass dampers and energy dissipaters.

Since the 1960s, the base isolation techniques have been routinely adopted in
low-rise and medium-rise buildings and bridges to minimize the impact of high
frequency components of ground motion. By building a sufficiently flexible base,
the natural period of vibration is reduced to about four seconds. However, this
may not be adequate for low frequency disturbances, especially those associated
with earthquakes. Further, softening the base stiffness to reduce the natural period
to, say, less than four seconds may result in unacceptable large amplitude motion,
especially with a large velocity impulse. Since 1970s, for large flexible tall struc-
tures, auxiliary dampers and tuned mass dampers (dynamic absorbers) have been
successfully deployed at strategic locations to increase energy dissipation during
strong winds. The second method suffers from the drawback of a narrow stationary
frequency-band motion. Recent focus has been to incorporate structural control
technology to increase the life and safety of civil structures. This is achieved by apply-
ing couter-forces or through modification of vibration characteristics. The stringent
static and dynamic requirements in the design of civil structures subjected to inter-
nal and external, loads including high winds and earthquakes, show the potential
of active control technology to ensure occupants’ safety and/or comfort and the
structural integrity and survivability of buildings as well as the equipment within
then. Specifically, the objective is to maintain the stresses, strains, accelerations, and
displacements within the specified bounds (peak, RMS, etc.) at a specified set of
locations due to internal and external excitations. An active control system incorpo-
rates actuators, sensors, A/D (analog to digital) and D/A converters, a computer and
a power source. With the availability of high-performance smart-material actuators
and sensors and ER/MR dampers, their potential applications to civil structures are
expanding. Note that full-scale implementation of active control systems has been
accomplished in a number of buildings and bridges; however, cost-effectiveness and
reliability considerations have restricted their wide spread application. Because of
their mechanical simplicity, low power requirement and system robustness, semi-
active controls are preferred at this time for the alleviation of wind and seismic
response of buildings and bridges. Agrawal et al. [279] investigated the optimal place-
ment of passive energy dissipation systems (dampers) to minimize the response of
wind-excited buildings using combinatorial optimization technique. Passive dampers
are represented by equivalent damping and stiffness coefficients.

In the ER and MR fluids, the viscosity can be controlled by altering their yield
stress through the application of electric and magnetic field respectively. This prop-
erty suits them to use in controllable dampers. A number of ER dampers have
been built for applications in civil structures [86, 280, 281]. Today, MR dampers are
becoming popular for applications in civil structures because of their superior damp-
ing characteristics, especially for active seismic alleviation [282] (Fig. 1.42). Carlson
and Spencer [283] have reported the design of a full-scale 20 Ton MR damper
(inside diameter of 20.3 cm and stroke of ±8 cm) emphasizing the scalability of these
dampers for large civil structures. The first full-scale application of an MR damper
for civil structures was carried out in 2001 by installing a two 30-ton MR dampers
(built by Sanwa Tekki using Lord MR fluid) between the third and fifth floors of the
Tokyo National Museum of Emerging Science and Innovation [275].

The seismic control of a large scale building was performed on a model building
by Nishimura et al. [284] using a simulated earthquake disturbance. Five accelerom-
eters were used to monitor the response of the structure, of which two were used
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Figure 1.42. Schematic of 20 Ton MR damper with internal diameter of 20.3 cm and stroke
of 8 cm, from Ref. [282].

for feedback control. The control objective was to minimize the building response
(acceleration) due to a disturbance. As a result of the closed-loop feedback control,
the damping factor was increased from nearly zero to 20% in the first three modes.
Overall, the low frequency response was significantly reduced. The hysteretic char-
acteristics of SMA are often exploited for both passive and active structural damping
applications. Aiken et al. [285] and Witting and Cozzarelli [286, 287] investigated
the application of SMAs for seismic-resistant design of civil structures.

High performance smart materials are being developed as construction materials
to improve the structural integrity of civil structures, especially those subjected to
severe dynamic loads. Examples include honeycomb sandwich laminates for bridges,
composite column wraps; and fiber-reinforced concrete and plastics for gas storage
tanks and pipes, which monitor leakage and damage of underground pipes for water,
oil, and gas.

For civil structures, robustness, cost and maintenance flexibility are key issues
for implementation of smart structures technology.

1.9.6 Machine Tools

There have been growing applications of smart structures technology in machine
tools to improve their performance. During precise machining of structural compo-
nents, chattering and ringing of the tool needs to be suppressed. For example, during
the dicing of semiconductor wafers, it is necessary to incorporate stiff machine com-
ponents, which produce ringing during the motion of the machine bed components
from one cut to the next. Controlling of the vibratory motion is extremely important.
Also, machine tools are subject to vibratory loads and temperature variations which
result in wear, drift, and settling due to changes in the mounting conditions. Again,
for precise machining, it wil be important to adjust the tool position using smart
actuators.

The quality and speed of glass cutting can be improved by using an adaptive
cutter head and an active bridge. Using a piezostack in z-direction and electrome-
chanical shaker in x and y directions along with 11 accelerometers, the cutting speed
was improved [147]. Zhang and Sims [288] carried out an experimental investiga-
tion to actively control vibration using piezoelectric actuators to mitigate workplace
chatter in high speed machining (Fig. 1.43). Using a positive position feedback con-
troller, a series of milling tests were performed, which demonstrated a sevenfold
improvement in the limiting stable depth of cut.
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Figure 1.43. Workpiece with a pair of collocated piezoelectric elements, from Ref. [288].

Boring bars are metal cutting tools used to machine precision holes, where
one end of the tool is normally fixed to a rotating spindle and the other, free, end is
attached with a cutting insert. Boring bars with large length-to-diameter (L/D) ratios
typically have low dynamic stiffness, making them susceptible to vibration, which
in turn can have a detrimental effect on quality of machining and tool life. O’Neal
et al. [289] developed an intelligent boring bar, utilizing a micropositioner (consisting
of a piezoelectric actuator and photosensitive detectors) to actively control a cutting
insert. Subsequently, an integrated structural/control optimization scheme was used
to design the micro-positioner. This helped to extend the range of boring tool (40%
longer length) while maintaining allowable error within 95%.

In many rotary or linear drive systems in machine tools, it becomes imperative
to control and stabilize the velocity due to rapid load changes during machining. A
rapid change of load results in a jump of the movable elements of the machine. This
problem is quite visible in electro-hydraulic servo drives because the stiffness of the
fluid is relatively low. Additional sensors or alternate control methodologies may
not be satisfactory for highly dynamic systems. To solve this problem of velocity
jump, Milecki and Sedziak [290] used an MR damper, whose characteristics can be
adapted in real time. They showed the successful demonstration of MR dampers
in stabilization of servo drive velocity in different machines, especially during rapid
load reductions.

The wire cutter discharge machine (WEDM) is used to carry out high perfor-
mance machining by electric discharge between thin electrode wire (0.05-.3 mm
diameter) and the workpiece. The quality of machining of especially small, delicate,
and complex parts, depends upon an appropriate control of tension in electrode
wire. Due to repulsive force and fluid injection during machining (for cooling), there
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Figure 1.44. Schematic view of high-speed electro-rheological traversing mechanism; (C)
input rotor – rotating at a constant angular velocity �; (D) electro-rheological fluid; (E)
lightweight output rotor; (F) lightweight output pulley (G) lightweight traversing belt (onto
which a guide can be attached), from Ref. [292].

is a significant level of vibration that impacts tension force in the wire. One of the
popular methods to control the tension in the wire is to utilize electromagnetic brake
actuators. However, this method is vulnerable to external disturbance such as repul-
sive force. Kim et al. [291] controlled the wire tension using an electrorheological
(ER) brake actuator in conjunction with a sliding mode controller. It was demon-
strated using a cylindrical shear-mode type ER brake that as electric field increases,
the tension in the wire increases and the discharging gap and straightness of the
workpiece decreases. The machining performance of the WEDM is far improved
with an appropriate control of field.

Flexibility and controllability in operation are important in the design of high-
speed mechanisms and devices. A high-speed traversing mechanism is used for
winding textile filaments onto spinning or weaving bobbins. Typically, the traverse
speed is about 5 m/s, a turnaround period is 10–20 ms, and a traversing length is
250 mm. Johnson et al. [292] successfully used ER fluids to achieve a high-speed
traversing mechanism (Fig. 1.44). The simplification of control strategy for such a
mechanism is considered to cover both start-up and continous running conditions.

Fielder et al. [293] embedded fiber optic pressure sensors into the grinding plates
of an operational paper mill to monitor the pulp grinding process in real time, and
thereby improve the quality and consistency of the pulp online in an active manner.
To bear harsh environment (pressure up to 175 psi), the sensors were 1.65 mm
in diameter with titanium housing, which were installed into the grooves of the
grinding plates. Pressure pulses due to the relative motion between the grooves and
channels on two grinding plates were measured (spikes up to 175 psi), which helped
to determine the consistency, size, distribution, and quality of paper pulp. Hence, by
monitoring the pressure fluctuations, grinding plates can be dynamically controlled,
producing a “smart paper mill.”

Neugebauer and Hoffmann [294] actively manipulated sheet-metal forming pro-
cesses using high-performance piezoactuators, and thereby minimized the number
of product rejects. Replacing selected drawpins with piezoactuators, controlled force
progression at critical forcing points was achieved during sheet draw-in. This refined
the deforming process, especially during deep drawing operations in automobile
body production. This results in an “intelligent press” in which the process of sheet
draw-in is accurately regulated. It is important to develop tool/die systems to obtain
flexible and accurate metal forming. Yang et al. [295] proposed an intelligent tool



1.9 Smart Structures Programs 71

system for flexible L-bending processing of metal sheets, using several sensors incor-
porated in the tools. The system is autonomous and is capable of changing the shape
and pressure of the tools to optimize the forming process and achieve the desired
forming accuracy.

Nitinol exhibits far superior resistance to wear than conventional engineering
materials such as steel, nickel-based, and cobalt-based tribo-alloys. This character-
istic is due to its special pseudoelastic behavior. Additionally, Nitinol demonstrates
excellent corrosion resistant characteristics. Li [296] advanced the use of Nitinol
for tribological engineering that included corrosion, erosion and wear phenomena.
Investigations were made to develop tribo-composites using NiTi alloy as the matrix,
reinforced by hard ceramic particles, including nano-structured particles. These com-
posites possessed enhanced wear resistance.

Kordonski and Golini [297] developed a precision polishing method called mag-
netorheological finishing (MRF) to produce surface finish on the order of 10 nm
peak-to-valley with surface micro-roughness less than 10 Å on optical glasses, single
crystals, and ceramics. In this technique, MR fluid performs the primary function
of material removal. In certain conditions, material removal occurs by capture of
molecularly small fragments of a hydrated silicon layer by polishing particles instead
of by the mechanical scratching used in classical polishing methods. As a result, the
surface normal stress and the surface indentation are not important in the process of
material removal. Shimada et al. [298] proposed a magnetic compound fluid (MCF)
for uniform microscopic polishing of a rotating disk surface with fluctuating magnetic
field. The MCF consists of nm size magnetic and μm size iron particles in solvent,
and its characteristics lie between those of magnetic fluid and magneto-rheological
fluid.

Applications of smart structures technology in machine tools are growing with
potential payoffs in the quality, speed, and cost of finished products. Again, a major
drawback is the limited stroke of the smart actuators. Other factors can be robustness,
cost and aging of smart materials.

1.9.7 Automotive Systems

In an automobile, there are numerous actuators and sensors to enhance occupants’
comfort, to improve performance, to increase safety and reliability, and to control
the engine, transmission, suspension, washers, and windows. Among the actuators
are electric motors, solenoids, thermobimetals, wax motors, and pressure or vacuum
actuators. Among the sensors are thermocouples, and analog and digital sensors.
Smart material actuators and sensors have not widely penetrated the automobile
industry at this time; This is partly due to low awareness of this technology, lack of
reliable materials data and constitutive models, and cost and safety concerns. How-
ever, it is envisaged that as the scientific community becomes more knowledgeable
about this technology, this technology will find applications in automobiles.

Specific smart structures applications to automotive systems include: active con-
trol of vibration and noise, active suspension and engine mount, and fuel injectors
for diesel and gasoline engines. Vibration in an automobile is caused by road rough-
ness, wind excitation the engine exhaust system, and an imbalance of the engine
rotor and tires. The purpose of vehicle suspensions, is to attenuate vibrations due
to various road conditions. Three types of suspension have been attempted: passive,
active, and semi-active. The passive type involves hydraulic dampers. It is simple
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in design, but limited in performance, especially at a high frequency. The active
system is more complex due to requirements of power source and sophisticated
control systems (expensive hardware), but provides superior performance over a
wide operating range. The semi-active lies somewhere in the middle in terms of
performance gains and hardware expenses. Nakano et al. [299] built a quarter-car
suspension system model using ER dampers and examined its performance char-
acteristics using two different control strategies. Petek et al. [300] and Suh and
Yeo [301] constructed a semi-active full suspension system consisting of four ER
dampers, showing that vehicle vibration can be satisfactorily suppressed using the
skyhook control algorithm (Fig. 1.45). Carlson et al. [302] and Lee and Choi [303]
included MR dampers for a vehicle suspension system and showed a sufficient level
of damping for a passenger vehicle (Fig. 1.46). Nguyen and Choi [304] optimized
the design of MR shock absorbers for application to vehicle suspension considering
the damping force, dynamic range and the inductive time constant. There have been
several other attempts to develop improved semi-active suspensions based on ER
or MR dampers (see Fig. 1.47) [305, 306, 307].

Zhu et al. [308] carried out active control of a steering wheel using multi-layered
piezoelectric actuators. The actuators were bonded to spokes to successfully suppress
the vibration of the wheel. An MR clutch has the capability of changing its torque
transmissibility continuously within a certain range through control of shear stress of
the MR fluid. Lee et al. [309] developed an MR clutch and demonstrated its adaptive
torque transmissibility through the intensity of the applied magnetic field.

An active isolator incorporates an external energy source in conjunction with an
actuator to generate forces on the system subjected to unwanted vibration. On the
other hand, a semi-active mount does not inject mechanical energy into the system.
Ahn et al. [310] conceptualized a small sized, variable-damping MR fluid mount for
the precision equipment of an automobile. On application of high current (≈2 A)
in the coil, the peak amplitude of transmissibility decreased by about 70% and the
resonance frequency increased by 40%.

Stelzer et al. [311] designed a semi-active MR (flow mode) isolator in conjunction
with soft rubber to mount a compressor on an automobile body to isolate body from
high frequency vibration. Other applications of such an isolator include: engine
mounts, pumps, and fans in automobiles. Sassi et al. [312] developed a semi-active
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Figure 1.46. Schematic diagram of hardware-in-the-loop-simulation (HILS) for the full-car
MR suspension system, from Ref. [303].

MR suspension system for automotive systems and carried out systematic testing to
optimize dynamic response (Fig. 1.48).

MR fluid-based adaptive shock absorbers became available commercially in
1998, in the seats of large Class 8, 18-wheeler trucks [313]. In 1999, such MR shock
absorbers were introduced in stock car and drag race vehicles [314]. Han et al. [315]
examined an MR seat damper in conjunction with the primary ER suspension to
isolate vibration in a commercial vehicle such as a large truck. A skyhook controller
was designed for each damper. It was demonstrated that both vertical displacement
and acceleration at the driver’s seat were considerably reduced during testing.

Ushijima and Kumakawa [316] used piezoelectric technology for an active
engine mount to minimize vibration in the chassis due to the engine. Because of the
high-force and low-displacement characteristics of piezoceramic stacks, a hydraulic
gearing mechanism was incorporated into the mount. Sproston et al. [317] used elec-
trorheological fluid to develop a prototype engine mount. The fluid is sandwiched

1
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4

2

2
Figure 1.47. Installation of semi-
active suspension: 1 – controller; 2
– accelerometer; 3 – MR damper;
4 – sensor for ride comfort evalu-
ation, from Ref. [307].
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Figure 1.48. Vehicle suspension, from Ref.
[312].

between two electrodes. When actuated by an electric field, the transmissibility of
the engine mount is minimized.

Active control of noise may be achieved through active roof panels. Manz and
Breitbach [318] and Giovanardi et al. [319] examined interior noise control (30–
250 Hz) in an automobile using surface-mounted piezoceramic patches on roof
panels. Using multiple input-multiple output (MIMO) control algorithms, in con-
junction with a digital signal processor (DSP), the overall sound level radiated from
the panel was reduced by 3 dB.

Currently, automotive systems rely primarily on controllable actuation mecha-
nisms such as hydraulic systems to achieve good braking and clutching characteris-
tics. Hydraulic actuated control systems, however, have high power density, but have
poor efficiency and low robustness (varying bulk modulus of pressurized fluid), and
they require significant pumping hardware, valves and tubes. Recently, there have
been selected investigations to achieve clutching and braking using MR fluids [320].
However, MR fluids have uncertain operation characteristics (loss of homogeneity)
in high Centrifugal Force (CF) environment due to micron-sized ferrous particles
suspended in the carrier fluid plus associated sealing problems. Neelakantan and
Washington [321] tried to solve this problem by developing an MR clutch design
where the fluid is encapsulated in a highly absorbent polyurethane foam. Piezoelec-
tric actuators with high block force and quick response were investigated to control
clutching and braking requirements [322].

Fuel injectors based on piezoelectric actuators are used in internal combus-
tion engines to open and close fuel injection valves. As compared to conventional
solenoid technology, piezoelectric stack actuators can provide adequate force and
potential impovements in precise positioning and rapid response. The stroke of the
piezoelectric stack is used to activate the needle valve that controls the fuel injected
into the combustion chamber. Direct fuel injection with piezoelectric stack actuators
has been shown to reduce fuel consumption in diesel and gas engines by up to 15%.
Overall, piezoelectric fuel injectors are quieter, more economical, more powerful,
and have less emissions [323]. One concern has been the performance and reliabil-
ity of these piezoelectric-based fuel injectors under actual operating conditions with
temperatures ranging from −30◦C to 125◦C. Senousy et al. [324] systematically exam-
ined the performance of piezostack actuators as pertaining to fuel injection under
sinusoidal and trapezoidal driving fields over a temperature range from −30◦C to
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Figure 1.49. Components and assembly of multiple flat-plate ERF actuator, from Ref. [325].

80◦C for various frequencies, rise times, and duty cycles. Reducing the duty cycles
was shown to significantly decrease the heat generated in the actuators.

In the automotive industry, haptic feedback devices can be used to enhance
the human-vehicle interface. Weinberg et al. [325] developed ER fluid-based–rotary
resistive actuators for haptic interfaces for vehicle instrument control (Fig. 1.49).
They developed the prototype of a haptic joystick mechanism with two degrees
of freedom; each degree required a separate resistor actuator. Ahmadkhanlou
et al. [326] designed a haptic system based on the MR fluid sponge damper for an
automobile steer-by-wire application. The goal was to replace the bulky hydraulic
system with a centralized computer that receives electronic inputs from the driver.
Results showed good force feedback control and stability of the system.

The growth of applications of smart structures in automotive systems can pro-
vide a tremendous impetus to this discipline, but more importantly can be a major
driver to lower the cost of smart materials. However, product reliability, robust-
ness, maintenance flexibility can affordability can be key factors for wide spread
application in automotive systems.

1.9.8 Marine Systems

The applications of smart structures in marine systems cover structural acoustic con-
trol, the control of machinery vibration, radiated noise reduction, shape control/flow
control to increase maneuverability, and health monitoring and condition-based
maintenance. Affordability, simplicity of design, and robustness are key factors for
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these applications. Many of these applications require high strain/displacement and
large force actuators, as well as robust sensors. Kageyama et al. [327] carried out
structural health monitoring of ship structures using a fiber optic sensor network.
Potential advantages of these sensors are: unlimited gauge length, large bandwidth
(measure dynamic strains) and reduced-sensitivity to temprature. To accommodate
the huge dimensions of marine structures (over 200 m), a long gauge fiber-optic
laser-Doppler velocimeter was developed. An optical time-domain reflectometer
was applied to the damage detection of composite material; thereby, breakage of
fibers could be monitored.

Under the SAMPSON Program, the underwater performance of a trailing-edge
tab assisted control (TAC) surface was evaluated. The tab, which consisted of 10%
chord, spanned the entire length of the control surface, and was actuated with an
SMA actuator, significantly changed lift, reduced hinge moment, and increased the
maneuver capability of the trailing-edge flap. A new tab design as a contoured control
surface (without hinge) was proposed to further enhance its performance.

S2DS: Smart Sleeve Demonstration System (1998–2000): The objective of this
program was to develop a significant quieting improvement (about 10 dB reduc-
tion) in self-generated underwater torpedo noise using a compact and less expensive
system. A primary source of noise is pressure fluctuations due to the turbulent bound-
ary layer on the torpedo hull. A team led by Lockheed carried out this DARPA-
sponsored program. The closed loop demonstration was carried out underwater on a
torpedo hull using 60 reference sensors, 12 error sensors, two staggered rings involv-
ing 36 actuators, a digital control system, and a signal monitoring system. Single
channel tests showed a noise reduction of 18 dB in a selectable frequency band. Test
results showed significant quieting capability across all frequencies of interest.

Quackenbush et al. [328] investigated the SMA-actuated vortex-wake
deformable hydrofoil as a control scheme for a lifting surface for submarines. This
active forcing is referred to as a smart vortex leveraging tab (SVLT). A prototype
was built and tested in hydrodynamic conditions.

To develop a highly maneuverable underwater vehicle, it is important to design
the vehicle based on the undulatory swimming techniques and anatomic structure
of fish. Rediniotis et al. [329] built a biomimetic active hydrofoil using SMA wire
actuators. The vehicle consists of a skeletal structure similar to that of an aquatic
animal and SMA actuators for muscles. Controlled heating and cooling of SMA
wires generate bi-directional rotation of the vertebrae, which in turn changes the
shape of the hydrofoil. This work demonstrated the potential of SMAs as artificial
muscles in underwater applications.

Balakrishnan and Niezrecki [330] examined the application of THUNDER actu-
ators as underwater propulsors. Two THUNDER actuators placed in a clamshell
configuration were used to propel water. It was found that the actuators had a peak
flow rate of about 1500 cm3/s and a peak thrust of about 4.5 N. The average elec-
tric power consumed by two THUNDER actuators (operating at 14 Hz) is far less
than that consumed by other propulsion systems. The displacement response and
the current drawn were quite nonlinear. Overall, the results show the potential of
THUNDER actuators as underwater propulsors.

Kim et al. [331] examined MR inserts to minimize shock wave propagation in
warship structures. An MR insert was made out of an aluminum plate, and two
piezoelectric disks were used as the transmitter and reciever. The MR insert showed
the capability of shock wave reduction.
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Figure 1.50. Commercial Smart MagnetixTMabove-knee prosthesis with real-time control pro-
vided by a MotionMasterTMMR fluid damper, from Ref. [335].

1.9.9 Medical Systems

There is a wide variety of applications of smart structures technology in the medi-
cal field. Key factors for applications are compactness, low weight, precise control,
durability, repeatable operation, and minimum invasiveness. Often, adaptive mate-
rials need to be soft with large strain capability. Applications include prosthetic
devices such as artificial hands, knees, and fingers; robotic eyes, the artificial anal
sphincter and urethral valve, rehabilitation therapy microrobots, telerobotic surgery,
cancer therapy, microrobots swimming in blood vessels, eyeglass frames, orthopedic
implants, orthodontic treatments, and tissue fixators.

Many of the externally powered prosthetic devices are actuated by electric
servomotors to achieve precise kinematic performance. However, their major draw-
back is that they are heavy and bulky. To minimize this problem, several alternate
lightweight actuators have been investigated to develop for use in artificial mus-
cles. These include electroactive polymers [332], pneumatic actuators [333], and
shape memory alloy actuators [334]. One possible application of magnetorheologi-
cal fluid technology aims for a compact adaptive damper application to develop an
artificial knee that automatically adapts to changing gait conditions [335]. The pros-
thesis consists of a thigh, a knee joint, a lower leg assembly, and a foot (Fig. 1.50).
An array of sensors were used to determine the instantaneous state of the knee,
which includes knee angle, swing velocity, axial force, and bending moment. Using
a microprocessor-based controller, the MR damper is adapted in real time based on
walking speed, weight on the leg, stairs, and slope of terrain. Zite et al. [336] also
examined rotary MR fluid–based shear dampers for an orthopedic-active knee brace.
The device was designed based on maximum yield stress, corresponding magnetic
field, torque, and fluid viscosity. This device could generate variable resistive torque
and can fit the requirements of any type of individual. Price et al. [337] presented an
SMA ribbon-woven artificial muscle braid, which is capable of achieving strains of
over 30%. Also, they showed that this actuator achieved a 270◦ angular displacement
when applied in prosthetic elbow joint.



78 Historical Developments and Potential Applications

Figure 1.51. Two-fingered paral-
lel gripper, from Ref. [342].

Ionic polymeric–metal composite (IPMC) is soft, lightweight, plastic-like mate-
rial, which can undergo large deformations with application of low voltage. IPMC
consists of a thin electroactive polymer membrane with metal electrodes plated
chemically on both faces. On the application of field across the thickness of IPMC,
it bends to the anode side as a result of cation migration towards the cathode in
the polymeric network (the composite swells on the cathode side and shrinks on the
anode side). On the other hand, IPMC can also produce charge when it is deformed.
However, they generate low actuation force. Kottke et al. [338] and Lee et al. [339]
have examined IPMC for application in artificial muscles. Dielectric gels (non-ionic)
are shown to be electrically active actuators that undergo large strains (several
hundred percent) and fast response (less than 100 ms) under low current (μA to
nA). Hirai [340] studied these soft polymeric materials for application in artificial
muscles.

Artificial hands and fingers that are capable of grasping objects are mostly built
using servo motors, stepping motors or pneumatic cylinders in conjunction with
tendons, gears, and linear ball bearings. For these devices, the effects of compliance,
backlash and hysteresis can be quite critical. Okamoto et al. [341] used SMA wires to
build a two-fingered gripper, primarily for low speed motion. Chonan et al. [342] built
a two-fingered miniature gripper driven by piezoceramic bimorph strips to achieve
the hybrid position/force control (Fig. 1.51). The fingers are flexible cantilevers
actuated by bimorphs at the base and are supported by linear ball bushings that
ride on a steel shaft. They demonstrated a grasping force on the order of 0.01 N
at the fingertip and Proportional–Integral–Derivative Feedback (PID) controller
performed satisfactorily to drive the gripper to achieve a stable grasp of an object.
Price et al. [343] carried out the design, instrumentation, and control issues related
to the application of SMA towards the development of artificial muscles in a three-
fingered robot hand for prosthetic applications (Fig. 1.52). Lee et al. [344] fabricated
thick IPMC by stacking several Nafion thin films using hot-pressing system. The
application of the IPMC actuator was successfully demonstrated by building artificial
fingers with three joints using 5-film stacked IPMC actuators (Fig. 1.53). Thayer and
Priya [345] developed a biomimetic humanoid hand with the prime objective of
typing on a computer keyboard. Each finger has four joints with three degrees of
freedom, while the thumb has an additional degree of freedom. The hand consisted
of 16 servo motors dedicated to finger motion and three motors for wrist motion.

Wolfe et al. [346] investigated the deployment of an SMA actuator for a robotic-
eye orbital prosthesis. The goal is to create an intelligent prosthesis that can execute
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Figure 1.52. SMA actuated artificial hand,
from Ref. [343].

vertical and horizontal motion to execute 300◦ of eye rotation. It follows the design
philosophy of biomimicry, where the SMA wires contract upon heating and return
to their original position when cooled. The precise control of the SMA wire actuator
was carried out using pulse width modulation. A large-scale prototype was built and
was successfully tested. In order to fit an actual model into the orbital cavity, it was
proposed to use 100μm diameter high temperature SMA wires.

Luo et al. [347] presented the thermal control of an artificial anal sphincter using
shape memory alloys to resolve problems of severe fecal incontinence. The artificial
sphincters could be fitted around intestines, performing an occlusion function at body
temperature and a release function upon SMA heating (20◦C above body tempera-
ture). The device consisted of two SMA plates in conjunction with attached heaters
and a reed switch to resolve overheating problems. A successful thermal control was
demonstrated in both in-vitro and in-vivo experiments. These artificial sphincters
were implanted and successfully tested in animals. Chonan et al. [348] developed an

Figure 1.53. Model of artificial
finger, from Ref. [344].
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Figure 1.54. A variable resistance
knee brace with MR damper, from
Ref. [351].

artificial urethral valve using thin Nitinol plates (thickness 0.3 mm), which closes to
block the discharge of urine at body temperature (martensite phase) and opens to
release urine when the SMA plate is heated (austenite phase) using external heating
through an attached Nichrome wire. The functioning of the valve was successfully
demonstrated by animal experiments, both in-vitro and in-vivo. Tanaka et al. [349]
developed an implantable artificial urethral valve via a transcutaneous power trans-
mission system with closed-loop thermal control. Using the transcutaneous system,
electric energy is supplied to the valve without wires penetrating the patient’s body.
Using an implanted temperature monitoring circuit, the overheating of the SMA
actuator during prolonged urination is prevented. The valve and the closed-loop
power transmission were successfully demonstrated through animal experiments,
both in-vitro and in-vivo.

It is expected that in the future, robots will be of great use in medical fields
such as rehabilitation therapy, nursing, and day-to-day support of elderly people.
For example, soft robot hands that have dexterity similar to human hands and
are able to perform complex movements will be of immense value in nursing and
welfare. Such a robot has to be lightweight, mobile, and soft. Saga [350] developed a
tendon-driven robot hand using a pneumatic balloon as a directly operated actuator.
It is a simple compact system using flexible silicon rubber material and is quite
comparable to the biological human muscle. Dong et al. [351] developed a smart
variable resistance exercise machine using MR-fluid dampers for rehabilitation of
patients with neuromuscular and orthopedic conditions (Fig. 1.54). An intelligent
controller is incorporated to regulate the resistive force or torque of the device such
that it provides both isometric and isokinetic strength training for the human joints,
including the elbow, knee, hip, and ankle. Bose and Berkemeier [352] designed and
built an ER fluid–based haptic device. The device is similar to a joystick, where the
user feels resistance forces against the motion of the stick through the change of
rheological properties of the ER fluid due to an electric field. Large forces can be
quickly realized by applying electric fields of different strengths. Such haptic devices
can be used in various applications such as supporting tools for the operation of
machines, in virtual reality, and for computer games as well as assistive interfaces
for blind persons working with a computer.

To carry out telerobotic surgical procedures efficiently, a force feedback, in
addition to visual feedback, is essential. Thus, the user not only sees the movement of
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the end effector in a video interface monitor, but can also feel the forces encountered
by the end effector. This way, surgeons can feel whether their tools have hit a
hard bone or a soft tissue, and can avoid any unnecessary complications in surgery.
Neelakantan et al. [320] demonstrated the application of MR fluid devices as a force
feedback system for telerobotic surgery. For this test, they built an MR sponge
damper consisting of polyurethane foam soaked and saturated in MR fluid and
wound around an electromagnetic piston, and demonstrated its effectiveness as a
force feedback system.

Minimally invasive surgery (MIS) is routinely used in abdominal procedures
such as gall bladder removal, in which surgical procedures are carried out using small
surgical tools and viewing equipment in conjunction with long slender tubes. These
tubes are inserted into the body through a few small incisions (5–10 mm). There are
enormous benefits, including reduced tissue trauma and recovery time, of the MIS
technique over conventional open surgery. However, there are limitations with MIS,
which include a lack of dexterity and localized actuation of the surgical end-effector,
and a lack of haptic feedback to the surgeon. Hence, it is quite difficult to expand
current MIS technique to more complex surgical procedures such as coronary artery
bypass operations. Edinger et al. [353] developed new MIS tool designs incorporating
complaint and smart structures technologies. An active grasping tool consisting
of a single-piece compliant end-effector and localized actuation and force sensing
using a small PZT inchworm actuator was built as a telerobotic system. Rubio
et al. [354] developed an electro-thermally driven microgripper using topology-
optimized design and laser microfabrication. The design is a symmetric monolithic
2D structure which consists of a complex combination of rigid links integrating both
the actuating and gripping mechanisms. The microgripper had overall dimensions of
2.5 mm (width) and 1 mm (length), and was able to deliver the maximum tweezing
and actuating displacements of 25.5 μm and 33.2 μm with a power draw of 2.3 W
(Fig. 1.55) [354].

Flores et al. [355, 356] suggested a novel cancer-therapeutic approach by inject-
ing MR fluids into the blood vessels supplying the tumor and, through the application
of magnetic field at the tumor site, blocking the blood flow within the vessels. The
biocompatible MR fluid is made of magnetic particles (0.25–1.0 μm) coated with
starch and suspended in water or sheep’s blood. The objective is to starve the tumor
from flow of blood. The sealing effect to the fluid flow is achieved at low particle
concentrations with strong pressure resistance. The characteristics of the magnetic
seal depend upon the properties of the fluid (particle size, volume fraction, viscosity,
and susceptibility), the strength of the magnetic field, and flow rates. As flow rate
increases, the seal becomes unstable.

Tanaka et al. [357] developed an active palpation sensor for the detection of
prostatic cancer and hypertrophy. The receptor of the sensor is a PVDF film placed
on the surface of a sponge rubber layer (Fig. 1.56). The sensor is inserted into the
rectum and is driven by the motor at about 50 Hz with a constant peak-to-peak
amplitude of 2 mm in order to measure the output voltage that determines the
stiffness of the gland. Clinical tests demonstrated the effectiveness of the sensor.
Wang et al. [358] developed PVDF piezopolymer sensor for unconstrained in-sleep
cardiorespiratory monitoring such as respiration and heart rate. The objective is to
use the sensor on an ordinary bed, under the sheets at the location of the thorax,
to pick up the fluctuation of pressure. Wavelet multiresolution – decomposition
analysis is used to detect respiration and heartbeat from the sensor output.
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Figure 1.55. Fabricated microgripper
prototype, from Ref. [354].

Sudo et al. [359] examined the development of a microrobot working in human
blood vessels. It is a wireless swimming mechanism where the locomotion char-
acteristics are provided by a permanent neodynium magnet in conjunction with
alternating magnetic field (Fig. 1.57). It was found that the swimming velocity of the
microrobot depends on the tail width, the tail length, and the amplitude of bending
oscillation. The test results showed that the magnetic robot can move through the
aortas, arteries, veins, and vena cavae of the human body. However, a further minia-
turization of the magnet is needed to freely move the robot through small arteries,
arterioles, capillaries, and venules.

An SMA microcoil actuator can induce bending, extension/contraction, torsion,
and stiffness variation. Using this concept, a hollow flexible small tube, called a
catheter, was built by Haga et al. [360] for minimally invasive diagnosis and treat-
ment of the diseased site. The catheters were 0.3–3.0 mm in diameter and 1.5 m
in length and moved like a snake in blood vessels (Fig. 1.58). The tip of the tube
could be controlled from outside the body. One potential application of this tube
due to its easy passage at the lower end of the stomach (pylorus), is the treat-
ment of intestinal obstruction. At this time, endoluminal devices are being used for
drug delivery, diagnosis, and surgical applications, especially for the gastrointestinal
tract. These are in the form of miniaturized and swallouable capsules that can move
easily inside the human body. These are normally composed of a cylindrical shell
including a camera, an illumination system, a wireless transmitter, and a battery.
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Figure 1.56. Schematic diagram of the geometry of receptor of sensor 1 and a close-up pho-
tograph of the sensor head, from Ref. [357].

Buselli et al. [361] developed an alternate approach of a self-propelled, legged
endoscopic capsule using superelastic Nitinol in conjunction with microfabrication
(Fig. 1.59). Nitinol appears to show good biocompatibility due to its large obtainable
strains and adjustable superelastic properties. Sputtered tubes have a high potential
for application as vascular implants such as stents. Miranda et al. [362] fabricated
thin Nitinol film stents of thickness varying from 5 to 15 μm and diameter 1 to 5 mm
using magnetron sputtering, 3-D lithography, and wet etching.

The use of SMA in eyeglass frames dates back to 1975 when the first patent was
filed [363]. Normally, the frame is built using a superelastic property of SMA whereby
a frame which is accidently bent recovers to its original shape. Also, since Nitinol
is corrosion resistant, the frame does not require any additional electroplating or
coating. It is lightweight as compared to other metals. However, a drawback can be
its performance in cold weather, since the material becomes very soft in its martensite
phase.

Haasters et al. [364] carried out the use of Nitinol as an implant material in
orthopedics. Specific applications include: osteosynthesis plates (surgical treatment
of bone fracture), jaw plates (fixation of lower jaw fracture), staples (simple clamps
of the lower extremities), medullary nails, and spacers. They also carried out several
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tem and magnetic swimming robot, from
Ref. [359].

applications of Nitinol in animals involving the implantation of jaw plates, staples,
and spacers. Other clinical applications of Nitinol as implant material include: oper-
ative ankylosis of the foot and corrective osteotomy at the knee joint in genu valgum.
Sachdeva et al. [365] used superelastic Ni-Ti alloys in dentistry for orthodontic treat-
ment. An effective controlled alignment of teeth requires the application of specific
low applied forces (in the order of several Newton) that are within physiological
limits and act over longer periods of time. Too large an applied force can cause
damage to the supporting tissues, and too low a force can slow down the align-
ment process. Traditionally gold, stainless steel, elastomers, titanium-molybdenum
alloys and chrome cobalt nickel were used for orthodontic therapy. Because of its
excellent superelastic material characteristics such as springback, low stiffness, and
constant maximum stress over a wide range of deformations, Nitinol appeared suited
for orthodontic mechanotherapy. Superelastic alloys (austenite temperature below
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Ref. [360].
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Figure 1.59. Three endoscopic capsules
that range from 11 to 12 mm in diameter
and 25 to 40 mm in length, from Ref. [361].

room temperature) are used in the fabrication of orthodontic archwires. The effi-
ciency of orthodontic tooth movement is greatly enhanced by employing this alloy
though the application of low and continuous forces with large recoverable strains
(6–8%). Raboud et al. [366] carried out the simulation of superelastic Nitinol wires
used as orthodontic springs to apply the necessary force systems to effectively move
teeth. They included both bending and twisting deformations in the model. Fokuyo
et al. [367] used Nitinol for a dental endosseous implant. The shape memory implants
appeared to show strong and continuous forces of mastification; they can be easily
installed and have a good stress dispersion. There are other medical-related appli-
cations of superelastic Nitinol wires such as the Homer Mammalok needle (used for
breast cancer treatment) [368], guidewires, and arthroscopic instrumentation [369].

Song et al. [370] developed a tissue-fixator in minimal access surgery using a
shape memory alloy. It provides an alternative to conventional thread-based suturing
of human tissue. The fixator is made of round NiTi wire and its open and closed forms
are shown in Fig. 1.60. Its deployment may be faster than the conventional approach
of sutures.

Shahinpoor and Kim [371] presented a review of potential applications of ionic
polymer-metal composites in the medical field, including mechanical grippers (at
micro- and macro-levels), robotic swimming structures (robotic fish), artificial ven-
tricular or cardiac-assist muscles, surgical tools, peristaltic pumps, and bionic eyes.
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Figure 1.60. The SMA surgical fixator prototype and working principle, from Ref. [370].
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In each of these devices, electrical energy is converted into mechanical energy to
perform useful work. The strength of ionic polymers is large induced strains and the
major weaknesses are the low stiffness and high field requirements.

1.9.10 Electronics Equipment

Much commercial electronics equipment is being built using smart structures tech-
nology. Key factors for applications are cost, design complexity, power require-
ments, expanded capability, durability, and precision control. Smart material–based
electronic devices include ultrasonic motors, exercise bicycles, CD-ROM drives, the
backlight inverter for large LCD-TVs, and active antennas.

Optical systems require extremely precise movements, whether under static
or dynamic loads. The incorporation of adaptive structural systems can improve
the performance of optical systems. Conventional electromagnetic motors cannot
be easily miniaturized (smaller than one cubic centimeter) and are too inefficient,
especially for more precise positioning and quiet operation. Piezoelectric motors
are a possible solution to achieve efficient compact motors at small size. They can be
divided into three categories: impact drive mechanisms, inchworm mechanisms, and
ultrasonic motors. Among these, the most popular is the ultrasonic motor. Ultrasonic
motors consist of straight metal bars or plates bonded with piezoceramic elements
used as stator. The induced displacement is amplified by two teeth and transmitted
by the frictional force between the motor and the rail in a linear motion, at a velocity
of up to 1 m/s with submicron resolution. In case of an ultrasonic motor, efficiency is
insensitive to size and specific power, and its response time, and positioning accuracy
are far superior to these of electromagnetic motors. Ultrasonic motors can generate
low speed and high torque with no additional gears, no electromagnetic interference,
compact size, and short start-stop times. The major disadvantages are that these
normally need a high-frequency power supply, and significant wear and tear can
occur over time. The term “ultrasonic” means high driving frequency in the range of
20–200 kHz (inaudible to the human ear). The basic ultrasonic motor design is shown
in Fig. 1.61. The performance of the motor is characterized in terms of maximum
no-load (free) RPM, maximum blocked force or torque, and maximum efficiency.
Typically, speed decreases linearly with load. In 1948, Williams and Brown filed a
patent on a piezoelectric motor, which did not find an application for a long time.
After several attempts by different investigators, Kanazawa et al. [372] developed
a refined ultrasonic motor that found a wide commercial application in cameras
(Canon) as an autofocus drive. The ultrasonic motors are now finding a wide range
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of applications in robots, medical instruments, cameras, and aerospace systems.
Uchino [373, 374] provided a comprehensive overview of piezoelectric ultrasonic
motors that includes historical developments, low-speed/high-torque and high-
speed/low-torque motors, rotary and linear type motors, standing wave and travelling
wave-based devices, and rod type, π-shaped, ring, and cylindrical geometry motors.

Overall, piezoelectric ultrasonic motors have high specific thrust, high displace-
ment resolution, no parasitic magnetic field and an absence of frictional locking in
power-off condition. As such, they find applications in precision micromechanical
systems. Many miniature ultrasonic motors are built based on bending modes of
piezoelectrically excited beams or plates. Dong et al. [375] used a wobbling motion
to develop an ultrasonic rotary motor. It is based on the excitation of a bending-
bending mode (two orthogonal modes) of a hollow PZT cylinder, which combine to
produce a wobbling motion that drives the motor. The prototype was successfully
tested over a range of operating conditions. Sharp et al. [376] provided an overview
on the design of ultrasonic piezoelectric motors, including the selection of mate-
rials for different motor components. They built a simple motor that consisted of
an arched frame, a center ground, and two piezoelectric elements connected to the
center ground (Fig. 1.61 ). They also carried out Finite Element Method (FEM)
analysis to predict the performance of the motor.

Tian et al. [377] developed an exercise bicycle using ER fluids based on zeolite
and silicone oil. Changing the strength of the applied electric field results in an active
control of the resistance.

Pires et al. [378] designed a miniature piezoelectric bimorph–actuated precision-
flow pump to cool down Light Emitting Diode (LED) set inside a headlight system
for medical applications. This is a compact, low noise and low power consumption
system. The flow measurement in a prototype system showed satisfactory perfor-
mance.

In a high-capacity CD-ROM drive (optical storage device), the elimination or
suppression of vibration in the feeding system is a key to achieve desirable per-
formance. The vibration, which is affected by the unbalanced flexible disk roating
at high speed and external excitation to the case frame, restricts the tracking and
focusing of the servo. It is quite difficult to achieve satisfactory performance at the
resonance frequency of the feeding system using the conventional passive rubber
system, Lim et al. [379] used an ER fluid mount for vibration control of a CD-
ROM feeding system. Its effectiveness for vibration suppression was demonstrated
through hardware-in-the-loop simulation associated with a skyhook controller. Yang
et al. [380] developed an optical disk drive using multilayered PZT bimorphs. A
novel flexure-hinge mechanism was used to amplify the stroke for both tracking and
focusing motions.

Huang et al. [381] examined the development of a high-voltage, high-powered,
low-cost backlight inverter for lighting long, cold cathode fluorescent lamps on large
size LCD-TVs using piezoelectric transformer (PT) technology. Benefits of PT tech-
nology include high energy-transfer efficiency, very low temperature rise, compact
size, and superior safety. This efficient design employs a single-layer PT to drive long
length cold cathode fluorescent lamps under high voltage and high power while keep-
ing the material and manufacturing cost competitive as compared to conventional
coil-based designs.

Aperture-type antennas are normally rigid, consisting of parabolic, paraboloidal,
cylindrical or spherical shapes. A major flaw with this type of antenna is that the
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for railway vehicles, from Ref.
[384].

whole structure has to be moved to scan a signal from an alternate point. On the
other hand, an active antenna has the ability not only to scan, but also to vary focus.
Such an antenna can be adjusted to compensate for varying atmospheric conditions.
Reflector surface adaptation with compact smart material actuators can achieve
performance gains, compactness, simplicity, and cost advantage over phase-array
antennas. A class of antennas capable of variable directivity (beam steering) and
power density (beam shaping) have been developed with adaptive materials such as
PVDF film in conjunction with metalized Mylar substrate, piezoelectric stacks and
electrostrictives [382].

1.9.11 Rail

There have been some applications of smart structures technology in rail systems.
Key factors for applications are robustness, maintenance cost, and durability.

Peel et al. [383] described the development of a dynamic model of an ER-
based controllable-vibration damper for ground-vehicle suspension systems. The
phenomenonological-based model is developed for characterizing the behavior of
ER fluid in a flow-control valve by taking into account ER fluid inertia and compress-
ibility; an iterative procedure is adopted to solve nonlinear equations. The applica-
tion of this approach is carried out to control the lateral vibrations of a rail vehicle.

Chonan et al. [384] developed an active “relief buffer” for railway vehicles using
ER fluid to control the coupler force. The goal is to lower the coupler force acting
between the failed and the relief train set. The buffer system is expected to support
a maximum coupler force of 500 kN. To evaluate the feasibility of a buffer system,
a prototype consisting of a hydraulic cylinder, an ER bypass slit valve, and a PID
controller was built (Fig. 1.62).
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Performance of active buffer is investigated both theoretically and experimen-
tally. A Bingham plastic model was used to model ER fluid flow through the bypass
slit and the Newtonian mixed-flow model was used to model flow through the piston-
cylinder gap. Results demonstrated that the coupler force of the railway vehicle could
be controlled effectively by using the ER bypass damper.

Fotoohi et al. [385] designed an MR damper in conjunction with a skyhook for
a rail suspension system.

Peiffer et al. [386] carried out technology development and evaluation of an
active vibration control system for high-speed train-bogies. A transfer path analysis
was initially carried out to identify the main paths of noise and vibration transmission,
and then a detailed finite element analysis was performed for the integrated system,
to evaluate the performance of several actuators. The objective was to mitigate
the structure-borne noise, which is generated at the wheels and transmitted via the
primary and secondary suspension system of the bogies to the car-body. The system
was integrated into one axle of a train bogie and was successfully tested. The structure
borne noise at the wheels, which was found to be the key source for bogies’ interior
noise, was a function of wheel threads, vehicle design, kind of rail corrugation, and
track construction.

Vibration is one of the major issues in high speed trains, which affects not only
the ride quality, but also has a significant impact on the ride stability and mainte-
nance cost of the tracks. Various types of suspension linking the bogies and the car
bodies have been designed to increase passenger comfort. The most routinely used
suspensions are passive in nature and involve springs and pneumatic or oil dampers.
These are cost effective and simple in design. However, their performance over a
wide frequency range is limited. On the other hand, active suspensions for railway
vehicles could provide superior performance over a wide frequency range, but these
require actuation power and robust control strategies. Liao and Wang [387] exam-
ined semiactive suspension systems based on MR fluid dampers. An LQG control
law using an acceleration feedback controller was adopted. Through a numerical
simulation, they demonstrated the effectiveness of controlled MR dampers under
random and periodic track irregularities.

1.9.12 Robots

Applications of smart structures in robotic systems, especially at mini- and micro-
scales are growing rapidly. These robots are being built for the medical field,
computers, surveillance vehicles, automotive systems, and machine tools. Key fac-
tors for smart structures applications are stroke and actuation authority, robustness,
maintenance cost, durability, precision control, and power requirements.

The robotic gripper is the end-effector of a robotic arm and needs to be high in
energy density (power-to-weight ratio), flexible, and complex in kinematic motion.
Yan et al. [388] developed a miniature-step mobile robot for micropositioning with
three degrees of freedom using a piezo stack actuator. The device deploys a rhombic
flexture-hinge frame and four electromagnetic legs to achieve large stroke transla-
tion and rotation. An electrical circuit was developed to control the electromagnets
to achieve the inchworm principle (clamp and release from the platform). Ashrafi-
uon et al. [389] built a small-scale three-degrees-of-freedom robot with two SMA
bias actuators and a servomotor. The nonlinear behavior of the SMA, including hys-
teresis, requires a controller even for one-way actuation. Several tests were carried
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out with a desktop prototype robot, and robust performance was obtained despite
significant modeling inaccuracies.

Rastegar and Lifang [390] presented a systematic approach for optimal inte-
gration of active materials into the structure of a robotic manipulator to minimize
higher harmonic components of the required actuating torques. This method may
allow robotic manipulators to operate at higher speeds, with greater tracking preci-
sion and with minimal vibration.

Yan et al. [391] developed a gripper actuated by a pair of differential SMA
springs that are heated by electric current (internal heating) and cooled by fans.
The gripper consists of a pair of fingers, a coupler, a tension rod, a slider, and a
frame (Fig. 1.63). A PI controller was used to control the output position of the
gripper. The opening and closing motions of the two fingers are driven by an SMA-
differential actuator in conjunction with a six-bar linkage. A prototype was built and
performance was evaluated. Good control of gripper position was obtained using a
feedback system.

1.9.13 Energy Harvesting

Harvesting energy from the environment, especially from wind using windmills
to grind grains or pump water, dates back to 500–900 AD in Persia. Because of
recent developments in low-power and efficient microelectronics, there has been a
renewed interest in energy harvesting using smart materials. One approach is to use
piezoelectric materials to generate electric energy from the mechanical vibrations of
the host structure (direct effect) [392]. This results in straining of material, which in
turn is transformed into electric energy. Such a power generator will perform poorly
at low frequencies and low amplitudes. Typically, the energy generated through
the piezoelectric effect is not adequate for most applications. Thus, it is important
to accumulate and store the harvested energy until a sufficient amount of energy
becomes available to power the portable electronics. Sodano et al. [393] investigated
two methods of accumulating the energy produced by a piezoelectric plate. The
first method uses a capacitor to store energy, and the second method uses recharge-
able nickel metal-hydride batteries. Through the excitation of an aluminum plate
(0.98 mm thickness) attached to a piezoceramic plate (62 mm × 40 mm × 0.257 mm),
it was demonstrated that a 40 mAh battery could be charged within a couple of hours.
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A fundamental problem of generating electric power with piezoelectric material
is that it stores most of the generated electric energy, which causes supplemental
excitation opposite to straining direction, and thereby reduces the effectiveness of
the energy generator. Therefore, to increase the efficiency of a power generator, it is
important to minimize the energy storage by the material. This task requires circuitry
to remove and store energy generated by piezoelectric material. For example, Umeda
et al. [394] developed a bridge rectifier and capacitor to store energy. Elvin et al. [395]
used PVDF piezo film attached to a simply-supported Plexiglas beam to generate
electric energy from bending and accumulate it using a capacitor in conjunction with
a cut-off switch. Normally, the storage of energy using a capacitor is not an efficient
approach. It has poor power storage characteristics because of its quick discharge
time. Sodano et al. [396] demonstrated that direct storage of energy generated by
a piezoelectric sheet using a rechargeable battery (nickel-hydride) is superior to a
capacitor approach in terms of the extent of stored power and the fast discharge
rate. They also compared power generation using macro-fiber composite (MFC)
and monolithic piezoceramic material (PZT) and showed that MFC, in spite of its
high piezoelectric coefficient, is less efficient because of lower current levels [392]. In
a later paper, they [397] showed that because of the low capacitance characteristics
of MFC, interdigitated electrodes (IDE) design dominates the power-harvesting
properties. A careful design can show improved performance of MFC. Amirtharajah
and Chandrakasan [398] developed another circuit to store energy by integrating a
finite impulse response (FIR) filter, power field-effect transistors (FETs) and pulse-
width modulation (PWM) control. Ottman et al. [399, 400] and Lesieutre et al. [401]
developed alternate circuitries to store energy. Some researchers have also examined
implantable and wearable power harvesting devices; embedding them into clothing,
implanting them inside biological systems, and embedding them in shoes [392]. For
example, Kymissis et al. [402] examined the use of piezoelectric actuators embedded
into the sole of a shoe to harvest energy during walking. The peak powers were
measured to be 20 mW and 80 mW, respectively, with a PVDF stack and a PZT
unimorph. It should be noted that when a power harvesting system is integrated into
a structure, it results in an increase in the net damping of the system, comparable
to resistive shunting [401]. Doubtless, with the advances in low-power electronics
and wireless technology, power harvesting is a key link to developing a completely
self-powered system.

To assess the performance of power harvesting systems generating power from
mechanical vibration, a two-port network (coupled electromechanical) model of
the transducer, which can interface between the structure and the electrical load
in a unified manner, is developed [403]. The power harvested by two different
transducers, respectively representing piezoelectric and magnetostrictive materials,
on a simply supported beam is calculated for optimal matching conditions. Based
on this numerical study, the piezoelectric transducer was found to be superior to
the magnetostrictive transducer of equal mass for energy harvesting, provided the
transducer parameters are optimally tuned.

A new class of piezoelectric-based energy harvesting power sources for mount-
ing on platforms that vibrate at very low frequencies (less than 1 Hz) is being
developed [392, 404]. The platforms can be ships, trains, or trucks, which rock at
low amplitude motions. The mechanical energy available for harvesting is a func-
tion of the amplitude and frequency of platform, and the size and mass of power
transducer.
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Recently, there has been increased research activity towards ambient energy
harvesting using smart material transducers as power supplies for low-power elec-
tronics. However, there are numerous barriers that need to be overcome before such
energy harvesting becomes a viable option.
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[386] A. Peiffer, S. Storm, A. Röder, R. Maier, and P. G. Frank. Active vibration control for
high speed train bogies. Smart Materials and Structures, 14(1):1–18, February 2005.

[387] W. H. Liao and D. H. Wang. Semiactive vibration control of train suspension systems
via magnetorheological dampers. Journal of Intelligent Material Systems and Structures,
14(3):161–172, 2003.

[388] S. Yan, F. Zhang, Z. Qin, and S. Wen. A 3-DOFs mobile robot driven by a piezoelectric
actuator. Smart Materials and Structures, 15(1):N7–N13, February 2006.

[389] H. Ashrafiuon, M. Eshraghi, and M. H. Elahinia. Position control of a three-link shape
memory alloy actuated robot. Journal of Intelligent Material Systems and Structures,
17(5):381–392, 2006.

[390] J.S. Rastegar and Y. Lifang. A systematic method for the design of piezostack actuator
integrated robots for high-speed and precision operation. Journal of Intelligent Material
Systems and Structures, 12(12):835–846, 2001.

[391] S. Yan, X. Liu, F. Xu, and J. Wang. A gripper actuated by a pair of differential
SMA springs. Journal of Intelligent Material Systems and Structures, 18(5):459–466,
2007.

[392] H. A. Sodano, D. J. Inman, and G. Park. A review of power harvesting from vibration
using piezoelectric materials. The Shock and Vibration Digest, 36(3):197–205, 2004.

[393] H. A. Sodano, D. J. Inman, and G. Park. Generation and storage of electricity from
power harvesting devices. Journal of Intelligent Material Systems and Structures, 16(1):
67–75, 2005.

[394] M. Umeda, K. Nakamura, and S. Ueha. Energy storage characteristics of a piezo-
generator using impact induced vibration. Japanese Journal of Applied Physics,
36(5B):3146–3151, 1997.

[395] N. G. Elvin, A. A. Elvin, and M. Spector. A self-powered mechanical strain energy
sensor. Smart Materials and Structures, 10:293–299, 2001.



112 Historical Developments and Potential Applications

[396] H. A. Sodano, E. A. Magliula, G. Park, and D. J. Inman. Electric power generation
from piezoelectric materials. In Proceedings of the 13th International Conference on
Adaptive Structures and Technologies, Potsdam, Germany, 7–9 Oct 2002.

[397] H. A. Sodano, J. Lloyd, and D. J. Inman. An experimental comparison between sev-
eral active composite actuators for power generation. Smart Materials and Structures,
15(5):1211–1216, October 2006.

[398] R. Amirtharajah and A. P. Chandrakasan. Self-powered signal processing using
vibration-based power generation. IEEE Journal of Solid-State Circuits, 33(5):687–
695, 1998.

[399] G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre. Adaptive piezoelectric
energy harvesting circuit for wireless remote power supply. IEEE Transactions on
Power Electronics, 17(5):669–676, 2002.

[400] G. K. Ottman, H. F. Hofmann, and G. A. Lesieutre. Optimized piezoelectric energy
harvesting circuit using step-down converter in discontinuous conduction mode. IEEE
Transactions on Power Electronics, 18(2):696–703, 2003.

[401] G. A. Lesieutre, H. F. Hofmann, and G. K. Ottman. Electric power generation from
piezoelectric materials. In Proceedings of the 13th International Conference on Adaptive
Structures and Technologies, Potsdam, Germany, 7–9 Oct 2002.

[402] J. Kymissis, C. Kendall, J. Paradiso, and N. Gershenfeld. Parasitic power harvest-
ing in shoes. In Proceedings of the 2nd IEEE International Symposium on Wearable
Computers, Pittsburg, PA, pages 132–139, 19–20 Oct 1997.

[403] K. Nakano, S. J. Elliott, and E. Rustighi. A unified approach to optimal conditions of
power harvesting using electromagnetic and piezoelectric transducers. Smart Materials
and Structures, 16(4):948–958, August 2007.

[404] J. Rastegar, C. Pereira, and H.-L. Nguyen. Piezoelectric-based power sources for har-
vesting energy from platforms with low frequency vibration. In Proceedings of SPIE
Smart Structures and Materials: Industrial and Commercial Applications of Smart Struc-
tures Technologies, SPIE 6171, doi: 10.1117/12.657464. San Diego, CA, March 2006.



2 Piezoelectric Actuators and Sensors

2.1 Fundamentals of Piezoelectricity

The term piezoelectricity translates roughly to ‘pressure electricity’ and refers to
an effect observed in many naturally occuring crystals, that is, the generation of
electricity under mechanical pressure. The effect was first predicted and then exper-
imentally measured by the brothers Pierre and Jacques Curie in 1880. The research
was prompted by investigations into a closely related effect, the pyroelectric effect,
which is the generation of electricity as a result of a change in temperature. The
effect observed by the Curie brothers is also known as the direct piezoelectric effect.
A strict definition of the direct effect is ‘electric polarization produced by mechanical
strain, being directly proportional to the applied strain.’ A converse piezoelectric
effect also exists, and is the appearance of mechanical strain as a result of an applied
electric field.

The origin of the piezoelectric effect can be traced to fundamental geometric
properties of certain crystals. Based on their geometry, crystals are normally classi-
fied into seven categories: triclinic, monoclinic, orthorhombic, tetragonal, trigonal,
hexagonal and cubic. A structure is called centrosymmetric if it has symmetry with
respect to a single point. Based on their symmetry with respect to a point, the crystals
are further classified into 32 classes, out of which only 20 classes can exhibit piezo-
electricity. The unit cell of these crystals possess as a certain degree of asymmetry,
leading to a separation of positive and negative charges that results in a permanent
polarization. A crystal which is centrosymmetric by definition cannot have any asym-
metry and therefore cannot be piezoelectric. Hence, no piezoelectricity is exhibited
in any of the crystal classes that are centrosymmetric.

The terms ‘direct’ and ‘converse’ bear only a historical importance. The con-
verse piezoelectric effect was predicted by Lippmann and experimentally verified in
1881 by the Curie brothers. Measurements on quartz showed that the piezoelectric
coefficients for the direct and converse effects were equal. The first quantitative
measurements were made on quartz and tourmaline, but a large number of naturally
occuring crystals exhibiting the piezoelectric effect were subsequently identified,
such as Rochelle’s salt, tourmaline, quartz, cane sugar and tartaric acid. Based on
thermodynamic principles, a phenomenological theory of piezoelectricity was devel-
oped by several researchers such as Lord Kelvin, P. Duhem, and F. Pockels, and a
comprehensive treatment of the subject was given by W. Voigt in 1894.

113
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The piezoelectric effect remained a subject of purely academic interest till the
First World War. Increased interest in locating underwater objects and exploring
the ocean floor led to the development of piezoelectric devices for emitting and
recieving ultrasonic waves underwater, the precursor to modern sonar equipment.
These applications were pioneered by Langevin, who developed ultrasonic emitters
and detectors driven by quartz plates. Several designs of piezoelectric resonators,
oscillators and transformers were subsequently developed over the next few decades,
and are now used in a wide range of applications.

Most piezoelectric materials are crystalline in nature; they can be either single
crystals or polycrystalline. They can be formed in nature, or formed by synthetic
processes. One of the types of piezoelectric materials widely used in technological
applications is piezoceramics, also known as ferroelectric ceramics. These were
developed in the second half of the twentieth century and have much larger piezo-
electric coefficients than natural crystals. In their original unprocessed form, these
materials do not possess piezoelectric characteristics, and are isotropic. They need
to be polarized through the application of a strong electric field. When the field
is removed, the ceramic material becomes piezoelectric, a permanent deformation
takes place, and the material becomes anisotropic. Once polarized, they can be asso-
ciated with a well-defined crystal axis system and their behavior can be expressed
in terms of this axis system. The material requires metal electrodes deposited on
appropriate surfaces for application of an electric field.

The piezoelectric effect can be expressed in terms of constitutive relations that
can be derived from basic thermodynamic relations. It is convenient to express the
mechanical strain and the electric displacement as independent variables, resulting
in forms of the constitutive relations that bear a one-to-one correspondence with the
converse and direct piezoelectric effects. A standard way of writing these equations
is [1]

Sij = sEijklTkl + dkij Ek (2.1)

Di = diklTkl + εT
ikEk (2.2)

where Sij is the mechanical strain tensor, Tkl is the mechanical stress tensor, εT
ik is the

permittivity tensor sEijkl is the compliance tensor and dkij or dikl is the piezoelectric
coefficients tensor. Eq. (2.1) is the actuator equation and Equation (2.2) is the
sensor equation. Actuator applications are based on the converse piezoelectric effect.
The actuator is bonded to a structure and an external electric field is applied to
it, which results in an induced strain field. Sensor applications are based on the
direct effect. The sensor is exposed to a stress field, and generates a charge in
response, which is measured. Note that the superscripts E and T imply that the
corresponding quantities are measured at constant electric field and constant stress,
respectively.

The actuator equation (Eq. 2.1) is based on the assumption that the total strain is
the sum of the strain caused by the mechanical stress and the controllable actuation
strain induced by the applied electric field. Similarly, the sensor equation is based
on the assumption that the total electric charge (or displacement) is the sum of the
charge induced due to the mechanical stress and the charge generated due to the
external electric field.
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The basic piezoelectric constitutive relations are assumed linear, in which elas-
tic, piezoelectric, and dielectric coefficients are assumed constant and independent
of applied mechanical stress as well as electric field. In reality, they are often nonlin-
ear, especially under high electrical or mechanical fields. In addition, piezoelectric
materials exhibit hysteresis effects, electrical aging, and magneto-mechano-electric
interactions. The nonlinearities can be incorporated into analytical models in several
different ways, the simplest of which is by including field-dependent coefficients in
the equations. The linear constitutive relations are valid only for low electric field and
low mechanical stress levels. Furthermore, the constitutive relations are quasi-static
and do not represent any dynamic effects.

The remainder of this book will use engineering notation and express tensors
in Voigt notation to simplify the subscripts. The piezoelectric constitutive equations
are rewritten as

εi = sEijσj + dikEk (actuator equation) (2.3)

Dk = dkiσi + eσklEl (sensor equation) (2.4)

where the indices i, j = 1, 2 . . . 6 and k, l = 1, 2, 3. In matrix notation, this can be
written as

ε = sEσ + d c
E (actuator equation) (2.5)

D = dd σ + eσE (sensor equation) (2.6)

where the strain vector ε (dimensionless), in terms of standard engineering notation,
is given by

ε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1

ε2

ε3

ε4

ε5

ε6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1

ε2

ε3

γ23

γ31

γ12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.7)

where ε1, ε2, ε3 are direct strains along the mutually orthogonal right-handed axes 1,
2 and 3 respectively and γ23, γ31, γ12 are shear strains. Note that axis ‘3’ is oriented
along the polarization direction of the piezoelectric element. Similarly, the stress
vector σ (N/m2) is given by

σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

σ4

σ5

σ6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

τ23

τ31

τ12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.8)
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where σ1, σ2, and σ3, are direct stresses and τ23, τ31 and τ12 are shear stresses. For the
most general case, the compliance matrix sE (m2/N) is given by

sE =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sE11 sE12 sE13 sE14 sE15 sE16

sE21 sE22 sE23 sE24 sE25 sE26

sE31 sE32 sE33 sE34 sE35 sE36

sE41 sE42 sE43 sE44 sE45 sE46

sE51 sE52 sE53 sE54 sE55 sE56

sE61 sE62 sE63 sE64 sE65 sE66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.9)

Because sEij = sEj i, the 36 constants in the compliance matrix reduce to 21. The electric
displacement, D (C/m2 or Coulombs per square meter) and electric field, E (N/C or
V/m) are vectors given by

D =
⎧⎨⎩

D1

D2

D3

⎫⎬⎭ (2.10)

E =
⎧⎨⎩

E1

E2

E3

⎫⎬⎭ (2.11)

The electric permittivity matrix, e (F/m or C2/N-m2) is

e =
⎡⎣e11 e12 e13

e21 e22 e23

e31 e32 e33

⎤⎦ (2.12)

The terms eij , i �= j are called cross-permittivities, and eij = eji. The electric per-
mittivity is a measure of the charge density due to an electric field. The permittivity
eij defines the charge generated or electric displacement on electrodes normal to
the i-axis due to an electric field in the j -direction. For most of the piezoelectric
materials, a field along one axis results in electric displacement only along the same
axis. This means that eij = 0 for i �= j . In addition, the mechanical boundary condi-
tions play an important role in the interchange of electrical and mechanical energy.
When the piezoelectric material is mechanically unrestrained, the electric permittiv-
ity is higher than when the material is mechanically restrained. This can be written
as

eσii > eεii (2.13)

where the superscript σ indicates a condition of constant stress (no mechanical
restraint) and the superscript ε indicates a condition of constant strain (completely
restrained).

The piezoelectric coefficient matrices, d, represent the electro-mechanical cou-
pling inherent in the material. The matrix d c (m/V) is called the converse piezo-
electric coupling matrix, and the matrix dd (C/N) is called the direct piezoelectric
coupling matrix. In the converse piezoelectric effect, the piezoelectric constant dc

ik



2.2 Piezoceramics 117

represents the mechanical strain produced along the i-axis by an applied electric
field along the j -axis

dc
ik = strain induced in i-direction

electric field applied in k-direction
,

1
Volts/meter

or
m
V

(2.14)

In the direct piezoelectric effect, dd
ki represents the charge generated on the

electrodes normal to the k-axis due to an applied mechanical stress σi

dd
ki = charge generated in k-direction

mechanical stress applied in i-direction
,

Coulomb/square meter
Newton/square meter

or
C
N

(2.15)

It has been experimentally verified that for most practical purposes, if dd = d,
then d c = dT , that is, the direct piezoelectric coupling matrix is the transpose of the
converse piezoelectric coupling matrix. Note that it is theoretically possible for a
material to have 18 independent piezoelectric constants. Thus,

dd =
⎡⎣d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎤⎦ = d (2.16)

d c = dT =

⎡⎢⎢⎢⎢⎢⎢⎣

d11 d21 d31

d12 d22 d32

d13 d23 d33

d14 d24 d34

d15 d25 d35

d16 d26 d36

⎤⎥⎥⎥⎥⎥⎥⎦ (2.17)

From the above equations, it is clear that the units of the piezoelectric coefficient
dij can be expressed in terms of m/V ≡ C/N. It should be noted that the above forms
of s, e and d represent the most general case. Depending on the symmetry present in
specific crystals, many of these coefficients may be equal to each other or even zero.
These coefficients are defined in Table 2.1.

2.2 Piezoceramics

With the discovery of piezoceramics exhibiting a much larger piezo effect than natu-
ral materials, the domain of applications expanded considerably. Piezoceramic ele-
ments can also be manufactured easily in large quantities and in specific shapes, which
makes them ideally suited for adaptive structures applications, in the form of actu-
ators as well as sensors. Typical piezoceramics include Barium Titanate (BaTiO3),
which was one of the first piezoceramics to be extensively investigated and Lead
Zirconate Titanates or PZTs (PbZr1−xTixO3). These compositions fall in a broad
category of compounds called perovskites, which consist of a combination of tetrava-
lent metals (such as titanium or zirconium), divalent metals (such as lead or bar-
ium), and oxygen. Recently, relaxor materials such as lead magnesium niobate
(PMN), exhibiting superior performance compared to PZT based ceramics, are being
developed.

Because dopants and defect structure have an enormous influence on domain
wall motion, they markedly affect the magnitude of the piezoelectric coefficients.



118 Piezoelectric Actuators and Sensors

Table 2.1. Definition of symbols (indices: i, j = 1, 2, . . . 6 and k, l = 1, 2, 3)

Piezoelectric
Symbol Name effect Definition Size Units

dd
ki Piezoelectric

coefficient
Direct Charge accumulated on

surface electrodes
normal to k-axis due to
stress component i

3 × 6 C/N

dc
ik Piezoelectric

coefficient
Converse Induced strain component

i due to electric field
along k-axis (applied on
electrodes normal to
k-axis)

6 × 3 m/V

Dk Electric
displacement

Direct Charge accumulated on
surface electrodes
normal to the k-axis

3 × 1 C/m2

eσkl Electric
permittivity

Direct Ratio of charge
accumulated on surface
electrodes normal to
k-axis to electric field
along l-axis at constant
stress

3 × 3 F/m

Ek Electric field Direct/converse Electric field applied on
surface electrodes
normal to the k-axis

3 × 1 V/m or N/c

sEij Elastic
compliance

Converse Ratio of mechanical strain
component i to stress
component j at constant
electric field

6 × 6 m2/N

εi Strain Converse ε1, ε2, ε3 (Direct strains),
ε4, ε5, ε6 (Shear strains)

6 × 1 –

σi Stress Direct/converse σ1, σ2, σ3 (Direct stresses),
σ4, σ5, σ6 (Shear stresses)

6 × 1 N/m2

This in turn also has a major influence on the nature of hysteresis loops in the
material. Such an interaction between the domain walls and defects leads to ‘soft’
and ‘hard’ piezoelectric compositions. In a ‘soft’ piezoelectric material, piezoelectric
coefficients are large and the material exhibits high hysteresis. In a ‘hard’ piezoelec-
tric material, the piezoelectric coefficients are small and the material exhibits low
hysteresis. In such materials, the domain wall motion is inhibited. Soft piezoelectrics
are preferred for most of the actuator applications because of their larger induced
strain. Hard piezoelectrics are preferred where low hysteretic response is desired.

Piezoceramics are polycrystalline in nature and do not have piezoelectric char-
acteristics in their original state. Piezoelectric effects are induced in these materials
by electrical poling (the application of high electric field results in polarization). The
most commonly used piezoceramics are based on lead zirconate titanate (PZT) com-
pounds. These materials have been widely used as actuators in adaptive structures
applications. Piezoceramics are available commercially in a variety of basic shapes
such as sheets, discs and cylinders, as well as in the form of assembled actuators such
as piezoceramic stacks, benders, unimorphs, and torque tubes. The remainder of this
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Table 2.2. Comparison of the characteristics of soft and hard piezoelectric ceramics

Characteristic Soft Ceramics Hard Ceramics

Piezoelectric coefficient (dij ) Large Small
Curie temperature Low High
Electric Permittivity (eij ) Large Small
Resistivity Large Small
Coercive field Low High
Linearity Poor Good
Polarization/depolarization Easy Difficult
Electromechanical coupling factor Large Small

chapter will focus on the properties and behavior of a typical PZT composition, such
as PZT-5H.

2.3 Soft and Hard Piezoelectric Ceramics

The piezoelectric properties of ceramics are a function of their constituents. A
small amount of a dopant material added to a piezoceramic can make it either a
soft or a hard piezoceramic. In general, soft piezoceramics are characterized by
large a electromechanical coupling factor, large piezoelectric constant, high electric
permittivity, low modulus of elasticity, low Curie temperature, and poor linearity.
Soft ceramics produce larger maximum strains, exhibit greater hysteresis, and are
more susceptible to depolarisation than hard ceramics. Generally, large values of
permittivity and dielectric dissipation may exclude these ceramics from applications
requiring high frequency input in combination with high electric fields. Typically,
hard ceramics are suited for high force actuation and soft ceramics are suited for
sensing applications. Table 2.2 summarizes the differences between soft and hard
piezoceramics.

2.4 Basic Piezoceramic Characteristics

Piezoceramics based on PZT are solid solutions of lead zirconate, and lead titanate,
often doped with other elements to obtain specific properties. The material is man-
ufactured by mixing a powder of lead, zirconium, and titanium oxides and then
heating the mixture to around 800–1000◦C. It then transforms to perovskite PZT
powder which is mixed with a binder, sintered into the desired shapes and cooled.
As the temperature of the material drops below the Curie temperature (which is
specific to the material composition), it undergoes a phase transformation in which
the cubic unit cells become tetragonal. A typical PZT unit cell at room temperature
is shown in Fig. 2.1(a), with the three reference axes (a, b and c axes). The sides
of the unit cell along the a and b axes are equal in length, while the side along the
c-axis is slightly longer. For this reason, the c-axis is also sometimes called the ‘long’
axis.

As the titanium ion is slightly displaced from the center of the unit cell, a
seperation of charge occurs between the positively charged titanium ions and the
negatively charged oxygen ions. As a result, the unit cell has a permanent dipole
moment oriented along the c-axis, as shown in Fig. 2.1(b). The dipole moment p is
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c - axis

b - axis
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(a) PZT unit cell
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a - axis

+

−

(b) Equivalent dipole moment

Figure 2.1. Spontaneous polarization in PZT.

a vector quantity defined as

p = q × r (2.18)

where q is the magnitude of each charge, and r is the displacement vector of the
positive charge with respect to the negative charge. Therefore, the dipole moment
of the PZT unit cell is denoted as an arrow pointing along the positive c-axis, from
the negative charge to the positive charge.

A volume of unit cells with their dipole moments oriented in the same direction
is called a domain. Due to the dipole moment inherent in the unit cells, each
domain in the material has a spontaneous polarization, which is defined as the
dipole moment per unit volume. Note that the polarization is also a vector quantity,
and has the same direction as the dipole moment. It is this polarization that is
responsible for the piezoelectric characteristics of a single domain. In any bulk
material, imperfections always exist in the form of breaks in the lattice structure.
While such imperfections can exist even in naturally occuring crystals, they are even
more prevalent in polycrystalline materials such as the piezoceramic, resulting in
a large number of domains. The direction of the unit cells can change from one
region (domain) to the next. Hence, a bulk sample of unpoled piezoceramic will
contain a large number of randomly oriented domains, each with a dipole moment
(Fig. 2.2(a)). As a result, the net spontaneous polarization of the sample, Ps is zero.

The next step in the manufacturing process is the application of electrodes on
the surface by using an electroplating or sputtering process. Application of a high
electric field (typically over 2000 V/mm) results in the realignment of most of the
domains in such a way that their dipole moments are oriented mostly parallel to the
applied field, as shown in Fig. 2.2(b). This process is called poling, and it imparts
a permanent polarization to the ceramic (analogous to magnetization of a ferrous

P  = 0s−

+

(a) Randomly oriented do-
mains before poling, Ps = 0

−

+ VDC

−

+

(b) Domains are aligned along
positive poling field

Ps
−

+

(c) Removal of poling
field results in remnant
polarization, Ps = 0

Figure 2.2. Effect of poling on domains.
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material with a permanent magnet). Because the c-axis of the unit cell is longer than
the a and b-axes, the reorientation of the domains creates a mechanical distortion. A
large electric field applied opposite to the direction of poling can result in a complete
reorientation of the domains, destroying the net polarization of the material. This
is called depoling of the piezoceramic. Similarly, depoling can also be achieved by
applying a large mechanical stress to the material.

Poled piezoceramics exhibit both direct and converse piezoelectric effects. The
mechanisms that provide both sensing and actuation capabilities are due to the non-
centrosymmetric nature of the material. Polar changes place due to the applied field
causing displacement of ions as a result of their alignment with the field. On the
other hand, the application of stresses causes deformations in the material, which
in turn alter the polarization resulting in separation of charge. The actuation phase
(converse effect) consists of three parts. The first is called intrinsic effect and involves
the deformation of dipoles in the unit cells. The second one is called extrinsic effect
and involves the motion of domain walls, caused by reorientation of domains. It is a
major source of nonlinearity and losses in piezoceramics. The third effect is due to the
electrostriction of materials, and as a result of this effect, the deformation is generally
proportional to the square of the electric field. Electrostriction effects are much
smaller than the other two effects and will be discussed in detail in a later chapter. A
simplistic interpretation of the mechanism of the direct and converse piezoelectric
effects is shown in Fig. 2.3 and Fig. 2.4. It is important to note that the main goals
of these simplistic interpretations are to facilitate a physical understanding of the
phenomena, and to serve as a simple intuitive memory aid. The actual mechanisms
involved are complex and require a comprehensive understanding of material science
at the micromechanical scale.

Consider a sample of piezoceramic material with its poling direction marked
either with an arrow or with a dot on the positive electrode (Fig. 2.3(a)). A compres-
sive stress applied along the poling direction has the effect of ‘flattening’ the domains,
that is, the domains tend to orient themselves so that their long axes are perpen-
dicular to the direction of applied stress. Complete reorientation of the domains
is prevented by internal elastic stresses, and the domains attain a final orientation
where the internal and external stresses are in equilibrium. From Fig. 2.2(b) and
Fig. 2.2(c), it can be seen that the reorientation of the domains in this manner results
in the negatively charged ends moving away from the top electrode. Consequently,
an effective positive charge is built up on the top electrode, producing a positive
voltage, which is in the same direction as the poling voltage. Note that a compres-
sive stress along the poling direction produces similar behavior as a tensile stress
perpendicular to the poling direction.

In a similar way, the mechanism of the converse piezoelectric effect can be
examined. Application of a voltage of the same polarity as the poling voltage tends
to align the domains along the poling direction. Consequently, the dimension of the
sample increases by �l along the poling direction and decreases perpendicular to
the poling direction (Fig. 2.4(a)). Application of a voltage with a polarity opposite
to that of the poling direction tends to align the domains perpendicular to the poling
direction, resulting in a decrease in dimension along the poling direction and an
increase in dimension perpendicular to the poling direction (Fig. 2.4(b)). Vibration
of the piezoceramic sheet along a polar direction is referred to as longitudinal mode,
whereas vibration in a direction normal to the polar axis is referred to as transverse
or lateral mode.
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Figure 2.3. Effect of applied stress on voltage generated (direct piezoelectric effect).

2.5 Electromechanical Constitutive Equations

Piezoceramic materials are relatively well behaved and linear at low electric fields
and low mechanical stress levels; they show considerable non-linearity at high values
of electric field and mechanical stress. The linear piezoelectric constitutive relations,
Eqs. 2.3 and 2.4, can be used to model the behavior of the piezoceramics at low
excitation levels. A convenient way of modeling the non-linearities at high electric
field is to use the linear constitutive equations (Eqs. 2.3 and 2.4) with electric field-
dependent constants. The actuation strain can also be modeled like an equivalent
thermal strain, and this representation is often used in commercial FEM software.

A typical piezoceramic sheet is shown in Fig. 2.5. The initial polarization direc-
tion is expressed as the z-axis (or 3-axis). The axes x and y (or ‘1’-axis and ‘2’-axis)
are defined in a plane normal to the z-axis, in a conventional right-handed system.
To polarize the material, a high DC field is applied between the electroded faces.
As the sheet is polarized along the z-axis, the electroded faces are in the x − y plane
(normal to the direction of polarization). Note that for shear actuation, these poling
electrodes must be removed and subsequently replaced with a pair of electrodes
deposited on faces normal to the x-axis or y-axis. The direction of polarization is
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Figure 2.4. Effect of applied
voltage on change in dimen-
sions (converse piezoelectric
effect).

identified by an arrow in the negative z-direction, and is indicated on the piezoce-
ramic sheet by a dot on one of the electrodes, as shown in Fig. 2.5. Note that a positive
electric field E3 results if the electrode marked by the dot is at a higher voltage than
the electrode on the opposite face of the sheet. Axes 4, 5 and 6 represent right hand
rotations respectively about axes 1, 2 and 3. The application of the electric fields E1,
E2 and E3 is depicted in Fig. 2.6. However, these fields can only be applied if the
material has electrodes in a plane normal to the desired field direction.

The piezoceramic sheet is polycrystalline and needs to be poled to induce piezo
electric effect. The spontaneous polarization Ps is imparted to the material by apply-
ing a high DC voltage between a pair of electrode faces on the 1-2 plane. During the
poling process, the piezo ceramic sheet undergoes a permanent change in dimensions.
Prior to polarization, the piezoceramic material is isotropic and becomes anisotropic
after polarization. A piezoceramic sheet poled along the 3-axis can be idealized as a
transversely isotropic (in the 1-2 plane) material. Because the majority of the c-axes
of the unit cells are oriented along the 3-axis of the element, properties along this
axis are different from properties along the 1-axis and 2-axis. In addition, because
the a-axis and b-axis of the unit cell are equal, properties of the bulk material along
the 1-axis and 2-axis are equal, resulting in the idealization of the sheet element as
transversely isotropic.

Once polarized, voltage of the same polarity as the poling voltage causes a
temporary extension in the poling direction and contraction in the plane parallel
to electrodes (Fig. 2.4(a)). The piezoceramic element returns to its original poled

x, 1

electrodes

z, 3 (poling axis)

 y, 2

material

polarization mark

Figure 2.5. Definition of co-ordinate axes and poling direction for a piezoceramic sheet.
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Figure 2.6. Possible electric field directions for a piezoceramic sheet.

dimensions after the removal of voltage. Strains in two directions are unequal,
resulting in a small change of volume with the application of voltage. If a compressive
force is applied in the poling direction or a tensile force is applied in the plane normal
to the poling direction (parallel to the electrodes), a positive voltage is generated
(same polarity as the original poling voltage). Shear strain is produced when the
field is applied normal to the polarized direction (axis 1 or 2). However, it requires
deposition of electrodes normal to axis 1 or 2. Often, one requires a very high
voltage (several kV) depending on the width of the plate, to induce significant shear
strains.

The properties of the piezoceramic gradually change with time (logarithmic
function of time) after the original polarization of material. After some time from
initial poling, the material becomes quite stable. Unless the stress level is very high,
the properties of piezoceramic material are independent of stress. Each piezoceramic
material has a specific temperature called the Curie temperature, beyond which the
material loses its piezoelectric characteristics due to a change in lattice structure
that destroys the inherent asymmetry of the unit cell. However, it is suggested to
operate at a temperature far below the Curie temperature to avoid accelerated
aging of material, increased electrical losses and reduced safe stress that occurs at
an elevated temperature.

The piezoceramic sheet element shown in Fig. 2.5 can be used both as an actuator
or as a sensor. The constitutive equations for both cases will be discussed in the next
subsection.

2.5.1 Piezoceramic Actuator Equations

The constitutive relations are based on the assumption that the total strain in the
actuator is the sum of the mechanical strain induced by the stress, the thermal
strain due to temperature, and the controllable actuation strain due to the electric
voltage. The piezoceramic material is assumed to be linear. Consider a piezoceramic
sheet poled along its thickness, as in Fig. 2.5. The 1-2 planes (top and bottom) are
electroded, and an electric field is applied across the thickness of the sheet. The 3 (or
z or c) axis is assigned to the direction of the initial polarization of the piezoceramic,
and 1 (or x or a) and 2 (or y or b) axes lie in a plane perpendicular to z axis. Shear
about these three axes is represented by 4, 5 and 6. The piezoceramic material
constants are defined using these axes.

When the material is used as an actuator, the electric field is an input and
mechanical strain is the output. The corresponding constitutive relation for the
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material can be written from the general case (Eq. 2.5) as

ε = sEσ + d c
E (2.19)

Including the effects of thermal expansion, the constitutive relations for a piezo-
ceramic actuator are:

ε = sEσ + d c
E + α�T (2.20)

Due to the specific crystal structure of PZT, several elements of the coefficient
matrices become equal to each other or to zero. The compliance matrix sE (m2/N)
defines the mechanical compliance of the material, with the superscript E indicating
that the quantity is measured at constant electric field. The compliance sEkm is defined
as elastic strain in direction-k due to unit stress in direction-m with electrodes short-
circuited. These coefficients are a function of Young’s modulus (EE

k ) and Poisson’s
ratio (νkm), which can be different in different directions. In some cases, the Young’s
modulii EE

k are specified instead of the compliances. For the remainder of this
discussion, to simplify the notation, the symbol Ek with no superscript will denote
the Young’s modulus at constant electric field.

In the general case, sE is given by Eq. 2.9; however, because the piezoceramic
is isotropic in a plane perpendicular to the poling direction, the compliance matrix
becomes

sE =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sE11 sE12 sE13 0 0 0

sE12 sE11 sE13 0 0 0

sE13 sE13 sE33 0 0 0

0 0 0 sE44 0 0

0 0 0 0 sE44 0

0 0 0 0 0 sE66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

− ν12
E1

− ν31
E3

0 0 0

− ν12
E1

1
E1

− ν31
E3

0 0 0

− ν31
E3

− ν31
E3

1
E3

0 0 0

0 0 0 2(1+ν31)
E3

0 0

0 0 0 0 2(1+ν31)
E3

0

0 0 0 0 0 2(1+ν12)
E1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.21)

where E1 is the Young’s modulus in a plane normal to polarized direction (note
E1 = E2) and E3 is in the polarized direction. The piezoelectric coefficient matrix,
d c (m/Volt) defines strain per unit field at constant stress. The superscript c has been
added to identify it as converse piezoelectric effect. The piezoelectric coefficient
matrix, d c is given by

d c =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 d31

0 0 d32

0 0 d33

0 d24 0
d15 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (2.22)
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The coefficient d31 characterizes strain in the 1-axis due to an electric field E3 along
the 3-axis, the coefficient d32 characterizes strain in the 2-axis due to an electric field
E3 along the 3-axis, and the coefficient d33 relates strain in 3-axis due to an electric
field along the 3-axis. d24 and d15 characterize shear strains in the planes 2-3 and 3-1
due to field E2 and E1 respectively. In the case of a piezoceramic material, transverse
isotropy results in d31 = d32 and d24 = d15. It is important to note that there can be no
induced shear in the 1-2 plane. In the present actuator configuration, with electrodes
only on the 1-2 planes, it is only possible to apply an electric field in the 3-direction,
E3. Therefore, it is not possible to obtain any shear in the actuator configuration
under consideration.

The vector α (1/◦ K) represents thermal coefficients of expansion and �T
is the temperature change (Kelvin or ◦K). It is also possible to introduce modi-
fied coefficients to combine thermal and induced strain. Because of the transverse
isotropy,

α =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α1

α1

α3

0
0
0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.23)

The actuator constitutive equations are

εi = sEijσj + dikEk + αi (2.24)

where the indices i, j = 1, 2 . . . 6 and k = 1, 2, 3. Expanding these equations,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1

ε2

ε3

ε4

ε5

ε6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sE11 sE12 sE13 0 0 0

sE12 sE11 sE13 0 0 0

sE13 sE13 sE33 0 0 0

0 0 0 sE44 0 0

0 0 0 0 sE44 0

0 0 0 0 0 2(sE11 − sE12)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

σ4

σ5

σ6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 d31

0 0 d31

0 0 d33

0 d15 0

d15 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨⎪⎩
E1

E2

E3

⎫⎪⎬⎪⎭+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1

α2

α3

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
�T

(2.25)

It can be seen that for a piezoceramic sheet at constant temperature, with no
external mechanical stress, an electric field E3 causes direct strains ε1, ε2 and ε3. This
is very similar to thermal strain. If an electric field E1 or E2 is applied, the material
reacts with shear strain ε4 and ε5 respectively. Again, it is not possible to obtain
shear strain in the 1-2 plane by the application of an electric field. For orthotropic
materials, there are no corresponding thermal strains. To overcome this problem, it
is better to assume piezoelectric materials as anisotropic. Note that, unless level of
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Table 2.3. Small signal PZT-5H characteristics

d31 (×10−12 m/V, pC/N) −274
d33 (×10−12 m/V, pC/N) 593
d15 (×10−12 m/V, pC/N) 741

sE11 (×10−12 m2/N) 16.5

sE33 (×10−12 m2/N) 20.7

sE44 (×10−12 m2/N) 58.3

sE66 (×10−12 m2/N) 42.5

sE12 (×10−12 m2/N) −4.78

sE13 (×10−12 m2/N) −8.45

E1 (GPa) 60.6
E3 (GPa) 48.3
ν12 0.2896
ν31 0.4082
ρ (kg/m3) 7500
Curie point (◦C) 193
Kσ

11 3130

Kσ
33 3400

Compressive strength (MPa) >517
Static tensile strength (MPa) ∼75
Poling field (kV/cm) ∼12
Dielectric breakdown (kV/cm) ∼20
Depoling field (DC) (kV/cm) ∼5.5

mechanical force is high, there is no effect of mechanical bias strain on piezoceramic
properties, and the piezoelectric coefficients are assumed to be constant.

Piezoceramics are available commercially in the form of thin sheets (say of
thickness 0.254 mm) such as PZT-5H, and the manufacturer-supplied characteristics
of a typical sample are shown in Table 2.3. Among piezoceramics, PZT-5H is most
widely used because of its lower electric field requirement than other actuators
for the same strain. PZT-5A has a high sensitivity, high time stability and high
resistivity at elevated temperatures. PZT-4 has a high resistance to depolarization
under mechanical stress and exhibits low dielectric losses under high electric field.
Frequently, it is used in deep-sea acoustic transducers and as an active element
in electrical power generation systems. Table 2.4 shows the properties of several
commercially available piezoceramic compositions. PZT-8 requires a higher field
than PZT-5H but will need less power, because of its lower dielectric constant. One
major disadvantage of PZT-5H is that its disspation factor is relatively large and
increases with applied electric field. This can lead to self-heating problems in the
actuator. The choice of an appropriate material for any application must therefore
be based on multiple factors.

WORKED EXAMPLE: A piezoelectric sheet of length 2 in (0.0508 m), width 1 in
(0.0254 m) and thickness 0.01 in (0.000254 m), as shown in Fig. 2.6(c), is subjected
to a force F along the ‘1’ direction, and a voltage V = 100 Volts is applied to the
electrodes. Calculate the free strain and blocked force of the sheet and plot the
variation of strain along the ‘1’ direction with applied force. Use the material
properties for PZT-5H as given in Table 2.3.



Table 2.4. Typical commercially available piezoceramics

Navy Navy
Navy Type II Navy Navy Type VI

PZT 4 PZT 8 Type I (PZT 5A) Type III Type V (PZT 5H) PKI 100 PKI 700 PKI 906 BM500 BM740 BM800

Density (×103 Kg/m3) 7.5 7.6 7.6 7.7 7.6 7.6 7.6 6 7.6 7.8 7.65 7.65 7.6
Curie Temperature (◦C) 328 300 350 350 350 220 200 450 350 150 360 340 325
Permittivity factor Kσ

33, at 1 KHz (–) 1300 1000 1250 1800 1000 2700 3400 300 500 5500 1750 425 1000
Dissipation Factor tan δ, at 1 KHz (%) 0.004 0.004 0.5 1.5 0.4 2 2.2 <1.5 1.5 2.3 1.6 0.5 0.3
Transverse Coupling Factor k31 (–) −0.334 0.3 0.33 0.34 0.3 0.36 0.36 <0.10 0.3 0.35 0.37 0.25 0.29
Transverse Charge Coefficient d31

(×10−12 m/V)
−123 −0.97 −120 −175 −100 −230 −270 0.35 −60 0.7 −160 −55 −80

Longitudinal Charge Coefficient d33

(×10−12 m/V)
289 225 275 400 220 490 550 85 150 660 365 160 220

Shear Charge Coefficient d15 (×10−12 m/V) 496 330 480 580 320 670 720 105 362 700
Young’s Modulus E (×1010 N/m2) 7.6 7.1 7.2 6.3 6 5.6 8.6 5.5
Poisson’s Ratio (–) 0.31 0.31 0.31 0.31 0.31 – 0.25 0.22
Elastic Compliance sE11 (×10−12 m2/N) 12.3 11.5 11.5 15.4 10.4 15.9 15.9 – 10.8 15.4 15.5 10.5 11
Elastic Compliance sE33 (×10−12 m2/N) 15.5 13.5 15 18.4 13.5 18 20.2 – 13.9 18.2 19 14 13.5
Maximum AC field (KV/m [V/mil]) 350 [9] 300 [8] 400 [10] 200 [5] 200 [5] – 350 [9] 160 [4]
Maximum DC field – forward (KV/m [V/mil]) 700 [18] 600 [15] 800 [20] 400 [10] 400 [10] – 700 [18] 320 [8]
Maximum DC field – reverse (KV/m [V/mil]) 350 [9] 300 [8] 400 [10] 200 [5] 200 [5] – 350 [9] 160 [4]

Navy types and PKI: http://www.piezo-kinetics.com/materials.htm
BM types: http://www.sensortech.ca/index.html
Others: http://www.piezo.com/, http://www.matsysinc.com/, http://www.trstechnologies.com/
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Fb = 42.18 NForce

St
ra

in

0

Λ = -107.87 με

Figure 2.7. Variation of strain with
force (in ‘1’ direction) of a piezoce-
ramic sheet actuator, V = 100 Volts.

SOLUTION: The actuator equation (Eq. 2.5) along the ‘1’ direction, with an elec-
tric field along the ‘3’ direction can be written as

ε1 = sE11σ1 + d31E3 (2.26)

For a sheet of length lc, width bc, and thickness tc, the above equation
becomes

ε1 = sE11
F

bctc
+ d31

V
tc

(2.27)

The free strain � is obtained when there is no force acting on the sheet.
Setting F = 0 yields

� = d31
V
tc

= −274 × 10−12 100
0.01 × 0.0254

= −107.87με (2.28)

The blocked force Fb is obtained by setting the strain ε1 = 0.

sE11
Fb

bctc
+ d31

V
tc

= 0 → Fb = −d31Vbc

sE11

(2.29)

Substituting the material properties yields the blocked force as

Fb = − (−274 × 10−12).100.(1 × 0.0254)
16.5 × 10−12

= 42.18 N (2.30)

Note that due to the negative sign of d31, the free strain is compressive and
the blocked force is tensile. This means that the sheet tends to contract in the ‘1’
direction when a positive field is applied on the electrodes, and a tensile force
in the ‘1’ direction is required to restrain the sheet. The variation of strain with
applied force is plotted in Fig. 2.7, and is given by

ε1 = 2.557 × F − 107.87 (με) (2.31)
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2.5.2 Piezoceramic Sensor Equations

Consider a piezoceramic sheet as in Fig. 2.5, that is poled across its thickness. To use
the material as a sensor, the input quantity is the mechanical stress and the output
is an electric displacement, or generated charge. The corresponding constitutive
relation for the material can be written from the general case (Eq. 2.6) as

D = ddσ + eσE (2.32)

The general expressions for the piezoelectric coefficient matrix dd and the permit-
tivity matrix eσ are given by Eq. 2.16 and Eq. 2.12. The piezoelectric coefficient dd

(Coulomb/N) defines electric displacement per unit stress at constant electric field.
The superscript d has been added to identify the coefficient as that corresponding to
the direct piezoelectric effect. It has been found experimentally that the matrix dd is
the transpose of d c. It should be noted that measurement of piezoelectric coefficients
by the direct effect is usually more difficult and less accurate than measurement based
on the converse effect. This is because application of a pure uniaxial stress is difficult
and some of the charge generated by the application of stress can leak off before it
is measured. On the other hand, while using the converse effect, it is much easier to
apply a uniform electric field and assure a zero stress state within the sample. It is also
difficult to control the electrical boundary conditions during static testing. However,
static measurements can be made more accurate by superimposing a low-frequency
alternating electric field or mechanical stress.

For PZT, the piezoelectric coefficient matrix dd is given by

dd =
⎡⎣ 0 0 0 0 d15 0

0 0 0 d24 0 0
d31 d32 d33 0 0 0

⎤⎦ (2.33)

where the elements dij have the same values as in d c. Note that shear stress in the
1-2 plane, σ6 (or σ12), is not capable of generating any electric response.

Piezoelectric coefficients gij are sometimes used to quantify the sensitivity of a
piezoceramic sensor material. These coefficients denote the electric field developed
along the i-axis (electrodes perpendicular to the i-axis) due to an applied stress along
the j -axis, provided all other external stresses are constant. It also expresses the strain
developed along the j -axis due to a unit electric charge per unit area of electrodes
applied along the i-axis (electrodes perpendicular to the i-axis). For example, g33

denotes field developed in direction 3 due to an applied stress in direction 3 when all
other stresses are zero. In the context of the converse effect, it also denotes the strain
developed in direction 3 due to a unit charge per unit area of electrodes normal to
direction 3.

The electric permittivity matrix for a piezoceramic is given by

eσ =
⎡⎣eσ11 0 0

0 eσ22 0
0 0 eσ33

⎤⎦ (2.34)

For a PZT, transverse isotropy results in eσ11 = eσ22. Usually, the permittivities are
specified in terms of a relative permittivity, Kσ

ij . This is the ratio of the corresponding
electric permittivity and the permittivity of free space, e0.

Kσ
ij = eσij/e0 (2.35)
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Note that the units of permittivity are Farad/m (F/m) or C.V/m.
The sensor constitutive relations for a PZT are

Dk = dkiσi + eσklEl (2.36)

where the indices i = 1, 2, . . . 6 and k, l = 1, 2, 3. Expanding these equations,

⎧⎨⎩
D1

D2

D3

⎫⎬⎭ =
⎡⎣ 0 0 0 0 d15 0

0 0 0 d15 0 0
d31 d31 d33 0 0 0

⎤⎦
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

σ4

σ5

σ6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+
⎡⎣eσ11 0 0

0 eσ11 0
0 0 eσ33

⎤⎦⎧⎨⎩
E1

E2

E3

⎫⎬⎭
(2.37)

This equation summarizes the principle of operation of piezoceramic sensors.
Typically, no external electric field is applied to the sensor, and a stress field causes
an electric displacement to be generated as a result of the direct piezoelectric effect.
In the general case, the charge generated q, is related to the displacement D3 by the
relation

q =
∫∫

{D1 D2 D3} ·
⎧⎨⎩

dA1

dA2

dA3

⎫⎬⎭ (2.38)

where dA1, dA2 and dA3 are the components of the electrode area in the 2-3 plane, 1-
3 plane and 1-2 plane respectively. It can be seen that the charge generated depends
only on the component of the electrode area normal to the displacement. In the
case of the piezoceramic sheet (Fig. 2.5), only D3 appears. The charge q and the
voltage Vc generated across the sensor electrodes are related by the capacitance of
the sensor, Cp as

Vc = q/Cp (2.39)

Therefore, by measuring the charge generated by the piezoceramic material,
from Eq. 2.37 and Eq. 2.38, it is possible to calculate the stress in the material. From
these values, knowing the compliance of the material, the strain in the material is
calculated.

The sensors described in this book are all in the form of sheets as in Fig. 2.5, with
their two faces coated with thin electrode layers. The 1 and 2 axes of the piezoelectric
material are in the plane of the sheet. The capacitance of a sheet element is found
by treating it as a parallel plate capacitor, and is given by

Cp = eσ33lcbc

tc
(Farad) (2.40)

In the case of a uniaxial stress field, the correlation between strain and charge
developed is simple. However, for the case of a general plane stress distribution in
the 1-2 plane, this correlation is complicated by the presence of the d32 term in the
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dd matrix. The voltage generated by different stress fields on a piezoelectric sheet
actuator with electrodes on the 1-2 planes is shown below.

1

V
2

3

σ1

σ1

voltage due to σ1 alone V = σ1

eσ33
d31tc

= σ1g31tc

1

V
2

3

σ2 σ2

voltage due to σ2 alone V = σ2

eσ33
d31tc

= σ2g31tc

1

V
2

3

σ3

σ3

voltage due to σ3 alone V = σ3

eσ33
d33tc

= σ3g33tc

1 V

2

3

τ31

τ31

voltage due to ζ23 (or σ4) alone V = τ31

eσ11
d15lc

= τ31g15lc

1 V

2

3

τ32

τ32

voltage due to ζ31 (or σ5) alone V = τ32

eσ22
d15bc

= τ32g15bc

WORKED EXAMPLE: A piezoelectric sheet of length 2 in (0.0508 m), width 1 in
(0.0254 m) and thickness 0.01 in (0.000254 m), as shown in Fig. 2.8, is subjected
to a force F along the ‘1’ direction. Assume that an electronic circuit moves all
the charge generated by the piezoelectric sheet to a capacitance C. As a result,
we can assume that E = 0 for the sheet. Calculate the voltage V developed due
to a force F = 25N, for a capacitance C = 100nF . Use the material properties
for PZT-5H as given in Table 2.3.

SOLUTION: The sensor equation (Eq. 2.6) along the ‘1’ direction, for a sheet with
electrodes normal to the ‘3’ direction can be written as

D3 = d31σ1 + eσ33E (2.41)
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Figure 2.8. Piezoceramic sheet
element as a sensor.

For a sheet of length lc, width bc and thickness tc, assuming all the charge q
generated by the applied stress is transfered to the capacitance C,

D3 = q
bclc

= d31
F

bctc
(2.42)

In addition, the charge on the capacitance is related to the voltage generated
by

q = D3lcbc = CV (2.43)

Therefore, the voltage developed on the capacitance is

V = d31Flc
Ctc

= (−274 × 10−12).25.(2 × 0.0254)
(100 × 10−9).(0.01 × 0.0254)

= −13.7 Volts (2.44)

While any piezoelectric material can be used as a sensor, two types of piezoelec-
tric materials will be described below. These two materials are a typical piezoceramic,
PZT-5H, and PVDF, a piezoelectric polymer film.

1. Piezoceramic sensors: Piezoceramic sensors exhibit most of the characteristics of
ceramics, namely a high elastic modulus, brittleness and low tensile strength. The
material itself, by virtue of the poling process, is assumed transversely isotropic
in the plane normal to the poling direction. For PZT sensors, the values of dd

and eσ are as described in by Eq. 2.33 and Eq. 2.34. Typical values for PZT-5H
can be found in Table 2.3.

2. PVDF sensors: PVDF is a polymer (Polyvinylidene Flouride), consisting of long
chains of the repeating monomer (−CH2 − CF2−). The hydrogen atoms are
positively charged and the flourine atoms are negatively charged with respect to
the carbon atoms, and this leaves each monomer unit with an inherent dipole
moment. PVDF film is manufactured by solidification of the film from a molten
phase, which is then stretched in a particular direction and finally poled. In the
liquid phase, the individual polymer chains are free to take up any orientation,
and so a given volume of liquid has no net dipole moment. After solidification,
and stretching the film in one direction, the polymer chains are mostly aligned
along the direction of stretching. Sometimes, stretching is carried out in two
axes to achieve desired characteristics. This, combined with the poling, imparts
a permanent dipole moment to the film, which then behaves like a piezoelectric
material.

The process of stretching the film, which orients the polymer chains in
a specific direction, renders the material piezoelectrically orthotropic, which
means d31 �= d32. The stretching direction is taken as the 1-direction. For small
strains, however, the material is considered mechanically isotropic.
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Table 2.5. Typical properties at 25◦C

PZT-5H PVDF

Young’s Modulus (GPa) EE

11 60.6 4–6
d31 (pC/N) −274 18–24
d32 (pC/N) −274 2.5–3
d33 (pC/N) 593 −33
eσ33 (nF/m) 30.1 0.106

The typical characteristics of PZT and PVDF are compared in Table 2.5. The
Young’s modulus of the PZT material is comparable to that of aluminum, whereas
that of PVDF is approximately 1/12th that of aluminum. It is therefore much more
suited to sensing applications since it is less likely to influence the dynamics of the
host structure as a result of its own stiffness. It is also very easy to shape PVDF film
for any desired application. These characteristics make PVDF films more attractive
for sensor applications compared to PZT sensors, in spite of their lower piezoelec-
tric coefficients (approximately 1/10th of PZT). Also, PVDF is pyroelectric, and this
translates into a highly temperature-dependent performance compared to PZT sen-
sors. PVDF is not only soft, but is also tough and chemically resistant. PVDF is widely
used as a sensor material in hydrophones. The electromechanical characteristics of
PVDF are quite nonlinear and time dependent. Both biaxially stretched and uniax-
ially stretched PVDF sheets exhibit strong dependence of their electromechanical
coefficients on prestress and the compliance changes with stress level. The dynamic
moduli are highly sensitive to frequencies, but are insensitive to prestressing [2].

2.5.3 Alternate Forms of the Constitutive Equations

The linear constitutive equations for a piezoelectric are

εi = sEijσj + dikEk (2.45)

Dk = dkiσi + eσklEl (2.46)

These can be rewritten as

εi = sD
ij σj + gikDk (2.47)

Ek = gkiσi + βσklDl (2.48)

where the indices i, j = 1, 2, . . . 6 and k, l = 1, 2, 3. The g coefficient in the converse
piezoelectric relation is defined as the ratio of strain developed to the applied charge
density. The piezoelectric voltage coefficient gik is defined as the induced strain per
unit of electric displacement applied or alternatively, the electric field generated per
unit of mechanical stress applied.

gik = strain component i
applied charge density in direction k

,
m2

C
(2.49)

The g coefficient in the direct piezoelectric effect is defined as the ratio of the
open-circuit electric field produced to the applied mechanical stress.

gki = open-circuit electric field in direction k
applied mechanical stress component i

,
Vm
N

(2.50)

Note that both the above coefficients are identical, similar to the direct and
converse piezoelectric coefficients. For example, g51 represents the shear strain (γ31)
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Table 2.6. Definition of symbols (indices: i, j, r = 1, 2, . . . 6 and k, l,m = 1, 2, 3)

Symbol Meaning Size Units

cij Elastic stiffness 6 × 6 N/m2

dki Piezoelectric coefficient 3 × 6 m/V or C/N
Dk Electric displacement 3 × 1 C/m2

ekl Electric permittivity 3 × 3 F/m
ēki Piezoelectric constant 3 × 6 C/m2

Ek Electric field 3 × 1 V/m
gki Piezoelectric constant 3 × 6 V/m or m2/C
hki Piezoelectric constant 3 × 6 V/m or N/C
sij Elastic compliance 6 × 6 m2/N
εi Strain 6 × 1 –
σi Stress 6 × 1 N/m2

βkl Impermittivity 3 × 3 m/F

produced due to the charge D1 (on a surface normal to axis-1). Also, g15 defines the
open-circuit electric field produced along the ‘1’ direction (on electrodes normal to
the ‘1’ direction) due to an applied shear stress τ31. Another form of the equations
is

σi = cD
ij εj − hikDk (2.51)

Ek = −hkiεi + βεklDl (2.52)

where the indices i, j = 1, 2, . . . 6 and k, l = 1, 2, 3. The superscripts E, D, σ and
ε respectively indicate states or measurements taken at constant electric field
(short-circuit), constant electric displacement (open-circuit), constant stress, and
constant strain condition. Many of the coefficients (listed in Table 2.6) are interre-
lated as follows:

sD
ij = sEij − dirgrj (2.53)

cEirs
E

rj = δij (2.54)

cD
ir sD

rj = δij (2.55)

βσkmeσml = δkl (2.56)

βεkmeεml = δkl (2.57)

cD
ij = cEij + ēirhrj (2.58)

gki = βkmdmi (2.59)

eσkl = eεkl + Dkj ējl (2.60)

βσkl = βεkl − gkj hjl (2.61)

ēki = dkj cEj i (2.62)

dki = eσkmgmi (2.63)

hki = gkj cD
ji (2.64)

where the indices i, j, r = 1, 2, . . . 6 and k, l,m = 1, 2, 3. δij is a 6 × 6 unit matrix
and δkl is a 3 × 3 unit matrix. In the above equations, cij is the elastic stiffness
matrix (N/m2), sij is the elastic compliance matrix (m2/N), gki is a piezoelectric
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constant matrix (Vm/N or m2/C), E is the electric field (V/m), dki is the piezoelectric
coefficient matrix (m/V or C/N), Dk is the electric displacement (C/m2), ekl is the
electric permittivity (F/m), hki is a piezoelectric constant (V/m or N/C), and ēki is
another piezoelectric constant (C/m2).

For example, the alternate form of the constitutive equations (Eq. 2.47 and
Eq. 2.48) can be expanded as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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ij sD
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For piezoceramics,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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2.5.4 Piezoelectric Coupling Coefficients

A piezoelectric transducer is basically an energy conversion device. The direct piezo-
electric effect results in the conversion of mechanical energy into electrical energy,
while the converse piezoelectric effect results in the conversion of electrical energy
to mechanical energy. The coupling coefficients kij are a measure of the efficiency of
this energy conversion.

A simple one-dimensional analysis of the piezoceramic sheet element described
in Section 2.5.1 will illustrate the significance of the coupling coefficient. Consider
a uniform uni-directional stress σ1 applied to the piezoceramic sheet (Fig. 2.9). The
one-dimensional constitutive relations along the 1-axis for the piezoceramic sheet
can be written as

ε1 = sE11σ1 + d31E3 (2.70)

D3 = d31σ1 + eσ33E3 (2.71)

E3 can be eliminated from the above equations. From Eq. 2.71,

E3 = D3

eσ33
− d31

eσ33
σ1 (2.72)

1
2

3

σ1

σ1

E3Figure 2.9. Piezoceramic sheet element under a uni-
axial stress.
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which can be substituted into Eq. 2.70 giving

ε1 = sE11

[
1 − d2

31

sE11eσ33

]
σ1 + d31

eσ33
D3

= sD
11σ1 + d31

eσ33
D3

(2.73)

The quantity sD
11 is the compliance of the material in the 1-axis at a constant

electric displacement, and is given by

sD
11 = sE11

[
1 − d2

31

sE11eσ33

]
(2.74)

The above equation illustrates the importance of electrical boundary conditions
for the behavior of the piezoelectric material. The condition of constant electric
displacement is also refered to as the open-circuit condition. This arises because
if the electrodes are open, charge developed on the electrodes due to mechanical
deformation of the material remains on the electrodes, resulting in a constant electric
displacement in the material. In this condition, the separation of charge across
electrodes results in an electric field across the thickness of the material.

The condition of constant electric field is also refered to as the short-circuit
condition. When the electrodes are shorted together, no charge seperation can occur
between the electrodes, and therefore the electric field across the material remains
constant at zero.

When a piezoelectric element is used as an actuator, the voltage across the
electrodes is controlled by a power supply. Charge is either supplied or removed
from the electrodes by the power supply in order to maintain the specified voltage.
Therefore, an actuator connected in this manner is subject to electrical boundary
conditions equivalent to a short-circuit, or constant electric field.

From Eq. 2.74, the relationship between open-circuit and short-circuit compli-
ance can be written as

sD
11 = sE11

[
1 − k2

31

]
(2.75)

This can be rewritten as

EE

ED
= [1 − k2

31

]
(2.76)

where k31 is the electro-mechanical coupling coefficient, given by

k2
31 = d2

31

sE11eσ33

(2.77)

Alternatively, k31 can be expressed in terms of the open-circuit and short-circuit
compliances

k2
31 = 1 − sD

11

sE11

(2.78)

For a typical piezoelectric ceramic, PZT-5H, k2
31 = 0.15. From the above equa-

tion, it can be seen that for this material, the ratio of open-circuit and short-circuit
compliances is 85%, which is a very significant change in a material property that
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in passive materials is normally assumed to be invariant. This means that the short-
circuit Young’s modulus is 85% of the open-circuit Young’s modulus. This char-
acteristic of the piezoelectric is exploited in several applications, such as passive
damping.

The above one-dimensional analysis can be extended to calculate the energy
stored in the material. Consider a piezoelectric element poled as described above,
that is rigidly clamped so it cannot deform along the 1-axis. An electric field E is
applied across the electrodes. It is convenient to calculate the strain energy stored in
the element by first allowing it to deform under the applied electric field without any
mechanical constraint. The constraint force is then applied to the element in order
to return it to its initial dimensions. The work done in this process by the constraint
force will be equal to the strain energy stored in the element.

As a result of the above approach, the stress in the element is given by the free
strain �1 = d31E3 divided by the short-circuit compliance sE11 of the material.

σ1 = d31E3

sE11

(2.79)

The strain energy of the element, Umech can be calculated as

Umech = 1
2

∫
V

σ1ε1dV (2.80)

where V represents the volume of the element. Substituting from Eq. 2.79,

Umech = 1
2

d2
31

sE11

E
2
3V (2.81)

The electrical energy stored in the element, Uelect can be calculated as

Uelect = 1
2

∫
V

eσ33E
2
3dV

= 1
2

eσ33E
2
3V

(2.82)

It is important to note that the electrical energy stored in the element can be
calculated in the above manner because the element is mechanically clamped. As
a result of this constraint, there is no work done in reorienting the dipoles in the
material. The only work done is in placing the appropriate charge on the electrodes
of the element. Consequently, the spontaneous polarization of the material does not
appear in the calculation of electrical energy.

The efficiency of energy conversion can be estimated by the ratio of strain energy
and electrical energy. From Eqs. 2.81 and 2.82

Umech

Uelect
= d2

31

sE11eσ33

= k2
31 (2.83)

Therefore, the electro-mechanical coupling coefficient gives a measure of the
energy conversion efficiency of the material. For an actuator, this quantity sets an
upper limit on the mechanical power output for a given electrical input. However, it
will be shown later that in general, the maximum energy that can be extracted from
a piezoelectric actuator is equal to only half of the value in Eq. 2.81. In the above
example, the energy conversion efficiency is 15%.
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The coupling coefficients are expressed in terms of piezoelectric, dielectric,
and elastic constants. They are non-dimensional coefficients that define conversion
between mechanical and electrical energy, or vice versa, for a particular stress and
electric field configuration. Consequently, different coupling factors can be defined
in terms of the components of stress and electric field. In general, the electro-
mechanical coupling coefficient can be written as

kij =
√

Mechanical energy stored in direction j
Electrical energy applied in direction i

(or) (2.84)

=
√

Electrical energy stored in direction j
Mechanical energy applied in direction i

(2.85)

For example, the extensional coupling coefficient with stress applied along the
‘1’ direction and electrodes normal to the ‘3’ axis is

k31 = d31√
eσ33sE11

(2.86)

Similarly, the extensional coupling coefficient with stress applied along the ‘3’
direction and electrodes normal to the ‘3’ axis is

k33 = d33√
eσ33sE33

(2.87)

In the case of a shear stress in the ‘1-3’ plane, and with electrodes normal to the
‘1’ axis,

k51 = d51√
eσ11sE44

(2.88)

Table 2.7 shows a comparison of the piezoelectric coefficients, stiffnesses and
coupling coefficients of different PZTs. kp represents the coupling between electric
field along the poling axis (3-axis) and mechanical action simultaneously in the 1-
and 2-axes.

2.5.5 Actuator Performance and Load Line Analysis

This section describes several important concepts regarding the application of actu-
ators to external loads. While the discussion is focused on piezoelectric actuators,
the basic principles are valid for any kind of actuator.

Blocked Force and Free Displacement of an Actuator

A piezoelectric actuator is normally specified in terms of two key parameters,
blocked force, Fbl and free displacement δf . Blocked force is the force required
to fully constrain the piezoelectric actuator and prevent it from deforming under the
application of an electric field. Free displacement is the maximum induced displace-
ment due to piezoelectric effect at a specified field with no external load.

Substituting σ = 0 in the actuator constitutive relation, Eq. 2.25, and ignoring
thermal effects, gives an expression for the free strain, �, that corresponds to the
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Table 2.7. Coupling coefficients of different PZTs

PZT-4 PZT-5A PZT-5H PZT-8

d31 (pC/N) −123 −171 −274 −97
d33 (pC/N) 289 374 593 225
d15 (pC/N) 496 584 715 330

sE11 (×10−12 m2/N) 12.3 16.4 16.5 11.5

sE33 (×10−12 m2/N) 15.5 18.8 20.7 13.5

sE44 (×10−12 m2/N) 39.0 47.5 43.5 31.9

sE12 (×10−12 m2/N) −4.05 −5.74 −4.78 −3.7

sE13 (×10−12 m2/N) −5.31 −7.22 −8.45 −4.8

k33 0.70 0.71 0.75 0.64
k2

33 0.49 0.50 0.56 0.41
k31 −0.33 −0.34 −0.39 −0.30
k2

31 0.11 0.11 0.15 0.09
k15 0.71 0.69 0.68 0.55
k2

15 0.50 0.48 0.46 0.30
kp 0.58 0.60 0.65 0.51
k2

p 0.34 0.36 0.42 0.26

free displacement.

� =
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=
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0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.89)

For piezoelectric film, polyvinylidene fluoride (PVDF), the free displacement
strain is non-isotropic on the surface of the sheet because d31 is not equal to d32 and
d24 is not equal to d15. The free strain is expressed as

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d31E3

d32E3

d33E3

d24E2

d15E1

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.90)

The blocked force is given by the product of the free displacement and the
stiffness of the actuator. The stiffness of the actuator and its relation to electrical
boundary conditions is discussed in more detail below.

Actuator Load Line

In order to evaluate the performance of an actuator, and to assess its suitability to
a particular application, it is important to understand the concept of an actuator
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Figure 2.10. Actuator load line.

load line. At a given actuation voltage, the force and displacement of the actuator
under any loading condition will lie on the load line. By plotting the load line of the
actuator along with the external load, it is possible to visualize the mechanism of
operation of the actuator.

The force and displacement of a typical piezoelectric actuator are shown in
Fig. 2.10. At a given actuation voltage V3 , the load line of the actuator is given by
the straight line segment AB. Note that in general, the actuator load line can be a
curve of any shape. For the specific case of a piezoelectric actuator, the load line is
a straight line. The intercepts of the load line on the force and displacement axes
represent the blocked force Fbl and free displacement δf respectively. The load lines
at actuation voltages V1 and V2 are also plotted in Fig. 2.10. As the actuation voltage
increases, the load line moves such that the intercepts on the force and displacement
axes increase. The origin O corresponds to some reference point, or the undeformed
state of the actuator.

At a constant actuation voltage, the force exerted by the actuator Fo at any point
on the load line can be expressed in terms of the actuator displacement δo as

Fo = Fbl

[
1 − δo

δf

]
= Fbl − δoKact

(2.91)

where Kact is the effective stiffness of the actuator. Because the actuator is connected
to a power supply, this stiffness is related to the short-circuit compliance of the
material, sE11. This can be seen by expressing the displacement of the actuator in
terms of its free displacement as follows:

δo = δf

[
1 − Fo

Fbl

]
= δf − Fo

Kact

(2.92)
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Figure 2.11. Effect of spring load on the actuator.

By comparing the above equation with the 1-dimensional constitutive relation
for an actuator, Eq. 2.70, it can be seen that for an actuator of length lc and cross-
sectional area Ac,

Kact = Ac

sE11lc
(2.93)

External Loads and Impedance Matching

The effect of an external load of stiffness Kext on the actuator can now be analyzed
using the actuator load line. Consider the piezoelectric actuator connected to an
external spring load as shown in Fig. 2.11(a). It will be shown that the actuator-load
system can be modeled as two springs in parallel, under the action of the blocked
force of the actuator as in Fig. 2.11(b).

In Fig. 2.12, the force-displacement characteristic of the spring load, which is the
line segment OC, is plotted on the actuator load line AB. The intersection of the
actuator load line and the spring characteristic line is the equilibrium point of

Fbl

ecroF

Displacement

O

Kact

Kext
Fo

B

A

C

D

fδoδ

Figure 2.12. Load line analysis of a spring
load.



144 Piezoelectric Actuators and Sensors

the system. As the applied voltage is varied, the equilibrium point moves along
the line OC. The coordinates of the point C can be found by substituting the spring
force in Eq. 2.91

Fo = Fbl − δoKact

= Kextδo

(2.94)

which gives the equilibrium position as

δo = Fbl

Kact + Kext
(2.95)

Note that this displacement is the same as the displacement of a parallel combi-
nation of the springs Kext and Kact under the load Fbl, as depicted in Fig. 2.11(b).

Considering a complete cycle, the actuator transfers some energy into the load
while expanding, and the same energy is returned to the actuator while it contracts.
The net work done by the actuator is therefore zero. However, conceptually, if there
is a way to retain the energy transfered to the load in each half cycle, the work done
by the actuator, �Wact, will be positive and is given by the shaded area OCDO in
Fig. 2.12.

�Wact = 1
2
δoFo (2.96)

Substituting from Eq. 2.95 and Eq. 2.94, this becomes

�Wact = 1
2

F 2
bl

Kext

(Kact + Kext)2
(2.97)

To find the load condition at which maximum work is done by the actuator,

∂(�Wact)
∂Kext

= 0 ⇒ Kext = Kact (2.98)

This means that the maximum energy can be extracted from the actuator if
the stiffness of the external load equals the stiffness of the actuator. This condi-
tion is called impedance matching. Although the above analysis was only for static
actuation, it can be extended to dynamic actuation.

The load line also provides some information about the capability of an actuator
to perform mechanical work. Given an impedance-matched working condition,
the maximum energy that can be extracted from the actuator is proportional to the
product of its blocked force and free displacement. Therefore, the area under the
load-line, or the force-displacement curve of the actuator, can be used as a measure
of the ‘available energy’ in the actuator, and can be quantized by an index. For
example, a strain-force index can be defined as the product of the free strain of an
actuator, multiplied by its blocked force, normalized by the cross-sectional area of
the actuator. This translates to an effective ‘strain energy’ contained in the actua-
tor per unit volume. Several actuators can be compared on this basis, and the one
with the best performance can be chosen for the application. A similar index can
be defined with respect to the mass of the actuator. Table 2.8 lists several commer-
cially available piezostack actuators and their strain-force indices. It is important to
note that the strain-force index is only a relative number for comparison between
actuators, and does not reflect the actual energy that can be extracted from the
actuator.



2.6 Hysteresis and Nonlinearities in Piezoelectric Materials 145

Table 2.8. Operating voltage, free strain, blocked force and strain-force index of
commercially available piezostacks

Maximum Strain Blocked force Normalized Strain-force
Piezostack voltage (V) (×10−6) Fbl (N) Fbl (MPa) index (kJ/m3)

MM 8M (70018) 360 254 571 7.26 1.8
MM 5H (70023-1) 200 449 450 5.73 2.6
MM 4S (70023-2) 360 497 637 8.08 4.0
PI P-804.10 100 1035 5052 50.52 52.3
PI PAH-018.102 1000 1358 6711 67.11 91.1
XI RE0410L 100 468 424 35.66 16.7
XI PZ0410L 100 910 312 24.74 22.5
EDO 100P-1 (98) 800 838 687 13.82 11.6
EDO 100P-1 (69) 800 472 223 4.56 2.1
SU 15C (H5D) 150 940 1186 51.69 48.6
SU 15C (5D) 150 1110 1222 53.21 59.0

2.6 Hysteresis and Nonlinearities in Piezoelectric Materials

Ferroelectric materials are non-centrosymmetric in nature, and domain switching
takes place in response to an applied field or stress. Polar changes occur when ions
displace to align with an applied field, resulting in strain. On the other hand, with
the application of a stress, the resulting deformation alters the polarization and
as a result, the electric field. These materials exhibit varying levels of hysteresis
and nonlinear saturation effects at moderate to high levels of field. The generation
of hysteresis is attributed to the impediment of domain wall movement by inherent
material inclusions and stress nonhomogeneities. For higher input fields, irreversible
motion of domain walls pinned at inclusions becomes more significant.

Hysteresis models for piezoelectric materials can be divided into three cate-
gories: microscopic, macroscopic and semi-macroscopic. Microscopic models are
mostly limited to material stoichiometries (lattice/grain levels) and are not applica-
ble to realistic system level problems. Macroscopic models are based on phenomeno-
logical principles and are applicable to solve system level problems. Preisach models
fall under this category. Semi-macroscopic models use a combination of physics and
experimental data. Smith and Ounaies [3] used a semi-macroscopic model of hystere-
sis behavior of piezoceramic materials. It is clear that piezoceramic materials, when
used as actuators, display a significant hysteresis in the transfer function between
voltage and displacement. A large number of techniques have been deplayed to
reduce this hysteresis, including displacement feedback techniques, Preisach model-
ing and inversion, phase control, polynomial approximation, and current or charge
actuation. The hysteresis in a piezoelectric actuator is reduced if the charge is regu-
lated instead of the voltage [4]. However, the complexity of implementation of this
technique has prevented its wide acceptance. It requires additional circuitry to avoid
charging of the load capacitor. One possible approach may be to short-circuit the
load every 400 ms or so, and thereby periodically discharge the load capacitance [5].
This, however, introduces undesirable high-frequency disturbances and may signifi-
cantly distort the low-frequency charge signals. Fleming and Moheimani [6] adopted
a compliance-feedback current driver containing a secondary voltage-feedback loop
to prevent DC charging of capacitive loads. Experimental results demonstrated
good low-frequency current and charge tracking and a complete rejection of DC
offsets.
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Ferroelectric ceramics switch their polarization under an applied electric or
mechanical field. Classical linear piezoelectricity is not adequate to capture the non-
linear behavior of these materials. As an example, barium titanate (BaTiO3) has a
perovskite-type structure with a cubic unit cell above its Curie temperature and is
slightly distorted to the tetragonal form below its Curie temperature. An applied field
in the direction opposite to the polarization may reverse the direction of polariza-
tion (switch through 180◦C). However, the application of a compressive stress along
the polar axis can switch it through 90◦C. A polycrystalline ceramic behaves as a
nonpolar material even though its constituents (crystals) are polar. It can be trans-
formed into a polar material through the application of a large electric field – called
a process poling. Macroscopic electromechanical behavior is a consequence of this
domain structure. At small fields, domain wall motions are reversible, and the macro-
scopic strain or electric displacement vanishes after unloading. At higher fields,
domain wall motions are irreversible, and macroscopic strain or electric displacement
is nonlinear. The hysteretic loops including “butterfly curves” are related to these
domain-wall motions. The remanent polarization or remanent strain remains at the
macroscopic level. There are several nonlinear constitutive models to describe ferro-
electricity, and ferroelasticity and they are categorized into microscopic and macro-
scopic models. For the microelectromechanical approach, typical models are due to
Hwang et al. [7] and Huber et al. [8]. For the macroelectromechanical approach, typ-
ical models are due to Bassiouny et al. [9, 10] and Chen and Lynch [11]. Elhadrouz
et al. [12] formulated a macroscopic phenomenological approach to describe the
nonlinear behavior of ferroelectric and ferroelastic ceramics under high electrome-
chanical loading. In order to capture the history of dependence and dissipation, two
internal variables that are the remanent strain (induced by stress) and the remanent
polarization (induced by electric field) are introduced. Dielectric behavior, butter-
fly curves, ferroelastic hysteresis, and mechanical depolarization are satisfactorily
captured with this model.

Li et al. [13] investigated the hysteresis phenomenon of ferroelectric-ferroelastic
materials in polarization, and developed an experiment based phenomenological
model that includes electrical yielding, mechanical yielding, and isotropic harden-
ing. The nonlinear constitutive relations are expressed in terms of finite element
analysis. Smith et al. [14] developed a homogenized energy framework at mesoscale
to model hysteresis and constitutive nonlinearities in ferroelastic materials, by con-
structing Helmholtz and Gibbs energy relations at the lattice level. The accuracy
of the resulting model is demonstrated for both symmetric major loops and biased
minor loops using experimental data from PZT-4 and PZT-5H.

2.7 Piezoceramic Actuators

Piezoceramics are potential actuators for a wide range of applications in aerospace,
automotive, civil structures, machine tools and biomedical systems to actively con-
trol vibration and noise, improve performance, and augment stability. One of the
major barriers for various applications is the small stroke of these actuators [15]. To
increase induced strain, these actuators are often driven under high electric fields,
and sometimes even to extreme limits. In addition, the operating conditions of the
system itself may cause high mechanical loads on the actuator. For example, in
rotorcraft applications, actuators placed on rotor blades are exposed to high tensile
stresses due to centrifugal forces. Though the piezoelectric material is relatively well
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behaved and linear at low electric fields and low mechanical stress levels, it shows
considerable nonlinearity at high values of electric field and mechanical stress. In
order to develop an efficient structural system with piezoceramic actuators, it is nec-
essary to accurately predict the response of the actuators, including magnitude and
phase of induced strain, power consumption, and integrity under different excita-
tion and loading levels. Currently, neither the mathematical tools to cover a wide
range of operating conditions nor reliable test data to validate these tools are readily
available.

This section discusses the behavior of a PZT-5H piezoceramic sheet actuators
under different types of excitation and mechanical loading. PZT-5H is a typical
piezoceramic composition that is widely used in adaptive structures applications
because of its low field requirement. The behavior and characteristics of this actuator
are a good representation of any piezoceramic actuator. Therefore, most of the
techniques and experiments described below can be used to obtain preliminary
quantitative data about this performance and capabilities of a piezoceramic actuator.
These data would be very valuable for the initial design of a smart system.

The discussion below is divided into two parts: static behavior and dynamic
behavior. The free strain response of the actuators under DC excitation is exper-
imentally investigated along with the associated drift of the strain over time. The
drift phenomenon is especially important in cases of static deflection of control sur-
faces or blade geometry. The effect of tensile stress on the free strain response is
examined, in order to quantify the effect of the high centrifugal forces experienced
by actuators mounted on rotor blades. The magnitude and phase of the free strain
response of the actuator under different excitation fields and frequencies is mea-
sured, and a phenomenological model to predict this behavior is developed and
validated experimentally. The power consumption of the actuators, which is very
important for sizing the electrical slip ring units in a rotating system, is calculated
using an electro-mechanical impedance method. This is then validated by measuring
the power consumption of a free actuator and a pair of actuators surface bonded to a
host structure. The performance of actuators in a practical application is constrained
by depoling limits and dielectric breakdown of the actuator material. These aspects
are also discussed, along with the feasibility of recovering performance by repoling
in the event of accidental depoling.

2.7.1 Behavior under Static Excitation Fields

Piezoceramic actuators are capable of responding to static, or steady, electric fields.
However, several phenomena not normally encountered in conventional electro-
magnetic actuators are observed in a piezoceramic actuator under a static excitation
field. Additionally, the presence of significant amounts of hysteresis in the mate-
rial as a result of its non-centrosymmetric unit cell and associated domains requires
certain procedures to be followed to obtain meaningful data in static experiments.
This section describes important effects related to the static behavior of PZT sheet
actuators.

Experimental Sample Preparation

In the following sections, the measured characteristics of piezoceramic (PZT-5H)
sheets of dimension 1′′ × 0.5′′ × 0.01′′ (25.4 mm × 12.7 mm × 0.254 mm) obtained
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from Morgan Matroc Inc. are described. Some of the manufacturer-supplied char-
acteristics of this material are shown in Table 2.3. Most of these data are valid only
for small excitation fields. However, these materials frequently encounter high exci-
tation fields when used as actuators. As will be discussed in subsequent sections, the
material properties can vary significantly from the tabulated small-signal values. All
the samples were poled along their thickness. They were excited along the poling
direction and strains were measured in a plane perpendicular to the poling direction.
Each sample was instrumented with a strain gauge with a gauge length of 0.125′′

(3.2 mm) in a quarter-bridge configuration. The excitation leads were soldered to
the faces of the sheet and the sample was suspended by means of the excitation
leads, so there were no structural boundary constraints. The experimental data in
the following sections represent the average behavior of three randomly selected
samples for each test point. A careful averaging process was necessary as a variation
of properties of up to 15% was found to be not uncommon in the experimental sam-
ples. Before the tests were carried out, the samples were cycled to erase the effect
of previous excitations. The cycling can be of two types, depending on whether the
properties to be observed are static or dynamic.

Cycling

If the application involves a static excitation, a DC cycling is performed on the
actuator. This involves exciting the actuator with its highest operating DC field,
switching off the field, and then measuring the residual strain. This process is repeated
several times until the residual strain after each cycle has stabilized. A schematic
of the actuator strain during the DC cycling process is shown in Fig. 2.13. After
each cycle, the difference in residual strain keeps decreasing until it becomes almost
zero. The number of cycles needed to stabilize the performance depends on the
cycling field and normally increases with increasing cycling field. A cycled actuator
has an inherent bias and will show almost zero residual strain on the application of
an excitation field less than the cycling field. Note that the polarity of the field is
important and that reversing the polarity, either during cycling or during operation
of the actuator, will destroy the bias. This treatment is therefore suitable only for
unipolar operations. If the actuator is exposed to the DC cycling voltage for a long
period of time, it is observed that there is an additional effect of stabilizing the drift.
Another type of cycling treatment is AC cycling, which involves exciting the actuator
for several cycles under an AC field. The effect of this treatment is that it removes
all biases in the actuator and also minimizes residual strain.
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Figure 2.14. Static free strain behavior of PZT-5H.

Static Free Strain

A typical DC field (along the polarized direction) versus transverse-free strain (in
a plane normal to the polarized direction) plot for a PZT-5H actuator is shown in
Fig. 2.14. To obtain the static free strain plot, the following steps were taken. DC
cycling was initially carried out on the sample to minimize its residual strains. A
typical sample required on the order of 10 DC cycles to bring the residual strain to
less than 3με . Each point on the curve is then obtained by applying a DC field and
measuring the resulting strain with a strain gauge. After each reading, the excitation
is switched off and the gauge is reset. This effectively ignores the hysteresis and
drift and generates a quasi-steady free strain curve. The curve is almost linear at low
applied electric field levels and the linear piezoelectric coefficients can be used to
satisfactorily predict this part of the curve. In this region, the slope of the curve is the
coefficient d31 and the value quoted by the manufacturer [16] is −274 × 10−12 m/V.
The strains predicted by this linear relation are also plotted for comparision. The
negative value of d31 means that a positive electric field in the polarization direction
results in a compressive strain on the surface of the PZT sheet. At higher electric
fields, nonlinear effects become apparent. These effects are attributed to factors such
as reversible domain-wall motion. The reason that such effects are much smaller
at lower values of electric field is that non-180◦ domain-wall motion results in a
permanent mechanical distortion of the material and consequently requires a larger
energy and hence, occurs at larger field strengths. At high field strengths, a larger
change in induced strain per unit increase in field is expected, both for negative
and positive fields. Also, strain values for the same positive and negative fields are
not equal, which means the free strain curve is asymmetric. Such an asymmetry has
also been observed in the inverse piezoelectric response of Rochelle salt [17] and
is attributed to the permanent electric polarization in the crystal. The asymmetry
present in piezoceramics is small for low values of field but becomes larger as the
field is increased. In terms of actual voltage applied to the piezoceramic sheet, a
voltage of 100 volts corresponds to a field of 3.937 kV/cm.

Fig. 2.14(b) shows a free strain curve spanning a much higher field range. The
maximum positive field is limited by the breakdown of the dielectric, which in this
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case is the ceramic itself, whereas the maximum negative field is limited by the
piezoceramic depoling. It should be noted that the DC depoling field for PZT-5H is
approximately −5.5 kV/cm.

Effect of External Stresses

In the literature, investigations have been carried out to examine the effect of exter-
nal mechanical stresses on the behavior of piezoceramics. However, most of the
existing works are focused on the effect of compressive loads, since many early
applications of piezoceramics were in underwater devices where the materials are
exposed to high hydrostatic stresses [18, 19, 20, 21]. Some results of the effects
of compressive stresses can be found in available references. Compressive stresses
tend to align the c-axes of the domains perpendicular to the direction of stress.
For example, if the compressive stress acts along the x-axis, say in the plane of the
sheet, the c-axes of the domains are randomly reoriented parallel to the yz plane,
which is across the thickness. This destroys some of the initial polarization and thus
reduces the net polarization. Hard ceramics (lower compliance) like PZT-8 and
PZT-4 experience large changes in piezoelectric coefficients but show good recov-
ery upon removal of the stress [21]. Soft ceramics like PZT-5H show a permanent
degradation in properties with stress cycles.

Limited work has been done on the effect of tensile stress on the behavior of
piezoceramics, which is very pertinent to their application in the development of a
smart rotor [22]. Experiments were carried out to observe the effects of tensile loads
perpendicular to the poling direction on the free strain. A test fixture was designed
to apply tensile loads to a piezoceramic sample while allowing it to strain freely.
The ceramic samples tested were 2′′ × 1′′ × 0.01′′ (50.8 mm × 25.4 mm × 0.254 mm)
commercially available PZT-5H sheets. Loads were applied to the sample by means
of weights suspended from a sliding bracket (Fig. 2.15). The static free-strain curves
were obtained for different values of applied tensile load. The data obtained from
10 samples was averaged out to obtain the final free strain values. The results are
shown in Fig. 2.16. From the plot, it can be seen that there is a slight increase in free
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Figure 2.16. Variation of static free strain with transverse tensile stress.

strain with an increase in applied tensile load. Though this is a very small increase,
the averaging process makes it more likely that this is a phenomenological change
rather than experimental scatter. It was not possible to apply stresses higher than
2500 psi (17.2 MPa) because of stress concentration near the end supports and a
small amount of bending in the sample due to misalignment. Published data [23, 16]
indicate that the static tensile strength of a typical piezoceramic is around 13,000 psi
(89.6 MPa), but samples invariably fracture at lower average stresses.

For PZT-5H under a compressive stress parallel to the poling axis (i.e. along the
thickness), d31 remains constant or shows a slight increase at low values of stress and
then drops off at higher values [24]. Such a stress will tend to randomly reorient the
c-axes of the unit cells in a plane perpendicular to the poling direction (i.e. in the
plane of the sheet). A uniaxial tensile stress acting along the length of the sheet will
also tend to align the dipoles along the plane of the sheet, with a preference along the
direction of stress. Hence, it can be expected that these two stress states will produce
similar changes in the properties of the material. Consequently, the behavior seen
in Fig. 2.16, with tensile stress in the plane of the piezoceramic sheet, is consistent
with previously observed phenomena [24] with compressive stress along the poling
direction.

A curve was fit to these data points in order to empirically predict the variation
of free strain with applied external stresses. The curve fit was of the form:

ε = a + bE + cE
2 + dE

3 (2.99)

For simplicity, a linear variation of the coefficients a, b, c and d with applied tensile
stress was fit to the data. This variation is given by:

a = −1.9637 − 7.039 × 10−4σ (2.100)

b = −25.82 − 7.54 × 10−4σ (2.101)

c = −0.1535 + 3.86 × 10−4σ (2.102)

d = −0.298 − 1.244 × 10−4σ (2.103)
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Figure 2.17. Static strain drift behavior.

where ε is the strain in microstrains, E is the electric field strength in kV/cm, and
σ is the applied tensile stress in psi. As expected, at zero external stress, the free
strain curve reduces to that in Fig. 2.14(a). The increase in free strain is of the order
of 10% at 3.937 kV/cm under a tensile stress of 2500 psi. The empirical curve fit as
shown above provides a convenient way of incorporating the PZT characteristics
into a mathematical model of the entire smart structure.

Drift

An effect often observed experimentally is the drift of the actuator strain in response
to a DC excitation. The drift phenomenon is a slow increase of the free strain with
time after the application of a DC field. An uncontrolled drift in the actuator position
is obviously detrimental to the overall performance of systems wherein the actuator
is meant to maintain a certain static deflection, for example the steady deflection of
a trailing edge flap. The basic drift phenomenon is as follows: after the application
of a DC field, the strain jumps to a certain value and then increases slowly with
time. When the field is switched off, the strain falls back to some value and then
slowly decreases until it stabilizes at some residual strain. The curves describing
both the slow increase and the slow decrease are of a similar nature and are roughly
logarithmic with time. One of the manufacturers [25] has given the following formula
for drift of a piezostack actuator:

�ε = �εo

(
1 + γ ln

t
0.1

)
(2.104)

where t is the time in seconds, �εo is the strain 0.1 seconds after the application of
the field and γ is a factor that depends on the system’s characteristics, typically on
the order of a few percent. Note that the percentage increase in strain after the appli-
cation of the field is independent of the field strength. Experimental observations
on a PZT sheet (Fig. 2.17(a)) show a family of drift curves for DC excitation fields
from 0.4 kV/cm to 5.5 kV/cm. The experimental data show that the percentage drift
is roughly the same regardless of excitation field. Fig. 2.17(b) shows the percentage
drift in response to a positive and a negative field of the same magnitude, 4 kV/cm.
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Figure 2.18. Drift under combined excitation.

It can be concluded that the direction of applied field has negligible effect on the
magnitude or the rate of strain drift.

Similar phenomena have been observed by other researchers during investiga-
tions on Rochelle salt [17]. It is believed that the drift phenomenon is largely intrinsic
in nature. The reason for the drift is probably a gradual change in the permanent
polarization of the material. The dependence of such effects on the state of the
material as a result of previous mechanical or electrical treatment has been pointed
out and referred to as the “fatigue” effect.

In an attempt to stabilize the drift, an AC field of 5% of the steady DC field was
superimposed at high as well as low frequencies. The following five different types of
excitations were tried out: (a) 3.937 kV/cm DC field, (b) 0.196 kVrms/cm sinusoidal
field at 10 Hz riding on a 3.937 kV/cm DC field, (c) 0.196 kVrms/cm sinusoidal field at
500 Hz riding on a 3.937 kV/cm DC field, (d) 1.968 kVrms/cm sinusoidal field at 500
Hz riding on a 3.937 kV/cm DC field and (e) 3.937 kV/cm DC field on an actuator
which was previously exposed to a DC field of the same magnitude for three hours.

The effect of these excitations is shown in Fig. 2.18. The percentage of drift
from the instantaneous strain is plotted versus time. After half an hour, the strain
signal had increased by approximately 12% to 18% for most cases. It can be seen
that there is not much change in the drift due to a pure DC field in comparison to
those with different superimposed AC fields. The only exception is case (e) where the
percentage of drift is the smallest. The data plotted has been averaged out over three
trials. There is some amount of scatter since the repeatability of such drift tests is
very sensitive to the previous excitation of the sample. The kind of treatment given
to the actuator in case (e) is similar to the fatigue effect, and it appears possible to
stabilize drift by exposing the piezoceramic continuously to a DC field for several
hours before the actual excitation. It was also observed that the drift is similarly
reduced for any excitation field of magnitude less than the stabilization field. This
kind of DC stabilization introduces a bias in the piezoceramic and zeros out residual
strains in response to an excitation in the same direction. The bias, however, is
destroyed on reversing the polarity of the field.
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2.7.2 Behavior under Dynamic Excitation Fields

One of the biggest advantages in using PZT actuators for adaptive structures
applications is their large bandwidth. Because the piezoelectric effect is an
electro-mechanical effect occuring at the unit cell level, the response of the material
is very fast. Characterization of the material behavior under dynamic excitation is
therefore very important in order to fully utilize its operating range. Hysteresis of
the material plays a dominant role in its response.

The origin of the hysteresis can be traced to the orientations of the unit cells
of the material, which can switch from one orientation to another in response to an
electrical field or mechanical stress field of sufficient magnitude. This response to an
electric field is also called an extrinsic effect (as opposed to the intrinsic converse
piezoelectric effect of each unit cell), resulting in movement of the domain walls
and associated nonlinearities in the overall response of the piezoceramic. From the
point of view of an actuator, the hysteresis inherent in the material results in energy
dissipation in the form of heat. This energy is basically equal to the work done in
reorienting the dipoles in the material in the direction of the applied electric field.
The energy dissipated is quantified in terms of a dissipation factor, called tan δ. This
quantity is related to the non-ideal dielectric nature of the material and will be
discussed in detail in a later section.

An external dynamic stress will also have the effect of reorienting the domains
and this leads to an effect similar to static friction, which can be observed as a
hysteresis in the stress-strain curve of the material (under constant electric field).
This mechanical hysteresis results in an effective damping in the material. Hysteresis
is a nonlinear phenomenon, where the induced strain lags behind the applied field.
It is different from phase lag, which is a linear phenomenon.

Piezoelectric materials exhibit varying levels of hysteresis and nonlinear satu-
ration effects at moderate to high levels of applied field. The material hysteresis is
often attributed to the impediment of domain-wall movement as a result of inher-
ent material inclusions and stress nonhomogeneities. At low field levels, domain
wall movement is reversible, whereas at high field levels, domain walls move over
extended distances. If we restrict the applied field or stress to a sufficiently low level,
it minimizes hysteresis. This restricts the range of applications. For certain applica-
tions, it becomes necessary to minimize the material hysteresis, a goal which can be
achieved indirectly through a feedback mechanism. Smith and Ounaies [3] addressed
the modeling of hysteresis and nonlinear constitutive relations in piezoelectric
materials based on the quantification of the reversible and irreversible motion of
domain walls pinned at inclusions in the material. Basically, the theory character-
izes the inherent hysteresis in the relation between the input field and the output
polarization.

Strain Hysteresis

To observe the losses and the actual hysteretic behavior of the material, a quasi-
steady free strain test was performed by changing the voltage successively from
point to point. In contrast to the earlier static free strain curve, the excitation was
not switched off and the gauge was not zeroed after each reading. At each point,
the strain was allowed to stabilize before taking a measurement. The experiments
were carried out on several different samples, and each point is the average of
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Figure 2.19. Quasi-static hysteresis curve, uncycled PZT.

three measurements. The curve shown in Fig. 2.19 was the response of a brand new
sample (uncycled). The field was slowly changed in steps of 0.3937 kV/cm. The strain
response seems to have some bias and takes around three cycles to stabilize. The
same experiment was repeated after exciting the actuator with a moderately high
3.15kVrms/cm, 5 Hz sinusoidal field. This is referred to as ‘AC cycling’ and is carried
out in an attempt to train the actuator to a certain excitation, such that its residual
strain and drift are minimized. The quasi-static strain response, shown in Fig. 2.20(a),
now seems to have less bias and stabilizes in the second cycle itself. The aspect ratio
(lateral width to length ratio) of the hysteresis curves is around 15%. Fig. 2.20(b)
shows the quasi-steady hysteresis curve at a lower maximum field: the aspect ratio
becomes smaller. It can be seen that the normalized area under the curve is larger
when the maximum field is larger. Also, the curves are asymmetric with respect to the
zero-strain axis, which is similar to the asymmetry observed in the static free strain
curves and is due to the permanent electric polarization of the ceramic. Another
interesting feature is that the curves in Fig. 2.20(b) were obtained by starting with
a negative excitation, whereas the curves in Fig. 2.20(a) were obtained by starting
with a positive excitation. This difference is seen in the first quarter of the first cycle.
The remainder of the curves show no dependence on the sequence of excitation.

The shape of the strain-field hysteresis loop changes with excitation frequency
and field. Fig. 2.21(a) shows the variation in the experimentally measured strain-field
hysteresis loop at 5 Hz for a free actuator. It can be seen that with increasing field,
the overall shape of the curve is not affected much, but the mean slope increases
with increasing field. Also plotted for the sake of comparison is the DC free-strain
curve, which matches closely with the increasing positive excitation and increasing
negative excitation segments of the hysteresis curves. This is to be expected, since the
DC free strain curve is obtained from the low frequency strain-hysteresis response
by ignoring the hysteresis. The dynamic hysteresis curves reduce to the static free-
strain curve as the frequency of excitation is decreased. The effect of frequency is
seen in Fig. 2.21(b). The area under the high frequency curve is less than the area
under the low frequency curve, which means that there are larger energy losses at
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Figure 2.20. Quasi-static hysteresis curves, after AC cycling.

lower frequencies. These hysteresis curves can be generated using the phenomeno-
logical model developed above, which also traces out the static free strain curve
when the frequency reaches zero. Vautier and Moheimani [26] showed that using
electric charge instead of voltage to drive the actuator can reduce the hysteresis by
demonstrating this concept experimentally on a cantilevered beam.

Dynamic Strain Response

To observe the magnitude and phase of the induced strain of a free actuator under
AC excitation, the sample was excited by a sinusoidal field stepped from 0 to 200 Hz.
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Figure 2.21. Variation of strain hysteresis with field and frequency for a free actuator.

This was carried out at different excitation fields to see the effect of excitation field
as well as excitation frequency, and these results are summarized in Figure 2.22. The
dependence of crucial material properties such as eσ33 and tan δ on the magnitude and
frequency of the excitation can be calculated from the magnitude and phase of the
current drawn by the actuator. These parameters are very important for predicting
the power consumption of actuators bonded to a structure. From Figure 2.22(a),
it can be seen that the free strain, and hence, d31, is relatively independent of the
actuation frequency. The slight increase seen at higher frequencies is due to an
electro-mechanical resonance around 1 kHz. The influence of the resonant dynamics
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Figure 2.22. Response of a free PZT actuator.

can be seen in Figure 2.22(b), which is a plot of the phase of the free strain. These
dynamic characteristics, though important for a free actuator, are of less interest
while investigating the performance of actuators bonded to a structure, where the
dynamics of the parent structure is dominant. At low frequencies, the free strain
increases by approximately 10% due to poling effects. At higher frequencies and
excitation fields, nonlinear effects cause the free strain to increase by as much as
15% compared to the free strain in the linear region.

This variation can be described in terms of the following relation:

E = Aε + Bε̇ (2.105)

where E is the excitation field in volts/m and ε is the free strain of the actuator in
microstrain. By analogy with a mechanical spring-damper system, the coefficients
A and B can be considered as an effective stiffness and damping, respectively. The
variation of this stiffness and damping with excitation voltage and field is calculated
from the experimental data. The values of the stiffness and damping are shown in
Fig. 2.23.
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Figure 2.23. Effective stiffness and damping variation, PZT-5H.
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It can be seen that the stiffness depends to a large extent on excitation voltage, as
expected, but the frequency dependence is small. A quadratic variation of stiffness
with frequency is calculated and is given by

A = af 2 + bf + c (2.106)

where f is the frequency of excitation in Hertz, and the coefficients a, b, and c are
linear functions of the excitation voltage.

a = 15.1 × 10−9
E − 6.09 × 10−6 (2.107)

b = −2.59 × 10−6
E + 1.4 × 10−3 (2.108)

c = −2.44 × 10−3
E + 0.893 (2.109)

The variation of damping with field is not significant, especially at higher values of
frequency, so the damping is expressed as:

B = 1.5
f

(2.110)

This expression for damping is equivalent to stating that the energy lost per cycle per
unit displacement amplitude is a constant, a result which is intuitively expected. Using
these relations for effective stiffness and damping, the free strain of the actuator can
be calculated at any given frequency in the range of 1–200 Hz and excitation voltage
in the range 40–140 V. The comparison of experimentally measured free strain with
predictions using this phenomenological model is shown in Fig. 2.24, where the
sample is excited at 80 Vpeak and 120 Vpeak at frequencies of 5 Hz, 25 Hz, and 100
Hz. It can be seen that at lower frequencies, the damping is slightly underpredicted
and at higher frequencies, the damping is slightly overpredicted. This is due to the
rather simple hyperbolic variation of the effective damping parameter assumed in
Eq. 2.110. A more complicated variation would yield more accurate results, but the
accuracy of the present assumption is considered to be within acceptable limits.

It is worth mentioning here that the static free strain values can be obtained
from the above equations by first setting ε̇ = 0 and then setting f = 0. The resulting
equation for static free strain is

εstatic = E

−2.44 × 10−3E + 0.893
(2.111)

The values of static free strain obtained by this equation are very close to the
values obtained from Eq. 2.99, though not precisely the same. This is because Eq. 2.99
represents the static behavior which has an inherent asymmetry between positive
and negative excitation voltages due to remnant polarization effects. This asymmetry
decreases as the frequency of excitation increases. However, the model represented
by Eq. 2.105 assumes a solution which is inherently symmetric. Therefore, for static
and low frequency behavior, Eq. 2.99 should be used to obtain more accurate results
while Eq. 2.105 should be used for high frequency behavior.

Viswamurthy et al. [27] modeled the dynamic hysteresis behavior between the
applied electric field and displacement of a piezoceramic stack actuator using a
Preisach model. The unknown coefficients of the model were obtained by iden-
tification from experimental data. It was demonstrated that ignoring the dynamic
hysteresis by using a linear model of the actuator led to an erroneous prediction of
the optimal control input in a feedback system.
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Figure 2.24. Model validation at three different frequencies and two excitation voltages of 80
Vpeak and 120 Vpeak.

There are other methods that are used to model the hysteresis behavior of
piezoelectric materials. These are: Maxwell resistor capacitor model [28], phaser
approach [29], and describing functions [30]. Instead of using the electric field, the
electric charge is controlled for actuation, which minimizes the hysteresis effect.
However, because of the increased complexity of implementation, such circuits
are not widely used [5]. It has also been shown that by using electric charge to
drive piezoelectric actuators for vibration feedback control, negative effects associ-
ated with hysteresis can be significantly reduced [26]. By using electric charge, an
improved model of the plant is obtained, which in turn increases the robustness of
the controller.

Effect of DC Bias

Several studies have reported the benefecial effects of operating piezoceramic actua-
tors with a DC bias field. A DC bias field increases the value of d31 under stress [20].
This can be explained by the stabilizing effect that a DC bias field has on the
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Figure 2.25. Effect of a DC bias field.

pinning of the domains [31]. Under a DC bias, the domains are better aligned and
the domain walls become more difficult to move, which effectively reduces the
extrinsic contribution to nonlinear effects and losses in actuation. Fig. 2.25 shows a
strain-field hysteresis loop under a pure AC field and under the same AC field with
a superimposed positive DC field of strength 0.5Vpeak. Only the AC component of
the strain is plotted for comparision. It can be seen that the area under the loop is
less for the actuation with a bias than without bias. This shows that the losses have
decreased due to the application of a DC bias. There is also a small decrease in the
magnitude of peak free strain under bias.

2.7.3 Depoling Behavior and Dielectric Breakdown

Although increasing the applied electric field is necessary in order to obtain larger
deformations from the actuator, the magnitude of the electric field is constrained
by two limits: depoling and dielectric breakdown. As the electric field applied along
the poling direction increases, dielectric breakdown eventually occurs in the piezo-
ceramic material. However, this field usually corresponds to several hundreds of
volts applied to the actuator, and is normally not encountered during operation.
A more critical constraint is the depoling of the piezoceramic. When exposed to a
high electric field opposite to the poling direction, the piezoceramic loses most of
its piezoelectric capability. The actuation is accompanied by large dielectric losses
and poor efficiency. This is known as depoling of the piezoceramic and is accom-
panied by a permanent change in dimensions of the sample. This is probably due
to large scale domain switching in the material. The DC depoling field of PZT-5H
is approximately 5.5 kV/cm. For an AC excitation, the depoling field depends on
the frequency. It is observed that under a dynamic excitation, the depoling field of
the actuator becomes lower than the DC value. This trend is shown in Fig. 2.26. As
in other experiments, there is a relatively large scatter because of variations in the
samples and their previous excitation history. A curve was fit to the experimental
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Figure 2.26. Variation of depoling field with excitation frequency.

variation of depoling field with frequency.

Edep = 2.292 × 10−5 f 2 − 1.255 × 10−2 f + 5.6 (2.112)

where Edep is the AC RMS depoling field in kV/cm and f is the excitation frequency
in Hertz. Fig. 2.27(a) shows the effect of depoling on the actuator strain response.
The PZT is excited at 4.7 kVrms/cm at 100 Hz. This is just at the depoling field,
and the PZT usually takes a few seconds to depole, during which the strain-field
hysteresis loop transforms slowly into the ‘butterfly loop,’ which indicates that the
sample has depoled. This process is accompanied by a rapid increase in current
drawn. It can be seen that the area under the depoled loop is more than the area
under the non-depoled loop, indicating that the energy losses are much larger in the
case of the depoled actuator.
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However, the application of an electric field along the initial direction of polar-
ization reorients the domains along the poling direction, thus reversing the depoling
action. The sample was depoled and then repoled by exposing it to a DC electric field
of 5.9 kV/cm and 7.1 kV/cm for about 5 minutes. The free strain curves before and
after repoling are shown in Fig. 2.27(b). Though these repoling fields are much less
than the initial poling field of the ceramic, which is usually on the order of 12 kV/cm,
it is possible to recover most of the performance of the actuator. This may be useful
in case of accidental depoling of actuators in smart systems. It was also observed that
it is possible to repole the samples by means of exciting them with an AC field that is
approximately 90% of the AC depoling field. An interesting observation during this
kind of repoling is that after the actuator has depoled, it is necessary to shut off the
excitation and let the actuator sit for 3–4 minutes before applying the repoling field.
If this is not done, the repoling is not effective. Note that it is more difficult to repole
actuators bonded onto structures since the tensile stresses created in the actuator
by the application of the repoling field tend to impede domain reorientation. Care
should be taken not to exceed the tensile failure stress of the piezoceramic, which
will result in cracking of the bonded actuator.

During the poling process, due to significant alignment of domains within the
crystallites, there is a permanent change in the dimensions of piezoceramics. For lead
zirconate titanate compositions, the ceramic increases in length in the poling direc-
tion (z-direction) by 0.47% and decreases in length in all directions perpendicular
to this by about 0.20%. On the other hand, barium titanate undergoes approxi-
mately one-half the distortion of PZT, typically experiencing strains of 0.11% and
0.046%, respectively, in the poling and normal directions. There is more alignment
of domains towards applied field in PZT than in barium titanate, resulting in a larger
piezoelectric effect in PZT compositions. An applied stress alone cannot polarize
a ceramic material; however, stress can depolarize the material. Applied stress in
conjunction with field (parallel to field) will either help (tensile stress) or impede
(compressive stress) the poling process. In a similar way, applied stress normal to
the poling field will either help the poling process (compressive stress) or impede
the poling process (tensile stress).

2.7.4 Power Consumption

The prediction of power consumed by the system with bonded piezoactuators is
a very important part of designing an adaptive structure. Piezoelectric actuators,
as will be demonstrated in subsequent sections, behave as capacitive loads. As a
result, special power amplifiers, capable of delivering large currents, are required
to drive practical systems incorporating these actuators. The large currents result in
excessive heat generation, and are a cause of concern in designing rotating actuation
systems with slipings for power transmission. In this section, the power consumption
of piezoelectric actuators is discussed, for both bonded and free actuators, and a
theoretical model is experimentally validated. Some methods of reducing the current
drawn from the power amplifier are described.

Electro-Mechanical Impedance Approach

The net impedance of an actuator bonded to a structure can be divided into two
parts: a purely electrical impedance, and a purely mechanical impedance. The energy
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supplied by the power source driving the actuator appears as an increase in elec-
trical energy of the actuator, an increase in strain energy of the actuator and struc-
ture, electrical and mechanical losses, and any work output from the structure. It is
therefore convenient to treat the impedance of the actuator and structure as a net
electro-mechanical impedance seen by the power source. Once all the mechanical
and electrical impedances have been lumped into an effective electro-mechanical
impedance, it becomes easy to calculate the current drawn, and therefore the power
requirements, of the actuator-structure combination.

Electrical Impedance of a Free Actuator

A free piezoelectric actuator, by virtue of its physical configuration, behaves primar-
ily as a capacitive load. In the case of a piezoceramic sheet actuator, it can be treated
as a parallel plate capacitor.

For an ideal capacitor, the electrical impedance is given by:

Z = 1
jωC

(2.113)

where ω is the angular frequency of the applied field and C is the capacitance in
Farads, which for an ideal parallel plate capacitor is given by:

C = eA
t

(2.114)

where e is the electric permittivity, A is the area of the plate and t is the distance
between the plates, which in this case is the thickness of the piezoceramic sheet. If a
sinusoidal voltage is applied to the capacitor, the current drawn leads the voltage by
exactly 90◦. Real capacitors with dielectric media, however, have energy losses. These
losses are due to conduction currents in the dielectric as well as molecular friction
opposing the rotation of dipoles in the material. This causes the current to lead the
voltage by a phase angle δ less than 90◦. The nonideal capacitor is usually modeled
by a simplified equivalent circuit incorporating a shunt resistance in parallel with an
ideal capacitor. The energy losses appear as Ohmic heating in the shunt resistance.
The dissipation factor, given by tan δ, is therefore a measure of the energy loss in the
capacitor and consequently, the power consumed by the actuator. The impedance
of a nonideal capacitor can be given in terms of a complex electric permittivity [32].

e = eok′ − jeok′′ =
(

eo − je
k′′

k′

)
k′ (2.115)

where eo is the permittivity of free space, k′ is the relative permittivity of the dielectric
and

tan δ = k′′

k′ (2.116)

From Eqs. 2.114, 2.115 and 2.116, the electrical impedance of the piezoceramic
sheet can be expressed as:

Z = t
jωeσ33(1 − j tan δ)A

(2.117)

It is well known that the electric permittivity and the dissipation factor of piezo-
ceramics increase with increasing field. This information is essential for predicting



2.7 Piezoceramic Actuators 165

V1

V2

PZT

Rs

amplifierFigure 2.28. Measurment of
electro-mechanical impedance.

the power consumption of systems incorporating piezoceramic actuators. Therefore,
it is important to measure the impedance of the piezoeceramic sheets under realistic
operating conditions.

Measurement of Actuator Impedance

The impedance of electrical devices is typically measured using an impedance ana-
lyzer, or an LCR meter. However, these instruments measure impedance either
by measuring the current drawn when a known sinusoidal voltage is applied to the
device, or by finding the resonant frequency of the circuit using a frequency sweep.
In general, the instrument applies a small voltage to the device, in the range of
several millivolts to a few volts, either at a specific frequency (1kHz in the case of
most LCR meters) or over a range of frequencies. This testing procedure is sufficient
for devices that are close to ‘ideal,’ for example, a capacitor in which the permit-
tivity of the dielectric is constant with the magnitude and frequency of the applied
field. However, in the case of piezoceramics, it is known that the material constants
such as electric permittivity are highly dependent on the operating conditions, such
as applied electric field and mechanical stress. Therefore, in order to measure the
actual impedance of the actuator, or of the actuator-structure combination, it is
essential to maintain the same electrical and mechanical boundary conditions as in
the intended application.

A simple way of achieving this is shown in Fig. 2.28. A function generator is
connected to a power amplifier that drives the PZT actuator at the intended operating
voltage. The PZT actuator could be mechanically unconstrained, in which case the
measured impedance would be the electro-mechanical impedance of the actuator
alone, or it could be bonded to a structure, in which case the measured impedance
would be the electro-mechanical impedance of the actuator-structure combination.
A precision sensing resistance (Rs) is connected between the negative electrode of
the PZT and the ground of the circuit. The voltage output from the power amplifier,
V1 and the voltage across the sensing resistance, V2 are both measured by a data
acquisition system. Typically, most data acquisition systems have the capability to
record both magnitude and phase information. The current passing through the
circuit is calculated as

icircuit = V2

Rs
(2.118)

The voltage across the PZT actuator is

VPZT = V1 − V2 (2.119)
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Figure 2.29. Experimentally measured current and tan δ for a free piezoelectric sheet.

and the impedance of the actuator, Zact, is given by

Zact = VPZT

icircuit
(2.120)

Alternatively, the magnitude and phase of the impedance can be calculated in a
simple way by capturing the two voltage waveforms on an oscilloscope. Using a data
acquisition system, the measurement can be automated, and the impedance over
a range of frequencies can be measured using a swept sinusoid from the function
generator. Note that a high impedance probe, or a potential divider is required to
measure the voltage V1, which may typically be in the range of hundreds of volts.
However, as the sensing resistance Rs is small, the voltage V2 is small, and can be
measured directly.

The measured current drawn and the calculated dissipation factor for a PZT-
5H sheet (of dimensions 2′′ long, 1′′ wide, and 0.01′′ thick) is shown in Fig. 2.29.
Equating the impedance form Eq. 2.117 to the value of impedance calculated from
the experimentally measured voltage and current, the variation of eσ33 and tan δ with
field can be generated and is shown in Fig. 2.30. Curves are fit to the experimental
data, and the variation of eσ33 and tan δ with field can be calculated as:

Ke = 5.3187E
2 − 5.9754E + 7.32 (2.121)

tan δ = 0.0662E + 0.0376 (2.122)

where Ke is the percent increase in eσ33 and E is the electric field in kVrms/cm.

Electro-Mechanical Impedance of the Actuator

A short description of the derivation of the combined electro-mechanical impedance
is given here [33]. The structural impedance of the active system is derived by
considering a PZT actuator deforming along its length only (1-direction), driving a
single degree of freedom–spring-mass damper system. For an actuator of length lc,
width bc and thickness tc, and with an elastic modulus EE

11, the force exerted is given
by

F = KAlc(εmech − �) (2.123)
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Figure 2.30. Variation in piezoelectric material constants with applied electric field.

where KA is the static stiffness of the PZT, given by EE

11bctc/lc, � is the free strain
which is defined as d31V/tc, and εmech is the mechanical strain of the structure at the
actuator location. For a PZT sheet being excited along the 3-axis (or z-axis), assuming
it deforms only along the 1-axis (or x-axis), the constitutive relations (Eqs. 2.70 and
2.71) can be written as:

ε1 = sE11σ1 + d31E3 (2.124)

D3 = d31σ1 + eσ33E3 (2.125)

In these equations, ε1 is the strain, σ1 is the stress and sE11 is the complex compliance.
The equation of motion for a PZT sheet vibrating in the x-direction is given by:

ρ
∂2u
∂t2

= Y
E

11
∂2u
∂x2

(2.126)

where ρ is the mass density (kg/m3) and Y
E

11 is the complex modulus given by:

Y
E

11 = EE

11(1 + jη) (2.127)

where η is the mechanical loss factor of the PZT. The complex dielectric permittivity
eσ33 is given by:

eσ33 = eσ33(1 − jη) (2.128)

Assuming a solution to Eq. 2.126 of the form

u = (a1 sin kx + a2 cos kx)ejωt (2.129)

where k2 = ω2ρ/Y
E

11, and applying the appropriate boundary conditions, it is possible
to derive expressions for constants a1 and a2. A similar derivation can be performed
to find the impedance of an actuator (assuming both electrodes shorted) under a
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constant force excitation. This gives an actuator mechanical impedance expressed
as:

ZA = −KA(1 + ηj)klc
ω tan(klc)

j (2.130)

Mechanical Impedance of the Structure

The mechanical impedance of the structure is defined as:

F = Zẋ (2.131)

where x is the displacement of the actuator along it’s length (‘1’-direction). The
mechanical impedance of the beam in bending (from Eq. 2.131) is given by:

Z = 4
(tb + tc)2

M
(θ2 − θ1)jω

(2.132)

where M is the actuation moment, θ2 and θ1 are the beam slopes at the ends of the
actuator, and tb is the beam thickness. In the theoretical validation, the actuation
moment M and the beam slopes θ1, θ2 are calculated using the Euler-Bernoulli model.

Electro-Mechanical Impedance of the Actuator-Structure Combination

Using the expressions for the mechanical impedances of the actuator and the struc-
ture, and using the derived constants a1 and a2, the assumed displacement (Eq. 2.129)
can be solved for. This is then substituted in the constitutive relations (Eqs. 2.124
and 2.125) to obtain the value of the electric displacement D3. The current is defined
as:

I = q̇ = jω
∫∫

D3dxdy (2.133)

The final expression for the consumed current is:

I = jωEbclc

(
d2

31Y
E

11ZA tan(klc)
(Z + ZA)klc

+ eσ33 − d2
31Y

E

11

)
(2.134)

Note that for a free PZT actuator, though the actuator impedance ZA is finite, the
impedance of the structure, Z is zero. Also, the factor tan(klc)/(klc) is approximately
equal to unity. The current drawn by the free PZT (Eq. 2.134) then reduces to:

IfreePZT = jωEbclceσ33 (2.135)

From this, the impedance of the free PZT can be written as

ZfreePZT = V
IfreePZT

= tc
jωEbclceσ33

(2.136)

Note that this expression for the impedance of the free PZT is the same as
the expression derived considering the PZT to be a lossy capacitor (Eq. 2.117),
considering tan δ ≈ δ. The experimentally measured current consumed by a free
actuator and a pair of actuators bonded to a beam is compared with that predicted
using Eq. 2.134. The variation of eσ33 and tan δ given by Eq. 2.121 and Eq. 2.122 is
also incorporated in the theoretical predictions.
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Figure 2.31. Current consumption predictions for a free actuator, 3.0 kVrms/cm.

Experiments were performed on a free actuator and on a pair of actuators
bonded to a cantilevered aluminum beam of dimensions 12′′ × 1′′ × 0.032.′′ The com-
parision of experimental and theoretically predicted current consumption is shown
in Figs. 2.31 and 2.32. The predicted values show very good agreement with exper-
iment when the variation of eσ33 and tan δ is taken into account, and the agreement
is poor when these parameters are assumed constant. This emphasizes the impor-
tance of incorporating these nonlinearities when attempting to predict the power
consumption of such actuator systems.

Reducing the Power Consumption of PZT Actuators

Due to the highly capacitive nature of the actuators, though the actual energy dis-
sipated in the actuator is small, a large current is drawn from the power amplifier
driving it. This makes the driving circuit bulky and inefficient, and poses a challenge
to compact smart systems with embedded electronics. The problem becomes even
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Table 2.9. Electric and mechanical analogs

Electrical Quantity Mechanical Quantity

Charge Displacement
Voltage Force
Current Velocity
Capacitance Compliance
Inductance Inertia
Resistance Damping
Electrical Impedance Mechanical Impedance

more critical for a rotary-wing smart system where the transfer of power from fixed
frame to rotating frame poses serious restrictions on the slipring unit [34].

Several approaches to address this issue can be found in the literature, and can
be broadly grouped under two methods: those that involve the design of efficient
driving electronics to supply power to the actuator, and those that modify the effec-
tive impedance of the actuator by adding components to the actuator circuit. For
example, in the first approach, special Pulse Width Modulated (PWM) amplifiers can
be designed to decrease the power dissipated in the amplifier and make it more com-
pact than conventional amplifiers. In the past, High power PWM amplifier designs
were proposed to drive piezoelectric actuators and electrostrictive actuators [35, 36].
However, in charging the actuator capacitance, these amplifiers do not recover the
necessary energy to change the actuator capacitance, that is wasted on the negative
half-cycle of excitation. Hybrid techniques have also been suggested [37], wherein
the charge used to displace the actuator is recirculated within the amplifier. In the
second approach, the effective impedance of the actuator is changed by adding
passive or semi-active components to the actuator driving circuitry, through the
modification of the driving circuit using an additional inductor in a series or parallel
arrangement [38, 39]. Though the concept is theoretically feasible, the size of the
correcting inductance required for practical applications can become prohibitive.

Many of the previous test characteristics were focused on a specific piezoce-
ramic (PZT-5H). One should expect some variation of characteristics among piezo-
ceramics from other manufacturers. Also note that PVDF can have quite different
characteristics than PZT. Sathiyanarayan et al. [2] carried out systematic material
tests on PVDF sheets and showed nonlinear and time-dependent electromechan-
ical behavior. PVDF sheets exhibited a strong dependence on strain rate in the
transverse direction, compared to the longitudinal direction. The biaxially stretched
sheets showed transverse isotropy. Dynamic moduli were found to be insensitive to
prestressing, but were sensitive to frequency of oscillation.

2.8 Equivalent Circuits to Model Piezoceramic Actuators

Piezoelectric material characteristics, as well as structural properties, can be repre-
sented in terms of an equivalent electric circuit. Mechanical properties are expressed
in terms of analogous electrical quantities (see Table 2.9). This provides a conve-
nient way to analyze the effect of the piezoelectric material in conjunction with the
rest of the electric circuit. Therefore, this approach finds wide application in systems
where the piezoelectric material is used as a sensor, where the transduction of some
mechanical inputs into electrical quantities, as well as the signal conditioning and
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Figure 2.33. Equivalent circuits to model piezoelectric actuators.

output is of interest. Numerous equivalent circuit models can be found in the liter-
ature, each consisting of a combination of resistors, capacitors, and inductors. The
choice of a particular circuit depends on the operating regime of the piezoelectric
material, for example, whether the frequency of operation is close to resonance. If
low frequency operation away from resonance is of interest, then the equivalent cir-
cuit can be considerably simplified by eliminating the inductive elements. The capac-
itances represent the dielectric properties of the material; note that a piezoelectric
element acts predominantly as a capacitor. The resistive elements are included to
model the lossy nature of the dielectric, i.e., its complex electric permittivity. Often
these properties are provided by the manufacturer at low values of electric field,
suitable for sensor applications. For actuator applications, the piezoelectric material
is subjected to a very high electric field to maximize the strain output. Therefore, the
nonlinear variation of electric permittivity with electric field must be incorporated
in the elements of the equivalent circuit.

Two possible equivalent electric circuits are shown in Fig. 2.33. The mechanical
terminals represent mechanical energy transfer to or from the piezoelectric element.
The transformer symbol represents an ideal electromechanical transformer (voltage
to force and vice versa). For example, in an equivalent circuit, current is analogous to
velocity and vice versa. The transformer ratio N is related to the electromechanical
coupling efficiency of the material. Both the circuits are equivalent and it is a matter
of convenience to apply either one to a particular problem. At higher frequencies,
one needs to add additional lumped elements to the circuit to represent the dynamic
behavior.

Fig. 2.34 shows an equivalent circuit for a piezoelectric sensor. The piezoelectric
element can be treated as either a charge source or a voltage source, along with a
capacitance. The inductance in the circuit is to incorporate the mechanical elements
and to simulate high frequency behavior. The voltage V is the source that is directly
proportional to the applied force, pressure, or strain. The output signal is obtained
from the source after passing through the equivalent circuit. For example, in a
piezoelectric accelerometer, the inductance Lm represents the seismic mass of the
sensor, the capacitance Ce is inversely proportional to the mechanical elasticity of
the sensor, Co represents the inherent static capacitance of the transducer, and
Ri is the leakage resistance of the sensor element. If the sensor is connected to
an output load resistance, then this will form a parallel circuit with the leakage
resistance. Fig. 2.35 shows the response of this sensor as a function of frequency
for a sinusoidal forcing. The flat region of the frequency response is typically the
usable region, between the high-pass cutoff (to avoid leakage) and the resonant
peak. Note that such a sensor is not capable of yielding a purely static output (no DC
response).
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Figure 2.34. Equivalent circuit of a piezoelec-
tric sensor.

2.8.1 Curie Temperature

For each piezoceramic material there is a specific temperature above which the
material suffers a permanent and complete loss of its piezoelectric characteristics.
For practical applications, the operating temperature must be limited to some value
substantially below the Curie temperature. At elevated temperatures, the aging pro-
cess is accelerated, electric losses increase, and the maximum safe stress decreases.

2.8.2 Cement-Based Piezoelectric Composites

To overcome the deficiency in compatibility of traditional piezoelectric materials
(piezoceramic, piezo-polymer and polymer-based composite) with civil engineering
materials such as concrete, a PZT/sulfoaluminate cement-based composite has been
developed using a compression technique [40]. The piezoelectric properties of the
0–3 cement-based piezoelectric composites are improved by increasing the poling
field (>4 kV/mm) and poling time (>45 minutes). The piezoelectric characteristics
of the composite are nonlinear functions of the PZT content.

2.8.3 Shape Memory Ceramic Actuators

Field-induced phase transitions in electroceramics can cause large strains. Certain
classes of material, due to the metastability of some phases, are capable of retaining
a residual strain even after the electric field is completely switched off. For example,
lanthanum and niobium–doped piezoceramics exhibit anti-ferroelectric (AFE) to
ferroelectric (FE) phase transitions (Fig. 2.36) and show shape memory behavior.
Examples of these materials are, respectively, lead lanthanum zirconate stannate
titanate (PLZST) [41] and lead niobium zirconate stannate titanate (PNZST) [42].
Strains as high as 0.6% have been reported to occur during the phase transition.
Unlike ferroelectrics, anti-ferroelectrics do not exhibit any macroscopic polarization.
The induced strain depends on many factors that include stress, actuation frequency

Frequency

Usable region

V/F

Resonance

pass

Figure 2.35. Frequency response of a
piezoelectric sensor, output voltage V for
a sinusoidal forcing of magnitude F .
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Figure 2.36. Field-induced phase transition from anti-ferroelectric (AFE) to ferroelectric
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and temperature [43]. If the ferroelectric phase is stable, the material behaves like a
conventional piezoceramic.

2.9 Piezoelectric Sensors

Piezoelectric elements are commonly used in smart structural systems as both sensors
and actuators [15]. A key characteristic of piezoelectric elements is the utilization
of the converse piezoelectric effect to actuate the structure in addition to the direct
effect to sense structural deformation. Typically, piezoceramics are used as acutators
and polymer piezo films are used as sensing materials. It is also possible to use piezo-
ceramics for both sensing and actuation, as in the case of self sensing actuators [44].
Many researchers have used piezoceramic sheet elements as sensors in controllable
structural systems [45] and also in health monitoring applications [46]. Most of these
applications rely on the relative magnitudes of either the voltage or rate of change of
voltage generated by the sensor, or the frequency spectrum of the signal generated
by the sensor. Several investigations have been carried out on discrete piezoelectric
sensor systems [45], active control of structures with feedback from piezoelectric
sensors [47], and collocated sensors and actuators [44, 48]. It has been shown [49]
that piezoceramic strain transducers have a linear response up to the picostrain level
(Fig. 2.37), and their strain sensitivity is several orders of magnitude larger than a
conventional resistive-strain gauge of similar dimensions.

Piezoelectric strain-rate sensors have been investigated in references [50] and
[51] wherein their superior noise immunity compared to differentiated signals from
conventional foil gauges has been demonstrated. The correlation between the piezo-
electric gauge reading and the resistive gauge measurement is quite good; however,
the comparison was performed only at one frequency, 25 Hz.

This section discusses the behavior of piezoelectric elements as strain sensors.
Strain is measured in terms of the charge generated by the element as a result of the
direct piezoelectric effect. Strain measurements from piezoceramic (PZT-5H) and
piezofilm (PVDF) sensors are compared with strains from a conventional resistive
strain gauge and the advantages of each type of sensor are discussed, along with
their limitations. The sensors are surface bonded to a beam and are calibrated over a
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frequency range of 5–500 Hz. Correction factors to account for transverse strain and
shear lag effects due to the bond layer are analytically derived and experimentally
validated. The effect of temperature on the output of PZT strain sensors is inves-
tigated. Additionally, design of signal-conditioning electronics to collect the signals
from the piezoelectric sensors is described. The superior performance of piezoelec-
tric sensors compared to conventional strain gauges in terms of sensitivity and signal
to noise ratio is demonstrated.

In addition to the possibility of performing collocated control, such actua-
tors/sensors have other advantages such as compactness, sensitivity over a large
strain bandwidth, and ease of embeddability for performing structural health mon-
itoring as well as distributed active control functions concurrently. These features,
combined with the extremely good signal to noise ratio of piezoelectric sensors,
make them ideally suited for applications involving severe environments and small
signals. A resistance type strain gauge measures an average strain over its gauge
length along a specific direction (transverse sensitivity is negligible). On the other
hand, a piezoelectric sensor measures average strain over its attached surface area,
and is not directional.

2.9.1 Basic Sensing Mechanism

A description of the basic piezoelectric mechanism was given in Section 2.5.2. The
constitutive relation for a piezoelectric sensor (Eq. 2.32) can be written as

D = ddσ + eσE (2.137)

A sheet of piezoelectric material poled across its thickness, as in Fig. 2.38(a), can be
used to sense strain or strain rate in the 1-2 plane. The sensor generates a voltage
across its electrodes that is measured by appropriate signal conditioning electronics
(Fig. 2.38(b)). In most applications, no electric field is applied to the sensor.

The voltage generated across the electrodes of the piezoelectric sheet is funda-
mentally due to an electric displacement, or charge, generated in the element as a
result of the direct piezoelectric effect. For the case of the piezoelectric sheet, under
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Figure 2.38. Piezoelectric sheet as a sensor.

no external electric field, the electric displacement across the electrodes, D3, is given
by (Eq. 2.37)

D3 = d31σ1 + d32σ2 + d33σ3 (2.138)

Note that a piezoelectric sheet sensor cannot measure shear stresses. Because a
sensor of this type is usually bonded onto a structure, σ3 = 0 and only direct stresses
in the 1-2 plane are measured. It is important to note that the stresses in Eq. 2.138
are the stresses in the piezoelectric sensor itself, and not in the structure to which
it is bonded. These stresses are caused by strains in the 1-2 plane transferred from
the structure to the piezoelectric sheet, multiplied by the appropriate modulus of
the piezoelectric, depending on the electrical boundary conditions imposed by the
sensing electronics. Therefore, the piezoelectric sensor is in reality a strain sensor,
and can be used to measure strains on the surface of a structure.

The electric displacement is related to the generated charge by (Eq. 2.38)

q =
∫∫

D3dA3 =
∫∫

D3dxdy (2.139)

This charge, or an equivalent current, is collected by appropriate sensing elec-
tronics. Because the current is the rate of change of charge, measurement of the
current will result in a sensor that measures the rate of change of strain. Details of
these sensing methods will be discussed in subsequent sections.

2.9.2 Bimorph as a Sensor

A bimorph can be used as a sensor to measure bending in response to external stimuli.
Let us consider two identical piezoceramic sheets bonded in a parallel arrangement
with their polarization axes (z-axes) in the vertical direction. A tip load P in the
upward direction will cause bending of the bimorph, which can be measured in
terms of the generated voltage.

Assuming Euler-Bernoulli beam bending, the stress across the thickness of the
beam with moment of inertia I is:

σ1(z) = −P(lc − x)
I

(2.140)

Let the two plates of the bimorph be connected electrically in series, as shown in
Figure 2.39(a). The dots on the sides of the piezoelectric sheets indicate the electrode
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of positive polarity. The electric displacement is given by (neglecting lateral effects)

D3 = d31σ1 = −d31
P(lc − x)

I
(2.141)

The charge generated is obtained by integrating the electric displacement over
the electrode area

q =
∫∫

area
D3 dx dy = −d31tcl2

c

2I
P (2.142)

and the voltage is given by

V = q
Cp

= −d31tcl2
c

2I
tc

eσ33lcbc
= −3

2
d31lcP
bctceσ33

(2.143)

Substituting for the piezoelectric constant,

g31 = d31

eσ33
(2.144)

V = −3
2

Plc
bctc

g31 (2.145)

If the plates are bonded in a parallel arrangement such that their polarized
axes face in opposite directions with a common mid-electrode (Figure 2.39(b)), the
voltage generated is given by

V = −3
4

Plc
bctc

g31 (2.146)

2.9.3 Signal Conditioning Electronics

A piezoelectric sheet behaves like a capacitor with a large internal resistance (on
the order of G�). When used as a sensor, the sheet generates a charge that appears
as a voltage across its electrodes. In the case of a static strain, a DC voltage is gener-
ated across the electrodes of the sensor. Due to the large internal resistance of the
sensor, this voltage remains on the electrodes for a substantial period of time, but
eventually leaks off. However, in order to accurately measure this voltage, the input
impedance of the measurement device should be several orders of magnitude larger
than the impedance of the piezoelectric sensor. Typically, electrometers with input
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impedances >1014� can be used to measure these static voltages. Standard multi-
meters do not have sufficiently high input impedance either to provide an accurate
measurement or to prevent the static charge from leaking off. Additionally, mea-
surement of dynamic strains and the need for using standard data acquisition systems
pose further challenges to the use of piezoelectric sensors. Most oscilloscopes and
data acquisition systems have an input impedance of 1M�. These issues necessi-
tate the use of appropriate signal conditioning electronics between the piezoelectric
sensor and the measurement system.

The primary purpose of the signal conditioning system is to provide a signal
with a low output impedance while simultaneously presenting a very high input
impedance to the piezoelectric sensor. There are several ways of achieving this.
Although many designs of signal conditioning electronics exist, of varying complexity
and accuracy, they can be divided into three fundamental groups: measurement
of voltage, measurement of charge, and measurement of current. The voltage is
measured using a voltage follower, and is calibrated to yield the measured quantity,
such as force (in a load cell) or acceleration (in an accelerometer). In the second
approach, the charge is measured using a charge amplifier, resulting in a sensor
capable of measuring strain. In the third approach, the current is measured using a
transresistance amplifier, yielding strain rate measurements. The charge amplifier is
the most commonly used type of signal conditioning for commercial piezoelectric
sensors. The behavior of the charge amplifier including its frequency response is
described in detail below, along with the operational concept of the voltage follower
and transresistance amplifier.

Voltage Follower – Measurement of Voltage

A voltage follower provides a very high input impedance to the piezoelectric sensor.
A schematic of the voltage follower circuit is shown in Fig. 2.40 and a detailed
analysis of the circuit is presented by Dally et al. [52].

Considering a sensor of length lc, width bc, and thickness tc (Fig. 2.38), the
capacitance of the sensor is given by

Cp = eσ33lcbc

tc
(2.147)

The relation between charge and voltage generated across the electrodes of the
sensor is given by Eq. 2.39,

Vc = q/Cp (2.148)

Assuming only a uniaxial strain along the 1-direction, from Eqs. 2.138, 2.139,
2.147 and 2.39), the voltage generated by the sensor can be expressed as

Vc = d31Ycbc

Cp

∫
lc
ε1dx (2.149)

where Yc is the Young’s modulus of the piezoelectric material, depending on the
electrical boundary conditions of the sensor. In the case of the voltage follower, the
sensor is directly connected to the non-inverting input of the operational amplifier,
which theoretically has an infinite input impedance. Therefore, the sensor exists in
an open-circuit condition, and Yc = ED

11.
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Assuming the value of ε1 to be averaged over the gauge length, and defining a
sensitivity parameter

Sq = d31ED

c lcbc (2.150)

where ED

c is the Young’s modulus of the sensor material in open-circuit condition,
the equation relating strain and voltage generated by the sensor is

ε1 = VcCp

Sq
(2.151)

The output voltage of the voltage follower, Vo = Vc, and this can be calibrated
to measure either the strain as described above, or other quantities of interest such
as force in piezoelectric load cells or acceleration in piezoelectric accelerometers.
In real applications, the finite input impedance of the amplifier, capacitance of the
lead wires, and bias currents of the operational amplifier are important issues to be
considered in the operation of the circuit.

Charge Amplifiers – Measurement of Charge

The signal conditioning circuit used to measure charge is called a charge amplifier [52,
53]. The circuit is shown in Figure 2.41. A piezoelectric sensor can be modeled as
a charge generator in parallel with a capacitance, Cp , equal to the capacitance of
the sensor. The cables which carry the signal to the charge amplifier act collectively
as a capacitance Cc in parallel with the sensor. The charge amplifier has several
advantages [52]. First, the charge generated by the sensor is transferred onto the
feedback capacitance, CF . This means that once the value of CF is known and
fixed, the calibration factor is fixed, irrespective of the capacitance of the sensor.
Second, the value of the time constant, which is given by RF CF , can be selected to
give the required dynamic frequency range. It is to be noted, however, that there is
always some finite leakage resistance in the piezoelectric material, which causes the
generated charge to leak off. Therefore, though the time constant of the circuit can
be made very large to enable operation at very low frequencies, it is not possible
to determine a pure static condition. This basic physical limitation exists for all
kinds of sensors utilizing the piezoelectric effect. Third, the effect of the lead wire
capacitance, Cc, which is always present for any physical measurement system, is
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Figure 2.41. Charge amplifier
circuit.

eliminated. This has the important consequence that there are no errors introduced
in the measurements by the lead wires.

Proceeding in a similar fashion as described in the previous section, the current
i (Fig. 2.41) can be expressed as

i = q̇ = d31Yclcbcε̇1 (2.152)

= Sqε̇1 (2.153)

In this case, from the circuit diagram (Fig. 2.41), it can be seen that the bottom
electrode of the sensor is connected to ground and the top electrode is at a ‘virtual’
ground at the inverting input of the operational amplifier. Because both electrodes of
the sensor are effectively grounded, the equivalent Young’s modulus of the material
is the short-circuit modulus, Yc = EE

11.
Assuming ideal operational-amplifier characteristics, the governing differential

equation of the circuit can be derived to be

V̇o + Vo

RF CF
= −Sqε̇1

CF
(2.154)

which, for harmonic excitation, has the solution

V̄o = −
(

jωRF CF

1 + jωRF CF

)
Sqε̄1

CF
(2.155)

= H(ω)(−S∗
qε̄1) (2.156)

where the quantities with a bar represent their magnitudes, and ω is the frequency
of operation. The quantity S∗

q is called the circuit sensitivity, representing the output
voltage per unit strain input, and is given by

S∗
q = d31ED

c lcbc

CF
(2.157)

The magnitude and phase of the gain H(ω) are plotted in Fig. 2.42(a) for dif-
ferent values of time constant, while keeping RF = 10M�. It can be seen that this
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Figure 2.42. Circuit characteristics.

represents a high-pass filter characteristic, with a time constant � = RF CF . As dis-
cussed before, the value of this time constant can be made very large for low fre-
quency measurements. Another point to be noted is that the sensitivity of the circuit
depends inversely on the value of the feedback capacitance, CF . For a given strain,
as the value of CF decreases, the output voltage V0 will increase. However, this
capacitance cannot be decreased indefinitely. From Eq. 2.155, it can be seen that
the lower cutoff frequency of the circuit varies directly with CF . This tradeoff is
shown in Fig. 2.42(b), assuming a fixed value of RF of 10M�. Though larger time
constants are possible with larger values of feedback resistance, it is not practical to
increase the value of the feedback resistor RF beyond the order of tens of megaohms
due to various operational constraints. For a time constant of the order of 0.1 sec-
onds, the circuit sensitivity is of the order of 104 volts/strain, which translates to an
output voltage in the millivolt range in response to a one microstrain input. This
sensitivity is achievable in a conventional resistive strain gauge only after extensive
amplification and signal conditioning is incorporated. It can be seen that for larger
time constants, the sensitivity drops, which means that as a pure static condition is
approached, the output signal becomes weaker. Hence, it is not possible to measure
pure static or quasi-static conditions. The major advantage of the charge amplifier
comes from the fact that the circuit sensitivity, and therefore the output voltage,
is unaffected by the capacitance of the sensor and stray capacitances like the input
cable capacitance. The output depends only on the feedback capacitor. This makes
it easy to use the same circuit with different sensors without changing the calibration
factor.

Transresistance Amplifiers – Measurement of Current

A simplified circuit diagram of a transresistance amplifier is shown in Fig. 2.43.
The basic concept consists of sensing the current i from the piezoelectric sensor by
measuring the voltage drop caused by it across a sensing resistor, RS.

Assuming an ideal operational amplifier, the output voltage Vo is given by

Vo = iRS = −q̇RS (2.158)
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The current is given by Eq. 2.153. The output voltage becomes

Vo = −d31Yclcbcε̇1RS (2.159)

= SqRSε̇1 (2.160)

From the circuit diagram, (Fig. 2.43), it can be seen that the ‘virtual’ ground
results in a short-circuit condition. Therefore, Yc = EE

11.
It is possible to define a sensitivity parameter as in the previous case. The circuit

sensitivity S∗∗
q , represents the output voltage per unit strain input, and is given by

S∗∗
q = d31EE

11lcbc

CF
RS (2.161)

2.9.4 Sensor Calibration

In order to correlate the measurements from the strain sensor with physical strain
values, the sensor must be calibrated in a known strain field. This calibration process
ensures that the correct factors are used while converting the measured voltage to
physical strain. In addition, the effect of any correction factors required to com-
pensate for phenomena specific to piezoelectric sensors can be quantified. Once the
calibration procedure has been carried out, and the effect of various parameters
quantified, the sensor can be used to measure the strain in any installation under
similar mounting conditions. An experimental setup and procedure used to calibrate
the piezoelectric sensors, as well as a discussion of correction factors, is presented
below.

Experimental Setup

A dynamic beam bending setup is used to calibrate the piezoelectric sensors. A
pair of PZT sheets is bonded 20 mm from the root of a cantilevered aluminum
beam of dimensions 280 × 11 × 1.52 mm, and connected so as to provide a pure
bending actuation to the beam. A conventional foil-type strain gauge is bonded on
the beam surface at a location approximately 50 mm from the end of the actuators,
and a piezoelectric sensor is bonded at the same location on the other face of
the beam so that both sensors are exposed to the same strain field. A sketch of
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Figure 2.44. Calibration setup.

the experimental setup is shown in Fig. 2.44. The strain reading from the resistive
gauge is recorded using a conventional signal conditioning unit and the strain is
calculated using standard calibration formulae. The output of the piezoelectric sensor
is measured using conditioning electronics and converted to strain. A sine sweep is
performed from 5–500 Hz and the transfer functions of the two sensors are compared.

Correction Factors

It is to be noted that the derivation of Eq. 2.151 was based on the assumption that
only strain in the 1-direction contributed to the charge generated, the effect of other
strain components was negligible, and that there is no loss of strain in the bond layer.
In reality, however, a transverse component of strain exists, and there are some losses
in the finite thickness bond layer. Hence, the value of strain as calculated by this
equation is not the actual strain which is measured by the strain gauge. Correction
factors are required to account for transverse strain and shear lag losses in the bond
layer. These correction factors are discussed below.

Poisson’s Ratio Effect

The sensor on the beam is in reality exposed to both longitudinal and transverse
strains. If the 1-direction is assumed to be aligned with the length of the beam and
the 2-direction with the width of the beam, Eq. 2.138 can be rewritten as (assuming
we are using a charge amplifier for measurement, which means the sensor is in a
short circuit condition)

D3 = d31EE

11ε1 + d32EE

22ε2 (2.162)

For a longitudinal stress, there will be a lateral strain due to Poisson’s effect at
the location of the sensor,

ε2 = −νε1 (2.163)

where ν is the Poisson’s ratio of the host structure material, which in this case, is
aluminum (ν = 0.3). Hence, Eq. 2.151 can be rewritten as

ε1 = Vo

Kp S∗
q

(2.164)

where Kp is the correction factor due to Poisson’s effect. For PZT sensors, it can be
seen that

Kp = (1 − ν) (2.165)



2.9 Piezoelectric Sensors 183

dx
x
c

c+
σσ

bσ

cσ

dx
x
b

b+
σσ

ct

st

2
bt

τ
τ

Bond layer
Piezoelectric sensor

z

x

Isotropic beam

Figure 2.45. Forces and moments acting on the sensor.

for PVDF sensors, Kp is given by

Kp =
(

1 − ν
d32

d31

)
(2.166)

This is a key distinction between piezoelectric sensors and conventional resistive
gauges. The transverse sensitivity of a piezoelectric sensor is of the same order as
its longitudinal sensitivity. However, for a conventional strain gauge, the transverse
sensitivity is close to zero and is normally neglected. Hence, in a general situation,
it is not possible to distinguish the principal strains of a structure using only one
piezoelectric sensor. At least two sensors are required, constructed out of a piezo-
electrically or mechanically orthotropic material. Therefore, this rules out the use
of PZT sensors where both longitudinal and transverse strain measurements are
required. For calibration, the transverse strain is known a priori, which enables the
derivation of a correction factor.

Shear Lag Effect

The shear lag effect accounts for the loss in strain transmitted from the host struc-
ture to the sensor as a result of the finite stiffness of the bond layer. Consider a
sensor of length lc, width bc, thickness tc, and Young’s modulus Ec bonded onto the
surface of a beam of length lb, width bb, thickness tb, and Young’s modulus Eb. Let
the thickness of the bond layer be ts. Assuming the beam to be actuated in pure
bending, the forces and moments acting on the beam can be represented as shown in
Figure 2.45.

Linear strain distribution across the thickness of the beam is assumed, and the
actuator thickness is considered small compared to the beam thickness. The strain
is assumed constant across the thickness of the actuator. Force equilibrium in the
sensor along the x direction gives

∂σc

∂x
tc − τ = 0 (2.167)

and moment equilibrium in the beam gives

∂σb

∂x
+ τ

3bc

bbtb
= 0 (2.168)
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The strains can be related to the displacements by

εc = ∂uc

∂x
(2.169)

εb = ∂ub

∂x
(2.170)

γ = 1
ts

(uc − ub) (2.171)

where uc and ub are the displacements of the sensor and on the beam surface
respectively, and γ is the shear strain in the bond layer.

Substituting Eqs. 2.169–2.171 in Eqs. 2.167 and 2.168, and simplifying leads to
the relation

∂2ζ

∂x2
−
[

G
Ectcts

+ 3bcG
Ebbbtbts

]
ζ = 0 (2.172)

where G is the shear modulus of the bond layer material and ζ is defined as the
quantity (εc/εb − 1). Making the substitution

�2 = G
Ectcts

+ 3bcG
Ebbbtbts

(2.173)

leads to the governing equation for shear lag in the bond layer

∂2ζ

∂x2
− �2ζ = 0 (2.174)

The general solution for this equation is

ζ = Acosh�x + B sinh�x (2.175)

with the boundary conditions

at x = 0 ζ = −1 (2.176)

at x = lc ζ = −1 (2.177)

Solving these gives the complete solution as

ζ = cosh�lc − 1
sinh�lc

sinh�x − cosh�x (2.178)

This variation is calculated both along the length and the width of the sensor,
and the two effects are assumed to be independent, which means that effects at the
corners of the sensor are neglected. The function is plotted in Fig. 2.46(a), along
the length, for a PZT sensor of size 6.67 × 3.30 × 0.25 mm and in Fig. 2.46(b), for a
PVDF sensor of the same length and width, but of a thickness 56 μm. The variations
are plotted for different values of the bond-layer thickness ratio, � = ts/tc for both
types of sensors. The values of � are calculated by varying the bond-layer thickness
for a constant sensor thickness. The PVDF sensor shows a much lower shear lag
loss than the PZT sensor for a given bond-layer thickness ratio. This is due to the
combined effect of lower sensor thickness and lower Ec in the case of PVDF in
Equation (2.173). As a result, the shear lag effect is almost negligible for a PVDF
sensor.

To quantify the effect of the shear lag, effective dimensions are defined along
the length and width of the sensor such that the effective sensor dimensions are
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Figure 2.46. Shear lag effects along sensor length.

subjected to a constant strain, which is the same as the assumed strain on the beam
surface. By doing this, the sensor is assumed to be of new dimensions, smaller than
the actual geometrical dimensions, over which ζ = 0 identically. The values of the
effective length and width fractions, leff and beff respectively, can be obtained by
integrating the area under the curves in Fig. 2.46. For the sensor under discussion,
which had a bond-layer thickness of 0.028 mm (� = 0.112), the effective length
fraction is 0.7646 and the effective width fraction is 0.4975. This means that only
approximately 76% of the sensor length and 50% of the sensor width contribute to
the total sensed strain. Because the whole geometric area of the sensor is no longer
effective in sensing the beam surface strain, these correction factors must be inserted
in the calibration equation Eq. 2.151, which becomes

ε1 = Vo

KbS∗
q

(2.179)

where Kb is the correction factor to take care of shear lag effects in the bond layer.
The value of Kb is independent of the material properties of the sensor, and is
dependent only on its geometry. For both PZT and PVDF sensors, Kb is given by

Kb = leff beff (2.180)

It should be noted here that for a PVDF sensor, the value of Kb is very close
to unity (Fig. 2.46(b)) and the shear lag effect can be neglected without significant
error). The final conversion relation from output voltage to longitudinal strain is

ε1 = Vo

Kp KbS∗
q

(2.181)

Signal to Noise Ratio

Experiments were performed on the beam bending setup as described above. For the
sine sweeps, the beam was actuated from 5–500 Hz. A conventional 350� resistive
strain gauge was used, with a Micro Measurements 2311 signal conditioning system.
For the piezo sensor, a charge amplifier was built using high-input impedance LF355
operational amplifiers, with RF = 10 M� and CF = 10nF .
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Figure 2.47. Resistive strain gauge and PZT sensor impulse response in the time domain.

A major advantage of using piezoelectric sensors as opposed to conventional
resistive strain gauges is their superior signal to noise ratio and high frequency noise
rejection. Shown in Fig. 2.47 is the impulse response from both the conventional
resistive strain gauge and a PZT strain sensor. The two readings were taken simulta-
neously after the beam was impacted at the tip. The responses are unfiltered and show
the actual recorded voltages from the signal conditioners. Note the large-amplitude
background noise in the resistive gauge output, and the much higher signal to noise
ratio of the PZT strain gauge. The foil strain gauge operates by sensing an imbalance
in a Wheatstone bridge circuit, which is on the order of microvolts. Therefore, at
low strain levels, the signal to noise ratio of resistive strain gauges is quite poor.
The superior signal to noise ratio of piezoelectric sensors makes them much more
attractive in situations where there is a low strain or high noise level. This can be
seen more clearly in Fig. 2.48, which shows the frequency response of the beam to a
small impulse as recorded by a conventional resistive strain gauge and a PZT sensor.
The spikes in the frequency response at 60 Hz, 120 Hz, 240 Hz, 360 Hz and 420
Hz are overtones of the AC power line frequency. Since the resistive strain gauge
requires an excitation, its output can be get contaminated with a component of the
AC power line signal. PZT sensors are inherently free from this contamination;
however, the signal conditioning circuitry introduces some contamination into the
PZT sensor output as well. It is worth mentioning here that the signal conditioning
electronics associated with the resistive strain gauge are much more involved and
bulky compared to those used in conjunction with the piezoelectric sensor.

The correlations between strain measured by a conventional strain gauge and
that measured by a PZT sensor are shown in Figs. 2.49–2.51 for a sine sweep ranging
from 5 Hz to 500 Hz. Fig. 2.49 shows the correlation between the strain measurements
from a strain gauge and a PZT sensor after the appropriate correction factors are
applied. The dimensions of the PZT sensor are 3.5 × 6.0 × 0.23 mm, and the value of
CF for this experiment is 1.1nF. Also shown for comparison is the strain calculated
from the PZT sensor readings without application of the correction factors. It can be
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Figure 2.48. Resistive strain gauge and PZT sensor impulse response in the frequency domain.

seen that the correction factors are very significant and that after they are applied,
there is very good agreement between the strains measured by the strain gauge and
the PZT sensor. Fig. 2.50 shows a frequency sweep response at a very low excitation
voltage, such that the strain response is only on the order of several microstrain. The
sensor in this case is a PZT sensor of size 6.9 × 3.3 × 0.23 mm. Good correlation is
observed over the whole frequency range, both in matching resonant frequencies as
well as the magnitude of the measured strain at off-resonant conditions. Hence, it can
be concluded that the PZT sensors are capable of accurately measuring both low and
high strain levels. It is to be noted that the strain gauge is not able to accurately pick
out the peak amplitudes at low strain levels. This clearly demonstrates the superiority
of piezoelectric sensors in such applications. The error between the resistive strain
gauge and the PZT sensor is at most between 5–10% for off-peak conditions.

Fig. 2.51 shows the results of replacing the PZT sensor with a PVDF sensor of
size 7.1 × 3.6 × 0.056 mm, at higher strain levels. Again, good correlation is observed
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188 Piezoelectric Actuators and Sensors

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

Frequency, Hz

St
ra

in
, μ

ε

Strain gage
PZT sensor

50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

Strain gage

PZT sensor

Frequency, Hz

St
ra

in
, μ

ε

(a) Normal vertical scale (b) Expanded vertical scale

Figure 2.50. Correlation of PZT sensor and resistive strain gauge for response at low strain
levels.

for lower frequencies, but at high frequencies, some discrepancy is apparent. Also
plotted on the same figure is a prediction of the strain response at the sensor location
calculated by an assumed modes method. The theoretical model uses a complex
modulus with 3% structural damping. It can be seen that both sensors follow the
same trend as that of the theoretical prediction. The discrepancy after the third
resonant peak can be explained by a slight error in collocation of the resistive strain
gauge and the PVDF sensor. This difference in position gives rise to a shift in the
zeros of the transfer function and the dynamics of these zeros affect the shape of the
transfer function in this frequency range.

Effect of Sensor Transverse Length

The size of the sensor is chosen on the basis of the desired gauge length. The strain
measurements from PZT sensors of three different sizes are shown in Fig. 2.52. All
three sensors have the same gauge length of 0.125 inch, which is also the same as
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Figure 2.52. Correlation of resistive strain gauge and PZT sensors of different sizes, keeping
gauge length constant.

the gauge length of the resistive strain gauge also. The width of the sensors varies
from 0.5 inch in case (a) to 0.375 inch in case (b) and 0.25 inch in case (c). It can be
seen that there is good correlation between strain gauge and piezoelectric sensor,
irrespective of the sensor size. The primary effect of the sensor size can be seen from
Eq. 2.157. For a given sensor material, the output depends only on the area of the
sensor, lcbc. A larger sensor would therefore produce a larger sensitivity. Assuming
the sensing direction to be along lc, for a constant gauge length, the sensitivity can
be increased by increasing the width of the sensor, bc.

The secondary effect of sensor size can be seen from Eqs. 2.173 and 2.178.
For a given sensor thickness tc and bond thickness ts, as the sensor dimensions
increase, the shear lag losses decrease and the strain is transferred more efficiently
from the surface of the structure to the sensor. The good correlation between PZT
sensor-strain measurements and conventional resistive-strain gauge measurements
irrespective of sensor size validates the theoretically derived shear-lag correction
factor.

Hence, it can be concluded that the best strain sensitivity can be achieved by
making the sensor area as large as possible, with the constraint of selecting an
appropriate gauge length for the application. It should also be pointed out that the
sensor adds stiffness to the structure, and this additional stiffness increases with
sensor size. This can be a significant factor in the case of PZT sensors, but will
normally be negligible for PVDF sensors.

Effect of Temperature on Sensor Characteristics

The properties of all piezoelectric materials may vary with temperature. In the case of
piezoelectric ceramics, variation with temperature is highly dependent on material
composition. Both the electric permittivity and the piezoelectric coefficients vary
with temperature. Since the charge amplifier effectively transfers the charge from
the piezoelectric sensor onto a reference capacitor, the change in electric permittivity,
and hence, the capacitance of the sensor with temperature, has no effect on the sensor
output. The only dependence of sensor output on temperature is due to the change
in piezoelectric coefficients, as seen from Eq. 2.157. As per the datasheets supplied
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Figure 2.53. PZT sensor output variation with temperature.

by the manufacturer, the magnitude of d31 increases by approximately 10% from
room temperature (25◦C) to 50◦C. Tests were carried out in this temperature range
by placing the entire experimental setup in an environmental chamber. The results
are plotted in Fig. 2.53, which shows a negligible change in sensor output without
the use of any temperature correction factors. PVDF film exhibits pyroelectricity in
addition to piezoelectricity; hence, it has highly temperature-dependent properties.
PVDF film is sometimes used in temperature sensing. Care must be taken, therefore,
to take measurements from PVDF sensors at known temperature conditions, and to
use the appropriate values of the constants for calibration.

PROBLEM

1. A piezoceramic element (PZT-5H) with length lc = 2′′, width bc = 1′′ and thick-
ness tc = 0.012′′ is applied an electric field of 150 volts along its polarized direc-
tion (3-axis). Manufacturer supplied material constants are as follows:
d31 = −274 × 10−12 m/V,
d33 = 593 × 10−12 m/V,
Ec = 10.5 × 106 psi
e33 = 30.1 × 10−9 Farad/m
(a) Calculate its maximum free strains in three directions.
(b) Calculate block force F along axial direction (1-axis).
(c) If this piezoceramic element is pulled along the axial direction with a force

of 10 lbs, determine the voltage across its surface.
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3 Shape Memory Alloys (SMA)

Certain classes of metallic alloys have a special ability to ‘memorize’ their shape at
a low temperature, and recover large deformations imparted at a low temperature
on thermal activation. These alloys are called Shape Memory Alloys (SMA). The
recovery of strains imparted to the material at a lower temperature, as a result
of heating, is called the Shape Memory Effect (SME). The shape memory effect
was first discovered by Chang and Read in 1951 in the Au-Cd (Gold-Cadmium)
alloy system. However, the effect became more well known after the discovery of
Nickel-Titanium alloys.

Buehler and Wiley [1, 2] discovered a Nickel-Titanium alloy in 1961 called NiTi-
NOL (Nickel Titanium alloy developed at the Naval Ordinance Lab) that exhibited
a much greater shape memory effect than previous materials. This material was a
binary alloy of Nickel and Titanium in a ratio of 55% to 45% respectively. A 100%
recovery of strain up to a maximum of about 8% prestrain was achieved in this
alloy. Another interesting feature noticed was an over 200% increase in Young’s
modulus in the high temperature phase compared to the low temperature phase. Sub-
sequently, it was determined that the percentage of Nickel and Titanium influences
the material properties of Nitinol, and can be varied to control the transformation
temperatures in the material [3]. Also, the addition of a third or fourth element (most
commonly copper) to NiTi can be used to selectively control some properties of SMA
wires. For example, the addition of copper as a ternary element not only reduces the
temperature hysteresis, but also reduces the yield stress. Other alloys exhibiting the
shape memory effect include Cu-Al-Ni, Cu-Zn-Al, Au-Cd, Mn-Cu and Ni-Mn-Ga,
with recoverable strains of 3–8%. However, NiTi is the most practical material in
terms of its superior ductility, higher resistance to corrosion and abrasion, higher
tensile strength, and lower susceptibility to grain boundary fracture.

The first successful application of SMA was carried out by Raychem Corporation
in fasteners and tube couplings for the hydraulic system of the F-14 aircraft. Shrinking
of the diameter of the Ni-Ti tube at high temperature resulted in sealing of the joint
with the couplings. Nowadays, SMA devices are being used in a wide range of
applications that include home appliances, automobiles, aerospace systems, railway
trains, robotic systems, medical devices, and civil structures. Key advantages of
SMA actuators over other conventional actuators are their large force-output/weight
ratio, large stroke, large specific energy density, flexibility in design, compactness
and environmental friendliness (no dust or noise during operation). SMAs can be
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Table 3.1. Alloying elements commonly used in Shape
Memory Materials

Element Symbol Element Symbol

Aluminum Al Manganese Mn
Cadmium Cd Nickel Ni
Copper Cu Titanium Ti
Gallium Ga Zinc Zn
Gold Au

used directly in many applications without additional mechanisms. Further, the
power circuitry needed for actuation is comparatively simple. Examples of some
applications are orthodontic wires, cardiac stents, eyeglass frames, and antennas for
cellular phones.

Two key characteristics of an SMA are the shape memory effect (SME) and
pseudoelasticity. The shape memory effect is the material’s ability to recover large
mechanically induced strains (up to 8%) at low temperatures by moderate increases
in temperature (approximately 10–20◦C). Pseudoelasticity refers to the material’s
ability, in a somewhat higher temperature regime, to undergo strains (up to 8%)
during loading and then recover upon unloading in a hysteresis loop.

There are about 20 alloys that exhibit the properties of shape memory effect
and superelasticity. These alloys are obtained from elements listed in Table 3.1.
NiTi-based SMAs are the most widely used in practical applications. However,
NiTi alloys are more expensive than Cu-based alloys. The grain sizes of Cu-based
alloys are much larger than those of NiTi alloys, so it becomes easy to see the
grain boundaries during testing using optical microscopy. Shape memory alloys are
composed of austenite and martensite phases, and the shape memory characteristics
are due to the combination of the individual effects of these two phases. The forward
phase transformation (austenite to martensite) is exothermal (heat-emitting) and
the reverse phase transformation (martensite to austenite) is endothermal (heat-
absorbing).

The thermo-mechanical behavior of SMA material depends upon the internal
crystalline structure, stress, temperature, and history of the material. Material prop-
erties of SMAs can also be a function of chemical composition, cold work, heat
treatment and thermomechanical cycling. The ability of the shape memory alloys
to recover large strains comes from reversible phase transformation characteristics.
Large recoverable strains offer work densities of an order of magnitude larger than
conventional approaches. Under no-stress condition, an SMA exists in the austen-
ite phase (called parent phase) at high temperatures and the material tranforms to
the low-temperature martensite phase on cooling. The high-energy austenite phase
is associated with body-centered cubic crystal structure, whereas the low-energy
martensite phase is linked with face-centered cubic crystal structure (Fig. 3.1). The
shape memory effect is explained schematically in Fig. 3.2, respectively, for beam
bending and beam extension. Note that the original shape is imparted to the mate-
rial at a high temperature, either as a consequence of the manufacturing process,
or intentionally by means of a physical deformation. The response of the SMA to
thermodynamic states is nonlinear, hysteretic, and path dependent.

In untrained shape memory alloys, repeated thermal cycling can introduce non-
oriented lattice defects in the material, as a result of the accumulation of plastic
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Figure 3.1. Crystal structure of SMA phases

strain. These defects are responsible for the creation of an internal stress field that
plays an important role in the macroscopic behavior of the material. The connection
between microscopic and macroscopic behavior of an SMA is very complex and has
not been fully understood in terms of analytical modeling. This is primarily because
the mechanical response depends on a wide range of parameters including tem-
perature, loading rate, strain range, specimen geometry, thermomechanical history,
and ambient environment. The unique properties of SMAs are directly related to
the solid-state displacive (martensite) phase transformations that can be induced by
heating (or cooling) and, in some temperature regimes, by stressing (or unloading).
The transformation from austenite to martensite and back again to austenite phase
during the pseudoelastic state of polycrystalline Nitinol takes place through the
nucleation and propagation of phase transformation fronts, resulting in nonuniform
deformation and temperature fields (as a result of the generation or absorption of
latent heat at local fronts). This results in self-heating and self-cooling of the alloy.

Cooling
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Figure 3.2. One-way shape memory effect.
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Even though SMAs can be manufactured in a single-crystal form, the vast major-
ity of commercially available SMAs are polycrystals. As a result, the macroscopic
behavior is the combined effect of all grains.

SMAs are capable of providing unique capabilities that can be used in a wide
range of applications. Shape Memory Effect (SME) can be used for compact actua-
tion, and pseudoelastic effect can be exploited in vibration isolation, energy dissipa-
tion, and large recoverable deformations. SMAs can provide large actuation force
over a large stroke (large strain/displacement). One can build actuators that can
extend, bend, twist or perform a combination of these motions. One of the major
challenges has been the rapid heat activation of SMAs since these materials have a
high heat capacity. As a result, the actuation frequency with SMAs is quite limited,
especially when the speed of cooling is slow. Some attempts have been made to
expedite the actuation speed, which include forced convection with flowing water
and forced conduction with thermoelectric cooling modules. Another challenge is
the material thermomechanical stability under multiple cycles of transformation.

The martensite phase exists either as a randomly twinned structure (at low tem-
perature and low stress), or a stress-induced detwinned structure that can accommo-
date relatively large, recoverable strains. The transformation from austenite phase
to twinned martensite results in a negligible shape change (at macroscopic level); it
is referred to as self-accommodated martensite. The transformation from twinned
martensite to detwinned martensite takes place under the application of a sufficient
level of external stress. The martensite phase exists in multiple variants representing
twinned and detwinned states.

3.1 Fundamentals of Shape Memory Alloy (SMA) Behavior

The shape memory effect occurs as a result of a transformation between two phases
in the material. The specific lattice structure of the material results in a deformation
behavior that is very different from that of conventional metallic alloys. The material
can undergo and recover large deformations, and it exhibits mechanical hysteresis
in loading-unloading cycles. Further, the properties of the material also depend on
temperature. These phenomena can be traced to the lattice structure and associated
deformation mechanisms inside the material. In order to understand the macroscopic
behavior of the material in response to external loads and temperature, it is important
to look at the underlying phenomena at a microscopic level.

3.1.1 Phase Transformation

The basic phenomenon responsible for the shape memory effect is a phase trans-
formation. While the actual dynamics of the transformation are quite complex, a
simplistic description will provide physical insight into the fundamental mechanisms
responsible for the shape memory effect. At high temperatures, the material exists
in the austenite phase, usually with a body-centered cubic crystal structure. On
cooling, the austenite phase transforms to martensite phase, which typically has a
face-centered cubic crystal structure. The terms austenite and martensite were orig-
inally used to refer to phases in steels; however, these terms are now generalized
descriptions of material structures with specific properties. In general, the lattice
structure of the martensite phase is more disordered and exhibits less symmetry
than that of the austenite phase. The transformation to martensite is known as a
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Twin boundary

Mirror images

Figure 3.3. Twinning in a two-dimensional lattice.

displacive transformation, wherein the atoms of the material move by relatively
small amounts to form a new stable-crystal structure. Since there is no significant
migration of atoms, the transformation proceeds at the local speed of sound in the
material. However, as the material is thermally activated, the speed of the transfor-
mation is limited by the heat transfer rate in the material, which is typically much
slower than the local speed of sound. Consequently, actuation based on the shape
memory effect is usually very slow, and typical actuators operate at frequencies of
less than 1 Hz. It should be pointed out that the phase transformation from austenite
to martensite can also be produced by the application of a mechanical stress. In the
unstressed state, the phase change from the high-energy austenite (parent phase)
to the low-energy martensite state results in the formation of multiple martensite
variants and twins with no net change of strain. If a tensile stress is applied to this
material, when it reaches a certain critical value, the pairs of martensite twins will
begin “detwinning” to the stress-preferred twins.

The level of the thermally induced phase transformation depends upon the
temperature and is not influenced by the length of time for which the temperature
is applied. The transformation from austenite (parent) phase to martensite phase
involves two processes: the Bain strain and the lattice invariant shear [3]. The Bain
distortion involves atomic rearrangement (small atomic scale reshuffling) that pro-
duces the new crystal structure of martensite. The lattice invariant shear results in
relieving the large amount of strain energy associated with the accommodation of
new crystal structures.

3.1.2 Lattice Structure and Deformation Mechanism

A brief description of the concept of twinning will be useful in understanding the
deformation mechanism of the material. When two unit cells in a lattice are oriented
in such a manner that they appear to be mirror images of each other, they are called
a ‘twin pair.’ Fig. 3.3 is a schematic representation of a two-dimensional lattice that
is twinned. The twin boundary is a line of atoms about which the rest of the lattice
appears to be mirrored. It is important to note that there is no break in the lattice
structure at a twin boundary; rather, there is merely a change in the orientation of
the unit cells to another preferred direction. In the example shown in Fig. 3.3, each
two-dimensional unit cell can have two preferred orientations. In the case of a real
material, the lattice is three dimensional and several twin variants can exist.

The austenite phase is shown schematically in Fig. 3.4. Let us consider a section
of the lattice of initial length lo, and for simplicity, assume only deformations in
the horizontal direction. The solid circles represent individual atoms, and the lines
represent bonds between them. Note the positions of the atoms marked by the arrows
(A, B, C, D, E, F) and the bonds between these atoms. When the material transforms
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Figure 3.4. Austenite lattice structure.

from austenite to martensite, each atom moves by a small amount, resulting in a
twinned martensite phase, as shown in Fig. 3.5(a). Note that the length of the new
lattice is almost the same as the original length lo, and the bonds between the atoms
remain the same as in the original austenite phase.

It is also important to note that there are several possible combinations of twins
and twin boundaries in the section of the lattice shown in Fig. 3.5(a) that would
result in the same length of lo. The overall shape of the section of the lattice would
be different depending on the combination of twins that occur. In contrast, the
austenite phase can have only one arrangement of atoms (Fig. 3.4). Translating
this to three-dimensions, it follows that for a given volume, the austenite phase
can exist in only one shape, while the martensite phase can have several different
shapes. Thus, the martensite transformation is a diffusionless transformation through
a shear-like mechanism from a more symmetric crystal structure (parent phase) to a
less symmetric martensitic phase.

Fig. 3.5(b) shows the same section of lattice in fully detwinned martensite, which
means that all the twin variants have reoriented themselves into one single direction.
It can be seen that the lattice increases in length by an amount �l, and the atoms
have to move over larger distances to occupy their positions in the new lattice
arrangement. Because the atoms have to move over smaller distances, the austenite-
to-martensite phase transformation results in the formation of twinned martensite.
Again, note that the original bonds, for example, those linking the atoms marked by
the arrows, remain unchanged.

Assume a horizontal stress is applied to the twinned martensite lattice
(Fig. 3.5(a)). The stress results in some initial deformation of the lattice, after
which detwinning starts occuring, and the lattice structure approaches that of fully
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Figure 3.5. Twinning in martensite.
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Figure 3.6. Deformation by slip.

detwinned martensite (Fig. 3.5(b)). A relatively small stress is required to detwin
the martensite because bonds between the atoms are not broken in the process. The
detwinning process is basically a rearrangement of atoms. At a much higher level
of stress, deformation is accompanied by slip, schematically shown in Fig. 3.6. In
this case, bonds between atoms are broken, and new bonds are formed. As a result,
this kind of deformation can be permanent and irreversible. While many types of
martensite form by slip, the shape memory effect in SMAs is predominantly caused
by twinning.

Almost all the physical properties of the material, such as Young’s modulus,
specific heat and resistivity differ between the martensite and austenite phases. In
structures with embedded SMAs, these changes can be exploited to cause an overall
change in properties of the structure for different applications. For example, the
Young’s modulus of SMA material in the austenite phase is much higher than the
modulus in the martensite phase. This is because it is much easier to deform
the material by de twinning than by slip. Measurement of the physical properties of
the material is a useful way to estimate the amount of each phase present in a given
sample of material.

3.1.3 Low Temperature Stress-Strain Curve

A typical SMA stress-strain curve at low temperatures is shown in Fig. 3.7. At low
temperature, the material exists in the martensite phase. As the stress increases, there
is a region of elastic deformation (region 1) where the strain typically increases lin-
early with stress. At a certain stress level, the martensite starts detwinning. Because
the twin boundaries can be easily moved in the material, the slope of this region
(region 2) of the stress-strain curve is very small, and the material deforms almost
plastically. However, this deformation is recoverable by the shape memory effect.
The stress levels between which the second elastic region exists are called the critical
stress levels, σcr

s and σcr
f , the start and finish stresses, respectively. At the completion

of detwinning, the slope of the stress-strain curve increases. This region (region 3) is
usually linear and has the same slope as region 1. However, deformations occuring
in this region may be mostly recovered on unloading. It is suggested [4] that the
detwinned martensite in this region undergoes two actions, elastic deformation and
formation of a new orientation of martensite. After a certain high strain level is
reached, slip starts occuring and the material deforms plastically again (region 4).
Thus, there are two distinct yield points in the stress-strain curve. Note that the
deformation after the second yield point is permanent and cannot be recovered by
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Figure 3.7. Low temperature SMA stress-strain behavior.

the shape memory effect. The critical stress at which irreversible plastic strain takes
place decreases with an increase of temperature.

3.1.4 Origin of the One-Way Shape Memory Effect

A schematic diagram of the changes taking place in the lattice structure of the
material during the shape memory transformation is shown in Fig. 3.8. A deformation
imparted to the material in the low temperature martensite phase is fully recovered
upon heating as the material completely transforms to the high temperature austenite
phase. On subsequent cooling, the material returns completely to the martensite
phase, but there is no further change in the shape of the material. Because the shape
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Figure 3.8. Mechanism of one-way shape memory effect.
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change occurs only during heating, this transformation is called the one-way shape
memory effect.

The reason for this behavior can be understood from Section 3.1.2. For a given
volume of material, the austenite phase can exist in only one unique shape. The
austenite transforms to twinned martensite because the individual atoms have to
move through the least distances, resulting in the lowest energy state. The unde-
formed martensite has the same shape as the austenite phase. Therefore, on heating
the deformed martensite, the original undeformed shape is recovered, and on cool-
ing, no further shape change takes place.

The stress-strain behavior of a sample of SMA undergoing the one-way shape
memory effect is shown schematically in Fig. 3.9. The material starts at low tempera-
ture in the martensite phase. Under the applied stress, it initially deforms elastically,
and then starts detwinning as described in Section 3.1.3. On unloading, the material
remains deformed with a strain εp , also called the pre-strain. Heating the material
then causes the pre-strain to be recovered, and the sample returns to its original
dimensions.

There are four important temperatures related to the phase transformations
occuring in the SMA. These transformation temperatures are the martensite start
Ms, martensite finish Mf , austenite start As, and austenite finish Af temperatures.
The temperatures associated with the transformation from the martensite to the
austenite (M → A) phase are the austenite start temperature, As, denoting the start
of the phase change, and the austenite finish temperature, Af , denoting the com-
pletion of the phase change. This is called reverse phase transformation, and it is
endothermic. Similarly, the temperatures related to the transformation from the
austenite to the martensite (A → M) phase are the martensite start temperature,
Ms, which is indicative of the start of martensite formation, and the martensite fin-
ish temperature, Mf , which marks the completion of martensite formation. This is
called forward phase transformation and it is exothermal. These four temperatures
are determined through experiment and are also dependent on stress level. Usually,
As, Af , Ms, and Mf are defined at zero stress level. The transformation temperatures
are shown schematically in Fig. 3.10.

In most materials, Mf < Ms < As < Af . These are called “Type I” materials.
For a temperature range, Ms < T < As, there is no phase change of the material
(stress free condition). An important feature is that there is a hysteresis associated
with the phase transformation. This hysteresis arises primarily due to the frictional
effect involved in moving the twin boundaries in the material. As a result, the
phase transformation temperatures are different for heating and cooling. In the
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Figure 3.10. Transition temper-
atures of an SMA, at no stress
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heating cycle (reverse phase), for temperatures below As, the material is in the 100%
martensite phase, whereas for temperatures above Af , the material is in the 100%
austenite phase. In the cooling cycle (forward phase), for temperatures above Ms,
the material is in 100% austenite phase, whereas for temperatures below Mf , the
material is in 100% martensite phase. At any other temperature T , (Mf < T < Af )
the material can be partly in the martensite phase and partly in the austenite phase.
This combination of phases in the material can be characterized by the martensite
volume fraction, ξ. The martensite volume fraction refers to the volumetric fraction
of the material that is in the martensite phase, and takes on values from 1 (pure
martensite) to 0 (pure austenite).

In a typical cycle of the shape memory effect, the material is deformed at T < As

and on heating, starts recovering the deformation at T = As. When the temperature
reaches Af , recovery of the deformation is complete, and this shape is retained on
cooling to the initial temperature T < Mf . The cycle of deformation, heating, recov-
ery, and cooling can now be repeated. In the case of a mixed state of transformation,
the trigger line defines the boundary of phase transformation. While material defor-
mation has been described as an example to illustrate the effect of the transformation
temperatures, it should be noted that many other phase-related physical properties
such as resistivity, heat conductivity, and Young’s modulus, undergo changes as
well. In a stress-free state, the martensite phase exists in multiple variants that are
crystallographically similar, but are oriented in different planes.

3.1.5 Stress Induced Martensite and Pseudoelasticity

Phase transformations in the SMA are induced by both temperature and mechanical
stress. There is an equivalence between temperature and stress. An increase in
stress is equivalent to a decrease in temperature, and has the effect of stabilizing
the martensite phase. Under stress, the phase transformation of the material is
changed significantly, and additional heat energy is needed to deform the SMA
specimen against the applied stress. Transformation temperatures Ms, Mf , and As

are generally a linear function of stress. Also, Af increases with stress, but is a
more complex function. The diagonal dashed line connecting Ms to As is called the
trigger line, about which forward and reverse transformations occur. The amount
of energy required to trigger phase transformation depends upon the martensite
volume fraction present and the applied stress.

For example, under no stress condition, the martensite formation starts at Ms

and completes when the temperature Mf is reached. However, if a tensile stress is
applied, stress induced martensite formation starts at a temperature above Ms. At
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Figure 3.11. Stress-strain-temperature plot, initially 100% twinned martensite.

higher temperatures, larger stresses are required to form stress induced martensite.
The highest temperature at which it is possible to form martensite is called Md.
Beyond this temperature, the critical stress needed to induce martensite is higher
than the stress at which permanent dislocations or slips occur. The value of this critical
stress decreases with an increase of temperature. This means that if the applied stress
exceeds the critical stress, the residual strain is not completely recoverable upon
unloading or by heating. Fig. 3.11 shows the stress-strain-temperature plot up to the
critical yield stress, and Table 3.2 lists the key points in the figure. Point C represents
the maximum elastic stress condition. Upon unloading, the elastic portion of the total
strain is recovered, and there will be a residual strain εp as a result of the detwinned
martensite (point G). Upon heating above the austenite finish temperature, the
residual strain εp is completely recovered. For Ni-Ti alloys, this εp can be of the
order of 8%.

Let us consider an alternate path from the detwinned state B. If the temperature
is now raised above the austenite finish temperature without any change of stress,
there will be some change of strain (decrease in strain) due to the increase of elastic
modulus. The material is transformed from stress-induced martensite to the austenite
phase. If we lower the temperature without changing the stress, the material will
transform into stress-induced martensite, with an increase in strain. Further, if we
now lower the stress, there will be no further change of strain, and the material will
be in the detwinned state.

The formation of stress induced martensite from austenite phase results in a
phenomenon called pseudoelasticity, sometimes referred to as superelasticity. This
behavior is not triggered by temperature and is only stress dependent. A schematic
diagram of the stress-strain behavior of a SMA undergoing pseudoelasticity is shown
in Fig. 3.12. Stress is applied to the material at a temperature above As, and it starts
deforming elastically. When a critical stress level (σ1) is reached, the austenite phase
becomes unstable and stress induced martensite starts forming, resulting in a low
stiffness region similar to that of plastic deformation. This means that the body-
centered cubic lattice transforms into the monoclinic one, which in turn results in a
macroscopic elongation. When the stress is removed, the stress induced martensite
becomes unstable and transforms back into austenite. During unloading, the initial
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Table 3.2. Regions on stress-strain-temperature diagram

O − A: Elastic region.
A: Initiation of stress-induced martensite (transformation of temperature-induced

martensite to stress-induced martensite). Initiation of detwinning process. On
the removal of external load, entire strain is recovered.

B: Completion of stress-induced martensite, completion of detwinning process. On
the removal of external load, only a small elastic strain is recovered, leaving the
material with a large residual strain εp .

B − C: Elastic region.
C: Start of slip and permanent deformation, tangent modulus starts decreasing. Upon

unloading, a small elastic strain is recovered, leaving the material with residual
strain εp that can be recovered upon heating.

D: Yield point with minimum tangent modulus (ultimate stress condition). Upon
unloading, a small elastic strain is recovered, leaving the residual strain εu

p . Upon
heating, some strain is recovered, leaving behind a permanent strain εu

p − εp .
E: Residual strain εu

p from yield point (includes recoverable and non-recoverable
inelastic components).

F : Residual strain εp (maximum recoverable strain).
G: Austenite start condition (initiation of recovery strain).
H: Austenite finish condition (complete recovery of residual strain).
J : Austenite start condition.
K: Austenite finish condition (irrecoverable strain εo).
H − O: Transformation from austenite phase to temperature induced martensite,

formation of twinned martensite.
K − O′: Transformation from austenite phase to temperature induced martensite,

formation of twinned martensite.

response is elastic, followed by quick recovery of strain (with a small change of
stress), and the material transforms back into the austenite phase. If the temperature
is above austenite finish (Af ), the strain in the material can be fully recovered.
This is in contrast to conventional metals, where the strain occuring due to plastic
deformation is permanent and cannot be recovered. If the material temperature lies
between ausenite start (As) and austenite finish (Af ), there will be a partial recovery
of strain. However, the residual strain εr is fully recoverable upon the application
of heat (i.e., raising temperature above Af ). Due to the large hysteresis in the
loading-unloading cycle, the pseudoelastic behavior of SMA has many applications
in damping augumentation. The origin of this hysteresis can again be traced to the
frictional effect of moving twin boundaries in the martensite phase. Above a critical
stress, irreversible plastic slips start taking place. As a result, the residual strain

Stress

Strainεr

(a) Partial pseudoelasticity, As < T < Af

Stress

Strain

σ1

(b) Complete pseudoelasticity, T > Af

Figure 3.12. Pseudoelastic stress-strain behavior.
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Figure 3.13. Shape memory effect for material starting at 100% martensite and at 100%
austenite.

is not completely recovered upon the application of heat. Note that this critical
stress decreases with an increase of material temperature. Also, the crystallographic
structure may change with the formation of slips. A decrease in temperature has the
same effect as an increase in stress.

From the above discussions, we see that if the material is deformed at a temper-
ature T < As, there is a residual strain on the removal of the stress and the shape
memory effect can be observed on subsequent heating to T > Af . If the material is
deformed at T > As, partial or complete pseudoelastic behavior can be observed.
Another interesting variation of the shape memory effect can be observed if the
material starts at a 100% austenite phase, and at a temperature Ms < T < As. The
difference between the stress-strain behavior of the material in this initial condition,
and the stress-strain behavior of the material in a 100% martensite phase at T < As

can be seen in Figure 3.13. At some critical stress, in the case of the material starting
from pure martensite, detwinning starts taking place, whereas in the case of the
material starting from the 100% austenite phase, stress-induced martensite starts
taking place. Therefore, the shape of the stress-strain curve is different in the two
cases. On removal of stress, both cases transform into detwinned martensite phase.
Subsequent heating results in recovery of the strain.

The key mechanism of phase transformation is the difference in Gibbs free
energies respectively of two phases (martensite and austenite), which depend on
both temperature and externally applied stress. The austenite phase is stable at
high energy levels, whereas the martensite phase is stable at low energy levels. In
the forward phase transformation (A → M), the driving force is due to the posi-
tive Gibbs free energy, and is balanced by an increase in elastic strain energy and
interfacial energy plus resistance due to any internal motion. On the other hand,
in the reverse phase transformation (M → A), the stored elastic strain energy and
interfacial energy are driving forces to increase the Gibbs free energy. Hence, from
a thermomechanical point of view, externally applied stress and temperature play
equivalent roles in the transformation process. The hysteresis in the shape memory
effect at low temperature and in the pseudoelastic effect at high temperature has its
origins in Gibbs free energy.

Fig. 3.14(a) shows temperature induced transformation for a stress-free condi-
tion. The transformation temperatures are Ms, Mf , As and Af . In this case, Ms and
Mf identify the beginning and the end of the forward phase transformation and
As and Af identify the beginning and the end of the reverse phase transformation.
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transformation.

The diagonal line joining Ms and As is called the trigger line, and is a boundary line
between two phase transformations. Depending upon the initial state of the material,
the forward transformation can start at a much higher temperature than Ms and the
reverse transformation can start at a much lower temperature than As (Fig. 3.14(a)).

During an isothermal stress-induced transformation, the transformation starts
when the mechanical energy due to applied stress becomes equal to the required
energy of the opposite phase. As shown in Fig. 3.14(b), the up and down vertical
path lines, respectively, represent the forward (loading) and reverse (unloading)
transformations. These transformations are accompanied by heat generation. How-
ever, it is normally assumed that this heat generation is negligible and does not
affect the temperature of the material. Fig. 3.14(c) shows the effect of applied stress
on transformation temperatures. There is no doubt that the temperature and stress
have mutual effects on the transformation mechanisms. As shown, with higher stress,
the transformation temperatures increase and the hysteresis loop moves toward the
right side.



208 Shape Memory Alloys (SMA)

St
re

ss

Strain

A

D

C

B

O'

O

σ1

σ4

σ2

σ3

Trigger line

Figure 3.15. Critical stress trigger line in pseu-
doelastic hysteresis.

As in the temperature induced transformation, there is also a trigger line for
critical stress (Figure 3.15). This is the line joining σ1 (critical stress for initiation
of martensite phase) in forward phase transformation and σ3 (critical stress for
initiation of austenite phase) in reverse phase transformation. Let us consider a case
when the forward phase transformation stops at A. On reducing the stress, it takes a
recovery path AOB. Point O falls on the trigger line. AO is elastic with the Young’s
modulus of the full recovery part (σ2 − σ3). At the recovery point O, the reverse
transformation starts and finishes at point B. In a similar way, if the stress level is
increased during unloading, it follows the path CO′D. Point O′ falls on the trigger
line and CO′ represents an elastic region. Then forward transformation takes place.
Note that the area under the pseudoelastic hysteresis curve represents the amount
of energy dissipation.

Below the critical stress σ1 the material behaves elastically in the austenite state.
Between σ1 and σ2, two phases co-exist and the deformation is inhomogenous. At a
certain critical stress σ2, most of the material is transformed to stress-induced marten-
site (detwinned martensite). Beyond the critical stress σ2, the material behavior is
again elastic (monoclinic martensite lattice with lower Young’s modulus). Elastic
distortion continues up to a stress level of σ5, and beyond this stress, the marten-
site lattices begin to slip and permanent deformation starts taking place (tangent
modulus starts decreasing), as shown in Fig. 3.16. At a stress level of σ6, the tan-
gent modulus reaches a minimum value. A further increase in stress/displacement
would lead to failure. On unloading, some pockets of material transform to austen-
ite. Some strain is recovered, but there will be an irrecoverable permanent strain εp

in the specimen. Below the elastic stress limit, σ5, the material continues to be in
the stress-induced martensite state (detwinned) until the stress level σ3 is reached,
and then the transformation from stress-induced martensite to austenite begins.
By the time the unloading plateau stress σ4 is reached, the material is completely
transformed to austenite state. Upon unloading to zero stress state, the strain is
completely recovered and the material is in the austenite phase.

3.1.6 Two-Way Shape Memory Effect

The one-way shape memory effect results in a single thermally activated shape
change, i.e., the material ‘remembers’ only the high-temperature shape. Any defor-
mations introduced in the low temperature phase are erased on the application
of a temperature high enough to ensure complete transformation to the austenite
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phase. In order to provide actuation in a cyclic manner, the material has to be
mechanically deformed after each strain recovery. Shape memory alloys also exhibit
a phenomenon known as the Two-Way Shape Memory Effect (TWSME) [5, 6, 7, 8],
or ‘reversible shape memory effect’ [9, 10]. In the two-way effect, the material
‘remembers’ both a high and a low temperature shape. Consequently, the material
can continuously cycle between the two shapes as the temperature is raised and
lowered, without the need for an external stress. This makes actuators based on
the TWSME attractive in a variety of applications. Note that this effect is different
from stress-induced two-way shape memory effect, in which the specimen is under
applied stress and the temperature is varied, although the specimen recovers to two
different shapes upon heating and cooling.

A two-way shape memory effect can be introduced by appropriate ’training’ of
the material, which usually involves some combination of thermal and mechanical
cycles. The microstructural changes during TWSME are a matter of continuing
research, and are discussed in the literature [7, 8]. The training procedure introduces
microstresses in the material, which result in the preferential formation of specific
martensite twin variants. Stress-induced, or stress-biased, martensite forms the major
part of the material at low temperatures, which transforms to austenite at higher
temperatures [11]. Fig. 3.17 gives a schematic description of the TWSME induced
in the material as a result of a specific type of training. The material starts off in
the undeformed state (a), at a temperature below Mf . It is then deformed at low
temperature to the shape (b). On heating to above Af , it recovers some of the
strain and assumes a shape (c), close to the initial shape. On subsequent cooling to
below Mf , it does not retain its shape, but returns to a shape (d) that is close to
the original deformed shape. On further temperature cycles, the material changes
between shapes (c) and (d). From this simplistic description, it is obvious that the
maximum possible change in strain due to the two-way shape memory effect must be
less than the maximum recoverable strain of the material (one-way shape memory
effect).

Sometimes, TWSME can develop in applications that are based on the one-
way shape memory effect, as a consequence of the thermo-mechanical environ-
ment experienced by the actuator over the course of multiple cycles. As the shape
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recovery in TWSME occurs in a stress-free condition, such an effect is identified by
a progressive decrease in the stress required to cycle the actuator. There are several
different training techniques that can be used to intentionally impart TWSME to the
material. A detailed description of these training techniques is given by Perkins and
Hodgson [8] and Blonk and Lagoudas [12], and the characteristics of each training
method as well as the TWSME properties it imparts have been discussed by sev-
eral authors. The training techniques can be broadly classified under the following
types:

(i) Overdeformation: The material is initially cooled below Mf . It is then deformed
plastically, beyond the usual limit for OWSME (One Way Shape Memory
Effect). The strains in the material at this point are much higher than the max-
imum residual strain εL. As a result, on heating to above Af , the material only
partially recovers its original shape. Subsequent cooling to below Mf will result
in the material moving back towards the intial deformed shape. This sequence of
events is shown schematically in Fig. 3.17. A similar procedure involves cycling
the material through the pseudoelastic region, applying a plastic strain, and
finally rapidly heating up the material [13].

(ii) Repeated cycling (SME) [14, 15]: The material is initially cooled below Mf and
then deformed and unloaded. This is followed by heating to above Af , which
results in complete recovery of the strain (one way shape memory effect). The
material is then cooled to below Mf and the process is repeated. Around 5–10
cycles are performed, and gradually the material will begin to spontaneously
change shape on cooling, moving towards the deformed shape without appli-
cation of stress. However, the spontaneous deformation will be much less than
that introduced for training (typically 1/5 to 1/4). Therefore, as the maximum
training strain for SME is 6%, maximum TWSME is around 1–2%.

(iii) Repeated cycling (pseudoelastic range): In this method, the material is heated
to above Af but below Md, placing it in the pseudoelastic region. The material
is repeatedly cycled between stressed and stress-free condition. After around
5–10 cycles, the material begins to retain memory of both the deformed and the
undeformed states. Again, after the training, the maximum strain exhibited by
the TWSME is a fraction of εL.
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(iv) Combined SME/pseudoelastic cycling [16]: The material is first deformed pseu-
doelastically, then cooled to below Mf at constant strain. The constraint on the
material is then released, and it is heated to above Af to recover the initial
shape via the SME. Several repetitions of this combined SME/pseudoelastic
cycle impart the TWSME to the material.

(v) Constant strain, temperature cycling [17]: The material is initially deformed at a
temperature below Mf . It is then kept at constant strain while the temperature
is cycled between a low temperature (below Mf ) and a high temperature (above
Af ). Several such cycles will impart the TWSME to the material.

Some other techniques have been suggested that are slightly different than those
listed above. Mellor [18] proposed a technique involving heating the sample above
Af , and imposing a strain (between 0.7% and 2%), followed by a partial anneal
accomplished by heating the material to half of the annealing temperature. The
constraint on the material is then released and it is allowed to cool. Sun and Hu [19]
proposed deforming the material and heating it to Af + 30◦C after unloading, then
quenching it in water. Tokuda et al. [20] described the two-way effect obtained
by subjecting a thin-walled tube to combined axial and torsional loading. While
the above techniques vary in their procedure, the final TWSME behavior that is
imparted to the material is the same. As with all shape-memory alloy phenomena,
annealing can erase all the memory of the material. Therefore, care must be taken
not to increase the temperature too high.

It should also be noted that the TWSME is quite easy to introduce inadver-
tently into the material during the course of experiments and during normal oper-
ation in several applications. For example, if the constant stress recovery test is
performed repeatedly for several different values of stress, it is equivalent to per-
forming repeated SME cycles, which as described above, can induce the TWSME in
the material. However, this can be erased by an appropriate annealing procedure.

A major consequence of the deformation mechanism is that the material can
recover more deformation under an external stress when it is heated compared to
when it is cooled. Therefore, some applications incorporate a return spring or bias
spring to help the material return to its low-temperature deformed state. However,
the inclusion of such a spring element partly reduces the advantage of the TWSME
over the OWSME. In order to impart repeatable and consistent TWSME behavior
to a number of different samples, their training procedure must be identical to their
annealing procedure, which precedes it.

Other important issues regarding the TWSME are the number of cycles that
the material takes to stabilize, and the degradation of the material response with
time. The stabilization period, or the number of cycles required for the training
to be complete and the material to exhibit repeatable TWSME behavior, is highly
dependent on the training procedure and the alloy composition [17, 21]. The TWSME
can also degrade over a number of actuation cycles. In such a case, the material
may not be able to deform completely to its low temperature shape or to completely
recover the strain at its high temperature condition. This degradation in performance
is increased by external stress, and is larger for a larger change in strain between
the low temperature and high temperature shapes. A typical number could be 20%
degradation in recovered strain over 1000 cycles [22]. The degradation is not constant
with time and can accelerate as the number of cycles increases. Scherngell and
Kneissl [23] discuss the degradation of TWSME in a binary Ni-50.3% Ti alloy as a
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function of training parameters. The training was performed by thermal cycling in a
constant stress condition, and the material was subsequently subjected to stress free
thermal cycles to observe the TWSME. It was noted that in the initial stages, there
was a large degradation in the TWSME, which stabilized as the number of thermal
cycles increased. The actual amount and rate of degradation is highly specific to the
material composition, operating environment, and amount of TWSME introduced,
and must be characterized separately for each system.

Kafka [24] used a mesomechanical approach to model the two-way shape mem-
ory phenomenon. It is based on a substructure that is continuous and remains elastic
throughout the martensite and austenite subvolumes and is applicable to binary
alloys (Ni-Ti) for quasi-static processes. A phenomenological model of TWSME
was developed by Takagi et al. [25] and was used in a finite element model to pre-
dict the thermomechanical response of SMA plates with TWSME. This approach is
based on the internal energy of the material and changes in the energy associated
with phase transformation. A phenomenological approach is taken by considering
an equivalent transformation-induced specific heat, which is a function of the trans-
formation temperatures. The value of the equivalent specific heat can be measured
using a DSC. The R-phase transformation is also modeled using this approach. Blonk
et al. [12] adapted an SMA constitutive model to predict the behavior of an elas-
tomeric rod with embedded SMA wires that were trained to exhibit the TWSME. In
general, the modeling of the TWSME is very similar to that of the SME, with specific
focus on the transformation temperatures and the strain-temperature behavior of
the material.

3.1.7 All-Round Shape Memory Effect

A phenomenon that is very similar to the TWSME, but is exhibited only in specific
alloys, is called the All-Round Shape Memory Effect (ARSME). The basic behavior
is the same as in the case of TWSME: when the material is heated or cooled, it
transforms to either a high temperature shape or a low temperature shape, without
the need for an external stress to cause the shape change. This phenomenon was
first reported by Nishida et al. [26, 27] for a Ti-51%Ni alloy. An important aspect
of ARSME is that it is exhibited only by NiTi alloys having more than 50.5% Ni.
The training procedure required to impart the ARSME is quite different than that
required for TWSME. This procedure [8] is shown schematically in Fig. 3.18.

The material is first deformed at a low temperature (below Mf ). It is then con-
strained in the deformed position while the temperature is raised to about 400◦C.
It is aged in this condition for about 50–100 hours (similar to annealing). A solu-
tionizing process can be performed before the aging, keeping the material at 800◦C
for 20 minutes [28]. During this aging process, it is hypothesized that precipitates
form in the material, which generate local areas of high internal stress. When the
material is cooled down, and the constraints released, it assumes a shape that is
opposite to the initial deformed shape. It is believed that the material deforms in this
manner to alleviate the internal stresses created during the aging process. The exact
micromechanical processes that occur during the ARSME are a subject of ongoing
research.

After the material is cooled, it can be cycled between the low temperature shape
and the high temperature shape (the shape the material was constrained in during
aging) by appropriately changing the temperature. Typical values of strain obtained
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during the ARSME are on the order of 0.25%, with a temperature hysterisis of 12◦C,
although specific values are highly material dependent.

3.1.8 R-Phase Transformation

The typical austenite-to-martensite transition is characterized by a large temperature
hysteresis, which can be as high as 10◦–20◦C. In some alloys, while cooling down
from the austenite state, a transformation can be observed at a temperature T > Af .
This transformation is characterized by a much smaller temperature hysteresis, on
the order of 1.5◦C. During this transformation, the cubic unit cell of the material
undergoes a distortion along its diagonal, making it rhombohedral. Therefore, this
transformation is called the R-phase transformation. The R-phase transformation
occurs between the temperatures TR and T ′

R(Af < TR < T ′
R), also sometimes called

Rs (start of R-phase transformation) and Rf (finish of R-phase transformation).
As the temperature is decreased, the lattice distortion increases, until the

martensitic transformation begins at Ms. The material in the R-phase exhibits the
SME and pseudoelasticity; however, maximum recoverable strain is on the order
of 0.5%–1%. Therefore, while some applications make use of the R-phase due to
its inherently low temperature hysteresis, the maximum achievable strains are much
lower than in the case of the martensitic SME. Similar to the case of martensitic SME,
changes in other physical porperties of the material are observed during the R-phase
transition. For example, the electrical resistivity can increase by a factor of almost
300% during the martensite to austenite transformation (on heating from below Mf

to above Af ) and subsequently can decrease by almost 50% during the R-phase
transformation (heating from TR to T ′

R). The R-phase transformation temperatures
are typically measured by means of DSC tests.

The appearance of the R-phase can be noticed as a small discontinuity or non-
linearity in the stress-strain curve, or in the DSC measurements. The R-phase is also
observed primarily at low stress levels. At higher stresses, the material is dominated
by the formation of stress induced martensite. Therefore, the maximum load is also
limited in applications utilizing the R-phase transformation. The appearance of the
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R-phase in binary NiTi alloys can be encouraged by various procedures [29]: such
as by cold-working followed by annealing (400◦C–500◦C), by aging of alloys with
greater than 50.5% Ni at a temperature between 400◦C–500◦C or by the addition of
other alloying elements such as Al or Fe. Only in the case of ternary alloys, such as
NiTiFe, NiTiAl or NiTiCo, does the R-phase occur spontaneously.

The mechanical behavior associated with the R-phase was first investigated
by Khachin et al. [30]. Miyazaki et al. [29, 31] made a detailed investigation of
mechanical behavior and superelasticity in the R-phase, as well as the behavior of
single-crystals in the R-phase. The modeling of the R-phase is also similar to that
of the martensitic phase. The R-phase is represented by a volume fraction, η, similar
to the martensite volume fraction ξ. Assuming the first cycle occurs under zero
stress/strain condition (η = 0, ξ = 0), an application of strain below 1% results in R-
phase transformation (η = 1, ξ = 0). The R-phase and martensite transformations
can be represented in a unified way [32, 33] using energy functions, with appropriate
‘switching functions’ to handle different transformations.

3.1.9 Porous SMA

Porous SMA offers the potential of higher specific actuation energy and damping
capacity. Also, porous SMA can be engineered to match the impedance at the con-
necting joints to optimize performance. Porous SMAs can be manufactured with
open and closed-pore designs. Fabrication methods include casting, metallic depo-
sition, and powder metallurgy. Three methods are commonly used to manufacture
porous Nitinol from powder metallurgy. One method is conventional sintering, which
requires a long heating time and produces samples that are limited in terms of shape
and pore size. First, a cold mixture of Ni and Ti powder is compacted into pellets,
which are then sintered at near melting temperature to produce a binary NiTi phase
through diffusion. The porosity of the specimen is varied by the powder compaction
pressure and the initial shape and size of the powder. The voids left between powder
particles result in the porosity of the specimen. Sintering requires a long heating
time of about 48 hours, and the process is limited to small specimens.

The second method is self-propagating high-temperature synthesis (SHS), and
it is initiated by a thermal explosion ignited at one end of the specimen, which
gradually propagates to the other end in a self-sustained manner. The third method
is sintering Ni and Ti powder at elevated pressure using a hot isostatic press (HIP),
which compresses and traps argon gas bubbles between neighboring metal powder
particles. Lagoudas and Vandygriff [34] refined this technique to develop small and
large porous NiTi SMA specimens with varying pore size ranging from 20 μm to
1 mm. The porosity of fabricated specimens varied from 50% to 42%.

3.2 Constrained Behavior of SMA

Shape memory alloy is commercially available in the form of tubes, wires and bars.
The wire form is one of the most widely used in applications. Because there is no
need for machining, SMA wires are very easy to incorporate in actuation mecha-
nisms. Thermal activation of the wires can also be accomplished conveniently and
compactly by passing an electric current through the wires. The resistance of the
wires causes a self-heating which activates the shape memory effect. The wires can
also be heated externally by setting them up in a thermal chamber. For experimental
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Figure 3.19. Schematic of transformation during free recovery of an SMA wire.

characterization, testing of SMA wires provides an insight into the fundamental
behavior of SMA, while simplifying the loading condition to purely uniaxial quasi-
static (low strain rate) external loads.

Before discussing the experimental behavior of SMA wires due to change in
temperature, it may be instructive to look qualitatively at the behavior of an SMA
wire under unloaded and loaded conditions.

3.2.1 Free Recovery

Let us consider an example where an extensional load is applied on an SMA wire
specimen that is initially in the fully martensitic state, at a temperature Td < Mf .
At an applied load, a maximum strain of εt is generated. Upon unloading, the wire
recovers some amount of elastic strain, and an apparent plastic strain εp is retained.
We refer to this as an ‘apparent’ plastic strain because it is in reality recoverable by
the shape memory effect, except for the plastic strain that occurs beyond the second
yield point. Now if the wire is heated to a temperature higher than Af , it recovers to
a final strain εo. This is shown schematically in Fig. 3.19(a). The variation of strain
with temperature during the loading and heating process is shown in Fig. 3.19(b).
Thus, the recoverable strain is (εp − εo). Note that the recoverable strain increases
with total strain εt, reaches a maximum value, and then decreases as the permanent
slip starts increasing. For Nitinol, the maximum strain that is fully recoverable is
about 8%. For Cu-Al-Ni or Cu-Zn-Al alloys, the maximum recoverable strain is on
an order of 3–5%.

3.2.2 Constrained Recovery

While in the free recovery case, one end of the wire is clamped and the other end is
left free. In the constrained recovery case, both ends of the wire are rigidly clamped.
The wire is initially loaded to a strain εt and unloaded to a pre-strain of εp . Then
both ends of the wire are clamped and the wire is heated to a temperature above
Af . The wire tries to recover the pre-strain, but because the ends are clamped, a
stress is generated in the wire. This stress is called the recovery stress, or the blocked
stress, σbl. This recovery stess is much higher than the stess σt that generated the

pre-strain. A schematic of the stress-strain behavior during constrained recovery is
shown in Fig. 3.20(a) and the strain-temperature behavior is shown in Fig. 3.20(b).
The constrained recovery stress is used in a wide range of applications that include
fasteners and couplers as well as very low frequency (<1 Hz) actuators.
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Figure 3.20. Schematic of transformation during constrained recovery of an SMA wire.

3.2.3 Effective Load-Lines of an SMA Wire Actuator

The free recovery and constrained recovery cases represent the two limiting cases
of boundary conditions, infinitely soft and infinitely stiff, respectively. When the
SMA wire is acting against any other boundary condition, such as a spring of finite
stiffness, the behavior will lie between these two limiting cases. This is schematically
represented in Fig. 3.21. The path labeled ‘1’ is for the SMA wire acting against an
infinitely stiff support, leading to a recovery stress of σb. The path labeled ‘4’ is for
a free end condition, where no stress is developed in the wire. For the wire acting
against a linear spring of finite stiffness, the stress and strain follow the path ‘2’ on
heating, leading to a final stress σk in the wire. For the case of a non-linear spring,
such as another SMA wire, the path followed is ‘3,’ leading to a final stress value
of σSMA. The stress-strain characteristics of the SMA wire can therefore be treated
as effective actuator load-lines. Note that these load-lines are highly non-linear, in
contrast to the load-lines of piezoelectric actuators.
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Figure 3.21. Schematic of stress-
strain behavior of the SMA
wire with different boundary
conditions.
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3.3 Constitutive Models

Most of the constitutive models proposed to describe the thermomechanical behav-
ior of shape memory alloys are quasi-static and uniaxial for the one-way shape
memory effect. They can be broadly classified into three categories: phenomenolog-
ical macromechanics models, thermodynamics-based micromechanics models and
micromechanics-based–hybrid macromechanics models. These models are also dis-
cussed in Chapter 1.

For structural analysis, the model has to be simple and applicable in standard
stress-strain mechanics analyses. It should also incorporate realistic physics and be
applicable over a wide range of temperatures and stresses to capture both shape
memory effect and pseudoelasticity. It should be adaptable to a wide range of mate-
rials and textures in both single crystals and polycrystals. The crystallographic sym-
metry of the austenite phase is higher than that of the martensite phase, and as a
result, one can get a number of symmetry-related variants of martensite evolved
around the load and temperature history.

Macroscopic Phenomenological Models

These models are based on phenomenological thermodynamics and are mostly
defined using experimental data (curve-fitting). These are simple and capture ade-
quate physics. They are quite amenable to inclusion in engineering analyses. In most
of these models, the strain, temperature and martensite volume fraction are the
only state variables. They are based on the phase diagram of SMA transformation,
which describes the transition from the martensite to austenite (parent phase) and
austenite to martensite phases under stressed conditions. Most of these models are
developed for uniaxial loading.

Microscopic Thermodynamics Models

These models depend on micro-scale thermodynamics to describe phenomena and
as a result are quite involved. These are less amenable to inclusion in engineering
analyses. They are beneficial for explaining phenomena at the micro-scale, such as
nucleation, interface motion, and growth of a martensite phase.

Micromechanics-Based Hybrid Macroscopic Models

These are hybrid between the first two categories. They capture key details from
micro-scale thermodynamics and incorporate several simplifying assumptions to
describe phenomena at the macroscopic level. They estimate the interaction energy
due to phase transformation of the material at the microstructure level using a group
of important variants. They may be amenable for inclusion in engineering analyses.

3.4 Quasi-Static Macroscopic Phenomenological Constitutive Models

This section describes four quasi-static constitutive models that have been pro-
posed to describe the material behavior in the one-way shape memory effect. These
models are chosen due to their common approach and wide applicability to a range
of operating conditions. To accommodate the large variations in SMA material
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properties due to manufacturing, composition, training, heat treatment, and other
factors, these models use material parameters that are determined experimentally.
For simplicity, only uniaxial loading behavior is considered, and quasi-static defor-
mation is assumed, resulting in an isothermal condition.

In these models, it is assumed that strain, temperature, and the martensite
volume fraction are the only state variables. Most of the constitutive models are
developed for quasi-static loading, and as such, it is assumed that the material at
each instant is in thermodynamic equilibrium. Such an assumption is not applicable
if the strain rate is high. Typically, a strain rate below 5 × 10−4/sec for the wire sample
represents a quasi-static loading condition. Tanaka [35] developed an exponential
expression to describe the stress and temperature, rather than determining the free
energy expression. Liang and Rogers [36] presented a model which is based on the
rate form of the constitutive equation developed by Tanaka. In their model, Tanaka’s
equation is integrated with respect to time and it is assumed that the coefficients in
the equation are constant. A major drawback of the Tanaka, and Liang and Rogers
models in their original form is that they do not capture the stress-induced detwinning
of the martensite phase. However, both models describe the phase transformation
from martensite to austenite and vice versa. Brinson [37] divided martensite volume
fraction into two parts, stress-induced and temperature-induced components, and
modified the Tanaka model accordingly. Both Liang and Rogers, and Brinson used
the cosine form of evolution kinetics instead of the exponential form used by Tanaka.
Boyd and Lagoudas described the modeling of SMAs using the thermodynamic
approach, in which the constitutive relations are derived from free energy and a
dissipation potential. Ivshin and Pence [38] used an inverse hyperbolic tangent form
of evolution kinetics. Most of the phenomenological models are one-dimensional,
but the Boyd-Lagoudas model is applicable to three-dimensional loading.

Since stress is a function of temerature T , martensite volume fraction ξ, and
strain ε, the material constitutive relation in differential form becomes,

dσ = dσ
dε

dε + dσ
dξ

dξ + dσ
dT

dT (3.1)

This leads to a general expression,

dσ = E(ε, ξ,T )dε + �(ε, ξ,T )dξ + �(ε, ξ,T )dT (3.2)

where E(ε, ξ,T ) represents modulus of material,�(ε, ξ,T ) is transformation tensor,
and �(ε, ξ,T ) is thermal coefficient of expansion for the SMA material. Since the
strains due to the thermal coefficient of expansion are much lower than the strains
due to the phase transformation, this coefficient is normally neglected.

3.4.1 Tanaka Model

One of the popularly used models is Tanaka’s model [35], which is derived from
thermodynamic considerations. The second law of thermodynamics is written in
terms of the Helmholtz free energy and then its rate form is derived. The strain ε,
temperature T and martensite volume fraction ξ are assumed to be independent state
variables. The stress σ in the material is calculated from these quantities. Because
the martensite volume fraction ξ is dependent on the stress, an iterative numerical
solution of the equations is necessary.
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From Eq. 3.2, the constitutive equation is derived as

(σ − σo) = E(ξ)(ε− εo) + �(T − To) + �(ξ)(ξ − ξo) (3.3)

where E is the Young’s modulus in the elastic regime of the material, � is a thermo-
elastic constant, and � is a phase transformation constant. The terms associated
with subscript o refer to the initial state of the material. Eq. 3.3 shows that the stress
consists of three parts: the mechanical stress, the thermo-elastic stress, and the stress
due to phase transformation.

Note that the Young’s modulus and the phase transformation coefficient are
functions of the martensite volume fraction ξ. The rule of mixtures can be used
to calculate the effective modulus of the material containing both austenite and
martensite phases, resulting in the expression

E(ξ) = EA + ξ(EM − EA) (3.4)

where EA is the Young’s modulus in the austenite phase and EM is the Young’s
modulus in the martensite phase. The ratio of EA to EM is generally greater than 2.

If we consider a material at a temperature below martensite finish (T < Mf ) and
zero stress/strain condition (σo = εo = 0), the material will be completely in marten-
site phase (detwinned state). This in turn helps to determine the transformation
constant � as

�(ξ) = −εLE(ξ) (3.5)

where εL is the maximum recoverable strain. Tanaka’s model assumes an exponential
function for the martensite volume fraction. During the austenite to martensite
(A → M) transformation (forward phase), ξ is given by

ξ(σ,T ) = 1 − eaM(Ms−T )+bMσ (3.6)

During the M → A (martensite to austenite) transformation (inverse phase
transformation),

ξ(σ,T ) = eaA(As−T )+bAσ (3.7)

where aM, bM, aA, bA are empirically determined constants given by

aM = ln(0.01)
(Ms − Mf )

bM = aM

CM
(3.8)

aA = ln(0.01)
(As − Af )

bA = aA

CA
(3.9)

The CA and CM are called the stress influence coefficients. CA is the stress
influence coefficient (or stress rate) for austenite phase and is given as:

CA = 1
dAs
dσ

(3.10)

CM is the stress influence coefficient for martensite phase and is given as:

CM = 1
dMs
dσ

(3.11)

These coefficients (CA and CM) represent the effect of stress on the trans-
formation temperatures, and are the slopes of the austenite and martensite lines,
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respectively, on the critical stress-temperature diagram. A schematic critical stress-
temperature phase diagram is shown in Fig. 3.22, and this diagram describes the way
in which stress affects the transformation temperatures. On the x-axis, the inter-
cepts of the lines mark the transformation temperatures at zero stress. The regions
in which the pure phase exists are marked on the diagram, and in other regions,
one or more phases can co-exist. It is assumed that there is a linear variation of
transformation temperatures with stress. The points on these curves are normally
obtained experimentally, and are conveniently fit with a straight line, although the
actual variation may not be linear. In polycrystalline SMAs, there can be a signif-
icant difference in transformation behavior in compression and tension. For most
applications, the phase diagram is obtained under tensile stress.

It is frequently assumed that the stress-influence coefficients, CA and CM, are
equal. Note that aM, aA, bM, and bA are lumped terms that are defined in terms of
other parameters. The Tanaka model has also been modified [39] to include the
R-phase transformations that are sometimes seen in SMAs. The R-phase occurs in
some SMA compositions under certain specific conditions, during cooling prior to
the martensitic transformation. A detailed description of the R-phase can be found
in Ref. [40] as well as in section 3.1.8.

In the modified Tanaka model, there are two distinct variables for R-phase and
detwinned martensite, which make it possible to predict the R-phase and shape
memory effect simultaneously. However, this model is applicable only to materials
exhibiting an R-phase transformation. This was determined by the fact that a typical
material with an R-phase transformation exhibits two peaks (one each for the R-
phase and martensitic transformations) in each of the heating and cooling cycles of
the DSC measurements.

3.4.2 Liang and Rogers Model

The second model was formulated by Liang and Rogers [36]. They utilized the same
constitutive relation and form of the evolutionary equation for the martensite volume
fraction as was developed by Tanaka. The difference between the two models arises
in the modeling of the martensite volume fraction. In the Liang and Rogers model,
ξ is modeled as a cosine function.
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For the A → M transformation, the parameter is defined as:

ξ = (1 − ξA)
2

cos [aM(T − Mf ) + bMσ] + (1 − ξA)
2

(3.12)

and for the M → A transformation:

ξ = ξM

2

{
cos [aA(T − As) + bAσ] + 1

}
(3.13)

The empirical constants are defined by

aM = π

(Ms − Mf )
bM = − aM

CM
(3.14)

aA = π

(Af − As)
bA = − aA

CA
(3.15)

where ξA and ξM are the initial martensite volume-fraction values for the A → M and
M → A transformation processes, respectively. Usually, these values are obtained by
assuming an initial phase. Again, various parameters are determined experimentally
by testing SMA specimens.

Note that both the Tanaka model and the Liang and Rogers model have a serious
limitation: they do not represent the stress-induced martensite phase transformation.
This means that detwinning of the martensite phase (from initially 100% twinned
martensite) is not captured. At a temperature below martensite finish temperature
(T < Mf ), the stress-strain behavior of material is represented as linear elastic (σ =
Eε), and the material is assumed to be in martensitic phase (ξ = 1.0). In fact, stress-
induced martensitic phase transformation is not covered for temperatures below Ms

or even for high temperatures, when any temperature induced martensite is present.

3.4.3 Brinson Model

The third model was developed by Brinson [37]. This model captures stess-induced
martensite at all temperatures. The Brinson model addresses this issue by separating
the martensite variable into stress-induced and temperature induced components.

ξ = ξs + ξT (3.16)

The stress induced martensitic volume fraction ξs describes the amount of detwinned
or stress-preferred variant of martensite (single variant) present in the sample, and
the temperature-induced martensite volume-fraction ξT describes the amount of
martensite (containing all variants) that occurs from the reversible phase transfor-
mation from austenite. The sum of the two martensite volume-fraction components
is always ≤1.0. This model uses the same constitutive equation as the Tanaka model
and the Liang and Rogers model with some modifications. The coefficients of the
constitutive equation are assumed to be variable in order to account for both the
shape memory and pseudoelasticity effects. The constitutive equation in differential
form becomes:

dσ = dσ
dε

dε + dσ
dξs

dξs + dσ
dξT

dξT + dσ
dT

dT (3.17)

This reduces to

dσ = E(ξ)dε + �sdξs + �T dξT + �dT (3.18)
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which can be written as

σ − σo = E(ξ)ε − E(ξo)εo + �s(ξs − ξso) + �T (ξT − ξTo ) + �(T − To) (3.19)

where

E(ξ) = ∂σ

∂ε
= EA + ξ(EM − EA) (3.20)

�S = ∂σ

∂ξS
(3.21)

�T = ∂σ

∂ξT
(3.22)

� = ∂σ

∂T
(3.23)

Assume that the material initially is in the austenite phase, at a temperature T > Af ,
and in a condition of zero stress and zero strain. Then,

ξso = 0, ξTo = 0, σo = 0, εo = 0 (3.24)

From this initial condition, let the stress on the material be slowly increased. As
a result, the material starts transforming from austenite to stress-induced marten-
site (detwinned). Once the martensite is completely detwinned, let the stress be
removed, yielding the residual strain εL in a stress free condition. The temperature
is maintained constant throughout the stress cycle. The final condition is then given
by

ξs = 1, ξT = 0, σ = 0, ε = εL (3.25)

Substituting the initial conditions (Eq. 3.24) and the final conditions (Eq. 3.25) in
the constitutive equation (Eq. 3.19), we get

�s = −εLE (3.26)

Now let us consider another case where the material is at a temperature below the
austenite start (T < As) and in a 100% martensite state, at zero stress and zero strain.
The initial conditions are

ξso = 0, ξTo = 1, σo = 0, εo = 0 (3.27)

A stress is applied and subsequently removed (at a constant temperature), such that
the material transforms into completely detwinned martensite, with a residual strain
εL. The final condition is given by

ξs = 1, ξT = 0, σ = 0, ε = εL (3.28)

Substituting the initial conditions (Eq. 3.27) and the final conditions (Eq. 3.28) in
the constitutive equation (Eq. 3.19), we get

�T = 0 (3.29)

The resulting modified constitutive equation becomes:

σ − σo = E(ξ)ε − E(ξo)εo + �(ξ)ξs − �(ξo)ξso + �(T − To)

= E(ξ)ε − E(ξo)εo − εLE(ξ)ξs + εLE(ξo)ξso + �(T − To)
(3.30)
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The relations for the Young’s modulus and the phase transformation coefficient
are the same as Eqs. 3.4 and 3.5, respectively. Substituting these expressions, the
constitutive equation for ξTo = 1 and ξso = 0 reduces to

σ = E(ξ)(ε − εLξs) + �(T − T0) (3.31)

The transformation functions can be derived as [41]

�s = (ε − εLξs)
∂E(ξL)

ξs
− εLE(ξ)

= (ε − εLξs)(EM − EA) − εLE(ξ)

(3.32)

�T = (ε − εLξs)
∂E(ξ)
ξT

= (ε − εLξS)(EM − EA)

(3.33)

The critical stress-temperature diagram used for the Brinson model is shown
schematically in Fig. 3.23. A modified cosine model for the martensite volume frac-
tion is used. Note that the stress induced martensite is single variant, whereas the
temperature induced martensite involves multiple variants.

For the A → M transformation:
For T > Ms and σcr

s + CM(T − Ms) < σ < σcr
f + CM(T − Ms),

ξs = 1 − ξso

2
cos

[
π

σcr
s − σcr

f

[
σ − σcr

f − CM(T − Ms)
]]

+ 1 + ξso

2
(3.34)

ξT = ξTo − ξTo

1 − ξso
(ξs − ξso) (3.35)

For T < Ms and σcr
s < σ < σcr

f ,

ξs = 1 − ξso

2
cos

[
π

σcr
s − σcr

f

(σ − σcr
f )

]
+ 1 + ξso

2
(3.36)

ξT = ξTo − ξTo

1 − ξso
(ξs − ξso) + �Tξ (3.37)
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where, if Mf < T < Ms and T < To

�Tξ = 1 − ξTo

2

{
cos [aM(T − Mf )] + 1

}
(3.38)

else

�Tξ = 0 (3.39)

In the above equations, σcr
s is the critical stress for the start of the transformation

and σcr
f is the critical stress at the end of transformation. These values are approxi-

mated from a stress-strain curve where the initial phase was 100% martensite. On
the curve, it is clear where transformation begins and ends so that these values are
determined at the corresponding states.

For the M → A conversion, the martensite volume fraction is determined from
the following relations:

For T > As and CA(T − Af ) < σ < CA(T − As),

ξ = ξo

2
cos
[

aA

(
T − As − σ

CA

)
+ 1
]

(3.40)

ξs = ξso − ξso

ξo
(ξo − ξ) (3.41)

ξT = ξTo − ξTo

ξo
(ξo − ξ) (3.42)

where all terms with a subscript ‘o’ denote initial condition and aA and aM are
equivalent to those defined in the Liang and Rogers model.

aM = π

(Ms − Mf )
bM = − aM

CM
(3.43)

aA = π

(Af − As)
bA = − aA

CA
(3.44)

CM = 1
dMs/dσ

CA = 1
dAs/dσ

(3.45)

For an SMA with material characteristics that are more general functions of the
martensite volume fraction, one can derive alternate constitutive relations. Because
the Brinson’s model differentiates between temperature induced and stress induced
martensite, there are two parts in the martensite region of the diagram. The start and
finish stresses at which the transformation from twinned to detwinned martensite
occurs is marked by the lines that are parallel to the x-axis at a constant stress of
σs

cr and σ
f
cr, respectively. The region above the line at σf

cr is the region in which
the material exists as pure detwinned martensite (region 0). The transformation
from twinned to detwinned martensite on application of stress is reversible only
by conversion to austenite and then cooling under low stress; it is not reversible
merely on unloading the material from a detwinned state. The region below the
stress of σs

cr (region 8), therefore, can exist in pure twinned martensite (when cooled
from austenite below this stress), pure detwinned martensite (when unloaded after
loading to a value beyond σ

f
cr), or in a mixture of the two (when unloaded after
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loading to a stress of above σs
cr but below σ

f
cr). It should be kept in mind that the

material thermal function � is comparatively very small (five orders of magnitude
smaller than E) and is therefore neglected.

The austenite start and finish regions are the same as those prescribed in the
Tanaka model and the Liang and Rogers model. Therefore, the austenite start and
finish temperatures, As and Af are the same as those used for the Tanaka and Liang
and Rogers models. However, in Brinson’s model, the parameters Ms and Mf are
defined as the temperature above which the martensite transformation stresses are a
linear function of temperature, as shown in Fig. 3.23. The critical stresses σs

cr and σ
f
cr

are assumed constant with decreasing temperature below Ms. Note that some authors
have shown a small increase of these two stresses below Ms, which is neglected
here. In the Tanaka and Liang and Rogers models, these parameters are defined
at zero stress, and are the temperatures for martensite start and finish obtained
by cooling austenite without the application of stress. Therefore, when calculating
these constants from the experimental critical points, the numerical values used
for the Tanaka and Liang and Rogers models for Ms and Mf (points A and B in
Fig. 3.23 respectively) are different from those used for the Brinson model (points
marked Ms and Mf ). The values used in the Tanaka and Liang and Rogers models
should be those obtained by extrapolating the martensite start and finish lines to
zero stress. The different values for the models must be used in order to obtain a fair
comparison between the models and to match them to experimental observations.
The slopes CM and CA are the stress-temperature coefficients for martensite and
austenite, respectively. When the temperature is below Mf , the transformation is
not due to any phase change; rather, it is due to reorientation of martensite variants
in the direction of applied stress. Heating of the SMA above Af and cooling it below
Mf can recover this deformation. Within a temperature range between Ms and Af ,
the martensite and austenite can coexist. Above Af , the material is in the austenite
phase, which is a stable state at zero stress condition. Regardless of the extent of
loading (forward transformation), at the end of unloading (reverse transformation),
the material regains the austenite phase (beginning state). There is no physical
deformation associated with this transformation process.

Chung et al. [42] pointed out a weakness of the Brinson model in region 5 (σcr
s <

σ < σcr
f and Mf < T < Ms). This is the region where both stress-induced martensite

formed from the austenite phase via the stress increment, and temperature-induced
martensite, formed from the austenite phase via the temperature decrement, take
place. It was shown that for a fixed temperature, when the stress increases, the Brin-
son model predicts satisfactory stress-induced results for any set of initial conditions.
On the other hand, for a fixed stress, the Brinson model does not predict consistent
temperature-induced martensite, formed from the austenite phase by a tempera-
ture decrease. Results are a function of the initial conditions. Satisfactory results
are predicted only when the initial condition of the material is the pure marten-
site state (ξSo = 0, ξTo = 1 or ξSo = 1, ξTo = 0). It was pointed out that for some
cases, the total value of the martensite volume fraction may exceed 1.0, which is an
anamoly.

Note that the stress-induced martensite fraction must be 1.0 at the final criti-
cal stress (σ = σcr

f , ξS = 1). The total martensite volume fraction must be 1.0 at the
martensite finish temperature (T = Mf , ξT = 0). As a result, the total martensite
volume fraction becomes larger than 1.0 (ξ = ξS + ξT = 2.0) at this condition. The
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temperature diagram, Brinson model.

Brinson model satisfies all conditions when either only the stress increases or
only the temperature decreases. In the case of simultaneous change of tempera-
ture and stress, Khandelwal et al. [43] and Chung et al. [42] revised the Brinson
model.

The critical stress-temperature diagram can be divided into eight regions, as
shown in Fig. 3.23. The regions are defined as:

Region 0: Stress-induced martensite region (no transformation).
Region 1: Transformation from austenite to martensite, either stress-induced

or temperature-induced.
Region 2: Mixture of temperature-induced or stress-induced martensite and

austenite phase (no transformation).
Region 3: Transformation from martensite to austenite.
Region 4: Pure austenite region (no transformation).
Region 5: Transformation from austenite to stress-induced martensite, or

temperature-induced martensite to stress-induced martensite, and transfor-
mation from austenite to temperature-induced martensite.

Region 6: Transformation from austenite to temperature-induced martensite.
Region 7: Transformation from temperature-induced to stress-induced marten-

site.
Region 8: Mixture of stress-induced martensite and temperature-induced

martensite (no transformation).

A closer view of region 5 is shown in Fig. 3.24. The rectangle PQRS defines
region 5, where simultaneous evolution of the twinned martensite fraction ξT and
detwinned martensite fraction ξS can take place. In this region, a simultaneous
increase of stress and a decrease of temperature (as shown by the arrow in Fig. 3.24)
can lead to an unrealistic volume fraction (ξ > 1). Specifically, at the point R, ξ can
become 2.0.

The proposed modification to the Brinson model is based on the assumption
that there is a coupling between the evolution of ξS and ξT . The twinned fraction ξT

can transform into the detwinned fraction ξS due to the application of stress, whereas
the detwinned fraction ξS cannot transform into the twinned fraction ξT .
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For T < Ms and σcr
s < σ < σcr

f ,

ξS = 1 − ξSo

2
cos

[
π

σcr
s − σcr

f

(σ − σcr
f )

]
+ 1 + ξSo

2
(3.46)

ξT = (ξT 1 − ξSo)
1 − ξS

1 − ξSo
(3.47)

where

ξT 1 = 1 + ξo

2
+ 1 − ξo

2
cos [aM(T − Mf )]

ξo = ξSo + ξTo

Panico and Brinson [44] further modified the 1-D phenomenological model for
a 3-D stress environment, which accounts for the evolution of both stress-induced
and temperature-induced martensite variants. For the 1-D model, one needs to
determine 10 material constants: Ms, Mf , As, Af , σs

cr, σ
f
cr, EM, EA, CM, CA.

3.4.4 Boyd and Lagoudas Model

In the Boyd and Lagoudas model [45], the total specific Gibbs free energy is deter-
mined by summing the free energy of each phase of shape memory materials plus
the free energy of mixing. The second law of thermodynamics can then be written
in terms of the Gibbs free energy, and a constitutive relation can be derived. The
total strain εte

ij consists of two parts: the mechanical strain, εij and the transformation
strain, εt

ij , which is a function of the martensite volume fraction.

εte
ij = εij + εt

ij (3.48)

The constitutive relation can be written as

εte
ij = a1

ijklσkl + a2
ij�T (3.49)

where a1
ijkl is the compliance tensor, and a2

ij is the coefficient of thermal-expansion
tensor. The transformation strain rate is assumed to have the following form:

εt
ij = �ij ε̇ (3.50)

where

�ij =
√

3
2

H (3.51)

and H is the maximum uniaxial transformation strain equivalent to the maximum
recoverable strain, εL.

The martensite volume fraction is calculated from

σeff
ij �ij + d1T − ρb1ξ = Y∗∗ + d3

ijklσijσkl + d4
ijσij�T (3.52)

d1T is related to the entropy at a reference state, b1 is a material constant, ρ is
the mass density, Y∗∗ is a threshold stress value, d3

ijkl and d4
ij are parameters that

are related to the changing elastic moduli and the coefficient of thermal expansion
during transformation, respectively, and �T is the temperature difference.

Although this model is widely applicable to monolithic SMA structures and
is a true three-dimensional model, in one-dimensional form it is quite similar to
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the Tanaka model and has been shown by Brinson [46] to yield similar results in
simulations.

In the model, Y∗∗, d1, and ρb1 are defined as follows:
For M → A transformation

Y∗∗ = CAHAf (3.53)

d1 = −HCA (3.54)

ρb1 = −Y∗∗ + d1Mf (3.55)

For A → M transformation

Y∗∗ = CMHMs (3.56)

d1 = −HCM (3.57)

ρb1 = −Y∗∗ + d1As (3.58)

3.4.5 Other SMA Models

There are several other macromechanics models that model pseudoelasticity and
shape memory effects of SMAs under quasi-static loading. Matsuzaki et al. [47, 48]
developed a phase-interaction energy function in terms of the martensite vol-
ume fraction covering five crystal phases: austenite, detwinned martensite, twinned
martensite, detwinned rhombohedral and twinned rhombohedral. To examine the
effectiveness of this unified thermomechanical model, the predicted results were suc-
cessfully compared with experimental measurements associated with shape memory
effect and pseudoelasticity for SMA wires subjected to cyclic loading up to 1 Hz. A
key feature of this formulation is the modeling of twinned and detwinned rhombo-
hedral phases.

There are other models that are based on evolutionary plasticity, as suggested
by Graesser and Cozzareli [49]. However, only mechanical loading under isother-
mal conditions could be simulated with constant parameters. A mechanism-based
phenomenological model for pseudoelastic behavior was developed by Malorvh and
Gandhi [50] comprising linear, piecewise linear, and nonlinear springs and friction
elements. The model parameters are identified from experimental hysteresis cycles.

Several studies that compare the relative merits and demerits of each model
have also been carried out. Schroeder et al. [51] compared the Landau-Devonshire
theory formulation [52] with the Graesser and Cozzareli, Brinson and Boyd, and
Lagoudas models in terms of their capabilities and computational effort. Another
study [53] comparing the phenomenological model of Grasser and Cozzareli with
the Brinson model showed that while the phenomenological approach was more
suitable for repeated mechanical cycling under isothermal conditions, it could not
handle more complex situations involving thermal cycling. A comparison between
the thermodynamic model of Boyd and Lagoudas and Tanaka-based models [54]
led to the unification of these approaches under the same broad assumptions, and
highlighted some differences in the simulations based on these different approaches.
A comparison of these models along with the Ivshin and Pence model [46] led
to the observation that most of the constitutive models yielded similar results for
most simple simulations, and the main differences were in the formulation of the
transformation kinetics.
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3.5 Testing of SMA Wires

The behavior of an SMA is a function of its three primary variables: stress, strain,
and temperature. Material characterization involves studying the dependence of
two of these variables while the third is kept constant. Systematic tests need to
be carried out to determine important material parameters that are required for
analytical models. For simplicity, quasi-static conditions are maintained in order
to eliminate any dynamic effects. In addition to mechanical stress-strain testing,
the transformation temperatures of the material are normally determined using
Differential Scanning Calorimetry (DSC).

The thermo-mechanical properties of the shape memory alloys depend on many
variables, such as wire manufacturing process, wire diameter, pre-strain, stress level,
temperature, annealing, and whether or not the material has been cycled (thermo-
mechanical history). Prior to any mechanical testing of an SMA wire, it is necessary
to cycle the wire to assure repeatable experimental results. The testing described in
this section is focused on a binary alloy (Ni-Ti – 50.5%–49.5%) wire.

3.5.1 Sample Preparation, Cycling and Annealing

As an example, a wire of diameter 0.38 mm (0.015 inches)from Dynalloy [55] is
used. Due to the manufacturing process of drawing these wires at high temperature
and winding them on rollers, the unstrained wire is often slightly curved along its
length and does not recover to a completely straight wire even above the austenite
temperature. This effect is normally ignored, especially for thin wires. Typically,
tensile testing of the wire sample is carried out on a testing length of about 0.127 m
(5 inches). In addition to this, about 0.0127 m (0.5 inches) is required for gripping at
either end, making the total wire length 0.1524 m (6 inches).

The manufacturing process of the SMA typically results in the formation of
an oxide layer. In order to heat the sample by passing electrical current through
it (internal heating), it is important to remove this oxide layer at both ends to
ensure a good electrical contact. This can be achieved by lightly sanding the sample
at the point of attachment with electrical contacts, or by crimping on spade lugs.
Alternately, an environmental chamber can be used to heat the wire to a specified
constant temperature (also called external heating).

Due to small dislocations and other irregularities inherent in the SMA wire as
manufactured, the mechanical characteristics of the wire drift with the increasing
number of cycles. Figure 3.25 shows the pseudoelastic characteristics of the wire
over repeated cycling. The test was performed using an environmental chamber
to keep the wire at a temperature of 90◦C, which is well above Af . Details of the
experimental setup used for these data are described in section 3.5.4. From the
figure, we observe that during the first few cycles, the wire does not completely
recover its strain upon unloading, but is left with some residual strain (nearly 1%).
This residual strain decreases with the increasing number of cycles. After about 10
cycles, no significant deviation in the characteristics of the wire is observed. The wire
also shows a complete recovery of its strain when brought down to the zero stress
condition.

In order to ensure repeatable characteristics, it is important to stabilize the wire.
This is accomplished through mechanically cycling the wire before taking data. The
cycling procedure consists of extending the wire to a strain of about 4% at a strain rate
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pseudoelastic characteristics of the
wire.

of about 0.0005/s, and then releasing the wire to zero stress condition. The cycling is
conducted at a constant environmental temperature well above Af (typically 90◦C).
The hysteretic pseudoelastic behavior of the wire then stabilizes with the increasing
number of cycles as described above. This procedure is repeated (typically 20–30
cycles) until no variation in the residual strain characteristics is observed.

An alternate procedure for cycling [54] is to mechanically strain the material
at low temperatures (in martensite phase). This is then followed by a thermal cycle
under no stress in which the sample is heated to a temperature above Af and then
cooled down to below Mf . The material is then strained again at low temperature.
This procedure is repeated about 20–30 times. A simple way of performing this
cycling on a wire is by clamping one end and suspending a weight from the other
end. The weight is then removed and the wire is heated to recover the deforma-
tion. Deforming the wire and recovery of the deformation comprise one cycle. It is
important to cycle the wire at a stress level much higher than the stress of interest.
While this procedure is an effective way to cycle the material, it is found that the first
method yields similar results and is easier to perform, since it does not require ther-
mal cycling. In addition to stabilizing the stress-strain characteristics of the material,
cycling also can have the effect of decreasing the area of the hysteresis loop [56].

To ensure repeatability of test data, each experimental point should be repeated
two to three times. Although the conditions controlling the tests are expected to be
held constant, up to 10% variation in the stress levels may be observed in some cases.
The variation could be the result of starting from a slightly different volume fraction
of martensite. Since the material state is extremely sensitive to its thermomechanical
loading history, it is difficult to obtain exactly the same starting composition of the
material at the beginning of each test. This variation could result in the experimental
variations observed even after cycling the wire.

Annealing is another procedure that is performed on the raw material in order
to eliminate any thermomechanical history effects and to modify certain properties
of the material. A typical annealing process involves heating the raw material to an
elevated temperature (such as 500◦C–800◦C), maintaining it at the elevated temper-
ature for a specified period of time (such as 40 minutes) and finally quenching it in
water or oil (usually to prevent precipitation of Ni). It has been observed that the
annealed material exhibits lower transformation stresses and increased transforma-
tion temperatures (except, in some cases, Ms). However, the exact effect of annealing
is highly dependent on the material composition. Sometimes, the as-manufactured
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Figure 3.26. Differential Scanning Calori-
meter.

shape-memory alloy sample has an austenite start temperature As that is close to
or below room temperature. As a result, the material exhibits partial pseudoelastic
behavior at room temperature instead of pure shape memory effect. In such cases,
an appropriate annealing procedure can be used to increase the Mf above room
temperature and obtain pure shape memory effect in the sample at room tempera-
ture. Due to their sensitivity to mechanical cycling as well as to annealing procedure,
reports of shape memory alloys’ experimental characteristics are always accompa-
nied by the cycling and annealing procedures that were performed on the samples
prior to the experiments.

3.5.2 Transformation Temperatures under Zero Stress

In order to characterize the material, it is important to identify the transformation
temperatures As, Af , Ms and Mf , which are the austenite start, austenite finish,
martensite start, and martensite finish temperatures respectively. Note that these
transformation temperatures are often defined for the material in a stress-free con-
dition; however, they change as a function of applied stress. Note that these tem-
peratures are important coefficients in the constitutive models, and their accurate
measurement is necessary for prediction of the material behavior. Several meth-
ods have been reported to measure the transformation temperatures, which include
differential scanning calorimetry, the applied loading method, and the electrical
resistance method.

To determine the transformation temperatures of the wire under no stress con-
dition, the Perkin-Elmer Pyris 1 Differential Scanning Calorimeter (DSC) (Fig. 3.26)
is used. This instrument measures the heat flow to and from the material as a function
of temperature. A small sample of the material can be heated and cooled between
given temperatures at a specific temperature rate that is regulated by a temperature
controller. The heating and cooling is performed by controlling a combination of a
heating element and a regulated mixture of helium and liquid nitrogen.

Measurement of transformation temperatures using the DSC is based on the
latent heat of the material. When a material undergoes a phase transformation, it
absorbs (or emits) a specific amount of heat, called the latent heat, at a constant
temperature. This is a characteristic of any phase transformation, including transfor-
mation between the various phases of water (liquid, steam, and ice). In the DSC test,
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the phase transformation appears as a sudden peak in the plot of heat flow versus
temperature.

Preparation of the sample for the DSC tests consists of cutting the SMA wire
into small pieces of approximate length of 0.005 m (0.19′′). These pieces are then
placed in a custom pan and sealed from the top with a cover plate using a tabletop
press. The weight of the SMA present in the pan is deduced by subtracting the empty
weight of the pan from the weight of the pan with SMA. For best results with the
DSC, the weight of the SMA should be between 20 and 40 grams (0.044 to 0.088 lbs).
The process of cutting the SMA wire and subsequent pressing of the cover plate onto
the SMA may cause a small non-zero stress in the SMA sample. However, testing
different weights of SMA and the application of different amounts of pressure to seal
the cover plate could help confirm the repeatability of the DSC results, indicating that
the effect of this non-zero stress on the transformation temperatures is negligible.

The procedure for testing consists of first preparing two baseline test pans (with-
out SMA), and one pan with sample SMA. The pans are weighed in a digital balance.
The two baseline pans (without SMA) are placed inside the thermal chamber of the
DSC and sealed from the environment. The temperature of the chamber is then
raised from 10◦C to 100◦C at a rate of 5◦C/min, and the baseline heat flow rate vs.
temperature is recorded by the data acquisition computer. After the thermal cycle
is completed, one of the baseline pans is removed and replaced with the pan with
the SMA. The temperature cycling procedure is repeated and the resulting heat flow
recorded once again. The quantitative variation of heat flow of the SMA with tem-
perature can then be obtained by subtracting the heat flow of the baseline case from
that of the case with the sample at each temperature to yield a subtracted heat flow.
This entire procedure is repeated 2–3 times for each sample to ensure consistency. It
is important to note that since the baseline heat flow is nearly constant and displays
no peaks, the subtracted heat flow is important only for quantitative specific heat
and latent heat measurements. The subtracted heat flow rate of the SMA is sufficient
to determine the transformation temperatures of the material.

The heating rate ( 5◦C/min) is chosen as representing a quasi-static value because
it is observed that slower rates produce no significant change in the material behav-
ior. High heating rates tend to produce inconsistent results. This could be due to
the material’s inability to attain a constant temperature throughout the sample at
very high heating rates and thus its inability to attain equilibrium at a particular tem-
perature. When the SMA starts its transformation from austenite (parent phase) to
martensite, it emits heat due to the exothermic transition. On the other hand, upon
heating from martensite to austenite phase, it absorbs heat due to the endothermic
transition. Two characteristic spikes in the heat flow are observed.

The unsubtracted and subtracted heat flow rates are plotted in Figs. 3.27(a)
and 3.27(b) respectively. We observe that in the subtracted heat flow profile, the
heat flow rate during heating is of approximately the same magnitude as that during
cooling. The change in sign indicates a change in the heat flow direction, to or from
the sample. The transformation temperatures can be obtained from this by marking
the temperatures at which the peak in the heat flow begins and ends, and they
are computed directly by the data acquisition software. The magnitude of the peak
can be used to determine the latent heat of transformation of the material. The
transformation temperatures are indicated by circles in the plots.

The electrical resistance method is based on a large variation of resistivity over
the transformation temperature range. A drop in resistivity takes place as soon as the
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Figure 3.27. Heat flow as a function of temperature measured using DSC.

transformation from austenite to martensite begins (i.e., during the cooling cycle).
On the other hand, a large increase of resistivity takes place during the transforma-
tion from martensite to austenite phase. Monitoring the change of resistance with
temperature helps to identify transformation temperatures. Even though this is a
simple approach, it is not easy to precisely identify the transformation temperatures
from resistance data. For example, a drastic change in resistivity during the phase
transformation also impacts the internal heating of the wire. The thermal conduc-
tivity of the material is also affected during the phase transformation; however, the
effect on heat capacity is typically quite small. The direction of change in resistivity
with phase transformation is a function of the specific alloy. For example, the electri-
cal resistivity of a Nitinol wire from Dynalloy increases when going from martensite
to austenite, whereas a wire of another alloy from the same company showed the
opposite behavior [57].

Abel et al. [58] examined three methods: DSC, electrical resistance, and applied
loading methods, to determine the transformation temperatures of NiTi wire under
different heat treatment conditions. The results showed that the transformation
temperatures measured by DSC did not agree with those measured by the other
two methods, which were similar. The applied loading method using a mechanical
testing machine was determined to be the most effective method to determine stress-
dependent transformation temperatures. The electric resistance method provides a
better estimate for MS and Mf than for As and Af .

3.5.3 Variation of Transformation Temperatures with Stress

The transformation temperatures of the SMA are a function of the stress in the
material. The previous section described the measurement of the transformation
temperatures at zero stress. In order to obtain a complete picture of the trans-
formation behavior of the SMA, it is also necessary to measure the variation of
transformation temperatures with stress. This can be accomplished either by a sim-
ple benchtop experiment, or by using a tensile testing machine to maintain a constant
load. The constant load, strain-temperature test also provides a direct measurement
of the actuation capabilities of the material. Although the actuation load is seldom
kept constant in a practical application, the measurement of the actuation stroke
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with temperature under a constant load enables the design of an actuator for any
given loading pattern.

A schematic of a simple benchtop test setup to measure the transformation
temperatures as a function of stress is shown in Fig. 3.28. The test specimen is clamped
to a rigid support by a pin vise. The bottom end of the wire is attached to a pan that
supports dead weights. The wire is heated by resistance heating, and a constant
voltage is supplied to the wire by a DC power supply. Electrical connections are
crimped onto the wire, as this assures a good electrical contact with the material. The
entire setup is mounted in a plexiglass case to prevent large variations of temperature
of the wire due to convective flow in the laboratory.

The wire is initially at room temperature in an unstrained condition. Note that
the wire sample is cycled before the experiment, and the length after cycling is taken
as the unstrained length. When a weight is added to the pan, the wire strains by a
certain amount, which serves as a pre-strain for the one-way shape memory effect.
A voltage is then applied across the ends of the wire, causing the temperature of the
wire to increase due to internal heating. As the temperature increases beyond As,
the wire starts transforming to austenite and starts recovering the initial prestrain.
When the voltage to the wire is reduced, the wire begins to cool down, transforms
back into martensite, and returns to the initial strained condition under the influence
of the dead weights.

It should be noted that due to significant changes in resistance of the wire during
transformation, the current drawn by the wire varies constantly. In order to control
the heat flow rate during this test precisely, a special controller is necessary. How-
ever, quasi-static conditions can be ensured by allowing the wire to stabilize at set
temperatures before recording the data. The displacement of the weight is measured
using a linear potentiometer or a laser displacement sensor, and the average strains
in the wire are calculated. The temperature is measured using a K-type thermocouple
mounted on the wire through a thermal interface material, such as those frequently
used in the heat sinks of electronic devices.

Figure 3.29 shows the recovery strain-temperature curve for an applied load
of 5.3 pounds. Note that the recovered strain, or stroke, increases with increasing
tensile load. This is because of the larger initial strains, or pre-strains, associated
with larger stress values. However, there is a limit to the actuation stresses, since
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very large stresses produce permanent plastic deformations of martensite at low
temperatures, as described in Section 3.1.3.

The critical temperatures are obtained as the temperatures at which the slope of
the curve changes dramatically. Note that at high temperatures, when the material
is in the pure austenite phase, the strain is non-zero. This strain is the austenite
strain associated with the load applied, and is numerically equal to the applied stress
divided by the austenite’s Young’s modulus. It is also important to note that during
transformation, the strain changes by large amounts at a relatively constant applied
load, and hence it is difficult to precisely control the strain imparted by a constant
load in this regime, which is equivalent to the pre-strain imparted to the SMA wire.
This has important consequences when using the material as an actuator, where the
material must be pre-strained by a precise amount.

Figure 3.30(a) shows the strain-temperature curve at two different stress levels.
It can be seen that the transformation temperatures increase with increasing stress.
The strain-temperature curve can be obtained at several different stresses, and the
transformation temperatures can be extracted at each value of stress. These tem-
peratues are plotted against the stress levels in Fig. 3.30(b), and a straight line can
be fitted to the data. Although the test data may not lend themselves to a perfect
straight line, thermodynamic relations point to a linear relationship. The slope of this
line provides the sensitivity of transformation temperature with stress, also called
the stress influence coefficient. The slopes CA and CM are the austenite and marten-
site stress-influence coefficients respectively. Quite often, CA and CM are assumed
equal.

This experimental setup gives good results at low heating rates, which translates
to low actuation speeds. At higher rates, additional inertia forces may act on the wire,
and the setup may be susceptible to oscillations as the mass and wire behave like a
pendulum. These effects make it difficult to maintain a constant stress in the material.
The strain-temperature test can be performed much more precisely using a tensile
testing machine. The temperature of the wire can be controlled either by resistive
heating, or by enclosing the specimen in a temperature-controlled environmental
chamber. The testing machine can be programmed to maintain a constant load on
the wire, which will maintain a constant stress in the material irrespective of the
heating rate, within the constraints of the bandwidth of the testing machine.
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Figure 3.30. Effect of stress on strain-temperature behavior.

3.5.4 Stress-Strain Behavior at Constant Temperature

The transformation temperatures are some of the most important parameters in
characterizing the behavior of a given SMA composition. Knowledge of the trans-
formation temperatures is essential to identify the range of temperatures within
which the SMA actuator can be operated. In addition to the transformation tem-
peratures, it is also important to determine the stress-strain behavior of the material
as a function of temperature. This information is required to size an actuator for a
required application.

The stress-strain behavior of the material is qualitatively described in Sec-
tion 3.1.3 (at a temperature below As) and in Section 3.1.5 (at a temperature above
Af ). Experimentally, this characterization can be carried out on an SMA wire spec-
imen by straining the specimen in a tensile testing machine, while maintaining it
at a constant temperature in a controllable environmental chamber. For example,
results of tests carried out using an MTS 810 test machine (Fig. 3.31) with an ATS
controllable thermal chamber are described here. The thermal chamber encloses
the wire specimen as well as the grips that hold it, enabling a constant temperature
to be maintained along the length of the wire. It is difficult to perform this test by
resistively heating the wire specimen because the strain imposed on the wire results
in a local temperature change. The temperature of the wire can be controlled by
varying the current passing through the wire, using temperature feedback from ther-
mocouples mounted on the wire. However, only a finite number of thermocouples
can be installed on the wire, and they have an inherently slow response time. As a
result, it is difficult to maintain a constant temperature along the length of the wire
by resistive heating.

The experimental procedure consists of first cycling the wire specimen by heating
the loaded wire to a temperature well above Af and then cooling it under no stress
to below Mf . This establishes an initial condition for all measurements. From this
point, the wire is strained to a value that is just below the point of the second yield
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Figure 3.31. MTS testing machine with
controllable thermal chamber.

point of the material. This ensures that a maximum of the material detwinning is
captured, without the possibility of permanent plastic deformation. For example,
for the alloy under consideration, this corresponds to a strain of approximately
5%, while permanent plastic deformation begins to occur at approximately 6.5%.
After the maximum strain is reached, the specimen is unloaded to zero stress. Each
straining and unloading to zero stress represents one test cycle. Stress and strain
values are continuously measured during the process, while maintaining a constant
temperature in the thermal chamber. After each test cycle, the temperature of the
material is increased to above Af and then decreased to below Mf . This ensures that
the strain imparted to the specimen is recovered, and that the starting condition is
consistent for the next test cycle. In a history-dependent material such as an SMA,
maintaining consistency of the test procedure is important, since the material can be
in multiple states at the same stress, temperature, and strain.

Note that these tests are all quasi-static, which implies an isothermal loading
and unloading of the wire specimen. For the specimen under discussion, a strain
rate of 5 × 10−4/s is a typical quasi-static value. In general, the strain rate that
can be considered quasi-static is a function of the dimensions of the test specimen,
because the ratio of heat retained to the heat convected is proportional to the ratio
of volume to surface area of the specimen. As an example, isothermal conditions can
be reached at higher strain rates in wires with lower diameters. Otherwise, higher
strain rates cause some differences in material behavior [59] compared to quasi-static
measurements, and will be discussed in a later section.

The constant temperature stress-strain plots obtained experimentally are shown
in Fig. 3.32. These plots clearly show both the shape memory effect at low tempera-
tures and pseudo-elasticity at high temperatures. At temperatures below As (45◦C),
the material is purely martensite, and a region of detwinning can clearly be seen
occuring at relatively constant stress. At a higher temperature (84◦C), the material
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Figure 3.32. Constant temperature stress-strain behavior of Nitinol of diameter 0.015 inch
and length 5 inches.

is fully austenite to start with, and is transformed to the stress-preferred marten-
site. This transformation is reversed on unloading, causing a complete pseudoelastic
recovery.

The Young’s modulus of the material in the linear elastic region at 84◦C is
marked as EA in Fig. 3.32. Similarly, the Young’s modulus can be calculated from
the data at each temperature. At the lowest temperature, 45◦C, the slope of the linear
elastic region corresponds to approximately the Young’s modulus of pure martensite
(EM). Because the highest temperature plot is close to the austenite finish tempera-
ture (Af ), the modulus marked in the figure is approximately the Young’s modulus
for pure austenite (EA). At an intermediate temperature, the Young’s modulus lies
between these two extremes, and its magnitude is determined by the volume fractions
of martensite and austenite in the material. The increase in the elastic modulus from
martensite to austenite can also be seen in the plot. The values of pure phase Young’s
moduli for martensite and austenite calculated from these curves are required for
the constitutive models.

From the stress-strain plots at constant temperature, one can obtain various
critical stresses (σ1, σ2, σ3, σ4). These stresses can be used to plot critical stress versus
temperature diagram. From this diagram, one can determine the transformation
temperature at different applied stress levels (Fig. 3.33).

3.5.5 Stress-Temperature Behavior at Constant Strain

After obtaining the transformation temperatures of the material as described in
Sections 3.5.2 and 3.5.3, and measuring the stress-strain behavior as in Section 3.5.4,
a designer will have enough information to size an SMA actuator based on given
actuation requirements. However, it is also of interest to investigate the constrained
recovery behavior of the material, for use in certain applications where the blocked
force of the actuator is important [60]. Constrained recovery means that the wire is
kept at constant strain, and the testing involves measurement of stress-temperature
characteristics at a given pre-strain.
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behavior.

The constrained recovery behavior involves the study of the blocked force as
a function of temperature using different values of prestrain in the wire. These
experiments can be performed using a tensile test machine, such as an MTS 810,
in a setup similar to that used for the constant temperature stress-strain tests. The
testing procedure consists of first cycling the temperature of the wire by heating to a
temperature above Af and subsequently cooling it to a temperature below Mf , with
the grips of the testing machine unlocked, which ensures a zero stress condition.
As a result, any prestrain induced in the material based on history disappears, and
the sample is completely in the twinned martensite phase before the test. The wire
is then pre-strained to a certain length at room temperature (T < As). To ensure
consistency, the pre-strain is conducted at a constant environmental temperature
maintained at, say, 30◦C for all the samples. The displacement of the wire is then
decreased to bring the wire to a stress-free state, and as a result, the elastic strain
is recovered. The total strain at this point is referred to as the prestrain imparted
to the wire. This procedure is similar to the stress-strain procedure described in
Section 3.5.4, and is also performed at the same strain rate (5 × 10−4/s).

After ensuring the wire is just taut, the grips of the testing machine are locked
in place so that no further relative movement of the ends of the wire can occur.
The temperature of the thermal chamber is then increased and the load applied
by the wire on the end constraint measured as a function of the temperature. The
heating rate used for this procedure (�5◦C/min) is also the same as the that used
in the calorimetry tests (Section 3.5.2), and is therefore consistent with quasi-static
behavior. This entire procedure was repeated for different values of pre-strain.

Fig. 3.34 shows the measured recovery stress as a function of the temperature
for different values of pre-strain. By comparing the values of the final recovery stress
developed with the stress-strain characteristics at high temperatures (Fig. 3.32), it
is apparent that the recovery stress for a particular pre-strain is about the same as
the maximum stress needed at high temperatures to develop this pre-strain. It will
be shown in Section 3.4.1 that the slope of the stress-temperature curve before any
phase transformation occurs (temperature below As) is the thermo-elastic constant
of the material, � (Eq. 3.3).

Note that above a certain pre-strain level(approximately 2%), the final stresses
are relatively independent of pre-strain. However, the path followed for different
pre-strains is independent of the pre-strain itself. This behavior implies that there is



3.5 Testing of SMA Wires 241

no significant advantage to increasing pre-strains beyond the threshold level in an
application involving constrained recovery. This is a significant observation, since
lower pre-strains offer the advantage of minimizing permanent plastic deformation
and fatigue after repeated cycles [61, 62].

3.5.6 Comparison of Resistive Heating and External Heating

In actuator applications, the most convenient way of heating the wires is by passing
a current through them. Due to the internal resistance of the wire, heat is pro-
duced, which results in a rise in temperature, leading to the temperature-induced
phase transformation. Actuation using this type of resistive heating does not require
any additional hardware except the attachment of electrical leads. This also makes
resistive heating very attractive for embedded actuator applications. However, the
change in resistivity of the SMA during transformation, as well as local changes in
resistance of the wire specimen, make it difficult to maintain a constant temperature
over the time of the transformation and along the length of the wire. However, it is
possible to achieve relatively good control of temperature (about 2–3◦C variation)
by very slow activation of the wire. This method involves making small changes in
electrical input to the wire and waiting for equilibrium to be achieved before acquir-
ing data. The constant load strain-temperature tests (Section 3.5.3) describe resistive
heating of the wire specimens.

Another way of changing the temperature of the wire is by heating it externally.
In the laboratory, this can be accomplished in a controlled manner using a thermal
chamber. The temperature of the wire specimen can be precisely controlled and
maintained constant over time as well as along the length of the wire, which makes
environmental heating particularly suited for accurate measurements and correla-
tions with predictions. However, it is obvious that this may not be a viable option
in many practical actuator applications. External heating, or environmental heating,
can also be performed by placing a heating element in close proximity to the SMA
actuator. Such an arrangement is more involved than that required for resistive
heating. The constant temperature stress-strain tests described in Section 3.5.4 are
obtained via environmental heating using a thermal chamber.

It is important to point out that the properties of the SMA, such as transfor-
mation temperatures and critical stresses, vary somewhat depending on the type of
heating used in the test procedure. Experimental evidence suggests that the differ-
ence in the behavior is not an artifact of the measurement technique. The reasons
for this difference in behavior are not clear, and are a subject of research. The crit-
ical temperatures obtained from strain-temperature tests conducted under resistive
heating conditions may not directly correlate to those obtained from a test involving
environmental heating.

An example of the discrepancy observed with resistive heating and environ-
mental heating is shown in Fig. 3.35. The figure shows two constant temperature
stress-strain curves, measured at a temperature of 45◦C. The curve measured using
resistive heating shows a pseudoelastic recovery, while the curve measured using
environmental heating shows the shape memory effect. This suggests that the trans-
formation occurs at lower temperatures while using resistive heating.

The critical stress-temperature results obtained using environmental heating
are plotted in Fig. 3.36 and; those obtained using resistive heating are plotted in
Fig. 3.37. By comparing the two heating methods, we see that the entire plot seems
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Figure 3.35. Comparison of stress-
strain curves obtained using resis-
tive and environmental heating, at
45◦C.

shifted towards lower temperatures in the case of resistive heating. At the same
stress levels, the material seems to transform at lower temperatures when resistively
heated. Indeed, this can also be observed visually. However, the critical stresses
for detwinned martensite at low temperatures, and the slope of the critical stresses
seem unchanged from the environmental heating method. Although the reason for
this discrepancy is not yet sufficiently clear, there are a few plausible explanations.
In a polycrystal structure involving different phases, the resistivity of one phase is
quite different from that of the other. Passing a current through the wire will cause
most of this total current to flow through low resistance pathways. Hence, the local
temperature profiles at the boundaries of the different phases may be quite different
(and higher) than the temperature measured at the surface (since the environmental
temperature is room temperature). This could result in an apparent lowering of the
transformation temperatures in the resistive heating case. It is important to note that
in both heating methods, temperature was measured using a thermocouple attached
through a thermally conductive, electrically resistive material, and not directly on
the wire. It was verified that in the resistive heating case, there was no current flow
into the thermocouple wire. The data, however, indicate that there are substantial
differences between characterizations done using the two heating methods, and using
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the constants derived from environmental heating may yield inaccurate predictions
if applied to a test involving resistive heating.

Care must be taken to use the same type of heating technique in all the experi-
ments to obtain material data for the constitutive models. Even though environmen-
tal heating appears more appropriate for validation studies, the material characteri-
zation using resistive heating [63] may be more convenient to model behavior of the
SMA wires.

To effectively design actuators and other systems based on SMAs, it is necessary
to understand and model the behavior of the material under mechanical loads and
changes in temperature. In uniaxial loading, the SMA behavior is primarily a function
of stress, strain, and temperature, and their associated time derivatives; the SMA
behavior is a nonlinear function of these variables. Many constitutive models have
been developed to describe the thermo-mechanical behavior of SMA materials. In
large part, these models are curve fits to experimental data.

Simplified constitutive models assume quasi-static behavior. However, the SMA
is a thermo-mechanically coupled system. A change in temperature causes a mechan-
ical deformation, and conversely, a mechanical deformation causes heat to be gen-
erated or absorbed by the material. Depending on the rate of mechanical defor-
mation, and the heat transfer properties of the material and its environment, the
rate of change of temperature of the material is affected. This in turn can affect its
mechanical behavior. Therefore, for more accurate modeling, heat transfer effects
need to be considered. From an energy point of view, the applied stress results in a
change of potential energy, whereas temperature affects the chemical free energy.
It is the sum of these two energies that influences the phase transformation.

3.6 Obtaining Critical Points and Model Parameters
from Experimental Data

The empirical constants used in the constitutive models described above are obtained
from a series of experiments performed on the material. For example, to fully define
the SMA constitutive model using the Brinson approach, we need to determine
eleven material coefficients. These are: Ms, Mf , As, Af , EM, EA, εL, σcr

s , σcr
f , CM,

CA. At this point, it is worth summarizing the testing procedure used to obtain
these empirical constants. A brief description of the tests that can be performed to



244 Shape Memory Alloys (SMA)

obtain these constants, as well as a physical interpretation of the constants, is given
below.

1. DSC test: The transformation temperatures (Ms, Mf , As, Af ) at zero stress are
obtained from this test. The test setup and procedure are explained in detail in
Section 3.5.2. Ms and Mf are the start and finish temperatures for transformation
to martensite at no stress. As and Af are the start and finish temperatures
for transformation to austenite at no stress. Note that the constants are used
differently in the Tanaka model as compared to the Brinson model.

2. Constant temperature stress-strain tests: Several important parameters can be
obtained from these tests.
(a) EM and EA – These are the Young’s moduli of the SMA in pure martensite

and austenite phases respectively. The Young’s modulii are measured in the
linear elastic region of the stress-strain curves at constant temperature. The
low temperature (below Mf ) curves yield the estimate for EM, while the high
temperature (above Af ) curves yield the value for EA.

(b) Critical stresses of transformation σcr
s and σcr

f – These represent the start
and completion of detwinned martensite, below the temperature As. Below
σcr

s , the material exists in fully twinned martensite state, whereas above
σcr

f , the material is in completely detwinned martensite state. These stresses
are modeled as constant values that are invariant with temperature in the
Brinson model. The transformation from twinned to detwinned martensite
occurs with the application of stress. On removal of the stress, the material
stays in detwinned martensite state. To revert to twinned martensite, the
material has to be heated to transform into austenite state and then cooled
under no stress condition.

(c) εL – This is the maximum recoverable strain that can be obtained from the
SMA, and is a material constant. This strain is given by the strain value
obtained from the low temperature stress-strain curve.

(d) Stress influence coefficients CM and CA – These are rates of variation of
critical stress with temperature. They are given by the slopes of linear curve
fits of experimentally determined critical stresses with temperature. From
the constant temperature stress-strain curves, the critical stresses can be
found as shown in Figure 3.38. At a low temperature (45◦), the critical
stresses σ1 and σ2 are obtained similar to σcr

s and σcr
F . At a high temperature

(84◦) the critical stresses are obtained from the pseudoelastic curve. These
critical stresses are plotted as a function of the temperature, and the values
of CM and CA are obtained.

(e) Constant stress strain-temperature test: The variation of transformation
temperatures with applied stress can be measured from this test, also yield-
ing values for CM and CA. An alternate definition for CM and CA is the
inverse of the slopes of linear curve fits of transformation temperatures with
applied stress. The value of CM represents the inverse of the rate of change of
the martensite start and finish temperatures with stress, and the value of CA

represents the inverse of the corresponding rate for austenite start and finish
temperatures. These quantities are marked in Fig. 3.30. The test procedure
is described in Section 3.5.3. An alternate procedure is to determine these
constants from test data obtained in a thermally controlled environment (by
external heating).
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Figure 3.38. Critical stresses from constant temperature stress-strain curves.

(f) Constrained recovery test: This test, described in Section 3.5.5, does not
directly yield any points on the critical diagram, but is useful as a check for
the experimental critical points obtained from the other tests.

A convergence of data from different tests on the same curve indicates that
the critical points of the material are unique and show fair agreement with the
assumption of linear variation of the critical stresses with temperature that is inherent
in all the models. The recovery stress data points must lie in the transformation region
between the austenite start and finish curves for heating phase and martensite start
and finish curves for the cooling phase. Since all these tests so far reported were
carried out at very low rates (strain rate = 5 × 10−4/s, heating rates = 1◦C/min),
the conclusions that are drawn from these tests are applicable under quasi-static
conditions only. The strain and heating rates were chosen as representing a quasi-
static value because it was observed that slower strain rates produced no significant
change in the material behavior. Although temperature measurements were not
taken during the isothermal tests, this seems to indicate near-isothermal conditions in
the wire subjected to these strain rates. Since the ratio of heat retained (proportional
to the volume) to heat transferred by convection (proportional to surface area) is
proportional to the diameter of the wire, we expect near isothermal conditions to
be reached at higher strain rates in wires with lower diameters. The choice of a
strain rate of 5 × 10−4/s as quasi-static for this wire, is, therefore, consistent with the
findings reported by Shaw and Kyriakides [59]. Figure 3.36 shows the experimental
critical stress-temperature diagram (environmental heating). Data from four tests –
heat flow measurements (DSC), constant temperature, constrained recovery and
constant stress are consolidated on this plot. The critical points obtained from the
stress-strain plots are plotted in the filled diamond symbols. The filled circle symbols
denote the points obtained from the heat flow measurements to no stress, the square
symbols are used to plot the restrained recovery curve for different prestrain, and the
diamond symbols show the critical points obtained from the stress-strain behavior
at constant temperature for heating and cooling cycles. The unfilled circle markers
are the points obtained from the strain-temperature characteristics. The lines shown
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Table 3.3. Constitutive model parameters
used for 0.015 inch (0.381 mm) diameter SMA
Wire, environmental heating

Value

Parameter Tanaka Brinson

Ms, ◦C 43.5 55.0

Mf , ◦C 40.7 42.0

As, ◦C 52.0

Af , ◦C 65.0

CA, MPa/◦C 8

CM, MPa/◦C 12

σs
cr, MPa – 138

σ
f
cr, MPa – 172

EM, GPa 20.3

EA, GPa 45.0

εL 0.067

are linear curvefits to data and define the regions of martensite start and austenite
start respectively. The martensite finish line is not shown here.

3.7 Comparison of Constitutive Models with Experiments

Having obtained the important material parameters from experiments for each of
the models, their predictions can be compared with experimental data. As noted in
Section 3.5.6, there are significant differences between experiments performed with
environmental heating and with resistive heating. In order to maintain consistency
in the comparisons with the models, the parameters used are obtained from tests
that use only environmental heating. These constants are listed in Table 3.3.

A comparison of the measured stress-strain curve at 35◦C with calculations using
Brinson’s model is shown in Fig. 3.39(a). The correlation between the measured and
calculated values appears satisfactory. Based on the four measured phase transfor-
mation temperatures, it is assumed that the material was initially 100% martensite
(before loading). Therefore the initial temperature-induced martensite (ξT ) equals
one and the stress-induced martensite (ξS) equals zero. During the loading, stress-
induced martensite is formed, ξT decreases, and ξS increases. Figure 3.39(b) shows
the calculated variation of the martensite volume fractions for the elastic region.
It can be seen that initially, ξT = 1 and ξS = 0. Subsequently, as the critical stress
(≈138 MPa) is reached, the stress-induced martensite increases and the temperature-
induced martensite decreases. However, their sum equals 1.0 at all times since this
temperature is below As.

In the Tanaka, and Liang and Rogers models, there is no separate stress-induced
martensite, and therefore the temperature-induced martensite volume fraction stays
equal to one for the elastic region and the transformation region. This may lead to
incorrect estimations of the behavior. Among the constitutive models, Brinson’s
model is applicable for predictions at temperatures below As when the material is
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Figure 3.39. Correlation of Brinson’s model at 35◦C.

starting from randomly oriented ‘twinned’ martensite (Fig. 3.39(a)). At temperatures
above As, however, all the models are applicable.

The comparison of the experiments with the three constitutive models is shown
in Fig. 3.40. The constants Ms and Mf used in Brinson’s model are different from
those in the Tanaka, and Liang and Rogers models due to the differences in their
interpretation of these constants. Among the three constitutive models, only Brin-
son’s model is applicable for predictions at temperatures below As starting from
randomly oriented “twinned” martensite (Fig. 3.39(b)).

At temperatures above As, however, all the models are applicable and they are
compared with experiments at two representative temperatures, one close to Af ,
i.e., starting from nearly pure austenite (Fig. 3.40(a) and the other well above Af

(Fig. 3.40(b)). From the two isothermal comparisons, it can be seen that all the
models match the experimentally measured characteristics of pseudoelasticity quite
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Figure 3.40. Model comparison for isothermal tests, strain rate = 5 × 10−4/s.

closely, and that there are only minor differences in the transformation paths that
are prescribed. Brinson, and Liang and Rogers models predict the same path for
pseudoelastic transformation above Af . It may be noted that the only differences
between the Brinson model and Liang and Rogers model is the form of constitutive
law – Liang and Rogers model uses E(ξ)(ε − εo), while Brinson model uses E(ξ)ε −
E(ξo)εo, and that they both use a cosine model for the transformation kinetics. From
the experimental results, it was observed that these models matched more closely
with experimentally measured unloading curves. It may be also noted that due to
the assumed linear variation of the critical stresses with temperature in all three
models, it is difficult to obtain exact matching of the models to experimental data
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for all temperatures. Therefore, for certain temperatures (Fig. 3.40(a)), the models
slightly underpredict experimental behavior, while in other temperature regimes
(Fig. 3.40(b)), they overpredict experimental results.

It should be mentioned here that because Tanaka’s model employs an exponen-
tial representation for the martensite volume fraction, the results are quite sensitive
to small variations in the material parameters, and the numerical solution scheme
can sometimes go unstable and/or unbounded during the calculations for the stress
and volume fractions. However, the overall correlation for all the models is good
over the entire temperature range, and the differences are minimal.

3.8 Restrained Recovery Behavior (Stress vs. Temperature)
at Constant Strain

The experiments were carried out to determine the behavior of an SMA wire when
its length is constrained. The wire was first prestrained to a certain length at room
temperature (T < As). The load used to prestrain was then removed to bring the wire
to a stress-free state. Only a small elastic portion of the total strain was recovered.
This was accounted for, and the wire was made just taut again. The temperature of the
wire was then increased, and the load applied by the wire on the end constraint was
measured as a function of the temperature. This gives the actuation force capability
of the wire as a function of temperature when it is not allowed to recover its strain.
The load cell attached to the grips was used to measure the stress applied by the
wires, and a thermocouple was used to measure the temperature of the wire. A
thermal chamber was used to control the temperature of the wire. The tests were
carried out at a rate of approximately 5◦C/min (0.083◦C/s).

It was observed that below about 2% prestrain, although the final stress reached
is dependent on the amount of prestrain, the path followed for different prestrains
is independent of the prestrain itself. Above a threshold value of about 2%, both
the final stress attained and the paths followed are fairly independent of prestrain.
Tanaka, and Liang and Rogers models predict a maximum recovery stress that is a
linear function of the martensitic residual strain or initial strain. In the experiments
that were conducted, this was found to be accurate only at low values of prestrains.
One reason for this could be the unavoidable permanent plastic deformations that
result when the wire is constrained from recovering its free length. These are likely
to yield an overprediction for higher values of strains resulting from these models.
A nominal prestrain of 2% was therefore chosen to compare the models with exper-
imental data. It is useful to note an important point relating to the application of
Tanaka, and Liang and Rogers models to constrained recovery data. Since these
models predict transformation between austenite and detwinned martensite only,
their applicability to explain constrained recovery behavior must be interpreted
appropriately. In these simulations, the initial volume fraction of martensite for
these two models is not close to 1.0, even though the material is indeed in complete
martensite phase.

The volume fraction used for the first simulation is εo/ε1, which is the propor-
tion of detwinned martensite that would have been used in the Brinson model. This
adjustment to the models is necessary to apply them to the first cycle of the recov-
ery stress-temperature behavior. However, in subsequent cycles, since the austenite
cools to martensite in the presence of stress, the low temperature phase is mostly
detwinned martensite. This proportion of detwinned martensite is determined by
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Figure 3.41. Model comparisons for restrained recovery curve of stress vs temperature, 2%
prestrain.

the simulations themselves, and can then be used in subsequent simulations with the
Tanaka model without loss of generality. However, by applying these models in this
fashion (which is strictly not correct for the first cycle), one can get the simulations
started, which will then approximate the behavior of the SMA correctly in subse-
quent cycles. Fig. 3.41(a) shows a comparison of the recovery stress predictions with
the various models against experimental data. It can be seen that for the tempera-
ture range and prestrain tested, all the models predict the final recovery stress fairly
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xtip

2.5 kg

SMA wireFigure 3.42. SMA wire with a constant load.

well, although there is slight overprediction with the Tanaka, and Liang and Rogers
models. The path followed on the thermal loading cycle is also well predicted by all
three models. Note that the predictions of the models can be improved by assigning
slightly different values to the experimental constants. However, this often conflicts
with better predictions made using the stress-strain characteristics and the critical
stress-temperature diagram. The constants here were chosen considering test data
from all the three sources, and hence reflect a compromise between characteristics
over the entire thermomechanical range for the particular material. The unloading
cycle, however, is predicted in an idealized fashion by the three models. In experi-
ments, the transition between austenite and martensite did not have a unique starting
point, and occurred over a fairly large range of temperatures. This observation was
made for other prestrain values as well. However, all the models accurately predict
the final steady slope of the thermal unloading fairly. Fig. 3.41(b) also shows the
stress history of the wire after repetitive cycling. The wire is prestrained to 2%,
then kept constrained, while it is heated, and its restrained recovery properties are
recorded over several cycles. This information is especially relevant in applications
involving the use of SMAs as actuators. Since all the constitutive models were found
to yield fairly similar results, Brinson’s model is chosen as a representative model
in this figure. Theoretical calculations are made with the final state of the previous
cycle as the starting input for the current cycle. From the plots, it can be seen that the
final stress levels show a slight increase from the first cycle to subsequent cycles. The
intermediate path taken is also slightly different between the first and subsequent
cycles. However, after three cycles, the material is stabilized, following virtually the
same path and attaining the same final stresses. This is also seen in the model; the
martensitic volume fractions approach equilibrium values after about the third cycle.
This analysis and supporting experimental data demonstrate the feasibility of using
SMAs as actuators under repetitive cycling. This test was conducted for a moderately
low prestrain level of 2%.

3.8.1 Worked Example

An SMA wire of diameter 0.5 mm (0.0197 in.) and length 0.3 m (11.8 in.) is held at
one end and loaded vertically with a weight of 2.5 kg (5.625 lb) (Fig. 3.42). Determine
the tip position of the wire at room temperature (15◦C). Use the Tanaka model to
calculate the tip position xtip , as a function of temperature during quasi-static heating
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to 70◦C followed by cooling to 15◦C. The wire has an initial plastic εL of 6.7%. Use
the material constants given in Table 3.3.

Solution

The stress in the wire is given by

σo = F
A

= 2.5 × 9.81
π(0.5 × 10−3)2/4

= 124.9 MPa

Given that σcr
s = 137.9 MPa, and that As = 34.4◦C, we can conclude that the wire is

purely in the twinned martensite phase. Therefore, the strain is given by

εo = σo

EM
= 124.9 × 106

23.7 × 109
= 0.0053

and the initial deflection is

�lo = εol = 0.0053 × 0.3 = 1.6 mm

Because a weight is suspended from the wire, the stress in the wire is constant at all
times. As the wire is heated, it undergoes a martensite to austenite transformation.
The transformation begins at a temperature T1 and ends at a temperature T2. These
temperatures can be found from the stress influence coefficients.

T1 = As + σo

CA
= 34.4 + 124.9

13.5
= 43.65◦C

T2 = Af + σo

CA
= 48.3 + 124.9

13.5
= 57.55◦C

Similarly, while cooling, the austenite to martensite transformation begins at a tem-
perature T3 and ends at a temperature T4 given by

T3 = Ms + σo

CM
= 26.7 + 124.9

13.2
= 36.16◦C

T4 = Mf + σo

CM
= 23.3 + 124.9

13.2
= 32.76◦C

Let us first consider the heating of the wire. The initial martensite volume fraction,
ξo = 1 because the wire is completely in the martensite phase. During the M → A
transformation, the martensite volume fraction as a function of temperature T , is
given by

ξ(T ) = eaA(As−T )+bAσo

where the constants aA and bA are

aA = ln 0.01
As − Af

= 0.3313 1/◦C

bA = aA

CA
= 2.45 × 10−8 1/Pa

The strain in the wire is given by the governing equation (Eq. 3.3).

(σ − σo) = E(ξ)(ε − εo) + �(T − To) + �(ξ)(ξ − ξo)
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Because the stress remains constant, σ − σo = 0. Neglecting the thermal expansion
and substituting for the phase transformation constant (Eq. 3.5) yields the strain in
the wire between the temperatures T1 and T2 as

ε(T ) = εL(ξ − ξo) + εo

Note that there is no change in strain at temperatures less than T1 and greater than T2.
Similarly, during the cooling of the wire, the initial martensite volume fraction ξo = 0
because the wire is initially purely in the austenite phase. The A → M transformation
occurs between the temperatures T3 and T4. During the phase transformation, the
martensite volume fraction is given by

ξ(T ) = 1 − eaM(Ms−T )+bMσo

where the constants aM and bM are

aM = ln(0.01)
(Ms − Mf )

bM = aM

CM

The tip position of the wire and the martensite volume fraction are shown in
Fig. 3.43.

3.8.2 Worked Example

An SMA wire of diameter 0.5 mm (0.0197 in.) and length 0.3 m (11.8 in.) is held
between two ends, one end in a vice and second end using a spring restraint with
a linear spring constant k = 3500 N/m (20.1 lb/in.) as shown in Fig. 3.44. Assume
that the initial stress in the wire is zero at room temperature (15◦). Use the Tanaka
model to calculate the tip position xtip , as a function of temperature during quasi-
static heating to 70◦ followed by cooling to 15◦. Use the material constants given in
Table 3.3.

Solution

As the wire is heated above the temperature T1, it recovers strain and contracts. This
causes extension of the linear spring and a corresponding increase in stress in the
wire. The stress and strain in the wire are related by the displacement compatibility
of the SMA wire and the linear spring.

ε = −�l
L

= − F
kL

= −σA
kL

where F is the force in the spring, and L is the initial length of the SMA wire.
It is important to point out that the transition temperatures T1,T2,T3 and T4 are
functions of the stress in the wire. In the previous example, because the stress
was always constant, the transition temperatures were also constant. However, in
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Figure 3.43. Heating and cooling of an SMA wire with a constant load.

the present case, the transition temperatures must be recalculated at each stress
value.

For the M → A transformation (occuring between the temperatures T1 and T2),

σo = 0

εo = 0

ξo = 1

xtip

kSMA wire

Figure 3.44. SMA wire with a linear spring.
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Substituting these in the governing equation (Eq. 3.3), and neglecting thermal expan-
sion, we get

σ = E(ξ)ε + �(ξ)(ξ − 1)

Substituting for �(ξ) and ε,

σ = −E(ξ)
σA
kL

− εLE(ξ)(ξ − 1)

This equation can be solved by iteration using Newton-Raphson’s method.

σnew = σold − f (σold)
f ′(σold)

where the functions f (σold) and f ′(σold) are obtained as

f (σ) = σ + E(ξ)
σA
kL

− εLE(ξ)(ξ − 1)

f ′(σ) = ∂f (σ)
∂σ

= 1 + E(ξ)
A

kL
+ σA

kL
∂E(ξ)
∂σ

+ εLE(ξ)
∂ξ

∂σ
+ εLξ

∂E(ξ)
∂σ

− εL
∂E(ξ)
∂σ

where

E(ξ) = EA − ξ(EA − EM)

and from Tanaka’s model,

ξ(σ,T ) = eaA(As−T )+bAσ

this gives

∂ξ

∂σ
= bAξ

∂E(ξ)
∂σ

= (EM − EA)
∂ξ

∂σ
= (EM − EA)bAξ

Substituting this in the equation for f ′(σ) we get

f ′(σ) = 1 + E(ξ)
A

kL
+ σA

kL
(EM − EA)bAξ + εLE(ξ)bAξ

+ εL(EM − EA)bAξ
2 − εL(EM − EA)bAξ

The final stress at the end of the transformation, σf
H is given by substituting ξ = 0 in

the governing equation

σ
f
H = −EA

σ
f
HA
kL

+ εLEA

which results in

σ
f
H = εLEAkL

kL + EAA
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The A → M transformation occurs during the cooling cycle, between the tempera-
tures T3 and T4. The initial conditions for this transformation are given by

σo = σ
f
H = εLEAkL

kL + EAA

εo = −σ
f
HA
kL

= − εLEAA
kL + EAA

ξo = 0

Proceeding as described above, the governing equation becomes

σ − σo = E(ξ)(ε − εo) − εLE(ξ)ξ

The equation is solved using the Newton-Raphson method. The functions f (σ) and
f ′(σ) are given by

f (σ) = σ − σo − E(ξ)
(

−σA
kL

− εo

)
+ εLE(ξ)ξ

f ′(σ) = 1 − ∂E(ξ)
∂σ

(
−σA

kL
− εo

)
+ E(ξ)

A
kL

+ εLE(ξ)
∂ξ

∂σ
+ εLξ

∂E(ξ)
∂σ

But we know that

∂E(ξ)
∂σ

= (EM − EA)
∂ξ

∂σ

From the Tanaka model, the martensite volume fraction is given by

ξ(σ,T ) = 1 − eaM(MS−T )+bMσ

This gives

∂ξ

∂σ
= bM(ξ − 1)

Substituting in the expression for f ′(σ),

f ′(σ) = 1 − (EM − EA)bM(ξ − 1)
[
−σA

kL
− εo − εLξ

]
+ E(ξ)

A
kL

+ εLE(ξ)bM(ξ − 1)

The calculated stress, tip position, and martensite volume fraction are shown in
Figs. 3.45–3.47.

3.9 Damping Capacity of SMA

When the material is in the austenite phase, a large tensile stress induces a trans-
formation to the martensite phase (stress-induced martensite). Above the critical
stress, a significant increase in strain takes place without much increase in stress.
Upon unloading, the large strain is recovered with a considerable hysteresis. This
is the pseudoelastic behavior of the SMA. The area enclosed in the stress-strain
hysteresis loop represents the amount of energy dissipated in one cycle, which is
transformed into heat. This occurs as a result of the internal friction and is respon-
sible for the damping capacity of the material. This damping capacity depends on a
variety of internal and external parameters that include strain amplitude, strain rate
(or frequency of cyclic loading), alloy composition, grain size, heat treatment, and
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Figure 3.45. Stress in the SMA
wire, acting against linear
spring.

thermo-mechanical cycling. It is well known that the forward martensitic transfor-
mation is exothermic, whereas the reverse transformation is endothermic. Hence,
high strain rates result in temperature changes, which in turn affect the stress-strain
behavior. Lammering and Schmidt [64] showed that the area of the hysteresis loop is
reduced with increasing strain rate. The damping capacity of SMA is highly depen-
dent on the vibration amplitude.

Due to the stress-induced martensitic phase transformation and reorientation of
martensitic variants, the stress-strain behavior exhibits considerable hysteresis. As
a result, SMA possesses a high damping capacity in both austenite and martensite
phases. In the martensite phase, the damping appears to be caused by the mobil-
ity of the twinned phase interfaces and defects inside the martensite phase. Liu
and Humbeeck [65] have shown that the damping level in the martensitic phase is
dependent on the strain amplitude and annealing temperature. The damping capac-
ity increases with strain amplitude, but decreases with increasing number of cycles
until it reaches a stable value. The austenite damping capacity is generally smaller
than the martensite value. Pushtshaenko et al. [66] studied the vibration damping of
a shape-memory alloy rod using the Likhachev model [67] that allows description of
the one-way effect, pseudoelastic properties, and thermal loading cycles in a modular
manner.

The SMA damping can also be characterized using a complex modulus approach.
Gandhi and Wolons [68], and Wolons et al. [69] showed that the hysteretic behavior
of Nitinol undergoes a considerable change as the frequency of excitation increased.
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Hence, using the quasi-static hysteresis would then lead to erroneous predictions of
the damping capacity of the material. They characterized the damping behavior of
Nitinol above the austenite finish temperature using the complex modulus approach.
The value of loss modulus at 6–10 Hz was found to be about 50% of that at low
frequency and did not show any major reduction at higher frequencies. As the
strain amplitude increases, the storage modulus (stiffness) initially decreased rapidly,
implying the softening of the material, followed by a much smaller change with
amplitude. A change in temperature has a significant effect on both the storage
modulus and the loss modulus.

3.10 Differences in Stress-Strain Behavior in Tension and Compression

The discussion in the preceeding sections has focused primarily on the behavior
of SMA in tension. For experiments and applications involving an SMA wire, it is
only possible to apply uniaxial tensile stresses on the material. However, numerous
applications make use of SMA in different shapes such as washers [70, 71], tubes and
bars. Also, for torsional loading, the material is exposed to both compressive and
tensile stresses. In these applications, the material is often exposed to a combination
of tensile and compressive stresses. Experimental evidence shows that the behavior
is extremely sensitive to the type of loading. Several studies have been reported in the
literature on the comparison of SMA behavior in tension and compression. Inman
et al. [70] performed tests on SMA (Ni-55.7% Ti) ring and disc samples in both
tension and compression at different temperatures and under different cycling and
annealing procedures. The shape of the stress-strain curve, transformation stresses
and elastic moduli were shown to depend on whether the applied stress is tensile or
compressive. Some typical experimental results are shown in Table 3.4. Auricchio
and Sacco [72] and Gall et al. [73] reported that the recoverable strain in the case
of compression is approximately 2%–3% less than in the case of tension. The room
temperature tensile and compressive stress-strain curves for another composition of
NiTi are shown in Fig. 3.48 with corresponding material constants listed in Table 3.5.

The transformation stresses in compression are lower than the corresponding
values in tension, while the stress at a particular value of strain is higher in the case
of compression than in tension. However, the specific variations in behavior are
highly material dependent. In general, the stress-strain behavior in tension is quite
different than in compression [74, 65, 10, 75, 76]. The main difference is seen in the
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Table 3.4. Measured properties in compression and tension for
Ni-55.7% Ti, from [70]

EM EA ET εL σcr
s

GPa GPa GPa % MPa

Compression 50 23 7 −2.4 −330
Tension 42 25 0.7 4.6 210

shape of the martensite detwinning region. Liu et al. [74] reported that the slope of
the transformation region is different in the case of the tension and the compression
stress-strain curves. In the case of tension, this detwinning region exists as a nearly
horizontal plateau, whereas in the case of compression, no such plateau exists and
the detwinning region is characterized by a lower modulus. This is attributed to
micromechanical differences in the martensitic detwinning mechanism in the pres-
ence of an external stress. In the case of mechanical cycling involving both tensile
and compressive stresses, it has been observed that the curve is assymetric about
zero.

3.11 Non-Quasi-Static Behavior

The previous sections discussed the experimental characteristics and constitutive
modeling of SMA wires under quasi-static conditions, in which the strain rates were
relatively low. Most constitutive models describing SMA phenomenology show good
agreement with the experimental characteristics of the material under this kind of
loading. With high strain rates, the material behavior is significantly different from
that observed under quasi-static conditions [77, 78]. It is important to understand
these differences in order to design SMA actuators for dynamic applications.

The reasons for this change in the material behavior with the loading rate are
not completely understood. It is postulated that high strain rates are accompanied
by a significant change in material temperature, which in turn affects the mechanical
behavior of the material [59, 62, 61]. This is due to the origination of local nucleation
sites with temperature differences along the wire [77]. It has been shown that the
material may momentarily reach higher temperatures locally, and then settle down
to a lower equilibrium condition. It has been demonstrated that the dependence on
strain rate disappears when the wire is placed in an effective heat sink [79], further
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Table 3.5. Measured properties in compression and
tension for Ni-55.7% Ti, from [70]

EM σcr
s εL

GPa MPa %

Compression 13.2 −115 −3.2
Tension 13.2 65 5

indicating that the cause of the mechanical variation in material characteristics may
be due to the non-uniform change of the temperature of the material during non-
quasi-static loading. From these observations, it appears that the non-quasi-static
mechanical behavior of the SMA is strongly coupled with its temperature response.

It is essential to define the term “quasi-static rate of loading,” since this is not
an absolute quantity and varies with the test sample size and its thermo-mechanical
condition. A “quasi-static rate” can be defined as a rate below which no significant
variation in the stress-strain characteristics of the wire is observed. Note that the
quasi-static condition also depends on the size of the specimen, as described in
Section 3.5.4. For example, for a Nitinol wire of diameter 0.015 in., this strain rate
corresponds to approximately 5 × 10−4/s.

3.11.1 Stress-Relaxation

One of the effects of a high strain rate can be observed in the stress-strain behavior
of the wire. An experimental setup similar to that described in Section 3.5.4 can be
used to investigate this effect, while increasing the strain rate significantly higher than
the quasi-static value. The strain is increased at a non-quasi-static rate to a certain
value and then held constant. The resulting stress time history is shown in Fig. 3.49.
The temperature of the thermal chamber is kept constant at 25◦C. It can be seen
that the stress increases along with the strain to a maximum value, and then slowly
decreases with time after the strain rate is turned to zero. The stress stabilizes to a final
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value that is less than the initial transient peak. The final value of the stress reached
has about the same value as obtained in the quasi-static test described in Section 3.5.4.
This decrease in stress due to the ‘stress-relaxation’ can be of the order of 70% of
the initial stress. Similar behavior is observed at different operating temperatures,
with a decrease in the amount of stress-relaxation at higher temperatures.

The relaxation behavior in SMAs has also been reported before in other alloy
systems [80, 81] and more recently, in Ni-Ti alloys [82]. This effect is significant, since
it implies that the variations of the stress state of the material with non-quasi-static
loading are temporary, and that the material settles down to its quasi-static value
when strain is kept constant.

3.11.2 Effect of Strain Rate

The stress-strain behavior at non-quasi-static strain rates can also be measured with
the experimental setup described in Section 3.5.4. Although the temperature of the
thermal chamber in which the wire is mounted is kept constant, the temperature
of the wire itself may change as a result of the loading. Fig. 3.50 shows the stress-
strain curves at two different environmental temperatures of 45◦C (below Ms) and
70◦C (above Af ) respectively. At both temperatures, when the material is loaded
at a faster rate, the stress levels are significantly higher than those observed in the
quasi-static test (at strain rate of 0.0005/s). The main difference noticed here was the
increased slope of transformation region. For both temperatures, it can be seen that
the transformation stresses remain almost constant.

At high environmental temperatures (Fig. 3.50(b)), the similar trend of increased
slope of transformation regions at higher strain rates appears during both loading
and unloading cycles. Loading at higher strain rates results in a higher final stress for
the same final strain. The change in critical transformation stress with strain rate is
relatively small.

The effects of non-quasi-static strain rates can be summarized as

1. The transformation stresses in the wire at a constant environmental temperature
increase with rate of strain for non-quasi-static loading.

2. These stresses ‘relax’ to quasi-static values when the strain is kept constant or
when the strain rate returns to a quasi-static value.

The differences pointed out in tests carried out at different rates and conditions
of loading also serve to emphasize the need to standardize the conditions of testing
for an SMA material, so that meaningful comparisons and conclusions can be drawn
between different test samples.

3.11.3 Modeling Non-Quasi-Static Behavior

The constitutive models described in previous sections are adequate to describe
the behavior of the wire under quasi-static conditions. However, they do not include
terms dependent on strain rates, and hence do not take the non-quasi-static behavior
into consideration. For dynamic loading, an accurate prediction of the strain rate –
dependent behavior is important for proper evaluation of the response of any device
using SMA.

One approach to modeling non-quasi-static effects is to derive constitutive
models with a fundamental dependance on strain rate. This approach has been
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Figure 3.50. Variation of stress-strain behavior with strain rates.

extensively used in modeling high-rate plastic behavior of metals [83]. The kinetics
of the phase transformation can be modeled using strain energy functions [84] and
Phase Interaction Energy Functions (PIEF) [48], among others. Phenomenological
models [50] that estimate the effects of frequency and strain rate on the mechanical
characteristics of the SMA in a limited temperature range have also been attempted.

A simple way of incorporating the effect of strain rate is to use a heat transfer
model in a thermomechanical approach coupled with the rate form of quasi-static
models [85, 86]. These models, however, have been applied only to the pseudoelastic
regime in most cases [87]. The coupled model has two parts: one describing the rate
form of SMA constitutive models to prescribe the stress rate, and the other, an
energy analysis to prescribe the temperature rates induced in the wire. Because the
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differential equations describing stress rates and temperature rates are coupled, a
simultaneous solution must be obtained solving both these equations.

The following assumptions are made in the derivation:

1. The temperature of the wire is the same throughout the material.
2. The stress and strain fields inside the material are the same throughout the

sample.
3. The critical stresses of transformation of the material are invariant with strain

rate.

A brief description of incorporating strain rate terms in the quasi-static consti-
tutive relations, and a derivation of thermomechanical equilibrium is given below.

3.11.4 Rate Form of Quasi-Static SMA Constitutive Models

The Brinson model [37] is used as a representative model in this discussion, although
the formulation can be extended to any other quasi-static model that predicts SMA
behavior, such as the Tanaka model [35] and the Liang and Rogers model [36]. In the
present formulation, the stress rate is determined as a function of not only the state
variables – strain and temperature – but also their associated rates. The constitutive
equation can be represented in the following first-order form:

σ̇ = σ(ε,T, ε̇, Ṫ ) (3.59)

where σ̇, ε̇, and Ṫ are the rates of stress, strain and temperature respectively, and
σ, ε and T are their instantaneous values. In the following analysis, the temperature
rate and corresponding instantaneous temperature can be either prescribed exter-
nally, or determined from a coupled heat-transfer analysis described in the following
section.

The quasi-static formulation for the Brinson model (Section 3.4.3) is

σ − σo = E(ξ)ε − E(ξo)εo + �(ξ)ξs − �(ξo)ξso + �(T − To) (3.60)

where the modeling variables and constants are the same as those defined in Sec-
tion 3.4.3. A rate form of these equations can be derived by taking derivatives with
respect to time

σ̇ = Eε̇ + �sξ̇s + �T ξ̇T + �Ṫ (3.61)

where �T and �S are the transformation stresses associated with the temperature
induced and stress induced transformations respectively. Neglecting the contribution
of pure-phase thermal expansion (�Ṫ term) and applying initial conditions to these
equations, we can derive the rate-form of the simplified Brinson equation to be

σ̇ = E(ξ)(ε̇ − εLξ̇s) (3.62)

The equations for the martensite volume fraction rates are obtained by taking
time derivatives of the corresponding quasi-static equations. For the conversion to
martensite, the martensitic volume fraction rates are given by
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where, if Mf < T < Ms and T < T0

�̇Tε = −
(

1 − ξTo

2

)
aMṪ sin(aM(T − Mf )) (3.65)

else

�̇Tε = 0 (3.66)

For conversion to austenite, these variables then become:
For T > As and CA(T − Af ) < σ < CA(T − As)

ξ̇ = −ξo

2
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(
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)
sin
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(
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)]
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ξ̇T = ξT o
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ξ̇

(3.67)

where the material constants are the same as defined in the quasi-static Brinson
model, and are obtained from a comprehensive experimental characterization of the
SMA wire [78]. It is important to note that the development of the rate equations
yields the same predictions as the quasi-static form of the Brinson model, provided
the temperature is held constant (temperature rate is zero).

Using the rate formulation and given the instantaneous temperature and rates of
temperature and strain, this differential equation can be solved for the instantaneous
stresses. However, in reality, the temperature rise of the material is not an indepen-
dent prescribed function, but is coupled to the loading, material characteristics, and
heat transfer aspects of the test sample. Describing the instantaneous temperature
rates in terms of these states requires an energy analysis of the SMA material [88].

3.11.5 Thermomechanical Energy Equilibrium

The instantaneous temperature and rate of temperature can be calculated by con-
sidering an energy equilibrium between the input energy to the material and the
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energy that is lost or absorbed. Because this is a rate formulation, the equilibrium
equation is written in the form of an energy rate, or power equilibrium.

The equilibrium equation can be written as

Pin = −Ploss + Pabsorbed (3.68)

The input power Pin, is composed of two parts; the mechanical power that is causing
the deformation (for example, imposed through the grips of the testing machine),
Pmech, and the heat supplied by activation of the material Pact. In the case of constant
temperature stress-strain tests, Pact = 0. This term only exists when the wire is resis-
tively heated, and is discussed in greater detail in Section 3.12.1. The heat lost to the
surroundings, Ploss depends on the convective, conductive, and radiative properties
of the sample. This depends on the specific application or experimental setup. The
heat absorbed by the SMA specimen itself, Pabsorbed, consists of two parts: the specific
heat component that causes a rise in temperature of the material, and a latent heat
component that is present during a phase transformation and occurs at constant
temperature. The rate of strain energy stored in the material, Pstrain, also appears in
terms of the absorbed power. Expanding the terms on each side, and assuming that
heat losses are dominated by convection, the overall equilibrium equation is

Pmech + Pact = −Pconv + Pstrain + Pspec + Platent (3.69)

Each of these quantities can be expressed as a function of the material states, and
validated individually against experimental data. Eq. 3.69 then relates the evolution
of the rate of temperature with the absolute stress, strain, and temperature as well
as the rates of strain and stress in the material. By solving this equation and the rate
form of the constitutive equation (Eq. 3.62), the evolution of the temperatures and
stresses in the SMA can be computed simultaneously.

Rate of Change of Strain Energy

The rate of change of strain energy stored in the wire is given by

Pstrain = 1
2
V(σε̇ + σ̇ε) (3.70)

where V is the volume of the material. This quantity is positive during the loading
cycle, indicating work done on the wire sample. This quantity becomes negative
during unloading, indicating work done by the wire. Note that the stress rates are
related by the SMA constitutive behavior described in Eq. 3.62.

Heat Dissipation: Convective Losses

Assuming that convective losses are the dominant form of heat loss, the heat lost
from the material is given by

Ploss = hA�T (3.71)

where A is the surface area of the material, �T is the difference between sample and
environmental temperatures, and h is the convective heat-transfer coefficient. This
is a function of the mounting configuration and dimensions of the test sample, as well
as the environmental temperature, and can be estimated using empirical formulae
for a given configuration.
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An SMA wire mounted in a thermal chamber can be treated as a cylinder with
free convection [89]. The empirical relationship for heat transfer coefficient h is
given by

h =
¯NuDk
D

(3.72)

where ¯NuD is the Nusselt number based on the cylinder diameter and ambient
temperature, k is the thermal conductivity of air, and D is the diameter of the
cylinder. The Nusselt number and thermal conductivity of air are determined from
empirical relationships [90].

¯NuD =
[

0.57 + 0.377Ra
1
6
D[

1 + ( 0.539
Pr )

9
13

] 8
57

]2

RaD = gβ(Ts − Tinf)D3

να

(3.73)

where RaD is the Rayleigh number, that represents the degree of turbulence in the
thermal boundary layer of the element. The values of Prandtl number Pr, volumetric
thermal expansion coefficient β, dynamic viscosity ν, and thermal diffusivity α are
determined from the look-up table of thermophysical properties of air [89]. Note that
the Nusselt number, and thus the heat transfer coefficient as well is a function of the
temperature difference between the sample and the ambient air, and therefore needs
to be updated constantly as the material temperature varies, reaching a converged
solution for each time-step.

From this calculation, an estimate of the heat transfer coefficient can be obtained
for a given configuration. Note that the heat transfer coefficient varies directly in
proportion to the surface area and inversely with the volume, and is therefore more
likely to affect the calculations for a thin wire. The heat transfer coefficient also
varies greatly with surface finish and other properties of the material interface. It is
important, therefore, that the heat transfer coefficient obtained using the empirical
formulae be experimentally validated.

Heat Absorbed by the Material

The heat absorbed by the material consists of two parts, the specific heat and the
latent heat. The specific heat component is the heat that is absorbed or released by
the material in order to increase or decrease its temperature. The net specific heat
is the sum of the specific heats of the martensite and austenite components of the
material. The net specific heat Cp and the heat rates to change the temperature of
the material are given by

Cp = ξMCpM + (1 − ξM)CpA

Pspec = mCp�T
(3.74)

where m is the total mass and CpM, CpA and Cp are the specific heats of pure
martensite, pure austenite, and mixed phase respectively.

The latent heat of the material is the heat absorbed or released to change the
phase of the material at constant temperature. It appears only during transformation,
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Table 3.6. Material constants used for 0.015 inch (0.381 mm) diameter SMA Wire

Value

Constant Martensite Austenite Source Units

Cp 600 600 DSC tests J/Kg/K
k 0.086 0.18 SMA manufacturer [92] W/cm ◦C
ρ 0.83 × 10−6 0.77 × 10−6 Resistance tests �-m
E 20.3 45 Mechanical testing(Section 3.5.4 Pa
L 5000 DSC tests J/Kg
h 10.43a Heat transfer tests W/m2K

a Heat transfer coefficient h determined for a wire diameter of 0.015 inches, wire temperature = 90 C,
room temperature = 25 C

and is proportional to the rate of phase transformation occurring in the material. It
has been shown [59] that the martensite-to-austenite transformation is exothermic
(heat emitting), while the austenite-to-martensite transformation is endothermic
(heat absorbing). Because this quantity is related to the transformation process, it
is a function of the rate of change of the martensite volume fraction and can be
represented as

Platent = mLM→Aξ̇ (3.75)

This quantity takes the sign of ξ̇, and is positive, during transformation from austenite
to martensite, and negative during the reverse transformation, accurately represent-
ing the physical nature of the latent heat. The parameters required to calculate
the heat loss and heat absorbed can be measured experimentally. Typical values of
these parameters are listed in Table 3.6. Bhattacharyya et al. [91] experimentally
determined the convection coefficient for Nichrome and NiTi shape memory alloy
wires subjected to a constant load, heated by electric current, and cooled by free
convection. A simplified phenomenological model of the convection coefficient is
developed.

The model can also be applied to any arbitrary loading condition where the
strain rate is prescribed as a function of time. Fig. 3.51 shows the predicted stress
and temperature profiles for a test involving composite strain rates (where the strain
rate is stepped down from a value of 0.01/s to 0.0005/s during loading). From Fig-
ure 3.51(a), we observe good qualitative agreement with the experimental data.
However, the rate of stress relaxation is underpredicted, possibly owing to the heat
transfer coefficient being underpredicted.

Fig. 3.51(b) shows the corresponding theoretical and experimental tempera-
ture profiles for this test involving the two different strain rates. As predicted in
the model, an instantaneous drop in the temperature was experimentally observed
when the loading condition is changed. In addition, the experimental temperature
profile is in qualitative agreement with the model predictions, further justifying this
modeling approach to predict strain rate variations. However, the magnitude of the
temperature rise and fall is again over-predicted in the model, possibly owing to the
temperature measurement issues described previously. However, the good qualita-
tive agreement for this complex temperature profile is a promising result for the
current modeling approach.
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Figure 3.51. Model predictions for stress and temperature evolution for composite strain
rates, 0.01/s and 0.0005/s. Environmental temperature = 84◦C.

Viello et al. [93] showed using a Tanaka-based analysis and experimental testing
that the strain rate had a great influence on SMA load-displacement response. For
prediction with high strain rates, it is important to couple the material constitutive
model with a thermodynamic model that can account for internal heat produced in
terms of both a phase-transition latent heat and a mechanical dissipation.

Leo et al. [94] carried out experimental and analytical studies to investigate the
effects of temperature and strain rates. In the pseudoelastic range, temperature and
strain rate effects were found to be coupled. They tested two identical 0.0652 mm
diameter NiTi wires at 23◦C in air and in water respectively. Three strain rates of
0.5, 5, and 50 mm/min were applied. It was shown that when the temperature of the
alloy was held constant, the effect of strain rate on the pseudoelastic behavior was
small.

3.11.6 Cyclic Loading

Consider a case of purely tensile stress. The cyclic loading generates a non-quasi-
static strain condition, which affects the thermomechanical behavior of the SMA.
Miyazaki et al. [95], Perkins and Sponholz [96], and Lim and McDowell [97] have
shown that the main reason for a significant change in the thermomechanical behav-
ior of SMA is the generation of defects in its microstructure, resulting in a pile-up of
dislocations around defects. This results in an accumulation of residual martensite
volume fractions. It is observed that for constant amplitude cyclic strain, there is a
reduction in the forward phase transformation stresses and there is a general work
hardening. On the other hand, there is an increase of stresses during the reverse
phase transformation. Also, there is an accumulation of residual strain in the direc-
tion of loading, which stabilizes with cycles. Furthermore, there is a reduction of
the pseudoelastic hysteresis area. However, if the cyclic stresses are in the elastic
range (not in pseudoelastic hysteresis), there is a negligible effect on the thermoe-
lastic behavior. Once the pseudoelastic behavior is stabilized at a large cyclic strain
amplitude, a low strain amplitude has no effect on the pseudoelastic behavior.
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3.12 Power Requirements for SMA Activation

The power requirement for operating an SMA actuator depends on the type of
heating employed. The basic principle involved is a power balance between the heat
supplied, the heat absorbed by the SMA material itself, and the heat loss through the
surrounding material. In the case of external heating, the heat transfer characteristics
depend on the position of the heater, the efficiency of the heater, the intervening
medium, and other factors. Therefore, calculation of the required power for external
heating is highly specific to the application itself.

In the case of resistive heating, the heat supplied by the input electric current as
well as the heat absorbed by the SMA material can be calculated. The heat loss from
the actuator is, however, dependent on the specific configuration of the actuator. The
calculation of required power is complicated by the fact that the resistivity, specific
heat capacity, Young’s modulus, and other properties of the wire change during the
transformation by large amounts.

The thermodynamic equilibrium of the SMA wire can be described by the
following equation:

Pin = Pabs + Ploss (3.76)

where Pin is the input power in the form of electrical power and Pabs is the heat
retained by the SMA in the form of specific heat and latent heat. The heat lost to
the surroundings, Ploss, is in the form of conduction from the wire to the surrounding
composite material and convection to the ambient air.

3.12.1 Power Input: Resistance Behavior of SMA Wires

The power input to the SMA wire occurs in the form of Joule heating due to the
resistance of the wire itself. The power input is given by

Pin = i2Rwire (3.77)

where i is the current passing through the wire and Rwire is the resistance of the
wire. However, previous research [98, 99] has shown that SMAs exhibit a large
change in resistance when they undergo transformation. This behavior of electrical
resistance is the combined effect of the changing electrical resistivity (ρ) of the
material, and changes in the length and cross-sectional area of the SMA wire. It can
be assumed that the resistivity remains constant in the pure phases and changes only
during transformation. This variation can be described by the following piecewise
approximation.

For heating:

ρ(T, σ) =

⎧⎪⎨⎪⎩
ρM if T < As,

ρA if T > Af ,

ρMξ + ρA(1 − ξ) if As < T < Af

(3.78)

For cooling cycle:

ρ(T, σ) =

⎧⎪⎨⎪⎩
ρA if T > Ms,

ρM if T < Mf ,

ρMξ + ρA(1 − ξ) if Mf < T < Ms

(3.79)
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Figure 3.52. Resistance variation in SMAs.

where ρ is the resistivity of the material at a temperature T . ρM and ρA are the resis-
tivities of the wire in martensite and austenite phases respectively. Typically, ρA is
approximately 15–20% less than ρM. These parameters are listed in Table 3.6. These
values depend on the stress in the material and can be found experimentally using a
setup similar to the constant stress tests described in Section 3.5.3. Fig. 3.52(a) shows
a schematic of the setup used to obtain the variation of resistance with temperature.
An SMA wire of diameter 0.015 inch was heated in a tube furnace (external heating).
The furnace was heated using a variable power source, and cooled through convec-
tion with the outside air (accompanied by a decrease in input heat from the furnace).
The heating and cooling was carried out at slow rates (≈0.5◦C/min). One end of the
wire was fixed to the furnace, and a dead weight was suspended from the other end of
the wire through a pulley to maintain a constant stress in the wire. The temperature
of the wire was monitored using a k-type thermocouple placed directly on the wire.
This was connected to a thermal controller and a data acquisition computer. Note
that it is possible to carry out a similar experiment using resisitive heating, but this
would require a more complicated experimental setup to extract the resistance of
the wire from the voltage supplied and current drawn.

Fig. 3.52(b) shows the resulting variation of resistance with temperature during
the heating cycle for different stresses applied to the wire. The inflection points in
the resistance can be used to detect the transformation temperatures of the wire
and their variation with applied stress. Note that as expected, the transformation
temperatures show an increase with increasing stress. The data on the variation of
transformation temperatures with stress obtained from this experiment show good
agreement with previously obtained critical stress-temperature data obtained from
mechanical testing (Section 3.6).

The overall resistance of the wire is then obtained from its resistivity. It is
important to note that the resistance of the wire is a function not only of the resistivity
of the wire material, but also the length and cross-sectional area of the wire, which
change during transformation. Therefore, while the resistivity of the martensite
phase, for example, is independent of the stress, the resistance of the wire can
change depending upon the amount of deformation. A strain of ε in the wire is
accompanied by a corresponding decrease in the cross-sectional area of the material
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such that the net volume remains about constant. The resistance of the wire is then
represented as

R(T, σ) = ρ
l′

A′

= ρ
(l + εl)2

Al

(3.80)

where l and A represent the original length and area of the unstrained wire respec-
tively, and l′ and A′ represent its deformed length and area. Such a formulation can
be included with a constitutive model such as the Brinson model in order to calculate
the resistance behavior of the SMA wire, and therefore the input electrical power.
Note that the temperature coefficient of resistivity has been ignored in the above
discussion, but can easily be included if necessary.

Fig. 3.53 compares the theoretical predictions of the resistances with experi-
mental data for two different applied loads. From the figure, it is seen that the
magnitude of the increase of the resistance with applied load is predicted accurately
by the model, especially for lower values of stress. It is also observed that the overall
behavior of the resistance during the transformation region shows good agreement
with the predictions from the theoretical model. The experimental high stress curves
exhibit a nearly linear variation in the resistance of the material even above Af ,
which is not predicted in the models. A possible reason for this discrepancy could
arise from the temperature – coefficient of resistivity of the material in pure phase,
which is neglected in the current formulation. However, limited available data exists
in the literature to estimate this coefficient for a material in pure austenite.

In spite of the drawbacks in the current material model, it is seen that the
model predicts the behavior of the resistance quite satisfactorily for lower values of
stresses. It is therefore a useful tool for making preliminary estimates of the energy
requirements for activation of an SMA wire.

3.12.2 Heat Absorbed by the SMA Wire

Another important aspect of determining power requirements for the wire is the
variation of heat capacity of the wire with temperature. This issue was also discussed
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in Section 3.11.5. The heat absorbed by the material has two components; a specific
heat and a latent heat.

The specific heat component is given by

Pspec = mCp�T (3.81)

where m is the total mass of the material, and �T is the change in its temperature.
The specific heat of the material, Cp , can be assumed to vary linearly with volume
fraction of martensite

Cp = ξCpM + (1 − ξ)CpA (3.82)

where CpM and CpA are the specific heats of pure martensite and pure austenite
respectively.

In Section 3.11.5, the latent heat rate was described in terms of the rate of change
of martensite volume fraction, ξ̇ as

Platent = mLM→Aξ̇ (3.83)

where LM→A is the latent heat of the martensite to austenite transformation.
The parameters CpA, CpM and LM→A are all obtained from experiments for a

particular sample of SMA. The values of these parameters are listed in Table 3.6.

3.12.3 Heat Dissipation

In the case of an SMA wire in air, such as in the experimental fixture described in
Section 3.5.4, it can be assumed that all the heat dissipation occurs by convection.
Because the diameter of the SMA wire is small, heat conducted away from the wire
through the end fixtures can be neglected.

Using simple one-dimensional thermal transfer theory [89], the rate of convec-
tive heat loss is

Ploss = hA(T − T∞) (3.84)

where h is the effective heat-transfer coefficient of the material, A is the exposed
cross-sectional area, and T∞ is the temperature far away from the SMA. The method
of obtaining the heat coefficient using empirical models for the SMA wire is described
in detail in Section 3.11.5. A typical value of the heat transfer coefficient for the
material is given in Table 3.6.

3.13 Torsional Analysis of SMA Rods and Tubes

There are many applications of SMA rods and tubes in torsion. As such, it is impor-
tant to understand the modeling and analysis of these structures in torsion. A simple
torsion model can be developed based on the extension of a one-dimensional for-
mulation, such as the Brinson model, and can incorporate the quasisteady thermo-
mechanical characteristics of the material.

Although the behavior of a cylindrical structure undergoing pure torsion can
be idealized as a one-dimensional problem, there can be some differences between
the torsional and extensional characteristics of the material that are accentuated in
the case of SMAs. In the extensional case, each element of the structure is strained
axially under a constant applied stress. In an axisymmetric structure, such as a rod or a
tube undergoing torsional deformation, the extensional stress/strain is not constant
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Figure 3.54. Representative stresses on a structural element for a rod in torsion.

throughout the structure, but is a function of the radial location of the material
element. Furthermore, the central low-strain region remains elastic, while the outer
high-strain layers will undergo martensite transformation. The global elastic twist
due to the applied torque depends on the state of the material at each local element.
As such, the overall response can be viewed as a cumulative behavior of several
structural elements.

Consider the behavior of a SMA rod acted upon by a pure torque. A condition of
pure torsion is assumed at each cross-section of the SMA rod, with no axial or radial
stress. This means that every structural element is in a state of pure shear loading.
This in turn can be expressed as the combined effect of pure compression and pure
tension, acting at an angle of 45◦ to the longitudinal axis of the rod (Fig. 3.54).
Therefore, to simplify the analysis, it is assumed that the local elemental behavior
can be expressed in terms of an extensional constitutive model. Consequently, the
stresses, strains, martensite volume fraction, and Young’s modulus are all functions
of the radial location of the element.

It is also assumed that each radial element acts independently of the radial
elements surrounding it. The formulation intrinsically assumes continuity of stress
and strain across the radius, but does not account for any interaction between the
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radial elements. Similar to a normal isotropic cylinder in torsion, all radial elements
at a particular axial station undergo the same angular deformation, which results in a
condition of no sectional warping. Further, it is assumed that a constant temperature
exists across the entire structure.

With these assumptions, we expect only a first order analysis of torsional behav-
ior, and can extend the one-dimensional extensional modeling of the SMA to the
torsional case without any added complexity of material modeling. There are many
inherent limitations of such a simplifying analysis. For example, due to thermo-
mechanical coupling as well as thermal boundary conditions, it is expected that
there will be some non-uniformity of temperature within the structure.

For a rod (or tube) of uniform cross-section, with a given angular deflection θ,
the shear strain γ varies linearly across the radius of the rod, and is given by

γ(r) = θr
L

(3.85)

where r is the radial location and L is the total length of the rod. From classical
torsion theory, the shear strain and normal strain ε at 45◦ are related by

ε(r) = γ(r)
2

(3.86)

Thus, the normal strains vary linearly across the radius, with the outer surface
experiencing the highest strain. The resulting normal stress is a function of material
properties and can be expressed as

σ(r) = σ(ε,T, ξ, r) (3.87)

Similarly, the shear stress τ at any radial station can be transformed into a combina-
tion of normal tensile stress and normal compressive stress.

τ(r) = Gγ(r) (3.88)

where G is the shear modulus, which is related to the Young’s modulus by

G = E
2(1 + ν)

(3.89)

where ν is the Poisson’s ratio of the material. The normal stress can also be written
as

σ(r) = E(r)ε(r) (3.90)

This results in

τ(r) = σ(r)
(1 + ν)

(3.91)

The torque T necessary to obtain a desired angular twist θ is obtained as

T =
∫ ro

ri

2πr2τ dr

=
∫ ro

ri

2
σ(r)
1 + ν

πr2 dr

(3.92)

where ri is the inner radius of the tube, and ro is the outer radius of the tube. In the
case of a rod, ri = 0.
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Figure 3.55. Torsional model sim-
ulations at different radial loca-
tions for a SMA rod undergoing
torsional deformation.

Each radial element of the rod (or tube) follows the same stress-strain-
temperature profile as those of SMAs under extensional loading. However, the
different radial locations execute different stress-strain-temperature loops simulta-
neously. This is illustrated in Fig. 3.55, which shows the state of stress and strain
at four radial stations of a rod of diameter 6.35 mm (0.25′′) undergoing torsional
deformations at a constant temperature of 100◦C. From Fig. 3.55(a) it can be seen
that the strains are larger at greater radial stations, and are linearly dependent on
the angle of twist. Accordingly, as shown in Fig. 3.55(b), the material at each radial
station traces out its own minor loop on the stress-strain diagram. The torque can
be calculated numerically by dividing the rod (or tube) into N radial elements.

T =
N∑

j=1

2π
1 + ν

r3
oj

− r3
ij

3
σj (3.93)
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(a) Axial stress-strain behavior for open
section tube (sample C)

(b) Torque vs. angle behavior for SMA
tube (sample B)

Figure 3.56. Comparison of model prediction with test data.

3.13.1 Validation with Test Data

The SMA constitutive model requires several parameters that are obtained by
extensional testing of SMA specimens. The torsion tests were carried out on three
specimens. The first one was a solid rod of diameter 6.35 mm (0.25′′), referred to as
Sample A. The second one was a thin-walled tube with an outer diameter of 10.2
mm (0.4′′) and inner diameter of 7.1 mm (0.28′′) referred to as Sample B. This tube
was constructed out of a solid rod of outer diameter 10.2 mm (0.4′′) and bored on
the inside by a wire electron-discharge machining process. As a consequence of the
machining process, a tubular open cross-section sample was also obtained, with an
outer diameter of 6.35 mm (0.25′′) and inner diameter of 5.3 mm (0.21′′), referred
to as Sample C. The extension tests were performed on the same material using
different samples with lengths of 10.16 mm (4′′).

The rod and tube samples were gripped using collets in a tensile testing machine
and subsequently in a torsion testing machine. Slippage of the sample in the grips,
due to a change in the dimensions caused by differential thermal expansion and
material phase transformation, was eliminated by properly tightening the grips at
an elevated temperature of 150◦C. A K-type thermocouple was used to measure
the sample temperature. The strain was measured using an extensometer of gauge
length 25.4 mm (1′′) mounted on the sample. A 5000 lb load cell was used to measure
the force on the SMA. The tests were carried out at a strain rate of 1.64 × 10−4/s
(1 mm/s) using an Instron tensile-testing machine. Fig. 3.56 shows a comparison
of the predictions obtained using the Brinson model with experimental results on
Sample C at a test temperature of 35◦C. It can be seen that the model yielded
good correlation with test data. The constitutive model parameters are presented in
Table 3.7.

The torsional testing on the sample was carried out using an Instron torsion
testing machine, with an environmental control chamber (Fig. 3.57). By mounting
the grip on one end of the rod on a linear slide, any axial constraints were eliminated,
thus ensuring a state of pure torsion in the sample. The twist angle was measured
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Table 3.7. Constitutive model parameters for correlation with torsion test data

(f) Parameter (f) Rod specimen (A) (f) Tube Specimen (B) (f) Units

Ms 55 58 ◦C
Mf 35 40 ◦C
As 60 60 ◦C
Af 90 120 ◦C
CA 20 × 106 4 × 106 Pa
CM 10 × 106 6 × 106 Pa
σs

cr 3.7 × 107 5 × 107 Pa
σ

f
cr 16.5 × 107 20 × 107 Pa

EM 35 × 109 18 × 109 Pa
EA 65 × 109 45.0 × 109 Pa

εl 0.067 –

a Determined from experiments.
b Values listed are after cycling, properties immediately after heat treatment may differ.

using a digital encoder mounted on the actuation head of the testing machine, which
had an accuracy of 0.1◦. The torque was measured using a torque cell of range 203
N.m (2000 in-lb) (measurement resolution 0.25 in-lb) fixed to the grip mounted on
the linear slide. In order to avoid crushing of SMA tube samples, steel plugs were
designed to snugly fit inside the SMA tube bore in the gripped portions of the sample.
Torsion tests were carried out on Samples A and B, with test lengths of 0.127 m (5′′)
and 0.1524 m (6′′). A twist angle of 70◦ corresponds to a maximum axial strain of
about 3% and 4% for Sample A and Sample B respectively.

The test samples were first cycled in torsion by twisting them in both directions
at a temperature above Af (similar to extensional cycling). It was noticed that
the material did not show significant deviation in the characteristic response with
repeated cycling (unlike extensional tests that showed significant drift in the first few
cycles). This shows that the cycling procedure is less important for torsional testing.
This may be partly due to an inherently large amount of cold work (about 40%)
present in the torsional rods, relative to the previously tested SMA wires (20% cold
work).

Fig. 3.58 shows predicted and measured torsional responses for the solid rod
A at three different temperatures. Results exhibit the shape memory effect (at

Figure 3.57. Instron torsional test machine with thermal chamber.
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Figure 3.58. Comparison of tor-
sional model predictions with
quasi-static data for 0.25 inch dia-
meter rod (sample A). Ramping
rate = 0.015 deg/s.

low temperature, 35◦) and partial pseudoelastic characteristics at high temperatures
(75◦ and 120◦). One important difference from the pure extensional results is that
complete pseudoelastic recovery was not observed. Again, results showed good
agreement with predictions.

An important observation is that after a number of cycles of pretwisting the
sample in one direction, the constant temperature characteristics of the material
become asymmetric with respect to the direction of twisting of the material, as can
be seen in Fig. 3.59(a). For example, a torque of about 350 in-lb is needed to obtain
a twist angle of 70◦ (clockwise) after several cycles of twisting and untwisting of tube
B. If this tube is now twisted in the opposite direction, a torque of −225 in-lb is
required to achieve a twist of −70◦. This observed asymmetry appears to be related
to the development of two-way shape memory effect. The asymmetry in both the
mechanical and the recovery properties is not an inherent property of the material,
but is introduced after a number of cycles repeated in the same direction of loading.
This behavior can be eliminated by applying an appropriate heat treatment to the
sample (Fig. 3.59(b)).

In order to study the variation of the twist angle-torque behavior with the
rate of loading, the quasi-static tests were carried out at different rates. For the
rod sample A, an increase in the measured torque was observed when twisted at
high temperatures (Fig. 3.60(a)). The increase in torque primarily occurs during
the transformation region, with the linear elastic region being nearly invariant with
loading rates. However, this effect appears much smaller than that observed in the
extensional behavior of wires. Again, this increase during the transformation region
may be attributed to a rise in temperature associated with loading at high strain rates.
Fig. 3.60(b) shows the corresponding change of surface temperature of the material
at two different loading rates. The magnitude of temperature rise is generally larger
at the higher twist rate when the temperature is between Ms and Af . This is due to
the higher rates of mechanical energy input to the material, which manifests itself as
higher rates of self-heating in the material. This trend is less when the material is at
low and high temperatures, since the material is in the pure phase. A key difference
from extensional loading is that the effective strain rate is not constant across the
material, but varies linearly with the radial location. Thus, the heat generated is
non-uniform across the cross-section.
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Figure 3.59. Asymmetry of be-
havior with direction of loading
for SMA tube with and without
heat treatment (sample B).

3.13.2 Constrained Recovery Behavior

The torsional actuation characteristics of SMA rods (or tubes) are determined by
testing their thermal recovery against a constant torque. An understanding of the
recovery behavior of a pre-twisted specimen is important for the design of a torsional
actuator. Note that for a solid SMA rod (such as sample A), a large portion of the
inner radial locations does not undergo sufficient strain to exhibit the recovery
characteristics. The test procedure consisted of first pre-twisting the sample to a
prescribed angle at a constant temperature. The sample is then loaded to the desired
test torque. Subsequently, the temperature of the environmental chamber is ramped
up while maintaining the torque constant. The recovery angle is therefore obtained
as a function of temperature at constant torque. Figure 3.61(a) shows he measured
recovery characteristics of the tube (sample B) for a pretwist angle of 70◦ and
zero torque (free condition). There appears to be a complete recovery of the pre-
twist angle at a high temperature and this recovered angle is almost unchanged on
cooling, clearly showing a one-way shape memory effect. Fig. 3.61(b) shows the
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(a) Torque-angle characteristics
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Figure 3.60. Variation of the
torque angle and temperature rise
characteristics of SMA rods under
different twist rates for an SMA
rod (sample A).

corresponding recovery characteristics when actuated against a constant torque of
100 in-lb.

As shown by Lim and McDowell [97], there is a change of temperature due
to latent heat generation/absorption during phase transformation under mechanical
loading/unloading in the pseudoelastic range. Thus the creep and relaxation phe-
nomena take place during the phase transformation. Lexcellent and Rejzner [101]
developed a thermodynamic three-dimensional model of SMA behavior taking into
account transformation kinetics laws, asymmetry of stress-strain behavior under
tension and compression, and axial-torsion proportional loading of thin tubes. This
model requires 13 independent thermodynamic material constants. The thermody-
namic coupling between the stress-strain and temperature is determined using the
heat equation. Keefe and Carman [102] developed analytical models to evaluate
the thermo-mechanical behavior of SMA torque tubes with varying wall thickness.
Tests were conducted in both tension-torsion and compression-torsion to measure
recovery torque. The differences in the responses were attributed to the detwinning
behavior rather than the loading profile.
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Figure 3.61. Recovery characteristics of the SMA tube under constant torque (sample B).

3.14 Composite Structures with Embedded SMA Wires

Embedding SMAs into composite structures offers the capability to tune the prop-
erties of the structures, such as stiffness and structural damping. This capability has
been used in a variety of applications to enhance the functionality of the compos-
ite structure. For example, the natural frequencies of a composite structure can be
tuned by the activation of embedded SMAs. Apart from being able to tune the
dynamic properties of the structure, SMA-embedded composites also offer advan-
tages such as structural damping augmentation [103], controlling the buckling in a
thin structure [104], structural-acoustic transmission control [105], and delay in the
fracture of composites due to fatigue and low velocity ballistic impact [106]. When
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combined with the advantages of structural tailoring offered by composites, struc-
tures with embedded SMAs can selectively tune their properties in a directional
fashion. In addition to the advantages of tuning the properties of the structure,
embedded SMAs can also be used to control the shape of a structure by acting as an
actuator for shape control in the material.

Two concepts for incorporating the SMA wires inside the composite are dis-
cussed. The first concept involves inserting SMA wires through sleeves in the host
structure to take advantage of the variable recovery force in a prestrained SMA
wire. The second concept uses the change in Young’s modulus of the SMAs with
temperature to alter the overall stiffness of the structure.

Through the activation of embedded SMA wires in a coupled composite struc-
ture, one can actively control the shape of the structure. Through a tailored ply layup
in a composite beam, one can achieve bending-torsion and extension-torsion cou-
pling [107]. For example, Chandra [108] embedded two SMA bender plate elements
in a bending-torsion coupled solid-section composite beam and induced beam twist
with thermal activation. These benders were trained to deform in bending. Internal
resistive heating was used to activate the SMAs. Good correlation of the results pre-
dicted using Vlasov theory with the experiments was shown. Ghomshei et al. [109]
developed a nonlinear finite element analysis of a composite beam with embedded
SMA wires to calculate passive and active response. The model is based on higher
order shear deformation beam theory together with the von Karman strain model.
Satisfactory validation of predictions with experimental results corroborated the
nonlinear finite element modeling approach.

3.14.1 Variable Stiffness Composite Beams

In order to develop a variable stiffness beam, two candidate configurations for
interfacing the SMA with the host structure are considered. The effect of both
these concepts is to produce a net change in the stiffness and thereby the natural
frequencies of the beam in the bending degree-of-freedom when the SMA wire is
activated. However, the degree to which a change in stiffness can be achieved, and the
requirements for the boundary conditions, are different for each of these concepts.
These requirements and capabilities must be taken into consideration when selecting
a candidate configuration for the variable stiffness beam for a particular application.

An SMA wire that is first prestrained (strained to plastic deformation at low
temperatures) and then heat activated develops large recovery stresses when its
length is constrained. This process of heat activation while maintaining the length of
the wire constant is called constrained recovery, and can be used as an active force
generator [60].

The first concept for developing a variable stiffness beam utilizes this constrained
recovery of the wire as an active force generator [110, 60] to tune the stiffness of the
structure. Fig. 3.62(a) shows a schematic of this concept, which is referred to as the
SMA-in-sleeve concept. This scheme involves SMA wires that are not embedded
directly into the structure, but instead inserted into hollow sleeves embedded into
the laminated structure. The hollow sleeves are formed by laying up a thin silica tube
inside the composite material. During the curing process of the composite structure,
steel wires are inserted into the silica tubes, and after completion of curing, the steel
wires are replaced with prestrained SMA wires.
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Figure 3.62. Schematic for 2 different concepts for varying stiffness of a beam using embedded
SMAs.

The prestrained SMA wires are held between fixed supports. When the SMA
wires are now heated within the fixed supports, they develop a constrained recovery
force Tr due to the shape memory effect. The SMA wires, when activated, can there-
fore be visualized as a string with variable tension. Since the wires are passed through
sleeves that are embedded in the structure, they must undergo the same deformation
as the host structure (sleeve). Therefore, in order to deflect the host structure
(composite beam) in bending, additional work must be done to deflect the SMA
wire in tension. The stiffness therefore has two components – one a fixed stiffness
of the composite beam, and the other a variable component due to the SMA wire
in tension. The additional work to deflect the SMA wire in tension manifests as an
increased stiffness and therefore increased natural frequency for the host structure.

It is important to note that in order to change the natural frequencies with
the SMA-in-sleeve concept, the SMA wires must be held independent of the host
structure. The constrained recovery force developed in the wire must react against
the fixed supports, and not against the host beam itself. If the wire is attached directly
to the composite beam, an equilibrating compressive force is developed in the beam,
and the natural frequencies of the structure are not significantly affected.

Due to this constraint on the implementation of the SMA-in-sleeve concept, the
boundary conditions of the beam to which this concept can be applied are restricted.
For the simple case of the beam in bending, this configuration is directly applicable
only in the case of a fixed-fixed boundary condition. When the SMA wire is attached
to the host structure directly (and thus not held independent of the host structure),
negligible change in natural frequency is expected. This configuration, however, can
be used to generate control moments on one side of the beam for actuation or active
control of the vibrations in a structure [111].

The second concept for a variable stiffness structure involves directly embedding
the SMA wires into the host structure [103, 112]. In this concept, the SMA wire is an
integral part of the structure (Fig. 3.62(b)), and is co-cured with the composite mate-
rial. Note that the Young’s modulus of the SMA in pure martensite phase is typically
two to three times lower than that in pure austenite phase. In the transformation
region, the Young’s modulus varies in proportion to the martensite volume fractions
of the material. When the SMA wires are embedded into a composite structure, this
change in the Young’s modulus of the SMA results in a corresponding change in the
stiffness of the composite structure. Since the SMA wires are now an integral part of
the host structure, the mechanism of varying the natural frequencies of the structure
is not dependent on the boundary condition. This concept requires the transfer of
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strain from the wire to the matrix and maximum interfacial adhesion between the
SMA wire and the polymer matrix is needed. The surface treatment of the SMA
wire is a major issue. To treat the surface one of the following approaches can be
used – acid etching, sandblasting, and hand sanding.

3.14.2 SMA-in-Sleeve Concept

In the first concept (SMA-in-sleeves), the SMA itself is not part of the host structure,
and behaves as a string in tension that is constrained to follow the same displacements
as the composite beam. One approach to modeling this concept is to model the beam
as a structure on an elastic foundation [110]. The recovery force in the wires can be
viewed as an increase in the stiffness of the elastic foundation of the structure. Thus,
the change in frequency of the host structure is due to the change in the boundary
conditions of the beam (i.e. variation of stiffness of the elastic foundation).

A second method is to model the system using a Hamiltonian approach. Using
this approach, the elemental stiffness matrix can be constructed by superimposing
the contributions from the beam and the SMA wire individually. Baz et al. [60]
derived these equations for the elemental stiffness for a prismatic beam as

[Ke] = (EmIm)
∫ L

0
({D}T {D} dx) − Pn

∫ L

0
({C}T {C} dx) (3.94)

where Em and Im are the Young’s modulus and moment of inertia of the baseline
beam respectively, L is the length of the beam, and Pn is the total external axial force
acting on the beam. The matrices {C} and {D} are derived from the matrix of spatial
shape functions (or Hermite cubics), {A} as

{C} = d
dx

({A}) (3.95)

{D} = d2

dx2
({A}) (3.96)

where A is the matrix of spatial shape functions for finite element analysis [113] of
bending deflections in a uniform beam. The total axial force Pn has a component
due to external mechanical forces Pm, thermal expansion of the host structure Pt,
and the tension in the SMA wire Tr. This is expressed as

Pn = (Pm + Pt − Tr) (3.97)

Neglecting the contribution of the thermal expansion of the host structure and
assuming no external axial mechanical forces, we can find the elemental stiffness
matrices [Ke] for a given tension Tr in the SMA wire using equation 3.94.

The tension Tr in the SMA wires occurs due to the constrained recovery stress
in the SMA when the material is not allowed to recover its original length. This
quantity has been obtained from experimental testing by Baz [60]. The tension Tr

can be estimated using constitutive models for the SMA wire behavior.
It is known from experiments that the constrained recovery force for the SMA

wire is proportional to the imparted prestrain below about 2%, and shows no sig-
nificant increase for higher levels of prestrains. It was also observed that from the
second cycle of activation, the recovery stresses consistently oscillates between two
non-zero stresses during thermal cycling. This behavior of the SMA is accurately
captured by the constitutive models for quasi-static behavior.
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From the Brinson model [46], the recovery force and corresponding stresses
developed in the wire are given by

Tr = σ ASMA (3.98)

σ = E(ξ)(ε − εLξs) + �(T − T0) (3.99)

where ASMA is the cross-sectional area of the wire. Starting with a prestrain of εp and
a stress-free condition (σ0 = 0) and ignoring the effect of the pure-phase thermal
expansion, this equation simplifies to

σr = E(ξ)(εp − εLξs) (3.100)

When the SMA wire is inserted in the sleeve, the displacement of the wire is compat-
ible to the deflections in the host structure. However, since the wire is not completely
embedded in the host structure, the stresses in the host structure are not compatible
with the recovery stresses in the wire.

For a given temperature of the SMA wires, the elemental stiffness matrices
can be obtained from the recovery stress σr. The natural frequencies of the entire
structure may then found by the finite element formulation [113]. Note that since
the SMA wire is not an integral part of the beam structure, it does not contribute to
the mass matrix in the formulation, but only to the stiffness matrix.

For a beam with composite coupling, the overall bending stiffness EI can be
replaced using Classical Laminate Plate Theory (CLPT) [114]. In this case, the
formulation varies depending on whether the SMA wires are in the fiber direction
in each ply, or in the direction parallel to the axis of the entire beam. In the current
case, however, the analysis is applied only to an uncoupled beam.

The resulting predictions from the analysis for a representative rectangular
beam with SMAs inserted in sleeves are shown in Fig. 3.63. The analysis is carried
out for a rectangular beam with a thickness of 0.082 inches (0.0021 m) (16 plies in
[0] direction), a width of 0.4 inches (0.0102 m) and a length of 10 inches (0.254 m).
The material used is Graphite Epoxy (T300/5208). The SMA wire has a diameter
of 0.015 inches (3.8 × 10−4 m). For the given dimensions, 8 wires correspond to a
volume fraction of about 4.19% in the beam. A uniform distribution of SMA wire
across the cross-section of the beam is assumed in this analysis.

From Fig. 3.63(a), we see that the analysis predicts significant changes in natural
frequencies for a rectangular beam when the SMA wires are activated. The analysis
predicts a natural frequency increase of 22.5% from the baseline case using 8 SMA
wires. This change in natural frequency corresponds to an increase of nearly 100%
in the effective static stiffness of the material.

Fig. 3.63(b) shows the corresponding predicted change in natural frequencies
with SMA wire temperature for different numbers of SMA wires. From the figure,
a temperature hysteresis for the natural frequencies of the beam is predicted. This
hysteresis follows the characteristics of the constrained recovery behavior for the
SMA wire. Recall that when starting from a zero stress condition, the SMA wire
first develops a high recovery stress during the heating cycle. In the first step of
thermal cycling, the stress does not come back to zero on cooling, but stabilizes to
a positive value. On subsequent thermal cycling, the stress oscillates between this
value of stress at low temperature and the recovery stress at high temperature, thus
completing the hysteresis cycle. It was also demonstrated that the model shows good
prediction with this cycling characteristic of the wire. The model predictions for the



286 Shape Memory Alloys (SMA)

(a) Theoretical predictions for change in natural frequency
with number of wires

Wire Temperature (oC)

(b) Theoretical variation of natural frequencies with temper-
ature, 2% prestrain

Figure 3.63. SMA inserted in sleeves, rectangular beam.

natural frequencies of the beam used in this section, therefore, utilize predictions
from the second thermal cycle onwards to predict the natural frequencies of the
beam. The baseline value of natural frequency at low temperature from the second
thermal cycle onwards is set to zero in the current analysis.

3.14.3 Beams with Embedded SMA Wires

An alternate scheme of changing the natural frequencies of the composite beam
occurs when the SMA wires are directly embedded into the structure and co-cured
with the host composite structure. In this case, the effect of the SMA in the structure
is a change in bending stiffness of the composite structure due to the inherent change
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in the Young’s modulus of the SMA with temperature. Unlike in the first scheme
(SMA-in-sleeves), this scheme does not rely on the recovery stresses developed in
the wire, but rather on the change in the material properties of the SMA.

We assume here that in order to maintain the integrity of the host structure, the
ply strains of the composite structure are low and therefore limited to within the
linear elastic region for the SMA (i.e. less than 0.5%). This implies that the Young’s
modulus of the SMA is only a function of temperature (for zero starting stress), and
not a function of strain (or stress) in the host structure. The SMA fibers are also
assumed to be oriented in the direction of the fibers in the composite structure for
each ply.

The stiffness of the structure can be divided into two parts – a constant stiffness of
the passive material (fibers in the composite material), and a variable temperature-
dependent stiffness due to the SMA wires. The Young’s modulus of each of the plies
in the direction of the fibers is then given by a volume fractions approach (mixture
rule)

Eply = (1 − VSMA) × Efiber + VSMA × ESMA (3.101)

where Efiber and ESMA are the constant Young’s modulus of the fiber material and
the variable Young’s modulus of the SMA wire respectively. VSMA is the volume
fraction of SMA wire in each ply. From this equation, it is seen that the for a given
SMA wire, the change in stiffness of each ply is increased with increasing volume
fractions of SMA.

The variable component of stiffness in the composite structure is the Young’s
modulus of the SMA wires. The analytical Young’s modulus of an SMA can be
obtained as a function of the temperature of the SMA by prescribing a stress-free
condition (σ = 0) to the SMA constitutive models. In most constitutive models for
SMA, the Young’s modulus of the SMA wire is related to the volume fraction of
martensite in the material by a simple rule of mixtures

E(ξ) = EA + ξ(EM − EA) (3.102)

where ξ is the volume fraction of martensite in the SMA, and EM and EA are the
Young’s moduli of the material in pure martensite and austenite phase respectively.
The constants EM and EA are obtained from material characterization of the SMA
wire.

For a given temperature of SMA material, therefore, we can obtain an effective
variable Young’s modulus for each ply. From this, the stiffness matrix [Kele] can be
constructed. Unlike the SMA wires inserted through sleeves in the structure, the
SMA also contributes to the mass matrix of the structure. The effective mass density
for each ply is calculated similar to the effective stiffness for each ply as

ρply = ((1 − VSMA) × ρf iber + VSMA × ρSMA (3.103)

where ρf iber and ρSMA are the mass densities of the host composite structure and the
SMA wires respectively. The effective mass per unit length of the SMA-embedded
composite structure can then be calculated from this effective density, and used to
construct the elemental mass matrices for the structure.

Having obtained the elemental stiffness and mass matrices for the SMA-
embedded composite structure, an estimate for the natural frequencies of a coupled
laminate can be computed using finite element analysis for a beam in bending [113].
In the current work, the model is applied only to an uncoupled beam with embedded
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Figure 3.64. Change in natural fre-
quency vs. temperature of SMA wires
for a rectangular beam with embedded
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SMA wires. However, it is also possible to extend this formulation to the case of
a composite coupled beam by replacing a single stiffness matrix with the coupled
stiffness matrices A, B and D from CLPT equations.

The maximum change in natural frequencies of the material is obtained when
the SMA Young’s modulus changes from EM and EA. At intermediate temperatures,
the SMA Young’s modulus increases with temperature between the transformation
temperatures. As the description of the variation of the martensite volume fraction
with temperature and stress differs based on the model used, the assumed path
of the change in natural frequencies of the structure also differs correspondingly,
depending on the SMA constitutive model used.

Fig. 3.64 shows the percentage change in first bending natural frequency for a
rectangular beam as a function of the temperature of the SMA wires. The dimensions
and materials of the rectangular beam are the same as in the SMA-in-sleeve case
discussed in Section 3.14.2. From the figure, it is observed that the natural frequencies
are also predicted to exhibit hysteresis with the temperature of the SMA wire. By
comparing the predictions for the SMA-in-sleeve (Fig. 3.63(b)) case with the case
of the integrally embedded SMAs (Fig. 3.64), it can be observed that for the same
change in natural frequencies of the host structure, the volume of SMA wires that are
required are much greater in the latter case. This comparison effectively illustrates
the advantages of the SMA-in-sleeve concept.

From Fig. 3.64, it is seen that in order to achieve a greater variation in the
natural frequencies of the structure, greater volume fractions of SMA are required.
However, as discussed in Section 3.14.5, several manufacturing and strength consid-
erations limit the volume fractions that can be embedded in the SMA. For a given
volume fraction of SMA, the maximum benefit of the changing stiffness of the SMA
can be derived by increasing the distance between the SMA wires and the neutral
axis of the beam. In order to achieve this, it is possible to optimize the cross-section
of the beam to maximize the influence of the change in Young’s modulus of the
SMA.

An example of a structure designed to take advantage of the change in the
Young’s modulus of the SMA is a beam with an I-shaped cross-section with the SMA
wires embedded in the flanges. This arrangement increases the distance of the SMA
from the neutral axis, and thus enables a greater control over the natural frequencies
for the same volume fraction of SMA. The number of SMA wires embedded in the
flange is assumed to change with the assumed volume fraction of the SMA.
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Fig. 3.65 shows the predictions of the model for the change in in-plane and
out-of-plane bending stiffness, as well as natural frequencies, for an I-beam with
embedded SMA wires. From the figure, it can be seen that the change in natural
frequencies of the beam can be different for the two axes of bending. Thus, by
varying the geometry of the cross-section and placement of the SMA wires, the
change in bending natural frequency can be controlled around each axis of bending
independently. This indicates that the effect of the SMA may be tuned to produce
desired effects in each direction of bending for the composite beam.

The constitutive modeling of the two concepts discussed above indicates that
inserting the SMAs in sleeves produces significantly higher changes in natural fre-
quencies for a given volume fraction of SMA in the structure. However, for this
configuration, the SMA needs to be held independently of the host structure in a
fixed-fixed condition. In several applications, such as a rotating environment, this
appears infeasible since the supporting structure has to be held independent of the
beam. Thus, embedding the wire directly into the structure is considered a more
feasible solution in these applications. Embedding the SMA wires directly with
the composite offers the advantage of structural integrity, and it is not restricted in
the geometrical configuration in which it can be used. However, the large volume
fractions of SMA required to produce a significant change in natural frequencies
of the beam with this concept result in a large weight penalty and manufacturing
difficulties (Section 3.14.5). The constitutive models derived here, however, can be
used to predict these effects and to design a structure with variable stiffness using
either of the two concepts.

3.14.4 Power Requirements for Activation of SMA in Structures

In applications involving either of the two concepts described above, it is not possible
to monitor the wire temperature inside a composite beam. It is therefore critical to
obtain an accurate estimate of the temperature of the wire for a given electrical
input to the wire. This is crucial in determining the state of the transformation in
the material, and therefore in determining the stiffness of the entire material. This
section outlines an energy analysis similar to the one described in Section 3.12. The
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energy analysis is used to estimate the temperature of the SMA wire as a function
of the input energy, and is validated with experiments on a composite laminate with
embedded SMA wires.

Calculation of Power Required

The thermodynamic equilibrium of the SMA in the composite can be described by
the following equation:

Pin = Pabs + Ploss (3.104)

where Pin is the input electrical power (heating), Pabs is the heat retained by the
SMA, and Ploss is the heat disspated to the surroundings.

The power input to the SMA wire is

Pin = i2Rwire (3.105)

where i is the current passing through the wire and Rwire is the resistance of the wire.
Note that the resistance of the wire changes during transformation, and is a function
of the stress and temperature in the wire, as discussed in Section 3.12. The heat
retained by the wire is given by the sum of the specific heat (causing a temperature
rise) and the latent heat (during transformation)

Pabs = mCp�T + mLtransξ̇ (3.106)

where m is the total mass of the wire, and �T is the change in its temperature. Note
that the specific heat of the material, Cp , also varies as a function of the martensite
volume fraction. The second term in the above equation is the latent heat term, and
is proportional to the rate of change of martensite volume fraction, ξ̇. Ltrans is the
latent heat of the appropriate phase transformation. The parameters in the above
equation are all obtained from experiments for a particular sample of SMA. Typical
values are listed in Section 3.12.

The heat dissipated from the SMA wires depends on the surrounding material.
In the present case, the SMA wires are enclosed in the structure by glass fibers and
a thermally insulating matrix. The thermal conductivity of the glass fibers-epoxy
system (0.29–0.31 W/m-K) is poor compared to that of the metallic SMAs (8.6–
18 W/m-K). It is therefore assumed in the current formulation that all the heat
dissipation of the SMA occurs outside of the beam, and that the primary mechanism
of heat dissipation is through convective loss of heat to the surrounding air in the
exposed parts of the SMA outside the beam. Using simple one-dimensional thermal
transfer theory [89], the rate of convective heat loss is

Ploss = hA(T − T∞) (3.107)

where h is the effective heat transfer coefficient of the material, A is the exposed
cross-sectional area, T is the temperature of the SMA, and T∞ is the temperature
of the surrounding air. The value of the heat transfer coefficient used for the current
analysis is the same as that determined in Section 3.12.
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Experimental Validation

After having obtained expressions to describe the various components in the ther-
modynamic equation, we can rewrite the equilibrium equation for a given voltage
input Vin as a function of the temperature T and material stress σ as

V 2
in

R(T, σ)
= Ein(T, σ) + Eloss(T ) (3.108)

This equation can be solved to obtain equilibrium temperatures at any given stress
and voltage.

In order to validate the predictions of the thermal analysis, the temperature
profiles as a function of the input voltage are measured in a test coupon. The test
coupon was a thin composite laminate fabricated with embedded SMA wires. The
coupon laminate consisted of 16 layers of glass fiber prepreg (0/90 weave) of length
6 inches (0.1524 m) and width 3 inches 0.0762 m). During the layup process, three
SMA wires that were longer than the composite coupon specimen were placed at the
interface of the innermost two plies (between the fourth and fifth plies). These wires
were held taut by end fixtures on either side. In order to monitor the temperature of
the wire inside the sample, thin wire thermocouples (K-type) were attached to the
surface of the SMA wires using thermally conductive tape. The test coupon with this
combination of embedded SMA wire and thermocouple was then cured for testing.

During the experiment, the three wires were connected in parallel to a DC
power supply, and the resulting steady state temperature was recorded as a function
of the applied input voltage. From Fig. 3.66, it is observed that the theoretical
predictions show good agreement with experimental values of temperature for all
three wires. Thermocouples 1 and 3 were near the two ends of the test coupon,
whereas thermocouple 2 was in the center. The theoretical prediction approximated
the measurements from thermocouple 2 due to the highest insulation provided by
the composite coupon at its center.

It is important to note that this test was carried out at zero stress, and com-
prehensive testing of this under all conditions of stress and temperature was not
undertaken. However, the encouraging results obtained here indicate the feasibility
of this modeling approach to predict the power requirement of the wire embedded
in a composite beam.
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3.14.5 Fabrication of Variable Stiffness Composite Beams

SMA-in-Sleeve

For the SMA-in-sleeve case, a rectangular graphite-epoxy beam fabricated in a
previous study [110] was used for the experimental testing. This beam had a length
of 12 inches (0.3048 m) and a rectangular cross-section with a width of 0.5 inches
(0.0127 m) and thickness of 0.0625 inches (1.58 mm). The beam was fabricated
with 16 layers of unidirectional graphite epoxy prepreg, which were laid up in the 0◦

direction (parallel to the axis of the beam). The beam was fabricated with two hollow
silica tubes, referred to as sleeves, embedded along the neutral axis (Figure 3.62(a)).

The manufacturing procedure consisted of cutting strips with the required length
and width from the graphite prepreg. Eight layers of prepreg were layed up on top
of each other in one half of a rectangular mold. Two fused silica tubes of 0.02 inches
(0.508 mm) inner diameter were then placed on top of the stack of prepreg. The
silica tubes were inserted with dummy steel wires during the manufacturing process.
Eight additional layers were then laid up on top of the silica tubes, and the other
half of the mold was pressed down on the stack to create a rectangular space for the
beam. The graphite epoxy prepreg and the silica sleeves were cured together in an
oven.

After curing the beam, the dummy steel wires were removed from the sleeves,
and SMA wires of 0.015 inches diameter were inserted in their place. The wires were
then prestrained to about 2% and held in place by attaching them to fixed supports.

Beams with Embedded SMA Wires

To test the second concept of obtaining frequency changes by directly embedding
SMA wires into a structure, two beams with different volume fractions of embed-
ded SMA wires were fabricated. As explained in Section 3.14.1, an “I” cross sec-
tion increases the authority of the SMA wire to change the natural frequencies of
the beam. In order to exploit this advantage, the beams were fabricated with the
I-section.

The dimensions of the I-beams fabricated are shown in Fig. 3.67(a), with the
same overall dimensions used for both the beams. As seen in the figure, the SMA
wires are concentrated only in the flange region, with the web being made purely
from the host composite material. The number of SMA wires embedded in the beam
was different in the two beams; the first beam (referred to as beam A) had 4 wires
embedded in each flange, and the second (referred to as beam B) had 8 in each
flange. These configurations correspond to a total SMA volume fraction of 9% and
18% in beams A and B respectively.

The beams were fabricated using 0/90 weave of S-glass prepreg. Fig. 3.67(b)
shows a schematic of the fabrication process for beam B (8 wires in each flange).
The schematic shows the mold used to fabricate the beam. The mold consists of two
sets, marked as 1 and 2 in the figure.

The layup process is divided into two parts. First, the beam web is laid up in two
“C” configuration halves to cover the web and a part of the flange. Four layers of
prepreg were folded into a “C” shape and laid up in each half of the web structure,
as shown in the figure. The mold blocks marked as “1” were then brought closer to
each other with the application of external pressure, thus compressing the prepreg
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Figure 3.67. Manufacturing of a beam with “I” cross-section and embedded SMA wires.

in the central web of the beam. Two SMA wires were laid up in the junction of the
flange and the web on either side.

The second step consisted of laying up the prepreg and SMA wires to make up the
flange of the beam. This was achieved by successively laying up two sandwiched layers
in each flange. These sandwiched layers each consist of three SMA wires sandwiched
between two layers of prepreg material. Two such prepreg-SMA sandwiched layers
were laid up successively in each flange, making a total of six additional wires in
each flange, as shown in Fig. 3.67(b). One layer of prepreg material was then laid up
on top in each flange. The mold blocks marked “2” in the figure were then brought
in contact with the other blocks (marked “1”), so as to enclose the composite layup
with embedded SMAs in the space enclosed by the four blocks. In cases involving
lower volume fractions of SMAs (as in beam A), the number of SMA wires in the
flange can be varied appropriately to obtain the desired volume fraction of SMA in
the beam.

The molds were cured at a temperature of 250◦F for an hour while pressure
was applied through the clamps. No apparent delamination was observed at the
junctions between the SMA wires and the prepreg glass fiber. After the completion
of the curing process, the beams were removed from the molds. It is important to
note that in order to actuate the SMA wires, the length of the wires must be greater
than the length of the beam. The additional length that projects out of the length
of the beam, therefore, must be held in place using grips on either side of the mold
during the curing process.

Note that beams with larger volume fractions of SMA wires can exhibit sig-
nificant problems arising from failure at the interface of the SMA and the glass
fiber composite. At volume fractions greater than about 18%, there was insufficient
flow of the epoxy around the SMA fibers, which resulted in a lack of adhesion
between the SMA and the host composite material. This resulted in the peeling off
of layers above the SMA wires after curing. This problem was also encountered in
previous work on SMA composites [103, 115]. Fig. 3.68, adapted from a study by
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Figure 3.68. Formation of voids
around the SMA wire embedded in
composite structure, adapted from
[116].

Friend et al. [116], shows a typical SMA embedded – composite structure under a
microscope. The formation of voids around the SMA wires can be clearly observed.
Void formation decreases the influence of the SMA wires and also compromises the
structural integrity of the beam.

The change in natural frequency that can be achieved by the SMA embedded
composites, therefore, was limited by the manufacturing constraints of these beams.
In addition, significant weight penalties are encountered due to the larger density
of SMA (6450 Kg/m3) compared to the host composite S-glass material (1700–
2000 Kg/m3).

3.14.6 Experimental Testing of Variable Stiffness Beams

The variable stiffness beams fabricated as described in the previous section were
tested to determine the variation in the natural frequencies with activation of SMA
wires. The results from the experimental testing were also used to validate the
predictions for the change in natural frequencies from the constitutive models. Note
that all tests discussed in this section are with reference to the bending mode of
the beam. Although the focus of the current study is on the first bending mode, the
observations can be extended to higher modes of vibration as well.

The variable stiffness beams were instrumented with strain gauges located near
the fixed end of each beam. The SMA wires were heated internally by passing
electrical current through them. As the focus of the current study is to determine the
maximum change in natural frequency achievable by activating the SMA wires, the
beams were tested only with the SMA in pure martensite phase at room temperature,
and in pure austenite at high temperature.

SMA-in-Sleeve

The concept of using the constrained recovery force of the wire to change the natural
frequencies of the structure requires specific boundary conditions to be implemented.
This boundary condition requirement specifies that the SMA wire should be held
independent of the host structure to achieve a change in natural frequency. The
boundary condition for the beam in this test, therefore, was a fixed-fixed condition,
as shown in Fig. 3.62(a).
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Figure 3.69. Transfer function of rectangular fixed-fixed beam with SMA embedded in sleeves.

The SMA wires were prestrained to the desired degree by attaching them to
a turnbuckle on either end, which was in turn attached to a fixed boundary. By
modifying the length of the turnbuckle, the wire length was modified. The length of
the turnbuckle was calibrated to estimate the strain imparted to the wire. In the tests
reported in this section, the wire was prestrained by 2%.

The impulse response of the beam was obtained by measuring the signal from
the strain gauge after striking the beam with an impulse hammer. Fig. 3.69(a) shows
the measured transfer function of the beam strain for the wire with SMAs in sleeves
before and after activation of the SMA wires. The beam was held in fixed-fixed
condition, and the SMAs were held independent of the beam. The impulse response
shows a shift of 6.7% in the first natural frequency when the SMAs are heated.
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This measured shift in first natural frequency is compared with the analytical
predictions in Fig. 3.63(a). It is seen that the analysis overestimates change in natural
frequency of the beam. This is likely due to the analytical model’s assumption of
an ideal compatibility of strains between the beam (at the location of the sleeves)
and the SMA wire. However, a small gap between the wire and sleeve is required
to manufacture the beam and subsequently insert the SMA wires. The strains in
the SMA wire are therefore slightly less than those of the sleeve, thus reducing the
effective stiffness due to the SMA wires. The model therefore overpredicts the effect
of the SMA wire on the structure.

In order to study the effect of the boundary conditions on this concept, an
alternate test was performed using the same beam. In this test, the SMA wires were
not held between the fixed grips, but were attached to the beam at the ends. Thus,
the recovery force in the wire exerted a compressive stress in the beam. Fig. 3.69(b)
shows the resulting transfer function for this boundary condition. From the figure, it
is seen that in this boundary condition, the natural frequencies of the beam remain
almost unchanged when the wire is heated and the constraining force applied to the
beam. This is due to the equilibration of stresses in the wire and the beam. These
experimental results validate the assumption of the model in describing the behavior
of the beam as the superposed responses of a fixed-fixed composite beam and a string
in tension. The results also prove that the concept of utilizing the recovery force of
the SMA wires to change the natural frequencies of the beam is feasible only in cases
where the wire is held independent of the host structure.

Beams with Embedded SMA Wires

In the experiments on beams with embedded SMA wires, the beam boundary
condition was cantilevered, since the wires do not require fixed-fixed conditions
for activation. Fig. 3.70(a) shows a test specimen of an I-beam with embedded
SMA wires. The beam was actuated using PZT-5H sheet actuators, with a sinu-
soidal frequency sweep from 1 to 200 Hz at a constant input amplitude voltage of
60 V RMS.

Fig. 3.70(b) shows the transfer function of the beam A (9% volume fraction of
SMA) in the transverse direction. A change in the first-bending natural frequency of
5.6% was observed when the SMA wires were heated. The same test was repeated
for beam B (18% volume fraction of embedded SMA). The change in first natural
frequency was observed to be about 11% in this case. The two experimental data
points obtained are plotted against theoretical predictions in Fig. 3.65. The experi-
mental frequency change is in good agreement with the predictions for the volume
fractions under consideration. However, beams with larger volume fractions of SMA
could not be tested due to the manufacturing constraints discussed in Section 3.14.5.

The experimental testing demonstrates the feasibility of developing variable
stiffness structures with embedded SMAs. The two concepts reviewed here are:
SMA wires inserted in sleeves and held independent of the structure, and SMA
wires embedded into the composite structure. Although both concepts appear to
show potential to control the natural frequencies of a composite structure, there are
significant drawbacks associated with each. In the SMA-in-sleeve case, the SMA
wire must be held independent of the host composite structure, and thus requires a
fixed-fixed boundary condition. This makes this concept infeasible for many applica-
tions. In the case of the integrally embedded composite wires, the volume fractions
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and therefore natural frequency changes that can be achieved are limited by man-
ufacturing constraints. These factors must be taken into account when designing a
variable stiffness structure incorporating SMA wires.

3.15 Concluding Remarks

Shape memory alloys such as Nitinol have large force and stroke, and therefore have
enormous potential for low frequency (quasi-static) applications. These materials
exhibit highly nonlinear behavior with respect to temperature and stress as well as
strain history, and they require fine tuning (using an adaptive feedback controller)
to achieve the desired state. Also, the stiffness varies considerably during the phase
transformation. As a consequence, one requires a locking mechanism to maintain a
desired state. Also, the variation of properties during transformation from martensite
to austenite or vice versa is quite abrupt. Hence, it can be quite difficult to achieve
refined control in some applications.

Most of the macromechanics constitutive models have been developed for tensile
quasi-static loading for the one-way shape memory effect. Constitutive models for
time-varying loading are in an early stage of development. Macromechanics models
for two way shape memory effect are limited. Even though micromechanics models
for shape memory effect are more detailed and insightful, they have limited practi-
cal use in engineering design. These models can help to refine the macromechanics
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models. Furthermore, validation of both micromechanics and macromechanics mod-
els with test data for a range of loadings needs to be expanded to cover tensile,
compressive, and shear loading. It may be important to develop simple phenomeno-
logical models for two-way shape memory effect and time-varying loadings.

There have been limited constitutive models for torsional loading. For this, one
requires a good understanding of both compressive and tensile loading, as well as
the two-way shape memory effect. Micromechanics models may provide guidance to
refine the macromechanics models. Systematic validation with test data is necessary
to develop robust models for design. This topic has enormous potential towards the
development of a mission-adaptive morphing structure.

Embedding shape memory wires in a laminated structure may expand the
domain of applications. So far, there has been limited validation of the response
of built-up laminated structures with embedded Nitinol wires. For such structures,
local stress/strain distributions using detailed finite element analyses (such as three-
dimensional solid elements and higher order shear deformation – theory models)
may reveal the mechanism of actuation as well as help to establish the integrity of
the structure. Again, it may be challenging to develop two-way shape adaptive –
laminated structures with embedded SMA wires.
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4 Beam Modeling with Induced
Strain Actuation

A one-dimensional beam with surface-bonded or embedded induced strain actuators
represents a basic and important element of an adaptive structure. Many structural
systems such as helicopter blades, airplane wings, turbo-machine blades, missiles,
space structures, and many civil structures are routinely represented as beams. For
example, with induced strain actuation, it may be possible to actively control aerody-
namic shape for vibration suppression, stability augmentation, and noise reduction.
Several beam theories have been developed to predict the flexural response of
isotropic and anisotropic beams with surface-bonded and embedded induced strain
actuation, which range from simplified models to detailed models involving uniform,
linear, and nonlinear displacement distribution through the thickness. First, three
simple approaches used to model beams with induced strain actuators are explained.
These are the simple blocked force model, the uniform strain model, and the Euler-
Bernoulli model. While these methods are applicable for any kind of induced strain
actuator, the remainder of this chapter will illustrate the method of analysis assuming
piezoelectric actuation. Then refined beam models are briefly discussed.

4.1 Material Elastic Constants

For a general anisotropic, linearly elastic material, the stress-strain relations are
based on Hooke’s law.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
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(4.1)
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where Qij are the elements of the stiffness matrix Q . σx, σy and σz are direct stresses
and τyz, τzx, and τxy are shear stresses. Similarly, εx, εy and εz are direct strains and
γyz, γzx, and γxy are shear strains. These constitute 36 material constants that describe
the material completely. From energy considerations, the material stiffness matrix
must be symmetric. Therefore,

Qij = Qji (4.2)

This results in 21 independent material constants. The stress-strain relations are
invertible and the components of strain are related to the components of stress
through the compliance matrix, s, as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
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= s
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Note that s = Q−1. Again, the compliance matrix is symmetric,

sij = sji (4.5)

This results in 21 constants. There can be a further reduction of material constants
(stiffness or compliance) due to a specific symmetry in the material, as listed below:

Monoclinic Symmetry

This means that the material structure is symmetric with respect to the x − y plane.
In this case, the stress-strain relations reduce to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(4.6)

Now there are 13 material constants needed to describe the material. The compli-
ance matrix can also be written in a similar fashion. For a monoclinic material, the
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compliance matrix can be expressed as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
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This can also be expressed in terms of moduli of elasticity and Poisson’s ratios⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

−ν21
E2

−ν31
E3

0 0 ν61
G12

−ν12
E1

1
E2

−ν32
E3

0 0 ν62
G12

−ν13
E1

−ν23
E2

1
E3

0 0 ν63
G12

0 0 0 1
G23

ν54
G31

0

0 0 0 ν45
G23

1
G31

0
ν16
E1

ν26
E2

ν36
E3

0 0 1
G12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

−ν12
E1

−ν13
E1

0 0 ν16
E1

−ν12
E1

1
E2

−ν23
E2

0 0 ν26
E2

−ν13
E1

−ν23
E2

1
E3

0 0 ν36
E3

0 0 0 1
E4

ν45
E4

0

0 0 0 ν45
E4

1
E5

0
ν16
E1

ν26
E2

ν36
E3

0 0 1
E6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.8)

where E4, E5, and E6 are shear moduli (Gij ). The Poisson’s ratio is given by νij ,
which is defined as the ratio of transverse strain in the j -direction to axial strain in
the i-direction

E4 = G23 (4.9)

E5 = G31 (4.10)

E6 = G12 (4.11)

As an example, τxy denotes shear stress in the x − y plane and the corresponding
shear modulus is G12 in the x − y plane. Also note that

νij

Ei
= νj i

Ej
(4.12)

It is important to note that νij is not equal to νj i except for isotropic materials
(Ei = Ej ) Again, the total number of engineering constants is 13.

Orthotropic Symmetry

For orthotropic symmetry, there is a further reduction in the number of material
constants. The material is assumed to be symmetric with respect to all three orthog-
onal planes. Now we need 9 constants to describe the material. The stiffness matrix
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x
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z, z1
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Figure 4.1. Orthotropic material with principal axes
different from reference axes.

is given by ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 Q13 0 0 0
Q12 Q22 Q23 0 0 0
Q13 Q23 Q33 0 0 0

0 0 0 Q44 0 0
0 0 0 0 Q55 0
0 0 0 0 0 Q66

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.13)

and the compliance matrix is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎣

s11 s12 s13 0 0 0
s12 s22 s23 0 0 0
s13 s23 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s55 0
0 0 0 0 0 s66

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

−ν12
E1

−ν13
E1

0 0 0
−ν12
E1

1
E2

−ν23
E2

0 0 0
−ν13
E1

−ν23
E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G31

0

0 0 0 0 0 1
G12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.14)

The nine independent constants are E1, E2, E3, G21, G23, G31, ν12, ν23 and ν31. Note
that the above equations are only valid if the reference axes coincide with the prin-
cipal axes of the material. Often, as in the case of composite materials, the principal
axes do not coincide with the reference axes. In such a case, a coordinate transfor-
mation has to be applied to the stress-strain relations. Fig. 4.1 shows a composite
lamina with fibers oriented at an angle α to the reference axes. As a result, the x
and y principal axes are oriented at an angle α to the reference axes, and the z axis
is coincident in both coordinate systems. The stresses in the x1, y1, z1 coordinate
system (principal axes) are related to the stresses in the x, y, z coordinate system
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(reference axes) by the following transformation⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(x,y,z)

= T

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(x1,y1,z1)

(4.15)

where the subscripts (x, y, z) and (x1, y1, z1) refer to the coordinate systems, and T
is the transformation matrix given by

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos2 α sin2 α 0 0 0 −2 sinα cosα
sin2 α cos2 α 0 0 0 2 sinα cosα

0 0 1 0 0 0
0 0 0 cosα sinα 0
0 0 0 − sinα cosα 0

sinα cosα − sinα cosα 0 0 0 cos2 α − sin2 α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.16)

Similarly, the transformation between the strains in the two coordinate systems can
be derived as ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(x1,y1,z1)

= TT

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(x,y,z)

(4.17)

From Eqs. 4.1, 4.15 and 4.17, it can be seen that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(x,y,z)

= TQTT

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(x,y,z)

= Q̄

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(x,y,z)

(4.18)

where Q is the stiffness matrix of the lamina along its principal axes and Q̄ is the
stiffness matrix of the lamina along the reference axes. As the lamina is orthotropic
along its principal axes, we have

Q =

⎡⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 Q13 0 0 0
Q12 Q22 Q23 0 0 0
Q13 Q23 Q33 0 0 0

0 0 0 Q44 0 0
0 0 0 0 Q55 0
0 0 0 0 0 Q66

⎤⎥⎥⎥⎥⎥⎥⎦ (4.19)
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and from the transformation in Eq. 4.18,

Q̄ = TQTT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̄11 Q̄12 Q̄13 0 0 Q̄16

Q̄12 Q̄22 Q̄23 0 0 Q̄26

Q̄13 Q̄23 Q̄33 0 0 Q̄36

0 0 0 Q̄44 Q̄45 0
0 0 0 Q̄45 Q̄55 0

Q̄16 Q̄26 Q̄36 0 0 Q̄66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.20)

where

Q̄11 = Q11 cos4 α − 4Q16 cos3 α sinα + 2(Q12 + 2Q66) cos2 α sin2 α

− 4Q26 cosα sin3 α + Q22 sin4 α (4.21)

Q̄12 = Q12 cos4 α + 2(Q16 − Q26) cos3 α sinα

+ (Q11 + Q22 − 4Q66) cos2 α sin2 α + 2(Q26 − Q16) cosα sin3 α

+ Q12 sin4 α (4.22)

Q̄13 = Q13 cos2 α − 2Q36 cosα sinα + Q23 sin2 α (4.23)

Q̄16 = Q16 cos4 α + (Q11 − Q12 − 2Q66) cos3 α sinα

+ 3(Q26 − Q16) cos2 α sin2 α

+ (2Q66 + Q12 − Q22) cosα sin3 α − Q26 sin4 α (4.24)

Q̄22 = Q22 cos4 α + 4Q26 cos3 α sinα + 2(Q12 + 2Q66) cos2 α sin2 α

+ 4Q16 cosα sin3 α + Q11 sin4 α (4.25)

Q̄23 = Q23 cos2 α + 2Q36 cosα sinα + Q13 sin2 α (4.26)

Q̄26 = Q26 cos4 α + (Q12 − Q22 + 2Q66) cos3 α sinα

+ 3(Q16 − Q26) cos2 α sin2 α + (Q11 − Q12 − 2Q66) cosα sin3 α

− Q16 sin4 α (4.27)

Q̄33 = Q33 (4.28)

Q̄36 = (Q13 − Q23) cosα sinα + Q36(cos2 α − sin2 α) (4.29)

Q̄44 = Q44 cos2 α + 2Q45 cosα sinα + Q55 sin2 α (4.30)

Q̄45 = Q45(cos2 α − sin2 α) + (Q55 − Q44) cosα sinα (4.31)

Q̄55 = Q55 cos2 α + Q44 sin2 α − 2Q45 cosα sinα (4.32)

Q̄66 = 2(Q16 − Q26) cos3 α sinα

+ (Q11 + Q22 − 2Q12 − 2Q66) cos2 α sin2 α

+ 2(Q26 − Q16) cosα sin3 α + Q66(cos4 α + sin4 α) (4.33)
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Transversely Isotropic Symmetry

For a material that is transversely isotropic (assume isotropic in the y − z plane),
there is an even further reduction in the number of material constants. Since the
y − z plane is isotropic, the index ‘2’ equals the index ‘3’, and index ‘5’ equals index
‘6’. ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 Q12 0 0 0
Q12 Q22 Q23 0 0 0
Q12 Q23 Q22 0 0 0

0 0 0 Q22−Q23
2 0 0

0 0 0 0 Q66 0
0 0 0 0 0 Q66

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.34)

Now we require only 5 independent material constants to describe the material. The
strain is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

−ν12
E1

−ν12
E1

0 0 0
−ν12
E1

1
E2

−ν23
E2

0 0 0
−ν12
E1

−ν23
E2

1
E2

0 0 0

0 0 0 2(1+ν23)
E2

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.35)

Note that E3 = E2, G13 = G12 and ν12 = ν31.

Isotropic Symmetry

For a fully isotropic material, only 2 independent material constants are required to
describe the material. The stress-strain relations for an isotropic material are given
by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 Q12 0 0 0
Q12 Q11 Q12 0 0 0
Q12 Q12 Q11 0 0 0

0 0 0 Q11−Q12
2 0 0

0 0 0 0 Q11−Q12
2 0

0 0 0 0 0 Q11−Q12
2

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.36)

Note that

Q11 = Q22 = Q33

Q44 = Q55 = Q66 = Q11 − Q22

2

Q12 = Q23 = Q31
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Figure 4.2. Positive stresses acting on a cubic element.

The compliance matrix for an isotropic material is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎣

s11 s12 s12 0 0 0
s12 s11 s12 0 0 0
s12 s12 s11 0 0 0
0 0 0 2(s11 − s12) 0 0
0 0 0 0 2(s11 − s12) 0
0 0 0 0 0 2(s11 − s12)

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.37)

Rewriting in terms of elastic modulus E and Poisson’s ratio ν,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E

−ν
E

−ν
E 0 0 0

−ν
E

1
E

−ν
E 0 0 0

−ν
E

−ν
E

1
E 0 0 0

0 0 0 2(1+ν)
E 0 0

0 0 0 0 2(1+ν)
E 0

0 0 0 0 0 2(1+ν)
E

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.38)

4.2 Basic Definitions: Stress, Strains and Displacements

Most metallic structures are isotropic and linearly elastic below the plastic limit. Even
though the elastic properties at a unit cell level are anisotropic (different in different
directions), their extremely large number (many millions) and random orientation
make the material behavior isotropic and homogeneous at the macro-level. External
forces can be categorized into two types: surface forces such as aerodynamic pressure,
and body or volumetric forces such as inertial forces or magnetic forces. As a result
of external forces, the structure experiences two types of internal stresses: normal
stresses σx, σy, and σz and shear stresses τxy, τyz, and τzx. The various stresses acting in
their positive directions are shown in Fig. 4.2 for a cubic element. For example, σy is
the direct stress on the plane normal to the y-axis and is assumed positive for tensile
stress. On the other hand, τxy is the shear stress along the y-axis on the plane normal
to the x-axis. Note that on a plane normal to a negative axis, the sign convention of
shear stress changes by 180◦. It is well established that τxy = τyx, τyz = τzy and τzx =
τxz. Therefore, six stress components (3 normal and 3 shear stresses) are required to
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define stress at a point. Let us assume that u, v, and w are the elastic displacements
of a point along x, y, and z-axes respectively (right hand axes system). This results
in six strain components: three direct strains εx, εy and εz and three shear strains γxy,
γyz and γzx. With the assumption of small strain, these components are defined (in
the non-tensor form) as

εx = ∂u
∂x

(4.39)

εy = ∂v

∂y
(4.40)

εz = ∂w

∂z
(4.41)

and

γxy = ∂u
∂y

+ ∂v

∂x
(4.42)

γyz = ∂v

∂z
+ ∂w

∂y
(4.43)

γzx = ∂u
∂z

+ ∂w

∂x
(4.44)

The sign convention for strains is identical to that for stresses. Again, it is well
established that γxy = γyx, γyz = γzy and γzx = γxz. For an isotropic material, stress-
strain relations are expressed using Hooke’s law:

εx = 1
E

[σx − ν(σy + σz)] (4.45)

εy = 1
E

[σy − ν(σx + σz)] (4.46)

εz = 1
E

[σz − ν(σx + σy)] (4.47)

γxy = 1
G
τxy (4.48)

γyz = 1
G
τyz (4.49)

γzx = 1
G
τzx (4.50)

where E is the Young’s modulus of the material (N/m2 or lb/in2) and ν is the Poisson’s
ratio. The shear modulus of elasticity G for an isotropic material can be defined in
terms of the other two material constants, E and ν, as follows:

G = E
2(1 + ν)

(N/m2 or lb/in2) (4.51)
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Table 4.1. Notations for stress and strain components

Normal Shear

Stress in x, y, z coordinates
Engineering σx σy σz τyz τzx τxy

Tensorial σxx σyy σzz σyz σzx σxy

Contracted σx σy σz σq σr σs

Stress in 1, 2, 3 coordinates
Engineering σ1 σ2 σ3 τ23 τ31 τ12

Tensorial σ11 σ22 σ33 σ23 σ31 σ12

Contracted σ1 σ2 σ3 σ4 σ5 σ6

Strain in x, y, z coordinates
Engineering εx εy εz γyz γzx γxy

Tensorial εxx εyy εzz εyz εzx εxy

Contracted εx εy εz εq εr εs

Strain in 1, 2, 3 coordinates
Engineering ε1 ε2 ε3 γ23 γ31 γ12

Tensorial ε11 ε22 ε33 ε23 ε31 ε12

Contracted ε1 ε2 ε3 ε4 ε5 ε6

Often, the stress and strain components are written as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

σ4

σ5

σ6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ε1

ε2

ε3

ε4

ε5

ε6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.52)

The stress and strain relations in this text are expressed in what is known as the
engineering notation. Sometimes in the literature, one comes across tensorial and
contracted notations. These are shown in Table 4.1.

The engineering shear strains are twice the tensorial shear strains.

γyz = 2εyz (4.53)

γzx = 2εzx (4.54)

γxy = 2εxy (4.55)

The contracted strains are equal to the engineering strains. The equations for equi-
librium of forces acting on a cubic element are obtained as

∂σx

∂x
+ ∂τxy

∂y
+ ∂τzx

∂z
+ f x = 0 (4.56)

∂τxy

∂x
+ ∂σy

∂y
+ ∂τyz

∂z
+ f y = 0 (4.57)

∂τzx

∂x
+ ∂τyz

∂y
+ ∂σz

∂z
+ f z = 0 (4.58)

where f x, f y and f z are body forces per unit volume respectively in x, y and z
directions.
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x,u

y,v

z,wFigure 4.3. Beam with coordinate system and posi-
tive deflections.

4.2.1 Beams

A slender beam is a one-dimensional structure with cross-sectional dimensions much
smaller than it’s length. A schematic diagram of a beam with positive deflections
u, v, w along the coordinate axes x, y, z is shown in Fig. 4.3. The x-axis is aligned
with the beam axis (longitudinal direction), the y-axis is along the width of the beam
(lateral direction), and the z-axis is aligned along the thickness direction (transverse
direction). Typically, for a structure of length lb, thickness tb and width bb, to be
treated as a beam, lb/tb > 10 and lb/bb > 10. For such a beam, the Euler-Bernoulli
approximation can be used to develop an engineering theory for beam bending. The
neutral axis of the beam is defined as a line passing through the beam cross-section
that does not undergo any change in length after the beam has undergone a pure
bending deformation. The theory assumes that a plane section normal to the neu-
tral axis remains plane and normal to the neutral axis after going through bending
deformation. This means that the transverse shear deformation is negligible as com-
pared to bending deformation. Since its effect on beam bending is negligible, shear
actions are uncoupled from bending. As a result, the effect of shear deformation on
bending response is neglected. For a small deflection approximation, the rotation of
the differential element is negligible as compared to vertical deflection. The vertical
deflection w due to external transverse load f z is a function of the axial coordinate x
only

u(x, y) = uo(x) − z
dwo

dx
(4.59)

w(x, y) = wo(x) (4.60)

where uo(x) and wo(x) are longitudinal and vertical displacements at the neutral axis
(z = 0) and dw/dx represents rotation of the cross-section about the y-axis. For a
vertical force distribution, the displacement v(x) in the lateral direction is identically
zero. The strain components become:

εy = εz = γxy = γyz = γzx = 0 (4.61)

εx(x, z) = εo
x(x) − z

d2w

dx2
(4.62)

where εo
x = duo/dx is the axial strain at the neutral axis and d2w/dx2 is the bending

curvature. The sign convention for shear forces and moments acting on a beam
element is shown in Fig. 4.4 [1, 2]. A positive bending moment M is defined as
one that causes compression on the top fiber of the beam. A positive shear force
V results in a clockwise moment acting on the differential element. The bending
moment at any cross-section is the product of bending or flexural stiffness EIy and the
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z, w

x, u

M M

z, w

x, u

V

V

(a) Positive bending moment (b) Positive shear

Figure 4.4. Sign convention for a beam element in the x − z plane.

bending curvature.

M(x) = EIy
d2w

dx2
(4.63)

where Iy is the area product of inertia about the neutral axis. The flexural stiffness
EIy has the units of N.m2 or lb.in2. For a beam with a solid rectangular cross-section
of thickness tb and width bb, the area product of inertia Iy (m4 or in4) becomes

Iy = bbt3
b

12
(4.64)

The stress components are:

σy = σz = τxy = τyz = τzx = 0 (4.65)

σx(x, z) = σo
x (x) − z

M(x)
Iy

(4.66)

Thus, the axial strain becomes:

εx(x, z) = εo
x(x) − z

M(x)
EIy

(4.67)

The governing equation for a beam undergoing bending, exposed to an external
distributed transverse force f z(x, t) (N/m or lb/in) over its length and with an axial
force T (x) (N or lb) is

∂2

∂x2

(
EIy

∂2w

∂x2

)
− ∂

∂x

(
T
∂w

∂x

)
+ m

∂2w

∂t2
= f z(x, t) (4.68)

where m(x) is the mass per unit length (kg/m or lb.s2/in2). This is a partial differential
equation with second order derivatives in time t and fourth order derivatives in the
spatial coordinate x. As a result, two intial conditions and four boundary conditions
(two on each end) are required to solve it. For the initial conditions, the displacement
w(x, 0) and the velocity ẇ(x, 0) need to be prescribed. Note that for a beam initially at
rest, both w(x, 0) and ẇ(x, 0) are set as zero. The boundary conditions involve both
kinematic (geometric) and kinetic (force) boundary condtions. Typical boundary
conditions are:
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Clamped Condition

uo(0, t) = 0

w(0, t) = 0 → displacement = 0

∂w

∂x
(0, t) = 0 → slope = 0 x

z

Simply Supported (Hinged or Pinned) Condition

uo(0, t) = 0

w(0, t) = 0 → displacement = 0

EIy
∂2w

∂x2
(0, t) = 0 → moment = 0

x

z

Free Condition

EA
∂u
∂x

(0, t) = 0 → axial force = 0

EIy
∂2w

∂x2
(0, t) = 0 → moment = 0

∂

∂x

(
EIy

∂2w

∂x2

)
(0, t) = 0 → shear force = 0

x

z

Vertical Spring Supported Condition (Left End)

EA
∂u
∂x

(0, t) = 0 → axial force = 0

EIy
∂2w

∂x2
(0, t) = 0 → moment = 0

∂

∂x

(
EIy

∂2w

∂x2

)
(0, t) = −kw → shear force = −kw

where k is the spring stiffness, (N/m)

Pin

k

x

z

Bending Spring Supported Condition

EA
∂u
∂x

(0, t) = 0 → axial force = 0

EIy
∂2w(0, t)

∂x2
= kθ

∂w(0, t)
∂x

→ moment = kθ

∂w(0, t)
∂x

∂

∂x

(
EIy

∂2w(0, t)
∂x2

)
= 0 → shear force = 0

where kθ is the bending spring stiffness, (Nm/rad)

kθ

x

z
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y

z

tb

bb

Figure 4.5. Cross-section of a uniform rectangular isotropic
beam.

The boundary conditions on the other end are defined according to the sign
conventions shown in Fig. 4.4. In the derivation of the governing equation for beam
bending, the transverse shear strain γzx is neglected, while the shear force Vz (as a
result of τzx) is retained in the equilibrium equation. Let us examine this contradictory
assumption. Assume a tip load P acting on a cantilevered beam of length lb, width bb,
and thickness tb. This will result in the maximum bending stress at the root surface
of the beam:

σxmax = M
Iy

tb
2

= Plb
Iy

tb
2

= 6Plb
bbt2

b

(4.69)

The distribution of shear stress τzx is normally assumed parabolic across the beam
thickness, and the maximum value occurs at the neutral axis:

τzxmax = 3
2

Pz

bbtb
(4.70)

The ratio of maximum bending stress to maximum shear stress is:

σxmax

τzxmax

= 4lb
tb

(4.71)

Since lb  tb, the shear stresses in a slender beam are much smaller than the bending
stresses, and hence we are quite justified in neglecting them.

4.2.2 Transverse Deflection of Uniform Isotropic Beams

Consider a beam having a uniform rectangular cross-section with thickness tb, width
bb and length Lb (Fig. 4.5). The flexural stiffness is given by

EIb = EIy = Eb
bbt3

b

12
(4.72)

where Eb is the Young’s Modulus.
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(a) Cantilevered Beam: Tip Load

wtip = PL3
b

3EIb

Mroot = PLb

w(x) = PL3
b

6EIb

[
3
(

x
Lb

)2

−
(

x
Lb

)3
] x

z

Lb

P

(b) Cantilevered Beam: Uniform Load

wtip = PoL4
b

8EIb

Mroot = PoL2
b

2

w(x) = PoL4
b

24EIb

[
6
(

x
Lb

)2

− 4
(

x
Lb

)3

+
(

x
Lb

)4
] x

z

Lb

Po

(c) Hinged or Simply Supported: Mid-Point Load

wmid = PL3
b

48EIb

Mmid = −PLb

4

w(x) = PL3
b

48EIb

[
3
(

x
Lb

)
− 4

(
x

Lb

)3
] x

z

Lb

PLb /2

(d) Hinged or Simply Supported: Uniform Load

wmid = 5
384

PoL4
b

EIb

Mmid = −PoL2
b

8

w(x) = PoL4
b

24EIb

[(
x

Lb

)
− 2

(
x

Lb

)3

+
(

x
Lb

)4
] x

z

Lb

Po

(e) Clamped Both Ends: Mid-point Load

wmid = PL3
b

192EIb

Mmid = PLb

8

w(x) = PL3
b

48EIb

[
3
(

x
Lb

)2

− 4
(

x
Lb

)3
] x

z

Lb

PLb /2
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(f) Clamped Both Ends: Uniform Load

wmid = 1
384

PoL4
b

EIb

Mmid = PoL2
b

12

w(x) = PoL4
b

24EIb

[(
x

Lb

)2

−
(

x
Lb

)] x

z

Lb

Po

4.3 Simple Blocked Force Beam Model (Pin Force Model)

The blocked force method is a simple and physically intuitive approach to estimate
beam response due to induced strain actuation. It is a global and highly approximate
model. The actuator is idealized as a line force, and as such, does not include any
spanwise variation of stress or strain at the actuator location.

4.3.1 Single Actuator Characteristics

Consider a piezoelectric sheet element of length lc, width bc, and thickness tc attached
to an isotropic beam as shown in Fig. 4.6. If an electric voltage V is applied across an
isolated piezo sheet element along the ‘3’ direction (the direction of polarization),
the maximum actuator strain, or free strain, in direction ‘1’ will be:

εmax = d31
V
tc

= � (4.73)

The piezoelectric sheet actuator axes 1, 2 and 3 are aligned with beam axes x, y, and
z respectively. For convenience, a positive voltage V is assumed to cause a positive
strain (extension) along x-axis (direction 1) inducing positive strain in the beam. This
may not be strictly true for piezoelectric sheet actuators, but this assumption has no
effect on the mathematical formulation of the problem.

The maximum force, or blocked force, (zero strain condition) in direction ‘1’ is:

Fmax = d31EcbcV = Fbl (4.74)

bc

Piezoelectric
element

21

3

FF

V

Basic structure
isotropic material lc

tc

x

y

z

Figure 4.6. Surface-bonded piezo
sheet actuator on a beam.
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Fbl

ecroF

Strain
0

Increasing
voltage

V1

V2

V3

Λ

Figure 4.7. Loadline for a piezoactuator at differ-
ent excitation voltages.

where Ec is the Young’s modulus of the piezo (short-circuit condition) and d31 is the
piezo constant. This relation can be rewritten as

Fbl = Ecbctc� = EcAc� (4.75)

where the extensional stiffness of the actuator is EcAc, and Ac is the cross-sectional
area of the piezo sheet. When the piezo is attached to the beam structure, an applied
voltage V results in an axial surface force F in the beam. The reactive force in
the piezo element will be −F . Assuming a sign convention where tensile stresses
and displacements are considered positive, the elastic strain in the piezo, εc, can be
derived from the piezoelectric constitutive relations as:

εc = �lc
lc

= d31
V
tc

− F
bctcEc

= �

(
1 − F

Fbl

) (4.76)

The free strain � of a piezo sheet can be measured by attaching a strain gauge on
the surface of a free piezo sheet. The piezo sheet is then bonded to the surface of
a beam (on both the top and bottom surface) and the average strain of the beam
is measured for an applied voltage. Knowing the properties of the beam, the axial
force can be calculated. The actuation force in the beam can be calculated as

F = bbtbEbεc = EbAbεc (4.77)

where Eb is the Young’s modulus of the material of the beam, EbAb is extensional
stiffness of beam only and Ab is the cross-sectional area of the beam. Rewriting the
above equation,

F = Fbl

(
1 − ε

�

)
(4.78)

This equation is referred to as the actuator loadline, and is plotted in Fig. 4.7.
A few examples will illustrate the application of this model.

4.3.2 Dual Actuators: Symmetric Actuation

Consider two identical piezo actuators mounted one on either surface of a beam,
as shown in Fig. 4.8. The same voltage applied to the top and bottom actuators will
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F

F
tension

F

F

compression

compression strain

F

F

tension

F

compressionF

tension
compression strain

(a) Pure extension (b) Pure bending

Figure 4.8. Beam with two identical piezo actuators.

result in pure extension of the beam (Fig. 4.8(a)), whereas an equal and opposite
voltage to the top and bottom actuators will result in pure bending of the beam
(Fig. 4.8(b)). Equilibrating forces are produced by the actuators such that the net
axial force at any spanwise cross-section is zero.

I. Pure Extension Case

To achieve pure extension in the beam, the same voltage is applied to the top and
bottom actuators. Let us imagine that the piezos produce an extensional force F
on either surface, resulting in an axial deflection of �lb in the beam. The piezo
actuators on the other hand will experience equilibrating compressive forces. The
axial deflection in the beam is given by

�lb = 2F
AbEb

lc

= 2F
Ebbbtb

lc

(4.79)

The change in length of each piezo actuator can be found by (from Eq. 4.76):

�lc =
(
� − F

Ecbctc

)
lc =

(
d31

V
tc

− F
Ecbctc

)
lc (4.80)

For displacement compatibility between the beam and the bonded actuator, �lb =
�lc. Therefore,

2F
Ebbbtb

lc =
(

d31
V
tc

− F
Ecbctc

)
lc (4.81)

This results in

F =
d31

V
tc

2
Ebbbtb

+ 1
Ecbctc

(4.82)

Defining

EAc = 2Ecbctc → extensional stiffness of both actuators, in N (or lb)
EAb = Ebbbtb → extensional stiffness of the beam, in N (or lb)

leads to

F = d31V
2tc

EAbEAc

EAb + EAc
= �

2
EAbEAc

EAb + EAc

= Fbl
EAb

EAb + EAc

(4.83)
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Table 4.2. Actuation force and strain limits

EAb/EAc 0.1 1.0 5.0 10.0
F/Fbl 0.091 0.5 0.83 0.91
ε/� 0.91 0.5 0.167 0.091

Total actuation force in the beam is 2F , generated equally by each actuator. For the
case of pure extension, the strain distribution across the beam thickness is uniform
(Fig. 4.8(a)). From Eq. 4.83,

εb = 2F
EAb

= �
EAc

EAb + EAc
(4.84)

Note that this is the same value of strain that would be obtained by considering
the blocked force Fbl of the piezo actuators acting on the series combination of the
actuator and beam stiffnesses, as discussed in Chapter 2. Let us consider two extreme
possibilities:

(a) If piezo stiffness EAc  EAb

F ≈ Fbl
EAb

EAc
≈ 0

εb ≈ �

(4.85)

The actuation force on the beam approaches zero, whereas the actuation strain
approaches the free strain.

(b) If piezo stiffness EAc � EAb

F ≈ Fbl

εb ≈ EAc

EAb
� ≈ 0

(4.86)

The actuation strain approaches zero, whereas the actuation force approaches
the blocked force.

Table 4.2 illustrates the variation of actuation force and actuation strain with
stiffness ratio. It is quite clear that as the beam stiffness becomes more than ten
times the actuator stiffness, the actuation strain becomes less than 10% of the free
strain of the actuator. On the other hand, if the actuator stiffness is more than ten
times the beam stiffness, the actuation force in the beam is less than 10% of the
blocked force. As discussed in Chapter 2, the maximum work done by the actuators
is achieved when the structural impedance of the actuators is equal to the structural
impedance of the beam.

II. Pure Bending Case

For a pure bending case, an equal but opposite voltage is applied to the top and
bottom actuators. This will result in a pure bending condition with strain varying
linearly across the thickness of the beam, as shown in Fig. 4.8(b). The induced
bending moment M (positive M causes compression on top surface of the beam) is
caused by the equal but opposite actuation forces exerted by the actuators (positive
actuation force F causes tension in the actuator). It is assumed that there is no
variation of bending stress along the length of the actuator, i.e., induced moment M
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is constant along the length of actuator. To achieve a positive bending moment, a
negative field is applied to the top piezo, resulting in a negative actuation strain (and
a positive field is applied to the bottom piezo, resulting in a positive actuation strain.
Strain on the top surface of the beam where the actuator is attached is given by:

εs
b = −M

Ib

tb
2

1
Eb

= − F
EbIb

t2
b

2
(4.87)

Because this strain acts over the entire length of the piezo actuator, it results in a net
decrease in length on the top surface of the beam given by:

�lb = − F
EbIb

t2
b

2
lc (4.88)

Because the piezo actuator on the top of the beam has a negative actuation strain,
the change in length of the piezo actuator is:

�lc =
(

−� + F
EcAc

)
lc = −

(
d31

V
tc

− F
Ecbctc

)
lc (4.89)

For displacement compatibility, �lb = �lc.

F
EbIb

t2
b

2
lc =

(
d31

V
tc

− F
Ecbctc

)
lc (4.90)

This results in a net actuator force of

F =
⎛⎝ d31

V
tc

t2
b/2

EbIb
+ 1

Ecbctc

⎞⎠ (4.91)

Defining

EIb = EbIb = EAb
t2
b

12
→ bending stiffness of the beam, in (N.m2 or lb.in2) (4.92)

and

EIc = 2(bctc)
(

tb
2

)2

Ec = EAc

(
tb
2

)2

→ bending stiffness of the two actuators

(4.93)
The actuation force can be calculated as:

F =
d31

V
tc

t2
b
2

(
1

EIb
+ 1

EIc

) = (2
d31V

tct2
b

)
(

EIbEIc

EIb + EIc

)

= Fbl
EIb

EIb + EIc

= Fbl
EAb

EAb + 3EAc

(4.94)
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and the actuation moment can be calculated as:

M = Ftb = Fbltb

(
EIb

EIb + EIc

)
= Mbl

(
EIb

EIb + EIc

)
= Mbl

(
EAb

EAb + 3EAc

) (4.95)

where Mbl is the blocked moment and is equal to Fbltb. Note that the moment of
inertia of the actuators about their own mid-plane is neglected because the piezo
sheets are assumed thin. For this pure bending actuation, the beam axial strain varies
linearly across the beam thickness.

εb = − M
EIb

z = − Mbl

EIb + EIc
z (4.96)

From Eq. 4.87, the beam top surface strain is:

εs
b = − Mbl

EIb + EIc

tb
2

= −�
EIc

EIb + EIc

= −�
3EAc

EAb + 3EAc

(4.97)

The beam bottom surface strain is:

ε−s
b = �

EIc

EIb + EIc
(4.98)

Let us consider two extreme cases:

(a) If EIc  EIb,

M ≈ Mbl

(
EIb

EIc

)
≈ 0

εs
b ≈ −� (top surface)

ε−s
b ≈ � (bottom surface)

(4.99)

The actuation moment becomes zero even though the actuation surface strain
equals free strain.

(b) if EIc � EIb,

M ≈ Mbl

εs
b ≈ 0

(4.100)

The actuation surface strain becomes zero as the actuation bending moment equals
the blocked moment.

Table 4.3 shows the variation of actuation moment and surface strain (top sur-
face) with bending stiffness ratio. As the beam stiffness increases, the actuation strain
decreases. On the other hand, if the beam stiffness becomes less than the actuator
stiffness, the actuation moment decreases. To find the deflection, consider the can-
tilevered beam with dual piezo actuators shown in Fig. 4.9(a). Strain relationships
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Table 4.3. Actuation bending and strain capability

EIb/EIc 0.1 1.0 5.0 10.0
M/Mbl 0.091 0.5 0.83 0.91
−εs

b/� 0.91 0.5 0.167 0.091

on the top surface of the beam are given by:

�lc = −M(tb/2)
EIb

lc = − Ftb
EIb

tb
2

lc = − 6F
EAb

lc (4.101)

The bending deflection of the beam can be calculated from the bending moment,
which is assumed constant within the length of the beam covered by the piezo.
Bending moment M(x) = Ftb.

∂2w

∂x2
= M

EIb
(4.102)

Integrating and applying boundary conditions,

∂w

∂x
= M

EIb
x + c1 (4.103)

At x = 0,
∂w

∂x
= 0, → c1 = 0 (4.104)

w = M
EIb

x2

2
+ c2 (4.105)

At x = 0, w = 0, c2 = 0 (4.106)

w = M
EIb

x2

2
= Mbl

EIb + EIc

x2

2
(4.107)

=
(

Fbltb
EIb + EIc

)
x2

2

Beam bending curvature is non-zero where the piezo actuator is attached to its
surface, and is assumed uniform along the piezo length. For a cantilevered beam
with a piezo actuator attached at the root, beam slope varies linearly along the

xo x

piezo

Varying slope

Constant slope

(a) Beam configuration (b) Deflected shape

Figure 4.9. Cantilevered beam in bending with two piezo actuators.
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xo x

piezo

lb

Figure 4.10. Single surface-
mounted piezo actuator.

length of the piezo and then remains constant after the edge of the piezo. The
deflected shape of the beam is shown in Fig. 4.9(b).

The beam slopes are given by:

x < 0
∂w

∂x
= 0

0 < x < lc
∂w

∂x
= Mbl

EIb + EIc
x within piezo actuators

x > lc
∂w

∂x
= Mbl

EIb + EIc
lc outside piezo actuators

(4.108)

and the beam deflection is given by:

x < 0 w = 0

0 < x < lc w = Mbl

EIb + EIc

x2

2
within piezo actuators

x > lc w = Mbl

EIb + EIc
lc

(
x − lc

2

)
outside piezo actuators

(4.109)

The axial stress in the beam is given by:

x < 0 σb = 0

0 < x < lc σb = − MblEb

EIb + EIc
z

x > lc σb = 0

(4.110)

and the strain on the top surface of the beam, εs
b is given as

x < 0 εs
b = 0

0 < x < lc εs
b = − Mbl

EIb + EIc

tb
2

x > lc εs
b = 0

(4.111)

4.3.3 Single Actuator: Asymmetric Actuation

Consider a single piezo actuator surface-mounted on the bottom of a cantilevered
beam, as shown in Fig. 4.10. In this case, an electric voltage applied to the piezo
actuator will induce both bending and extension of the beam. A positive voltage will
induce extension as well as positive bending of the beam.
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Following the formulation procedure adopted for dual actuators, the induced
actuation bending-extension relations are derived as follows:

σb − σo
b = −Mz

Ib
(4.112)

where σo
b is the axial stress at the neutral axis. Because the thickness of the piezo

actuator is small compared to the thickness of the beam, it can be assumed that the
neutral axis is at the mid-plane of the beam. The top-surface strain εs

b and neutral
axis strain εo

b are related to the bending moment by:

εs
b − εo

b = −Mtb
2Ib

1
Eb

where M = F
tb
2

(4.113)

The bottom surface strain, ε−s
b is:

ε−s
b − εo

b = Mtb
2Ib

1
Eb

(4.114)

The mid-plane strain is given by

εo
b = F

bbtbEb
= F

EbAb
(4.115)

Note that in this configuration,

Extensional stiffness of the beam EAb = Ebbbtb

Extensional stiffness of the actuator EAc1 = Ecbctc

Bending stiffness of the beam EIb = Ebbb
t3
b

12

= EAb
t2
b

12

Bending stiffness of the actuator EIc1 = Ecbc
t3
c

12
+ Ecbctc

(
tc
2

+ tb
2

)2

� EAc1
t2
b

4

(for a comparatively thin piezo)

On the bottom surface (at the piezo location),

ε−s
b = F ( tb

2 )2

bb
t3
b

12

1
Eb

+ F
EAb

= 4F
EAb

(4.116)

�l−s
b = 4F

EAb
lc (4.117)

�lc =
(
� − F

EAc1

)
lc (4.118)
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xo x

Vtop

Vbottom

Figure 4.11. Dual surface
mounted actuators with unequal
voltage.

Displacement compatibility yields �l−s
b = �lc

4F
EAb

= d31V
tc

− F
EAc1

(4.119)

F = �
EAbEAc1

4EAc1 + EAb
(4.120)

= Fbl
EAb

4EAc1 + EAb
(4.121)

= Fbl
3EIb

4EIc1 + 3EIb
(4.122)

where the blocked force Fbl = EcAc� = EAc1�. This leads to

M = Mbl
3EIb

3EIb + 4EIc
(4.123)

where

Mbl = Fbl
tb
2

(4.124)

4.3.4 Unequal Electric Voltage (Vtop �= Vbottom)

Consider a dual-actuator beam with unequal voltage applied to top and bottom iden-
tical actuators, as in Fig. 4.11. We resolve this problem into two parts; equal voltages
to both the piezos, causing a pure extension and equal but opposite voltages to top
and bottom piezos, causing a pure bending (Fig. 4.12). Then we use superposition
to obtain the combined solution due to bending and extension strains. The resolved
voltages, shown in Fig. 4.12, can be found by

V1 − V2 = Vtop

V1 + V2 = Vbottom

(4.125)

+V1

+V1

-V2

+V2

(a) Pure extension (b) Pure bending

Figure 4.12. Resolving piezo actuation into pure extension and pure bending, for unequal
actuation voltages.
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tc top

tc bottom

Figure 4.13. Dissimilar thickness
of top and bottom piezos.

From these equations,

V1 = Vbottom + Vtop

2

V2 = Vbottom − Vtop

2

(4.126)

Actuation force (extensional) due to V1 is (from Eq. 4.83)

F e = Fbl1
EAb

EAb + EAc
(4.127)

where

Fbl1 = EAc
�1

2
= d31V1

2tc
EAc (4.128)

Similarly, surface bending actuation force and actuation moment due to V2 is (from
Eqs. 4.94 and 4.95)

F b = Fbl2
EIb

EIb + EIc
= Fbl2

EAb

EAb + 3EAc

M = Mbl2
EIb

EIb + EIc

= 2d31V2

tbtc

EIbEIc

EIb + EIc

(4.129)

where

Fbl2 = d31V2

2tc
EAc (4.130)

The total force on the top surface, F top is

F top = F e − F b (4.131)

and the total force on the bottom surface, Fbottom is

Fbottom = F e + F b (4.132)

4.3.5 Dissimilar Actuators: Piezo Thickness (tctop �= tcbottom )

This represents a case where the thickness of top and bottom piezos are not identical
(Fig. 4.13). For the same voltage, the actuation force due to the top and bottom
piezos will be dissimilar. Proceeding in a manner similar to that for the case of
actuation with unequal voltages, the actuation force in the piezos can be resolved
into two parts: a force F b causing pure bending and a force F e causing pure extension
(Fig. 4.14).
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Fe
Fe

Fb
Fb

(a) Pure extension (b) Pure bending

Figure 4.14. Resolving piezo actuation into pure extension and pure bending, unequal thick-
ness piezos.

Let us say F top and Fbottom represent the actuation forces due to the top and
bottom piezos respectively. Then

F e − F b = F top

F e + F b = Fbottom

(4.133)

This results in

F e = (Fbottom + F top)/2

F b = (Fbottom − F top)/2
(4.134)

Because the thicknesses of the two piezos are different, free strains for both piezos
will be different for the same applied voltage.

Free strain in the top piezo �top = d31
V

tctop

Free strain in the bottom piezo �bottom = d31
V

tcbottom

(4.135)

Displacements at the top surface:

�lctop =
(
�top − F top

EActop

)
lc

�lbtop =
(

2F e

EAb
− 6F b

EAb

)
lc

(4.136)

Comparing �lctop = �lbtop and substituting for F e and F b from Eq. 4.134 gives

F top

(
4

EAb
+ 1

EActop

)
+ Fbottom

(
− 2

EAb

)
= �top (4.137)

Similarly for the bottom surface:

F top

(
− 2

EAb

)
+ Fbottom

(
4

EAb
+ 1

EAcbottom

)
= �bottom (4.138)

where

EActop = bctctop Ec

EAcbottom = bctcbottom Ec

(4.139)

Rewriting the above equations:[
α1 α2

α2 α3

]{
F top

Fbottom

}
=
{

�top

�bottom

}
(4.140)
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d31 top

d31 bottom

Figure 4.15. Dissimilar piezo con-
stants for top and bottom actua-
tors.

where

α1 = 1
EActop

+ 4
EAb

α2 = − 2
EAb

α3 = 1
EAcbottom

+ 4
EAb

(4.141)

Solving the above equation (Eq. 4.140) gives{
F top

Fbottom

}
= 1

α1α3 − α2
2

[
α3 −α2

−α2 α1

]{
�top

�bottom

}
(4.142)

The final expressions for the forces generated by the piezo actuators are:

Ftop = 1

α1α3 − α2
2

(α3�top − α2�bottom)

Fbottom = 1

α1α3 − α2
2

(−α2�top + α1�bottom)

(4.143)

The actuation force is given by

F e = F top + Fbottom

2

= 1

2(α1α3 − α2
2)

[
�top(α3 − α2) + �bottom(α1 − α2)

] (4.144)

Actuation moment is

M = F btb = Fbottom − F top

2
tb

= tb
2(α1α3 − α2

2)

[−�top(α2 + α3) + �bottom(α1 + α2)
] (4.145)

4.3.6 Dissimilar Actuators: Piezo Constants (d31top �= d31bottom )

This represents a case where the top and bottom piezos are not identical in terms
of the piezoelectric constant, d31, and hence their induced strains are different
(Fig. 4.15).

Free strain for the top and bottom piezos is given by:

�top = d31top

V
tc

�bottom = d31bottom

V
tc

(4.146)
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This case is very similar to the case where the piezo sheets are of different thicknesses.
Using displacement compatibility conditions, actuation forces for the top and bottom
piezos can be derived in terms of the free strains. In this case, because the actuator
stiffnesses are equal,

α1 = α3 = 4
EAb

+ 1
EAc1

(4.147)

α2 = − 2
EAb

(4.148)

The final equations are [
α1 α2

α2 α1

]{
F top

Fbottom

}
=
{

�top

�bottom

}
(4.149)

where EAb = Ebtbbb and EAc1 = Ecbctc. This gives

F top = 1

α2
1 − α2

2

(
α1�top − α2�bottom

)
(4.150)

Fbottom = 1

α2
1 − α2

2

(−α2�top + α1�bottom
)

(4.151)

The actuation force is:

F e = F top + Fbottom

2

= 1
2(α1 + α2)

(�top + �bottom)
(4.152)

and the actuation moment is:

M = F btb = tb(Fbottom − F top)
2

= tb
2(α1 − α2)

(�bottom − �top)
(4.153)

4.3.7 Worked Example

Two piezo sheet actuators (PZT-5H & PZT-5A) (length lc = 50.8 mm (2′′), width
bc = 25.4 mm (1′′), thickness tc = 0.32 mm (0.0125′′)) are surface-bonded at the top
and bottom of a thin aluminum cantilevered beam of size (length lb = 609.6 mm
(24′′), width bb = 50.8 mm (2′′), thickness tb = 0.8 mm (1/32′′)). The configuration is
shown in Fig. 4.16 (xo = 2′′).

Material data are as follows:

Ec( PZT-5A and PZT-5H ) = Eb = 72.4 GPa (10.5 × 106lb/in2)

d31( PZT-5A ) = −171 × 10−12 m/V

d31( PZT-5H ) = −274 × 10−12 m/V

Using the blocked force method,

(a) Show free strain variation in microstrain with voltage for each piezo.
(b) Show variation of piezo strain with axial force F for each piezo.
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xo

x

PZT-5A

lb

Region 1 Region 2 Region 3

PZT-5H Figure 4.16. Beam with surface
bonded piezosheets, split into
three regions.

(c) Derive a general bending-extension relation with same field on opposite piezo
actuators.

(d) Calculate actuation surface force F and bending moment M for a field of 150
volts to both top and bottom piezos.

(e) Show spanwise distribution of bending slope for this excitation.
(f) Show beam bending displacement distribution for this excitation.
(g) If PZT-5H and PZT-5A elements are replaced with PVDF elements of same

size, calculate new surface actuation strain and actuation bending moment (For
PVDF d31 = −20 × 10−12 m/V and Ec = 0.2 × 1010 N/m2).

Solutions

(a) The free strain variation is given by:

�1 = d31E = d31
V
tc

For PZT-5H,

�1 = −274 × 10−12 V
0.3175 × 10−3

= −0.863 V με

For PZT-5A,

�2 = −171 × 10−12 V
0.3175 × 10−3

= −0.538 V με

(b) The actuator constitutive relation in one-dimension is:

ε1 = d31E + sE11σ1

= �1 + F1

EcAc

The actuator extensional stiffness is given by

EcAc = Ectcbc = 72.4 × 109 × 0.3175 × 10−3 × 1 × 0.0254 = 0.584 × 106N

Assuming an applied voltage of a 100 Volts, For PZT-5H,

ε1 = −86.3 + F1

0.584
με

F1 = 0.584ε1 + 50.4 N
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PZT-5H

PZT-5A

Strain, με

Force, NFigure 4.17. Variation of actuator strain
with force, PZT-5H and PZT-5A.

The blocked force is given by:

ε1 = 0 → F1 = Fbl1 = 50.4N

And the free strain is:

�1 = −86.3 με

For PZT-5A,

ε2 = −53.8 + F2

0.584
με

F2 = 0.584ε2 + 31.42 N

The blocked force is given by:

ε2 = 0 → F2 = Fbl2 = 31.42N

And the free strain is:

�2 = −53.8 με

The force-displacement characteristics are shown in Fig. 4.17.
(c) The derivation of beam and actuator strains for the case of a beam with two

piezo actuators with different values of d31 is discussed in Section 4.3.6.
The actuation force is given by

F e = 1
2(α1 + α2)

(
�top + �bottom

)
Actuation moment is

M = F btb = Fbottom − F top

2
tb

= tb
2(α1 − α2)

(
�bottom − �top

)
where

α1 = 1
EAc1

+ 4
EAb

α2 = − 2
EAb

The beam extensional stiffness is given by

EAb = Ebtbbb = 72.4 × 109 × 0.79375 × 10−3 × 2 × 0.0254 = 2.92 × 106N
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(d) For a voltage of V = 150 V,

�top = −0.863 × 150 = −129.45 με

�bottom = −0.538 × 150 = −80.7 με

α1 = 4
2.92 × 106

+ 1
0.584 × 106

= 3.083 × 10−6 1/N

α2 = − 2
2.92 × 106

= −0.685 × 10−6 1/N

This gives:

F e = − 80.7 + 129.45
2(3.083 − 0.685)

= −43.82 N

M = 0.79375 × 10−3 −80.7 + 129.45
2(3.083 + 0.685)

= 5.13 × 10−3 N-m

(e) Assume that x1 = 0 corresponds to the clamped end, where piezo starts

∂2w

∂x2
1

= M
EIb

Integrating,

∂w

∂x1
= Mx1

EIb
+ C

If x1 = 0,
∂w

∂x
= 0 → C = 0

Integrating again,

w = Mx2
1

2EIb
+ D

If x1 = 0, w = 0 → D = 0

Note x = x1 + x0

The bending stiffness is given by:

EIb = Ebbb
t3
b

12
= 72.4 × 109 × 50.8 × 10−3 × (0.79375 × 10−3)3

12
= 0.1553 Nm2

In region 1, (0 < x < xo) there is no actuation force or moment.

∂w

∂x
= 0 w = 0

In region 2, (xo < x < xo + lc)

∂w

∂x
= M(x − xo)

EIb
= 0.0335(x − xo) rad

where x and xo are measured in meters.

w = M(x − xo)2

2EIb
= 0.0167(x − xo)2 m
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Figure 4.18. Beam deflection with actuators having dissimilar piezoconstants.

In region 3, (xo + lc < x < lb)

∂w

∂x
= Mlc

EIb
= 1.7 × 10−3 rad

w = Ml2
c

2EIb
+ Mlc

EIb
(x − lc − xo) = 4.31 × 10−5 + 1.7 × 10−3 (x − 0.1016) m

The tip slope is 1.7 × 10−3 rad. and the tip displacement is 0.9067 mm. The slope
and bending displacement are plotted in Fig. 4.18.

(f) For PVDF, d31 = −20 × 10−12 m/V and Ec = 2 GPa
The free strain variation is given by:

� = −20 × 10−12 V
0.3175 × 10−3

= −0.063 V με

at 150 V, � = −9.5 με.
Because the actuators are now identical, only pure extension will be induced in
the beam. The beam surface strain is given by:

εb = �EAc

EAb + EAc

= �
1

1 + Ebbbtb
2Ecbctc

= −9.5

1 + 72.4×0.8
2×0.32

= −0.104 με

4.4 Uniform Strain Model

The simple blocked force model assumes a perfect transfer of strain between the
piezo actuator and the surface of the structure to which it is bonded. In practice,
however, this is an idealization, as the the bond layer between the piezo actuator
and the structure has a finite stiffness. Some of the strain generated by the piezo
is dissipated in the deformation of the bond layer itself. This phenomenon is also
known as shear lag. An idealized uniform strain beam model is used to evaluate
the effectiveness of the bond layer in transferring the strain induced by the piezo
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x,u
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tb

Piezo actuator

Adhesive
Surface Shear

Beam mid-axis

(a) Definition of thickness
and coordinate system

(b) Transmission of shear
across adhesive layer

Figure 4.19. Beam with symmetric surface-mounted actuators.

actuators to the surface of the beam. The bond layer is assumed to undergo pure
shear deformation.

4.4.1 Dual Actuators: Symmetric Actuation

Two identical piezoelectric sheet actuators are bonded to an isotropic beam, one to
the top surface and the other to the bottom surface. Between the actuator and the
beam surface, there is a finite-thickness elastic bond layer. Each actuator is assumed
to induce a uniform axial strain across its own thickness. Due to bending actuation,
there will be a linear distribution of axial strain in the host structure. On the other
hand, for pure extensional actuation, there will be uniform axial strain in the host
structure.

The actuator is constrained by the adhesive, so a shear stress is produced in the
adhesive layer. For this analysis, the normal stress in bond layer is neglected and
the beam is subjected to purely a surface shear. The objective is to predict induced
strain and induced force due to piezo actuation, including the effects of losses in the
bond layer. A schematic of the coordinate system used in this analysis and the shear
stress transmitted by the bond layer is shown in Fig. 4.19.

I. Pure Bending Case

Let us first consider pure bending of the beam. This is accomplished by applying an
equal but opposite field to the top and bottom actuators. The stress varies linearly
across the beam thickness. At the mid-point (neutral axis) of the beam, the axial
stress is zero. It is assumed that the axial stress of the actuator σc does not vary across
its thickness. This also implies a uniform strain across the thickness of the actuator.
The forces and moments acting on a differential element of the beam, actuators, and
bond layer are shown in Fig. 4.20.

Let ts, tc and tb denote the adhesive thickness, actuator thickness and beam
thickness respectively. The strain-displacement relation for the actuator is given by:

εc = ∂uc

∂x
(4.154)

where uc is the axial deflection of the actuator. On the top surface of the beam,

εs
b = ∂us

b

∂x
(4.155)
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Figure 4.20. Differential element for bending case.

where us
b is the axial deflection of the top surface of the beam. In a similar way, on

the bottom surface of the beam,

ε−s
b = ∂u−s

b

∂x
(4.156)

where u−s
b is the axial deflection of the bottom surface of the beam. These strain-

displacement equations relate the normal strain in the x-direction to the u-deflections
of the actuator and beam, respectively. Shear strain in the adhesive layer on the
bottom side is found by subtracting the deformation of the beam surface from the
deformation of the actuator and dividing by the bond thickness:

γzx = 1
ts

[uc − u−s
b ] = γs (4.157)

Equilibrium of forces on the bottom actuator leads to:(
σc + ∂σc

∂x
dx
)

bctc − σcbctc − τbc dx = 0 (4.158)

where bc is the actuator width, and τ is the shear stress. Simplification of this expres-
sion results in:

∂σc

∂x
− τ

tc
= 0 (4.159)

The same equation is also valid for the top actuator. Equilibrium of bending moments
can be written as:

M + ∂M
∂x

dx − M + τtbbc dx = 0 (4.160)

This results in

∂M
∂x

+ τtbbc = 0 (4.161)

The stress distribution in the beam can be expressed as

σb(z) = −M
Ib

z (4.162)
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Figure 4.21. Differential element for extensional case.

where Ib is the area product of inertia of the beam cross-section about its mid-axis.
The stress on the top surface of the beam, σs

b, is given by

σs
b = −M(tb/2)

Ib
(4.163)

= −M(tb/2)

bbt3
b/12

= − 6M

bbt2
b

(4.164)

where bb is the beam width. This means that the moment is:

M = −bbt2
b

6
σs

b (4.165)

Substituting the relation for M into Eq. 4.161:

∂σs
b

∂x
− 6bc

bbtb
τ = 0 (4.166)

This is a force equilibrium relation on the top surface of the beam for the pure
bending case. In a similar way, the stress at the bottom surface of the beam, σ−s

b , can
be expressed in terms of the bending moment. This leads to the force equilibrium
relation on the bottom surface of the beam for the pure bending case:

∂σ−s
b

∂x
+ 6bc

bbtb
τ = 0 (4.167)

II. Pure Extension Case

Next, let us consider pure extension of the beam (Fig. 4.21). This is obtained by
applying the same voltage to the top and bottom actuators. For this case, σb is uniform
across the beam thickness. The force equilibrium relation on the top surface of the
beam for pure extension becomes:

∂σs
b

∂x
+ 2bc

bbtb
τ = 0 (4.168)

For the bottom surface of the beam, because σs
b = σ−s

b ,

∂σ−s
b

∂x
+ 2bc

bbtb
τ = 0 (4.169)

Note that the difference between Eqs. 4.167 and 4.169 is in a term associated with
shear force. For the extension case, the factor is 2, and for the pure bending case,
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the factor is 6. Changing this factor to the variable α gives us the general relation:

∂σ−s
b

∂x
+ α

τbc

tbbb
= 0 (4.170)

where α is 2 for the pure extension case and α is 6 for the pure bending case. The
force equilibrium in the actuator yields the same equation as Eq. 4.159. Stresses in
the actuator, beam and in the bond layer are given by:

σc = Ec(εc − �) (4.171)

σ−s
b = Ebε

−s
b (4.172)

τ = Gsγs (4.173)

where � is the induced strain, or free strain, in the actuator. All together, we have 8
equations to define the complete system with 8 unknowns. The unknowns are:

(a) 3 stresses: σc, σ
−s
b , τ

(b) 3 strains: εc, ε
−s
b , γs

(c) 2 displacements: uc, u−s
b

Now, we must combine these equations into something more manageable. Let us
consider the case where the actuator width is the same as the beam width, bc = bb.
The 2 displacement and 3 strain-displacement equations can be combined into a
compatibility equation. Differentiating Eq. 4.157 with respect to x,

∂γs

∂x
= 1

ts

[
∂uc

∂x
− ∂u−s

b

∂x

]
= 1

ts

(
εc − ε−s

b

)
(4.174)

Now, we want to combine this compatibility equation (Eq. 4.174) with the equilib-
rium equations (Eqs.4.159-4.161). Differentiating Eq. 4.159 with respect to x once
gives:

∂2σc

∂x2
− 1

tc

∂τ

∂x
= 0 (4.175)

Similarly, differentiating Eq. 4.170,

∂2σ−s
b

∂x2
+ α

tb

∂τ

∂x
= 0 (4.176)

Replacing τ in Eq. 4.175 by Gsγs,

∂2σc

∂x2
− Gs

tc

∂γs

∂x
= 0 (4.177)

Combine this with Eq. 4.174:

∂2σc

∂x2
− Gs

tcts
(εc − ε−s

b ) = 0 (4.178)

We can replace σc by εc using Eq. 4.171. We also assume that the induced strain does
not vary with x. Simplifying, we obtain:

∂2εc

∂x2
− Gs

Ectstc
(εc − ε−s

b ) = 0 (4.179)
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Carrying out similar steps for the beam equation (Eq. 4.176) yields:

∂2ε−s
b

∂x2
+ αGs

tstbEb
(εc − ε−s

b ) = 0 (4.180)

This gives us two governing equations in εc and ε−s
b . These equations can be converted

into higher order, uncoupled equations and then solved. It is also possible to solve
these equations in an alternate way, without increasing the order of the equations.
Subtracting Eq. 4.180 from Eq. 4.179,

∂2

∂x2
(εc − ε−s

b ) − Gs

tsEc

(
1
tc

+ Ecα

Ebtb

)
(εc − ε−s

b ) = 0 (4.181)

Substituting ζ = (εc − ε−s
b ) makes this a second order equation in ζ. Introducing the

following non-dimensional quantities:

x̄ = x
lc/2

(note that x̄ = 0 denotes the actuator midpoint)

t̄s = ts
lc/2

θb = tb
tc

θs = ts
tc

Ḡ = Gs

Ec

γb = Eb

Ec

Substituting these into Eq. 4.181,

∂2ζ

∂x̄2
− �2ζ = 0 (4.182)

where the shear lag parameter, � can be defined as

�2 = Gs

tsEc

(
1
tc

+ Ecα

Ebtb

)
l2
c

4

= Ḡ
t2
s

(
ts
tc

+ Ecαts
Ebtb

)
l2
c

4

= Ḡ
t2
s

(
θs + αθs

γbθb

)
l2
c

4

This term has all of the characteristics of the beam and actuator in it and represents
the shear lag effects. It becomes larger for higher modulus of the bond layer or
for lower bond thickness. In the limiting case, a bond layer of infinite stiffness or
zero thickness results in a complete transfer of strain from the actuator to the beam
without any losses. Such a case is called a perfect bond condition (� → ∞).
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The solution for Eq. 4.182 can be written as:

ζ = Acosh(�x̄) + B sinh(�x̄) (4.183)

Now we have the difference of normal strains, but we want each of these indi-
vidually. Combining Eq. 4.179 and Eq. 4.183,

∂2εc

∂x̄2
= Gs(l2

c/4)
tstcEc

(Acosh(�x̄) + B sinh(�x̄))

leads to

∂2εc

∂x̄2
= Ḡ

t̄2
s
θs(Acosh(�x̄) + B sinh(�x̄)) (4.184)

This can be solved as:

εc = C + Dx̄ + Ḡ
t̄2
s

θs

�2
(Acosh(�x̄) + B sinh(�x̄)) (4.185)

Combining Eq. 4.183 and Eq. 4.185 we get

ε−s
b = C + Dx̄ + A

[
Ḡθs

t̄2
s�

2
− 1
]

cosh(�x̄) + B
[

Ḡθs

t̄2
s�

2
− 1
]

sinh(�x̄) (4.186)

We have 4 constants which must be determined by the boundary conditions at the
edges of the actuator:

x̄ = ±1 → εc = � ( σ = 0 no stress condition)

x̄ = ±1 → ε−s
b = 0 (if no mechanical load)

These conditions are used to determine the 4 constants as follows:

C + D + Ḡ
t̄2
s

θs

�2
(Acosh� + B sinh�) = �

C − D + Ḡ
t̄2
s

θs

�2
(Acosh� − B sinh�) = �

C + D + A
(

Ḡ
t̄2
s

θs

�2
− 1
)

cosh� + B
(

Ḡ
t̄2
s

θs

�2
− 1
)

sinh� = 0

C − D + A
(

Ḡ
t̄2
s

θs

�2
− 1
)

cosh� − B
(

Ḡ
t̄2
s

θs

�2
− 1
)

sinh� = 0

Solving these equations,

B = D = 0

A = �/ cosh�

C = �

(
1 − Ḡ

t̄2
s

θs

�2

)
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Normal strains in the beam and actuator are given as:

ε−s
b

�
= α

α + �
− α

(α + �) cosh�
cosh(�x̄)

= α

α + �

[
1 − cosh(�x̄)

cosh�

] (4.187)

εc

�
= − �

α + �
+ �

(α + �) cosh�
cosh(�x̄) + 1

= α

α + �

[
1 + �

α

cosh(�x̄)
cosh�

] (4.188)

where

� = Extensional stiffness ratio = Ebtb
Ectc

= extensional stiffness of the beam
extensional stiffness of one piezo

and α = 2 for pure extension and α = 6 for pure bending. Shear stress is obtained
from Eq. 4.174:

γs = 1
ts

∫
(εc − ε−s

b )dx (4.189)

Using the relations for εc and ε−s
b :

γs

�
= 1

t̄s cosh�

∫ x̄

o
cosh(�x̄) dx̄ = sinh(�x̄)

�t̄s cosh�
+ C1 (4.190)

The constant C1 is evaluated using the condition

at x̄ = 0, γs = 0

This gives C1 = 0. Hence,

τ

�
= Gs

γs

�
= Gs sinh(�x̄)

�t̄s cosh�
(4.191)

τ

Eb
= Ḡ� sinh(�x̄)

γb�t̄s cosh�
(4.192)

As � increases, the shear stress becomes more localized at the ends of the piezoelec-
tric sheet.



4.4 Uniform Strain Model 345

Finite Thickness Bond (� < 30)

Pure Extension: (α = 2)

εo = ε−s
b

ε−s
b

�
= ∂u−s

b

∂x
1
�

= α

α + �

[
1 − cosh(�x̄)

cosh�

]
∂u−s

b

∂x̄
= α�

α + �

lc
2

[
1 − cosh(�x̄)

cosh�

]
u−s

b = α�

α + �

lc
2

[
x̄ − sinh(�x̄)

� cosh�

]
+ C2

The constant C2 is evaluated using the boundary condition

at x̄ = −1, u = 0

u−s
b (x̄) = α�

α + �

(
lc
2

)[
x̄ − sinh(�x̄)

� cosh�

]
+ α�

α + �

(
lc
2

)[
1 − tanh�

�

]

= α�

(α + �)

[
x − lc sinh(�2x/lc)

2� cosh�

]
+ α�

α + �

(
lc
2

)[
1 − tanh�

�

]
Pure Bending: (α = 6)

w′′(x) = ∂2w

∂x2
= 2

tb
ε−s

b

= 2�
tb

α

α + �

(
1 − cosh(�x̄)

cosh�

)
∂w

∂x̄
= 2�

tb

α

α + �

(
lc
2

)2 (
x̄ − sinh(�x̄)

� cosh�

)
+ C3

The constant C3 is evaluated using the boundary condition

at x̄ = −1,
∂w

∂x̄
= 0

C3 = 2�
tb

α

α + �

(
l2
c

4

)(
1 − tanh�

�

)
This results in

∂w

∂x̄
= 2�

tb

α

α + �

(
l2
c

4

)(
x̄ − sinh(�x̄)

� cosh�

)
+ 2�

tb

α

α + �

(
l2
c

4

)(
1 − tanh�

�

)

= 2�
tb

α

α + �

l2
c

4

[
x̄ − sinh(�x̄)

� cosh�
+ 1 − tanh�

�

]
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Table 4.4. Comparison of strain transfer

Host Structure Stiffness
Actuator Stiffness , � 0.1 0.5 1 5 10

Bending, α
α+�

0.98 0.92 0.86 0.55 0.38
Extension, α

α+�
0.95 0.8 0.67 0.29 0.17

∂w

∂x
(x) = 2�α

tb(α + �)

[
x − lc sinh(2�x/lc)

2� cosh�
+ lc

2
− lc

2
tanh�
�

]

= �lc
tb

α

α + �

[
x

lc/2
− sinh(2�x/lc)

2� cosh�
+ 1 − tanh�

�

]
Integrating the slope, we get

w = 2�
tb

α

α + �

l2
c

4

(
x̄2

2
− cosh(�x̄)

�2 cosh�

)
+ 2�

tb

α

α + �

l2
c

4

(
1 − tanh�

�

)
x̄ + C4

The constant C4 is evaluated using the boundary condition

at x̄ = −1, w = 0

This gives

C4 = 2�
tb

α

α + �

l2
c

4

(
1
2

+ 1
�2

− tanh�
�

)

w(x) = 2�
tb

α

α + �

[
x2

2
− l2

c/4 cosh(2�x/lc)
�2 cosh�

+ xlc
2

− tanh�xlc
2�

+ l2
c

8

+ l2
c

4�2
− l2

c tanh�
4�

]
Very Thin Bond (� > 30)

This represents a perfectly bonded condition. From Eqs. 4.187 and 4.188,

ε−s
b

�
= εc

�
= α

α + �

This means that the induced strain on the surface of a host structure is equal to
the actuator strain and it is proportional to the product of the actuation strain, �,
(that can be generated by the actuation material) and the reciprocal of one plus the
stiffness ratio (structural stiffness/actuator stiffness). The second term is as a result
of the impedance matching (Table 4.4).

The shear lag parameter must be kept large for efficient transfer of actuation
strain to the host structure. As the stiffness of the actuator increases, the strain
transfer becomes more effective. However, an extremely large stiffness of the bond
layer can cause fracture failure at the edges. Fig. 4.22 shows the actuator and beam
strain variation along the actuator length, in the case of pure extension (α = 2), for
a stiffness ratio of � = 10. Three cases of the shear lag parameter � are considered,
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Figure 4.22. Actuator and beam strains on the top surface of the beam, for pure extension
condition (α = 2).

and it can be seen that for higher values of �, there is a lower loss of strain in
the bond layer. As � > 30, the dependence of strain on the value of � is less
pronounced.

Note that if the actuator width is different from the beam width (bc �= bb),
the only change in the above expressions will be in the definition of �2. In this
case,

�2 = Gs

tsEc

(
1
tc

+ α
Ec

Eb

1
tb

bc

bb

)
l2
c

4
(4.193)

However, the governing equation (Eq. 4.182) remains unchanged. The strain distri-
bution results in Eqs. 4.187 and 4.188 are also unchanged.

4.4.2 Single Actuator: Asymmetric Actuation

As shown in Figs. 4.23 and 4.24, a piezo sheet induced strain actuator is bonded
to the surface of a beam with a finite thickness bond. The governing equations
are developed through force and moment equilibrium of the elemental section dx
shown in Fig. 4.25. The actuator is assumed to exhibit an axial strain that varies only
along its major axis. The neutral axis is assumed to lie at the mid-plane of the beam
because the thickness of the actuator is assumed small compared to the thickness of
the beam. The adhesive layer is assumed to only transfer loads through shear. The
strain distribution is assumed to be uniform across the actuator thickness and linear
across the beam thickness. In addition, the effect of an actuator of width bc less than
the beam width bb is considered.

x

piezo

xo

Figure 4.23. Single actuator bonded on top surface of beam.
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bond layer
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tc
ts

tb

bb
bc

Figure 4.24. Details of the beam geometry.

With the stated assumptions, the equilibrium equations for the differential ele-
ment of a straight rectangular isotropic beam can be derived as follows:

Equilibrium of piezo element forces:

σctcbc − tcbc

(
σc + ∂σc

∂x
dx
)

+ τbcdx = 0

∂σc

∂x
− τ

tc
= 0

(4.194)

Equilibrium of beam element forces:

σo
btbbb − tbbb

(
σo

b + ∂σo
b

∂x
dx
)

− τbcdx = 0

∂σo
b

∂x
+ bc

bbtb
τ = 0

(4.195)

σo
b+

x
dx

M + M
x

dxM

dx

σc +
x

dxσc
σc

τ

τ

σo
b

σo
b

strain distribution

Figure 4.25. Elemental stresses and strains.
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where σo
b is the axial stress at the mid-axis of the beam (z = 0). Equilibrium of beam

moments:

−M + M + ∂M
∂x

dx + τbc
tb
2

dx = 0

∂M
∂x

+ τ

2
bctb = 0

σ−s
b − σo

b = M
I

tb
2
, I = bbt3

b

12

M = (σ−s
b − σo

b)
bbt2

b

6

3bc

bbtb
τ + ∂σ−s

b

∂x
− ∂σo

b

∂x
= 0

(4.196)

where σ−s
b is the axial stress at the bottom surface of the beam. For a one-dimensional

system, the strain-displacement relations reduce to

εc = ∂uc

∂x
(4.197)

ε−s
b = ∂u−s

b

∂x
(4.198)

εo
b = ∂uo

b

∂x
(4.199)

γs = uc − u−s
b

ts
(4.200)

where uc is the uniform axial displacement of the actuator and u−s
b is the axial

displacement at the bottom surface of the beam. The other stress-strain relations are

σ−s
b = Ebε

−s
b (4.201)

σo
b = Ebε

o
b (4.202)

τ = Gsγs (4.203)

Substituting Eqs. 4.197 through 4.203 into the equilibrium equations and differenti-
ating with respect to x produces three governing differential equations.

From the actuator force equilibrium:

∂2εc

∂x2
− Gs

Ectcts
(εc − ε−s

b ) = 0 (4.204)

From the equilibrium of moments:

∂2ε−s
b

∂x2
− ∂2εo

b

∂x2
+ 3bcGs

Ebtbbbts
(εc − ε−s

b ) = 0 (4.205)

From the equilibrium of axial forces:

∂2εo
b

∂x2
+ bcGs

Ebtbbbts
(εc − ε−s

b ) = 0 (4.206)

Combining Eqs. 4.204, 4.205 and 4.206, making a substitution of variables, and non-
dimensionalizing with respect to the actuator length reduces the system of equations
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to a single linear second-order differential equation. From Eqs. 4.205 and 4.206,

∂2ε−s
b

∂x2
+
[

4bcGs

(Ebtbbb)ts

]
(εc − ε−s

b ) = 0 (4.207)

From Eqs. 4.204 and 4.207,

∂2

∂x2
(εc − ε−s

b ) − (εc − ε−s
b )
[

Gs

Ectcts
+ 4bcGs

Ebtbbbts

]
= 0 (4.208)

Assume

ζ = εc − ε−s
b (4.209)

x̄ = x
lc/2

(x̄ = 0 indicates the actuator midpoint) (4.210)

α = 4 (4.211)

This results in

∂2ζ

∂x̄2
− �2ζ = 0 (4.212)

where

�2 =
(

lc
2

)2 bcGs

Ebtbbbts

[
4 + Ebtbbb

Ectcbc

]
= l2

c

4
bcGs

EAbts

(
α + EbAb

EcAc

)
(4.213)

The general solution to the equation is:

ζ(x̄) = Acosh(�x̄) + B sinh(�x̄) (4.214)

From actuator equilibrium (Eq. 4.204):

∂2εc

∂x̄2
− Gs

Ectcts

(
lc
2

)2

ζ = 0 (4.215)

∂2εc

∂x̄2
− ψs

t̄2
s

(Acosh�x̄ + B sinh�x̄) = 0 (4.216)

where

ψs = Gsbcts
Ecbctc

= Ḡθs (4.217)

ψb = Ebbbtb
Ecbctc

= EbAb

EcAc
(4.218)

From Eq. 4.207,

∂2ε−s
b

∂x̄2
= − αψs

ψbt̄2
s

(Acosh(�x̄) + B sinh(�x̄)) (4.219)

and from axial force equilibrium, Eq. 4.206,

∂2εo
b

∂x̄2
= − ψs

ψbt̄2
s

(Acosh(�x̄) + B sinh(�x̄)) (4.220)
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This results in

εc = C1 + D1x̄ + ψs

t̄2
s�

2
(Acosh(�x̄) + B sinh(�x̄)) (4.221)

ε−s
b = C2 + D2x̄ − αψs

ψbt̄2
s�

2
(Acosh(�x̄) + B sinh(�x̄)) (4.222)

εo
b = C3 + D3x̄ − ψs

ψb

1
t̄2
s�

2
(Acosh(�x̄) + B sinh(�x̄)) (4.223)

ζ = Acosh(�x̄) + B sinh(�x̄) (4.224)

= (C1 − C2) + (D1 − D2)x̄ + ψs

t̄2
s�

2
(1 + α

ψb
)(Acosh(�x̄) + B sinh(�x̄)) (4.225)

Comparing the above equation with Eq. 4.214, the following relations are
obvious:

C1 = C2 (4.226)

ψs

t̄2
s�

2

(
1 + α

ψb

)
= 1 (4.227)

D1 = D2 (4.228)

The boundary conditions are:

εc(x̄ = ±1) = � (4.229)

ε−s
b (x̄ = ±1) = 0 (4.230)

εo
b(x̄ = ±1) = 0 (4.231)

From these conditions, the unknown constants can be found:

B = 0 (4.232)

D1 = 0 (4.233)

D2 = 0 (4.234)

D3 = 0 (4.235)

C1 = C2 = αψs

ψbt̄2
s�

2
Acosh� (4.236)

A
[

αψs

ψbt̄2
s�

2
+ ψs

t̄2
s�

2

]
cosh� = � (4.237)

A = �

cosh�
(4.238)

C1 = αψs

ψbt̄2
s�

2
� = α

ψb

1
1 + α

ψb

� = α

α + ψb
�

= C2

(4.239)

C3 = ψs

ψb

1
t̄2
s�

2
� = �

ψb + α
(4.240)
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Figure 4.26. Actuator and
beam strain distributions.

Substituting these gives the final solutions for the actuator and beam strains.

εc(x̄)
�

= α

(ψb + α)
+ ψb

(ψb + α) cosh�
cosh(�x̄) (4.241)

ε−s
b (x̄)
�

= α

(ψb + α)
− α

(ψb + α) cosh�
cosh(�x̄) (4.242)

εo
b(x̄)
�

= 1
(ψb + α)

− 1
(ψb + α) cosh�

cosh(�x̄) (4.243)

Again, note that the value of � is directly proportional to shear modulus Gs and
is inversely proportional to bond thickness ts. Fig. 4.26 shows the strain distribution
in the actuator and in the beam. For large values of �, the strain is constant over the
span of the actuator and reduces to a perfectly bonded condition where

εc(x̄)
�

= ε−s
b (x̄)
�

= α

(ψb + α)
(4.244)

εo
b(x̄)
�

= 1
(ψb + α)

(4.245)

Due to a dramatic change of the beam strain near the actuator ends, integra-
tion of the strain equations to obtain system deflections and rotations leads to an
increasing discrepancy between perfect and finite bond conditions. The perfect bond
system response predictions exceed those of the finite bond equations.

The adhesive shear stress is found as follows:

τ = Gsγs = Gs

ts

∫
(εc − εs

b)dx (4.246)

Using Eqs. 4.241 and 4.242,

τ = Gs

ts

∫
cosh(�x̄)

cosh�
dx̄

lc
2

= Gs

ts

lc/2
cosh�

[
sinh(�x̄)

�

] (4.247)
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Figure 4.27. Adhesive shear–stress distribution.

As seen in Fig. 4.27, the shear stress distribution has similar characteristics as the
strain distribution near the ends of the actuator. As with the system strains, the rate
of load transfer may significantly impact static and dynamic results.

The normalized bending curvature is obtained by using the assumed strain dis-
tribution through the beam

εb(z) = εo
b − z

∂2w

∂x2
(4.248)

εs
b = εo

b − tb
2
∂2w

∂x2
(4.249)

ε−s
b = εo

b + tb
2
∂2w

∂x2
(4.250)

∂2w

∂x2
= κ = − 2

tb
(εs

b − εo
b) = − tb

2
(εo

b − ε−s
b ) (4.251)

= 2
tb
�

(
α − 1
ψb + α

)(
1 − cosh(�x̄)

cosh�

)
(4.252)

κtb
2�

(x̄) = α − 1
ψb + α

(
1 − cosh(�x̄)

cosh�

)
(4.253)

The bending slope is obtained by integrating the curvature:

∂w

∂x
(x̄) =

∫ x̄

−1

�lc
tb

α − 1
ψb + α

(
1 − cosh(�x̄)

cosh�

)
dx̄

= �lc
tb

α − 1
ψb + α

[
x̄ − sinh(�x̄)

� cosh�
+ 1 − sinh�

� cosh�

] (4.254)
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∂w

∂x
(x) = �lc

tb

α − 1
ψb + α

[
x

lc/2
− sinh(�2x/lc)

� cosh�
+ 1 − sinh�

� cosh�

]
w = 2

�

lc

α − 1
ψb + α

[
x2

2
− l2

c

4
cosh(2�x/lc)
�2 cosh�

+ xlc
2

− xlc
2

tanh�
�

+ l2
c

8
+ l2

c

4�2
− l2

c

4�
tanh�

] (4.255)

Assuming thatψb is large, examining the above equation indicates that the theoretical
bending slope achieved with a single actuator (α = 4) is half of that for the dual
actuator (α = 6).

4.4.3 Unequal Electric Voltage (Vtop �= Vbottom)

Consider a dual-actuator beam with unequal voltage applied to top and bottom
actuators (Fig. 4.11). We can resolve this problem into two parts; pure extension
and pure bending problems, then use superposition to obtain the combined solution
(Fig. 4.12). The procedure followed is similar to that described in Section 4.3.4, with
the only difference being the modeling of the bond layer. The voltages resulting in
pure bending and pure extension are (Eq. 4.126):

V1 = Vtop + Vbottom

2
(4.256)

V2 = Vbottom − Vtop

2
(4.257)

For pure extension: α = α1 = 2. The free strain � → �1 corresponding to V1 and
� = �1. Therefore, Eqs. 4.241 and 4.242 become:

εc1

�1
= α1

α1 + ψb
+ ψb

α1 + ψb

cosh(�1x̄)
cosh�1

(4.258)

ε−s
b1

�1
= α1

α1 + ψb
− α1

α1 + ψb

cosh(�1x̄)
cosh�1

(4.259)

For pure bending: α = α2 = 6. The free strain � → �2 corresponding to V2 and
� = �2

εc2

�2
= α2

α2 + ψb
+ ψb

α2 + ψb

cosh(�2x̄)
cosh�2

(4.260)

ε−s
b2

�2
= α2

α2 + ψb
− α2

α2 + ψb

cosh(�2x̄)
cosh�2

(4.261)

where

�2 = l2
c

4
bcGs

EbAbts
(α + ψb) (4.262)

Actuator strain is:

εcbottom = εc1 + εc2 (4.263)

Beam strain on the bottom surface is:

ε−s
b = ε−s

b1 + ε−s
b2 (4.264)
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4.4.4 Dissimilar Actuators: Piezo Thickness (tctop �= tcbottom)

This represents a case where the thicknesses of top and bottom piezos are not
identical (Fig. 4.13). For the same voltage, the actuation force due to top and bottom
piezos will be dissimilar. The actuation force can be resolved into two parts: a force
causing pure bending, F b, and a force causing pure extension, F e (Fig. 4.14). The
approach followed is similar to that described in Section 4.3.5. Let us say F top and
Fbottom respectively represent actuation forces due to top and bottom piezos. Then

F e + F b = Fbottom (4.265)

F e − F b = F top (4.266)

4.4.5 Dissimilar Actuators: Piezo Constants (d31top �= d31bottom)

This represents a case where top and bottom piezos are not identical in terms of
induced strain (Fig. 4.15). The free strain for the top and bottom piezos is given by

�top = d31top

V
tc

(4.267)

�bottom = d31bottom

V
tc

(4.268)

By superposing pure bending and pure extension relations, actuation forces for top
and bottom piezos can be derived in terms of free strains (Fig. 4.14). In this case, the
strains on the top and bottom surfaces of the actuator and beam, respectively, are
given by:

εctop = −εb
c + εe

c

εs
b = −εb

b + εe
b

εcbottom = εb
c + εe

c

ε−s
b = εb

b + εe
b

where the superscript ‘b’ refers to the quantity resulting from pure bending and the
superscript ‘e’ refers to the quantity resulting from pure extension. Similarly, the free
strains on the top and bottom of the beam can also be separated into a component
causing pure bending and a component causing pure extension.

�e = �top + �bottom

2

�b = −�top + �bottom

2

For a perfect bond condition, the actuator and beam strains can be written as
(Eqs. 4.187, 4.188, 4.191):

ε−s
b

�
= α

α + �

(
1 − cosh(�x̄)

cosh�

)
εc

�
= α

α + �

(
1 + �

α

cosh(�x̄)
cosh�

)
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where

α = 2 for pure extension

α = 6 for pure bending

� = Ebbbtb
Ecbctc

(�e)2 = Gs

Ectstc

(
1 + 2

�

)
l2
c

4
pure extension

(�b)2 = Gs

Ectstc

(
1 + 6

�

)
l2
c

4
pure bending

Splitting the above equations into pure extension and pure bending, the actuator
strains are given by

εe
c

�e
= 2

2 + �

(
1 + �

2
cosh(�ex̄)

cosh�e

)
(4.269)

εb
c

�b
= 6

6 + �

(
1 + �

6
cosh(�bx̄)

cosh�b

)
(4.270)

The beam strains are given by

εe
b

�e
= 2

2 + �

(
1 − cosh(�ex̄)

cosh�e

)
(4.271)

εb
b

�b
= 6

6 + �

(
1 − cosh(�bx̄)

cosh�b

)
(4.272)

τe

�e
= Gs sinh(�ex̄)

�et̄s cosh�e
(4.273)

τb

�b
= Gs sinh(�bx̄)

�bt̄s cosh�b
(4.274)

From these equations, the strains on the top and bottom of the beam, strains in the
top and bottom actuators, and shear stress in the top and bottom bond layers can be
calculated.

4.4.6 Worked Example

Two piezo sheet actuators (PZT-5H & PZT-5A) (length lc = 50.8 mm (2′′), width
bc = 25.4 mm (1′′), thickness tc = 0.3175 mm (0.0125′′)) are surface-bonded at the
top and bottom of a thin aluminum cantilevered beam of size (length lb = 609.6 mm
(24′′), width bb = 50.8 mm (2′′), thickness tb = 0.79375 mm (1/32′′)). The thickness
of the bond layer ts is 0.127 mm (0.005′′), and is assumed uniform. The configuration
is shown in Fig. 4.28 (xo = 2′′). Material data are as follows:

Ec( PZT-5A and PZT-5H ) = Eb = 72.4GPa(10.5 × 106lb/in2)

d31( PZT-5A ) = −171 × 10−12 m/V

d31( PZT-5H ) = −274 × 10−12 m/V

Bond shear modulus Gs = 965 × 106 N/m2
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xo

x

PZT-5A

lb

Region 1 Region 2 Region 3

PZT-5H

Figure 4.28. Beam with surface bonded piezosheets, split into three regions.

(a) Using uniform strain theory, derive general bending as well as extension relations
with same field on opposite piezos.

(b) Plot the spanwise variation of beam surface strain and actuator strain for a field
of 150 volts to both top and bottom piezos.

(c) Plot the variation of bond shearing force along piezo span for this field.
(d) Calculate surface actuation force F in lb and bending moment M in in-lb for this

excitation for two cases: with bond layer and with perfect bond.
(e) Plot the spanwise distribution of bending slope for this excitation.
(f) Plot the beam bending displacement distribution for this excitation.
(g) If PZT elements are replaced with PVDF elements of same size, calcu-

late the new extensional actuation force and actuation bending moment for
150 Volts excitation (For PVDF d31 = −20 × 10−12 m/V and Ec = 0.2 × 1010

N/m2).
(h) Compare the calculated bending slope and displacement distributions with the

results from the blocked force method. (Worked example. 6.5.2)

Solutions

(a),(b),(c) The derivation of the relations for actuator and beam strains is described
in Section 4.4.5. The strains are obtained by superposing the bending and
extensional strains as given by Eqs. 4.269– 4.272. The shear stress is given
by Eq. 4.273.
The differential shear force on the top and bottom of the beam is given
by:

dF = τbcdx

This gives a shearing force per unit length. The results are shown in
Figs. 4.29 and 4.30.

(d) To obtain the total actuation force (force acting on the beam), the shear
force is integrated over the length of the actuator, in the region 0 < x <

lc/2. Integration over the entire actuator length will result in a shear
force of zero, because the force is an internal force on the structure. The
actuation force on the top and bottom can be split into a force producing
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Figure 4.29. Actuator and beam strains on the top and bottom of the beam.

pure extension, F e and a force producing pure bending, F b.

F e =
∫ lc/2

0
τebcdx =

∫ 1

0
τebcdx̄

lc
2

= bc�
eGslc

2�et̄s cosh�e

∫ 1

0
sinh (�ex̄) dx̄

= bc�
eGslc

2�e2 t̄s cosh�e
[cosh�e − 1]

F b = bc�
bGslc

2�b2 t̄s cosh�b

[
cosh�b − 1

]

From the above equations,

F e = −43.8395N F b = 6.4573N

F top = −50.2967N Fbot = −37.3822N

M = F btb = 6.4573 × 0.79375 × 10−3 = 5.1255 × 10−3 Nm
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Figure 4.30. Shear stress along
top and bottom of the beam.
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For a perfect bond, �e → ∞ and �b → ∞. The actuator and beam strains
are given by:

εe
cperfect

= εe
bperfect

= 2
2 + �

�e = −30.03με

εb
cperfect

= εb
bperfect

= 6
6 + �

�b = 13.27με

The actuation force and bending moment for a perfect bond are given by:

F e
perfect = 1

2
εe

bperfect
Ebbbtb

= −30.03 × 10−6 × 72.4 × 109 × 0.0508 × 0.79375 × 10−3/2

= −43.8340N

Mperfect = − EIb

tb/2
εb

bperfect
= −Ebbbt2

b
1

6 + �
�b

= −72.4 × 109 × 0.0508 × (0.79375 × 10−3)2 × 1
6 + �

× 24.33 × 10−6

= 5.125 × 10−3 Nm

(e),(f) Region 1: Slope and displacement are zero.
Region 2: The curvature at any point along the actuator span is given by:

∂2w

∂x2
(x̄) = εb

b

tb/2

= 12�b

tb(6 + �)

(
1 − cosh

(
�bx̄
)

cosh�b

)
The slope is obtained by integrating the curvature:

∂w

∂x
(x̄) =

∫ x̄

−1

12�b

tb(6 + �)

(
1 − cosh

(
�bx̄
)

cosh�b

)
dx̄

lc
2

= 12�b

tb(6 + �)
lc
2

[
x̄ − sinh

(
�bx̄
)

�b cosh�b

]x̄

−1

= 12�b

tb(6 + �)
lc
2

[
x̄ − sinh

(
�bx̄
)

�b cosh�b
+ 1 − tanh�b

�b

]
and the displacement is:

w(x̄) =
∫ x̄

−1

12�b

tb(6 + �)
lc
2

[
x̄ − sinh

(
�bx̄
)

�b cosh�b
+ 1 − tanh�b

�b

]
dx̄

lc
2

= 12�b

tb(6 + �)

(
lc
2

)2
[

x̄2

2
− cosh

(
�bx̄
)

�b2 cosh�b
+ x̄ − tanh�b

�b
x̄

]x̄

−1

= 12�b

tb(6 + �)

(
lc
2

)2
[

x̄2

2
− cosh

(
�bx̄
)

�b2 cosh�b
+ x̄ − tanh�b

�b
x̄ + 1

�b2 + 1
2

− tanh�b

�b

]
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Figure 4.31. Bending slope and bending displacement of the beam.

For a perfect bond, the slope and displacement are given by

∂wperfect

∂x
(x̄) = 6�blc

tb(6 + �)
(x̄ + 1)

wperfect(x̄) = 3�bl2
c

tb(6 + �)

(
x̄2/2 + x̄ + 1/2

)
Region 3: The slope remains constant and equal to the value at the end of
region 2.

∂w

∂x
= 1.6203 × 10−3 rad

The bending displacement increases linearly.

w = w |x̄=1 +(x − lc)
∂w

∂x
|x̄=1

The tip displacementwtip = 0.8636 mm. The bending slope and displacement
are shown in Fig. 4.31. For a perfect bond, the bending slope is

∂wperfect

∂x
= 12�blc

tb(6 + �)
= 1.6987 × 10−3 rad

and the tip displacement is

wperfecttip
= 6�bl2

c

tb(6 + �)
+ (lb − lc)

12�blc
tb(6 + �)

= 0.9493 mm

(g) If the actuators are replaced with PVDF, the configuration is symmetric
→ M = 0. The actuation force is F e = −0.150734 N. The beam and actuator
strains are shown in Fig. 4.32.

(h) The comparison of blocked force and uniform strain results is shown in
Table 4.5. The uniform strain theory predicts lower deflections than the
blocked force method.
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Table 4.5. Comparison of blocked force and uniform strain theory

Blocked Uniform Uniform strain
force strain % deviation – perfect bond % deviation

Tip slope (×10−3 rad) 1.7 1.6203 4.69 1.6987 0.08
Tip displacement (mm) 0.9068 0.8636 4.76 0.9493 4.7

4.5 Euler-Bernoulli Beam Model

The Euler-Bernoulli model is a consistent strain model and generally gives more
accurate results for slender beams than the uniform strain model, especially for thin
bond layers. This model considers the beam, adhesive, and actuator as a continu-
ous structure and follows the Euler-Bernoulli assumptions for beam bending. This
implies that a plane section normal to the beam axis in the undeformed state remains
plane and normal to the beam axis after bending. The effects of transverse shears
on bending deformation are neglected. There is a linear distribution of strain in the
cross-section for both the actuator and host structure. There is no variation of trans-
verse displacement (w) across the thickness. Using this approach, the deformation of
a beam structure is derived with single and dual actuators in the same configurations
as in the previous two models. It should be noted that while the previous two models
used simplifying assumptions for the strain distribution in the actuator, essentially
treating it as a force generator applied to the structure, the Euler-Bernoulli model
considers the actuators as an integral part of the structure. The sign convention is
defined such that a positive axial force corresponds to tension in the beam, and a
positive moment and a positive shear force are as indicated in Fig. 4.4.

4.5.1 Dual Actuators: Symmetric Actuation

Consider two identical piezo sheet actuators, surface-bonded on either surface of
an isotropic beam. Fig. 4.33 shows a differential element of the beam and the beam
coordinates.

The axial displacement and strain are defined as:

u(x, z) = uo(x) − z
∂w(x)
∂x

(4.275)
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Figure 4.32. Actuator and beam strains on
the top of the beam, PVDF actuator.
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Figure 4.33. Differential beam element and
coordinates.

where uo(x) is the axial displacement at the neutral axis. Thus, the axial strain varies
linearly through the thickness according to

ε(x, z) = εo(x) − z
∂2w(x)
∂x2

= εo(x) − zκ

(4.276)

where κ is the bending curvature. From the piezoelectric constitutive relations, the
stress in the active layer of the beam, i.e., the piezo actuator sheets is given by

σ(x, z) = E(x, z) [ε(x, z) − �(x, z)] (4.277)

For simplicity, this can be written as

σ(z) = E(z) [ε(z) − �(z)] (4.278)

The normal (axial) stress for the complete beam in the x-direction is given by
Eq. 4.278. Because we are considering the piezo to be an integral part of the beam,
the modulus E varies in the z-direction. Note that this equation can also be applied
to the passive layers of the beam, by setting �(z) = 0. For a beam of total thickness
‘h’ (including the actuators), and width ‘b(z)’, the net axial force is given by:

F =
∫ h/2

−h/2
b(z)σ(z) dz

=
∫ h/2

−h/2
b(z)E(z)[εo − zκ − �(z)] dz

=
∫ h/2

−h/2
εob(z)E(z) dz − κ

∫ h/2

−h/2
b(z)E(z)zdz −

∫ h/2

−h/2
b(z)E(z)�(z) dz (4.279)

Rewriting:

F = εoEAtot + κEStot − F� (N) (4.280)

EAtot =
∫ h/2

−h/2
b(z)E(z) dz (N) (4.281)

EStot = −
∫ h/2

−h/2
b(z)E(z)zdz (N.m) (4.282)

F� =
∫ h/2

−h/2
b(z)E(z)�(z) dz (N) (4.283)
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where F� is the axial force due to induced strain. EAtot is the resultant extensional
stiffness and EStot is an equivalent coupling stiffness. The total moment in the beam
is given by:

M = −
∫ h/2

−h/2
zb(z)σ(z) dz

= −
∫ h/2

−h/2
zb(z)E(z)[εo − zκ − �(z)] dz

= −
∫ h/2

−h/2
εozb(z)E(z) dz + κ

∫ h/2

−h/2
b(z)E(z)z2 dz +

∫ h/2

−h/2
zb(z)E(z)�(z) dz

(4.284)

Rewriting:

M = εoEStot + κEItot − M� (N.m) (4.285)

where

EItot =
∫ h/2

−h/2
b(z)E(z)z2 dz (N.m2) (4.286)

M� = −
∫ h/2

−h/2
b(z)E(z)�(z)zdz (N.m) (4.287)

EItot is the resulting bending stiffness and M� is the bending moment due to induced
strain. If the placement of actuators is symmetric, the coupling term EStot will be
zero. If an actuator is attached only on one side, this term will be non-zero, resulting
in an extension-bending coupling. Only actuator layers will contribute to the F� and
M� terms. The contributions of the passive layers will be zero.

F + F� = EAtotεo + EStotw
′′ (4.288)

Similarly, for the bending moment:

M + M� = EStotεo + EItotw
′′ (4.289)

where the curvature κ is defined as

κ = w′′ = ∂2w

∂x2
(4.290)

Combining these into a matrix equation:{
F + F�

M + M�

}
=
[

EAtot EStot

EStot EItot

]{
εo

w′′

}
(4.291)

If there is no mechanical load on the structure, F = 0 and M = 0:{
F�

M�

}
=
[

EAtot EStot

EStot EItot

]{
εo

w′′

}
(4.292)



364 Beam Modeling with Induced Strain Actuation

h3

3

2

1

z

y

h4

h1

h2

tc

tc

tb

Piezo

Piezo

Beam Figure 4.34. Isotropic beam substructure
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Let us assume that the beam consists of N layers. Any of these layers can represent
an active layer (actuator) or a passive layer (structure or adhesive). Then,

EAtot =
N∑

k=1

bkEk(hk+1 − hk) (4.293)

EStot = −1
2

N∑
k=1

bkEk(h2
k+1 − h2

k) (4.294)

EItot = 1
3

N∑
k=1

bkEk(h3
k+1 − h3

k) (4.295)

F� =
N∑

k=1

�kbkEk(hk+1 − hk) (4.296)

M� = −1
2

N∑
k=1

bkEk�k(h2
k+1 − h2

k) (4.297)

where ‘hk’ is the vertical position of the interface between two different layers.
With this approach, it is very easy to incorporate the effects of different widths or
thicknesses of each layer, as well as any differences in modulus or free strain of
the layers. The properties for each layer can be substituted in the above equations,
without having to rederive the relations for each configuration.

Consider an isotropic beam with two identical surface bonded actuators, as in
Fig. 4.34. For a symmetric lay-up, EStot = 0. The vertical positions of individual
layers can be represented as:

h1 = −
(

tb
2

+ tc

)
(4.298)

h2 = − tb
2

(4.299)

h3 = tb
2

(4.300)

h4 = tb
2

+ tc (4.301)
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Figure 4.35. Beam with symmet-
ric surface bonded actuators in
pure extension.

I. Pure Extension Case

The same voltage applied to the top and bottom piezo sheets causes pure extension,
as shown in Fig. 4.35. F� is a uniform extension force induced in the beam due to
the piezos, acting on the region 0 ≤ x ≤ lc. From Eqs. 4.293–4.297,

F� =
3∑

k=1

�kbkEk(hk+1 − hk) (4.302)

= Ecbc� [h2 − h1 + h4 − h3] (4.303)

= Ecbc�

[
− tb

2
+
(

tb
2

+ tc

)
+ tb

2
+ tc − tb

2

]
(4.304)

= 2Ecbctc� (4.305)

= EAc� (4.306)

where EAc is the extensional stiffness of the two actuators.

EAtot =
3∑

k=1

Ekbk(hk+1 − hk) = 2Ectcbc + Ebbbtb (4.307)

= EAc + EAb (4.308)

M� = −1
2

3∑
k=1

Ekbk�k(h2
k+1 − h2

k) (4.309)

= 0 (4.310)

The axial strain of the beam is:

εo = F�

EAtot
= 2bcEctc�

EAb + EAc
(4.311)

= EAc

EAb + EAc
� (4.312)

The axial displacement can be determined from the strain as

εo = ∂u
∂x

= EAc

EAb + EAc
� (4.313)
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xo x

MΛ

lc

Figure 4.36. Beam with symmet-
ric surface bonded actuators in
pure bending.

from which

x < 0 u = 0

0 ≤ x ≤ lc u = EAc

EAc + EAb
�x

lc < x u = EAc

EAc + EAb
�lc

II. Pure Bending Case

For a positive voltage applied to the bottom piezo and a negative voltage applied to
the top piezo, a bending deformation results as shown in Fig. 4.36.

�1 = �, �2 = 0, �3 = −�

The induced bending moment M� is uniform over the region where the piezos are
attached (0 ≤ x ≤ lc).

M� = −1
2

3∑
k=1

Ekbk�k(h2
k+1 − h2

k) (4.314)

= Ecbc�

[(
tb
2

+ tc

)2

− t2
b

4

]
= Ecbc�tc(tb + tc) (4.315)

EItot = 1
3

3∑
k=1

Ekbk(h3
k+1 − h3

k) (4.316)

= Ectcbc

(
2
3

t2
c + tbtc + t2

b

2

)
+ Ebbbt3

b

12
(4.317)

= EIb + EIc (4.318)

where EIb is bending stiffness of the beam alone and EIc is the bending stiffness of
the two actuators, which can be written as

EIb = Ebbbt3
b

12
(4.319)

EIc = 2Ecbct3
c

12
+ 2Ecbctc

(
tc
2

+ tb
2

)2

(4.320)

Note that the first term of the above equation is the flexural stiffness of the actu-
ators about their own mid-axis, and the second term is the flexural stiffness of the
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actuators about the beam mid-axis. In this case, there is no induced axial deforma-
tion. Therefore,

F� = 0 and εo = 0

The bending deformation can be calculated by:

M� = EItotw
′′ (4.321)

The axial strain distribution is

ε(z) = −z
M�

(EI)tot

= −
6(1 + 1

θb
) 2

tb
�

(� + 6) + 12
θb

+ 8
θ2

b

z

where

� = Extensional stiffness ratio = Ebtbbb

Ectcbc

= EbAb

EcAc

and

θb = Beam thickness
Actuator thickness

= tb
tc

The thickness ratio, θb, determines whether the strain variation across the piezo
element affects the analysis. Fig. 4.37 shows the variation of the normalized curva-
ture with the thickness ratio. For thin beams, the uniform strain model overpredicts
strain (curvature). For beams with large thickness ratio (θb > 8), induced deforma-
tions are identical using both models, away from the edges of the actuator. For
induced bending, the Euler-Bernoulli and detailed finite element models predict
identical curvatures. The bending slope and deflection can be derived from the
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Figure 4.38. Single surface bonded actu-
ator with bond layer.

induced moment, which gives the beam curvature as

∂2w

∂x2
= M�

EItot
(4.322)

where

M� = Ecbctc(tb + tc)� (4.323)

EItot = EIb + EIc (4.324)

The bending slope is

x < 0
∂w

∂x
= 0

0 ≤ x ≤ lc
∂w

∂x
= M�

EItot
x

lc < x
∂w

∂x
= M�

EItot
lc

The bending deflection is

x < 0 w = 0

0 ≤ x ≤ lc w = M�

EItot

x2

2

lc < x w = M�

EItot
lc(x − lc/2)

4.5.2 Single Actuator: Asymmetric Actuation

In this case, a single piezo actuator is surface-mounted on a cantilevered beam. The
cross-section of the beam with the positions of individual layers is shown in Fig. 4.38.
The effect of the bond layer is also included in this example as another beam layer.
An electric field will induce both bending and extension of beam. Force and moment
equilibrium obtained by integration over the cross-section provides the governing
equations (Eq. 4.291): {

F + F�

M + M�

}
=
[

EAtot EStot

EStot EItot

]{
εo

w′′

}
(4.325)

In the absence of external loads, the deformations of the beam are given by
(Eq. 4.292): {

F�

M�

}
=
[

EAtot EStot

EStot EItot

]{
εo

w′′

}
(4.326)
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There are two approaches to solve this problem. The first approach involves deter-
mination of the neutral axis (z̄), to which the locations of the beam and actuators
are referenced. In the second approach, the mid-axis of the beam is used as the
reference, and coupling terms appear.

Approach I

In the earlier examples, to simplify the analysis, the position of the neutral axis
was assumed to be at the mid-plane of the beam. However, in the Euler-Bernoulli
method, position of the neutral axis can easily be included in the analysis even if it
is not at the mid-plane of the beam. At the neutral axis, εo = 0 for a pure bending
condition. The position of the neutral axis, z̄, can be found by

z̄ =
∫

z E(z)b(z)zdz∫
z E(z)b(z)dz

= Ebbbtb( tb
2 ) + Esbcts(tb + ts

2 ) + Ecbctc(tb + ts + tc
2 )

Ebbbtb + Esbcts + Ecbctc

(4.327)

where the reference vertical position is taken as the bottom surface of the beam. The
cross-sectional properties with respect to the neutral axis are

EAtot = Ebbbtb + Esbcts + Ecbctc

EStot = Ebbbtb

(
tb
2

− z̄
)

+ Esbsts

(
ts
2

+ tb − z̄
)

+ Ecbctc

(
tc
2

+ tb + ts − z̄
)

= 0

EItot = 1
12

Ebbbt3
b + Ebbbtb

(
tb
2

− z̄
)2

+ 1
12

Esbst3
s + Esbsts

(
ts
2

+ tb − z̄
)2

+ 1
12

Ecbct3
c + Ecbctc

(
tc
2

+ ts + tb − z̄
)2

(4.328)

The induced forces and moments are

F� = Ecbctc� (4.329)

M� = −Ecbctc

(
tc
2

+ tb + ts − z̄
)
� (4.330)

With respect to the neutral axis, if no external forces or moments are present,
Eq. 4.292 simplifies to the uncoupled system[

EAtot 0

0 EItot

]{
εo

κ

}
=
{

F�

M�

}
(4.331)

The advantage in writing the equations with respect to the neutral axis is the elimi-
nation of coupling between extension and bending.

Approach II

The same solution can be obtained by referring the sectional properties EAtot, EStot

and EItot to any vertical location on the beam cross-section. In such a case, the
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coupling term, EStot �= 0, and the coupled set of equations (Eq. 4.292) need to be
solved. It is worth mentioning here that the latter method is usually much simpler in
terms of alegbraic manipulatons, inspite of the presence of the coupling term.

The stiffness terms are given by

EAtot = Ebbbtb + Esbcts + Ecbctc

EStot = Esbsts

(
ts
2

+ tb
2

)
+ Ecbctc

(
tc
2

+ ts + tb
2

)

EItot = 1
12

Ebbbt3
b + 1

12
Esbst3

s + Esbsts

(
ts
2

+ tb
2

)2

+ 1
12

Ecbct3
c + Ecbctc

(
tc
2

+ ts + tb
2

)2

(4.332)

The forcings are given by

F� = Ecbctc�

M� = −Ecbctc

(
tc
2

+ tb
2

+ ts

)
�

(4.333)

The coupled system is [
EAtot EStot

EStot EItot

]{
εo

κ

}
=
{

F�

M�

}
(4.334)

4.5.3 Unequal Electric Voltage (Vtop �= Vbottom)

Consider a beam with two identical actuators, and with an unequal voltage applied
to the top and bottom actuators (Fig. 4.11). We can resolve this problem into two
parts; pure extension and pure bending problems, and then use superposition to
obtain the composite solution (Fig. 4.12). This gives:

V1 − V2 = Vtop

V1 + V2 = Vbottom

V1 = Vtop + Vbottom

2
(Extension)

V2 = Vbottom − Vtop

2
(Bending)

(4.335)

V1 produces no bending moment, and it causes an axial induced force given by

F� = 2Ecbctc�1 = 2EcAcd31
V1

tc

= EAtotεo

(4.336)

V2 produces no axial force, and it causes an induced bending moment given by

M� = Ecbctc(tc + 2ts + tb)�2 = EcAc(tc + 2ts + tb)d31
V2

tc

= EItotκ

(4.337)
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The solution is

εo = F�

EAtot
(4.338)

κ = M�

EItot
(4.339)

4.5.4 Dissimilar Actuators: Piezo Thickness (tctop �= tcbottom )

This represents a case where the thickness of top and bottom piezos are not identical
(Fig. 4.13). For the same voltage, the actuation force due to top and bottom piezos
will be dissimilar.

Using the mid-axis as the reference axis, the bending-extension relations are
coupled and can be written as{

F�

M�

}
=
[

EAtot EStot

EStot EItot

]{
εo

κ

}
(4.340)

where

EAtot = EcActop + EcAcbottom + EbAb = EActop + EAcbottom + EAb (4.341)

EStot = 1
2

[
EAcbottom (tcbottom + tb) − EActop (tctop + tb)

]
(4.342)

EItot = 1
3

EAcbottom

[
3
4

t2
b + 3

2
tbtcbottom + t2

cbottom

]
+ 1

12
EAbt2

b

+ 1
3

EActop

[
3
4

t2
b + 3

2
tbtctop + t2

ctop

] (4.343)

F� = d31Ecbc(Vtop + Vbottom) = 2d31EcbcV (4.344)

M� = 1
2

Ecbcd31
[
Vbottom(tcbottom + tb) − Vtop (tctop + tb)

]
(4.345)

= 1
2

Ecbcd31V
[
tcbottom − tctop

]
4.5.5 Dissimilar Actuators: Piezo Constants (d31top �= d31bottom )

This represents a case where top and bottom piezos are not identical in terms of
induced strain (Fig. 4.15). Free strain for top and bottom piezos

�1 = d31top

V
tc

(4.346)

�2 = d31bottom

V
tc

(4.347)

Using displacement compatibility conditions, the actuation forces for the top
and bottom piezos can be derived in terms of their free strains, and the solution is
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xo
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lb

Region 1 Region 2 Region 3

PZT-5H Figure 4.39. Beam with surface
bonded piezosheets, split into
three regions.

similar to Eqs. 4.345 and 4.346.

F� = Ecbctc(�1 + �2) (4.348)

M� = 1
2

Ecbctc(tc + 2ts + tb)(�2 − �1) (4.349)

4.5.6 Worked Example

Two piezo sheet actuators (PZT-5H & PZT-5A) (length lc = 50.8 mm (2′′), width
bc = 25.4 mm (1′′), thickness tc = 0.3175 mm (0.0125′′)) are surface-bonded at the
top and bottom of a thin aluminum cantilevered beam of size (length lb = 609.6 mm
(24′′), width bb = 50.8 mm (2′′), thickness tb = 0.79375 mm ( 1

32
′′)). The thickness of

the bond layer ts is 0.127 mm (0.005′′), and is assumed uniform. The configuration is
shown in Fig. 4.39 (xo = 2′′). Material data are as follows:

Ec( PZT-5A and PZT-5H ) = Eb = 72.4GPa(10.5 × 106lb/in2)

d31( PZT-5A ) = −171 × 10−12 m/V

d31( PZT-5H ) = −274 × 10−12 m/V

Bond shear modulus Gs = 965 × 106 N/m2

(a) Using Euler-Bernoulli theory, derive general bending as well as extension rela-
tions with same field on opposite piezo actuators.

(b) Plot spanwise variation of beam surface strain and actuator strain for a field of
150 Volts to both top and bottom piezos.

(c) Calculate actuation surface force F in lb and bending moment M in in-lb for this
excitation for two cases: with bond layer and with perfect bond.

(d) Show spanwise distribution of bending slope for this excitation.
(e) Show beam bending displacement distribution for this excitation.
(f) If PZT-5H and PZT-5A elements are replaced with PVDF elements of same

size, calculate new surface actuation strain and actuation bending moment for a
field of 150 Volts to both top and bottom piezos (For PVDF d31 = −20 × 10−12

m/V and Ec = 0.2 × 1010 N/m2).
(g) Compare the calculated bending slope and displacement distributions with the

results from the blocked force method and the uniform strain method. (Worked
example. 8.9.3)
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Solution

(a),(b),(c) The problem can be split up into a summation of pure bending and pure
extension. The stiffness parameters EAtot,EStot and EItot depend only
on the geometry and modulus of the elements of the beam. Because the
structure is symmetric about the mid-plane of the beam, EStot = 0. The
problem therefore reduces to one of uncoupled bending and extension.

EAtotεo = F�

EItotκ = M�

where εo and κ are the mid-plane strain and curvature of the beam respec-
tively. The total extensional stiffness is given by:

EAtot =
5∑

k=1

Ekbk(hk+1 − hk)

= 2Ecbctc + 2Esbcts + Ebbbtb

= 1.1677 × 106 + 16.187 × 103 + 2.919 × 106

= 4.103 × 106 N

Assuming Es = 2(1 + 0.3)Gs. The total moment of inertia is given by
(neglecting the moment of inertia of the acuators and bond layers about
their own mid-plane):

EItot = 1
3

5∑
k=1

Ekbk(h3
k+1 − h3

k)

= 2Ecbctc

(
tc
2

+ ts + tb
2

)2

+ 2Ecbct3
c

12

+ 2Esbcts

(
ts
2

+ tb
2

)2

+ 2Esbct3
s

12
+ Ebbb

t3
b

12

� 0.5441 + 0.1533

= 0.6974 Nm2

The induced strains on the top and bottom can be split into strains causing
pure extension and pure bending.

�e = �top + �bot

2

�b = −�top + �bot

2

Only �e contributes to F�, and only �b contributes to M�. As a result,
the actuation force is given by (for a voltage of 150 V):

F� =
5∑

k=1

�kEkbk(hk+1 − hk)

= 2�eEcbctc = −122.75 N
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Figure 4.40. Actuator and beam strains on
the top of the beam.

Similarly, the actuation moment is given by:

M� = −1
2

5∑
k=1

�kEkbk(h2
k+1 − h2

k)

= 1
2
�bEcbc

[(
tb
2

+ ts + tc

)2

−
(

tb
2

+ ts

)2
]

2̇

= �bEcbctc (tc + 2ts + tb)

= 0.0194 Nm

The mid-plane strain and bending curvature are

εo = F�/EAtot = −29.91με

κ = M�/EItot = 0.027835 1/m

The strain on the top surface can be obtained by

εtop = εb + εo = tb
2
κ + εo

This strain is plotted in Fig. 4.40 for both the actuator and the beam. There
is no variation in strain along the actuator length. The perfect bond can
be modeled by assuming the bond thickness ts = 0 or by assuming a very
high modulus of the bond material (for example, equal to the actuator
modulus). However, the expressions for F� and M� only contain the bond
thickness, ts and are independent of the bond shear modulus. The Euler-
Bernoulli method only considers the geometrical effect of the presence
of the bond layer, and not the loss due to the finite stiffness bond. As a
result, the induced force and moment for a perfect bond are the same as
the values calculated in part (c). If the bond thickness is assumed zero,
the induced moment is lower due to the decreased moment arm.

F�perfect = 2�eEcbctc = −122.75 N

M�perfect = �bEcbctc (tc + tb)

= 0.0158 Nm

(d),(e) The bending slope and displacement can be obtained by integrating the
curvature. The constants of integration disappear because of the can-
tilevered boundary conditions.
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Table 4.6. Comparision of blocked force, uniform strain, and Euler-Bernoulli theory

Blocked force Uniform strain Euler-Bernoulli

(baseline) % deviation % deviation

Tip slope (×10−3 rad) 1.7 1.6203 4.69 1.406 17.3
Tip displacement (mm) 0.9068 0.8636 4.76 0.7493 17.4

Region 1: Slope and displacement are zero.
Region 2:

∂w

∂x
= κ(x − xo)

w = κ(x − xo)2

2
Region 3: The slope remains constant and equal to the value at the end
of region 2.

∂w

∂x
= 1.406 × 10−3 rad

The bending displacement increases linearly.

w = w |x̄=1 +(x − Xo − lc)
∂w

∂x
|x̄=1

The tip displacement wtip = 0.7493 mm. The bending slope and displace-
ment are shown in Fig. 4.41.

(f) If the actuators are replaced with PVDF, the configuration is symmetric
→ M� = 0. The actuation force is F� = −0.3048N.

(g) The comparison of blocked force and uniform strain results is shown in
Table 4.6. The uniform strain theory predicts lower deflections than the
blocked force method.

4.5.7 Bimorph Actuators

A bimorph actuator consists of two identical piezoceramic sheets bonded together.
When a voltage is applied, the bimorph actuator undergoes pure bending, resulting
in a tip displacement that can be used in a variety of applications. The piezoceramic
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Figure 4.41. Bending slope and bending displacement of the beam.
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+V

(a) Series configuration

+V
Metal shim

(b) Parallel configuration

Figure 4.42. Piezoceramic bimorph actuators. The arrow denotes direction of polarization.

sheets can be bonded in either a series or a parallel configuration. In the series
configuration, the piezoceramic sheets are bonded with their polarized axes pointing
in opposite directions (Fig. 4.42(a)). If a voltage of +V volts is applied to the top
electrode, and the bottom electrode is grounded, a pure bending deformation will
take place. In this way, the voltage across each piezoceramic sheet is equal to V/2
volts. Using the Euler-Bernoulli formulation,

EItotw
′′ = M�

EItot = 1
3

2∑
k=1

bkEk(h3
k+1 − h3

k)

= 2
3

Ecbct3
c

M� = −1
2

2∑
k=1

bkEk�k(h2
k+1 − h2

k)

As a result of the field, the top piezo sheet will experience a free strain of −�

and the bottom piezo sheet will experience a free strain of +�. The induced moment
and tip displacement are given by

M� = Ecbct2
c�

wtip = M�

EItot

(
l2
c

2

)
= 3

4
�

tc
l2
c

= 3
8

(
lc
tc

)2

d31V

A bimorph actuator can also be constructed in a parallel configuration, in which
the piezoceramic sheets are bonded with their polarized axes pointing in the same
direction (Fig. 4.42(b)). In this configuration, a common electrode, such as a thin
metal sheet, must be bonded between the piezoceramic sheets. The common elec-
trode is connected to the ground of the power supply, and the exposed faces of
the piezoceramic sheets are connected to +V volts. In this way, one piezo sheet
experiences a positive electric field while the other experiences a negative electric
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xo

x

Lb

Region 1 Region 2 Region 3

a

tc

lcFigure 4.43. Pure bending of
cantilevered beam with two
piezoceramic actuators, Euler-
Bernoulli model.

field, resulting in a pure bending deformation. Note that the series and parallel
configurations refer to the electrical connection of the piezoceramic sheets.

4.5.8 Induced Beam Response Using Euler-Bernoulli Modeling

The induced responses of several beam configurations in pure bending, derived
using the Euler-Bernoulli model, are shown below. It is assumed that the length of
the piezoceramic sheet actuator is small compared to the length of the beam. Also,
EItot = EIb = EI, which is uniform along the length of the beam. Let the mid-point
of the piezoceramic sheet be located at a co-ordinate a = xo + lc/2.

I. Cantilevered beam (Fig. 4.43):

0 ≤ x ≤ xo
∂w1

∂x
= 0

w1 = 0

xo ≤ x ≤ xo + lc
∂w2

∂x
= M�

2EI
(2x + lc − 2a)

w2 = M�

8EI
(2x + lc − 2a)2

xo + lc/2 ≤ x ≤ Lb
∂w3

∂x
= M�

EI
lc

w3 = M�

EI
(x − a) lc

II. Simply supported beam (Fig. 4.44):

0 ≤ x ≤ xo
∂w1

∂x
= M�

EI
lc
Lb

(a − Lb)

w1 = M�

EI
lc
Lb

(a − Lb) x

xo ≤ x ≤ xo + lc
∂w2

∂x
= M�

EI
x + M�

2EI
[2a(lc − Lb) − lclb]

Lb

w2 = M�

2EI
x2 + M�

2EI
[2a(lc − Lb) − lclb]

Lb
x + M�

8EI
(2a − lc)2

xo + lc/2 ≤ x ≤ Lb
∂w3

∂x
= M�

EI
alc
Lb

w3 = −M�

EI

(
1 − x

Lb

)
lca
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Figure 4.44. Pure bending of
simply supported beam with
two piezoceramic actuators,
Euler-Bernoulli model.

III. Clamped-clamped beam (Fig. 4.45):

0 ≤ x ≤ xo
∂w1

∂x
= M�

EI

[
2lc(3a − 2Lb)x

L2
b

− 3lc(2a − Lb)x2

L3
b

]

w1 = M�

EI

[
lc(3a − 2Lb)x2

L2
b

− lc(2a − Lb)x3

L3
b

]

xo ≤ x ≤ xo + lc
∂w2

∂x
= M�

EI

[
6alc − Lb(4lc − Lb)

L2
b

x − 3lc(2a − Lb)

L3
b

x2

− (2a − lc)
2

]

w2 = M�

EI

[
6alc − Lb(4lc − Lb)

2L2
b

x2 − lc(2a − Lb)

L3
b

x3

− (2a − lc)
2

x + (2a − lc)2

8

]

xo + lc/2 ≤ x ≤ Lb
∂w3

∂x
= M�

EI

[
2lc(3a − 2Lb)x

L2
b

− 3lc(2a − Lb)x2

L3
b

+ lc

]

w3 = M�

EI

[
lc(3a − 2Lb)x2

L2
b

− lc(2a − Lb)x3

L3
b

+ lcx − alc

]

x

Lb
a

tc

lc
Figure 4.45. Pure bending of
clamped-clamped beam with
two piezoceramic actuators,
Euler-Bernoulli model.
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x

Lba

tc

lc
Figure 4.46. Pure bending of
simply supported-clamped
beam with two piezoceramic
actuators, Euler-Bernoulli
model.

IV. Simply supported-clamped beam (Fig. 4.46):

0 ≤ x ≤ xo
∂w1

∂x
= M�

EI

[
−3alcx2

2L3
b

+ lc(3a − 2Lb)
2Lb

]

w1 = M�

EI

[
−alcx3

2L3
b

+ lc(3a − 2Lb)x
2Lb

]

xo ≤ x ≤ xo + lc
∂w2

∂x
= M�

EI

[
−3alcx2

2L3
b

+ x + a(3lc − 2Lb) − lcLb

2Lb

]

w2 = M�

EI

[
−alcx3

2L3
b

+ x2

2
+ [a(3lc − 2Lb) − lcLb]x

2Lb

+ (2a − lc)2

8

]

xo + lc/2 ≤ x ≤ Lb
∂w3

∂x
= M�

EI

[
−3alcx2

2L3
b

+ 3alc
2Lb

]

w3 = M�

EI

[
alcx3

2L3
b

+ 3alcx
2Lb

+ alc

]

4.5.9 Embedded Actuators

The Euler-Bernoulli formulation can be easily used to model the behavior of com-
plex structures, such as those involving embedded actuators. Assume two identical
actuators are embedded in an isotropic beam, at an equal distance from the mid-
plane, resulting in a symmetric actuation. A very thin bond layer exists between the
actuators and the beam such that a perfect bond assumption may be valid. An equal
voltage applied to both actuators results in pure extension, whereas an equal but
opposite voltage applied to opposite actuators causes pure bending of the beam. A
schematic of two piezo sheet elements embedded in a beam is shown in Fig. 4.47.

The vertical locations of the layers in the beam are shown in Fig. 4.48, and the
distances are defined as follows:

h1 = − tb
2

h2 = −(d + tc)

h3 = −d

h4 = d

h5 = d + tc

h6 = tb
2
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d
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tb
lc

tc

b

cross-section

Figure 4.47. Beam substructure with symmetric bending actuators.

Stiffnesses are defined as

EAtot =
5∑

k=1

Ekbk(hk+1 − hk)

= Ebb [−(d + tc) − (−tb/2)]

+ Ecb [−d + (d + tc)]

+ Ebb [d − (−d)]

+ Ecb [d + tc − d]

+ Ebb [tb/2 − (d + tc)]

= Ebb(tb − 2tc) + Ecb(2tc)

= EAb + EAc

EStot = 0 (for a symmetric configuration)

EItot = 1
3

5∑
k=1

Ekbk
(
h3

k+1 − h3
k

)
= Ebb

t3
b

12
+ 2

3
(Ec − Eb)btc

(
t2
c + 3d2 + 3dtc

)
Actuation force and moment can be expressed as

F� =
5∑

k=1

Ekbk�k (hk+1 − hk)

M� = −1
2

5∑
k=1

Ekbk�k
(
h2

k+1 − h2
k

)

h6

h5

h4

h3

h2

h1

2

1

3

5

4

Figure 4.48. Beam cross-section with dimensions.
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b

b/2

b/4
tb

tc

d

Figure 4.49. Beam with dissimilar embedded piezo
sheets.

For pure extension,

�2 = �4 = �

F� = 2Ecbtc� = EAc�

M� = 0

For pure bending,

�2 = −�4 = �

F� = 0

M� = Ecb�tc(2d + tc)

Combining bending-extension relations into the governing matrix equation,{
F + F�

M + M�

}
=
[

EAtot EStot

EStot EItot

]{
εo

∂2w
∂x2

}

4.5.10 Worked Example

Using the Euler-Bernoulli theory, derive extension-bending relations for a beam of
modulus Eb, with two dissimilar piezo sheets embedded at a distance ‘d’ from the
mid-plane. The width of the beam is ‘b’, and the widths of top and bottom piezos are
‘b/4’ and ‘b/2’ respectively. The piezos are of the same thickness and modulus Ec.
A cross-section of the beam is shown in Fig. 4.49. The same electric field is applied
to both piezos.

Solution

The beam can be divided into 5 layers. The vertical position of each layer with
respect to the beam mid-plane is given by:

h1 = −h6 = − tb
2

h2 = −h5 = −(d + tc)

h3 = −h4 = −d
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The stiffness coefficients are found from

EAtot =
5∑

k=1

Ekbk(hk+1 − hk)

= Ebb
[

(h2 − h1) + 1
2

(h3 − h2) + (h4 − h3) + 3
4

(h5 − h4) + (h6 − h5)
]

+ Ecb
[

1
2

(h3 − h2) + 1
4

(h5 − h4)
]

= Ebb
(

tb − 3
4

tc

)
+ 3

4
Ecbtc

EStot = −1
2

5∑
k=1

Ekbk(h2
k+1 − h2

k)

= −1
2

Ebb
[

(h2
2 − h2

1) + 1
2

(h2
3 − h2

2) + (h2
4 − h2

3) + 3
4

(h2
5 − h2

4) + (h2
6 − h2

5)
]

− 1
2

Ecb
[

1
2

(h2
3 − h2

2) + 1
4

(h2
5 − h2

4)
]

= −
[

b
8

(Eb − Ec)tc(tc + 2d)
]

EItot = 1
3

5∑
k=1

Ekbk(h3
k+1 − h3

k)

= 1
3

Ebb
[

(h3
2 − h3

1) + 1
2

(h3
3 − h3

2) + (h3
4 − h3

3) + 3
4

(h3
5 − h3

4) + (h3
6 − h3

5)
]

+ 1
3

Ecb
[

1
2

(h3
3 − h3

2) + 1
4

(h3
5 − h3

4)
]

= Ebbt3
b

12
+ b

4
(Ec − Eb)tc

(
t2
c + 3d2 + 3dtc

)
The induced force and moment is given by

F� = �cEcb
[

1
2

(h3 − h2) + 1
4

(h5 − h4)
]

= 3
4
�cEcbtc

M� = 1
2
�cEcb

[
1
2

(h2
3 − h2

2) + 1
4

(h2
5 − h2

4)
]

= 1
8
�cEcbtc(tc + 2d)
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Actuator

Beam
Direction of Polarization

Direction of Polarization

Mirror
Figure 4.50. Beam setup for tip slope
measurement.

The strain and curvature can be found by substituting the above stiffnesses and
induced forces in the governing equation of the beam.{

F�

M�

}
=
[

EAtot EStot

EStot EItot

]{
εo

∂2w
∂x2

}

4.6 Testing of a Beam with Surface Mounted Piezoactuators

The static tip bending slope of a beam with surface mounted piezoactuators can be
measured in the laboratory and correlated with the slope predicted by the Blocked
Force, Uniform Strain, and Euler-Bernoulli theories. The free strain of the piezoac-
tuator can also be directly measured to improve the theoretical correlation.

4.6.1 Actuator Configuration

A sample PZT-5H piezoceramic sheet actuator of thickness 0.01′′ (0.254 mm) is
connected to a DC power supply. A quarter-bridge strain guage is bonded to the
surface of the actuator. The strain gauge is connected to a signal conditioning unit,
from which the voltage is measured by a multimeter. The strain (microstrain) is given
by

ε = − 4VR

GF(1 + 2VR)
(4.350)

where GF is the gauge factor of the strain gauge (for example, 2.109) and

VR = Vout

G.Vex
(4.351)

where Vout is the output voltage from the signal conditioner, G is the gain of the
signal conditioner, and Vex is the bridge excitation voltage.

4.6.2 Beam Configuration and Wiring of Piezo

To measure the bending slope at the tip of a beam, two piezos are bonded to the
beam as shown in Fig. 4.50 (note the direction of polarity). The beam is clamped at
one end (not shown) and a mirror is placed at the tip of the beam. The mirror is used
in conjunction with a laser to measure the tip slope of the beam upon activation of
the piezos. Fig. 4.51 shows the wiring configuration of the piezos for bending (note
the drawings are not to scale). The black dots on the piezos indicate the positive
electrode.
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Figure 4.51. Wiring configuration for bend-
ing.

4.6.3 Procedure

For piezoactuator free strain:

1. The piezoactuator is cycled by varying the voltage between the maximum and
zero untill the residual strain stabilizes. The strain gauge is then reset. Care must
be taken to cycle the actuator at the same polarity (i.e., zero voltage must not
be crossed while cycling)

2. Voltage is applied in increments of 10 V to the maximum allowable voltage to
prevent depoling (typically provided by the manufacturer, say 130 V for PZT-
5H). This is performed as follows: desired voltage is set in the DC power supply,
actuator is switched on, output strain is noted, actuator is switched off.

3. Note that at each voltage, the actuator should not be kept on for more than a
couple of seconds, in order to minimize error due to drift.

4. After obtaining all the points for one voltage polarity, the polarity is reversed
by switching the connector of the actuator. The above steps are repeated for the
opposite polarity. Enough data points must be measured to obtain a meaningful
average.

For beam with piezoactuators:

1. The beam is tested in bending for voltages of −120 to 120 V in increments of
10 V and the bending slope is measured using the laser-optic system (outlined
in Section 4.6.4).

2. Initial position of laser dot is marked.
3. Desired voltages (0–120 V) are applied.
4. Transients are allowed to stop.
5. New position of laser dot is marked.
6. Steps are repeated for all voltages.

4.6.4 Measurement of Tip Slope

The measurement of the tip slope is achieved using a small mirror placed at the tip of
the beam so that a laser beam can be reflected across the room. The setup is shown
in Fig. 4.52.

The angle between the deflected and undeflected laser light (labeled 2θ in
Fig. 4.52) is twice the deflection angle of the beam. This angle is calculated based
on the small angle approximation of the tangent function. The distance from the
deflected light spot to the undeflected light spot, divided by the distance from the
beam to the wall, is the tangent of twice the angle θ. Different angles are calculated
by measuring the distance between the deflected and undeflected light for different
voltages varying from 0 V to 120 V.
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Laser

Deflected Laser Light

Undeflected Laser Light

2θ

Wall

Beam

Figure 4.52. Room setup for tip slope
measurement.

4.6.5 Data Processing

1. Distance between deflected and undeflected marks is measured.
2. Beam bending slope is determined.
3. Beam bending slopes (analytical vs. experimental) are compared.
4. Typical parameters for the setup are: Bond layer: Es = 2.509 GPa, Gs = 0.965

GPa, tc = 0.01015 in., tb = 0.030 in., lc = 2 in., bc = 1 in. The remaining parameters
can be measured from the experimental setup.

4.7 Extension-Bending-Torsion Beam Model

As an example of an application of the techniques described thus far, this section
presents a force-equilibrium formulation of an isotropic rectangular beam with an
induced strain actuator bonded to one surface. Fig. 4.53 shows an induced strain
actuator mounted to the surface of a beam with a finite thickness adhesive layer.
In this case, because the actuator axis is offset from the beam axis by an angle β, it
induces extension, bending, and twisting of the beam. The uniform strain theory is
used to analyze this structure.

The mechanism which induces torsion in the system is a two-dimensional strain
state; however, global beam torsion is adequately represented by a one-dimensional
model. Therefore, in keeping the derivation one-dimensional for mathematical sim-
plicity, certain assumptions must be made such that the total state of strain may be
sufficiently represented by the state of strain in one axis. Assuming that:

(a) The beam may only extend, bend and twist
(b) The Izz bending inertia is much greater than Iyy

(c) Chordwise extensional stiffness, EAy, is much greater than the longitudinal
extensional stiffness, EAx

Chordwise deflections, vb, may be neglected. This assumption has the effect of align-
ing the principal strain axes with the beam axes and setting the transverse principal

x
β

y y x̃

Beam

Piezo sheet

Top View

bb

bc

lc

Figure 4.53. Actuator axis offset
from beam axis.
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Figure 4.54. Differential element of the beam with piezo actuator and bond layer.

strain identically zero.

εb =

⎧⎪⎨⎪⎩
εb

0

0

⎫⎪⎬⎪⎭ (4.352)

The actuator is assumed to have a high aspect ratio, thereby behaving as a line
element and only inducing strain in its longitudinal direction. As with the previously
presented uniform strain model, the strain distribution is assumed to be uniform
through the piezo thickness and linear through the beam thickness. The adhesive is
considered a linear shear layer, which only transfers load in the piezo longitudinal
axis direction. A differential element of the beam and actuator section, and the
individual components of forces acting on it, are shown in Fig. 4.54. Variables in the
coordinate system skewed at an angle β are represented by a tilde.

With the stated assumptions and the geometric relationships, the force and
moment equilibrium equations of the differential element are obtained as:

∂σ̃c

∂̃x
− 1

tc
τ̃ = 0 (force equilibrium in the actuator (4.353)

in the x̃ direction)

∂σs
b

∂x
+ 4bc

tbbb
τ̃ = 0 (moment equilibrium in the beam (4.354)

about the y axis)

∂σo
b

∂x
+ bc

tbbb
τ̃ = 0 (force equilibrium in the beam (4.355)

in the x direction)

∂T
∂x

− bctb tan(β)
2

τ̃ = 0 (moment equilibrium in the beam (4.356)

about the x axis)
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The strain-displacement relations of the system are

ε̃c = ∂ũc

∂̃x
(4.357)

εs
b = ∂us

b

∂x
(4.358)

εo
b = ∂uo

b

∂x
(4.359)

γ̃s = 1
ts

(̃uc − ũs
b) (4.360)

Substituting the mechanical strain in the piezo sheet with εm = (εc − �), the stress-
strain relations are

σ̃c = Ec(̃εc − �) (4.361)

σ̃s
b = Eb̃ε

s
b (4.362)

σ̃o
b = Eb̃ε

o
b (4.363)

τ̃ = Gs̃γs (4.364)

Given the following transformation relations

x = x̃ cos(β) − ỹ sin(β) u = ũ cos(β) − ṽ sin(β) (4.365)

y = x̃ sin(β) + ỹ cos(β) v = ũ sin(β) + ṽ cos(β) (4.366)

x̃ = x cos(β) + y sin(β) ũ = u cos(β) + v sin(β) (4.367)

ỹ = −x sin(β) + y cos(β) ṽ = −u sin(β) + v cos(β) (4.368)

Substituting the strain-displacement and the stress-strain relations into the equi-
librium equations, differentiating with respect to x̃, and expanding the resulting
equations using the Chain Rule, the governing differential equations with respect to
the actuator axes are

∂2̃εc

∂̃x2
− ψs

t2
s

(̃εc − εs
b cos2(β)) = 0 (4.369)

∂2εs
b

∂̃x2
+ αψs

ψb

cos(β)
t2
s

(̃εc − εs
b cos2(β)) = 0 (4.370)

∂2εo
b

∂̃x2
+ ψs

ψb

cos(β)
t2
s

(̃εc − εs
b cos2(β)) = 0 (4.371)

∂2T
∂̃x2

− tbbc

2
tsGs sin(β)

t2
s

(̃εc − εs
b cos2(β)) = 0 (4.372)

As a result of the stated assumptions, the variations of strains in the y axis may be
written in terms of their variations in the x̃ axis as

∂

∂y
= 0 (4.373)

∂

∂̃y
= ∂

∂̃x
tan(β) (4.374)
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Note that the beam extensional strain εo
b and torque T are uncoupled from the

coupled actuator and beam surface strains (̃εc and εs
b) and may be found after solving

the coupled equations (Eqs. 4.369 and 4.370). Another important observation is
that for the given formulation and assumptions, the torsion distribution, actuator
extension, beam bending, and beam extension behaviors are all independent of the
system torsional rigidity. Multiplying Eq. 4.370 by cos2(β), subtracting from Eq. 4.369
and making the following substitutions produces a single differential equation for
the two coupled equations.

�2 = ψs

t̄2
s

(
ψb + α cos3(β)

ψb

)
; ψb = Ebtbbb

Ectcbc
; ψs = Gstsbs

Ectcbc
where bs = bc

α = 4; t̄s = ts
lc/2

; t̄b = tb
lc/2

; ¯̃x = x̃
lc/2

; x̄ = x
lc cos(β)/2

(4.375)

ζ = ε̃c − εs
b cos2(β) (4.376)

∂2ζ

∂ ¯̃x2
− �2ζ = 0 (4.377)

The solution to this equation is given as

ζ = Acosh(� ¯̃x) + B sinh(� ¯̃x) (4.378)

Substituting Eq. 4.378 into Eqs. 4.369, 4.371 and 4.372, the actuator strain, beam
extensional strain and beam torque are obtained through direct integration. The
beam surface strain is then found by Eq. 4.376.

ε̃c( ¯̃x) = C1 + D1 ¯̃x + ψs

t̄2
s�

2
(Acosh(� ¯̃x) + B sinh(� ¯̃x)) (4.379)

εs
b( ¯̃x) cos2(β) = C1 + D1 ¯̃x −

(
1 − ψs

t̄2
s�

2

)
(Acosh(� ¯̃x) + B sinh(� ¯̃x)) (4.380)

εo
b( ¯̃x) = C2 + D2 ¯̃x − ψs cos(β)

ψbt̄2
s�

2
(Acosh(� ¯̃x) + B sinh(� ¯̃x)) (4.381)

T ( ¯̃x) = C3 + D3 ¯̃x + (Gsbcts)tb sin(β)
2t̄2

s�
2

(Acosh(� ¯̃x) + B sinh(� ¯̃x)) (4.382)

Assuming the following stress free boundary conditions

ε̃c(±1) = � (4.383)

εo
b(±1) = 0 (4.384)

εs
b(±1) = 0 (4.385)

T (±1) = 0 (4.386)



4.7 Extension-Bending-Torsion Beam Model 389

and utilizing the geometric relationship x̄ = ¯̃x, the final solutions are derived as

ε̃c( ¯̃x)
�

= α cos3(β)
ψb + α cos3(β)

+ ψb

ψb + α cos3(β)
cosh(� ¯̃x)
cosh(�)

(4.387)

εs
b(x̄)
�

= α cos(β)
ψb + α cos3(β)

(
1 − cosh(�x̄)

cosh(�)

)
(4.388)

εo
b(x̄)
�

= cos(β)
ψb + α cos3(β)

(
1 − cosh(�x̄)

cosh(�)

)
(4.389)

2T (x̄)
�(Ebbbtb)tb

= sin(β)
ψb + α cos3(β)

(
1 − cosh(�x̄)

cosh(�)

)
(4.390)

The normalized bending curvature is obtained as

κtb
2�

(x̄) = cos(β)(α − 1)
ψb + α cos3(β)

(
1 − cosh(�x̄)

cosh(�)

)
(4.391)

Integration with respect to x provides the bending slope for a cantilevered beam,
∂w
∂x = 0 at x̄ = −1, as

t̄b
2�

∂w

∂x
(x̄) = cos2(β)(α − 1)

ψb + α cos3(β)

(
sin(�x̄) + sinh(�)

� cosh(�)
− (x̄ + 1)

)
(4.392)

The twist rate for a rectangular isotropic beam is given by the expression

∂φ

∂x
= 3T

Gbbbt3
b

(4.393)

Integration with respect to x provides the twist angle for a cantilevered beam, φ = 0
at x̄ = −1, as

φ

�
(x̄) = 3

4
lc
tb

Eb

Gb

cos(β) sin(β)
ψb + α cos3(β)

(
sinh(�x̄) + sinh(�)

� cosh(�)
− (x̄ − 1)

)
(4.394)

Examining the solutions for the case where the actuator is aligned with the beam,
β = 0, the previously derived solutions for this configuration are exactly obtained.
For the condition where the bond layer is infinitely thin, the beam surface strain and
actuator strains reduce to

ε̃c

�
= α cos3(β)

ψb + α cos3(β)
(4.395)

εs
b

�
= α cos(β)

ψb + α cos3(β)
(4.396)

εo
b

�
= cos(β)

ψb + α cos3(β)
(4.397)

The relation between the actuator and beam surface strains is derived from Eqs. 4.395
and 4.396 as

ε̃c = εs
b cos2(β) (4.398)

The relationship expressed in the above equation is exactly the one-dimensional
approximation of the compatibility condition at the actuator-beam interface subject
to a two-dimensional strain tensor rotation. Fig. 4.55 shows a plot of the strains
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Figure 4.55. Analytical strains and deflections (ψb=38).

versus β at x̄ = 0 and rotations at x̄ = 1 for a rectangular aluminum beam with one
7.5 mil G-1195 piezoceramic actuator perfectly bonded to one surface [3].

At β = 90◦, the strains all approach zero values due to the one dimensional
assumptions. If two dimensional strains were considered, the actuator strain would
approach the limit compatible with the stiffness in the transverse direction. The
longitudinal beam strains, however, would still approach zero. Near β = 45◦, the
analysis predicts maximum twist for a fixed actuator length. The limitations of the one
dimensional assumption must be kept in mind while applying this kind of analysis.
For more refined modeling, the effects of transverse actuation must be included.
Comparison of predicted results with test data (Fig. 4.56) showed that the models
were satisfactory in predicting trends for bending slope and twist with different
orientation angles. The predicted bending slope deviated significantly from measured
values for orientation angles β > 45◦, more so for piezoceramics with moderate
aspect ratios. The experimental specimen in this case was a 0.794 mm (1/32′′) thick
aluminum beam with three 50 mm × 6.35 mm × 0.19 mm (2′′ × 1/4′′ × 0.0075′′)
piezoceramic sheet actuators bonded along the 406 mm long (16′′) beam in 101 mm
(4′′) intervals.
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Figure 4.56. Effects of actuator orienta-
tion angle β on beam bending slope and
twist angle, (ψb = 38).
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4.8 Beam Equilibrium Equations

Using the Euler-Bernoulli approach, it is possible to derive the equilibrium equations
of a beam. The forces and moments in the beam are given by

F + F� = EAtotεo + EStot
∂2w

∂x2
(4.399)

M + M� = EStotεo + EItot
∂2w

∂x2
(4.400)

The equilibrium equations for a one dimensional structure are

∂σx

∂x
+ ∂τzx

∂z
+ f x = 0 (4.401)

∂τzx

∂x
+ ∂σz

∂z
+ f z = 0 (4.402)

where f x and f z are body forces in the x and z directions respectively. Integrating
these equations over the beam thickness results in

∂F
∂x

= −px (4.403)

∂V
∂x

= pz (4.404)

where F and V are the axial force and shear force respectively px and pz are loadings
per unit length along the x and zdirections. Multiplying the first equilibrium equation
with (−z) and integrating over the beam thickness results in

∂M
∂x

− V = 0 (4.405)

Substituting in the above equation,

∂2M
∂x2

= pz (4.406)

Therefore, the beam equilibrium equations in x and z directions become

uo equation :
∂

∂x

[
EAtot

∂uo

∂x

]
+ ∂

∂x

[
EStot

∂2w

∂x2

]
− ∂F�

∂x
= −px (4.407)

w equation :
∂2

∂x2

[
EStot

∂uo

∂x

]
+ ∂2

∂x2

[
EItot

∂2w

∂x2

]
− ∂2M�

∂x2
= pz (4.408)

For an isotropic beam without actuators, these equations reduce to

∂

∂x

[
EAtot

∂uo

∂x

]
= −px (4.409)

∂2

∂x2

[
EItot

∂2w

∂x2

]
= pz (4.410)

4.9 Energy Principles and Approximate Solutions

The previous sections discussed the modeling of the beam structure with active
elements by making several assumptions about the strain distribution in the structure
as well as the relative contribution of the various elements to the overall deformation
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lc

x

piezo
bond layer

Figure 4.57. Beam with single piezoactuator, energy formulation of uniform strain model.

of the structure. The governing equations were derived based on a force-balance
approach. In some cases, for example, in the uniform strain model, this approach can
become very cumbersome and derivation of the complete set of governing equations
can be a tedious process. An alternate approach is to use an energy formulation
to derive the governing equations and boundary conditions of the structure. In this
approach, the relative energies stored in various elements of the structure can be
compared and the assumptions made regarding the importance of each element can
be assessed. As the method does not require keeping track of each force acting in
the structure, the derivation is often much simpler than the force balance method.

In general, one can obtain the exact solution for only a selected few cases such
as a uniform beam under steady loading. This is because an exact solution must
satisfy all equilibrium equations, boundary conditions, and compatibility relations
simultaneously. Expressing equilibrium equations in terms of displacements inher-
ently satisfies compatibility constraints; however, it is not possible to find a response
solution for a generic beam, which satisfies equilibrium equation and all boundary
conditions. Therefore, an approximate solution becomes necessary. Approximate
methods, such as the Rayleigh-Ritz method and Galerkin method, are often used
in conjunction with energy-based formulations to obtain the solution of complex
problems.

The following sections describe the derivation of the uniform strain model and
Euler-Bernoulli model equations using an energy approach, as well as obtaining the
approximate solution of the problem using the Galerkin and Rayleigh-Ritz methods.

4.9.1 Energy Formulation: Uniform Strain Model

Using the same basic assumptions made in the force equilibrium formulation, the
Principle of Virtual Work readily provides the governing equations and boundary
conditions of the system. This can be easily adapted to dynamic equations of motion.
However, only the static formulation is presented in this section. It is assumed that
the only allowable modes of deformation are actuator extension, adhesive shear,
and beam bending and extension. Let us consider a beam with a single actuator
bonded to the bottom surface as shown in Fig. 4.57. The beam extension, bending,
and adhesive strain energy relations may be directly written as follows:

Beam extension: V o
b = 1

2

∫ lc
2

− lc
2

EAb

(
∂uo

b

∂x

)2

dx (4.411)

Beam bending: V κ
b = 1

2

∫ lc
2

− lc
2

EIb

(
∂2w

∂x2

)2

dx (4.412)

Adhesive shear: Vs = 1
2

∫ lc
2

− lc
2

GsAs (γs)
2 dx (4.413)
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The actuator strain, εc is comprised of the induced strain term (�) and mechanical
strain. The strain energy per unit volume of the actuator, �Vc, is given by

�Vc =
∫ εm

o
σdεm = Ec

2
ε2

m

= Ec

2
(εc − �)2

(4.414)

Integrating and substituting the strain-displacement relation gives the total strain
energy in the actuator:

Actuator extension: Vc = 1
2

∫ lc
2

− lc
2

EcAc

(
∂uc

∂x
− �

)2

dx (4.415)

Substituting these relations, and assuming a solid rectangular beam cross-section,
the beam bending and adhesive-shear strain energies can be expressed in terms of
beam and actuator displacements.

Ib = 1
12

Abt2
b (4.416)

σ−s
b − σo

b = M
Ib

tb
2

(4.417)

∂2w

∂x2
= M

EIb
= 2

tb
(ε−s

b − εo
b) (4.418)

γs = (uc − u−s
b )

ts
(4.419)

resulting in:

V κ
b = 1

2

∫ lc
2

− lc
2

EbAb

3
(ε−s

b − εo
b)2dx (4.420)

Vs = 1
2

∫ lc
2

− lc
2

GsAs

t2
s

(uc − u−s
b )2dx (4.421)

The Principle of Virtual Work for static behavior is mathematically stated as:

δWext = δV (4.422)

where δV is the variation in total strain energy and δWext is the virtual work done by
external forces. The total strain energy of the system is given by

V = V o
b + V κ

b + Vs + Vc

In the absence of external forces, the virtual work done is zero.

δWext = 0
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Therefore, summing the first variations of the strain energies and setting to zero,

∫ lc
2

− lc
2

EcAc

(
∂uc

∂x
− �

)
δ
∂uc

∂x
dx +

∫ lc
2

− lc
2

EbAb

(
∂uo

b

∂x

)
δ
∂uo

b

∂x
dx

+
∫ lc

2

− lc
2

EbAb

3

(
∂u−s

b

∂x
− ∂uo

b

∂x

)(
δ
∂u−s

b

∂x
− δ

∂uo
b

∂x

)
dx

+
∫ lc

2

− lc
2

GsAs

t2
s

(uc − u−s
b )(δuc − δu−s

b )dx = 0

Integrating by parts until no derivatives of variations remain within the integral
leads to:

[
EcAc

(
∂uc

∂x
− �

)
δuc + EbAb

(
∂uo

b

∂x

)
δuo

b + EbAb

3

(
∂u−s

b

∂x
− ∂uo

b

∂x

)
(δu−s

b − δuo
b)
] lc

2

− lc
2

−
∫ lc

2

− lc
2

EcAc

(
∂2uc

∂x2

)
δucdx −

∫ lc
2

− lc
2

EbAb

(
∂2uo

b

∂x2

)
δuo

bdx

−
∫ lc

2

− lc
2

EbAb

3

(
∂2u−s

b

∂x2
− ∂2uo

b

∂x2

)
(δu−s

b − δuo
b)dx

+
∫ lc

2

− lc
2

GsAs

t2
s

(uc − u−s
b )(δuc − δu−s

b )dx = 0 (4.423)

The governing equations of motion and boundary conditions are obtained by group-
ing the coefficients of the variations and setting them separately equal to zero.

δuc :
∂2uc

∂x2
− GsAs

EcAct2
s

(uc − u−s
b ) = 0 (4.424)

δu−s
b :

∂2u−s
b

∂x2
− ∂2uo

b

∂x2
+ 3GsAs

EbAbt2
s

(uc − u−s
b ) = 0 (4.425)

δuo
b :

∂2uo
b

∂x2
= 1

4
∂2u−s

b

∂x2
(4.426)

The boundary conditions are

At x = ± lc
2
, δuc = 0 or

∂uc

∂x
= � (4.427)

At x = ± lc
2
, δu−s

b = 0 or
∂u−s

b

∂x
= ∂uo

b

∂x
(4.428)

At x = ± lc
2
, δuo

b = 0 or
∂uo

b

∂x
= 1

4
∂u−s

b

∂x
(4.429)
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Based on physical constraints, the only way for Eqs. 4.428 and 4.429 to be satisfied
simultaneously is for both strains to be zero at the ends of the actuator. Therefore,

At x = ± lc
2
,

∂u−s
b

∂x
= 0

∂uo
b

∂x
= 0

∂uc

∂x
= �

(4.430)

The governing equations and boundary conditions are identical to those developed
earlier with force equilibrium.

4.9.2 Energy Formulation: Euler-Bernoulli Model

The strain energy of a structure is given by

V = 1
2

∫
volume

σεmdV (4.431)

where the subscript ‘m’ indicates net mechanical strain and the integration is carried
out over the volume of the structure. In other words, only the strain caused by
the stress σ contributes to the strain energy of the structure. Let us consider a
beam with bonded piezoactuators. As seen earlier, the net mechanical strain of the
piezoactuator is given by

εm(x, z) = ε(x, z) − �(x, z) (4.432)

where ε is the total strain of the piezoactuator, x is the coordinate along the beam
axis (horizontal direction), and z is the coordinate perpendicular to the beam axis
(vertical direction). Note that the above equation is valid for any location in the
beam, by setting�(x, z) = 0 over the passive volume of the beam. Assuming uniform
properties along the width of the beam (in the y direction), and considering an
element of the beam of length dx in the x direction, the strain energy of the beam
with piezoactuators becomes

V = 1
2

∫
volume

σ(x, z)εm(x, z)dV

= 1
2

∫
volume

E(z) [ε(z) − �(z)]2 dAdx

(4.433)

where E is the local Young’s modulus. For a beam deforming as per the Euler-
Bernoulli assumption, the total strain at any location at a distance z from the neutral
axis of the beam is given by (Eq. 4.276)

ε(z) = εo − zκ (4.434)

where εo is the axial strain at the neutral axis of the beam, and κ is the bending
curvature of the beam. Note that εo and κ are functions of the x-coordinate only, and
are constant in the beam element under consideration. Substituting for the beam
strain (Eq. 4.434) and the actuator strain (Eq. 4.432) in the expression for strain
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energy (Eq. 4.433),

V = 1
2

∫
volume

E(z) (εo − zκ − �)2 dAdx

= 1
2

∫
volume

E(z)
(
ε2

o + z2κ2 + �2 − 2εozκ − 2εo� + 2zκ�
)

dAdx

= 1
2

[
EAtotε

2
o + EItotκ

2 + EAtot�
2 + 2εoκEStot − 2F�εo − 2M�κ

]
dx

= 1
2

∫
length

{
εo κ

} [EAtot EStot

EStot EItot

]{
εo

κ

}
dx −

∫
length

{
F� M�

} {εo

κ

}
dx

(4.435)

where

EAtot =
∫

area
E(z)dA

EStot = −
∫

area
E(z)zdA

EItot =
∫

area
E(z)z2dA

F� =
∫

area
E(z)�dA

M� = −
∫

area
E(z)�zdA

(4.436)

Taking the variation of the strain energy leads to

δV = [EAtotεoδεo + EItotκδκ + EStotκδεo + EStotεoδκ − F�δεo − M��δκ] dx
(4.437)

As the free strain � is a constant, the term �2 does not contribute to the variation
in strain energy. Assuming that an external force F and an external moment M are
applied to the element, the virtual work done is given by

δWext =
∫

length
Fδεodx +

∫
length

Mδκdx (4.438)

The Principle of Virtual Work states that

δV = δWext (4.439)

Substituting for δV and δWext from Eq. 4.437 and Eq. 4.438, and equating the coef-
ficients of δεo and δκ leads to two simultaneous equations

EAtotεo + EStotκ − F� = F (4.440)

EStotεo + EItotκ − M� = M (4.441)

Rewriting the above equations in matrix form, the Euler-Bernoulli governing equa-
tions for the beam with induced strain actuation are:[

EAtot EStot

EStot EItot

]{
εo

κ

}
=
{

F + F�

M + M�

}
(4.442)
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The above equations can be used to estimate the deformations of a beam by an
approximate method. Note that because this is a static case, the governing equa-
tions are obtained from static force equilibrium, as described in Section 4.5. For a
continuous system, the Galerkin method is a widely used method for obtaining the
approximate solution.

4.9.3 Galerkin Method

Two of the popular methods used to estimate the approximate solution are the
Galerkin and Rayleigh-Ritz methods. For the Galerkin solution, the response is
assumed to be a summation of functions such that each function must separately sat-
isfy all boundary conditions; geometric plus forced-boundary conditions. Expressing
strains and curvatures in terms of basic displacements,{

εo

κ

}
=
[

∂
∂x 0

0 ∂2

∂x2

]{
uo

w

}
= DU (4.443)

where the operator D is of order 2 × 2. Assuming the displacement distribution in
terms of a series of functions such as:

uo(x) =
M∑

i=1

φui (x)qi

w(x) =
N∑

j=1

φwj (x)qj+M (4.444)

where φui and φwj are known functions that satisfy all boundary conditions and qi

are unknown coefficients, or generalized coordinates. This means that

U =
{

uo

w

}
=
[
φu1 φu2 . . . φuM 0 0 0

0 0 0 φw1 φw2 . . . φwN

]⎧⎪⎪⎪⎨⎪⎪⎪⎩
q1

q2
...

qM+N

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = �(x)q

(4.445)
The size of the matrix φ is (2 × (M + N)) and the size of the vector q is ((M +

N) × 1).
The beam equations are⎡⎣ ∂

∂x

(
EAtot

∂
∂x

)
∂
∂x

(
EStot

∂2

∂x2

)
∂2

∂x2

(
EStot

∂
∂x

)
∂2

∂x2

(
EItot

∂2

∂x2

)
⎤⎦{uo

w

}
−
{

∂F�

∂x

∂2M�

∂x2

}
=
{−px

pz

}
(4.446)

Substituting the assumed response results in an error function

ε(x) =
⎡⎣ ∂

∂x

(
EAtot

∂
∂x

)
∂
∂x

(
EStot

∂2

∂x2

)
∂2

∂x2

(
EStot

∂
∂x

)
∂2

∂x2

(
EItot

∂2

∂x2

)
⎤⎦�q −

{
∂F�

∂x

∂2M�

∂x2

}
−
{−px

pz

}
(4.447)

If the assumed solution is an exact solution, this error function will be identically
zero. Through the Galerkin approach, the error is minimized by orthogonalizing it
with respect to each assumed function over the complete solution domain. Note that
this approach is a specific instance of a more generalized formulation known as the
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weighted residual approach. In the Galerkin method, the weight that is multiplied
with the residual ε(x) is the assumed function itself, and the error is minimized over
the complete region (in this case, the length of the beam Lb).∫ Lb

0
φT

i ε(x)dx = 0 for i = 1, 2 . . .M + N (4.448)

where the vector φi is the ith mode in the assumed response, corresponding to the
ith column of the matrix φ. This results in an (M + N) set of equations which can be
concisely put into a matrix form:

Kq = Q� (4.449)

where the elements of the effective, or generalized stiffness matrix are:

Kij =
∫ Lb

0
φT

i

⎡⎢⎣ ∂
∂x

(
EAtot

∂
∂x

)
∂
∂x

(
EStot

∂2

∂x2

)
∂2

∂x2

(
EStot

∂
∂x

)
∂2

∂x2

(
EItot

∂2

∂x2

)
⎤⎥⎦φj dx (4.450)

and the elements of the generalized forcing vector are:

Q�i =
∫ Lb

0
φT

i

⎧⎨⎩
∂F�

∂x

∂2M�

∂x2

⎫⎬⎭dx +
∫ Lb

0
φT

i

{−px

pz

}
dx (4.451)

The vector φi is the i th mode (column) in the assumed response and is of size
2 × 1. Generally, it is extremely difficult to choose a φi(x) that satisfies all boundary
conditions for all but the simplest problems. Note that the generalized stiffness
matrix K has the dimensions of force per unit length (N/m) and the generalized
forcing vector Q� has the dimensions of force (N).

Consider the case of a symmetric configuration (EStot = 0) with pure induced
extension. This again results in M sets of equations

Kq = Q� (4.452)

where the elements of these matrices can be defined as

Kij =
∫ Lb

0
φui

∂

∂x

(
EAtot

∂φuj

∂x

)
dx (4.453)

Q�i =
∫ Lb

0
φui

∂F�

∂x
dx (4.454)

Note that, on integrating by parts and applying the boundary conditions, the
generalized force can also be written as

Q�i = −
∫ Lb

0
F�

∂φui

∂x
dx (4.455)

This is because F� = 0 at x = 0 and Lb.
Next, consider the case of a symmetric configuration (EStot = 0) with pure

induced bending. This again results in N sets of equations

Kq = Q� (4.456)
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Lb

xo lc

Figure 4.58. Beam with dual piezoactuators.

where the elements of these matrices can be defined as

Kij =
∫ Lb

0
φwi

∂2

∂x2

(
EItot

∂2φwj

∂x2

)
dx (4.457)

Q�i =
∫ Lb

0
φwi

∂2M�

∂x2
dx (4.458)

In this case, on integrating by parts and applying the boundary conditions, the
generalized force can also be written as

Q�i =
∫ Lb

0
M�

∂2φwi

∂x2
dx (4.459)

4.9.4 Worked Example

Using the Galerkin method, determine the steady state axial response of a uniform
cantilevered beam of length Lb with two identical piezos with the same electric field
(Fig. 4.58). Assume a one-term solution as

u(x) =
[

x
Lb

− 1
2

(
x

Lb

)2
]

q1

Solution

The assumed shape function is

φ1 = x
Lb

− 1
2

(
x

Lb

)2

At x = 0, the boundary condition φ1(0) = 0 is satisfied.
At x = Lb, the boundary condition ∂φ1(Lb)

∂x = 0 is satisfied.
Note that for xo < x < xo + lc, EAtot = EAb + EAc. The governing equation

becomes

K11q1 = Q1
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where the stiffness is given by

K11 =
∫ Lb

0
φ1EAtot

∂2φ1

∂x2
dx

=
∫ Lb

0
EAtot

(
− 1

L2
b

)[
x

Lb
− 1

2

(
x

Lb

)2
]

dx

= −EAb

3Lb
− EAc

L3
b

[
(xo + lc)2 − x2

o

2
− 1

6
(xo + lc)3 − x3

o

Lb

]

and the forcing is

Q1 =
∫ Lb

0
φu1

∂F�

∂x
dx

= −
∫ xo+lc

xo

F�

∂φu

∂x
dx

= −
∫ xo+lc

xo

F�

(
1

Lb
− x

L2
b

)
dx

= −F�lc
Lb

[
1 − lc + 2xo

Lb

]

The generalized coordinate is obtained from

q1 = Q1

K11

4.9.5 Worked Example

Using the Galerkin method, determine the steady state bending response of a uni-
form cantilevered beam of length Lb with two identical piezos with opposite electric
fields (Fig. 4.58). Assume a solution as

w(x) =
[

6
(

x
Lb

)2

− 4
(

x
Lb

)3

+
(

x
Lb

)4
]

q1

Note that for xo < x < xo + lc, EItot = EIb + EIc, otherwise, EItot = EIb.

Solution

The assumed shape function is

φ1 = 6
(

x
Lb

)2

− 4
(

x
Lb

)3

+
(

x
Lb

)4



4.9 Energy Principles and Approximate Solutions 401

which satisfies all the boundary conditions:

φ1(0) = 0

∂φ1(0)
∂x

= 0

EIb
∂2φ1(Lb)

∂x2
= 0

EIb
∂3φ1(Lb)

∂x3
= 0

(4.460)

This assumed shape function results in

K11q1 = Q1

where

K11 =
∫ Lb

0
φw1 EItot

∂2φw1

∂x2
dx

= 24

L4
b

∫ Lb

0
EI

(
6

x2

L2
b

− 4
x3

L3
b

+ x4

L4
b

)
dx

= 144EItot

5L3
b

+ 24EIc

L4
b

{
3

L2
b

[
(xo + lc)3 − x3

o

]
− 1

L3
b

[
(xo + lc)4 − x4

o

]− 1

5L4
b

[
(xo + lc)5 − x5

o

]}
(4.461)

and

Q1 =
∫ Lb

0
M�

∂2φw

∂x2
dx

=
∫ xo+lc

xo

M�

(
12

L2
b

− 24x

L3
b

+ 12x2

L4
b

)
dx

= M�

{
12

L2
b

lc − 12

L3
b

[
(xo + lc)2 − x2

o

]+ 4

L4
b

[
(xo + lc)3 − x3

o

]}
(4.462)

from which the generalized coordinate is found as

q1 = Q1

K11
(4.463)

4.9.6 Rayleigh-Ritz Method

In the Rayleigh-Ritz method, an assumed solution is directly substituted in the
expressions for the energies of the structure. The governing equation of the structure
is then obtained using Lagrange’s equation. For the Rayleigh-Ritz solution, the
response is assumed to be a summation of functions such that each function needs
to satisfy only geometric boundary conditions. The Rayleigh-Ritz method is more
convenient compared to the Galerkin method because the assumed functions do not
need to satisfy forced boundary conditions that are often too involved. Therefore, a
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larger number of simpler functions is available, from which the approximate solution
can be chosen.

u(x) =
M∑

i=1

φui (x)qi (4.464)

w(x) =
N∑

j=1

φwj (x)qj+M (4.465)

U =
{

u

w

}
=
[
φu1 φu2 . . . φuM 0 0 0
0 0 0 φw1 φw2 . . . φwN

]⎧⎪⎪⎪⎨⎪⎪⎪⎩
q1

q2
...

qM+N

⎫⎪⎪⎪⎬⎪⎪⎪⎭= φ(x)q (4.466)

Similar to the Galerkin approach, {
εo

κ

}
= Dφq (4.467)

For the Rayleigh-Ritz solution, Lagrange’s equations are normally used.

∂

∂t

(
∂T
∂q̇i

)
− ∂T

∂qi
+ ∂V

∂qi
= Qi

for qi = q1, q2 . . . qM+N

(4.468)

where V is the strain energy, T is the kinetic energy, and Q is the generalized force.
For a static problem, the kinetic energy T is zero. Substituting for the total strain
energy for a beam (Eq. 4.496), this becomes:

Vtotal = 1
2

∫ Lb

0
{Dφq}T

[
EAtot EStot

EStot EItot

]
{Dφq} dx

−
∫ Lb

0

{
F T
� MT

�

} {Dφq} dx

= 1
2

qT Kq − Q�q

(4.469)

The size of the generalized stiffness matrix K is (M + N) × (M + N) and the size of
the generalized force vector Q� is (M + N) × 1. The generalized stiffness matrix is
defined as

Kij =
∫ Lb

0

{
Dφi

}T
[

EAtot EStot

EStot EItot

] {
Dφj

}
dx (4.470)

and the generalized force is

Q�i =
∫ Lb

0

{
F T
� MT

�

} {
Dφi

}
dx (4.471)

The vector φi is the ith mode in the assumed response and is of size 2 × 1. The
generalized stiffness matrix K has the dimensions of force per unit length (N/m) and
the generalized forcing vector Q� has the dimensions of force (N).
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In the case of a dynamic problem, the kinetic energy T is also included in the
total energy of the beam. The kinetic energy of the beam is given by

T = 1
2

∫∫∫
volume

ρs
(
u̇2 + ẇ2) dxdydz

= 1
2

∫ Lb

0

∫
tb
ρsb
(
u̇2 + ẇ2) dxdz

(4.472)

where ρs is the density of the material of the beam, b is the width of the beam, and
tb is the thickness of the beam. The velocity components at a point (x, z) are

u̇(x, z, t) = u̇o(x, t) − z
∂

∂t

(
∂w

∂x
(x, t)

)
(4.473)

ẇ(x, z, t) = ẇ(x, t) = ẇ(x, t) (4.474)

where u̇o, and ẇ are the velocity components at the mid-plane. The kinetic energy
becomes

T = 1
2

∫ Lb

0

[
mb
(
u̇o

2 + ẇ2)− 2Sb

(
u̇o

∂ẇ

∂x

)
+ Ib

(
∂ẇ

∂x

)2
]

dx (4.475)

This can be rewritten as

T = 1
2

∫ Lb

0

{
u̇o ẇ ∂ẇ

∂x

}⎡⎢⎣mb 0 −Sb

0 mb 0

−Sb 0 Ib

⎤⎥⎦
⎧⎪⎪⎨⎪⎪⎩

u̇o

ẇ

∂2w
∂t∂x

⎫⎪⎪⎬⎪⎪⎭dx

= 1
2

∫ Lb

0

{
u̇o ẇ ∂2w

∂t∂x

}
ms

⎧⎪⎪⎨⎪⎪⎩
u̇o

ẇ

∂2w
∂t∂x

⎫⎪⎪⎬⎪⎪⎭dx

(4.476)

where mb is the mass per unit length (kg/m), Sb is the first mass moment of inertia,
per unit length, about the mid-plane (kg), and Ib is the second mass moment of
inertia, per unit length, about the mid-plane (kg-m).

mb =
∫

tb
ρsbdz (kg/m) (4.477)

Sb =
∫

tb
ρsbzdz (kg) (4.478)

Ib =
∫

tb
ρsbz2dz (kg-m) (4.479)

For a Rayleigh-Ritz solution,⎧⎪⎪⎨⎪⎪⎩
u̇o

ẇ

∂2w
∂t∂x

⎫⎪⎪⎬⎪⎪⎭ =

⎡⎢⎣1 0

0 1

0 ∂
∂x

⎤⎥⎦{u̇o

ẇ

}
= D1

{
u̇o

ẇ

}
(4.480)
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Substituting the assumed shape functions for the displacements, the expression for
kinetic energy becomes

T = 1
2

∫ Lb

0
{D1φq̇}T ms{D1φq̇}dx

= 1
2

q̇T Mq̇

(4.481)

where M is a generalized mass matrix of size (M + N) × (M + N) defined as

Mij =
∫ Lb

0
{D1φi}T ms{D1φj }dx

=
∫ Lb

0
{D1φi}T

⎡⎣mb 0 −Sb

0 mb 0
−Sb 0 Ib

⎤⎦ {D1φj }dx

Using Lagrange’s equations,

Mq̈ + Kq = Q�

where M and K are of size ((M + N) × (M + N)), q is of size ((M + N) × 1) and Q�

is of size ((M + N) × 1). The static deflections of the beam are found from:

q = K−1Q� (4.482)

U =
{

u
w

}
= φq (4.483)

Note that φui, φwj must satisfy at least the geometric boundary conditions.
For an uncoupled beam, where the extension-bending coupling matrix EStot = 0,

the governing equations can be reduced to two sets of uncoupled equations.

EAtotεo = F� (4.484)

EItotκ = M� (4.485)

Also, the strain energy can be divided into two parts:
Extensional strain energy

Vext = 1
2

∫ Lb

0
εT

o EAtotεodx (4.486)

Bending strain energy

Vbend = 1
2

∫ Lb

0
κT EItotκdx (4.487)

In the case of a static problem, assuming a symmetric configuration (EStot = 0)
with pure induced extension results in a system of M equations.

Kq = Q� (4.488)

where the elements of these matrices can be defined as

Kij =
∫ Lb

0

∂φui

∂x
EAtot

∂φuj

∂x
dx (4.489)

Q�i =
∫ Lb

0
φui

∂F�

∂x
dx (4.490)
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xo

x

piezo

Lb

Region 1 Region 2 Region 3

Figure 4.59. Beam with surface-bonded piezo actuators.

Next, consider a symmetric configuration with pure induced bending. The result-
ing system of N equations can be written as

Kq = Q� (4.491)

where the elements of these matrices can be defined as

Kij =
∫ Lb

0

∂2φwi

∂x2
EItot

∂φwj

∂x
dx (4.492)

Q�i =
∫ Lb

0
F�

∂2φwi

∂x2
dx (4.493)

4.9.7 Worked Example

Let us use approximate energy methods to calculate the static response of a can-
tilevered uniform beam of length Lb, width b, and thickness tb. (Fig. 4.59). The
beam is in a pure bending configuration: identical piezo sheet actuators of length lc,
thickness tc and width b, with opposite polarity.

Solution

Assume the response as a summation of functions such that each function separately
satisfies at least the geometric boundary conditions.

w(x) =
N∑

i=1

φwi (x)qi (4.494)

Let us assume a one-term solution for the displacement:

w(x) =
(

x
lb

)2

q1 = φ1q1

At x = 0,

w = 0, φi(0) = 0

∂w

∂x
= 0,

∂φi

∂x
(0) = 0

This function satisfies the geometric boundary conditions given above. The bending
strain energy is

Vbend = 1
2

∫ Lb

0

∂2w

∂x2
EItot

∂2w

∂x2
dx −

∫ Lb

0

∂2w

∂x2
M�dx
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Substituting in Lagrange’s equation:

K11q1 = Q1

the stiffness and forcing function are given by

K11 =
∫ Lb

0
EItot

(
∂φ2

1

∂x2

)2

dx

=
∫ Lb

0
EItotal

(
2

L2
b

)2

dx

= 4

L4
b

(EIblb + EIclc)

Q1 =
∫ Lb

0
M�

(
∂2φ1

∂x2

)
dx

=
∫ xo+lc

xo

M�

2

l2
b

dx

= M�

2lc
L2

b

where

EIb = Ebb
t3
b

12

EIc = Ecb
t3
c

6
+ Ecb

tc
2

(tc + tb)2

This results in:

q1 = Q1

K11

= M�lcl2
b

2(EIblb + EIclc)

and

w(x) = φ1q1 = M�lcx2

2(EIblb + EIclc)

4.9.8 Worked Example

Using the Rayleigh Ritz method, determine the steady state–tip response of a beam
of length lb with two identical piezos bonded to the top and bottom surface. A
sinusoidal field of the same magnitude but opposite polarity is applied to the piezo
sheets (Fig. 4.60).

Assume that

w(x, t) =
(

x
lb

)2

q1
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xo x

V = Vo sin ωt

lb

Figure 4.60. Beam with surface
bonded piezo actuators, sinu-
soidal excitation.

Solution

The actuators are geometrically identical, so EStot = 0. Because the assumed shape
function contains only the ‘w’ displacement, terms related to ‘u’ displacements can
be ignored. Therefore, from the assumed shape function,

φ1 =
(

x
lb

)2

Dφ1 = 2

l2
b

D1φ1 =

⎧⎪⎪⎨⎪⎪⎩
0
φ

2x
l2
b

⎫⎪⎪⎬⎪⎪⎭
The governing equation becomes

M11q̈ + K11q = Q1

where the generalised mass is given by

M11 =
∫ Lb

0

{
φ1

∂φ1
∂x

} [m 0

0 I

]{
φ1

∂φ1
∂x

}
dx

Assuming mb and mc are the mass per unit length of the beam and piezo sheet
respectively, and Ib and Ic are the second mass moments for the beam and actuator
respectively,

M11 =
∫ Lb

0

[
mφ2

1 + I
(
∂φ1

∂x

)2
]

dx

=
∫ Lb

0

(
mbx4

l4
b

+ 4Ibx2

l4
b

)
dx +

∫ xo+lc

xo

(
mcx4

l4
b

+ 4Icx2

l4
b

)
dx

= mblb
5

+ 4Ib

3lb
+ mc

5l4
b

[
(xo + lc)5 − x5

o

]+ 4Ic

3l4
b

[
(xo + lc)3 − x3

o

]
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Assuming EIb and EIc are the bending stiffness of the beam and piezo sheet respec-
tively, the generalised stiffness is given by

K11 =
∫ Lb

0
DφEItot Dφdx

=
∫ Lb

0
EItot

(
∂φ2

1

∂x2

)2

dx

=
∫ Lb

0

4

l4
b

EIbdx +
∫ xo+lc

xo

4

l4
b

EIcdx

= EIb
4

l3
b

+ EIc
4

l4
b

lc

The induced moment is

M� = −1
2

3∑
i=1

Ekb�k(h2
k+1 − h2

k)

= −Ecb�tc(tc + tb)

= −Ecb(tc + tb)
tc

d31Vo sinωt

From which the generalised force is derived as

Q1 =
∫ Lb

0
M�

(
∂2φ1

∂x2

)
dx

=
∫ xo+lc

xo

M�

2

l2
b

dx

= M�

2lc
L2

b

= −2Ecb(tc + tb)d31Vo sinωt
lc

l2
btc

= Q̄1 sinωt

Subsituting q = qo sinωt in the governing equation,

qo = Q̄1

K11 − M11ω2

Therefore, the steady-state tip displacement is given by

wtip(x, t) = Q̄1 sinωt
K11 − M11ω2

4.9.9 Energy Formulation: Dynamic Beam-Governing Equation Derived
from Hamilton’s Principle

The governing equation for the dynamic behavior of a beam can also be derived
using Hamilton’s Principle. This is a virtual energy principle based on variational
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calculus. For a dynamic system, it can be written as

δ

∫ t2

t1
(T − V )dt +

∫ t2

t1
δWext dt = 0 (4.495)

where T is the kinetic energy, V is the strain energy (potential energy), and δWext is
the virtual work done by external forces. These forces include both conservative as
well as non-conservative forces. Taking the variation of the total strain energy,

δVe =
∫ Lb

0

{
εo κ

} [EAtot EStot

EStot EItot

]{
δεo

δκ

}
dl −

∫ Lb

0

{
F T
� MT

�

} {δεo

δκ

}
dl (4.496)

The kinetic energy is given by

δT =
∫∫∫

volume
ρs (u̇δu̇ + ẇδẇ) dxdydz

=
∫∫∫

volume
ρs

[(
u̇o − z

∂2w

∂t∂x

)(
δu̇o − z

∂2w

∂t∂x

)
+ ẇδẇ

]
dx dy dz

=
∫ Lb

0

{
u̇o ẇ ∂2w

∂t∂x

}⎡⎣mb 0 −Sb

0 mb 0
−Sb 0 Ib

⎤⎦
⎧⎪⎨⎪⎩

δu̇o

δẇ

δ
(
∂2w
∂t∂x

)
⎫⎪⎬⎪⎭ dx

(4.497)

where ρs is the mass density of the material of the beam. The inertia terms are
defined as

mb =
∫

tb
ρsbdz (4.498)

Sb =
∫

tb
ρsbzdz (4.499)

Ib =
∫

tb
ρsbz2dz (4.500)

where mb is the mass per unit length (kg/m), Sb is the first mass moment of inertia, per
unit length, about the mid-plane (kg), and Ib is the second mass moment of inertia,
per unit length, about the mid-plane (kg-m). If the beam is exposed to a transverse
external force f z(x, t), the virtual work done becomes

δWext =
∫ Lb

0
f zδwdx (4.501)

Applying Hamilton’s Principle and using integration by parts, we get all boundary
conditions plus governing equations. Note that the virtual terms are all reduced to
δuo and δw. This results in

δuo [. . .] + δw [. . .] = 0 (4.502)

Terms associated with δuo and δw respectively are identically zero.
δuo:

dF
dx

− mbüo + Sb
dẅ
dx

= 0 (4.503)

δw:

d2M
dx2

+ mbẅ + d
dx

(Sbüo) − d
dx

(
Ib

dẅ
dx

)
= 0 (4.504)
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Substituting terms for F and M as

F = EAtot
duo

dx
+ EStot

d2w

dx2
− F� (4.505)

M = EStot
duo

dx
+ EItot

d2w

dx2
− M� (4.506)

where F� and M� are the induced force and induced moment respectively. The
governing equations become

δuo:

d
dx

[
EAtot

duo

dx
+ EStot

d2w

dx2

]
− mbüo + Sb

dẅ
dx

= dF�

dx
(4.507)

δw:

d2

dx2

[
EStot

duo

dx
+ EItot

d2w

dx2

]
+ mbẅ + d

dx
(Sbüo) − d

dx

(
Ib

dẅ
dx

)
= d2M�

dx2
(4.508)

These are coupled partial differential equations with partial derivatives in spatial and
temporal coordinates. They require four initial conditions (two for each variable)
and six boundary conditions (three at each end). The initial conditions are:

uo(x, 0) and u̇o(x, 0) → prescribed

w(x, 0) and ẇ(x, 0) → prescribed

For a system starting from rest, these four initial values are set to zero.
The boundary conditions at each end can be one of the following:

(a) Clamped Condition

uo = 0

w = 0

dw
dx

= 0 x

z

(b) Free Condition

Axial Force F = EAtot
∂uo

∂x
= 0

Bending Moment M = EItot
∂2w

∂x2
= 0

Shear Force
dM
dx

= ∂

∂x

(
EItot

∂2w

∂x2

)
= 0

x

z

(c) Simply Supported (Hinged or Pinned) Condition

uo = 0

w = 0

M = 0
x

z
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(d) Roller Supported Condition

F = 0

w = 0

M = 0
x

z

(e) Vertical Spring Supported Condition (Left End)

uo = 0

M = 0

dM
dx

= ∂

∂x

(
EItot

∂2w

∂x2

)
= −kw

Pin

k

x

z

(f) Bending Spring Supported Condition (Left End)

uo = 0

w = 0

M = EItot
∂2w

∂x2
= kθ

dw
dx

kθ

x

z

(g) Axial Spring Supported Condition (Left End)

F = kuu

M = 0

∂M
∂x

= 0
Pin

ku

x

z

4.10 Finite Element Analysis with Induced Strain Actuation

This section describes the modeling of structures with induced strain actuation using
the Finite Element Method (FEM). This method is a very powerful and convenient
technique for modeling the static and dynamic response of a structure. While the
present discussion is focused on a simple beam model, it contains all the important
ingredients that can be easily expanded to more complex beam models.

Consider a beam with two surface-bonded piezo-sheet actuators. For the present
analysis, we only consider pure bending actuation, but extensional deformation can
also be easily incorporated in the derivation. The beam is divided into a finite
number of elements connected to each other by nodes, as shown in Fig. 4.61(a). The
properties of the beam are assumed constant in each element. Because the structure
and elements are one-dimensional, each node requires two variables to describe its
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Element number

piezo
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1 w∂
∂x

2

(a) Beam divided into elements (b) Coordinate system of an element

Figure 4.61. Finite element modeling of a beam.

position in the X-Z plane. These variables are the displacements in the z direction,
represented by w, and the rotation about the y axis, represented by ∂w/∂x. For small
deformations, the axial displacement u due to bending can be neglected, resulting in
two degrees of freedom for each node. Equations can be derived for each element,
that are subsequently assembled to form a mathematical model of the entire beam
structure.

4.10.1 Behavior of a Single Element

Consider a beam element of length l, with nodes labeled 1 and 2, as in Fig. 4.61(b).
Within this element, the general form of the transverse deflection w(x) must be
chosen so that the basic physics of the problem can be adequately represented. Since
the governing equation for beam bending contains fourth derivatives, the transverse
displacement w(x) must be at least cubic to ensure that none of the terms identically
vanishes. In this case, the minimum acceptable expression for w(x) is

w(x) = a1 + a2x + a3x2 + a4x3 = {1 x x2 x3
}
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a1

a2

a3

a4

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.509)

where the ai (i = 1, 2, 3, 4) are unknown coefficients. In the finite element method,
this assumed displacement field must be expressed in terms of nodal degrees of
freedom, i.e., we wish to convert Eq. 4.509 to the following form

w(x) = Hqe = [H1(x) H2(x) H3(x) H4(x)
]
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w1

∂w1
∂x

w2

∂w2
∂x

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.510)

where the vector qe, of size (4 × 1) represents the nodal degrees of freedom of the
element. wi and ∂wi/∂x represent respectively the transverse displacement and rota-
tion at node i, and the functions Hi(x) (i = 1, 2, 3, 4) are the interpolation functions
(or shape functions). The required form of the shape functions Hi(x) can be deter-
mined by first expressing the coefficients ai in terms of w1, ∂w1/∂x, w2 and ∂w2/∂x,
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so that Eq. 4.509 satisfies the boundary conditions of the element.

at x = 0 : w = w1 = a1

∂w

∂x
= ∂w1

∂x
= a2

at x = l : w = w2 = a1 + a2l + a3l2 + a4l3

∂w

∂x
= ∂w2

∂x
= a2 + 2a3l + 3a4l2

Combining the boundary conditions with Eq. 4.509 and Eq. 4.510,

qe =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w1

∂w1
∂x

w2

∂w2
∂x

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

1 l l2 l3

0 1 2l 3l2

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a1

a2

a3

a4

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.511)

From the above equation,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a1

a2

a3

a4

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

−3/l2 −2/l 3/l2 −1/l

2/l3 1/l2 −2/l3 1/l2

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w1

∂w1
∂x

w2

∂w2
∂x

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.512)

Substituing this in Eq. 4.509, and rewriting leads to

w(x) = Hqe

= {H1 H2 H3 H4
}

qe

(4.513)

where the elements of the vector H are given by

H1 = 1 − 3
x2

l2
+ 2

x3

l3
(4.514)

H2 = x − 2
x2

l
+ x3

l2
(4.515)

H3 = 3
x2

l2
− 2

x3

l3
(4.516)

H4 = −x2

l
+ x3

l2
(4.517)

These Hi are called shape functions, and they determine the deflected shape of the
element. Neglecting rotational inertia of the element and axial deformation, the
kinetic energy of the element having a mass per unit length ‘m’, can be written as

Te = 1
2

∫ l

0
m (ẇ)2 dx (4.518)

Substituting for w from Eq. 4.513, and observing that qe is independent of x, and H is
independent of time, the equation for kinetic energy of the element can be simplified



414 Beam Modeling with Induced Strain Actuation

to

Te = 1
2

q̇e
T
∫ l

0
m HT Hdx q̇e

= 1
2

q̇e
T Me q̇e

(4.519)

An equivalent elemental mass matrix, Me can be defined as

Me =
∫ l

0
m HT Hdx (4.520)

The size of the elemental mass matrix is (4 × 4), because each element has four
degrees of freedom. Similarly, the strain energy of the element can be written as

Ve = 1
2

∫ l

0
EIb

(
∂2w

∂x2

)2

dx = 1
2

qT
e

∫ l

0
EIb

∂2HT

∂x2

∂2H
∂x2

dx qe

= 1
2

qT
e Ke qe

(4.521)

An equivalent elemental stiffness matrix, Ke (of size (4 × 4)), can be defined as

Ke =
∫ l

0
EIb

∂2HT

∂x2

∂2H
∂x2

dx (4.522)

The external forces acting on the element, represented by the vector Qe, can be
calculated from the expression for virtual work done, δWexte :

δWexte =
∫ l

0
(Fδw + M

∂δw

∂x
) dx

=
∫ l

0
(F H + M

∂H
∂x

) δqe dx

= Qeδqe

(4.523)

where F is the external force distribution (force per unit length) and M is the external
moment distribution (moment per unit length) acting on the element. The vector
Qe gives the force and moment acting on the nodes of the element. From the above
equation,

Qe =
∫ l

0
(F H + M

∂H
∂x

) dx (4.524)

For a beam element of length l, having a uniform cross-section along its length and
shape functions given by Eqs. 4.514–4.517, the elemental mass and stiffness matrices
can be derived as

Me = mbl
420

⎡⎢⎢⎣
156 22l 54 −13l
22l 4l2 13l −3l2

54 13l 156 −22l
−13l −3l2 −22l 4l2

⎤⎥⎥⎦ (4.525)
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Ke = EIb

l3

⎡⎢⎢⎣
12 6l −12 6l
6l 4l2 −6l 2l2

−12 −6l 12 −6l
6l 2l2 −6l 4l2

⎤⎥⎥⎦ (4.526)

We now have expressions for the equivalent mass, stiffness, and forcing matrices for
each element of the structure. The next step involves assembling the elements to
form a global representation of the structure.

4.10.2 Assembly of Global Mass and Stiffness Matrices

The elemental mass and stiffness matrices, Me and Ke, and the forcing vector Qe,
are assembled together to form a global mass matrix Mg , global stiffness matrix Kg ,
and global forcing vector Qg . The global quantities define the behavior of the entire
structure. The assembly process is carried out by considering the total energy of the
structure. For a structure divided into ‘N’ elements, the total kinetic energy Tg and
total strain energy Vg are given by

Tg =
N∑

i=1

Tei (4.527)

Vg =
N∑

i=1

Vei (4.528)

where Tei and Vei are the kinetic and potential energies of the ‘i’th element, respec-
tively. By making use of the connectivity of elements in the structure, the total kinetic
energy of the structure can be expressed as

Tg = 1
2

q̇g
T Mg q̇g (4.529)

where qg is the vector of all the degrees of freedom of the structure. Similarly, the
total strain energy and total virtual work are given by

Vg = 1
2

q̇g
T Kg q̇g (4.530)

δWextg = Qgδqg dx (4.531)

The assembly procedure is carried out based on displacement and force compatibility
between two elements at their common node. For example, based on Fig. 4.61(a),
for elements 1 and 2,

w2element 1 = w1element 2

and

∂w2

∂x element 1
= ∂w1

∂x element 2

Similar relations can be written for force and moment compatibility, and the entire
system can be expressed in terms of global degrees of freedom, qg . Consequently,
the entries in the mass, stiffness, and forcing matrices corresponding to the common
node, are summed up for each element sharing that node. This process is shown
schematically in Fig. 4.62, where the shaded areas represent a summation of entries.
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Mg =

Me element 1

Me element 2

Me element 3

Me element N

(4 x 4)

(2(N+1) x 2(N+1))

Qg =

Qe element 1

Qe element 2

Qe element 3

Qe element N

(4 x 4)

(2(N+1) x 1)

Figure 4.62. Assembly of global matrices.

For a structure with ‘N’ beam elements, the size of the global mass and stiffness
matrices is (2(N + 1) × 2(N + 1)), corresponding to two degrees of freedom per
node. The forcing vector is of size (2(N + 1) × 1).

From Lagrange’s equations,

d
dt

(
∂Tg

∂q̇g

)
+ ∂Vg

∂qg
= Qg (4.532)

Substituting Eq. 4.529, Eq. 4.530 and Eq. 4.531 in Lagrange’s equation (Eq. 4.532)
results in the governing equation for the entire structure

Mg q̈g + Kg qg = Qg (4.533)

This equation can be used to calculate the static and dynamic response of the beam
element to an applied external loading. For a static problem, q̈g = 0, and the mass
matrix Mg can be ignored. Note that the process of discretizing the continuous
structure with an infinite degress of freedom into a finite number of elements with a
finite number of degrees of freedom is equivalent to imposing artificial constraints on
the structure. This has the effect of making the mathematical model of the structure
some what “stiffer” than the real structure, and consequently yielding higher natural
frequencies and lower deflections than the exact solution. As the number of elements
is increased, the constraints on the system decrease, and the FEM solution begins to
converge to the exact solution.

4.10.3 Beam Bending with Induced Strain Actuation

Let us now examine the effect of induced strain actuation on the elemental mass
and stiffness matrices. Consider a beam bending element as before, of length l, with
two piezo sheet actuators bonded on each surface, as shown in Fig. 4.63. The piezo
actuators have a thickness tc, and a mass per unit length mc. The thickness and mass
per unit length of the beam are tb and mb respectively. We consider the case where
the piezo actuators and the beam have the same width, b. The same shape functions
as in Eq. 4.513 are used to define the deformation of the element.
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Figure 4.63. Beam element with
induced strain actuators.

From Eq. 4.519, the kinetic energy of the beam element with piezo actuators is
given by

T = 1
2

q̇e
T
∫ l

0
(mc + mb)HT Hdx q̇e

= 1
2

q̇e
T Mact q̇e

(4.534)

where the mass matrix of the actuated element, Mact is defined as

Mact =
∫ l

0
(mc + mb)HT Hdx (4.535)

The strain energy of the element can be written as

Ve = 1
2

∫ l

0

∫
A

E(z)ε(z)2dAdx (4.536)

where A is the cross-sectional area of the element. Only the mechanical strain on the
piezo actuators contributes to the potential energy of the element. Therefore, this
can be simplified to

Ve = 1
2

∫ l

0
2b

[∫ tb/2

0
Eb

(
z
∂2w

∂x2

)2

dz +
∫ tb/2+tc

tb/2
Ec

(
−z

∂2w

∂x2
− �

)2

dz

]
dx

= 1
2

qT
e

∫ l

0
(EIb + EIc)

∂2HT

∂x2

∂2H
∂x2

dx qe

+ Ec�
2bltc +

∫ l

0
bEc�tc (tc + tb)

∂2H
∂x2

dx qe

= 1
2

qT
e Kacteqe + Ec�

2bltc − Q�qe

(4.537)

where the equivalent stiffness matrix Kacte is

Kacte =
∫ l

0
(EIb + EIc)

∂2HT

∂x2

∂2H
∂x2

dx (4.538)

and

Q� =
∫ l

0
M�

∂2H
∂x2

dx

M� = Ectcb�(tb + tc)

(4.539)
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Note that because there are no external forces and moments, the virtual work
δWexte = 0, and from the Principle of Virtual Work we get δVe = 0. Because the
variation of the term containing �2 is zero, and the elemental forcing vector is zero,
the effect of the induced strain appears as an additional term in the expression for
elemental strain energy. The elemental matrices for the stiffness and mass of the
beam element with the actuators can be assembled into global matrices to obtain
a model of the entire structure with induced strain actuation. In the absence of
external forcing, substituting the expressions for kinetic energy and strain energy
into Lagrange’s equation (Eq. 5.277) results in the governing equation for the
structure:

Mactg q̈g + Kactg qg = Qactg
(4.540)

where the global forcing vector is obtained by an assembly of vectors for each
element given by

Qacte
= −Ec�tc (tc + tb)

[∫ l

0
b
∂2H
∂x2

dx

]T

(4.541)

The elemental forcing vector is obtained from the elemental strain energy due to the
induced strain term. Therefore, the induced strain effectively appears as a forcing on
the system. Each row of the vector Qacte

represents a forcing corresponding to the
particular degree of freedom of each node. Rows 1 and 3 represent forces in the ‘z’
direction, or shear forces acting on the degrees of freedom w1 and w2, while rows 2
and 4 represent moments acting on the degrees of freedom ∂w1/∂x and ∂w2/∂x. The
response of this structure to induced strain actuation can be calculated by solving
Eq. 4.540. If external forces and moments are present, they will add to the elemental
forcing vector and are assembled accordingly into the global forcing vector.

4.10.4 Worked Example

Consider the beam shown in Fig. 4.64, with piezo sheet actuators, tapered along their
width, bonded to both surfaces of the beam. The piezo actuators are identical and
are actuated by equal voltages of opposite polarity. Treating the beam as a single
element, use the finite element method to calculate the mass and stiffness matrices
of the beam, as well as the actuation force vector. The width of the piezo sheet is
given by

bc = b
(

1 − x
l

)

Solution

The mass per unit length of the actuator, mc, and of the beam, mb, are given by

mc(x) = 2ρcbtc
[
1 − x

l

]
mb(x) = ρbbtb

where ρc and ρb are the densities of the actuator and beam material respectively.
Similarly, assuming that tc � tb and therefore neglecting the moment of inertia of
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Figure 4.64. Beam with linearly
tapered piezo actuators.

the actuators about their own mid-plane, the flexural stiffnesses of the actuator and
beam are given by

EIc(x) = 2Ecbtc

(
t2
c

4
+ t2

b

4
+ tctb

2

)(
1 − x

l

)
= EIcroot

(
1 − x

l

)

EIb(x) = Eb
t3
b

12
b = EIbroot

where EIcroot and EIbroot are the flexural stiffnesses of the actuator and beam respec-
tively at the root (left hand boundary) of the element. From Eq. 4.535, the mass
matrix of the element is:

Mact =
∫ l

0
(mc + mb)HT Hdx

=
∫ l

0
b
[
2ρctc

(
1 − x

l

)
+ ρbtb

]
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H1

H2

H3

H4

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
{
H1 H2 H3 H4

}
dx

= 2ρcbtc
420

⎡⎢⎢⎢⎢⎢⎣
120l 15l2 27l −7l2

15l2 5/2l3 6l2 −3/2l3

27l 6l2 36l −7l2

−7l2 −3/2l3 −7l2 3/2l3

⎤⎥⎥⎥⎥⎥⎦

+ ρbbtb
420

⎡⎢⎢⎢⎢⎣
156l 22l2 54l −13l2

22l2 4l3 13l2 −3l3

54l 13l2 156l −22l2

−13l2 −3l3 −22l2 4l3

⎤⎥⎥⎥⎥⎦
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From Eq. 4.538, the stiffness matrix of the element is:

Kact =
∫ l

0
(EIb + EIc)

∂2HT

∂x2

∂2H
∂x2

dx

= EIbroot

l3

⎡⎢⎢⎣
12 6l −12 6l
6l 4l2 −6l 2l2

−12 −6l 12 −6l
6l 2l2 −6l 4l2

⎤⎥⎥⎦

+ EIcroot

l3

⎡⎢⎢⎣
6 4l −6 2l
4l 3l2 −4l l2

−6 −4l 6 −2l
2l l2 −2l l2

⎤⎥⎥⎦
The forcing vector, Qact is given by Eq. 4.541:

Qact = −Ec�tc (tc + tb)

[∫ l

0
b
∂2H
∂x2

dx

]T

= −Ec�btc (tc + tb)

[∫ l

0

(
1 − x

l

) ∂2H
∂x2

dx

]T

= −Ec�btc (tc + tb)

⎧⎪⎪⎨⎪⎪⎩
−1/l
−1
1/l
0

⎫⎪⎪⎬⎪⎪⎭
Here we see a very interesting result: the forcing vector has both shear force and
bending moment terms. For an actuator of uniform width, only a combination of
bending moments or axial forces can be induced. However, by appropriately shaping
the actuator, we see that it is possible to also induce shear forces. This has important
consequences in applications where specific types of forcing are required due to
boundary conditions or control requirements. Shaping of the active material is also
important for sensing applications, for example, where specific modal information
is required.

4.11 First Order Shear Deformation Theory (FSDT) for Beams
with Induced Strain Actuation

Refinements in beam modeling are realized possible by considering additional
terms in the expressions for beam deformation. In general, the deformations can
be expanded in a Taylor series with respect to the thickness coordinate z,

u(x, y, z) = u(x, y, 0) + z
∂u(x, y, 0)

∂z
+ z2

2!
∂2u(x, y, 0)

∂z2
+ · · · (4.542)

v(x, y, z) = v(x, y, 0) + z
∂v(x, y, 0)

∂z
+ z2

2!
∂2v(x, y, 0)

∂z2
+ · · · (4.543)

w(x, y, z) = w(x, y, 0) (4.544)

The first order shear deformation theory for beams (also called the Timoshenko
beam theory) retains the first two terms on the right-hand side of Eqs. 4.542 and
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φx = γ 

o
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Figure 4.65. Inclusion of uniform transverse shear in beam deformation.

4.543. In this theory, the Euler-Bernoulli hypothesis is relaxed and the plane section
normal to the neutral axis before deformation does not remain normal to the neutral
axis after deformation. This means that the effect of transverse shear is included in
the analysis. It is assumed that the transverse shear is uniform across the thickness
of the beam. This theory assumes that the primary influence of transverse shear
is to introduce an additional rotation of the cross section. The plane section that is
normal to the undeformed beam axis remains plane but not necessarily normal to the
deformed beam axis. The resultant deformation of the cross-section can be thought
of as a summation of pure Euler-Bernoulli bending and pure transverse shear.

4.11.1 Formulation of the FSDT for a Beam

For a beam under transverse loading, the axial and bending displacements are
expressed as

u(x, z) = uo(x) + zφx(x) (4.545)

w(x, z) = wo(x) (4.546)

Again, uo and wo are displacements at the mid-plane (z = 0) and φx is the rotation of
the transverse normal about the y-axis (Fig. 4.65). In the case of the Euler-Bernoulli
theory,

φx = −∂w

∂x
(4.547)

For the Timoshenko theory, φx is an independent variable. Thus, we require three
variables (uo, w, φx) to determine the strain at any point, where

φx = ∂u
∂z

(4.548)

{
εx

γzx

}
=
{

∂uo
∂x

∂w
∂x + φx

}
− z

{− ∂φx
∂x

0

}
(4.549)

The stress in the active layer is

σ(z) = E(z)(ε(z) − �(z)) (4.550)
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E varies in the z-direction, � is zero for passive layers. The axial force becomes,

F =
∫ h/2

−h/2
b(z)σ(z)dz (4.551)

=
∫ h/2

−h/2
b(z)E(z)

[
εo

x − z
(

−∂φx

∂x

)
− �(z)

]
dz (4.552)

= EAtotε
o
x + EStot

(
−∂φx

∂x

)
− F� (4.553)

where F� is the axial force due to the induced strain. Similarly, the resultant moment
is

M = −
∫ h/2

−h/2
b(z)σ(z)zdz (4.554)

= −
∫ h/2

−h/2
b(z)E(z)z

[
εo

x − z
(

−∂φx

∂x

)
− �(z)

]
dz (4.555)

= EStotε
o
x + EItot

(
−∂φx

∂x

)
− M� (4.556)

The resultant transverse shear force is given by

V = −
∫ h/2

−h/2
b(z)τzx(z)dz (4.557)

= −
∫ h/2

−h/2
b(z)G(z) (γzx − �zx) dz (4.558)

= −
∫ h/2

−h/2
b(z)G(z)

[(
∂w

∂x
+ φx

)
− �zx

]
dz (4.559)

= −GAtot

(
∂w

∂x
+ φx

)
− V� (4.560)

Assuming that the beam consists of ‘N’ total layers,

EAtot =
N∑

k=1

bkEk(hk+1 − hk) (N) (4.561)

EStot = −1
2

N∑
k=1

bkEk(h2
k+1 − h2

k) (Nm) (4.562)

EItot = 1
3

N∑
k=1

bkEk(h3
k+1 − h3

k) (Nm2) (4.563)

GAtot =
N∑

k=1

bkGk(hk+1 − hk) (N) (4.564)
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The forces and moments are given by

F� =
N∑

k=1

�kbkEk(hk+1 − hk) (N) (4.565)

M� = −1
2

N∑
k=1

�kbkEk(h2
k+1 − h2

k) (Nm) (4.566)

V� = −
N∑

k=1

�zxbkEk(hk+1 − hk) (N) (4.567)

Combining the above equations,⎧⎪⎨⎪⎩
F + F�

M + M�

V + V�

⎫⎪⎬⎪⎭ =

⎡⎢⎣EAtot EStot 0

EStot EItot 0

0 0 GAtot

⎤⎥⎦
⎧⎪⎨⎪⎩

εo
x

− ∂φx
∂x

∂w
∂x + φx

⎫⎪⎬⎪⎭ (4.568)

The third equation can be rewritten as

∂w

∂x
+ φx = 1

GAtot
(V + V�) (4.569)

∂φx

∂x
= −∂2w

∂x2
+ ∂

∂x

[
1

GAtot
(V + V�)

]
(4.570)

The force-displacement relations can be written as

{
F + F�

M + M�

}
=
[

EAtot EStot

EStot EItot

]{
εo

x

∂2w
∂x2

}
−

⎧⎪⎨⎪⎩
EStot

∂
∂x

[
1

GAtot
(V + V�)

]
EItot

∂
∂x

[
1

GAtot
(V + V�)

]
⎫⎪⎬⎪⎭ (4.571)

4.11.2 Shear Correction Factor

In the first-order shear deformation theory, transverse shear strains are assumed
to be constant through the laminate thickness. As a consequence, a non-zero shear
stress appears on the top and bottom surfaces, and the sides of the beam, violating
the requirement of zero traction forces on a free surface. In addition, it is well
established that for a homogeneous beam under transverse loading, the transverse
shear stress varies parabolically through the beam thickness, with the maximum shear
stress occuring at the beam-neutral axis. For a laminated beam, the distribution of
transverse shear stress across the thickness can be more complex. A shear correction
factor is often used to make up for the discrepancies in the FSDT formulation.

The corrected transverse shear stresses can be written as [4]

Vy = −K
∫

tb
τzx b dz (4.572)

where K is the shear correction factor. The value of K is found by equating the strain
energy computed using FSDT to the exact strain energy of the beam. The value of
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Figure 4.66. Cross-section of a uniform rectangular isotropic
beam.

K depends on the geometry of the beam cross-section and material properties of the
laminate.

4.11.3 Transverse Deflection of Uniform Isotropic Beams Including
Shear Correction

Consider a beam having a uniform rectangular cross-section with thickness tb, width
bb, and length Lb (Fig. 4.66). The flexural stiffness is given by

EIb = EIy = Eb
bbt3

b

12
(4.573)

where Eb is the Young’s Modulus. The shear stiffness is given by

GAb = Gbbbtb (4.574)

where Gb is the shear modulus of the beam. For an isotropic material,

Gb = Eb

2(1 + ν)
(4.575)

where ν is the Poisson’s ratio.

(a) Cantilevered Beam: Tip Load
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(b) Cantilevered Beam: Uniform Load

x

z

Lb

Po

wtip = PoL4
b

8EIb
+ PoL2

b

2GAb

w(x) = PoL4
b

24EIb

[
6
(

x
Lb

)2

− 4
(

x
Lb

)3

+
(

x
Lb

)4
]

+ PoL2
b

2GAb

[
2
(

x
Lb

)
−
(

x
Lb

)2
]

(c) Hinged or Simply Supported: Mid-Point Load
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(d) Hinged or Simply Supported: Uniform Load
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(e) Clamped Both Ends: Mid-point Load
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(f) Clamped Both Ends: Uniform Load
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4.11.4 Induced Beam Response Using Timoshenko Shear Model

The induced responses of several beam configurations in pure bending, derived using
the Timoshenko shear model, are shown below. It is assumed that the length of the
piezoceramic sheet actuator is small compared to the length of the beam. Also,
EItot = EIb = EI, which is uniform along the length of the beam. Let the mid-point
of the piezoceramic sheet be located at a co-ordinate a = xo + lc/2.
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I. Cantilevered beam:
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III. Clamped-clamped beam:
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IV. Simply supported-clamped beam:
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4.11.5 Energy Formulation: First Order Shear Deformation Theory

The governing equations and boundary conditions for a beam modeled using first-
order shear deformation theory can also be derived from an energy formulation.
Hamilton’s principle (Section 4.9.9) is written as

δ

∫ t2

t1
(T − V )dt +

∫ t2

t1
δWext dt = 0 (4.576)

where the strain energy is given by

δV =
∫∫∫

volume
(σxδεx + τzxδγzx) dx dy dz (4.577)

Note that the strain energy due to transverse shear has been included in the total
strain energy expression. Substituting for normal and transverse strains, the total
strain energy becomes

δV =
∫∫∫

volume

[
σx

(
∂(δuo)
∂x

+ z
∂(δφx)
∂x

)
+ τzx

(
∂(δw)
∂x

+ δφx

)]
dx dy dz

=
∫ Lb

0

[
F
∂(δuo)
∂x

− M
∂(δφx)
∂x

− V
(
∂(δw)
∂x

+ δφx

)]
dx

(4.578)

where

F =
∫

area
σxdydz =

∫
tb

bσxdz (4.579)

M = −
∫

area
zσxdydz = −

∫
tb

zbσxdz (4.580)

V = −
∫

area
τzxdydz = −

∫
tb

bτzxdz (4.581)

The kinetic energy is given by

δT =
∫∫∫

volume
ρs
[(

u̇o + zφ̇x
) (
δu̇o + zδφ̇x

)+ ẇδẇ
]

dx dy dz

=
∫ Lb

0

[
mb (u̇oδu̇o + ẇδẇ) + Sb

(
u̇oδφ̇x + φ̇xδu̇o

)+ Ibφ̇xδφ̇x
]

dx

(4.582)



430 Beam Modeling with Induced Strain Actuation

where

mb =
∫

tb
ρsbdz (4.583)

Sb =
∫

tb
ρsbzdz (4.584)

Ib =
∫

tb
ρsbz2dz (4.585)

and the virtual work done is given by

δWext =
∫ Lb

0
f zδwdx (4.586)

Substituting in Hamilton’s equation and separating out terms related to δuo, δw, and
δφx yields the governing equation and boundary conditions.

δuo :
∂F
∂x

− mbüo − Sbφ̈x = 0 (4.587)

δw : − ∂V
∂x

− mbẅ = f z (4.588)

δφx : − ∂M
∂x

+ V − Sbüo − Ibφ̈x = 0 (4.589)

Substituting for the forces and moments,

F = EAtot
∂uo

∂x
− EStot

∂φx

∂x
− F� (4.590)

M = EStot
∂uo

∂x
− EItot

∂φx

∂x
− M� (4.591)

V = −GAtot

(
∂w

∂x
+ φx

)
− V� (4.592)

where

F� =
∫

area
E(z)�dA (N) (4.593)

M� = −
∫

area
E(z)�zdA (Nm) (4.594)

V� = −
∫

area
E(z)�zxdA (N) (4.595)

results in

δuo :
∂

∂x

[
EAtot

∂uo

∂x
− EStot

∂φx

∂x

]
− mbüo − Sbφ̈x = ∂F�

∂x
(4.596)

δw :
∂

∂x

[
GAtot

(
∂w

∂x
+ φx

)]
− mbẅ = −∂V�

∂x
+ f z (4.597)

δφx :
∂

∂x

[
EStot

∂uo

∂x
− EItot

∂φx

∂x

]
+ GAtot

[
∂w

∂x
+ φx

]
+ Sbüo + Ibφ̈x = 0 (4.598)

Typical boundary conditions including shear effects are:
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(a) Clamped Condition

uo(0, t) = 0

w(0, t) = 0 → displacement = 0

φx(0, t) = 0 x

z

(b) Simply Supported (Hinged or Pinned) Condition

uo(0, t) = 0

w(0, t) = 0 → displacement = 0

My(0, t) = 0 → moment = 0 x

z

(c) Roller Condition

w(0, t) = 0 → displacement = 0

My(0, t) = 0 → moment = 0

Fx(0, t) = 0 → axial force = 0
x

z

(d) Free Condition

Fx(0, t) = 0 → axial force = 0

My(0, t) = 0 → moment = 0

Vz(0, t) = 0 → shear force = 0 x

z

4.12 Layerwise Theories

Exact calculation of the force-deflection behavior of a beam requires modeling
of the three dimensional stress strain behavior. By making certain assumptions
regarding the kinematics of deformation, or the transverse stress state, it is possible
to simplify this to a one dimensional problem. Theories based on such simplifications
are called Equivalent Single Layer (ESL) theories. The Euler-Bernoulli beam theory
and FSDT formulations are two commonly used examples of ESL theories.

ESL theories generally provide fairly accurate predictions of global behavior,
especially for thin laminates. However, for an accurate calculation of local stresses at
the level of individual laminae, and for thick laminated beams, more refined theories
are necessary. The next level of detail is provided by layerwise theories that model
the full three dimensional behavior at the level of each ply.
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In the ESL theories, transverse strains are necessarily assumed to be a continuous
function of the beam-thickness coordinate. To see how this causes a local variation
of transverse force equilibrium, consider two adjacent lamina, labeled ‘k’ and ‘k + 1’.
The assumption of continuous transverse strains implies that⎧⎨⎩

γyz

γzx

εzz

⎫⎬⎭
k

=
⎧⎨⎩
γyz

γzx

εzz

⎫⎬⎭
k+1

(4.599)

at the interface between the two lamina. In general, the stiffnesses of adjacent lamina
are different (Q̄k �= Q̄k+1), yielding⎧⎨⎩

τyz

τzx

σzz

⎫⎬⎭
k

�=
⎧⎨⎩
τyz

τzx

σzz

⎫⎬⎭
k+1

(4.600)

These stresses are called interlaminar stresses. However, the full 3-D elasticity equa-
tions require the equilibrium of transverse forces at the interface of the lamina,

⎧⎨⎩
τyz

τzx

σzz

⎫⎬⎭
k

=
⎧⎨⎩
τyz

τzx

σzz

⎫⎬⎭
k+1

(4.601)

which contradicts the assumption inherent in ESL theories. To incorporate the
continuity of transverse stresses at the interface of the lamina, as given by the above
equation, layerwise theories assume that the displacements are continuous through
the thickness of the laminate, but the transverse strains can be discontinuous at
laminar interfaces. For example, the beam displacements can be piece-wise linear in
the z direction, and for the kth ply are given by

u(k)(x, z) = uo(x) + zφ(k)
x (x) (4.602)

w(k)(x, z) = wo(x) (4.603)

where φ(k)
x represents the rotations of the cross-section of the kth layer. Note that for

the case of a single layer laminate, this layerwise formulation reduces to FSDT. The
layerwise theory results in a significant increase in the number of degrees of freedom
of the model. From the above displacement relations, the forces and moments in the
beam can be found by integrating through the beam thickness, as in the case of the
Euler-Bernoulli beam theory and FSDT.

4.13 Review of Beam Modeling

Table 4.7 lists different smart beam models. Crawley and de Luis [5] formulated the
uniform strain model for a beam with surface-bonded piezoceramic sheet actuators
(patched and aligned with beam axis). The model calculated flexural response includ-
ing shear lag effects of the adhesive layer between the piezoceramic actuator and the
beam. It was shown that the strain transfer from the piezoceramic actuator to the
substructure takes place over a small zone near both edges of the actuator and there
is maximum shear stress in this region. As the adhesive layer becomes thinner and/or
stiffer (shear modulus), it approaches a perfect bond condition (shear concentrated
at the two edges of the actuator). The dynamic model was experimentally verified for



Table 4.7. Comparison of smart beam models

Modeling type Actuators Piezoelectric coupling Beam type Validation Reference

Block Force Surface & embedded uncoupled isotropic
Euler-Bernoulli Surface & embedded

Straight patches
Skewed patches

uncoupled isotropic cantilevered aluminum Crawley and DeLuis [5]
Park, Walz and Chopra [3]
Park, Walz and Chopra [3]
Park and Chopra [7]

Uniform Strain Surface & embedded
Straight patches
Skewed patches

uncoupled isotropic cantilevered aluminum Crawley and DeLuis [5]
Park, Walz and Chopra [3]
Park, Walz and Chopra [3]
Park and Chopra [7]

Timoshenko (FSDT) Surface & embedded uncoupled isotropic Shen [8]
Vlasov with chordwise bending

and shear
Surface bonded
Straight patches

uncoupled isotropic & composite cantilevered composite
coupled

Chandra and Chopra [9]
Bernhard and Chopra [10]

Euler-Bernoulli coupled Surface coupled isotropic cantilevered aluminum Hagood et. al. [11]
Layerwise shear deformation

theory (LWSDT)
Surface coupled isotropic & composite Robbins and Reddy [12]

Saravanos et. al. [13]

433
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the first two bending modes of a cantilevered aluminum beam. They also presented
a uniform strain model for an isotropic beam with embedded actuators and satisfac-
torily validated the dynamic response at resonance for aluminum, glass-epoxy, and
graphite-epoxy beams. Crawley and Anderson [6] formulated the Euler-Bernoulli
model for a beam with surface-bonded or embedded induced strain actuators (sym-
metric actuation) and compared it with the uniform strain model, a finite element
model, and experiment. The uniform strain model was generally found satisfactory
except for low beam to actuator – thickness ratios (<4). The Euler-Bernoulli model
was quite satisfactory to predict bending and extensional response, even for low
thickness ratios. There is no doubt that for thickness ratio (beam thickness/actuator
thickness) of 1.0 or less (as in the case of bimorphs), a refined model including
three-dimensional effects may be needed. Further, the linear model (using linear
piezoelectric characteristics) is accurate only for small strains. To predict reliable
flexural results with high field conditions, one must include nonlinear field-strain
relations.

Im and Atluri [14] developed a nonlinear analysis of a piezo-actuated beam
with a finite thickness bond layer, including the effects of transverse shear and axial
forces in addition to the bending moment on the beam. Again, it was shown that
the maximum shear stress occurs near the two ends of the piezoelectric element
and is also function of externally applied axial and shear forces. Hagood et al. [11]
formulated a completely coupled piezoelectric-mechanical model for a beam with
surface-bonded actuators. Predicted dynamics were found to be in good agreement
with experimental data obtained with a cantilevered aluminum beam. Benjeddow
et al. [15] developed a beam finite element model for extension and shear piezoelec-
tric – actuation mechanisms. This is especially suitable for sandwiched beams. The
model used Euler-Bernoulli theory for the surface layers and Timoshenko beam
theory for the core. It was shown that the predicted induced deformation was lower
with the shear-actuated beam theory.

Park et al. [3] developed coupled bending and extension as well as coupled
bending, torsion and extension analyses for an isotropic beam with isolated surface-
bonded actuators. A finite-thickness adhesive layer between actuator and beam was
included. The convergence point of the Euler-Bernoulli and uniform strain predic-
tions was shown to be a function of beam-to-actuator width ratio in addition to
thickness ratio. Satisfactory validation of predicted bending slope with measured
values was carried out for several different aluminum beams. Also, Park et al. [7]
developed coupled extension, bending, and torsion analysis for an isotropic beam
with surface-bonded actuators at an arbitrary orientation β with respect to the beam
axis. Piezoceramic actuators were represented as line actuators. Systematic experi-
mental tests with cantilevered aluminum beams were carried out for induced bending
and twist at different orientation angles to check the accuracy and limitation of mod-
els. It was concluded that the inclusion of the effects of transverse actuation may be
necessary to refine the analysis.

Jung et al. [16, 17] made an assessment of the state-of-the-art in modeling thin-
and thick-walled composite beams with a view to emphasize the special characteris-
tics of composite materials. The review encompasses modeling non-classical effects
such as out-of-plane warping, warping restraints, and transverse shear. Compos-
ite beam models ranged from simple analytical models to detailed finite element
models and some were validated using limited test data from simple tailored spec-
imens [18, 19, 20, 21, 22]. The anisotropic nature of composite materials makes
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the structural properties direction-dependent. Using special ply lay-ups, structural
couplings such as bending-torsion and extension-torsion can be introduced. These
couplings can be exploited with induced strain actuation to actively control aero-
dynamic shape as in helicopter blades or airplane wings. In modeling a composite
beam with induced strain actuation as a one-dimensional structure, it is important to
encompass all the important effects due to bending and shear deflections, the twist of
reference axis of the beam, and the warping deformations of the cross-section. Nor-
mally, the warping deformations are much smaller than the flexural deformations.
This helps to simplify the complexity of inherently three-dimensional problems into
two parts: a two-dimensional local deformation field of the cross-section that is used
to calculate the section properties, and a one-dimensional global deformation field
to predict the response of the beam. The first level of idealization of the global defor-
mation includes the Euler-Bernoulli model for bending and the St. Venant model
for torsion. In the next level, torsion related warping, transverse shear strain, and
cross-section deformation (in-plane warping) effects are included. For composite
thin-walled beams, it is possible to model the shell wall either as a membrane or as
a thick laminate, including the effect of transverse shear as well as bending distribu-
tion. Chandra et al. [9] developed a formulation for coupled composite thin-walled
open- and closed-section beams with distributed induced-strain actuation (surface-
mounted or embedded) and then validated the analysis with experimental data.
Beam modeling was based on Vlasov theory where two-dimensional stress and strain
distributions associated with any local plate (shell) element of the beam are reduced
to one-dimensional generalized forces and moments. Effects of transverse shear
and warping restraints were included. Comparison with experimental data from
bending-twist and extension-twist coupled graphite-epoxy–composite solid beams
with surface-mounted piezoceramic actuators showed that the inclusion of chord-
wise (lateral) bending is essential to accurately predict a beam’s coupled response.
Also, Kaiser [23] carried out a similar type of study with thin-walled, open- and
closed-section, coupled composite beams with piezoelectric actuation. Cesnik and
Shin [24] developed a refined multi-cell composite-beam analysis for an active twist
rotor with embedded Active Fiber Composite (AFC) actuators. The approach is
based on a two-step asymptotic solution: a linear two-dimensional cross-sectional
analysis and a global nonlinear one-dimensional analysis. Subsequently, the analy-
sis was successfully validated with test data for different blade configurations and
load conditions [25]. Ghiringhelli et al. [26] developed a refined finite-element anal-
ysis for anisotropic beams with embedded piezoelectric actuators and successfully
compared their results with 3-D results. Bernhard et al. [10] developed Vlasov-type
beam analysis for a tailored composite coupled beam with induced strain actuation. It
consisted of a number of spanwise segments with reversed bending-twist couplings
for each successive segment. Each segment acts like a bimorph, and the polarity
of successive surface-bonded piezoceramics is reversed. Because of the alternating
excitation, the beam deflects into a sinusoidal bending wave, whereas the induced
twist is additive spanwise. Predictions were validated satisfactorily with test data for
several different beam configurations. For accurate predictions, it became neces-
sary to include nonlinear measured characteristics of piezoceramics and modeling of
chordwise bending. It is now well established that the effects of transverse shear can
be very important at both the local and global level for the response of composite
beams because of the low values of shear modulus compared with the direct modulus
(G/E ratio).
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The effects of transverse shear can be modeled using Timoshenko beam theory,
also called first-order shear deformation theory (FSDT) [27, 8], which assumes a
constant transverse shear strain across the cross-section. To capture the non-linear
distribution of transverse shear strain across the cross-section, higher-order shear
deformation theories (HSDT) are used. These theories, however, are unable to
capture accurately a dramatic change of properties at a local ply level. A further
refinement to HSDT is the layer-wise shear deformation theory (LWSDT) [28] that
models shear distribution for each layer separately. Robbins and Reddy [12] carried
out static and dynamic analysis of piezoelectrically actuated beams using LWSDT.
Saravanos and Heyliger [13] developed coupled layerwise analysis of composite
beams with embedded piezoelectric actuators and sensors. It was shown that consis-
tent and more detailed stress distributions, especially near the end of the actuator,
are obtained with layer-wise theory. For prediction of higher modes of vibration
and/or thicker composite structures, it may be more appropriate to use layer-wise
theory.

It is clear from testing of simple isotropic beams with surface attached piezo-
electric elements that the local strain distribution (at or near the actuator) is
two-dimensional [7], and therefore, beam modeling with induced strain actuation
should reflect such a distribution. Simple beam theories often give erroneous results
for beams with high actuator-to-beam thickness ratios (as is the case with piezo
bimorphs). Detailed three-dimensional models (say, FEM models) should be used to
establish the strain actuation mechanism. Most beam theories have either neglected
the shearing effect of the bond layer (by assuming perfect bond condition) or have
incorporated a highly approximate shear model (for example, uniform shear stress
within bond thickness); however, test results [29] showed that the bond thickness
has a dominant effect on the induced-strain transfer from the actuator to beam.
If the bond layer is important, it may be necessary to include its shearing effect
using a higher order shear deformation theory such as LWSDT, which can also help
to establish the limits of simple beam models (uniform strain and Euler-Bernoulli
models). There have been only limited studies on the validation of predictions for
composite coupled beams with surface-attached or embedded piezoceramics. These
could be expanded to cover more beam configurations and tailored composite cou-
plings for static and dynamic loads. Such studies can be very important for shape
control of aerospace systems. Most predictions have incorporated linear piezoelec-
tric characteristics that are strictly true for low electric field conditions. To cover
moderate to high electric fields, it is important to include the nonlinear characteris-
tics of piezoelectrics. It will be equally important to examine systematically the effect
of piezoelectric-mechanical couplings on actuation strain for a range of isotropic and
laminated beams.

This chapter examined several structural models, which predict the behav-
ior of different configurations of beams with induced strain actuators. The exist-
ing bending models were expanded to include independent variations in actuator
and beam widths. The single-actuator uniform-strain model governing equations
were also formulated using the Principle of Virtual Work as an alternative method
which is easily adapted to dynamic applications. A one-dimensional treatment of
a strain actuated beam in coupled extension, bending, and torsion was examined
and validated experimentally. The model was found inadequate to predict the struc-
tural behavior of the system within acceptable limits. However, since the torsion
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trend is predicted, analytical accuracy may be improved by integrating a local two-
dimensional model of the actuation mechanism with a global one-dimensional system
model.

PROBLEMS

1. Two piezo-elements (PZT-5H) (length lc = 2′′, width bc = 1′′, thickness tc =
0.0125′′) of piezoelectric constant d31 = −274 × 10−12 m/V are surface-bonded
at top and bottom surface of a thin aluminum cantilevered beam of size (length
L = 24′′, width bb = 2′′, thickness tb = 0.035′′). The piezo-elements are bonded
4′′ from the root of the beam. During the test, it was discovered that the mate-
rial constant for top and bottom piezos were different. Assume same material
modulus for aluminum and piezoceramics as
Eb = 10.5 × 106 lb/in2

Ectop = 9 × 106 lb/in2

Ecbottom = 7 × 106 lb/in2

(a) Show free strain variation in micro-strain with voltage for each piezo.
(b) Plot the variation of piezo strain with axial blocked force F for each piezo.
(c) Using block force theory, derive a general bending-extension relation with

same field on opposite piezo-elements.
(d) Calculate actuation surface force F in lb and bending moment M in in-lb for

a field of 150 Volts to both top and bottom piezos.
(e) Show spanwise distribution of bending slope for this excitation.
(f) Show beam bending displacement distribution for this excitation.
(g) If PZT-5H elements are replaced with PVDF elements of same size, calculate

new surface actuation strain and actuation bending moment (For PVDF
d31 = −20 × 10−12 m/V and Ec = 0.2 × 1010 N/m2).

2. Two piezo-elements (PZT-5H) (length lc = 2′′, width bc = 1′′) respectively of
thickness tc = 0.025′′ and 0.0125′′ are surface-bonded at top and bottom of a thin
aluminum cantilevered beam of size (length L = 24′′, width bb = 2′′, thickness
tb = 0.035′′). The piezo-elements are bonded 4′′ from the root of the beam.
Manufacturer-supplied material constants are as follows:
d31 = −274 × 10−12 m/V,

Ec = Eb = 10.5 × 106 lb/in2

(a) Show free strain variation in micro-strain with voltage for each piezo.
(b) Plot the variation of piezo strain with axial blocked force F for each piezo.
(c) Using block force theory, derive a general bending-extension relation with

same field on opposite piezo-elements.
(d) Calculate actuation surface force F in lb and bending moment M in in-lb for

a field of 150 Volts to both top and bottom piezos.
(e) Show spanwise distribution of bending slope for this excitation.
(f) Show-beam bending displacement distribution for this excitation.
(g) If PZT-5H elements are replaced with PVDF elements of same size, calculate

new surface actuation strain and actuation-bending moment (For PVDF
d31 = −20 × 10−12 m/V and Ec = 0.2 × 1010 N/m2).

3. Two dissimilar piezoceramic elements (PZT-5H) (length lc = 2′′, thickness tc =
0.012′′) respectively of width bc of 1′′ and 1/2′′ are surface-bonded on bottom
and top of a thin aluminum cantilevered beam of size (length Lb = 24′′, width
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bb = 1′′, thickness tb = 0.035′′). The piezo-elements are bonded 4′′ from the root
of the beam. Manufacturer-supplied material constants are as follows:
d31 = −274 × 10−12 m/V,

Ec = Eb = 10.5 × 106 lb/in2

(a) Show free strain variation in micro-strain with voltage for each piezo.
(b) Plot the variation of piezo strain with axial blocked force F for each piezo

for an excitation of 150 volts.
(c) Using the block force method, derive a general bending-extension relation

with same field on opposite piezo-elements.
(d) Calculate actuation surface force F in lb and bending moment M in in-lb for

an excitation of 150 volts to both top and bottom piezos.
(e) Calculate actuation surface force F in lb and bending moment M in in-lb

for a field of −150 volts and +150 volts respectively to top and bottom
piezos.

(f) Plot the spanwise distribution of bending slope for the excitation of −150
volts and +150 volts respectively to top and bottom piezos.

(g) Plot the beam bending displacement for this excitation.
(h) If PZT-5H elements are replaced with PVDF elements of same size, calculate

new surface actuation strain and actuation bending moment (For PVDF
d31 = −20 × 10−12 m/V and Ec = 0.2 × 1010 N/m2).

4. Two piezo-elements (PZT-5H) (length lc = 2′′, thickness tc = 0.012′′) respec-
tively of width bc = 1′′ and 0.75′′ are surface-bonded on top and bottom of a thin
aluminum cantilevered beam of size (length L = 24′′, width bb = 2′′, thickness
tb = 0.035′′) and bond layer thickness of 0.005′′ each on both sides. Manufacturer
supplied material constants are as follows:
d31 = −274 × 10−12 m/V,

Ec = Eb = 10.5 × 106 lb/in2,

Bond shear modulus Gs = 965 × 106 N/m2

(a) Using uniform strain theory, derive general bending as well as extension
relations with same field on opposite piezo-elements for this dual piezo
actuation.

(b) Plot spanwise variation of beam surface strain and actuator strain for a field
of 150 volts to both top and bottom piezos.

(c) Show variation of bond shearing force along piezo (top) span for this field.
(d) Calculate actuation surface force F in lb and bending moment M in in-lb for

this excitation for two cases: with bond layer and with perfect bond.
(e) If the piezo-elements are bonded 4′′ from the root of the beam, show span-

wise distribution of bending slope for this excitation.
(f) Show beam-bending displacement distribution for this excitation.
(g) If PZT elements are replaced with PVDF elements of same size, cal-

culate new surface actuation strain and actuation-bending moment for
150 volts excitation (For PVDF d31 = −20 × 10−12′′ m/V and Ec = 0.2 × 1010

N/m2).
5. Two piezo-elements (PZT-5H) (length lc = 2′′, width bc = 1′′, thickness tc =

0.0125′′) of piezoelectric constant d31 = −274 × 10−12 are surface-bonded at the
top and bottom surfaces of a thin aluminum cantilevered beam of size (length
L = 24′′, width bb = 2′′, thickness tb = 0.035′′). The piezo-elements are bonded
4′′ from the root of the beam, and the bond layer thickness was measured as
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0.005′′. During the test, it was discovered that the material constant for top and
bottom piezos were different. The material constants are given as
Eb = 10.5 × 106 lb/in2

EcTOP = 9 × 106 lb/in2

EcBOTTOM = 7 × 106 lb/in2

Bond shear modulus Gs = 965 × 106 N/m2

(a) Using uniform strain theory, derive a general bending-extension relation
with same field on opposite piezo-elements.

(b) Calculate actuation surface force F in lb and bending moment M in in-lb for
a field of 150 Volts to both top and bottom piezos.

(c) Show spanwise distribution of bending slope for this excitation.
(d) Show beam bending displacement distribution for this excitation.
(e) If PZT-5H elements are replaced with PVDF elements of same size, calculate

new surface actuation strain and actuation bending moment (For PVDF
d31 = −20 × 10−12 m/V and Ec = 0.2 × 1010 N/m2).

6. Two dissimilar piezoceramic elements (PZT-5H) (length lc = 2′′, width bc = 1′′)
respectively of thickness tc of 0.018′′ and 0.012′′ are surface-bonded on the top
and bottom of a thin aluminum cantilevered beam of size (length Lb = 24′′, width
bb = 1′′, thickness tb = 0.035′′). The piezo-elements are bonded 4′′ from the root
of the beam, and the bond thickness was measured as 0.005′′. Manufacturer-
supplied material constants are as follows:
d31 = −274 × 10−12 m/V,

Ec = Eb = 10.5 × 106 lb/in2

Bond shear modulus Gs = 965 × 106 N/m2

(a) Using uniform strain theory, derive a general bending-extension relation
with same field on opposite piezo-elements.

(b) Plot spanwise variation of beam surface strain and actuator strain for a field
of 150 Volts to both top and bottom piezos.

(c) Calculate actuation surface force F in lb and bending moment M in in-lb for
a field of 150 Volts to both top and bottom piezos for two cases: with perfect
bond and with the effects of the bond layer.

(d) Plot the variation of bond shearing force along piezo (top) span for this
field.

(e) Plot the spanwise distribution of bending slope for this excitation.
(f) Plot the beam bending displacement distribution for this excitation.
(g) If PZT-5H elements are replaced with PVDF elements of same size, calculate

new surface actuation strain and actuation bending moment (For PVDF
d31 = −20 × 10−12 m/V and Ec = 0.2 × 1010 N/m2).

7. Two piezo-elements (PZT-5H & PZT-5A) (length lc = 2′′, width bc = 1′′, thick-
ness tc = 0.012′′) respectively of piezoelectric constant d31 of −274 × 10−12 and
−171 × 10−12 m/volt are surface-bonded at top and bottom of a thin alu-
minum cantilevered beam of size (length Lb = 24′′, width bb = 2′′, thickness
tb = 0.035′′). The thickness of bond layer ts is 0.005′′ and is assumed uniform.
Other manufacturer-supplied material constants are as follows:
Ec = Eb = 10.5 × 106 lb/in2, Bond shear modulus Gs = 965 × 106 N/m2

(a) Using uniform strain theory, derive general bending as well as extension
relations with same field on opposite piezo-elements for this dual piezo
actuation.
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(b) Plot spanwise variation of beam surface strain and actuator strain for a field
of 150 volts to both top and bottom piezos.

(c) Show the variation of bond shearing force for the top piezo.
(d) Calculate actuation surface force F in lb and bending moment M in in-lb for

this excitation for two cases: with bond layer and with perfect bond.
(e) Show spanwise distribution of bending slope for this excitation.
(f) Show-beam bending displacement distribution for this excitation.
(g) If PZT-5H and PZT-5A elements are replaced with PVDF elements of

same size, calculate new surface actuation strain and actuation bending
moment for a field of 150 volts to both top and bottom piezos (For PVDF
d31 = −20 × 10−12 m/V and Ec = 0.2 × 1010 N/m2).

8. Two dissimilar piezo-elements (PZT-5H) of width bc = 1′′ and thickness tc =
0.012′′, respectively of length lc = 2′′ and 1′′ are surface-bonded at top and bottom
of a thin aluminum cantilevered beam of size (length Lb = 24′′, width bb = 2′′,
thickness tb = 0.035′′). The thickness of bond layer ts is 0.005′′ and is assumed
uniform. Other manufacturer-supplied material constants are as follows:
d31 = −274 × 10−12 m/V
Ec = Eb = 10.5 × 106 lb/in2

Bond shear modulus Gs = 965 × 106 N/m2

(a) Using uniform strain theory, derive general bending as well as extension
relations with same field on opposite piezo-elements for this dual piezo
actuation.

(b) Plot spanwise variation of beam surface strain and actuator strain for a field
of 150 volts to both top and bottom piezos.

(c) Show the variation of bond shearing force for the top piezo.
(d) Calculate actuation surface force F in lb and bending moment M in in-lb for

this excitation for two cases: with bond layer and perfect bond.
(e) Show spanwise distribution of bending slope for this excitation.
(f) Show beam bending displacement distribution for this excitation.
(g) If PZT-5H elements are replaced with PVDF elements of same size, calculate

new surface actuation strain and actuation bending moment for a field of
150 volts to both top and bottom piezos (For PVDF d31 = −20 × 10−12 m/V
and Ec = 0.2 × 1010 N/m2).

9. Two dissimilar piezoceramic elements (PZT-5H) (length lc = 2′′, width bc = 1′′)
respectively of thickness tc of 0.018′′ and 0.012′′ are surface-bonded on the top
and bottom of a thin aluminum cantilevered beam of size (length Lb = 24′′,
width bb = 2′′, thickness tb = 0.035′′). The piezo-elements are bonded 4′′ from
the root of the beam. Manufacturer-supplied material constants are as follows:
d31 = −274 × 10−12 m/V,

Ec = Eb = 10.5 × 106 lb/in2

(a) Using Euler-Bernoulli theory, derive general bending as well as extension
relations with same field on opposite piezo-elements for this dual piezo
actuation with bb different from bc.

(b) Plot spanwise variation of beam surface strain and actuator strain for a field
of 150 volts to both top and bottom piezos.

(c) Calculate actuation surface force F in lb and bending moment M in in-lb for
this excitation.

(d) Show spanwise distribution of bending slope for this excitation.
(e) Show beam bending displacement distribution for this excitation.



Problems 441

d

d
t
bFigure 4.67. Cross-section of beam with embedded piezos.

(f) If PZT-5H and PZT-5A elements are replaced with PVDF elements of
same size, calculate new surface actuation strain and actuation bending
moment for a field of 150 volts to both top and bottom piezos (For PVDF
d31 = −20 × 10−12 m/V and Ec = 0.2 × 1010 N/m2).

10. Two piezo-elements (PZT-5H) (length lc = 2′′, thickness tc = 0.012′′) respec-
tively of width bc = 1′′ and 0.75′′ are surface-bonded on top and bottom of a thin
aluminum cantilevered beam of size (length L = 24′′, width bb = 2′′, thickness
tb = 0.035′′). Manufacturer-supplied material constants are as follows:
d31 = −274 × 10−12 m/V,

Ec = Eb = 10.5 × 106 lb/in2,

(a) Using Euler-Bernoulli theory, derive general bending as well as extension
relations with same field on opposite piezo-elements for this dual piezo
actuation.

(b) Plot spanwise variation of beam surface strain and actuator strain for a field
of 150 volts to both top and bottom piezos.

(c) Calculate actuation surface force F in lb and bending moment M in in-lb for
this excitation.

(d) If the piezo-elements are bonded 4′′ from the root of the beam, show span-
wise distribution of bending slope for this excitation.

(e) Show beam bending displacement distribution for this excitation.
(f) If PZT elements are replaced with PVDF elements of same size, calculate

new surface actuation strain and actuation bending moment for 150 volts
excitation (For PVDF d31 = −20 × 10−12 m/V and Ec = 0.2 × 1010 N/m2).

11. Using Euler-Bernoulli assumption, derive extension-bending relations for a
beam with two dissimilar piezos embedded at a distance d from the mid-axis
(Fig. 4.67). The thicknesses of top and bottom piezos are respectively tc1 and tc2

and they are of same modulus Ec. Same field is applied to both piezos.
12. Use the Euler-Bernoulli model to calculate the bending displacement at the tip

of the beam (Fig. 4.68) for two identical piezos inducing a pure bending actuation
(+V field to top and −V to bottom piezo).

13. Two dissimilar piezo-elements (PZT-5H) of width bc = 1′′ and thickness tc =
0.012′′, respectively of length lc = 2′′ and 1′′ are surface-bonded at top and bottom

L

x1 lc

Ks

Figure 4.68. Cantilevered beam with surface-mounted piezoactuators and linear spring at the
tip.
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d

d
t
b

b

b/4

b/2 Figure 4.69. Cross-section of beam with embedded piezos of dif-
ferent widths.

of a thin aluminum cantilevered beam of size (length Lb = 24′′, width bb = 2′′,
thickness tb = 0.035′′). Other manufacturer-supplied material constants are as
follows:
d31 = −274 × 10−12 m/V
Ec = Eb = 10.5 × 106 lb/in2

(a) Using Euler-Bernoulli theory, derive general bending as well as extension
relations with same field on opposite piezo-elements for this dual piezo
actuation.

(b) Plot spanwise variation of beam surface strain and actuator strain for a field
of 150 volts to both top and bottom piezos.

(c) Calculate actuation surface force F in lb and bending moment M in in-lb for
this excitation.

(d) Show spanwise distribution of bending slope for this excitation.
(e) Show beam bending displacement distribution for this excitation.
(f) If PZT-5H elements are replaced with PVDF elements of same size, calculate

new surface actuation strain and actuation bending moment for a field of
150 volts to both top and bottom piezos (For PVDF d31 = −20 × 10−12 m/V
and Ec = 0.2 × 1010 N/m2).

14. Using Euler-Bernoulli assumption, derive extension-bending relations for a
beam with two dissimilar piezos embedded at a distance d from mid-axis
(Fig. 4.69). The widths of top and bottom piezos are respectively b/4 and b/2
and they are of same thickness, length and modulus Ec. Same field is applied to
both piezos.

15. Using the Rayleigh-Ritz method, determine the steady state tip response of a
beam of length Lb with sinusoidal field V = Vo sinωt with two identical piezos
but with opposite field (+V for bottom and −V for top) (Fig. 4.70). Assume a
deflection of the form

w(x, t) =
(

x
Lb

)2
q1

16. Using Euler-Bernoulli assumption, derive extension-bending relations for a
beam with two dissimilar piezos embedded at a distance d from the mid-axis
(similar to Fig. 4.67). The lengths of top and bottom piezos are respectively lc1

and lc2, and they are of same modulus Ec, and same thickness tc. Same field is
applied to both piezos.

Lb

xo lc

Figure 4.70. Cantilevered beam with surface-mounted piezoactuators.
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L

4" 2"

ke
+V

+V

Figure 4.71. Cantilevered beam with surface-mounted piezoactuators and tip spring.

17. Two identical piezoceramic elements (PZT-5H) (length lc = 2′′, width bc = 1′′,
and thickness tc = 0.010′′) are surface-bonded on bottom and top of a thin alu-
minum cantilevered beam as shown in Fig. 4.71 (length Lb = 24′′, width bb = 1′′,
thickness tb = 0.035′′). Manufacturer supplied material constants are as follows:
d31 = −274 × 10−12 m/V,

d33 = 593 × 10−12 m/V,

Ec = Eb = 60.6 GPa (short-circuit),
k2

31 = 0.55,
eσ33 = 30.1 × 10−9 F/m,

ke = 0.25 MN/m
(a) Show free strain variation in micro-strain with voltage for each piezo.
(b) Plot the variation of piezo strain with axial blocked force F for each piezo

for an excitation of 150 volts.
(c) For an equal voltage applied to each piezo as shown in the figure below,

what will be the response of the beam ? (The dots in the figure represent the
poling direction of the piezos.)

(d) Using the blocked force method, derive an expression for the tip displace-
ment of the beam.

(e) Calculate actuation surface force F and tip displacement for an excitation
of 150 volts to both top and bottom piezos.

(f) If PZT-5H elements are replaced with PVDF elements of same size, calculate
new surface actuation strain and tip displacement (For PVDF d31 = −20 ×
10−12 m/V and Ec = 0.2 × 1010 N/m2).

18. Two identical piezoceramic elements (PZT-5H) (length lc = 2′′, width bc = 1′′

and thickness tc = 0.010′′) are surface-bonded on bottom and top of a thin alu-
minum cantilevered beam as shown in Fig. 4.72 (length Lb = 24′′, width bb = 1′′,
thickness tb = 0.035′′). Manufacturer supplied material constants are as follows:
d31 = −274 × 10−12 m/V,

d33 = 593 × 10−12 m/V,

Ec = Eb = 60.6 GPa (short-circuit),

L

4" 2"
+V

+V/3

Figure 4.72. Cantilevered beam with surface-mounted piezoactuators.
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k2
31 = 0.55,

eσ33 = 30.1 × 10−9 F/m,

ke = 0.25 MN/m
(a) Show free strain variation in micro-strain with voltage for each piezo.
(b) Plot the variation of piezo strain with axial blocked force F for each piezo

for an excitation of 150 volts.
(c) For V = 150 Volts applied to the piezos as shown in the figure below, what

will be the response of the beam ? (The dots in the figure represent the
poling direction of the piezos.)

(d) Using the block force method, derive an expression for the tip displacement
of the beam.

(e) Calculate actuation surface force F and tip displacement for this excitation.
(f) If PZT-5H elements are replaced with PVDF elements of same size, calculate

new surface actuation strain and tip displacement (For PVDF d31 = −20 ×
10−12 m/V and Ec = 0.2 × 1010 N/m2).
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5 Plate Modeling with Induced Strain Actuation

The previous chapter discussed the modeling of beam-like structures with induced
strain actuation. Many practical structures can be simplified and analyzed as beams,
but such an assumption is not accurate in a large number of other structures, such
as fuselage panels in aircraft, low aspect-ratio wings, and large control surfaces. It
is possible to treat such structures as plates, and perform a simple two-dimensional
analysis to estimate their behavior. Some of the theories discussed in the previ-
ous chapter can be extended to two dimensional plate-like structures. This chapter
describes the modeling of isotropic and composite plate structures with induced
strain actuation. It will combine both the actuators and substrate into one integrated
structure to model its behavior. The discussion will focus on induced strain actua-
tion by means of piezoceramic sheets, but the general techniques may be equally
applicable to other forms of induced strain actuation.

Plate analysis, including induced strain actuation, is based on the classical lam-
inated plate theory (CLPT), sometimes referred to as classical laminated theory
(CLT). It is an equivalent single layer(ESL) plate theory where the effects of trans-
verse shear strains are neglected. It is valid for thin plates that have thicknesses of
one to two orders of magnitude smaller than their planar dimensions (length and
width). In the CLPT formulation, a plane-stress state assumption is used.

5.1 Classical Laminated Plate Theory (CLPT) Formulation
without Actuation

A composite laminate consists of a number of laminae or plies, each with different
elastic properties. A fiber-reinforced lamina is the fundamental building block of
the laminate. The sequence of various orientations of composite laminae is termed
the stacking sequence. A lamina is very strong along the fiber direction and weak
in the transverse direction. The stacking sequence and lamina properties help to
tailor the stiffness, strength, and coupling between bending, torsion, and extension
of the laminate. A macro-mechanical behavior of a lamina is assumed to formulate
linear elastic analysis. The stress-strain relations for an orthotropic lamina in a plane
stress condition are ⎧⎨⎩

ε1

ε2

γ12

⎫⎬⎭ =
⎡⎣S11 S12 0

S12 S22 0
0 0 S66

⎤⎦⎧⎨⎩
σ1

σ2

τ12

⎫⎬⎭ (5.1)
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1

23

Figure 5.1. An orthotropic lamina.

where ε1 and ε2 are normal strains and γ12 is the shear strain. Directions 1 and 2
are referred to as principal directions for an orthotropic material. For example, in a
composite ply, the fibers are all aligned along direction 1 (Fig. 5.1). The coefficients
of the compliance matrix are defined as:

S11 = 1
E1

(5.2)

S12 = −ν12

E1
= −ν21

E2
(5.3)

S22 = 1
E2

(5.4)

S66 = 1
G12

(5.5)

where E1 is the longitudinal Young’s modulus and E2 is transverse Young’s modulus.
Because the fibers are typically aligned parallel to the 1 axis, E1 is expected to be
much larger than E2. Typical values of material properties for some commonly
available carbon composites (IM7/8552, AS4/3501-6) and fiberglass (E-glass/epoxy,
S-glass/epoxy) are shown in Table 5.1.

The units of modulus are N/m2 or lb/in2. Sometimes, the moduli are defined in
GPa, where G stands for giga (109) and Pa (Pascal) means N/m2. ν12 is the longitudinal
Poisson’s ratio, which is defined as the ratio of the induced strain in the transverse
direction due to an imposed longitudinal strain. ν21 is the transverse Poisson’s ratio,
which is defined as the ratio of the induced strain in the longitudinal direction due to
an imposed transverse strain. The Poisson’s ratio ν12 is much larger than ν21. They
are related to each other by the following relation:

ν12

ν21
= E1

E2
(5.6)

Inverting Eq. 5.1 leads to⎧⎨⎩
σ1

σ2

τ12

⎫⎬⎭ =
⎡⎣Q11 Q12 0

Q12 Q22 0
0 0 Q66

⎤⎦⎧⎨⎩
ε1

ε2

γ12

⎫⎬⎭ = Q

⎧⎨⎩
ε1

ε2

γ12

⎫⎬⎭ (5.7)

Table 5.1. Material properties of typical composite laminae

IM7/ AS4/ E-glass/ S-glass/ Kevlar 149/
Property 8552 3501–6 epoxy epoxy epoxy

Tensile modulus, 0◦, E1 (GPa) 164 142 39 43 87
Tensile modulus, 90◦, E2 (GPa) 12 10.3 8.6 8.9 5.5
Shear modulus, G12 (GPa) 11.1 7.2 3.8 4.5 2.2
Poisson’s ratio, ν12 0.31 0.27 0.28 0.27 0.34
Specific gravity 1.57 1.58 2.10 2.00 1.38
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The coefficients of the reduced stiffness matrix Q are defined as

Q11 = S22

S11S22 − S2
12

= E1

1 − ν12ν21
(5.8)

Q12 = S12

S11S22 − S2
12

= ν12E2

1 − ν12ν21
= ν21E1

1 − ν12ν21
(5.9)

Q22 = S11

S11S22 − S2
12

= E2

1 − ν12ν21
(5.10)

Q66 = 1
S66

= G12 (5.11)

Rewriting Eq. 5.7, ⎧⎪⎪⎨⎪⎪⎩
σ1

σ2

τ12

⎫⎪⎪⎬⎪⎪⎭ =

⎡⎢⎢⎣
E1

(1−ν12ν21)
ν21E1

(1−ν12ν21) 0
ν21E1

(1−ν12ν21)
E2

(1−ν12ν21) 0

0 0 G12

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
ε1

ε2

γ12

⎫⎪⎪⎬⎪⎪⎭ (5.12)

Four independent material constants are required to define an orthotropic lamina,
and these are E1, E2, G12, and ν12 or ν21. The units of Qij are N/m2 or lb/in2, whereas
the u in2/lb. For isotropic materials, ν12 = ν21 = ν, E1 = E2 = E and G = E

2(1+ν)⎧⎨⎩
ε1

ε2

γ12

⎫⎬⎭ = 1
E

⎡⎣ 1 −ν 0
−ν 1 0
0 0 2(1 + ν)

⎤⎦⎧⎨⎩
σ1

σ2

τ12

⎫⎬⎭ (5.13)

from which, ⎧⎨⎩
σ1

σ2

τ12

⎫⎬⎭ = E
1 − ν2

⎡⎣1 ν 0
ν 1 0
0 0 1−ν

2

⎤⎦⎧⎨⎩
ε1

ε2

γ12

⎫⎬⎭ (5.14)

An isotropic material requires two independent material constants (E and ν) to
define its behavior.

5.1.1 Stress-Strain Relations for a Lamina at an Arbitrary Orientation

For a lamina with fibers at an arbitrary orientation (Fig. 5.2), the strains can be
transformed into the reference co-ordinate system as follows:⎧⎨⎩

εx

εy
γxy

2

⎫⎬⎭ =
⎡⎣ cos2 α sin2 α −2 sinα cosα

sin2 α cos2 α 2 sinα cosα
sinα cosα − sinα cosα cos2 α − sin2 α

⎤⎦⎧⎨⎩
ε1

ε2
γ12
2

⎫⎬⎭ (5.15)

where α is the angle of the fibers from the x-axis (+ve in the counter-clockwise
direction).

The stresses transformed into the reference axes become:⎧⎨⎩
σx

σy

τxy

⎫⎬⎭ =
⎡⎣ cos2 α sin2 α −2 sinα cosα

sin2 α cos2 α 2 sinα cosα
sinα cosα − sinα cosα cos2 α − sin2 α

⎤⎦⎧⎨⎩
σ1

σ2

τ12

⎫⎬⎭ (5.16)
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x

1

y

2

α
Figure 5.2. Lamina at an arbitrary orientation.

The stress-strain relations become

σ =

⎧⎪⎨⎪⎩
σx

σy

τxy

⎫⎪⎬⎪⎭ =

⎡⎢⎣Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤⎥⎦
⎧⎪⎨⎪⎩
εx

εy

γxy

⎫⎪⎬⎪⎭ = Q̄ε (5.17)

where the coefficients of the reduced stiffness matrix Q̄ are defined as

Q̄11 = Q11 cos4 α + Q22 sin4 α + 2(Q12 + 2Q66) sin2 α cos2 α (5.18)

Q̄22 = Q11 sin4 α + Q22 cos4 α + 2(Q12 + 2Q66) sin2 α cos2 α (5.19)

Q̄12 = (Q11 + Q22 − 4Q66) sin2 α cos2 α + Q12(sin4 α + cos4 α) (5.20)

Q̄66 = (Q11 + Q22 − 2Q12 − 2Q66) sin2 α cos2 α + Q66(sin4 α + cos4 α) (5.21)

Q̄16 = (Q11 − Q12 − 2Q66) sinα cos3 α − (Q22 − Q12 − 2Q66) sin3 α cosα (5.22)

Q̄26 = (Q11 − Q12 − 2Q66) sin3 α cosα − (Q22 − Q12 − 2Q66) sinα cos3 α (5.23)

There are still only four independent material constants needed to define the char-
acteristics of a generally orthotropic lamina. Note that for two plies with orientation
angles +α and −α, the elements of the stiffness matrix are related as follows:

Q̄11+α
= Q̄11−α

(5.24)

Q̄22+α
= Q̄22−α

(5.25)

Q̄12+α
= Q̄12−α

(5.26)

Q̄66+α
= Q̄66−α

(5.27)

Q̄16+α
= −Q̄16−α

(5.28)

Q̄26+α
= −Q̄26−α

(5.29)

Similar relations also hold good for the compliances. In an alternate format, the
strains can be expressed in terms of stresses.

ε =

⎧⎪⎨⎪⎩
εx

εy

γxy

⎫⎪⎬⎪⎭ =

⎡⎢⎣S̄11 S̄12 S̄16

S̄12 S̄22 S̄26

S̄16 S̄26 S̄66

⎤⎥⎦
⎧⎪⎨⎪⎩
σx

σy

τxy

⎫⎪⎬⎪⎭ = S̄σ (5.30)
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where the coefficients of the reduced compliance matrix S̄ are defined as

S̄11 = S11 cos4 α + S22 sin4 α + (2S12 + S66) sin2 α cos2 α (5.31)

S̄22 = S11 sin4 α + S22 cos4 α + (2S12 + S66) sin2 α cos2 α (5.32)

S̄12 = (S11 + S22 − S66) sin2 α cos2 α + S12(sin4 α + cos4 α) (5.33)

S̄66 = 2(2S11 + 2S22 − 4S12 − S66) sin2 α cos2 α + S66(sin4 α + cos4 α) (5.34)

S̄16 = (2S11 − 2S12 − S66) sinα cos3 α − (2S22 − 2S12 − S66) sin3 α cosα (5.35)

S̄26 = (2S11 − 2S12 − S66) sin3 α cosα − (2S22 − 2S12 − S66) sinα cos3 α (5.36)

5.1.2 Macromechanical Behavior of a Laminate

A laminate consists of two or more laminae bonded together to form an integral
structural plate. The stress-strain relations in principal material coordinates for a
lamina are ⎧⎨⎩

σ1

σ2

τ12

⎫⎬⎭ =
⎡⎣Q11 Q12 0

Q12 Q22 0
0 0 Q66

⎤⎦⎧⎨⎩
ε1

ε2

γ12

⎫⎬⎭ (5.37)

In a different coordinate system, oriented at an angle α to the principal axes, the
stress-strain relations become

σ =
⎧⎨⎩
σx

σy

τxy

⎫⎬⎭ =
⎡⎣Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤⎦⎧⎨⎩
εx

εy

γxy

⎫⎬⎭ = Q̄ε (5.38)

For a multi-layered laminate, the stress-strain relations are

σk = Q̄kεk (5.39)

where the subscript ‘k’ refers to the k’th lamina. The laminate is assumed thin,
consisting of uniform layers perfectly bonded together, and undergoing small dis-
placements. When the laminate is extended and bent, a material plane that is initially
normal to the mid-surface of the laminate is assumed to remain plane and normal
to the mid-surface. This is similar to the assumption made in the bending of Euler-
Bernoulli beams, and is equivalent to ignoring shear strains in planes perpendicular
to the middle surface. This assumption for plates is called the Kirchhoff-Love hypoth-
esis. With this assumption, the strain distribution consists of a linear combination
of in-plane extensional strain (constant through thickness) and a bending strain
(linearly varying through thickness). The transverse normal effects are neglected.

The variables u, v, w are laminate displacements in the x, y, and z directions,
given by (Fig. 5.3)

u(x, y, z) = uo(x, y) − z
∂wo

∂x
(x, y) (5.40)

v(x, y, z) = vo(x, y) − z
∂wo

∂y
(x, y) (5.41)

w(x, y, z) = wo(x, y) (5.42)

where uo, vo, and wo are the displacements at the mid-plane or neutral plane (z = 0).
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x,u

y,vp (x,y)

z,w

tb

Figure 5.3. Displacements of a thin
laminated plate.

By virtue of the Kirchhoff-Love hypothesis,

εz = γxz = γyz = 0 (5.43)

εx = ∂u
∂x

(5.44)

εy = ∂v

∂y
(5.45)

γxy = ∂u
∂y

+ ∂v

∂x
(5.46)

Substituting for the displacements (Eq. 5.40–Eq. 5.42) in the above strain relations,
we get:

εx = ∂uo

∂x
− z

∂2wo

∂x2
(5.47)

εy = ∂vo

∂y
− z

∂2wo

∂y2
(5.48)

γxy = ∂uo

∂y
+ ∂vo

∂x
− 2z

∂2wo

∂x∂y
(5.49)

These lead to ⎧⎪⎨⎪⎩
εx

εy

γxy

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
εo

x

εo
y

γo
xy

⎫⎪⎬⎪⎭− z

⎧⎪⎨⎪⎩
κx

κy

κxy

⎫⎪⎬⎪⎭ = εo − zκ (5.50)

Mid-plane strains are given by

εo =

⎧⎪⎨⎪⎩
εo

x

εo
y

γo
xy

⎫⎪⎬⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
∂uo
∂x
∂vo
∂y

∂uo
∂y + ∂vo

∂x

⎫⎪⎪⎬⎪⎪⎭ (5.51)

and the middle surface curvatures are

κ =

⎧⎪⎨⎪⎩
κx

κy

κxy

⎫⎪⎬⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
∂2wo
∂x2

∂2wo
∂y2

2 ∂2wo
∂x∂y

⎫⎪⎪⎬⎪⎪⎭ (5.52)

If the mid-plane displacements (uo, vo and wo) are known, the strains at any point
(x, y, z) can be determined. The strains vary linearly through the laminate thickness.
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tb hk hk+1 k

x

z

Figure 5.4. Laminate stackup sequence.

Note that not only the transverse strains (εz, γxz, γyz) are zero, but also the transverse
stresses (σz, τxz, τyz) are either zero or not included in the formulation. For example,
the shear stresses τxz and τyz are zero, and the transverse normal stress σz is not
zero identically (Poisson’s effect), but does not appear in the virtual-strain energy
formulation. Thus, this formulation represents a condition of plane stress as well as
of plane strain, and appears appropriate for very thin laminates.

5.1.3 Resultant Laminate Forces and Moments

Resultant forces and moments on a laminate are obtained by integrating the stresses
in each lamina across the laminate thickness, tb (Fig. 5.4). Note that in plate analysis,
the forces and moments are defined with respect to a unit cross-sectional width.
Normally, extensional forces and stresses are assumed positive and moments that
cause compression on the top fiber are assumed positive.

Fx =
∫

tb
σxdz (5.53)

Mx = −
∫

tb
σxzdz (5.54)

This leads to ⎧⎨⎩
Fx

Fy

Fxy

⎫⎬⎭ =
∫

tb

⎧⎨⎩
σx

σy

τxy

⎫⎬⎭ dz =
N∑

k=1

∫ hk+1

hk

⎧⎨⎩
σx

σy

τxy

⎫⎬⎭ dz (5.55)

and, ⎧⎨⎩
Mx

My

Mxy

⎫⎬⎭ = −
∫

tb

⎧⎨⎩
σx

σy

τxy

⎫⎬⎭ zdz = −
N∑

k=1

∫ hk+1

hk

⎧⎨⎩
σx

σy

τxy

⎫⎬⎭ zdz (5.56)

where hk is the vertical position of the ‘k’th layer. Combining the above equations
gives:⎧⎨⎩

Fx

Fy

Fxy

⎫⎬⎭ =
N∑

k=1

⎡⎣Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤⎦
k

⎛⎝∫ hk+1

hk

⎧⎨⎩
εo

x
εo

y

γo
xy

⎫⎬⎭dz −
∫ hk+1

hk

⎧⎨⎩
κx

κy

κxy

⎫⎬⎭ zdz

⎞⎠
and⎧⎨⎩

Mx

My

Mxy

⎫⎬⎭ = −
N∑

k=1

⎡⎣Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤⎦
k

⎛⎝∫ hk+1

hk

⎧⎨⎩
εo

x
εo

y

γo
xy

⎫⎬⎭ zdz −
∫ hk+1

hk

⎧⎨⎩
κx

κy

κxy

⎫⎬⎭ z2 dz

⎞⎠
(5.57)
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These can be rewritten as

F =

⎡⎢⎣A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤⎥⎦
⎧⎪⎨⎪⎩
εo

x

εo
y

γo
xy

⎫⎪⎬⎪⎭+

⎡⎢⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎥⎦
⎧⎪⎨⎪⎩
κx

κy

κxy

⎫⎪⎬⎪⎭ (N/m)

and

M =

⎡⎢⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎥⎦
⎧⎪⎨⎪⎩
εo

x

εo
y

γo
xy

⎫⎪⎬⎪⎭+

⎡⎢⎣D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤⎥⎦
⎧⎪⎨⎪⎩
κx

κy

κxy

⎫⎪⎬⎪⎭ (Nm/m)

(5.58)

The coefficients are defined as

Aij =
N∑

k=1

(Q̄ij )k(hk+1 − hk) → extensional stiffness (N/m) (5.59)

Bij = −1
2

N∑
k=1

(Q̄ij )k(h2
k+1 − h2

k) → coupling stiffness (N) (5.60)

Dij = 1
3

N∑
k=1

(Q̄ij )k(h3
k+1 − h3

k) → bending stiffness (Nm) (5.61)

Note that the strain components εo
x , εo

y and γo
xy are dimensionless, whereas the units of

curvatures κx, κy and κxy are 1/m. The B matrix implies coupling between bending and
extension. If a laminate that has a non-zero B is subjected to an extensional stress, it
will result in not only extensional deformation, but also twisting and bending of the
laminate.

Putting together the extension and bending equations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Fx

Fy

Fxy

Mx

My

Mxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎣A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤⎦ ⎡⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎦
⎡⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎦ ⎡⎣D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤⎦

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εo
x
εo

y

γo
xy

κx

κy

κxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.62)

Eq. 5.62 can be rewritten in a simpler notation as{
F
M

}
=
[
A B
B D

]{
εo

κ

}
(5.63)

Note that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εo
x

εo
y

γo
xy

κx

κy

κxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uo
∂x
∂vo
∂y

∂uo
∂y + ∂vo

∂x

∂2wo
∂x2

∂2wo
∂y2

2 ∂2wo
∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.64)
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where uo, vo, andwo are the mid-plane (neutral plane) displacements. For uncoupled
configurations,

B = 0 (5.65)

which results in:

Aεo = F (5.66)

and

Dκ = M (5.67)

A laminate consists of a number of laminae (plies) laid at arbitrary orientations.
Depending upon the lay-up, coupled and uncoupled configurations are generated.
In a balanced laminate, for every ply in the +α direction, there is an identical
consecutive ply in the −α direction. An example is: [45/ − 45/ − 30/30/15/ − 15].
In a cross-ply laminate, 0◦ and 90◦ plies are oriented along x and y directions. Note
that there is no distinction between +0 and −0 or between the +90 and −90 plies.
In an angle-ply laminate, the plies are oriented at non-zero angles.

The sign conventions employed for the forces and moments are shown in Fig. 5.5.
The plate equilibrium equations can be obtained from the basic elemental equilib-
rium equations. For a cubic element, the force equilibrium equations are obtained
as

∂σx

∂x
+ ∂τxy

∂y
+ ∂τzx

∂z
+ f x = 0 (5.68)

∂τxy

∂x
+ ∂σy

∂y
+ ∂τyz

∂z
+ f y = 0 (5.69)

∂τzx

∂x
+ ∂τyz

∂y
+ ∂σz

∂z
+ f z = 0 (5.70)

where f x, f y, and f z are the body forces per unit volume respectively in the x, y, and
z directions. These equations are valid for each element of the plate. The following
eight stress resultants can be defined:

In-plane forces per unit length (N/m):

Fx =
∫

t
σx dz (5.71)

Fy =
∫

t
σy dz (5.72)

Fxy =
∫

t
τxy dz (5.73)

Bending moments per unit length (N-m/m):

Mx = −
∫

t
σxz dz (5.74)

My = −
∫

t
σyz dz (5.75)

Mxy = −
∫

t
τxyz dz (5.76)
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Figure 5.5. Sign convention for
forces, stresses, and moments.

Transverse shear forces per unit length (N/m):

Vx = −
∫

t
τzx dz (5.77)

Vy = −
∫

t
τyz dz (5.78)

Vx and Vy are transverse shear forces (per unit length). Positive Vx is defined as
pointing in the negative z direction on the y − z plane, and positive Vy is defined as
pointing in the negative z direction on the x − z plane. Assuming that the plate is in
the x − y plane, and integrating the above equations over the thickness of the plate
(integral with respect to the z coordinate) gives the plate equilibrium equations:

∂Fx

∂x
+ ∂Fxy

∂y
= −px (force equilibrium in the x direction) (5.79)

∂Fxy

∂x
+ ∂Fy

∂y
= −py (force equilibrium in the y direction) (5.80)

∂Vx

∂x
+ ∂Vy

∂y
= pz (force equilibrium in the z direction) (5.81)
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where Fx, Fy and Fxy are in-plane forces (per unit length). px, py, and pz are surface
loads (per unit area) respectively in x, y and z directions, given by∫

t

∂τzx

∂z
dz +

∫
t
f xdz = px (5.82)∫

t

∂τyz

∂z
dz +

∫
t
f ydz = py (5.83)∫

t

∂σz

∂z
dz +

∫
t
f zdz = pz (5.84)

The equations for equilibrium of moments can be obtained by multiplying the first
two equilibrium equations (Eq. 5.79 and Eq. 5.80) by −z and integrating over the
thickness of the plate. As a result, the moment equilibrium equations are

∂Mx

∂x
+ ∂Mxy

∂y
− Vx = 0 (moment equilibrium about the y axis) (5.85)

∂Mxy

∂x
+ ∂My

∂y
− Vy = 0 (moment equilibrium about the x axis) (5.86)

where Mx, My, and Mxy are moments (per unit length). Combining Eq. 5.81, Eq. 5.85
and Eq. 5.86 results in

∂2Mx

∂x2
+ ∂2My

∂y2
+ 2

∂2Mxy

∂x∂y
= pz (5.87)

5.1.4 Displacements-Based Governing Equations

Substituting the forces and moments relations from Eq. 5.63 into the equilibrium
equations for forces (Eq. 5.79 and Eq. 5.80) and moments (Eq. 5.87), and defin-
ing strains in terms of displacements (Eq. 5.50) results in the displacements-based
governing equations, given by

u-equation:

A11
∂2uo

∂x2
+ A12

∂2vo

∂x∂y
+ A16

(
2
∂2uo

∂x∂y
+ ∂2vo

∂x2

)
+ A26

∂2vo

∂y2
+ A66

(
∂2uo

∂y2
+ ∂2vo

∂x∂y

)
+ B11

∂3wo

∂x3
+ B12

∂3wo

∂x∂y2
+ 3B16

∂3wo

∂x2∂y
+ B26

∂3wo

∂y3
+ 2B66

∂3wo

∂x∂y2

= ∂Fx

∂x
+ ∂Fxy

∂y
− px (5.88)

v-equation:

A22
∂2vo

∂y2
+ A12

∂2uo

∂x∂y
+ A16

∂2uo

∂x2
+ A26

(
∂2uo

∂y2
+ 2

∂2vo

∂x∂y

)
+ A66

(
∂2uo

∂x∂y
+ ∂2vo

∂x2

)
+ B12

∂3wo

∂x2∂y
+ B22

∂3wo

∂y3
+ B16

∂3wo

∂x3
+ 3B26

∂3wo

∂x∂y2
+ 2B66

∂3wo

∂x2∂y

= ∂Fy

∂y
+ ∂Fxy

∂x
− py (5.89)
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w-equation:

B11
∂3uo

∂x3
+ B12

(
∂3vo

∂x2∂y
+ ∂3uo

∂x∂y2

)
+ B16

(
3
∂3uo

∂x2∂y
+ ∂3vo

∂x3

)
+ B22

∂3vo

∂y3

+ B26

(
∂3uo

∂y3
+ 3

∂3vo

∂x∂y2

)
+ 2B66

(
∂3uo

∂x∂y2
+ ∂3vo

∂x2∂y

)
+ D11

∂4wo

∂x4
+ 2D12

∂4wo

∂x2∂y2
+ 4D16

∂4wo

∂x3∂y
+ D22

∂4wo

∂y4

+ 4D26
∂4wo

∂x∂y3
+ 4D66

∂4wo

∂x2∂y2

= ∂2Mx

∂x2
+ ∂2My

∂y2
+ ∂2Mxy

∂x∂y
− pz

(5.90)

Let us consider an isotropic plate of thickness h, with a material of modulus E
and Poisson’s ration ν. The elements of the stiffness matrices are

A16 = A26 = 0

A11 = A22 = Eh
1 − ν2

= A

A12 = νA

A66 = 1 − ν

2
A

Bij = 0

D11 = D22 = Eh3

12(1 − ν2)
= D

D12 = νD

D16 = D26 = 0

D66 = 1 − ν

2
D

The forces are given by

Fx = A
(
∂uo

∂x
+ ν

∂vo

∂y

)
Fy = A

(
∂vo

∂y
+ ν

∂uo

∂x

)
Fxy = 1 − ν

2
A
(
∂uo

∂y
+ ∂vo

∂x

)
Vx = D

(
∂3wo

∂x3
+ ν

∂3wo

∂x∂y2

)
+ D(1 − ν)

∂3wo

∂x∂y2

Vy = D
(
∂3wo

∂y3
+ ν

∂3wo

∂x2∂y

)
+ D(1 − ν)

∂3wo

∂x2∂y
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The moments are given by

Mx = D
(
∂2w

∂x2
+ ν

∂2w

∂y2

)
My = D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
Mxy = D(1 − ν)

∂2w

∂x∂y

Substituting into Eq. 5.87 gives

D
(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4

)
= pz (5.91)

This is the basic equilibrium equation of plate bending for an isotropic uniform plate
with small deflection.

5.1.5 Boundary Conditions

The complete plate problem requires four boundary conditions at each edge; two
related to in-plane forces and displacements, and the other two concerned with out-
of-plane displacement and forces. Boundary conditions are broadly classified into
geometric (kinematic) and forced boundary conditions. Following is a list of some
possible boundary conditions, say for a rectangular plate at an edge x = 0.

1. Cantilevered (Built-in) Edge: All geometric boundary conditions:

uo = 0

vo = 0

w = 0

∂w

∂x
= 0

2. Free Edge: All forced boundary conditions:

Fx = 0

Fxy = 0

Mx = 0

Vx + ∂Mxy

∂y
= 0

3. Simply Supported Edge:
Case I: In-plane Motion Freely Permitted: For in-plane response, both are force
boundary conditions, and for out-of-plane response, one is force and second is
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geometric boundary condition.

Fx = 0

Fxy = 0

w = 0

Mx = 0

Case II: In-plane Completely Restrained: Geometric boundary conditions for
in-plane displacements.

uo = 0

vo = 0

w = 0

Mx = 0

Case III: In-plane Spring Supported: Linear springs of stiffness ku and kv are used
to restrain u and v displacements. This results in two in-plane forced-boundary
conditions.

w = 0

Fx = kuu

Fxy = kvv

Mx = 0

This clearly shows that one can have a combination of in-plane and out-of-plane
boundary conditions.

4. Bending Spring for Out-of-plane Displacement and In-plane Completely
Restrained: Bending spring stiffness is kθ.

uo = 0

vo = 0

w = 0

Mx = kθ

∂w

∂x

5. Vertical Spring for Out-of-plane Displacement and In-plane Completely
Restrained: Linear vertical spring stiffness is kw. At the root of the plate,

uo = 0

vo = 0

Mx = 0

Vx + ∂Mxy

∂y
= −kww
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At the other end of the plate, a similar condition will exist with a difference in
sign:

uo = 0

vo = 0

Mx = 0

Vx + ∂Mxy

∂y
= kww

5.2 Plate Theory with Induced Strain Actuation

Induced strain actuation can be used to control the extension, bending, and twisting
of a plate. With tailored anisotropic plates, control of specific static deformations can
be augmented using piezo actuators. Plates with distributed induced strain actuators
have a variety of applications, for example, to control the pointing of precision
instruments in space, to control structure-borne noise, and to change aerodynamic
shape for vibration reduction, flutter suppression, and gust alleviation.

To develop a consistent plate model with induced strain actuation, the following
assumptions are made:

1. Actuators and substrates are integrated as plies of a laminated plate.
2. The displacements in both the actuators and the substrate are defined completely

in terms of the deformation of the plate’s reference surface.
3. Assumption of thin classical laminated plate theory is adopted (Kirchhoff-Love

hypothesis).

For systems actuated in pure extension, the strains are assumed to be constant
across the thickness of the actuators and the plate. For systems actuated in pure
bending, strains are assumed to vary linearly through the entire thickness of the
structure. The strain in the system therefore depends on the mid-plane strain εo and
the curvature κ, as given by

ε = εo − zκ (5.92)

The constitutive relation for any ply of a laminated plate with induced strain actua-
tion is

σ = Q̄(ε − �) = Q̄ε − Q̄� (5.93)

where the matrix Q̄ is the transformed reduced stiffness matrix of a single ply and
the actuation strain vector is

� =
⎧⎨⎩
�x

�y

�xy

⎫⎬⎭ (5.94)

These are free induced strains, consisting of two direct and one shear strain. Inte-
grating through the thickness t of the plate, the forces and moments per unit length
of the plate, and the stiffness coefficients, can be derived in a manner similar to the
passive case. Mechanical forces are:

Fx =
∫

t
σx dz, Fy =

∫
t
σy dz, Fxy =

∫
t
σxy dz (5.95)
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Mechanical moments are:

Mx = −
∫

t
σxzdz, My = −

∫
t
σyzdz, Mxy = −

∫
t
σxyzdz (5.96)

The force vector, F and the moment vector, M can be derived as:

F =
∫

t
Q̄(ε − �) dz =

∫
t
Q̄εo dz −

∫
t
Q̄κ zdz −

∫
t
Q̄� dz

= Aεo + Bκ − F� (N/m)

(5.97)

and

M = −
∫

t
Q̄(ε − �) zdz =

∫
t
Q̄εo zdz +

∫
t
Q̄κ z2dz +

∫
t
Q̄� zdz

= Bεo + Dκ − M� (Nm/m)

(5.98)

From these equations, the stiffness matrices, and the induced force and moment
vectors can be derived.

Extensional stiffness:

A =
∫

t
Q̄ dz → Aij =

N∑
k=1

(Q̄ij )k(hk+1 − hk) (N/m) (5.99)

Coupling stiffness:

B = −
∫

t
Q̄zdz → Bij = −1

2

N∑
k=1

(Q̄ij )k(h2
k+1 − h2

k) (N) (5.100)

Bending stiffness:

D =
∫

t
Q̄z2dz → Dij = 1

3

N∑
k=1

(Q̄ij )k(h3
k+1 − h3

k) (Nm) (5.101)

Induced force vector:

F� =
∫

t
Q̄� dz

=
N∑

k=1

Q̄k�k(hk+1 − hk) (N/m)

(5.102)

Induced moment vector:

M� = −
∫

t
Q̄�zdz

= −1
2

N∑
k=1

Q̄k�k(h2
k+1 − h2

k) (Nm/m)

(5.103)

Both the actuator and the substrate plies contribute to the stiffness in the force and
moment equations; however, only the active plies contribute to the forcing functions
F� and M�. The total governing equation is:{

F
M

}
=
[
A B
B D

]{
εo

κ

}
−
{

F�

M�

}
(5.104)
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Expanding the entire set of equations,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx

Fy

Fxy

Mx

My

Mxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎣A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤⎦ ⎡⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎦
⎡⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎦ ⎡⎣D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

εo
x

εo
y

γo
xy

κx

κy

κxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx�

Fy�

Fxy�

Mx�

My�

Mxy�

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.105)

With no external mechanical forces, the above equations reduce to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx�

Fy�

Fxy�

Mx�

My�

Mxy�

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎣A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤⎦ ⎡⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎦
⎡⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎦ ⎡⎣D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

εo
x

εo
y

γo
xy

κx

κy

κxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.106)

The vector on the left-hand side represents generalized induced forces and the vec-
tor on the right-hand side represents generalized strains. Inverting these equations
results in the vector of strains and curvatures in terms of the induced forces and
moments. Aij are the in-plane extensional stiffness terms that relate the in-plane
induced forces Fx�,Fy� and Fxy� to the in-plane strains εo

x, ε
o
y and γo

xy, and Dij are
the bending stiffness terms that relate the induced moments Mx�,My� and Mxy� to
the curvatures κx, κy and κxy. Examining these matrices, different types of couplings
can be identified.

(a) Extension-shear couplings due to A16 and A26: In-plane induced forces Fx�,Fy�
cause shear deformation γo

xy. Normally, the induced shear force Fxy� is zero, but
if it exists, then extensional strains εo

x and εo
y are produced.

(b) Bending-torsion couplings due to D16 and D26: Induced moments Mx�,My� cause
twisting (κxy) of the laminate. Normally, induced twisting Mxy� is zero. However,
if Mxy� exists, these couplings would result in curvatures κx and κy.

(c) Extension-torsion couplings due to B16 and B26: Induced forces Fx�,Fy� cause
twisting (κxy) of the laminate and induced moments Mx�,My� result in shear
strain γo

xy. They are also called bending-shear couplings.
(d) Extension-bending couplings due to B11 and B12: Induced forces Fx� and Fy�

cause out-of-plane deformation (bending curvatures κx and κy) and induced
moments Mx� and My� cause in-plane deformations in the x − y plane. This is
also known as in-plane–out-of-plane coupling.

(e) Extension-extension couplings due to A12: The induced force Fx� causes defor-
mation in the y-direction and induced force Fy� causes deformation in the x-
direction.

(f) Bending-bending couplings due to D12: The induced bending moment Mx� causes
bending deformation (curvature) in the y-direction (in plane y − z) κy and the
induced bending moment My� causes curvature κx.
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Similarly, the strains can be written in terms of the forces and moments as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

εo
x

εo
y

γo
xy

κx

κy

κxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎣α11 α12 α16

α12 α22 α26

α16 α26 α66

⎤⎥⎦
⎡⎢⎣β11 β12 β16

β12 β22 β26

β16 β26 β66

⎤⎥⎦
⎡⎢⎣β11 β12 β16

β12 β22 β26

β16 β26 β66

⎤⎥⎦
⎡⎢⎣δ11 δ12 δ16

δ12 δ22 δ26

δ16 δ26 δ66

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx�

Fy�

Fxy�

Mx�

My�

Mxy�

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.107)

where ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎣α11 α12 α16

α12 α22 α26

α16 α26 α66

⎤⎥⎦
⎡⎢⎣β11 β12 β16

β12 β22 β26

β16 β26 β66

⎤⎥⎦
⎡⎢⎣β11 β12 β16

β12 β22 β26

β16 β26 β66

⎤⎥⎦
⎡⎢⎣δ11 δ12 δ16

δ12 δ22 δ26

δ16 δ26 δ66

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎣A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤⎥⎦
⎡⎢⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎥⎦
⎡⎢⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎥⎦
⎡⎢⎣D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

(5.108)

For uncoupled configurations with no external mechanical forces:

B = 0

F = 0

M = 0

resulting in:

Aεo = F� and Dκ = M� (5.109)

5.2.1 Isotropic Plate: Symmetric Actuation (Extension)

Consider an isotropic plate with identical piezo sheet actuators bonded to the top
and bottom surface (Fig. 5.6). The width of the plate is b, thickness of the plate is
tb, and the thickness of each piezo sheet is tc. The same voltage applied to both the
actuators causes a pure extension of the plate.

The assumptions are:

1. Free-Free isotropic plate.
2. No externally applied loads.
3. Piezo sheet is isotropic in the 1–2 (x, y) plane.

The plate consists of three plies; two are active plies, and one is a passive ply.
Note that the piezo actuator induces isotropic in-plane strains, and cannot induce a
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piezo sheet

piezo sheet

Mid-planeh3

3

2

1

h4

h1

h2

tc

tc

tb
Figure 5.6. Isotropic plate with
surface-bonded piezo sheets.

shear strain. Therefore,

�1 =
⎧⎨⎩
�

�

0

⎫⎬⎭ �2 =
⎧⎨⎩

0
0
0

⎫⎬⎭ �3 =
⎧⎨⎩
�

�

0

⎫⎬⎭ (5.110)

Assuming that the Poisson’s ratios of actuator and substrate are identical, the
stresses in each ply are given by (Eq. 5.14):⎧⎪⎨⎪⎩

σx

σy

τxy

⎫⎪⎬⎪⎭ = E
1 − ν2

⎡⎢⎣1 ν 0
ν 1 0

0 0 1−ν
2

⎤⎥⎦
⎧⎪⎨⎪⎩
εo

x

εo
y

γo
xy

⎫⎪⎬⎪⎭ (5.111)

where E = Eb for the plate and E = Ec for the actuator. For an isotropic plate,

B = 0 (5.112)

Therefore, there is no coupling between bending and extension. The resultant
induced strain equation becomes:

Aεo = F� (5.113)

The coefficients of matrix A are defined as

A11 =
3∑

k=1

(Q11)k(hk+1 − hk)

= Ec

1 − ν2
(−tb/2 + tb/2 + tc) + Eb

1 − ν2
(tb/2 + tb/2) + Ec

1 − ν2
(tb/2 + tc − tb/2)

= Ebtb
1 − ν2

+ 2Ectc
1 − ν2

(5.114)

Similarly, for the other coefficients,

A22 = A11 (5.115)

A12 = A21 = ν

1 − ν2
(Ebtb + 2Ectc) (5.116)

A33 = 1 − ν

2(1 − ν2)
(Ebtb + 2Ectc) (5.117)

The induced force is expressed as

F� =
3∑

k=1

Qk�k(hk+1 − hk)

= 2Ectc
1 − ν2

⎡⎣1 ν 0
ν 1 0
0 0 1−ν

2

⎤⎦⎧⎨⎩
�

�

0

⎫⎬⎭ = 2Ectc�
1 − ν

⎧⎨⎩
1
1
0

⎫⎬⎭
(5.118)
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Note that there is no shear actuation, and no coupling between extension and shear
(A16 = A26 = 0). The shear terms in the equation can therefore be ignored.

γo
xy = 0 (5.119)

Because the configuration is symmetric, there is no bending.

M� = 0 κ = 0 (5.120)

The extensional strains are calculated by Eq. 5.109. Substituting the above terms,[
A11 A12

A12 A22

]{
εo

x

εo
y

}
= 2Ectc�

1 − ν

{
1

1

}
This reduces to

(Ebtb + 2Ectc)
1 − ν2

[
1 ν

ν 1

]{
εo

x

εo
y

}
= 2Ectc�

1 − ν

{
1

1

}
from which the extensional strains are{

εo
x

εo
y

}
= 2Ectc�

1 − ν

1 − ν2

Ebtb + 2Ectc

[
1 ν

ν 1

]−1 {
1
1

}

= 2Ectc�
Ebtb + 2Ectc

{
1

1

} (5.121)

Defining

αe = 2, ψ = Ebtb
Ectc

we obtain

εo =
{
εo

x

εo
y

}
= αe�

αe + ψ

{
1

1

}
(5.122)

As the stiffness of the plate decreases compared to that of the actuator, (ψ decreases),
the strain transfer from actuator to plate increases.

5.2.2 Isotropic Plate: Antisymmetric Actuation (Bending)

The same assumptions are made as in the previous case (Section 5.2.1). In order
to induce pure bending, the top and bottom piezos are actuated by equal voltages
of opposite polarity. Assume that a positive voltage is applied to the bottom piezo,
causing an extensional strain on the bottom surface and a negative voltage is applied
to the top piezo, causing a compressive strain on the top surface. Because there is
no induced shear strain, and there is no structural coupling, the shear terms can be
ignored completely.

�xy = 0 and D16 = D26 = 0 → kxy = 0

Therefore,

F� = 0 → εo = 0 (5.123)
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Actuation strains are:

�1 =
⎧⎨⎩
�

�

0

⎫⎬⎭ �2 =
⎧⎨⎩

0
0
0

⎫⎬⎭ �3 =
⎧⎨⎩

−�

−�

0

⎫⎬⎭ (5.124)

In the symmetric case, B = 0. The bending equation becomes:

Dκ = M� (5.125)

From Eq. 5.14, the reduced stiffness matrix is

Q = E
1 − ν2

[
1 ν

ν 1

]
(5.126)

where E = Eb for the plate and E = Ec for the actuator plies. Coefficients of the
matrix D are

D11 = 1
3

3∑
k=1

(Q11)k(h3
k+1 − h3

k)

= 1
3

Ec

(1 − ν2)

[
(−tb/2)3 − (−tb/2 − tc)3]

+ 1
3

Eb

(1 − ν2)

[
(tb/2)3 − (−tb/2)3]

+ 1
3

Ec

(1 − ν2)

[
(tb/2 + tc)3 − (tb/2)3]

= Ebt3
b

12(1 − ν2)
+ 2Ectc

3(1 − ν2)

(
3
4

t2
b + 3

2
tbtc + t2

c

)

(5.127)

D12 = vEbt3
b

12(1 − ν2)
+ 2vEctc

3(1 − ν2)

(
3
4

t2
b + 3

2
tbtc + t2

c

)
= νD11

(5.128)

D22 = D11 (5.129)

From the above equations, D can be written as

D =
[

Ebt3
b

12(1 − ν2)
+ 2Ectc

3(1 − ν2)

(
3
4

t2
b + 3

2
tbtc + t2

c

)][
1 ν

ν 1

]
(5.130)

The induced moment becomes

M� = −1
2

3∑
k=1

Qk�k(h2
k+1 − h2

k)

= 1
2

Ec

1 − ν2

[
1 ν

ν 1

]{
�

�

}
2 [(tb/2 + tc)2 − (tb/2)2]

= Ec

1 − ν2

[
1 ν

ν 1

]{
�

�

}
tc(tb + tc)

= Ectc(tb + tc)�
1 − ν

{
1
1

}
(5.131)
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The induced bending equation becomes[
Ebt3

b

12(1 − ν2)
+ 2Ectc

3(1 − ν2)

(
3
4

t2
b + 3

2
tbtc + t2

c

)][
1 ν

ν 1

]{
κx

κy

}

= Ectc(tb + tc)�
1 − ν

{
1
1

} (5.132)

From which{
κx

κy

}
= 1

Ebt3
b

12(1−ν2) + 2Ectc
3(1−ν2)

( 3
4 t2

b + 3
2 tbtc + t2

c

) Ectc
1 − ν2

(tb + tc)�
{

1
1

}
(5.133)

Defining

θb = tb
tc

(5.134)

ψ = Ebtb
Ectc

(5.135)

αb = 6 (5.136)

Dividing both top and bottom parts by Ectct2
b

12(1−ν2) gives

{
κx

κy

}
=

12
tb

(1 + tc/tb)�
Ebtb
Ectc

+ 8( 3
4 + 3

2
tc
tb

+ t2
c

t2
b
)

{
1
1

}

=
2αb
tb

(1 + 1
θb

)�

ψ + αb( 4
3

1
θ2

b
+ 2

θb
+ 1)

{
1
1

} (5.137)

Once again, the bending strain transfer from actuators to plate increases as the
plate stiffness decreases with respect to actuator stiffness.

5.2.3 Worked Example

(a) Using laminated plate theory, derive extension-bending equations for a rect-
angular isotropic plate with a piezo sheet actuator bonded only on its bottom
surface (Fig. 5.7).

(b) Calculate curvature and extension strain at the mid-point of this free-free alu-
minum plate of size 0.3048 m (12′′) ×0.3048 m (12′′) ×0.79 mm (1/32′′) with a
piezo sheet(PZT-5H) of thickness 0.32 mm (0.0125′′) for a voltage of 150 V.

Manufacturer-supplied material constants are as follows:

Ec = Eb = 72.4 GPa(10.5 × 106 lb/in2)

d31 = −274 × 10−12 m/V

νb = νc = 0.3
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piezo sheet

Plate mid-plane2

1tc

tb

isotropic plate

Figure 5.7. Rectangular isotropic
plate with one piezo sheet.

Solution

Because the plate is isotropic and there is no induced shear strain, terms related to
γo

xy and κxy can be ignored.
γo

xy = 0 and κxy = 0

(a) The governing equation is [
A B
B D

]{
εo

κ

}
=
{

F�

M�

}
The stiffnesses are given by

A =
2∑

k=1

Qk(hk+1 − hk)

= 1
1 − ν2

[
1 ν

ν 1

]
[Ec ((−tb/2) − (−tb/2 − tc)) + Eb (tb/2 − (−tb/2))]

= Ectc + Ebtb
1 − ν2

[
1 ν

ν 1

]

B = −1
2

2∑
k=1

Qk(h2
k+1 − h2

k)

= − 1
2(1 − ν2)

[
1 ν

ν 1

] [
Ec
(
(−tb/2)2 − (−tb/2 − tc)2)

+ Eb
(
(tb/2)2 − (−tb/2)2)]

= Ectc(tc + tb)
2(1 − ν2)

[
1 ν

ν 1

]

D = 1
3

2∑
k=1

Qk(h3
k+1 − h3

k)

= 1
3(1 − ν2)

[
1 ν

ν 1

] [
Eb
(
(tb/2)3 − (−tb/2)3)

+ Ec
(
(−tb/2)3 − (−tb/2 − tc)3)]

=
[

Ebt3
b

12(1 − ν2)
+ Ectc

3(1 − ν2)

(
3
4

t2
b + 3

2
tbtc + t2

c

)][
1 ν

ν 1

]
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and the forcing terms are

F� =
2∑

k=1

Qk�k(hk+1 − hk)

= Ec

1 − ν2

[
1 ν

ν 1

]{
�

�

}
((−tb/2) − (−tb/2 − tc))

= Ectc�
1 − ν

{
1
1

}

M� = −1
2

2∑
k=1

Qk�k
(
h2

k+1 − h2
k

)
= − Ec

2(1 − ν2)

[
1 ν

ν 1

]{
�

�

} (
(−tb/2)2 − (−tb/2 − tc)2)

= Ectc(tb + tc)�
2(1 − ν)

{
1
1

}
(b) Substituting the given values for the material data, the stiffnesses can be calcu-

lated to be

A =
[

88.4115 26.5235
26.5235 88.4115

]
× 106 N/m B =

[
0.0140 0.0042
0.0042 0.0140

]
× 106 N

D =
[

11.3262 3.3979
3.3979 11.3262

]
Nm

The induced force and moments are

F� =
{−4250.9
−4250.9

}
N/m M� =

{−2.3619
−2.3619

}
Nm/m

The strains and curvature of the plate are found from⎧⎪⎪⎪⎨⎪⎪⎪⎩
εo

x

εo
y

κx

κy

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
[
A B
B D

]−1 {
F�

M�

}

=

⎧⎪⎪⎨⎪⎪⎩
−14.34 × 10−6

−14.34 × 10−6

−0.143 1/m
−0.143 1/m

⎫⎪⎪⎬⎪⎪⎭
5.2.4 Single Layer Specially Orthotropic Plate (Extension)

Consider a free-free plate that consists of a single specially orthotropic ply (with fibers
aligned parallel to the x-direction). In a specially orthotropic plate, the principal axes
of the lamina are aligned with the co-ordinate axes. Therefore,

Q16 = Q26 = 0 (5.138)
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As a result, the plate does not have any coupling between extension and shear. Two
identical piezo actuators are bonded to the top and bottom surfaces, similar to the
configuration shown in Fig. 5.6, with the exception that in the present case, the plate
is specially orthotropic. Because the structure is symmetric, B = 0, and there is no
extension-bending coupling. The same assumptions as in Section 5.2.1 are valid. For
pure extension, the actuation strains can be expressed as:

�1 =
⎧⎨⎩
�

�

0

⎫⎬⎭ �2 =
⎧⎨⎩

0
0
0

⎫⎬⎭ �3 =
⎧⎨⎩
�

�

0

⎫⎬⎭ (5.139)

Note that there is no actuation of the shear components, and because the plate does
not have any extension-shear coupling, the shear terms are equal to zero and can be
ignored. The stiffness matrix of the plate is given by Eq. 5.12

Q11 = E1

1 − ν12ν21
(5.140)

Q22 = E2

1 − ν12ν22
(5.141)

Q12 = ν21E1

1 − ν12ν21
= ν12E2

1 − ν12ν21
(5.142)

In the absence of external mechanical loading, the induced strain equation becomes
(Eq. 5.104): [

A11 A12

A12 A22

]{
εo

x
εo

y

}
=
{

Fx�
Fy�

}
(5.143)

The coefficients of matrix A are defined as

Aij =
3∑

k=1

(Qij )k(hk+1 − hk) (5.144)

A11 = E1tb
1 − ν12ν21

+ 2Ectc
1 − ν2

(5.145)

A22 = E2tb
1 − ν12ν21

+ 2Ectc
1 − ν2

(5.146)

A12 = A21 = ν21E1tb
1 − ν12ν21

+ ν

1 − ν2
2Ectc (5.147)

The actuation forces are defined as

F� =
3∑

k=1

Qk�k(hk+1 − hk) = 2Ectc
1 − ν2

[
1 ν

ν 1

]{
�

�

}
= 2Ectc�

1 − ν

{
1
1

}
(5.148)

Substituting in Eq. 5.143 and solving for the strains gives[
E1tb

1−ν12ν21
+ 2Ectc

1−ν2
ν21E1tb

1−ν12ν21
+ 2Ectcν

1−ν2

ν21E1tb
1−ν12ν21

+ 2Ectcν
1−ν2

E2tb
1−ν12ν21

+ 2Ectc
1−ν2

]{
εo

x
εo

y

}
= 2Ectc�

1 − ν

{
1
1

}
(5.149)
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To simplify this expression, it is assumed that the Poisson’s ratios for the actuator
(ν) and for the plate (ν21) are equal.

(
E1tb

1 − ν12ν21
+ 2Ectc

1 − ν2

)⎡⎣1 ν

ν
E2 tb

1−ν12ν21
+ 2Ectc

1−ν2
E1 tb

1−ν12ν21
+ 2Ectc

1−ν2

⎤⎦{εo
x
εo

y

}
= 2Ectc

1 − ν

{
1
1

}
� (5.150)

{
εo

x
εo

y

}
=

2Ectc�
1−ν

E1tb
1−ν12ν21

+ 2Ectc
1−ν2

[
1 ν

ν α

]−1 {
1
1

}

=
2Ectc�

1−ν

E1tb
1−ν12ν21

+ 2Ectc
1−ν2

1
α − ν2

{
α − ν

1 − ν

}

= 2Ectc�

(1 − ν)
[

E2tb
1−ν12ν21

+ 2Ectc
1−ν2 − ν2

(
E1tb

1−ν12ν21
+ 2Ectc

1−ν2

)] {α − ν

1 − ν

}
(5.151)

where

α =
E2tb

1−ν12ν21
+ 2Ectc

1−ν2

E1tb
1−ν12ν21

+ 2Ectc
1−ν2

(5.152)

5.2.5 Single Layer Specially Orthotropic Plate (Bending)

Applying a positive voltage to the bottom piezo and a negative voltage to the top
piezo results in bending actuation.

�1 =
⎧⎨⎩
�

�

0

⎫⎬⎭ �2 =
⎧⎨⎩

0
0
0

⎫⎬⎭ �3 =
⎧⎨⎩

−�

−�

0

⎫⎬⎭ (5.153)

Actuation equation is [
D11 D12

D12 D22

]{
κx

κy

}
=
{

Mx�
My�

}
(5.154)

where the stiffness coefficients are defined as

Dij = 1
3

3∑
k=1

(Qij )k(h3
k+1 − h3

k)

D11 = E1t3
b

12(1 − ν12ν21)
+ 2Ectc

3(1 − ν2)

(
3
4

t2
b + 3

2
tbtc + t2

c

)
(5.155)

D12 = ν21E1t3
b

12(1 − ν12ν21)
+ 2νEctc

3(1 − ν2)

(
3
4

t2
b + 3

2
tbtc + t2

c

)
(5.156)

D22 = E2t3
b

12(1 − ν12ν21)
+ 2Ectc

3(1 − ν2)

(
3
4

t2
b + 3

2
tbtc + t2

c

)
(5.157)
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The induced moments are given by{
Mx�
My�

}
= −1

2

3∑
k=1

Qk�k(h2
k+1 − h2

k) = Ectc(tb + tc)
(1 − ν)

�

{
1
1

}
(5.158)

{
κx

κy

}
=
[

D11 D12

D12 D22

]−1 {
Mx�
My�

}
(5.159)

5.2.6 Single Layer Generally Orthotropic Plate (Extension)

Consider a generally orthotropic plate with two surface-bonded piezo actuators. The
geometry of this configuration is similar to that shown in Fig. 5.6, with the exception
that in this case, the plate is generally orthotropic. The induced strain vectors are

�1 =
⎧⎨⎩
�

�

0

⎫⎬⎭ �2 =
⎧⎨⎩

0
0
0

⎫⎬⎭ �3 =
⎧⎨⎩
�

�

0

⎫⎬⎭ (5.160)

The stiffness matrix of the plate is given by

Q̄ =
⎧⎨⎩

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎫⎬⎭ (5.161)

The major difference in this case compared to a specially orthotropic plate is the
structure of the stiffness matrix Q̄ . Coupling terms exist in the stiffness matrix
because the principal axes of the lamina are not aligned with the co-ordinate axes.
Due to the non-zero extension-shear coupling terms Q̄16 and Q̄26, there exists a
coupling between extension and shear as well as between bending and twist. As
a result, even though shear is absent in the induced strain field, the structure will
exhibit shear and twist displacement.

In order to cause extensional actuation, the same potential is applied to the top
and the bottom piezo sheets. Because there is no coupling between bending and
extension, the induced strain actuations are⎡⎣A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤⎦⎧⎨⎩
εo

x
εo

y

γo
xy

⎫⎬⎭ =
⎧⎨⎩

Fx�
Fy�
Fxy�

⎫⎬⎭ (5.162)

From Eq. 5.118, ⎧⎨⎩
Fx�
Fy�
Fxy�

⎫⎬⎭ = 2Ectc�
1 − ν

⎧⎨⎩
1
1
0

⎫⎬⎭ (5.163)

also,

A =

⎡⎢⎢⎣
Q̄11tb + 2Ectc

1−ν2 Q̄12tb + 2νEctc
1−ν2 Q̄16tb

Q̄12tb + 2νEctc
1−ν2 Q̄22tb + 2Ectc

1−ν2 Q̄26tb

Q̄16tb Q̄26tb Q̄66tb + Ectc
2(1+ν)

⎤⎥⎥⎦ (5.164)
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The strains in the structure are⎧⎨⎩
εo

x
εo

y

γo
xy

⎫⎬⎭ = 2Ectc�
1 − v

A−1

⎧⎨⎩
1
1
0

⎫⎬⎭ (5.165)

From this, it can be seen that the structure exhibits an extension-shear coupling.

5.2.7 Single Layer Generally Orthotropic Plate (Bending)

Opposite voltage is applied to top and bottom piezo sheets in order to create a
bending deformation. Again, in this case, there is no coupling between bending and
extension. The geometry of the plate and actuators is similar to Fig. 5.6.

�1 =
⎧⎨⎩
�

�

0

⎫⎬⎭ �2 =
⎧⎨⎩

0
0
0

⎫⎬⎭ �3 =
⎧⎨⎩

−�

−�

0

⎫⎬⎭ (5.166)

Induced bending curvatures are found from:⎡⎣D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤⎦⎧⎨⎩
κx

κy

κxy

⎫⎬⎭ =
⎧⎨⎩

Mx�
My�
Mxy�

⎫⎬⎭ (5.167)

The bending stiffness coefficients are defined as

Dij = 1
3

∑
(Q̄ij )k(h3

k+1 − h3
k)

D11 = 1
12

Q̄11t3
b + 2Ectc

3(1 − ν2)

(
3
4

t2
b + 3

2
tbtc + t2

c

)
(5.168)

D12 = 1
12

Q̄12t3
b + ν2Ectc

3(1 − ν2)

(
3
4

t2
b + 3

2
tbtc + t2

c

)
(5.169)

D16 = 1
12

Q̄16t3
b (5.170)

D22 = 1
12

Q̄22t3
b + 2Ectc

3(1 − ν2)

(
3
4

t2
b + 3

2
tbtc + t2

c

)
(5.171)

D26 = 1
12

Q̄26t3
b (5.172)

D66 = 1
12

Q̄66t3
b + Ectc

3(1 + ν)

(
3
4

t2
b + 3

2
tbtc + t2

c

)
(5.173)

where the Q̄ij terms are the stiffness terms of the plate. The induced moments are
(Eq. 5.131) ⎧⎨⎩

Mx�
My�
Mxy�

⎫⎬⎭ = Ectc(tb + tc)�
(1 − ν)

⎧⎨⎩
1
1
0

⎫⎬⎭ (5.174)

This results in the bending curvatures,⎧⎨⎩
κx

κy

κxy

⎫⎬⎭ = Ectc(tb + tc)�
(1 − ν)

⎡⎣D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤⎦−1⎧⎨⎩
1
1
0

⎫⎬⎭ (5.175)
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piezo sheet

piezo sheet

Mid-plane

tl
tc

tb

Figure 5.8. Ply layups in a sym-
metric laminate plate.

Note that a pure bending actuation in this configuration causes a twisting of the
plate. The structure exhibits a bending-torsion coupling.

5.2.8 Multi-Layered Symmetric Laminate Plate

In a symmetric laminate, the ply angles are symmetric with respect to the mid-plane.
As an example, a 5-layered laminate with a lay-up of [−α◦

1/ + α◦
2/ − α◦

3/ + α◦
2/ − α◦

1]
constitutes a symmetric laminate. A 3-layered laminate, with a layup of [0◦/90◦/0◦]
is called a regular symmetric cross-ply laminate. A schematic diagram of the cross-
section of a four-ply symmetric laminate plate (layup [+α/ − α/ − α/ + α]) with
piezo sheets bonded to both surfaces is shown in Fig. 5.8. Such a laminate can also be
represented as [+α/ − α]s. The thickness of each lamina is tl and the total thickness
of the plate is tb.

The stiffness matrices for a laminate with ‘N’ plies are defined as

Aij =
N∑

k=1

(Q̄ij )k(hk+1 − hk) (5.176)

Bij = −1
2

N∑
k=1

(Q̄ij )k
(
h2

k+1 − h2
k

)
(5.177)

Dij = 1
3

N∑
k=1

(Q̄ij )k
(
h3

k+1 − h3
k

)
(5.178)

If the lay-up and properties of the laminate are symmetric about the middle
surface, B = 0. Therefore, there will be no coupling between bending and extension.
For purely extensional actuation:⎡⎣A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤⎦⎧⎨⎩
εo

x
εo

y

γo
xy

⎫⎬⎭ =
⎧⎨⎩

Fx�
Fy�
Fxy�

⎫⎬⎭ (5.179)

where ⎧⎨⎩
Fx�
Fy�
Fxy�

⎫⎬⎭ = 2Ectc�
1 − ν

⎧⎨⎩
1
1
0

⎫⎬⎭ (5.180)

For purely bending actuation with a voltage −V to the top and +V to the bottom
piezosheet: ⎡⎣D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤⎦⎧⎨⎩
κx

κy

κxy

⎫⎬⎭ =
⎧⎨⎩

Mx�
My�
Mxy�

⎫⎬⎭ (5.181)



5.2 Plate Theory with Induced Strain Actuation 475

where ⎧⎨⎩
Mx�
My�
Mxy�

⎫⎬⎭ = Ectc(tb + tc)�
1 − ν

⎧⎨⎩
1
1
0

⎫⎬⎭ (5.182)

Note that there is no piezo-induced twisting of the laminate, due to its symmetric
nature.

Case I: Symmetric Laminates with Multiple Isotropic Layers

For an isotropic ply,

(Q̄11)k = (Q̄22)k = Ek

1 − v2
k

(5.183)

(Q̄16)k = (Q̄26)k = 0 (5.184)

(Q̄12)k = vkEk

1 − v2
k

(5.185)

(Q̄66)k = Ek

2(1 + vk)
(5.186)

A16 = A26 = 0 (5.187)

A11 = A22 (5.188)

D16 = D26 = 0 (5.189)

D11 = D22 (5.190)

This results in

εo
x = εo

y (5.191)

γo
xy = 0 (5.192)

κx = κy (5.193)

κxy = 0 (5.194)

Case II: Symmetric Laminates with Multiple Specially Orthotropic Layers

For a specially orthotropic ply,

(Q̄11)k =
(

E1

1 − v12v21

)
k

(5.195)

(Q̄12)k =
(

v21E1

1 − v12v21

)
k

(5.196)

(Q̄66)k = (G12)k (5.197)

(Q̄22)k =
(

E2

1 − v12v21

)
k

(5.198)

(Q̄16)k = (Q̄26)k = 0 (5.199)
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This will result in

A16 = A26 = D16 = D26 = 0 (5.200)

and

γo
xy = 0 κxy = 0 (5.201)

The behavior of this laminate is very similar to a single-layer specially orthotropic
lamina. For purely extensional actuation:[

A11 A12

A12 A22

]{
εo

x
εo

y

}
=
{

Fx�
Fy�

}
(5.202)

where {
Fx�
Fy�

}
= 2Ectc�

1 − ν

{
1
1

}
(5.203)

For purely bending actuation:[
D11 D12

D12 D22

]{
κx

κy

}
=
{

Mx�
My�

}
(5.204)

where {
Mx�
My�

}
= Ectc(tb + tc)�

1 − ν

{
1
1

}
(5.205)

Case III: Symmetric Laminates with Multiple Generally Orthotropic Layers

The behavior of this laminate is very similar to a single-layer generally orthotropic
lamina. However, due to symmetry about the mid-plane, B = 0. Consequently, there
is no coupling between bending and extension. The terms A16, A26, D16 and D26 are
non-zero for this case. Thus, there is a coupling between normal forces and shearing
strain, and between twisting moment and bending curvature.

For purely extensional actuation:⎡⎣A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤⎦⎧⎨⎩
εo

x
εo

y

γo
xy

⎫⎬⎭ = 2Ectc�
1 − ν

⎧⎨⎩
1
1
0

⎫⎬⎭ (5.206)

A16 and A26 are called extension-shear couplings. A normal induced stress results in
the shear strain γo

xy.
For purely bending actuation:⎡⎣D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤⎦⎧⎨⎩
κx

κy

κxy

⎫⎬⎭ = Ectc(tb + tc)�
1 − ν

⎧⎨⎩
1
1
0

⎫⎬⎭ (5.207)

D16 and D26 are called bending-twist couplings. An induced moment Mx or My causes
twisting of the plate.

Case IV: Symmetric Laminates with Multiple Antisymmetric Layers

For every ply with the orientation +α, there is a consecutive ply with the orientation
−α about the same distance from the mid-plane of the plate. The behavior of this
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piezo sheet

piezo sheet

− α
+ α

+ α
− α

Mid-plane

tl
tc

tb

Figure 5.9. Ply layups in an anti-
symmetric laminate plate.

laminate is similar to that of a symmetric laminate with generally orthotropic layers.
This is also called a balanced laminate (for example, [+α/ − α/ − α/ + α/ + α/ −
α/ − α/ + α]). For a many layered angle-ply laminate, the values of A16, A26, D16

and D26 become quite small as compared to other terms, and the laminate behaves
more like a laminate with specially orthotropic layers.

5.2.9 Multi-Layered Antisymmetric Laminate Plate

In an antisymmetric laminate, the ply angles are antisymmetric with respect to
the mid-plane. For example, a four-layered laminate with a layup of [+α/ − α/ +
α/ − α] constitutes an antisymmetric laminate. The behavior of such laminates can
be quite different from that of symmetric laminates. An antisymmetric laminate
should have an even number of plies. A schematic diagram of the cross-section of
an antisymmetric laminate is shown in Fig. 5.9.

For plies with angle +α and −α,

(Q̄11)+α = (Q̄11)−α (5.208)

(Q̄22)+α = (Q̄22)−α (5.209)

(Q̄12)+α = (Q̄12)−α (5.210)

(Q̄66)+α = (Q̄66)−α (5.211)

(Q̄16)+α = −(Q̄16)−α (5.212)

(Q̄26)+α = −(Q̄26)−α (5.213)

Therefore, for an antisymmetric laminate with ‘n’ plies,

A16 =
n∑

k=1

(Q̄16)k(hk+1 − hk) = 0 (5.214)

and

D16 = 1
3

n∑
k=1

(Q̄16)k
(
h3

k+1 − h3
k

) = 0 (5.215)

Similarly, A26 = 0 and D26 = 0. Thus, for an antisymmetric laminate, the extensional-
shear couplings and bending-twist couplings are zero. Force and moment relations
are given below. For purely extensional actuation,

⎡⎣A11 A12 0
A12 A22 0
0 0 A66

⎤⎦⎧⎨⎩
εo

x
εo

y

γo
xy

⎫⎬⎭+
⎡⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎦⎧⎨⎩
κx

κy

κxy

⎫⎬⎭ =
⎧⎨⎩

Fx�
Fy�
Fxy�

⎫⎬⎭ (5.216)
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For purely bending actuation:⎡⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎦⎧⎨⎩
εo

x
εo

y

γo
xy

⎫⎬⎭+
⎡⎣D11 D12 0

D12 D22 0
0 0 D66

⎤⎦⎧⎨⎩
κx

κy

κxy

⎫⎬⎭ =
⎧⎨⎩

Mx�
My�
Mxy�

⎫⎬⎭ (5.217)

Antisymmetric Angle-ply Laminates

An example of a two-layered antisymmetric laminate is [+α/ − α] where both plies
are of equal thickness. For a general lay-up, if a lamina of +α◦ orientation is placed
at a certain vertical distance on one side of the mid-plane, then an equal-thickness
lamina of −α◦ orientation is placed on the other side at the same vertical distance.

Bij = −1
2

n∑
k=1

(Q̄ij )k
(
h2

k+1 − h2
k

)
B11 = −1

2
(Q̄11)+αt2 + 1

2
(Q̄11)−αt2 = 0 (5.218)

B12 = 0 (5.219)

B22 = 0 (5.220)

B66 = 0 (5.221)

B16 = −1
2

(Q̄16)+αt2 + 1
2

(Q̄16)−αt2 = −(Q̄16)+αt2 (5.222)

B26 = −1
2

(Q̄26)+αt2 + 1
2

(Q̄26)−αt2 = −(Q̄26)+αt2 (5.223)

where t is the thickness of one ply.
For symmetric induced actuation, the force and moment relations are given

below.
For purely extensional actuation:⎡⎣A11 A12 0

A12 A22 0
0 0 A66

⎤⎦⎧⎨⎩
εo

x
εo

y

γo
xy

⎫⎬⎭+
⎡⎣ 0 0 B16

0 0 B26

B16 B26 0

⎤⎦⎧⎨⎩
κx

κy

κxy

⎫⎬⎭ =
⎧⎨⎩

Fx�
Fy�
Fxy�

⎫⎬⎭ (5.224)

For purely bending actuation:⎡⎣ 0 0 B16

0 0 B26

B16 B26 0

⎤⎦⎧⎨⎩
εo

x
εo

y

γo
xy

⎫⎬⎭+
⎡⎣D11 D12 0

D12 D22 0
0 0 D66

⎤⎦⎧⎨⎩
κx

κy

κxy

⎫⎬⎭ =
⎧⎨⎩

Mx�
My�
Mxy�

⎫⎬⎭ (5.225)

From the above equations, it can be seen that a normal induced strain (Fx� or
Fy�) causes a twisting of the plate, κxy, due to the extension-twist couplings B16 and
B26. In addition, an induced bending moment (Mx� or My�) will also cause a shear
deformation γo

xy. Therefore, these couplings are also called bending-shear couplings.

Antisymmetric Cross-ply Laminates

These laminates consist of an even number of alternating 0◦ and 90◦ plies. For
example, a two-ply antisymmetric cross-ply laminate would have the layup [0/90]
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piezo sheet

piezo sheet

90o

0o
Mid-planetl

tc

Figure 5.10. Two layered cross-
ply laminate.

and for a six-ply laminate, the layup would be [0/90/90/0/0/90]. For the 0◦ ply,

Q̄0◦ = Q0◦ =
⎡⎣Q11 Q12 0

Q12 Q22 0
0 0 Q66

⎤⎦ (5.226)

and for the 90◦ ply,

(Q̄22)90◦ = (Q̄11)0◦ (5.227)

(Q̄11)90◦ = (Q̄22)0◦ (5.228)

(Q̄12)90◦ = (Q̄12)0◦ (5.229)

(Q̄66)90◦ = (Q̄66)0◦ (5.230)

Therefore,

Q̄90◦ =
⎡⎣Q22 Q12 0

Q12 Q11 0
0 0 Q66

⎤⎦ (5.231)

Let us consider a two layer cross-ply laminate with a [0/90] layup (Fig. 5.10). In this
case, the extension and bending stiffness matrices are:

A =
⎡⎣A11 A12 0

A12 A22 0
0 0 A66

⎤⎦ (5.232)

and

D =
⎡⎣D11 D12 0

D12 D22 0
0 0 D66

⎤⎦ (5.233)

The coupling matrix coefficients are defined as

B11 = −1
2

t2
l ((Q̄11)90◦ − (Q̄11)0◦) (5.234)

B22 = −1
2

t2
l ((Q̄22)90◦ − (Q̄22)0◦) = −B11 (5.235)

B66 = 1
2

t2
l ((Q̄66)0◦ − (Q̄66)90◦) = 0 (5.236)

B16 = B26 = 0 (5.237)

For purely extensional actuation:⎡⎣A11 A12 0
A12 A22 0
0 0 A66

⎤⎦⎧⎨⎩
εo

x
εo

y

γo
xy

⎫⎬⎭+
⎡⎣B11 0 0

0 −B11 0
0 0 0

⎤⎦⎧⎨⎩
κx

κy

κxy

⎫⎬⎭ =
⎧⎨⎩

Fx�
Fy�
Fxy�

⎫⎬⎭ (5.238)
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2
1

Mid-planetl Figure 5.11. A two ply laminate.

For purely bending actuation:

⎡⎣B11 0 0
0 −B11 0
0 0 0

⎤⎦⎧⎨⎩
εo

x
εo

y

γo
xy

⎫⎬⎭+
⎡⎣D11 D12 0

D12 D22 0
0 0 D66

⎤⎦⎧⎨⎩
κx

κy

κxy

⎫⎬⎭ =
⎧⎨⎩

Mx�
My�
Mxy�

⎫⎬⎭ (5.239)

From the above equations, it can be seen that B11 is the in-plane–out-of-plane
coupling. Induced forces Fx� and Fy� cause the bending curvatures κx and κy, while
the induced moments Mx� and My� cause the in-plane extensional strains εo

x and
εo

y .

5.2.10 Summary of Couplings in Plate Stiffness Matrices

To summarize all the possibilities of coupling in different layups, let us consider a
simple two ply laminate, as shown in Fig. 5.11. The plate stiffness matrices are given
by:

A =
2∑

(k=1)

Q̄k(hk+1 − hk)

= Q̄1 (0 − (−tl)) + Q̄2 ((tl) − 0)

= tl
(
Q̄1 + Q̄2

)
(5.240)

where Q̄1 is the reduced stiffness matrix for ply 1, Q̄2 is the reduced stiffness matrix
for ply 2, and tl is the thickness of each ply.

B = −1
2

2∑
(k=1)

Q̄k

(
h2

k+1 − h2
k

)

= −1
2

[
Q̄1

(
0 − (−tl)2)+ Q̄2

(
(tl)2 − 0

)]
= −1

2
t2
l

(−Q̄1 + Q̄2

)
(5.241)

D = 1
3

2∑
(k=1)

Q̄k(h3
k+1 − h3

k)

= 1
3

[
Q̄1

(
0 − (−tl)3)+ Q̄2

(
(tl)3 − 0

)]
= 1

3
t3
l

(
Q̄1 + Q̄2

)
(5.242)
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The effect of individual ply stiffness matrices on the plate stiffness matrices can
easily be seen from the above equations. The results are shown in Table 5.2. The
coupling terms are

� B11, B12 → extension-bending
� B16, B26 → extension-torsion
� D16, D26 → bending-torsion

5.2.11 Worked Example

(a) Using laminated plate theory, derive extension-bending equations for a rect-
angular two-layered angle ply laminate with a piezo to bonded only its top
surface for two cases: symmetric and antisymmetric layups, with α = 45◦

(Fig. 5.12).
(b) Calculate curvature and extension strain at a mid-point of this free-free laminate

of size 0.3048 m (12′′) x 0.3048 m (12′′) x 0.79 mm (1/32′′) with a piezo sheet(PZT-
5H) of thickness 0.3175 mm (0.0125′′) for a voltage of 150 V, for the two cases
of symmetric and antisymmetric layups.

Manufacturer-supplied material constants are as follows:

d31 = −274 × 10−12 m/V

Ec = 72.4 GPa (10.5 × 106 lb/in2)

E1 = 137.9 GPa (20 × 106 lb/in2)

E2 = 14.5 GPa (2.1 × 106 lb/in2)

G12 = 5.86 GPa (0.85 × 106 lb/in2)

νc = 0.3

ν12 = 0.2

Solution

(a) With no mechanical force acting on the structure, the governing equation is[
A B
B D

]{
εo

κ

}
=
{

F�

M�

}
The stiffness matrices are obtained as follows:

A =
3∑

k=1

Qk(hk+1 − hk)

= Qc((tl + tc) − tl) + Q1(0 − (−tl)) + Q2(tl − 0)

= Qctc + tl(Q1 + Q2)

= Qctc + tb
2

(Q1 + Q2)



Table 5.2. Summary of laminated plate stiffness matrices

Ply Layup Q̄1 (N/m2) Q̄2 (N/m2) A (N/m) B (N) D (Nm)

Isotropic –

⎡⎣Q̄11 Q̄12 0
Q̄12 Q̄11 0

0 0 Q̄66

⎤⎦ ⎡⎣Q̄11 Q̄12 0
Q̄12 Q̄11 0

0 0 Q̄66

⎤⎦ ⎡⎣A11 A12 0
A12 A11 0
0 0 A66

⎤⎦ 0

⎡⎣D11 D12 0
D12 D11 0

0 0 D66

⎤⎦

Specially orthotropic Symmetric

⎡⎣Q̄11 Q̄12 0
Q̄12 Q̄22 0

0 0 Q̄66

⎤⎦ ⎡⎣Q̄11 Q̄12 0
Q̄12 Q̄22 0

0 0 Q̄66

⎤⎦ ⎡⎣A11 A12 0
A12 A22 0
0 0 A66

⎤⎦ 0

⎡⎣D11 D12 0
D12 D22 0

0 0 D66

⎤⎦

Cross-ply

⎡⎣Q̄11 Q̄12 0
Q̄12 Q̄22 0

0 0 Q̄66

⎤⎦ ⎡⎣Q̄22 Q̄12 0
Q̄12 Q̄11 0

0 0 Q̄66

⎤⎦ ⎡⎣A11 A12 0
A12 A11 0
0 0 A66

⎤⎦ ⎡⎣B11 0 0
0 −B11 0
0 0 0

⎤⎦ ⎡⎣D11 D12 0
D12 D11 0

0 0 D66

⎤⎦

Generally orthotropic Symmetric

⎡⎣Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤⎦ ⎡⎣Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤⎦ ⎡⎣A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤⎦ 0

⎡⎣D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤⎦

antisymmetric

⎡⎣Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤⎦ ⎡⎣ Q̄11 Q̄12 −Q̄16

Q̄12 Q̄22 −Q̄26

−Q̄16 −Q̄26 Q̄66

⎤⎦ ⎡⎣A11 A12 0
A12 A22 0
0 0 A66

⎤⎦ ⎡⎣ 0 0 B16

0 0 B26

B16 B26 0

⎤⎦ ⎡⎣D11 D12 0
D12 D22 0

0 0 D66

⎤⎦

482



5.2 Plate Theory with Induced Strain Actuation 483

piezo sheet

Plate mid-plane 2

1

tc

tb angle ply laminate tl

+α

− α

Figure 5.12. Two layered angle, ply laminate with one piezo sheet.

B = −1
2

3∑
k=1

Qk

(
h2

k+1 − h2
k

)
= −1

2

[
Qc

(
(tl + tc)2 − t2

l

)+ Q2

(
t2
l − 0

)+ Q1(0 − (−tl)2)
]

= −1
2

Qctc(tc + 2tl) + 1
2

t2
l (−Q1 + Q2)

= − t2
b

8
(−Q1 + Q2) + Qctc

2
(tc + tb)

D = 1
3

3∑
k=1

Qk(h3
k+1 − h3

k)

= 1
3

[
Qc

(
(tl + tc)3 − t3

l

)+ Q̄2

(
t3
l − 0

)+ Q̄1(0 − (−tl)3)
]

= 1
3

[
Qctc

(
t2
c + 3tctl + 3t2

l

)+ t3
l (Q̄1 + Q̄2)

]
= Qctc

3

(
t2
c + 3

2
tctb + 3

4
t2
b

)
+ 1

24
t3
b(Q1 + Q2)

And the forcing vectors are

F� =
3∑

k=1

Qk�k(hk+1 − hk)

= Qc�tc

= Ectc�
1 − ν

⎧⎨⎩
1
1
0

⎫⎬⎭
M� = −1

2

3∑
k=1

Qk�k
(
h2

k+1 − h2
k

)
= −1

2
Qc�tc(tc + 2tl)

= −Ectc(tc + tb)�
2(1 − ν)

⎧⎨⎩
1
1
0

⎫⎬⎭
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(b) For the angle plies,

Q̄11 = Q11 cos4 α + 2(Q12 + 2Q66) sin2 α cos2 α + Q22 sin4 α

Q̄12 = (Q11 + Q22 − 4Q66) sin2 α cos2 α + Q12(sin4 α + cos4 α)

Q̄22 = Q11 sin4 α + 2(Q12 + 2Q66) sin2 α cos2 α + Q22 cos4 α

Q̄16 = (Q11 − Q12 − 2Q66) sinα cos3 α + (Q12 − Q22 + 2Q66) sin3 α cosα

Q̄26 = (Q11 − Q12 − 2Q66) sin3 α cosα + (Q12 − Q22 + 2Q66) sinα cos3 α

Q̄66 = (Q11 + Q22 − 2Q12 − 2Q66) sin2 α cos2 α + Q66(sin4 α + cos4 α)

where the stiffness matrix Q with reference to the principal axes is given by
(Eq. 5.12),

Q =
⎡⎣ E1/(1 − ν12ν21) ν21E1/(1 − ν12ν21) 0
ν21E1/(1 − ν12ν21) E2/(1 − ν12ν21) 0

0 0 G12

⎤⎦
Substituting the given values leads to

Q =
⎡⎣138.4824 2.9122 0

2.9122 14.5612 0
0 0 5.8600

⎤⎦ GPa

For the lamina with a ply angle +α = 45◦,

Q̄+α =
⎡⎣45.5770 33.8570 30.9803

33.8570 45.5770 30.9803
30.9803 30.9803 36.8048

⎤⎦ GPa

and for the lamina with a ply angle −α = −45◦,

Q̄−α =
⎡⎣ 45.5770 33.8570 −30.9803

33.8570 45.5770 −30.9803
−30.9803 −30.9803 36.8048

⎤⎦ GPa

The piezo sheet is isotropic, and its stiffness matrix is given by

Q̄ = Q c = Ec

1 − ν2

⎡⎣1 ν 0
ν 1 0
0 0 1−v

2

⎤⎦ =
⎡⎣79.5604 23.8681 0

23.8681 79.5604 0
0 0 27.8462

⎤⎦ GPa

Symmetric layup

For a symmetric layup, Q̄1 = Q̄2. Substituting this in the above relations, the stiffness
matrices become:

A = Qctc + Q̄+αtb

B = −1
2

Qctc(tc + tb)

D = 1
3

Qctc

(
t2
c + 3

2
tctb + 3

4
t2
b

)
+ 1

12
Q̄+αt3

b
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The force and moment vectors are the same for the case of symmetric and antisym-
metric laminates. Substituting the given values, we get

A =
⎡⎣61.4372 34.4521 24.5906

34.4521 61.4372 24.5906
24.5906 24.5906 38.0550

⎤⎦× 106 N/m

B = −
⎡⎣14.0353 4.2106 0

4.2106 14.0353 0
0 0 4.9124

⎤⎦× 103 N

D =
⎡⎣9.9100 3.8141 1.2911

3.8141 9.9100 1.2911
1.2911 1.2911 4.3375

⎤⎦ Nm

The induced force and moments are

F� =
⎧⎨⎩

−4250.9
−4250.9

0

⎫⎬⎭ N/m M� =
⎧⎨⎩

2.3619
2.3619

0

⎫⎬⎭ Nm/m

The strains and curvature of the plate are found from⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εo
x
εo

y

γo
xy

κx

κy

κxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=
[
A B
B D

]−1 {
F�

M�

}
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−18.55 × 10−6

−18.55 × 10−6

14.16 × 10−6

0.1546 1/m
0.1546 1/m
−0.076 1/m

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Antisymmetric layup

The relations between the stiffness matrices of antisymmetric angle ply laminae are
given by Eqs. 5.208–5.213.

The coefficients of the stiffness matrix are given by

A = Qctc + tb
2

(Q̄+α + Q̄−α)

B = −
[

Qctc
2

(tc + tb) + t2
b

8
(Q̄+α − Q̄−α)

]

D = 1
3

Qctc(t2
c + 3

2
tctb + 3

4
t2
b) + t3

b

24
(Q̄+α + Q̄−α)

Assuming that the bottom ply has an angle α = −45◦, and substituting the given
values, we get

A =
⎡⎣61.4372 34.4521 0

34.4521 61.4372 0
0 0 38.0550

⎤⎦× 106 N/m

B = −
⎡⎣14.0353 4.2106 4.8797

4.2106 14.0353 4.8797
4.8797 4.8797 4.9124

⎤⎦× 103 N

D =
⎡⎣9.9100 3.8141 0

3.8141 9.9100 0
0 0 4.3375

⎤⎦ Nm
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The force and moment vectors are the same as in the case of the symmetric laminate.
Solving the governing equation gives the strains and curvature as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εo
x
εo

y

γo
xy

κx

κy

κxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=
[
A B
B D

]−1 {
F�

M�

}
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−8.19 × 10−6

−8.19 × 10−6

51.09 × 10−6

0.1794 1/m
0.1794 1/m
0.0394 1/m

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

5.3 Classical Laminated Plate Theory (CLPT) Equations in Terms of
Displacements

For a thin laminated plate undergoing small displacements, the plate deflections at
any station are expressed in terms of mid-plane displacements as

u(x, y, z) = uo(x, y) − z
∂wo

∂x
(x, y) (5.243)

v(x, y, z) = vo(x, y) − z
∂wo

∂y
(x, y) (5.244)

w(x, y, z) = wo(x, y) (5.245)

The equilibrium equations are expressed as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Fx

Fy

Fxy

Mx

My

Mxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎣

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εo
x
εo

y

γo
xy

κx

κy

κxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
−

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Fx�
Fy�
Fxy�
Mx�
My�
Mxy�

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.246)

The vector on the left hand side represents mechanical forces and moments, and the
vector on the right hand side represents generalized induced forces and moments.
For a thin plate, the strain energy is

Vtotal = 1
2

∫∫∫
volume

(
σxεx + σyεy + τxyγxy

)
dx dy dz (5.247)

Including induced strain actuation, the expression for energy becomes

Vtotal =
∫∫

area

(
1
2

{
εoT

κT } [A B
B D

]{
εo

κ

}
− {FT

� MT
�

} {εo

κ

})
dx dy (5.248)

where the integration is carried out over the surface of the plate. The force equilib-
rium equations in the x and y directions are

∂Fx

∂x
+ ∂Fxy

∂y
= −px (5.249)

∂Fxy

∂x
+ ∂Fy

∂y
= −py (5.250)



5.3 Classical Laminated Plate Theory (CLPT) Equations in Terms of Displacements 487

and the moment equilibrium equation is

∂2Mx

∂x2
+ ∂2My

∂y2
+ 2

∂2Mxy

∂x∂y
= pz (5.251)

where px, py, and pz are surface forces per unit area in the x, y, and z direction.
The governing equations in terms of displacements for induced actuation only are
expressed as

u-equation:

A11
∂2uo

∂x2
+ A12

∂2vo

∂x∂y
+ A16

(
2
∂2uo

∂x∂y
+ ∂2vo

∂x2

)
+ A26

∂2vo

∂y2
+ A66

(
∂2uo

∂y2
+ ∂2vo

∂x∂y

)
+ B11

∂3wo

∂x3
+ B12

∂3wo

∂x∂y2
+ 3B16

∂3wo

∂x2∂y
+ B26

∂3wo

∂y3
+ 2B66

∂3wo

∂x∂y2

= ∂ (Fx + Fx�)
∂x

+ ∂
(
Fxy + Fxy�

)
∂y

− px (5.252)

v-equation:

A22
∂2vo

∂y2
+ A12

∂2uo

∂x∂y
+ A16

∂2uo

∂x2
+ A26

(
∂2uo

∂y2
+ 2

∂2vo

∂x∂y

)
+ A66

(
∂2uo

∂x∂y
+ ∂2vo

∂x2

)
+ B12

∂3wo

∂x2∂y
+ B22

∂3wo

∂y3
+ B16

∂3wo

∂x3
+ 3B26

∂3wo

∂x∂y2
+ 2B66

∂3wo

∂x2∂y

= ∂
(
Fy + Fy�

)
∂y

+ ∂
(
Fxy + Fxy�

)
∂x

− py (5.253)

w-equation:

B11
∂3uo

∂x3
+ B12

(
∂3vo

∂x2∂y
+ ∂3uo

∂x∂y2

)
+ B16

(
3
∂3uo

∂x2∂y
+ ∂3vo

∂x3

)
+ B22

∂3vo

∂y3

+ B26

(
∂3uo

∂y3
+ 3

∂3vo

∂x∂y2

)
+ 2B66

(
∂3uo

∂x∂y2
+ ∂3vo

∂x2∂y

)
+ D11

∂4wo

∂x4
+ 2D12

∂4wo

∂x2∂y2
+ 4D16

∂4wo

∂x3∂y
+ D22

∂4wo

∂y4

+ 4D26
∂4wo

∂x∂y3
+ 4D66

∂4wo

∂x2∂y2

= ∂2 (Mx + Mx�)
∂x2

+ ∂2
(
My + My�

)
∂y2

+ ∂2
(
Mxy + Mxy�

)
∂x∂y

− pz

(5.254)

These three governing equations can be concisely put into operator form⎡⎢⎢⎣
Du1 Dv1 Dw1

Du2 Dv2 Dw2

Du3 Dv3 Dw3

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

u

v

w

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂Fx�
∂x + ∂Fxy�

∂y
∂Fxy�
∂x + ∂Fy�

∂y

∂2Mx�
∂x2 + 2 ∂2Mxy�

∂x∂y + ∂2My�
∂y2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.255)
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where the operators are given by

Du1 = A11
∂2

∂x2
+ 2A16

∂2

∂x∂y
+ A66

∂2

∂y2

Dv1 = A12
∂2

∂x∂y
+ A16

∂2

∂x2
+ A26

∂2

∂y2
+ A66

∂2

∂x∂y

Dw1 = B11
∂3

∂x3
+ B12

∂3

∂x∂y2
+ 3B16

∂3

∂x2∂y
+ B26

∂3

∂y3
+ 2B66

∂3

∂x∂y2

Du2 = A16
∂2

∂x2
+ (A12 + A66)

∂2

∂x∂y
+ A26

∂2

∂y2

Dv2 = 2A26
∂2

∂x∂y
+ (A22 + A66)

∂2

∂y2

Dw2 = B16
∂3

∂x3
+ (2B66 + B12)

∂3

∂x2∂y
+ B22

∂3

∂y3
+ 3B26

∂3

∂x∂y2

Du3 = B11
∂3

∂x3
+ B12

∂3

∂x∂y2
+ 3B16

∂3

∂x2∂y
+ 2B66

∂3

∂x∂y2
+ B26

∂3

∂y3

Dv3 = B16
∂3

∂x3
+ B12

∂3

∂x2∂y
+ 2B66

∂3

∂x2∂y
+ 3B26

∂3

∂x∂y2
+ B22

∂3

∂y3

Dw3 = D11
∂4

∂x4
+ (2D12 + 4D66)

∂4

∂x2∂y2
+ 4D16

∂4

∂x3∂y
+ 4D26

∂4

∂x∂y3
+ D22

∂4

∂y4

5.4 Approximate Solutions Using Energy Principles

Laminated plate equations with induced actuation are:[
A B
B D

]{
εo

κ

}
−
{

F�

M�

}
=
{

F
M

}
(5.256)

One can obtain an exact solution for the above equations only for a few selected
cases, such as a uniform laminate with free boundary conditions. Note that in the
earlier analyses, we did not constrain the plate at its edges.

An exact solution must satisfy all equilibrium equations, boundary conditions,
and compatibility relations simultaneously. Expressing equilibrium equations in
terms of displacements inherently satisfies compatibility constraints. Again, it is
not possible to find a response solution that satisfies the equilibrium equation and all
boundary conditions. Therefore, for generic plate problem, one is forced to estimate
an approximate solution. The approximate solution is normally calculated either
using energy principles or by using a weighted residual approach.

The virtual strain energy δV of a deformed body is given by

δV =
∫∫∫

volume
σδε dx dy dz (5.257)

For a thin plate, the strain energy reduces to

Vtotal = 1
2

∫∫∫
volume

(
σxεx + σyεy + τxyγxy

)
dx dy dz (5.258)
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With induced strain actuation, this becomes:

Vtotal =
∫∫

area

(
1
2

{
εoT

κT } [A B
B D

]{
εo

κ

}
− {FT

� MT
�

} {εo

κ

})
dx dy (5.259)

where the integral is evaluated over the area of the plate. For a continuous system,
two of the popular approximate methods are the Rayleigh-Ritz method and the
Galerkin method.

5.4.1 Galerkin Method

In the Galerkin method, the form of the assumed solution must be chosen in such
a way that all boundary conditions (both geometric and forced) are identically
satisfied regardless of the values of the undetermined coefficients. This requirement
is extremely difficult to satisfy in all but the simplest problems.

The assumed displacement distributions are typically expressed in a series con-
sisting of chosen basis functions with undetermined coefficients.

u(x, y) =
M∑

i=1

φui (x, y)qi (5.260)

v(x, y) =
N∑

j=1

φvj (x, y)qj+M (5.261)

w(x, y) =
P∑

k=1

φwk (x, y)qk+M+N (5.262)

Each one of these functions, φui , φvj , φwk , must separately satisfy all the boundary
conditions (geometric and forced). In the above equations, the qn (n = 1, 2, . . . ,M +
N + P) are undetermined coefficients (with dimensions of length), and φui , φvj , φwk

(dimensionless) are shape functions respectively representing longitudinal in-plane,
transverse in-plane, and transverse out-of-plane displacement shapes. Eqs. 5.260–
5.262 can be written in matrix form as

U =
⎡⎣φu1 φu2 . . . φuM 0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 φv1 φv2 . . . φvN 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 φw1 φw2 . . . φwP

⎤⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

q1

q2
...

qM+N+P

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= �(x, y)q (5.263)

The size of the matrix � is 3 × (M + N + P) and the size of the matrix q is (M + N +
P) × 1.

Substitute these assumed displacement functions into the plate governing equa-
tions expressed in terms of displacements (Eq. 5.255), with no external forces
(F = 0,M = 0). This results in an error function

ε(x, y) =

⎡⎢⎣Du1 Dv1 Dw1

Du2 Dv2 Dw2

Du3 Dv3 Dw3

⎤⎥⎦ {�q} −

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂Fx�
∂x + ∂Fxy�

∂y
∂Fxy�
∂x + ∂Fy�

∂y

∂2Mx�
∂x2 + 2 ∂2Mxy�

∂x∂y + ∂2My�
∂y2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.264)
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If the assumed solution had been an exact solution, this error function would have
been identically zero. Through the Galerkin method, this error is minimized by
orthogonalizing it with respect to each assumed function over the entire solution
domain. ∫∫

area

{
φj

}T
ε(x, y)dx dy = 0 for j = 1, 2 . . . (M + N + P) (5.265)

where the vector φj (of size 3 × 1) is the jth column in the matrix �, and corre-
sponds to the jth mode in the assumed response. The weighted residual minimization
approach results in an (M + N + P) set of equations which can be concisely put into
a matrix form,

Kq = Q� (5.266)

or

Kij qj = Q�i (5.267)

where the generalized stiffness matrix is defined as

Kij =
∫∫

area

{
φi

}T

⎡⎣Du1 Dv1 Dw1

Du2 Dv2 Dw2

Du3 Dv3 Dw3

⎤⎦{φj

}
dx dy (5.268)

and the generalized forcing vector is defined as

Q�i =
∫∫

area

{
φi

}T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂Fx�
∂x + ∂Fxy�

∂y
∂Fxy�
∂x + ∂Fy�

∂y

∂2Mx�
∂x2 + 2 ∂2Mxy�

∂x∂y + ∂2My�
∂y2

⎫⎪⎪⎪⎬⎪⎪⎪⎭dx dy (5.269)

Note that the generalized stiffness matrix K has the dimensions of force per unit
length (N/m) and the generalized forcing vector Q� has the dimensions of force (N).
Normally, the solution monotonically approaches the exact solution as the number
of terms in the approximate series is increased. The Galerkin solution understimates
the response compared to the exact solution, which means that it overestimates
the stiffness. In general, it is extremely difficult to choose �(x, y) that satisfies all
boundary conditions.

5.4.2 Rayleigh-Ritz Method

In the Rayleigh-Ritz method, an acceptable trial solution form is much easier to
derive since it must satisfy only the geometric boundary conditions. This is because
the Rayleigh-Ritz method utilizes energy expressions that incorporate the force
boundary conditions as part of the variational statement of the problem, for example,
Lagrange’s equations shown below.

d
dt

(
∂T
∂q̇i

)
− ∂T

∂qi
+ ∂V

∂qi
= Qi

where qi = q1, q2 . . . qM+N+P

(5.270)

In the above equation, V is the strain energy, T is the kinetic energy and Qi is
the generalized force associated with the undetermined coefficients qi. For a static
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problem, the kinetic energy is zero. Assuming a solution of the form

u(x, y) =
M∑

i=1

φui (x, y)qi (5.271)

v(x, y) =
N∑

j=1

φvj (x, y)qj+M (5.272)

w(x, y) =
P∑

k=1

φwk (x, y)qk+M+N (5.273)

Expressing strains and curvatures in terms of basic displacements,

{
εo

κ

}
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x 0 0

0 ∂
∂y 0

∂
∂y

∂
∂x 0

0 0 ∂2

∂x2

0 0 ∂2

∂y2

0 0 2 ∂2

∂x∂y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎨⎩
u
v

w

⎫⎬⎭ = DU (5.274)

where the operator D is of order 6 × 3. Therefore,{
εo

κ

}
= DU (5.275)

The mid-plane strains and curvatures can be expressed as{
εo

κ

}
= Dφq (5.276)

For the static case, Lagrange’s equations reduce to

∂V
∂qi

= Qi (5.277)

The generalized force, Qi, is found from the virtual work done by external forces.

δWouti =
∫∫

area
{FT MT }{Dφi}δqi dA = Qiδqi (5.278)

Because the external forces are zero, δWouti = 0 and Qi = 0. The total strain energy
for a thin laminated plate is (Eq. 5.259)

Vtotal = 1
2

∫∫
area

{Dφq}T
[
A B
B D

]
{Dφq}dA −

∫∫
area

{FT
� MT

�}{Dφq}dA

= 1
2

(M+N+P)∑
i=1

(M+N+P)∑
j=1

Kij qiqj −
(M+N+P)∑

i=1

Q�i qi

= 1
2

qT Kq − qT Q�

(5.279)

Substituting the above equation in Eq. 5.277 leads to

Kq − Q� = 0 → [Kij ]
{
qj
} = {Q�i

}
(5.280)
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where K is the generalized stiffness matrix, defined as

Kij =
∫∫

area

{
Dφi

}T
[
A B
B D

] {
Dφj

}
dx dy (5.281)

and the generalized force is

Q�i =
∫∫

area

{
FT
� MT

�

} {
Dφi

}
dx dy (5.282)

The vector φi corresponds to the ith mode in the assumed response and is of size
3 × 1. Using Lagrange’s equations,

Kq = Q� (5.283)

K is of size (M + N + P) × (M + N + P), Q� is of size (M + N + P) × 1, and q is of
size (M + N + P) × 1. The generalized stiffness matrix K has the dimensions of force
per unit length (N/m) and the generalized forcing vector Q� has the dimensions of
force (N).

q = K−1Q� (5.284)

U =
⎧⎨⎩

u
v

w

⎫⎬⎭ = φq (5.285)

Note that φui , φvj , φwk need to satisfy only the geometric boundary conditions.
Again, like the Galerkin solution, the Rayleigh-Ritz solution underestimates the
response and the solution approaches the exact solution as the number of terms in
the approximate series is increased. Note that if the assumed response satisfies all
the boundary conditions, then the Rayleigh-Ritz and Galerkin methods result in
identical solutions.

5.4.3 Symmetric Laminated Plate Response

Consider a symmetric laminated plate, where the coupling matrix B = 0. The gov-
erning equations reduce into two sets of uncoupled equations.

Aεo = F� (5.286)

Dκ = M� (5.287)

The strain energy is divided into two parts: extensional and bending.

Case I: Pure Extension

Extensional strain energy is given by

Vext = 1
2

∫∫
area

εoT Aεodx dy −
∫∫

area
FT
�εodx dy

= 1
2

∫∫
area

{Dextφextqext}T A{Dextφextqext}dx dy

−
∫∫

area
FT
�{Dextφextqext}dx dy

(5.288)
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where, neglecting terms related to bending,

Dext =

⎡⎢⎢⎣
∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

⎤⎥⎥⎦ (5.289)

φext =
[
φu1 φu2 . . . φuM 0 0 . . . 0

0 0 . . . 0 φv1 φv2 . . . φvN

]
(5.290)

qext =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q1

q2
...

qM+N

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.291)

Eq. 5.288 can be rewritten as

Vext = 1
2

∫∫
area

qext
T [Dextφext]

T A[Dextφext]qextdx dy

−
∫∫

area
FT
� [Dextφext] qextdx dy

= 1
2

(M+N)∑
i=1

(M+N)∑
j=1

Kij extqiqj −
(M+N)∑

i=1

Q�i qi

(5.292)

where Kij ext are elements of a generalized stiffness matrix of size (M + N) × (M +
N), given by

Kij ext =
∫∫

area

{
Dextφiext

}T A
{
Dextφj ext

}
dx dy (5.293)

and the elements of the generalized forcing vector of size (M + N) × 1 are

Q�i =
∫∫

area
FT
�{Dextφiext

}dx dy (5.294)

This results in the matrix equation

Kq = Q� (5.295)

Case II: Pure Bending

Proceeding in a similar fashion, the bending strain energy is given by

Vbend = 1
2

∫∫
area

κT Dκdx dy −
∫∫

area
MT

�κdx dy

= 1
2

∫∫
area

{Dbendφbendqbend}T D{Dbendφbendqbend}dx dy

−
∫∫

area
MT

�{Dbendφbendqbend}dx dy

(5.296)
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Piezo sheet, tc

y

x

l
c

Plate, tb

Figure 5.13. Cantilevered plate
with piezo sheet actuators.

where, similar to Eqs. 5.274–5.275,

Dbend =

⎧⎪⎪⎨⎪⎪⎩
∂2

∂x2

∂2

∂y2

2 ∂2

∂x∂y

⎫⎪⎪⎬⎪⎪⎭ (5.297)

φbend = {φw1 φw2 . . . φwP

}
(5.298)

qbend =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q1

q2
...

qP

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.299)

Eq. 5.296 can be rewritten as

Vbend = 1
2

∫∫
area

qbend
T {

Dbendφbend

}T D
{
Dbendφbend

}
qbenddx dy

−
∫∫

area
MT

�{Dbendφbend}qbenddx dy

= 1
2

P∑
i=1

P∑
j=1

Kij bendqiqj −
P∑

i=1

Q�i qi

(5.300)

where Kij bend are elements of a generalized stiffness matrix of size P × P, given by

Kij bend =
∫∫

area

{
Dbendφibend

}T D
{
Dbendφjbend

}
dx dy (5.301)

and the elements of the generalized forcing vector of size P × 1 are

Q�i =
∫∫

area
MT

�{Dbendφibend
}dx dy (5.302)

5.4.4 Laminated Plate with Induced Strain Actuation

Let us consider a uniform cantilevered plate of length l and width c, with piezo
sheets bonded to both surfaces (Fig. 5.13). The response of the structure is assumed
to be a summation of functions such that each function separately satisfies at least
geometric boundary conditions.
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Pure Extension

For extensional actuation, the same voltage is applied to the top and bottom piezos,
which are identical. In this case,

F� =

⎧⎪⎨⎪⎩
Fx�

Fy�

0

⎫⎪⎬⎪⎭ (5.303)

M� =
⎧⎨⎩

0
0
0

⎫⎬⎭ (5.304)

To simplify the example, let us assume that the stresses and strains in the y-direction
can be ignored. Then,

F� =
⎧⎨⎩

Fx�
0
0

⎫⎬⎭ (5.305)

M� =
⎧⎨⎩

0
0
0

⎫⎬⎭ (5.306)

Let us consider a one-term solution using the Rayleigh-Ritz method, given by the
shape functions

u =
N∑

i=1

φui qi = x
l

q1 = φu1 q1

v = 0

(5.307)

At x = 0, u = 0 and the assumed shape function satisfies this geometric boundary
condition. Substituting in Eq. 5.280 and ignoring the terms corresponding to ‘y’-
direction deformation gives

K11q1 = Q�1 (5.308)

where

K11 =
∫ l

0

∫ c/2

−c/2

{
∂φu1
∂x 0

∂φu1
∂y

}
A

⎧⎪⎪⎨⎪⎪⎩
∂φu1
∂x

0
∂φu1
∂y

⎫⎪⎪⎬⎪⎪⎭dx dy

=
∫ l

0

∫ c/2

−c/2

∂φu1

∂x
A11

∂φu1

∂x
dx dy

=
∫ l

0

∫ c/2

−c/2

A11

l2
dx dy

= A11

l
c

(5.309)
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Assuming the piezos are attached to the entire surface of the plate,

Q�1 =
∫ l

0

∫ c/2

−c/2

{
Fx� Fy� 0

}⎧⎪⎪⎨⎪⎪⎩
∂φu1
∂x

0
∂φu1
∂y

⎫⎪⎪⎬⎪⎪⎭dx dy

=
∫ l

0

∫ c/2

−c/2
Fx�

∂φu1

∂x
dx dy

=
∫ l

0

∫ c/2

−c/2

Fx�

l
dx dy

= Fx�c

(5.310)

Substituting the above expressions for generalized stiffness and generalized force
into Eq. 5.308 gives

A11

l
cq1 = Fx�c (5.311)

q1 = Fx�

A11
l (5.312)

The displacement distribution is

u(x, y) = Fx�

A11
x (5.313)

where

Fx� = 2Ectc�
1 − ν

(5.314)

In a similar way, one can obtain one-term transverse in-plane displacement by
assuming

v(x, y) = y
c

q1 (5.315)

Let us consider a one-term solution using the Galerkin method. Assume a one-term
solution as

uo(x, y) =
[

x
l

− 1
2

(x
l

)2
]

q1

= φu1 (x)q1

vo(x, y) = 0

(5.316)

This satisfies both geometric and forced boundary conditions

uo(0, y) = 0

Fx(x = l) = Et
(1 − ν2)

∂uo

∂x
= 0

The governing equation is

A11
∂2uo

∂x2
= ∂Fx�

∂x
(5.317)
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Substituting the assumed response,

ε(x) = A11
∂2φu1

∂x2
q1 − ∂Fx�

∂x
(5.318)

Minimizing the error results in

l∫
0

c/2∫
−c/2

φu1

[
A11

∂2uo

∂x2
− ∂Fx�

∂x

]
dx dy = 0 (5.319)

This gives

q1 = 3
2

lFx�

A11
(5.320)

where

Fx� = 2Ectc�
1 − ν

A11 = Ebtb + 2Ectc
1 − ν2

(5.321)

and the displacement is

uo(x, y) = 3
2

lFx�

A11

[
x
l

− 1
2

(x
l

)2
]

(5.322)

Pure Bending

For bending actuation of the cantilevered plate, an opposite voltage is applied to the
top and bottom piezo sheets, which are identical in magnitude. Assume a positive
voltage is applied to the bottom piezo and a negative voltage to the top piezo. To keep
the example simple, let us also assume that there is no bending in the y-direction.
Then, the forcing vectors are given by

F� =
⎧⎨⎩

0
0
0

⎫⎬⎭ (5.323)

M� =
⎧⎨⎩

Mx�
0
0

⎫⎬⎭ (5.324)

Rayleigh-Ritz Solution

Assuming that the w displacement is given by a one-term solution of the form

w(x, y) = x2

l2
q1 = φw1 q1 (5.325)

At x = 0, φw1 = 0 and dφw1/dx = 0 satisfies geometric boundary condition. Substi-
tuting the assumed deflection in Eq. 5.280 gives

K11q1 = Q�1 (5.326)
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where the generalized stiffness is

K11 =
∫ l

0

∫ c/2

−c/2

{
∂2φw1
∂x2

∂2φw1
∂y2 2

∂2φw1
∂x∂y

}
D

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2φw1
∂x2

∂2φw1
∂y2

2
∂2φw1
∂x∂y

⎫⎪⎪⎪⎬⎪⎪⎪⎭dx dy

=
∫ l

0

∫ c/2

−c/2

∂2φw1

∂x2
D11

∂2φw1

∂x2
dx dy

=
∫ l

0

∫ c/2

−c/2

4D11

l4
dx dy

= 4cD11

l3

(5.327)

The equation for the generalized force becomes

Q�1 =
∫ l

0

∫ c/2

−c/2

{
Mx� My� 0

}
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂2φw1
∂x2

∂2φw1
∂y2

2
∂2φw1
∂x∂y

⎫⎪⎪⎪⎬⎪⎪⎪⎭dx dy

=
∫ l

0

∫ c/2

−c/2
Mx�

∂2φw1

∂x2
dx dy

=
∫ l

0

∫ c/2

−c/2
Mx�

2
l2

dx dy

= 2Mx�c
l

(5.328)

Substituting the above expressions into Eq. 5.326 gives

q1 = Mx� l2

2D11

w(x, y) = Mx�x2

2D11

(5.329)

In a similar way, one can calculate the transverse bending displacement using one-
term approximation as

w(x, y) = y2

c2
q1 (5.330)

Galerkin Solution

Let us consider a one-term bending solution using the Galerkin method. Neglecting
the variation along the y-axis, the one-term response is assumed as

w(x, y) =
[

6
(x

l

)2
− 4

(x
l

)3
+
(x

l

)4
]

q1

= φw1 (x)q1

(5.331)
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This satisfies both the geometric boundary conditions and the forced boundary
conditions.

w(0, y) = 0

∂w

∂x
|x=0 = 0

∂2w

∂x2
|x=0 = 0

∂3w

∂x3
|x=0 = 0

(5.332)

The governing equation is

D11
∂4w

∂x4
= ∂2Mx�

∂x2
(5.333)

Substituting the assumed response gives an error function

ε(x) = D11
∂4φw1

∂x4
q1 − ∂2Mx�

∂x2
(5.334)

Minimizing the error results in∫ l

0

∫ c/2

−c/2
φw1

[
D11

∂4φw1

∂x4
q1 − ∂2Mx�

∂x2

]
dx dy = 0 (5.335)

which yields

q1 = 5
36

Mx� l2

D11
(5.336)

and the displacement is given by

w(x, y) = 5
36

Mx� l2

D11

[
6
(x

l

)2
− 4

(x
l

)3
+
(x

l

)4
]

(5.337)

5.4.5 Laminated Plate with Antisymmetric Layup:
Extension-Torsion Coupling

Let us now examine the induced response of a plate with an antisymmetric layup
of generally orthotropic plies. Because an antisymmetric plate exhibits coupling
between extension and torsion, we consider the effect of piezo-induced pure exten-
sion. To achieve this, identical piezo actuators bonded on the top and bottom of the
plate are actuated with the same voltage.

In the absence of external loads, the governing equations for the plate are

F� =
⎡⎣A11 A12 0

A12 A22 0
0 0 A66

⎤⎦ εo +
⎡⎣ 0 0 B16

0 0 B26

B16 B26 0

⎤⎦ κ (5.338)

M� =
⎡⎣ 0 0 B16

0 0 B26

B16 B26 0

⎤⎦ εo +
⎡⎣D11 D12 0

D12 D22 0
0 0 D66

⎤⎦ κ (5.339)
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For purely extensional actuation, the induced force and moment vectors for this
configuration are

F� =

⎧⎪⎨⎪⎩
Fx�

Fy�

0

⎫⎪⎬⎪⎭ (5.340)

M� =
⎧⎨⎩

0
0
0

⎫⎬⎭ (5.341)

To focus on the effect of extension-torsion coupling, the problem will be simplified
by assuming that the piezo actuator only imparts force in the x-direction, and by
ignoring any stress or deformation in the y-direction. Under these assumptions, the
induced force and moment vectors for this configuration are

F� =

⎧⎪⎨⎪⎩
Fx�

0

0

⎫⎪⎬⎪⎭ (5.342)

M� =
⎧⎨⎩

0
0
0

⎫⎬⎭ (5.343)

Ignoring the terms corresponding to εo
y , εo

xy, κx, and κy, the governing equation,
differential operator matrix, and deformation vector simplify to:[

A11 B16

B16 D66

]{
εo

x
κxy

}
=
{

Fx�
0

}
(5.344)

and {
εo

x

κxy

}
= DU =

[
∂
∂x 0

0 2 ∂2

∂x∂y

]{
u

w

}
(5.345)

The following one-term solutions for u and w identically satisfy the cantilevered
boundary conditions at the root of the plate.

u(x, y) = x
l

q1 = φ1q1 (5.346)

w(x, y) = x2

l2

y
c

q2 = φ2q2 (5.347)

At x = 0, the chosen shape functions ensure that the cantilevered boundary condi-
tions are satisfied, regardless of the values of the coefficients q1 and q2.

u = 0 φ1 = 0 (5.348)

w = 0 φ2 = 0 (5.349)

∂w

∂x
= 0

∂φ2

∂x
= 0 (5.350)

From the assumed shape functions, we can write

φ =
[
φ1 0
0 φ2

]
(5.351)
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The generalized degrees of freedom q1 and q2 are calculated from (Eq. 5.280)[
K11 K12

K12 K22

]{
q1

q2

}
=
{

Q�1

Q�2

}
(5.352)

where

K11 =
∫ l

0

∫ c/2

−c/2

{
Dφ1

}T

[
A11 B16

B16 D66

] {
Dφ1

}
dx dy

=
∫ l

0

∫ c/2

−c/2

{
∂φ1
∂x 0

} [A11 B16

B16 D66

]{
∂φ1
∂x

0

}
dx dy

=
∫ l

0

∫ c/2

−c/2

∂φ1

∂x
A11

∂φ1

∂x
dx dy

=
∫ l

0

∫ c/2

−c/2

1
l

A11
1
l

dx dy

= A11c
l

(5.353)

K12 =
∫ l

0

∫ c/2

−c/2

{
Dφ1

}T

[
A11 B16

B16 D66

] {
Dφ2

}
dx dy

=
∫ l

0

∫ c/2

−c/2

{
∂φ1
∂x 0

} [A11 B16

B16 D66

]{
0

2 ∂2φ2
∂x∂y

}
dx dy

=
∫ l

0

∫ c/2

−c/2

∂φ1

∂x
B16 2

∂2φ2

∂x∂y
dx dy

=
∫ l

0

∫ c/2

−c/2

1
l

B16
4x
l2c

dx dy

= 2B16

l

(5.354)

K22 =
∫ l

0

∫ c/2

−c/2

{
Dφ2

}T

[
A11 B16

B16 D66

] {
Dφ2

}
dx dy

=
∫ l

0

∫ c/2

−c/2

{
0 2 ∂2φ2

∂x∂y

}[A11 B16

B16 D66

]{
0

2 ∂2φ2
∂x∂y

}
dx dy

=
∫ l

0

∫ c/2

−c/2
2
∂2φ2

∂x∂y
D66 2

∂2φ2

∂x∂y
dx dy

=
∫ l

0

∫ c/2

−c/2

4x
l2c

D66
4x
l2c

dx dy

= 16D66

3lc

(5.355)
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Assuming that piezos are attached to the entire surface of the plate, the generalized
forces can be found from

Q�1 =
∫ l

0

∫ c/2

−c/2

{
Fx� 0

} {
Dφ1

}
dx dy

=
∫ l

0

∫ c/2

−c/2

{
Fx� 0

} { ∂φ1
∂x
0

}
dx dy

=
∫ l

0

∫ c/2

−c/2
Fx�

1
l

dx dy

= Fx�c

(5.356)

Q�2 =
∫ l

0

∫ c/2

−c/2

{
Fx� 0

} {Dφ2}dx dy

=
∫ l

0

∫ c/2

−c/2

{
Fx� 0

}{ 0
2 ∂2φ2
∂x∂y

}
dx dy

= 0

(5.357)

Using these generalized forces, the displacement can be found from:[
A11c/l 2B16/l
2B16/l 16D66/3lc

]{
q1

q2

}
=
{

Fx�c
0

}
(5.358)

Rewriting, {
q1

q2

}
= 1

16A11D66
3l2 − 4B2

16
l2

[ 16D66
3lc

−2B16
l−2B16

l A11
c
l

]{
Fx�c

0

}
(5.359)

Eq. 5.359 yields the generalized degrees of freedom as

q1 = 4Fx�D66l

4A11D66 − 3B2
16

(5.360)

q2 = −3
2
.

Fx�B16cl

4A11D66 − 3B2
16

(5.361)

This gives the extensional strain in the ‘x’-direction and the twist rate as

εo
x = 1

l
q1 = 4Fx�D66

4A11D66 − 3B2
16

(5.362)

κxy = 4x
l2c

q2 = − 6Fx�B16x

l(4A11D66 − 3B2
16)

(5.363)

The tip twist of the plate is obtained by setting x = l in the above equation, yielding

κtip
xy = − 6Fx�B16

(4A11D66 − 3B2
16)

(5.364)

5.4.6 Laminated Plate with Symmetric Layup: Bending-Torsion Coupling

Consider a cantilevered plate with a symmetric layup of generally orthotropic plies.
Because a plate with this layup exhibits coupling between bending and torsion, it is
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important to investigate the effect of a piezo-induced pure bending actuation. This is
achieved by the application of opposite voltages to identical piezo actuators bonded
on the top and bottom surfaces of the plate.

In the absence of external loads, the governing equations for the plate are

F� =
⎡⎣A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤⎦ εo (5.365)

M� =
⎡⎣D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤⎦ κ (5.366)

For purely bending actuation, the induced force and moment vectors for this config-
uration are

F� =
⎧⎨⎩

0
0
0

⎫⎬⎭ (5.367)

M� =
⎧⎨⎩

Mx�
My�

0

⎫⎬⎭ (5.368)

To focus on the effect of bending-torsion coupling, the problem will be simplified by
assuming that the piezo actuators only impart a moment along the x-direction, and
by ignoring any stress or deformation in the y-direction. As the force and moment
equations are uncoupled, and the force vector is zero, we can ignore the force
equilibrium equation. Under these assumptions, the induced moment vector for this
configuration is

M� =
⎧⎨⎩

Mx�
0
0

⎫⎬⎭ (5.369)

Ignoring the terms corresponding to My� and κy, the governing equation, differential
operator matrix, and deformation vector simplify to:[

D11 D16

D16 D66

]{
κx

κxy

}
=
{

Mx�
0

}
(5.370)

and {
κx

κxy

}
= DU =

{
∂2

∂x2

2 ∂2

∂x∂y

}
w (5.371)

where w is the out-of-plane deflection. Because the torsional response is important,
the out-of-plane deflections along both the x-direction and the y-direction must be
considered. The cantilevered boundary conditions are identically satisfied by the
following two-term expansion.

w(x, y) = x2

l2
q1 + x2y

l2c
q2 = φ1q1 + φ2q2 (5.372)

Note that w exhibits a linear variation with respect to the y-direction in order to
accommodate the anticipated twisting. At x = 0, the chosen shape functions ensure
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that the cantilevered boundary conditions are satisfied, regardless of the values of
the coefficients q1 and q2.

w = 0 φ1 = 0 φ2 = 0 (5.373)

∂w

∂x
= 0

∂φ1

∂x
= 0

∂φ2

∂x
= 0 (5.374)

From the above shape functions, the deformation vector is given by{
κx

κxy

}
= DU =

{
∂2

∂x2

2 ∂2

∂x∂y

}{
φ1 φ2

}{q1

q2

}
(5.375)

The Lagrange’s equations reduce to the following form[
K11 K12

K12 K22

]{
q1

q2

}
=
{

Q�1

Q�2

}
(5.376)

where

K11 =
∫ l

0

∫ c/2

−c/2
{Dφ1}T

[
D11 D16

D16 D66

]
{Dφ1} dxdy

=
∫ l

0

∫ c/2

−c/2

{
∂2φ1
∂x2 2 ∂2φ1

∂x∂y

} [D11 D16

D16 D66

]⎧⎨⎩
∂2φ1
∂x2

2 ∂2φ1
∂x∂y

⎫⎬⎭dx dy

=
∫ l

0

∫ c/2

−c/2

{ 2
l2 0

} [D11 D16

D16 D66

]{ 2
l2

0

}
dx dy

=
∫ l

0

∫ c/2

−c/2

4
l4

D11dx dy

= 4c
l3

D11

(5.377)

K12 =
∫ l

0

∫ c/2

−c/2
{Dφ2}T

[
D11 D16

D16 D66

]
{Dφ1} dxdy

=
∫ l

0

∫ c/2

−c/2

{
∂2φ2
∂x2 2 ∂2φ2

∂x∂y

}[D11 D16

D16 D66

]⎧⎨⎩
∂2φ1
∂x2

2 ∂2φ1
∂x∂y

⎫⎬⎭dx dy

=
∫ l

0

∫ c/2

−c/2

{
2y
l2c

4x
l2c

}[D11 D16

D16 D66

]{
2
l2

0

}
dx dy

=
∫ l

0

∫ c/2

−c/2

[
4y
l4c

D11 + 8x
l4c

D16

]
dx dy

= 4
l2

D16

(5.378)



5.4 Approximate Solutions Using Energy Principles 505

K22 =
∫ l

0

∫ c/2

−c/2
{Dφ2}T

[
D11 D16

D16 D66

]
{Dφ2} dxdy

=
∫ l

0

∫ c/2

−c/2

{
∂2φ2
∂x2 2 ∂2φ2

∂x∂y

}[D11 D16

D16 D66

]⎧⎨⎩
∂2φ2
∂x2

2 ∂2φ2
∂x∂y

⎫⎬⎭dx dy

=
∫ l

0

∫ c/2

−c/2

{
2y
l2c

4x
l2c

}[D11 D16

D16 D66

]{ 2y
l2c
4x
l2c

}
dx dy

=
∫ l

0

∫ c/2

−c/2

[
c

3l4
D11 + 16x2

l4c
D66

]
dx dy

= c
3l3

D11 + 16
3lc

D66

(5.379)

Q�1 =
∫ l

0

∫ c/2

−c/2

{
Mx� 0

} {Dφ1} dx dy

=
∫ l

0

∫ c/2

−c/2

{
Mx� 0

}⎧⎨⎩
∂2φ1
∂x2

2 ∂2φ1
∂x∂y

⎫⎬⎭dx dy

=
∫ l

0

∫ c/2

−c/2

{
Mx� 0

}{ 2
l2

0

}
dx dy

=
∫ l

0

∫ c/2

−c/2

2
l2

Mx�dx dy

= 2Mx�
c
l

(5.380)

Q�2 =
∫ l

0

∫ c/2

−c/2

{
Mx� 0

} {Dφ2} dx dy

=
∫ l

0

∫ c/2

−c/2

{
Mx� 0

}⎧⎨⎩
∂2φ2
∂x2

2 ∂2φ2
∂x∂y

⎫⎬⎭dx dy

=
∫ l

0

∫ c/2

−c/2

{
Mx� 0

}{ 2y
l2c
4x
l2c

}
dx dy

=
∫ l

0

∫ c/2

−c/2
Mx�

2y
l2c

dx dy

= 0

(5.381)

Substituting in Eq. 5.376 gives the solution for the generalized degrees of freedom
q1 and q2. [

K11 K12

K12 K22

]{
q1

q2

}
=
{

Q�1

Q�2

}
(5.382)
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This reduces to {
q1

q2

}
= 1

K11K22 − K2
12

[
K22 −K12

−K12 K11

]{
Q�1

Q�2

}
(5.383)

Solving the above equation yields

q1 = K22Q�1

K11K22 − K2
12

(5.384)

= Mx�

(
l2c2D11 + 16l4D66

)
2c2D2

11 + 32l2D11D66 − 24l2D2
16

(5.385)

q2 = − K12Q�1

K11K22 − K2
12

(5.386)

= −6l3cD16Mx�

c2D2
11 + 16l2D11D66 − 12l2D2

16

(5.387)

The bending slope and twist of the plate are

κx = 2q1

l2
+ 2y

l2c
q2 (5.388)

κxy = 4x
l2c

q2 (5.389)

From the above equations, the bending slope at the tip of the plate is obtained by
setting y = 0 (mid-chord) and x = l.

κtip
x = ∂2w

∂x2
|y=0 = 2

l2
q1

= Mx�

(
D11 + 16(l/c)2D66

)
D2

11 + 16(l/c)2D11D66 − 12(l/c)2D2
16

(5.390)

Similarly, the twist at the tip of the plate is obtained by setting x = l.

κtip
xy = 2

∂2w

∂x∂y
|x=l = 4

lc
q2

= −24(l/c)2D16Mx�

D2
11 + 16(l/c)2D11D66 − 12(l/c)2D2

16

(5.391)

5.4.7 Worked Example

Using laminated plate theory, derive the Rayleigh-Ritz solution for a rectangu-
lar cantilevered two-layered cross-ply laminate (Fig. 5.14) with non-identical piezo
sheets (different piezo coefficient d31, but same thickness) bonded on either surface
for one-half of plate length. A PZT-5H sheet is bonded to the top surface and a
PZT-5A sheet is bonded to the bottom surface. An equal voltage is applied on each
piezo sheet. Though the piezos are stretched across complete width, neglect the
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Piezo sheet, tc

y

x

l

c

Plate, tb

l/2

0o

90o

1 2

PZT-5H

PZT-5A

Figure 5.14. Rectangular cross-
ply laminate with dissimilar
piezo sheets.

influence of lateral strain. Assume the deflection as

u(x, y) = x
l

q1

w(x, y) = x2

l2
q2 + x2

l2
.

y − c/2
c/2

q3

Note that with an assumed solution of this form, it is possible to represent bending
and twisting independently through the coefficients q2 and q3 respectively.

Solution

For a cross-ply laminate, from Table 5.2,

A =
⎡⎣A11 A12 0

A12 A22 0
0 0 A66

⎤⎦ B =
⎡⎣B11 0 0

0 −B11 0
0 0 0

⎤⎦ D =
⎡⎣D11 D12 0

D12 D22 0
0 0 D66

⎤⎦
Because the piezo sheets are isotropic and symmetric with respect to the beam mid-
plane, the stiffness matrices in regions ‘1’ and ‘2’ will have the same form as shown
above. The assumed deflection and geometric boundary conditions are

u(x, y) = x
l

q1, → φ1 = x
l

w(x, y) = x2

l2
q2 + x2

l2

(y − c/2)
c/2

q3,

→ φ2 = x2

l2
, φ3 = x2

l2

(y − c/2)
c/2

At x = 0, w = 0, w′ = 0, u = 0; the boundary conditions are satisfied. The reduced
equation is given by ⎡⎣K11 K12 K13

K12 K22 K23

K13 K23 K33

⎤⎦⎧⎨⎩
q1

q2

q3

⎫⎬⎭ =
⎧⎨⎩

Q�1

Q�2

Q�3

⎫⎬⎭
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The stiffness matrix and forcing vector are derived as follows:

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x 0 0

0 ∂
∂y 0

∂
∂y

∂
∂x 0

0 0 ∂2

∂x2

0 0 ∂2

∂y2

0 0 2 ∂2

∂x∂y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, φ1 =

⎧⎪⎨⎪⎩
x
l

0

0

⎫⎪⎬⎪⎭ , φ2 =

⎧⎪⎨⎪⎩
0

0
x2

l2
y
c

⎫⎪⎬⎪⎭ , φ3 =

⎧⎪⎨⎪⎩
0

0
x2

l2
(y−c/2)

c/2

⎫⎪⎬⎪⎭

which gives

Dφ1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
l

0

0

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, Dφ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

0
2
l2

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, Dφ3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

0
2
l2

(y−c/2)
c/2

0
8x
l2c

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The terms of the stiffness matrix are

Kij =
∫ l/2

0

∫ c/2

−c/2

{
Dφi

}T
[
A B
B D

](1) {
Dφj

}
dx dy

+
∫ l

l/2

∫ c/2

−c/2

{
Dφi

}T
[
A B
B D

](2) {
Dφj

}
dx dy

where the superscripts (1) and (2) refer to the portion of the plate with and without
the piezo sheets respectively. This gives

K11 =
∫ l/2

0

∫ c/2

−c/2

{
Dφ1

}T
[
A B
B D

](1) {
Dφ1

}
dx dy

+
∫ l

l/2

∫ c/2

−c/2

{
Dφ1

}T
[
A B
B D

](2) {
Dφ1

}
dx dy

=
∫ l/2

0

∫ c/2

−c/2

1
l2

A(1)
11 dx dy +

∫ l

l/2

∫ c/2

−c/2

1
l2

A(2)
11 dx dy

= c
2l

(
A(1)

11 + A(2)
11

)

K12 =
∫ l/2

0

∫ c/2

−c/2

{
Dφ1

}T
[
A B
B D

](1) {
Dφ2

}
dx dy

+
∫ l

l/2

∫ c/2

−c/2

{
Dφ1

}T
[
A B
B D

](2) {
Dφ2

}
dx dy

=
∫ l/2

0

∫ c/2

−c/2

2B(1)
11

l3
dx dy +

∫ l

l/2

∫ c/2

−c/2

2B(2)
11

l3
dx dy

= c
l2

(
B(1)

11 + B(2)
11

)



5.4 Approximate Solutions Using Energy Principles 509

K22 =
∫ l/2

0

∫ c/2

−c/2

{
Dφ2

}T
[
A B
B D

](1) {
Dφ2

}
dx dy

+
∫ l

l/2

∫ c/2

−c/2

{
Dφ2

}T
[
A B
B D

](2) {
Dφ2

}
dx dy

=
∫ l/2

0

∫ c/2

−c/2

4
l4

D(1)
11 dx dy +

∫ l

l/2

∫ c/2

−c/2

4
l4

D(2)
11 dx dy

= 2c
l3

(
D(1)

11 + D(2)
11

)
K13 =

∫ l/2

0

∫ c/2

−c/2

{
Dφ1

}T
[
A B
B D

](1) {
Dφ3

}
dx dy

+
∫ l

l/2

∫ c/2

−c/2

{
Dφ1

}T
[
A B
B D

](2) {
Dφ3

}
dx dy

=
∫ l/2

0

∫ c/2

−c/2

B(1)
11

l
2
l2

(y − c/2)
c/2

dx dy

+
∫ l

l/2

∫ c/2

−c/2

B(1)
11

l
2
l2

(y − c/2)
c/2

dx dy

= − c
l2

(
B(1)

11 + B(2)
11

)
K23 =

∫ l/2

0

∫ c/2

−c/2

{
Dφ2

}T
[
A B
B D

](1) {
Dφ3

}
dx dy

+
∫ l

l/2

∫ c/2

−c/2

{
Dφ2

}T
[
A B
B D

](2) {
Dφ3

}
dx dy

=
∫ l/2

0

∫ c/2

−c/2

(
8D(1)

11 y
l4c

− 4D(1)
11

l4

)
dx dy

+
∫ l

l/2

∫ c/2

−c/2

(
8D(1)

11 y
l4c

− 4D(1)
11

l4

)
dx dy

= −2c
l3

(
D(1)

11 + D(2)
11

)
K33 =

∫ l/2

0

∫ c/2

−c/2

{
Dφ3

}T
[
A B
B D

](1) {
Dφ3

}
dx dy

+
∫ l

l/2

∫ c/2

−c/2

{
Dφ3

}T
[
A B
B D

](2) {
Dφ3

}
dx dy

=
∫ l/2

0

∫ c/2

−c/2

[(
2
l2

(y − c/2)
c/2

)2

D(1)
11 +

(
8x
l2c

)2
]

dx dy

+
∫ l

l/2

∫ c/2

−c/2

∫ l/2

0

∫ c/2

−c/2

[(
2
l2

(y − c/2)
c/2

)2

D(1)
11 +

(
8x
l2c

)2
]

dx dy

= 8c
3l3

(
D(1)

11 + D(2)
11

)
+ 8

3cl

(
D(1)

66 + 7D(2)
66

)
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Wenow need to derive the following constants: A(1)
11 , A(2)

11 , B(1)
11 , B(2)

11 , D(1)
11 , D(2)

11 ,

D(1)
66 , D(2)

66

A(1)
11 =

4∑
i=1

(Q11)k(hk+1 − hk)

= (Q11)c
[−tb/2 − (tb/2 − tc

)]+ (Q11)90◦
[
0 − (−tb/2

)]
+ (Q11)0◦ [tb/2 − 0] + (Q11)c [tb/2 + tc − tb/2]

= 2(Q11)ctc + tb
2

((Q11)0◦ + (Q11)90◦)

= 2(Q11)ctc + tb
2

((Q11)0◦ + (Q22)0◦)

A(2)
11 =

2∑
i=1

(Q11)k(hk+1 − hk)

= tb
2

((Q11)0◦ + (Q22)0◦)

B(1)
11 = −1

2

4∑
i=1

(Q11)k
(
h2

k+1 − h2
k

)
= −

{
1
2

(Q11)c

[(−tb/2
)2 − (−tb/2 − tc)2

]
+ 1

2
(Q11)90◦

[
0 − (−tb/2

)2]+ 1
2

(Q11)0◦
[(

tb/2
)2 − 0

]
+ 1

2
(Q11)c

[(
tb/2 + tc

)2 − (tb/2
)2]}

= − t2
b

8
((Q11)0◦ − (Q11)90◦)

= − t2
b

8
((Q11)0◦ − (Q22)0◦)

Because the piezo sheets do not contribute to B11,

B(2)
11 = − t2

b

8
((Q11)0◦ − (Q22)0◦)

D(1)
11 = 1

3

4∑
i=1

(Q11)k
(
h3

k+1 − h3
k

)
= 1

3
(Q11)c

[(−tb/2
)3 − (−tb/2 − tc)3

]
+ 1

3
(Q11)90◦

[
0 − (−tb/2

)3]+ 1
3

(Q11)0◦
[(

tb/2
)3 − 0

]
+ 1

3
(Q11)c

[(
tb/2 + tc

)3 − (tb/2
)3]
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= 2
3

(Q11)ctc

(
3
4

t2
b + 3

2
tbtc + t2

c

)
+ t3

b

24
((Q11)0◦ + (Q11)90◦)

= 2
3

(Q11)ctc

(
3
4

t2
b + 3

2
tbtc + t2

c

)
+ t3

b

24
((Q11)0◦ + (Q22)0◦)

D(2)
11 = t3

b

24
((Q11)0◦ + (Q22)0◦)

Similarly,

D(1)
66 = 2

3
(Q66)ctc

(
3
4

t2
b + 3

2
tbtc + t2

c

)
+ t3

b

12
(Q66)0◦

D(2)
66 = t3

b

12
(Q66)0◦

The generalized forces are given by

Q�1 =
∫ l/2

0

∫ c/2

−c/2
{FT

� MT
�}{D φ1}dx dy

=
∫ l/2

0

∫ c/2

−c/2
Fx�

1
l

dx dy

= Fx�
c
2

Q�2 =
∫ l/2

0

∫ c/2

−c/2
{FT

� MT
�}{D φ2}dx dy

=
∫ l/2

0

∫ c/2

−c/2
Mx�

2
l2

dx dy

= Mx�
c
l

Q�3 =
∫ l/2

0

∫ c/2

−c/2
{FT

� MT
�}{D φ3}dx dy

=
∫ l/2

0

∫ c/2

−c/2
Mx�

2
l2

(y − c/2)
c/2

dx dy

= −Mx�
c
l

where Fx� and Mx� are found by

F� =
⎧⎨⎩

Fx�
Fy�

0

⎫⎬⎭ =
4∑

i=1

Qk�k(hk+1 − hk)

= tcQc (�h + �a)

= Ectc(�h + �a)
1 − ν

⎧⎨⎩
1
0
0

⎫⎬⎭
Fx� = Ectc(�h + �a)

1 − ν
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where �h and �a are the free strains of PZT-5H and PZT-5A respectively. Note that
the induced strain in the ‘y’-direction has been ignored. Similarly for the induced
moment,

M� =

⎧⎪⎨⎪⎩
Mx�

My�

0

⎫⎪⎬⎪⎭ = −1
2

4∑
i=1

Qk�k(h2
k+1 − h2

k)

= −1
2

tc(tc + tb)Qc (�h − �a)

= −1
2

Ectc(tc + tb)(�h − �a)
1 − ν

⎧⎪⎨⎪⎩
1
0
0

⎫⎪⎬⎪⎭
Mx� = −1

2
Ectc(tc + tb)(�h − �a)

1 − ν

The generalized forces become

Q�1 = Ectcc
2(1 − ν)

(�h + �a)

Q�2 = −Ectcc(tc + tb)
2l(1 − ν)

(�h − �a)

Q�3 = Ectcc(tc + tb)
2l(1 − ν)

(�h − �a)

Substituting the expressions for the stiffness matrix and generalized forcing derived
above into the governing equation, q1 and q2 can be found. This yields the solution
for deformations in the ‘x’ and ‘z’ directions.

5.4.8 Worked Example

(a) Using laminated plate theory, derive the Rayleigh-Ritz solution for a rectangular
cantilevered two-layered antisymmetric laminate with identical piezo sheets
bonded on either surface for one-half of plate length. An equal voltage is applied
on each piezo sheet. Though the piezos are stretched across complete width,
neglect the influence of lateral strain. Assume the deflection as

u(x, y) = x
l

q1

w(x, y) = x2

l2

y
c

q2 + x2

l2
.

y − c/2
c/2

q3

(b) Calculate the tip twist for this two-layered antisymmetric laminated plate
(Fig. 5.15 with a ply layup [+30◦/−30◦]. The size of the plate is 0.3048 m (12′′)
× 0.1524 m (6′′) × 0.79375 mm (1/32′′) with piezos of thickness tc = 0.3175 mm
(0.0125′′). The voltage applied to the piezos is 100 Volts.
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-30o

Piezo sheet, tc

y

x

l

c

Plate, tb

l/2

30o

1 2

Figure 5.15. Rectangular antisym-
metric laminate with two identical
piezo sheets.

Manufacturer-supplied material constants are as follows:

d31 (PZT-5H) = −274 × 10−12 m/V

Ec = 72.4 GPa (10.5 × 106lb/in2)

E1 = 137.9 GPa (20 × 106 lb/in2)

E2 = 14.5 GPa (2.1 × 106 lb/in2)

G12 = 5.86 GPa (0.85 × 106 lb/in2)

νc = 0.3

ν12 = 0.2

Solution

(a) The plate stiffness matrices for an antisymmetric laminate are given by
(Table 5.2),

A =

⎡⎢⎣A11 A12 0

A12 A22 0

0 0 A66

⎤⎥⎦ B =

⎡⎢⎣ 0 0 B16

0 0 B26

B16 B26 0

⎤⎥⎦ D =

⎡⎢⎣D11 D12 0

D12 D22 0

0 0 D66

⎤⎥⎦
We proceed in the same manner as described in Example 5.4.7. The derivation
is similar except for the terms involving the B matrix. Therefore we can write

u(x, y) = x
l

q1, → φ1 = x
l

w(x, y) = x2

l2
q2 + x2

l2

(y − c/2)
c/2

q3,

→ φ2 = x2

l2
, φ3 = x2

l2

(y − c/2)
c/2
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At x = 0, w = 0, w′ = 0; the boundary conditions are satisfied. The governing
equation is given by ⎡⎣K11 K12 K13

K12 K22 K23

K13 K23 K33

⎤⎦⎧⎨⎩
q1

q2

q3

⎫⎬⎭ =
⎧⎨⎩

Q�1

Q�2

Q�3

⎫⎬⎭
where the elements of the stiffness matrix are given by

K11 = c
2l

(
A(1)

11 + A(2)
11

)
K22 = 2c

l3

(
D(1)

11 + D(2)
11

)
K33 = 8c

3l3

(
D(1)

11 + D(2)
11

)
+ 8

3cl

(
D(1)

66 + 7D(2)
66

)
K23 = −2c

l3

(
D(1)

11 + D(2)
11

)
= −K22

Because the structure of the B matrix is different from the previous example,
the value of K12 and K13 are given by

K12 =
∫ l/2

0

∫ c/2

−c/2

{
Dφ1

}T
[
A B
B D

](1) {
Dφ2

}
dx dy

+
∫ l

l/2

∫ c/2

−c/2

{
Dφ1

}T
[
A B
B D

](2) {
Dφ2

}
dx dy

= 0

and

K13 =
∫ l/2

0

∫ c/2

−c/2

{
Dφ1

}T
[
A B
B D

](1) {
Dφ3

}
dx dy

+
∫ l

l/2

∫ c/2

−c/2

{
Dφ1

}T
[
A B
B D

](2) {
Dφ3

}
dx dy

=
∫ l/2

0

∫ c/2

−c/2

B(1)
16

l
8x
l2c

dx dy +
∫ l

l/2

∫ c/2

−c/2

B(2)
16

l
8x
l2c

dx dy

= B(1)
16

l
+ 3B(2)

16

l

where

A(1)
11 = 2(Q11)ctc + tb

2

(
(Q̄11)+α + (Q̄11)−α

)
= 2(Q11)ctc + tb(Q̄11)+α

A(2)
11 = tb(Q̄11)+α
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and

D(1)
11 = 2

3
(Q11)ctc

(
3
4

t2
b + 3

2
tbtc + t2

c

)
+ t3

b

24

(
(Q̄11)+α + (Q̄11)−α

)
= 2

3
(Q11)ctc

(
3
4

t2
b + 3

2
tbtc + t2

c

)
+ t3

b

12
(Q̄11)+α

D(2)
11 = t3

b

12
(Q̄11)+α

Similarly,

D(1)
66 = 2

3
(Q66)ctc

(
3
4

t2
b + 3

2
tbtc + t2

c

)
+ t3

b

12
(Q̄66)+α

D(2)
66 = t3

b

12
(Q̄66)+α

The term B16 is found from

B(1)
16 = −1

2

4∑
i=1

(Q̄11)k(h2
k+1 − h2

k)

= −1
2

[
(Q̄16)+α

(
tb
2

)2

− (Q̄16)−α

(
tb
2

)2
]

= − t2
b

4
(Q̄16)+α

B(2)
16 = B(1)

16 = − t2
b

4
(Q̄16)+α

Substituting the above relations, the elements of the stiffness matrix are given
by

K11 = c
l

[
(Q11)ctc + (Q̄11)+αtb

]
K12 = 0

K13 = −Q̄16)+αt2
b

l

K22 = 2c
l3

[
2
3

(Q11)ctc
(
3/4t2

b + 3/2tbtc + t2
c

)+ t3
b

6
(Q̄11)+α

]
K23 = −K22

K33 = 8c
3l3

[
2
3

(Q11)ctc
(
3/4t2

b + 3/2tbtc + t2
c

)+ t3
b

6
(Q̄11)+α

]

= + 8
3lc

[
2
3

(Q66)ctc
(
3/4t2

b + 3/2tbtc + t2
c

)+ 2t3
b

3
(Q̄66)+α

]
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The generalized forces are given by

Q�1 = Ectcc�
1 − ν

Q�2 = 0

Q�3 = 0

Note that the induced moment is zero. The tip twist is given by

θtip =
∫ l

x=0

∂2w

∂x∂y
dx

= ∂w

∂y

∣∣∣
x=l

= 2q3

c

(b) Substituting the given material properties, for the lamina with a ply angle α =
30◦,

Q̄+α =
⎡⎣84.2935 26.1208 40.2292

26.1208 22.3329 13.4302
40.2292 13.4302 29.0686

⎤⎦ GPa

and for the lamina with a ply angle α = −30◦,

Q̄−α =
⎡⎣ 84.2935 26.1208 −40.2292

26.1208 22.3329 −13.4302
−40.2292 −13.4302 29.0686

⎤⎦ GPa

The stiffness matrix of the piezo sheet is

Q̄ = Q c = Ec

1 − ν2

⎡⎣1 ν 0
ν 1 0
0 0 1−v

2

⎤⎦ =
⎡⎣79.5604 23.8681 0

23.8681 79.5604 0
0 0 27.8462

⎤⎦ GPa

The generalized stiffness matrix is

K =
⎡⎣ 44.95 × 106 0 −83.16 × 103

0 232.55 −232.55
−83.16 × 103 −232.55 744.13

⎤⎦ N/m

and the generalized forcing is

Q� =
⎧⎨⎩

−431.878
0
0

⎫⎬⎭ N

Solving the governing equation with the above values of generalized stiffness
and forcing yields⎧⎨⎩

q1

q2

q3

⎫⎬⎭ =
⎡⎣K11 K12 K13

K12 K22 K23

K13 K23 K33

⎤⎦−1⎧⎨⎩
Q�1

Q�2

Q�3

⎫⎬⎭ =
⎧⎨⎩

−13.74 × 10−6

−0.0022
−0.0022

⎫⎬⎭ m
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1 2

Figure 5.16. Rectangular anti-
symmetric laminate with two
identical piezo sheets.

The tip twist θtip is found from

θtip = 2q3

c
= −0.0293 rad = −1.6797◦

Note that the out-of-plane displacement at the midpoint of the free end of the
plate (x = l, y = 0) is

w(l, 0) = q2 − q3 = 0

which indicates that the plate is undergoing twisting without any bending.

5.4.9 Worked Example

(a) Using laminated plate theory, derive the Rayleigh-Ritz solution for a rectangular
cantilevered two-layered antisymmetric laminate with identical piezos sheets
bonded on either surface for one-half of plate length. An equal voltage is applied
on each piezo sheet. Though the piezos are stretched across complete width,
neglect the influence of lateral strain. Assume the deflection as

u(x, y) = x
l

q1

w(x, y) = x2

l2

y
c

q2

(b) Calculate the tip twist for this two-layered antisymmetric laminated plate
(Fig. 5.16 with a ply layup [+30◦/−30◦]. The size of the plate is 0.3048 m (12′′)
× 0.1524 m (6′′) × 0.79375 mm (1/32′′) with piezos of thickness tc = 0.3175 mm
(0.0125′′). The voltage applied to the piezos is 100 volts.
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Manufacturer-supplied material constants are as follows:

d31 (PZT-5H) = −274 × 10−12 m/V

Ec = 72.4 GPa(10.5 × 106lb/in2)

E1 = 137.9 GPa(20 × 106 lb/in2)

E2 = 14.5 GPa(2.1 × 106 lb/in2)

G12 = 5.86 GPa(0.85 × 106 lb/in2)

νc = 0.3

ν12 = 0.2

Solution

(a) The plate stiffness matrices for an antisymmetric laminate are given by
(Table 5.2),

A =

⎡⎢⎣A11 A12 0

A12 A22 0

0 0 A66

⎤⎥⎦ B =

⎡⎢⎣ 0 0 B16

0 0 B26

B16 B26 0

⎤⎥⎦ D =

⎡⎢⎣D11 D12 0

D12 D22 0

0 0 D66

⎤⎥⎦
We proceed in the same manner as described in Example 5.4.7. The deriva-
tion is similar except for the terms involving the B matrix. Therefore we can
write

u(x, y) = x
l

q1, → φ1 = x
l

w(x, y) = x2

l2

y
c

q2, → φ2 = x2

l2

y
c

At x = 0, w = 0, w′ = 0; the boundary conditions are satisfied. The governing
equation is given by

[
K11 K12

K12 K22

]{
q1

q2

}
=
{

Q�1

Q�2

}

where the elements of the stiffness matrix are given by

K11 = c
2l

(
A(1)

11 + A(2)
11

)
K22 = c

6l3

(
D(1)

11 + D(2)
11

)
+ 2

3cl

(
D(1)

66 + 7D(2)
66

)
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Because the structure of the B matrix is different from the previous example,
the value of K12 is given by

K12 =
∫ l/2

0

∫ c/2

−c/2

{
Dφ1

}T
[
A B
B D

](1) {
Dφ2

}
dx dy

+
∫ l

l/2

∫ c/2

−c/2

{
Dφ1

}T
[
A B
B D

](2) {
Dφ2

}
dx dy

=
∫ l/2

0

∫ c/2

−c/2

(
B(1)

16

l
4x
l2c

)
dx dy +

∫ l

l/2

∫ c/2

−c/2

(
B(2)

16

l
4x
l2c

)
dx dy

= 1
2l

(
B(1)

16 + 3B(2)
16

)
where

A(1)
11 = 2(Q11)ctc + tb

2

(
(Q̄11)+α + (Q̄11)−α

)
= 2(Q11)ctc + tb(Q̄11)+α

A(2)
11 = tb(Q̄11)+α

and

D(1)
11 = 2

3
(Q11)ctc

(
3
4

t2
b + 3

2
tbtc + t2

c

)
+ t3

b

24

(
(Q̄11)+α + (Q̄11)−α

)
= 2

3
(Q11)ctc

(
3
4

t2
b + 3

2
tbtc + t2

c

)
+ t3

b

12
(Q̄11)+α

D(2)
11 = t3

b

12
(Q̄11)+α

Similarly,

D(1)
66 = 2

3
(Q66)ctc

(
3
4

t2
b + 3

2
tbtc + t2

c

)
+ t3

b

12
(Q̄66)+α

D(2)
66 = t3

b

12
(Q̄66)+α

The term B16 is found from

B(1)
16 = −1

2

4∑
i=1

(Q̄11)k(h2
k+1 − h2

k)

= −1
2

[
(Q̄16)+α

(
tb
2

)2

− (Q̄16)−α

(
tb
2

)2
]

= − t2
b

4
(Q̄16)+α

B(2)
16 = B(1)

16 = − t2
b

4
(Q̄16)+α
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Substituting the above relations, the elements of the stiffness matrix are given
by

K11 = c
l

(
(Q11)ctc + (Q̄11)+αtb

)
K12 = − t2

b

2l
(Q̄16)+α

K22 = c
9l3

[
(Q11)ctc

(
3/4t2

b + 3/2tbtc + t2
c

)+ t3
b

4
(Q̄11)+α

]

+ 4
9cl

[
(Q66)ctc

(
3/4t2

b + 3/2tbtc + t2
c

)+ t3
b(Q̄66)+α

]
The generalized forces are given by

Q�1 = Ectcc�
1 − ν

Q�2 = 0

Note that the induced moment is zero. The tip twist is given by

θtip =
∫ l

x=0

∂2w

∂x∂y
dx

= ∂w

∂y
|x=l

= q2

c

(b) Substituting the given material properties, for the lamina with a ply angle α =
30◦,

Q̄+α =
⎡⎣84.2935 26.1208 40.2292

26.1208 22.3329 13.4302
40.2292 13.4302 29.0686

⎤⎦ GPa

and for the lamina with a ply angle α = −30◦,

Q̄−α =
⎡⎣ 84.2935 26.1208 −40.2292

26.1208 22.3329 −13.4302
−40.2292 −13.4302 29.0686

⎤⎦ GPa

The stiffness matrix of the piezo sheet is

Q̄ = Q c = Ec

1 − ν2

⎡⎣1 ν 0
ν 1 0
0 0 1−v

2

⎤⎦ =
⎡⎣79.5604 23.8681 0

23.8681 79.5604 0
0 0 27.8462

⎤⎦ GPa

The generalized stiffness matrix is

K =
[

44.95 × 106 −41.58 × 103

−41.58 × 103 238.93

]
N/m

and the generalized forcing is

Q� =
{−431.89

0

}
N
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Solving the governing equation with the above values of generalized stiffness
and forcing yields{

q1

q2

}
=
[

K11 K12

K12 K22

]−1 {
Q�1

Q�2

}
=
{−11.45 × 10−6

−0.002

}
m

The tip twist θtip is found from

θtip = q2

c
= −13.1 × 10−3 rad = −0.7493◦

5.5 Coupling Efficiency

A coupled structure is usually designed to convert one type of motion into another.
For example, an extension-torsion coupled beam can be used to convert a linear
displacement, for example, one induced by piezoceramic actuators, into a torsional
displacement. A coupling efficiency can be introduced to evaluate the effectiveness
of the structure in transforming one type of displacement into another. This also can
serve as a performance metric to optimize the design of the structure. The coupling
efficiency can be defined in two ways:

1. Displacement based: A coupling efficiency ηd, based on displacement can be
defined as the ratio of the output displacement or curvature to the force or
moment input to the structure. Note that this is, strictly speaking, not an ‘effi-
ciency,’ as it is dimensional.

2. Energy based: A non-dimensional coupling efficiency ηe, can be defined as the
ratio of the strain energy associated with the output displacement to the total
strain energy in the structure. In other words, it is a measure of the effectiveness
of the transfer of energy between the two types of deformation modes.

Using the Rayleigh-Ritz method in conjunction with the simplest possible assumed
modes that capture the structural deformation (Section 5.4.5 and Section 5.4.6), it
is possible to obtain a first-order estimate of the coupling efficiency. Note that this
estimate will depend on the assumed modes. However, as an increasing number
of assumed modes will only improve the predictions of structural deformation, the
first-order estimate of coupling efficiency serves as a lower bound, and can be treated
as a worst case condition.

5.5.1 Extension-Torsion Coupling Efficiency

Consider a plate with extension-torsion coupling, as described in Section 5.4.5. Due
to the extension-torsion coupling, a purely extensional induced force results in a
torsion of the plate. In this case, the displacement-based coupling efficiency can be
defined as the ratio of the tip twist of the plate to the induced force.

ηET
d = κ

tip
xy

Fx�
(rad/N or 1/N) (5.392)

From Eq. 5.364,

ηET
d = − 6B16

(4A11D66 − 3B2
16)

(5.393)
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Note that this is a function of the coupling stiffness B16, as well as the direct exten-
sional and bending stiffnesses, A11 and D66 respectively.

Using the second approach, from Section 5.4.5, the torsional strain energy of an
extension-torsion coupled plate can be derived as

Vtorsion = 1
2

∫ l

0

∫ c/2

−c/2
D66 κ

2
xy dx dy

= 1
2

D66

∫ l

0

∫ c/2

−c/2

16x2

l4c2
q2

2 dx dy

= 8
3

D66q2
2

lc

(5.394)

The total strain energy in the plate is given by

Vtotal = 1
2

∫ l

0

∫ c/2

−c/2
{εo

x κxy}
[

A11 B16

B16 D66

]{
εo

x
κxy

}
dx dy

= 1
2

∫ l

0

∫ c/2

−c/2

[
A11ε

o
x

2 + κ2
xyD66 + 2κxyB16ε

o
x

]
dx dy

= 1
2

∫ l

0

∫ c/2

−c/2

[
A11

q2
1

l2
+ D66

16x2

l4c2
q2

2 + B16
8x
l3c

q1q2

]
dx dy

= 1
2

A11.
c
l
q2

1 + 1
2
.

16
3
.

D66

lc
q2

2 + 2
l

B16 q1 q2

= Vextension + Vtorsion + Vcoupling

(5.395)

The energy based extension-torsion coupling efficiency is

ηET
e = Vtorsion

Vtotal

= 16D66

3A11c2 (q1/q2)2 + 16D66 + 12cB16 (q1/q2)

(5.396)

Note that

q1

q2
= −8

3
D66

B16c
(5.397)

Substituting in Eq. 5.396 and simplifying results in

ηET
e = 3B2

16

4A11D66 − 3B2
16

(5.398)

The extension-torsion coupling efficiency can also be defined in terms of an important
parameter ψET ,

ψET = B16√
A11D66

(5.399)

It can be seen that this extension-torsion coupling parameter is a ratio of the
extension-torsion coupling stiffness to the product of the extensional stiffness and
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Figure 5.17. Variation of energy
based extension-torsion coupling
efficiency η with coupling param-
eter ψET .

torsional stiffness. Substituting in Eq. 5.398,

ηET
e = 3ψ2

ET

4 − 3ψ2
ET

(5.400)

Note that physically, the efficiency η cannot be greater than unity, which occurs
at ψET = √2/3. The efficiency monotonically increases with increasing ψET in this
range, and is plotted in Fig. 5.17. For most physical structures, the axial stiffness
(A11) is much larger than the other two stiffnesses. As a result, ψET is small, which
yields a low extension-torsion coupling efficiency.

5.5.2 Bending-Torsion Coupling Efficiency

Consider the bending-torsion coupled plate described in Section 5.4.6. Due to the
bending-torsion coupling, a pure induced bending moment results in a twisting of the
plate. The bending-torsion coupling efficiency based on displacement can be defined
as the ratio of the tip twist of the plate to the induced bending moment on the plate.

ηBT
d = κ

tip
xy

Mx�
(rad/(Nm) or 1/(Nm)) (5.401)

From Eq. 5.391,

ηBT
d = −24(l/c)2D16

D2
11 + 16(l/c)2D11D66 − 12(l/c)2D2

16

(5.402)

Note that this is a function of the coupling stiffness D16, as well as the direct exten-
sional and bending stiffnesses, D11 and D66 respectively.

Using the second approach, from Section 5.4.6, the torsional strain energy in a
bending-torsion coupled plate can be derived as

Vtorsion = 1
2

∫ l

0

∫ c/2

−c/2
D66 κ

2
xy dx dy

= 1
2

D66

∫ l

0

∫ c/2

−c/2

16x2

l4c2
q2

2 dx dy

= 8
3

D66

lc
q2

2

(5.403)
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The total strain energy of the plate is

Vtotal = 1
2

∫ l

0

∫ c/2

−c/2

{
κx κxy

} [D11 D16

D16 D66

]{
κx

κxy

}
dx dy

= 1
2

∫ l

0

∫ c/2

−c/2

[
D11κ

2
x + 2D16κxκxy + D66κ

2
xy

]
dx dy

= 1
2

∫ l

0

∫ c/2

−c/2

[
4D11

l4
q2

1 + 16D16

l4c
q1q2x + 8D11

l4c
q1q2y + 16D66

l4c2
q2

2 x2

+ 4D11

l4c2
q2

2 y2 + 16D16

l4c2
q2

2 xy
]

dx dy

= 2D11
c
l3

(
q2

1 + q2
2

12

)
+ 4

l2
D16q1q2 + 8

3lc
D66q2

2

= Vbending + Vcoupling + Vtorsion

(5.404)

The energy based coupling efficiency is

ηBT
e = Vtorsion

Vtotal

= 16D66l2

D11c2 (12(q1/q2)2 + 1) + 24D16(q1/q2)lc + 16l2D66

(5.405)

Note that

q1

q2
= − (c2D11 + 16l2D66

)
12lcD16

(5.406)

Substituting in Eq. 5.405 and simplifying leads to,

ηBT
e = 192l4D66D2

16

c4D3
11 + 256l4D11D2

66 + 32l2c2D2
11D66 − 12l2c2D11D2

16 − 192l4D2
16D66

(5.407)

The bending-torsion coupling efficiency can be defined in terms of the following
parameters

ψBT = D16√
D11D66

(bending-torsion coupling parameter) (5.408)

KBT = D11

D66
(ratio of bending stiffness to torsional stiffness) (5.409)

Ap = l
c

(aspect ratio of the plate) (5.410)

Substituting in the above equation,

ηBT
e = 192A4

pψ
2
BT

K2
BT + 256A4

p + 32A2
p KBT − 12A2

pψ
2
BT KBT − 192A4

pψ
2
BT

(5.411)

5.5.3 Comparison of Extension-Torsion and Bending-Torsion Coupling

The efficiencies of extension-torsion and bending-torsion couplings can be com-
pared by examining the two ply laminates shown in Fig. 5.18. Note that by changing
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+ α
− α

− α
− α

(a) Extension-torsion (antisymmetric) (b) Bending-torsion (symmetric)

Figure 5.18. Extension-torsion and bending-torsion coupled laminates.

the layup as in Fig. 5.18(a) and Fig. 5.18(b), only the coupling is affected, leaving
other properties of the laminate unchanged. The coupling properties are calcu-
lated over the entire range of ply angles 0◦ < α < 90◦. The effect of the number of
plies in the laminate can be investigated for a symmetric laminate by considering
a layup [(+α)n/(+α)n], and for an antisymmetric laminate by considering a layup
[(+α)n/(−α)n]. For example, for a laminate with 4 plies, n = 2. In the symmetric
case, the layup will be [+α/ + α/ + α/ + α] and in the antisymmetric case, the layup
will be [+α/ + α/ − α/ − α]. Note that the following discussion refers to laminates of
this configuration only, and other symmetric and antisymmetric configurations may
yield different results.

Fig. 5.19 shows the ratio of bending stiffness to torsional stiffness (D11/D66) for
the two couplings, as a function of ply angle. Note that this ratio (called KET ) is the
same for both couplings. In addition, this ratio does not depend on the aspect ratio
of the laminate, Ap or on the number of plies.

The coupling parameterψET for extension-torsion coupling is plotted in Fig. 5.20
as a function of ply angle. Note that this parameter also does not depend either on
the aspect ratio or the number of plies of the laminate. The sign of the coupling
parameter only affects the direction of the induced twist and does not have any
major significance. The maximum value of ψET is approximately −0.7 at a ply angle
of approximately 30◦.

The displacement based extension-torsion coupling efficiency, as a function of
ply angle, is shown in Fig. 5.21. This parameter does not depend on the aspect ratio
of the laminate, but depends on the number of plies. This plot will serve as a useful
tool to design a laminate with appropriate coupling behavior. As expected, with an
increasing number of plies, the laminate becomes stiffer, and the induced tip twist
decreases.

Fig. 5.22 shows the energy based extension-torsion coupling efficiency as a func-
tion of ply angle. This parameter is independent of the number of plies and the plate
aspect ratio. The maximum efficiency is approximately 59% at a ply angle of 30◦.

The variation of coupling parameter for bending-torsion coupling, ψBT , with ply
angle, is shown in Fig. 5.23. The qualitative behavior is the same as in the case of
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Figure 5.19. Ratio of bending stiff-
ness to torsional stiffness, Ap = 1, for
2 plies.
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Figure 5.20. Extension-torsion cou-
pling parameter ψET for an antisym-
metric laminate.
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Figure 5.24. Displacement based bending-torsion efficiency ηBT
d .

extension-torsion coupling, with a maximum efficiency of approximately 81% at a
ply angle of 30◦. The bending-torsion coupling efficiency based on displacement is
shown in Fig. 5.24. It can be seen that this varies with both the aspect ratio of the
plate and the number of plies.

The energy based bending-torsion coupling efficiency is shown in Fig. 5.25, as a
function of plate aspect ratio. It can be seen that the maximum efficiency increases
with plates of increasing aspect ratio, and the optimum ply angle decreases. In order
to compare the relative efficiency of extension-torsion and bending-torsion coupling,
we compare the energy based efficiencies for a plate with Ap = 1 and having 2 plies
(Fig. 5.26). It can be seen that the bending-torsion coupling is more efficient in terms
of energy transfer. In addition, the optimum ply angle for bending-torsion coupling
is larger than in the case of extension-torsion coupling.

5.6 Classical Laminated Plate Theory (CLPT) with Induced Strain
Actuation for a Dynamic Case

For a thin laminated plate undergoing small displacement motion, the velocity com-
ponents at a station (x, y, z) are

u̇(x, y, z, t) = u̇o(x, y, t) − z
∂ẇo

∂x
(x, y, t) (5.412)

v̇(x, y, z, t) = v̇o(x, y, t) − z
∂ẇo

∂y
(x, y, t) (5.413)

ẇ(x, y, z, t) = ẇo(x, y, t) (5.414)
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Figure 5.26. Comparison of energy
based extension-torsion and bending-
torsion efficiencies, Ap = 1, 2 plies.

where u̇o, v̇o and ẇo are the velocity components at the mid-plane. The kinetic
energy, T , of an elemental volume dV of the plate is given by

T = 1
2

∫∫∫
volume

ρs
(
u̇2 + v̇2 + ẇ2) dV (5.415)

where ρs is the mass density. Substituting Eqs. 5.412–5.414,

T = 1
2

∫∫
area

[
m
(
u̇o

2 + v̇o
2 + ẇo

2)− 2SI

(
u̇o

∂ẇo

∂x
+ v̇o

∂ẇo

∂y

)

+ I

((
∂ẇo

∂x

)2

+
(
∂ẇo

∂y

)2
)]

dx dy

(5.416)

This can be rewritten as

T = 1
2

∫∫
area

[
u̇o v̇o ẇo

∂ẇo
∂x

∂ẇo
∂y

]
⎡⎢⎢⎢⎢⎢⎢⎣

m 0 0 −SI 0

0 m 0 0 −SI

0 0 m 0 0

−SI 0 0 I 0

0 −SI 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u̇o

v̇o

ẇo
∂ẇo
∂x
∂ẇo
∂y

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
dx dy

= 1
2

∫∫
area

[
u̇o v̇o ẇo

∂ẇo
∂x

∂ẇo
∂y

]
mI

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u̇o

v̇o

ẇo
∂ẇo
∂x
∂ẇo
∂y

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
dx dy (5.417)

where m is the mass per unit area, SI is the first mass moment of inertia, per unit
area, about the mid-plane and I is the second mass moment of inertia, per unit area,
about the mid-plane.

m =
∫

t
ρsdz (kg/m2) (5.418)

SI =
∫

t
ρszdz (kg/m) (5.419)

I =
∫

t
ρsz2dz (kg) (5.420)



5.6 Classical Laminated Plate Theory (CLPT)) with Induced Strain Actuation 529

I is also refered to as rotary inertia term and is often neglected, especially for lower
vibration modes. The plate equations are:

u-equation:

∂Nx

∂x
+ ∂Nxy

∂y
= m

∂2uo

∂t2
− SI

∂2

∂t2

(
∂wo

∂x

)
(5.421)

v-equation:

∂Nxy

∂x
+ ∂Ny

∂y
= m

∂2vo

∂t2
− SI

∂2

∂t2

(
∂wo

∂y

)
(5.422)

w-equation:

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+ ∂2My

∂y2
+ q = m

∂2wo

∂t2
+ SI

∂2

∂t2

(
∂uo

∂x
+ ∂vo

∂y

)
− I

∂2

∂t2

(
∂2wo

∂x2
+ ∂2wo

∂y2

) (5.423)

The equation of motion for a laminated plate with induced strain actuation can
be derived as (including inertial forces)

u-equation:

A11
∂2uo

∂x2
+ A12

∂2vo

∂x∂y
+ A16

(
2
∂2uo

∂x∂y
+ ∂2vo

∂x2

)
+ A26

∂2vo

∂y2
+ A66

(
∂2uo

∂y2
+ ∂2vo

∂x∂y

)

+ B11
∂3wo

∂x3
+ B12

∂3wo

∂x∂y2
+ 3B16

∂3wo

∂x2∂y
+ B26

∂3wo

∂y3
+ 2B66

∂3wo

∂x∂y2

= ∂ (Fx + Fx�)
∂x

+ ∂
(
Fxy + Fxy�

)
∂y

− px + m
∂2uo

∂t2
− S

∂2

∂t2

(
∂wo

∂x

)
(5.424)

v-equation:

A22
∂2vo

∂y2
+ A12

∂2uo

∂x∂y
+ A16

∂2uo

∂x2
+ A26

(
∂2uo

∂y2
+ 2

∂2vo

∂x∂y

)
+ A66

(
∂2uo

∂x∂y
+ ∂2vo

∂x2

)

+ B12
∂3wo

∂x2∂y
+ B22

∂3wo

∂y3
+ B16

∂3wo

∂x3
+ 3B26

∂3wo

∂x∂y2
+ 2B66

∂3wo

∂x2∂y

= ∂
(
Fy + Fy�

)
∂y

+ ∂
(
Fxy + Fxy�

)
∂x

− py + m
∂2vo

∂t2
− S

∂2

∂t2

(
∂wo

∂y

)
(5.425)
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w-equation:

B11
∂3uo

∂x3
+ B12

(
∂3vo

∂x2∂y
+ ∂3uo

∂x∂y2

)
+ B16

(
3
∂3uo

∂x2∂y
+ ∂3vo

∂x3

)
+ B22

∂3vo

∂y3

+ B26

(
∂3uo

∂y3
+ 3

∂3vo

∂x∂y2

)
+ 2B66

(
∂3uo

∂x∂y2
+ ∂3vo

∂x2∂y

)
+ D11

∂4wo

∂x4
+ 2D12

∂4wo

∂x2∂y2
+ 4D16

∂4wo

∂x3∂y
+ D22

∂4wo

∂y4

+ 4D26
∂4wo

∂x∂y3
+ 4D66

∂4wo

∂x2∂y2

= ∂2 (Mx + Mx�)
∂x2

+ ∂2
(
My + My�

)
∂y2

+ ∂2
(
Mxy + Mxy�

)
∂x∂y

− pz

+ m
∂2wo

∂t2
+ S

∂2

∂t2

(
∂uo

∂x
+ ∂vo

∂y

)
− I

∂2

∂t2

(
∂2wo

∂x2
+ ∂2wo

∂y2

)

(5.426)

For a Rayleigh-Ritz solution,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u̇o

v̇o

ẇo
∂ẇo
∂x
∂ẇo
∂y

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 0 ∂

∂x

0 0 ∂
∂y

⎤⎥⎥⎥⎥⎥⎦
⎧⎨⎩

u̇o

v̇o

ẇo

⎫⎬⎭ = D1

⎧⎨⎩
u̇o

v̇o

ẇo

⎫⎬⎭ (5.427)

The approximate solution can be expressed in terms of assumed shape functions as

⎧⎨⎩
u̇o

v̇o

ẇo

⎫⎬⎭ =
⎡⎣φu1 φu2 . . . φuM 0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 φv1 φv2 . . . φvN 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 φw1 φw2 . . . φwP

⎤⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

q̇1

q̇2
...

q̇M+N+P

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= φ(x, y)q̇

(5.428)

The expression for kinetic energy becomes

T = 1
2

∫∫
area

{D1φq̇}T mI{D1φq̇}dxdy

= 1
2

q̇T Mq̇

(5.429)

where M is a generalized mass matrix of size (M + N + P) × (M + N + P) defined
as

Mij =
∫∫

area
{D1φi}T mI{D1φj }dxdy (5.430)

Applying Lagrange’s equations results in

Mq̈ + Kq = Q�(t) (5.431)
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where the generalized stiffness coefficients are defined as

Kij =
∫∫

area

{
Dφi

}T
[
A B
B D

] {
Dφj

}
dx dy (5.432)

and the generalized forces are defined as

Q�i =
∫∫

area

{
FT
� MT

�

} {D φi} dx dy (5.433)

These are now time varying equations and can be solved for transient and steady
state response solutions.

5.7 Refined Plate Theories

The classical laminated plate theory (CLPT) is based on the Kirchhoff-Love hypoth-
esis, which assumes that straight material lines, initially normal to mid-plane remain
straight, unstretched, and normal to the mid-plane following deformation. This
assumption implies that the transverse shear effects are negligible, and that the
transverse-shear stiffness of plate is infinite. As a result, there is a zero transverse
shear strain across the complete thickness. Such a simple theory appears satisfac-
tory for thin laminates (length/thickness >30) and low transverse shear compliance
(large shear stiffness). Due to their characteristically low transverse shear stiffness,
composite laminates often exhibit more transverse shear effects than homogeneous
isotropic plates. As a result, the thinness ratio (thickness/span) becomes even more
stringent for composite laminates for accurate prediction of plate response using
CLPT theory.

In the CLPT formulation, the in-plane displacements are caused by rotation of
the mid-plane normal. However, with the presence of transverse shear strains, the
in-plane displacements will be modified due to rotations of cross-sectional planes
relative to mid-planes. For refined plate models, different levels of shear modeling
are introduced, by additional terms in the expression for axial deformation. These
correspond to higher-order terms of the Taylor series expansion, which can be
written as

u = uo + z
∂uo

∂z
+ z2

2!
∂2uo

∂z2
+ z3

3!
∂3uo

∂z3
+ . . . (5.434)

v = vo + z
∂vo

∂z
+ z2

2!
∂2vo

∂z2
+ z3

3!
∂3vo

∂z3
+ . . . (5.435)

w = wo (5.436)

where uo, vo, and wo are mid-plane displacements. Neglecting terms of order higher
than 3, this generic displacement distribution is usually written as

u(x, y, z) = uo(x, y) + zφx(x, y) + z2ζx(x, y) + z3ψx(x, y) (5.437)

v(x, y, z) = vo(x, y) + zφy(x, y) + z2ζy(x, y) + z3ψy(x, y) (5.438)

w(x, y, z) = wo(x, y) (5.439)

where φx = ∂uo/∂z and φy = ∂vo/∂z represent rotations of the cross-section, and
ζx, ζy, ψx, ψy correspond to higher order derivatives in the Taylor series expansion
cross-sectional deformation. For the CLPT, ζx, ζy, ψx, ψy are assumed to be zero
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and φx, φy are gradients of out-of-plane displacements (φx = −∂wo/∂x and φy =
−∂wo/∂y).

First-order shear deformation–plate theory (FSDT) is based on the Reissner-
Mindlin plate model and is quite similar to Timoshenko’s beam theory. It assumes
that straight material lines, initially normal to mid-plane, remain straight and
unstretched after deformation, but not necessarily normal to the mid-plane. The
rotations of these lines are represented by the terms φx and φy. For FSDT, ζx, ζy, ψx,
and ψy are assumed to be zero and the rotations φx and φy are assumed constant
through the thickness (independent of wo).

u(x, y, z) = uo(x, y) + zφx(x, y) (5.440)

v(x, y, z) = vo(x, y) + zφy(x, y) (5.441)

w(x, y, z) = wo(x, y) (5.442)

Consequently, the transverse shear strains are assumed uniform through the thick-
ness of the plate, while the in-plane displacements vary linearly through the thick-
ness. The FSDT fails to account for changes in shear strains due to the variation
of material properties of each layer. To define the local state of displacement, we
require five variables that include uo, vo, wo, φx, φy. This theory estimates lower
flexural stiffness than that predicted by the CLPT theory. Another anomaly with
this theory is that there is non-zero shear strain at top and bottom free surfaces
that violates the physical boundary condition. Normally, a shear correction factor is
applied to compensate for non-zero shear strain at free lateral surfaces. However,
it is quite difficult to determine the shear correction factor since it is dependent on
lamination and geometric parameters, loading, and boundary conditions. The FSDT
theory relaxes somewhat the thinness requirement of the laminate and normally
makes more accurate prediction of deformations and curvatures than CLPT theory.
However, the FSDT-based finite element models can exhibit spurious shear stiff-
ness (locking) for very thin laminates. Neither CLPT non Reissner-Mindlin based
include zig-zag form of inplane displacement along the thickness, nor do they satisfy
interlaminar equilibria for the transverse shear. These may become important local
effects in multi-layered composite plates. On the other hand, layerwise displacement
theories capture these effects, but increase the degrees of freedom.

A higher-order shear deformable theory (HSDT) developed by Reddy [1] mod-
els a general distribution of transverse shear strain through the laminate thickness.
For HSDT, ζx, ζy, ψx, ψy are assumed non-zero. This represents a cubic variation of
in-plane displacements (u, v) through the thickness resulting in a quadratic variation
of shear strain. The form of the displacement distribution is [1]

u(x, y, z) = uo(x, y) + zφx(x, y) + z3
(

− 4
3h2

)(
φx + ∂wo

∂x

)
(5.443)

v(x, y, z) = vo(x, y) + zφy(x, y) + z3
(

− 4
3h2

)(
φy + ∂wo

∂y

)
(5.444)

w(x, y, z) = wo(x, y) (5.445)

This distribution satisfies traction-free boundary condition on top and bottom sur-
faces, but lacks accurate representation of layer-wise variation of shear strain due
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to different material properties of laminae. In general, it is expected that the HSDT
should give better prediction of flexural stiffness than does FSDT, but this is not
assured for all plate configurations [2]. To model the variations of material stiffness
from layer to layer, it appears appropriate to use layerwise shear–deformable theory
(LWSDT), attributed to Reddy [3] as well as Sun and Whitney [4]. For this theory,
the laminate is divided into a number of sublayers that are perfectly bonded. In each
layer, the in-plane displacement is assumed piece-wise linear along the z direction.
There is a significant increase in the degrees of freedom of the model. The plate
displacements are given by

u(k)(x, y, z) = uo(x, y) + zφ(k)
x (x, y) (5.446)

v(k)(x, y, z) = vo(x, y) + zφ(k)
y (x, y) (5.447)

w(k)(x, y, z) = wo(x, y) (5.448)

where φ
(k)
x and φ

(k)
x represent rotations of the cross-section of the kth layer. For

the case of a single layer laminate, LWSDT reduces to FSDT. Even though the
shear strain is assumed uniform in each layer, there is a variation from layer to
layer. Between different layers, the displacement components are assumed to be
continuous, whereas the transverse derivatives of the displacements can be discon-
tinuous. This helps to provide the continuity of transverse stresses at interfaces
separating dissimilar materials as well as a kinematically correct representation of
cross-sectional warping, especially associated with the deformation of thick lami-
nates. It does not require any shear correction factor. For an assumption of N layers,
it requires 2N + 3 variables to define the local state of displacement distribution.
To cover the detailed three-dimensional behavior of thick laminates, the layer-wise
theory is further refined to include layer-wise expansion for transverse displacement
in addition to in-plane displacements, resulting in more dependent variables. This
full layer-wise theory would provide both discrete-layer transverse shear effects and
discrete layer transverse-normal effect.

5.8 Classical Laminated Plate Theory (CLPT) for Moderately
Large Deflections

Most of the CLPT analyses have assumed small deflections. In the present section, the
laminated plate is assumed to undergo moderately large deflections. The following
terms (displacement gradients) are of the order of ε:

∂u
∂x

,
∂u
∂y

,
∂v

∂x
,
∂v

∂y
,
∂w

∂z
≡ O(ε) (5.449)

This means that the rotation angles of transverse normals, i.e., ∂w/∂x and ∂w/∂y, are
moderate (say, less than 10–15 deg.) As a result, the following terms are of the order
of ε2 and should be included in the analysis.

[
∂w

∂x

]2

,

[
∂w

∂y

]2

,
∂w

∂x
∂w

∂y
(5.450)
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The displacements u, v, and w are defined in terms of the mid-plane displacements
(z = 0), uo, vo, and wo in the x, y, and z directions respectively.

u(x, y, z) = uo(x, y) + zφx(x, y) (5.451)

v(x, y, z) = vo(x, y) + zφy(x, y) (5.452)

w(x, y, z) = wo(x, y) (5.453)

For the CLPT framework,

φx(x, y) = −∂wo

∂x
(x, y) (5.454)

φy(x, y) = −∂wo

∂y
(x, y) (5.455)

The strain-displacement relations for moderate rotations become:

εx = ∂u
∂x

+ 1
2

[
∂w

∂x

]2

= ∂uo

∂x
− z

∂2wo

∂x2
+ 1

2

[
∂wo

∂x

]2

(5.456)

εy = ∂v

∂y
+ 1

2

[
∂w

∂y

]2

= ∂vo

∂y
− z

∂2wo

∂y2
+ 1

2

[
∂wo

∂y

]2

(5.457)

εz = ∂w

∂z
= 0 (5.458)

γxy = ∂u
∂y

+ ∂v

∂x
+ ∂w

∂x
∂w

∂y
= ∂uo

∂y
+ ∂vo

∂x
− 2z

∂2wo

∂x∂y
+ ∂wo

∂x
∂wo

∂y
(5.459)

γyz = ∂v

∂z
+ ∂w

∂y
= 0 (5.460)

γzx = ∂u
∂z

+ ∂w

∂x
= 0 (5.461)

These are called the von Kármán nonlinear strains. Once again, the transverse strains
(εz, γxz, γyz) as well as transverse shear stresses (τxz and τyz) are identically zero. This
leads to ⎧⎪⎪⎨⎪⎪⎩

εx

εy

γxy

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
εo

x + 1
2 ( ∂wo

∂x )2

εo
y + 1

2 ( ∂wo
∂y )2

γo
xy + ∂wo

∂x
∂wo
∂y

⎫⎪⎪⎬⎪⎪⎭− z

⎧⎪⎪⎨⎪⎪⎩
κx

κy

κxy

⎫⎪⎪⎬⎪⎪⎭ = εo − zκ (5.462)

Mid-plane (or membrane) strains are given by

εo =

⎧⎪⎪⎨⎪⎪⎩
εo

x

εo
y

γo
xy

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
∂uo
∂x + 1

2 ( ∂wo
∂x )2

∂vo
∂y + 1

2 ( ∂wo
∂y )2

∂uo
∂y + ∂vo

∂x + ∂wo
∂x

∂wo
∂y

⎫⎪⎪⎬⎪⎪⎭ (5.463)

and the middle surface curvatures (or bending strains) are

κ =

⎧⎪⎪⎨⎪⎪⎩
κx

κy

κxy

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2wo
∂x2

∂2wo
∂y2

2 ∂2wo
∂x∂y

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.464)
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Once again, if mid-plane displacements (uo, vo, wo) are known, the strains at any
point (x, y, z) can be determined. Strain components vary linearly through the
laminate thickness, and they are independent of material variations through the
laminate thickness. The constitutive relation for any ply of a laminated plate with
induced strain actuation is

σ = Q̄(ε − �) = Q̄ε − Q� (5.465)

where the matrix Q̄ is the transformed reduced stiffness matrix of a single ply and
the actuation strain vector is

� =
⎧⎨⎩
�x

�y

�xy

⎫⎬⎭ (5.466)

Q� represents an equivalent stress due to actuation for a single ply, and represents
the forcing on the structure.

Integrating through the thickness t of the plate, the forces and moments per unit
length of the plate, and the stiffness coefficients, can be derived in a manner similar
to the earlier case of small deflection. The force vector, F and the moment vector,
M can be derived as:

F =
∫

t
Q̄(ε − �) dz =

∫
t
Q̄εo dz −

∫
t
Q̄κ zdz −

∫
t
Q̄� dz

= Aεo + Bκ − F� (N/m)

(5.467)

and

M = −
∫

t
Q̄(ε − �) zdz = −

∫
t
Q̄εo zdz +

∫
t
Q̄κ z2dz +

∫
t
Q̄� zdz

= Bεo + Dκ − M� (Nm/m)

(5.468)

From these equations, the stiffness matrices and the induced force and moment
vectors can be derived. Extensional stiffness is

A =
∫

t
Q̄ dz → Aij =

N∑
k=1

(Q̄ij )k(hk+1 − hk) (N/m) (5.469)

Coupling stiffness:

B = −
∫

t
Q̄zdz → Bij = −1

2

N∑
k=1

(Q̄ij )k(h2
k+1 − h2

k) (N) (5.470)

Bending stiffness:

D =
∫

t
Q̄z2dz → Dij = 1

3

N∑
k=1

(Q̄ij )k(h3
k+1 − h3

k) (Nm) (5.471)

Induced force vector:

F� =
∫

t
Q̄� dz

=
N∑

k=1

Q̄k�k(hk+1 − hk) (N/m)

(5.472)
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Induced moment vector:

M� = −
∫

t
Q̄�zdz

= −1
2

N∑
k=1

Q̄k�k(h2
k+1 − h2

k)

(Nm/m) (5.473)

Definition of these stiffness terms and induced forces and moments are identical to
those defined earlier for small deflection theory. Again, the total governing equations
become: {

F
M

}
=
[
A B
B D

]{
εo

κ

}
−
{

F�

M�

}
(5.474)

Expanding the entire set of equations,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Fx

Fy

Fxy

Mx

My

Mxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎣A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤⎦ ⎡⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎦
⎡⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎦ ⎡⎣D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εo
x
εo

y

γo
xy

κx

κy

κxy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
−

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Fx�
Fy�
Fxy�
Mx�
My�
Mxy�

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.475)

The only change from the previous set for small deflection theory is in the in-plane
strains and curvatures vector,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εo
x

εo
y

γo
xy

κx

κy

κxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uo
∂x + 1

2 ( ∂wo
∂x )2

∂vo
∂y + 1

2 ( ∂wo
∂y )2

∂uo
∂y + ∂vo

∂x + ∂wo
∂x

∂wo
∂y

∂2wo
∂x2

∂2wo
∂y2

2 ∂2wo
∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.476)

With no external mechanical forces, the above equations reduce to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx�

Fy�

Fxy�

Mx�

My�

Mxy�

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎣
A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤⎥⎥⎦
⎡⎢⎢⎣

B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎥⎥⎦
⎡⎢⎢⎣

B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎥⎥⎦
⎡⎢⎢⎣

D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uo
∂x + 1

2 ( ∂wo
∂x )2

∂vo
∂y + 1

2 ( ∂wo
∂y )2

∂uo
∂y + ∂vo

∂x + ∂wo
∂x

∂wo
∂y

∂2wo
∂x2

∂2wo
∂y2

2 ∂2wo
∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.477)

This is called von Kármán plate analysis. This set of matrices is similar to the
previous one for the small deflection theory. Again, if the displacements at the
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mid-plane (uo, vo, wo) are known, the strains and curvatures at any point (x, y, z)
can be calculated. In general, the strains are a non-linear function of x and y. These
governing equations can be expressed in terms of displacements as given below.

uo equation:

A11

(
∂2uo

∂x2
+ ∂wo

∂x
∂2wo

∂x2

)
+ A12

(
∂2vo

∂x∂y
+ ∂wo

∂y
∂2wo

∂x∂y

)

+ A16

(
∂2uo

∂x∂y
+ ∂2vo

∂x2
+ ∂2wo

∂x2

∂wo

∂y
+ ∂wo

∂x
∂2wo

∂x∂y

)

+ B11
∂3wo

∂x3
+ B12

∂3wo

∂x∂y2
+ 2B16

∂3wo

∂x2∂y

+ A16

(
∂2uo

∂x∂y
+ ∂wo

∂x
∂2wo

∂x∂y

)
+ A26

(
∂2vo

∂y2
+ ∂wo

∂y
∂2wo

∂y2

)

+ A66

(
∂2uo

∂y2
+ ∂2vo

∂x∂y
+ ∂2wo

∂x∂y
∂wo

∂y
+ ∂wo

∂x
∂2wo

∂y2

)

+ B16
∂3wo

∂x2∂y
+ B26

∂3wo

∂y3
+ 2B66

∂3wo

∂x∂y2
−
(
∂Fx

∂x
+ ∂Fxy

∂y

)
−
(
∂Fx�

∂x
+ ∂Fxy�

∂y

)

= m
∂2uo

∂t2
− SI

∂3wo

∂x∂t2 (5.478)

vo equation:

A16

(
∂2uo

∂x2
+ ∂wo

∂x
∂2wo

∂x2

)
+ A26

(
∂2vo

∂x∂y
+ ∂wo

∂y
∂2wo

∂x∂y

)

+ A66

(
∂2uo

∂x∂y
+ ∂2vo

∂x2
+ ∂2wo

∂x2

∂wo

∂y
+ ∂wo

∂x
∂2wo

∂x∂y

)

+ B16
∂3wo

∂x3
+ B26

∂3wo

∂x∂y2
+ 2B66

∂3wo

∂x2∂y

+ A12

(
∂2uo

∂x∂y
+ ∂wo

∂x
∂2wo

∂x∂y

)
+ A22

(
∂2vo

∂y2
+ ∂wo

∂y
∂2wo

∂y2

)

+ A26

(
∂2uo

∂y2
+ ∂2vo

∂x∂y
+ ∂2wo

∂x∂y
∂wo

∂y
+ ∂wo

∂x
∂2wo

∂y2

)

+ B12
∂3wo

∂x2∂y
+ B22

∂3wo

∂y3
+ 2B26

∂3wo

∂x∂y2
−
(
∂Fxy

∂x
+ ∂Fy

∂y

)
−
(
∂Fxy�

∂x
+ ∂Fy�

∂y

)

= m
∂2vo

∂t2
− SI

∂3wo

∂y∂t2 (5.479)
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wo equation:

B11

(
∂3uo

∂x3
+ ∂2wo

∂x2

∂2wo

∂x2
+ ∂wo

∂x
∂3wo

∂x3

)

+ B12

(
∂3vo

∂x2∂y
+ ∂2wo

∂x∂y
∂2wo

∂x∂y
+ ∂wo

∂y
∂3wo

∂x2∂y

)

+ B16

(
∂3uo

∂x2∂y
+ ∂3vo

∂x3
+ ∂3wo

∂x3

∂wo

∂y
+ 2

∂2wo

∂x2

∂2wo

∂x∂y
+ ∂wo

∂x
∂3wo

∂x2∂y

)

+ D11
∂4wo

∂x4
+ D12

∂4wo

∂x2∂y2
+ 2D16

∂4wo

∂x3∂y

+ 2B16

(
∂3uo

∂x2∂y
+ ∂2wo

∂x2

∂2wo

∂x∂y
+ ∂wo

∂x
∂3wo

∂x2∂y

)

+ 2B26

(
∂3vo

∂x∂y2
+ ∂2wo

∂x∂y
∂2wo

∂y2
+ ∂wo

∂y
∂3wo

∂x∂y2

)

+ 2B66

(
∂3uo

∂x∂y2
+ ∂3vo

∂x2∂y
+ ∂3wo

∂x2∂y
∂wo

∂y
+ ∂2wo

∂x∂y
∂2wo

∂x∂y
+ ∂2wo

∂x2

∂2wo

∂y2
+ ∂wo

∂x
∂3wo

∂x∂y2

)

+ 2D16
∂4wo

∂x3∂y
+ 2D26

∂4wo

∂x∂y3
+ 4D66

∂4wo

∂x2∂y2

+ B12

(
∂3uo

∂x∂y2
+ ∂2wo

∂x∂y
∂2wo

∂x∂y
+ ∂wo

∂x
∂3wo

∂x∂y2

)

+ B22

(
∂3vo

∂y3
+ ∂2wo

∂y2

∂2wo

∂y2
+ ∂wo

∂y
∂3wo

∂y3

)

+ B26

(
∂3uo

∂y3
+ ∂3vo

∂x∂y2
+ ∂3wo

∂x∂y2

∂wo

∂y
+ 2

∂2wo

∂x∂y
∂2wo

∂y2
+ ∂wo

∂x
∂3wo

∂y3

)

+ D12
∂4wo

∂x2∂y2
+ D22

∂4wo

∂y4
+ 2D26

∂4wo

∂x∂y3
+ q

−
(
∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+ ∂2My

∂y2

)
−
(
∂2Mx�

∂x2
+ 2

∂2Mxy�

∂x∂y
+ ∂2My�

∂y2

)

= m
∂2wo

∂t2
+ SI

∂2

∂t2

(
∂uo

∂x
+ ∂vo

∂y

)
− I

∂2

∂t2

(
∂2wo

∂x2
+ ∂2wo

∂y2

)
(5.480)

5.9 First Order Shear Deformation Plate Theory (FSDT) with Induced
Strain Actuation

For the FSDT theory, the Kirchhoff-Love hypothesis is relaxed; transverse planes
normal to the mid-plane in the undeformed condition do not remain normal to
the mid-plane after deformation. This necessitates the inclusion of transverse shear
strains in the analysis. However, the assumption of zero transverse-normal strain
(εz) is retained.
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Figure 5.27. Inclusion of first-order shear terms in plate deformation.

The plate displacements are expressed as:

u(x, y, z) = uo(x, y) + zφx(x, y) (5.481)

v(x, y, z) = vo(x, y) + zφy(x, y) (5.482)

w(x, y, z) = wo(x, y) (5.483)

Again, uo, vo and wo are displacements at the neutral plane (z = 0) and φx and φy are
the rotations of the transverse normal plane about the y-axis and x-axis respectively
(Fig. 5.27). Note that the terms φx and φy include the effect of both pure bending (as
per the Kirchhoff-Love hypothesis) and pure shear. The rotations of the transverse
normal plane are given by

φx = ∂u
∂z

(5.484)

φy = ∂v

∂z
(5.485)

Now we require five variables (uo, vo, wo, φx, φy) to determine the strain at any
point. Assuming small displacements, and ignoring the transverse normal strain, the
normal and shear strains can be obtained from Eqs. 5.481–5.483 as

εx = ∂u
∂x

= εo
x + z

∂φx

∂x
(5.486)

εy = ∂v

∂y
= εo

y + z
∂φy

∂y
(5.487)

γyz = ∂w

∂y
+ ∂v

∂z
= ∂wo

∂y
+ φy (5.488)

γzx = ∂w

∂x
+ ∂u

∂z
= ∂wo

∂x
+ φx (5.489)

γxy = ∂u
∂y

+ ∂v

∂x
= γo

xy + z
(
∂φx

∂y
+ ∂φy

∂x

)
(5.490)
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This can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

εx

εy

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

εo
x

εo
y

∂wo
∂y + φy

∂wo
∂x + φx

γo
xy

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
− z

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− ∂φx
∂x

− ∂φy

∂y

0
0

−
(
∂φx
∂y + ∂φy

∂x

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(5.491)

The force-displacement relations can be derived in the same manner as in the case of
the Kirchhoff-Love hypothesis. The stress-strain relations for an orthotropic material
are:

σ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σx

σy

τyz

τzx

τxy

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎡⎢⎢⎢⎢⎣
Q̄11 Q̄12 0 0 Q̄16

Q̄12 Q̄22 0 0 Q̄26

0 0 Q̄44 Q̄45 0
0 0 Q̄45 Q̄55 0

Q̄16 Q̄26 0 0 Q̄66

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
εx

εy

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = Q̄ε (5.492)

For uni-directional plates,

Q44 = G23 (5.493)

Q55 = G31 (5.494)

where G23 and G31 are the shear moduli in the y-z and z-x planes respectively. For a
lamina at an arbitrary orientation α, the transformed relations become

Q̄44 = Q44 cos2 α + Q55 sin2 α (5.495)

Q̄45 = (Q55 − Q44) sinα cosα (5.496)

Q̄55 = Q44 sin2 α + Q55 cos2 α (5.497)

Once again, including the effect of induced strain actuation, the stress in each lamina
can be written as

σ = Q̄(ε − �) (5.498)

where the actuation strain is

� =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�x

�y

�yz

�zx

�xy

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.499)

The resultant in-plane forces are

F =
⎧⎨⎩

Fx

Fy

Fxy

⎫⎬⎭ =
∫

t

⎧⎨⎩
σx

σy

τxy

⎫⎬⎭dz =
N∑

k=1

∫ hk+1

hk

⎧⎨⎩
σx

σy

τxy

⎫⎬⎭
k

dz (5.500)

The resultant moments are

M =
⎧⎨⎩

Mx

My

Mxy

⎫⎬⎭ = −
∫

t

⎧⎨⎩
σx

σy

τxy

⎫⎬⎭ zdz = −
N∑

k=1

∫ hk+1

hk

⎧⎨⎩
σx

σy

τxy

⎫⎬⎭
k

zdz (5.501)
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The resultant transverse shear stresses are

{
Vy

Vx

}
= −

∫
t

{
τyz

τzx

}
dz = −

N∑
k=1

∫ hk+1

hk

{
τyz

τzx

}
k

dz

= −
N∑

k=1

∫ hk+1

hk

[
Q̄44 Q̄45

Q̄45 Q̄55

]
k

{
γyz

γzx

}
k

dz

= −
[

A44 A45

A45 A55

]{
γyz

γzx

}

= −
[

A44 A45

A45 A55

]{
∂wo
∂y + φy

∂wo
∂x + φx

}

(5.502)

This results in the governing equation for the plate with induced strain actuation,
under no external loads.

F� =

⎧⎪⎨⎪⎩
Fx�

Fy�

Fxy�

⎫⎪⎬⎪⎭ =

⎡⎢⎣A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤⎥⎦
⎧⎪⎪⎨⎪⎪⎩
εo

x

εo
y

γo
xy

⎫⎪⎪⎬⎪⎪⎭+

⎡⎢⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎥⎦
⎧⎪⎪⎨⎪⎪⎩

− ∂φx
∂x

− ∂φy

∂y

−
(
∂φx
∂y + ∂φy

∂x

)
⎫⎪⎪⎬⎪⎪⎭

(5.503)

M� =

⎧⎪⎨⎪⎩
Mx�

My�

Mxy�

⎫⎪⎬⎪⎭ =

⎡⎢⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎥⎦
⎧⎪⎪⎨⎪⎪⎩
εo

x

εo
y

γo
xy

⎫⎪⎪⎬⎪⎪⎭+

⎡⎢⎣D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤⎥⎦
⎧⎪⎪⎨⎪⎪⎩

− ∂φx
∂x

− ∂φy

∂y

−
(
∂φx
∂y + ∂φy

∂x

)
⎫⎪⎪⎬⎪⎪⎭

(5.504)
The equation for transverse shears is

V� =
{

Vy�

Vx�

}
= −

[
A44 A45

A45 A55

]{
∂wo
∂y + φy

∂wo
∂x + φx

}
(5.505)

where the stiffness matrices are defined in the same manner as in the case of the
CLPT formulation.

Aij =
N∑

k=1

(Q̄ij )k(hk+1 − hk) (N/m) (5.506)

Bij = −1
2

N∑
k=1

(Q̄ij )k(h2
k+1 − h2

k) (N) (5.507)

Dij = 1
3

N∑
k=1

(Q̄ij )k(h3
k+1 − h3

k) (Nm) (5.508)
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The induced forces and moments are:

F� =
N∑

k=1

⎡⎢⎣Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66
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M� = −1
2
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V� = −
N∑

k=1

[
Q̄44 Q̄45

Q̄45 Q̄55

]
k

{
�yz

�zx

}
k

(hk+1 − hk) (N/m) (5.511)

5.10 Shear Correction Factors

First order shear deformation theory assumes constant transverse shears through
the laminate thickness. It is well established, from elementary beam theory for
homogeneous sections, that the transverse shear stress varies parabolically through
the thickness. Also, the transverse stress on top and bottom free surfaces must
be zero. For a uniform isotropic plate, shear stress varies quadratically across the
thickness

τzx = −3
2

Vx

tb

[
1 −

(
z

tb/2

)2
]

(5.512)

γzx = τzx

G
(quadratic in z) (5.513)

The strain γzx = φx + ∂w/∂x is assumed constant in the z direction, which results in
a slight inconsistency. This discrepancy is corrected by applying a correction factor
K in computing transverse shear resultants.{

Vy

Vx

}
= −K

∫
t

{
τyz

τzx

}
dz = −K

N∑
k=1

[
Q̄44 Q̄45

Q̄45 Q̄55

]
k

{
�yz

�zx

}
k

(hk+1 − hk) (5.514)

The correction factor is computed in such a way that the strain energy due to assumed
transverse shear stress equals that of true transverse shear stress.

Work done W =
∫

t
τzxγzxdz = −VxγzxA (5.515)

γzxA = −
∫
τzxγzxdz

Vx

= − 1
VxG

∫ tb/2

−tb/2
τ2

zxdx

= −9
4

Vx

Gt3
b

∫ tb/2

−tb/2

[
1 − 4

z2

t2
b

]
dz

= −6
5

Vx

Gtb

(5.516)
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Vx = −5
6

GtbγzxA

→ K = 5
6

(5.517)

The equilibrium equations with shear are

δuo :
∂Fx

∂x
+ ∂Fxy

∂y
= 0 (5.518)

δvo :
∂Fxy

∂x
+ ∂Fy

∂y
= 0 (5.519)

δwo :
∂Vx

∂x
+ ∂Vy

∂y
= 0 (5.520)

δφx :
∂Mx

∂x
+ ∂Mxy

∂y
+ Vx = 0 (5.521)

δφy :
∂Mxy

∂x
+ ∂My

∂y
+ Vy = 0 (5.522)

uo equation:
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vo equation:
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wo equation:
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φx equation:
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φy equation:
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Typical boundary conditions including shear are:

Clamped Condition

uo = 0

vo = 0

wo = 0

φx = 0

Simply Supported (Hinged or Pinned) Condition

uo = 0

∂vo

∂x
= 0

wo = 0

Mx = 0

Roller Condition

∂vo

∂x
= 0

wo = 0

Fx = 0

Mx = 0

Free Condition

Nx = 0

Nxy = 0

Mx = 0

Vx = 0

5.11 Effect of Laminate Kinematic Assumptions on Global Response

Robbins and Chopra [5] evaluated the importance of accurately accounting for
transverse shear strain, transverse normal strain, and discrete layer kinematics on
the computed global response of plates actuated by symmetric pairs of surface-
mounted piezoceramic sheets acting together to induce global in-plane extension,
global in-plane contraction, or global bending in the plate. This study is carried out
on a square aluminum plate with a symmetric pair of square piezoceramic actuators
that are bonded to the top and bottom surface of the plate (Fig. 5.28). The length of
the aluminum plate is chosen to be twice the length of the actuator to ensure that any
local effects that are associated with the actuator edges dissipate completely before
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Figure 5.28. 2-D computational domain, 0 < x < L, 0 < y < L. (a) Specimen geometry in
x − y plane (fixed at L/P = 2), (b) Specimen geometry in x − z plane. Relative thickness of
material layers is fixed at hP/hA = 0.25, i.e., the thickness of each actuator hP is 25% of the
thickness of the aluminum plate hA.

reaching the edge of the aluminum plate. The scope of the present study is restricted
to the linear quasi-static global response (in-plane and transverse displacement of
the mid-surface) of homogeneous actuated plates covering a wide range of span-to-
thickness ratios. Note that the electromechanical coupling is simplified to the form
of actuation strain fields that are imposed on the piezoceramic materials.

The global response of the plate is simulated for the cases of induced bending
actuation and induced extension or contraction actuation using a series of finite
element models that represent a wide range of assumed kinematic complexity. All
of the finite element models used in the study are created using a hierarchical,
displacement-based, 2-D finite element model that is developed specifically for com-
posite laminates. It permits the assumed kinematics of the entire model (or any
given element) to be easily changed. The hierarchical model includes the first-order
shear deformation model (FSD), a higher-order cubic equivalent single-layer model
(ESL3), type-I layerwise models (LW1), and type-II layerwise models (LW2) as
special cases. Each of the first three models (FSD, ESL3, and LW1) uses a reduced
constitutive matrix that is based on the assumption of zero transverse normal stress;
however, the models differ significantly in their assumed distribution of transverse
shear strain. The FSD and ESL3 models assume transverse-shear strain distributions
that are C1 continuous functions (differentiable function whose first derivative is also
continuous) of the thickness coordinate (constant and quadratic respectively), while
the LW1 model includes discrete layer transverse shear effects via in-plane displace-
ment components that are C0 continuous (function is continuous but need not be
differentiable) with respect to the thickness coordinate. The LW2 layerwise model
utilizes a full 3-D constitutive matrix and includes both discrete layer transverse
shear effects and discrete layer transverse normal effects by expanding all three
displacement components as C0 continuous functions of the thickness coordinate.

A 2-D, hierarchical, displacement-based, variable-kinematic finite element is
developed by expressing the total displacement field as the sum of a low order
primary-displacement field and a higher order secondary-displacement field. The
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primary displacement field is present in all variable-kinematic elements at all times.
The individual terms of the secondary displacement field then serve as relative
displacements that can be added to the element’s primary field to provide higher
order kinematics as needed. The total displacement field is expressed as

u(x, y, z) = uFSD(x, y, z) + uLW (x, y, z) (5.528)

v(x, y, z) = vFSD(x, y, z) + vLW (x, y, z) (5.529)

w(x, y, z) = wFSD(x, y, z) + wLW (x, y, z) (5.530)

where u, v, and w are the total displacement components in the x, y, and z directions
respectively. In this case, the primary displacement field is provided by uFSD, vFSD,
and wFSD, which represent the assumed displacement field for the first, order shear
deformation theory (FSD) and is expressed as

uFSD(x, y, z) = uo(x, y) + zφx(x, y) (5.531)

vFSD(x, y, z) = vo(x, y) + zφy(x, y) (5.532)

wFSD(x, y, z) = wo(x, y) (5.533)

where uo(x, y), vo(x, y) and wo(x, y) represent the displacement of points on the
plate’s mid-surface. The terms φx(x, y) and φy(x, y) represent the rotation of the
inextensible transverse-normal fiber in the x − z and y − z planes respectively. The
FSD displacement field includes a rudimentary transverse-shear strain that is con-
stant through the thickness of the laminate. Since the FSD displacement field does
not explicitly include transverse normal strain, it is intended to be used in conjunction
with a reduced constitutive matrix that is based on the assumption of zero transverse
normal stress.

The secondary displacement field consists of uLW , vLW , and wLW , and represents
the assumed displacement field for a full 3-D layerwise theory [3, 6], which is char-
acterized by displacement components that are piecewise continuous (specifically,
C0 continuous) with respect to the thickness coordinate. The layerwise displacement
field is included as an optional, incremental enhancement to the primary displace-
ment field, so that the element may have full or partial 3-D modeling capability when
needed. The layerwise field can be expressed as

uLW (x, y, z) = Uj (x, y)ϕj (z) (5.534)

vLW (x, y, z) = Vj (x, y)ϕj (z) (5.535)

wLW (x, y, z) = Wj (x, y)ϕj (z) (5.536)

where the repeated subscript j implies summation over j = 1, 2, . . . ,n. The functions
ϕj (z)(j = 1, 2, . . . ,n) are 1-D Lagrangian interpolation functions associated with
n nodes distributed through the laminate thickness, located at zj (j = 1, 2, . . . ,n).
Thus the through-the-thickness variation of the displacement components is defined
in terms of a 1-D finite element representation with C0 continuity of the inter-
polants. The 1-D interpolants Uj (x, y), Vj (x, y), and Wj (x, y) represent addi-
tions to the displacement components u1, u2, and u3 on the planes defined
by z = zj (j = 1, 2, . . . ,n).
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A hierarchy of three distinctly different types of laminate elements can be
obtained from the composite displacement field of Eqs. (5.528–5.530). The first and
simplest type of element is the first order shear–deformation element (or FSD ele-
ment). This element is formed using Eqs. (5.531–5.533), while ignoring Eqs. (5.534–
5.536). The second type of element is the Type-I layerwise element (or LW1 ele-
ment). The LW1 element is formed using Eqs. (5.531, 5.532, 5.533, 5.534, and 5.535),
while ignoring Eq. (5.536); thus, the LW1 element includes discrete-layer transverse
shear effects, but neglects transverse normal effects and consequently uses a reduced
stiffness matrix similar to the FSD element. Due to the inclusion of discrete layer
transverse shear effects, the LW1 element is applicable to thick laminates and often
yields results comparable to 3-D finite elements while using approximately two-
thirds the number of degrees of freedom. The third and most complex element is
the Type-II layerwise element (or LW2 element). The LW2 element is formed using
both Eqs. (5.531–5.533) and Eqs. (5.534–5.536); thus it is a full 3-D layerwise element
that explicitly accounts for all six strain components, and consequently uses a full
3-D constitutive matrix. The inclusion of the full layerwise field provides the LW2
element with both discrete layer transverse shear effects and discrete layer trans-
verse normal effects. In terms of interpolation capability and number of degrees of
freedom, the 2-D LW2 element is equivalent to an entire stack of conventional 3-D
finite elements.

Fig. 5.28 shows the geometry of a simple test specimen that is used to study the
effect of laminate kinematic assumptions on the predicted global response of plates
that contain surface-bonded actuator pairs. The test specimen is composed of a
square aluminum plate and a symmetric pair of square surface-bonded piezoceramic
actuators. The aluminum material is characterized by Young’s modulus E = 70 GPa
and Poisson’s ratio ν = 0.3, while the piezoceramic material is characterized by
Young’s modulus E = 63 GPa, Poisson’s ratio ν = 0.3, and piezoelectric constants
d31 = d32 = 3.74537(10−7) mm/V. The length of the aluminum plate (2L) is chosen to
be twice as large as the length of the piezoceramic actuators (2P) in order to ensure
that any local effects associated with the actuator edges will dissipate before reaching
the boundary of the aluminum plate. The thickness of each piezoceramic actuator
(hP) is chosen to be one-fourth the thickness of the aluminum plate (hA). The total
thickness of the actuated region is then H = 2hP + hA = 1.5hA. The adhesive bond
layer between the piezoceramic patch and the aluminum plate is assumed to be
sufficiently thin to produce negligible shear lag, and hence will not be included in
the early part of the study.

The edges of the aluminum plate are unconstrained, and the plate is loaded by
applying prescribed voltages to the two piezoceramic actuators. The lines x = 0 and
y = 0 represent axes of symmetry; therefore, the computational domain is reduced
to one quadrant of the actuated plate (0 < x < L, 0 < y < L). The displacement
boundary conditions for the symmetry planes are u(0, y, z) = 0 and v(x, 0, z) = 0,
while the remaining two edges at x = L and y = L are traction free boundaries. The
condition w(0, 0, 0) = 0 is also enforced to prevent rigid body translation in the z
direction.

Within the context of the present study, the ‘global response’ of the actuated
plate is defined as follows. For the case of equal voltages applied to the piezoceramic
actuators, the quasi-static global response is considered to be the distribution of
in-plane displacement components on the mid-surface of the actuated plate, i.e.,
u(x, y, 0) and v(x, y, 0). For the case of opposite voltages applied to the piezoceramic
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Figure 5.29. View of the x − z plane showing five different levels of span-to-thickness ratio
(2P/H) used in the actuated plate problem. In each case, hP = (0.25)hA.

actuators, the quasi-static global response is considered to be the distribution of the
transverse displacement component on the mid-surface of the actuated plate, i.e.,
w(x, y, 0).

Fig. 5.29 shows five different levels of span-to-thickness ratio (2P/H) that are
considered in the study, namely 2P/H = 2, 4, 8, 16, 32. Note that within the present
context, the span-to-thickness ratio (2P/H) only describes the geometry of the actu-
ated region of the plate. Thus, the value 2P/H = 2 does not necessarily imply that
the aluminum plate is very thick; it simply implies that the actuator length (2P) is
only twice as a large as the total thickness (H) of the actuated region. In contrast, the
value 2P/H = 32 does indeed represent a relatively thin aluminum plate, regardless
of the actual value chosen for the length (P) of the actuators. The span-to-thickness
ratio 2P/H has a very strong influence on the behavior of the actuated plate. The
actual load transfer between the piezoceramic actuator and the aluminum plate is
known to occur through transverse shear stresses (τxz and τyz) and transverse normal
stress (σz) that are concentrated near the edges of the actuators. These transverse
stresses are distributed over a region whose size is approximately two to three times
the thickness of the piezoceramic actuator. Consequently, in a specimen with a low
value of 2P/H, these non-zero transverse stresses are present over a higher per-
centage of the total problem domain than in a specimen with a high value of 2P/H.
Thus, the use of refined models that accurately account for these transverse stresses
becomes important as the 2P/H ratio decreases.

5.11.1 Effect of 2-D Mesh Density on the Computed Global Response

Fig. 5.30 shows the 2-D computational domain as discretized using five different
uniform 2-D meshes of 8-node, quadratic, quadrilateral elements (2 × 2 elements,
4 × 4 elements, 6 × 6 elements, 12 × 12 elements and 24 × 24 elements). The first
part of the study utilizes these five meshes to simply determine the density of the
2-D mesh that is required to deliver a well-converged global response with any of
the types of laminate models considered in the study. The first ESL model is the first
order shear deformation model (denoted FSD). The second ESL model is a higher
order ESL model similar to that employed by Chattopadhyay et al. [7] and Zhou
et al. [8]. This ESL model (denoted ESL3) uses a C1 continuous cubic expansion of
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Figure 5.30. Five different levels of uniform 2-D mesh density used to assess convergence of
the actuated plate solution. Region of actuator coverage is shown as shaded.

the in-plane displacement components (u and v) through the laminate thickness, and
uses a reduced constitutive matrix that is based on the assumption of zero transverse
normal stress. The last two models are both type-I layerwise models that enforce the
assumption of zero transverse normal stress via a reduced constitutive matrix. The
first layerwise model (denoted LW1(1L/2L)) uses one linear layer (1L) for each of
the actuators and two linear layers (2L) for the aluminum plate, while the second
layerwise model (denoted LW1(1Q/2Q)) uses one quadratic layer (1Q) for each of
the actuators and two quadratic layers (2Q) for the aluminum plate.

5.11.2 Pure Extension Problem (Equal Voltages to Top and Bottom
Actuators)

Consider the case where both actuators are subjected to the same voltage; this causes
both actuators to undergo equal extension or contraction, thereby inducing in-plane
extension or contraction in the aluminum plate. Specifically, the voltage applied
to each piezoceramic actuator is sufficient to provide an electric field strength of
393.7 volts/mm, which in turn is sufficient to induce in-plane normal strains of εxx =
εyy = −0.147455 × 10−3 in a free actuator. Table 5.3 shows the computed in-plane
displacement of the free corner of the aluminum plate, i.e. u(L,L, 0) = v(L,L, 0). It
shows the results for all four laminate models at all five levels of 2-D mesh density;
however, only the extreme cases of span-to-thickness ratio are listed (2P/H = 32
and 2). The global displacement computed by each of the four laminate models
on the 2 × 2 mesh is noticeably different from the displacement computed by the
same laminate model on any of the more refined 2-D meshes. However, the global
displacements computed by any one laminate model on the 4 × 4, 6 × 6, 12 × 12 and
24 × 24 2-D meshes show very close agreement, thus indicating convergence of the
global results. This observation also applies to the other span to thickness ratios not
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Table 5.3. Effect of 2-D mesh density on the normalized in-plane displacement of the free
corner, u(L,L, 0) × 104/P = v(L,L, 0) × 104/P, for the case of equal voltages applied to both
top and bottom actuators. Only the two extreme cases of span-to-thickness ratio are shown
(2P/H = 2, 32). Results are listed for four representative model types [FSD, ESL3,
LW1(1L/2L) (one linear layer for each actuator and two linear layers for the aluminum plate),
LW1(1Q/2Q)] (one quadratic layer for each actuator and two quadratic layers for the
aluminum plate)

2P/H Model type 2-D Mesh u(L, L, 0) × 104/P

32 FSD 2 × 2 −0.19372
32 FSD 4 × 4 −0.20076
32 FSD 6 × 6 −0.20072
32 FSD 12 × 12 −0.20078
32 FSD 24 × 24 −0.20078

32 ESL3 2 × 2 −0.19464
32 ESL3 4 × 4 −0.19896
32 ESL3 6 × 6 −0.19906
32 ESL3 12 × 12 −0.19899
32 ESL3 24 × 24 −0.19898

32 LW1(1L/2L) 2 × 2 −0.19402
32 LW1(1L/2L) 4 × 4 −0.19886
32 LW1(1L/2L) 6 × 6 −0.19915
32 LW1(1L/2L) 12 × 12 −0.19899

32 LW1(1Q/2Q) 2 × 2 −0.19226
32 LW1(1Q/2Q) 4 × 4 −0.19870
32 LW1(1Q/2Q) 6 × 6 −0.19855
32 LW1(1Q/2Q) 12 × 12 −0.19848

2 FSD 2 × 2 −0.19372
2 FSD 4 × 4 −0.20076
2 FSD 6 × 6 −0.20072
2 FSD 12 × 12 −0.20078
2 FSD 24 × 24 −0.20078

2 ESL3 2 × 2 −0.18247
2 ESL3 4 × 4 −0.17011
2 ESL3 6 × 6 −0.17039
2 ESL3 12 × 12 −0.17028
2 ESL3 24 × 24 −0.17024

2 LW1(1L/2L) 2 × 2 −0.18270
2 LW1(1L/2L) 4 × 4 −0.16993
2 LW1(1L/2L) 6 × 6 −0.17029
2 LW1(1L/2L) 12 × 12 −0.17031

2 LW1(1Q/2Q) 2 × 2 −0.15716
2 LW1(1Q/2Q) 4 × 4 −0.16187
2 LW1(1Q/2Q) 6 × 6 −0.16144
2 LW1(1Q/2Q) 12 × 12 −0.16145

shown in Table 5.3 (e.g. 2P/H = 4, 8, 16). Based on these results, it is concluded that
the 4 × 4 2-D mesh is sufficient for computing the converged global response of all
four laminate models. Fig. 5.31 shows the distribution of the in-plane displacement
components for the thin actuated plate (2P/H = 32), where the local coordinate S
represents the distance along a diagonal line (x = y) that runs from the center of
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Figure 5.31. Effect of 2-D mesh density on the normalized in-plane displacements u(x, y, 0)/P
and v(x, y, 0)/P along the diagonal line x = y for the case where equal contraction is induced in
the upper and lower actuators. Results are computed with the FSD model for plate thickness
2P/H = 32. Corner of actuator is located at S/P = √

2. Free corner of actuated plate is located
at S/P = 2

√
2.

the actuated region at (x, y, z) = (0, 0, 0) to the free corner of the aluminum plate
at (x, y, z) = (L,L, 0). The results are computed using the FSD model at all five
levels of 2-D mesh density. The shape of this distribution can be easily understood
by considering the in-plane normal strain in the radial direction. Within the actuated
region (i.e., 0 < S/P <

√
2), the radial normal strain is compressive, thus the in-

plane displacements must have a negative slope. Outside of the actuated region (i.e.,
S/P >

√
2), the radial normal strain is tensile, thus the in-plane displacements must

have a positive slope; however, the radial normal strain must decrease to zero as the
traction free boundary is approached, thus the slope of the in-plane displacements
must approach zero as S/P approaches 2

√
2.

5.11.3 Pure Bending Problem (Actuators Subjected to Equal
but Opposite Voltages)

Consider the case where both actuators are subjected to opposite voltages of equal
magnitude, thus causing the actuator pair to induce pure bending in the aluminum
plate. Specifically, the voltage applied to each piezoceramic actuator is sufficient
to provide an electric field strength of 393.7 volts/mm, which in turn is sufficient
to induce in-plane normal strains of magnitude εxx = εyy = 0.147455 × 10−3 in an
unconstrained actuator. Table 5.4 shows the computed global response of the actu-
ated plate, as characterized by the transverse displacement of the free corner of the
aluminum plate, i.e. w(L,L, 0). The results of the four representative laminate mod-
els at all five levels of 2-D mesh density are shown; however, only the extreme cases
of span-to-thickness ratio are listed (2P/H = 32 and 2). The transverse displace-
ment computed by each of the four laminate models on the 2 × 2 mesh is noticeably
different from the displacement computed by the same laminate model on any of
the more refined 2-D meshes. However, the global displacements computed by any
one laminate model on the 4 × 4, 6 × 6, 12 × 12, and 24 × 24 2-D meshes show
very close agreement, thus indicating convergence of the computed global results.
This observation also applies to the other span-to-thickness ratios (e.g. 2P/H = 4,
8, 16). Based on these results, it is concluded that the 4 × 4 2-D mesh is sufficient
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Table 5.4. Effect of 2-D mesh density on normalized transverse deflection of the free corner
w(L,L, 0) × 103/P during bending actuation. Only the two extreme cases of span-to-thickness
ratio are shown (2P/H = 2, 32). Results are shown for three representative model types [FSD,
ESL3, LW1(1L/2L), LW1(1Q/2Q)]

2P/H Model type 2-D Mesh w(L, L, 0) × 103/P

32 FSD 2 × 2 7.626
32 FSD 4 × 4 7.595
32 FSD 6 × 6 7.584
32 FSD 12 × 12 7.575
32 FSD 24 × 24 7.573

32 ESL3 2 × 2 7.634
32 ESL3 4 × 4 7.583
32 ESL3 6 × 6 7.559
32 ESL3 12 × 12 7.545
32 ESL3 24 × 24 7.543

32 LW1(1L/2L) 2 × 2 7.632
32 LW1(1L/2L) 4 × 4 7.587
32 LW1(1L/2L) 6 × 6 7.566
32 LW1(1L/2L) 12 × 12 7.550

32 LW1(1Q/2Q) 2 × 2 7.628
32 LW1(1Q/2Q) 4 × 4 7.572
32 LW1(1Q/2Q) 6 × 6 7.546
32 LW1(1Q/2Q) 12 × 12 7.532

2 FSD 2 × 2 0.4663
2 FSD 4 × 4 0.4673
2 FSD 6 × 6 0.4670
2 FSD 12 × 12 0.4667
2 FSD 24 × 24 0.4667

2 ESL3 2 × 2 0.4365
2 ESL3 4 × 4 0.4421
2 ESL3 6 × 6 0.4417
2 ESL3 12 × 12 0.4414
2 ESL3 24 × 24 0.4413

2 LW1(1L/2L) 2 × 2 0.4390
2 LW1(1L/2L) 4 × 4 0.4435
2 LW1(1L/2L) 6 × 6 0.4433
2 LW1(1L/2L) 12 × 12 0.4431

2 LW1(1Q/2Q) 2 × 2 0.4256
2 LW1(1Q/2Q) 4 × 4 0.4282
2 LW1(1Q/2Q) 6 × 6 0.4277
2 LW1(1Q/2Q) 12 × 12 0.4275

for computing the converged global response of all four laminate models. Fig. 5.32
shows the computed distribution of the transverse deflection w(x, y, 0) for the thin
actuated plate (2P/H = 32. The deflection computed with the FSD model shows
excellent agreement for all five levels of 2-D mesh density. Fig. 5.33 shows the slope
of the plate’s mid-surface, dw/dS, computed with the FSD model using all five levels
of 2-D mesh density for the thin actuated plate (2P/H = 32). The slopes dw/dS show
excellent agreement for the 4 × 4, 6 × 6, 12 × 12, and 24 × 24 2-D meshes, while the
results computed on the 2 × 2 mesh are clearly distinguishable from the others.



554 Plate Modeling with Induced Strain Actuation

L

x

y

P

L

P

SL

x

y

P

L

P

S

2x2 FSD mesh

4x4 FSD mesh

6x6 FSD mesh

12x12 FSD mesh

24x24 FSD mesh

 w
(x

,y
,0

)/
P

  
al

o
n

g
 l

in
e 

x
=

y

0 0.5 1 1.5 2 2.5 3

S /P  (d is tance  from center a long x=y)

0

0.002

0.004

0.006

0.008

Figure 5.32. Effect of 2-D mesh density on the normalized transverse deflection w(x, y, 0)/P
along the diagonal line x = y for the case where opposite voltages are applied to the upper
and lower actuators. Results computed with the FSD model for the thin actuated plate
(2P/H = 32).

5.12 Effect of Transverse Kinematic Assumptions on Global Response

To determine the effect of various laminate kinematic assumptions on the computed
global response of the actuated plate, the problem is solved using the FSD model,
the ESL3 model, and twelve different layerwise models. All fourteen models utilize
the same uniform 6 × 6 mesh of 8-node, 2-D quadratic quadrilateral elements. Note
that this 2-D mesh is more dense than the 4 × 4 mesh that was shown to be sufficient
in the previous section; however, the increased mesh density is warranted by the
need to ensure well converged results for the wider range of layerwise models that
are utilized in this study. For LW1 models, each linear layer admits an independent
transverse-shear deformation that is constant through the thickness of the layer. For
LW2 models, each linear layer admits an independent transverse shear deformation
and an independent transverse normal deformation, both of which are constant

  

L

x

y

P

L

P

SL

x

y

P

L

P

S

0 0.5 1 1.5 2 2.5 3

S /P  (d is tance  from center a long x=y)

2x2 FSD mesh
4x4 FSD mesh

6x6 FSD mesh
12x12 FSD mesh

24x24 FSD mesh

Sl
op

e
dw

/d
S

0

0.001

0.002

0.003

0.004

Figure 5.33. Effect of 2-D mesh density on the computed slope of the plate’s reference surface
dw(x, y, 0)/dS along the diagonal line x = y for the case where opposite voltages are applied
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plate (2P/H = 32).
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through the thickness of the layer. Using these 14 models (i.e., FSD model, ESL3
model, six LW1 models, six LW2 models), the global response of the actuated plate
is computed for the cases of induced bending and induced in-plane contraction for
five different span-to-thickness ratios (2P/H = 2, 4, 8, 16, 32) for a total of 140
different solutions. The computed variables are compared for the series of 14 finite
element solutions that use various levels of refinement in the thickness direction,
thus reflecting various levels of laminate kinematic assumptions.

5.12.1 Case I: Pure Extension Actuation

Consider the case where both actuators are subjected to the same voltage, thus
causing both actuators to undergo equal extension or contraction, thereby inducing
in-plane extension or contraction in the aluminum plate. Specifically, the voltage
applied to each piezoceramic actuator is sufficient to provide an electric field strength
of 393.7 volts/mm, which in turn is sufficient to induce in-plane normal strains of
εxx = εyy = −0.147455 × 10−3 in a free actuator. Table 5.5 shows the computed global
in-plane response of the actuated plate of the free corner of the aluminum plate,
i.e., u(L,L, 0) = v(L,L, 0). It provides a comparison between the FSD model, ESL3
model, and the six LW1 models for all five levels of span-to-thickness ratio and thus
shows the effect of including various higher order representations for the transverse
shear deformation while neglecting transverse normal deformation. The FSD model
consistently predicts larger global displacements than the ESL3 model and the LW1
models. Thus, the introduction of higher-order transverse shear deformation has the
effect of lowering the computed global displacements. To better illustrate this trend,
Table 5.5 also shows a computed parameter β which represents the percent decrease
in the predicted global response of a higher order model relative to the FSD model.
An examination of the β values in Table 5.5 reveals that the discrepancy between the
global responses of the higher order models and the FSD model is most significant
at low values of actuated span-to-thickness ratio 2P/H. For example, at 2P/H = 2,
the discrepancy between the various higher order solutions and the FSD solution
ranges from 10% to 19%. However, the discrepancy becomes very small as 2P/H
becomes large; for example, at 2P/H = 32, the discrepancy only ranges from 0.5%
to 1%. This trend is shown graphically in Fig. 5.34, which plots β versus 2P/H for
some of the higher order models.

Another general trend that is seen in Table 5.5 and Fig. 5.30 is that for any given
level of actuated span-to-thickness ratio 2P/H, the size of the discrepancy between
displacements of the FSD model and a particular higher-order model increases
with the level of transverse shear representation that is employed in the higher
order model. For example, increasing the number of numerical layers in the LW1
model causes the predicted global displacements to decrease. Similarly, increasing
the polynomial order of the transverse shear deformation in an ESL model causes
the predicted global displacements to decrease; for example, the ESL3 model pre-
dicts smaller global displacements than the FSD model. In general, an increase in
the kinematic order of a laminate model is expected to cause an increase in the
overall compliance of the model and to consequently result in higher deformations
for a given load system. In this sense, these results are somewhat counterintuitive
since they clearly show the opposite trend of smaller deformations with increasing
kinematic order. To fully explain this counterintuitive behavior, we must consider
two separate effects of increasing the kinematics of a model.
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Table 5.5. Normalized in-plane displacement of the free corner, u(L,L, 0) × 104/

P = v(L,L, 0) × 104/P, caused by applying equal voltages to both upper and lower actuators.
β denotes a higher order model’s percent reduction in u(L,L, 0) compared to the FSD model,
i.e., β ≡ 100.[uFSD(L,L, 0) − uHOM(L,L, 0)]/uFSD(L,L, 0)

u(L,L, 0) × 104/P
2-D Model Piezo Aluminum and
Mesh 2P/H type layers layers v(L,L, 0) × 104/P β

6 × 6 2 FSD −0.20072
6 × 6 2 ESL3 −0.17039 15.1%
6 × 6 2 LW1 1L 1L −0.17929 10.7%
6 × 6 2 LW1 1L 2L −0.17029 15.2%
6 × 6 2 LW1 1L 4L −0.16729 16.7%
6 × 6 2 LW1 2L 1L −0.17504 12.8%
6 × 6 2 LW1 2L 2L −0.16645 17.1%
6 × 6 2 LW1 2L 4L −0.16367 18.5%

6 × 6 4 FSD −0.20072
6 × 6 4 ESL3 −0.18595 7.4%
6 × 6 4 LW1 1L 1L −0.19029 5.2%
6 × 6 4 LW1 1L 2L −0.18589 7.4%
6 × 6 4 LW1 1L 4L −0.18439 8.1%
6 × 6 4 LW1 2L 1L −0.18821 6.2%
6 × 6 4 LW1 2L 2L −0.18401 8.3%
6 × 6 4 LW1 2L 4L −0.18263 9.0%

6 × 6 8 FSD −0.20072
6 × 6 8 ESL3 −0.19355 3.6%
6 × 6 8 LW1 1L 1L −0.19558 2.6%
6 × 6 8 LW1 1L 2L −0.19349 3.6%
6 × 6 8 LW1 1L 4L −0.19272 4.0%
6 × 6 8 LW1 2L 1L −0.19458 3.1%
6 × 6 8 LW1 2L 2L −0.19258 4.1%
6 × 6 8 LW1 2L 4L −0.19188 4.4%

6 × 6 16 FSD −0.20072
6 × 6 16 ESL3 −0.19722 1.7%
6 × 6 16 LW1 1L 1L −0.19822 1.2%
6 × 6 16 LW1 1L 2L −0.19725 1.7%
6 × 6 16 LW1 1L 4L −0.19680 2.0%
6 × 6 16 LW1 2L 1L −0.19773 1.5%
6 × 6 16 LW1 2L 2L −0.19683 1.9%
6 × 6 16 LW1 2L 4L −0.19641 2.1%

6 × 6 32 FSD −0.20072
6 × 6 32 ESL3 −0.19906 0.83%
6 × 6 32 LW1 1L 1L −0.19966 0.53%
6 × 6 32 LW1 1L 2L −0.19915 0.78%
6 × 6 32 LW1 1L 4L −0.19888 0.92%
6 × 6 32 LW1 2L 1L −0.19943 0.64%
6 × 6 32 LW1 2L 2L −0.19895 0.88%
6 × 6 32 LW1 2L 4L −0.19870 1.00%
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Figure 5.34. Comparison of the computed in-plane displacement of the free corner u(L,L, 0)
caused by imposed contraction of both upper and lower actuators. β denotes the higher
order model’s percent reduction in u(L,L, 0) compared to the FSD model, i.e., β ≡ 100.
[uFSD(L,L, 0) − uHOM(L,L, 0)]/uFSD(L,L, 0).

First, let us consider the effect of kinematic order increase on the overall com-
pliance of the model. This will be referred to as the global kinematic effect. Unless
the laminate is extremely thin, realistic modes of deformation almost always include
some level of transverse shear deformation. In this case, the LW1 models and the
ESL3 model will indeed be more compliant than the FSD model, and the size of the
compliance discrepancy will be directly related to the amount of transverse shear
deformation present. Based solely on the existence of the global kinematic effect,
one would conclude that the predicted global deformations in the actuated plate
should be larger in the LW1 models and the ESL3 model than in the FSD model.
However, this is not the case. Despite the fact that the higher order models are more
compliant, their predicted global deformations are lower than the FSD model.

The second effect that must be considered is the effect of kinematic order
increase on the local mechanics of the model in the vicinity of the actuator edges.
This is referred to as the local kinematic effect. The actual load transfer between
a surface-bonded actuator and the plate substrate occurs through transverse shear
stresses (τxz and τyz) and transverse normal stress (σz) that act across the material
interface and tend to be concentrated within a fairly localized region near the edges
of the actuators. These transverse stresses cause local transverse shear deformation
and local transverse normal deformation, thus allowing a portion of the total actu-
ation energy to be diverted from producing the intended mode of deformation. In
other words, an increase in kinematic order allows some of the actuator’s energy
to produce unwanted or non-useful local deformations. This is the effect that is
primarily responsible for the counter-intuitive behavior observed in Table 5.5 and
Fig. 5.34.

To aid in further discussion of the local kinematic effect, Fig. 5.35 shows the
deformed shape of the transverse normal fiber located at the corner of the actu-
ated region, as predicted by each of the laminate models for the case of equal
voltages applied to both actuators (induced global contraction) in a thick plate
with a span-to-thickness ratio of 2P/H = 2. Note that for this particular load case,
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Figure 5.35. Predicted deformed shape of a transverse normal fiber located at the corner of
the actuated region for the case of equal voltages applied to both actuators (induced global in-
plane contraction). Span-to-thickness ratio is 2P/H = 2. Results compare the displacement
distribution of the FSD model, ESL3 model, and several representative type-I layerwise
models which include progressively higher-order representation of discrete-layer transverse
shear deformation.

the in-plane displacement distribution must be symmetric about the laminate mid-
plane; therefore, the FSD model is unable to make use of its rudimentary transverse
shear deformation that is constant through the laminate thickness. As a result, the
FSD model does not permit any of the actuation energy to be diverted into local
transverse-shear deformation. In other words, the FSD model predicts that 100% of
the available actuation energy can be directly used to produce the intended effect of
in-plane global contraction. Consequently, despite the fact that the FSD model is less
compliant than the LW1 layerwise models, the FSD model predicts larger in-plane
global deformation for this load case than any of the higher order models. The ESL3
model uses a C1-continuous cubic expansion to represent the in-plane displacement
components; consequently, the deformed transverse normal fiber is forced to adopt
a smooth curved configuration despite the fact that composite laminates do not
typically exhibit such smoothness. As seen in Fig. 5.35, the ESL3 model correctly
predicts that the transverse shear deformation is highest in the actuator layer and
diminishes to zero at the plate’s mid-plane; however, the use of a C1-continuous
displacement expansion prevents the ESL3 model from accurately representing the
localization of the transverse shear deformation near the actuator/aluminum inter-
face. Consequently, at the actuator/aluminum interface, the ESL3 model underpre-
dicts the transverse shear deformation in the actuator and overpredicts the trans-
verse shear deformation in the aluminum. Among the six LW1 layerwise models,
the LW1(1L/1L) model employs the coarsest transverse discretization, using a single
linear layer for each of the actuators and a single linear layer for the aluminum plate.
The LW1(1L/1L) model is able to exhibit independent transverse-shear deformation
that is constant within each of the three distinct material layers. For this particular
load case, the in-plane displacement must be symmetric about the mid-plane; there-
fore, the LW1(1L/1L) model does not predict any transverse shear deformation in
the aluminum plate. However, both of the piezoceramic actuators are permitted to
exhibit gross transverse shear deformation. As shown in Table 5.5, the LW1(1L/1L)
model predicts global displacements that are 10.7% smaller than the FSD model for
the thick plate (2P/H = 2). The next model in the layerwise kinematic hierarchy is
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the LW1(1L/2L) model, which uses a single linear layer for each of the actuators
and two linear layers for the aluminum plate. Compared to the FSD model and
the LW1(1L/1L) model, the LW1(1L/2L) model allows the upper and lower halves
of the aluminum plate to exhibit independent transverse shear deformation. Thus,
the LW1(1L/2L) model permits some of the total actuation energy to be diverted
into local transverse shear-deformation in both the piezoceramic actuators and the
aluminum plate. Consequently, the LW1(1L/2L) model predicts a further reduction
in the far-field in-plane displacement, namely 15.2% less than the FSD model and
5% less than the LW1(1L/1L) model. The final layerwise model is the LW1(2L/4L)
model, which uses two linear layers for each of the piezoceramic actuators and four
linear layers for the aluminum plate. The LW1(2L/4L) model is better able to rep-
resent the locally high transverse shear deformation that is concentrated along the
material interface between the aluminum plate and each of the actuators. Thus the
LW1(2L/4L) model is able to divert an even greater portion of the total actuation
energy into local transverse shear deformation, and consequently predicts far-field
in-plane displacements that are lower than any of the other models listed in Table 5.5
(18.5% lower than the FSD model).

5.12.2 Case II: Pure Bending Actuation

Consider the case where both actuators are subjected to opposite voltages of equal
magnitude, thus causing the actuator pair to induce bending in the aluminum plate.
Specifically, the voltage applied to each piezoceramic actuator is sufficient to provide
an electric field strength of 393.7 volts/mm, which in turn is sufficient to induce free in-
plane normal strains of magnitude �x = �y = 0.147455 × 10−3 in an unconstrained
actuator. Table 5.6 shows the computed global bending response of the actuated
plate, as characterized by the transverse displacement of the free corner of the alu-
minum plate, i.e., w(L,L, 0). It provides a comparison between the FSD model, the
ESL3 model, and the six LW1 models for all five levels of span-to-thickness ratio and
thus shows the effect of including various higher order representations for the trans-
verse shear deformation. Again, the FSD model consistently predicts larger global
displacements than the ESL3 model and the LW1 models. Thus, the introduction
of higher-order transverse shear deformation has the effect of lowering the pre-
dicted global bending response. To better illustrate this trend, Table 5.6 also shows
a computed parameter α, which represents the percent decrease in the predicted
global response of a higher-order model relative to the FSD model. An examination
of the α values reveals that the discrepancy between the global responses of the
higher order models and the FSD model is most significant at low values of actuated
span-to-thickness ratio 2P/H. For example, at 2P/H = 2, the discrepancy between
the various higher order solutions and the FSD solution ranges from 5% to 8%.
However, the discrepancy becomes very small as 2P/H becomes large; for exam-
ple, at 2P/H = 32 the discrepancy only ranges from 0.24% to 0.45%. This trend is
shown graphically in Fig. 5.36, which plots α versus 2P/H for some of the higher
order models. For any given level of actuated span-to-thickness ratio 2P/H, the
size of the discrepancy between displacements of the FSD model and a particular
higher order model increases with the level of transverse shear representation that is
employed in the higher order model. For example, increasing the number of numer-
ical layers in the LW1 model causes the predicted global displacements to decrease.
Similarly, increasing the polynomial order of the transverse shear deformation in an
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Table 5.6. Normalized transverse displacement of the free corner w(L,L, 0) × 103/P caused
by bending actuation. α denotes the percent reduction in w(L,L, 0) of a higher order model
compared to the FSD model, i.e., α ≡ 100.[wFSD(L,L, 0) − wHOM(L,L, 0)]/wFSD(L,L, 0)

2-D Model Piezo Aluminum
Mesh 2P/H type layers layers w(L,L, 0) × 103/P α

6 × 6 2 FSD 0.4670
6 × 6 2 ESL3 0.4417 5.4%
6 × 6 2 LW1 1L 1L 0.4433 5.1%
6 × 6 2 LW1 1L 2L 0.4433 5.1%
6 × 6 2 LW1 1L 4L 0.4371 6.4%
6 × 6 2 LW1 2L 1L 0.4370 6.4%
6 × 6 2 LW1 2L 2L 0.4370 6.4%
6 × 6 2 LW1 2L 4L 0.4313 7.7%

6 × 6 4 FSD 0.9392
6 × 6 4 ESL3 0.9108 3.0%
6 × 6 4 LW1 1L 1L 0.9140 2.7%
6 × 6 4 LW1 1L 2L 0.9140 2.7%
6 × 6 4 LW1 1L 4L 0.9062 3.5%
6 × 6 4 LW1 2L 1L 0.9080 3.3%
6 × 6 4 LW1 2L 2L 0.9080 3.3%
6 × 6 4 LW1 2L 4L 0.9007 4.1%

6 × 6 8 FSD 1.8869
6 × 6 8 ESL3 1.8572 1.6%
6 × 6 8 LW1 1L 1L 1.8612 1.4%
6 × 6 8 LW1 1L 2L 1.8612 1.4%
6 × 6 8 LW1 1L 4L 1.8526 1.8%
6 × 6 8 LW1 2L 1L 1.8556 1.7%
6 × 6 8 LW1 2L 2L 1.8556 1.7%
6 × 6 8 LW1 2L 4L 1.8477 2.1%

6 × 6 16 FSD 3.7847
6 × 6 16 ESL3 3.7548 0.79%
6 × 6 16 LW1 1L 1L 3.7599 0.65%
6 × 6 16 LW1 1L 2L 3.7599 0.65%
6 × 6 16 LW1 1L 4L 3.7505 0.90%
6 × 6 16 LW1 2L 1L 3.7549 0.79%
6 × 6 16 LW1 2L 2L 3.7549 0.79%
6 × 6 16 LW1 2L 4L 3.7462 1.02%

6 × 6 32 FSD 7.5838
6 × 6 32 ESL3 7.5594 0.32%
6 × 6 32 LW1 1L 1L 7.5655 0.24%
6 × 6 32 LW1 1L 2L 7.5655 0.24%
6 × 6 32 LW1 1L 4L 7.5542 0.39%
6 × 6 32 LW1 2L 1L 7.5616 0.29%
6 × 6 32 LW1 2L 2L 7.5616 0.29%
6 × 6 32 LW1 2L 4L 7.5508 0.44%

equivalent-single-layer model causes the predicted global displacements to decrease;
for example, the ESL3 model predicts smaller global displacements than the FSD
model.

The inclusion of discrete-layer transverse shear deformation permits some of
the total actuation energy to be diverted to the production of local transverse shear
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Figure 5.36. Comparison of the predicted transverse displacement of the free corner
w(L,L, 0) caused by bending actuation. α denotes the percent reduction in w(L,L, 0)
of a higher order model compared to the FSD model, i.e., α ≡ 100.[wFSD(L,L, 0) −
wHOM(L,L, 0)]/wFSD(L,L, 0).

deformation, thus diminishing the amount of actuation energy available for the
intended purpose of producing global bending. This local shear deformation can be
seen in Fig. 5.37 and Fig. 5.38. Fig. 5.37 shows the deformed shape of the transverse
normal fiber located at the corner of the actuated region for the case of actuation
bending in a thick plate with a span-to-thickness ratio of 2P/H = 2, as predicted by
the FSD, ESL3, LW1(1L/2L) and LW1(2L/4L) models. Fig. 5.38 shows the distri-
bution of transverse shear strain through the laminate thickness at the 2-D reduced
Gauss–point located closest to the corner of the actuated region, as predicted by
the FSD, ESL3, LW1(1L/2L), and LW1(2L/4L) models. Note that for this particular
load case, the transverse shear-strain distribution must be symmetric about the lam-
inate mid-plane. Since the FSD model uses a transverse shear strain that is constant
through the entire laminate thickness, it is unable to resolve any of the localized
transverse shear that occurs at the actuator/aluminum interface; consequently, the

Figure 5.37. Thickness distribution of in-plane displacement at the corner of the actuated
region for the case of bending actuation. Span-to-thickness ratio is 2P/H = 2. Results compare
the FSD distribution with two representative type-I layerwise distributions, which include
progressively higher-order representation of discrete-layer transverse shear deformation.
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Figure 5.38. Thickness distribution of transverse shear strain at the 2-D reduced Gauss point
closest to the corner of the actuated region for the case of bending actuation. Span-to-
thickness ratio is 2P/H = 2. Results compare the FSD distribution with two representative
type-I layerwise distributions, which include progressively higher-order representation of
discrete layer transverse shear deformation.

FSD model exhibits very little transverse shear deformation near the actuator edges,
which leaves more of the actuation energy to be devoted to producing global bend-
ing. In contrast, Fig. 5.38 shows that the ESL3 model and both of the LW1 models
are able to represent the localized transverse shear concentration, thus permitting
some of the actuation energy to be diverted away from the intended purpose of
producing global bending. Consequently, these higher order models predict smaller
global bending deformation than the FSD model.

5.13 Effect of Finite Thickness Adhesive Bond Layer

In all of the previous solutions for the actuated plate, the adhesive bond layer was
neglected, thus the actuators were assumed to be in a perfect bond condition. The
objective of this section is to check whether the trends observed earlier for the
perfect bond case remain valid in the presence of a compliant adhesive layer of
finite thickness. To this end, the actuated plate model is modified by adding an
adhesive layer between each of the actuators and the aluminum plate. The resulting
actuated plate is simulated at five different levels of span-to-thickness ratio (2P/H =
2, 4, 8, 16, 32). At each level of span-to-thickness ratio, five different adhesive layer
thicknesses are considered, namely hG/hP = 0.00, 0.02, 0.04, 0.08, and 0.12, where
hG is the thickness of the adhesive layer and hP is the thickness of the piezoceramic
actuator. Thus the zero adhesive-layer–thickness corresponds to the perfect bonding
condition, while the thickest adhesive layer is chosen to be 12% of the thickness
of the actuator. The stiffness of the isotropic adhesive material is assumed to be
one-tenth the stiffness of the piezoceramic material. In order to show the effect of
various laminate kinematic assumptions in the presence of a finite-thickness adhesive
bond, each configuration of the actuated plate is solved with five different laminate
models that represent different portions of the kinematic assumption spectrum.
These models include the FSD model, the ESL3 model, a LW1(1L/1L/2L) model,
a LW1(2L/1L/4L) model, and a LW2(2L/1L/4L) model. The naming convention for
the layerwise models indicates both the type of layerwise model (e.g. LW1 or LW2)
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Table 5.7. Normalized in-plane displacement of the free corner, u(L,L, 0) × 104/

P = v(L,L, 0) × 104/P, caused by applying equal voltages to both upper and lower actuators.
Results are listed for actuated plates with five different span-to-thickness ratios and five
different adhesive-layer thicknesses

(adhesive layer thickness)/(actuator thickness)

2P/H Model type 0.00 0.02 0.04 0.04 0.12

2 FSD −0.2007 −0.2006 −0.2005 −0.2003 −0.2002
2 ESL3 −0.1704 −0.1696 −0.1688 −0.1672 −0.1656
2 LW1(1L/1L/2L) −0.1703 −0.1588 −0.1516 −0.1402 −0.1310
2 LW1(2L/1L/4L) −0.1637 −0.1541 −0.1475 −0.1369 −0.1281
2 LW2(2L/1L/4L) −0.1608 −0.1505 −0.1439 −0.1332 −0.1244

4 FSD −0.2007 −0.2006 −0.2005 −0.2003 −0.2002
4 ESL3 −0.1860 −0.1855 −0.1851 −0.1842 −0.1833
4 LW1(1L/1L/2L) −0.1859 −0.1802 −0.1766 −0.1709 −0.1660
4 LW1(2L/1L/4L) −0.1826 −0.1779 −0.1746 −0.1691 −0.1645
4 LW2(2L/1L/4L) −0.1810 −0.1759 −0.1726 −0.1672 −0.1626

8 FSD −0.2007 −0.2006 −0.2005 −0.2003 −0.2002
8 ESL3 −0.1936 −0.1933 −0.1930 −0.1925 −0.1920
8 LW1(1L/1L/2L) −0.1935 −0.1907 −0.1889 −0.1860 −0.1836
8 LW1(2L/1L/4L) −0.1919 −0.1896 −0.1879 −0.1851 −0.1828
8 LW2(2L/1L/4L) −0.1909 −0.1882 −0.1867 −0.1840 −0.1817

16 FSD −0.2007 −0.2006 −0.2005 −0.2003 −0.2002
16 ESL3 −0.1972 −0.1970 −0.1969 −0.1965 −0.1962
16 LW1(1L/1L/2L) −0.1973 −0.1959 −0.1949 −0.1934 −0.1921
16 LW1(2L/1L/4L) −0.1964 −0.1953 −0.1944 −0.1929 −0.1917
16 LW2(2L/1L/4L) −0.1954 −0.1939 −0.1932 −0.1919 −0.1908

32 FSD −0.2007 −0.2006 −0.2005 −0.2003 −0.2002
32 ESL3 −0.1991 −0.1989 −0.1988 −0.1985 −0.1983
32 LW1(1L/1L/2L) −0.1991 −0.1985 −0.1979 −0.1970 −0.1963
32 LW1(2L/1L/4L) −0.1987 −0.1981 −0.1976 −0.1968 −0.1960
32 LW2(2L/1L/4L) −0.1972 −0.1961 −0.1958 −0.1951 −0.1946

and the level of transverse discretization used in each layerwise model; e.g., the label
(2L/1L/4L) indicates the use of 2 linear layers (2L) per actuator, 1 linear layer (1L)
per adhesive bond, and 4 linear layers (4L) for the aluminum plate.

5.13.1 Case I: Pure Extensional Actuation

Table 5.7 and Fig. 5.39 show the computed global response for the case of equal
voltages applied to the top and bottom actuators. Specifically, the voltage applied
to each piezoceramic actuator is sufficient to provide an electric field strength of
393.7 volts/mm, which in turn is sufficient to induce in-plane normal strains of �x =
�y = −0.147455 × 10−3 in a free actuator. Table 5.7 contains 125 different solutions



564 Plate Modeling with Induced Strain Actuation

Figure 5.39. Normalized in-plane displacement of the free corner, u(L,L, 0) × 104/P =
v(L,L, 0) × 104/P, caused by applying equal voltages to both upper and lower actuators.
Line type indicates actuated span-to-thickness ratio (2P/H = 2, 4, 8), while symbol types
indicate different laminate models.

that represent a combination of model type, adhesive layer thickness and span-to-
thickness ratio. Fig. 5.39 displays these results graphically for the three thickest plate
configurations (2P/H = 2, 4, 8) and is included to aid interpretation the results.

The FSD global response is completely unaffected by the span-to-thickness
ratio and is only mildly affected by the thickness of the adhesive layer. For this
particular problem, the insensitivity exhibited by the FSD model is caused by the
fact that the in-plane displacement components must be symmetric with respect
to the laminate mid-plane; therefore, the FSD model is unable to make use of its
rudimentary transverse shear deformation, consequently the local kinematic effect
is completely undetected by the FSD model. The higher order ESL model (ESL3)
predicts smaller global displacements than the FSD model for all levels of span-to-
thickness ratio and adhesive thickness ratio. Furthermore, for the perfectly bonded
configurations (hG/hP = 0), the ESL3 model predicts global displacements that are
comparable to the low order layerwise model (LW1(1L/1L/2L)). However, for plate
configurations with finite thickness adhesive layers (hG/hP = 0.02, 0.04, 0.08, and
0.12), the ESL3 model predicts global displacements that are larger than the three
layerwise models. In fact, the ESL3 results are relatively insensitive to changes in
the adhesive thickness ratio; for example, even at the lowest span-to-thickness ratio
(2P/H = 2), the ESL3 model displacements decrease by only 2.8% as the adhesive
thickness ratio increases from hG/hP = 0 to 0.12.

For plate configurations with finite thickness adhesive layers (hG/hP = 0.02, 0.04,
0.08, and 0.12), the layerwise models collectively predict smaller global responses
than the FSD model and the ESL3 model. This observation applies to all combina-
tions of span-to-thickness ratio and adhesive layer thickness. Furthermore, unlike
the ESL models (FSD and ESL3), each of the layerwise models predicts a significant
decline in the global response as the thickness of the adhesive layer is progressively
increased. As seen in Fig. 5.39, this decline is much more pronounced for low values of
span-to-thickness ratio 2P/H. For example, at a span-to-thickness ratio of 2P/H = 2,
each of the layerwise models predicts that the global response decreases by
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approximately 22% as the adhesive layer thickness ratio changes from hG/hP = 0.0
to 0.12. In contrast, at the high span-to-thickness ratio of 2P/H = 32, each of the
layerwise models predicts that the global response decreases by approximately 1%
as the adhesive layer thickness ratio changes from hG/hP = 0.0 to 0.12. These obser-
vations are entirely consistent with the local kinematic effect, where the presence of
the relatively compliant adhesive layer readily permits additional actuation energy
to be diverted to the production of local transverse-shear strain and local transverse
normal strain in the adhesive layer. Also, it is observed that for any particular combi-
nation of span-to-thickness ratio and adhesive layer thickness, the LW2(2L/1L/4L)
model predicts slightly smaller global response than the LW1(2L/1L/4L), which in
turn predicts a slightly smaller global response than the LW1(1L/1L/2L) model.
In other words, the predicted global response decreases as the kinematic order
increases. Again, this observation is entirely consistent with the local kinematic
effect. Thus, the trends observed earlier for the case of perfect bonding are also
exhibited in the presence of a finite thickness, compliant-adhesive layer. In fact, the
presence of a finite thickness adhesive layer actually causes the trends to be more
pronounced.

5.13.2 Case II: Pure Bending Actuation

Consider the case where both actuators are subjected to opposite voltages of equal
magnitude, thus causing the actuator pair to induce bending in the aluminum plate.
Specifically, the voltage applied to each piezoceramic actuator is sufficient to pro-
vide an electric field strength of 393.7 volts/mm, which in turn is sufficient to induce
in-plane normal strains of magnitude �x = �y = 0.147455 × 10−3 in an uncon-
strained actuator. Table 5.8 shows the computed global response for this case, which
contains 125 different solutions for a combinations of model type, adhesive thickness
ratio, and span-to-thickness ratio. Fig. 5.40 displays these results graphically for the
four thickest plate configurations (2P/H = 2, 4, 8, 16), and is included to aid in inter-
preting the results. Once again, for any particular combination of span-to-thickness
ratio and finite adhesive layer thickness, the layerwise models collectively predict
smaller global responses than the FSD model and the ESL3 model; however, the
discrepancy observed between the layerwise models and the ESL models (FSD and
ESL3) is smaller for the present case of induced bending than for the previous case of
induced in-plane contraction. This last observed trend is caused by the fact that the
global kinematic effect is significant for the case of induced bending, but the global
kinematic effect opposes and partially cancels the local kinematic effect. For any
particular combination of model type and span-to-thickness ratio, Fig. 5.40 clearly
shows that the computed global response decreases as the thickness of the adhesive
layer increases. This particular effect is much more pronounced in the layerwise
models than in the ESL models (FSD and ESL3). Furthermore, this effect is much
more pronounced in plates with low span-to-thickness ratios than in plates with high
span-to-thickness ratios.

5.14 Strain Energy Distribution

Robbins and Chopra [9] examined the distribution of strain energy in the various
component materials of actuated plates and investigated the manner in which the
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Table 5.8. Normalized transverse displacement of the free corner w(L,L, 0) × 103/P caused
by bending actuation. Results are listed for actuated plates with five different levels of total
span-to-thickness ratio and five different adhesive-layer thickness ratios (hG/hP = 0.0, 0.2, 0.4,
0.8, 0.12)

(adhesive layer thickness)/(actuator thickness)

2P/H Model type 0.00 0.02 0.04 0.04 0.12

2 FSD 0.4670 0.4664 0.4653 0.4632 0.4611
2 ESL3 0.4417 0.4317 0.4317 0.4318 0.4319
2 LW1(1L/1L/2L) 0.4433 0.4236 0.4115 0.3920 0.3759
2 LW1(2L/1L/4L) 0.4313 0.4150 0.4039 0.3857 0.3704
2 LW2(2L/1L/4L) 0.4240 0.4053 0.3938 0.3749 0.3590

4 FSD 0.9392 0.9379 0.9359 0.9317 0.9275
4 ESL3 0.9108 0.8948 0.8949 0.8950 0.8951
4 LW1(1L/1L/2L) 0.9140 0.8944 0.8820 0.8619 0.8450
4 LW1(2L/1L/4L) 0.9007 0.8845 0.8731 0.8544 0.8382
4 LW2(2L/1L/4L) 0.8900 0.8713 0.8598 0.8407 0.8242

8 FSD 1.8869 1.8839 1.8799 1.8718 1.8634
8 ESL3 1.8572 1.8293 1.8293 1.8295 1.8296
8 LW1(1L/1L/2L) 1.8612 1.8407 1.8266 1.8033 1.7830
8 LW1(2L/1L/4L) 1.8477 1.8305 1.8174 1.7953 1.7757
8 LW2(2L/1L/4L) 1.8270 1.8065 1.7943 1.7727 1.7534

16 FSD 3.7847 3.7781 3.7703 3.7542 3.7375
16 ESL3 3.7548 3.7031 3.7032 3.7033 3.7035
16 LW1(1L/1L/2L) 3.7599 3.7373 3.7190 3.6874 3.6589
16 LW1(2L/1L/4L) 3.7462 3.7265 3.7097 3.6795 3.6518
16 LW2(2L/1L/4L) 3.6994 3.6725 3.6583 3.6313 3.6055

32 FSD 7.5838 7.5703 7.5548 7.5229 7.4899
32 ESL3 7.5594 7.4606 7.4607 7.4609 7.4611
32 LW1(1L/1L/2L) 7.5655 7.5383 7.5134 7.4658 7.4202
32 LW1(2L/1L/4L) 7.5508 7.5256 7.5018 7.4560 7.4115
32 LW2(2L/1L/4L) 7.4464 7.3967 7.3768 7.3371 7.2974

strain energy distribution is influenced by the actuated span-to-thickness ratio, the
thickness of the adhesive bond layer, and the effect of modeling choices (e.g. kine-
matic assumptions, mesh density). Again, the focus problem consisted of a square
aluminum plate with a single symmetric pair of surface-mounted piezoceramic actu-
ators, which were used to produce in-plane extension or bending in the aluminum
plate. The behavior of the actuated plate was examined over a range of plate thick-
nesses and adhesive–bond layer thicknesses using a series of finite element models
that feature different levels of kinematic complexity and different levels of 2-D mesh
density. The study confirmed the existence and quantified the magnitude of the local
kinematic effect, whereby a portion of the available actuation energy is diverted
to the production of localized transverse shear deformation and transverse normal
deformation, thus reducing the amount of actuation energy available to produce
in-plane deformation in the structural substrate.

The relevant strain energy quantities that are computed from the results of
each simulation include the total strain energy Utotal, the in-plane strain energy U2D

(or strain energy associated with the in-plane strain components ε1, ε2 and ε6), the
transverse shear strain energy strain energy Uts(or strain energy associated with
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Figure 5.40. Normalized transverse displacement of the free cornerw(L,L, 0) × 103/P caused
by bending actuation. Results are shown for actuated plates with 4 different levels of total
span-to-thickness ratio (2P/H = 2, 4, 8, 16) and 5 different adhesive layer thickness ratios
(hG/hP = 0.0, 0.2, 0.4, 0.8, 0.12).

the transverse shear strain components ε4 and ε5), and the transverse normal strain
energy Utn (or strain energy associated with the transverse normal strain component
ε3). These quantities are defined below in Eqs. (5.537–5.540).

Utotal ≡
∫

V

(∫
σαdεα

)
dv (implied summation on α from 1 to 6) (5.537)

U2D ≡
∫

V

(∫
σ1dε1

)
dv +

∫
V

(∫
σ2dε2

)
dv +

∫
V

(∫
σ6dε6

)
dv (5.538)

Uts ≡
∫

V

(∫
σ4dε4

)
dv +

∫
V

(∫
σ5dε5

)
dv (5.539)

Utn ≡
∫

V

(∫
σ3dε3

)
dv (5.540)

In each case, the computed strain energy values are computed for the entire
actuated plate and thus include the contribution from all three component-materials.
Since the thickness dimension of the plate varies, each of the strain energy quantities
is expressed on a per–unit volume basis by dividing by the total volume of the
actuated plate. Tables 5.9 and 5.10 list the strain energy values for all configurations
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Table 5.9. Computed total strain energy and strain energy components (in J/m3) for entire
actuated plate during extension actuation. Quantities in parentheses denote the percent
contribution of each strain energy component to the total strain energy. Imposed electric field
strength for each actuator is 393.7 volts/mm

2P/H Model ha/h Utotal/Vol U2D/Vol Uts/Vol Utn/Vol

2 FSD 0.000 163.1 163.1(100%) 0.0(0%) 0.0(0%)
2 FSD 0.025 163.1 163.1(100%) 0.0(0%) 0.0(0%)
2 FSD 0.050 163.2 163.2(100%) 0.0(0%) 0.0(0%)
2 FSD 0.100 163.2 163.2(100%) 0.0(0%) 0.0(0%)

2 LW1(1L/1L/2L) 0.000 132.0 117.3(88.9%) 14.6(11.1%) 0.0(0%)
2 LW1(1L/1L/2L) 0.025 122.9 104.1(84.7%) 18.8(15.3%) 0.0(0%)
2 LW1(1L/1L/2L) 0.050 115.8 93.9(81.1%) 21.8(18.9%) 0.0(0%)
2 LW1(1L/1L/2L) 0.100 105.3 79.4(75.4%) 25.9(24.6%) 0.0(0%)

2 LW1(2L/1L/4L) 0.000 128.8 112.7(87.5%) 16.1(12.5%) 0.0(0%)
2 LW1(2L/1L/4L) 0.025 119.1 98.7(82.9%) 20.4(17.1%) 0.0(0%)
2 LW1(2L/1L/4L) 0.050 112.6 89.5(79.5%) 23.1(20.5%) 0.0(0%)
2 LW1(2L/1L/4L) 0.100 102.8 76.1(74%) 26.7(26%) 0.0(0%)

2 LW2(2L/1L/4L) 0.000 125.7 110.3(87.7%) 13.6(10.8%) 1.8(1.5%)
2 LW2(2L/1L/4L) 0.025 115.5 95.8(82.9%) 17.6(15.3%) 2.1(1.8%)
2 LW2(2L/1L/4L) 0.050 109.0 86.6(79.5%) 20.2(18.5%) 2.2(2.0%)
2 LW2(2L/1L/4L) 0.100 99.1 73.1(73.8%) 23.6(23.9%) 2.3(2.3%)

4 FSD 0.000 163.1 163.1(100%) 0.0(0%) 0.0(0%)
4 FSD 0.025 163.1 163.1(100%) 0.0(0%) 0.0(0%)
4 FSD 0.050 163.2 163.2(100%) 0.0(0%) 0.0(0%)
4 FSD 0.100 163.2 163.2(100%) 0.0(0%) 0.0(0%)
4 LW1(1L/1L/2L) 0.000 147.3 139.7(94.8%) 7.7(5.2%) 0.0(0%)
4 LW1(1L/1L/2L) 0.025 142.8 132.9(93.1%) 9.9(6.9%) 0.0(0%)
4 LW1(1L/1L/2L) 0.050 138.9 127.1(91.5%) 11.8(8.5%) 0.0(0%)
4 LW1(1L/1L/2L) 0.100 133.1 118.5(89%) 14.6(11.0%) 0.0(0%)

4 LW1(2L/1L/4L) 0.000 145.8 137.4(94.2%) 8.4(5.8%) 0.0(0%)
4 LW1(2L/1L/4L) 0.025 140.8 129.9(92.3%) 10.8(7.7%) 0.0(0%)
4 LW1(2L/1L/4L) 0.050 137.2 124.6(90.8%) 12.6(9.2%) 0.0(0%)
4 LW1(2L/1L/4L) 0.100 131.7 116.5(88.5%) 15.2(11.6%) 0.0(0%)

4 LW2(2L/1L/4L) 0.000 144.8 136.8(94.5%) 7.5(5.2%) 0.49(0.3%)
4 LW2(2L/1L/4L) 0.025 139.6 129.2(92.5%) 9.9(7.1%) 0.56(0.4%)
4 LW2(2L/1L/4L) 0.050 135.9 123.7(91.1%) 11.5(8.5%) 0.62(0.5%)
4 LW2(2L/1L/4L) 0.100 130.2 115.5(88.7%) 14.0(10.8%) 0.72(0.6%)

8 FSD 0.000 163.1 163.1(100%) 0.0(0%) 0.0(0%)
8 FSD 0.025 163.1 163.1(100%) 0.0(0%) 0.0(0%)
8 FSD 0.050 163.2 163.2(100%) 0.0(0%) 0.0(0%)
8 FSD 0.100 163.2 163.2(100%) 0.0(0%) 0.0(0%)

8 LW1(1L/1L/2L) 0.000 155.8 152.4(97.8%) 3.5(2.2%) 0.0(0%)
8 LW1(1L/1L/2L) 0.025 153.7 149.1(97.1%) 4.5(2.9%) 0.0(0%)
8 LW1(1L/1L/2L) 0.050 151.6 145.9(96.3%) 5.6(3.7%) 0.0(0%)
8 LW1(1L/1L/2L) 0.100 148.4 141.1(95.1%) 7.3(4.9%) 0.0(0%)

8 LW1(2L/1L/4L) 0.000 155.1 151.3(97.5%) 3.8(2.5%) 0.0(0%)
8 LW1(2L/1L/4L) 0.025 152.6 147.6(96.7%) 5.1(3.3%) 0.0(0%)
8 LW1(2L/1L/4L) 0.050 150.7 144.6(96.0%) 6.1(4.0%) 0.0(0%)
8 LW1(2L/1L/4L) 0.100 147.6 140.0(94.8%) 7.6(5.2%) 0.0(0%)

8 LW2(2L/1L/4L) 0.000 155.2 151.6(97.7%) 3.7(2.4%) −0.07(0.04%)
8 LW2(2L/1L/4L) 0.025 152.6 147.8(96.8%) 4.9(3.2%) −0.05(0.03%)
8 LW2(2L/1L/4L) 0.050 150.6 144.7(96.1%) 5.9(3.9%) −0.04(0.02%)
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2P/H Model ha/h Utotal/Vol U2D/Vol Uts/Vol Utn/Vol

8 LW2(2L/1L/4L) 0.100 147.5 140.0(95.0%) 7.5(5.1%) 0.00(0%)
16 FSD 0.000 163.1 163.1(100%) 0.0(0%) 0.0(0%)
16 FSD 0.025 163.1 163.1(100%) 0.0(0%) 0.0(0%)
16 FSD 0.050 163.2 163.2(100%) 0.0(0%) 0.0(0%)
16 FSD 0.100 163.2 163.2(100%) 0.0(0%) 0.0(0%)

16 LW1(1L/1L/2L) 0.000 160.4 159.1(99.2%) 1.2(0%) 0.0(0%)
16 LW1(1L/1L/2L) 0.025 159.5 157.8(99.0%) 1.6(1%) 0.0(0%)
16 LW1(1L/1L/2L) 0.050 158.5 156.4(98.7%) 2.1(1%) 0.0(0%)
16 LW1(1L/1L/2L) 0.100 156.8 153.8(98.1%) 3.0(1%) 0.0(0%)

16 LW1(2L/1L/4L) 0.000 160.1 158.7(99.2%) 1.4(0%) 0.0(0%)
16 LW1(2L/1L/4L) 0.025 159.0 157.1(98.2%) 1.9(1%) 0.0(0%)
16 LW1(2L/1L/4L) 0.050 158.0 155.7(98.5%) 2.3(1%) 0.0(0%)
16 LW1(2L/1L/4L) 0.100 156.5 153.3(98.0%) 3.1(1%) 0.0(0%)

16 LW2(2L/1L/4L) 0.000 160.4 159.2(99.2%) 1.4(0.9%) −0.13(0.08%)
16 LW2(2L/1L/4L) 0.025 159.3 157.5(98.9%) 1.9(1.2%) −0.13(0.08%)
16 LW2(2L/1L/4L) 0.050 158.3 156.1(98.6%) 2.4(1.5%) −0.12(0.08%)
16 LW2(2L/1L/4L) 0.100 156.7 153.6(98.0%) 3.2(2.0%) −0.11(0.07%)

and models. Figs. 5.41 and 5.42 show the total strain energy, the in-plane strain energy
and the transverse shear strain energy stored in the actuated plate for the respective
load cases of extension actuation and bending actuation. The FSD model results are
observed to be completely insensitive to both the actuated span-to-thickness ratio
(2P/H) and adhesive thickness ratio (ha/h). Furthermore, for all of the thickness
configurations tested, the FSD model predicts higher levels of total strain energy
and in-plane strain energy than any of the layerwise models. All of these observed
behaviors are caused by the FSD model’s use of a transverse shear strain that is
required to be constant through the thickness of the laminate, thus preventing the
FSD model from detecting any of the localized discrete-layer transverse shear strain
that occurs near the actuator edges. As a result, the actuator is subjected to an
artificially elevated degree of elastic constraint, which increases the total amount of
strain energy produced during actuation. Furthermore, this increased strain energy is
manifested predominantly as in-plane strain energy, since the FSD model’s assumed
kinematics do not allow the production of localized discrete layer transverse shear
deformation.

Next, consider the behavior predicted by the layerwise models. Part A of
Figs. 5.41 and 5.42 shows that all of the layerwise models predict that the total strain
energy (per unit volume) decreases significantly as 1) the actuated span-to-thickness
ratio (2P/H) decreases, and/or 2) the adhesive thickness ratio (ha/h) increases. In
both load cases, the decrease in total strain energy is due to the decreased level
of elastic constraint that is exerted on the piezoceramic patch, thus permitting the
piezoceramic patch to deform without accumulating as much stress. Since the piezo-
ceramic patch is surface mounted, only one of its six surfaces is elastically constrained.
As the actuated span-to-thickness ratio (2P/H) decreases, this constrained surface
accounts for a smaller percentage of the patch’s total surface area, thus its level
of constraint is effectively lowered. Furthermore, as the adhesive thickness ratio is
increased, the relatively compliant adhesive results in lower elastic constraint forces
exerted on the patch; i.e., the patch becomes more able to deform the compliant
adhesive without deforming the relatively stiff substrate.
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Table 5.10. Computed total strain energy and strain energy components (in J/m3) for entire
actuated plate during bending actuation. Quantities in parentheses denote the percent
contribution of each strain energy component to the total strain energy. Imposed electric field
strength for each actuator is 393.7 volts/mm

2P/H Model ha/h Utotal/Vol U2D/Vol Uts/Vol Utn/Vol

2 FSD 0.000 86.9 86.8(99.9%) 0.1(0.1%) 0.0(0%)
2 FSD 0.025 86.0 85.9(99.9%) 0.1(0.1%) 0.0(0%)
2 FSD 0.050 85.2 85.1(99.9%) 0.1(0.1%) 0.0(0%)
2 FSD 0.100 83.5 83.3(99.9%) 0.1(0.1%) 0.0(0%)

2 LW1(1L/1L/2L) 0.000 77.3 72.5(93.7%) 4.9(6.3%) 0.0(0%)
2 LW1(1L/1L/2L) 0.025 73.3 66.8(91.2%) 6.4(8.8%) 0.0(0%)
2 LW1(1L/1L/2L) 0.050 69.4 61.5(88.6%) 7.9(11.4%) 0.0(0%)
2 LW1(1L/1L/2L) 0.100 63.6 53.9(84.7%) 9.7(15.3%) 0.0(0%)

2 LW1(2L/1L/4L) 0.000 75.8 70.2(92.6%) 5.6(7.4%) 0.0(0%)
2 LW1(2L/1L/4L) 0.025 70.4 62.6(89.0%) 7.8(11.0%) 0.0(0%)
2 LW1(2L/1L/4L) 0.050 66.9 57.9(86.6%) 9.0(13.4%) 0.0(0%)
2 LW1(2L/1L/4L) 0.100 61.6 51.1(82.8%) 10.6(17.2%) 0.0(0%)

2 LW2(2L/1L/4L) 0.000 76.9 71.6(93.1%) 5.3(6.9%) 0.02(0.03%)
2 LW2(2L/1L/4L) 0.025 70.9 63.3(89.3%) 7.4(10.4%) 0.19(0.26%)
2 LW2(2L/1L/4L) 0.050 67.2 58.3(86.9%) 8.6(12.7%) 0.27(0.41%)
2 LW2(2L/1L/4L) 0.100 61.6 51.1(83.0%) 10.1(16.3%) 0.38(0.62%)

4 FSD 0.000 87.1 87.0(99.9%) 0.1(0.1%) 0.0(0%)
4 FSD 0.025 86.2 86.1(99.9%) 0.1(0.1%) 0.0(0%)
4 FSD 0.050 85.3 85.2(99.9%) 0.1(0.1%) 0.0(0%)
4 FSD 0.100 83.6 83.5(99.9%) 0.1(0.1%) 0.0(0%)

4 LW1(1L/1L/2L) 0.000 82.4 80.0(97.0%) 2.5(3.0%) 0.0(0%)
4 LW1(1L/1L/2L) 0.025 80.1 77.0(96.1%) 3.1(3.9%) 0.0(0%)
4 LW1(1L/1L/2L) 0.050 77.6 73.6(94.9%) 4.0(5.1%) 0.0(0%)
4 LW1(1L/1L/2L) 0.100 73.7 68.6(93.1%) 5.1(6.9%) 0.0(0%)

4 LW1(2L/1L/4L) 0.000 81.7 78.9(96.6%) 2.8(3.4%) 0.0(0%)
4 LW1(2L/1L/4L) 0.025 78.6 74.8(95.1%) 3.9(4.9%) 0.0(0%)
4 LW1(2L/1L/4L) 0.050 76.3 71.7(94.0%) 4.6(6.0%) 0.0(0%)
4 LW1(2L/1L/4L) 0.100 72.7 67.1(92.3%) 5.6(7.7%) 0.0(0%)

4 LW2(2L/1L/4L) 0.000 82.9 80.3(96.8%) 2.8(3.3%) −0.12(0.15%)
4 LW2(2L/1L/4L) 0.025 79.6 75.8(95.3%) 3.8(4.8%) −0.07(0.09%)
4 LW2(2L/1L/4L) 0.050 77.1 72.6(94.2%) 4.5(5.9%) −0.03(0.04%)
4 LW2(2L/1L/4L) 0.100 73.3 67.8(92.5%) 5.5(7.5%) 0.02(0.03%)

8 FSD 0.000 87.3 87.2(95%) 0.1(0.1%) 0.0(0%)
8 FSD 0.025 86.4 86.3(95%) 0.1(0.1%) 0.0(0%)
8 FSD 0.050 85.5 85.4(95%) 0.1(0.1%) 0.0(0%)
8 FSD 0.100 83.8 83.7(95%) 0.1(0.1%) 0.0(0%)

8 LW1(1L/1L/2L) 0.000 85.3 84.3(98.8%) 1.0(1.2%) 0.0(0%)
8 LW1(1L/1L/2L) 0.025 83.9 82.6(98.5%) 1.3(1.5%) 0.0(0%)
8 LW1(1L/1L/2L) 0.050 82.1 80.4(97.9%) 1.7(2.1%) 0.0(0%)
8 LW1(1L/1L/2L) 0.100 79.2 76.9(97.1%) 2.3(2.9%) 0.0(0%)

8 LW1(2L/1L/4L) 0.000 85.0 83.9(98.6%) 1.2(1.4%) 0.0(0%)
8 LW1(2L/1L/4L) 0.025 83.1 81.5(98.0%) 1.7(2.0%) 0.0(0%)
8 LW1(2L/1L/4L) 0.050 81.5 79.5(97.5%) 2.0(2.5%) 0.0(0%)
8 LW1(2L/1L/4L) 0.100 78.7 76.1(96.7%) 2.6(3.3%) 0.0(0%)

8 LW2(2L/1L/4L) 0.000 86.2 85.1(98.7%) 1.2(1.4%) −0.12(0.11%)
8 LW2(2L/1L/4L) 0.025 84.2 82.6(98.1%) 1.7(2.0%) −0.11(0.09%)



5.14 Strain Energy Distribution 571

2P/H Model ha/h Utotal/Vol U2D/Vol Uts/Vol Utn/Vol

8 LW2(2L/1L/4L) 0.050 82.5 80.5(97.6%) 2.1(2.5%) −0.10(0.09%)
8 LW2(2L/1L/4L) 0.100 79.6 77.0(96.8%) 2.7(3.3%) −0.08(0.07%)

16 FSD 0.000 87.5 87.4(99.9%) 0.1(0.1%) 0.0(0%)
16 FSD 0.025 86.6 86.5(99.9%) 0.1(0.1%) 0.0(0%)
16 FSD 0.050 85.7 85.6(99.9%) 0.1(0.1%) 0.0(0%)
16 FSD 0.100 84.0 83.9(99.9%) 0.1(0.1%) 0.0(0%)

16 LW1(1L/1L/2L) 0.000 86.9 86.5(99.6%) 0.4(0.4%) 0.0(0%)
16 LW1(1L/1L/2L) 0.025 85.8 85.3(99.5%) 0.4(0.5%) 0.0(0%)
16 LW1(1L/1L/2L) 0.050 84.5 83.9(99.3%) 0.6(0.7%) 0.0(0%)
16 LW1(1L/1L/2L) 0.100 82.3 81.4(99.0%) 0.9(1.0%) 0.0(0%)

16 LW1(2L/1L/4L) 0.000 86.8 86.3(99.5%) 0.4(0.5%) 0.0(0%)
16 LW1(2L/1L/4L) 0.025 85.5 84.9(99.3%) 0.6(0.7%) 0.0(0%)
16 LW1(2L/1L/4L) 0.050 84.3 83.5(99.1%) 0.7(0.9%) 0.0(0%)
16 LW1(2L/1L/4L) 0.100 82.0 81.1(98.8%) 1.0(1.2%) 0.0(0%)

16 LW2(2L/1L/4L) 0.000 87.9 87.5(99.6%) 0.4(0.5%) −0.11(0.13%)
16 LW2(2L/1L/4L) 0.025 86.5 86.0(99.4%) 0.6(0.7%) −0.11(0.12%)
16 LW2(2L/1L/4L) 0.050 85.3 84.7(99.2%) 0.8(0.9%) −0.10(0.12%)
16 LW2(2L/1L/4L) 0.100 83.0 82.1(98.9%) 1.01.2%) −0.10(0.12%)

Part B of Figs. 5.41 and 5.42 shows that the in-plane strain energy (per unit
volume) decreases even more significantly than the total strain energy. In practical
terms, this is important since the actuator is usually intended to induce in-plane
normal deformation in the substrate. The dramatic decrease in the in-plane strain
energy can be explained as follows. As the actuated span-to-thickness ratio decreases,
or as the adhesive thickness ratio increases, the actuator tends to produce an

Figure 5.41. Extension actuation results showing the effect of actuated span-to-thickness ratio 2P/H and
adhesive thickness ratio ha/h on: A) total strain energy, B) in-plane strain energy, C) transverse–shear
strain energy. Energy density is expressed in J/m3.
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Figure 5.42. Bending actuation results showing the effect of actuated span-to-thickness ratio
2P/H and adhesive thickness ratio ha/h on: A) total strain energy, B) in-plane strain energy,
C) transverse–shear strain energy. Energy density is expressed in J/m3.

increasing amount of localized transverse-shear deformation. This can be seen in
Part C of Figs. 5.41 and 5.42, which shows that the transverse shear-strain energy
increases significantly as the actuated span-to-thickness ratio (2P/H) decreases
and/or the adhesive thickness ratio increases. In summary, as 2P/H decreases or
as ha/h increases, the total strain energy decreases due to a reduction in the degree
of elastic constraint exerted on the patch. This reduction in total strain energy is
compounded by the fact that as 2P/H decreases or as ha/h increases, an increasing
portion of the total strain energy is manifested as transverse shear strain energy at
the expense of in-plane strain energy. These physically correct trends are completely
absent in the FSD model.

All three of the layerwise models yield strain energy results that confirm the
existence of the local kinematic effect whereby a portion of the available actua-
tion energy is diverted to the production of localized transverse shear deformation
and transverse normal deformation, thus reducing the amount of actuation energy
available to produce in-plane deformation in the structural substrate. Each of the
layerwise models clearly predicts that as the actuated span-to-thickness ratio (2P/H)
decreases and/or the adhesive thickness ratio (ha/h) increases, the transverse shear
strain energy density of the adhesive layer increases at the expense of the in-plane
strain energy density of the aluminum substrate and piezoceramic actuators. For the
thickest actuated plate configuration tested (2P/H = 2, ha/h = 0.1), the transverse
shear-strain energy in the adhesive layer accounts for 15% and 11% of the total
strain energy of the actuated plate for the cases of extension actuation and bending
actuation, respectively. Considering that the adhesive layer only accounts for 1% of
the volume of the actuated plate, the strain energy density of the adhesive layer is
seen to be much higher than that of the other constituent materials. The results also
clearly show that the primary destination of energy diverted by the local kinematic
effect is local transverse shear deformation as opposed to local transverse normal
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deformation. This is determined by examining the strain energy results from com-
parable LW1 and LW2 layerwise models, where it is observed that the transverse
shear strain energy predicted by the LW1 and LW2 models shows good agreement
and is at least an order of magnitude larger than the transverse normal strain energy
predicted by the LW2 model. Even for the thickest actuated-plate configuration
tested (2P/H = 2, ha/h = 0.1), the transverse shear strain energy is approximately
10 and 25 times as large as the transverse normal strain energy for the respective
load cases of extension actuation and bending actuation.

For actuated plates with relatively high span-to-thickness ratios, the boundary
layer region (where local transverse shear strains are significant) occupies only a
small portion of the total computational domain. In such cases, it is impractical
to use a 2-D mesh with sufficient refinement to permit a smooth, non-oscillating
transverse–shear strain distribution in the adhesive bond layer, since this requires a
minimum of two or three elements across the width of the boundary layer. However,
the strain energy contributions from each constituent material were consistently
predicted by each of the layerwise models over a wide range of 2-D mesh densities,
and were shown to converge at 2-D mesh densities that are far below that required to
accurately depict the local transverse shear strain distribution. Even using coarse 2-D
meshes where the element size is considerably larger than the width of the boundary
layer region, the layerwise models were able to correctly distinguish the magnitude
and mode of the dominant strain energy form in each constituent material.

5.15 Review of Plate Modeling

The modeling of laminated composite structural components can be broadly clas-
sified into two basic categories according to the kinematics assumed in each case.
The first category of models, known as ’equivalent single layer’, or ESL models, are
identified by the use of a displacement field that exhibits C1 continuity with respect
to the laminate thickness coordinate. This means that the displacement components
and their thickness derivatives are continuous through the entire laminate thickness.
This assumption results in a high computation efficiency because of only a few eval-
uations of functions. Many ESL models of actuated plates are adaptations of the
classical laminate plate theory (CLPT) or classical laminate theory (CLT), which
is based on Kirchhoff-Love hypothesis (transverse normal material fibers remain
straight and normal to the curved mid-plane). The CLPT is strictly valid for very
thin laminates.

Table 5.11 lists different smart plate models that can be found in the literature.
Crawley and Lazarus [10] systematically developed the CLPT formulation and a
Rayleigh-Ritz analysis for anisotropic plates and validated it with test data obtained
by testing cantilevered aluminum and composite plates with surface-bonded piezo-
ceramic actuators (fully attached on top and bottom surfaces). Nonlinear piezo
characteristics (d31 with field) were measured experimentally and included in the
analysis using an iterative approach. Results demonstrated the validity of the anal-
ysis for selected plate configurations and showed the potential for shape control
with induced strain actuation. Also, Lee [11, 12] developed a CLPT formulation
for composite plate using linear actuation characteristics of piezoelectric laminae.
A limited validation study was carried out with test data obtained from a thin com-
posite plate actuated with piezoelectric polymer film (PVDF and PVF2). Wang and
Rogers [13] applied CLPT to determine the equivalent force and moment induced



Table 5.11. Comparison of smart plate models

Piezoelectric
Modeling type Actuators coupling Plate type Validation Reference

CLPT Surface bonded full
surface

uncoupled Composite, nonlinear
piezo characteristics

Cantilevered aluminum
and composite

Crawley and Lazarus [10]

Surface bonded
patches

Composite, linear piezo
characteristics

Cantilevered composite Lee [12]

Modified CLPT with
transverse shear

Surface & embedded
Discrete patches

uncoupled Composite, nonlinear
piezo characteristics

cantilevered composite Hong and Chopra [15]

Reissner-Mindlin FSDT Surface & embedded
Discrete patches

coupled nonlinear Karman
analysis, thick
isotropic

Carrera [17]

LWSDT Surface & embedded
Piezoply

coupled isotropic & composite Mitchell and Reddy [18]
Robbins and Reddy [19]
Chattopadhyay et al. [7]
Zhou et al. [8]

Higher-order
three-dimensional
thick plate theory

Surface & embedded
Piezoply

coupled isotropic, thick Sun and Whitney [4]
Batra and Vidoli [20]
Ha et al. [21]

574
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Figure 5.43. Cantilevered plate
with surface mounted piezoce-
ramic sheet actuators.

by finite-length surface-attached piezoelectric actuator to a laminate. They used lin-
ear characteristics of piezoelectrics and developed a simplified analysis to calculate
bending and extension of the plate. Within the CLPT framework, the piezoelectric
sheet is assumed to be an integrated ply of the laminated plate. For thicker plates,
the first-order shear deformation theory (FSDT) provides ESL representation to
estimate gross macroscopic shear deformation behavior. For this theory, the shear
deformation is assumed constant with respect to the thickness coordinate of the plate.
Lin et al. [14] developed a FSD finite element model of piezoelectrically actuated
plates.

Hong et al. [15] developed a consistent finite-element formulation for coupled
composite plates including modeling of transverse shear and nonlinear piezoelectric
characteristics. The analysis is applicable to a generic anisotropic plate with a num-
ber of piezoactuators of arbitrary size, surface-bonded or embedded at arbitrary
locations. Composite cantilevered plates with extension-twist and bending-twist-
couplings with two rows of surface-bonded piezoceramics on both top and bottom
surfaces were tested extensively and data were used to validate analysis (Fig. 5.43).
Predictions agreed satisfactorily with test data for most configurations, the exception
being strongly bending–twist-coupled plates, where the predicted induced twist due
to bending was underestimated by 20% (Fig. 5.44). The use of an iterative proce-
dure with the incorporation of nonlinear piezoelectric characteristics (as suggested
by other researchers) was found to be unnecessary. Heyliger [16] obtained exact
solutions for some idealized plate configurations.

Higher order ESL models with full thermo–electro-mechanical coupling were
formulated for laminated plates by Chattopadhyay et al. [7] for static analysis and
by Zhou et al. [8] for dynamic analysis. In these studies, the in-plane displacement
components were assumed to be cubic functions of the thickness coordinate, while
the transverse normal effects were neglected through the assumption of zero trans-
verse normal stress (σz = 0). For undamaged, relatively thin, homogeneous plates,
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Figure 5.44. Spanwise bending
and twist distribution at the mid-
chord of a composite coupled
plate due to piezo bending exci-
tation at 100 Volts.

the assumption of C1 thickness continuity for the displacement field is generally
considered adequate. However, for composite laminates, where adjacent material
layers are likely to be quite different in material characteristics, this assumption (of
C1 continuity) is overly restrictive and prevents the transverse normal fibers from
exhibiting localized kinking at the material interface. In fact, it will result in a loss
of transverse stress equilibrium at layer interfaces. This warping and kinking is most
noticeable within very thick laminates, or near geometric or material discontinuities
(for example, free edges), and near damaged area. ESL models are not expected to
provide accurate solutions for such cases.

The second category of models, known as ‘discrete layer’ models (or layerwise
models) are identified by the use of a displacement field that exhibits only C0

continuity with respect to the laminate thickness coordinate. This means that the
displacement components are continuous through the entire laminate thickness,
but their thickness derivatives can be discontinuous along the thickness direction
(commensurate with the level of transverse discretization employed). In a layerwise
model, the laminate thickness is divided ino a contiguous set of numerical layers.
The displacement field is then separately defined within each assumed layer in
such a way that the displacement components maintain continuity across interlayer
boundaries; whereas their thickness derivatives are not required to be continuous
across the interlayer boundaries. It is important that the assumed number of layers
is greater than or equal to the number of distinct material laminae. The layerwise
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model is capable of representing a variable displacement field across the thickness,
appropriately representing the kinking and warping of transverse normal fibers
in a multilayer laminate. This modeling capability becomes quite important in an
actuated plate due to the presence of adhesive bond layers. It should be kept in mind
that full 3-D finite-element models can be classified as discrete layerwise models
provided more than one 3-D element is used to discretize the laminate thickness
dimension. While layerwise models are capable of providing accurate solutions to
problems that exhibit significant 3-D stress and strain fields, they are computationally
too expensive for use in most practical problems. Even though the layerwise models
utilize a 2-D data structure (similar to 2-D ESL models), each node contains a large
number of degrees of freedom. Thus, a layerwise finite element model produces a
global system of equations that is comparable in size to a full 3-D finite-element
model.

References [22]–[23] reviewed several refined plate theories for induced strain
actuation. Bisegna et al. [24, 25] developed a Reissner-Mindlin type finite element
formulation (locking-free quadrangular elements) for the analysis of a plate with
surface-bonded thin piezoelectric – sheet actuators. It was shown to be suitable and
effective for some vibration-control analyses. Carrera [17] extended the Reissner-
Mindlin plate model to the multi-layered structures through the inclusion of both the
zigzag effect – in-plane displacements and the interlamina equilibrium of transverse
shear stresses. The theory is normally denoted by an acronym RMZC (Reissner-
Mindlin Zigzag Continuity). For the calculation of results, a quadratic distribution
of the voltage field along the thickness direction and von Karman-type nonlinear
plate analysis were used factoring in the effect of electro-mechanical coupling. It was
shown that RMZC effects become important for thick anisotropic plates, especially
in the evaluation of transverse shear stresses. Kapuria and Achary [26] developed
a coupled zigzag theory for hybrid piezoelectric plates under thermomechanical
loads, where the deflection is approximated as a combination of a global uniform
term across the thickness and local piecewise – quadratic variations across sublayers
to account for the transverse normal strain. The inplane displacements are approxi-
mated as a combination of a third-order global variation across the thickness and a
piecewise linear variation across layers.

Yu and Hodges [27] developed a variational-asymptotic analysis using Reissner-
Mindlin formulation to solve laminated composite plates under mechanical, thermal,
and electrical loads. Through this approach, they split the three-dimensional prob-
lem into two parts: (1) a non-linear two-dimensional global plate analysis, and (2) a
linear analysis through the thickness to provide two-dimensional generalized consti-
tutive model and recovery relations. Edery-Azulay and Abramovich [28] presented
a Reissner-Mindlin theory for plates (FSDT), developed for laminated plates with
continuous piezoelectric layers. The formulation included Levy’s solution for plates
with two opposite simply-supported edges.

Mitchell and Reddy [18] used LWSDT to model smart composite laminates
with embedded piezoelectric sheets using linear piezoelectric characteristics. Also,
this model included the coupling between mechanical deformation and electrostatic
charge equations. Robbins and Reddy [29] incorporated a layerwise composite plate
model using an induced strain approach to approximate the piezoelectric effect. They
demonstrated that the resulting layerwise plate model produced laminate solutions
that were equivalent to 3-D finite element solutions, provided that comparable levels
of discretization were used. However, the layerwise model is based on an efficient
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2-D data structure, which permits the finite element equations to be computed and
assembled much more quickly than the 3-D model.

Robbins and Reddy [19] formulated a linear global-local analysis based on layer-
wise shear deformation theory to determine local shear fields and global response
in surface-mounted – piezoelectric actuated plates. Using a variable-order finite ele-
ment discretization, interlaminar stresses in the adhesive layer were determined. It
was shown that the highest transverse normal stress occurs at the interfase between
bond layer and surface near the free edges that may be the likely source of debonding.
Chattopadhyay et al. [8, 7] used LWSDT to calculate static and dynamic response
of composite plates with surface-bonded piezoelectric actuators using a completely
coupled thermo-piezoelectric – mechanical model. Most researchers have neglected
these coupling effects. They have shown that to accurately model the behavior of
smart composite laminates, it is important to model transverse shear of each layer
using LWSDT and incorporate piezoelectric-mechanical two-way coupling effects.
Heyliger et al. [30] and Saravanos et al. [31] developed layerwise plate models with
full electro-mechanical coupling. Vel and Batra [32] developed a three-dimensional
analytical solution using Eshelby-Stroh formalism to calculate the static response
of thick multi-layered piezoelectric plates. Only linear piezoelectric characteristics
are incorporated. Using a three-dimensional mixed-variational principle [33], Batra
and Vidoli [20] derived higher-order (kth order) anisotropic homogeneous – piezo-
electric plate theory. The electric potential, mechanical displacement, and in-plane
stresses were expressed as a finite series of order k in the thickness coordinate
using Legendre polynomials as the basis functions. The boundary conditions on the
top and bottom surfaces were exactly satisfied. Results were obtained for bend-
ing of cantilevered thick plate with surface-bonded PZT sheets. It was shown that
the seventh-order plate theory captured well the boundary layer effects near the
free and clamped edges. Kulkarni and Bajoria [34] developed a geometrically non-
linear analysis of piezolaminated composite plates and shells using higher order
shear deformation theory in conjugation with the von Karman hypothesis. The finite
element formulation was based on energy principles and linear piezoelectric char-
acteristics were used. When there is a abrupt change of material properties of the
layers and the thickness of the sandwich plate, higher order shear deformation the-
ory appears more appropriate and shows considerable deviation from first order
shear deformation analysis. Ha et al. [21] used a three-dimensional composite brick
element to analyze static and dynamic response of a laminated plate with distributed
piezoceramic actuators. Even though such an analysis can increase the computa-
tional involvement enormously, it provides the flexibility to analyze generic plate
configurations including thick plates with surface-bonded or embedded patched
actuators.

Most current plate analyses assume a perfect bond condition between actua-
tor and bond surface (i.e., neglect shearing effect of adhesive). This assumption is
too restrictive, and therefore requires a careful assessment, especially for discrete
actuators. Further, simple plate theories such as CLPT are routinely used to ana-
lyze plate structures. It should be important to examine its limits for different plate
configurations and actuation fields with the help of either higher-order shear defor-
mation theories (such as LWSDT) or detailed finite-element methods (such as 3-D
solid elements). There have been limited studies to validate predictions using exper-
imental test data for coupled composite plates with surface-bonded or embedded
piezoelectric elements. These studies should be expanded to cover a range of plate
configurations including strongly coupled bending-torsion coupled plates.
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6 Magnetostrictives and Electrostrictives

Magnetostrictives and electrostrictives are active materials that exhibit magneto-
mechanical and electromechanical coupling respectively. The materials undergo a
change in dimensions in response to an applied magnetic or electric field. A common
property of both materials is that the induced strain depends only on the magnitude
of the applied field, and is independent of its polarity. In other words, it can be said
that the induced strain has a quadratic dependence on the applied field. It is this
behavior that differentiates electrostriction from the piezoelectric effect, which is
also caused by an electric field. This chapter discusses the basic mechanisms behind
magnetostriction and electrostriction, and describes how these materials are used to
construct practical actuators and sensors. The behavior of Magnetic Shape-Memory
Alloys is also described.

6.1 Magnetostriction

A ferromagnetic material placed in a magnetic field generally undergoes a change
in shape [1]. The internal structure of a ferromagnetic material consists of randomly
oriented magnetic domains. When a magnetic field is applied, the domains rotate
to align themselves along the field, causing a change in the material dimensions.
This phenomenon is known as magnetostriction. The effect is small in most mate-
rials, but is measurable (on the order of microstrain) in ferromagnetic materials.
Some materials such as Terfenol-D exhibit magnetostrictive strains on the order
of 2000 microstrain (2000 × 10−6). Such materials can be used both as solid-state
actuators and as magnetic field sensors. Magnetostrictive materials are available
in the form of rods, thin films, and powder. The material is usually supplied by
manufacturers ready to assemble into devices, without the need for any processing;
however, some manufacturers also provide complete actuator assemblies, includ-
ing the active material, magnetic field generators, and housing. Note that since the
material is brittle, any machining operations such as threading, drilling, soldering,
and welding should be avoided. Magnetostrictive materials are now being used for
a wide range of applications that include active vibration and noise control systems,
machine tools, servo-valves, hybrid motors, sonar devices and tomography, automo-
tive brake systems, micro-positioners, particulate-actuators and sensors, ultrasonic
cleaning, machining and welding, and micropositioning and sensors [2, 3, 4].

581
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Table 6.1. Maximum magnetic field
induced strain

Material Magnetostriction (×10−6)

Iron 20
Nickel −40
Cobalt −60
Alfenol 13 40
NiCo 186
Galfenol 300
TbFe2 1750
Terfenol-D 2000
SmFe2 −1560

James Prescott Joule first discovered the magnetostrictive effect in nickel in
1842. Later, cobalt, iron, and their alloys were shown to have significant magne-
tostrictive effects similar to those of nickel. The maximum strains were of the order
of 50 ppm (parts per million, 0.005%). Table 6.1 shows the magnetostriction of dif-
ferent materials. Note that nickel has a negative magnetostrictive constant, which
means that a decrease in dimension occurs in the presence of a magnetic field along
that dimension. The early applications of magnetostriction, using nickel and other
magnetostrictive materials date back to the first half of the twentieth century. These
applications include telephone recievers, hydrophones, oscillators, torquemeters and
sonar devices. These early applications were limited because of the low saturation
strains of the materials (less than 100 ppm). The discovery of Terfenol-D, with its
large magnetostriction, expanded the range of applications.

Magnetostrictive nickel-based alloys (magnetostriction �50 ppm) were
employed in building transducers for sonar devices applications in World War II.
In the early 1960’s, there was a discovery of “giant magnetostriction” in the rare
earth elements Terbium and Dysprosium. Even though one could obtain large
induced strain (1000 microstrain), it could be achieved only at cryogenic temper-
atures. Because of this temperature requirement, this discovery limited applications.
In the early 1970’s, researchers at the Naval Ordnance Laboratories (NOL), later
known as the Naval Surface Warfare Center (NSWC) began developing giant mag-
netostrictive alloys at room temperature with the lanthanide elements. One such
alloy was Terfenol-D, developed by Arthur Clark [5] and his co-workers. Terfenol-
D is an intermetallic alloy of Terbium, Dysprosium, and Iron, (TbxDy1−xFey) that is
produced as a near-single crystal. The value of x varies from 0.27 to 0.3 and y varies
from 1.92 to 2.0. Small changes in x and y can have a major influence on the alloy’s
magnetic, magnetostrictive and elastic properties. For example, a small decrease in
y below 2.0 reduces brittleness significantly, but also decreases the maximum strain
capability. Increasing x above 0.27 improves magnetostriction at lower fields and
results in more efficient energy transduction. These findings demonstrate that mod-
ifications in the stoichiometry of Terfenol-D can have a significant influence on its
properties. The material characteristics of Terfenol-D are nonlinear functions of
mechanical, magnetic, and thermal operating conditions. For example, the Young’s
modulus changes with applied stress.

Butler et al. [6, 7] provided an introduction to the magnetostrictive materials and
especially to the ETREMA’s Terfenol-D (Ter for Terbium, Fe for Ferrous, NOL
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for Naval Ordnance Laboratory, and D for Dysprosium). The maximum strain pro-
duced by Terfenol-D, (on the order of 2000 × 10−6 or 0.2% in a magnetic field of
10 kA/m or 2kOe), is almost twice the maximum strain produced by piezoceramics.
The peak strains produced by Terfenol-D are more than those generated by piezo-
electric and electrostrictive materials. The material coupling factor, k2 (the ability to
convert magnetic energy into mechanical energy) of Terfenol-D, is of the same level
(�50%) as that of piezoelectrics. However, the magnetic permeability and mechan-
ical stiffness of Terfenol-D are generally low. For example, the Young’s modulus of
Terfenol-D is about one–half that of a typical PZT. Terfenol-D is available in a vari-
ety of forms that include thin films, powder material, and monolithic rods, which is
the most common. In 1978, Clark and co-workers developed a new magnetostrictive
material based on amorphous metal, called metglas (metallic glass), in the form of
thin ribbons. This material has an extremely high coupling factor (k2 = 0.85), which
makes it a prime candidate for sensor applications.

The manufacturing of Terfenol-D is carried out by melting the material, and
then casting and directionally solidifying it to provide the unidirectional crys-
talline microstructure needed to produce large strains. Two common manufac-
turing techniques are the Free Standing Zone Melt (FSZM) and the modified
Bridgman (MB) methods. These methods are known as directional solidification
methods, and are described in detail along with other methods of production in
Refs. [8, 9, 10, 11, 12]. Today, advanced crystalline magnetostrictive materials are
also being manufactured using crystal growth techniques to obtain directional solid-
ificiation along the longitudinal axis of the rod, including precision laminations. The
crystal growth process requires a high degree of purity of Terbium, Dysprosium and
Iron. To improve material characteristics, heat treatment and magnetic annealing are
used.

The main drawback of Terfenol-D is its low tensile strength and extremely brittle
nature. These limitations make it difficult to design actuators with complex shapes,
optimized for specific applications. The design space available to magnetostrictive
materials has recently been expanded by the development of a new class of mag-
netostrictive alloys called Iron-Gallium alloys (or Galfenol), by researchers at the
Naval Surface Warfare Center [13]. These alloys exhibit moderate magnetostriction
(350 × 10−6) under very low magnetic fields (�100 Oe), have very low hysteresis,
demonstrate high tensile strength (�500 MPa) and limited variation in magneto-
mechanical properties for temperatures between −20◦C and 80◦C [14, 15, 16]. In
addition, Galfenol is highly ductile, machinable, and weldable. The behavior of dif-
ferent alloy compositions under a variety of operating conditions is currently under
investigation.

As a result of the magnetostrictive, or Joule effect, an application of a mag-
netic field results in a longitudinal extensional strain accompanied by a transverse
compressive strain with a negligible change in net volume. A converse effect also
exists, which is a change in the magnetization of the material in response to deforma-
tions. This is called the Villari effect. The Joule effect is used in actuators, whereas
the Villari effect is used in sensors. The Joule effect transforms magnetic energy
into mechanical energy, whereas the Villari effect, transforms mechanical energy
into magnetic energy. Using a helical magnetic field around the magnetostrictive
material, a twisting action can be produced which is called the Wiedemann effect.
The inverse effect, in which application of torque results in a change of magneti-
zation, is called the Matteusi effect. Due to the bidirectional exchange of energy,
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magnetostrictive materials can be used as both actuators and sensors. Above the
Curie temperature (specific material characteristic), the materials lose their magne-
tostrictive property and become paramagnetic.

For an actuator, an electrical coil, usually in the shape of a solenoid, is used
to convert electrical energy into magnetic energy and a Terfenol-D rod is used to
convert the magnetic energy, into mechanical energy. For a sensor, the strain in
the sensing element (Terfenol-D) changes its magnetization as well as the magnetic
energy in the solenoid. Thus, the sensor converts mechanical energy into magnetic
energy, which can be measured using either a Hall probe or a sensing coil. In this
way, magnetostrictive materials can deform due to induced strain in a magnetic field
(actuation mode) or change their magnetiziation state when mechanically deformed
(sensing mode). Also, magnetostrictive materials change their stiffness under an
external magnetic field, often called the “�E” effect. For example, the Young’s
modulus of Terfenol-D becomes higher under a DC magnetic field than when
under no magnetic field. The stiffness of magnetostrictive materials also depends
on whether these materials are operated under mechanically free conditions (zero
external load), mechanically clamped conditions (zero strain), or a combination of
the two. The material is typically stiffer when mechanically clamped than when
allowed to strain freely. At magnetic saturation, an intrinsic or uncoupled stiffness
is achieved.

The design of the magnetic circuit is crucial to obtaining good performance
in terms of uniformity of the magnetic field, maximum field intensity, and so on.
In addition, the weight of the magnetic field generator, which includes the coils of
the electrical conductor and the magnetic flux paths, is often the largest fraction
of the total weight of the actuator. A good design of the magnetic field generator
can therefore significantly increase the overall power efficiency of the system, in
terms of weight as well as volume. For example, to minimize eddy current losses,
laminated magnetostrictive cores and slit permanent magnets are used. For most
applications, the magnetostrictive material is a monolithic, grain-oriented Terfenol-
D (Tb0.3Dy0.7Fe1.92) rod, which is manufactured such that a large number of magnetic
moments are oriented normal to the longitudinal axis of the rod. A compressive bias
stress further improves the alignment of magnetic moments, as well as minimizes the
tensile stresses that are applied to the brittle Terfenol-D rod. For a zero-bias magnetic
field, the oscillatory response of the rod takes place at twice the excitation frequency
(frequency of the magnetic field). To achieve a bi-directional dynamic response of
the Terfenol-D rod, a DC magnetic bias is applied by including a permanent magnet
in the circuit or by applying a DC current in the magnetic coil. In such a case, the
output response occurs at the same frequency as the excitation field.

6.2 Review of Basic Concepts in Magnetism

The phenomenon of magnetism has been well documented and remains one of the
cornerstones of modern science. As such, it is not possible to provide a comprehen-
sive background of magnetism without filling several volumes. Magnetic quantities
are expressed in several different systems of units, and can often be confusing. How-
ever, a one-to-one correspondence exists between electrical and magnetic quantities,
and the behavior of electrical and magnetic circuits are analogous. While detailed
discussions of electromagnetism can be found in standard textbooks a brief review of
some basic definitions and concepts in magnetism will be useful before discussing the
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rFigure 6.1. Magnetic field induced by a current element.

magnetostrictive effect and methods for actuation of magnetostrictive and magnetic
shape memory alloy elements.

6.2.1 Magnetic Field B and the Biot-Savart Law

A basic quantity used in the discussion of magnetism is the magnetic field, B. This
is a vector quantity and is also refered to as the magnetic induction or the magnetic
flux density. In the International System of Units (SI) system, the unit of B is the
Tesla (T), or N/(A.m). The field required to exert a force of 1 N on a charge of 1
Coulomb (C) moving at a velocity of 1 m/sec is defined as 1 Tesla. A physical feel
of the magnitude of a 1 Tesla field can be obtained by noting that the magnetic field
of the earth near its surface is approximately 0.5 × 10−4 T [17]. Permanent magnets
for laboratory use are commonly available with fields of up to 2.5 T.

Fundamentally, magnetic fields are generated as a result of the motion of elec-
trical charges (discovered by Hans Christian Oersted in 1819). Even in the case of
permanent magnets, the origin of the magnetic field can be traced to the motion
of electrons within the material. In practice, a magnetic field can be produced by
a current-carrying coil. The magnitude and direction of the magnetic field can be
very conveniently controlled by the magnitude and direction of the applied current.
At a point P, a conductor element of length ds carrying a steady current vector i
(Amperes) generates a magnetic field in free space given by the Biot-Savart Law
(Fig. 6.1)

dB = μo

4π
i d�s × r̂

r2
(6.1)

where r is the magnitude of the distance of the point P from the elemental conductor,
and r̂ is the unit vector pointing from the element to P. Note that the symbols in
bold, such as the magnetic field dB, are vector quantities. The Biot-Savart law is a
fundamental relation of electromagnetism and can be used to calculate the magnetic
field around a current carrying conductor of any given geometry. Numerical methods
are often used to obtain the solution for complex geometries including nonlinear
effects [1].

The constant μo is called the permeability of free space and is given by

μo = 4π × 10−7 T.m/A or N/A2 or H/m (6.2)

where symbol H represents Henry, and it is the SI derived unit.
Note that as a result of the vector cross product, the magnetic field dB lies in a

plane perpendicular to the elemental conductor ds. Along the elemental conductor,
dB becomes zero. The magnetic field is maximum in a plane perpendicular to the
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(a) Application of Biot-Savart law (b) Direction of magnetic field

Figure 6.2. Magnetic field due to a straight current-carrying conductor.

elemental conductor and passing through the element. Closed form solutions are
possible for a select few simple cases. For more general configurations, a numerical
approach is necessary.

6.2.2 Current Carrying Conductors

Let us examine the magnetic field produced by current carrying conductors of three
commonly used geometries. This will provide useful insight into the design of mag-
netic field generation circuits, which are extremely important in the construction of
actuators and sensors. Firstly, we consider a finite straight conductor, secondly, a
single circular coil, and thirdly, a solenoid. Of these, the solenoid is one of the easiest
and most widely used methods to obtain a uniform magnetic field.

Finite Straight Conductor

Consider a straight conductor of finite length lying along the x-axis, carrying a
current i (Fig. 6.2(a)). Lines of constant magnetic field are given by concentric
circles centered on the conductor, lying in a plane perpendicular to the axis of the
conductor, and their direction is determined by the right hand rule (Fig. 6.2(b)).
The magnetic field at the point P can be found by applying the Biot-Savart law to
elemental lengths of the current carrying conductor and integrating along the length
of the conductor between the ends A and B (Fig. 6.3). The magnetic field due to the
elemental length of conductor ds is given by

dB = μo

4π
i d�s × r̂

r2
(6.3)

From the figure,

−s = zcot θ (6.4)

ds = z
sin2 θ

dθ (6.5)
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Figure 6.3. Biot-Savart law ap-
plied to a finite straight conductor.

Substituting in Eq. 6.3 and integrating along the length yields the magnetic field at
point P

B = μoi
4πz

∫ θ2

θ1

sin θdθ

= μoi
4πz

(cos θ1 − cos θ2)

(6.6)

From this expression, the magnetic field at point P due to an infinitely long current
carrying conductor can be found by setting θ1 = 0 and θ2 = π, yielding

B = μoi
2πz

(6.7)

Circular Coil

Let us consider a single-turn circular coil of radius R, carrying a current i, and lying
in the x-z plane (Fig. 6.4). At a point P on the y-axis of the coil, at a distance l from
the center, the magnetic field is given by

dB = μo

4π
i d�s × r̂

r2
(6.8)
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(a) Application of Biot-Savart law (b) Direction of magnetic field

Figure 6.4. Magnetic field due to a current carrying loop.
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Figure 6.5. Calculation of field in cross-
section of current carrying solenoid.

The magnetic field along the y-axis becomes

By =
∫ 2πR

0
dB sinα (6.9)

=
∫ 2πR

0

μo

4π
i
ds
r2

sinα (6.10)

= μo

4π
i
sinα

r2

∫ 2πR

0
ds (6.11)

= μo

2
iR
r2

sinα (6.12)

= μo

2
iR2

(l2 + R2)3/2
(6.13)

At the center of the coil, where α = 90◦ (or l = 0), the magnetic field becomes

B = μo

2
i
R

(6.14)

Note that the lines of constant magnetic field are almost parallel close to the center
of the loop (Fig. 6.4(b)). Therefore, by stacking together a large number of current
carrying loops, a uniform magnetic field can be obtained along their central axis.
Such an arrangement of current carrying loops is called a solenoid.

Solenoid

A solenoid is typically built by winding a large number of helical turns of insulated
wire around a straight central axis. Consider a solenoid of length L and diameter D,
with N turns of wire and carrying a current i. This can be treated as a summation of
the magnetic field produced by each individual coil (Fig. 6.5). The magnetic field at
a point P, at a distance a from the center of the solenoid, can be found in a similar
fashion as for the case of a single circular coil. The solenoid can be treated as a
summation of individual current carrying loops, each of width dy. The number of
turns ny in an element dy is

ny = N
L

dy (6.15)

where each turn carries the current i. The magnetic field at point P is given by

dB = μo

2
iR2

[(y − a)2 + R2]3/2

N
L

dy (6.16)
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Figure 6.6. Magnetic field due to a current carrying solenoid.

The net effect due to all the elements is

B =
∫ L/2

−L/2

μo

2
iR2

[(y − a)2 + R2]3/2

N
L

dy

= μoNi
L

[
L + 2a

2 [D2 + (L + 2a)2]1/2 + L − 2a

2 [D2 + (L − 2a)2]1/2

] (6.17)

At the center (a = 0) of a long solenoid (L  D or L → ∞), this reduces to

B = μoNi
L

= μoni (6.18)

where n is the number of turns per unit length. Note that the magnetic field is
independent of the radius of the solenoid. This relation is true for a long thin solenoid.
For a thick solenoid of finite length, the magnetic field distribution is more involved
and is additionally a function of the internal and external radii of the solenoid. One
approach is to directly solve the Biot-Savart relation with imposed constraints. The
other approach is to use the superposition of analytical solutions for current carrying
loops; the solution at any point in space is then the vector sum of the contributions
from each loop.

As the length of the solenoid increases, the magnetic field near the center of
the solenoid becomes more uniform (Fig. 6.6). Usually, it is assumed that the field is
uniform inside the solenoid over a large part of its length; however, this assumption
breaks down near the ends of the solenoid. An empirical factor, sometimes called
the ‘fringing factor, can be used to quantify the fraction of the solenoid length over
which a uniform field exists. As a rule of thumb, a fringing factor of 10% is adequate
for most solenoid applications. Physically, this means that the magnetic field within
the solenoid can be assumed constant except that within a distance of 10% of the
total solenoid length from the edges. Sometimes in order to increase the magnitude
of the magnetic field, the coil is wound around a core of high permeability. In such a
case, if the coil is wound around a core material of permeabilityμc, the quantityμo in
Eq. 6.18 is replaced by μc. The magnetic field generated by a permanent bar magnet
emerges from its north pole (field source) and ends on its south pole (field sink)
(Fig. 6.7). This field pattern is quite similar to that induced by a solenoid (external
to the solenoid).

An important property of the solenoid is its inductance Ls. For a solenoid of
length L, cross-sectional area Ax, with N turns wound around a core of permeability
μc, the inductance can be derived as

Ls = μcN2Ax/L (H) (6.19)

where the inductance is expressed in terms of Henry, (H).
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N S Figure 6.7. Lines of force produced by a bar magnet.

6.2.3 Magnetic Flux � and Magnetic Field Intensity H

The magnetic flux, � is defined as

� =
∫

B.dA (6.20)

with units T.m2 (Nm/A). This quantity gives an idea of the total magnetic field in a
given region.

From Eq. 6.3, it can be seen that the magnetic field also depends on the per-
meability of the material surrounding the current-carrying conductor. However, it is
possible to define a quantity called the magnetic field intensity, H, that is independent
of the material surrounding the current carrying coil and depends linearly on the
current alone. For this reason, it is often convenient to express the strength of the
magnetic field in terms of H rather than B.

The magnetic field is related to the magnetic field intensity through the perme-
ability of the material, μ. The magnetic permeability μ has the units of Henry/meter
(H/m) or Tesla meter/Ampere (Tm/A). In centimeter-gram-second (CGS) units, it
is expressed as Gauss/Oersted (G/Oe). In general, it is a function of field intensity,
stress level, temperature and magnetic history. A highly permeable material is one
in which a large magnetic flux is induced.

B = μH (6.21)

Consequently, the units of H are A/m. It can also be defined in the following fashion: a
straight conductor in free space, of infinite length carrying a current of 1A, generates
a tangential magnetic field intensity of 1/2π A/m at a distance of 1m.

Notice that there are several different types of nomenclature for the quantities
B and H. However, to maintain consistency, the remainder of this discussion will
refer to B as the magnetic field and H as the magnetic field intensity.

In practical applications, magnetic field is generated by means of a specific
configuration of coils carrying current. The shape of the coils is dictated by the
geometry of the required field, and is normally designed to obtain a uniform field
over a region of interest. Two very common coil configurations are the solenoid and
the toroid. The field intensity inside a solenoid having ‘n’ turns/m, carrying a current
of i amps is given by (from Eqs. 6.18 and 6.21)

H = n i (6.22)

From the above equation, it can be seen that the units of H can also be expressed
as A.turns/m. Note that one A.turn/m is equal to 4π × 10−3 Oe. The field inten-
sity inside a toroid having ‘n’ turns/m, carrying a current i, and with a radius r, is



6.2 Review of Basic Concepts in Magnetism 591

x

y

i

dF
B

ds

Figure 6.8. Force on a current carrying
conductor.

given by

H = n i
2πr

A/m (6.23)

6.2.4 Interaction of a Current Carrying Conductor and a Magnetic Field

The effect of the quantity B can be understood from the Lorentz force law. This
gives the force F on a charge q, moving at a velocity v in a magnetic field B as

F = qv × B (6.24)

Note that the direction of the induced force is perpendicular to both the magnetic
field as well as the velocity of the charge. From Eq. 6.24, we can see that a conductor
of length ds, carrying a current i in a magnetic field B experiences a force dF given
by

dF = i × B ds (6.25)

This effect is shown in Fig. 6.8. A conductor of length ds, carrying a current i, is
placed in a uniform magnetic field B. The conductor is along the x axis, while the
magnetic field is directed along the negative z axis (shown by the ‘×’ marks). The
resultant force F on the conductor is along the positive y axis (into the page).

From Eq. 6.25, a magnetic field of one Tesla can be defined as that in which one
Coulomb of charge experiences a force of one Newton, when it is moving normal to
the magnetic field at a velocity of one meter per second. Since 1 Ampere is defined
as 1 Coulomb/second,

1T = 1
N

C-m/s
= 1

N
A-m

(6.26)

A loop of current in an external magnetic field experiences a net torque, but no
net force. The torque on a loop enclosing an area Ax and carrying a current i, in a
magnetic field B, is given by

τ = i Ax × B (6.27)

where the direction of the area vector Ax is given by the right hand rule applied to
the current carrying loop. The quantity iAx is defined as the magnetic moment vector
M, and is in the same direction as the area vector of the loop (Fig. 6.9). From the
definition, it can be seen that the units of magnetic moment are A.m2.

The concept of magnetic moment is useful to calculate the forces acting on
magnetic elements, and is applicable to both current loops as well as to permanent
magnets. The magnetic moment M of a bar magnet of length l with a flux � at its
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i

Figure 6.9. Magnetic moment of a current carrying loop.

center is given by

M = �
l
μo

(6.28)

Just as a current carrying conductor produces a magnetic field, a changing magnetic
field induces a voltage in a conductor. The magnitude of this voltage is given by
Faraday’s Law. This law states that the voltage induced Vi, in a coil of ‘N’ turns, is
related to the magnetic flux � by

Vi = −N
d�
dt

(6.29)

The negative sign is due to the law of conservation of energy, which states that
the effect of the voltage produced is to oppose the change in magnetic field. This
statement is also known as Lenz’s law. The generation of a voltage in response to a
changing magnetic field is often used to measure the magnetic flux, and consequently,
to measure stress or strain using a magnetostrictive material as a sensor.

6.2.5 Magnetization M, Permeability μ, and the B − H Curve

The magnetic field inside a given material is often treated as originating from a
collection of small current loops, or equivalently, a collection of magnetic moments.
Any material has a large number of randomly oriented magnetic moments on the
atomic level. In the absence of an external magnetic field, the random orientation
of the magnetic moments in the material leads to a net zero magnetic moment,
as shown in Fig. 10(a). When the material is placed in an external magnetic field,
the magnetic moments in the material reorient themselves preferentially along the
external magnetic field, resulting in a net internal magnetic field (Fig. 10(b)). There
is a magnetic phase transition from a disordered paramagnetic state to an ordered
ferromagnetic state. The material in this latter state is said to be magnetized. The
transition to ferromagnetism is accompanied by a change in shape, referred to as
magnetostriction. A region in which the magnetic moments are oriented in the same,

M = 0H = 0

(a) Magnetic moments with no
applied field

M > 0H

(b) Reorientation of magnetic
moments with applied field

Figure 6.10. Effect of external magnetic field on a ferromagnetic material.
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direction is called a magnetic domain. The net magnetic field in the material is the
vector sum of the externally applied magnetic field and the internal magnetic field.
The internal field can increase the net field, as in the case of ferromagnets, or decrease
the net field, as in the case of diamagnets. The magnetic state of the material can
be quantified in terms of a magnetization vector, M. This is defined as the magnetic
moment per unit volume of the material. For a volume of material �V with a net
magnetic moment �M,

M = �M

�V
(6.30)

The units of M are A/m. The total magnetic field in a material placed in an
external magnetic field Bo is given by

B = Bo + μoM (6.31)

where μoM is the contribution arising from the orientation of magnetic moments
inside the material (internal magnetization). Note that the above equation is a vector
addition, because the direction of the net magnetic moment of the material may not
be the same as that of the external magnetic field. In linear isotropic materials, the
magnetization M is proportional to the magnetic field intensity H by a factor called
the magnetic susceptibility, χm. Substituting for the magnetic field from Eq. 6.21,

B = μoH + μoM (6.32)

= μo(1 + χm)H = μoμrH (6.33)

= μH (6.34)

whereμr = 1 + χm is the relative permeability andμ is the permeability of the mate-
rial. The relative permeability of air is approximately equal to that of free space,
μr � 1. The value of μ describes the behavior of the material in response to an
applied magnetic field. Based on the values of μ, the material is classified as diamag-
netic (μ < μo), paramagnetic (μ > μo), or ferromagnetic (μ  μo by several orders
of magnitude). The magnetic susceptibility χm is small and negative for diamag-
netic materials, and their magnetic response opposes the applied field. Examples are
copper, silver, gold, and berylium. For paramagnetics, the value of χm is small and
positive. Examples are aluminum, platinum, and manganese. For ferromagnetics,
the value of χm is large and positive. Examples are iron, cobalt, and nickel. Among
ferromagnetics, supermalloy (nickel-iron-molybdenum alloy) has a maximum rela-
tive permeability on the order of 106. This means that a solenoid wrapped around a
supermalloy core will induce a magnetic flux 106 times that induced in free space.

When a ferromagnetic material is heated beyond a temperature called the Curie
temperature, it undergoes a transition to a paramagnetic state. In addition, in the case
of ferromagnetic materials, μ is not a constant, but depends on the field. However,
in the case of diamagnetic and paramagnetic materials, μ is constant over a large
range of applied field. Such materials are referred to as linear. In a similar way, the
susceptibility of the material χm may not be a constant.

A ferromagnetic material contains a large number of magnetic domains that are
randomly oriented in an unmagnetized sample. The magnetic domains are easily
aligned by external fields, resulting in a net magnetization in the material. The
magnetization is partly retained even on the removal of the external field, as internal
stresses prevent some of the domains from returning to their original orientation.
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Figure 6.11. Typical magnetic field B versus
applied magnetic field H for a ferromagnetic
material.

This leads to a magnetic hysteresis in the material. The hysteretic behavior can be
shown on a B − H diagram (Fig. 6.11) that describes the behavior of a material
when exposed to a cyclically varying magnetic-field intensity. It can be seen that the
magnetic field does not go to zero when the applied field intensity is zero. The value of
magnetic field, which persists after the applied field intensity becomes zero, is called
remanent field Br. In addition to the remanent field, it can be seen that the magnetic
field saturates (at a value Bs) after a certain value of applied field intensity. At this
point, all the magnetic moments in the material are aligned with the applied field
intensity, and no further rearrangement is possible. In practice, saturation occurs
over the region of the B − H curve where the magnitude of B begins to ‘level off’ for
an increasing field intensity, H. As more flux is forced into the same cross-sectional
area of the ferromagnetic material, fewer domains are available within that area to
align with the additional field intensity. It is important to note that saturation only
occurs in ferromagnetic materials. For pure iron, Br is about 2 T and Bs is 2.15 T.

Note that at any point, the slope of the B − H curve gives the permeability of
the material. Typically, when the variation in H is large and it passes through zero
(changes sign), the resulting hysterisis curve is called a major loop.

μ = ∂B
∂H

(6.35)

When the variation in H is small, and the magnitude of H increases and decreases
without changing polarity, the resulting curve is called a minor loop. The minor loops
are completely enclosed withing the major loop. It can be seen that the value ofμdoes
not remain constant, but decreases as the material reaches saturation. Physically, the
magnetic permeability can be considered as a measure of the material’s acceptance
of magnetic flux. For purified iron, the value of μr, at a magnetic field of 2 T,
is 5000.

An important property of the B − H curve is that the area enclosed by the curve
is equal to the work done in one cycle of magnetizing and demagnetizing the material,
or equivalently, it is equal to the stored magentic energy per unit volume, Vm. The
origin of this hysteretic loss can be attributed to the work done in reorienting the
magnetic moments in the material. The work done can be expressed as:

Vm = 1
2

∫
BdH (6.36)
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Table 6.2. Demagnetizing factors for
simple geometries, from Ref. [18]

Geometry l/d Nd

Toroid – 0
Cylinder ∞ 0
Cylinder 20 0.006
Cylinder 10 0.017
Cylinder 5 0.040
Cylinder 1 0.27
Sphere – 0.333

6.2.6 Demagnetization

The magnetic field between two poles can be calculated in terms of the pole strength,
the distance between the poles, and the permeability of the material between the
poles. The magnetic field is caused only by the presence of the two poles (Fig. 6.12(a)).
However, when a ferromagnetic material is introduced between the poles so that it
does not completely occupy the volume between them, magnetic poles are induced
in the material. As a result, the material produces its own magnetic field, which
alters the original magnetic field (Fig. 6.12(b)). This effect is called demagnetization,
because the magnetization induced in the ferromagnetic material tends to decrease
the original field inside the material. The demagnetizing field strength, Hd is given
by

Hd = −NdM (6.37)

where Nd is a demagnetization factor ranging from zero to one, and M is the magne-
tization in the material. Substituting the above expression in Eq. 6.32, the magnetic
field inside the material, Bint is given by

Bint = μo(M − NdM) = μoM(1 − Nd) (6.38)

The demagnetization factor is determined by the geometry of the magnetic material.
Only for an ellipsoidal body, a uniform magnetization causes a uniform demagne-
tizing field. In this case, an exact expression for Nd can be derived [18]. For other
shapes, experimentally determined values of Nd are used. In practice, a general rule
of thumb is that the higher the aspect ratio (ratio of length to diameter, l/d) of the
specimen, the lower the demagnetization field tends to be. For very high – aspect
ratio specimens, the demagnetization field is often neglected. Table 6.2 shows the

N S

(a) Magnetic field due to two poles

N SS N

(b) Effect of introducing a ferromag-
netic material

Figure 6.12. Demagnetization effect.
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demagnetizing factors for some simple geometries with various aspect ratios. Note
that cuboidal specimens can be treated as cylinders of equivalent volume. The goal
in magnetostrictive transducer design is to include low-reluctance flux return paths
in the magnetic circuit. The magnetic circuit should direct the magnetic flux into the
sample with minimal leakage into the surrounding air and with a small demagneti-
zation effect in the core.

6.2.7 Electrical Impedance

The electrical impedance of a long, thin solenoid is approximately represented as
(under a harmonic applied voltage)

Z(ω) = V
i

= R + jωL (6.39)

where V is the voltage across the solenoid, i is the current flowing through it, R is the
resistance of the solenoid coil windings, ω is the frequency of the applied voltage,
and L is the inductance of the solenoid. The magnetic field intensity is given by

H = N
L

i (6.40)

where N is the number of turns of the coil and L is the length of the coil. The
inductance is given by

L = μo
N2A

L
(6.41)

where A is the area enclosed in the coil, andμo is the magnetic permeability. The total
electrical impedance is the sum of the blocked electrical impedance Ze (mechanically
blocked condition) and the motional or mobility impedance Zm (transduction of
mechanical energy to electrical energy). Zm is calculated from the difference between
Z and Ze.

Z = Ze + Zm (6.42)

6.2.8 Systems of Units

Several different systems of units are used to represent magnetic quantities. The
most commonly used systems are the SI system, the MKSA system (Meter-Kilogram-
Second-Ampere) and the CGSM system (Centimeter-Gram-Second-magnetic). In
the SI system, there are two conventions – the Sommerfeld convention and the Ken-
nelly convention [1]. The SI system provides a more intuitive feel of the underlying
physical quantities. The CGSM system is often encountered in older literature, and
the MKSA system is very similar to the SI system, but sometimes differs in the def-
inition of magnetization. The remainder of this chapter will use the SI system. The
correspondence between important magnetic quantities in the SI system and CGSM
system, along with their dimensions in the SI system, is shown in Table 6.3. Note
that the field equation changes depending on the system of units.
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Table 6.3. Systems of magnetic units

Conversion
Quantity Symbol SI CGS SI Dimensions SI value

CGS value

Magnetic field, Magnetic B Tesla (T), Wb/m2 Gauss (G) MA−1T−2 10−4

induction, Magnetic
flux density

Magnetic field intensity, H A/m, A.Turns/m Oersted (Oe) AL−1 79.58
Magnetic field strength

Magnetic flux � Weber (Wb) Maxwell (Mx), G.cm2 ML2A−1T−2 10−8

Magnetization M A/m emu/cc, G AL−1 1000
Field equation B = μo(H + M) B = H + 4πM – –
Magnetic moment M A.m2, Wb.m emu, erg/G AL2 –
Magnetomotive force mmf A.Turn Gilbert(Gb) A –
Magnetic permeability μ H/m – MLA−2T−2 4π × 10−7

Inductance L Henry (H)
second2/centimeter
(abhenry)

ML2A−2T−2 –

Reluctance R 1/H Gb/Mx M−1L−2A2T2 7.96 × 107

The conversion factors between different systems of units are as follows:

1 Tesla = 1
Volt Second

Meter2 or 1
Newton

Ampere Meter
(6.43)

1 Gauss = 1
Maxwell

Centimeter2 = 10−4 Weber

Meter2 = 10−4 T (6.44)

1 Oersted = 1000
4π

Ampere
Meter

= 79.58
A
m

(6.45)

1 Weber = 108 Maxwell (6.46)

1
emu
cm3

= 1000
A
m

(6.47)

1 Henry = Volt Second
Ampere

(6.48)

6.2.9 Magnetic Circuits

There is a close analogy between electrical and magnetic phenomena. For example,
while a current carrying conductor induces a magnetic field around it, a flow of
current will be induced in a conductor if it is placed in a time varying magnetic field.
In practical applications, a magnetic field is usually generated by a current carrying
conductor of a specific geometry. The magnetic field is directed to and focussed on
a region of interest by a flux path constructed out of a material with a high magnetic
permeability. The combination of the magnetic field producing coil, the flux path, and
the region of interest is refered to as a magnetic circuit. Often, it is desired to design
a magnetic circuit to produce a specified magnetic field over a region of interest, for
example on a volume of magnetostrictive material. Conversely, given a magnetic
circuit of a known geometry with a known electric current, it may be required
to calculate the magnetic field produced. Magnetic circuits can be conveniently
analyzed by considering an equivalent electric circuit.
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Figure 6.13. Analysis of a magnetic circuit.

Let us consider the simple magnetic circuit shown in Fig. 6.13(a). The circuit
consists of a coil of N turns, carrying a current i, and wound over a core, or flux path.
The flux path has a length lf , permeability μf , and a constant cross-sectional area Af

(we neglect the effect of the sharp corners). The flux path is broken by a small air gap,
of height lg . We also neglect the fringing effect around the edges of the air gap. The
goal of this magnetic circuit is to produce a uniform magnetic field across the air gap.
As the magnetic circuit contains interfaces between several materials with different
permeabilities, such as the flux path and air gap, it is important to know how the
magnetic field and magnetic field strength behave at an interface. These relations can
be obtained by using Gauss’ law and Ampere’s law. It can be shown from Gauss’ law
that across an interface of two materials with different permeabilities, the component
of B normal to the interface is continuous. From Ampere’s law, it can be shown that
the component of H tangential to the interface is continuous.

Applying Ampere’s law along the entire circuit,

Ni = Hf lf + Hglg (6.49)

where the quantities with subscripts ‘g’ and ‘f ’ refer to the air gap and flux path,
respectively. A simple equivalent circuit can be constructed by recognizing the anal-
ogy between electric and magnetic quantities. The quantity Ni is called the magne-
tomotive force (mmf ) and is analogous to the voltage (electromotive force) in an
electric circuit. As the normal component of magnetic field is constant at each inter-
face (Bf = Bg = B), and the cross-sectional area of the magnetic circuit is uniform,
it follows that the magnetic flux, �, is constant at any cross-section of the magnetic
circuit. Therefore, it can be seen that the magnetic flux is analogous to current in an
electric circuit.

�f = �g = � (6.50)

The total mmf can be written as (from Eq. 6.49)

mmf = Blf
μf

+ Blg
μg

= �lf
μf Ax

+ �lg
μgAx

= Rf � + Rg�

(6.51)
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where the quantity R is defined as the reluctance. For a volume of material of length
L, cross-sectional area Ax and permeability μc, the reluctance is given by

R = L
μcAx

(6.52)

Therefore, in a magnetic circuit, the magnetomotive force is given by the product of
the magnetic flux and the reluctance.

mmf = R� (6.53)

By recognizing the similarity between Eq. 6.53 and Ohm’s law in electricity, it follows
that the reluctance is analogous to electrical resistance. An equivalent circuit can
now be constructed as shown in Fig. 6.13(b). Eq. 6.53 is sometimes referred to as
Ohm’s law for magnetism. For a core constructed out of a typical low carbon steel,
μf � 1000μg , and almost all the magnetomotive force appears across the air gap.
Note that, in the above discussion, it is assumed that the permeability is independent
of B. In reality, the above discussion is valid at each point on the B-H curve of the
material.

6.3 Mechanism of Magnetostriction

Magnetostrictive materials transduce or transform magnetic energy to mechancial
energy and vice versa. As a magnetostrictive material is magnetized, it exhibits a
change in length. Conversely, if an external force is applied, it produces strain in the
magnetostrictive material, which in turn changes the magnetic state of the material.
The phenomenon of magnetostriction is closely linked to the presence of magnetic
anisotropy and the alignment of magnetic domains in the material.

6.3.1 Definition of Crystal Axes and Magnetic Anisotropy

References to direction vectors with respect to crystal axes are often found in litera-
ture discussing the microstructure and properties of materials. Especially in the case
of magnetostrictive materials; these direction vectors help in understanding funda-
mental phenomena. The definition of crystal axes and direction vectors is shown
in Fig. 6.14. Consider the edges of a cubic unit cell oriented along the x, y, and z
axes. The sides of the cube are of unit length. The direction vectors are assumed
to start from the origin and end at a point with coordinates specified by vertices of
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Figure 6.15. Progression of mag-
netization with applied field.

the cube. They are denoted by enclosing the xyz coordinates of the end point within
square brackets. For example, the direction vector defining the lower side of the
cube on the x-axis is [100]. Similarly, vectors pointing in the opposite direction can
be defined, such as [1̄00], where the 1̄ refers to the coordinate x = −1. The entire
set of directions is denoted by a single dimension enclosed in angular brackets, such
as < 100 >. Similarly, a plane is denoted by the xyz coordinates enclosed in round
brackets, and the entire set of planes is denoted by the xyz coordinates enclosed in
curly brackets.

A number of material properties, such as elastic, electric, and magnetic prop-
erties, depend on the direction along which they are measured with respect to the
orientation of a unit cell. Typically, unit cells are dispersed with random orientations
throughout a volume of material, resulting in isotropic macromechanical behavior.
In some cases, where a number of unit cells, or domains, are aligned in a particular
direction, the macromechanical behavior can be anisotropic. A concept that is cru-
cial to understanding the phenomenon of magnetostriction is magnetic anisotropy,
which is the major cause of the preferential orientation of magnetization along spe-
cific directions in a unit cell. Magnetic anisotropy is said to exist when the internal
energy of a material depends on the orientation of its spontaneous magnetization
with respect to its crystallographic axes [19]. It follows that the overall energy of the
material is minimized if the magnetization is oriented along specific directions, which
the system naturally prefers. These preferred directions are sometimes referred to
as magnetically “easy” directions (or axes), and they depend on the geometry of the
unit cell. For tetragonal and hexagonal materials, the easy axis is typically along the
‘c’ axis of the unit cell.

Let us consider Terfenol-D material with a stoichiometry of Tb0.27Dy0.73Fe1.95.
Normally, it is produced as a monolithic cubic crystal using the free-stand-zone–
melt process. It has a positive magnetostriction coefficient and exhibits magne-
tostrictive anisotropy. Fig. 6.15 shows the progression from the demagnetized state
to magnetization saturation as an increasing magnetic field is applied in the [112̄]
direction. Stage 0 represents the initial demagnetized state of Terfenol-D. The mag-
netic domain vectors are randomly oriented and the total magnetization is nearly
zero. Upon the application of a magnetic field H1, the magnetic domains start to
align themselves with the applied field. Stage 1 shows an early alignment with
low magnetic field, in which the domains start regrouping (growing and shrink-
ing) while the orientation of magnetization within the domains is unchanged. As
the applied magnetic field is increased, stage 2 is reached, where the orientations of
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Figure 6.16. Simulated variation with applied field of (a) magnetization (b) magnetostriction,
adapted from Ref. [20].

magnetization change and the majority of domains are aligned along the [111̄] axis.
On the application of a large magnetic field, stage 3 is reached, in which further reori-
entation of the magnetization occurs and the majority of domains are aligned along
the [112̄] axis. This stage corresponds to the magnetization saturation of the material.
The process is explained further in Fig. 6.16. It can be seen that magnetostriction
is a nonlinear process. Terfenol-D undergoes positive strain (extension) along the
direction of applied magnetic field until magnetic saturation is reached. However,
in the direction transverse to the applied field, the strain is negative (compressive)
with typically one half the magnitude of that in the axial direction (no net change in
volume).

6.3.2 Origin of the Magnetostrictive Effect

When the material is above its Curie temperature (around 380◦C for Terfenol-D), it
exists in a paramagnetic state, and is composed of unordered magnetic moments in
random orientations. On cooling below the Curie temperature, the material becomes
ferromagnetic, and the magnetic moments become ordered over small volumes.
A volume in which all the magnetic moments are parallel is called a domain. At
this stage, each domain has a spontaneous magnetization due to the ordering of
the magnetic moments. However, as the domains are randomly oriented, the net
magnetization of the material is zero.

The formation of domains is accompanied by a spontaneous deformation of the
crystal lattice in the direction of domain magnetization. This change in dimension
leads to an overall change in dimension of the material, which is called the spon-
taneous magnetostriction. A schematic of this effect, simplified to one dimension,
is shown in Fig. 6.17(a). The unordered material in the paramagnetic state can be
represented as spherical volumes. When magnetic domains form in the material,
each volume undergoes a strain ‘e’ along its axes of magnetization. As the mag-
netic domains are randomly oriented, the overall material strain when resolved into
components along the reference axes (such as the x-axis), is e/3. This can be easily
explained by the following argument: as the domains are randomly oriented and the
material is isotropic, the strain ‘e’ can occur along each of the three reference axes
with equal probability. Therefore, the effective strain along any of the reference
axes is e/3. The phenomenon of change in dimension due to a transition from a
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Figure 6.17. Schematic of magnetostrictive effect.

paramagnetic state to a ferromagnetic state is called spontaneous magnetostriction,
and the strain associated with it (e/3) is a material-dependent constant.

Due to the magnetic anisotropy of the material, when an external magnetic field
H is applied, the individual domain magnetization vectors tend to orient themselves
as closely as possible along the direction of the applied field. As all the domains are
then oriented in a specific direction, the material becomes magnetized. In addition,
due to the geometry of the domains, the rotation of the domain magnetizations
results in an effective change in dimension of the material in addition to the sponta-
neous magnetostriction. The change in dimension of the material in response to an
external magnetic field is called field-induced magnetostriction. As the spontaneous
magnetization is constant, the field-induced magnetization is the most important
quantity with respect to typical engineering applications such as magnetostrictive
actuators. A schematic of the field-induced magnetostriction in one dimension is
shown in Fig. 6.17(b), where the external field H causes a net change in length �L.
As the magnetization of the material reaches the saturation magnetization Ms, the
material reaches its saturation magnetostriction λmax, which is the maximum achiev-
able magnetostrictive strain. From the figure, it can be seen that λmax = e. Therefore,
the maximum achievable field-induced magnetostriction λs is given by

λs = λmax − e
3

= 2
3

e (6.54)
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The magnetostriction is defined as

λ = �L
L

(6.55)

where �L is the change in length from the original length L, and it is different from
the total strain that includes both elastic and magnetostrictive components. Thus,
in ferromagnetic materials, there can be two types of magnetostriction : (a) sponta-
neous magnetostriction due to alignment of domains on cooling through the Curie
temperature, and (b) field-induced magnetostriction arising from the reorientation
of magnetic moments due to the applied magnetic field. When the magnetostrictive
material is cooled through the Curie temperature, it undergoes a magnetic phase
transition from a disordered paramagnetic state to an ordered ferromagnetic state
with aligned magnetic moments. The accompanying change in shape is called spon-
taneous magnetostriction. The Curie temperature for Terfenol-D is about 380◦F.

Because magnetostriction involves motion on a molecular level, the mechanical
response to the applied field is very fast (bandwidth in the order of kHz). The phe-
nomenon described above is also known as Joule magnetostriction and occurs with
a net zero change in volume. In reality, this is an approximation, but for all practical
purposes, it can be assumed that the volume of the material remains constant, and
the transverse dimensions change appropriately. Further, it should be noted that to
obtain extensional strain in the longitudinal direction, magnetic flux lines need to be
arranged parallel to the longitudinal axis of the magnetostrictive specimen.

In practice, for anisotropic materials, the value of saturation magnetostriction
along each crystal axis is different [21]. For example, in cubic materials (such as
Terfenol-D), there are two independent constants, λ100 and λ111, which define the
saturation magnetostrictions along the [100] and [111] directions respectively [22,
23]. The expression for the saturation magnetization in a single domain along any
arbitrary angle is then given by

λs = 3
2
λ100

(
α2

1β
2
1 + α2

2β
2
2 + α2

3β
2
3 − 1

3

)
+ 3λ111 (α1α2β1β2 + α2α3β2β3 + α3α1β3β1)

(6.56)

where α1, α2, α3 are the direction cosines of the domain magnetization (magnetic
moments) with respect to the reference coordinate system (denoted as 123, or xyz).
β1, β2, β3 are the direction cosines of the axes along which the magnetostriction is
measured with respect to the reference coordinate system. In a polycrystalline mate-
rial with randomly oriented domains, the strain is assumed to be evenly distributed
in all directions. Therefore, the strain in a particular direction is obtained as an
average quantity. In such a case, the saturation magnetostriction measured along
the direction of the external field is given by

λs = 2
5
λ100 + 3

5
λ111 (6.57)

Note that in the above equation, if the material is isotropic (λ100 = λ111), the com-
ponents of saturation magnetostriction along the < 100 > and < 111 > directions
would add up to unity.
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Figure 6.18. Independence of
strain on field polarity.

6.3.3 Effect of Magnetic Field Polarity

Fig. 6.18 shows the effect of a change in polarity of the external magnetic field.
Because the magnetic field has only the effect of reorienting the domains, it can be
seen that the effective change in length is the same irrespective of the polarity of
the applied field. Such behavior is characteristic of electrostriction as well as magne-
tostriction, and is the main difference from induced strain due to the piezoelectric
effect. Consequently, the strain is often treated as having a quadratic dependence
on the external magnetic field.

The quadratic dependence of magnetostrictive strain on the applied field can
also be shown mathematically [24]. Assuming that a magnetic field is applied at an
angle θ to the magnetization vector of a domain, the magnetostriction along the
direction of the applied field is given by

λ = 3
2
λs

(
M
Ms

)2

(6.58)

where M is the component of magnetization along the direction of the applied field.
While the above equation assumes that the reorientation of the domain occurs purely
by rotation, it captures the correct qualitative trend for all cases.

A schematic of a general quasi-static strain-field curve can be seen in Fig. 6.19(a),
and the behavior for Terfenol-D is shown in Fig. 6.19(b). The curve is symmetric
for positive and negative magnetic fields, and saturates at high values of field. The
slope of the curve is relatively constant at moderate values of field. An important
consequence of the ‘quadratic’ nature of the strain response is that it is not possible
to obtain a bipolar output strain with a bipolar input magnetic field. However, a
bipolar output strain can be obtained by operating around a bias point, as shown
in Fig. 6.19(a). The bias point is chosen to be the midpoint of the linear region
of the curve. A steady magnetic field Hb is applied to the material, resulting in a
constant bias strain εb. A bipolar field superimposed on the steady field Hb will result
in a bipolar output strain about the constant strain εb, as shown by the arrow in
Fig. 6.19(a). The bias field can be introduced by means of a permanent magnet or
by applying a DC current in the magnetic coil. For optimum performance, it may
be important to tune the bias field, which can be accomplished by a combination
of permanent magnet and DC current. Also, for zero magnetic bias, a sinusoidal
current input at a discrete frequency would result in a sinusoidal magnetic field at
this frequency, which in turn, would result in a magnetostrictive strain at twice the
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Figure 6.19. Induced strain in response to an applied magnetic field.

input frequency. However, with a bias magnetic field (large enough to result in a
purely unipolar total magnetic field), the output response is at the same frequency
as the excitation frequency.

6.3.4 Effect of External Stresses

As the orientation of the domains depends on both the magnetic field and on internal
stresses, it follows that an externally applied stress also has the effect of reorienting
the domains. For example, with the application of a compressive pre-stress, most
of the domains are oriented normal to the direction of the stress. This occurs due
to the inherent asymmetry of the domains and can be understood by looking at the
geometry of the effect as shown in Fig. 6.20. The material undergoes a decrease
in length of �lc as a result of the compressive stress σ1. On the application of an
external magnetic field, the domains reorient themselves along the direction of the

H = 0

H > 0

randomly oriented domains, stress free condition

aligned domains

Δlh

with compressive pre-stress
H = 0

σ1 σ1

Δlc

Figure 6.20. Effect of compressive stress on the induced strain.



606 Magnetostrictives and Electrostrictives

Figure 6.21. Magnetostriction with various
prestress levels for Terfenol-D [7].

applied field, and the material elongates by an amount �lh. It can be seen that
if the material is given an initial compressive pre-stress, the recoverable strain is
larger than in the case of zero compressive pre-stress. However, at high values of
compressive pre-stress, the material is unable to respond by the same extent to the
applied magnetic field, and the induced strain starts to decrease. Therefore, the
best performance can be achieved by operating the material at a moderate value of
compressive pre-stress. In addition, because magnetostrictive materials (especially
Terfenol-D) are brittle in tension (tensile strength �28 MPa, compressive strength
�700 MPa), they are normally placed under a mechanical-compressive–bias stress
to ensure their mechanical integrity during operation.

The angle by which a magnetic domain rotates in response to an applied external
magnetic field is a balance between several different energies of the system. In the
most simple terms, this can be understood by considering the torque equilibrium on
each magnetic domain in the material. The external magnetic field exerts a torque
on each domain that tends to orient it along the direction of the field. Internal
stresses are created in the material as a result of the distortion in internal structure
that accompanies the rotation of the domains. The result of the internal stresses,
or elastic forces, is to exert a restoring torque on the domain, tending to oppose
any change in its orientation. Therefore, for small values of external field, the final
angle of rotation of the domains is a balance between the magnetic forces and the
internal elastic forces. The resulting motion of the domain walls is sometimes termed
as ‘reversible’ because the change in the orientation of the domain magnetizations
is small and the internal stresses return the domains to their original orientation on
removal of the external field.

Fig. 6.21 shows the effect of compressive prestress on the induced strain due
to applied magnetic field for Terfenol-D. As the prestress is increased, a larger
applied magnetic field is necessary to reach magnetostriction saturation. It is clear
that the prestress impacts elastic and magnetic properties as well as coupling between
mechanical and magnetic states.

As the magnetic field is increased, the internal forces are overcome and the
magnetization vector of the domains switches to another magnetically easy axis that
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Figure 6.22. Temperature depen-
dence of magnetostriction with
applied field for Terfenol-D.

is better oriented with the external field. When the external field is subsequently
removed, the magnetization vector remains oriented along the new axis, unless a
large external field of the opposite polarity is applied. Hence, the resulting motion
of the domain walls is termed ‘irreversible.’ The reversible and irreversible domain
wall motion are the main cause of the hysteresis observed in the B − H curve of the
material. Of the two effects, the irreversible domain-wall motion is dominant.

6.3.5 Effect of Temperature

Temperature also has a significant effect on the performance of magnetostrictive
materials. Generally, magnetostriction decreases with an increase in temperature
and ultimately becomes zero at the Curie temperature. For example, in the case of
Terfenol-D, at a compressive prestress of 13.3 MPa and a magnetic field of 2000 Oe,
the magnitude of magnetostriction changes from 200 με at −50◦C to 1740 με at
0◦ [25]. The optimal temperature for the operation of Terfenol-D is around room
temperature. This behavior is related to the change in the magnetically easy axes
from the < 100 > direction at low temperatures to the < 111 > direction at higher
temperatures. Because the values of magnetostriction along each direction are dif-
ferent, this translates to a change in the net magnetostriction of the material with
temperature. The dependence of magnetostriction on temperature can be captured
in constitutive models by incorporating higher order interaction terms [26].

Fig. 6.22 presents the effect of temperature on magnetostriction of Terfenol-D
(Tb0.27Dy0.73Fe1.95), optimized for use in ambient conditions. The magnetostriction
decreases with an increase in temperature (above ambient temperature), and ulti-
mately becomes zero at the Curie temperature. For example, there is a reduction
of 20% in saturation strain at 80◦C compared to the strain at 0◦C . Furthermore,
there is a degradation of magnetostriction at negative temperatures (below ambient
temperature).

Note that the coefficient of thermal expansion of the material is around 12 ×
10−6/◦C which is small compared to the magnetostriction [7]. The sensitivity of
magnetostriction to temperature is an important factor to be considered during
the design of actuators. Typically, the magnetic field is generated by a current-
carrying coil, which generates Ohmic heating. In addition, eddy current losses in the
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Figure 6.23. Hysteretic behavior for magnetostriction.

flux return path that surrounds the magnetostrictive material also contribute to an
increase in temperature. During the design process, care must be taken to minimize
the current required and the eddy current losses as well as to incorporate some
means of heat dissipation so that the temperature rise is restricted to acceptable
levels.

6.3.6 Strain Hysteresis

The induced strain curves shown in Fig. 6.19 represent the quasi-static behavior of
the material. If the magnetic field is varied sinusoidally about a zero mean value,
a hysteretic behavior of the induced strain is observed. However, the hysteresis
exhibited by magnetostrictive and electrostrictive materials is much smaller than
in the case of piezoceramics, and is often ignored. The origin of the hysteresis in
case of magnetostriction is largely due to the hysteresis inherent in the B-H curve
of the material, as shown in Fig. 6.23. However, the strain-B curve shows very
little hysteresis. Again, the strain versus magnetic field shows a highly nonlinear
behavior.

The origin 0 represents the original non-magnetized state of the material. As the
magnetic field H is increased along curve 0a, the magnetic induction B also increases
until magnetic saturation is reached at point a. A further increase in H does not
increase either the magnetic induction or the strain ε. Decreasing the field would
result in the curve acdb. At zero field, there is a residual strain due to the residual, or
remanent magnetic induction (given by c). Further decreasing the field will bring the
material to a zero strain state, and then increase the strain again. Similar behavior
can be observed for an increase in field, along the curve befa. Note that the strain
goes to zero at the points d and f , where the magnetic induction is zero. The strain
is positive and non-zero at the points of remanent magnetic induction, c and e, even
though the field is zero.

The B-H curve clearly shows that the magnetic permeability μ is a non-linear
function of the magnetic field H and the time history (during the initial cycles).
The minimum value of permeability occurs at points a and b (magnetic saturation),
and the maximum values occur at points d and f (remnant magnetic induction). The
strain vs. field (ε − H) curve, also known as a butterfly curve, also shows the hysteretic
nature of the material. Hysteresis can be visualized as a result of internal friction as
the domains attempt to rotate to align with the magnetic field. The stoichiometry of
the material is key to change the aspect ratio of the hysteresis loop. For example,
Terfenol-D, with stoichiometry Tb0.27Dy0.73Fe1.97, exhibits significantly less hysterisis
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Figure 6.24. Effect of compressive stress.

as well as reduced maximum strain compared to Tb0.3Dy0.7Fe1.98. Eddy currents are
induced in Terfenol-D due to AC magnetic field, which in turn produces a magnetic
flux that resists the applied AC field. Eddy currents are electric currents induced
within a conductor by a changing magnetic field, which in turn induces a magnetic
field. Eddy currents reduce effective permeability and increase power losses due to
Ohmic heating. Often, the effects of eddy currents are minimized by laminating the
rods.

Fig. 6.24 shows a typical set of hysteretic curves for Terfenol-D at different
values of compressive pre-stress. As discussed in Section 6.3.4, it can be seen that
the maximum induced strain in the case of a compressive pre-stress σc of 7.5 MPa
is larger than in the case of no pre-stress. Additionally, the effect of an even larger
pre-stress, σc of 19 MPa, is not as pronounced as in the lower pre-stress curve.
There is a marginal increase in maximum induced strain, but also lower induced
strains over most of the operating region. Terfenol-D is also extremely brittle, and
has a very low tensile yield strength compared to its compressive yield strength. A
compressive pre-stress will decrease the magnitude of any tensile forces seen by the
active material during operation and therefore protect the material from failure. It
can be concluded that it is beneficial to operate a magnetostrictive element under a
compressive pre-stress.

6.4 Constitutive Relations

Reliable constitutive models are important for the design and development of actu-
ators and sensors, to understand scaling effects, and for proper assessment of input
power and field requirements. Due to the coupling between physical parameters such
as input current, magnetic field and output displacement, a comprehensive model
must account for interactions on several levels. Typically, for a magnetostrictive actu-
ator consisting of a Terfenol-D rod (magnetostrictive core) and a current-carrying
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coil, the development of a model can be broken down into the following four
steps:

1. Electromagnetic equations are used to find the field generated in the magne-
tostrictive material as a function of the applied current. The distribution of the
field in the material and in the flux return path is a function of the geometry of
the actuator, flux return path, and current carrying coil, as well as the magnetic
permeabilities of different materials in the circuit.

2. The magnetization in the material is calculated based on the generated field. A
number of different models have been proposed, capturing various aspects of
the M − H or B − H curve. For example, the Jiles-Atherton model [27, 28, 29]
is a well known model that can capture ferromagnetic hysteresis. This model
requires five experimentally determined parameters to define the state of the
material. Other more detailed models include the effects of minor loops [30, 31]
and time varying magnetic fields [32, 33].

3. From the magnetization, the magnetostriction in the material is calculated.
This can be based on models of varying complexity. The simplest model is
the quadratic model discussed in Section 6.3.3 (Eq. 6.58). However, this model
does not account for hysteresis in the M − λ curve. More refined models can be
obtained by expressing the magnetostriction as a series expansion of even pow-
ers of the magnetization [34], by deriving expressions for the magnetostriction
based on the energy equation [35, 36], or by examining the rotation of magnetic
dipoles on a micromagnetic scale [37, 38].

4. Once the magnetostriction and the magnetization in the material are calculated,
the interaction between the material and the external load or external structure
can be calculated [39]. In its simplest form, the coupled actuator-structure prob-
lem can be treated as an arrangement of springs, each representing the stiffness
of a specific part of the system. A more complex representation could be to treat
the system as a continuum, set up equations using the force balance method
and solve the resultant set of partial differential equations (similar to the wave
equation).

Some of the models that have been reported in the literature are discussed
below, focusing on the magnetomechanical aspects of the material behavior. Note
that a similar approach can be followed in the case of magnetostrictive sensors, the
only difference being that the input quantity will be a stress and the output will be
a voltage or current. Most of the engineering models are phenomenological, which
fit experimental behavior of the bulk material to physically based laws. It is impor-
tant to consider the coupling between magnetic and electric fields (electromagnetic
coupling), interaction between magnetic and elastic state of the material (magne-
tomechanical coupling), interaction of magnetization and thermal effects (thermo-
magnetic), and coupling between the thermal and elastic effects (thermoelastic).
For some effects, such as magnetomechanical coupling, there is a two way coupling
between the magnetic and elastic states. To model a magnetostricitve transducer,
it is esential to model the effects of electrical, magnetic, and elastic components.
Thermal effects can also be significant for dynamics cases due to ohmic heating,
eddy current losses, and magnetomechanical hysteresis.
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Figure 6.25. Coordinate system for the constitutive
relations.

6.4.1 Linear Piezomagnetic Equations

Even though magnetostrictive transduction is intrinsically nonlinear and hysteretic,
the quasi-steady linearized piezomagnetic representations provide insight on the
performance, especially at low excitation levels The linear piezomagnetic equations
are the simplest representation of the interaction between the magnetic field and the
mechanical response of the material. From the qualitative discussion on the mech-
anism of magnetostriction in Section 6.3, it can be seen that the induced strain is a
non-linear function of applied magnetic field, which can be approximately expressed
as a quadratic function of the field. However, for moderate values of applied field, or
for operation about a bias point, the induced strain can be assumed to vary linearly
with the field. In this region, linear constitutive relations can be written to model
the behavior of the material. These relations are analogous to the piezoelectric
constitutive relations, and are sometimes known as piezomagnetic equations. How-
ever, in this case, they represent a coupling between magnetic and elastic quantities.
The linear coupled magneto-mechanical constitutive relations for a magnetostrictive
material at a constant temperature (co-ordinate axes shown in Fig. 6.25) are

ε = sHσ + dH (6.59)

B = d∗σ + μσH (6.60)

where d (m/A) is the matrix of magnetostrictive constants, that correspond to the
slope of the linear region of the ε-H curve, andμσ (H/m or Tm/A) is the permeability
of the material at constant stress, corresponding to the slope of the B − H curve in
the first quadrant. sH (m2/N) is the compliance matrix of the material at constant
magnetic field. In this case, the elastic modulus can be measured with coil leads in
open circuit condition (zero current), or with a means of maintaining a constant
current in the coil. The magnetic field vector H consists of three components, (H1,
H2, and H3), with units of A/m, or Oersted. The strain of a magnetostrictive element
consists of two parts, one due to mechanical stress and the second due to applied
magnetic field. The magnetic induction B also consists of two parts, one due to
mechanical stress and the second due to applied magnetic field. The strain in the
material is given by ε (dimensionless), and the mechanical stress is given by σ (N/m2).
The units of d∗ is Tm2/N and this term is equivalent to d (m/A).

Note the similarity between the form of Eqs. 6.59 and 6.60, and the piezo-
electric constitutive relations. The magnetostrictive relations can be obtained from
the piezoelectric relations by replacing the electric field E with the magnetic field
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H, the electric permittivity eσ with the magnetic permeability μσ, and the electric
displacement D with the magnetic induction B. These relations are applicable for
small changes in stress and applied field. The first order temperature and frequency
effects, hysteresis effects, and higher order coupling between temperature, stress,
and applied field are neglected.

Note that in general, the strain and magnetic induction can be obtained by
differentiating the total energy of the material with respect to various quantities,
giving

ε = εo +
(
∂ε

∂σ

)
H,T

σ +
(
∂ε

∂H

)
σ,T

H +
(
∂ε

∂T

)
σ,H

T + higher order terms (6.61)

B = Bo +
(
∂B
∂σ

)
H,T

σ +
(
∂B
∂H

)
σ,T

H +
(
∂B
∂T

)
σ,H

T + higher order terms. (6.62)

where the subscripts denote that those quantities are being kept constant, and T
refers to the temperature. For reversible magnetostriction, it can be shown that [40]

d∗ =
(
∂B
∂σ

)
H,T

≡
(
∂ε

∂H

)
σ,T

= d (6.63)

Neglecting the higher order terms and ignoring the temperature term, the above
equations reduce to the familiar piezomagnetic equations for small variations. The
constants in these equations can be experimentally determined and are related to
each other [41]. The equations are quite useful for representing a magnetostrictive
material operating in its linear region, such as when it is exposed to a low level
AC field superimposed on a steady bias field. Commercial finite element packages
(such as ANSYS, PZFLEX, and ATILA) typically use the piezomagnetic equations
to solve coupled structural-magnetostrictive problems. To address the nonlinear
behavior of magnetostrictives (as seen in Fig. 6.23) the higher order terms become
important. Furthermore, the above equations do not model the hysteretic behavior.

For Terfenol-D, it has been theoretically proven that the coefficient matrices in
the piezomagnetic equations can be expanded as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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It can be seen that the material is transversely isotropic (isotropic in the 1–2
plane) in terms of both its elastic and magnetic properties. The structure of the
matrices is identical to that of a piezoelectric material. In the actuator equation, the
coefficients d represent the change in strain per unit change in magnetic field at a
constant stress. Alternatively, in the sensor equation, the coefficients d∗ represent
the change in magnetic induction due to a unit change in stress at a constant magnetic
field. Again, it is typically assumed that the coefficients d = d∗.

Note that the coefficient matrices sH, d, and μσ can be dependent on the level
of pre-stress, applied bias magnetic, field, and driving field amplitude, in order to
represent the actual non-linear material behavior more accurately. This dependence
can be characterized experimentally [42, 43, 44] in order to identify the pre-stress
and bias field required for optimum performance of the magnetostrictive actuator.
For example, Moffet et al. [42] reported sets of experiments to measure the effect of
driving field amplitude (from 8 kA/m to 160 kA/m) and pre-stress (from 7 MPa to
63 MPa), at an optimum bias field, on the properties of Terfenol-D. These constants
are also a function of the applied stress and magnetic field; however, a linear assump-
tion is valid in cases of small variations in inputs. The non-linear behavior maybe
advantageous in some applications. Pratt et al. [45] exploited the nonlinear trans-
duction of nonbiased Terfenol-D actuators to design an autoparametric vibration
absorber. To include nonlinear effects approximately, one can either include higher
order terms in constitutive relations or use a lookup table (from experimentally
measured values) for coefficients.

6.4.2 Refined Magnetostrictive Models

Based on the linearized constitutive equations (Eqs. 6.59 and 6.60), several models
of magnetostrictive behavior of varying complexity have been proposed. Engdahl
and Svensson [46] presented a simple, uncoupled finite difference analysis to predict
the steady response of a magnetostrictive rod due to applied sinusoidal magnetic
field using linear material characteristics. Kvarnsjo and Engdahl [47] developed
a two-dimensional–finite–difference transient analysis in response to a magnetic
field, using nonlinear material characteristics. The finite difference methods are less
versatile to deal with structures constituting dissimilar materials such as the case
with smart structures. Claeyssen et al. [48] developed a three-dimensional, cou-
pled, linear finite-element analysis to establish the effective dynamic-coupling con-
stants of a magnetostrictive actuator, using an empirical representation of material
characteristics.

Sherman and Butler [49] developed a nonlinear constitutive model for Terfenol-
D by expanding the stress and magnetic field in terms of strain and applied magnetic
field intensity for higher-order longitudinal components. These are described for a
constant temperature and no hysteresis.

σ = c1ε + c2ε
2 + c3ε

3 + c4ε
4 − e1H − e2H2 − e3H3 − e4H4 − 2caεH

− 3cbε
2H − 3ccεH2 − 4cdε

3H − 6ceε
2H2 − 4cf εH3

(6.66)

B = e1ε + caε
2 + cbε

3 + cdε
4 + μ1H + μ2H2 + μ3H3 + μ4H4 + 2e2εH

+ 3ccε
2H + 3e3εH2 + 4ceε

3H + 6cf ε
2H2 + 4e4εH3

(6.67)
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where ei, ci and μi are coefficients. For unbiased condition, stress and strain are even
functions of the magnetic field intensity H. Thus the coefficients ca, cb, cd, cf , e1 and
e3 will be identically zero.

Roberts et al. [50] developed nonlinear equations including higher order inter-
actions of stress, magnetic field, and temperature.

εkl = σij s
H,T
ijkl + �TαH

kl + 1
2

HnHmdT
klmn + 1

2
HnHpσij sT

klijnp + 1
2

HmHn�Tαklmn

Bm = Hnμ
T,σ
mn + �TPσ

m + σij HndT
ijnm + �Tσij Hnαijnm + 1

2
σijσklHnsT

ijklnm (6.68)

where dijnm is the pyromagnetic parameter relating temperature and magnetization
Pm, sijklnm is the elastic compliance and αijnm is the coefficient of thermal expansion.

Jiles [51] developed a magnetomechanical model including elastic effects. This
model provides a representation of the bi-directional coupling between the magnetic
and elastic states. The model appears to accurately represent the magnetic hystere-
sis in the material. Anjanappa et al. [52, 53] presented a simple one-dimensional
model to simulate the quasi-static response of a magnetostrictive mini-actuator
(they developed) due to applied magnetic field. Pradhan et al. [54] developed the
first-order-shear deformation theory (FSDT) to study the vibration control of lami-
nated composite plate with embedded magnetostrictive layers. The effects of mate-
rial properties and placement of magnetostrictive layers on vibration suppression
were examined. It was found that the maximum suppression is obtained when the
magnetostrictive layers were relatively thin and placed far away from the neutral
axis.

6.4.3 Preisach Model

The Preisach model is normally used to describe a hysteretic process. It empirically
fits the input up and output f p of experimental data. The major drawback of this
model is its lack of insight into the underlying physical mechanisms. The Preisach
model utilizes kernels γαβ in conjunction with weighting function Wp (αp , βp ) to fit
the experimental data.

f p (t) =
∫∫

αp>βp

Wp (αp , βp )γα,βup (t)dαp dβp (6.69)

A continuous distributed system can be assembled with shifted values of αp and βp

as long as αp is larger than βp . For example, the input quantity can be magnetization
and the output quantity can be strain. For two input variables, up and vp , this can
be written as

f p (t) =
∫∫

αp>βp

Wp (αp , βp )γα,βup (t)dαp dβp

+
∫∫

αp>βp

Vp (αp , βp )γα,βvp (t)dαp dβp (6.70)

where Vp is the weighting function for vp . For a magnetostrictive actuator, up and
vp can be magnetization and stress and the output can be strain.
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Carman and Mitrovic [55] formulated a coupled one-dimensional nonlinear
finite-element analysis for a magnetostrictive actuator. Interactions between mag-
netization, stress, and temperature were included in the model, which showed good
agreement with test data at high preloads. Duenas et al. [26] developed a more
comprehensive constitutive model of magnetostrictive material that includes mag-
netization hysteresis (M − H loop) and thermal effects. While the model accounted
for the quadratic variation of magnetostrictive strain with applied field, it did not
capture saturation effects. One of the main features of this model is that it is devel-
oped in terms of magnetic field intensity as the dependent variable, as opposed to
magnetic induction as in the piezomagnetic equations. Dapino et al. [34] developed a
coupled nonlinear and hysteretic magnetomechanical model for magnetostrictives.
The magnetostrictive effect is modeled by taking into account the Jiles-Atherton
model of ferromagnetic hysteresis in combination with a quartic magnetostriction
law (λ = k1M2 + k2M4). This model provides a representation of the bidirectional
coupling between the magnetic and elastic states. The model appears to accurately
represent the magnetic hysteresis in the material. Sablik and Jiles [56, 57] included
magnetic hysteresis effects predicted using the Jiles-Atherton model along with a
model for magnetostriction.

6.4.4 Energy Methods

The coupled magnetomechanical equations are often derived using energy methods.
In its simplest form, the energy of the material per unit volume is written as a sum of
the energy due to internal effects, external magnetic field, and elastic deformation.
A brief description of this method will be useful in understanding the physical basis
behind the constitutive equations.

Consider a domain of magnetostrictive material exposed to a magnetic field as
well as a stress σ. Let the orientation of the domain magnetization of the material
with respect to the reference axes (taken to be the axes of the unit cell) be defined
by the direction cosines α1, α2, α3, and the orientation of the stress with respect to
the reference axis be defined by the direction cosines γ1, γ2, γ3. The total energy Etot

of the magnetostrictive material per unit volume, can be expressed as [1, 18, 24, 58]

Etot = Eo + Ea + Eme + Em + Ee (6.71)

where each energy term is explained below:

(i) Eo, long-range coupling energy or exchange energy: This accounts for the effect
of the interaction between aligned magnetic moments over large distances (com-
pared to size of the unit cell). This term is constant in a given domain. Therefore,
if only one domain is considered, this term is usually neglected. The exchange
energy is given by

Eo = 1
2
αwM2

s (6.72)

where αw is the mean long-range coupling factor and Ms is the magnetization of
the domain (equal to the saturation magnetization).

(ii) Ea, anisotropy energy: This term is related to the dependence of the magnetic
energy on the crystal symmetry of the material. Hence it is also sometimes known
as magnetocrystalline anisotropy. Minimization of this energy along specific
directions is the reason for the preferential orientation of magnetic moments in
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a unit cell. The anisotropy energy for a cubic unit cell (such as iron, nickel, or
Terfenol-D) is given by

Ea = K + K1
(
α2

1α
2
2 + α2

2α
2
3 + α2

3α
2
1

)+ K2
(
α2

1α
2
2α

2
3

)+ higher order terms
(6.73)

where K, K1 and K2 are the material-dependent anisotropy constants. The con-
stant K is rarely used, as typically the change in energy or derivative of energy is
the quantity of the most interest. Note that odd powers of the direction cosines
do not appear in the equation, as a change in sign of the direction cosine does
not result in a change in orientation.

(iii) Eme, magnetoelastic coupling energy: The coupling between the applied mag-
netic field and the magnetostrictive strain in the material is captured by this
term. For a cubic unit cell, this is given by

Eme = −3
2
λ100σ

(
α2

1γ
2
1 + α2

2γ
2
2 + α2

3γ
2
3 − 1

3

)
− 3λ111σ (α1α2γ1γ2 + α2α3γ2γ3 + α1α3γ1γ3)

(6.74)

where λ100 and λ111 are the magnetostrictions in the < 100 > and < 111 > direc-
tions, respectively.

(iv) Em, magnetic energy: This is the energy that is required to magnetize the mate-
rial. Over one cycle, this is also the energy lost due to hysteresis in the B − H
curve (the area enclosed in the loop). For a single domain of magnetization Ms

in a magnetic field H, the energy is given by

Em = −μo

∫
H.dMs (6.75)

where μo is the permeability of the material.
(v) Ee, elastic energy: Also known as the strain energy, this term captures the effect

of the deformation caused by a stress field. For a cubic crystal, we have

Ee = 1
2

c11

(
ε2

x + ε2
y + ε2

z

)
+ 1

2
c44

(
γ2

yz + γ2
zx + γ2

xy

)
+ c12

(
εyεz + εzεx + εxεy

)
(6.76)

where the ε quantities are the strains in the material along the reference axes.

The total energy as described above is typically written in terms of a potential
function (such as the Gibbs potential) and minimized with respect to a particular
quantity, such as the strains in the material. This yields a set of coupled constitutive
equations for the material. Note that an equilibrium state is reached between the
elastic and magnetoelastic energies, which determines the final strain values of the
material.

6.5 Material Properties

The properties of magnetostrictive materials vary widely with their composition,
external magnetic field level, bias stress, and temperature. Typical material prop-
erties that are variable include Young’s modulus, magnetostrictive strain, magnetic
permeability, and saturation magnetization. Examples of experimental data show-
ing these variations, as well as simple physical explanations, have been discussed in
the preceeding sections. Of special interest is the variation of Young’s modulus and
magnetic permeability with magnetic and mechanical boundary conditions. These
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phenomena can be quantified in terms of the “Delta-E effect” and magnetostrictive
coupling factor, and are discussed below.

The Young’s modulus and permeability are two of the most important prop-
erties of the material in terms of actuator and sensor applications. For example,
the capability of the material to operate as an actuator can be evaluated in terms
of its blocked force Fbl. This is the maximum force that the actuator is capable of
producing under quasistatic conditions.

Fbl = EB
3 Aεs

3 (6.77)

where A is the cross-sectional area of the actuator and εs
3 is the saturation strain, or

maximum free strain. Note that this output capability is evaluated in terms of the
Young’s modulus (EB

3 ). Another important parameter is the actuator’s free strain, or
magnetostrictive strain, which depends on the coefficient d33. The value of d33 varies
significantly with magnetic field, magnetic bias, stress distribution in the material,
and frequency. As an example, for a constant magnetic induction, with the elastic
modulus EB

3 = 45 GPa, and saturation strain εs
3 = 1600με, the blocked force for a

Terfenol-D rod of diameter 24.5 mm is 34 kN.
The permeability of Terfenol-D is about 5–10 times that of free space. This is

quite small compared to ferromagnetic materials such as low carbon steel, and is a key
parameter in the design of the magnetic flux path. The saturation magnetization Ms

is the magnetization of a single domain and is dependent on the atomic configuration
of the material. For Terfenol-D, Ms is approximtely 0.79 MA/m (milliampere/meter).
The magneto-mechanical coupling k2 represents the fraction of magnetic energy
that can be converted to mechanical energy per cycle. Again, there is a considerable
variation of k2 with operating conditions. The value of k for Terfenol-D is around
0.7, whereas its value is about 0.3 for Nickel.

Important magnetic and elastic coefficients for a magnetostrictive material des-
ignated as ‘M5’, biased at 60 kA/m at a pre-stress of 20 MPa [48] are shown in
Table 6.4, and some important parameters for a Terfenol-D rod are shown in
Table 6.5. Note that as a result of the conservation of total volume during mag-
netostriction, d31 = −d33/2. In addition, it can be seen that a range of values are
given for the Young’s modulus and magnetic permeability of the Terfenol-D rod, as
they are dependent on other parameters.

6.5.1 Magnetomechanical Coupling

Let us consider a one-dimensional rod with magnetic field aligned along the longi-
tudinal axis (axis-3). The constitutive equations (Eqs. 6.59 and 6.60) can be written
as

ε3 = sH
33σ3 + d33H3 (6.78)

B3 = d∗
33σ3 + μσ

33H3 (6.79)

Recall that the superscript ε means constant or zero strain, or clamped boundary
conditions, and the superscript σ denotes free boundary condition (zero stress, or
constant stress). The superscript B means zero induction or a short circuit coil. The
superscript H means open circuit condition. From the equation for ε3,

σ3 = ε3

sH
33

− d33

sH
33

H3 (6.80)
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Table 6.4. Material properties for
M5, 60 kA/m bias, 20 MPa prestress

d31, (×10−9 m/A) −5.2
d33, (×10−9 m/A) 10.4
d15, (×10−9 m/A) 28.0
sH

11, (×10−12 m2/N) 27.0

sH
33, (×10−12 m2/N) 42.0

sH
44, (×10−12 m2/N) 167.0

sH
66, (×10−12 m2/N) 63.0

sH
12, (×10−12 m2/N) −4.3

sH
13, (×10−12 m2/N) −19.0

E1, (GPa) 37.04
E3, (GPa) 23.81
ν12 0.1593
ν31 0.4524
μσ

11 6.9

μσ
33 4.4

k31 0.43
k33 0.69
k15 0.74

Substituting this in the equation for induction,

B3 = d∗
33

(
ε3

sH
33

− d33

sH
33

H3

)
+ μσ

33H3

= d33

sH
33

ε3 +
(
μσ

33 − d2
33

sH
33

)
H3

= d33

sH
33

ε3 + με
33H3

(6.81)

Table 6.5. Nominal properties for a Terfenol-D rod

Nominal Composition – Tb0.3Dy0.7Fe1.92

Maximum field induced magnetostriction, με �s 1740
Young’s Modulus, constant field, MPa EH 35–50
Young’s Modulus, constant induction, MPa EB 40–65
Magnetic permeability, constant stress, Tm/A μσ 3–10 × 10−6

Relative permeability μr 5–10
Saturation magnetization, A/m Ms 0.79 × 106

Magnetostrictive coefficient, m/A d 3–20 × 10−9

Magnetomechanical coupling factor k 0.7–0.75
Density, kg/m3 ρ 9250
Resistivity, �m ! 60 × 10−8

Coefficient of thermal expansion, ppm/◦C αT 12
Compressive strength, MPa – ≈700
Tensile strength, MPa – ≈28
Curie Temperature, ◦C Tc 380
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assuming d∗
33 = d33. It can be seen that two values of magnetic permeability can be

defined, one at constant stress and another at constant strain.

με
33 = μσ

33 − d2
33

sH
33

= μσ
33 − d2

33EH
3 (6.82)

where EH
3 is the Young’s modulus of the material in the ‘3’ direction at constant

magnetic field. It is clear that μσ
33 > με

33. A magnetomechanical coupling factor, or
coupling coeffecient k33, can be defined as

k2
33 = d2

33

sH
33μ

σ
33

= d2
33EH

3

μσ
33

(6.83)

This results in

με
33 = μσ

33

(
1 − k2

33

)
(6.84)

Note that the value of k33 (or in any other direction) is such that 0 ≤ k ≤ 1, although
in reality, no material can have k = 1. It is possible to define other values of k to
represent other directions, such as k11 in the 1-direction. In general, d33, EH

3 , and
μσ

33 vary with magnetic field strength H; and hence k33 also varies with H. The
magnetomechanical coupling factor k is also referred to as the figure of merit of the
actuator, because k2 identifies the fraction of magnetic energy that is converted to
mechanical energy and vice versa. Improvements in manufacturing techniques have
helped increase the coupling factor k to close to 0.7 for Terfenol-D in the longitudinal
direction. However, due to magnetic, mechanical, and thermal losses, this factor is
reduced for the complete actuator system. These losses can be minimized by careful
design of the magnetic path and by incorporating laminated material in the magnetic
flux path.

As in the case of the permeabilities, there are also two values of material Young’s
modulus; one at constant magnetic field EH and another at constant magnetic induc-
tion EB. It can be seen that the magnetomechanical coupling relations for a mag-
netostrictive material are fundamentally similar to the electromechanical coupling
relations for a piezoelectric material. Rewriting the constitutive relations to elimi-
nate the magnetic field H,

H3 = B3

μσ
33

− d33

μσ
33
σ3 (6.85)

Substituting in the strain equation,

ε3 = sH
33σ3 + d33

(
B3

μσ
33

− d33

μσ
33

σ3

)

= σ3

(
sH

33 − d2
33

μσ
33

)
+ d33

μσ
33

B3

= σ3sH
33

(
1 − k2

33

)+ d33

μσ
33

B3

(6.86)

Therefore, the relationship between the Young’s modulus at constant field and
Young’s modulus at constant induction is given by

EH
3 = EB

3

(
1 − k2

33

)
(6.87)
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This means that EB
3 > EH

3 . It is clear that the Young’s modulus under constant field
condition is reduced due to the magnetomechanical coupling factor. In terms of a
transducer, where the magnetic field is created by an electric current, the condition
of constant magnetic field is equivalent to a condition of constant electric current
passing through the coils of the field generator (such as a solenoid). Let us consider
a case of zero mechanical stress (unloaded rod)

ε3 = d33H3 (6.88)

B3 = μσ
33H3 (6.89)

It can be seen that the magnetostrictive constant d33 is the local slope of the ε3

versus H3 curve, while the material permeability μσ
33 is the slope of the B-H curve

(Fig. 6.23). The magnetomechanical coupling factor is also related to the energy
conversion efficiency of the material. Specifically, it can be shown that the coupling
factor is related to the ratio of the elastic energy to the magnetic energy stored in
the material.

k2
33 = Uelastic

Umagnetic
(6.90)

The total energy of the material consists of two parts, magnetic energy Um and elastic
energy Ue. In one-dimension,

Um = 1
2
μ33H2

3 (6.91)

Ue = 1
2

E3ε
2
3 (6.92)

The maximum magnetic energy for a given field strength takes place when material
permeability μ33 is maximum, and it occurs at μ33 = μσ

33. The elastic energy for a
given strain is maximum when E3 is maximum, and it happens for a case of constant
induction EB

3 . Ignoring eddy-current losses and material damping, the ratio of the
difference between the maximum and minimum elastic energies to the maximum
elastic energy is

1
2 EB

3 ε
2
3 − 1

2 EH
3 ε

2
3

1
2 EB

3 ε
2
3

= k2
33 (6.93)

The coupling coefficient k is often referred to as the material’s figure of merit, as it
provides a measure of the efficiency of conversion between mechanical and magnetic
energy. A value of zero corresponds to no transduction, and unity corresponds to
perfect transduction. A typical value is k ≈ 0.7 for Terfenol-D, indicating that only
50% of the total stored magnetic energy is converted to mechanical energy. This
value is quite comparable to the corresponding value for a piezoceramic material.
Materials with a high coupling factor are especially preferred as sensors.

Values of k33 that have been determined experimentally in Terfenol-D with a
stoichiometry of Tb0.27Dy0.73Fe1.95 vary from 0.7 to 0.8 (Table 6.6). For k = 0.707,

k2 = 0.5 (6.94)

μσ
33 = 2με

33 (6.95)

EB
3 = 2EH

3 (6.96)
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Table 6.6. Maximum magnetomechanical coupling
along longitudinal axis and magnetostriction along
easy axis

Alloy k33 λ100,×10−6

Ni 0.31 −23
TbFe2 0.35 2450
Tb0.5Dy0.5Fe2 0.51 1840
SmFe2 0.35 −2100
Tb0.27Dy0.73Fe2 0.74 1620

In addition, the above discussion shows that the speed of sound in the material “c”
is dependent on its magnetic boundary conditions.

cH =
√

EH
3

ρ
(6.97)

cB =
√

EB
3

ρ
(6.98)

where ρ is the material density. Also note that d33 has two definitions

d33 = dε3

dH3

∣∣∣
σ

and (6.99)

d∗
33 = dB3

dσ3

∣∣∣
H

(6.100)

6.5.2 Worked Example

Consider a Terfenol-D rod of length 2′′ (50.8 mm) and diameter 0.25′′ (6.35 mm),
surrounded by a solenoid of 1000 turns with a current of 2 amperes passing through it.
Calculate the flux density in the rod, the change in the rod length, and the inductance
of the solenoid with the Terfenol-D rod. Assume that the rod is long enough to
neglect the demagnetization effects at the ends. Use the following data:

d33 = 20 × 10−9 m/A or 1.6 × 10−6 Oe−1

μσ
33 = 11.56 × 10−6 W/A.m or H/m

k33 = 0.72

Solution

The magnetic field intensity H is calculated as

H3 = ni = 1000 × 2
0.0508

= 39.37 kA/m = 495 Oe

For an unloaded rod, σ3 = 0. Therefore, the magnetic field induced strain is

ε3 = d33H3 = 20 × 10−9 × 39370 = 787με
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The change in length of the rod, �l is given by

�l = 787 × 10−6 × 50.8 = 0.04 mm = 0.00157 in

The flux density is calculated as

B3 = μσ
33H3 = 11.56 × 10−6 × 39370 = 0.455 T or 4.55 kiloGauss

� = B3 × A = 0.455 × π × (6.35 × 10−3)2/4 = 14.41 × 10−6 W = 1.441 Maxwells

The inductance of the solenoid in the stress free condition, Lf , is given by

Lf = μσ
33N2A/l = 11.56 × 10−6 × 10002 × (6.35 × 10−3)2/4/0.0508 = 7.21 mH

If the Terfenol-D rod is clamped, the inductance of the solenoid is Lo,

Lo = Lf
(
1 − k2

33

) = 3.47 mH

6.5.3 Delta-E Effect

From the above discussion, it can be seen that due to the magnetomechanical cou-
pling, the Young’s modulus of the magnetostrictive material depends on the mag-
netic boundary conditions (constant induction or constant field). Based on these
conditions, it can change by a significant amount, depending on the value of the
magnetomechanical coupling factor. In addition to this variation, the Young’s mod-
ulus of a magnetostrictive material also depends on the bias stress and the magnetic
field. The dependence of the Young’s modulus on the applied magnetic field is
termed the �E effect, and is a consequence of the geometry of the domains as well
as the inherent anisotropy of the unit cells. In simple terms, as more domains get
oriented along a particular direction, the modulus of the material in that direction
changes.

For a given bias stress, the modulus changes for magnetizations between zero and
the saturation magnetization. The �E effect is defined as the change in the Young’s
modulus between the magnetically saturated and unsaturated states, divided by the
Young’s modulus at the unsaturated state [59].

�E = Es − Eo

Eo
(6.101)

where Es and Eo are the Young’s moduli at the saturated and unsaturated states
respectively. In the same way, a �E can be defined between two values of magnetic
field, H1 and H2. In this case, the change in Young’s modulus is represented as

�EH2H1 = EH2 − EH1

EH1

(6.102)

where EH1 and EH2 are the Young’s moduli at magnetic fields H1 and H2 respectively.
Typically, as the magnetic field increases, the Young’s modulus decreases.

Changes in the modulus of elasticity with magnetization were observed in mate-
rials such as iron and nickel as early as the beginning of the past century [21].
However, for these materials, the changes in modulus are small (0.4% to 18%).
However in Terfenol-D, a �E effect of up to 161% was measured on the application
of a magnetic field of strength 342 kA/m at zero bias stress [59]. At a lower temper-
ature (−196◦C) and a bias stress of 20 MPa, a �E effect of 680% has been reported
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Figure 6.26. Schematic of water-cooled transducer, from Ref. [62].

for Terfenol-D [60]. A typical value of �E is around 150% for Terfenol-D at room
temperature.

The �E effect can have a significant effect on the performance of magne-
tostrictive actuators and sensors. This variation also introduces nonlinearities in
the input/output relationship, which are often perceived as undesirable. At the same
time, this effect can be used to make novel devices, for example, a resonator in
which the natural frequency can be tuned by adjusting a bias magnetic field [61].
In the development of this device, comprehensive quasi-static tests were performed
to characterize the Young’s modulus and damping ratio of Terfenol-D under con-
trolled thermal, magnetic, and mechanical loading conditions. A �E approaching
266% was demonstrated with bias magnetic field levels of up to 61 kA/m. The damp-
ing ratio was found to increase, and the Young’s modulus was found to decrease,
with increasing magnetic field.

The bias stress also has a significant effect on the change in modulus. For exam-
ple, in a study to characterize the blocked force of a Terfenol-D actuator with varying
bias stress and bias fields [62], the Young’s modulus was observed to increase mono-
tonically with applied field at a bias stress of 0 MPa. However, at a bias stress of
6.9 MPa, the Young’s modulus increased with increasing field but began to level
off or even decrease at high field levels (>1000 Oe). As such, the minimum elas-
tic modulus occurs for a combination of high compressive stress and high applied
magnetic field. Thus, with an appropriate selection of bias compressive stress, the
desired modulus can be obtained with a minimum external magnetic field. Therefore,
a comprehensive set of experimental data is essential to characterize the material
at all operating conditions. Empirical relations can be extracted from the data and
subsequently used in design tools.

To characterize Terfenol-D under controlled quasi-static environments (ther-
mal, mechanical, and magnetic), Kellogg [62] built a special water-cooled apparatus
(Fig. 6.26). The material specimen is placed at the center, surrounded by a sense coil



624 Magnetostrictives and Electrostrictives

160

160 180 200

140

140

120

120

100

100

80

60

60 80

40

40

20

20
0

0

Increasing d.c.
compressive stress

28.1 MPa constant compressive stress line

Applied magnetic field, kA/m

M
od

ul
us

, G
P

a
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applied fields, (0–193.2 kA/m), from Ref. [61].

for measuring the magnetic induction. A Hall effect sensor is used to measure the
applied magnetic field. Water cooling tubes surround the cylindrical solenoid, and
loads are transmitted from the specimen to a load cell.

Fig. 6.27 presents the modulus of Terfenol-D for a range of compressive stress
values (6.9 to 103.5 MPa in steps of 6.9 MPa) and applied fields. The modulus values
were extracted from stress-strain curves. Considering a representative 28.1 MPa case
(highlighted), as the field is increased from zero to 50 kA/m, the modulus decreases
from 72 GPa to 14 GPa, and thereafter, the modulus increases with further increase
in magnetic field. It becomes 69 GPa at a maximum field of 193.2 kA/m. In this
case, the �EH2H1 is determined as −414% with H1 = 0 kA/m and H2 = 50 kA/m. At
high compressive loading with a low or zero magnetic field, the modulus becomes
112 GPa. It is apparent that the largest changes in modulus may be achieved using
the appropriate prestress at a low magnetic field.

6.5.4 Magnetostrictive Composites

A composite material can be produced by solidifying Terfenol-D powder in a matrix.
The finished composite then exhibits magnetostrictive properties. These materials
have numerous advantages over pure magnetostrictive materials. They can be cast
into complex shapes, and show a much higher machinability and ductility compared
to Terfenol-D. Therefore, they are more mechanically robust under harsh oper-
ating conditions. Another major advantage is that there are no eddy current losses
because the matrix is electrically non-conducting. In addition, the composite is lighter
than the magnetostrictive material itself. The main disadvantage of magentostrictive



6.6 Magnetostrictive Actuators 625

composites is their strain capability. The volume fraction of magnetostrictive mate-
rial in the composite is typically 10%–40%. As a result, the overall strain of the
composite is less than that of the magnetostrictive material itself [26, 53].

Wu and Anjanappa [53] and Krishnamurthy et al. [63] developed a simple rule-
of-mixture model to calculate the response of magnetostrictive particulate compos-
ite. Flatau et al. [64] discussed magnetostrictive particle composites in terms of the
underlying physical processes that occur during fabrication, material characteriza-
tion, design considerations, and structural health sensing.

6.6 Magnetostrictive Actuators

Typically, a magnetostrictive actuator consists of a multi-layer solenoid for magnetic
field generation, a magnetic flux return path for routing the magnetic flux into the
magnetostrictive element, a permanent magnet to provide a DC bias magnetic field,
and a mechanical preload mechanism. This design can help to achieve maximum
bi-directional transduction of energy between the magnetic and elastic states. For
actuation, the direct effect (Joule effect) is used where the externally applied mag-
netic field induces magnetization in the material causing a measurable change in
strain. The inverse effect (Villari effect) is used in sensors where the mechanical
energy is transformed into magnetic energy.

For optimum performance in an actuator, both permanent magnets and DC
currents in the solenoid are often used. The precompression mechanism helps to
expand the range of magnetostriction by increasing the population of magnetic
moments normal to the rod axis. Also, the precompression helps to safeguard the
brittle magnetostrictive material from tensile stresses.

Due to the coupled magnetomechanical behavior of the magnetostrictive mate-
rial, it can be used as both an actuator and a sensor. From Eq. 6.59, it can be
seen that a mechanical strain is induced by an applied magnetic field. This is
the principle behind a magnetostrictive actuator. The large induced strain, high
modulus, and high bandwidth of the material make it very attractive as an actua-
tor material. Applications of magnetostrictors can be broadly classified into three
categories:

1. Low frequency, high power sonar applications: The initial impetus for the devel-
opment of Terfenol-D was for underwater applications (for the US Navy). The
goal was to develop a small size sonar system that could radiate high acoustic–
power signatures. For example, flextensional transducers were developed in
the 1930s based on PZT ceramics. These PZT actuators were natural candi-
dates to be replaced by Terfenol-D actuators to improve their low-frequency
vibration characteristics. Technological challenges associated with flextension-
als include stress-induced fatigue, high deep-water hydrostatic pressure, and
compactness. Sonar designs include flexing of oval-shaped shells, piston-type
actuation (Tonpilz-type transducers), and ring-type actuation.

2. Motion generation against external loads: The goal is to generate actuation
forces and motion against external loads with compact devices over a range
of operating frequencies. The motion can be linear or rotational. Applications
include active vibration control, micropositioners, valve controls, and active
struts. Stroke is amplified either by using a long active element or by incorpo-
rating a motion amplification mechanism.
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Figure 6.28. Actuator force as a function of
displacement.

3. Ultrasonic applications: This involves high-frequency wave generation (above
20 kHz) for a broad range of applications that include industrial machining,
welding and cleaning, and medical applications. The power losses due to eddy
currents are proportional to the square of operating frequency, and become a key
factor in the design of these devices. There has been a growing interest towards
the development of ultrasonic motors for commercial and medical applications.

Several issues are crucial to the efficient operation of a magnetostrictive actua-
tor. In addition, the design of an actuator capable of generating oscillatory output
displacement is complicated by several factors:

(i) Generation of the required oscillatory magnetic field
(ii) Providing a bias magnetic field and compressive prestress

(iii) Power supply to the device

Most commercially available magnetostrictive actuators contain Terfenol-D as
the active material. A few important material properties of Terfenol-D are listed in
Table 6.5.

Two of the key characteristics of any actuator are the maximum free stroke (free
displacement) δf and the blocked force Fbl. Both these parameters are a function of
the magnetic field intensity. When expressed as a linear relation, they can be plotted
as shown in Fig. 6.28. Such a plot is typically known as the actuator load line. As
the output force level increases, the output displacement capability decreases. Fbl is
the maximum force capability of the actuator and the output displacement at this
force is zero. Let us assume that the stiffness of the longitudinal rod is kT N/m,
given by

kT = EH
c Ac

L
(6.103)

where EH
c is the Young’s modulus of the actuator at constant induction (constant

current), Ac is the cross-sectional area, and L is the total length of the actuators. The
axial displacement of the rod is

w = ε33L (6.104)
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and the actuation force is

F = EH
c Ac

L
(δf − ε33L) (6.105)

F
Fbl

=
(

1 − ε33L
δf

)
(6.106)

Based on the frequency of operation, magnetostrictive actuators can be classi-
fied into three categories: high power, low frequency applications (sonar); motion
generation applications, and ultrasonic applications. It is desirable to use a mag-
netic or mechanical bias about which linear operation is obtained. To increase the
effectiveness of output dynamic strains, mechanical resonance is exploited. Eddy
current losses and device-specific magnetomechanical and electrical resonances limit
the operating bandwidth of magnetostrictive devices to the low ultrasonic regimes
(below 100 kHz).

6.6.1 Generation of the Magnetic Field

The magnetic field required for inducing strain in the active material is usually
generated by means of a current carrying coil. This is typically in the shape of a
solenoid, resulting in a relatively uniform magnetic field over a long length. A core
of highly permeable material is often used to direct and concentrate the magnetic
field where desired, forming a flux path. The magnetic field is concentrated in this
flux path because of its much larger permeability compared to air. The bias magnetic
field can be produced either by a constant DC current in the solenoid, or by placing
a permanent magnet in the flux path. The latter method is preferable due to its much
lower power requirements and decreased heating effects.

A schematic of a Terfenol-D rod placed in a magnetic field generator is shown in
Fig. 6.29. In this example, the bias magnetic field is created by a permanent magnet.
The weight and volume associated with the coil windings, magnetic core, and other
elements of the flux path result in a decrease in the energy density of the actuator. It
is difficult to design a very compact field generation system because of the problems
associated with saturation of the magnetic core and dissipation of the heat produced
in the coil windings. Consequently, in applications with stringent constraints on
allowable weight penalty or available volume, actuators based on piezoelectric or
electrostrictive materials may be preferred inspite of their lower induced strains.

6.6.2 Construction of a Typical Actuator

A cross-section of a typical magnetostrictive actuator is shown in Fig. 6.30. The
main components of the device can be seen: active material (Terfenol-D rod), field



628 Magnetostrictives and Electrostrictives

Flux return / body

Preload spring

Output piece

Solenoid

Terfenol-D

Figure 6.30. Cross-section of a
typical magnetostrictive actua-
tor.

generation system (solenoid, flux return), an output piece to transmit the induced
strain from the active material and a preload spring to exert a compressive preload
on the active material.

Such linear actuators with strokes of up to 250 μm are commercially available.
They can be assembled directly into a structure with only a source of electrical
power needed to complete the installation. Magnetostrictive actuators producing
other types of output displacements can be created using active material of different
shapes; however, the same basic configuration is applicable in each case.

6.6.3 Measurement of Magnetic Field

At this point it is worth discussing the measurement of the magnetic field, or magnetic
state of the magnetostrictive material. The constitutive relations of the material are
given in terms of the magnetic field. While the magnetic flux is constant at any
point in a magnetic circuit, the magnetic field depends on the permeability of the
material, which is a function of the stress in the material as well as the magnitude
of the magnetic induction and the magnetization in the material. Hence, it is often
more convenient to measure the magnetic induction and to express the behavior of
the material in terms of magnetic induction. We will discuss two commonly used
measurement techniques below.

Hall Effect Sensor

The Hall effect is a widely used method of measuring magnetic induction. A
schematic of this effect is shown in Fig. 6.31. The sensor consists of a thin sheet
of conducting material (shaded area) placed in a plane perpendicular to the mag-
netic induction (which is directed along the negative z direction). A constant current
is is passed across the length of the sheet (along the x axis). The magnetic induction
produces a voltage Vh across the width of the sheet (along the y axis) as a result
of the Hall effect. Vh is a linear function of the magnetic induction, which can be
calculated from the measured voltage after calibration. This sensor is introduced
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into the magnetic circuit and measures the magnetic induction perpendicular to its
plane. Hall sensors of very small dimensions (thickness 0.01′′, sensing area 0.03′′ ×
0.06′′) are commercially available, which facilitates their installation in thin air gaps.

Sense Coil

This is based on Faraday’s law. The sense coil is a solenoid of known turns, wound
with thin wire directly onto the sample. It measures the magnetic induction along its
axis. Therefore, it is very well suited to measure the magnetic induction produced
by a solenoid, and is often wound around its core (around a magnetostrictive rod,
for example). From Faraday’s law (Eq. 6.29) we know that the voltage produced is
proportional to the product of the number of turns in the coil and the rate of change
of magnetic flux.

6.6.4 DC Bias Field

In order to operate the actuator in a linear range, a DC bias magnetic field is
needed. This would result in output response at the same frequency as the input
field frequency. The bias field can be introduced either by means of a permanent
magnet or by passing a DC current through the magnetic coil. A simple circuit to
achieve this is shown in Fig. 6.32. The blocking capacitor C isolates the AC source
from the DC power supply, VDC, because of its infinite impedance at DC. Similarly,
the blocking inductance isolates the DC power supply from the AC source, because
its impedance increases with frequency. In this way, the magnetostrictive actuator
can be excited with an alternating current superimposed on a DC current, without
complex electronics to protect the AC and DC power supplies. Note that the value
of the blocking capacitor must be chosen such that it presents an impedance high

AC source

LC

VDC

actuatorFigure 6.32. Simple circuit to
apply a DC bias field to the
magnetostrictive element.
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Figure 6.33. Cylindrical magnetic–field generator for a magnetostrictive actuator.

enough to block the DC current, while being low enough to let the AC current pass
through. Similarly, the value of the blocking inductor must be chosen such that it
presents an impedance high enough to block the AC current while being low enough
to let the DC current pass through.

6.6.5 Design of the Magnetic Field Generator for a
Magnetostrictive Actuator

The generation of the magnetic field is an important aspect in the design of a practical
magnetostrictive actuator. The magnetic field can be generated either by a combi-
nation of permanent magnets and a current carrying coil, or entirely by a current
carrying coil. For a specific value of magnetic field acting in the active material, it
is possible to design several different current carrying coils with varying parameters
such as wire thickness and number of turns. Let us examine the design of an opti-
mum magnetic field generator for a typical magnetostrictive actuator as described in
Section 6.6.2, where the entire magnetic field is generated by the current in the coil.

A schematic of a typical magnetic field generator is shown in Fig. 6.33. The
geometry of the flux return path is cylindrical because the magnetostrictive rod is
cylindrical. The coil is wound around the rod and induces a magnetic field along its
longitudinal axis. To simplify the analysis, the return spring and output piece have
been included as part of the two end caps. Therefore, an idealized flux return path
is considered, consisting of the body, and the two end caps.

The major geometrical parameters of the magnetic field generator are deter-
mined by the dimensions of the magnetostrictive rod. The main requirement is to
ensure that the magnetic field acting on the bar is as uniform as possible. A general
algorithm for design of the field generator is described below.

1. Determine the required magnetic field in the magnetostrictive material. For
example, if a strain of 1000 με is required, the magnetic field in the material, Hs,
can be obtained from the λ-H curves of the material. The permeability of the
material, μs, at that operating condition can be obtained from the B-H curves.
From this, the magnetic induction in the material can be calculated as Bs = μsHs.

2. Determine the length of the solenoid lc. The length of the solenoid is based on
the length of the magnetostrictive rod, ls. A fringing factor F of approximately
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20% is added to this length to make sure that the field in the material is close to
uniform.

lc = ls + Fls = 1.2ls (6.107)

3. Determine the dimensions of the actuator body. The actuator body provides
the flux return path. It is important to ensure that the dimensions of the flux
path are large enough to ensure that the material is well within its magnetic
saturation limits, so that its reluctance is as low as possible. In many cases,
the outer diameter of the actuator is dictated by geometrical constraints of the
final application. Therefore, we assume that the outer diameter do is a fixed
parameter, input as a requirement. We also assume that the thickness of the top
and bottom end caps are equal. The unknown quantities are the inner diameter of
the body (di) and the thickness of the end caps (ttop). Once these two parameters
are found, the overall length of the actuator, lbody, is given by

lbody = lc + 2ttop (6.108)

The magnetic flux at any point in the magnetic circuit is a constant, and is equal
to the flux in the magnetostrictive rod. For an efficient design, we should ensure
that no part of the magnetic circuit is saturated. The dimensions di and ttop are
evaluated with the condition that the flux through critical points on the top and
bottom end caps (�e), as well as through the cylindrical body (�b), are 80% of
that required to drive the material to saturation. This can be obtained by solving
the equations:

�e = BsAs = 0.8Bsat,1018πdsttop (6.109)

�b = BsAs = 0.8Bsat,1018
π(d2

o − d2
i )

4
(6.110)

where ds and As are the diameter and cross-sectional area, respectively of the
magnetostrictive rod. Bsat,1018 is the saturation–magnetic induction of the mate-
rial of the body, which we have chosen as 1018 low carbon steel. Assuming
Bsat,1018 = 1.5T (which is a conservative estimate), we can obtain the values of
ttop and di.

However, the requirement that the actuator body be adequately stiff (to
ensure that it does not undergo large elastic deformations) usually dictates much
larger values of ttop and di than the magnetic induction saturation condition. In
general, an actuator body designed to meet strength/stiffness specifications is
more than adequate to provide an effective flux return path.

4. Estimate the required mmf . This estimate is based on Ohm’s law for magnetism
where the mmf is equal to the flux in the circuit multiplied by the sum of the
reluctances in the circuit. This law is only valid for cases in which there is a
well-defined magnetic path. Furthermore, the reluctance of a magnetic material
changes with the concentration of flux. Although this implies that Ohm’s law
for magnetism is nonlinear, it will still provide a useful estimate of the mmf .
In this initial calculation, assume that the mmf required is dependent on the
reluctances of the air gap and sample only. The effect of the flux return path is
neglected for now but will be added in a later step to serve as a check on our
initial estimate. This assumption is only valid if the permeability of the flux return
is large, and its reluctance is small compared to that of the magnetostrictive rod
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and the air gap. The mmf is given by

mmf = Hsls
Rc + Rs

Rs
= Ntotiw (6.111)

where Rc and Rs are the reluctances of the magnetic circuit (excluding the mag-
netostrictive rod) and the magnetostrictive rod respectively. Ntot is the total
number of turns in the coil, and iw is the current passing through the coil. Typ-
ically, Rc >> Rs if 1018 steel is used as the body material. However, due to
unavoidable airgaps and flux leakage, the reluctance of the magnetic circuit is
considerably increased. Because the relative permeability of Galfenol is much
higher than Terfenol-D (by approximately two orders of magnitude), the reluc-
tance of a Galfenol rod will be much less than the reluctance of a Terfenol-D rod
of the same dimensions. Therefore, in a practical actuator, it is found that for a
Galfenol rod, Rc � Rs and for a Terfenol-D rod, Rc � Rs. For design purposes,
the following empirical expressions (motivated by experiments on magnetic
transducers) are used

Ntot iw = 1.05 Hs ls for Terfenol-D (6.112)

Ntot iw = 2.0 Hs ls for Galfenol (6.113)

5. Calculate the coil geometry. For a chosen wire gauge, the number of turns per
layer Nt, and the number of layers in the coil Nl can be determined. The product
of these two gives the total number of turns, Ntot. We assume that the coil is
wound up to a diameter d1. For a wire of diameter dw,

Nt = lc
dw

(6.114)

Nl = d1 − ds

2dw

(6.115)

In the above equations, any imperfections in winding the wire are neglected.
This assumption becomes more accurate as the wire diameter decreases.

6. Determine the electrical properties of the circuit. Now that the geometry of the
coil has been determined, the length of the wire in the coil, lw, the resistance of
the coil, and the inductance of the coil can be calculated. The length of the wire
is given by

lw = π
d1 + ds

2
Ntot (6.116)

For a wire of cross-sectional area Aw, with a resistivity !w, the resistance of the
coil Rw and the inductance of the coil Lw are

Rw = !wlw
Aw

(6.117)

Lw = μsπd2
s N2

tot

4lc
(6.118)

7. Determine the magnitude of the voltage and the power required by the coil.
The current flowing in the coil, iw, is determined by dividing the mmf by the
assumed number of turns.

iw = mmf
Ntot

(6.119)
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From the required current and the calculated coil impedance, the voltage Vw, and
the power required Pw, at a given operating frequencyω, can now be determined.

Vw = iw
√

R2
w + ω2L2

w (6.120)

Pw = i2w

√
R2
w + ω2L2

w (6.121)

Note that the heat produced in the coil, Pd, is due purely to Ohmic heating, and
is given by

Pd = i2wRw = (mmf )2

N2
tot

ρwlw
Aw

= 4ρw(mmf )2 (d1 + ds)
(d1 − ds)lc

(6.122)

From the above equation, it can be seen that the minimum dissipated power is
obtained when d1  ds. Because the maximum value of coil diameter is con-
strained by the inner diameter of the actuator body, it follows that for minimum
power dissipation, the entire volume inside the actuator body must be used to
wind the coil. Therefore, for minimum dissipated power, d1 = di. Also note that
the dissipated power is independent of the wire diameter. Similarly, by substi-
tuting for Rw and Lw, it can be seen that the total power is also independent
of the wire diameter. However, the required voltage increases with decreasing
wire diameter.

8. Determine the mass of the magnetic field generator. Provided that the density of
the material used in the body and in the wire is known, the mass of the magnetic
field generator can be calculated. The mass of the body Mb and of the coil Mw

are given by

Mb = ρb

[
πd2

o

4
.2.ttop + π(d2

o − d2
i )

4
lc

]
(6.123)

Mw = ρwlwAw = ρw

16
π2 (d2

1 − d2
s

)
lc (6.124)

where ρc is the density of the material of the body and ρw is the density of
the material of the wire. The mass of the rods transferring strain from the
magnetostrictive rod is neglected compared to the mass of the body. The total
mass of the magnetic field generator is Mtot = Mb + Mw. Note that the coil mass
is also independent of the wire diameter.

9. The coil impedance, required power and total mass can be calculated for differ-
ent values of wire gauge. Based on constraints such as maximum driving voltage,
the final value of wire gauge can be chosen. Alternately, a winding ratio Wr can
be defined as

Wr = (d1 − ds)/(di − ds) (6.125)

This ratio quantifies the fraction of the actuator body that is filled with the coil.
For Wr = 1, the entire actuator body is filled by the coil windings. The above
calculations can be performed for different values of 0 ≤ Wr ≤ 1 in order to
choose a coil with a lower mass at the cost of an increase in dissipated power.
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6.6.6 Worked Example: Design of a Magnetic Field Generator for a
Magnetostrictive Actuator

A numerical example will illustrate the design procedure. Consider a Terfenol-D
rod of diameter 6.35 mm (0.25′′) and length 50.8 mm (2′′). A strain of 1000 με is
required from the actuator. Let us investigate the possible dimensions of the coil
and actuator body to obtain the specified strain. The data required for the calculation
are summarized below:

(a) General data
� Required strain: 1000 με
� Fringing factor F : 0.2
� Design operating frequency: 500 Hz
� Maximum operating voltage: 100 V

(b) Terfenol-D rod
� Length ls: 50.8 mm
� Diameter ds: 6.35 mm

(c) Body
� Material: 1018 Steel
� Density: 7850 kg/m3

� Relative permeability μb: 1000
� Saturation magnetic induction Bsat,1018: 1.5 T
� Outer diameter do: 38.1 mm
� Minimum body wall thickness: 4.00 mm
� Minimum end cap thickness: 6.35 mm

(d) Coil wire
� Density: 8906 kg/m3

� Resistivity: 1.72 × 10−8 ohm-m

Solution

Based on the required strain and the λ-H curves of Terfenol-D, a magnetic field of
Hs = 60 kA/m is required (magnetic induction Bs = 0.8 T). This yields a required
mmf of

mmf = Ntotiw = 1.05Hsls = 3200.4 A-turns

For the given rod length and fringing factor, the length of the coil is

lc = (1 + F )ls = 60.96 mm

The body dimensions are first calculated on the basis of preventing magnetic
saturation in the body. For the given saturation–magnetic induction of steel,
Bsat,1018 = 1.5 T, and the magnetic induction in the Terfenol-D rod of Bs = 0.8 T, the
thickness of the end caps and the inner diameter of the body are calculated as

ttop = BsAs

0.8πdsBsat,1018
= 1.06 mm

di =
√

d2
o − 4BsAs

0.8πBsat,1018
= 37.7 mm
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Table 6.7. Parameters as a function of wire gauge for a coil with Wr = 1 (body entirely filled by the coil)

AWG 14 16 18 20 22 24 26 28 30

Wire diameter, mm 1.629 1.291 1.025 0.812 0.644 0.510 0.405 0.322 0.255
Nt, turns/layer 37.4 47.2 59.4 75.1 94.6 119.5 150.4 189.5 239.5
Nl, layers 7.3 9.2 11.6 14.6 18.4 23.3 29.3 36.9 46.6
lw, m 15.621 24.855 39.419 62.914 99.914 159.169 252.283 400.450 639.501
Rw, ohms 0.129 0.327 0.823 2.096 5.287 13.417 33.708 84.927 216.588
Lw, mH 0.73 1.85 4.64 11.82 29.82 75.68 190.12 479.02 1221.64
iw, A 11.730 7.372 4.649 2.913 1.834 1.151 0.726 0.458 0.287
Vw, V 26.905 42.810 67.894 108.359 172.087 274.145 434.519 689.713 1101.443

This gives a body wall thickness of (do − di)/2 = 0.18 mm. It can be seen that both the
end cap thickness and the body wall thickness are much smaller than the minimum
requirements for the application (most probably based on body stiffness specifica-
tions). Therefore, the minimum requirements are chosen for these dimensions.

Let us first design a coil for minimum dissipated power. This requires a winding
ratio Wr = 1. Assuming a wire diameter, the number of turns in the coil is calculated.
From this, the resistance and inductance of the coil are found. The current required is
found by dividing the mmf by the total number of turns, and is used to calculate the
voltage required. A table of these parameters can be generated for different values
of wire diameter (Table 6.7). Based on the requirement that the voltage should be
less than 100 V, we choose a 18 AWG wire for the coil. The power dissipated in the
coil and the mass of the coil are calculated as

Pd = 4ρw(mmf )2 (d1 + ds)
(d1 − ds)lc

= 17.78 W

Mw = ρw

16
π2 (d2

1 − d2
s

)
lc = 290 gm

The mass of the body is

Mb = ρb

[
πd2

o

4
.2.ttop + π(d2

o − d2
i )

4
lc

]
= 319 gm

If a lighter coil is required, the winding ratio can be decreased and the entire cal-
culation can be repeated as described above. Fig. 6.34 shows the variation of the
dissipated power and the coil mass as a function of the winding ratio. From these
curves, it can be seen that the dissipated power does not change much at high wind-
ing ratios compared to that at low winding ratios. However, the coil mass shows an
approximately linear dependence on winding ratio. Therefore, by choosing a high
winding ratio (Wr < 1), we can obtain a significant saving in coil mass at the cost
of a small increase in dissipated power. We choose a winding ratio of 80%, which
results in a coil mass of 202 gm and a power dissipation of 19.33 W. The decrease in
winding ratio results in a different voltage requirement, based on which a 20 AWG
wire is chosen for the coil.

The resulting values of actuator dimensions, power dissipated, mass, required
current, and required voltage are shown in Table 6.8. The number of layers and
number of turns can be rounded off to the next highest integer value. Note that the
total mass of the coil and body is 520 gm, whereas the mass of the Terfenol-D rod
alone is approximately 15 gm. This gives an idea of the extra mass of the components
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Table 6.8. Parameters of Terfenol-D
actuator designed to produce 1000με

Body dimensions

do, mm 38.1
di, mm 30.1
ttop, mm 6.35
lbody, mm 73.7

Coil geometry
Wire gauge, AWG 20
Wire diameter, mm 0.81
d1, mm 25.35
lc, mm 61.0
Nt, turns 75.1
Nl, turns 11.7

Mass of components
Coil, gm 319
Body, gm 202
Total, gm 520

Electrical quantities
Current required, A 3.64
Voltage required, V 86.7
Power dissipated, W 19.33

required to apply the magnetic field to the magnetostrictive element. This extra mass
results in a large decrease in the overall energy density of the actuator compared to
the energy density of the active material itself.

6.6.7 Power Consumption and Eddy Current Losses

The power consumption of a magnetostrictive actuator can be calculated by knowing
the effective impedance of the field generation system. The effective impedance
consists of the electrical impedance of the coils as well as a component due to the
mechanical impedance of the combination of the actuator and load. The mechanical
impedance represents the output work of the actuator, while the electrical impedance
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Figure 6.34. Power as a function of wire gauge (Ntot = 50), for a specified magnetic field.
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represents the power required purely to generate the magnetic field. As in the case
of piezoelectric actuators, the power supply requirements are determined primarily
by the electrical impedance of the actuator.

The electrical impedance of a magnetostrictive actuator appears as a large induc-
tance, due to the coils and magnetic core. In addition to the inductance, the coil’s
windings also have a finite resistance. In order to maintain the required field in the
device, coil currents on the order of a few amperes are not uncommon. Due to
the large inductance of the actuator, the power supply must be capable of operat-
ing at high voltages to maintain these large currents, especially at high actuation
frequencies.

The electrical impedance, Z, of the actuator at an actuation frequency ω, can be
written as

Z = Rl + jωL (6.126)

where Rl is the resistance of the coil windings and L is the inductance of the coil.
The resistance of the coil windings results in Ohmic heating losses in the coil given
by

Pheat = i2cRl (6.127)

where ic is the current passing through the coil, given by the sum of the current ia
required to create the actuation magnetic field and ib, the steady current required to
create the bias magnetic field.

ic = ia + ib (6.128)

Because the heat generated is proportional to the square of the current, the advan-
tage of using a permanent magnet to generate the bias magnetic field is evident. In
such a case, ib = 0 and the DC power requirements and heat generation are con-
siderably reduced. In the case of dynamic actuation, the magnitude of the voltage
required Vl, can be written as

Vl = ia
√

R2
l + ω2L2 (6.129)

It can be seen that the required voltage increases with the actuation frequency.
Careful attention must be paid to the design of power supplies for magnetostricitve
actuators operating in the high frequency range (�1 kHz). In addition to the Ohmic
losses in the coil windings, another major source of loss is due to eddy currents. As a
result of the alternating magnetic induction, and due to the conductive nature of the
magnetic material, eddy current loops are set up in the material. This is schematically
shown in Fig. 6.35. The eddy currents result in an energy loss, primarily through
Ohmic heating as a result of the material’s resistivity. The eddy currents also induce
a magnetic induction in a direction opposite to the applied magnetic induction,
resulting in a higher required power to achieve the same induced strain. A simple
and commonly used remedy is to laminate the magnetic material, separating each
laminate by a layer of non-conducting material. This has the effect of breaking up
the eddy currents into much smaller loops and greatly attenuates their effect as
shown in Fig. 6.35. The eddy current losses can be accounted for by using a complex
permeability in the calculations [65, 7].

Consider a lamina of thickness h, width b, and length l (Fig. 6.36(a)). The lamina
is placed in a sinusoidally varying magnetic induction B, aligned perpendicular to
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the x-y plane. The magnetic induction can be written as

B = Bo sinωt (6.130)

where Bo is the amplitude and ω is the circular frequency (rad/s). The changing
magnetic induction produces a voltage in the laminate that results in a flow of current.
Consider an elemental piece of the lamina of thickness h, width dz, and length dx. A
current element of thickness dy can be constructed as shown in Fig. 6.36(b), which
is part of a current loop extending across the entire cross-section of the lamina
(Fig. 6.36(a)). The resistance of the element is given by

dR = !
l
A

= 2!
dx

dydz
(6.131)

where ! is the resistivity of the laminate material. The voltage produced is

dV = −d�
dt

= −2 y dx Boω cosωt (6.132)

Therefore, the power dissipated in the element as a function of time is given by

dP(t) = (dV )2

dR
= 4y2B2

oω
2 cos2 ωt

2!
dy dx dz (6.133)

The average power dissipated, dPd, is given by

dPd = ω

2π

∫ 2π/ω

0
dP(t) dt

= B2
oω

2

3!
h3

8
dz dx

(6.134)
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Figure 6.36. Modeling of eddy current losses.
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The power dissipated per unit volume is found by dividing the above power by the
volume of the element, h dx dz. The resulting expression for eddy current losses per
unit volume is

Pd = B2
oω

2h2

24!
(6.135)

It can be seen that the eddy current losses are inversely proportional to the resis-
tivity of the lamina material, and directly proportional to the square of the lamina
thickness. Therefore, an effective way to minimize eddy current losses is to con-
struct a flux return path by stacking many thin laminae (typical thickness can be on
the order of 0.5 mm). Note that the above analysis assumes that the eddy currents
do not affect the flux density, and that the permeability of the lamina material is
constant.

6.6.8 Magnetostrictive Particulate Actuators

It may be possible to embed micron size (50-300 μm) magnetostrictive particles
in a host structure without any significant effect on the mechanical integrity of
the structure. These particles can then be excited using a remote magnetic field.
Anjanappa and Wu [53] uniformly distributed Terfenol-D particles in a polymeric
host material, which were magnetically oriented in a specific direction, by applying
a magnetic field during fabrication. In practice, it is difficult to achieve a perfect
orientation of particles, and hence the attainable induced strain is comparatively
less. It was shown that the volume fraction, orientation field, modulus of elasticity
of the matrix, and prestress play an important role in defining the performance of
particulate composites.

6.7 Magnetostrictive Sensors

Magnetostrictive sensors take advantage of the coupling between the elastic and
magnetic states of a material to measure motion, stress, and magnetic field. From the
second constitutive equation, (Eq. 6.60), it can be seen that a change in mechanical
stress results in a change in the magnetic induction in the material, which can be
sensed. This forms the principle behind magnetostrictive sensing.

Calkins et al. [66] and Dapino et al. [4] provided an overview of magnetostrictive
sensor technology. Sensors are classified into three categories; passive, active, and
hybrid. Passive sensors are based on the Villari effect and measure changes in the
magnetic flux due to an externally imposed stress, by means of a coil surrounding the
sensor. Active sensors use an internal excitation of the material (such as with a coil),
and measure the change in permeability (often with another coil) due to an external
forcing. Hybrid or combined sensors rely on the use of a magnetostrictive element
to actively excite another material (say, an optical fiber) that allows measurement
of change in its properties due to external inputs. Many different sensors based on
their applications have been investigated and contrasted with conventional sensors
in terms of sensitivity and implementation issues.

Flatau et al. [67] developed a high bandwidth–tuned vibration absorber using a
Terfenol-D actuator and showed a significant change of modulus from demagnetized
state to magnetic saturation. Simple experiments were conducted to demonstrate



640 Magnetostrictives and Electrostrictives

proof of concept. Pratt and Flatau [68] developed a self-sensing magnetostrictive
actuator and formulated an analysis of the non-contact nature of sensing using
magnetostrictives.

Overall, there is no sufficiently detailed database for magnetostrictive sensors
for a wide range of test conditions. More in-depth investigations are needed to
understand the behavior of magnetostrictive materials under a wide range of con-
trolled operating conditions. For modeling, the least well-defined component is the
magnetic state of the magnetostrictive core, which is a function of operating con-
ditions. It is important to develop reliable modeling of magnetization using either
micro-magnetic representation of material, the Preisach model, or the ferromagnetic
hysteresis model. There is a need to develop a three-dimensional constitutive model
of magnetostrictive materials that includes nonlinear thermal effects, magnetization
saturation, eddy current losses, prestress, hysteretic behaviors, and dynamic effects
and then systematically validated with test data.

6.7.1 Worked Example

Consider the Terfenol-D rod of Example 6.5.2, used as a sensor. Derive an expres-
sion for the output voltage and current developed by the sensor in response to a
mechanical stress.

Solution

Let us consider the case when this Terfenol-D rod is biased and a sinusoidal force is
applied at one end, given by

F = Fo sinωt

This will generate an output voltage at the open leads of the coil (Faraday’s law)

V = −N
dφ
dt

For an open circuit coil, i = 0, hence H = 0. This results in

ε3 = sH
33σ3

B3 = d33σ3

where

sH
33 = 1

EH
(EH is the open circuit Young’s modulus)

EH = 2.85 × 1010 N/m2

sH
33 = 0.377 × 10−10 m2/N

φ = BAx = d33σ3Ax
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The output voltage is

V = −Nd33Ax
dσ3

dt

= −Nd33
dF
dt

= −ωd33NFo cosωt

= −2πfd33NFo cosωt

where f is the frequency of the sinusoidal force in Hz. This can be written as

V = −ωd33nlAxσo cosωt

where l is the length of the rod and n is the number of turns per unit length. The
Terfenol-D rod can also be used to sense strain. Because the magnetic field in the
rod is zero, the strain in the rod can be calculated using the constant field Young’s
modulus of the material, EH

3 = 26.5 GPa. Therefore, the voltage generated by a
sinusoidally varying longitudinal strain ε3 = εo sinωt is

Vs = −ω
d33

sH
33

NAεo cosωt

The Terfenol-D rod can be used to measure the current in the coil due to a sinusoidal
forcing. Now we need to close the circuit and include a current-sensing resistor in
series with the coil. For the short circuit condition, B = 0. This results in

H = −d.σ
μσ

= ni

The current generated by the mechanical stress σ is

i = − d.σ
μσn

Typically, a sensing constant g is defined as

g = d
μσ

The current i is then i = −g
n σ, which is proportional to σ and inversely proportional

to n.

6.8 Iron-Gallium Alloys

Iron-Gallium (FeGa) alloys, also known as Galfenol, were developed at the Naval
Surface Warfare Center by Clark et al. [13]. These alloys exhibit moderate magne-
tostriction ( 350 ppm) under very low magnetic fields (�100 Oe or 8 kA/m) and have
very low hysteresis. They also have a high tensile strength (�500 MPa) and limited
dependence of magnetomechanical properties on temperatures between −20◦C and
80◦C [15]. In comparison, the tensile strength of Terfenol-D is about 30 MPa and
that of PZT-5H is about 75 MPa.
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The machinability, ductility, weldability, high Curie temperature (675◦C), and
low raw-material cost make FeGa an attractive low-cost actuator and a sensor mate-
rial well suited to applications in harsh environments including high shock loads,
capable of being easily integrated with a structure and functioning as a load bearing
member. Its corrosion resistance, fatigue properties, and the stability of its properties
over time are likely to make it a reliable engineering material. Furthermore, FeGa
demonstrates potential for micro-scale actuation and sensing applications. The bias
field required is also low (� 10 times smaller than in the case of Terfenol-D) and
may be achieved with a small permanent magnet.

The effect of alloying iron with other third group elements, aluminum, and
beryllium, has also been investigated [69]. While both FeGa and FeAl alloys exhibit
similar trends up to 25 atomic % of Ga or Al, the magnetostriction (λ100) of FeGa
is more than twice that of FeAl occurring at �19 atomic % Ga or Al. Iron-Beryllium
(FeBe) alloys, investigated upto 11 atomic % Be, show magnetostriction similar to
FeGa, but the high toxicity of Be makes FeBe alloys difficult to process. Further-
more, limited studies to date have shown that ternary alloys of Fe and Ga with
nickel, molybdenum, tin, aluminum, and cobalt at best do not significantly improve
its magnetostrictive properties and have a detrimental effect at some critical com-
positions [70, 71].

Atulasimha and Flatau [72] reviewed the state-of-the-art in Galfenol alloys.
They also provided an overview of the typical experimental behavior of single crystal
Galfenol in actuation and sensing modes [73]. Fig. 6.37(a) shows the strain as a func-
tion of magnetic field for 24.7% (atomic) Ga content single-crystal Galfenol. It can
be seen that the characteristics of Galfenol improve under compressive pre-stress.
As expected, the application of compressive stress helps to orient all the magnetic
moments perpendicular to the axis of the Galfenol rod (in the stress direction) in
the demagnetized state. The application of magnetic field causes all the magnetic
moments to reorient parallel to the rod axis. Beyond an optimum compressive stress,
a saturation in the maximum magnetostrictive strain takes place. With an increase in
the Ga content, there is a decrease in the maximum strain. The effect of compressive
stress on magnetic induction is shown in Fig. 6.37(b). At low fields, the slope of the
B-H curves is small, representing a state of low magnetic permeability. As the slope
becomes nearly zero, a saturation in magnetization is reached. The Galfenol is a
highly anisotropic material, and it is expected that its magnetoelastic behavior along
various crystallographic directions will be different.

For sensing applications, the interaction between the transducer’s magnetic cir-
cuit and the magnetostrictive element becomes quite important. This is because
the Galfenol has a sufficiently high magnetic permeability such that its reluctance
becomes comparable to that of the magnetic circuit. Hence, only a part of the magne-
tomotive force (MMF) generated by the coils is dropped across the magnetostrictive
element. In sensing applications, a constant drive current or MMF, is applied to the
transducer. On the application of stress, a change in the magnetomechanical state of
the Galfenol element occurs, which in turn produces a large change in the magnetic
field (H) in the transducer. In order to maintain a constant magnetic field through
the Galfenol element, a feedback loop is introduced to vary the drive current to
compensate for variation in the sample reluctance. The field through the sample is
monitored by a Hall effect sensor. Fig. 6.38 shows the variation of magnetic induction
with stress applied in the (100) axis for a range of bias fields. There is more hysteresis
in the sensing behavior than in the actuation behavior.
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Figure 6.37. Effect of compres-
sive pre-stress on experimen-
tal behavior of furnace cooled,
24.7 at. % single crystal FeGa,
from Ref. [73].

6.9 Magnetic Shape Memory Alloys

Magnetic Shape-Memory Alloys (MSMA), also known as Ferromagnetic Shape
Memory Alloys (FSMA) are recently discovered smart materials that display a
magnetically driven shape memory effect. Initial development started as early as in
1996, when Ullakko et al. [74] demonstrated a 0.2% magnetic field induced strain
in a sample of single crystal Ni2MnGa. Later on, over 10% magnetic field induced
strain was measured in Ni-Mn-Ga by Sozinov et al. [75]. Several materials such as
Ni2MnGa2, Co2MnGa, FePt, CoNi, and FeNiCoTi exhibit this type of behavior, but
the largest magnetic field-induced strain was achieved in Ni-Mn-Ga alloys [76], which
as a result remain the leading material in this class. Several modes of deformation are
possible. Initial studies reported axial strains [74], and subsequently, macroscopic
bending deformations were reported [77]. Several actuator designs based on linear,
bending, and torsional deformations have been proposed, and some models of linear
actuators are commercially available(ADAPTAMAT, [78]). Much of the following
discussion on MSMAs is based on the characteristics of this material.
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Figure 6.38. Magnetic induction as a function of applied stress and bias field, for (100) oriented
19 at. % Ga, furnace cooled, single crystal FeGa, from Ref. [73].

6.9.1 Basic Mechanism

At high temperatures, Ni-Mn-Ga has a cubic lattice structure (in the austenite state).
On cooling, the material transforms to martensite. This transition temperature is typ-
ically around 20◦C–35◦C, although the exact transition temperature is highly depen-
dent on the alloy composition. The maximum transition temperature achieved so
far is 70◦C [79]. In the martensite phase, the material has a tetragonal unit cell, with
a long axis (a-axis) and a shorter axis (c-axis). In addition, the martensitic phase
is ferromagnetic and has two twin variants. The magnetic field-induced deforma-
tion exhibited by these materials is the direct result of the rearrangement of these
martensitic twin variants [80].

In a typical ferromagnetic material like Fe, the direction of magnetization can
be easily aligned with an external magnetic field. However, the MSMA exhibits a
large magnetocrystalline anisotropy, which means that the axis of magnetization
is rigidly fixed in each unit cell. This axis of magnetization is aligned parallel to
the c-axis, which is the ‘easy’ axis. MSMAs have a much higher magnetocrystalline
anisotropy compared to conventional magnetostrictive materials. Consquently, in a
magnetic field, the entire unit cell tends to rotate such that its easy axis is aligned with
the external field. Because the entire unit cell tends to change its orientation, the
process of alignment with an external magnetic field results in transformation of the



6.9 Magnetic Shape Memory Alloys 645

lo  cH

(a) H < Hs

twin boundary
H

(b) Hs < H < Hf

H lf  a

(c) H > Hf

Figure 6.39. MSMA bar in an external magnetic field (zero stress).

material from one twin variant to another, accompanied by a change in dimensions.
In a similar fashion, the orientation of the unit cells can be affected by the application
of an external stress.

6.9.2 Effect of an External Magnetic Field

The effect of an external magnetic field on a MSMA sample is shown schematically
in Fig. 6.39. A bar of MSMA is placed in a magnetic field H, acting perpendicular
to the length of the bar. Initially, the entire bar consists of a single twin variant of
MSMA, in which all the c-axes (easy axes) are aligned parallel to the length of the
bar (Fig. 6.39(a)). The direction of the easy axis is shown by the vertical arrow on
the bar. The initial length of the bar, lo, is proportional to the length of the c-axis.
As the magnetic field is increased above a critical value Hs, the material begins to
transform into the twin variant in which the c-axis is aligned parallel to the applied
magnetic field. Because the easy axis is aligned with the applied field, this variant is
called the ‘field-preferred’ variant. The boundary between the regions in which the
two twin variants exist appears as an inclined twin boundary.

As the magnetic field is further increased, a larger fraction of the original twin
variant transforms into the field-preferred variant, resulting in a motion of the twin
boundary. In physical samples of MSMA, these twin boundaries can be clearly seen
with the naked eye, and their motion can be observed by moving a sufficiently strong
permanent magnet near the bar.

When the field reaches a value Hf , the entire bar exists in the field-preferred
variant, that is, with the c-axis aligned parallel to the applied field (Fig. 6.39(c)). The
final length of the bar after the transformation, lf , is proportional to the length of the
a-axis. Because the a-axis is longer than the c-axis, we can see that the total length
of the bar has increased by the amount a/c, and the total field induced strain is given
by 1 − c/a. For a typical c/a = 0.94 [77], it follows that the maximum achievable
magnetic field induced strain is 6%. Note that once the material has transformed
entirely into the field-preferred variant, any subsequent change in the magnetic field
produces no change in the dimensions of the material. Consequently, if the magnetic
field is now set to zero, the deformed shape remains unchanged.

6.9.3 Effect of an External Stress

The twin boundaries can also be moved by the application of a mechanical stress.
(Fig. 6.40). Consider the bar in Fig. 6.40(a), which is the same as in Fig. 6.39(c),
where the entire sample is in the field-preferred variant. Now let the field be turned
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Figure 6.40. MSMA bar under an external compressive stress (zero magnetic field).

to zero, and let a compressive stress be applied along the length of the bar. Because
the c-axis is shorter than the a-axis, the compressive stress tends to move the unit
cells such that their long a-axes are aligned perpendicular to the applied compressive
stress. Therefore, this twin variant is called the ‘stress-preferred’ variant.

At low values of compressive stress, only elastic deformation occurs. As the
compressive stress increases beyond a critical stress σs, the material begins to trans-
form into the stress-preferred twin variant. The twin boundary begins to move as the
stress is increased, until a final critical stress σf is reached, at which point the entire
material exists in the stress-preferred variant. It can be seen that the length of the
bar has now returned to its original dimensions, as in Fig. 6.39(a). The application
of compressive stress reverses the effects of the applied magnetic field. Typically, in
order to move the twin boundaries, the minimum field required is around 0.2 T and
the minimum stress is about 2–3 MPa.

6.9.4 Behavior under a Combination of Magnetic Field
and Compressive Stress

The entire process of applying a magnetic field cycle followed by a compressive
stress on a sample of MSMA, as described above, is shown in Fig. 6.41. The sample is
initially fully in the stress-preferred twin variant. As the magnetic field is increased
above a critical value Hs, the material starts to deform. The free strain reaches a
value of approximately 6% at a magnetic field Hf , and then saturates. Decreasing
the magnetic field to zero has no subsequent effect on the dimensions of the sam-
ple. The sample is returned to its original length by the application of an external
compressive stress. It is important to note that both the magnetic field as well as the
compressive stress have critical values that define the beginning and the end of the
change in dimensions of the material.

In a similar way, let us examine the response of the MSMA bar to a compressive
stress cycle followed by the application of a magnetic field. This behavior is shown
in Fig. 6.42. The sample is initially entirely in the field-preferred variant. As the
compressive stress is increased, the material deforms elastically. The elastic modulus
at this point is called Ef (field-preferred) and is approximately 450 MPa. When
the compressive stress reaches a value σs, the material begins to transform into the
stress-preferred variant. During the transformation, which corresponds to the nearly
horizontal portion of the stress-strain curve, the material has a very low stiffness. At
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Figure 6.41. Induced strain of an MSMA in
response to an applied magnetic field at zero stress,
followed by the application of a compressive stress
at zero field.

the stress value σf , the transformation is complete, and the sample exists entirely
in the stress-preferred variant. A subsequent increase in compressive stress results
in an elastic deformation of the stress-preferred variant. At this stage, the material
has an elastic modulus Es (stress-preferred) that is approximately 850 MPa. Note
that Es is nearly double Ef . When the compressive stress is removed, the material
recovers the elastic deformation of the stress-preferred variant and retains a residual
strain εL. The strain εL can be found by extrapolating the elastic deformation curve
of the stress-preferred variant to the zero stress axis. This strain can be completely
recovered by applying a magnetic field H > Hf , which converts the material back
into the field-preferred variant. Because all deformation occuring at a stress greater
than σf is elastic in nature, εL is the maximum recoverable strain of the material,
and is a constant that depends on the material composition. Based on the above
discussion, it is obvious that εL is also the maximum magnetic field induced free
strain of the material.

As the unit cells re-orient themselves in response to the applied stress, the per-
meability of the material also changes significantly. This is due to the large magnetic
anisotropy in the unit cell itself. The effect of the compressive stress on the induced
strain is also similar to that observed in the case of conventional magnetostrictive
materials. As the compressive stress increases, the induced strain increases, reaches
a maximum, and then decreases. The reason for this behavior is also similar to that in
the case of magnetostrictive materials, that is, the compressive stress tends to trans-
form the material into the stress-preferred variant, and therefore a larger change in
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an MSMA at zero magnetic field.
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length is achievable on transformation to the field-preferred variant. The optimum
value of compressive stress, in order to obtain the maximum induced strain, has been
observed to be around 1–1.5 MPa [78].

Fig. 6.43 shows the stress-strain curve of the MSMA at different values of mag-
netic field. Because the unit cells tend to align themselves along the magnetic field,
it is more difficult to reorient them by applying a compressive stress. As a result, the
critical stresses σs and σf are higher in the case of the higher applied field. However,
the stiffness of the two twin variants are unaffected by the magnetic field.

The response of the material to a compressive stress cycle at a non-zero magnetic
field is shown in Fig. 6.44. The magnetic field has the effect of causing some recovery
of the strain upon unloading. If the applied magnetic field is larger than Hf , the entire
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strain can be recovered. If the magnetic field is less than Hf , only partial recovery is
possible (pseudoelastic behavior).

6.9.5 Dynamic Response

Because the transformation between twin variants does not depend on any heat
transfer (as in the case of SMAs), and is purely a reorientation of unit cells, it is a
very fast process. As a result, the material exhibits a bandwidth in the order of kHz.
Coupled with the large achievable strains, this high bandwidth makes MSMAs very
attractive as actuator materials.

In order to obtain a bi-directional induced strain, it is essential to apply a com-
pressive stress to return the material to its original dimensions when the magnetic
field is zero. In practice, this can be realized by actuating the material against a
mechanical spring. Fig. 6.45 shows a schematic of the strain induced in an MSMA
bar by a sinusoidal magnetic field, under a constant compressive stress. Because
the process of alignment of the unit cells along the direction of the external mag-
netic field is similar to the alignment of domains in the case of a magnetostrictive
material, it can be seen that the induced strain is independent of the polarity of
the applied magnetic field. Therefore, the induced strain response can be approxi-
mated as a quadratic function of the applied magnetic field. Similar to the case of a
magnetostrictive element, the MSMA can be actuated in two ways:

1. Constant bias magnetic field superimposed on a bipolar magnetic field: The
induced strain is bidirectional but has a non-zero mean value. The output strain
can be almost linear, and has the same frequency as the actuation.

2. Purely bipolar magnetic field: In this case, the induced strain is highly non-linear.
The strain is bidirectional with a non-zero mean, but occurs at a frequency
double that of the actuation, due to the quadratic dependence of induced strain
on magnetic field.

6.9.6 Comparison with SMAs

Comparing the stress-strain behavior of an MSMA with that of an SMA makes it
clear why the material is called a ‘magnetic’ shape memory alloy. For reference,
the stress-strain curve of a conventional SMA in shape memory mode is shown in
Fig. 6.46(a). A detailed discussion of this behavior can be found in Chapter 3. Also
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Figure 6.46. Strain variation of a shape memory alloy.

shown in Fig. 6.46(b) is the strain-temperature behavior of a prestrained SMA under
no load (free recovery). Td is the initial temperature, or room temperature.

The stress-strain curve for an MSMA sample undergoing a loading and unload-
ing cycle at zero magnetic field is shown in Fig. 6.42, and is discussed in Section 6.9.3.
The residual strain can be completely recovered by the application of a magnetic
field. This behavior is identical to that of an SMA in the fully martensite phase,
except that the strain recovery occurs on the application of a magnetic field in the
case of the MSMA, as opposed to a temperature rise as in the case of the SMA.

The analogy between the effects of temperature and magnetic field becomes
more obvious on comparison of the strain-field behavior of MSMA with the strain-
temperature behavior of an SMA, each under no external stress. This is also referred
to as the free recovery behavior. Let us consider an MSMA material that has been
imparted a residual strain εr. As the magnetic field is increased from zero, the material
begins to transform to the field-preferred variant, thus recovering the residual strain
and returning to its original dimensions. The transformation begins at a field Hs and
is complete at a field Hf (Fig. 6.41). This behavior corresponds to the temperature-
induced free recovery of an SMA (Fig. 6.46(b)), with the quantities Hs and Hf

corresponding to the austenite start and finish temperatures As and Af , respectively.
The strain behavior of the MSMA when exposed to a compressive stress cycle

in the presence of a non-zero magnetic field (Fig. 6.44) is also similar to the pseu-
doelastic behavior of an SMA, shown in Fig. 6.47. For this reason, the phenomenon
in the case of MSMAs is referred to as magnetic pseudoelasticity.

Note that there is also a qualitative similarity between the shapes of the stress-
strain curves of the MSMA and the SMA, as well as between the shapes of the

St
re

ss

Strain

Figure 6.47. Pseudoelastic behavior of an SMA,
T > Af .
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strain-field curve of the MSMA and the strain-temperature curve of the SMA. By
comparing the stress-strain curves, free recovery, and pseudoelasticity, we can
conclude that the behavior of SMAs and fully martensitic MSMAs is analogous.
There is a one-to-one correspondence between martensite (SMA) and the field-
preferred twin variant (MSMA), between austenite (SMA) and the stress-preferred
twin variant (MSMA), and between temperature (SMA) and the magnetic field
(MSMA).

6.9.7 Experimental Behavior

The procedure for measuring the properties of an MSMA sample is described below.
Two types of tests are performed on the material, either to measure the stress-strain
behavior of the material at a constant magnetic field, or to measure the field-strain
behavior at a constant stress. The properties measured by this technique can be used
in a constitutive model of MSMA behavior, described in Section 6.9.8.

The samples used in the experiments are two single crystal martensite NiMnGa
rods, obtained from Adaptamat (Helsinki, Finland). The specimen dimensions were
2 × 3 × 16 mm. In addition, the magnetic easy axis (c-axis), is oriented perpendicular
to the direction of the long axis. Therefore, magnetic strain is induced when a field is
applied perpendicular to the long axis of the specimen. The density of the material
was measured to be 8.36 gm/cm3.

The experimental setups for the constant stress and constant magnetic field
tests were designed around similar magnetic field generators. The field generators
consisted of laminated, transformer-steel core electromagnets capable of producing
inductive fields on the order of 1.0 Tesla. The core consisted of two E-shaped halves,
joined together by an aluminum frame. Two copper wire coils were wound around the
center arm of the E-frames. The ends of the center arms were tapered to concentrate
the magnetic flux and the NiMnGa specimen was situated between them.

It is important to point out that it is difficult to experimentally measure the
magnetic field H in the MSMA because of the varying permeability of the material.
However, it is easy to measure the magnetic induction B, by means of a Hall effect
sensor. For this reason, the experimental behavior of the MSMA is often quantified
in terms of the applied magnetic induction.

Due to the tapering of the magnetic poles of the E-frame, and by keeping the
cross-sectional area of the poles significantly larger than the area of the sample, the
measured variation in applied magnetic induction across the face of the poles was
less than 2%.

Constant Magnetic Field Testing Apparatus

For the constant magnetic field tests, the NiMnGa specimen was gripped by a station-
ary and a moveable push rod, holding the specimen parallel to the electromagnet
poles. Axial loads were applied to the specimen by an advance screw behind the
moveable push rod. A 10 lb load cell, mounted between the moveable push rod and
the specimen, was used to acquire force data. The accuracy of the load cell was within
0.0045 N. Actuator deflections and strains were measured by a laser sensor, accurate
to within 0.01 mm. Magnetic measurements were taken by a gauss meter. Power
to the coils of the electromagnet was provided by a 20V/10A DC power supply. A
photograph of the constant field test rig is shown in Fig. 6.48.
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Figure 6.48. Constant magnetic
field testing.

Constant Stress Testing Apparatus

For the constant stress tests, a setup similar to the constant field apparatus was
developed. The main difference between the two rigs is that the specimen is oriented
vertically in the constant-stress test setup and horizontally in the constant-field test
setup. The NiMnGa specimen was glued into grips between the poles of the elec-
tromagnet. The specimen is supported by a stationary, lower rod so that strain is
restricted to one direction. In the direction of strain, the specimen acts against a
rod attached to a low-friction, linear bearing. Another rod at the other end of the
bearing connects the bearing-pushrod combination to a linear potentiometer and
weight pan. Strains are measured by the linear potentiometer, accurate to within
0.002 mm, and the level of constant stress is regulated by adding and subtracting
weights to and from the weight pan. Applied magnetic field measurements are taken
by Hall effect sensors located in the air gap between the pole and NiMnGa bar.
The electromagnet in this rig is powered by two 30V/5A power supplies connected
in series. A rack of capacitors was connected in parallel with the coils to obtain a
desired RC time constant in the electrical circuit. A high RC constant is necessary
to have a slow decay in the magnetic field when the power is removed so that the
quasi-static behavior of the material may be observed. A photograph of the constant
stress test rig is shown in Fig. 6.49.

Experimentally measured magnetic shape memory effect and magnetic pseu-
doelastic behavior is shown in Fig. 6.50.
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Figure 6.49. Constant stress testing.

6.9.8 MSMA Constitutive Modeling

Several models of varying degrees of complexity have been proposed to predict
MSMA behavior. These range from free energy-based models, representing the
MSMA as containing two twin variants separated by a mobile twin boundary, to

Ef

Es

(a) Magnetic shape memory effect at 0 T

(b) Magnetic pseudoelasticity at 0.6 T

Experimental, unloading
Experimental, loading

Figure 6.50. Experimental behavior of MSMA sample.
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macroscopic phenomenological models. Free energy-based micromechanics mod-
els can predict the local stress and strain states of the material, but are difficult to
implement from an engineering perspective. In contrast, phenomenological consti-
tutive models are easy to implement and can satisfactorily predict the macroscopic
behavior of the material. Here, we outline the development of a quasi-static phe-
nomenological model developed by Couch et al. [81].

Because of the analogous behavior of MSMAs and SMAs, as discussed in Sec-
tion 6.9.6, it is possible to adapt SMA constitutive models to MSMAs. Note that the
assumption here is that the MSMAs operate only at temperatures low enough to
ensure that they are in the fully martensite phase. The Tanaka model is adapted to
model MSMA behavior by replacing all quantities describing the martensite phase
of SMAs with the field-preferred variant of MSMAs, and the austenite phase of
SMAs with the stress-preferred variant of MSMAs. The martensite volume fraction
ξ is replaced by a quantity called the ‘stress-preferred volume fraction’, ξσ, that varies
from 0 to 1. The constitutive equation can be written as

σ − σo = E(ξσ)(ε − εo) + �s(ξσ − ξσo) + λ(H − Ho) (6.136)

In the above equation, �s is a constant related to the transformation from one
twin variant to another, and λ is a constant related to magnetostriction. Quantities
with the subscript ‘o’ refer to initial conditions. It should be pointed out that this
magnetostriction term refers to the change in dimensions of each unit cell in response
to an applied magnetic field. In the case of MSMAs, we assume that the induced
strain is predominantly a result of the change in geometry caused by transformation
between twin variants and not due to change in the dimensions of each unit cell.
Therefore, the term related to λ is comparatively small and can be neglected. This
term is similar to the coefficient of thermal expansion of SMAs.

The constant �s can be found by starting from a set of initial conditions and
then applying a combination of stresses and magnetic fields on the sample. Consider
an MSMA sample in the fully field-preferred variant, under zero compressive stress
and zero magnetic field, and with no initial strain. Therefore, the initial conditions
are:

σo = 0

εo = 0

ξσo = 0

Ho = 0

A compressive stress is then applied on the sample to convert it completely into the
stress-preferred variant, and then removed. The strain in the material is now εL. The
variables at this point are:

σ = 0

ε = εL

ξσ = 1

H = 0
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Table 6.9. Parameters used in the
constitutive model

Hs 1.0 kOe
Hf 3.5 kOe
σs 0.284 MPa
σf 0.902 MPa
Cs 0.452 MPa/kOe
Cf 0.488 MPa/kOe
Es 820 MPa
Ef 450 MPa
εL 5.5 %

Substituting the above initial and final conditions in the constitutive relation
(Eq. 6.136), we get

�s = −E(ξσ)εL (6.137)

The final form of the constitutive relation becomes

σ − σo = E(ξσ)(ε − εo) − E(ξσ)εL(ξσ − ξσo) (6.138)

where the magnetostrictive term has been neglected. The stress-preferred volume
fraction is a function of the applied magnetic field. This function can be defined in dif-
ferent ways depending on the state of the material, similar to the procedure followed
in the case of SMA modeling. The model is characterized by nine experimentally
determined constants. These are:

(i) Material parameters: Maximum free strain, εL, stress-preferred variant Young’s
modulus, Es, field-preferred variant Young’s modulus, Ef

(ii) Critical stresses and fields: σs, σf , Hs and Hf

(iii) Stress-influence coefficients: Cs = 1/(dHs/dσ) and Cf = 1/(dHf /dσ)

These parameters are obtained from experimental testing of the MSMA. The mate-
rial properties are obtained from constant magnetic field–stress-strain tests. The
remaining constants are determined by varying the magnetic field at a constant
stress. Typical values of the constants used in the model are shown in Table 6.9. Cor-
relation of the constitutive model with some experimental data is shown in Fig. 6.51.

6.9.9 Linear Actuator

The behavior of the material in response to a magnetic field and a compressive
stress can be used to construct a bidirectional linear actuator. A schematic of such
an actuator is shown in Fig. 6.52.

The basic construction is similar to that of a magnetostrictive actuator. A mag-
netic field is applied to the active material by means of a field generator, consisting of
a current carrying solenoid coil and a highly permeable flux path. In order to reduce
the power requirements, a permament magnet (shown in the diagram by the poles
N and S) can be incorporated in the flux path to provide a constant-bias magnetic
field. The active material deforms a spring that serves to return the material to its
original dimensions after the magnetic field goes to zero.

The major difference between the MSMA actuator and a conventional magne-
tostrictive actuator is the configuration of the magnetic field generator. In the case
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Figure 6.51. Validation of quasi-static constitutive model of MSMA.

of a magnetostrictive actuator, the applied field is along the length of the active
material and is parallel to the output displacement. However, in the case of the
MSMA actuator, the applied field is perpendicular to both the length of the active
material as well as the output displacement. Therefore, the design of the magnetic
field generating circuit is different for the two types of active materials.

Although the MSMA has a high bandwidth, the useful bandwidth of the actuator
is often limited by the time taken for the spring to return the active material to its
original length. In other words, the dynamics of the return spring and the external
load can have a significant effect on the output of the actuator. As a consequence, if
the actuator is excited by a sinusoidal current, the output displacement will follow a
sinusoidal waveform only when the MSMA is expanding (pushing), and not during
the return stroke. One solution to this problem might be to have two actuators
operating in an antagonistic fashion against the same load.

6.9.10 Design of the Magnetic Field Generator (E-frame)

A schematic of an E-frame magnetic field generator is shown in Fig. 6.53(a). This
geometry is well suited for MSMA actuators because of the cuboidal shape of the
active element. The coil is wound on the middle arms of the E-frame, and the MSMA
bar is placed between the faces of the middle arms. The mass of the actuator is evenly

Return spring

Flux path

magnet

Solenoid

Output displacement

MSMA

N S

Figure 6.52. MSMA linear actuator.
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Figure 6.53. E-frame magnetic field generator for an MSMA linear actuator.

distributed on both sides of the MSMA bar. Note that the output displacement occurs
perpendicular to the plane of the E-frame.

The major geometrical parameters of the E-frame are determined by the dimen-
sions of the MSMA bar. The main requirement is to ensure that the magnetic field
acting on the bar is as uniform as possible. A general algorithm for design of the coil
is described below. All important dimensions are shown in Fig. 6.53(b).

1. Calculate the cross sectional area of the flux return path. The parameters t1
and lc should match the corresponding dimensions of the active material plus an
additional 10–20% to account for fringing in the air gap. This can be represented
by a ‘fringing factor’ F , that is expressed as a percentage of the length of the
active material. Including the fringing factor will ensure that the field across the
poles of the field generator is close to uniform. For an MSMA bar of width ws

and length ls,

t1 = ws(1 + F )/2 (6.139)

lc = ls(1 + F ) (6.140)

2. Determine the length of the solenoid lo. The length of the solenoid is based
on the dimension l1, which can be chosen based on other specifications such as
overall actuator dimensions.

lo = k(l1 − t1/2) (6.141)

Assume that k is between 0.6 and 0.9 to account for the gap between the poles
or tapering of the central arms. The gap between the faces of the middle arms
of the E-frame is fixed by the thickness of the MSMA bar, ts, with as little air
gap as possible.

3. Estimate the required mmf . Because the geometry of the flux return path is not
known at this stage, in this initial calculation we assume that the mmf required
is dependent on the reluctances of the air gap and sample only. The effect of the
flux return path is neglected for now, but will be added in a later step to serve as
a check on our initial estimate. This assumption is only valid if the permeability
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of the flux return is large, and its reluctance is small compared to that of the
sample and the air gap. The mmf is given by

mmf = BaAc(Ra + Rs) (6.142)

where Ba is the required magnetic induction, Ac is the core cross-section (given
by lc × 2t1), and Ra and Rs are the reluctances of the air gap and the MSMA
sample respectively.

4. Assume the coil geometry. Choose the total number of turns, Ntot, and a wire
gauge. From these parameters, the number of turns per layer Nt, and the num-
ber of layers in the coil Nl can be determined. The remaining calculations are
performed for several values of Ntot so that the optimum value can be identified.
This procedure is much simpler to implement than finding a closed form solution
for the optimum number of turns. For a wire of diameter dw,

Nt = lo
dw

(6.143)

Nl = Ntot

2Nt
= t2 − t1

dw

(6.144)

In the above equations, any imperfections in winding the wire are neglected.
This assumption becomes more accurate as the wire diameter decreases. Also
note that Nt and Nl are the number of turns and number of layers in the coil on
only one half of the E-frame. The other half of the E-frame will have an identical
coil, and the total number of turns of both the coils is Ntot.

5. Find the remaining dimensions of the flux return path. To minimize the mass
of the flux return, it is assumed that the coil will fill all the empty space in the
E-frame. Using the value of Nl, the remaining dimensions of the E-frame, t2 and
l2 are calculated.

t2 = Nldw + t1 (6.145)

l2 = 3t1 + 2Nldw (6.146)

6. Determine the electrical properties of the circuit. Now that the geometry of
the E-frame has been determined, the total length of the wire in the coil (both
halves of the E-frame), lw, and the resistance of the coil can be calculated. In
addition, since the geometry of both the coil and the E-frame are now known,
the inductance of the coil can also be calculated. The total length of the wire is
given by

lw = Ntot(2lc + 4t2) (6.147)

For a wire of cross-sectional area Aw, with a resistivity !w, and a flux return path
of permeability μc, the resistance of the coil Rw and the inductance of the coil
Lw are

Rw = Ntot!w

Aw

(2lc + 4t2) (6.148)

Lw = N2
totμclct1

l2 + 4l1
(6.149)

7. Determine the magnitude of the power required by the coil. The current flowing
in the coil, iw, is determined by dividing the mmf by the assumed number of
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turns.

iw = mmf
Ntot

(6.150)

From the required current and the calculated coil impedance, the power
required, Pw, at a given operating frequency can now be determined.

Pw = i2w

√
R2
w + L2

w (6.151)

Note that the heat produced in the coil, Pd, is purely due to Ohmic heating, and
is given by

Pd = i2wRw (6.152)

8. Determine the mass of the magnetic field generator. Provided that the density
of the material used in the flux return and in the wire is known, the mass of the
magnetic field generator can be calculated. The mass of the flux return Mf and
coil Mw are given by

Mf = 2ρf lc

[
4t1

(
l1 − t1

2

)
+ t1 (l2 + t1)

]
(6.153)

Mw = ρwlwAw (6.154)

where ρf is the density of the material of the flux return and ρw is the density
of the material of the wire. The total mass of the magnetic field generator is
Mtot = Mf + Mw.

9. Determine the actual mmf produced. Now that all the parameters are known,
the reluctance of the flux return path can be determined and included into
the mmf calculation. If it is small, then our initial assumption is valid and the
reluctance of the flux return can be neglected. If the reluctance is large, then it
must be included into the calculation of mmf . Comparing the predicted mmf to
the required mmf , gives an indication of the accuracy of the coil design. Since
the number of turns, Ntot, is fixed for each design, the current in the coil must
be increased to compensate for the increase in mmf . Once the true current in
the coil is known, it can be substituted into the power equation and the actual
required power of the coil can be determined.

10. The coil impedance, required power, and total mass is calculated for each
assumed value of Ntot. From these calculations, based on important requirements
such as maximum driving frequency (minimum Lw), minimum total power, min-
imum heating of the coil (minimum Rw), and minimum total mass, the optimum
coil geometry can be chosen.

6.9.11 Worked Example: Design of a Magnetic Field Generator (E-frame)

A numerical example will illustrate the design procedure. Consider an MSMA sam-
ple of length 17 mm, width 3 mm, and thickness 2 mm. A uniform magnetic induction
of 1 Tesla is required over the width of the sample (across the thickness). Let us
investigate the possible dimensions of the coil and flux return path. The data required
for the calculation are summarized below:

(a) General data
� Required magnetic induction Ba: 1 T
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� Air gap between sample and poles of the field generator tg : 1 mm
� Fringing factor F : 0.2
� Design operating frequency: 100 Hz

(b) MSMA sample
� Length ls: 17 mm
� Width ws: 3 mm
� Thickness ts: 2 mm
� Relative permeability μs: 1.5

(c) Flux return
� Material: Steel
� Density: 7850 kg/m3

� Relative permeability μc: 1000
� Saturation magnetic induction Bsat,c: 2 T
� E-frame parameter L1: 40 mm

(d) Coil wire
� Density: 8906 kg/m3

� Resistivity: 1.72 × 10−8 ohm-m

Solution

Based on the given length and width of the sample and the assumed fringing factor,
the E-frame parameters t1 and lc can be calculated (Fig. 6.53(b)).

t1 = ws(1 + F )/2 = 18 mm

lc = (1 + F )ls = 20.4 mm

Assuming k = 0.9, the parameter lo is given by

lo = k(l1 − t1/2) = 35.2 mm

The reluctances of the air gap and MSMA sample are

Ra = tg
μolsws

= 1560342.579 A-turn/Wb

Rs = ts
μoμslsws

= 2080456.772 A-turn/Wb

The mmf is given by

mmf = 2Balct1(Ra + Rs) = 267.38 A-turns

At this point, the number of turns in the coil has to be assumed. The other parameters
are then calculated as described in steps 4–10 of Section 6.9.10. A set of parameters
calculated for a coil with 50 turns for different wire gauges is shown in Table 6.10.
The number of turns per layer and number of layers are found, based on the E-frame
parameters calculated above. For some of the thinner wires, it can be seen that the
number of layers is less than 1. This is because the coil is assumed to cover the
entire length lo. In such a case, keeping in mind physically realizable limits, either
the number of turns per layer can be reduced so that one layer can be wound, or the
dimensions l1 can be changed.

From this point, the geometric parameters t2, l2, and lw, the electrical parameters
Rw and Lw, and the mass properties are calculated. It can be seen that for different
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Figure 6.54. Current required to achieve spec-
ified magnetic induction in the MSMA sample
as a function of number of turns in the coil.

wire diameters, the coil resistance varies much more than the coil inductance. This
has a significant effect on the heat generated in the coil, Pd. The total required power
Pw does not vary much with the chosen wire diameter. To check the effect of the
flux-return core on the magnetic circuit, its reluctance Rcore, can be calculated based
on the dimensions of the E-frame. The actual required mmf , mmf act, is calculated
by including Rcore in the total reluctance. It can be seen that Rcore is small compared
to Ra and Rs, and its effect on the required mmf can be neglected.

Such a table of parameters can be generated for several values of total turns
in the coil, and the important quantities can be plotted as a function of wire gauge
and number of turns. Based on specific criteria, an acceptable coil geometry can be
chosen. Because the current required is constant for an assumed number of turns, a
plot of current required as a function of total number of turns is shown in Fig. 6.54.
It can be seen that there is a large increase in the required current as the number of
turns decreases. Fig. 6.55(a) shows the heat generated in a 50 turn coil as a function
of the wire gauge. In general, to reduce the amount of heat generated, it is better to
use a larger diameter wire (smaller gauge) and more number of turns. However, it
can be seen that the difference in heat produced by the 500 turn coil and 1000 turn
coil is small. The total power required to achieve the specified magnetic induction
of 1 T is shown in Fig. 6.55(b). The total power decreases with increasing number of
turns and increasing wire diameter, especially for the larger diameter wires.
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Figure 6.56. Mass of the magnetic field generator as a function of wire gauge and total number
of turns, to achieve a specified magnetic field.

Fig. 6.56 shows the mass of the magnetic field generator as a function of wire
gauge. The mass of the flux return core remains relatively constant, especially for
lower number of turns, but the mass of the coil shows a large increase at higher wire
diameters and number of turns.

It can be seen that there is a tradeoff between lower power and lower mass.
Based on these plots, and other operating considerations such as maximum available
power and maximum allowable mass, optimum coil parameters can be chosen. This
will determine the geometry of the flux return core. The heat generated in the coil
is often a limiting factor because of the poor thermal conductivity of the coil and
core materials. While a lot of flexibility exists in the design, we choose a 500 turn,
22 AWG coil based on low total mass and low heat generated as driving factors.
The resulting values of E-frame dimensions, power, mass and current are shown in
Table 6.11. The number of layers and number of turns can be rounded off to the
next highest integer value.

It is interesting to note that while the mass of the active material itself is approxi-
mately 0.9 gm, the total mass of the magnetic field generator is 184.4 gm. This results
in a large decrease in the overall actuator power density compared to the capability
of the active material itself, and is one of the most important challenges in developing
an effective actuator.

6.10 Electrostrictives

Electrostrictive materials undergo deformations under the influence of an electric
field. However, the phenomenon of electrostriction is fundamentally different from
the converse piezoelectric effect. In electrostrictive materials, unlike piezoelectrics,
the unit cells are centrosymmetric, and the change in dimensions is not the result
of a modification of the structure of the material, but is inherent to the material
itself. The basic mechanism is a separation of charged ions in the unit cell of the
material. The phenomenon exists in all the materials; however the magnitude of
electrostriction is negligible in most cases. Some materials, such as as relaxor fer-
roelectrics, undergo large electrostrictive strains when an electric field is applied
(on the order of 0.1% strain). Electrostrictives, like piezoelectrics, belong to a class
of ionic crystals called ferroelectrics. They consist of domains that have a uniform,
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Table 6.10. Parameters as a function of wire gauge for a 50 turn coil

AWG 14 16 18 20 22 24 26 28 30

Wire diameter, mm 1.629 1.291 1.025 0.812 0.644 0.510 0.405 0.322 0.255
Nt, turns/layer 21.6 27.3 34.3 43.4 54.6 69.0 86.8 109.4 138.2
Nl, layers 1.2 0.9 0.7 0.6 0.5 0.4 0.3 0.2 0.2
t2, mm 3.685 2.985 2.547 2.268 2.095 1.985 1.917 1.874 1.846
l2, mm 9.170 7.769 6.894 6.336 5.989 5.770 5.633 5.547 5.492
lw, m 2.777 2.637 2.549 2.494 2.459 2.437 2.423 2.415 2.409
Rw, ohms 0.023 0.035 0.053 0.083 0.130 0.205 0.324 0.512 0.816
Lw, mH 6.819 6.876 6.912 6.935 6.950 6.959 6.965 6.968 6.971
Pact, W 135.176 136.199 136.851 137.282 137.577 137.833 138.161 138.789 140.263
Pheat, W 0.657 0.993 1.522 2.376 3.721 5.875 9.259 14.645 23.334
Mass of core, kg 0.096 0.096 0.095 0.095 0.095 0.095 0.094 0.094 0.094
Mass of coil, kg 0.052 0.031 0.019 0.011 0.007 0.004 0.003 0.002 0.001
Total mass, kg 0.148 0.126 0.114 0.106 0.102 0.099 0.097 0.096 0.095
Rcore, A-turn/Wb 183308 181790 180841 180237 179861 179624 179476 179382 179322
mmf act, A-turns 280.842 280.731 280.661 280.617 280.589 280.572 280.561 280.554 280.550

permanent, reorientable polarization. These domains are randomly oriented, result-
ing in a net zero–bulk polarization. On the application of an electric field, these
domains reorient themselves, resulting in a change in the overall dimensions of the
material sample. Electrostriction is a coupled electro-mechanical effect and induced
strain is a quadratic function of the applied field. Materials with large polarizations,
such as relaxor ferroelectrics, exhibit large electrostriction. Under this category of

Table 6.11. Parameters of an
E-frame magnetic field generator
designed to produce 1 T

Flux return core dimensions
l1, mm 40.0
l2, mm 11.29
t1, mm 1.8
t2, mm 4.75
lo, mm 35.2
lc, mm 20.4

Coil geometry
Wire gauge, AWG 22
Wire diameter, mm 0.644
Ntot, turns 500
Nt, turns 54.6
Nl, turns 4.6

Mass of components
Coil, gm 86.7
Core, gm 97.7
Total, gm 184.4

Electrical quantities
Current required, A 0.535
Power required, W 133.6
Heat generated, W 0.45
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Table 6.12. Characteristics of (1 − x)PMN-(x)PT with optimized processing conditions, at
1 KHz, from Ref. [83]

Average Stress free
grain relative

Ceramic Density (kg/m3) size (μm) Tc (◦C) permittivity er tan δ

0.9PMN-0.1PT 7980 2.07 45 10713 0.083
0.8PMN-0.2PT 7940 2.02 100 2883 0.079
0.7PMN-0.3PT 7860 1.72 150 1976 0.045
0.6PMN-0.4PT 7830 1.93 210 1909 0.031
0.5PMN-0.5PT 7780 2.11 260 1375 0.022

materials, lead magnesium niobate (PMN) ceramics have sufficiently large dielectric
permittivity that help to generate significant polarization and hence large induced
strains. These ceramics are often defined as (1 − x)PMN-(x)PT, where x normally
varies from 0.1 to 0.5. Superior characteristics are obtained when PMN is doped with
lead titanate (PT) in low ratios such as 0.9PMN-0.1PT [82].

These materials are often fabricated from calcined powders by a sintering pro-
cess. Table 6.12 shows some typical material characteristics of these ceramics, at room
temperature and stress free conditions, measured using X-ray diffraction and scan-
ning electron microscopy [83]. The relative permittivity undergoes a large decrease
from 10713 for 0.9PMN-0.1PT to 2883 for 0.8PMN-0.2PT. In addition, there is a large
drop in the loss factor, tan δ. This may be attributed to the transition temperature Tc

being closer to room temperature for 0.9PMN-0.1PT.
The variation of strain with electric field is approximately quadratic (indepen-

dent of polarity of field). At a sufficiently high field, the induced strain gets saturated,
as shown in Fig. 6.57. Unlike piezoelectrics, uncharged electrostrictives are isotropic
and are not poled. With an application of field, the materials get instantly polarized
and become anisotropic. For example, the transverse material stiffness of PMN-PT
decreases by about 20% as the electric field becomes 1300 V/mm. On the removal
of field, the materials become depolarized. An electric field produces an extensional
strain in the direction of field and contraction in the transverse direction. If the field is
reversed, the domains reverse direction, but it again induces an extensional strain in
the direction of field (thickness direction). To produce an oscillatory (bi-directional)
strain, it becomes necessary to apply a bias DC field. Hence, electrostrictives are
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Figure 6.57. Typical induced strain
curve of a PMN-based ceramic.
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primarily used as actuators in a wide range of applications [84, 85]. Since no perma-
nent polarization is needed for electrostrictives, these are not subjected to electric
aging. They are characterized by very low hysteresis (less than 1%), but are very
sensitive to surrounding temperature [86]. PMN and doped derivaties also have
high relative permittivities (20,000–30,000) and high electrostrictive coefficients. In
addition, doping has the effect of changing the operating temperature range of the
material (where the electromechanical performance is maximum). For example,
PMN-15 (0.9PMN-0.1PT), PMN-38 (0.85PMN-0.15PT), and PMN-85 have operat-
ing temperature ranges of 0◦C–30◦C, 10◦C–50◦C and 75◦C–90◦C respectively. In
general, the higher temperature materials have higher coupling coefficients.

In the absence of an electric field, the material is not polarized. As a result, an
application of stress does not change the electric displacement. However, a change
in electric permittivity of the material does occur. Hence, electrostrictives are not
normally used as sensors. Since these materials are very sensitive to temperature
(variation within 10◦C), most applications of electrostrictives are focused on oper-
ations underwater or in vivo, ranging from ultrasonic motors to medical probes.
Because of the non-hysteretic nature of this material, it is used in micro-positioners.

A number of differences between piezoelectrics and electrostrictors can be
noted. Piezoelectric actuators and sensors need to be initially polarized, and they
also suffer from the problems of depolarization (in the presence of high negative
fields), and aging (decrease in polarization with time). Further, they show signifi-
cant hysteresis leading to large energy losses in dynamic applications. On the other
hand, as electrostrictors do not require polarization, they do not suffer from aging.
They also show far less hysteresis (less than 1%), even at high frequencies, which is
important for dynamic applications. Electromechanical behavior is linear for piezo-
electrics and quadratic for electrostrictives. On application of stress, piezoelectric
materials exhibit spontaneous change of polarization, whereas compressive stress
on electrostrictive materials only results in a change in strain levels. Because of the
absence of remnant polarization, electrostrictives return to the non-field zero strain
state, and hence are quite suitable for optical positioning. Unlike piezoelectrics, the
electromechanical response of electrostrictives does not deteriorate under severe
operating conditions. Piezoelectrics are far less sensitive to temperature variations.
Dielectric constants of piezoelectrics are smaller than those of electrostrictive mate-
rials, and hence piezoelectric exhibits faster response. These differences result in
different areas of application of the two materials.

Like piezoelectric ceramics, electrostrictive ceramics are compact, deliver small
but accurate displacements, and are less prone to overheating. They find applica-
tions in sonar transducers, precision machine tools, dot-matrix printers and ultrasonic
motors. Above the Curie temperature, these materials undergo a transition from a
ferroelectric (polar) state to a paraelectric (non-polar) state, and the spontaneous
polarization vanishes. Electrostrictives without a DC bias field cannot be used as
stress sensors. However, with the presence of a DC bias voltage, a change in polar-
ization induced by mechanical stress can be measured. The coupling coefficients
(kij ) determine the fraction of stored electrical energy that can be converted into
mechanical work. These coefficients provide a direct figure of merit to compare fer-
roelectric (piezoelectric and electrostrictive) devices. These coefficients also provide
a measure of the efficiency of a sensor in terms of the fraction of stored strain energy
that can be converted into electrical energy. It has been observed that the coupling
coefficients of electrostrictives are lower than those of piezoelectrics [87].
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In general, for electrostrictives, the induced strain versus electric field is
quadratic for low field, becomes close to linear for moderate field and saturates
at high field values. However, such a saturation is not observed in the strain ver-
sus polarization curves. This shows that the saturation nonlinearity is primarily due
to electric phenomena involving the polarization and electric field [82], and is not
an electro-mechanical phenomenon. The characteristics of electrostrictive ceram-
ics are sensitive to operating conditions such as electric field magnitude, excitation
frequency and ambient temperature. Significant heating of electrostrictive ceramics
occurs when subjected to a high frequency, high magnitude excitation field.

6.10.1 Constitutive Relations

The phenomenology based macroscopic behavior of an electrostrictive material can
be derived using a parametric Gibbs elastic–free-energy function. The material con-
stitutive relations were developed by Devonshire [88] by expressing electrostriction
as a quadratic function of dielectric polarization. The direct effect is obtained as

Qijkl = 1
2

∂2εij

∂Pk∂Pl
(6.155)

and the converse effect is

Qklij = 1
2

∂2
Ek

∂σij∂Pl
(6.156)

where Qijkl is defined as the electrostriction coefficient. Pk are the components
of polarization of the dielectric, εij are the strain components, σij are the stress
components, and Ek is the applied electric field. For engineering applications, it
is more convenient to express electrostriction relations in terms of electric field
rather than polarization. In terms of electric field, the direct-effect coefficient can be
written as

m̃ijkl = 1
2

∂2εij

∂Ek∂El
(6.157)

Similarly, the converse effect coefficient becomes

m̃klij = 1
2

∂2Dk

∂σij∂El
= 1

2
∂ekl

∂σij
(6.158)

where m̃ijkl is the electrostriction coefficient, Dk is the electric displacement and ekl

is the dielectric permittivity. Neglecting temperature effects and higher order terms,
the full elastic Gibbs free energy for an electrostrictive material with a crystal center
of symmetry is [84]

�G = −1
2

emnEmEn − 1
4

emnpqEmEnEp Eq − 1
6

emnpqrsEmEnEp EqErEs

− 1
2

sijklσijσkl − m̃mnij EmEnσij − rmnijklEmEnσijσkl (6.159)
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From the energy expression, the electrical displacement and strain can be derived
as (

∂�G
∂Em

)
σ

= −Dm (6.160)(
∂�G
∂σij

)
E

= −εij (6.161)

This results in

Dm = eσmnEn + eσmnpqEnEp Eq + eσmnpqrsEnEp EqErEs

+ 2m̃mnij Enσij + 2rmnijklEnσijσkl (6.162)

εij = sEijklσkl + m̃ijmnEmEn + 2rijmnklEmEnσkl (6.163)

where emn emnpq and emnpqrs are respectively the second-order, fourth-order and sixth-
order dielectric permittivities, rmnijkl is the sixth-order elastostriction tensor and sijkl

is the compliance tensor. These equations represent the nonlinear electrostriction
relations at constant temperature. The higher-order nonlinear terms can take into
account saturation effects at high fields. For example, the elastostriction tensor is a
correction factor for the compliance of the material under an applied electric field.
It can also be treated as a correction to the electrostrictive constant under applied
mechanical stress.

Neglecting the elastostriction tensor, as well as higher order dielectric terms, the
constitutive equations at constant temperature are derived from the above equations
as

Dm = eσmnEn + 2m̃mnij Enσij (6.164)

εij = m̃ijmnEmEn + sEijklσkl (6.165)

For simplicity, these can be rewritten in matrix form as

D = eσE + 2mσ (direct effect) (6.166)

ε = mT
E + sEσ (converse effect) (6.167)

where D is the electric displacement (C/m2), E is the electric field (V/m), sE is
the material compliance at constant electric field (m2/N), m is the electrostrictive
coupling matrix similar to the piezoelectric coefficient d (m/V or C/N), and eσ is the
dielectric permittivity (C/Vm). The direct effect relates the electric displacement to
the external stress, and is used in sensor applications. The converse effect relates
the induced strain to the applied electric field, and is used in actuators. Note that
although the above constitutive relations appear to be linear, the coupling matrix m
contains an electric field term. Therefore, these equations can only be considered
as linearized about a given operating point. In other words, the electrostrictive
constitutive relations can be considered linear for small changes in electric field
about a given value of electric field. In addition, note the presence of the factor of
2 in the equation relating charge due to stress, and the absence of this factor in the
equation for strain due to field. This arises from the fact that the electromechanical
coupling energy term is proportional to the product of the mechanical stress and two
electric field components.
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As a result of the cubic unit cell of PMN, it can be shown that a number of
coefficients are identically equal to zero [84]. Consequently, from Eq. 6.165, the
electrostriction term can be expanded as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
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From this expression, the electrostrictive coupling matrix in Eq. 6.166 becomes

m =
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m11E1 m12E1 m12E1 0 m44

2 E3
m44
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⎤⎥⎥⎦ (6.169)

where mij are the electrostrictive coefficients with units m2/V2. Again, note that
the quadratic non-linearity appears in the electrostrictive coupling matrix as an
additional electric field term. The electrostrictive sensor equation (direct effect) can
be expanded as⎧⎪⎨⎪⎩
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The electrostrictive actuator equation (converse effect) can be expanded as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Note that the compliance matrix is isotropic. Some electrostrictives such as 0.9PMN-
0.1PT exhibit a significant change of the apparent Young’s modulus as a function
of the electric field. The change can be more than 50% in the direction of the field.
However, the variation of modulus in a plane normal to the field is shown to be
much smaller (around 6%) [89]. The above equations lead to an induced strain that
is proportional to the square of the applied field. For example, for a field applied only
along the 1-direction, in the absence of external stresses, the strain in the 1-direction
is given by

ε1 = m11E
2
1 (6.172)

This representation is useful for low electric fields, but does not take into account the
saturation of induced strain at high fields. A hyperbolic tangent model [90, 91] can
be used to include this effect. In this case, the strain in the above equation becomes

ε1 = 1
k2

r
m11 tanh2(krE1) (6.173)

where kr is a relaxation factor that represents the point of saturation. It is important
to note that the coefficient matrices described above are dependent on the applied
electric field and mechanical stress, resulting in deviations from the quadratic or
hyperbolic–tangent variation assumptions.

A significant amount of research has gone into the modeling and experimen-
tal investigation of electrostrictive materials. Hom and Shankar [92, 93] presented
a fully coupled, two-dimensional, quasi-static–finite element analysis for electroce-
ramics and applied it to electrostrictive stack actuators. This formulation incorpo-
rates the effect of body forces of dielectric origin, but ignores the body moments of
dielectric origin. Fripp and Hagood [94] presented a set of constitutive equations for
electrostrictive materials and developed a dynamic analysis for an electromechani-
cal system with distributed electrostrictive couplings. A Rayleigh-Ritz analysis was
formulated for a cantilevered beam actuated with surface-bonded electrostrictive
wafers and satisfactorily validated it for static and dynamic response with exper-
imental test data. Piquet and Forsythe [95] covered nonlinear modeling of PMN
materials. Pablo and Petitjean [82] carried out stress free electric behavior (in trans-
verse direction) of electrostrictive patches experimentally at a macro level for a
range of excitation fields, frequencies and temperatures.

In summary, electrostrictive materials are well suited to precise positioning
applications in a laboratory environment due to their high stroke and stiffness. In
generic applications, special attention must be paid to the design of an appropriate
control system to compensate for the large temperature sensitivity of electrostrictives
and their inherent non-linearity. The main advantage of these materials is their low
drift and low hysteresis, resulting in low self-heating during dynamic actuation. The
electrostrictive effect is a quadratic effect, so it depends on the square of the voltage.
The lack of polarization in electrostrictives means that there is no depoling field.
This fundamental difference has also some consequences on the electric behavior of
the ceramic. Indeed, this symmetry implies that there is less hysteresis loss than in a
piezoelectric.

The following sections will discuss the major characteristics of electrostriction,
illustrated by experiments performed on a commercially available sheet sample of
PMN ceramic. The test specimens used in these experiments were sheet samples of
BM600 ceramic (composition 0.9PMN-0.1PT) with a size of 2′′ × 1′′ and thickness
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Table 6.13. Small signal characteristics of BM600
electrostrictive ceramic

Physical properties

Density, gm/cc 7.8
Young’s modulus, GPa 100
K33 (at 25◦C, 1 kHz) 22,000
tan δ (at 25◦C) 0.08
Static d33, pC/N (at 25◦C and 4.0 kV/cm) 1800
Dynamic d33, pC/N (at 38◦C and 4.5 kV/cm) 650
Dynamic d31, pC/N (at 38◦C and 4.0 kV/cm) 290
k33 (at 6 kV/cm) 0.55
k31 (at 5 kV/cm) 0.25

0.01′′ (Sensortech Technology). Some important properties of this material, as given
by the manufacturer are listed in Table 6.13. The experimental setups and test pro-
cedures are similar to those used for testing of piezoceramic actuators, as described
in Chapter 2.

6.10.2 Behavior under Static Excitation Fields

Under static excitation fields, two important phenomena can be observed. These are
the static free strain and the strain drift. The measurement of these two quantities
using a BM600 sheet element is described below.

Induced Strain under Static Excitation Fields

The strain of the electrostrictive sheet element in response to a static excitation field
can be measured using a strain gauge bonded to the surface of the sample. The
excitation field is varied from −13.78 kV/cm (−350 V) to +25 kV/cm (+635 V) in
uniform increments. The limitations on excitation field were dictated by practical
considerations such as arcing between the high voltage electrodes. This voltage
range is considered sufficient for practical applications. Each value of excitation
field is maintained for a given amount of time, at the end of which the strain reading
is recorded. An average of three separate measurements is recorded. As a result,
a quasi-static variation of induced strain with excitation field is obtained. As the
hysteresis of the material is small compared to that in the case of piezoelectric
materials, a quasi-static hysteresis curve can be measured. During this test, the
following important points must be kept in mind:

(i) Inspite of low inherent hysteresis in the material, the measurements of the
induced strain for positive excitation fields and for negative excitation fields must
be done separately. This is because the remnant strain for positive excitation
fields and for negative excitation fields can be different. Either the positive or
negative polarity is chosen first, and the material is cycled until the residual
strain stabilizes. The measurements are then made by increasing the excitation
field to the required value, holding the field constant for a small period of time,
recording the induced strain value, and then increasing the excitation field to the
next higher value. This is repeated for increasing values of excitation field until
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Figure 6.58. Static free strain of
PMN sample.

the maximum field is reached. The process is then repeated while decreasing the
excitation field in uniform steps until the applied field is zero. In this manner, all
data points are recorded for the chosen polarity. The procedure is repeated for
the opposite polarity of excitation field, yielding a quasi-static hysteresis curve
of induced strain versus excitation field.

(ii) When a static field is applied, the strain induced in the material is not constant
with time. A slow increase in the induced strain with time is observed. This
phenomenon is called drift. In order to have consistent results, the measurement
is done after maintaining the excitation field for the same period of time at each
measurement point. For example, the excitation field can be switched on and
after the chosen time (for example, 2 sec), the induced strain is recorded and the
excitation field is switched off.

The quasi-static hysteresis behavior measured as described above is shown in
Fig. 6.58. The most important feature that can be observed is that the induced strain
does not depend on the polarity of the applied excitation field. This is sometimes
referred to as a ‘quadratic’ response because at low values of excitation field, the
induced strain is proportional to the square of the applied excitation field. Another
important observation is that the amount of hysteresis is small, especially compared
to the case of piezoelectric ceramics.

The induced strain of the BM600 electrostrictive sample is compared to that of a
piezoelectric ceramic (composition PZT-5H) in Fig. 6.59. Note that the hysteresis in
the induced strain is not shown. The most important difference in the behavior is the
independence of electrostrictive-induced strain on the polarity of applied excitation

-15 -10 -5 0 5 10 15 20 25 30
-1000

-500

0

500

Electric field (kV/cm)

St
ra

in
, μ

ε

Piezoelectric (PZT-5H)

Electrostrictive

Figure 6.59. Comparison of PZT
and PMN static free strain.



672 Magnetostrictives and Electrostrictives

-3 -2 -1 0 1 2 3
0

20

40

60

80

100

120

Electric field (kV/cm)

St
ra

in
, μ

ε Experiment

Quadratic fit

0 5 10 15 20 25
0

100

200

300

400

500

Electric field (kV/cm)

St
ra

in
, μ

ε

Experiment
Cubic fit

(a) Low excitation field (b) High excitation field

Figure 6.60. Empirical model of PMN static free strain.

field. In addition, the absence of a depoling field in the case of the electrostrictive
enables the application of much lower negative fields as compared to the piezoelec-
tric. However, for positive excitation fields, the maximum free strain is higher in the
case of the piezoelectric material.

At low excitation fields (magnitude less than 3.5 kV/cm) the induced strain �

can be represented as a function of the excitation field E by a quadratic relation,
and for higher fields (up to 27 kV/cm) the induced strain can be represented as
a cubic function of the excitation field. Fig. 6.60 shows the induced strain of the
electrostrictive material at low and high excitation fields as well as the empirical
model.

� =
{

8.258E2 0 ≤ E < 3.5 kV/cm

0.076E3 − 3.903E2 + 74.5E − 124.06 3.5 kV/cm ≤ E < 27 kV/cm
(6.174)

where� is in micro-strain. It can be seen that the measured data is closely represented
by the quadratic relation for |E| ≤ 3.5 kV/cm.

Drift in Induced Strain

Under a static excitation field, the strain induced in the electrostrictive does not
remain constant, but exhibits a slow increase with time. This phenomenon is called
drift, and is similar to the drift phenomenon observed in piezoelectric ceramics.
The increase in strain with time can typically be represented by an exponential
relationship. The drift in induced strain at four different voltages, along with the
empirical fit, is shown in Fig. 6.61. For reference, a voltage of 50 V applied to the
sample corresponds to a field of approximately 2 kV/cm. The increase in strain �ε

can be expressed as

�ε = εo

(
1 + γ ln

t
0.1

)
(6.175)

where εo is the strain 0.1 seconds after the excitation field was applied, t is the time
elapsed in seconds, and γ is a time constant. In the present case, the value of γ is
1.8%. It is interesting to note that the drift in the case of electrostrictive is very
similar to that of the piezoelectric.
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Figure 6.61. Drift of PMN free strain.

6.10.3 Behavior under Dynamic Excitation Fields

In a number of practical applications, the actuators must be operated under a
dynamic excitation field, producing a dynamic strain. Under such conditions, the
hysteresis of the induced strain as well as the electrical impedance of the material
are important considerations.

Strain Hysteresis

The hysteresis of the induced strain of the material is shown in Fig. 6.62 for two
different amplitudes of the excitation field, at a frequency of 1 Hz. The quadratic
nature of the induced strain response is clearly visible. Note that the strain values are
in general smaller than in the case of a typical PZT-5H sheet. The hysteresis of the
induced strain for three different excitation frequencies at the same peak excitation
voltage is shown in Fig. 6.63. The hysteresis does not appear to vary strongly with
excitation frequency.

It has been observed that for PMN ceramics at room temperature, the hysteresis
is low and the response is approximately linear for most of the applied field [84].
As the temperature is reduced, the hysteresis as well as the total strain increase. At
the same time, the field at which strain saturation occurs decreases with lower tem-
perature. Under high-cyclic electric field, some heating of the material takes place,
which is a function of the excitation frequency. Induced strain is more dependent on
the equivalent temperature than excitation frequency. Frequency affects the strain
indirectly through an increase of material temperature.

St
ra

in
, μ

ε

Figure 6.62. PMN strain hysteresis as a func-
tion of applied voltage at 1 Hz.
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Electrical Impedance

The electrical impedance of the electrostrictive sample is found by exciting it with a
swept sine wave. The voltage and current are measured at excitation frequency, from
which the electrical impedance can be calculated. As in the case of piezoceramics,
the electrical impedance of the electrostrictive material is primarily capacitive in
nature. For excitation frequencies much lower than resonance, the impedance can
be expressed as an ideal capacitor in series with a resistance. The resistance models
the losses in the material, which occur due to the motion of the dipoles in response
to the applied electric field. These losses are typically quantified by a constant called
the dissipation factor.

An electrostrictive sheet behaves like a parallel-plate capacitor. For a sheet of
thickness t, with electrodes of area A, the capacitance C is given by

C = eA
t

(6.176)

As in the case of a piezoceramic sheet, the electric permittivity e is given by

e = K3eo − j tan δ (6.177)

where eo is the permittivity of free space or vacuum, K3 is the relative permittivity
of the material (for electrodes in the 1-2 plane), and tan δ is the dissipation factor.
In practice, the value of tan δ is usually much less than unity. Simplifying the above
equations, the electrical impedance (for harmonic excitation at a circular frequency
ω) can be expressed as

Z = 1
jωC

= 1
jωCo

+ tan δ
ωCo

(6.178)

where Co represents the ideal capacitance of the sample:

Co = K3eoA
t

(6.179)

Note that in general, as in the case of piezoceramics, the values of K3 and tan δ can
depend on the magnitude as well as the frequency of the excitation field. From the
electrical impedance measurements, the real and imaginary parts of the impedance
can be found, from which the value of K3 and tan δ can be calculated using Eq. 6.178,
at each operating condition.
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The current drawn by the electrostrictive sample as a function of frequency is
shown in Fig. 6.64 for several excitation voltage amplitudes. At lower excitation volt-
ages, the current increases linearly with frequency, which shows that the impedance
is dominated by the capacitive term. At higher excitation voltages, the resistive part
of the impedance becomes significant. This can be seen more clearly in Fig. 6.65,
which shows the variation of relative permittivity and in Fig. 6.66, which shows the
variation of dissipation factor. The solid lines in these figures are empirical relations
that were fit to these measurements. The relative permittivity is given by:

K3 = af 2 + bf + c (6.180)

where f is the excitation frequency in Hertz, and a, b and c are functions of the
amplitude of the excitation voltage V :

a = −1.945 × 10−3V + 0.898 (6.181)

b = 0.36669V − 170.59 (6.182)

c = 0.6116V 2 − 340.14V + 56.421 × 103 (6.183)
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Figure 6.65. Relative permittivity as a function of excitation voltage and frequency.
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The dissipation factor is given by a quadratic function of the frequency

tan δ = −4.5235 × 10−6f 2 + 0.001f + 0.13556 (6.184)

Using these empirical relations, the electrical impedance, and therefore, the power
consumed by the electrostrictive actuators, can be predicted for any excitation volt-
age and frequency in the range described above. Two important conclusions can
be made from the data in Fig. 6.65 and Fig. 6.66. Firstly, the relative permittivity,
and therefore the effective capacitance of the actuator, is much higher for the elec-
trostrictive material than in the case of the piezoceramic. Secondly, the dissipation
factor for the electrostrictive material is less than for the piezoceramic and also
is independent of the magnitude of the excitation frequency. These are extremely
important considerations while choosing an appropriate actuator material for a given
application.

6.10.4 Effect of Temperature

Temperature has a strong effect on the characteristics of electrostrictives. The per-
mittivity of the material is significantly changed with temperature. In addition,
relaxor ferroelectrics such as PMN do not have a well defined Curie temperature.
On the other hand, there exists a range of temperatures at which the material exists
in a mix of both paraelectric and ferroelectric states. Using the modified Curie-Weiss
law, one can obtain the tangent permittivity e∗

11 at any temperature.

e∗
11 = ∂D1

∂E1
(6.185)

which is given by

1
e∗

11
= 1(

e∗
11

)
M

exp
[

(T − TM)2

2δ2

]
(6.186)

where
(
e∗

11

)
M is the maximum permittivity, δ is a parameter governing local Curie

temperature, and TM is the temperature at maximum permittivity. For a non-
zero bias field, the permittivity may not be maximum at mean Curie temperature.
Using a Taylor series, Blackwood and Ealey [84] simplified this relation, valid for
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small (T − TM)/
√

2δ, to

1
e∗

11
= 1(

e∗
11

)
M

+ (T − TM)2

2δ2
(
e∗

11

)
M

(6.187)

6.11 Polarization

The net polarization of a ferroelectric material consists of three fundamental mech-
anisms: the electronic polarization, the ionic polarization, and the dipole-orientation
polarization. A dielectric material between electrodes consists of a capacitor which
can store charge. On application of electric field, the center of positive charge of
the ionic crystal is attracted towards the cathode, and the center of negative charge
towards the anode due to electrostatic attraction. This process, called polarization
induces electric dipoles with in the material. The stored electric charge per unit area
is called the electric displacement D.

D = eoE + P (6.188)

where eo is the permittivity of free space (F/m) and P is the polarization. This can
be rewritten as

D = KeoE (6.189)

where K is the relative permittivity, which is also referred to as the dielectric con-
stant. Upon the application of an electric field, the spontaneous polarization of the
dielectric material can be reversed for a ferroelectric material. Note that not all
dielectric materials are ferroelectric.

Barium Titanate BaTiO3 is a ferroelectric material. At high temperature (above
Curie temperature Tc), it exists in a paraelectric phase and there is no spontaneous
polarization. Below the transition temperature, it develops spontaneous polariza-
tion. Above the transition temperature, the crystal structure is of cubic symmetry
and below the transition temperature, the crystal structure becomes tetragonal sym-
metric (slightly elongated). The spontaneous polarization Ps and spontaneous strain
εs are related as

εs = QP2
s (6.190)

where Q is the electrostrictive coefficient. Thus, the spontaneous strain due to spon-
taneous polarization as a result of an applied electric field decreases with increasing
temperature and becomes zero at and beyond the transition temperature.

Spontaneous polarization decreases with temperature and becomes zero at the
Curie temperature Tc, whereas electric permittivity e diverges at Curie temperature.
The inverse of permittivity appears linear, and is referred to as Curie-Weiss law

e = C
T − To

(6.191)

where C is the Curie-Weiss constant and To is the Curie-Weiss temperature (slightly
lower than Tc). For capacitor dielectrics, the maximum dielectric constant is around
Curie temperature Tc. For pyroelectric transducers, spontaneous polarization below
Tc is important. Thus the material behaves as an electrostrictive for temperatures
above the transition temperature.
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6.12 Young’s Modulus

Electrostrictive ceramics such as 0.9PMN-0.1PT show a large reduction of the appar-
ent Young’s modulus as a function of electric field (more than 50%), in the direction
of the applied field. However, the variation of the elastic modulus in the direction
perpendicular to the applied electric field can be comparatively small (less than
6%) [89]. It was found that the Young’s modulus decreases from 120 GPa to 50 GPa
when a 1 MV/m static electric field is applied at room temperature. However, with
the application of a uniaxial compressive stress of 30 MPa parallel to the electric
field, the Young’s modulus increases to 60 GPa.

6.13 Summary and Conclusions

Magnetosrictives and electrostictives are active materials that exhibit quadratic
induced-strain characteristics with respect to applied magnetic/electric field. This
behavior differentiates these materials from piezoelectics that exhibit predomi-
nantly linear induced-strain characteristics with field. Typically, for magnetostric-
tives and electrostrictives, the induced strain with field varies quadratically at low
fields, becomes close to linear for moderate fields, and saturates at high field values.
Even though magnetostriction was discovered in nickel a long time ago (in 1842 by
Joule), the maximum induced strain levels were quite low for most practical applica-
tions. With the discovery of Terfenol-D with its large magnetostriction, in the 1970s,
it is now used in a wide range of applications that include machine tools, servo valves,
sonar, ultrasonic cleaning, load sensors, and micropositioners. Terfenol-D is an alloy
of terbium, dysprosium, and iron (TbxDy1−x Fey) and is normally produced as a near
single crystal. The value of x varies from 0.27 to 0.3 and y varies from 1.92 to 2.0.
Small changes in x and y (stoichiometry) can have a major influence on the material
magnetization, magnetostriction, and elastic characteristics, which are a nonlinear
function of magnetic, mechanical (stress), and thermal operating conditions. The
converse effect in magnetostrictives was discovered in the early 1900s by Villari and
is often referred to as the Villari effect. It is a change in magnetization of the material
in response to its deformation. Thus, the Joule effect transforms magnetic energy
into mechanical energy and the Villari effect transforms mechanical energy into
magnetic energy. Because of the bidirectional exchange of energy, magnetostric-
tives can be used both as actuators and sensors. Magnetostrictive materials elongate
in the direction of applied magnetic field and contract in the direction normal to the
field, such that the net change in volume is nearly invariant. The maximum induced
strain in Terfenol-D is of the order of 0.2% (2000 × 10−6), which is about twice that
of piezoelectrics, however its stiffness is about 40% lower than that of piezoelectrics.
There is a significant change in stiffness characteristics of the material with magneti-
zation and bias stress, called the �E effect. The major drawbacks of Terfenol-D are
brittleness and low tensile strength. Normally, a mechanical compressive pre-stress
is used to improve the performance of the transducer.

A key element of a magnetostrictive transducer is the need for a magnetic
coil (solenoid) that transforms electric energy into magnetic induction for actuator
operation, and mechanical energy into magnetization state for sensor operation.
It becomes important to apply the principles of magnetism to design an appropri-
ate magnetic coil for a specific application to achieve a uniform magnetic field of
high intensity. The magnetic field generator consists of electrical-conducting coils,
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magnetic flux paths, and a mechanical pre-load mechanism; these together result
in a significant weight and volume of the complete transducer. To increase the
overall efficiency of the magnetostrictive transducer, laminated magnetic cores and
permanent magnets are often used. Because of the requirement of magnetic field
generation, magnetostrictive transducers are usually heavy and bulky in comparison
to piezoelectric and electrostrictive counterparts. For a precise constitutive model
of a magnetostrictive transducer, it is important to consider appropriately electro-
magnetic coupling (between magnetic and electric fields), magneto-mechanical cou-
pling (between magnetic and elastic states), thermo-magnetic coupling (between
magnetization and thermal states) and thermo-elastic coupling (between thermal
and elastic states). Accurate comprehensive models of magnetostrictives covering
all couplings of different states are not readily available. Most of the engineering
models are phenomenological, fitting the experimental data of the bulk material
into physics-based laws. A simple and commonly used constitutive model is the
linear piezomagnetic model. In spite of the actual behavior being intrinsically non-
linear and hysteretic, this quasi-steady linearized macromechanics model is quite
insightful and amenable for inclusion in engineering analyses. This model represents
interaction between the magnetic field and mechanical stress about a bias point for
moderate field amplitudes. A major barrier for use of magnetostrictive actuators in
aerospace applications is its bulky magnetic field generator. It is important to cre-
atively develop lightweight, compact magnetic coil and flux paths. Many industrial
applications, require robust ductile materials with high tensile strength. Also, there
is a need for detailed material characteristics for a wide range of static and dynamic
operating conditions. Because of low tensile strength (30 MPa) and brittleness, the
magnetostrictives are not easily machinable and cannot be fabricated in complex
shapes. A new class of iron-gallium alloy called Galfenol, which has high tensile
strength (500 MPa), has emerged. This material exhibits moderate magnetostriction
(350 × 10−6) under a very low magnetic field (100 Oe), but is highly ductile, machin-
able, and weldable. It has very low hysteresis and a high Curie temperature. Again,
the low-cost Galfenol can be used both as actuators and sensors. To exploit this
material in engineering applications, one requires material characteristics for a wide
range of static and dynamic operating conditions as well as simplified macromechanic
constitutive models that can easily be included in engineering analyses.

Most of the active materials such as piezoelectrics, magnetostrictives, and elec-
trostrictives inherently possess very low maximum induced strain (0.1–0.2%), over
a range of frequencies (in kHz). On the other hand, shape memory alloys such as
Nitinol have a very large induced strain (6–8%), but at an extremely low frequency
(less than 1 Hz). Recently, a new class of nickel-manganese-gallium alloy called fer-
romagnetic shape memory alloy has emerged, which displays a large induced strain
(up to 6%) at a high frequency (kHz). On the application of magnetic field normal to
this alloy surface, the original twin variant transforms into the field-preferred vari-
ant, resulting in motion of the twin boundary causing elongation normal to the field.
A compressive stress along the length of the specimen can cause the stress-preferred
twin variant to reverse the effects of magnetic field. At a critical compressive stress,
the saturation of the stress-preferred twin variant is reached and beyond this stress,
it results in elastic strain. If there is initially no magnetic field, the removal of com-
pressive stress results in a residual strain, which is completely recoverable on the
application of magnetic field normal to the stress direction. In orders to achieve
dynamic (bi-directional) induced strain, an initial compressive stress is needed. The
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induced strain response is a quadratic function of the applied magnetic field (similar
to magnetostriction). Two major drawbacks of this material are: very low stiffness
(one to two orders lower than standard shape memory alloy) and the requirement
of a bulky magnetic coil. For most practical applications, one needs higher stiffness
material than the current magnetic shape memory alloys.

Relaxor ferroelectrics undergo large electrostriction strains under the appli-
cation of electric field. Under this category of materials, lead-magnesium-niobate
(PMN) ceramics display a large electrostriction (on the order of 0.1%). To improve
their characteristics, PMNs are normally doped with lead titanate (PT) in a small
volume fraction. Unlike piezoelectrics, electrostrictives do not require initial polar-
ization and are isotropic under zero electric field. Under the application of electric
field, these materials are instantly polarized and become anisotropic. Electrostric-
tives undergo a quadratic variation in induced strain with field; extension in the
direction of field, and contraction in the transverse direction. To produce dynamic
(bi-directional strain), it becomes necessary to apply a bias DC field. These materi-
als are stiffer and have lower hysteresis than piezoelectrics, but are very sensitive to
temperature. Electrostrictives are primarily used as actuators, especially in under-
water and in vivo applications where the change in temperature is expected to be
small. These materials provide small but accurate displacement, and they do not age
with time. Overall, there is a general lack of detailed static and dynamic material
characteristics for a range of operating conditions. It is also important to develop
simplified macromechanic–constitutive-material models that can easily be included
in engineering analyses.
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7 Electrorheological and Magnetorheological
Fluids

The previous chapters discussed the properties and behavior of active materials that
existed in a solid state. These materials exhibited changes in properties and physical
dimensions when subjected to an electric, magnetic, or thermal field. A special class of
fluids exists that change their rheological properties on the application of an electric
or a magnetic field. These controllable fluids can in general be grouped under one of
two categories: electrorheological (ER) fluids and magnetorheological (MR) fluids.
An electric field causes a change in the viscosity of ER fluids, and a magnetic field
causes a similar change in MR fluids. The change in viscosity can be used in a variety
of applications, such as controllable dampers, clutches, suspension shock absorbers,
valves, brakes, prosthetic devices, traversing mechanisms, torque transfer devices,
engine mounts, and robotic arms. Other applications such as electropolishing do not
rely directly on the change in viscosity, but on the ability to change properties of the
fluid locally.

Most mechanical dampers consist of fixed damping that is designed as a com-
promise between a range of operating conditions. As a result, these devices do
not provide an optimum level of damping for any specific operating environment.
Using ER/MR fluid dampers, variable damping levels can be obtained, and the sys-
tem performance can be optimized over a wide range of operating conditions. In
such dampers, the resistance to flow, and consequently, the energy dissipation, can
be modulated through the applied electric or magnetic field. The quasi-steady flow
characteristics are nonlinear functions of many variables, including the effects of fluid
inertia and compressibility for dynamic conditions. For practical considerations, the
gap across which electric or magnetic field is applied needs to be small and uniform.
The application of field results primarily in an increase in the static yield stress of
the fluid. Typical examples of modern ER fluids are: alumino-silicates in silicone oil,
silica spheres in mineral oil, and polymer particles in chlorinated hydrocarbon oil.
These fluids undergo a change from a viscous fluid to an almost solid gel under the
application of an electric field. Recently, interest in MR fluids has grown and activ-
ities in ER fluids have waned, because of the superior characteristics of MR fluids.

The electrorheological effect was first observed in 1947 by Willis Winslow [1, 2],
who discovered that the application of a large electric field across an organic sus-
pension caused the fluid to solidify. Winslow experimented with a variety of solid
particulates including starch, stone, lime, gypsum, carbon, and silica, dispersed in
various insulating oils such as mineral oil, paraffin, and kerosene, to demonstrate
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electrorheological effects. Subsequent research led to a patent describing ER fluid
couplings [3]. At approximately the same time (1948), the MR effect was observed by
Jacob Rabinow [4, 5, 6]. However, the early studies pointed out many shortcomings
of these fluids that inlude their abrasiveness, chemical instability, and rapid dete-
rioration of properties, which prevented their widespread application. Significant
advances towards improving the properties of MR fluids took place in the 1980s, and
many applications were demonstrated.

While the ER/MR fluid is an active material in the sense that its properties
such as viscosity, elasticity, and plasticity change, within the order of milliseconds, in
response to an applied electric or magnetic field, it is not capable of directly generat-
ing any actuation force. This is in contrast to active materials such as piezoelectrics,
electro/magnetostrictives, and SMAs, which can be used as force generators in actu-
ators. Therefore, devices based on ER/MR fluids are referred to as “semi-active”
devices.

A perceived barrier for a successful MR device is the settling of ferrous particles
in the carrier fluid. As early as 1949, Rabinow dispelled this myth and demonstrated
complete suspension stability for most MR fluid devices (such as dampers and rotary
brakes) because of their high mixing characteristics. The motion of the piston in an
MR damper rapidly moves fluid through orifices resulting in swirl and eddy motions,
which in turn vigorously mix the suspension. Except for seismic dampers (which
remain quiescent for a long period), suspension stability is not an important consid-
eration. For many devices, it is quite important to have a low zero-field viscosity and
high yield stress under field activation.

Even though one can produce ER/MR fluids in the lab, it is necessary to use a
reliable manufacturing process to obtain fluids with repeatable characteristics. Dur-
ing the early development of MR fluid devices, a critical issue of “in-use-thickening”
was encountered, where the fluid viscosity increases under the application of high
stress and high shear rate over an extended period of time (over 1000s of cycles). The
viscosity increase is believed to result from spalling of the surface layer of the iron
particles in the MR fluid. As a result of this spalling, the zero-field stress increases
significantly, rendering the device (such as a damper) unsuitable for semi-active
vibration control. There is no doubt that the zero-field characteristics of the fluid are
quite important for the successful functioning of the device. Good MR fluids should
not show any measurable in-use thickening until more than 10 million cycles.

Another issue is the deterioration of the fluid, especially silicon oil to based
fluid, over a period of time. This can happen because of cross-linking if silicon fluid is
exposed to high temperatures or to ionizing radiation for an extended period of time.
Again, this results in thickening of the fluid (increase in viscosity). The thickening
generally depends on the shear rate, temperature and duration of the applied stress.
For practical applications of ER/MR fluids, durability and life can be considered
overwhelming barriers to commerical success, compared to material characteristics
such as yield strength and suspension stability. Furthermore, characteristics such as
force-velocity (damping) and force-displacement (stiffness) are highly nonlinear and
are functions of a number of variables including the size of the device.

7.1 Fundamental Composition and Behavior of ER/MR Fluids

ER and MR fluids are very similar in terms of their composition and behavior.
ER fluids change their properties in response to an electric field, while MR fluids
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respond to a magnetic field. ER and MR fluids are, however, different in terms of
their density, yield stress, and other mechanical parameters.

7.1.1 Compostion of ER/MR Fluids

Both ER and MR fluids consist of a colloidal suspension of particles in a carrier
fluid. In the case of ER fluids, the particles are micron-sized dielectric particles,
and could be corn starch or some alumino-silicate compound. The carrier fluid is
electrically non-conducting, and could be mineral oil, silicone oil or paraffin oil. On
the application of an electric field, the particles become charged and experience
electrostatic forces. ER fluids require a high electric field (in the range of 8 kV/mm).
The response time is on the order of 1 ms (bandwidth of less than 1 kHz). The
electric field causes the suspended particles to form chains linking the electrodes (in
the direction of the applied field) and as a result increases the resistance to flow of
fluid, i.e., increases the viscosity of the fluid. In the case of MR fluids, the properties
of the carrier fluid are similar to those of ER fluids. However, the particles must be
some ferromagnetic material. On the application of a magnetic field, the particles
attract each other due to magnetic induction. The size of the particles in both cases is
on the order of 10 microns. There exists a class of fluids called ferrofluids that are also
composed of a suspension of magnetic particles in a carrier fluid. However, in the case
of ferrofluids, the particle size is on the order of nanometers. Upon the application
of a magnetic field, ferrofluids experience a net body force, but do not exhibit any
change in rheological properties. In both ER and MR fluids, surfactants (compounds
that lower surface tension) are used to achieve high particle-volume fractions and
hence high variations in rheological properties, as well as to minimize sedimentation.

7.1.2 Viscosity

The dynamic viscosityμ of a Newtonian fluid is defined as the ratio between the shear
stress τ and the shear strain rate in the fluid, γ̇. This relationship can be expressed
as

τ = μ
∂u
∂y

= μγ̇

(7.1)

where u is the velocity of the fluid and y is a spatial coordinate perpendicular to the
flow of the fluid. These quantities can be seen in the schematic diagram in Fig. 7.1,
which shows the velocity profile of a fluid flow past a stationary wall. The viscosity
μ is also called the dynamic viscosity, and has the units Pa.s. (Pascal-second). In
general, the viscosity is defined as the variation of shear stress with shear strain rate,
which can be written as

μ = ∂τ

∂γ̇
(7.2)

There are two basic methods of measuring viscosity. One is using a Couette cell
(Fig. 7.2(a)), and the other is using Poiseulle flow (Fig. 7.2(b)). In the case of the
Couette cell, the fluid is sheared between two coaxial cylinders, one rotating and
the other stationary, yielding a linear velocity profile. In the case of the Poiseulle
flow, the fluid is made to flow through a passage, yielding a velocity profile that
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Figure 7.1. Velocity profile of a fluid flowing past
a stationary wall.

is parabolic. A third method is to shear the fluid between two parallel plates, one
rotating with respect to the other (Fig. 7.2(c)). This technique is similar to the Couette
cell; however, the shear strain rate is not a constant across the area of the plates.
Several differences exist between these techniques [7]. ER/MR fluids usually exhibit
shear thinning, which means that the viscosity decreases with increasing shear rate.
When an electric or magnetic field is applied to the fluid, a large increase in viscosity
occurs. This change in viscosity is rapid (on the order of milliseconds) and is rapidly
reversed on removal of the field. As the shear stress is increased under an applied
field, the viscosity reverts back to its original zero-field value at a particular value
of shear stress. This sudden decrease in viscosity is called ‘yielding.’ The yield shear
stress and the plastic, or post-yield, viscosity of the fluid is one of its most important
characteristics. The plastic viscosity is usually assumed to be constant (equal to the
zero-field viscosity), or a weak function of the applied field. For both ER and MR
fluids, the value of plastic viscosity is in the range of 0.2–0.3 Pa.s.

To enhance the ER effect, a small amount of water (about 5% by volume)
is often added to the fluid, which helps to bond together the suspended particles.
However, the presence of water can limit the temperature range of applications. On
the other hand, MR fluids are less sensitive to a small addition of water.

7.1.3 Origin of the Change in Viscosity

ER and MR fluids exhibit similar rheological properties [8]. The change in viscosity
also occurs in a similar way for the two types of fluids. In the absence of an electric
or magnetic field, the particles are randomly distributed throughout the carrier fluid,
and they are free to move about (Fig. 7.3(a)). The viscosity of the fluid, in this case,
is a function of the viscosity of the carrier fluid and the concentration of dispersed
particles. In the case of an ER fluid, when an electric field is applied, the particles

Ω

Liquid

(a) Couette cell

Liquid

ΔP

Flow

(b) Poiseulle flow

Ω

Liquid

(c) Parallel plate

Figure 7.2. Viscosity measurement techniques.
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Figure 7.3. Effect of applied field on the dispersed particles.

become polarized and attract each other due to electrostatic forces. As a result,
chains of particles form in the fluid between the electrodes, as shown in Fig. 7.3(b).
In the absence of a field, the fluid can freely flow across the electrodes in response to
an applied pressure gradient, or can be sheared by a relative motion of the electrodes.
On the application of the field, the fluid flow across the electrodes is impeded by
the particle chains. A larger pressure gradient is required to break the chains and
maintain the flow of the fluid. As a result, a larger force is required on the electrodes
to produce a relative motion between them. The forming and breaking of the chains
results in a significant change in the viscosity of the fluid. The yield stress can be
defined as the shear stress at which the particle chains begin to break. It should be
kept in mind that the chain formations may be influenced by the flow field.

Similarly, in the case of an MR fluid, the application of a magnetic field causes
chains of the magnetic particles to form along the applied magnetic field. The par-
ticles attract each other by magnetic induction and the fluid at this point exhibits
a much larger viscosity than in the case of zero applied field. A yield stress can be
defined, similar to the case of ER fluids, corresponding to the breaking of chain
structures in the fluid. An optical photomicrograph of the chain formation in an MR
fluid is shown in Fig. 7.4 [9, 10]. This picture was taken under a microscope, with
a magnetic field applied in the plane of the paper, as shown. The dark stripes are
chains of magnetic particles aligned along the direction of the applied magnetic field,
and the clear region is the carrier fluid.

0   100μm

Magnetic particles

Carrier fluid

fieldFigure 7.4. Formation of chains in an
MR fluid parallel to the applied mag-
netic field, adapted from Dimock et al.
[9].
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Figure 7.5. Simplified yield behavior.

A rudimentary ER fluid can be created by mixing a cup of corn starch with a cup
of mineral oil to obtain a uniform suspension and then carefully removing the air
bubbles. Similarly, a rudimentary MR fluid can be created by mixing a cup of iron
filings with a cup of hydraulic oil. Commercial compositions are quite similar, with
extra chemicals added to generally improve the properties of the fluid, for example,
to prevent the particles from agglomerating.

7.1.4 Yield Behavior

As the shear stress in the fluid is increased, the particle chains start deforming. When
a certain value of shear stress is reached, the chains begin to break. The value of
shear stress at which this occurs is called the yield stress of the fluid. After the yield
point, or in the post-yield condition, an equilibrium exists between the breaking
and reforming of particle chains. The viscosity of the fluid in this state, also called
the plastic viscosity, is much lower than the viscosity of the fluid with unbroken
chains.

This behavior is represented simplistically in Fig. 7.5, which shows the variation
of shear stress τ in the fluid with shear strain rate γ̇, at zero applied field, and at some
constant field. At zero applied field, the fluid behaves like a Newtonian fluid, with
a constant viscosity given by the slope of the curve. When a field is applied to the
fluid, the behavior becomes discontinuous. Initially, at low values of shear stress, the
particle chains are unbroken, and the applied shear stress can be sustained without
any flow in the fluid (zero strain rate). In this condition, the fluid essentially behaves
as a solid. This phenomenon is used in some devices to operate the fluid as a valve
in a flow circuit. The flow of fluid can be stopped by just applying an external field,
without introducing a mechanical valve into the flow.

As the shear stress is increased to the yield stress τy, the particle chains start
breaking and the fluid yields. Thereafter, a finite fluid flow can be maintained by the
force, and the fluid behaves as a Newtonian fluid. The slope of the curve in the post-
yield region is equal to the plastic viscosity of the fluid. It is generally assumed that
the plastic viscosity is equal to the viscosity at no field. From this simple description
of the fluid behavior, it can be seen that the fluid exhibits two distinct values of
viscosity, in the pre-yield and post-yield regions. In this case, the yield stress is the
static yield stress τy,s of the fluid, defined as the stress required to cause fluid flow
from a state of zero strain rate.
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Figure 7.6. Static and dynamic yield stress.

In reality, however, the behavior of the fluid is more complex. The fluid does not
become completely solid on the application of a field, but has a finite viscosity. This
corresponds to the fact that the particle chains deform before breaking. After the
particle chains are broken, the viscosity decreases and may vary with flow rate. A
quasi-steady approximation of this behavior is schematically represented in Fig. 7.6.
A dynamic yield stress τy,d can be defined as the y-intercept of the straight line fit to
the shear strain versus strain rate curve. The dynamic yield stress is approximately
twice the static yield stress, and can be attributed to friction effects between the
dispersed particles.

In the pre-yield region, the fluid can be treated as elastic or viscoelastic, with
the dominant deformation mechanism being the stretching of particle chains with
occasional breaking. In the post-yield region, an equilibrium is reached between the
chains breaking and reforming. In this region, the fluid can be treated as a viscous
Newtonian fluid [11, 12, 13]. A description of the yield behavior and the actual
structural processes occuring during chain formation and rupture can be found in
several references [14, 15, 16, 17] .

As the field is increased, the yield stress also increases, as shown in Fig. 7.7. In
the case of ER fluids subjected to an electric field E, the yield stress can be expressed
as

τy = En (7.3)

where the exponent ‘n’ ranges from 1.2 to 2.5 depending on the consistency of the
suspension [18]. In general, it can be assumed that the dynamic yield stress of ER
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τy1Figure 7.7. Effect of applied field on the yield stress, E3 >
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and MR fluids exhibits a quadratic dependence on the applied electric or magnetic
field [15, 19].

The maximum yield stress in the case of ER fluids is in the range of 2–5 kPa,
while it is an order of magnitude higher for MR fluids, around 50–100 kPa. The
maximum yield stress also depends on the maximum field that can be applied to the
fluid. In the case of ER fluids, the maximum field is limited by dielectric breakdown
of the carrier fluid and in the case of MR fluids, the maximum field is limited by
saturation of the magnetic field in the dispersed particles.

7.1.5 Temperature Dependence

The dependence of the structural properties on temperature is an important factor
to be considered in the design of devices such as automobile dampers. Both the
viscosity and the yield stress of ER/MR fluids change with temperature, depending
on the composition. Klass and Martinek [19] showed that the viscosity of ER fluids
increases with temperature. However, the properties of MR fluids are stable over a
wider range than ER fluids [20]. For example, over a temperature range of −25◦C
to +125◦C, the dynamic yield stress of ER fluids decreases by 70% and the plastic
viscosity decreases by 95%. This temperature range is considered the allowable
operating-temperature range for ER fluids. In the case of MR fluids, the yield stress
decreases by approximately 10% and the plastic viscosity decreases by 5% over a
temperature range of −40◦C to +150◦C.

7.1.6 Dynamic Behavior and Long Term Effects

The behavior of the fluid under dynamic conditions, for example, with a time-
dependent shear rate, is important in many applications. Generally speaking, this
time dependence could be some harmonic function, or it could be close to an impulse,
as in the case of dampers subjected to shock loads.

Many investigations have been conducted into the dynamic behavior of con-
trollable fluids. For example, Gamota and Filisko [12] and Ehrgott and Masri [21]
studied the dynamic response of an ER fluid subjected to oscillatory shear strains
using specific device geometries. Experiments performed up to a frequency of 50 Hz
showed that the response consisted of three parts. For small strain rates, where the
shear stress is much below the yield stress, the behavior is linear and the material
behaves as a viscoelastic–that is, a combination of an elastic solid (spring) and a
viscous liquid (dashpot). At high strain rates, where most of the cycle is in the post-
yield region, the behavior resembles that of a viscous fluid. Near the yield point, the
material is highly nonlinear and the response is a combination of the viscoelastic and
plastic response. Over a complete cycle, a hysteresis is exhibited in the plot of shear
stress versus shear strain rate. For simple models, this hysterisis can be neglected,
but more accurate rheological models include some sort of approximation for this
behavior. A schematic of the dynamic shear stress versus shear strain rate curve is
shown in Fig. 7.8.

In the case of step excitations, such as the sudden application of an electric or
magnetic field, it is generally observed that the response of both ER and MR fluids
is in the millisecond range [22, 23, 24]. A study of the time response of ER and
MR dampers by Choi et al. [25] suggests that the time delay is smaller for ER fluid
devices.
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The response of MR fluids subjected to a large number of cycles, such as in
dampers, is a subject of great interest. It has been observed that when an MR fluid
composition is activated and subjected to a large number of cycles, the zero-field
viscosity of the fluid increases. This phenomenon is called ‘In-Use-Thickening’ [26].
The origin of this phenomenon is attributed to the long term stress exerted on the
dispersed particles, which cause nanometer sized pieces to separate from the micron
sized dispersed particles. The nanometer sized particles then remain suspended in
the carrier fluid, greatly increasing the viscosity of the fluid. Another issue of concern
regarding the long term behavior of ER and MR fluids is the settling of the dispersed
particles. When stored for a period of time, which can be as short as a few days, the
particles in the fluid tend to settle to the bottom of the container, destroying the
properties of the fluid. The fluid then has to be thoroughly mixed before use in order
to redistribute the particles evenly throughout the carrier fluid, after which the fluid
regains its original properties. This problem is more severe in the case of MR fluids
due to their heavier ferrous particles.

7.1.7 Comparison of ER and MR Fluids

ER and MR fluids were discovered around the same time. However, most of the
initial research was focused on ER fluids. This is mainly because devices based on ER
fluids have a very simple geometry and are easy to construct. ER fluids can be easily
developed in the laboratory. Recently, much more interest has been focussed on
MR fluid based devices. This interest is fueled by commercial applications requiring
a more stable fluid with higher yield stress. The yield stress of MR fluids is an order
of magnitude higher than ER fluids. MR fluids are also much more tolerant to
impurities [27] and can be operated off a low voltage power supply (≈28 V DC).
This low voltage is much safer to work with as compared to the high voltage (≈3 kV)
required for ER fluid devices. MR fluids are also stable over a wider temperature
range (−40◦C to 150◦C) than ER fluids (−25◦C to 125◦C). The dynamic response
characteristics are similar for the two types of fluids.

However, the design of MR fluid devices is complicated by the requirement of
an efficient magnetic circuit. The entire magnetic circuit, including current carrying
coils and flux return path, has to be carefully designed and incorporated into the
device. The high currents passing through the coil cause heating, which must be
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Table 7.1. Comparison of the properties of ER and MR fluids.

ER fluids MR fluids

Required voltage 2–10 kV 2–25 V
Required current 1–10 mA 1–2 A
Maximum yield stress 2–5 kPa (at 3–5 kV/mm) 50–100 kPa (at 150–250 kA/m)
Maximum field 4 kV/mm 250 kA/m
Volume factor (μ/τ2

y) 10−7 s/Pa to 10−8 s/Pa 10−10 s/Pa to 10−11 s/Pa
Specific gravity 1–2.5 3–4
Temperature range −25◦C to 125◦C −40◦C to 150◦C
Device and actuation geometry Simple Complex

dissipated satisfactorily. As the device gets smaller and gains more complex geom-
etry, it becomes easier to create an electric field compared to a magnetic field. MR
fluids are also much heavier than ER fluids, as a result of the high density of the
ferro-magnetic particles. This is another factor that must be considered in weight
critical applications.

A volume factor (μ/τ2
y) can be defined for the fluid that is directly proportional

to the size of the device. This quantity is three orders of magnitude larger for MR
fluids than for ER fluids. A comparison of the properties of ER and MR fluids is
summarized in Table 7.1.

7.2 Modeling of ER/MR Fluid Behavior and Device Performance

Several phenomenological models of varying complexity have been proposed by dif-
ferent researchers to predict the performance of ER/MR fluid devices. The modeling
approaches fall into one of the two following categories:

1. Apply a specific fluid model to the device geometry in question. The model is
chosen based on a qualitative representation of the fluid behavior. The param-
eters in the model are adjusted so that the predicted performance of the device
matches experimental data.

2. The device as a whole is treated as a ‘black box’ and a model is fit to the behavior
relating input and output quantities.

The first approach requires the application of specific fluid models. Most of these
models are quasi-steady, piecewise continuous approximations to the rheological
behavior of the fluid. The performance of many devices such as dampers [16, 28, 29,
30], clutches, brakes, and valves [31, 32, 18, 16, 33, 34] has been evaluated using these
models.

Examples of the second approach can be found in studies performed by Stanway
et al. [30, 35] in which an ER damper is considered as a Coulomb element in parallel
with a viscous damper. Fig. 7.9 shows various simplified phenomenological models
to represent ER and MR devices. The model parameters such as spring stiffness,
dashpot damping, and Coulomb friction are identified from test data usually using a
sinusoidal input forcing.

The coeffiecients of the model were extracted from experimental data. Ehrgott
and Masri [36, 37] expressed the restoring force of an ER device as a function
of velocity and displacement using Chebyshev polynomials. Extraction of these
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Figure 7.9. Various simplified representations of phenomenological models of ER and MR
devices.

coefficients from experimental data can be computationally demanding. In a simpler
approach, the ER device can be modeled purely as a viscous damper by matching
the damping coefficient to experimental data.

There are a number of phenomenological models for ER/MR fluids that are
used by researchers [38]. Several quasi-steady phenomenological fluid models will
be discussed below, with emphasis on a few important models.

7.2.1 Equivalent Viscous Damping

This is a very basic model intended to capture only the damping of the fluid. The
rheological behavior, which is the variation of shear stress with shear strain rate in
the fluid, is not captured. The energy dissipated by the device in one cycle is equated
to that dissipated by an equivalent viscous damper. The non-linear variation of shear
stress with shear strain rate is effectively linearized. Consequently, the model can
be treated as a device performance model, and not a model of the fluid behavior
itself.

Assuming a harmonic excitation at a frequency ω and amplitude Xo given by

x(t) = Xo cos(ωt) (7.4)



696 Electrorheological and Magnetorheological Fluids

The energy dissipated in one cycle �W by a system with damping coefficient ‘ceq’
can be derived as

�W =
∫

cycle
Fdx =

∫ 2π/ω

0
F ẋdt (7.5)

where the damping force F is given by

F = ceqẋ = −ceqXoω sin(ωt) (7.6)

This leads to

�W =
∫ 2π/ω

0
ceq ẋ ẋ dt

= ceqX2
oω

2
∫ 2π/ω

0
sin2(ωt)dt

= πceqX2
0ω

(7.7)

The energy dissipated by damping in the device,�WDE is calculated from experimen-
tal data as the area under the force-displacement curve. Equating the two energies
yields the equivalent viscous damping coefficient as:

ceq = �WDE

πX2
0ω

(7.8)

It can be seen that the equivalent viscous damping model is useful only for quantifying
the damping properties of a ER/MR fluid damper. The model does not capture the
rheological behavior of the fluid.

7.2.2 Bingham Plastic Model

The Bingham plastic model is an idealized model of fluid behavior. In this model,
when a shear stress is applied, the fluid behaves as a solid until a specific yield stress
is reached. At stress levels higher than the yield stress, the fluid behaves like a
Newtonian fluid with constant viscosity. Above the yield point, the stress in the fluid
can be expressed as

τ = τy sgn (γ̇) + μγ̇ τ > τy (7.9)

where τ and τy are the shear stress and yield shear stress, respectively, γ̇ is the shear
strain rate and μ is the viscosity of the fluid. A schematic of this behavior is shown
in Fig. 7.10.

The behavior of a ER/MR fluid device can be modeled using the Bingham plastic
model by representing the force in the device as a summation of a viscous force and
a frictional force. This is equivalent to modeling the device as a parallel combination
of a dashpot and a Coulomb friction element, as shown in Fig 7.11. The damping
force in the device is therefore given by

F = Fc sgn (ẋ) + coẋ F > Fc (7.10)

where co is the viscous damping coefficient and Fc is the Coulomb friction force.
The yield stress, τy and therefore, Fc, is dependent on the applied field. It should

be noted that the Bingham plastic model is an idealized model and treats the fluid as
a solid before the yield point. Therefore, while high strain-rate behavior is captured
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Figure 7.10. Bingham plastic model.

with good accuracy, the model is not accurate for low strain rate behavior. The
overall damping is captured well in spite of the fact that the rheological behavior is
idealized.

7.2.3 Herschel-Bulkley Model

The Herschel-Bulkley model focuses on capturing the shear thinning and shear
thickening effects of the fluid. This is achieved by representing the shear stress as a
power law of the the shear strain rate [39, 40]. The shear stress in the fluid is given
by:

τ = τy sgn(γ̇) + Kγ̇n for τ > τy (7.11)

where ‘K’ is a constant. The exponent ‘n’ defines the properties of the fluid in the
post-yield region (Fig. 7.12), and is called the flow behavior index. In the case where
n > 1, the fluid is said to exhibit shear thickening, and when n < 1, the fluid exhibits
shear thinning. Note that the Herschel-Bulkley model reduces to the Bingham plastic
model when n = 1. In the post-yield condition, an apparent viscosity can be expressed
as (Eq. 7.2)

μa = ∂τ

∂γ̇

= nKγ̇n−1

(7.12)

7.2.4 Biviscous Model

In the biviscous model, the fluid in the pre-yield region is treated as having a finite
viscosity that is much larger than the viscosity in the post-yield region (Fig. 7.13). The
fluid has two specific values of viscosity, depending on the strain rate. This behavior

F, x

Viscous damper

Coulomb friction

Figure 7.11. Bingham plastic model represented by
mechanical elements.
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Figure 7.12. Herschel-Bulkley model.

can be represented as

τ = μprγ̇ τ < τy

= μpoγ̇ + τy τ ≥ τy

(7.13)

Alternatively, the equations can be expressed in terms of the yield strain rate as
follows

τ = μprγ̇ for γ̇ < γ̇y

= μpoγ̇ + τy for γ̇ ≥ γ̇y

(7.14)

where the yield strain rate is defined as

γ̇y = τy

μpr − μpo
(7.15)

Note that the pre-yield viscosity,μpr is much higher than the post-yield viscosity,μpo.
This model captures both low strain rate and high strain rate behavior. Damping is
also represented well, but the hysteresis in the shear stress versus strain rate behavior
is not captured. Note that the biviscous model reduces to the Bingham plastic model
if the pre-yield viscosity is set to infinity.

7.2.5 Hysteretic Biviscous

This model extends the biviscous model to capture the dynamic pre-yield hysterisis
(Fig. 7.14). Four parameters are required for this model: the pre-yield and post-yield

0

τ μpo

γ

τy

Model

Actual behavior

μpr

Figure 7.13. Biviscous model.
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model.

viscosities μpr and μpo, the yield stress τy, and the yield strain rate, γ̇y. The shear
stress versus strain rate behavior can be written as follows

If γ̇ > 0,

τ(γ̇) =

⎧⎪⎨⎪⎩
μpoγ̇ − τy for γ̇ < −γ̇1

μpr (γ̇ − γ̇o) for − γ̇1 ≤ γ̇ < γ̇y

μpoγ̇ + τy for γ̇ ≥ γ̇y

(7.16)

If γ̇ ≤ 0

τ(γ̇) =

⎧⎪⎨⎪⎩
μpoγ̇ + τy for γ̇ > γ̇1

μpr (γ̇ − γ̇o) for − γ̇y ≤ γ̇ < γ̇1

μpoγ̇ + τy for γ̇ ≤ −γ̇y

(7.17)

7.2.6 Other Models

Many models exist based on the fundamental Bingham plastic model, incorporating
additional stiffness and viscous damping elements along with the basic combination
of viscous damper and Coulomb friction elements described above. Examples of
such models are:

1. Extended Bingham model [12] – Viscoelastic element added in series to Bingham
plastic model in order to capture pre-yield behavior.

2. Three element method [17] – Introduces a nonlinear spring in parallel with
the elements of the Bingham plastic model. Static and dynamic coefficients are
incorporated in terms of Coulomb friction. A hyperbolic tangent function is
incorporated instead of the sgn(ẋ) in order to simplify numerical calculations.

3. Bing Max model [28, 41, 42] – This model has a series combination of a spring
and a dashpot, in parallel with a Coulomb friction element.

4. Nonlinear viscoelastic-plastic model [43] – The fluid behavior is seperated into
pre-yield and post-yield regions. In the pre-yield region, the fluid is represented
by a three-element model (a damper in series with a parallel combination of
a spring and a damper), behaving like a viscoelastic material. In the post-yield
region, the fluid is represented by a viscous damping element.
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5. Eyring model [44] – The Eyring model was proposed to address the large change
in shear stress occuring in piecewise continuous models such as the Bingham
plastic model. For example, at the yield shear stress in the Bingham plastic
model, the ER/MR fluid abruptly changes from exhibiting fluid-like behavior
to a rigid solid at zero shear rate. In the Eyring model, the ER/MR fluid is no
longer treated as piecewise continuous, and has a smooth transition from low
shear rate to high shear rate behavior. The shear stress is given by

τ = τo sinh−1(λγ̇) (7.18)

where τo and λ are two constants that determine the rheological behavior of
the ER/MR fluid. Fig. 7.15 shows a comparison of Eyring and Bingham-plastic
models.

7.3 ER and MR Fluid Dampers

The most common damping mechanism in modern systems is the fluid-filled viscous
damper. Such dampers are widespread in many applications ranging from com-
plex mechanical systems such as automobile and motorcycle suspensions, to aircraft
landing gear, to simple systems such as doors and artillery pieces.

A typical viscous damper basically consists of an oil-filled cylinder in which slides
a loose-fitting piston. The upper and lower chambers of the cylinder are connected
by the annular gap around the loose-fitting piston. Motion of the piston inside the
cylinder forces the fluid between the two chambers through the annular gap. The
geometry of this flow path determines its resistance to the flow of fluid, which in
turn determines the amount of damping. Hence, for a given geometry, the damping
coefficient is a constant.

In many applications, it is desirable to have different damping coefficients
depending on the operating condition of the system. For example, in automotive
suspensions, low damping is desirable to isolate the passengers from a bumpy road,
while high damping is required to improve handling of the vehicle. Conventional
automotive dampers are designed to provide a compromise between a comfortable
ride and good handling. The degree of this trade-off depends on the type of vehicle
such as a passenger car or a sports car. The dampers are often designed with a com-
plicated network of passages, springs, bypass channels, and check valves that provide
different flow resistances, and therefore different damping coefficients, depending
on the speed of the vehicle [45].
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Figure 7.16. Passive and semi-active damping.

The more expensive shock absorbers provide a larger variation in damping by
using more complicated mechanisms. However, even such variable dampers have
some disavantages. High-performance adjustable dampers are expensive, mechani-
cally complex, and require time-consuming maintenance. In addition, even the most
complicated mechanical dampers provide only a fixed number of damping coeffi-
cients that are permanently set by the design.

Dampers utilizing ER/MR fluids overcome these drawbacks. The viscosity of
the fluid, and hence the damping coefficient, can be controlled by the application
of an electric or magnetic field. In this way, control of the damping is possible over
a wide range, with infinite resolution using a device of very simple geometry with
few moving parts. A schematic of the controllable damping concept is illustrated in
Fig. 7.16. The conventional passive damper has a flow restrictor of fixed geometry.
As a result, the damping coefficient is a constant. In the ER/MR fluid damper, the
flow restriction can be controlled by the applied field. Consequently, the damping
coefficient can be varied at any time, even during the application of loads on the
damper.

Three types of basic damping mechanisms can be utilized in the construction of
ER/MR dampers:

1. Flow mode (Poiseulle flow) (Fig. 7.17(a)): The ER/MR fluid is made to flow
through a passage, across which the field can be applied. In this case, the elec-
trodes are stationary. This is also the configuration typically utilized to construct
ER/MR valves.

2. Shear mode (Couette flow) (Fig. 7.17(b)): The ER/MR fluid is enclosed between
two electrodes, or magnetic poles. One of the electrodes or poles is kept fixed,
while the other undergoes displacement and is connected to the system that
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Figure 7.17. Controllable fluid-
damper operating modes.

requires damping. Relative displacement between the two electrodes, or mag-
netic poles, results in shearing of the fluid while maintaining a constant gap
between them. The strength of the applied field is not expected to change with
motion.

3. Squeeze mode (Fig. 7.17(c)): The ER/MR fluid is enclosed between two elec-
trodes or magnetic poles that undergo relative motion along the direction of the
field. The field strength varies with the displacement of the electrodes.

Fig. 7.18 shows schematic cross-sections of damper configurations operating
in the flow mode, shear mode, and mixed mode. Note that the mixed mode is a
combination of the flow mode and shear mode. In Fig. 7.18(a), a flow passage is
formed by an annular gap in the piston head. An electric or magnetic field is applied
across this gap to activate the fluid. The part of the flow passage over which the field
is applied is referred to as the active region. The motion of the piston forces fluid
through the flow passage. The inner and outer walls of the flow passage translate
with the same velocity, and can be considered stationary with respect to the flow
of fluid. Therefore, this damper operates in flow mode. In Fig. 7.18(b), the fluid is
contained in an annular gap between the stationary outer shell of the damper and
the movable inner shaft, across which an electric or magnetic field can be applied.
As the motion of the inner shaft results in shearing of the fluid in the active region,
this damper operates in shear mode. Mixed mode operation involves a combination
of flow mode as well as shear mode. In Fig. 7.18(c), a flow passage is formed by the
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Figure 7.18. ER/MR fluid damper configurations.

annular gap between the piston and the outer shell of the cylinder. This area also
constitutes the active region of the damper. The fluid in the active region is sheared
by the motion of the piston. In addition, the motion of the piston forces fluid from
one side of the piston to the other through the annular gap. Therefore, a combination
of flow mode and shear mode operation results.

From the damper configurations in Fig. 7.18, the simplicity of construction of
ER dampers is evident. It is easy to obtain a uniform electric field between two
concentric cylindrical surfaces by connecting each surface to one terminal of a high
voltage power supply. However, in the case of MR fluids, a uniform magnetic field
must be generated by carefully placing a current-carrying coil inside the device such
that the field lines are perpendicular to the direction of shear strain in the fluid. One
way to achieve this is by using a bypass construction as in Fig. 7.19. The current
carrying coil is wound on a bobbin core made of highly permeable material. The
outer cylinder is also made of the same material and forms a flux return path. The
magnetic field is uniformly concentrated along the radial direction in the region at
the ends of the bobbin. The fluid flows through this annulus, which is the active
region of the device.

In the case of both ER and MR fluids, the height of the gap across which the field
is applied is a very important parameter. A small gap enables the required actuation
field to be achieved with smaller values of applied voltage or current. Also, a smaller
gap has a higher flow resistance in the inactive state (zero applied field).

A schematic of a mixed-mode ER damper designed and tested by Kamath et al.
[16] is shown in Fig. 7.20. This damper was used to develop and validate quasi-steady
damper models using idealized Bingham plastic–fluid behavior. This fluid used in this
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damper was VersaFlo ER-100 [46]. The force-velocity curves that were measured
for this damper, along with theoretical predictions, are shown in Fig. 7.21. It can be
seen that the Bingham plastic analysis captures the overall trend of the experimental
data quite well. However, in general, the model does not capture the exact behavior,
which includes several nonlinear phenomena. To account for this, either nonlinear
corrections must be made to the idealized Bingham plastic model, or other nonlinear
fluid models must be used. In addition, it was noted that slight adjustments in the
published material data yielded a much improved correlation. This could be due to
aging of the ER fluid, or variation in properties between batches of fluid due to
the manufacturing processes. Therefore, it is necessary to carefully measure the
field-dependent fluid properties before using them in an analysis.

7.4 Modeling of ER/MR Fluid Dampers

The performance of ER/MR fluid dampers can be modeled using the phenomeno-
logical approaches described in Section 7.2. The complete equations for three-
dimensional states of stress and field are very involved, as they contain nonlinear
terms and anisotropic properties. For practical purposes, it is instructive to use a
simple approach. The application of a fluid model to a device of a specific geometry
will be described below. To illustrate the modeling procedure, we will examine the
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Figure 7.20. Schematic of an mixed mode ER fluid damper, adapted from Kamath et al. [16].
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Figure 7.21. Comparison of ex-
perimental damper data with
Bingham plastic model predic-
tions, at electric fields of E =
0 kV/mm and E = 3 kV/mm,
adapted from Kamath et al. [16].

behavior of a damper in the shear mode as well as in the flow mode, using a Bingham
plastic fluid model. We will first consider the simplest flow geometry, which is a pas-
sage of rectangular cross-section, and then explore an annular flow passage, which is
more suited for many practical engineering applications. The flow passage of rectan-
gular cross-section is formed by the gap between two parallel plates that also act as
the electrodes (in the case of ER fluids) or magnetic poles (in the case of MR fluids)
for the application of a field. An annular flow passage can be formed by the gap
between two concentric cylinders that also act as the electrodes or magnetic poles.
The behavior of dampers in the squeeze mode is not considered here, as discussion
of this aspect has been given by Stanway et al. [47, 48].

7.4.1 Rectangular Flow Passage

Let us consider the behavior of the fluid in a passage of rectangular cross-section.
The fluid is enclosed between two parallel plates that also form the electrodes or
magnetic poles. An electric or magnetic field is applied across the height of the
passage ‘d.’ The length over which the field is applied, or the active length, is ‘L,’ and
the width of the passage is ‘b.’ A schematic of this flow passage is shown in Fig. 7.22.
It can be assumed that a uniform field exists across the height of the passage, over
an area L × b. The fluid enclosed in this volume forms a simple active fluid element.
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Consider the force equilibrium on a rectangular fluid element of length dx,
height dy, and width b as shown in Fig. 7.23. The force equilibrium equation can be
written as

−mẍ + P dy b − τ dx b −
(

P + ∂P
∂x

dx
)

dy b +
(
τ + ∂τ

∂y
dy
)

dx b = 0 (7.19)

where P is the fluid pressure, τ is the shear stress, and m is the mass of the fluid
element given by

m = ρ dy dx b (7.20)

where ρ is the mass density of the fluid. Substituting in Eq. 8.171, we get

−ρ
∂u
∂t

− ∂P
∂x

+ ∂τ

∂y
= 0 (7.21)

where u is the axial velocity (∂x/∂t). Assuming a quasi-steady flow,

∂u
∂t

= 0 (7.22)

The governing equation reduces to:

∂τ

∂y
= ∂P

∂x
(7.23)

We will examine the behavior of a damper using this active fluid element operating
in two modes: shear mode and flow mode.
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Figure 7.23. Differential fluid element, rectangular flow passage.
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Shear Mode

A shear mode damper can be constructed with the rectangular flow geometry shown
in Fig. 7.22 by moving the upper plate with respect to the lower one, while maintaining
a constant gap ‘d’ between them. Assume that a force Fo acts on the upper plate,
moving it with a constant velocity uo. A schematic of this configuration is shown in
Fig. 7.24. In this case, the pressure gradient is:

∂P
∂x

= 0 (7.24)

The governing equation reduces to:

∂τ

∂y
= 0 (7.25)

(a) Solution under zero applied field

When no field is applied, the fluid behaves like a Newtonian fluid. The shear
stress is given by (Eq. 7.1):

τ = μ
∂u
∂y

(7.26)

where μ is the dynamic viscosity of the fluid. Substituting in Eq 7.25, we get:

μ
∂2u
∂y2

= 0 (7.27)

Integrating twice leads to:

u(y) = A y + B (7.28)

The constants A and B are determined from the boundary conditions:{
u(0) = 0

u(d) = uo
=⇒

{
B = 0

A = uo/d
(7.29)

The velocity profile is given by:

u(y) = uo

d
y (7.30)

And the shear stress is:

τ(y) = μ
∂u
∂y

= μ
uo

d
(7.31)
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The force on the upper plate required to move it with the velocity uo is given by:

Fo = τ(d) L b

= μ
uo

d
L b

(7.32)

This can be equated to the equivalent damping force, yielding an effective damping
coefficient (inactive state) co

eq.

Fo = co
eq uo =⇒ co

eq = μ L b
d

= μ � (7.33)

where � is a parameter that depends only on the geometry of the flow passage.

(b) Solution under non-zero applied field

When a field is applied across the gap, the fluid is modeled as a Bingham plastic.
The shear stress is given by:

τ(y) = τy + μ
∂u
∂y

(7.34)

The velocity profile is calculated from the governing Eq. 7.25. Because τy is inde-
pendent of y, and the boundary conditions are the same, the velocity profile is the
same as before:

u(y) = uo

d
y (7.35)

The shear stress is given by:

τ(y) = τy + μ
uo

d
(7.36)

And the force in the damper is:

Fo = τ(d) L b

=
(
τy + μ

uo

d

)
L b

=
(
τy d
μ uo

+ 1
)
μ

uo

d
L b

= ca
eq uo

(7.37)

where ca
eq is the effective damping coefficient in the active state, defined as

ca
eq = μ�(1 + Bi) (7.38)

The quantity Bi is called the Bingham number and is a non-dimensional quantity
relating the yield stress to the viscous stress. Introducing non-dimensional quantities
in the analysis, such as the Bingham number and other parameters based on the
damper geometry, enables the performance of different types and sizes of devices
to be compared on the same basis. Note that if the velocity uo is high, then the
Bingham number is small, and consequently, the increase in damping coefficient on
activation of the fluid is small. It can be concluded that when an activated fluid is
subjected to high velocities, because the Bingham number is small, the fluid tends
to behave more like a Newtonian fluid than like a Bingham plastic. Therefore, the
displacement amplitude and operating frequency are also important parameters in
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Figure 7.25. Rectangular flow passage: flow mode operation.

characterizing the performance of a damper. The expression for Bingham number
is:

Bi = τy

μuo/d
= yield stress

viscous stress
(7.39)

It can be seen that the Bingham number depends on the yield stress and viscosity
of the fluid, as well as on the gap height and the velocity of motion. The smaller the
gap, the larger the Bingham number. Note that for a Newtonian fluid, the Bingham
number is zero. The equivalent active damping coefficient, ca

eq can be written as
(from Eq. 7.38)

ca
eq = co

eq(1 + Bi) (7.40)

We see that the damping coefficient in the active state has increased by the amount
Bi. Therefore, Bi defines the amount of active damping in the device. To create the
largest change in damping on the application of a field, the ratio of active damping
coefficient to inactive damping coefficient must be high. Therefore,

ca
eq

co
eq

 1 → Bi  1 → τy  μuo

d
(7.41)

This means that the yield stress must be much higher than the viscous stress. Because
uo is based on the application and d is based on the geometry of the device, the
ideal controllable fluid should have a very high yield stress τy and a low dynamic
viscosity μ.

Flow Mode

A flow-mode damper can be constructed with the rectangular flow geometry shown
in Fig. 7.22 by holding both the plates fixed, and creating a fluid flow between them.
A schematic of this configuration is shown in Fig. 7.25. The fluid flow is caused
by the difference in pressures p1 and p2 at the ends of the flow passage. In this
case, the pressure gradient is related to the applied differential pressure �P across
the active length (assumed constant over the entire active length). Note that �P =
p1 − p2 is the pressure drop across the length of the gap. The pressure gradient is
given by

∂P
∂x

= −�P
L

= p2 − p1

L
(7.42)

It is assumed that the location under consideration is sufficiently far away from the
ends of the flow passage such that the flow profile is fully developed. The governing
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u(y)

ΔP

d

x

y

L

Figure 7.26. Flow profile of the fluid in
the flow mode, no field applied (rectan-
gular cross-section).

equation becomes

∂τ

∂y
= ∂P

∂x
= −�P

L
(7.43)

(a) Solution under zero applied field

In the inactive state, the fluid behavior is Newtonian. The governing equation
becomes

μ
∂2u
∂y2

= −�P
L

(7.44)

Integrating twice yields

u(y) = − �P
2μL

y2 + Cy + D (7.45)

The constants C and D are determined from the boundary conditions:{
u(0) = 0

u(d) = 0
=⇒

{
D = 0

C = d
2
�P
μL

(7.46)

Substituting the above constants into Eq. 7.45, the velocity profile of the flow
across the gap can be written as

u(y) = − �P
2μL

y2 + �Pd
2μL

y

= �P
2μL

y(d − y)

(7.47)

It can be seen that the velocity profile is parabolic (shown in Fig. 7.26). By symmetry,
it is evident that the velocity is maximum at the center of the gap.

u(d/2) = uo

= �P
2μL

d
2

d
2

= �Pd2

8μL

(7.48)
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The velocity profile can also be conveniently expressed in non-dimensional form

ū(ȳ) = 4ȳ(1 − ȳ) (7.49)

where

ȳ = y
d
, and ū = u

uo
(7.50)

The shear stress in the gap is:

τ(y) = μ
∂u
∂y

= μ

(
−�Py

μL
+ �Pd

2μL

)
= �P

L

(
d
2

− y
) (7.51)

The force required to maintain the flow velocity in the passage, which is basically
the damping force in the device, is given by the product of the differential pressure
and the cross-sectional area. We can assume that the flow is created by a piston with
the same cross-section as the flow passage, moving with a constant velocity uo. The
force required to move the piston is Fo. Because the velocity profile across the gap
is parabolic, a mean velocity um can be defined that is constant across the gap and
that yields the same volumetric flow as the parabolic profile. The volumetric flow Q
is given by

Q =
∫ d

y=0
u(y)bdy = b

∫ d

0

�P
2μL

y(d − y)dy

= �Pb
2μL

[
dy2

2
− y3

3

]d

0

= �Pbd3

12μL

(7.52)

The volumetric flow can also be expressed in terms of the mean velocity, um, as
follows

Q = umbd (7.53)

From Eqs. 7.52 and 7.53, the mean velocity is

um = �Pd2

12μL
(7.54)

The damping coefficient of the fluid element can be found from the force and velocity
of the piston. The differential pressure is related to the force on the piston by

�P = F
bd

(7.55)

which yields

F = 12μbL
d

um (7.56)
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Fluid flow

y1

y2
δ d

1

2

3 Post-yield

Pre-yield

Post-yield

Plug

Figure 7.27. Flow profile of the fluid in the flow mode, under an external field (rectangular
cross-section), Bingham plastic model.

The damping coefficient of the fluid element under zero applied field, co
eq, can be

found from the above equation as

co
eq = F

um

= 12μLb
d

(7.57)

It is seen that the damping coefficient depends on the geometry of the damper and
the viscosity of the fluid.

(b) Solution under non-zero applied field

When a field is applied, the velocity profile of the fluid changes depending upon
the local shear stress. The flow velocity profile in the Newtonian case is parabolic
and the shear stress at the middle of the gap is zero. Therefore, around this region,
the fluid is in the pre-yield condition. Near the walls of the passage, the shear stresses
may be higher than the yield stress, resulting in post-yield fluid behavior. Treating the
fluid as a Bingham plastic, it can be seen that in the pre-yield region, the fluid behaves
like a solid, and therefore has a constant translational velocity around the center of
the gap. Near the walls, the fluid behavior is Newtonian, with a parabolic velocity
profile. The resulting flow profile across the height of the gap can be considered
as a solid plug around the center of the gap, being carried along in a Newtonian
fluid. This flow profile is depicted in Fig. 7.27. The flow is divided into three regions:
regions ‘1’ and ‘3’ are the post-yield regions and region ‘2’ is the pre-yield region.
The thickness of the plug in the center of the gap is δ.

To find the flow profile in the gap and the effective damping coefficient, each of
the three regions is treated separately. Substituting the expressions for shear stress
in each region, we see that the governing equation for all the three regions reduces
to Eq. (7.44):

μ
∂2u
∂y2

= −�P
L

(7.58)

And the location of each region is

y1 = d − δ

2
(7.59)

y2 = d + δ

2
(7.60)
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Region 1

Integrating the above governing equation twice leads to:

u1(y) = − �P
2μL

y2 + C1y + C2 (7.61)

The boundary conditions in this case are

u1(0) = 0 (7.62)

∂u1

∂y

∣∣∣
y=y1

= 0 (7.63)

While the first boundary condition is a result of the no-slip condition at the wall, the
second boundary condition occurs because there can be no discontinuity in the flow
profile. Substituting and solving yields the constants:

C2 = 0 (7.64)

−�P
μL

y1 + C1 = 0 =⇒ C1 = �Py1

μL
(7.65)

Therefore, the velocity profile in region ‘1’ is given by

u1(y) = − �P
2μL

y2 + �Py1

μL
y

= �P
2μL

y (2y1 − y)

= �P
2μL

y (d − δ − y)

(7.66)

Region 3

Integrating the governing equation twice leads to:

u3(y) = − �P
2μL

y2 + C3y + C4 (7.67)

The boundary conditions in this case are

u3(d) = 0 (7.68)

∂u3

∂y

∣∣∣
y2

= 0 (7.69)

These boundary conditions are similar to that of the previous case. Substituting and
solving yields the constants:

−�P
μL

y2 + C3 = 0 =⇒ C3 = �Py2

μL
(7.70)

− �P
2μL

d2 + �P
μL

d y2 + C4 = 0 =⇒ C4 = �P
2μL

d (d − 2y2) (7.71)



714 Electrorheological and Magnetorheological Fluids

Therefore, the velocity profile in region ‘3’ is given by

u3(y) = − �P
2μL

y2 + �P
μL

yy2 + �P
2μL

(
d2 − 2d y2

)
= �P

2μL

[(
d2 − y2)− 2y2(d − y)

]
= �P

2μL
(d − y)(y − δ)

(7.72)

Note that this result can also be obtained from the symmetry of the flow,

u3(y) = u1(d − y) (7.73)

Applying this relation to Eq. 7.66 results in Eq. 7.72.

Region 2

The velocity is constant in region ‘2’, given by the velocity at the locations ‘y1’ and
‘y2’. Let us call the velocity of the fluid in region ‘2’ the plug velocity, up . Then we
can write

u1(y1) = up

u3(y2) = up

(7.74)

Substituting in Eq. 7.66, we get

up = u1(y1) = �P
2μL

y2
1

= �P(d − δ)2

8μL

(7.75)

As a check,

u3(y2) = �P
2μL

(d − y2)(y2 − δ)

= �P
8μL

(d − δ)2

= up

(7.76)

Note that the solution of the governing flow equation (Eq. 7.43) in all the three
regions involves a total of 5 constants: C1, C2, C3, C4, and δ. The boundary conditions
in regions 1 and 3 (Eqs. 7.62, 7.63, 7.68, and 7.69) provide us with 4 equations.
The condition of equal flow velocities at the locations y1 and y2 (Eqs. 7.74) does not
provide any additional information because y1 and y2 are fixed by the assumption
that the flow profile is symmetric about the center of the flow passage. Therefore,
an additional condition is required to find the thickness of the plug, δ. This can be
found by solving for the shear stress at the boundary of region ‘2.’ The governing
equation (Eq. 7.43) in region ‘2’ is written as

∂τ2

∂y
= −�P

L
(7.77)
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Integrating the above equation yields

τ2(y) = −�P
L

y + C5 (7.78)

The constants δ and C5 can be found from the following boundary conditions:

τ2(y1) = τy (7.79)

τ2(y2) = −τy (7.80)

Substitution in Eq. 7.78 results in an expression for C5:

C5 = �P
2L

(y1 + y2) = �P
L

d (7.81)

Therefore, the shear stress in region ‘2’ is given by

τ2(y) = −�P
L

y + �P
2L

d

= �P
2L

(d − 2y)

(7.82)

The plug thickness can be found by substituting the constant C5 in the first boundary
condition (Eq. 7.79)

−�P
L

y1 + �P
2L

d = τy =⇒ δ = τy
2L
�P

(7.83)

It is convenient to non-dimensionalize the plug thickness by the height of the gap

δ̄ = δ

d
= τy2L

�Pd
(7.84)

The value of δ̄ defines the state of flow through the gap.

(i) δ̄ = 0: The flow is purely Newtonian.
(ii) δ̄ = 1: The gap is completely blocked and there is no flow of fluid. Given a specific

fluid, the differential pressure below which the flow passage remains blocked can
be derived as:

�P ≤ 2τyL
d

(7.85)

Alternatively, in order to sustain a specified pressure differential without allow-
ing any flow, a fluid can be chosen with a yield stress such that

τy ≥ �Pd
2L

(7.86)

In order to calculate the effective damping coefficient of the activated fluid
element, it is necessary to find a mean flow velocity, um, by finding the total volumetric
flow Q through the passage.

Q =
∫ d

y=0
u(y) b dy

= 2 Q1 + Q2

(7.87)
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where Q1 and Q2 is the volumetric flow through region ‘1’ and region ‘2’ respectively,
given by (from Eqs. 7.66 and 7.75)

Q1 = b
∫ y1

0

�P
2μL

(
2yy1 − y2)dy = �Pb

24μL
(d − δ)3 (7.88)

Q2 = b
∫ y2

y1

up dy = �Pb
8μL

(d − δ)2δ (7.89)

Note that Q3 = Q1. The total volumetric flow is given by

Q = umb d

= �Pb
12μL

(d − δ)3 + �Pb
8μL

(d − δ)2δ

= �Pb
12μL

(d − δ)2
(

d + δ

2

)
= �Pb d3

12μL
(1 − δ̄)2

(
1 + δ̄

2

)
(7.90)

From the above equation, the mean velocity can be extracted as

um = �Pd2

12μL
(1 − δ̄)2

(
1 + δ̄

2

)
(7.91)

The damping coefficient ca
eq in the active state is given by

ca
eq = Fa

um
(7.92)

where Fa is the force required to move the piston when the fluid is activated, given
by

Fa = �P bd (7.93)

From the above equations, the active damping coefficient is

ca
eq = 12μLbd

d2(1 − δ̄)2(1 + δ̄/2)
= co

eq

(1 − δ̄)2(1 + δ̄/2)
(7.94)

The ratio of the damping coefficient in the active state to the damping coefficient in
the inactive state, as a function of different plug thicknesses, is shown in Fig. 7.28. It
can be seen that this ratio increases steeply as the plug thickness increases. For a plug
thickness of around 0.6, the damping coefficient increases by an order of magnitude
from the inactive to the active state.

The ratio of the damping coefficients in the active and inactive states can also
be expressed in terms of the Bingham number. The Bingham number is defined as

Bi = τyd
μum

= τyd
μ

12μL
�Pd2(1 − δ̄)2(1 + δ̄/2)

(7.95)

From the definition of plug thickness (Eq. 7.84),

Bi = 6δ̄
(1 − δ̄)2(1 + δ̄/2)

(7.96)
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Figure 7.28. Variation of the
ratio of damping coefficients with
plug thickness.

which yields the ratio of damping coefficients as

ca
eq

co
eq

= Bi
6δ̄

(7.97)

It is interesting to note that using the Bingham plastic model, it is possible to obtain
a value of δ̄ = 1, meaning fully blocked flow. This would yield a damping coefficient
of infinity, which is not realistic. Using the biviscous fluid model would alleviate this
problem because of the finite pre-yield viscosity.

Piston Area and Flow Passage Area

Often, for flow mode dampers, the cross-sectional area of the piston head (Ap ) may
not be the same as the cross-sectional area of the flow passage (Ad). An example
of such a case is a bypass damper (shown in Fig. 7.29). In this case, the damping
coefficient calculated from the force and velocity in the flow passage is different
from the damping coefficient with respect to the force and velocity of the piston. The
volume of fluid displaced by the piston head is given by

Qp = Ap up (7.98)

where up is the velocity of the piston head. The effective damping coefficient of the
bypass damper, ceq is defined with respect to the piston velocity and the force on the
piston, F p .

F p = cequp (7.99)

Fp , up

Fd , ud
Area Ad

Area Ap

Figure 7.29. Equivalent damping coefficient of a
bypass damper.
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From conservation of mass of the fluid, we get

Ap up = Adud (7.100)

where ud is the mean flow velocity in the flow passage. By equality of pressures,

F p

Ap
= Fd

Ad
(7.101)

where Fd is the force that would be exerted on a piston having the same area as
the flow passage. The damping coefficient with respect to the flow passage, ceq,d is
defined as

ceq,d = Fd

ud
(7.102)

From the above equations, we see that

ceq = A2
p

A2
d

Fd

ud

= A2
p

A2
d

ceq,d

(7.103)

7.4.2 Worked Example: Herschel-Bulkley Fluid Model

Derive the inactive and active damping coefficients for a flow mode damper with a
rectangular flow passage, using the Herschel-Bulkley fluid model:

τ = τy sgn(γ̇) + Kγ̇n for τ > τy (7.104)

Solution

Proceeding as in Section 7.4.1, fluid flowing through the rectangular passage can be
divided into three regions. The governing equation for all the three regions is given
by Eq. (7.44):

∂τ

∂y
= −�P

L
(7.105)

On the application of a non-zero field, the shear stress in the fluid is expressed by
the Herschel-Bulkley model as

τ = τy + K
(
∂u
∂y

)n

(7.106)

Substituting in the governing equation leads to

∂

∂y

[
K
(
∂u
∂y

)n]
= −�P

L
(7.107)

Integrating the above equation once,

∂u
∂y

=
[
−�P

KL
y + C1

] 1
n

(7.108)



7.4 Modeling of ER/MR Fluid Dampers 719

Integrating again, we get

u(y) = − nKL
(1 + n)�P

[
−�P

KL
y + C1

] n+1
n

+ C2 (7.109)

The flow can be divided into three distinct regions as shown in Fig. 7.27.

Region 1

In this region (post-yield), the shear stress is given by

τ1 = τy + K
(
∂u1

∂y

)n

(7.110)

and the boundary conditions are

u1(0) = 0

∂u1

∂y

∣∣∣
y=y1

= 0
(7.111)

This yields the constants C1 and C2 as

C1 = �P
KL

y1

C2 = n
n + 1

(
�P
KL

) 1
n

y
n+1

n
1

(7.112)

Therefore, the velocity distribution in region ‘1’ becomes

u1(y) = − n
n + 1

(
�P
KL

) 1
n
[

(y1 − y)
n+1

n − y
n+1

n
1

]
(7.113)

Note that if we substitute n = 1 in the above equation, we obtain the same expression
for flow velocity as in the case of the Bingham plastic analysis (Eq. 7.66).

Region 3

This is also a post-yield region. The velocity profile can be obtained by symmetry,
using the relation

u3(y) = u1(d − y) (7.114)

which results in

u3(y) = − n
n + 1

(
�P
KL

) 1
n [

(y − y2)
n+1

n − (d − y2)
n+1

n

]
(7.115)

Region 2

In this region, the fluid is in a pre-yield condition. The fluid has a uniform velocity
given by

u2(y) = u1(y1) = u3(y2)

= n
n + 1

(
�P
KL

) 1
n
(

d − δ

2

) n+1
n (7.116)
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The shear stress profile can be obtained from the following relation

∂τ2

∂y
= −�P

L
(7.117)

Integrating, we get

τ2(y) = −�P
L

y + C3 (7.118)

Note that this is the same expression as that obtained in the case of the Bingham
plastic model (Eq. 7.78). The boundary conditions in this case are also the same, and
are given by

τ2(y1) = τy

τ2(y2) = −τy

(7.119)

Substituting the above relations, we get

C3 = �Pd
2L

δ = τy
2L
�P

(7.120)

which are the same relations as in the case of the Bingham plastic model. The shear
stress profiles in the three regions are

τ1(y) = τy + �P
L

(y1 − y)

τ2(y) = �P
2L

(d − 2y)

τ3(y) = −τy − �P
L

(y − y2)

(7.121)

The total volume flux can be determined by the summation of volume fluxes from
the three regions.

Q = Q1 + Q2 + Q3 = 2Q1 + Q2

= b
[

2
∫ y1

0
u1dy +

∫ y2

y1

u2dy
]

= 2b
∫ y1

0

(
− n

n + 1

)(
�P
KL

) 1
n
[

(y1 − y)
n+1

n − y
n+1

n
1

]
dy

+ b
∫ y2

y1

(
n

n + 1

)(
�P
KL

) 1
n
(

d − δ

2

) n+1
n

dy

= bn
(
�P
KL

) 1
n
(

d − δ

2

) n+1
n n(d + δ) + d

(2n + 1)(n + 1)

(7.122)

From which the mean flow velocity is derived as

um = n
d

(
�P
KL

) 1
n
(

d − δ

2

) n+1
n n(d + δ) + d

(2n + 1)(n + 1)
(7.123)
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Non-dimensionalising the plug thickness with respect to the height of the flow
passage,

um = n
(
�P
KL

) 1
n
(

1 − δ̄

2

) n+1
n n(1 + δ̄) + 1

(2n + 1)(n + 1)
d

n+1
n (7.124)

The pressure differential �P can be obtained in terms of um as

�P = KLdnun
m

nn

(
2

d − δ

)n+1 [ (2n + 1)(n + 1)
n(d + δ) + d

]n

(7.125)

From the above equation, the active damping coefficient is found to be

ca
eq = F

um
= �Pbd

um

= un−1
m

KLbdn+1

nn

(
2

d − δ

)n+1 [ (2n + 1)(n + 1)
n(d + δ) + d

]n

= un−1
m

KLb
nndn

(
2

1 − δ̄

)n+1 [ (2n + 1)(n + 1)
n(1 + δ̄) + 1

]n

(7.126)

Note that the damping coefficient in this case depends on the mean flow velocity um.
As a result, the active and inactive damping coefficients can only be compared at
constant um, which translates to the condition of equal flow rate in both the active
and inactive case. The inactive damping coefficient co

eq can be easily determined by
setting the plug thickness to zero (δ̄ = 0) in the above equation. This leads to

co
eq = un−1

m
KLb
nndn

2n+1(2n + 1)n (7.127)

The ratio of active and inactive damping coefficients is

ca
eq

co
eq

= 1
(1 − δ̄)n+1

(
1

1 + nδ̄
n+1

)n

(7.128)

7.4.3 Worked Example: Bingham Biplastic Fluid Model

The Bingham plastic model assumes constant post-yield viscosity for all shear strain
rates. However, in reality, the post-yield viscosity of ER/MR fluids can vary with
shear strain rate, exhibiting shear thinning or shear thickening. The Bingham biplas-
tic model has been proposed to capture this behavior [9]. In this model, as shown in
Fig. 7.30, the post-yield behavior is approximated by two regions of different viscos-
ity, one for low shear strain rate and the other for high shear strain rate. The value
of shear strain rate at which the viscosity changes is independent of field strength.
Below a shear rate of γ̇t, the viscosity is μo, and above this shear rate, the viscosity
is μ1. For shear thinning, μ1 < μo, whereas for shear thickening, μ1 > μo.

τ = τy sgn(γ̇) + μoγ̇ for 0 < |γ̇| < γ̇t

= [τy + (μo − μ1)γ̇t
]

sgn(γ̇) + μ1γ̇ for |γ̇| > γ̇t

(7.129)

Using this model, derive an expression for the active damping coefficient, for a flow
mode damper with a rectangular flow passage.
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Figure 7.30. Shear thinning and shear thickening represented by the Bingham biplastic model.

Solution

Consider the quasi-static flow through a rectangular flow passage of width b, height
d and length L. When the fluid is activated, a plug forms in the center of the flow
passage similar to the case of the Bingham plastic model. However, in the Bingham
biplastic model, two distinct viscosities exist in the post-yield region. Therefore, the
flow profile must be divided into five regions, compared to three regions in the case
of the Bingham plastic model. These five regions are shown in Fig 7.31. Regions
‘1’, ‘2’, ‘4’, and ‘5’ represent the post-yield condition and region ‘3’ represents the
pre-yield central plug. The ‘y’-axis is assumed to originate from the mid-axis of the
gap. Since the flow profile is symmetric, only one half of the gap can be considered
for analysis.

As shown earlier for a rectangular flow passage, the force equilibrium equation
is reduced to

∂τ

∂y
= ∂P

∂x
= −�P

L
(7.130)

where �P is the pressure drop along the length of the passage. Integrating the above
equation leads to

τ = −�P
L

y + C1 (7.131)

Fluid flow

yt

δ

d

5

3

2

4

1

x

y
yy

Figure 7.31. Flow profile of the fluid in the flow mode, under an external field (rectangular
cross-section), Bingham biplastic model.
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The boundary conditions are

At y = 0, τ = 0 =⇒ C1 = 0

At y = yy, τ = τy =⇒ yy = δ

2
= −τyL

�P

(7.132)

where δ is the pre-yield plug thickness. In addition, at y = yt, τ = τy + μoγ̇. This
results in

yt = −μoγ̇tL
�P

− τyL
�P

(7.133)

It is clear that yt does not depend on the second viscosity μ1.

Region 5

u5(y) is the flow velocity in region ‘5’. The shear stress is given by

τ(y) = − [τy + (μo − μ1)γ̇t
]+ μ1

∂u5

∂y

= −�P
L

(7.134)

From which the strain rate is

∂u5

∂y
= 1

μ1

[
τy + (μo − μ1)γ̇t

]− 1
μ1

�P
L

y (7.135)

Integrating the above expression yields

u5(y) = 1
μ1

[
τy + (μo − μ1)γ̇t

]
y + 1

μ1

(−�P)
L

y2

2
+ C1 (7.136)

The constant C1 can be found from the no-slip boundary condition on the upper wall
of the flow passage

u5(d/2) = 0 (7.137)

Applying this boundary condition and substituting for the constant C1 yields

u5(y) = y − d/2
μ1

[
τy + (μo − μ1)γ̇t + (y + d/2)

(−�P)
2L

]
(7.138)

Region 4

The shear stress in region ‘4’ is given by

τ(y) = −τy + μo
∂uy

∂y

= −�P
L

y

(7.139)

From which the velocity distribution in region ‘4’, u4(y) can be found as

u4(y) = τy

μo
y − �P

μoL
y2

2
+ C2 (7.140)
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Flow continuity between region ‘4’ and region ‘5’ requires that

u4(yt) = u5(yt) (7.141)

Applying this flow continuity condition at yt results in

u4(y) = y − yt

μo

[
τy + (−�P)

2L
(y + yt)

]
+ yt − d/2

μ1

[
τy + (μo − μ1)γ̇t + (y + d/2)

(−�P)
2L

] (7.142)

Substituting for yt from Eq. 7.133,

u4(y) = 1
μo

[
τy + (−�P)

2L
y
]

y

+ 1
2μ1L

{
�P
4

d2 − dL
[
τy + (μo − μ1)γ̇t

]
+ L2

�P

(
τy + γ̇tμo

)2 (1 − μ1

μo

)} (7.143)

Plug Region 3

The flow velocity u3(y) is uniform in this region and is equal to the pre-yield plug
velocity up . From flow continuity at the interface of region ‘3’ and region ‘4’,

u3(y) = u4(yy) (7.144)

where

yy = − δ

2
= −τyL

�P
(7.145)

Substituting in Eq. 7.143 results in

u3(y) = τ2
yL

2μo�P
+ 1

2μ1L

{
�P
4

d2 − dL
[
τy + (μo − μ1)γ̇t

]
+ L2

�P

(
τy + γ̇tμo

)2 (1 − μ1

μo

)} (7.146)

Let us define the low shear strain rate plug thickness as δt = 2yt. Introducing the non-
dimensional plug thicknesses δ̄ = δ/d and δ̄t = δt/d, and a non-dimensional height
ȳ = y/d, we get

u1(y) = �Pd2

8L

[
(1 − δ̄t)2

μ1
+ (δ̄t − δ̄y)(2 − δ̄t − δ̄y)

μo

]
u2(y) = �Pd2

8L

[
(1 − δ̄t)2

μ1
− 4ȳ(ȳ − δ̄y) + 2(δ̄t − δ̄y) + δ̄2

t

μo

]
u3(y) = �Pd2

8L

[
(1 − 2ȳ)(2ȳ + 1 − 2δ̄t)

μ1
+ 2(1 − 2ȳ)(δ̄t − δ̄y)

μo

]
(7.147)
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Figure 7.32. ER/MR fluid in
annular flow passage.

The total volumetric flow rate is given by

Q = Q4 + 2Q5 + 2Q6

= 2b
∫ yy

0
u4(y) dy + 2b

∫ yt

yy

u5(y) dy + 2b
∫ d

yt

u6(y) dy

= �Pbd3

12μoL

[
(1 − δ̄y)2

(
1 + δ̄y

2

)
− (1 − δ̄t)2

(
1 + δ̄t

2

)(
1 − μo

μ1

)] (7.148)

Assuming the fluid is being forced through the flow passage by a piston of area Ap

at a mean velocity um, the flow rate is given by Q = Ap um. The force on the piston
is F p = �PAp . Therefore, the active damping coefficient ca

eq is given by

ca
eq = 12μoLA2

p

bd3

1
(1 − δ̄y)2(1 + δ̄y/2) − (1 − δ̄t)2(1 + δ̄t/2)(1 − μo/μ1)

(7.149)

Expressing the above equation in terms of the inactive Newtonian damping coef-
ficient co

eq (Eq. 7.57) yields the increase in damping due to the application of the
field.

ca
eq

co
eq

= 1
(1 − δ̄y)2(1 + δ̄y/2) − (1 − δ̄t)2(1 + δ̄t/2)(1 − μo/μ1)

(7.150)

7.4.4 Annular Flow Passage

Let us consider a damper with an annular active region. The annulus is formed by the
gap between two concentric cylinders, that form two electrodes, or magnetic poles.
The annular gap is filled with the controllable fluid, and the applied field acts over
an axial length L. The radius of the inner cylinder is ri and the radius of the outer
cylinder is ro. Typically, the width of the annular gap, d = ro − ri is small compared
to the radius of the inner cylinder. In such a case, the electric or magnetic field can
be assumed to be uniform across the gap, which considerably simplifies the analysis.
A diagram of this configuration is shown in Fig. 7.32.

The governing equation for the fluid in the annulus can be derived by considering
force equilibrium on an annular fluid element as shown in Fig. 7.33. The mass of the
fluid element ‘dm’ is given by

dm = 2πr dr dx ρ (7.151)
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Figure 7.33. Differential fluid element, annular flow passage.

The force balance on the element can be written as

− dm
∂u
∂t

+ 2πr dr P +
(
τ + ∂τ

∂r
dr
)

2π(r + dr) dx

− τ2πr dx −
(

P + ∂P
∂x

dx
)

2πr dr = 0 (7.152)

Substituting for the elemental mass from Eq. 7.151, the governing equation can be
derived as

−ρ
∂u
∂t

+ τ

r
+ ∂τ

∂r
− ∂P

∂x
= 0 (7.153)

Assuming steady incompressible flow, ∂u/∂t = 0. The governing equation reduces
to

∂τ

∂r
+ τ

r
= ∂P

∂x
(7.154)

The pressure gradient ∂P/∂x is defined in the same way as for the parallel plate case,
by Eq. 7.42. It is important to note that the electric field across the annular gap is not
uniform, because of the curvature of the surfaces. However, if the gap is assumed
small compared to the radius of curvature, it can be assumed that the electric field
is uniform across the gap. We can now examine the shear mode and the flow mode
cases separately.

Shear Mode

A shear mode damper can be constructed using the annular geometry by holding
the outer cylinder fixed and moving the inner cylinder in the axial direction. Let us
assume that a force Fo is acting on the inner cylinder, which is moving with a velocity
uo (Fig. 7.34). A one dimensional axisymmetric model is sufficient for this analysis.
Again, the pressure gradient is zero and the governing equation becomes

τ

r
+ ∂τ

∂r
= 0 (7.155)

(a) Solution under zero applied field
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Figure 7.34. Damper with annular
gap operating in shear mode.

When no field is applied, the fluid behaves like a Newtonian fluid. The shear
stress is then given by Eq. 7.1, with the radial variable ‘r’ replacing the Cartesian
variable ‘y.’

τ(r) = μ
∂u
∂r

(7.156)

Substituting this into the governing equation (Eq. 7.154), with the pressure
gradient for shear mode gives

μ
∂2u
∂r2

+ μ

r
∂u
∂r

= 0 (7.157)

This can be rewritten as
∂

∂r

(
r
∂u
∂r

)
= 0 (7.158)

Integrating the above equation twice with respect to ‘r’ yields

u(r) = A ln r + B (7.159)

The constants ‘A’ and ‘B’ are determined from the boundary conditions:

u(ri) = uo =⇒ A = uo

ln(ri/ro)

u(ro) = 0 =⇒ B = − uo ln ro

ln(ri/ro)

(7.160)

Therefore, the velocity profile across the gap is given by

u(r) = uo

ln(ri/ro)
ln(r/ro) (7.161)

and the shear stress in the fluid is

τ(r) = − μuo

r ln(ro/ri)
(7.162)

Note that the shear strain rate, ∂u/∂r, is negative in the annular gap because the
inner cylinder is moved while the outer cylinder remains at rest. As a result, the
shear stress has a negative sign, which can be ignored while calculating the damping
force. Following the same procedure as in Section 7.4.1, the damping coefficient is
found by the ratio of the force and velocity. The force is given by (dropping the
negative sign)

Fo = 2πri L τ(ri)

= 2πLμuo

ln(ro/ri)

(7.163)
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The damping force is

Fo = co
eq uo (7.164)

where co
eq is the damping coefficient in the inactive state. Equating the above two

expressions for Fo, the damping coefficient is obtained as

co
eq = 2πLμ

ln(ro/ri)
= �μ (7.165)

where, similar to the case of the rectangular flow duct, � is a parameter that depends
only on the geometry of the device:

� = 2πL
ln(ro/ri)

(7.166)

(b) Solution under non-zero applied field

Once the activation field is applied, the fluid is modeled as a Bingham plastic. In
the pre-yield region, the fluid is modeled as a Newtonian fluid as described above.
In the post-yield region, the shear stress is given by (Eq. 7.9)

τ = τy sgn(γ̇) + μγ̇

= −τy + μ
∂u
∂r

(7.167)

Note that a negative sign appears because the shear stress in the annular gap is
negative. Substituting this in the governing equation (Eq. 7.154),

μ
∂2u
∂r2

+ μ

r
∂u
∂r

= τy

r
(7.168)

which can be rewritten as

∂

∂r

(
r
∂u
∂r

)
= τy

μ
(7.169)

Integrating this twice leads to

u(r) = τy

μ
r + C ln r + D (7.170)

Applying the same boundary conditions as before (Eq. 7.160), the constants are
obtained as

C = − 1
ln(ro/ri)

[
uo + τy

μ
(ro − ri)

]
D = uo

ln(ro/ri)
+ τy

μ

[
−ro + ro − ri

ln(ro/ri)

] (7.171)

The fluid velocity across the gap is

u(r) = −τy

μ
(ro − r) + uo + τy/μ(ro − ri)

ln(ro/ri)
ln(ro/r) (7.172)
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And the shear stress is given by

τ(r) = − μ

r ln(ro/ri)

[
uo + τy

μ
(ro − ri)

]
= − μuo

r ln(ro/ri)

[
1 + τyd

μuo

]
= − μuo

r ln(ro/ri)
(1 + Bi)

(7.173)

where the Bingham number, Bi is defined as before (Eq. 7.39). The force on the
inner cylinder is (ignoring the negative sign)

Fo = 2πri Lτ(ri)

= μ (1 + Bi)�uo

(7.174)

from which the equivalent damping coefficient in the active state is found to be

ca
eq = μ (1 + Bi)�

= co
eq (1 + Bi)

(7.175)

Flow Mode

In the flow mode, a pressure differential forces fluid through the gap between the
two cylinders. The configuration is similar to that of a parallel plate (Section 7.4.1),
except that in this case the electrodes (or magnetic poles) are cylindrical.

The governing equation is given by Eq. 7.154, with the pressure gradient being
the same as in the case of the rectangular flow passage (Eq. 7.42)

∂τ

∂r
+ τ

r
= −�P

L
(7.176)

When no field is applied, the fluid behavior is Newtonian. Substituting for the shear
stress (Eq. 7.156) yields the governing equation for fluid flow through the annulus:

μ
∂2u
∂r2

+ μ

r
∂u
∂r

= −�P
L

(7.177)

This can be rewritten as

∂

∂r

(
r
∂u
∂r

)
= −�P

μL
r (7.178)

Integrating twice yields

u(r) = −�P
μL

r2

4
+ C1 ln r + C2 (7.179)

The constants are determined from the boundary conditions, which in this case
are the no-slip conditions at the wall.

u(ri) = 0

u(ro) = 0
(7.180)
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from which the constants can be derived as

C1 = �P
4μL

(
r2

i − r2
o

)
ln(ri/ro)

C2 = �P
4μL

r2
i − �P

4μL

(
r2

i − r2
o

)
ln(ri/ro)

ln ri

(7.181)

Substituting the two constants, the velocity profile in the annulus becomes

u(r) = �P
4μL

[
−r2 + r2

i
ln(ro/r)
ln(ro/ri)

+ r2
o

ln(r/ri)
ln(ro/ri)

]
(7.182)

This represents a paraboloid enclosed in the annulus. The maximum velocity is no
longer in the center of the gap, but as the gap thickness becomes small in comparison
to the inner radius, the flow profile becomes more symmetric with respect to the
center of the gap, and the flow profile can be approximated by that of a rectangular
cross-section flow passage. To find an equivalent constant flow velocity um, the
volumetric flow through the annulus, Q, is calculated:

Q =
∫ ro

ri

u(r) 2π r dr

= 2π
�P
4μL

∫ ro

ri

(
r2

i r − r3 +
(
r2

i − r2
o

)
ln(ri/ro)

r ln(r/ri)

)
dr

= �Pπ
8μL

[
r4

o − r4
i +

(
r2

i − r2
o

)2
ln(ri/ro)

] (7.183)

This volumetric flow is equated to that resulting from the equivalent constant flow,

Q = um π
(
r2

o − r2
i

)
(7.184)

Following the same procedure as in the case of the rectangular flow passage (Sec-
tion 7.4.1), the effective damping coefficient, co

eq can be derived.

um = �P
8μL

[
r2

o + r2
i + r2

i − r2
o

ln(ro/ri)

]
= F

π
(
r2

o − r2
i

)
8μL

[
r2

o + r2
i + r2

i − r2
o

ln(ro/ri)

]
= F

co
eq

(7.185)

co
eq = 8πμL

r2
o+r2

i

r2
o−r2

i
+ 1

ln(ro/ri)

(7.186)

When a field is applied and the fluid is treated as a Bingham plastic, the flow through
the annulus can be divided into three regions, similar to the case of the rectangular
cross-section flow passage. In this case, an annular plug forms in the flow passage.
Due to the geometry of the flow passage, the flow profile is not symmetric across
the gap as in the case of the rectangular cross-section flow passage. The procedure
for finding the velocity profile, shear stresses, and equivalent damping is the same as
that outlined in the case of the rectangular cross-section flow passage (Section. 7.4.1).
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Figure 7.35. Flow profile in the
annulus, with an external field
applied.

The flow is divided into three regions, as shown in Fig. 7.35. The flow in each region
is treated seperately as follows:

Region 1

The governing equation in regions ‘1’ and ‘3’ (post-yield) is given by (Eq. 7.176)

∂τ

∂r
+ τ

r
= −�P

L
(7.187)

Using the Bingham plastic model, the shear stress in the post-yield region is given
by (Eq. 7.9)

τ(r) = μ
∂u
∂r

+ τy (7.188)

Substituting the above equation in the governing equation (Eq. 7.188) we get

μ
∂2u
∂r2

+ μ

r
∂u
∂r

+ τy

r
= −�P

L
(7.189)

This can be rewritten as

∂

∂r

(
r
∂u
∂r

)
= −�P

μL
r − τy

μ
(7.190)

Integrating the above equation twice leads to

u1(r) = − �P
4μL

r2 − τy

μ
r + C3 ln r + C4 (7.191)

The constants are determined from the boundary conditions:

u(ri) = 0 (7.192)

∂u
∂r

(r1) = 0 (7.193)

Substituting these boundary conditions leads to

− �P
4μL

r2
i − τy

μ
ri + C3 ln ri + C4 = 0 (7.194)

−�Pr2
1

2L
− τyr1 + μC3 = 0 (7.195)
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From which we get the constants

C3 = �P
2μL

r2
1 + τy

μ
r1 (7.196)

C4 = �P
4μL

r2
i + τy

μ
ri −

(
�Pr2

1

2μL
+ τyr1

μ

)
ln ri (7.197)

Substituting the constants, the velocity profile in region ‘1’ is given by

u1(r) = �P
4μL

[−r2 + r2
i + 2r2

1 ln(r/ri)
]+ τy

μ
[−r + ri + r1 ln(r/ri)] (7.198)

Region 3

The governing equation in this region is the same as in the case of Region 1. Inte-
grating the governing equation yields an expression for flow velocity:

u3(r) = − �P
4μL

r2 − τy

μ
r + C5 ln r + C6 (7.199)

The constants are determined from the boundary conditions:

u3(ro) = 0 (7.200)

∂u3

∂r

∣∣∣
r=r2

= 0 (7.201)

Substituting these boundary conditions leads to

− �P
4μL

r2
o − τy

μ
ro + C5 ln ro + C6 = 0 (7.202)

−�Pr2
2

2L
− τyr2 + μC5 = 0 (7.203)

From which we get the constants

C5 = �P
2μL

r2
2 + τy

μ
r2 (7.204)

C6 = �P
4μL

r2
o + τy

μ
ro −

(
�Pr2

2

2μL
+ τyr2

μ

)
ln ro (7.205)

Substituting the constants, the velocity profile in region ‘3’ is given by

u3(r) = �P
4μL

[−r2 + r2
o + 2r2

2 ln(r/ro)
]+ τy

μ
[−r + ro + r2 ln(r/ro)] (7.206)

Region 2

The fluid in region ‘2’ has a constant flow velocity, up . The plug thickness δ can be
found from the shear stress conditions at the boundaries of the plug. The governing
equation for shear stress in region ‘2’ is (Eq. 7.176)

∂τ

∂r
+ τ

r
= −�P

L
(7.207)
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This can be rewritten as
∂

∂r
(τr) = −�P

L
r (7.208)

Integrating the above equation leads to an expression for the shear stresses as a
function of radial position:

τ(r) = −�P
2L

r + Co

r
(7.209)

The boundary conditions for the shear stress are given by the yield condition at the
edges of the plug

τ(r1) = τy (7.210)

τ(r2) = −τy (7.211)

This leads to

τ(r1) = −�P
2L

r1 + Co

r1
= τy (7.212)

τ(r2) = −�P
2L

r2 + Co

r2
= −τy (7.213)

from which the constant Co and the plug thickness δ can be found:

Co = �P
2L

r1r2 (7.214)

τy = �P
2L

δ (7.215)

Note that the expression for the plug thickness is the same as in the case of the
rectangular cross-section flow passage. However, unlike the case of the rectangular
cross-section flow passage, the flow profile in the annular gap is not symmetric. The
plug velocity up and the location of the plug (r1 and r2) must be found by equating
the flow velocities at the boundaries of the post-yield and pre-yield regions.

up = u1(r1) = �P
4μL

[
r2

i − r2
1 + 2r2

1 ln(r1/ri)
]

+ τy

μ
[−r1 + ri + r1 ln(r1/ri)]

(7.216)

up = u3(r2) = �P
4μL

[−r2
2 + r2

o + 2r2
2 ln(r2/ro)

]
+ τy

μ
[−r2 + ro + r2 ln(r2/ro)]

(7.217)

The equivalent damping can be found by calculating the total volumetric flux Q
through the annulus and finding an equivalent constant velocity.

Q =
∫ r=ro

r=ri

2π r u(r)dr

= 2π
∫ r=r1

r=ri

u1(r)r dr + 2π
∫ r=r2

r=r1

u2(r)r dr + 2π
∫ r=ro

r=r2

u3(r)r dr

(7.218)

It can be seen that the expressions become tedious to manipulate. Because the
annular gap d is much smaller than the inner radius ri, the annular flow passage can
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Figure 7.36. Geometry of fluid in squeeze mode.

be approximated as a rectangular flow passage between two parallel conductors. The
width b of the equivalent rectangular passage can be defined in terms of the mean
circumference of the annulus as

b = 2π
(

R + d
2

)
(7.219)

As a result of this approximation, the flow profile between the conductors becomes
symmetric and a simplified analysis, as described in Section 7.4.1, can be applied.
Note that this assumption is sufficiently accurate only if d/ri � 1. A detailed analysis
of the errors introduced by such an approximation is described by Atkin et al. [49],
and Yoo and Wereley [50].

7.4.5 Squeeze Mode

The electric or magnetic field is applied across a narrow gap in which the fluid is
situated, and the field strength is assumed constant across the gap. In the squeeze
mode, the motion of a channel wall is in the normal direction, and the fluid is forced
to flow along the channel. The volume of the channel is reduced due to the motion
of the channel wall, and the fluid is subjected to shear due to its motion in the radial
direction. A discussion of the modeling of the fluid in such a mode is given by Nilson
et al. [51]. At a high field strength, particle chains are formed between the walls,
which try to prevent radial flow. In a pure shear flow mode, there is no net change
of flow and the volume is constant. Thus, the stiffness in squeeze mode is expected
to be an order of magnitude larger than that in a pure shear mode.

Consider two circular plates of radius R, arranged symmetrically at a distance of
h/2 with respect to a mid-plane, as shown in Figure 7.36. The plates are moving at a
velocity wo towards each other. The volume of fluid displaced in time �t is given by

�V = 2πr2wo�t (7.220)

Assuming the fluid is incompressible, the radial fluid velocity can be estimated from
the continuity equation

�V = 2πrh�tu(r) (7.221)

where u(r) is the radial velocity of the fluid. From the above two equations, we get

u(r) = wo

h
r (7.222)

Applying Bernoulli’s equation (energy conservation),

p(r) + 1
2
ρ [u(r)]2 = p(R) + 1

2
ρ [u(R)]2 (7.223)
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where p(r) is the pressure in the fluid. Assuming a free outlet at the edge of the
plates, p(R) = 0. This yields

p(r) = 1
2
ρ
w2

o

h2

(
R2 − r2) (7.224)

Neglecting inertial effects, the fluid equilibrium equations become

−∂p
∂r

+ μ

[
∂2u
∂r2

+ 1
r
∂u
∂r

+ u
r2

+ ∂2u
∂z2

]
= 0 (7.225)

−∂p
∂z

+ μ

[
∂2w

∂r2
+ 1

r
∂w

∂r
+ w

r2
+ ∂2w

∂z2

]
= 0 (7.226)

Assuming the fluid is Newtonian, the continuity equation can be written as

1
r
∂

∂r
(ru) + ∂w

∂z
= 0 (7.227)

The boundary conditions in this case are

At z = ±h/2, u = 0, w = ±wo (7.228)

At r = R, p = 0 (7.229)

The solution for velocities and pressures is obtained as

u = uo
4r

h2R

(
h2

4
− z2

)
(7.230)

w = −wo

(
3z
h

− 4z3

h3

)
(7.231)

p = po

R2

(
R2 − r2) (7.232)

= wo

h2

(
R2 − r2) (1

2
ρwo + 6

μ

h

)
(7.233)

where

uo = wo
3R
2h

(7.234)

The total force from a single sided squeeze mode cell is

Fz = πR2wo

h2

(
ρwo

4
+ 3μ

h

)
(7.235)

The first term dominates when the density ρ and velocity wo are large and the gap is
moderate to large. The force increases rapidly with increasing radius and decreasing
gap.

7.5 Summary and Conclusions

ER/MR fluids are a special class of fluids that dramatically change their rheological
characteristics on the application of electric/magnetic field, with response times
on the order of milliseconds. When there is no field, the suspended particles are
randomly distributed in the non-conducting fluid; in the presence of a field, they
form chains. The change of rheological property (viscosity) is used in a range of
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applications such as controllable dampers, shock absorbers, valves, brakes, prosthetic
devices, and engine mounts. Even though both these smart fluids were discovered
about the same time (1947–48), most of the early applications were focused on ER
fluids because of their ready availability and ease in implementation. Since the 1980s,
MR fluids became available commercially (by Lord Corporation); their applications
grew rapidly and surpassed those of ER fluids. A characteristic of smart fluids is
their yield stress, which is an order of magnitude higher for MR fluids than ER
fluids (50–100 kPa for MR and 2–5 kPa for ER). The MR devices are operated off
a low voltage power supply (2–25 V and 1–2 A), whereas the ER devices require a
high voltage power supply (2–10 kV and 1–10 mA). On the other hand, MR fluids
are heavier than ER fluids, and also require a complex magnetic field generator
consisting of electrical conducting coils and magnetic flux paths.

Two types of models are used to characterize ER/MR dampers: first–principle-
based models and phenomenology-based models. The first category models are
based on fundamental fluid-mechanics principles. These are quite complex and less
amenable into engineering analyses. In the second category of models, one of the
three basic flow mechanisms are often used; shear mode (Couette flow), flow mode
(Poiseulle flow), and squeeze mode. One of the widely adopted rheological ideal-
izations of fluid is the Bingham plastic model. Other refined representations include
the Herschel-Bulkley model, the biviscous model, the extended Bingham model,
and the Bing-Max model. Most of these phenomenological-based engineering mod-
els fit experimental data of the bulk fluid into simple representations. One of the
major drawbacks of these ER/MR damper models is widely adopted quasi-steady
approximation, where the dynamic effects are neglected.

It will be important to include dynamic effects in these models and examine their
performance for a range of operating conditions. For MR dampers, another challenge
is to design a compact and lightweight magnetic field generator that includes coil
and magnetic flux paths. Magnetic particles are susceptible to sedimentation with
time and it will be important to optimize the size of suspended particles so that there
is no possibility of sedimentation over a long time. For aerospace applications, the
challenge is to develop lightweight, compact highly effective adaptive dampers that
can replace very expensive, fixed-damping elastomeric dampers.

BIBLIOGRAPHY

[1] W. M. Winslow. Method and means for translating electrical impulses into mechanical
force. U. S. Patent 2,417,850, 1947.

[2] W. M. Winslow. Induced fibration of suspensions. Journal of Applied Physics, 20:1137–
1140, 1949.

[3] W. M. Winslow. Field responsive fluid couplings. U. S. Patent 2,886,151, 1959.
[4] J. Rabinow. The magnetic fluid clutch. AIEE Transactions, 67:1308–1315, 1948.
[5] J. Rabinow. Magnetic fluid clutch. National Bureau of Standards Technical News Bulletin,

32(4):54–60, 1948.
[6] J. Rabinow. Magnetic fluid torque and force transmitting device. U. S. Patent 2,575,360,

1951.
[7] K. Shimada, H. Nishida, and T. Fujita. Differences in steady charactersitics and response

time of erf on rotational flow between rotating disk and concentric cylinder. International
Journal of Modern Physics B, 15(6–7):1050–1056, 2001.

[8] K. D. Weiss, J. D. Carlson, and D. A. Nixon. Viscoelastic properties of magneto- and
electro-rheological fluids. Journal of Intelligent Material Systems and Structures, 5:772–
775, 1994.



Bibliography 737

[9] G. A. Dimock, J.-H. Yoo, and N. M. Wereley. Quasi-steady bingham biplastic analysis
of electrorheological and magnetorheological dampers. Journal of Intelligent Material
Systems and Structures, 13(9):549–559, 2002.

[10] P. Poddar, J. L. Wilson, H. Srikanth, J.-H. Yoo, N. M. Wereley, S. Kotha, L. Bargh-
outy, and R. Radhakrishnan. Nanocomposite magneto-rheological fluids with uniformly
dispersed Fe nanoparticles. Journal of nanoscience and nanotechnology, 4(1/2):192–196,
2004.

[11] Y. Choi, A. F. Sprecher, and H. Conrad. Vibration characteristics of a composite beam
containing an electrorheological fluid. Journal of Intelligent Material Systems and Struc-
tures, 1:91–104, 1990.

[12] D. R. Gamota and F. E. Filisko. Dynamic mechanical studies of electrorheological
materials: Moderate frequencies. Journal of Rheology, 35:399–425, 1991.

[13] M. R. Jolly, J. D. Carlson, and B. C. Munoz. A model of the behavior of magnetorheo-
logical materials. Smart Materials and Structures, 5:607–614, 1996.

[14] H. Block and J. P. Kelly. Electro-rheology. Journal of Physics D: Applied Physics, 21:
1661–1667, 1988.

[15] D. W. Felt, M. Hagenbuchle, J. Liu, and J. Richard. Rheology of a magnetorheological
fluid. Journal of Intelligent Material Systems and Structures, 7(5):589–593, 1996.

[16] G. M. Kamath, M. K. Hurt, and N. M. Wereley. Analysis and testing of bingham plastic
behavior in semi-active electrorheological fluid dampers. Smart Materials and Structures,
5:576–590, 1996.

[17] J. A. Powell. Modelling the oscillatory response of an electrorheological fluid. Smart
Materials and Structures, 3:416–438, 1994.

[18] H. P. Gavin, R. D. Hanson, and F. E. Filisko. Electrorheological dampers, part i: Analysis
and design. Journal of Applied Mechanics, 63:669–675, 1996.

[19] D. L. Klass and T. W. Martinek. Electroviscous fluids. I. Rheological properties. Journal
of Applied Physics, 38(1):67–74, 1967.

[20] K. D. Weiss and T. G. Duclos. Controllable fluids: Temperature dependence of post-
yield properties. International Journal of Modern Physics B, 8(20&21):3015–3032, 1994.

[21] R. C. Ehrgott and S. F. Masri. Experimental characterisation of an electrorheological
material subjected to oscillatory shear strains. Journal of Vibration and Acoustics, 116:
53–60, 1994.

[22] W. S. Yen and P. J. Achron. A study of the dynamic behavior of an electrorheological
fluid. Journal of Rheology, 35:1375–1384, 1991.

[23] H. Lee and S. B. Choi. Dynamic properties of an er fluid under shear and flow modes.
Material and Design, 23(1):69–76, 2002.

[24] O. Ashour and C. Rogers. Magnetorheological fluids: materials, characterization and
devices. Journal of Intelligent Material Systems and Structures, 7:123–130, 1996.

[25] Young-Tai Choi and Norman M. Wereley. Comparative analysis of the time response of
electrorheological and magnetorheological dampers using nondimensional parameters.
Journal of Intelligent Materials Systems and Structures, 13(7):443–451, 2002.

[26] J. David Carlson. What makes a good MR fluid? In 8th International Conference on ER
fluids and MR fluids Suspensions, Nice, 9–13 July 2001.

[27] K. D. Weiss, T. G. Duclos, J. D. Carlson, M. J. Chrzan, and A. J. Margida. High strength
magneto- and electro-rheological fluids. Society of Automotive Engineering Transactions,
SAE Paper No. 932451, pages 425–430, 1993.

[28] N. Makris, S. A. Burton, and D. P. Taylor. Electrorheological damper with annular ducts
for seismic protection applications. Smart Materials and Structures, 5:551–564, 1996.

[29] Jr. B. F. Spencer, S. J. Dyke, M. K. Sain, and J. D. Carlson. Phenomenological model of
a magnetorheological damper. Journal of Engineering Mechanics, 123:230–238, 1997.

[30] R. Stanway, J. L. Sproston, and N. G. Stevens. Non-linear modeling of an electro-
rheological vibration damper. Journal of Electrostatics, 20:167–184, 1987.

[31] D. A. Brooks. Design and development of flow based electrorheological devices. Inter-
national Journal of Modern Physics B, 6:2705–2730, 1992.

[32] T. G. Duclos. Design of devices using electrorheological fluids. Society of Automotive
Engineering Transactions, Sec. 2, SAE Paper No. 881134, 97:2532–2536, 1988.



738 Electrorheological and Magnetorheological Fluids

[33] D. J. Peel, W. A. Bullough, and R. Stanway. Dynamic modeling of an ER vibration
damper for vehicle suspension applications. Smart Materials and Structures, 5(5):591–
606, 1996.

[34] R. Stanway, J. L. Sproston, and A. K. El-Wahed. Application of electrorheological fluids
in vibration control: A survey. Smart Materials and Structures, 5:464–482, 1996.

[35] R. Stanway, J. Sproston, and R. Firoozian. Identification of the damping law of an
electro-rheological fluid: A sequential filtering approach. ASME Journal of Dynamic
Systems, Measurement and Control, 111:91–96, March 1989.

[36] R. C. Ehrgott and S. F. Masri. Modeling the oscillatory dynamic behavior of electrorhe-
ological materials. Smart Materials and Structures, 1:275–285, 1992.

[37] S. F. Masri, R. Kumar, and R. C. Ehrgott. Modeling and control of an electrorheological
device for structural control applications. Smart Materials and Structures, 4(1A):A121–
A123, 1995.

[38] Torsten Butz and Oskar von Stryk. Modelling and simulation of electro- and magne-
torheological fluid dampers. Zeitschrift fur Angewandte Mathematik und Mechanik, 82
(1):3–20, 2002.

[39] D. Y. Lee, Y.-T. Choi, and N. M. Wereley. Performance analysis of ER/MR impact
damper systems using Hershcel-Bulkley model. Journal of Intelligent Material Systems
and Structures, 13:525–531, 2002.

[40] D. Y. Lee and N. M. Wereley. Quasi-steady Herschel-Bulkley analysis of electro- and
magneto-rheological flow mode dampers. Journal of Intelligent Material Systems and
Structures, 10:761–769, 1999.

[41] B. Bird, R. Armstrong, and O. Hassager. Dynamics of polymeric fluids. John Wiley and
Sons, New York, NY, 1987.

[42] S. A. Burton, N. Makris, I. Konstantopoulos, and P. J. Antsaklis. Modeling the response
of er damper: phenomenology and emulation. Journal of Engineering Mechanics, 122:
897–906, 1996.

[43] G. M. Kamath and N. M. Wereley. A non-linear viscoelastic-plastic model for elec-
trorheological fluids. Smart Materials and Structures, 6:351–359, 1997.

[44] Y.-T. Choi, L. Bitman, and N. M. Wereley. Nondimensional analysis of electrorheolog-
ical dampers using an Eyring constitutive relationship. Journal of Intelligent Material
Systems and Structures, 16:383–394, May 2005.

[45] J. C. Dixon. The Shock Absorber Handbook. Society of Automotive Engineers, Inc.,
Warrendale PA, 1999.

[46] VersaFlo Fluids Product Information, ER-100 Fluid Form PI01-ER100A. Lord Corpo-
ration, Cary, North Carolina, 1996.

[47] Ali K. El Wahed, John L. Sproston, and Roger Stanway. The rheological characteristics
of electrorheological fluids in dynamic squeeze. Journal of Intelligent Materials Systems
and Structures, 13(10):655–660, 2002.

[48] Ali K. El Wahed, John L. Sproston, and Roger Stanway. The performance of an elec-
trorheological fluid in dynamic squeeze flow: The influence of solid phase size. Journal
of Colloid and Interface Science, 211(2):264–280, 1999.

[49] R. J. Atkin, X. Shi, and W. A. Bullough. Solutions of the constitutive equations for the
flow of an electrorheological fluid in radial configurations. Journal of Rheology, 35(7):
1441–1461, 1991.

[50] Jin-Hyeong Yoo and Norman M. Wereley. Approximating annular duct flow in er/mr
dampers using a rectangular duct. Proceedings of FEDSM’03, 4th ASME/JSME Joint
Fluids Engineering Conference (#FEDSM03/45034), July 2003.

[51] M. Nilsson and NG Ohlson. An electrorheological fluid in squeeze mode. Journal of
Intelligent Material Systems and Structures, 11(7):545–554, 2000.



8 Applications of Active Materials
in Integrated Systems

Applications of smart structures technology to various physical systems are primarily
focused on actively controlling vibration, performance, noise, and stability. Applica-
tions range from space systems to fixed-wing and rotary-wing aircraft, automotive,
civil structures, marine systems, machine tools, and medical devices. Early applica-
tions of smart structures technology were focused to space systems to actively control
vibration of large space structures [1] as well as for precision pointing in space (tele-
scope, mirrors, etc. [2]). The scope and potential of smart structures applications for
aeronautical systems have subsequently expanded. Embedded or surface-bonded
smart material actuators on an airplane wing or helicopter blade can induce alter-
ation of twist/camber of airfoil (shape change), which in turn can cause variation of
lift distribution and may help to control static and dynamic aeroelastic problems.
For fixed wing aircraft, applications cover active control of flutter [3, 4, 5, 6, 7], static
divergence [8, 9], panel flutter [10], performance enhancement [11], and interior
structure-borne noise [12]. Compared to fixed-wing aircraft, helicopters appear to
show the most potential for a major payoff with the application of smart structures
technology. Given the broad scope of smart structures applications, developments in
the field of rotorcraft are highlighted in a later section. Though most current applica-
tions are focused on the minimization of helicopter vibration, there are other poten-
tial applications such as interior/exterior noise reduction, aerodynamic performance
enhancement that includes stall alleviation, aeromechanical stability augmentation,
rotor tracking, handling qualities improvement, rotor head health monitoring, and
rotor primary controls implementation (swashplateless rotors) [13]. For aerospace
systems, two types of actuation concepts have been incorporated. One approach uses
active materials directly, surface-bonded or embedded, to actively twist or control
the camber of primary lifting surfaces. Another approach actively controls auxiliary
lifting devices such as leading-/trailing-edge flaps using smart material actuators,
which in turn twist the primary lifting surface.

8.1 Summary of Applications

A key element in any smart structures application is its actuation mechanism.
There are many important factors that must be taken into account in the selec-
tion of the actuation mechanism. These include maximum free strain/displacement
(or stroke), maximum blocked force, permissible bandwidth, compactness
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Figure 8.1. Classification of actuators, adapted from Dogan et al. [14].

(integration issue), specific energy requirement (weight issue), maximum field/
current requirement (power transfer issue), safety and operational needs (associated
electronics needs), material integrity/longevity (fatigue life over 200 million cycles
or performance degradation with time) and operational sustainability (centrifu-
gal/aerodynamic forces), tolerance to environment (temperature/humidity), cost,
and technical maturity. Depending upon a specific application, any one of these
issues can be a dominating factor during the selection of an actuator. Displacement
actuators can be generally classified into two categories: conventional displacement
actuators and solid-state actuators [14] (Fig. 8.1).

The smart material actuators are referred to as solid-state actuators.The most
common actuators are monolithic sheet actuators, bender actuators, and stack actua-
tors. Overall, the specific power density of smart material actuators is higher than that
of conventional actuators such as electromagnetic, hydraulic and pneumatic actu-
ators. Other disadvantages of conventional actuators are large space requirements
(size), weight, and long response times. Also, convention displacement actuators
are often inadequate for precise positioning. The good points of conventional actu-
ators are their low cost, high force and stroke, easy commercial availability, and
proven and well-understood technology. Conventional displacement actuators can
be categorized into three types: hydraulic actuators, servo- or stepper-motors and
electrodynamic actuators. Hydraulic actuators operate with oil pressure acting on
pistons in cylinders. The principal disadvantages are the large volume and band-
width requirements. The servo- or stepper-motors convert rotary motion (from an
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electric motor) into linear displacement through a gearbox or screw mechanism.
Mechanical backlash can be a major problem, and is sometimes avoided with the
use of ball screws. The electrodynamic actuators, such as voice coils and shakers,
use magnetic coils and springs. The major issues are efficiency, maximum force out-
put, and bandwidth. Even though conventional displacement actuators can achieve
large displacements, they have a lower specific actuation energy, are more bulky,
and become less precise as their scale decreases compared to solid-state actuators.
Conventional displacement actuators typically feature a number of moving parts
which can increase issues related to reliability and maintainability.

A summary of the applications of smart structures technology is given below:

8.1.1 Space Systems

Large space structures consist of multimember, lightweight, flexible trusses that
support precision equipment, including telescopes and mirrors. Applications in space
systems include active vibration control of large space structures, adaptive geometric
control of large truss configurations, precision pointing of telescopes and mirrors,
structural integrity monitoring, condition-based maintenance, and active structural-
acoustic control to mitigate interior noise.

8.1.2 Fixed-wing Aircraft and Rotorcraft

A fixed-wing aircraft consists of many flexible structures such as wings, ailerons, flaps,
fins, and elevators, which undergo coupled aeroservoelastic deformations. These
deformations impact the performance and controllability of the vehicle. Applica-
tions of smart structures include active vibration control, gust alleviation, flutter
and divergence stability augmentation, increasing panel flutter stability, interior
structure-borne noise control, shape control for performance enhancement, and
structural integrity monitoring.

For jet engines, smart structures technology, specifically shape memory alloy
actuators, is used to develop adaptive variable geometry chevrons (engine nozzle
surfaces) and inlets to optimize acoustics and performance for multiple flight condi-
tions.

As compared to fixed-wing aircraft, rotorcraft suffer from severe vibratory loads,
increased vulnerability to aeromechanical instabilities, excessive noise signature,
poor flight stability characteristics, poor aerodynamic performance, and a restricted
flight envelope. The primary source of all of these problems is the main rotor,
which operates in an unsteady and complex aerodynamic environment. There are
a wide range of potential applications of smart structures technology in rotorcraft,
which include active vibration control, aeromechanical stability augmentation, han-
dling qualities enhancement, external acoustics suppression, stall alleviation, rotor
performance enhancement, in-flight rotor tracking, structure-borne interior noise
control, rotor head and drive train structural health monitoring, and primary rotor
control towards development of a swashplateless rotor.

8.1.3 Civil Structures

Civil structures include buildings, bridges, water and gas pipelines, chimneys, and
dams. Applications of smart structures technology in civil structures include active
vibration and motion suppression, earthquake mitigation, and structural health
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monitoring. These active material components and systems could be installed in new
structures or could also be retrofitted in existing structures. The goal is to increase
the overall safety, life-cycle cost, occupant comfort, and life of the structures.

8.1.4 Machine Tools

There have been increasing applications of smart structures technology in machine
tools to improve their performance. These applications include the active control
of vibratory motion of the cutting tools for precision machining, adaptive tools for
high-speed glass cutting, smart paper mill graders, intelligent presses for sheet-metal
forming, active tension control in wire electro-discharge machining, adaptable high-
speed traversing mechanisms, microscopic polishing and smart compact grippers.

8.1.5 Automotive

Because of low awareness, lack of reliable material database, cost and reliability
concerns, smart structures technology has not widely penetrated the automotive
industry at this time. One of the areas in which this technology has started appearing
in a few makes of production vehicles is magnetorheological suspensions. Other
potential applications include active control of vibration and noise, active suspen-
sion and engine mounts, controllable clutching and braking mechanisms, and haptic
joystick controllers.

8.1.6 Marine Systems

Applications in marine systems include active control of machinery vibration, struc-
tural acoustic control, radiated noise control, shape/flow control to increase maneu-
verability, biomimetic active hydrofoils, mini-underwater propulsors and health
monitoring/condition-based maintenance. Affordability, design simplicity, stroke
and actuation authority, as well as robustness are key factors in these applications.

8.1.7 Medical Systems

There is a wide range of applications of smart structures technology in the medical
field. Many applications require soft materials with large strain capability. Precise
control, compactness, low weight, and durability are key factors for the application
of smart structures technology in medical systems. Applications include compact
adaptable dampers in prosthetic devices, artificial muscles, variable resistance reha-
bilitation exercise machines and haptic devices, artificial hands and fingers, artificial
anal sphincters and urethral valves, robotic eyes with intelligent orbital prosthe-
ses, telerobotic surgical systems, robots for rehabilitation therapy, tools for mini-
mally invasive surgery (MIS), novel therapeutic approaches for cancer, swimming
micro-robots, recoverable eyeglass frames, active palpation sensors for detection of
prostatic cancer and hypertrophy, orthopedic implants, orthodontic treatments and
tissue fixators.

8.1.8 Electronic Equipment

Many electronic equipments are being built using smart structures technology. The
key factors are cost, expanded capability, power requirements, complexity, durability
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and precision control. Applications include ultrasonic motors, large size LCD TVs,
high-capacity CD-ROM devices, active antennas, and precision sensors.

8.1.9 Rail

There have been some applications of smart structures technology in rail systems.
For example, in high-speed trains, vibration is a major issue which affects ride quality,
stability and maintenance cost of the tracks. Key factors for applications are robust-
ness, durability, and maintenance cost. Applications include active suspensions to
control vibration and structure-borne noise and active buffers.

8.1.10 Robots

Applications of smart structures technology in robotic systems, especially at the
small and the miniature scales, are growing rapidly. Key factors for applications
are stroke and actuation authority, robustness, maintenance cost, power require-
ments, precise control, and durability. Applications include the robotic gripper, the
miniature stepping robot and the high-speed robotic manipulator.

8.1.11 Energy Harvesting

Using low-power, efficient micro-electronics, compact energy harvesting systems are
being built using smart structures technology. Using the direct piezoelectric effect,
energy harvesters are being developed to take advantage of the vibratory motions
induced by wind, mechanical systems (machinery), human shoes during walking,
and moving platforms such as airplane wings, automobiles, ships, and rails. The key
challenge is to develop efficient acquisition and storage of the input low level energy.

8.2 Solid-state Actuation and Stroke Amplification

For most applications, there is a need for compact, moderate force, moderate band-
width (less than 100 Hz), and moderate to large displacement actuators. Actuators
based on piezoceramic mechanisms show great promise for aerospace applications,
primarily due to their high energy density and wide bandwidth. The high energy
density allows these actuators to meet the severe volumetric and weight constraints
imposed by a large number of applications, for example, the on-blade actuators in a
smart helicopter rotor. The high bandwidth of the actuators is essential for achieving
the desired authority in vibration and noise control applications. In addition, the low
number of moving parts involved in such ‘solid-state’ actuators decreases complexity
and operational wear, and increases reliability of the system.

Monolithic PZT (piezoceramic) sheet actuators are available commercially in
a variety of sizes and shapes. One of the most common types is in the form of thin
rectangular sheets (Fig. 8.3(a)). Let us take a PZT-5H sheet actuator of size 50.8
mm × 25.4 mm ×0.3048 mm, its maximum free displacement is about 0.00685 mm
at a permissible voltage of 150 volts (field E = 492 V/mm) and the corresponding
blocked force will be approximately 70 N. If we increase the thickness of the sheet
actuator, this will not affect its maximum free strain; however, the applied voltage has
to be accordingly increased to achieve the same electric field (V/tc). The maximum
blocked force will be a linear function of thickness. As a result, it is not expected to
use thick monolithic actuators in actual applications due to the small displacements
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Figure 8.2. Force-deflection characteristic of smart
material actuator.

and extremely high voltage requirements. Even though the maximum displacement
is a function of the length of the actuator, there is a limit on the maximum length;
a larger length may result in buckling of actuator. Typically, sheet actuators are
either surface bonded to the structure or embedded as a laminated structure. To
overcome the drawback of low displacement of these actuators, many different
stroke amplification mechanisms have been investigated. These can be divided into
two basic categories:

(i) Amplification by means of special geometry or arrangement of the active mate-
rial

(ii) Amplification by external leverage mechanisms

8.2.1 Amplification by Means of Special Geometry or Arrangement
of the Active Material

Individual piezoelectric sheet actuators can be combined in series to obtain higher
actuation displacement. The actuation force is however unaffected, and also, there
is a limit on increasing the length of thin sheet actuators (buckling constraint). The
actuation force can be increased by placing actuators in parallel (Fig. 8.2). This,
however, does not change the maximum displacement.

Another approach to increase the actuation displacement is by building piezo-
electric bimorphs (Fig. 8.3(b)). A bimorph or bending actuator consists of two or
more even layers of piezoelectric sheets bonded on either side of a thin metallic
shim (main load carrying member). By applying an opposite potential to the top and
bottom sheets, a pure bending actuation is generated. In a cantilevered arrangement,
the tip displacement can be used for actuation of a system. With piezobimorphs, one
can obtain displacements from 5 to 10 mils and forces up to 0.5 lb. Using more layers
can increase the actuation force, but the displacement is reduced.

To increase actuation force, multi-layered actuators such as piezostacks can
be used (Fig. 8.3(c)). Piezostacks consist of a large number of thin piezoelectric
sheets stacked in a series arrangement, separated by electrodes. Piezostacks make
use of induced strain in thickness direction (d33 actuation). These devices induce
small free displacements but much larger actuation force than sheet actuators. Nom-
inal performance of piezostack actuators range from in free displacement 15 to
250 μm, blocked forces of up to 1000 lbs, and frequencies of up to 20 kHz. One
can obtain similar type of actuation with a bulk piezoelectric actuator; however, the
electric voltage requirement becomes impractical. Combined with suitable external
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Figure 8.3. Piezoceramic actuators.

amplification mechanisms, piezostacks have been used in a wide range of applica-
tions. There have been several studies to characterize the electro-mechanical behav-
ior of piezostacks [15], [16], [17] and [18]. For example, Lee et al. [15] evaluated
the characteristics of 11 different stack actuators including maximum free strain,
maximum blocked force, operating voltage, and energy density (Table 8.1). These
actuators were tested systematically using specially-built test apparatus under dif-
ferent field levels, operating frequencies, and pre-loads. Because the commercially
available piezostacks are different in shape and in size, a strain-force index consist-
ing of the product of maximum strain and normalized blocked force (blocked force
divided by cross-sectional area) can be defined and used to compare different actu-
ators. Graphically, this is equivalent to twice the area enclosed by the force-strain
curve of the piezostack. Note that similar performance metrics can be defined for

Table 8.1. Maximum operation voltage, free strain and blocked force for static excitation
testing

Max. Blocked Normalized Energy
Piezostack Voltage Strain force (BF) BF Density
part/material no. V μ-strain N MPa J/kg [19]

MM 8M (70018) 360 254 570 5.50 0.12
MM 5H (70023-1) 200 449 449 4.35 0.17
MM 4S (70023-2) 360 497 636 6.13 0.26
PI P-804.10 100 1035 5042 38.30 3.41
PI PAH-018.102 1000 1358 6697 50.87 5.85
XI RE0410L 100 468 423 27.04 1.07
XI PZ0410L 100 910 311 18.76 1.45
EDO 100P-1 (98) 800 838 685 10.48 0.74
EDO 100P-1 (69) 800 472 222 3.46 0.14
SU 15C (H5D) 150 940 1184 39.19 3.12
SU 15C (5D) 150 1110 1219 40.34 3.79
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other active material actuators. Another performance metric is the energy density,
which is equal to the maximum work that can be extracted from the actuator divided
by the mass of the actuator. The maximum work is equal to half the area under the
force-stroke curve of the actuator. It should be noted that while the energy density
of the active material itself is quite high, the energy density of the actuator can be
considerably lower due to the addition of various mechanisms for amplification and
conversion of the stroke of the active material into the desired output.

The thickness of each piezoceramic layer varies from 0.002′′–0.040′′. The total
axial deflection of the piezostack is proportional to the applied field

�L = nd33Vp−p (8.1)

where �L is the axial displacement, d33 is the piezoelectric coefficient, n is the total
number of layers and Vp−p is the peak-to-peak operating voltage. The blocked force
Fbl is

Fbl = �LKp (8.2)

where Kp is the stiffness of the piezostack. If EE

33 is the Young’s modulus of the
material in the polarized direction at constant field (short-circuited electrodes), A is
the cross-sectional area of the piezostack, and L is its length,

Fbl = nd33Vp−p EE

33
A
L

(8.3)

In an actual piezostack, there are losses due to the bond layers, which is usually
accounted for in terms of a constant Cn. The actual blocked force is given by

Fa = Cnnd33Vp−p EE

33
A
L

(8.4)

PZT and PMN stack actuators are typically fabricated by one of two approaches.
In the first approach, thin layers of active material are assembled and glued together
using an adhesive. The modulus of the adhesive (typically 4–5 GPa) is much lower
than the modulus of the active ceramic layer (typically 70–90 GPa). This leads to an
effective reduction of stack stiffness. In the second approach, the thin layers of active
material and the electrodes are assembled together and fired together (co-fired) in
the processing oven in conjunction with a high isostatic pressure (HIP process).
In this process, the electrodes and ceramic material are processed together; the
wafer thickness is typically thinner; and the electrodes extend only partially through
the ceramic. This process ensures stiff stacks; note that stacks are weak in tension
irrespective of the fabrication approach. A polymeric or elastomeric wrapping is
normally applied around the stack as a protective layer and stiff, insulated end caps
(metallic or ceramic) are attached to both ends. Three major characteristics of the
stack actuators are: maximum free stroke (at maximum applied voltage), maximum
blocked force, and maximum applied voltage (which depends on the thickness of
the individual layers).

In a prestressed stack, the stack is enclosed in a casing with a prestress mechanism
(Fig. 8.4). The casing not only protects the stack against mechanical impact and dam-
age from the environment, but also provides the possibility of applying a prestress
on the stack to enable it to sustain tensile forces. The mechanical compressive stress
generally improves the performance (stiffness and stroke) of piezoceramic actuators
as well as provides bidirectional operation. The goal of the prestress mechanism is
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Figure 8.4. Prestressed stack actuator.

to obtain a high compressive stress on the stack by incorporating a spring in parallel,
with a stiffness as low as possible. If the spring stiffness is too high, the stroke of
the actuator will be reduced. Typically, the compressive prestress is on the order of
10%–20% of the blocked stress. This also results in a limit on the tensile stress that
the actuator can sustain. In case it becomes necessary to change the prestress, for
example to accommodate increased tensile stresses in dynamic cases, one can adjust
the prestress mechanism using a mechanical screw.

Piezoelectric actuators exhibit self-heating due to dielectric dissipation in the
material. This typically increases with frequency and amplitude. Because of the
low thermal conductivity of PZT and poor heat radiation in the case of enclosed
stack actuators, self-heating becomes a serious issue at high frequency operation.
A stack built using thin ceramic layers, densified by high pressure, and sintered
at a high temperature results in a low voltage actuator. On the other hand, hard
sintered ceramic plates or ceramic layers individually bonded together often result
in higher voltage requirements. Because of the higher thickness of the active layers
in a high voltage stack, there is a better insulation stability compared to that of
low voltage stacks. It takes a longer time for the electrochemical degradation of the
insulation/ceramic interface across the electrodes.

Several types of piezoelectric actuators with special geometry have been devel-
oped to enhance the output stroke. Some of these are discussed in more detail
in following sections. Because of the possible geometric and density variations of
the different actuators, a more appropriate parameter is the specific energy density
(energy density per unit weight). For magnetostrictive actuators, it is appropriate to
also include the weight of the excitation coils for comparison. A large free strain is
another preferred characteristic. A large material induced strain reduces the stroke
amplification requirement, which in turn improves the overall efficiency of the actua-
tion system. To compare different types of actuators, the maximum strain is referred
to as half peak-to-peak (HPP) strain. Depending upon the application, the band-
width (frequency range) of the material is another important index. Because of this
consideration, shape memory alloys, in spite of their high specific energy density,
are restricted to static applications only. Ceramics are brittle and suffer from fatigue
issues. Materials that are quadratically dependent on the applied field may be dif-
ficult to integrate into a linear control system. Because of significant variation in
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temperature in a specific application, sensitivity to temperature can be a major cause
of concern. As a result of this concern, electrostrictives are restricted to a few spe-
cific applications. In practical applications, cost can also be a critical factor. For most
applications, it is preferred to use actuators with low voltage requirements.

Active Fiber Composites (AFC) /Macro Fiber Composites (MFC)

One major development in piezoceramics has been the emergence of active fiber
composites (AFCs) and macro fiber composites (MFCs), in which active piezoce-
ramic fibers are embedded in a matrix. The piezo fibers are actuated in the d33

mode using interdigitated electrodes. For example, the piezo active fibers were used
successfully in the development of an active twist rotor [20, 21, 22, 23].

The AFC material typically consists of 0.25 mm (or 250 μm) diameter con-
tinuous PZT-5A fibers aligned in an epoxy matrix to provide inplane actuation,
which fill up to 90% of the width (Fig. 8.5). The fibers are manufactured through
an extrusion process using soft PZT-5A powder. The strength and toughness (brit-
tleness) characteristics of the composite are significantly enhanced with the incor-
poration of a polymer matrix that surrounds the fibers. The fibers embedded in
the matrix are sandwiched between two layers of polyimide film that have a con-
ductive interdigitated-electrode pattern printed on the inner surface. The interdig-
itated pattern creates an effective width for the fibers to achieve d33 effect (elec-
tric field applied along the direction of fibers, i.e. actuation direction). Because
the fibers are of fine scale and embedded in the polymer matrix, they conform to
the shape of irregular structures. The combination of interdigitated electrodes and
ceramic fibers offers an enhanced toughness (ductility) and damage tolerance. It
is also possible to tailor multiple composites that can induce torsional actuation.
Applications of AFCs include vibration control, shape control, and structural health
monitoring. AFCs were initially developed at MIT by Hagood and Bent [24, 25].
Since the initial development, there have been significant advancements in AFCs,
which include fiber manufacture, matrix materials, electrode design, manufacturing
technique, and modeling. There are other approaches to manufacture PZT fibers,
which include sol-gel, extrusion, and viscous suspension spinning process. Wilkie
et al. [26] developed a macro fiber composite (MFC) that incorporated fibers of
rectangular cross-section (smaller than AFC fibers). Again, the uniaxial piezoce-
ramic fibers are embedded in the polymer matrix in conjunction with interdigitated
electrodes. This approach was expected to increase the contact area between PZT
fibers and the interdigitated electrodes. To lower the cost, the PZT fibers were
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built using dicing monolithic PZT wafers. Williams et al. [27, 28] examined the
mechanical properties of a MFC using classical laminated plate theory, as well as
measured the nonlinear actuation characteristics under various loads. Ruggerio et
al. [29] used MFCs as both actuators and sensors to determine the dynamic behav-
ior of an inflatable satellite structure. Park and Kim [30] investigated the intro-
duction of single-crystal piezoelectric fibers instead of polycrystalline-piezoceramic
fibers and estimated the variation of their mechanical and electromechanical
properties.

Bowen et al. [31] manufactured active fiber composites by viscous plastic process-
ing, which creates a highly viscous material composed of ceramic powder particles
(PZT-5A) dispersed in a polymer (polyvinyl butyral) and solvent gel structure. These
are mixed under high shear force. Then green fibers of diameter approximately 250
μm are extruded from a die. Subsequently, the fibers are embedded in lead-rich
zirconia sand bed and sintered to 6000◦C. The macrostructure and microstructure
characterization showed the homogeneous structure of fibers with a control of size,
microstructure, and composition.

Typically, the stress-strain characteristics of AFC and MFC are quite nonlinear.
The disadvantages of these actuators are high cost, difficulty of processing and
handling during fabrication, and high voltage requirement (for example, 3 kV peak-
to-peak).

Specially-Designed Flextensional Actuators

In the early 1990s, different versions of flextensional transducers emerged. These
are: Moonie, Cymbal, RAINBOW and THUNDER actuators. In these actuators,
the radial displacement of the active piezoceramic material disk is transformed into
axial displacement (normal to disk) by flexing or bending the structure. As a result,
the stroke is amplified and the actuators exhibit large displacement.

Moonie Actuator

Newnham et al. [32, 33] devised a compact version of flextensional actuator called
the Moonie actuator. The name Moonie comes directly from “moon-shaped” spaces
between the metal end caps and piezoceramic sheet. The basic-composite circular
configuration of the piezoceramic-metal caps is shown in Fig. 8.6.

Each metal cap has a varying thickness with a shallow crescent-shaped cavity on
the inner surface and is bonded to the active disc material around the circumference.
The two metal end caps serve as stroke-amplifier (flextensional) to transform the
lateral motion of piezoceramic (d31 effect) into a large axial displacement normal
to the end caps. Additionally, the “d33 effect” is also superposed to increase the net
axial displacement. The active component can be electroded PZT-5A, PMN-PT, or
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Figure 8.7. Schematic of three Moonie actuators stacked in
series.

multilayer piezoceramic disk and the end caps can be machined from brass, phos-
phor bronze, or acrylic. Note that the voltage is function of piezoceramic thickness.
Stroke increases exponentially with an increase in cavity diameter, increases lin-
early with an increase in cavity depth, and is inversely proportional to the endcap
thickness. The response time of a moonie actuator becomes larger with an increase
of endcap compliance and cavity diameter [14]. A key element in the design is the
bond layer between the endcaps and the ceramic driving disk, which undergoes
severe shear stressing. The Moonie actuator shows larger generative force than a
bimorph actuator as well as a higher displacement than a stack actuator. By stacking
together Moonie actuators in series, more displacement can be obtained (Fig. 8.7).
The ceramic element is kept primarily under compressive stress. Moonie actuators
have also been used as hydrophones and transceivers.

Cymbal

An improved version of Moonie actuator was developed by Dogan et al. [34] as a
Cymbal actuator with higher efficiency, more displacement and larger generative
force. With a new design of endcap, the stress concentration at the bond layer
was eliminated. The new shape endcap looked more like the musical instrument
Cymbal, and hence was named after it. The Cymbal cap is thinner than the Moonie
cap and can be easily mass produced using a punch/die fabrication scheme. While
the displacement of the Moonie actuator is produced through a flexural action of the
caps, the displacement in Cymbal is a mix of both flexural and rotational motions
(Fig. 8.8). As a result, the output displacement is further amplified. The modulus of
elasticity of endcaps is an important design parameter for Cymbal actuator. Moonie
and Cymbal appear to show potential for application in the automotive and aviation
industries. Also, they can be used as micro-positioners, a role requiring small size
and quick response. Other applications include optical scanners and high density
memory storage drivers.

Most failures in multilayer Cymbal piezocomposites are caused due to inho-
mogenous stresses. PZT actuators are susceptible to fracture failure under tensile
stress. Often PZT actuators are preloaded with compressive stresses that need to be

displacement

displacement

Figure 8.8. Schematic of Cymbal act-
uator.
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Figure 8.9. Fabrication of the RAIN-
BOW actuator.

below the values that can cause depolarization and microcracking. Ochoa et al. [35]
examined the depolarization of Cymbal piezocomposites by measuring the electric
charge generated during the application of compressive load. The depolarization
was found to be more severe in Cymbal actuators than in PZT discs.

RAINBOW (Reduced And Internally Biased Oxide Wafers)

These actuators are constructed by bonding a piezoceramic layer and a chemically
reduced layer [36, 37]. These actuators are also categorized as monomorph actuators.
Because of the thermal expansion mismatch between the reduced layer and the
parent layer, a curvature is formed upon cooling, giving the actuator a dome shape
with oxide layer in compression. It is a pre-stressed, monolithic, axial-mode bender
and because of its dome or saddle-shaped configuration, it is able to produce more
displacement and a moderate blocked force. The RAINBOW actuator is dome-
shaped (circular) with the piezoelectric layer on the convex side (Fig. 8.9).

Applying an electric field across the piezoelectric layer results in an increase
or decrease in the curvature of the actuator. The RAINBOW disks are typically of
0.5 mm or less thickness and can range in diameter from 1 to 10 cm. Typically, they
show an actuation displacement of up to 1 mm, blocked force of up to 500 N, and
actuation frequency less than 10 kHz. By stacking RAINBOWS in a clamshell config-
uration, it is possible to obtain a larger stroke, which is proportional to the number of
actuators. Materials used for RAINBOW may include: PZT, PMN, PLZT (lead lan-
thanum zirconate titanate), PBZT (lead barium zirconate titanate), and PSZT (lead
stannate zirconate titanate). Because a part of the actuator is in compression while
the other part is in tension, RAINBOW has a long-term material integrity problem
due to degradation of the interface between the oxide and the reduced layer. Hence,
a RAINBOW actuator often shows degraded performance under cyclic loads. Li
and Haertling [38] characterized PLZT RAINBOW ceramic actuators in the dome
mode for a range of sizes, thickness ratios, and sizes of electroded area. The sensitiv-
ity study showed a progressive decrease of performance, with increasing frequency
at frequencies below 5 Hz, and then a flat response up to resonance frequency. Using
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Figure 8.10. Fabrication of the THUN-
DER actuator.

thin-plate theory in conjunction with nonlinear strain-displacement relations, Hyer
and Jilani [39] carried out modal analysis of RAINBOW actuators to predict quasi-
static response with applied field. They identified key geometric parameters such as
radius-to-thickness ratio and reduced-layer thickness to total-thickness ratio, which
impact performance of actuators. These transducers appear to show potential for
application in aeroacoustic cancellation, pumps and switches.

THUNDER (Thin Layer Unimorph Ferroelectric Driver and Sensor)

The THUNDER actuator is a unimorph-type actuator initially developed by NASA
(Langley) [40, 41]. It is a curved device composed of three layers; a metallic layer
(typically aluminum) at top bonded to a pre-stressed piezoceramic layer using high
performance epoxy (LaRC-SI) and a metallic layer (typically steel) at the bottom
surface (Fig. 8.10).

Both initial curvature and pre-stressing are introduced during manufacturing
process. Because of the difference in the coefficients of thermal expansion and
Young’s modulus between the conductor and piezoceramic layers, the composite
actuator during cooling process deforms to a shallow dome shape. Due to prestress-
ing, the piezoceramic sheet is in a state of compression where as the substrate is
in state of tension and this enhances the induced deflection capability of actuator.
Displacement is achieved via the induced d31 contraction effect, which tends to flat-
ten the actuator. When the voltage is released, the actuator tends to return to its
natural dome shape. A commercial version of THUNDER consists of a stainless
steel substrate, a piezoceramic layer and an aluminum top layer. It can be mounted
as cantilevered or simply supported configuration. An actuator of length 1.0 inch and
width of 0.5 inch can generate displacement of 10 mils for a cantilevered configura-
tion and a blocked force of 8 lbs in a simply supported configuration. As compared
with THUNDER actuators, RAINBOW actuators show 10–25% lower displace-
ment and THUNDERs are relatively more rugged. To increase the block (or force
producing capability), multiple thunder elements can be stacked together in parallel.
Both THUNDER and RAINBOW show largest displacement at the center of the
dome. Marouze and Cheng [42] developed a hybrid isolation system using both the
passive and active effects of THUNDER actuators. A simple prototype was built
using three THUNDER actuators and demonstrating successful active vibration
control over a range of frequencies.
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Kim et al. [43] fabricated and characterized a THUNDER actuator. Five sets
of actuators with different dimensions were built, showing that the large residual
stresses within PZT layers developed during the fabrication process result in signif-
icant nonlinear electromagnetic coupling. The severity of the residual stresses and
ensuing nonlinear response increased with higher substrate/piezoelectric thickness
ratio and to a lesser extent with decreasing in-plane dimensions.

LIPCA (Lightweight Piezoelectric Composite Actuator)

LIPCA is a variant of the THUNDER actuator, in which some or all parts of the
metallic layer are replaced with fiber-reinforced composite layers in order to reduce
weight. In LIPCA, the adhesive layer is not needed [44]. Syaifuddin et al. [45] used
LIPCAs to actuate a flapping wing mechanism, through a four bar linkage system.
It was successfully tested up to a frequency of 9 Hz, where the maximum flapping
amplitude was obtained. Lim et al. [46] built a small bird-like flapping wing in which
the trailing edges are actuated by LIPCA. Because of the material nonlinearity of
the piezoceramic wafer in the LIPCA, the measured displacements were found to
be larger than those predicted based on linear theory, especially for high field (more
than 150 V).

The flextensional actuators described above are all referred to as solid-state
actuators. Dogan et al. [14] provided a comparison of their characteristics (except
THUNDER) given in Table 8.2. Because of wide variation of geometric and operat-
ing conditions, a fair comparison of these actuators is quite difficult. Choosing similar
dimensions, Dogan et al. [14] made an assessment of these actuators as shown in
Table 8.3.

Let us consider PZT-5A as an active material for all actuators. Larger axial
displacement of RAINBOW than that of Moonie or Cymbal may be due to difference
in the R/t (radius/thickness) ratio. If identical dimensions are used, the displacements
will be quite similar [47]. To achieve a positive longitudinal displacement, the applied
field will be in the opposite direction to the polarization in the RAINBOWs and
THUNDERs, but in the same direction as the polarization in Moonie and Cymbal
designs. The axial displacement is approximately represented as

δ ≈ ±d31El2

2t
(8.5)

where E is the applied electric field (V/m), l is the length or diameter and t is the thick-
ness for RAINBOW or THUNDER designs, or is the cavity height for the Moonie
or Cymbal designs. All these flextensional actuators provide moderate generative
force and displacement values, and their actuation capabilities lie between multi-
layer stacks and bimorph actuators. Aimmanee and Hyer [48] carried out analysis to
predict the residual stresses of rectangular-shaped THUNDER actuators using the
Rayleigh-Ritz approach. Because of the large out-of-plane deformations that take
place during cooling, geometric nonlinearities are included in the analysis. It was
shown that the geometric nonlinearities that are a function of actuator shape play
an important role in the actuation response.

Another actuator similar to the Cymbal actuator uses bimorph-based actuators
(Fig. 8.11). This architecture combines both bending and flextensional features to
produce output displacement [49].



Table 8.2. Comparison of solid-state actuator designs, from Ref. [14]

Features Multilayer Bimorph RAINBOW Cymbal Moonie

Dimensions, mm 5 × 5 × 12.7 12.7 × 10 × 1 φ = 12.7 φ = 12.7 φ = 12.7
(L × W × T ) (L × W × T ) T = 0.5 mm T = 1.7 mm T = 1.7 mm

Driving voltage, V 100 100 450 100 100
Displacement, μm 10 35 20 40 20
Displacement direction Positive Positive Negative Positive Positive
Contact surface, mm2 25 1 1 3 1
Generative force, N 900 0.5–1 1–3 15–100 3
Position dependence No Maximum at the tip Maximum at Maximum at the Maximum at

of displacement the center center but more diffuse the center
Stability under loading Very high Very low Low High Low
Response Time, μs 1–5 100 100 5–50 5–50
Fabrication method Type casting and Bonding ceramic element Reducing ceramic Bonding ceramic element Bonding ceramic element

cofiring at 1200◦C with metal shim element at 950◦C with metal endcaps with metal endcaps
Cost High Medium Medium Low Low

754
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Table 8.3. Performance of various flextensional composite actuators, from Ref. [14]

Feature Moonie Cymbal RAINBOW THUNDER

Dimensions (mm) φ25.4 Disk φ25.4 Disk φ25.4 Disk 25.4 R Square
PZT PZT-5A PZT-5A PZT-5A PZT-5A
Applied field, kV/mm Unipolar 1.0 Unipolar 1.0 Bipolar ±0.65 Unipolar 1.0
Thickness of PZT, mm 0.500 0.500 0.380 0.325
Displacement, μm 50 80 88 60

C-Block

This consists of a semicircular piezoelectric bender, poled in the radial direction and
activated in the circumferential direction by a voltage applied across the thickness.
Basically, it is a multilayered, curved bimorph (Fig. 8.12). The induced piezoelectric
strain causes a bending action in each individual C-block, similar to a straight ben-
der (bimorph), flexing the entire architecture. Individual C-blocks can generate over
twice the force of a straight bender with a slight reduction in deflection. Individual
C-blocks can be combined in series to increase the total axial deflection without
changing the force capability. Also, C-blocks can be stacked in parallel to increase
the force output without any loss of stroke [50, 51]. Thus, it is possible to tailor the
performance of a solid-state actuator to an application with a constrained volume.
Changing the piezoelectric material (piezoelectric constant and stiffness) results in
a change in the performance of the actuator. As expected, the change in width of a
rectangular straight actuator only changes its force capability linearly, whereas the
C-block will increase the output force capability cubically and decrease the deflec-
tion quadratically. To validate the force-deflection behavior of C-block actuator
arrays, Moskalik and Brei [52] built prototypes using PZT-5H and PVDF, testing
each prototype across a range of voltages to obtain the force-displacement behav-
ior. Through a numerical study, authors showed that a tailored C-block actuator
produces the largest specific energy index among other actuators such as bimorphs,
RAINBOWs, THUNDERs, Cymbals, moonies, and leveraged stacks.

8.2.2 Amplification by External Leverage Mechanisms

For many practical applications, it becomes necessary to amplify the small stroke
of actuators using external mechanisms. Amplification mechanisms in general may
involve many moving parts that contribute to actuation losses and degrade rapidly

cover plate

displacement

displacement

Figure 8.11. Bimorph-based double-ampli-
fier actuator.
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Figure 8.12. C-block actuator.

under high loading. In addition, the maximum practical amplification ratio is on
the order of 15–20. At larger amplification ratios, the stiffness of the amplifica-
tion mechanism itself becomes a serious issue. Studies have shown that mechanical
amplification leads to a 60–80% reduction in the overall energy density of the device,
compared to that of the base active material [53]. Several issues important to the
design of mechanical stroke amplifiers, such as the positioning of the hinge/fulcrum,
and the effect of the finite stiffness of the lever arms will be discussed.

Amplification mechanisms can in general be divided into two categories: flu-
idic and mechanical. Typically, the fluidic approach uses two cylinders of different
diameters to give the desired stroke amplification [54, 55, 56], as shown in Fig. 8.13.
This approach can provide higher amplifications than general mechanical amplifiers.
However the fundamental limitations – that is, the finite stiffness related to the com-
pressibility of the working fluid and flexibility of the hydraulic chambers [57] as well
as frictional losses due to fluid viscosity are the same.

Several single-stage–mechanical amplification devices that include lever-fulcrum
mechanisms and triangular frame mechanisms have been built [58, 59, 19]. In com-
parison with the fluidic system, the mechanical lever-fulcrum stroke amplifier is
a simple, lightweight, and compact actuation mechanism. From the stiffness point
of view, the triangular frame system is more efficient than the lever-fulcrum sys-
tem because its structural members experience mostly extensional (axial) loads in
contrast to bending loads for lever-fulcrum amplifiers. Significantly increasing the
stiffness of the lever-fulcrum assembly will result in a large weight penalty.

Mechanical amplification devices trade force with displacement, but have a
detrimental effect on power transfer efficiency and energy density [19, 53], especially
at high amplification factors. These mechanisms consist of a framework of stiff
passive members that are interconnected by hinges in order to provide a mechanical
advantage [15, 59, 19]. To achieve amplification factors higher than about 10, multi-
stage amplification is incorporated, as in the L-L amplification mechanism [60].
Any stroke amplification mechanism can be represented by its linkage equivalence.

Piezostack

Piston

Output piston

Hydraulic fluid

Figure 8.13. Hydraulic amplification system.
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(a) Single-stage amplification with knife-edge hinge

(b) Two-stage amplification with flexures

Figure 8.14. Actuators with mechanical stroke amplification.

In this way, it is possible to identify whether the stroke amplification mechanism
is practically realizable or not. Using Gruebler’s equation, the feasibility can be
checked:

F = 3(n − 1) − 2f 1 − f 2 (8.6)

where n is the number of links, f 1 is the number of pin joints, and f 2 is the number
of roll-slide contact joints. To have a single degree of freedom actuator stroke, the
actuator would be equivalent to either a four-bar linkage with

F = 3(4 − 1) − 2 × 4 − 0 = 1 (8.7)

or a six-bar linkage with

F = 3(6 − 1) − 2 × 7 − 0 = 1 (8.8)

Large mechanical amplification using a compact leverage system often leads to
substantial losses at hinges and slippage at knife edges. Fig. 8.14(a) shows a single-
stage mechanical linkage amplification system. Because of mechanical losses and
slippage at the knife edges, the measured stroke was far less than predicted.

To overcome losses due to the finite play inherent in pin-jointed amplification
mechanisms, flexure hinges [61] or fully complaint mechanisms are used. A double L-
arm lever amplification with flexures is shown in Fig. 8.14(b). The mechanical losses
in this device were less than in the single-stage system. However, the approach
utilizing flexures requires careful design in order to optimize the mechanism. In
addition, the actuation efficiency is reduced due to the strain energy stored in the
flexures. Frecker and Canfield [62] formulated a systematic topology-optimization
approach to the design of compliant-mechanical amplifiers for piezoceramic stack
actuators. In this approach, any direction of force and motion transmission from the
active material can be chosen. This methodology shows potential to build devices
where precise motions are important [63, 64].
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deformation. Driving electric field is
E1, direction of polarization is Pr and
S5 is the resultant induced shear, from
Ref. [67].

8.2.3 Torsional Actuators

Actuators normally provide axial displacement that can also be transformed into
bending actuation. For example, two identical surface-bonded sheet actuators placed
equidistant from the neutral axis can be used to cause a pure bending through
application of opposite actuation strains. Compared to pure bending actuation, it is
more challenging to cause pure torsion actuation (often needed in many aerospace
applications). It is typically carried out in one of the following ways:

Specially Arranged Conductors

Glazounov et al. [65, 66, 67] developed a torsional tube actuator using piezoelectric
d15 shear coupling. The tube consists of even number of piezoelectric cylindrical
segments, poled in radial or axial direction, and bonding together in circumferential
direction with sandwiched conductors between segments (at joints) to form a circular
tube. On the application of field (normal to the polarized direction), shear strain is
created in the circumferential direction, resulting in twisting of tube. The objective
is to take advantage of comparatively large value of piezoelectric d15 shear coupling
and induce directly a large torsional displacement and a large blocking torque. Using
a tubular structure, the shear strain is converted into angular displacement.

Case-I: Polarization in Axial Direction

In this case, the polarization direction (1-axis) is along the length of the tube, and
the direction of polarization alternates between adjacent segments. The segments
are connected in parallel to provide coherent shear strain γ31 due to an applied field
E1 as shown in Fig. 8.15.

Let us consider a tube of internal radius Rin, outer radius Rout and length lc. For
a tube of this geometry,

Shear strain γ31 = d15E1 (8.9)

Compliance s55 = 2(1 + ν31)
E3

= 1
G31

(8.10)

Shear modulus G31 = E3

2(1 + ν31)
(8.11)

Angular displacement = lc
Rout

d15E1 (8.12)
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The angular displacement is amplified by the ratio of the length of the tube and its
outer radius, i.e., lc/Rout. The blocking torque can be calculated as

Shear stress τ31 = γ31G31 (8.13)

Blocking torque Tbl = π(R2
out − R2

in)RoutG31d15E1 (8.14)

The blocking torque is independent of the length of the tube. Thus, it is possible
to change the amplification factor lc/Rout by changing length without any loss of
the blocking torque (unlike many other actuators). It has also been pointed out
that the performance of the actuator does not degrade under external torque load
and that a prestress in radial direction improves the mechanical strength of the
actuator. Also, in most PZT actuators, the d15 shear coupling coefficient has the
largest value. For example, the value of d15/d31 for PZT-5H is 2.7. Also, it is a direct
transformation of shear strain into angular displacement. Replacing a cylindrical
shape with polygonal shape is expected to have a small influence on its performance.
A major drawback with this actuator is initial poling with very large electric field.
Typically, the piezoelectric shear coefficient d15 is quite nonlinear with respect to
applied electric field [68, 69].

Glazounov et al. [67] used a continuous poling technique to initially pole along
the length of long cylindrical PZT segment. In this technique, the segment is secured
by a holder, and the couple of electrodes made out of conducting rubber are applied
to the surface of the segment. These electrodes are separated, say by a distance of
1.5 cm, and a high DC field of 20 kV/cm is applied. By slowly moving the rubber
electrodes along the length of the segment, the specimen is poled. After poling, the
segments are bonded together using a conducting high shear stiffness adhesive (such
as silver-filled epoxy MB-10HT/S from Master Bond). Thakkar and Ganguli [70] and
Centolanza and Smith [71, 72] examined the application of this d15 based torsional
actuator in a helicopter rotor system to actuate a trailing-edge flap to actively control
vibration.

Case-II: Polarization in Radial Direction

The polarization direction (1-axis) for each segment is along the radial direction of
the tube, and the direction of polarization alternates between adjacent segments.
The segments are connected in parallel to provide coherent shear strain γ31 due to
an applied field E1 as shown in Fig. 8.15.

Shear strain γ31 = d15E1 (8.15)

Compliance s55 = 2(1 + ν31)
E3

= 1
G31

(8.16)

Shear modulus G31 = E3

2(1 + ν31)
(8.17)

Shear stress τ31 = γ31G31 (8.18)

Blocking torque Tbl = 2πR2
outlcG31d15E1 (8.19)

The angular displacement is proportional to the shear itself, which is a function
of electric field E1, and is independent of the tube length. The blocking torque is a
function of the tube length and tube outer radius.
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Case-III: Polarization in Radial Direction and Stepper Motor

In this type of stepper motor, the angular motion produced by the tubular torsional
actuator at resonance condition is accumulated in one direction using a direct cou-
pling mechanism between the stator and rotor. A clutch drives the motor by locking
it. Due to direct coupling, there is no energy loss in the frictional contact. The locking
mechanism permits smooth motion in either a continuous or stepwise manner with
a precise control over angular positioning. The drawbacks of frictional contacts are
eliminated.

One can achieve a large induced strain in the d15 shear mode. For example, for
PZT-5H, d31, d33 and d15 are −274, +593 and +741 pC/N. However, it is extremely
difficult to build a practical actuator in this mode. Recently, a segmented-torsional
tube actuator operating in the d15 mode was developed and tested [66, 73]. There
are two major drawbacks of this actuator. First, it requires high voltage (several kV),
and second, it requires special conductors to apply field.

Coupling to Structure or External Mechanism

It is possible to convert the linear displacement of the actuators into angular
displacement using a simple mechanism. However, mechanical conversion can
significantly reduce the effectiveness of the device due to play in the linkages.
Therefore, the conversion of the displacement output is often achieved by using
structural couplings of the base structure on which the actuators are mounted.
Bothwell et al. [74] used extension-torsion coupling of a thin-walled composite tube
to convert the linear motion of a magnetostrictive actuator into a torsional dis-
placement to actuate a trailing-edge flap. Bernhard et al. [75] used bending-torsion
coupling of a composite beam in conjunction with surface-bonded piezoelectric
elements to convert the bending of the beam into a tip twist, which was used to
actuate a rotor blade tip. Giurgiutiu and Rogers [17] used the twist-warping con-
cept of thin-wall open section tube to convert linear motion of PZT stacks into
rotary motion. This large amplitude rotary induced-strain (LARIS) actuator was
built using a 28 mm diameter, 1.2 m long open tube in conjunction with a PZT
stack actuator, and a maximum twist of 8◦ was measured in the free condition. The
main issue to be considered in the case of structural coupling is the coupling effi-
ciency. This efficiency can be defined as the ratio of the energy output to the total
energy input to the structure. Normally, bending-torsion coupling is more efficient
than extension-torsion coupling because of the large extensional stiffness of the
structure.

Specially Arranged Actuators

By bonding specially cut piezoceramic sheet elements at ±θ degree orientation on
the top and bottom surfaces of an uncoupled beam respectively, a pure twist can
be caused by in-phase excitation. It is also possible to induce a pure bending of the
beam by out-of-phase excitation of the top and bottom banks of the piezo elements
(see Section 8.6 for more details).

To obtain maximum twist, θ should be 45◦ and the piezoceramic elements should
be of high aspect ratio (length/width> 4). Chen et al. [76] built a Froude-scaled rotor
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Figure 8.16. Schematic of L-L amplification mechanism.

blade with surface bonded piezoceramic sheets. To increase actuation authority, two-
layered piezoceramic sheets were used.

The bond layer plays an important role in induced twist of the beam. The
maximum torsional and bending deflection increased by 60% and 90% respectively
when the bond thickness was reduced from 0.020′′ to 0.0025′′. A minimum bond
layer thickness results in the most efficient shear transfer, which in turn results in
maximum torsional and bending response. Test results also showed that increasing
the actuator spacing reduced the structural stiffness of the beam, as well as the
nonlinear interference effect. For example, the beam tip twist was reduced by 38%
when the spacing between the two piezoelectric elements was reduced from 1.5′′

to 0.1′′.

8.3 Double Lever (L-L) Actuator

To illustrate the challenges involved in high-amplification–ratio-lever mechanisms,
we explore the design of the L-L actuator, intended as a stroke amplifier for a
piezostack driven–trailing edge flap in an active helicopter rotor blade. The L-L
amplification mechanism is designed to have a high amplification factor with a low
level of energy loss. Fig. 8.16 shows a schematic of the L-L amplification mechanism.
It is a combination of two lever-fulcrums and elastic linkage. The stroke of the
piezostacks is amplified by the Inner Lever with low amplification factor (≤6), and
then amplified again by another lever-fulcrum (Outer Lever). The two lever-fulcrums
are connected in series using an elastic linkage, which transmits forces axially from
one lever to the other. In addition, the flexure of the elastic linkage applies a returning
force as well as a preload to the piezostacks. In comparison to a rigid axial member
with pin joints on either end, the elastic linkage does not suffer from any losses due
to play in the pin joints. For this reason, flexural joints such as the elastic linkage
are preferred over mechanical joints in mechanisms amplifying the small stroke of
active materials.

By connecting the two lever-fulcrum mechanisms in series, it is possible to get
a high amplification while allowing a moderate actuation loss. The advantages of
L-L actuator are: a planar structure, with the potential of further increasing the
amplification factor, an embedded spring mechanism for piezostack preload, and
ease of conducting structural analysis and optimization.
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Figure 8.17. Effect of the alignment of the hinge and the line of action on the force transfer.

8.3.1 Positioning of the Hinges

The line of action of the force is known to be one of the major issues that affect the
output performance. The line of action depends directly upon the location of the
hinge. Two cases are considered for the design of L-L amplification mechanism. In
the first case, a loss of displacement occurs at the actuator output, due to the line of
action of the output force, as shown in Fig. 8.17. However, no loss of displacement
occurs in the second case. The actuator force output in both these cases can be
expressed as

Fe = Fo

(Displacement Gain)
· cos ξ (8.20)

where Fe is the output force, Fo is the piezostack force, and ξ is the angle between
the line of action and the actuator output direction. If the line of action is not
perpendicular to the lever (ξ �= 0), the actuator output has a loss factor of (1 − cos ξ).
A similar situation happens at the interface between piezostack and lever, depicted in
Fig. 8.18, and results in a loss of displacement due to misalignment of the hinge. The
effective piezostack displacement for the amplification mechanism can be written as

(uo)eff = (uo) · cos ζ (8.21)

where uo and (uo)eff are the actual and effective displacement of the piezostack,
respectively. For nonzero ζ, the amplification mechanism loses the actuation stroke
by a factor of (1 − cos ζ). Therefore, the hinge location that satisfies both ξ = 0
and ζ = 0 results in the most efficient force and displacement transfer, and this
configuration is preferred in the design of L-L amplification mechanism.

8.3.2 Actuation Efficiency: Stiffness of the Actuator, Support and Linkages

The finite stiffness of the actuator, support structure and the linkages results in loss
of energy transmitted to the output load. This energy loss is due to the strain energy

uo

(uo)eff
(uo)eff

(a) Loss of displacement (b) Efficient displacement transfer

Figure 8.18. Effect of the alignment of the hinge and the piezostack on the displacement
transfer.
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Figure 8.19. Effect of the finite stiffness of the actuator.

stored in the flexible structure. The effect of the finite stiffness of the active material
was discussed in Chapter 2 from the point of view of impedance matching. We will
revisit this analysis below as a starting point for the analysis of the effect of flexible
support and flexible linkages.

Effect of Actuator Stiffness

Consider a piezostack actuator of stiffness kp on a rigid support acting against an
external spring load of stiffness ke (Fig. 8.19). The displacement of the piezostack,
u, is given by

u = δf − F
kp

(8.22)

where δf is the free displacement of the piezostack, and F is the force generated by
the piezostack. Rewriting in terms of the external stiffness,

u = δf − keu
kp

= δf − ru

(8.23)

where the ratio of the external stiffness to the piezostack stiffness is defined as

r = ke

kp
(8.24)

Simplifying the above, the displacement can be written as

u = δf

1 + r
(8.25)

The energy transfered to the external stiffness is

Ue = 1
2

keu2

= 1
2

r
(1 + r)2

δ2
f kp

= r
(1 + r)2

Umax

(8.26)

where Umax is a measure of the maximum output energy capability of the piezostack,
and is equal to the area under its force-stroke curve. The efficiency of the actuator,
η, can be defined as

η = Ue

Umax
= r

(1 + r)2
(8.27)
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r = 0 represents a free condition and actuator efficiency is zero, while r approaching
infinity represents a blocked condition and again the actuator efficiency is zero. For
the maximum efficiency, and the maximum energy transfered to the external spring,
the optimum value of stiffness ratio, ropt can be found as

∂Ue

∂r
= 0 → ropt = 1 (8.28)

This yields the condition that ke = kp , and corresponds to the impedance matched
condition. Note that in this condition, the maximum energy that can be transfered
to the external spring, and the maximum efficiency, are

Uemax = Umax

2

ηmax = 1
4

(8.29)

We can conclude that the maximum energy that can be transfered to an external
load occurs at the impedance-matched condition and is equal to half the area under
the force-stroke curve of the actuator. At this point, the efficiency of the actuator
is a maximum, and is equal to 1/4. Note that the above discussion assumes that the
external load and the force transmission mechanism are linear. It may be possible to
obtain better energy transfer using a non-linear transmission between the actuator
and the external load [77]. In addition, the above analysis assumes that the support
is rigid. We now consider the effect of support flexibility on the efficiency of energy
transfer.

Effect of Finite Support Stiffness

In reality, the actuator support also has a finite stiffness. This can be incorporated in
the analysis by considering the stiffness of the support to be acting in series with that
of the actuator itself. A conceptual diagram of this scenario is shown in Fig. 8.22.
Let us consider an elastic support structure with a stiffness ks. Following the same
procedure as above, the deflection u is given by

u = δf − F
kp

− F
ks

= δf − uke

kp
− uke

ks

(8.30)

Defining the ratio of support stiffness to actuator stiffness as the support stiffness
ratio rs,

rs = ks

kp
(8.31)

we get

u = δf

1 + r(1 + 1/rs)
(8.32)
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and the output energy is

Ue = 1
2

keu2

= r

[1 + r(1 + 1/rs)]2 Umax

(8.33)

The actuator efficiency is

η = r

[1 + r(1 + 1/rs)]2 (8.34)

For maximum energy transfered to the output, or the maximum actuator efficiency,

∂η

∂r
= 0 → ropt = 1

1 + 1/rs
(8.35)

This gives the maximum efficiency as

ηmax = 1
4

rs

1 + rs
(8.36)

The variation of actuator efficiency with output stiffness ratio, for several values of
support stiffness ratio is shown in Fig. 8.20. The case where rs = 104 corresponds to
the ideal case with an infinitely rigid support. In the case when rs = 10, the support
is ten times stiffer than the actuator and this condition is close to a rigid support.
For this case, the maximum energy transfer takes place near r = 1. Also, the output
deflection is lower with a softer support. This can be seen in Fig. 8.21 which shows the
variation of the ratio of output displacement to the maximum actuator displacement
(u/δf ) as a function of output-stiffness ratio and support stiffness ratio. Again, it is
seen that the case of rs = 10 can be considered almost rigid.

Note that this expression reduces to the case of the rigid support in the limit
rs → ∞. The actuation efficiency depends on both output stiffness ratio r and support
stiffness ratio rs. If rs = 10, it represents a case where the support stiffness is ten times
the actuator stiffness and it is quite close to the rigid support case. For a flexible
support case (say rs = 1), there is not only a reduction of actuator efficiency, but
there is also a reduction of r at which maximum efficiency takes place. For this case,
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there is a reduction in maximum output energy of 50%. It is clear that now half of
the available energy is dissipated by the support system. To improve the actuation
efficiency, it is important to increase the stiffness of supporting structure that in turn
results in an increase in the weight of the system. Therefore, another important and
practical index of efficiency should be to consider the mass of supporting and active
structures. Let us define an active material energy density ratio as

ηmass = Ue

Umax

Mact

Mtot
(8.37)

where Mact is the mass of the actuator and Mtot is the total mass of the structure
including the frame, supports, and active systems. This efficiency helps to evaluate
different actuation mechanisms, especially under static conditions, when the weight
penalty is an important factor.

Effect of Finite Stiffness of the Linkages

The finite stiffness of the linkages in the amplification mechanism, results in a degra-
dation of the output stroke. This loss appears as an increase in strain energy stored
in the linkages of the mechanism. Ideally, an inert frame mechanism, such as a lever
and fulcrum, can be the most efficient stroke amplifier as long as the stiffness of the
frame remains much higher than that of the active material. However, in practice,
the amplification factor of these mechanisms are limited to a moderate value (≈20)
because the deformation in the linkages increases due to the larger loads resulting
from the higher amplification factors. This effect can be easily understood by analyz-
ing the kinematics of a single lever amplification mechanism, as shown in Fig. 8.23.
Consider a piezostack of stiffness ka acting against a spring of stiffness ke through an
infinitely stiff lever with lengths l1 and l2. Let the deflections of the piezostack and

piezostack

ks kp 
ke 

support load

u

Figure 8.22. Effect of the finite stiffness of the
support.
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Figure 8.23. Single lever amplification mechanism.

the spring be ua and ue respectively. The piezostack displacement is given by

ua = ufree − Fa

ka
(8.38)

where Fa is the force acting on the piezostack, and ufree is the free displacement of
the piezostack. The deflection of the spring is given by

ue = ua
l2
l1

= l2
l1

[
ufree − Fa

ka

]
= l2

l1

[
ufree − ke

ka

l2
l1

ue

]
= Gufree

1 + rG2

(8.39)

where we define the amplification ratio by G and the stiffness ratio by r, as

G = l2
l1

(8.40)

r = ke

ka
(8.41)

The energy stored in the spring is

Uo = 1
2

keu2
e

= 1
2

G2

(1 + rG2)2
rKau2

f ree

(8.42)

Therefore, the actuation energy efficiency becomes

η =
1
2 keu2

e
1
2 kau2

f ree

= rG2

(1 + rG2)2

(8.43)

For maximum energy efficiency,

∂η

∂r
= 0 → ropt = 1

G2
(8.44)

This gives

ηopt = 1
4

(8.45)
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The maximum value of energy efficiency can be 1/4. Because G > 1, the max-
imum energy transfer occurs when the output stiffness is lower than the actuator
stiffness. The optimal value of actuator stiffness increases rapidly with amplification
factor G. To include the effect of mass, the active material energy density ratio is
defined as

ηmass = Uo

Umax

Mact

Mtot

= rG2

(1 + rG2)2

Mact

Mtot

(8.46)

Let us now examine the efficiency of the the L-L actuator. A schematic diagram
of the actuator, with the linkages modeled as elastic beams, is shown in Fig. 8.24.

The piezostack is assumed to have free actuation displacement uo and internal
stiffness kp . The elastic linkage has a stiffness km, which is equivalent to (EA)/L.
The external, or load stiffness, is assumed as ke. The bending stiffnesses of the levers
are denoted as ka, kb, kc and kd. The displacement at the piezostack can then be
expressed as

θ1 la = uo − F p

kp
− F p

ka
(8.47)

ue = θ2 ld − Fe

kd
(8.48)

Fe = ke ue (8.49)

Fm

km
= lb θ1 − Fm

kb
− (lc θ2 + Fm

kc
) (8.50)

where F p is the force induced by piezostack and Fe is the force acting on the external
stiffness. The displacement at the elastic linkage is

Fm

km
= lb θ1 − lc θ2 (8.51)

where Fm is the force (compressive) on the elastic linkage. By applying force equi-
librium,

F p = lb
la

Fm = G1 Fm = G1 G2 Fe (8.52)

Fm = ld
lc

Fe = G2 Fe (8.53)
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where G1, G2 is kinematic gain of Inner Lever and Outer Lever, respectively. Rear-
ranging the above equations and eliminating θ1, θ2, F p , Fm and Fe, yields

ue

uo
= G1 G2

1 + G∗
e

(8.54)

where

G∗
e = ke

kd
+ G2

2

( ke

km
+ ke

kb
+ ke

kc

)+ (G1 G2)2 ( ke

kp
+ ke

ka

)
(8.55)

High efficiency in the amplification mechanism can be accomplished by minimizing
G∗

e . Because ke is a given parameter, it is required to maximize ka, kb, kc and kd.
However, the stiffness of elastic linkage km cannot be simply maximized because
it should allow small bending displacement. Therefore, it can be seen that there is
a practical limit to the amount of amplification possible. Note that the support is
assumed to be rigid in the above analysis. However, the effect of support stiffness
can be easily incorporated as shown in Section 8.3.2.

8.4 Energy Density

One way to compare different smart actuators is using a specific energy index, defined
as

ηe = 1
2

ufreeFbl

W
(8.56)

where ufree is the free displacement, Fbl is the blocked force and W is the weight of
actuator. It can be expressed for a sheet actuator of length lc, width bc and thickness
tc, Young’s modulus Ec, and weight density ρs (lb/in3 or N/m3) as

ηe = 1
2

Ec�
2

lcρs
(8.57)

where � is the free strain. To compare different type of actuators, � is the strain
amplitude or half-peak-to-peak (HPP) strain. In this way, linear piezoelectric actu-
ators can be compared with quadratic electrostrictive/magnetostrictive actuators.

The larger this number, the lighter the actuator is. It is clear that a large free
strain (i.e., stroke) is a key to increase actuator efficiency. Also, the larger the stroke,
the lower will be the requirement for amplification in specific applications. Normally,
stroke amplification decreases the overall efficiency of an actuation system. Mag-
netostrictive materials require a comparatively heavy solenoid coil to actuate the
material. Accounting for solenoid weight in the calculation will substantially reduce
the effective energy efficiency index. Also, the resultant energy efficiency index of
a stack is lower than the value based on individual material sheets properties, pri-
marily because of losses due to bond layers. Additional weight due to end caps and
electrodes further lowers the energy index.

Another way of defining efficiency is by the ratio of the output energy to the
maximum strain energy of the actuator. Suppose the actuator deflects an external
load of stiffness kext by a distance u, then the energy efficiency of the system is given
by

η = (1/2)kextu2

(1/2)kactu2
f ree

(8.58)
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Figure 8.25. Magnetostrictive actu-
ator driving an extension-torsion–
coupled composite tube connected
to a torsional spring.

where kact and ufree are the stiffness and free displacement of the actuator respec-
tively.

One of the major applications of smart structures technologies is active vibration
control of a flexible structure. Specific applications include: automobiles (in chassis
from engine and tires), helicopters (in the airframe, rotor-induced), aircraft (in
the airframe due to gust and engine-induced), ships (in the cabin both marine-
engine and waves-induced) and machine tools (imbalance of rotating shaft). In
an active vibration control system, force inputs from actuators are used to suppress
vibration based on online measurements from sensors. The controllers provide input
signals to actuators to minimize a performance function such as a weighted sum of
vibration amplitudes at selected stations. There is no doubt that there are differing
requirements from actuators for a specific application to control vibration. Two
key characteristics of an actuator are free displacement (stroke) and blocked force.
For active cancellation of vibratory forces, the actuator has to have the capacity
to generate sufficient force and displacement to overcome the vibratory source.
In a very simplified single-input/single-output case, the free displacement of the
actuator must be equal or larger than the free displacement of the structure (at
point of contact, i.e., source); the blocked force should be more than the internal
stiffness times free displacement. Brennan et al. [78] carried out a set of vibration
control experiments using five actuators; three were piezoceramic-based, and the
other two were magnetostrictive and electrodynamic. The first three actuators were
a cylindrical high-force PZT actuator (40 mm diameter, 15 mm height), a high-
displacement hydraulic PZT actuator (95 mm diameter, 58 mm height) and a high-
displacement PZT RAINBOW actuator (50 mm diameter, 2 mm height). The fourth
actuator used Terfenol-D (25 mm diameter, 65 mm height) and the fifth one was
an electrodynamic device (66 mm diameter tweeter, 20 mm height). Using energy
index as a figure of merit, the actuators were ranked as PZT tube, magnetostrictive,
RAINBOW, hydraulic PZT, and tweeter.

8.4.1 Worked Example

A magnetostrictive actuator in conjunction with an extension-torsion coupled com-
posite tube is used to actuate a trailing-edge flap as shown in (Fig. 8.25). Assume
the flap acts as a linear torsional spring kθ (in-lb/rad) and the actuator stiffness is
ka = EcAc/lc) (lb/in). Given are magnetostrictive free displacement ufree and blocked
force Fbl. Calculate actuation energy efficiency ηe. Assume F is actuation force, T is
flap torque, u is axial deflection, and θ is beam tip twist.[

k11 k12

k12 k22

]{
u
θ

}
=
{

F
T

}
(8.59)

η = (1/2)kextθ
2

1/2kactu2
f ree

(8.60)
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Solution

The output energy is

Uo = 1
2

kθθ
2

The maximum actuation energy is

Umax = 1
2

EcAc

lc
u2

f ree

From the geometry of the actuator, the force can be written as

k11u + k12θ = F

u = ufree − F
ka

From which,

F = (ufree − u)ka

Substituting in the actuator force equation,

k11u + k12θ = (ufree − u)ka

u = − k12

k11 + ka
θ + ka

k11 + ka
ufree

Similarly, we can write the actuator torque as

k12u + k22θ = −kθθ

u = −k22 + kθ

k12
θ

From which we get

θ =
ka

k11+ka
ufree

k12
k11+ka

− k22+kθ

k12

The actuation energy efficiency is

η = kθ

ka

[
ka

k11+ka

]2

[
k12

k11+ka
− k22+kθ

k12

]2

Let us define the following non-dimensional quantities

k̄12 = k12

(k11k22)1/2

k̄θ = kθ

k22

k̄a = ka

k11
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Substituting these in the expression for energy efficiency leads to

η = k̄θk̄ak̄2
12[

k̄2
12 − (1 + k̄θ)(1 + k̄a)

]2
Note that the units of k11 is lb/in (or N/m), k22 is in-lb/rad (or m-N/rad) and k12 is
lb (or N). The k̄12 is a coupling coefficient with its value varying from −1.0 to +1.0.
The parameter k̄θ defines how stiff the external load is in comparison to the direct
stiffness of coupling mechanism.

8.5 Stroke Amplification Using Frequency Rectification: The
Piezoelectric Hybrid Hydraulic Actuator

Frequency rectification is a method of increasing the stroke of an active material
without the need for a mechanical amplification mechanism. The concept consists
of a mechanical system that accepts a low magnitude, high frequency, oscillatory
displacement from an active material, and converts it into a larger magnitude dis-
placement at a lower frequency. The large bandwidth capability of the active material
is traded off into an increase in output displacement. Hence, this concept is suitable
for materials like piezoceramics, magnetostrictives, and electrostrictives, and is not
applicable to low bandwidth materials like shape memory alloys. The mechanical
system operates by rectifying the oscillatory input displacement from the active
material. In this regard, the system can be thought of as a ‘mechanical diode.’ In
addition, the mechanical system sums up each cycle of the rectified displacement,
resulting in a steadily increasing output displacement. As the output moves by a
small step for each cycle of the input displacement, this concept is also refered to
as ‘step-wise’ or ‘step and repeat’ actuation. The output can be converted again
into an oscillatory displacement, as required by the application, although at a much
lower frequency than the input displacement. The rectification and summation can
be achieved by the following broad classes of mechanical systems:

1. Friction based – Clamp and release: In this type of mechanism, the rectification
and summation of the input displacement is achieved by clamping elements on
the output of the device. When the clamping elements are actuated, they grip
on to a fixed surface by means of frictional force. The clamping elements are
actuated in the appropriate phase in relation to the input displacement to yield
a rectified and summed output.

2. Friction based – Travelling wave: The active material is arranged in such a
fashion that it generates a travelling wave when actuated with the appropriate
phasing. The out of plane displacement (crests of the travelling wave) result in
the active material contacting a fixed surface and creating tangential frictional
forces. Due to the friction generated, the active material assembly moves in the
opposite direction.

3. One-way mechanical elements: Roller clutches are an example of mechanical
elements that allow motion only in one direction. The oscillatory motion of the
active material is coupled to the input stage of the roller clutch, and the output
is rectified and summed.

4. Hydraulic elements: Check valves in a hydraulic fluid allow flow only in one
direction. An oscillatory flow rate input to the check valves will result in a
cumulative unidirectional fluid flow.
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Figure 8.26. Schematic of the translational operation of an inchworm motor (H3C), from
Ref. [81].

As the first three concepts rely on mechanical contact or friction, they are
susceptible to wear. This issue is considerably alleviated in the case of a hydraulic
system with check valves, and such devices could demonstrate advantages in terms of
reliability and service life. Examples of each of the above concepts are given below,
followed by a detailed discussion of a hybrid hydraulic actuator. Descriptions of the
fundamental concept of frequency rectified devices as well as examples of several
designs can be found in References [79] and [80].

8.5.1 Inchworm Motors

Inchworm motors utilize three or more active elements in order to achieve frequency
rectification. One group provides the motive power, while the other group acts as a
brake and alternately clamps the ends of the motive piezostack elements to a station-
ary rail or shaft. This results in a net displacement in only one direction. By actuating
the motive stacks at a high frequency, the entire assembly can achieve large linear
velocities. The clamping can also be performed by passive mechanical elements.
A schematic of the operation of a linear inchworm motor is shown in Fig. 8.26.
This concept has been investigated in one form or another since the 1960s. The
majority of the early concepts were focused on precision positioning applications.
A comprehensive review of the historical development of inchworm type actuators
was published by Galante et al. [81] (Fig. 8.27). They also developed a compact
inchworm motor operated by three piezostacks for a shape control application. The
device measured 60 × 40 × 20 mm and was capable of a no load output velocity of
0.6 cm/s and a blocked force in excess of 40 N. A holding force of greater than 200 N
was achieved by careful design of the clamping mechanism. This aspect of the design
is often the most crucial, and the most susceptible to wear, as the holding force is
based on friction on the clamping elements. To address this issue, Park et al. [82]
developed an inchworm motor with clamping ability enhanced by the use of MEMS
microridges.

Based on the inchworm concept, rotary output motion can also be achieved. In
such rotary motors, the clamping elements engage a cylindrical stator and the motive
elements, which are mounted on a rotor, provide a torque about a central shaft [83].
Another rotary motor concept is based on rectifying the angular displacements
created by a set of piezoelectric bimorphs vibrating at resonance using a roller
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Figure 8.27. Illustrated timeline of inchworm history, from Ref. [81].

clutch [84, 85, 86]. As the roller clutch is a passive frequency-rectification device, the
construction of this device is much simpler than devices requiring active clamping
by secondary piezoelectric actuators.

8.5.2 Ultrasonic Piezoelectric Motors

In contrast to inchworm type motors, which require active clamping elements, ultra-
sonic piezoelectric motors are based on the passive generation of frictional forces.
These motors are based on a traveling wave created in a ring of piezoelectric mate-
rial. The ring is sandwiched between two fixed stator rings and presses against them.
The motion of the traveling wave in the piezoelectric ring creates a frictional force
between it and the stator, which results in a relative motion. In an alternate type
of design, the longitudinal vibrations of a piezoelectric element are converted to
rotary motion by means of specially shaped or angled mechanical links in con-
tact with the output shaft; however, devices based on this design can only oper-
ate unidirectionally, and were only seen in early research in this area. A detailed
review and description of various types of piezoelectric motors can be found in the
references [79, 87, 88, 89].

As the piezoelectric element is normally driven at resonance to obtain maximum
displacement, the operation frequency is linked to the physical dimensions of the
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device. The majority of such motors have been developed for applications in small
devices, for example, in focusing drives for camera lenses. Consequently, these
motors operate at very high frequencies, typically above 20 kHz. At these ultrasonic
frequencies, the motors have the added advantage of being practically noiseless.
Several different types of this motor exist: travelling wave motors, standing wave
ultrasonic motors, multi-mode ultrasonic motors and hybrid-transducer ultrasonic
motors. All these concepts are based on the same fundamental principle. While the
majority of applications are based on precision positioning, ultrasonic motors have
also been used as actuators to control surfaces in an unmanned aerial vehicle as part
of the Smart Wing program [90, 91].

Piezoelectric motors can have a mechanical efficiency as high as 50%, although
typical values are between 20 and 30%. The friction based design and tight man-
ufacturing tolerances required make them suited only for relatively low power
applications, on the order of less than 100 W. Their main advantages compared
to conventional DC motors are that they typically operate at a high torque and low
rotational speed, they are noiseless, and they can be used in environments where
magnetic fields are undesirable.

Frank et al. [86] designed and tested a rotary motor driven by resonant piezo-
electric bimorphs. Tip masses were attached to the bimorphs, which were radially
arranged around a central hub. A rotary clutch was installed between the central
hub and an output shaft. Actuation of the bimorphs at their resonant bending mode
resulted in an oscillatory rotation of the central hub. The rotary clutch rectified this
oscillatory displacement into a constant velocity output. In this manner the inertial
forces produced by the resonant masses were transmitted to the load on the output
shaft. The device was quite successful and several prototypes were fabricated for a
flow control application. A mathematical model was developed, which was used for
optimization of the design. The final prototype demonstrated a power density of 10.5
W/kg, with a stall torque of 0.048 N.m and a no-load rotational speed of 366 RPM,
while the bimorph drive frequency was around 894 Hz. Again, the low output speed
without the need for a gearbox is one of the main attractions of this concept over a
conventional DC motor.

8.5.3 Hybrid Hydraulic Actuation Concept

A common feature of all the actuation mechanisms described above is their reliance
on friction to achieve relative motion. As a result of this friction, the surfaces in
contact undergo a large amount of wear, which limits the useful lifetime of the
actuator. These actuators also require very tight tolerances in order to generate
sufficient friction and to achieve efficient frequency rectification. The wear of the
surfaces adversely affects these tolerances and therefore affects the performance of
the actuators. In addition, the blocked force of the actuator depends on achieving
maximum friction between the stationary and moving parts. While the frequency
rectification principle promises to simultaneously enable large output force and
stroke, it is desirable to eliminate the reliance on friction. One concept that realizes
this is the hydraulic hybrid actuator. A description of the working principle, followed
by the construction and performance of a specific device, is given here to illustrate
the concept of this actuator.

In a hybrid hydraulic actuator, an active material actuator is excited at a high
frequency, displacing a hydraulic fluid in a constrained volume referred to as the
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pumping chamber, through a displacement rectification device. The rectification
device is a set of unidirectional flow valves, that allows the fluid to flow in only one
direction. These valves are usually passive, but some current research efforts are
exploring actively controlled valves. The active material actuator, pumping cham-
ber, and valves form a solid-state hydraulic pump with no moving parts. The pump
is coupled to a conventional hydraulic cylinder through a manifold. The fluid pres-
surised by the pump is utilized to transmit power to the hydraulic cylinder, resulting
in a localized, self-contained hydraulic actuation system. The entire system consist-
ing of active material actuator, pumping mechanism, valves, manifold and output
hydraulic cylinder is referred to as a hybrid hydraulic actuator. In principle, the pump
can be actuated by any active material that has a high stiffness and high frequency
response. To avoid confusion in the remainder of this discussion, the entire assembly
will be referred to as the device, and the active material will be referred to as the
actuator.

Several researchers have developed different versions of the hydraulic hybrid
actuator. There has been considerable interest in hybrid actuation systems as poten-
tial actuators for a variety of aerospace [92, 93, 94] and automotive applications [95].
Several prototype piezohydraulic actuators have been designed and tested, devel-
oping an output power in the ranges of tens of watts. A promising application of
this technology is in the area of control-surface actuation for aerospace vehicles.
Conventionally, control surfaces on aircraft are actuated by hydraulic actuators that
are supplied with high pressure fluid from a centralized pump. The weight of the
associated hydraulic hoses, fittings, and hydraulic fluid contained in the system can be
significant. The conventional actuators can be replaced with multiple localized piezo-
hydraulic actuators. Because several of them can be located at one control surface
and each has its own self-contained hydraulic circuit, the overall system can be more
redundant and weight efficient than a conventional centralized hydraulic-actuation
system.

Konishi et al. [96, 97] developed a piezoelectric–hybrid hydraulic actuator using
a piezostack of length 55.5 mm and diameter 22 mm. The operating voltage of
this piezostack was −100V to +500V, and its free strain and blocked force were
60 μm and 10.8 kN respectively. This piezoelectric pump was excited at 300 Hz
and delivered an output power of approximately 34 W. Mathematical models were
developed and the possibility of using fluid resonance to increase the output power
was investigated [98, 99].

A magnetostrictive water pump, which is conceptually similar to a pump driven
by a piezoelectric stack, was developed by Gerver et al. [100]. This pump operates
at a relatively low pressure, on the order of 34.5 kPa (5 psi), and makes use of an
additional hydraulic stroke amplification scheme to increase the flow rate. A flow
rate of 15 ml/sec at an output pressure of 34.5 kPa (5 psi) was reported.

Among early studies, Nasser et al. [101] presented a piezohydraulic actuation
system that made use of the compressibility of the working fluid in order to eliminate
accumulators and 4-way valves. Use of active bidirectional valves was envisaged to
control output actuator motion. One of the main goals of this work was to determine
the effects of the friction of the actuator on its performance. The piezostack driving
this pump had a free stroke of 100 μm and a capacitance of 40 μF. The system was
run at 10 Hz at an input voltage amplitude of 150 V, and demonstrated an overall
amplification factor of 1.42. As this device made use of commercially available
solenoid valves as active check valves, operation of the device was limited to very
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low pumping frequencies. As a result, it functions more as a hydraulic amplification
device than a frequency rectification device.

Mauck and Lynch [92, 102] investigated a system consisting of a pump driven
by a high voltage piezostack of length 10.2 cm and cross-sectional area 1.9 cm × 1.9
cm. Several versions of designs were investigated, with accumulators incorporated
into later designs. The final device achieved a blocked force of 61 lbs and an output
actuator velocity of 7 cm/sec. The large current requirements and heating of the
piezostack limited the pumping frequency of the system to 60 Hz. The overall per-
formance of the system was analytically examined in terms of actuation efficiencies,
and the effect of the viscosity of the hydraulic fluid was experimentally determined.
A lumped parameter theoretical model of this system was developed.

Anderson et al. [103] described the development of a compact piezohydraulic
actuator for potential application as a control surface actuator on a UAV such as
the X-45A (UCAV). A maximum output power of 42 W was measured, with the
piezostacks being driven at 750 Hz. It was concluded that the concept was promising,
but substantial improvement in performance was necessary before the technology
could compete with conventional electromechanical actuators. Cavitation in the
hydraulic circuit was determined to be a major factor limiting the maximum pumping
frequency.

Sirohi et al. [94] developed a piezohydraulic actuator that operated at a maxi-
mum pumping frequency of 600 Hz. The tested prototype pump weighs 300 gm, and
the actuator had an output blocked force of 70.6 N (16 lbs), with an unloaded veloc-
ity of 140 mm/sec (5.5 in/sec). An improved version of this device was tested with
piezoelectric, magnetostrictive and electrostrictive driving elements, and their rela-
tive performance and efficiencies were compared [104]. This hybrid actuator system
was extensively tested in a closed system, and a detailed description of the design,
development, and performance of this system follows in a subsequent section.

A magnetostrictive hydraulic pump was developed by Bridger et al. [105], with
the goal of achieving a power output of 400 W, with a 20.7 MPa (3000 psi) operating
pressure and a no-load flow rate of 57.35 cm3/sec (3.5 in3/sec). Two designs were
investigated, one with a clamped active element pushing against a piston and another
with a Tonpilz-type active material resonant driver displacing a piston. Limitations
were encountered with the passive check valves, and compliance in the pumping
chamber made it difficult to achieve the desired operating pressure of 3000 psi. The
Tonpilz design was lighter and was designed to operate at a resonant frequency of 2
kHz; however the required 3000 psi pressure was achieved only at very high pumping
frequencies.

A hybrid hydraulic actuator based on an SMA thin film bubble was also devel-
oped [106], that had the same fundamental operational principle as a piezohydraulic
actuator. In this device, the piezostack-diaphragm assembly was replaced by a SMA
membrane that displaced the hydraulic fluid in the pumping chamber. The goals
of this device were to achieve a power density of 100 W/kg, with an output force
of 100 N, stroke of 4 mm, and no-load output velocity of 50 mm/s. The SMA film
intrinsically was expected to have an energy density of 40 kW/kg, which is at least
an order of magnitude larger than other active materials. The final device com-
prised 10 SMA membranes working in parallel, each pumping hydraulic fluid at
a frequency of 100 Hz. Each membrane was 8 μm thick and 1 cm in diameter.
The pump was coupled to a hydraulic cylinder, and at 50 Hz pumping frequency,
a velocity of 5.4 mm/s and a output force of 100 N was measured. The SMA
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membranes were activated by passing short bursts of high current through them,
followed by relatively long cooling periods. The pump also incorporated an array
of MEMS check valves operating in parallel. Each valve was a single flap or reed
type design with dimensions on the order of 600 μm. The valves were designed using
a trade study based on FEM analysis, with a minimum flow resistance and a first
natural frequency of greater than 20 kHz.

Active valves based on piezoelectric unimorph discs were tested in a piezoelec-
tric pump by Lee et al. [107]. A structural optimization was performed to maximize
the volume of displaced fluid and to minimize the weight of the pump housing. Simu-
lations indicated valve operation up to 15 kHz. A maximum power density of 12 W/kg
was measured; however, the device was not extensively tested in a closed hydraulic
circuit. A piezohydraulic pump utilizing proprietary check valves was tested by Tieck
et al. [108]. The power output of the pump was measured as 46 W while operating at
a bias pressure of 3.45 MPa (500 psi) and a pumping frequency of 1 kHz, in an open
hydraulic circuit.

At this point, it is worth mentioning that a large amount of research has been
focused in the biomedical field, on piezoelectrically driven micropumps [109, 110].
The main goal of these devices is to move small, precise quantities of fluid from one
location to another. Shoji et al. [109] have compiled an extensive review of microflow
devices. One microflow concept has been developed as a hybrid energy harvesting
transducer [111]. Some of these designs also dispense with mechanical valves and
achieve flow directionality by means of appropriately designing the geometry of the
inlet and outlet ports [112, 113, 114]. Several micropumps utilize piezoelectric uni-
morphs or bimorphs as their actuators, which are of relatively low stiffness but have a
large free displacement. Other micropump concepts include peristaltic pumps [115]
and resonantly driven pumps [116]. However, most of these devices operate on the
micro scale and are too small to be considered as actuators that produce significant
mechanical work output.

A schematic of a hybrid hydraulic actuator driven by piezoelectric stack actu-
ators [94] is shown in Fig. 8.28. The frequency rectification is achieved by passive
mechanical valves that have a high natural frequency. The solenoid valves that are
mounted in the manifold operate at a much lower frequency than the active mate-
rial, and serve to control the direction of output motion. The accumulator is present
to enable easy filling of the hydraulic circuit, and more importantly, to maintain a
positive bias pressure on the hydraulic fluid as well as on the piezostacks. The bias
pressure reduces the possibility of cavitation in the hydraulic fluid, and decreases
the effect of entrained air on the fluid compressibility. In addition, the bias pressure
provides a steady compressive preload to the piezostacks.

8.5.4 Operating Principles

The hybrid hydraulic actuator operates by displacing a small volume of hydraulic
fluid during each stroke of the active material. A schematic diagram of the hydraulic
pump driven by a volume of active material is shown in Fig. 8.28(a). The active
material is excited by a oscillatory electric or magnetic field, resulting in an oscillatory
displacement of the piston. The diaphragm acts a seal, preventing hydraulic fluid from
entering the body of the pump, and also functions as a return spring for the piston.
A small volume of hydraulic fluid is displaced by the piston during each stroke of
the active material. While the displacement of the active material is bidirectional,
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Figure 8.28. Schematic of piezohy-
draulic hybrid actuator.

the flow of the hydraulic fluid is rectified by mechanical check valves. This results in
a unidirectional flow of pressurised hydraulic fluid.

The volume of fluid displaced in each cycle depends on a number of factors,
such as the stiffness of the actuator, compressibility of the fluid, and impedance
of the hydraulic circuit. The mechanism of pumping can be better understood by
looking closely at the energy transfer between the active material and the hydraulic
fluid. We will now focus on the operation of a hydraulic pump driven by piezostack
actuators. However, the basic operating principle remains the same for any kind of
active material driving the hydraulic pump.

8.5.5 Active Material Load Line

The force and displacement characteristics of an active material actuator are typically
defined by its load line. In general, the relationship between force and displacement
may not be linear. However, it is convenient to approximate it by a straight line,
especially for a preliminary analysis. A typical load line for a piezostack actuator is
shown in Fig. 8.29. The force Fo and displacement δo of the actuator are related by

δo = δf

(
1 − Fo

Fb

)
(8.61)

where Fb is the blocked force and δf is the free displacement of the actuator. Note
that the slope of the load line is equal to the stiffness of the actuator, kact, and is
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given by

kact = Fb

δf
(8.62)

The equation of the loadline can also be written as

δo = δf − Fo

kact
(8.63)

8.5.6 Pumping Cycle

A simplified diagram of the working cycle of a piezostack driven hybrid actuator,
with an ideal incompressible hydraulic fluid is shown in Fig. 8.30. This figure plots
the force on the piezostack as a function of the piston displacement in the pump.
Note that the force on the piezostack is equal to the product of the pressure in the
pumping chamber and the area of the piston, less the force required to deflect the
diaphragm. In addition, the pressure of the hydraulic fluid is equal to the ratio of the
external force on the device and the area of the output cylinder.

It is assumed that the piston is always in contact with the active material, which
is an accurate assumption at low frequencies. The actual kinematics of this motion
is a function of the design of each particular pump. The part of the curve labeled
OA-AB corresponds to the compression stroke of the pump. In this part of the cycle,
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Figure 8.30. Pumping cycle for an ideal
incompressible hydraulic fluid.
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Figure 8.31. Force, displacement and work done during one pumping cycle, for a hydraulic
fluid of finite stiffness.

the pumping chamber pressure increases instantaneously as the piston starts displac-
ing, to the point A. At this point, the force on the piezostack, Fo, corresponds to the
external load on the device. The outlet check valve opens, and the piston continues to
displace fluid till the point B, defined by the load line of the piezostack. Similarly, as
the piezostack starts contracting, the force on the piezostack drops instantaneously
to zero (point C) and then stays constant till the piston returns to its original position
at point O. The entire loop OABCO comprises one pumping cycle. Note that the
instantaneous increase and decrease of piezostack force is due to the incompressible
nature of the hydraulic fluid. However, in reality, the fluid is compressible, and the
stiffness of the fluid contained in the pumping chamber is comparable to the stiffness
of the piezostack. Therefore, a more realistic representation of the pumping cycle is
as shown in Fig. 8.31(a).

As the piston starts displacing fluid from the point O, the piezostack force
increases linearly along the line OA. The slope of this line is given by the effective
stiffness of the fluid in the pumping chamber, kf . At the point A, the outlet check
valve opens and the piston moves to the point B, which is a point defined by the
load line of the piezostack. Useful external work is done in the segment AB, during
which the output load undergoes some displacement. The segment BC is the return
stroke of the piezostacks, where the pumping chamber pressure falls back to the
original value and the piezostacks return to their initial length. The work done by
the piezostack on the external load per cycle is given by the shaded area OABCO
in Fig. 8.31(b).

The limits of operation of the device are defined by the points B and C in Fig. 8.32.
Two limiting cases of pumping cycles are shown. The pumping cycle corresponding
to the blocked condition of the device is given by OABAO. The point B is the point
of intersection of the fluid stiffness line and the piezostack load line. In the blocked
condition, the external load on the device is so large that all the work done by the
piezostack goes into compression of the fluid in the pumping chamber, and the net
work output of the device is zero. The corresponding force at the output hydraulic
cylinder is the blocked force of the hybrid actuator, and Fo + Fcrack corresponds
to the force on the piezostack at this condition. Note that this force is less than
the blocked force of the piezostack. The force Fcrack is defined as the force on the
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piezostack corresponding to the minimum pressure required to open the mechanical
check valve, which is usually called the cracking pressure of the valve.

The pumping cycle corresponding to the unloaded condition of the device is
given by OACDO. At point C, as the external load is zero, the only force on the
piezostacks is due to the cracking pressure of the check valves. In the unloaded
condition, the maximum flow rate, or no-load flow rate, of the device is achieved.
The output work of the device is zero, as the external load in this condition is zero.
Maximum work output of the actuator is achieved at an intermediate point that can
be determined from a trade-off study.

It is worth mentioning here that Fig. 8.31(a) also contains some level of idealiza-
tion. In reality, the segments AB and OC will have a non-zero slope, corresponding
to the effective stiffness of the working fluid in the hydraulic circuit, when the outlet
check valve is open. However, as the volume of fluid in the circuit is large compared
to the volume of fluid in the pumping chamber, the stiffness of the fluid in the circuit
will be much higher than that of the segments OA and BC. Hence, this slope is
approximated to be zero, and for the remainder of this discussion, the segments AB
and OC are assumed to be horizontal.

8.5.7 Energy Transfer

The performance of the actuator is highly sensitive to the dimensions of both the
pumping chamber and the output hydraulic cylinder. The viscosity of the fluid,
diameter of the tubing, and the modulus of elasticity of the tubing material are also
important for the compliance and frictional losses that occur in the device as well
as for its frequency response. At high pumping frequencies, the performance of the
device is dominated by the dynamics of the hydraulic circuit. However, for an initial
assessment, it is convenient to neglect any frequency dynamics of the system, and
perform a quasi-static analysis of the energy transfered between the active material
and the hydraulic fluid. As a result of this quasi-static pumping assumption, the
volumetric flow rate of the pump, Q, at any given pumping frequency is equal to
the product of the volumetric displacement of the pump per cycle, �pump , and the
pumping frequency f pump :

Q = �pump f pump (8.64)

The large flexibility in trading off force and stroke afforded by the use of
hydraulics results in many possible combinations of pumping chamber and output
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Figure 8.33. Simplified system model.

cylinder dimensions. The final design of the hybrid actuator is very dependent on
its output requirements. Due to this strong coupling between the pump and output
cylinder, all subsequent discussions of the performance of the device will be with
respect to its force and stroke, as opposed to the pressure and flow rate generated
by the pump alone.

Since the ultimate goal is to maximize output power density for a device of known
external dimensions, the output power is considered to be the primary performance
metric. The major variables on which the output power depends are:

1. Pumping chamber diameter, dcham

2. Output cylinder diameter, dout

3. Pumping chamber height, �gap

4. Piezostack characteristics: Blocked force Fb and Free displacement δf

5. Fluid compressibility, β

As a result of the quasi-static pumping assumption (Eq. (8.64)), to maximize the
output power, it is sufficient to maximize the work done by the device per pumping
cycle. This is given by the area OABCO in Fig. 8.31(b), which outlines a typical
pumping cycle. The work done per cycle is given by

�Wcyc = Foδo (8.65)

where Fo and δo are related by the equation of the piezostack load line (Eq. 8.61).
In order to calculate the area under the curve, it it necessary to derive expressions
for the locations of the points A, B and C in Fig. 8.31(a). This involves calculating
the fluid stiffness kf . As the present analysis is quasi-static, the mass terms can be
ignored, and the overall system can be treated as an arrangement of springs, as
shown in Fig. 8.33(a), yielding a static solution for deformations of the system. Note
that Fig. 8.33(a) is the equivalent system representation when the outlet valve is
open, and the output hydraulic cylinder is assumed clamped. The effective stiffness
obtained from this configuration will give the slope of the segments OA and BC.
The stiffness of the fluid in this case can be thought of as similar to the finite stiffness
of the linkages in a mechanical amplification system. The equivalent system when
both valves are closed, which leads to the stiffness kf , is shown in Fig. 8.33(b). This
stiffness is only due to the fluid in the pumping chamber.

The stiffness elements that comprise the device with output cylinder clamped
and inlet valve closed are:

1. Pump body – kbody

2. Piezostack internal stiffness – kact
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3. Diaphragm – kdiaphragm

4. Fluid and Tubing – kfluid+tube

5. Accumulator – kaccumulator

Note that the piezostack internal stiffness and the body stiffness act in series,
and the resulting stiffness acts in parallel with the diaphragm stiffness, resulting in an
actuation element with an effective stiffness kp . Each element is treated as a linear
mechanical spring element with a force-deflection characteristic of the form

�F = kspring�x (8.66)

where �F is the change in force in the spring, kspring is the spring constant and �x is
the change in length of the spring. The stiffness of a fluid element can be expressed
in terms of its compressibility as [117, 118]

�Pe = βeff
�Ve

Ve
(8.67)

where �Pe is the change in pressure in the element. In practice, the tubing exhibits
some degree of compliance as well, and this can be accounted for by replacing the
fluid bulk modulus with an effective bulk modulus, βeff that is derived considering
the change in volume of the tubing resulting from a pressure rise. Ve and �Ve are
the initial volume and change in volume of the element, respectively. The pumping
chamber and the tubing in the hydraulic circuit can be treated as cylindrical volumes
of fluid. Considering a cylindrical volume of fluid with a cross-sectional area Ae, and
assuming that the change in volume is caused purely due to a change in length �x
of the cylinder, we have

�Pe = �F
Ae

= kspring
�x
Ae

= βeff
�xAe

Ve

(8.68)

The effective stiffness of the fluid volume is

kspring = βeff A2
e

Ve
(8.69)

The fluid in the pumping chamber can be represented as a cylindrical volume of
fluid with a length �gap and a cross-sectional area Ap = πd2

cham/4. From the above
equation, the stiffness of the fluid in the pumping chamber is given by

kf = βeff
Ap

�gap
(8.70)

From Fig. 8.31(a), and Eq. 8.63,

δo = δf − Fo

kp
− Fo

kf

= δf − Fo

[
1
k p

+ 1
kf

] (8.71)

Defining an effective stiffness keff , the output displacement can be written as:

δo = δf − Fo

keff
(8.72)
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Ap AoutFigure 8.34. Relation between the pumping chamber
area and output cylinder area.

Note that keff is the effective stiffness of the piezostack and the pumping chamber.
For a typical set of system parameters, the stiffness of the accumulator is usually
small compared to the stiffness of the fluid and tubing, which is the dominant factor
in the design. The diaphragm stiffness is typically designed to be around 10% of the
piezostack stiffness. Note that the stiffness of the pump body, kbody, should be much
larger than the piezostack stiffness in order to minimize energy loss in the pump
body. In practice, a good rule of thumb is to design the stiffness of the body to be at
least a factor of 10 higher than the stiffness of the piezostack.

8.5.8 Work Done Per Cycle

An effective loadline of the piezostack is used in the analysis to account for the
diaphragm stiffness. This is obtained by scaling the original piezostack load line
to account for the combined stiffness of the piezostack-diaphragm assembly. From
Eqs. 8.72 and 8.65, the work output of the device per cycle is

�Wcyc = Fo

[
δf − Fo

keff

]
(8.73)

This work can be expressed in terms of the fluid pressure, or piezostack force,
and the piston displacement. Fig. 8.34 shows a schematic of the fluid column between
the pumping chamber and the output cylinder, during the output stroke of the pump.
The pumping chamber has a cross-sectional area Ap and a piston displacement δp ,
while the output cylinder has a cross-sectional area Aout and a displacement δout. The
area ratio is given by

AR = Aout

Ap
(8.74)

The work output per cycle can be rewritten in terms of the force (Fout) and
displacement (δout) of the output cylinder as

�Wcyc = Fout

AR

[
δf − Fout

ARkeff

]
(8.75)

For a given working fluid and tubing, βeff is fixed, and Ap may be constrained
by the pump geometry. In such a case, the only parameter which the designer
is free to choose is the pumping chamber height, �gap . In order to increase the
power output of the device, it is desirable to maximize the stiffness of the fluid in
the pumping chamber. This can be accomplished by either increasing the pumping
chamber diameter or decreasing the pumping chamber height. However, if there
are no other geometrical restrictions, it is more effective to increase the pumping
chamber diameter than to decrease the height, because the fluid stiffness depends on
the square of the diameter and is inversely proportional to the height. In addition, the
pumping chamber height cannot be decreased indefinitely, as the mechanical check
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Figure 8.35. Dependence of work output per cycle on pumping chamber geometry.

valves require a finite clearance to function properly. Substituting the expression for
fluid stiffness (Eq. 8.70) in Eq. 8.75, the expression for output work per cycle is

�Wcyc = Fout

AR
δf − F 2

out

A2
Rkp

− F 2
out�gap

A2
Rβeff Ap

(8.76)

8.5.9 Maximum Output Work

The dimensions of the output cylinder are typically fixed by the geometric constraints
of the intended application of the device. Let us choose a commercially available 0.5′′

bore diameter hydraulic cylinder as the output cylinder. This fixes the value of Aout

and the only parameters that remain to be fixed are the diameter and height of the
pumping chamber. It should be noted here that although maximum work output is
the primary goal of the device, the specific application may require a certain output
displacement at a certain bandwidth. This requirement directly translates into the
flow rate of the piezoelectric pump. Therefore, in addition to sizing the parameters
of the device for maximum output work per cycle, the constraint of achieving the
required output displacement must also be included in the design process.

Plots of the variation of output work with Aout and�gap are shown in Fig. 8.35. In
Fig. 8.35(a), the work output per cycle is plotted as a function of pumping chamber
diameter for various external loads, with a pumping chamber height of 0.05′′. The
maximum work output per cycle is achieved at a certain value of pumping chamber
diameter, and this maximum value decreases with external load. Fig. 8.35(b) shows
the work output per cycle as a function of pumping chamber height, for a pumping
chamber diameter of 1′′. The maximum work output increases monotonically (at a
slower rate) with decreasing pumping chamber height. This is to be expected as a
smaller pumping chamber height increases the stiffness of the fluid and essentially
provides a direct energy transfer to the output load. A value of pumping chamber
height between 0.02′′ and 0.05′′ can be chosen depending on other factors such
as machinability and operating clearances for the mechanical check valves. The
conditions for maximum output work per cycle can be obtained by differentiating
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Eq. 8.76 with respect to the two parameters Ap and �gap

∂(�Wcyc)
∂Ap

⇒ Ap = Fb
Aout

2Fout
− �gap

kp

2βeff
(8.77)

If βeff → ∞ in the above equation, the value of Ap reduces to an impedance
matched condition, i.e., the resulting piezostack force is at the midpoint of the
piezostack load line. This is as expected, since the maximum work output is known
to occur at an impedance matched condition.

Based on the above discussion, taking into consideration any geometric con-
straints on the overall size of the device, an optimum pump geometry can be arrived
at for a given external load. Note that the fluid compressibility has a significant effect
on the performance of the device. The actual compressibility depends on several fac-
tors such as the system bias pressure, the amount of air entrained, and the flexibility
of the tubing, and can be as low as 10% of the reference value [118]. Specifically,
entrained air has a strong influence on the effective fluid bulk modulus and care must
be taken to ensure that there are no air bubbles in the hydraulic circuit. At the same
time, the application of a bias pressure on the hydraulic circuit significantly decreases
the effect of entrained air on fluid compressibility, and decreases the possibility of
cavitation in the hydraulic fluid.

8.5.10 Prototype Actuator

We will now describe the construction of a prototype hydraulic hybrid actuator
driven by piezoelectric stacks. The device is constructed with the same configuration
as shown in the schematic in Fig. 8.28(b). The function of each part of the circuit is
as follows:

� Piezoelectric pump: This serves as a source of pressurised hydraulic fluid. Elec-
trical energy is converted to mechanical energy by piezoelectric stack actuators.
The piezoelectric pump achieves the same function as a conventional hydraulic
pump, with a much simpler design and almost no moving parts. The hydraulic
fluid transmits mechanical energy from the piezoelectric pump to the output
cylinder.

� Output cylinder: This is a conventional hydraulic cylinder that can be connected
to an external load. Work is done on the load by extracting energy from the
pressurised hydraulic fluid.

� Solenoid valves: These change the direction of the actuator output by redirecting
the hydraulic fluid into the appropriate sides of the output cylinder. At present,
these valves are conventional electromagnetic valves; however, they can be
miniaturised to yield a decrease in the overall volume of the actuator.

� Accumulator: The accumulator consists of a volume of the hydraulic circuit that
is seperated from a volume of air or gas by a rubber diaphragm. The accumulator
provides a convenient means of filling the device with the hydraulic fluid. In
addition, a bias pressure can be applied to the hydraulic circuit by filling the
accumulator with pressurized gas. The bias pressure serves three important
functions. First, it reduces the effect of entrained air on the compressibility of
the hydraulic fluid. Second, it reduces the possibility of cavitation occuring in
the hydraulic circuit. Finally, it ensures that the piezoelectric stacks are always
subjected to a compressive stress, thus maintaining their structural integrity.
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Figure 8.36. Exploded view of piezoelectric pump
assembly.

� Manifold: The hydraulic circuit that goes between the pump, cylinder, valves,
and accumulator can all be housed in a compact manifold. A special manifold
can also be constructed to allow unidirectional testing of the device. In addition
to housing the hydraulic circuit, the manifold is used to properly mount the
device to work against an external load.

An exploded view of the piezoelectric pump is shown in Fig. 8.36. The main
components of the piezoelectric pump are the piezostack assembly, piston assembly,
pump body, pumping head and preload assembly. The piezostack assembly con-
sists of two commercially available low-voltage piezostacks (Model P-804.10, Physik
Instrumente [119]), that are bonded together, end to end. One end of the piezostack
assembly is bonded to a preload mechanism and the other end is pushed up against
a piston-diaphragm assembly. The preload assembly consists of a fine thread screw
and a locking nut, and serves to adjust the position of the piezostack assembly rela-
tive to the pump body as well as to provide a compressive preload to the piezostacks.
The piston-diaphragm assembly consists of a steel piston, which has a tight running
fit with the bore of the pump body, and is clamped to a 0.002′′ thick C-1095 spring
steel diaphragm. The diaphragm seals the pump body from the hydraulic fluid in
the pumping chamber, and the piston serves to constrain the deflected shape of the
diaphragm to remain flat over most of its surface, thus maximizing the swept volume
of the pump per cycle. While one face of the pumping chamber is formed by the mov-
able piston, the other face is formed by the pumping head, which contains the valve
assembly. The valve assembly contains two passive check valves that are formed
by thin (0.002′′) C-1095 spring steel reeds sandwiched between two aluminum discs.
The natural frequency of the steel reeds in air is designed to be above 3 kHz, so
that it can be assumed that the reeds do not interfere with the pumping dynamics
for pumping frequencies of atleast 1.5 kHz. A schematic of the piston-diaphragm
assembly and the valve assembly is shown in Fig. 8.37.

The temperature rise in the piezostacks caused by high frequency operation can
be minimized by surrounding the piezostacks with a thermally conductive compound,
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Figure 8.37. Schematic of piston and reed valve assemblies in the piezoelectric pump.

which conducts heat away from the piezostacks and into the pump body [94]. To
facilitate the heat conduction, the pump body is constructed out of aluminum. The
body of the pump has an outer diameter of 1.25′′, a length of 4′′ and weighs 300gm. The
total length of the pump body can be increased as necessary to accommodate longer
piezostacks. The pump is coupled to a commercially available hydraulic cylinder,
with a bore of 7/16′′ and a shaft diameter of 3/16”, through a custom built manifold.
The manifold also houses the accumulator. A list of all the important parameters
of the current design is shown in Table 8.4. The piezostack data, shown for each
piezostack, are taken from Ref. [15]. The parts that make up the pump assembly are
shown in Fig. 8.38(a), and Fig. 8.38(b) shows a picture of the assembled prototype
piezoelectric hydraulic hybrid actuator, incorporating the custom manifold and the
output cylinder. It can be seen that the system is completely self-contained, and only
requires electrical power input to the piezostacks. The entire device can be mounted
where required, and power can be harnessed from the output shaft.

Table 8.4. Prototype device parameters

Piezostack – Model P-804.10
Number of piezostacks 2

Length 0.3937 in
Width 0.3937 in
Height 0.7087 in
Blocked Force (0–100 V) 1133 lbs
Free displacement (0-100 V) � 0.5 mil
Maximum voltage 120 V
Minimum Voltage –24 V
Capacitance � 7 μF

Hydraulic Fluid – MIL-H-5606F
Density 0.859 gm/cc
Kinematic Viscosity 15 centistokes
Reference Bulk Modulus βref 260,000 psi

Pumping Chamber
Diameter 1 in
Height 0.050 in

Output Actuator – Double Rod
Bore diameter 0.4375 in
Shaft diameter 0.1875 in
Stroke 2 in
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Figure 8.38. Prototype piezoelectric hy-
draulic hybrid actuator.

8.5.11 Experimental Testing

Experiments are performed on the device to investigate its frequency response,
power output, and efficiency. These experiments can provide data to validate ana-
lytical models of the device and can also provide insight on the effect of various
system parameters on the performance of the device. The main objective is typically
to maximize the power density of the device. The experiments involve operation of
the device either in the unidirectional mode or in the bidirectional mode.

Unidirectional Testing

To minimize the number of variables in the system and to decrease its overall com-
plexity, it is convenient to perform initial testing of the device in the unidirectional
mode. In this mode, the directional control solenoid valves (valves A and B in
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Figure 8.39. Schematic of unidirectional test setup.

Fig. 8.28(b)) are eliminated from the hydraulic circuit. A special manifold is con-
structed that includes a manually operated return valve. When the return valve is
open, both sides of the output cylinder are connected, and the output shaft can be
manually moved to any position. By eliminating the solenoid valves from the cir-
cuit, the experiments can focus on the pumping dynamics as well as the interaction
between the external load and the piezoelectric pump. Different constant external
loads are simulated by hanging deadweights from the output of the device. The
power output of the device is calculated by measuring the velocity with which the
deadweight is lifted.

A schematic of the unidirectional test setup is shown in Fig. 8.39. The entire
hydraulic circuit, including the accumulator is machined into an aluminum manifold.
The valve V1 is the manually operated return valve. The testing procedure is as
follows:

(i) The device is first filled with hydraulic fluid. This is accomplished by connecting
a vacuum pump and a reservoir of hydraulic fluid, through a two way adapter,
to the valve labeled ‘Bleed.’ The air in the device is drawn out using the vacuum
pump, and the two way adapter is then connected to the hydraulic fluid reservoir.
Atmospheric pressure forces the hydraulic fluid into the evacuated hydraulic
circuit.

(ii) The bleed valve is closed and the accumulator is charged with Nitrogen to the
desired bias pressure.

(iii) The output shaft is manually positioned at its lowest point, and the desired
deadweight is hung from it.

(iv) The return valve V1 is manually closed and the device is now ready for actuation.
(v) The piezostacks are excited at the desired frequency, and the displacement of

the output shaft is measured by a linear potentiometer. The output velocity is
obtained from the slope of the output displacement vs. time curve. The excitation
is maintained till the output shaft reaches the end of its travel.

(vi) The return valve V1 is manually opened, and the output shaft is returned to its
lowest position, bringing the device to the state at step (iii) above. The steps (iii)
to (vi) are repeated for different values of deadweight and excitation frequency.

From the unidirectional testing, the output velocity of the device can be plotted
as a function of pumping frequency as well as external load. Note that the output
velocity, multiplied by the cross-sectional area of the output cylinder (which is con-
stant) gives the flow rate of the piezoelectric pump. Therefore, the dependence of
flow rate on pumping frequency and external load can be determined in this fashion.
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Figure 8.40. Measured piezostack force-displacement curves, 50 Hz pumping frequency.

Unidirectional Performance

Preliminary tests were performed with a special pumping head incorporating a pres-
sure transducer. Fig. 8.40 shows the force on the piezostack, obtained by multiplying
the pressure measured in the pumping chamber by the piston area, as a function of
the piston displacement. Two seperate loops are shown, each one for a given value
of output load (Fout1 and Fout2), corresponding to different deadweights in Fig. 8.39
(Fout2 > Fout1).

Superimposed on the same plot is the effective loadline of the piezostack-
diaphragm combination. Due to their combined stiffness, the combination shows
a lower blocked force and free displacement than the piezostack alone. It can be
seen that the force-displacement curves are parallelograms, similar to the theoretical
variation described in Fig. 8.31(a). Also note that the extents of the parallelograms
are defined by the effective loadline. The fluid stiffness, kf is also marked in the
figure. The importance of the fluid stiffness can be observed from the large area
under the effective loadline that remains unused by the pumping cycle. Note that
these curves were measured at a pumping frequency of 50 Hz. At higher pumping
frequencies, the dynamics of the check valves and hydraulic fluid circuit result in
shapes that can deviate considerably from parallelograms.

The fluid stiffness can be significantly affected by bias pressure, especially in the
presence of entrained air. Fig. 8.41 shows the effect of bias pressure on the no-load
output velocity of a piezoelectric pump driven by two piezostacks. In this particular
case, the pump is coupled to the manifold through two lengths of 6′′ long tube.
Note that the higher bias pressure results in increased output velocity. In addition,
the most important characteristic of this plot is the highly nonlinear variation of
the no-load velocity with pumping frequency. This nonlinear variation is primarily
caused by the coupled dynamics of the hydraulic circuit and the piezostacks, and is
accentuated by the presence of long tubes from the piezoelectric pump. A systematic
experimental study of the effect of the stiffness of the diaphragm, reed valves and
accumulator on the performance of the device was performed by Sirohi et al. [120],
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where it was found that the accumulator stiffness is the dominant factor affecting
the dynamics of the device.

Fig. 8.42 shows the no-load output velocity of the unidirectional actuator with
a pump driven by three piezostacks. In this case, the pump is directly assembled
on the manifold. In this case, a higher resonant frequency results due to the lower
mass of the hydraulic fluid compared to the case in Fig. 8.41. The predictions of
no-load output velocity obtained from a linear analysis (Section 8.5.7) are shown as
the dotted line. It can be seen that the linear analysis shows satisfactory agreement
with measurements up to a pumping frequency of around 300 Hz, above which the
quasi-steady pumping assumption breaks down. The spread in the measured velocity
increases around the point of resonance of the curve, and is especially sensitive to
the amount of bias pressure and entrained air in the fluid.

By measuring the output velocity for different values of deadweight (output
load), the loadline of the device can be obtained at each pumping frequency. An
example of the loadlines at pumping frequencies of 100 Hz, 200 Hz, and 300 Hz for
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the device with three piezostacks is shown in Fig. 8.43. The measured data points
are shown, along with a straight-line fit. As the pumping frequency increases, the
spread in the data points increases as the output deadweight is subjected to increasing
inertial loads at each pumping cycle. It can be seen that the blocked force is relatively
unaffected by the pumping frequency. From these measurements, the output power
of the device as a function of pumping frequency is plotted in Fig. 8.44.

As the piezostacks represent a highly capacitive load, the reactive power con-
sumption is very high compared to the active power. As a result, the efficiency of
the device with respect to the apparent input electrical power is poor, on the order
of 5%. A study of the power output and efficiency of a hybrid actuator driven by
piezostacks, a magnetostrictive rod and electrostrictive stacks was performed by
John et al. [104]. It was found that the electrostrictive stack resulted in the highest
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Figure 8.44. Output power of hybrid actuator driven by three piezostacks, unidirectional
mode.
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Figure 8.45. Bidirectional piezoelectric hybrid actuator.

efficiency and output power, primarily due to its much higher free strain at the same
stiffness. In general, the free strain and stiffness of the active material driver of the
hybrid actuator are the dominant factors in its power output.

Bidirectional Testing

For a practical application, the hybrid actuator must be capable of bidirectional
output. To achieve this, an additional manifold incorporating the solenoid valves
(valves A and B in Fig. 8.28(b)) was assembled between the piezoelectric pump and
the output actuator. Fig. 8.45 shows the assembled bidirectional hybrid actuator with
the piezoelectric pump. Note that the addition of bidirectional capability significantly
increases the overall mass and volume of the device. In addition, the increased
length of the hydraulic circuit significantly affects its dynamics. The large volume
of the manifold is a consequence of the size of currently available solenoid valves.
Some research efforts have explored alternate solutions to this issue, such as active
valves utilizing MEMS technology, piezoelectric actuation or electrorheological and
magnetorheological fluids. While some of these active valve concepts are aimed at
replacing the passive check valves of the active material driven pump, it may be
possible to combine the functions of check valve and directional control valve by
appropriately adjusting the phasing of valve actuation, resulting in an extremely
compact device.

The solenoid valves in the bidirectional device shown in Fig. 8.45 are actuated
in an on-off fashion by a square wave at different frequencies. As the flow rate
generated by the piezoelectric pump is constant at a given pumping frequency, the
product of the stroke and frequency of the output displacement will be a constant.
This is shown as a rectangular hyperbola in Fig. 8.46, along with measured values for



796 Applications of Active Materials in Integrated Systems

0

25

50

0 5 10 15 20 25 

Output Frequency (Hz)

St
ro

ke
 (

m
m

)

Experimental Data

Hyperbola Fit

Figure 8.46. Output displacement of bidirectional device, at a constant pumping frequency.

the bidirectional device driven by three piezostacks. The close agreement indicates
that leakage of hydraulic fluid between the high and low pressure sides of the cylinder
is not a significant issue.

8.5.12 Modeling Approaches

Testing of the prototype actuator revealed a highly nonlinear variation of the flow
rate with pumping frequency. The quasi-static pumping assumption described in
Section 8.5.7 only approximates the flow rate at low pumping frequencies, less than
around 100 Hz. In order to improve the performance of these devices, accurate mod-
eling of the behavior of the device as a function of pumping frequency is essential.
Modeling the behavior of the hybrid hydraulic actuator is complicated by several
factors. The system is inherently non-linear due to the presence of the check valves
in the hydraulic circuit, rod seals in the output actuator and friction in the piston.
The hydraulic circuit itself is geometrically complex and contains numerous turns
and restrictions in the flow passage. The combined effects of fluid inertia, viscosity
and compressibility become more important at higher pumping frequencies, neces-
sitating the modeling of the hydraulic circuit as a continuous system. A further
complexity in the modeling of the hydraulic circuit is the presence of elements of
greatly differing stiffnesses close to each other, such as the accumulator and the
pumping chamber.

Several researchers have presented models for the performance of the device,
including lumped parameter descriptions of the hydraulic circuit, Computational
Fluid Dynamics (CFD) based calculations of the flow impedance, distributed param-
eter models of the hydraulic fluid, and solution of the fluid-governing differential
equations in the time domain.

Tang et al. [56] developed a frequency domain model of a piezoelectrically
driven hydraulic amplification device for vibration control. However, this model did
not include the effects of viscosity. Simple fluid models have also been developed
to predict the performance of fluid micropumps by Ullmann et al. [113] and other
researchers.

Konishi et al. [99, 95] developed time domain solutions to directly solve the
coupled governing differential equations of the piezostack and the hydraulic fluid.
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This approach used a simplified viscous model that correlated well with their mea-
surements at a single pumping frequency, of 300 Hz.

Nasser and Leo [121] investigated piezohydraulic and piezopneumatic pumps
and identified upper bounds for their mechanical and electrical efficiencies. It was
shown that piezohydraulic pumps are inherently more efficient due to the lower
compliance of the working fluid. The pumping cycle was divided into four parts,
namely intake, compression, expansion, and exhaust, which were modeled separately
and then assembled together. The steady electrical and mechanical states of the
system were evaluated after each part of the pumping cycle to obtain expressions
for the energy transfer.

A coupled piezostack-hydraulic circuit lumped-parameter model was developed
by Oates et al. [102] incorporating check valve resistance and fluid compliance, but
neglecting fluid inertia and check valve dynamics. The pressure losses in the pumping
chamber were calculated using CFD. The system equations were assembled and
solved in the state-space form, which enabled simulation of the stepwise output
displacement of the device. The model showed good agreement with measurements
up to a pumping frequency of 60 Hz.

Cadou et al. [122] developed a quasi-static model including the effects of fluid
inertia as well as a refined model for impulsively started flow, which is what happens
when the check valves open. The stiffness of the fluid in the pumping chamber and
the output hydraulic line were included to obtain a detailed representation of the
quasi-static pumping cycle. A static force balance approach was adopted on each
component of the hydraulic circuit, the intake and output strokes were modeled
seperately, and the entire system was solved iteratively. The model was found to
agree with experimental data up to a pumping frequency of 150 Hz, and showed
the same qualitative trend at higher frequencies. An important conclusion of the
analysis was that the inertial forces dominated the viscous forces at higher pumping
frequencies.

Tan et al. [123] developed a model of a piezohydraulic actuator with active
valves incorporating both an incomprssible viscous fluid representation as well as
a compressible fluid representation. The pumping cycle is divided into four parts,
each of which is modeled separately and subsequently combined into a complete
cycle. Based on the dimensions of their device, laminar fluid flow is assumed for
pumping frequencies less than 960 Hz. The fluid energy equations for laminar flow
are directly incorporated in the incompressible fluid representation and are used
with appropriate assumptions in the compressible fluid representation. Differences
between the compressible and incompressible fluid representations became apparent
at pumping frequencies above 100 Hz and at high output forces, indicating that
compressibility effects are important. The compressible fluid model showed good
agreement with measurements up to a pumping frequency of 200 Hz.

John et al. [124] used a commercial CFD software to perform two dimensional
and three dimensional simulations of the steady flow through the pumping chamber
of a hybrid actuator. It was found that three dimensional effects such as vortex rings in
the flow channels are major sources of pressure loss. The effect of pumping chamber
height as well as the geometry and location of the output ports was investigated. A
quadratic variation of pressure loss with flow rate was derived based on continuity
and momentum equations and validated using the computed results. Analytical
expressions for the scaling of the pressure loss with pumping frequency were also
derived.
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Due to the discretization introduced by the lumped parameter models, they do
not represent the system accurately at high pumping frequencies. The dynamics of
the system, specifically the first natural frequency of the system, affects the frequency
up to which the quasi-steady analysis can give satisfactory predictions. As the pump-
ing frequency approaches the first natural frequency, refined models are required to
accurately predict the performance of the device. The effects of fluid inertia, com-
pressibility and viscosity can be incorporated completely only be representing the
fluid as a continuum. Sirohi et al. [125] developed a transmission line model that
solved the equations of motion in the frequency domain. A transfer matrix type
approach is adopted, with each fluid line treated as a transmission line and repre-
sented by a transfer matrix. Such an approach makes it easy to add additional fluid
elements to the system, and to change the properties of specific elements. The fluid
equations are coupled with the structural elements and the entire system is solved in
the frequency domain up to a pumping frequency of 1kHz. The first resonant mode
correlated well with measurements for three different geometries of the hydraulic
circuit, however nonlinearities in the system resulted in poor correlation of higher
modes.

The implementation of the quasi-static, lumped-parameter/state-space, trans-
mission line and CFD approaches will be described in the following sections.

Quasi-static Analysis

The quasi-static analysis was described in Section 8.5.7 as a means to estimate the
work output of the actuator. A linear variation of flow rate with pumping frequency
is assumed. This method can be used to obtain an approximate estimate of the
blocked force of the device and the no-load cylinder velocity, and can be used as a
preliminary design tool.

The blocked force, or the maximum output force of the device Fmax, is obtained
when δo = 0. Applying this condition to Eq. 8.71 leads to

Fmax = δf

1/kp + 1/kf
(8.78)

The no-load output velocity vmax, can be calculated from the volumetric flow rate
of the pump, given by the product of pumping frequency and the swept volume per
cycle

vmax = Apδf f pump

Aout
(8.79)

For the pumping chamber geometry given in Table 8.4, based on a measured pis-
ton deflection δp = 0.0008′′, and a pumping frequency of 50 Hz, the no-load out-
put velocity is 5.3 mm/sec. It should be noted that since the analysis neglects fluid
compressibility and flow resistance, this estimate represents an upper bound of the
achievable no-load cylinder velocity. The correlation between the quasi-static theory
and noload output velocity is shown in Fig. 8.42, and the correlation between output
force-velocity measurements of a different configuration is shown in Fig. 8.47. Note
that the first natural frequency for both these cases was above 600 Hz.
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Lumped Parameter – State Space Method

This is a simple method capable of quickly predicting the overall actuator perfor-
mance based on a given set of input parameters. The opening and closing of the check
valves can be easily modeled using this method by incorporating a flow resistance
based on the pressure gradients across the valve. The overall system is representing
by a set of states that are related to each other by equations of continuity and force
balance. The components of the actuator as well as the fluid are represented using a
lumped parameter formulation, and the equations are solved using the state-space
method.

States of the Device

Consider the schematic diagram of the device as shown in Fig. 8.48. The output
hydraulic actuator, or cylinder, is shown connected to an external load, that is a
mass Mout and a spring of stiffness kout. The goal of the model is to predict the
output cylinder displacement xout in response to the excitation voltage Vp applied
to the piezostacks. However, by setting up the system in state-space form, the time
response of any of the other states of the system can be calculated without rewriting
the equations of the system. Only one-way operation of the device is modeled, with

out
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R
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x
1

2
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Mout
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Figure 8.48. Schematic diagram of the piezohydraulic actuator, lumped parameter model.
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fluid flowing out through the outlet check valve Rout into the lower end of the output
hydraulic actuator, causing the load mass to move upwards.

The state variables of the system are (Fig. 8.48)

x1 → xp Displacement of the pump piston

x2 → xout Displacement of the output hydraulic actuator

P2 Pressure in the upper part of the output hydraulic actuator

P1 Pressure in the lower part of the output hydraulic actuator

Pc Pressure in the pumping chamber

x3 → ẋp Velocity of the pump piston

x4 → ẋout Velocity of the output hydraulic actuator

(8.80)

Setting up the state-space equations

From the above definitions, the state-space equations can be set up as follows

ẋ1 = x3 (8.81)

ẋ2 = x4 (8.82)

By equating forces acting on the pumping piston,

mp ẍp + bp ẋp + kp xp = cvVp − Pcap (8.83)

where mp , bp and kp are the effective mass, damping and stiffness of the piezostack
assembly, respectively. From energy considerations, it can be shown that one-third
of the mass of the piezostack also needs to be added to the mass of the piston to
get the effective mass of the combination, mp . kp is the effective stiffness of the
diaphragm and piezostack, in parallel. ap is the area of the pumping piston and Vp

is the voltage applied to the piezostack. The constant cv is an effective piezoelectric
coefficient expressed in terms of the blocked force of the piezostack and the voltage
at which the piezostack is excited to obtain the specified blocked force (Vmax).

cv = Fb

Vmax
(8.84)

Similarly, by equating forces acting on the output hydraulic actuator piston,

Moutẍout + Boutẋout + koutxout = (P2 − P1)aout − Moutg − f f riction (8.85)

where Bout is the damping at the output hydraulic actuator, g is the acceleration due
to gravity and f f riction is the frictional force in the output actuator as a result of the
tight fit between the piston and the inner bore of the output cylinder.

Fluid Impedance

The next step is to find a relation between the pressures P1, P2 and the flow rate
of fluid through the inlet and outlet valves. In order to do this, it is convenient to
approximate the fluid circuit as a lumped parameter system and derive an equivalent
fluid impedance [126, 127, 128, 118, 117]. The similarity between fluid impedance
and electrical impedance can also be utilised to solve the hydraulic system as an
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equivalent electrical network. For example, Bourouina et al. [129] have used an
electrical equivalent network to model a fluid micropump. As the analogy also
extends to mechanical systems, a lumped parameter mass-spring–damper model can
also be used to model such a system. A simple lumped parameter representation for
the impedance of a fluid line is [118],

Zf = �P
Q

= Rf + 1
sCf

+ sLf (8.86)

where Rf , Cf , and Lf are the resistance, capacitance and inductance of the fluid line,
respectively.�P is the pressure differential across the fluid line, causing a volumetric
flow rate of Q to occur. Note that the pressure differential, �P has the units N/m2,
the volumetric flow rate, Q has the units m3/s, and the fluid impedance, Zf has the
units of Pa.s/m3. Typically, the flow resistance, Rf is given by an empirical formula.
A more refined value of Rf can be calculated using CFD [102, 124]. In the present
discussion, however, the flow resistance of the pumping chamber is neglected, and
only the flow resistance of the check valves and tubing is considered. Assuming
laminar flow, a simple expression for flow resistance of a tube of inner diameter D
and length L, with a fluid of dynamic viscosity μ is given by [130, 118, 117]

Rf = 128μL
πD4

(8.87)

The fluid resistance term represents the viscous losses in the fluid, and depends
directly on the fluid dynamic viscosity. The fluid capacitance, Cf is a measure of the
compliance of the fluid, or the energy stored in the form of volumetric deformation.
This has the units m3/Pa and for a tube of length L, cross-sectional area A, filled
with a fluid of effective bulk modulus β is given by [118, 117]

Cf = AL
β

(8.88)

The last term in the fluid impedance, Zf , is the fluid inductance, which is a
measure of the inertia, or mass of the fluid. Fluid inductance has the units Pa.s2/m3,
and for a fluid in a tube of length L and cross-sectional area A, can be expressed as

Lf = ρL
A

(8.89)

Using the expression for fluid impedance, along with the continuity equation, a
relation between the flow rates and pressures in the pumping circuit can be derived.
The continuity equation applied to the pumping chamber leads to

ap ẋp + CcṖc + Qout − Qin = 0 (8.90)

Substituting for the flow rate exiting the pumping chamber, Qout, and the flow
rate entering the pumping chamber, Qin, this can be simplified to

Ṗc = P1

Cc(R1 + Rin)
+ P2

Cc(R2 + Rout)
+ Pc

Cc

[
− 1

R1 + Rin
− 1

R2 + Rout

]
+ ap

Cc
x3

(8.91)
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Similarly, applying the continuity equation to the upper and lower sides of the
output hydraulic actuator,

Ṗ1 = − P1

C1(R1 + Rin)
+ Pc

C1(R1 + Rin)
+ aout

C1
x4 (8.92)

Ṗ2 = P2

C2(R2 + Rout)
− Pc

C2(R2 + Rout)
− aout

C2
x4 (8.93)

where aout is the cross-sectional area of the output hydraulic actuator. C1 and C2 are
calculated using Eq. 8.88. R1 and R2 are the flow resistances of the inlet tubing and
outlet tubing respectively, and Rin and Rout are the flow resistances of the inlet check
valve and outlet check valve respectively.

Assembly of the State-Space Matrices

Eqs. 8.81–8.93 can be combined into the familiar state-space matrices

˙̃y = Aỹ + Bũ

ỹ = Cx̃ + Dũ
(8.94)

The terms in the above equations are as follows

ỹ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2

P2

P1

Pc

x3

x4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8.95)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 − 1

C2(R2+Rout)
0 1

C2(R2+Rout)
0 − aout

C2

0 0 0 − 1
C1(R1+Rin)

1
C1(R1+Rin) 0 aout

C1

0 0 1
Cc(R2+Rout)

1
Cc(R1+Rin) − 1

Cc(R1+Rin) − 1
Cc(R2+Rout)

ap

Cc
0

− kp

mp
0 0 0 − ap

mp
− bp

mp
0

0 − kout
Mout

− aout
Mout

aout
Mout

0 0 − Bout
Mout

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.96)

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 0
cv

mp
0

0 −Moutg−f f riction

Mout

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.97)

ũ =
{

Vp

1

}
(8.98)
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Figure 8.49. Correlation of lumped parameter state-space model with experimental data, at
different values of output force.

The C matrix can be set depending on the states of interest. In the present case,
the cylinder displacement is the output, which makes the C matrix

C = [ 0 1 0 0 0 0 0
]

(8.99)

The D matrix is taken as zero

D = [ 0 0
]

(8.100)

Numerical Solution

For specified initial conditions, the above state-space equations are solved over
a given time period. The directionality of the check valves and their opening and
closing are modeled by means of the values of Rin and Rout. Based on the pressures Pc,
P1 and P2, the values of check valve resistance are assigned. If the valve is open, the
check valve resistance is assigned a specific value (determined through experiment,
analysis or CFD) and if the valve is closed, the check valve resistance is assigned a
value of infinity. The changing value of valve resistance means that the A matrix is
not constant with time. Other entries in the A matrix are also dependent on the state
vector; for example, the fluid capacitances of the upper and lower parts of the output
hydraulic cylinder, C1 and C2, depend on the position of the output piston. However,
in order to solve the system, it is assumed invariant for short periods of time. In each
of these short periods, the state-space system is solved and the values of the various
states are computed. Using the state vector computed in the previous time step as the
initial condition, a new A matrix is calculated and the system is solved for the next
time period. In this manner, the solution is calculated over the entire time period of
interest. Once the output displacement is obtained over a certain time period, the
slope of the curve determines the output velocity.

Figure 8.49 shows the correlation between the measured output velocities from
a certain configuration of the device (specific values of tubing length and check
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Figure 8.50. Schematic diagram of the piezohydraulic actuator system, transmission line
approach.

valve resistance) and the model predictions, at different values of output force.
The experimental data is denoted by the symbols and the model predictions are
the continuous lines. As expected, the predictions are poor at high frequencies.
However, at frequencies up to approximately 250 Hz, the theory is able to predict
the behavior with sufficient accuracy. It can be concluded that the model is sufficient
for the purpose of parameter optimization and to size the device to achieve required
performance specifications.

8.5.13 Transmission Line Approach

To accurately capture the dynamics of the hydraulic circuit, it must be treated as a
continuous system. The entire piezohydraulic actuator is divided into sections, as in
Fig. 8.50. A mathematical model for each section of the fluid circuit is developed
in terms of transfer matrices. These are subsequently combined with models for
the valves, pump diaphragm, and active material stack to yield an overall coupled
fluid-structural model for the hybrid system that relates the mechanical output (dis-
placement) of the output cylinder to the electrical input to the active material [125].
The advantage of this approach is that any additional elements in the hydraulic
circuit can be easily added on without affecting the rest of the formulation. It is
assumed that in the frequency range of interest, up to 1kHz, the check valves do not
affect the overall response of the device.

Accordingly, the rectification effect of the check valves is neglected in the model,
resulting in a sinusoidal displacement of the output shaft in response to a sinusoidal
voltage applied to the active material. The analytical model is formulated in the
frequency domain, and it is expected that the variation of the output shaft velocity
with pumping frequency is the same as the variation of output shaft displacement
with frequency, without flow rectification.

Fluid Transfer Matrix Model

A fluid in a tube, such as in the tube between points ‘1’ and ‘2’ in Fig. 8.50, can be
represented in terms of the pressure (P) and volumetric flow rate (Q) quantities at
each end, defined by P1, Q1 and P2, Q2 respectively. An accurate model of such a
fluid transmission line can be developed by treating it as a distributed parameter
system [131, 117].
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Starting from the basic fluid equations of continuity, momentum and energy, the
relationship between the pressure and flow rate variables at the ends of the fluid line
can be derived in terms of a transfer matrix T12 as{

P2

Q2

}
= T12

{
P1

Q1

}
(8.101)

where

T12 =
⎡⎣ cosh� −Zc sinh�

− 1
Zc

sinh� cosh�

⎤⎦ (8.102)

The behavior of the fluid line is governed by two quantities; the characteristic
impedance Zc and the propagation parameter�. For an inviscid fluid, these quantities
are given by

� = D̄c = 1
ωc

d
dt

(8.103)

Zc = Zo = ρco

πr2
(8.104)

where ωc = co/l is the characteristic frequency of the fluid line, and the speed of
sound in the fluid, co is given by

co =
√
β

ρ
(8.105)

Fluid viscosity can be incorporated in two ways: one could use a linear friction
model using a friction factor calculated from Hagen-Poiseuille flow theory, or a
dissipative model derived using the energy equation [132]. This results in different
expressions for � and Zc compared to the inviscid case, while the basic transfer
matrix (Eq. 8.101) between pressure and flow quantities remains the same. The exact
solution for liquids with frequency dependent viscous dissipation yields expressions
for � and Zc in terms of a ratio of Bessel functions, Br as given below [133, 134, 135,
136]

� = D̄c

[
1

1 − Br

]1/2

(8.106)

Zc = Zo

[
1

1 − Br

]1/2

(8.107)

The Bessel function ratio, Br, can be expressed as a first-order square root
approximation [137]

Br = 1√
1 + 2D̄v

(8.108)

where the operator D̄v is defined in terms of the viscous frequency, ωv by

D̄v = 1
ωv

d
dt

(8.109)
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and

ωv = 8ν
d2

(8.110)

Eqs. 8.101–8.110 constitute a comprehensive model of the fluid lines, incorpo-
rating the effects of fluid inertia, compressibility as well as viscous dissipation.

Frequency Response of the Device

The frequency response of the device is calculated by assuming a harmonic excitation
at a frequency ω, resulting in the following substitution for the operator D:

D = jω (8.111)

This substitution greatly simplifies the fluid line equations. The complete system
model is now obtained by combining the fluid line equations with the governing
equations of the active material stack, output cylinder, and continuity equation
for the pumping chamber. Pressure and flow rate continuity relations are applied
between different elements of the system.

Force equilibrium on the active material, assuming a piezostack, gives

cvV − Pcap = mp ẍp + bp ẋp + kp xp (8.112)

The continuity equation for the pumping chamber can be written as

CcṖc = ap ẋp + Q4 − Q1 (8.113)

where the fluid capacitance of the pumping chamber, Cc, is given by [118, 117]

Cc = ap�gap

β
(8.114)

Assuming the output mechanical load to be lumped together with the output
piston, force equilibrium on the output piston gives

(Plp − Pup )aout = moutẍout + boutẋout + koutxout (8.115)

At the check valves,

Pc − P1 = RoutQ1 (8.116)

P4 − Pc = RinQ4 (8.117)

From Eqs.(8.101–8.115), {
P1

Q1

}
= A

{
Plp

aoutẋout

}
(8.118)

{
P4

Q4

}
= B

{
Pup

aoutẋout

}
(8.119)
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where the matrices A and B are given by

A = (Tlt.Tlc)−1 =
[

A11 A12

A21 A22

]
(8.120)

B = Tut.Tacc.Tuc =
[

B11 B12

B21 B22

]
(8.121)

The complete set of equations can be simplified and expressed in terms of an
equivalent mass-spring–damper system, where the vector {q} contains the system
variables and is given by

{q} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xp

xout

Pc

P1

P4

Plp

Pup

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8.122)

The forcing vector, {F }, contains the electrical input to the piezostack.

{F } =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

cvV
0
0
0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8.123)

For harmonic forcing at a frequency ω, the solution to the above system of
equations can be written as

{q} = (−ω2M + jωC + K
)−1 {F } (8.124)

As the system is assumed linear and check valve dynamics are ignored, constant
values of Rout and Rin are assumed. By setting Rin = ∞ and Rout = 0, one valve is
permanently closed and the other permanently open. This represents the dynamics
of the real device with check valves during one half of the pumping cycle, the other
half being symmetric.

Eq. 8.124 is solved to obtain the frequency response of the system variables in the
vector {q}. Because the hyperbolic sines and cosines are calculated exactly, the calcu-
lated frequency response accurately represents an infinite number of modes, which
is a significant advantage over typical lumped-parameter methods. The response of
the system is calculated up to pumping frequencies of 1kHz for correlation with
experiments.

Model Predictions

The effect of the length of the fluid line on the frequency response of the output
displacement xout, for a fluid of kinematic viscosity ν = 2 cSt is shown in Fig. 8.51. It
can be seen that a large increase in output displacement is obtained at the resonant
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Figure 8.51. Predicted variation of output displacement xo with tubing length, ν = 2 cSt.

condition, and that the resonant frequency is strongly dependent on the length of
the fluid line. A correspondingly large increase in the pumping chamber pressure is
also observed.

It can be seen that the frequency response is dominated by the dynamics of the
hydraulic circuit, and this offers a powerful method of increasing the output power
of the device. While similar concepts have been investigated in the past [97, 138],
investigation of any possible applications requires a refined prediction tool. The
transmission line approach may address this issue by allowing a more accurate
representation of the device behavior at high frequencies, including the effect of
fluid viscosity.

Correlation with Experimental Data

To obtain experimental data to validate the above analysis, a special pump config-
uration was developed. The reed valve assembly was replaced by a steel plate with
one hole aligned with one of the ports of the pump. This resulted in one check valve
being permanently open (Rin = ∞), and the other one being permanently closed
(Rout = 0), which is the case treated in the analysis.

A schematic of the experimental setup is shown in Fig. 8.52. It can be seen that
one of the check valves is permanently closed and the other one is permanently open.
The output displacement is measured by a laser vibrometer or a laser displacement
sensor. As a result of the elimination of the check valves, a sinusoidal voltage applied
to the piezostacks results in a sinusoidal output displacement.

A swept sinusoid, from a frequency of 50 Hz to 1kHz, is input to a power
amplifier, which actuates the piezostacks. The actuating waveform is offset by a
DC value equal to the amplitude of the sinusoid. This ensures that the piezostacks
are only actuated by a positive voltage, and minimises the possibility of piezostack
failure due to tensile stresses. At each frequency of actuation, the magnitude and
phase of the displacement of the output shaft are measured. While the actual device
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Figure 8.52. Schematic of the experimental setup to validate transmission line analysis.

can be actuated with voltages from 0–100V, the voltage amplitude for the present
testing was conducted at 12.5V and 25V due to amplifier current limitations. Fig. 8.53
shows a comparison of the predicted and measured frequency response functions
of the output displacement, for 4.5 in long tubes between the pump and the output
cylinder. In general, it can be seen that the analysis underpredicts the first natural
frequency by 10–15 %. Below the resonant peak, the magnitude of the response is
accurately predicted. However, at frequencies higher than the resonance, there is
a significant underprediction of the response. Regarding the phase of the response,
there is an underprediction (10◦ to 30◦) below resonance and a mixed variation above
the resonance condition.

In order to understand the causes of the discrepancy between analysis and exper-
iment, it is useful to look closely at the time domain signal from the vibrometer, which
is directly proportional to the velocity of the output shaft. Based on the assumptions
regarding the linear behavior of the system, a purely sinusoidal waveform is expected.
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Figure 8.53. Comparison of experimental and analytical frequency response functions, tubing
length = 4.5 inches.
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Figure 8.54. Nonlinear behavior of the hybrid hydraulic actuator.

Fig. 8.54(a) shows the signal from the vibrometer at a pumping frequency of 100 Hz,
at an actuation voltage of amplitude 25 V. Although the driving voltage is sinusoidal,
it can be clearly seen that the output waveforms are not purely sinusoidal. The most
notable feature is the presence of a discontinuous region around each zero crossing,
with a lower slope than the neighbouring regions. Because the scaled voltage signal
is proportional to velocity, the zero crossing region corresponds to the time period
around which the output shaft achieves its maximum displacement. At this time, the
output shaft changes direction and momentarily achieves zero velocity. This discon-
tinuous region can be attributed to static friction in the rod seals around the output
shaft, resulting in a stick-slip type of behavior.

Another consequence of the assumption of a linear system is that the transfer
function between the output displacement and input voltage should be independent
of the magnitude of the input voltage. In order to verify the accuracy of this assump-
tion, the frequency response of the output displacement was measured as described
above at actuation voltages of amplitude 12.5 V and 25 V. Fig. 8.54(b) shows the
comparison between the two frequency response functions. It can be seen that at the
higher actuation voltage of 25 V, the first resonant peak moves to a lower frequency
compared to the case of the 12.5 V actuation voltage. This shows that the assumption
of linearity in the actuator system is an approximation, and explains, at least in part,
the discrepancy between the analytical predictions and experimental results.

8.6 Smart Helicopter Rotor

Helicopters have the unique ability to both hover efficiently and cruise in forward
flight. This is achieved by means of a large diameter main rotor with a low disk
loading. However, the main rotor of a helicopter is also the source of a variety of
problems. Helicopters are characteristically susceptible to high vibratory loads and
noise levels. The rotor is the key subsystem, setting limits on vehicle performance,
handling qualities, and reliability. The flow field on the rotor disk is extremely
complex and may involve transonic flow on the advancing blade tips, dynamic stall,
and reversed flow on the retreating side of the disk and blade vortex interactions. The
primary source of helicopter vibration is the main rotor that transmits large vibratory
forces and moments to the fuselage. For an N-bladed rotor, the N/rev, N + 1/rev and
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N − 1/rev vibratory blade loads (in the rotating frame) are transmitted to the fuselage
through the hub as dominant N/rev forces and moments.

The high vibration levels limit helicopter performance [139] and reduce the
structural life of components [140], leading to increased maintenance and operat-
ing costs. In addition, the high vibration and noise levels lead to pilot fatigue and
passenger discomfort, and have been recognized as major barriers to public accep-
tance of rotorcraft for the short haul commuter transport role [141]. Even in military
applications, high vibration levels are undesirable from the point of view of crew
fatigue and errors in target tracking and firing systems. Decreasing noise levels has
also become a priority in modern rotorcraft. The civilian rotorcraft sector has seen
the introduction of increasingly stringent noise requirements for rotorcraft flying
in and around airports and residential areas. Military rotorcraft would like to gen-
erate as little noise as possible in order to increase stealth and improve battlefield
survivability.

A large amount of research is directed towards realizing the goal of jet-smooth-
and-quiet rotary-wing flight [13], to improve the cost effectiveness and to achieve
wider community acceptance of rotorcraft. Extensive research has been focused on
active and passive methods of vibration control. Passive methods suffer from several
inherent disadvantages like a large weight penalty and poor off-design performance.
Active control strategies show much more promise for controlling vibration levels
over a wide range of flight conditions. However, a helicopter rotor blade presents
an extremely challenging environment for conventional actuators, due to the severe
volumetric constraints, small allowable weight penalty, large centrifugal forces and
complexity of power/pressure transfer from the fixed-frame to the rotating-frame
(electric/pneumatic slip rings).

In active vibration control, the blade pitch is excited at higher harmonics of
rotational speed, generating new unsteady forces that cancel the vibratory forces at
their source. Blade feathering/twisting on the order of 1 to 2 degrees at higher har-
monics is needed to suppress vibration. The higher harmonic control (HHC) system
incorporates excitation of the swashplate at N/rev with servo actuators (typically
hydraulic). It has been found to be a viable concept to suppress vibration and may
incur a lower weight penalty than a passive system. The power requirements of the
servo actuators can become substantial at extreme flight conditions where vibrations
are likely to be highest. Also, the swashplate can be excited only at integer multiples
of N/rev. Using individual blade control (IBC), the blades can be excited at any
pitch using actuators in the rotating frame. However, with hydraulic actuators in the
rotating frame, one faces the complexity of hydraulic slip rings.

Advances in active materials and smart structures technology have introduced
the possibility of designing compact, lightweight actuators that can be integrated in
the blade structure in order to deflect a control surface or change the blade geometry.
In this manner, the airloads on the rotor blade could be affected in an active control
scheme.

A large number of such actuation mechanisms have been proposed, in both
model scale and full-scale versions. Most of these mechanisms are based on piezo-
ceramic actuators, which provide the benefits of high energy density and high
bandwidth. Additionally, the coupled electro-mechanical behavior of piezoceramics
enables the use of these materials as sensors as well as actuators. This property
creates a large number of possibilities, for example, self-sensing actuators for col-
located control and high sensitivity embedded sensors to sense strain in the rotor
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Figure 8.55. Smart rotor concept.

blade. The rotor with on-blade actuators and sensors, together with real time control
algorithms, results in a smart rotor system (Fig. 8.55). In contrast, a rotor with only
actuators is refered to as an active rotor.

Recent interest has also been focused on the concept of a swashplateless rotor,
where the bulky and mechanically complex swashplate of the main rotor could be
replaced by much more compact fly-by-wire type control systems. Primary control of
the vehicle could be achieved by means of on-blade actuators that deflect elevon-like
control surfaces [142] or create shape changes in the rotor blades. These actuators
would operate off electrical power that would be transmitted from the fixed frame
to the rotating frame through an electrical slip ring unit. Because the basic hardware
requirements are the same, a smart rotor could be designed to achieve the objectives
of both active vibration control and primary flight control. Several model scale as
well as full-scale active rotors actuated by smart materials are described below.

8.6.1 Model Scale Active Rotors

The first active-twist rotor, using direct twist actuation, was developed by Chen and
Chopra [143, 76]. The rotor blade incorporated dual-layer monolithic piezo patch
elements embedded at +45◦ under the upper surface skin and −45◦ under the lower
surface skin of the rotor blade (see Fig. 8.56). The high aspect ratio (length = 2′′,
width = 1/4′′) piezo elements extended from approximately 17.5% to 70% chord,
and the ratio of the piezo to fiberglass skin thickness was of the order of 4:1. With
both the upper and lower piezo elements excited in phase, a net shear strain is
induced in the skin, which in turn causes a pure twisting of the blade. Similarly, it

Fiberglass Skin, [0,90]

Rohacell Foam Core

PZT-5H Piezoceramic actuators  

embedded under skin and oriented at:
+45 deg on upper surface
-45 deg on lower surface

Leading Edge Weights

NACA 0012 Profile

Figure 8.56. Active twist rotor using piezoceramic sheet actuators, from Ref. [13].
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Figure 8.57. Mach scaled active rotor blade with trailing edge flap actuated by piezo-bender
elements, from Ref. [13].

is possible to induce pure bending by an out-of-phase excitation. The total number
of actuators per blade ranges from 24 (single layer, 1.5′′ apart) to 120 (dual layer,
0.75′′ apart). A 1.83 m (6 ft) diameter Froude-scale active-twist rotor was tested on
the hover stand and in the wind tunnel. The tip Mach number of the reduced speed
rotor was 0.28. Blade tip twist amplitudes of ±0.25◦ were achieved (excitation field
−560 to 1110 V/mm, excitation frequency below the torsional resonance frequency
of 4.75/rev). Open loop wind tunnel tests demonstrated that despite the low blade-tip
twist amplitudes, it was possible to appreciably alter the rotor vibratory hub loads.

Another active twist concept involves the integration of active piezo-fiber plies
into the composite blade structure. Interdigitated electrodes are deposited on the
active plies in order to utilize the larger d33 effect of the piezoelectric material.
Active piezoceramic fibers replace the conventional graphite or glass fibers in a
resin matrix, creating an active composite ply. When cured in a +45/−45 orientation
on the blade, actuation of these active layers results in a linear twist along the blade
section. The piezo fiber concept was originally developed by Hagood et al. [24] and
has subsequently been commercialized. A two bladed 1/6th Mach scale model of the
CH-47 rotor with active piezofibers was tested and a tip twist of ±0.4◦ was measured
at full rotor speed and 8◦ collective, with a mass penalty of 16%.

Extensive research has been conducted on Froude and Mach-scaled rotor models
(1/8 scale) with trailing edge flaps actuated by piezo-bender elements (bimorphs).
Koratkar and Chopra [144] tested Froude scaled and Mach scaled, 4-bladed model
rotors on the hover stand followed by testing of a Mach scaled model in the wind
tunnel (Fig. 8.57). In the wind tunnel, the rotor was tested at rotational speeds of
upto 1800 RPM and an advance ratio of 0.3 and a collective pitch setting of 6◦.
A micro-thrust bearing was needed to attach the flap to the blade to reduce the
frictional force under high centrifugal forces. A schematic of an 8-layered piezo
bimorph is shown in Fig. 8.58. These tapered bimorphs were built with a decreasing
thickness from root to tip to increase the actuation authority and weight efficiency.
A mechanical leverage arrangement between the actuator and flap was incorporated
using a rod-cusp arrangement (Fig. 8.59).

The piezo-bender actuators were excited at 90 Vrms with a 3:1 bias – the positive
half-cycle of the actuating sinusoidal waveform was amplified by a factor of three,
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Figure 8.58. 8-layered, 1′′ wide, tapered piezo-bimorph (each PZT layer is 0.0075′′ thick).

while the negative half-cycle was not amplified (Fig. 8.60). This enabled a higher
excitation field to be applied in the direction of poling, without depoling the piezo-
electric material), upto frequencies of 5/rev and generated a deflection on the order
of ±4◦. Open-loop and closed-loop tests in the wind tunnel demonstrated the control
authority of the actuation system and the ability to minimize vibratory hub loads for
a range of flight conditions (Fig. 8.61). Fulton and Ormiston [145, 146] successfully
tested an improved bimorph flap on a reduced speed rotor (tip Mach 0.27, diam-
eter 2.23 m). The 12% span, 10% chord flap was centered at 75% radius and was
driven by two 38.1 mm wide piezo bimorphs. At full speed, open-loop flap deflections
of ±7.5◦ were achieved at an excitation of ±610 V/mm. The test program clearly
demonstrated the ability of the trailing edge flap to alter the blade torsion and flap
bending loads. However, this concept does not easily lend itself to scaling up to a
full-scale rotor because of the large weight penalty.

Bernhard and Chopra [147] developed a novel actuation mechanism consisting
of a bending-torsion coupled composite beam with piezoceramic sheet actuators
bonded on its surface (Fig. 8.62). The beam is divided into a number of spanwise
segments with reversed bending–torsion couplings for each successive segment. Over
each beam segment, identical piezoceramic actuators are bonded on the top and
bottom surfaces, resulting in equivalent bimorph units. The polarity is reversed for
successive piezo elements. This composite beam is located spanwise at the quarter-
chord of the blade profile. When the piezoceramic actuators are actuated in a bending
configuration, the total bending in the beam cancels out and the total twist adds up

Rod Cusp Flap

Piezoelectric Bender Flap Hinge Axis

Figure 8.59. Piezo-bimorph flap actua-
tion system, from Ref. [13].
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Figure 8.60. AC bias circuit used to power the piezo-bimorphs.

Figure 8.61. Mach-scale rotor model with piezo-bimorph–actuated trailing-edge flaps in the
Glenn L. Martin wind tunnel, from Ref. [13].

Figure 8.62. Composite bending-torsion coupled beam with piezo actuators, from Ref. [13].
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Figure 8.63. Schematic of composite bending-torsion–coupled beam actuator mechanics, from
Ref. [13].

(Fig. 8.63). The resulting tip twist was used to actuate trailing edge flaps as well
as an all moving, 10% span blade tip (Smart Active Blade Tip, SABT), as shown
schematically in Fig. 8.64. Froude and Mach-scaled tests were conducted on active
rotors with this actuation mechanism. In Mach-scaled hover tests, at 2000 RPM, at
2◦ collective, and for an actuation voltage of 125 Vrms, the measured tip deflection
at the first four rotor harmonics was between ±1.7◦ to ±2.8◦, increasing to ±5.3◦

at 5/rev due to resonance amplification. The tip activation resulted in over 50%
variation in the steady rotor thrust levels at 8◦ collective.

Bothwell et al. [74] researched the concept of actuating trailing edge flaps by
means of an extension-torsion coupled composite tube, with an internal piezostack

ΩΩΩΩ

δδδδ

2δδ2δ22δ

Main blade section

SABT

Figure 8.64. Mach scaled rotor blade with Smart Active Blade Tip (SABT), from Ref. [13].
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Figure 8.65. X-frame piezostack amplifier, from Ref. [148].

or magnetostrictive actuator. As a result of the composite coupling, the tube extends
and twists in response to extension of the actuator. Based on experimental success,
it was proposed to stack multiple tubes in series to generate sufficient twist to deflect
a trailing edge flap.

Modifications of the conventional straight bimorph have also been proposed,
such as the C-block actuator [52]. The C-block has a greater stroke capability than
a conventional straight bender at the cost of reduced force output. A blade sec-
tion incorporating a 10% chord trailing-edge flap, with a 50% pivot overhang for
aerodynamic balancing was windtunnel tested. With a driving voltage of 55% (of
the maximum level), flap deflections of ±5◦ to ±9◦ were measured; however the
dynamic pressure was less than 3% of full-scale dynamic pressure.

The X-frame actuator concept was developed by Prechtl and Hall [19]. The
X-frame is a piezo-stack amplification mechanism that uses stroke amplification
via shallow angles. The actuator was integrated into a 1/6th Mach-scale Boeing
CH-47 (Chinook) blade and tested in hover. The flap is a slotted servo-flap with
a 11.5% span, 20% chord, and aerodynamic overhang 27.5% of flap chord. At the
operating speed (tip Mach number 0.63) and 8◦ collective, flap deflections of ±3.9◦

were achieved.

8.6.2 Full-Scale Active Rotors

The baseline theoretical and experimental work validated in the model scale is slowly
transitioning into full-scale applications. A full-scale active flap rotor was developed
by McDonnel–Douglas/Boeing for an MD900 Explorer helicopter, which is an 8-seat
utility helicopter with a maximum take-off weight of 6250 lbs, having a 5-bladed, 34-
foot diameter bearingless rotor. The trailing-edge flap was driven by a bidirectional
version of the X-frame actuator. The flap had a span of 3 feet, a chord of 3.5 inches,
and was located at 83% radial position. The actuator was scaled up from the model
scale in order to meet full-scale requirements [148]. Two X-frames were coupled
together in order to obtain a positive force during both extension and retraction of
the flap actuator push rod. The dual X-frame actuator was capable of a blocked force
of 80 lbs and a free displacement of approximately 100 mils. A dual X-frame actuator
undergoing benchtop testing is shown in Fig. 8.65. The rotor was successfully tested
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Figure 8.66. Full-scale BK117 rotor blade with trailing edge flaps and piezoactuators, from
Ref. [155].

in the 40ft × 80ft wind tunnel and results showed reductions up to 6 dB in blade
vortex interaction and inplane noise, as well as a reduction in vibratory hub loads of
up to 80%. Rotor performance was affected by 2/rev flap inputs [149].

Early studies by Eurocopter for a full-scale active trailing edge flap used
a piezo stack actuator with a shallow-angle flextensional amplification mecha-
nism [150, 151, 152, 153]. The same actuator was also proposed for a leading edge
droop concept, for delaying dynamic stall [154]. More recently, Eurocopter inves-
tigated and selected two candidate technologies for vibration cancellation and BVI
noise suppression by means of IBC using trailing edge flaps [155]. The first approach
used DWARF piezoceramic actuators driving a 15% chord flap integrated in mod-
ified BK117/ATR rotor blades (Fig. 8.66). The second approach utilized COCE
electromagnetic actuators driving a 25% chord flap in a modified Dauphin blade
section.

A bidirectional flap actuator driven by piezostacks, based on lever arm amplifi-
cation was developed by Lee and Chopra [15] (Fig. 8.67). This actuator was designed
to meet the requirements of a trailing edge flap on the blade section of a full-scale
MD900 Explorer helicopter. The actuator was driven by 5 piezoceramic stack ele-
ments driven at a peak-to-peak voltage of 120 V and achieved a blocked force of
approximately 9 lbs with a free stroke of approximately 75 mils. This actuator was

Upper
Housing
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Housing

piezostacks

Elastic
Linkage

bearing

bearing
Inner Lever

Outer Lever
end-caps

Figure 8.67. L-L Amplification act-
uator.
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tested in a vacuum chamber spin test and in a wind tunnel (non-rotating condition),
at frequencies of up to 5/rev. Spin testing results showed less than 10% degrada-
tion of actuator deflection at 710g’s of centrifugal acceleration. In the wind tunnel,
peak-to-peak flap deflections of upto 12◦ were measured at free stream velocities of
120 ft/sec and 12◦ collective.

A shear mode piezoelectric tube actuator was developed to drive a trailing edge
flap [72, 65]. This actuation mechanism utilizes the d15 effect of the base piezoelec-
tric material, which is the largest piezoelectric coupling effect. Design studies were
conducted for a Boeing MD 900 helicopter with a plain trailing edge flap. It was
estimated that flap deflections of ±2.5◦ could be achieved at full speed. This was
based on a 6% span flap, with a 25% chord, driven by a tube with an outer and inner
diameter of 17.8 and 11.4 mm, respectively, and a length of 203 mm (corresponding
to 4% of rotor radius). Using a spring to simulate aerodynamics, deflections of ±1.5◦

were measured in a bench top test at 75% of the maximum electrical field, on the
order of 1kV.

A trailing edge flap actuator based on MSMA as the active material was designed
to provide primary flight control authority on a search and rescue helicopter [156].
Two trailing edge flaps were used on each blade, and flap deflections on the order
of ±5◦ at hinge moments of approximately 3 lb-ft were required for trim. Two per-
manent magnets were used in conjunction with two magnetic coils that provided a
differential magnetic field of ±100 kA/m. The total actuator weight, including the
housing was 1.9 lbs, of which 0.798 lbs was the active MSMA material itself. The
power requirement was 210 W, at a current of 4 A, which corresponds to approxi-
mately 0.2% of the total installed continuous power of the vehicle. This design study
clearly demonstrates the feasibility and attractiveness of the swashplateless concept.

8.6.3 Adaptive Controllers for Smart Rotors

A number of control approaches have been published in the literature for differ-
ent types of smart structures and systems. Helicopter rotors have certain unique
features in this regard, for example, time-periodic equations of motion and non-
linear aeroelastic response. We focus on adaptive controllers for smart rotors in this
section.

It is well established that the vibration and dynamic loads in a helicopter can
be alleviated using higher harmonic pitch controls. Most frequently, the helicopter
rotor system is expressed in the frequency domain through a transfer function T
relating the input control harmonics to the output response harmonics of loads or
stresses. This simple linear quasi-static model (Fig. 8.68) is expressed as:

Z = Zo + Tθ + ν (8.125)

where the response vector Z consists of sine and cosine components of stresses
and the vibration level, in either the rotating frame or the fixed frame. The input
control vector θ consists of sine and cosine components of higher-harmonic pitch,
in either the rotating frame or the fixed frame. The transfer function matrix T and
the uncontrolled response Zo depend on flight conditions, for example, forward
speed, rotor thrust, and rotational speed. The measurement noise ν is expected to
be random in nature.

These controllers are broadly classified into two categories: (1) open loop and
(2) closed loop. For open-loop controllers, there is no direct feedback of response;
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Figure 8.68. Multicyclic control of helicopter vibration.

for the closed-loop controllers, there is a feedback of measured response. Two types
of models are used to represent the control system.

1) Local model: The model is linear about the current control value.

Zn = Zn−1 + Tn−1 (θn − θn−1) (8.126)

2) Global model: The model is linear for the composite range of the control.

Zn = Zo + Tθn (8.127)

The n characterize the time step, tn = n�t, where �t is assumed to be large
enough so that any transient has settled (say one or two rotor revolutions). The
local model is more general and is quite applicable for nonlinear conditions since
T is linearized about the current control value and the range of �θn = θn − θn−1

is assumed small. For the local model, the T matrix is identified in each time-
cycle (n). For the global model, there are three possibilities: (i) identification of
the T matrix only, (ii) identification of the uncontrolled response vector Zo only,
and (iii) identification of both the T matrix and the vector Zo. For the open-loop
controllers, the input controls are based on the uncontrolled response Zo, whereas
for the closed-loop controllers, the input controls for any time-cycle n are based on
the measured response from the previous cycle Zn−1. The controllers are further
subdivided into two categories: (1) off-line identification where the characteristics of
the control system (T and Zo) are identified initially and are assumed invariant, and
(2) on-line identification where the characteristics of the control system are updated
continuously in each time-cycle. The first category of controllers are applicable to
the global model and the control gains are fixed. The second category of controllers
are applicable to both global and local models, and the control gains vary with time.

The quadratic performance function J is typically expressed as

J = ZT
n WzZn + θT

n Wθθn + �θT
n W�θ�θn (8.128)

where Wz, Wθ and W�θ are the weighting matrices for the response, pitch controls,
and pitch control rates, respectively. These matrices are typically diagonal. For
example, the elements of the Wz matrix provide relative weighting to the response
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(vibration) harmonics, and setting any one of these diagonal elements to zero results
in unconstraining the corresponding vibration harmonic. The weighting matrix Wθ

constrains the amplitude of input control harmonics, which in turn helps to regulate
the stroke of the actuators. The weighting matrix W�θ constrains the control rate,
which in turn helps to reduce control (actuators) excursions. This is important from
the actuator hardware point of view and generally stabilizes the feedback system. A
large value on the diagonal of W�θ results in control sluggishness.

Let us consider a simple case:

Wz = I (unit matrix) (8.129)

Wθ = 0 (8.130)

W�θ = τI (8.131)

where τ is the time constant of the control lag. If this has a large value, it slows down
convergence to the optimal control condition. The optimal control input is obtained
from the minimization of the performance function J with respect to each control
harmonic,

∂J
∂θn

= 0 (8.132)

for each component θn. This provides

θn = θn−1 + CZn−1 (8.133)

where the gain matrix C is given by

C = −DT T Wz (8.134)

and

D = T T WzT + W−1
�θ (8.135)

For the global model, the input control solution can take the following form:

θn = CZo + C�θθn−1 (8.136)

where

C�θ = DW�θ (8.137)

This form is applicable to the open-loop case and the input controls are functions
of the uncontrolled response Zo. For the closed-loop case, the optimal controls are
obtained using the first form and for the nth time cycle, these are a function of the
feedback of response from the previous cycle Zn−1.

Off-Line Identification: The helicopter model (T matrix) and response (Z) are
identified offline using a succession of input and output measurements. This is a
key part of the study for both off-line and on-line identification control schemes.
For online identification, a good initial estimate of model characteristics helps enor-
mously in stability and convergence to the steady state solutions. The input control
vectors used for off-line identification are generally randomly selected, and criteria
should be such that the generated output responses are within stress limits. The larger
the output response amplitude, the smaller will be the influence of measurement
noise. A set of N measurements is made using a prescribed schedule of independent
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control inputs (random), and the T matrix is identified using the least-squared-error
method:

T = ZθT (θθT )−1 (8.138)

where θ = [θ1, θ2, . . . θN] is the vector of control inputs. The minimum number of
measurements N must be at least equal to the number of control input harmonics;
typically N must be 2–3 times this minimum value.

On-Line Identification: The T matrix and response Z are continuously updated
in each cycle of time. This is normally carried out using a Kalman filter estimation.
Let us consider that there are j measurement response harmonics and m control
harmonics, then the dimension of transfer function T is j × m. In any particular
time cycle n, we take j concurrent response measurements, and we wish to identify
the T matrix with j × m elements. It is not possible to identify the elements of T
matrix directly because the number of unknown quantities far exceeds the number
of measurements. Through the Kalman filter, the T matrix is divided into j states
(number of columns); a prior estimate of each state is made at the time of measure-
ment, and then the estimation is updated using the current measurement. The j th
measurement vector can be written as

Zjn = θT
n tjn + νjn (8.139)

where tj is the j th row of the T matrix and νj is the measurement noise, which is
typically assumed to be Gaussian with zero mean. The variation of state tj is assumed
to be

tjn+1 = tjn + ujn (8.140)

where uj is the process noise, which is also assumed to be Gaussian with zero mean.
The variances of noise levels are defined as

E(νn, νi) = rnδni (8.141)

E(un,ui) = Qnδni (8.142)

where r and Q are the covariances of measurement noise and process noise respec-
tively. Using a Kalman filter solution, an estimate of tj at the nth time cycle is based
on current measurements and an estimate of tj at the (n − 1)th time cycle. The
Kalman filter gives a minimum error variance solution:

t̂jn = t̂jn−1 + Kn(Zn − θT
n t̂jn−1 ) (8.143)

where

Mn = Pn−1 + Qn−1 (8.144)

Pn = Mn − Mnθnθ
T
n Mn/(rn + θT

n Mnθn) (8.145)

Kn = Pnθn/rn (8.146)

where Mn is the covariance of the error in the estimate of tn before the measurement,
and Pn is the covariance of the error in the estimate tn after the measurement. The
elements of Q represent the variation of the actual t from the estimated one. For
changing flight conditions, t is expected to vary rapidly; hence, Q should be large.
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However, a large value of Q can slow the convergence process. One has to try a few
different values of Q to obtain the proper value that makes the results acceptable.
The rn represents the measurement error due to the sensor. Again, a meaningful
value has to be assigned to rn. To start the process, a large value on the diagonal
matrix of P is assigned initially. For details, see Chopra and McCloud [157], and
Johnson [158].

Johnson [158] classified these frequency-domain higher harmonic controllers
into four types. The first is the invariant open-loop controller, where the model
properties (transfer functions) are identified off-line and input controls are based
on the uncontrolled response. The second one is the invariant closed-loop con-
troller, where the model properties are identified off-line and the input controls are
based on feedback of the measured output. The third one is the open-loop adaptive
controller, where the control inputs are based on identified uncontrolled vibration
rather than on measured outputs. This type of controller can use on-line identifi-
cation of uncontrolled vibration only or can use on-line identification of both the
uncontrolled vibration and the transfer function. The fourth type is the closed-loop
adaptive controller, in which the model properties are identified on-line and the
controls are based on feedback of measured output. This type of controller can use
both local-linear and global-linear models.

8.7 Shape Memory Alloy Actuated Tracking Tab for a Helicopter Rotor

An untracked rotor system is a common source of large 1/rev vibrations in heli-
copters. Small dissimilarities in structural or aerodynamic properties of the blades
created during the manufacturing process, or occurring as a result of wear, result in
the rotor system going out of track (i.e., the motion of each blade tip lies in a differ-
ent plane). The masses of the blade are closely matched by adding small masses at
specific locations on the blade. However, the aerodynamic properties of the blade
can only be modified by small variations in the root pitch of the blade by means of
adjustments in the lengths of the pitch links, or by special devices known as tracking
tabs. These are small aerodynamic surfaces located at the trailing edge of the blade,
at approximately 75% of the blade span. Small differences in aerodynamic loads
are created by mechanically bending the tracking tabs to specific angular positions
specified as needed by the blade manufacturer. The conventional procedure for
rotor tracking is a ground based method requiring manual adjustment of tracking
tabs and pitch links. The difference in tip path plane between the rotor blades is
measured while the rotor is spinning. The rotor is then stopped and tracking tabs
and/or pitch links are manually adjusted. Because a small change in the length of
the pitch link can result in a large change in overall aerodynamic loads of the blade,
fine adjustment of the tracking is often performed using the tracking tabs alone. This
procedure is repeated on a trial and error basis until the rotor is tracked to a suffi-
cient accuracy. The conventional rotor tracking procedure is both time consuming
and expensive. Large savings in maintenance costs can be achieved by automating
the tracking procedure.

A few researchers [159, 160] have examined methods to replace the current
manual tracking procedure with an on-blade tracking mechanism capable of deflect-
ing a tracking tab in-flight. It is anticipated that an on-blade tracking system would
effectively replace manual tracking operations and thus reduce operation errors,
helicopter downtime, maintenance time, and associated costs. Actuators based on
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high energy density smart materials are ideally suited to this application because
of severe volumetric constraints and low allowable weight penalties associated with
mechanisms mounted on a rotor blade.

Actuators based on Shape Memory Alloys (SMAs) are particularly relevant to
this application. The relatively large output force and stroke capability offered by
SMAs enables the design of simple actuation mechanisms. This is in contrast to
complicated designs requiring gear reduction or motion amplification when employ-
ing conventional materials or other active materials, such as piezoelectrics. Low
actuation voltages, low costs, and a reduced number of moving parts are additional
advantages associated with an SMA actuator. Because tracking operations need not
be conducted at high frequencies, the low bandwidth of SMAs is more than adequate
for this application.

Tab actuation systems implementing SMAs, which have been built and/or tested
in the past, have demonstrated the anticipated advantages of these materials. These
actuation systems may be broadly classified under two types, based on their deflection
mechanism:

1. Torsional tubes/rods – Actuators implementing torsional tubes/rods develop
rotational strains and moments, that are directly transmitted to the tracking
tab. A preliminary study exploring the feasibility of on-blade SMA torsional
actuators [161] and an experimental bidirectional actuator consisting of two
antagonistic SMA torsional tubes [162] have been reported. Due to their large
thermal inertia, torsional actuators require external heating and cooling systems
for activation. The large volume occupied by these heating and cooling elements
may impede the integration of the entire system into the confined space in a rotor
blade section.

2. Wire actuators – The extensional strains of SMA wires are translated into a
rotational motion of the tracking tab. Tab actuators employing SMA wires have
been designed for operation in a hydrofoil [163] and for rotor blade track-
ing [164, 159]. In contrast to torsion tubes, wires demonstrate a much smaller
thermal inertia. This property permits faster thermal actuation of SMA wires.
Additionally, internal resistive heating of the wires eliminates the need for bulky
external heating mechanisms. Consequently, SMA wire based actuators can be
easily integrated into the blade section.

The design, analysis and testing of a tracking tab actuated by SMA wires [160]
is described in the following sections.

8.7.1 Actuator Design Goals

The parameters for designing the tracking tab actuator evolved from the angular
deflections and loads that were estimated to be experienced by the tracking tab,
during operation on the rotor blade. Previous studies [161, 162] report a quantitative
estimate of the structural and environmental conditions the actuator must operate
in, sized for a Boeing MD900 helicopter (Weight 6,250 lbs). Based on these studies,
the goals for the actuator were determined and are summarized in Table 8.5.

As far as possible, the actuator should conform to a weight of less than 1 lb,
tab deflection of ±5◦, angular resolution of ±0.1◦, output and braking moments (to
overcome hinge moments due to aerodynamic and rotating frame loads) of 4.0 in-lbs,
and a duty cycle of 20 cycles/hr. It was planned to test the mechanism integrated
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Table 8.5. Tracking tab actuator goals

Prameters Goals

Actuator stroke ±5o

Resolution ±0.1o

Braking Moment 4.0 in-lb
Actuator weight <1 lb
Actuator dimensions 10 in. × 8 in. × 1 in.
Duty cycle 20 cycles per hour
Temperature Range −60 to 160 F

in a 12 in. chord NACA 0012 blade section, and therefore the entire actuator must
be capable of meeting geometric design requirements imposed by space limitations
of the blade profile. These spatial constraints were established to be a thickness
dimension of 1.4 in. at the quarter chord section and 0.8 in. at the location of the
hinge tube. The system should be capable of withstanding aerodynamic and rotating
frame loads expected to be encountered near the 75% radius of the blade. However,
for the model tested in the laboratory, the focus was on the behavior of the SMA
actuator, and only testing under aerodynamic loads in a wind tunnel was planned.
Consequently the mechanism was not designed to operate under centrifugal loads.
Temperature, force (moment) and position (angle) sensors must be located on the
tab assembly, providing feedback to a position control mechanism. Additionally, the
tab deflection must be sustained under a power off condition.

8.7.2 Construction and Operating Principle

The basis of the actuation system is the antagonistic operation of two sets of SMA
wires. Fig. 8.69 schematically illustrates the principle of operation. The upper and
lower wires are fixed rigidly at one end and are connected to a rotating hinge tube
at the other. They are both given an equal tensile prestrain, and are insulated from
one another, both thermally and electrically. The wires are resistively heated and
convectively cooled. To deflect the tab upward, a current is passed through the
upper set of wires. This results in heating of the upper wires, which then undergo
a phase transformation and try to recover their prestrain. Consequently, the upper
wires contract by a certain length, while extending the lower set of wires by an equal
length. This action results in a rotation of the hinge tube and an upward deflection
of the tab. Deflection of the tab in the opposite direction is accomplished by passing
a current through the bottom set of wires alone.

LA (Heated)

θ = (LA-LB)/rhtFr

LB (Room temperature)

Fr

Figure 8.69. Schematic of operation of bidirectional SMA wire actuator.
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supports

Potentiometer

Figure 8.70. Tab actuation system components.

The deflection of the tab is given by,

θ =
(

Loεr

rht

)
(8.147)

where Lo is the initial length of the wire segments, also refered to as the length of
the wires, εr is the strain in the wires and rht is the radius of the hinge tube.

The primary elements that comprise this actuator are the SMA wires and clamp-
ing mechanism, a prestrain mechanism, a passive friction brake to maintain position,
and a position controller. A schematic diagram of the various components of the
actuation system can be seen in Fig. 8.70.

SMA Wires and Clamping Mechanism

The SMA wires used were of commercially procured Nitinol (Ni-51%,Ti-49%) mate-
rial. The diameter, length and number of wire segments used will be discussed in
Section 8.7.5 describing the parametric design of the actuator. The clamping mech-
anism assembly was designed to restrain one end of the SMA wires near the main
spar of the blade while allowing the other end to freely translate along the chord
of the blade section. The assembly consists of two pairs of stainless steel clamps,
of which one pair is rigidly bolted to the main spar. The linear motion of the aft
clamp is transmitted to the hinge tube, resulting in deflection of the tab. Each clamp
pair comprises of two 1/8 in. thick stainless steel plates, with dowel pins embedded
between them. The wire is wound around the dowel pins and back again in a manner
such that each wire could be fixed at one end of the clamp. The purpose of this
configuration is to effect force multiplication in the system due to the multiple SMA
wire segments acting in parallel. However, the use of one SMA wire wound around
the dowel pins results in an equal distribution of the tension in each segment, min-
imizing transverse loading on the mechanism. Fig. 8.71 shows schematic details of
this clamping mechanism.
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Figure 8.71. Clamping mechanism.

Prestrain Mechanism

The clamp output motion is transmitted to the tab through a pair of linkages. These
consist of a pair of oppositely threaded rod-ends, connected to a threaded turn-
buckle. The rod-ends are attached to the movable clamp at one end and the rotating
hinge tube at the other end. These turnbuckles have multiple roles to play in this
design. In addition to transmitting the linear motion of the wires to the tab, they
provide a convenient method of prestraining the wires after assembly, by rotating
the turnbuckles through a set number of turns.

Locking Mechanism

A locking device is necessary in order to maintain the tab position without further
supply of power once the desired tracking position is acquired. The recovery of a
small amount of elastic strain upon unloading the SMA wires also necessitates the
presence of a locking device to prevent a change in the angle once the heat activation
is stopped.

The main specification for the lock is that it must allow for rotation in both
directions as well as hold the hinge tube in position without slipping, under external
loading. Several active friction brake designs employing piezostacks, electrostric-
tives, and SMAs were experimented with. Eventually a passive friction brake was
selected as the final design. The passive brake consists of a shaft collar, rigidly
mounted on the rib and around the shaft. A torque wrench is used to tighten the
collar to the required frictional braking moment. For actuation moments exceeding
this braking moment, the hinge tube undergoes rotation.

Position Feedback Controller

Closed loop control was required to demonstrate the capability of the actuator to
accurately deflect a tracking tab to the commanded input position. A closed-loop
PID controller was implemented using a LabViewTM Virtual Instrument, which
performed functions of both data acquisition and control. The inputs to the controller
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Table 8.6. PID control gains

Proportional Gain, KP 1.28
Derivative Gain, KD 8.0
Integral Gain, KI 0.051

were the tab position measured by a rotary potentiometer and the desired tab
position, or setpoint. The error signal, Verr was calculated as the difference between
the measured tab position and the setpoint. In the actuated state, the output of the
controller was a voltage, u(t), as defined by the classical PID control law [165],

UPID = KPVerr(t) + KDV̇err(t) + KI

∫
Verr(t)dt. (8.148)

where KP, KI and KD are the proportional, integral and derivative gains respectively.
These gains were determined for the present system by the Ziegler-Nichols method
[165] and are tabulated in Table 8.6. A small deadband �dead was introduced in the
controller, such that

u(t) = 0 if Verr ≤ �dead (8.149)

u(t) = UPID if Verr > �dead (8.150)

The deadband ensures that the output control voltage is zero when the tab
position reaches the desired position within the acceptable error margin. The output
voltage serves as an input to a power Metal Oxide Semiconductor Field Effect
Transistor (MOSFET) driver that is connected to both sets of SMA wires. The sign
of the output voltage determines which set of wires were to be actuated. It should
be noted that for the sake of simplicity of the driving electronics, the control voltage
u(t) is the gate-source voltage, VGS of the output MOSFETS to which the SMA wires
were connected.

8.7.3 Blade Section Assembly

A NACA 0012 blade section of 12 in. span and 12 in. chord section was fabricated.
The actuator was mounted into this blade section. The fabricated blade consists of
a foam core, trailing edge tab and actuator assembly with spar and ribs to provide
structural integrity. Teflon spring bushings are embedded at the 72% chordwise
position and provide mounting points for the rotating hinge tube.

The tracking tab is embedded in the planform of the blade section and has a
dimension of 4 in. span and 3.4 in. chord. This is in contrast to existing tracking tab
designs where the metal tab is typically 12–18 in. in span and projects out of the
blade nominal planform. The motive for selection of the present configuration was
primarily ease of fabrication. Fig. 8.72 shows some of the important features of the
actuator assembly installed in the NACA 0012 blade profile.

8.7.4 Modeling of the Device

A mathematical model of the device is developed implementing the thermome-
chanical response of the SMA wires under applied stress and temperature. From
the theoretical model of the device, a parametric design study can be performed to
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Clamps

SMA
Wires

Potentiometer

Figure 8.72. Tracking tab system installed in NACA 0012 blade profile.

determine the optimum length of SMA wires and the number of segments required
to achieve the force and stroke specifications.

The force acting on the active, or heated, SMA wire as a function of its displace-
ment is shown in Fig. 8.73(a). This diagram depicts the physical constraints imposed
on the active wire. During the initial part of activation, marked by the line OA, the
wire acts only against the friction brake. At the point A, the brake starts slipping, and
force is transmitted to the inactive, or cold wire. The portion of the curve AB is the
force-displacement characteristic in the martensite region of the inactive SMA wire,
which behaves like a nonlinear spring attached to the active wire. The corresponding
stress-strain behavior of the wires is shown in Fig. 8.73(b).

For the sake of brevity in this discussion, the upper, heated wires are referred
to as wire A and the lower wires, kept at room temperature, are referred to as wire
B. For this analysis, the equations of motion are coupled with the transformation
kinetic equations based on Brinson’s model [166], applied to a one dimensional SMA
wire.

Force

Displacement

cold SMA wire

passive friction brake

O

A B

(a) Constraints imposed on the active SMA
wire upon heat activation
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Figure 8.73. Modeling of the SMA wire.
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The constitutive equation for an SMA wire is given by the following equation:

σ − σo = E(ξ)ε − E(ξo)εo + �(ξ)ξs − �(ξo)ξso (8.151)

where by definition,

�(ξ) = −εLE(ξ) (8.152)

The stress and strain compatibility conditions define the states of the system during
actuation. For wire A and wire B these are given as,

xA = −xB

F A = F B + FF

(8.153)

The basic steps of actuation are explained below:

1. Prestrain Step: The prestraining method specifies the initial conditions of the
SMA wires, prior to heating. This is illustrated on the stress-strain curve in
Fig. 8.73(b) as the dotted line (OP’). Both wires are prestrained equally to
ensure symmetric operation. The initial conditions are defined as,

εA
o = εB

o = εo (8.154)

σA
o = σB

o = σ(εo) (8.155)

The following approximation is made in the model, in order to define the initial
volume fraction of the material,

ξSO = εo

εL
(8.156)

2. Heating – Zero Tab Deflection Condition: Wire A is heated (M → A transfor-
mation) and undergoes constrained recovery until the stress in A overcomes the
stress σf corresponding to the frictional moment (path P’P in Fig. 8.73) and is
mathematically given by Eq. 8.151. In this state there is no change in stress or
strain of wire B (point P’) as the following stress condition holds,

σA − σB < σf (8.157)

3. Heating – Tab Deflection Condition: As the temperature of the wire rises, the
transformation to austenite introduces stress in wire A to a level sufficient to
overcome the frictional force. The actuating wire A is now able to exert a stress
on wire B represented by,

σA = σf + σB (8.158)

The strain developed in each wire is symmetric with respect to the prestrain εo,

εB = εB
o + εr

εA = εA
o − εr

(8.159)

The fundamental difference in the state of the two wires is represented in the
differing volume fractions of the two wires,

ξB = 1

ξA = ξ(T A, σA, εA) → 0
(8.160)
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The transformation kinetic equations as developed by Brinson’s model, define
the martensite fraction for the two wires. Newton-Raphson’s iterative technique
is applied to solve Eqs. 8.151 to 8.159 simultaneously with the transformation
equations with the objective of determining the thermomechanical parameters
for the system.

The moment at the shaft in the counter clockwise direction is,

τ = (σA − σB) πd2
o

4
Nwirerht (8.161)

where Nwire is the number of wires, or in this particular configuration, the number
of wire segments acting in parallel. The strain recovery condition results in a
deflection of the tab given by Eq. 8.147.

8.7.5 Parametric Studies and Actuator Design

Using the model described above, a parametric study can be conducted to determine
the optimum length and diameter of SMA wire and the number of segments, based
on the given constraints of the system. The results of this parametric study can be used
as a design tool. In addition to the specified force and stroke requirements, several
physical constraints exist that must be considered in the design of the actuation
system. The ultimate objective is to integrate the actuator assembly into a 12 in.
chord NACA 0012 blade section and to achieve a deflection of ±5◦ at a wind speed
of 120 ft/sec (Mach number 0.107) at an angle of attack of 15◦.

The actuator parameters identified are classified by their influence on either the
angular deflection or actuation moment. The influence of actuator parameters on
the output can be seen from Eqs. 8.147 and 8.161. The initial length of wire (Lo),
radius of hinge tube (rht) and maximum recoverable strain (εr) directly influence the
angular deflection (θ). The maximum recoverable strain (εr) is in turn a function
of the prestrain imparted to the wires (εo). The parameters affecting the actuation
moment (τ) are the diameter of the wires, (do), radius of hinge tube, (rht) and the
number of wire segments (Nwire).

The basis for selection of various design parameters is discussed below:

Output Goals

The tab actuator goals are described in Section 8.7.1 and summarized in Table 8.5.
The maximum aerodynamic hinge moment acting on the tracking tab can be esti-
mated using a simple quasi-static model [160]. A quasi-steady analysis is considered
sufficient for this application as tab deflections occur at a frequency of less than 1
Hz. Because only testing in a wind tunnel is planned, centrifugal loads need not
be included in the calculations. From the predicted hinge moments, the actuator
stroke/force capability is calculated for the design configuration described in Sec-
tion 8.7.2. The expression for the total hinge moment H for a simple blade section
with a plain flap is given by:

H = 1
2
ρV 2c2

f lf

[
Clα

dCh

dCl

(
αo + �α

�δ
δ

)
+ dCh

dδ
δ

]
(8.162)

where cf is the flap chord, lf is the flap length, and δ is the flap deflection angle. dCh
dCl

and dCh
dδ are obtained as a function of the ratio of flap chord to total chord, ( cf

c ) [167].
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Note that Eq. 8.162 represents a steady hinge moment necessary to maintain a
given tab deflection angle. From this equation, a hinge moment of 0.85 in-lbs is
calculated for maximum loading conditions described above. Because a power off
hold is required at the maximum loading condition, the braking moment τf is set
equal to the maximum hinge moment. This requirement sets the braking moment to
be 0.85 in-lbs.

Material Constraints

The deflection angle is a function of the recoverable strain, which in turn is a function
of the prestrain imparted. The material itself imposes a restriction on the maximum
prestrain that can be applied. For the SMA wire selected, this prestrain is set at 2.5%
and a wire diameter is 15 mil. The wire diameter is selected based on the availability
of material data (characterized in-house by Prahlad & Chopra [168]).

Geometric Constraints

The volume inside the blade section places severe constraints on the dimensions of
the actuator. The hinge tube is located at the 72% chord location of the 12 in. chord
NACA 0012 blade section. A spar is located between 10% and 30% chord. A major
constraint on the actuator size is imposed along the thickness direction, which ranges
from 1.2 in. to 0.85 in. depending upon the chordwise location. As a result, the hinge
tube radius (rht) is limited by the space available at the 72% chord location, which
fixes this parameter at 0.35 in. The wire length (Lo), although constrained by the
available chordwise dimensions, does allow a certain margin of variation, between
3.4–3.7 in. The number of wire segments, (Nwire), may vary over a fairly large range
(2–20 wires for the present configuration). Consequently, this forms an important
control parameter.

8.7.6 Results of Parametric Studies

The effect of varying the key parameters, wire length (Lo) and the number of
wires (Nwire) is discussed below. The influence of varying these parameters is then
quantified in terms of wind speed. Although the braking moment is set by the power
off hold requirements, it is interesting to explore the effect of that parameter as well.

1. Frictional braking moment τf : This has a direct impact on the actuator output.
It is observed that the required actuation moment increases as the frictional
moment to be overcome increases, while the range of available angular deflection
decreases. This trend is shown in Fig. 8.74, where the effect of increasing external
loading moment is plotted.

2. Number of wires, Nwire: Fig. 8.75 shows the influence of increasing the number
of wires on the actuator output characteristics. The other control parameter,
wire length (Lo), is kept constant during calculations for this specific case. From
Eqs. 8.147 and 8.161, it is evident that an increase in Nwire increases the maxi-
mum actuation moment while it has no effect on maximum angular deflection.
The wind speeds the actuator could operate at are shown in Fig. 8.75. It should
be noted that the actuator must deflect the tab under both the air loads and
the braking moments that are required to overcome the air loads. As a result,
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the force capability of the actuator must be atleast twice that required for over-
coming the air loads. The horizontal lines in Fig. 8.75 define the maximum wind
speeds for effective operation of the passive brake, including the effect of the
required braking moments. From this figure it can be concluded that tab actu-
ation under higher wind speeds (higher air loads ) is possible by increasing the
control parameter (Nwire).

3. Length of wire, Lo: In Fig. 8.76, the effect of varying the wire length Lo is
examined, while maintaining the number of wires (Nwire) constant. The increase
in Lo increases maximum angular deflection, while it does not influence the
maximum actuation moment. This trend is quantified in terms of actuation wind
speeds in which the actuator can operate.

It is worth noting that based on the parametric plots and the fact that there is
a limited scope for varying the parameter Lo, the number of wires Nwire becomes
a key parameter in the design of the actuator. The final set of parameters selected
are tabulated in Table 8.7. An increase in the number of wires is possible by simply
scaling up in the spanwise direction without increasing the chordwise or thickness
dimensions. Therefore, to achieve the force-deflection requirements of a full scale
blade section, the present actuator dimensions need only be increased in the spanwise
direction.

τf = 6.7 in-lb

Nwire = 14

Nwire = 2

τf = 2.6 in-lb

τf = 0.85 in-lb

τf = 0.11 in-lb

Figure 8.75. Influence of number
of wires, Nwire, on actuator charac-
teristics (wire length = 3.6 inches).
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Figure 8.76. Influence of length
of the wire,Lo, on actuator char-
acteristics (Number of wires =
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8.7.7 Testing and Performance of the System

Open loop experiments were conducted on the system in order to validate the
analytical model. ‘K’ type thermocouples were used to measure the temperature of
the two sets of wires. The tab deflection angle was measured using a three-quarter-
turn 10k� potentiometer, and the force was measured by means of strain gauges
bonded to the turnbuckles. In these tests, the wires were heated using a Hewlett
Packard 6642-A DC, set at an output current of 3 Amps. The heating rate was
maintained at approximately 0.5◦ F/sec. This corresponded to a strain rate of 0.0004
/sec during the heat activation cycle, while the opposing wire was maintained at room
temperature. Experimental results were recorded over a period of 600 seconds. The
power requirements of the actuator were calculated based on the maximum voltage
and current requirements over the complete testing time and were found to vary
over a range of 3–4.5 W.

Fig. 8.77(a) shows a comparison of predicted wire temperature with test data for
zero braking moment. Fig. 8.77(b) shows the predicted output moment as a func-
tion of tab deflection for different braking moments, compared to experimentally
measured values. To estimate the braking moments, the setting on the friction brake
was calibrated with a torque wrench. For each set of tests the friction imparted by
the brake was incremented by adjusting the screw according to the calibration. The

Table 8.7. Design parameters for constructing actuator

Length of SMA wire Lo 3.6 in
Diameter of wire do 0.015 in
Radius of hinge tube rht 0.35 in
Braking moment τf 0.85 in-lb
Range of tab deflection θmax ±5o

Number of wires Nwire 12
Input power P 3–4.5 Watts
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Figure 8.77. Validation of analytical model.

maximum deflections and moments achieved were then compared with the analytical
results as shown in Fig. 8.77(b).

It is observed that the model captures the actuator behavior fairly well. A reason
for the discrepancies between the model and experimental data could be the assump-
tion that the brake is a quasi-static friction generating element. In reality, static and
dynamic friction are different, and careful testing is required to develop precise
models. This might account for the over-prediction of strains at higher frictional
moments.

Closed loop tests were performed to assess the capability of the actuator to accu-
rately deflect the tracking tab in response to commanded inputs. The position control
system discussed in Section 8.7.2 was implemented to test closed loop performance
both on the bench-top and in an open jet wind tunnel.

The control system was implemented on a Windows-NT based Pentium III,
450 MHz computer equipped with a National Instruments, PCI-6031E, 16 bit DAQ
card. The controller was programmed using LABVIEWTM 5.1. Five input channels to
the DAQ measured temperature and angular rotation of the tab, while the actuating
signals to the wires were sent through two output channels. The sampling period
of the DAQ system was selected to be 1.5 seconds, which was determined to be
adequate for these quasi-steady tests.

The bench-top tests were conducted under zero load and under simulated exter-
nal loads. For the simulated loading case, a dead weight was mounted at the tip of
the tab, perpendicular to the blade chord. The maximum moment imparted was 0.85
in-lbs, corresponding to the maximum loads anticipated in the open jet tunnel (at
120 ft/sec, and angles of attack α = 0◦ and α = 15◦).

Fig. 8.78 plots steady-state error in tab angle for all the wind tunnel test cases.
The horizontal dashed lines indicate the deadband in the controller. Steady-state
error was less than 0.05◦ for all the tested wind speed/angle-of-attack cases. It should
be noted that although the system is highly nonlinear, the PID controller achieved
good results for all tested loading conditions with a constant set of control gains.
However, if better tracking performance is desired at specific loading conditions,
the control gains may be changed as a function of the operating condition to yield
optimum overall performance.
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α = 0o

α = 15o

Figure 8.78. Influence of wind speed and angle of attack on actuator steady-state error for
tracking input of 5◦.

Fig. 8.79 plots time histories of the tracking response at a wind speed of 120
ft/sec and an angle of attack of α = 15◦. The commanded signal θSET is indicated
by the dashed line in these plots, while the tab response θTAB is the solid line.
Similar to this time trace, it was observed that the system exhibited zero overshoot
for all cases, regardless of loading. There exists, however, a definite trade-off in
the overall closed-loop response characteristics of the system. This is evident when
evaluating the excellent overshoot characteristics in conjunction with large rise and
settling times, which are on the order of 200 seconds for almost all wind loading
conditions. It is possible to reduce these characteristic times, but this will result in a
degradation in output overshoot behavior. The closed loop system response may be
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Figure 8.79. Time trace of the tracking response for tab up and down inputs of 5◦, at a wind
speed of 120 ft/sec and α = 15◦.
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controlled by tuning the PID control system gains according to the desired closed
loop characteristics.

8.8 Tuning of Composite Beams

Embedding SMAs into composite structures offers the capability to tune the prop-
erties of the structure. This capability has been used in a variety of applications to
enhance the functionality of the structure. SMA wires have been used to alter the
natural frequencies of composite structures in several studies [169, 170, 171]. Epps
and Chandra [170] presented an experimental-theoretical study on the active tun-
ing of graphite-epoxy rectangular-solid section beams with SMA wires inserted in
embedded sleeves and showed a 22% increase in the first natural frequency using
one 20 mil diameter wire. The volume fraction of SMA wires in this configura-
tion was 2%. Good correlation between theory and experiment was achieved in
this study. Note that the SMA wires were separately clamped, and they act as an
elastic foundation for the parent beam. Upon heating, the spring stiffness of the
elastic foundation increases and as a result, the natural frequency changes. Baz,
Imam and McCoy [172] also conducted a study on the active vibration control of
flexible beams. Experiments were conducted on flexible beams with SMA wires
mechanically constrained on the exterior of the structure. The recovery force due to
mechanically-constrained, heated, prestrained SMA wires was used to demonstrate
active vibration control. In such an application, external access to the substructure
becomes essential. For many aerospace structures like rotor blades, it may not be
possible to use this configuration.

In addition to the possibility of tuning the dynamic properties of the struc-
ture, SMA-embedded composites also offer advantages such as structural damping
augmentation [173], controlling the buckling in a thin structure [174], structural
acoustic transmission control [175], and delay in the fracture of composites due to
fatigue and low velocity ballistic impact [176]. When combined with the advantages
of structural tailoring offered by composites, embedded SMAs provide enhanced
flexibility in design. In another study, Baz et al. [177] inserted SMA wires into
flexible beams with sleeves to control their buckling and vibration behavior. As
a typical example of a structure with embedded SMAs, the fabrication, testing,
and analysis of a composite beam with embedded SMA wires is described in this
section.

8.8.1 Fabrication of Composite Beams with SMA in Embedded Sleeves

Fig. 8.80 shows a schematic of the mold and lay-up for fabrication of a composite
beam with SMA wires embedded in sleeves. The function of the sleeves is to transmit
the recovery force generated by the SMA wires to the ends of the beam. This is
equivalent to applying an external axial force, Fr, to the beam (Fig. 8.81), resulting
in a change in its bending frequencies.

The sleeves are formed by silica tubes, which can withstand the high curing
temperature of the composite material and have a low coefficient of friction. Steel
wires are inserted in the sleeves during curing of the beams to maintain their inner
diameter. After the material is cured, the steel wires are replaced by pre-strained
SMA wires that are clamped to the ends of the beam with appropriate fixtures. The
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Figure 8.80. Schematic of mold for
fabrication of composite beam with
embedded sleeves.

resulting graphite-epoxy beam of solid rectangular cross-sections with embedded
SMA wires is shown in Fig. 8.82.

8.8.2 Dynamic Testing of Composite Beams with SMA Wires

The composite beams were tested for their bending frequencies under clamped-
clamped boundary conditions. This set-up was enclosed by a plexiglas chamber in
order to minimize external temperature effects on the wire. Fig. 8.83 shows the set up
for a clamped-clamped beam test. For this test, two piezoceramic elements bonded
on opposite faces at the root of the beam were excited with equal but opposite
voltage to induce a bending moment. Strain gauges located on the piezoelements
and the beam surface were used to measure the structural response. Fig. 8.84 shows
a cross-section of the beam with the piezoelements bonded to the beam. Natural
frequencies of the beam were obtained by exciting the piezoelements with a swept
sine wave and examining the resulting strain on the beam as a function of frequency.

8.8.3 Free Vibration Analysis of Composite Beams with SMA Wires

In the case of a composite beam with SMA wires inserted in it via sleeves, the
activated SMA wire behaves like an elastic foundation that is represented by a series
of springs. The governing equation of an uniform composite beam on an elastic
foundation undergoing transverse bending vibration is:

m
∂2w

∂t2
+ EI

∂4w

dx4
+ k(x)w = 0 (8.163)

where m = mass per unit length of beam
EI = bending stiffness of beam
w = transverse displacement of beam
k(x) = spring constant of activated SMA wire

SMA Wire

Sleeve

Fr

Fr

Fr

Fr

Clamp

2Fr 2Fr

Figure 8.81. SMA recovery force acting as an external axial force.
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SMA wires

Composite

Figure 8.82. Composite beam with embed-
ded SMA wires.

This equation is solved using Galerkin’s method and the transverse displacement
w is assumed as:

w(x, t) =
n∑

i=1

Wi(t)φi(x) (8.164)

where φi are beam functions. For a clamped-clamped beam, the beam functions φi

are given as:

φi = sinh
λix
l

− sin
λix

l
− αi

(
cosh

λix
l

− cos
λix

l

)
(8.165)

where

αi = sinh λix
l − sin λix

l

cosh λix
1 − cos λix

l

(8.166)

and λ1 = 4.730041, λ2 = 7.853205, λ3 = 10.995608 and so on. Applying Galerkin’s
method, the following differential equation in the time domain is obtained.

[M]Ẅ + [k]W = 0 (8.167)

where

{W} = {W1, W2, W3 . . .Wn}T

kij = EI
I4

λ4
i + Iii

l
; kij = 0 for i �= j

Iii =
∫ 1

0
k(x)φ2

i dx

Mii = m, Mij = 0, for i �= j

l = length of beam

TABLE

SMA wire
piezo element

strain gauges

sleeve

composite beam
clamps

piezo-
element

Figure 8.83. Vibration testing of composite beam with embedded SMA wires.
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Figure 8.84. Cross-section of a com-
posite beam with copper sheet and
piezo actuator.

The natural frequencies are obtained as

ωi =
√√√√[EI

m

(
λi

l

)4

+ Iii

ml

]
(8.168)

The spring constant k(x) is derived in the following section.

8.8.4 Calculation of the Spring Coefficient of SMA Wire under Tension

The governing equation of a SMA wire under tension, subjected to transverse load
q (Fig. 8.85) is:

Fw,xx +qδ(x − ξ) = 0 (8.169)

where F = recovery force in the wire
q = transverse force
δ(x − ξ) = Dirac delta function centered at x = ξ

Integrating Eq. 8.169 twice with respect to x,

Fw + qr(x − ξ) + Ax + B = 0 (8.170)

where contants A and B are determined by enforcing the boundary conditions, and
r(x − ξ) is the unit ramp function. The boundary conditions at clamped ends are:

w(x = 0) = w(x = l) = 0 (8.171)

Using the boundary conditions (Eq. 8.171) in Eq. 8.169, the deflection w is:

w = q
F

[x
l

r(l − ξ) − r(x − ξ)
]

(8.172)

The spring constant k per unit length of the beam is defined as

k(ξ) = q
w(x = ξ)l

(8.173)

Using Eq. 8.172, the spring constant becomes:

k(ξ) = F
ξr(l − ξ)

(8.174)

Zhang et al. [178] built E-glass composite beams with integrated Nitinol wires
with a fiber fraction of 10%, and tested the beams to failure in both martensite phase

ζ

q

F F

 

Figure 8.85. Schematic of SMA wire under
tensile recovery force with transverse load.
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Figure 8.86. Fundamental bending frequency of clamped-clamped graphite-epoxy beam
activated with one 20 mil SMA wire, beam length 18 inch, width 0.25 inch, and thickness
0.068 inch.

(room temperature) and austenite phase (75◦C). The SMA-embedded composite
beam showed significant increase in the strain energy absorption prior to failure,
which in turn increased the fracture toughness and crashworthiness of the structure.
At room temperature, energy absorption was incresed by 50% from baseline non-
SMA structure, whereas at elevated temperatures (austenite phase), the increase
was as high as 600%. However, the stiffness and failure stress of the composite with
reinforced-SMA in the austenite phase were significantly lower than those for the
baseline beam as well as those of reinforced-SMA beams at room temperature.

Recently, there have been growing investigations related to hybrid composites
embedded with SMA wires. Examples are: finite element analysis [179], adhesion
characteristics between SMA wires and composite (fiber/matrix interface) [180],
and using heavily cold-worked, ultra-thin wires (As > 180◦C) in conjunction with
low temperature heat treatment [181]. Xu et al. [181] used a resin with a curing
temperature of 180◦ and embedded ultrathin (50μm) NiTi wires in a SMA prepreg
sheet and removed the restriction of any special jigs and fixtures.

For hybrid composites with embedded SMA wires, the characteristics of the
integrated beam structure can be obtained using the area rule of mixtures. For
example, the axial stiffness will be

(EA)integrated = (EA)baseline + (EA)SMA

The baseline structural properties remain invariant, whereas the SMA stiffness
is a function of temperature.

8.8.5 Correlation with Test Data

The natural frequencies of a composite beam with SMA wires inserted into sleeves
embedded in the beam depend upon the beam parameters and the SMA charac-
tertistics. The beam parameters are length, thickness, width, material, and boundary
conditions. The SMA wire parameters are recovery force in each wire (which in
turn depends on pre-strain, mechanical properties, and temperature) and number
of wires. Fig. 8.86 shows the first bending frequency of a graphite-epoxy composite



842 Applications of Active Materials in Integrated Systems

F

Piezoelectric sheets

Rod

F

Kp

Ks

Figure 8.87. Effective stiffness of rod with attached piezoelectric sheets.

beam activated by one 20 mil diameter SMA wire. The dimensions of this beam are
as follows: clamped length = 18.0 inches, width = 0.25 inches, and thickness = 68.0
mils. The increase in the fundamental frequency due to 100% SMA activation (tem-
perature = 160◦F) is 21.8%. The agreement between theory and experiment is within
5%. Note that the experimentally obtained recovery force is used in the prediction
of the frequency. It is important to note that the prediction of frequency correlates
with the experimental results within acceptable limits only when the beam-on-elastic
foundation analysis is used.

8.9 Shunted Piezoelectrics

We have seen that due to its electromechanical coupling, a piezoelectric material
behaves as a transducer between electrical energy and mechanical energy. If one form
of energy is input to the material, it is partly converted into the other form of energy.
The ratio of the energy output to the energy input, or the fraction of input energy
that is transduced, is given by the electromechanical coupling factor of the material.
The coupling factor is a material constant, and it depends on the permittivity of the
piezoelectric (at constant stress), compliance of the piezoelectric (at constant field),
and the piezoelectric coefficient. In some cases, it may be possible to change the
effective coupling factor by attaching the piezoelectric material to a structure having
an appropriate stiffness. As a consequence of this coupling, the electric properties of
a sample of piezoelectric material (primarily the dielectric constant) depend on its
mechanical boundary conditions. Conversely, the mechanical properties (stiffness
and damping) depend on the electrical boundary conditions. Note that it is not
possible to affect the mass of a piezoelectric element by changing either the electrical
or mechanical boundary conditions.

In a typical structure incorporating piezoelectric material, the stiffness of the
piezoelectric elements acts in parallel with the stiffness of the base structure. Hence,
the total stiffness of the structure is given by the sum of the stiffnesses of the piezo-
electric element and the base structure. For example, Fig. 8.87 shows a prismatic rod
of length L and cross-sectional area As made of a material with Young’s modulus
Es. Two piezoelectric sheets are bonded on the top and bottom of the rod. The
Young’s modulus of the piezoelectric material is Ep and the total cross-sectional
area of the piezoelectric sheets is Ap . An axial force F is applied to the structure.
The effective stiffness Keff is given by the parallel combination of the stiffnesses of
the piezoelectric sheets (Kp ) and the rod (Ks) as

Keff = Ks + Kp = EsAs

L
+ Ep Ap

L
(8.175)
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Figure 8.88. Equivalent circuit of a piezoelectric element under a uniaxial stress σ.

By changing the electrical boundary conditions of the piezoelectric sheets, it is
possible to change the effective stiffness and damping of the structure. A simple
way to change the electrical boundary conditions in a passive manner is to connect
an impedance across the electrodes of the piezoelectric element. As the impedance
appears in parallel with the impedance of the piezoelectric element, it is called a
shunt impedance. Hence, this technique is known as piezoelectric shunting. Numer-
ous researchers have described different methods and applications of passive as
well as semi-passive piezoelectric shunting. The technique was first described by
Forward [182]. Hagood et al. [183] gave a detailed description of the use of passive
electrical shunt networks in conjunction with piezoelectric elements for damping
augmentation. They showed that the piezoelectric element with a resistive shunt
behaved like a viscoelastic material. They also discussed resonant shunt circuits,
compared them to conventional proof mass damper systems, and derived meth-
ods to choose the optimum parameters of the circuit. The analysis was validated
by experiments on a cantilevered beam with bonded piezoelectric sheets. Several
reviews of developments in piezoelectric shunting and its applications have been
published. A comprehensive review of shunted piezoelectric materials for vibration
damping and control is given by Lesieutre [184], where four basic types of shunt cir-
cuits are discussed: inductive, resistive, capacitive, and switched. A switched shunt,
in its simplest form, consists of a fast acting switch that opens or closes to convert the
electric boundary conditions of the piezoelectric element from short-circuit to open-
circuit. The energy transfer from the piezoelectric can be affected in this manner by
actively controlling the switch. This type of shunt circuit is not discussed further in
the present chapter. Tang et al. [185] discuss semi-active damping techniques using
piezoelectric shunt networks. They also describe active-passive techniques where the
piezoelectric element is simultaneously used as an actuator and as a passive damper.
Ahmadian et al. [186] describe vibration suppression using actively controlled piezo-
electric elements with positive position feedback control techniques, as well as using
passive electrical shunts.

8.9.1 Principle of Operation

A simple equivalent circuit of a piezoelectric element in the sensor mode [187] under
a uniaxial stress σ is shown in Fig. 8.88. The piezoelectric element can be treated as
a charge generator (q) in parallel with a capacitance (Cσ

p ) and a leakage resistance
(Rp ). As Rp is typically very large, we can ignore it in the present discussion. Let
an external impedance Zsh be connected between the electrodes of the piezoelectric
element, as shown in Fig. 8.89. It can be seen that the shunt impedance acts in parallel
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Figure 8.89. Effective impedance of a shunted piezoelectric element.

with the impedance of the piezoelectric element Zp . The effective impedance Zeff is
given by

Zeff = Zp Zsh

Zp + Zsh
(8.176)

Defining a non-dimensional effective impedance ratio Z̄eff , and ignoring Rp (assum-
ing it is infinite), we get

Z̄eff = Zeff

Zp

= jωCσ
p Zsh

1 + jωCσ
p Zsh

(8.177)

where a harmonic excitation at a frequency ω rad/s is assumed. While the general
form of the equations can be derived using a Laplace transform, the remainder of
this discussion will consider the special case of a harmonic excitation.

Because the shunt impedance changes the effective impedance of the piezoelec-
tric element, the electrical boundary conditions are changed. Physically, the charge
generated by the piezoelectric flows through the shunt impedance, changing the volt-
age across the electrodes. Depending upon whether the shunt impedance is resistive,
capacitive or inductive, this manifests itself as a change in the stiffness and damping
of the piezoelectric element. If the piezoelectric element is attached to a structure,
the stiffness and damping characteristics of the structure are affected. For example,
if the shunt impedance is resistive, energy dissipation occurs due to Ohmic heating,
resulting in an increase in damping of the structure. If the shunt impedance is purely
capacitive or inductive, there is no energy loss, and hence no change in damping.
The effect in this case can only appear as a change in the effective stiffness of the
structure. Therefore, we can conclude that to add damping to the structure, the shunt
impedance must have a resistive component.

To further explore the effect of the shunt impedance, let us examine the con-
stitutive relations of the piezoelectric. Consider a piezoelectric sheet element with
electrodes parallel to the 1–2 planes and poled along the 3-direction, as shown in
Fig. 8.90. The constitutive relations for this element are{

ε

D

}
=
[

sE d
d c e σ

]{
σ

E

}
(8.178)

These relations can be rewritten in terms of the applied voltage as{
ε

D

}
=
[

sE dL−1

d c e σL−1

]{
σ

V

}
(8.179)
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where the matrix L (size 3×3) is a diagonal matrix of the lengths of the piezoelectric
element along the 1, 2 and 3-directions.

L =
⎡⎣L1 0 0

0 L2 0
0 0 L3

⎤⎦ =
⎡⎣ l 0 0

0 b 0
0 0 t

⎤⎦ (8.180)

Recalling that the charge q generated by the piezoelectric element, and the current
i are given by

q =
∫

A
DdA (8.181)

i = q̇ (8.182)

and assuming a harmonic excitation at a frequency ω rad/s, the constitutive relations
can be written in terms of the current as{

ε

i

}
=
[

sE dL−1

jωAdc jωAe σL−1

]{
σ

V

}
(8.183)

where the matrix A (size 3×3) is a diagonal matrix of areas perpendicular to the 1, 2,
and 3-directions respectively, given by

A =
⎡⎣A1 0 0

0 A2 0
0 0 A3

⎤⎦ =
⎡⎣bt 0 0

0 lt 0
0 0 lb

⎤⎦ (8.184)

Note that for the piezoelectric element under consideration, only a voltage V3 (along
the 3-direction) can be applied. Considering a one-dimensional case (stress applied
along the 1-direction), the constitutive equation can be written as{

ε1

i3

}
=
[

sE11 d31/t
jωA3d31 jωA3e σ

33/t

]{
σ1

V3

}
(8.185)

Recall that the capacitance of the piezoelectric sheet element, Cσ
p is given by

Cσ
p = e σ

33A3

t
(8.186)
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where the superscript σ indicates a constant stress condition. Therefore the consti-
tutive relation can be rewritten as (dropping the directional subscripts for V and A)

{
ε1

i

}
=
[

sE11 d31/t
jωAd31 1/Zp

]{
σ1

V

}
(8.187)

In the case of the shunted piezoelectric element, the impedance of the piezoelectric
is replaced by the effective impedance, yielding{

ε1

i

}
=
[

sE11 d31/t
jωAd31 1/Zeff

]{
σ1

V

}
(8.188)

Eliminating the voltage V from the above equation, we get

V = Zeff i − Zeff jωAd31σ1 (8.189)

and

ε = σ

(
sE11 − Zeff

jωAd2
31

t

)
+ Zeff d31

t
i

= si
11σ + Zeff d31

t
i

(8.190)

where si
11 is the compliance at constant current, or open-circuit compliance. A phys-

ical way to understand this is by recalling that the impedance of a constant current
source is infinite, hence the constant current condition corresponds to an open-circuit
condition. The open-circuit compliance of the shunted piezoelectric element can be
simplified as

si
11 = sE11 − Zeff

jωAd2
31

t

= sE11

(
1 − Zeff

Zp
k2

31

)

= sE
11

(
1 − k2

31

1 + α

) (8.191)

where k2
31 is the electromechanical coupling coefficient (typically ≈ 0.4) and α is the

ratio of the impedance of the piezoelectric element to the impedance of the shunt.

α = Zp

Zsh
(8.192)

From Eq. 8.177,

Z̄eff = 1
1 + α

(8.193)

Note that Z̄eff and α can be complex numbers, depending on the constituents of
the shunt impedance. Different authors use either Z̄eff or α to represent the shunt
impedance. In the present discussion, we will use α, as it gives a direct feel of the
magnitude of shunt impedance compared to the impedance of the piezoelectric
element. From the compliance (Eq. 8.191), the effect of the shunt impedance on the
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stiffness of the piezoelectric element can be derived as [188]

K∗ = KE

(
1 + k2

31

1 + α − k2
31

)
(8.194)

where K∗ is the effective stiffness of the shunted piezoelectric element, and KE

is the short-circuit stiffness of the unshunted piezoelectric element. Some authors
represent the effective stiffness in terms of the open-circuit stiffness (KD) of the
piezoelectric element, as

K∗D = KD

(
1 + k2

31

1 + α − k2
31

)
= KE

1 − k2
31

(
1 + k2

31

1 + α − k2
31

)
(8.195)

In the present discussion, we will represent the effective stiffness in terms of the
short-circuit stiffness, KE, as in Eq. 8.194. Let us also define an effective stiffness
ratio (similar to a mechanical impedance ratio) as

K̄ = K∗

KE
(8.196)

Note that Eq. 8.190 represents the strain in the piezoelectric element in response to
an applied stress as well as a current passing through it. Therefore, the effect of the
shunt impedance on the compliance appears both while the piezoelectric element is
being actuated, as well as in the passive case (i = 0).

8.9.2 Types of Shunt Circuits

The value of the shunt impedance sets upper and lower bounds for the effective
stiffness ratio. These limits are between Zsh = 0, if the electrodes of the piezoelectric
element are short-circuited and Zsh = ∞, if the electrodes are open-circuited; that
is, no shunt impedance is connected between them. Note that the present discussion
concerns only the stiffness of the piezoelectric element. While analyzing a struc-
ture incorporating piezolectric elements, one way to model the effect of the shunt
impedance is by appropriately changing the modal stiffness, as described by Hagood
et al. [183]. The shunt circuit can be purely capacitive, purely resistive, purely induc-
tive, or a combination of the three types. Based on the type of shunt circuit, the
effective stiffness of the piezoelectric element can exhibit different characteristics.
Let us first consider a general case and then examine special cases separately.

General Case of Shunt Impedance

Consider a shunt impedance consisting of a resistance Rsh in series with a reactance
Xsh, as shown in Fig. 8.89. The shunt impedance is given by

Zsh = Rsh + jXsh (8.197)

Neglecting the resistance Rp , and assuming harmonic excitation, the impedance of
the piezoelectric element is given by

Zp = 1
jωCσ

p
(8.198)
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The impedance ratio becomes

α = Zp

Zsh
= 1

jωCσ
p (Rsh + jXsh)

= 1
jωRshCσ

p − ωXshCσ
p

(8.199)

Substituting this result in Eq. 8.194 and Eq. 8.196, we get

K̄ = jωRshCσ
p − ωXshCσ

p + 1(
1 − k2

31

) (
jωRshCσ

p − ωXshCσ
p

)+ 1

= 1

1 − k2
31

.
jωRshCε

p − ωXshCε
p + 1 − k2

31

jωRshCε
p − ωXshCε

p + 1

(8.200)

The factor (1 − k2
31) is being retained for ease of conversion between open-circuit and

short-circuit stiffness ratios, and to maintain consistency with existing literature. In
the above equation, we have made use of the relationship between the capacitance
of the piezoelectric element at constant stress Cσ

p and its capacitance at constant
strain Cε

p

Cε
p = (1 − k2

31

)
Cσ

p (8.201)

Let us make the following substitutions

ρ = ωRshCε
p (8.202)

λ = ωXshCε
p (8.203)

where ρ is called the non-dimensional frequency or non-dimensional resistance, as
the quantity RshCε

p has the dimensions of time. The effective stiffness ratio becomes

K̄ = 1

1 − k2
31

.
1 − k2

31 − λ + jρ
1 − λ + jρ

= 1

1 − k2
31

.

[
1 − (1 − λ)k2

31

(1 − λ)2 + ρ2

][
1 + j

k2
31ρ

(1 − λ)2 − k2
31(1 − λ) + ρ2

]

= 1

1 − k2
31

E′(1 + jη)

(8.204)

It can be seen that the addition of the shunt impedance makes the piezoelectric
element behave like a viscoelastic material. The quantity E′ is typically known as the
storage modulus, and η is called the loss factor.

E′ = 1 − (1 − λ)k2
31

(1 − λ)2 + ρ2
(8.205)

η = k2
31ρ

(1 − λ)2 − k2
31(1 − λ) + ρ2

(8.206)

The condition for maximum loss factor can be found by differentiating Eq. 8.206
with respect to ρ as follows:

∂η

∂ρ
= (1 − λ)2 − k2

31(1 − λ) − ρ2 (8.207)
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Setting the above equation to zero yields the value of ρ for maximum loss factor as

ρ
∣∣∣
ηmax

=
√

(1 − λ)
(
1 − λ − k2

31

)
(8.208)

which yields the value of maximum loss factor as

ηmax = k2
31

2
√(

1 − λ)(1 − λ − k2
31

) (8.209)

From the generic expressions for storage modulus and loss factor given above, we
can derive the expressions for special cases of shunt impedance.

Resistive Shunt

In the case of a purely resistive shunt, the impedance is given by

Zsh = Rsh (8.210)

Comparing this to the generic expression for shunt impedance (Eq. 8.197),

Xsh = 0 (8.211)

From Eq. 8.202 and Eq. 8.203 we get

ρ = ωRshCε
p (8.212)

λ = 0 (8.213)

Substituting this in Eq. 8.205 and Eq. 8.206, we obtain the storage modulus and loss
factor for a purely resistive shunt as

E′ = 1 − k2
31

1 + ρ2
(8.214)

η = ρk2
31(

1 − k2
31

)+ ρ2
(8.215)

from which the effective stiffness ratio is

K̄ = 1

1 − k2
31

·
[

1 − k2
31

1 + ρ2

][
1 + j

ρk2
31(

1 − k2
31

)+ ρ2

]
(8.216)

It can be seen that the resistive shunt effectively adds structural damping to the
system through a non-zero loss factor η. In physical terms, the energy dissipated
in the resistance due to Ohmic heating appears as a damping in the system. The
condition for maximum damping, which corresponds to the maximum achievable
value of η can be calculated using Eq. 8.208 and Eq. (8.209), by setting λ = 0.
Assuming k2

31 = 0.4, this yields

ρ
∣∣∣
ηmax

=
√

1 − k2
31 = 0.7746

ηmax = k2
31

2
√

1 − k2
31

= 0.2582
(8.217)

Fig. 8.91 shows the variation of storage modulus and loss factor of a resis-
tively shunted piezoelectric element. The short-circuit condition is realized as
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Figure 8.91. Storage modulus and loss factor of resistively-shunted piezoelectric element as a
function of dimensionless frequency (k2

31 = 0.4).

ρ → 0 (Rsh = 0), and yields a storage modulus E′ = 0.6, which when divided by
the factor (1 − k2

31), corresponds to K̄ = 1. Note that loss factor increases as the
coupling coefficient increases. This is to be expected, as a larger coupling coefficient
implies a larger fraction of the input mechanical energy is converted to electrical
energy, which in turn can get dissipated through the shunt resistance.

In order to maximize the loss factor, the value of Rsh must be chosen based on
the operating frequency. In the case of a steady-state forced response, the energy
dissipated during one cycle (�Ecyc) is given by [189]

�Ecyc = A2ηkEE′π = A2kEπ
k2

31ρ(
1 − k2

31

)
(1 + ρ2)

(8.218)

where A is the amplitude of motion. Note that when ρ = 0 (Rsh = 0), �Ecyc = 0.

Capacitive Shunt

Let the shunt circuit consist of a pure capacitance Csh in series with a resistance Rsh

(RC shunt). In this case, the shunt impedance is given by

Zsh = Rsh + 1
jωCsh

(8.219)

Comparing this to the generic expression for shunt impedance (Eq. 8.197), we get

Xsh = − 1
ωCsh

(8.220)

From Eq. 8.202 and Eq. 8.203 we get

ρ = ωRshCε
p (8.221)

λ = − Cε
p

Csh
(8.222)
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31 = 0.4).

Let us first examine the case of a purely capacitive shunt. Setting Rsh = 0, and
substituting in Eq. 8.205 and Eq. 8.206,

E′ = 1 − k2
31

1 + Cε
p/Csh

= 1 + k2
31

1 + Csh/Cσ
p − k2

31

(8.223)

η = 0 (8.224)

It can be seen that the purely capacitive shunt results in a change in the effective
stiffness of the piezoelectric element. If the piezoelectric element is bonded to a
structure, the stiffness of the structure is affected. The loss factor is zero, indicating
that there is no damping in the piezoelectric element. This result can be expected,
as there is no resistance in the circuit and therefore no dissipative element in the
system.

Davis and Lesieutre [188] derived Eq. 8.194 and described the use of capacitive
shunting to change the stiffness of a tunable passive vibration absorber consisting
of an inertial mass mounted on a capacitively shunted piezoelectric element. Vari-
ation in the shunt impedance results in a change in the stiffness of the piezoelectric
element, and therefore a change in the natural frequency of the absorber. In this
way, a small mass of piezoelectric material can be used to absorb vibrations of a
larger structure over a range of frequencies. They plotted the effect of capacitive
shunt impedance on effective stiffness, as shown in Fig. 8.92. For an assumed value
of k2

31 = 0.4, it can be seen that the effective stiffness ratio, K̄ varies between an
upper limit of 1.6667 (1/

√
(1 − k2

31)) when the shunt capacitance Csh � Cσ
p (tending

towards an open-circuit condition) and a lower limit of 1, when the shunt capaci-
tance Csh  Cσ

p , (tending towards a closed-circuit condition). Recall that while it is
possible to realize a significant change in the stiffness of the piezoelectric element,
the change in effective stiffness of a structure incorporating piezoelectric elements
could be considerably lower, depending on the geometry and amount of piezoelectric
material.
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Figure 8.93. Storage modulus and loss factor of RC shunted piezoelectric element as a function
of dimensionless frequency (k2

31 = 0.4).

Let us now see what happens when a non-zero resistance is included in the shunt
circuit. The effective storage modulus and loss factor become

E′ = 1 −
(
1 + Cε

p/Csh
)

k2
31(

1 + Cε
p/Csh

)2 + (ωRshCε
p

)2 (8.225)

η = k2
31ωRshCε

p(
1 + Cε

p/Csh
)2 − k2

31

(
1 + Cε

p/Csh
)+ (ωRshCε

p

)2 (8.226)

The storage modulus and loss factor are plotted as a function of ρ in Fig. 8.93 for
different ratios of shunt capacitance to piezoelectric capacitance (λ = Cε

p/Csh). It
can be seen that the loss factor reaches a maximum at a particular value of ρ, and
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that the maximum loss factor increases with increasing shunt capacitance, for a given
piezoelectric element. Also note that the maximum storage modulus is equal to unity
(because λ < 1), and that the change in storage modulus increases with increasing
shunt capacitance. The maximum loss factor can be found by substituting for λ in
Eq. 8.229 and Eq. 8.209. For example, with a shunt capacitance equal to ten times
the piezoelectric constant strain capacitance (λ = −0.1), assuming k2

31 = 0.4,

ρ|ηmax = 0.8775

ηmax = 0.2279
(8.227)

In the above discussion, λ < 0, because capacitance is a positive number. As a result,
because k2

31 < 1, a solution for ρ|ηmax always exists for all values of λ. As the value
of the shunt capacitance becomes very large, or λ → 0, the maximum value of loss
factor tends towards a limit of (Eq. 8.209)

ηmax(as λ → 0) = k2
31

2
√

1 − k2
31

(8.228)

which is the same as in the case of a purely resistive shunt. This represents the
upper limit of loss factor that can be achieved with a positive shunt capacitance.
It is interesting to examine what happens if the shunt capacitance is negative. In
practice, this can be achieved using a negative impedance converter, which is an
active circuit based on an operational amplifier. For a negative shunt capacitance,
λ > 0. For a solution to exist for Eq. 8.208, it can be seen that 1 − k2

31 > λ or λ > 1.
As λ approaches these limits, η tends to infinity and the value of ρ at which the
loss factor is maximum tends to zero. At the same time, the minimum value of the
storage modulus tends to zero.

For other values of λ, the variation of loss factor with ρ does not exhibit
an extremum, as there is no real solution for ρ. However, η goes to infinity at

ρ =
√

−(1 − λ)(1 − λ − k2
31). Another way of looking at this is by differentiating

the expression for loss factor (Eq. 8.206) with respect to λ to find the optimum
value of λ.

− (k2
31ρ
) [

2(1 − λ)(−1) + k2
31

] = 0 → λ
∣∣∣
ηmax

= 1 − k2
31

2
(8.229)

Note that this optimum value of λ is always positive, which means it can only occur
with a negative shunt capacitance. We will see later that an inductive shunt can also
lead to this condition. Substituting this value of λ in the expression for loss factor we
get

ηmax = k2
31ρ

ρ2 − k2
31/4

(8.230)

As ρ → k2
31/2, ηmax → ∞. Therefore, using a negative capacitance, it is possible to

achieve extremely large values of loss factor. This is shown in Fig. 8.94, which com-
pares the storage modulus and loss factor of a positive shunt capacitance (λ = −0.5)
and a negative shunt capacitance (λ = 0.5). Fig. 8.95 shows the effect of increasing
the value of λ as it approaches 0.6, in the case of a negative shunt capacitance.
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Figure 8.94. Comparison of storage modulus and loss factor of RC shunted piezoelectric
element as a function of dimensionless frequency, for positive and negative shunt capacitance
(k2

31 = 0.4).

Inductive Shunting

Let the shunt circuit consist of a pure inductance Lsh in series with the resistance
Rsh (RL shunt). In this case, assuming harmonic excitation, the shunt impedance is
given by

Zsh = Rsh + jωLsh (8.231)

Comparing this to the generic expression for shunt impedance (Eq. 8.197), we get

Xsh = ωLsh (8.232)
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Figure 8.95. Effect of negative shunt capacitance on storage modulus and loss factor of RC
shunted piezoelectric element (k2

31 = 0.4).

From Eq. 8.202 and Eq. 8.203 we get

ρ = ωRshCε
p (8.233)

λ = ω2LshCε
p (8.234)

It can be seen that λ > 0, similar to the case of a negative shunt capacitance. A
quantity L̄ can be defined such that

L̄ = L

R2
shCε

p

→ ω2LshCε
p = ρ2L̄ (8.235)

The physical meaning of the quantity L̄ can be understood by considering the defi-
nition of quality factor Q of the RLC circuit formed by the shunt impedance and the
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piezoelectric element.

Q = 1
Rsh

√
Lsh

Cε
p

=
√

L̄ (8.236)

Recall that the Q factor is directly related to the damping factor ζ of the RLC circuit.
Specifically,

Q = 1
2ζ

(8.237)

Therefore, it is convenient to use the quantity L̄ as it gives an indication of the
amount of damping in the circuit. It is also useful to remember one more relation
between L̄ and ρ

L̄ = ω2

ω2
e

1
ρ2

(8.238)

where ω2
e is the resonant frequency of the LC circuit formed by the shunt inductance

and the constant strain capacitance of the piezoelectric element. These relations help
to obtain a physical understanding of the parameters involved.

ω2
e = 1

LshCε
p

(8.239)

Substituting for ρ and λ in Eq. 8.205 and Eq. 8.206, the effective storage modulus
and loss factor become

E′ = 1 − k2
31

(
1 − ρ2L̄

)(
1 − ρ2L̄

)2 + ρ2
(8.240)

= 1 − k2
31

(
1 − ω2LshCε

p

)(
1 − ω2LshCε

p

)2 + (ωRshCε
p

)2 (8.241)

η = ρk2
31(

1 − ρ2L̄
)2 − k2

31

(
1 − ρ2L̄

)+ ρ2
(8.242)

= ωRshCε
p k2

31(
1 − ω2LshCε

p

)2 − k2
31

(
1 − ω2LshCε

p

)+ (ωRshCε
p

)2 (8.243)

The storage modulus and loss factor are plotted in Fig. 8.96 for different values of
L̄. The case of L̄ = 0 reduces to a purely resistive shunt, as plotted in Fig. 8.91. Note
that the resonant frequency in the case of an inductive shunt with a series resistance
is different from the case of a purely inductive shunt, due to the presence of damping
in the system. Because λ is positive, the condition for maximum loss factor is the
same as in the case of a negative capacitance (Eq. 8.229)

λ
∣∣∣
ηmax

= 1 − k2
31

2
(8.244)
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Figure 8.96. Storage modulus and loss factor of an R-L shunted piezoelectric element as a
function of dimensionless frequency (k2

31 = 0.4), for different values of inductance.

From which the maximum loss factor is obtained as

ηmax = k2
31ρ

ρ2 − k2
31/4

(8.245)

In practice, the resonant frequency of the shunt circuit would be tuned to occur at
the same frequency as the structural mode which is to be damped. From Fig. 8.96 it
can be seen that compared to the case of a purely resistive shunt, the loss factor is
higher at low frequencies and is reduced at higher frequencies. The large values-of-
loss factor achievable is the primary advantage of using an inductive element in the
shunt circuit. In comparison, the maximum loss factor of an RC shunt is the same as
that of a purely resistive shunt, and is limited to 0.2279. However, a purely capacitive
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shunt can be used to change the effective stiffness without adding any damping to
the structure.

8.9.3 Worked Example

Design a series R-C shunt circuit for a piezoelectric sheet to achieve a maximum
loss factor of 0.25. Plot the variation of required shunt resistance over a range of
operating frequency from 10 Hz to 1 kHz.

Material data are as follows:

k2
31 = 0.4

length lc = 50.8 mm (2′′)

width bc = 25.4 mm (1′′)

thickness tc = 0.3175 mm (0.0125′′)

Relative permittivity K σ
31 = 3400

Solution

The capacitance of the piezoelectric at constant stress is given by

Cσ
31 = K σ

31εolcbc

tc
= 3400 × 8.854 × 10−12 × 0.0508 × 0.0254

0.0003175

= 122.34 nF

The constant strain capacitance can be calculated from the above value

Cε
p = (1 − k2

31

)
Cσ

31 = 73.4 nF

The condition for maximum loss factor is given by Eq. 8.209. Because we are given
the desired value of maximum loss factor, we can rewrite this equation in terms
of λ as

λ2 + (k2
31 − 2

)
λ + 1 − k2

31 = k4
31

4η2
max

Solving this quadratic equation, we get λ = 1.6246 or λ = −0.0246. Let us choose
the negative value because we are using a positive shunt capacitance. The shunt
capacitance is given by

Csh = − Cε
p

−0.0246
= 2.984 μF

The value of ρ at which the maximum loss factor is achieved is given by Eq. 8.208.
Substituting for Cε

p , we can calculate the value of shunt resistance required to obtain
the maximum loss factor at each operating frequency in the range of interest. The
result is plotted in Fig. 8.97. It can be seen that the required resistance becomes very
large at lower frequencies.
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Figure 8.97. Resistance required for maximum loss factor, as a function of operating frequency
(k2

31 = 0.4, ηmax = 0.25).

8.9.4 Worked Example

Design a series R-L shunt circuit for a piezoelectric sheet to achieve a maximum loss
factor of 0.25. Plot the variation of required shunt resistance and shunt inductance
over a range of operating frequency from 10 Hz to 1 kHz.

Material data are as follows:

k2
31 = 0.4

length lc = 50.8 mm (2′′)

width bc = 25.4 mm(1′′)

thickness tc = 0.3175 mm (0.0125′′)

Relative permittivity K σ
31 = 3400

Solution

Proceeding similarly to the previous worked example, the constant strain capacitance
of the piezoelectric sheet is calculated as

Cε
p = 73.4 nF

The condition for maximum loss factor is given by Eq. 8.229 as

λ
∣∣∣
ηmax

= 1 − k2
31

2

From the above equation, we obtain the value of λ to achieve the maximum loss
factor at each frequency of interest

λ = 1 − 0.4
2

= 0.8

Using this value of λ, we can calculate the required shunt inductance Lsh at each
operating frequency. The maximum value of loss factor desired is specified as 0.25.
Substituting in the expression for maximum loss factor (Eq. 8.230), we get a quadratic
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Figure 8.98. Storage modulus and loss factor of an R-L shunted piezoelectric element as a
function of dimensionless frequency (k2

31 = 0.4), for different values of inductance.

equation for ρ

ηmaxρ
2 − k2

31ρ − ηmax
k2

31

4
= 0

Solving the above equation, we get ρ = 1.6602 and ρ = −0.0602. We ignore the
negative root as it is not physical. From the positive root, we can calculate the shunt
resistance required

Rsh = ρ

ωCε
sh

The required shunt resistance and shunt inductance are plotted as a function of
operating frequency in Fig. 8.98. It can be seen that the value of inductance required
to tune the circuit at low frequencies becomes too large to be realized by a prac-
tical physical inductor. In these cases, an active circuit based on an operational
amplifier can be used to simulate an inductance of the appropriate value. Such cir-
cuits fall under a category of circuits called gyrators, and are widely used in active
filter design [190, 191, 192]. Note that while gyrators have the effect of inverting
a physical impedance (converting a capacitance to an effective inductance), neg-
ative impedance converters have the effect of creating the negative of a physical
impedance (for example, a negative capacitance). The real advantage in using an
RL shunt is that a much higher loss factor can be achieved compared to an RC shunt
with a physical capacitance.

8.9.5 Worked Example

Two piezoelectric sheets are bonded to the top and bottom of an Aluminum beam
as shown in Fig. 8.99. The piezoelectric sheets are connected in parallel, and the
polarity is indicated by the dots. The tip of the beam is subjected to a unit sinusoidal

Ftip
Zsh

Figure 8.99. Beam with shunted piezoelectric
sheets subjected to a tip force.
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forcing. Using a finite element approach, calculate the tip deflection of the beam
over the range 50 Hz to 1500 Hz (capturing the first two bending modes), for the
following cases:

(i) No shunt (short-circuited electrodes)
(ii) Purely resistive shunt

(iii) RL shunt

Material data are as follows:

k2
31 = 0.4

piezo length lc = 50.8 mm (2′′)

piezo width bc = 25.4 mm (1′′)

piezo thickness tc = 0.254 mm (0.01′′)

beam thickness tb = 0.254 mm (0.01′′)

Relative permittivity K σ
31 = 3400

Young’s modulus of Aluminum = 70 GPa

Young’s modulus of piezoelectric (constant field) = 70 GPa

Density of Aluminum = 2700 kg/m3

Density of piezoelectric = 7600 kg/m3

Solution

The finite element formulation is used develop a model for a beam with bonded
piezoelectric elements. The governing equation of the beam is obtained as

Mg q̈g + Kg qg = Qg (8.246)

In the case of the shunted piezoelectric, the effective modulus Esh is given by

Esh = EE

1 − k2
31

E′(1 + jη)

Due to the geometry of the problem, we are only concerned with modulus in the
‘1’-direction. The storage modulus and loss factor are calculated based on the shunt
impedance from Eq. 8.205 and Eq. 8.206

E′ = 1 − (1 − λ)k2
31

(1 − λ)2 + ρ2

η = k2
31ρ

(1 − λ)2 − k2
31(1 − λ) + ρ2

The effective modulus of the piezoelectric elements is used to calculate the global
stiffness matrix Kg in the finite element formulation. Note that the matrix Kg can
now be complex as well as frequency dependent. For the present problem, as there
is no applied voltage, the forcing due to induced strain is zero.

(i) No shunt: In this case, the storage modulus is E′ = 1 − k2
31 and loss factor is η = 0.

The effective stiffness reduces to the short-circuit stiffness of the piezoelectric.
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Figure 8.100. Response of beam with shunted piezoelectric sheets subjected to a tip force, for
different shunt impedances.

The stiffness matrix of the structure is real and constant. The governing equation
is solved and the tip displacement is calculated and plotted in Fig. 8.100. The
first two modes occur at 163 Hz and 1034 Hz respectively.

(ii) Let us target the first mode occuring at 163 Hz. The constant strain capacitance
of the piezoelectric is

Cε
p = 2

(
1 − k2

31

)× 3400 × 8.854 × 10−12 × lc × bc/tc = 183.5 nF

The condition for maximum damping (Eq. 8.217) yields ρ = 0.7746 and a loss
factor of η = 0.2582. At the frequency of the first mode, the required shunt
resistance is

Rsh = 0.7746
2 × π × 163 × 183.5 × 10−9

= 4.1214 k�

The effect of this shunt resistance is plotted in Fig. 8.100. It can be seen that the
response is damped and the peaks are shifted to the right due to the increased
stiffness of the piezoelectric elements.

(iii) The condition for maximum loss factor is given by Eq. 8.229 as

λ = 1 − k2
31

2
= 0.8

At the frequency of the first mode, this results in a shunt inductance of

Lsh = 0.8
(2 × π × 163)2 × 183.5 × 10−9

= 4.1562 H

Let us assume that this large value of inductance is achieved using an electronic
pseudo-inductor. Let us also use the same value of resistance used for the case
of the purely resistive shunt. This yields a value of ρ = 0.7746 at the frequency
of the first mode, and a loss factor of η = 0.6197 (From Eq. 8.230). The results
are plotted in Fig. 8.100.
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8.10 Energy Harvesting

In recent years, there have been rapid developments in the area of structural health
monitoring for large civil structures using wireless sensor networks. A number of
sensor nodes are installed over a structure, for example a bridge [193, 194]. Each
sensor node collects local information such as vibration amplitude or strain, and
either stores this information locally or transmits it to a central base station. In
this way, the state or health of the bridge can be monitored. Applications such as
these require a source of energy at each node. Typically, this has been accomplished
by a battery pack. However, the need for periodic replacement of the batteries,
especially at locations that are difficult to access, has spurred the development of
methods to locally generate the required power. One of the most popular approaches
is to harvest the energy inherent in the ambient vibrations of the structure. The
conversion of the mechancial energy into electrical energy can be accomplished
by different types of transducers, for example, electrostatic, electromagnetic and
piezoelectric. The devices based on piezoelectric materials are attractive due to
their solid state nature and the high volumetric density of harvested power [195].
Piezoelectric energy harvesters are finding application in a variety of areas with
similar requirements, such as MEMS devices and wearable electronics.

The previous section on shunted piezoelectrics described how the transduction
of mechanical energy to electrical energy by piezoelectric materials can be used to
enhance the damping of a structure. It follows that this electrical energy, instead of
being dissipated, can be accumulated and used to power other devices. This concept
forms the basis of energy harvesting using piezoelectric materials. Energy harvested
in this manner also increases the effective damping of the system, similar to the effect
of shunted piezoelectrics. In the case of energy harvesting, the goal is to accumulate
the energy while in the case of shunt damping, the goal is to disspate as much of the
energy as possible.

8.10.1 Vibration-Based Energy Harvesters

Piezoelectric materials have found wide application as low power generators. In
the majority of these applications, the piezoelectric material extracts energy from
ambient structural vibrations by operating as a base-excited oscillator. Due to the
inherently low energy in structural vibrations, these devices are limited to relatively
low power outputs, in the range of 1–1000 μW. Sodano [196] provided an overview
of several studies related to piezoelectric energy harvesting, including devices based
on impact, wearable energy harvesting devices based on motion of the human body,
and devices designed to power wireless sensors. They also discussed methods to
accumulate the harvested energy using rechargeable batteries, capacitors or flyback
converters. While most of the energy harvesting devices are based on cantilever
beams, other geometries such as annular piezoelectric unimorphs/bimorphs have
also been explored [197].

Piezoelectric energy harvesters have also been investigated at the MEMS-scale,
to power autonomous sensors. duToit et al. [195] described the design of a MEMS-
scale piezoelectric energy harvester based on a unimorph piezoelectric cantilever
beam with a proof mass. They compared the power density of electrostatic, elec-
tromechanical, and piezoelectric vibration-based energy harvesters and concluded
that the piezoelectric devices have the highest power density based on volume. In



864 Applications of Active Materials in Integrated Systems

addition low number of moving parts, this accounts for the popularity of piezoelectric
energy harvesters.

There have also been numerous studies on optimizing the power conditioning
and storage electronics. This forms an important part of the overall device, especially
for MEMS-scale systems. Several designs have been proposed. For example, Ottman
et al. [198] designed optimal power conditioning electronics for a vibration energy
harvester using a step-down converter. Wickenheiser and Garcia [199] investigated
the conditions for maximum power generated by a vibration based energy harvester
connected to four different circuits. These circuits were a simple resistive load, a
standard rectifier, and parallel as well as series-switching circuits. It was concluded
that the active switching circuits are advantageous for systems with low electrome-
chanical coupling, and this advantage decreases as the coupling increases. Therefore,
passive harvesting circuits may be adequate for systems with high electromechanical
coupling.

8.10.2 Wind-Based Energy Harvesters

Structures with piezoelectric elements have also been used to harvest energy from
other sources, such as wind. For example, the energy harvester developed by Tan and
Panda [200] is based on vibrations excited in a piezoelectric bimorph when exposed to
wind. The device developed by Wang and Ko [201] generates on the order of 0.2W in
response to flow-induced pressure fluctuations. Robbins [202] investigated the use of
flexible, flag-like, piezoelectric sheets to generate power while flapping in an incident
wind. The energy that can be harvested using these approaches is comparable to that
of a vibration based device. By exploiting structures with aeroelastic instabilities, it is
possible to extract significantly higher amounts of energy from the wind. Bryant [203]
developed a device to harvest energy from flutter, using a piezoelectric bimorph
with a flap at its tip. Linear and non-linear models were developed to predict the
performance of the device. The device generated an output power on the order of
2mW. Sirohi and Mahadik [204] investigated wind energy harvesting using a beam
with piezoelectric sheets attached to a tip body with D-shaped cross-section. Wind
induced galloping of the tip body resulted in oscillatory bending of the beam, and
the maximum power generated was measured to be on the order of 0.5 mW.

8.10.3 Modeling of Piezoelectric Energy Harvesters

An analytical model incorporating the electro-mechanical coupling of the piezoelec-
tric material must be derived to predict the behavior of the system. Such a model
can be derived by directly coupling the constitutive relations of the piezoelectric
and the structure (see Erturk and Inman [205]), representing the system in terms
of an equivalent electric circuit (see Elvin et al. [206]), or by using an energy based
variational formulation.

In the energy based formulation, the basic approach is to formulate a variational
indicator incorporating the kinetic energy, potential energy, and nonconservative
virtual work on the system. The potential energy and nonconservative virtual work
include contributions from both mechanical (strain energy) and electrical (stored
charge) terms. There are several ways to represent the potential energy due to
electrical and mechanical contributions, depending on the choice of independent
variables. Mason [207] lists these different representations of energy in differential
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form, along with the corresponding independent variables. Two of these representa-
tions are convenient for modeling structures with electromechanical coupling. These
are the internal energy U and the electric enthalpy H2, given by

U(ε,D) = 1
2

∫
Vs

σT εdVs + 1
2

∫
Vs

E
T DdVs (8.247)

where ε is the strain vector, σ is the stress vector, D is the electric displace-
ment vector, E is the electric field vector and Vs is the volume of the struc-
ture. Note that the internal energy must be expressed as a function of indepen-
dent variables corresponding to displacement and charge, which are in this case,
ε and D. The electric enthalpy is given by

H2(ε,E) = 1
2

∫
Vs

σT εdVs − 1
2

∫
Vs

E
T DdVs (8.248)

Note that the electrical enthalpy must be expressed as a function of independent
variables corresponding to displacement and electric field, which are in this case,
ε and E.

Based on the choice of either the internal energy or the electric enthalpy to
represent the potential energy of the structure, it is possible to formulate a variational
indicator in two ways [208]. In one approach, the variational indicator (V.I.) is written
as

V.I. =
∫ t2

t1
[δ (T − V − We) +

∑
i

f iδwi +
∑

j

Vj δqj ] dt (8.249)

=
∫ t2

t1
[δ (T − U) +

∑
i

f iδwi +
∑

j

Vj δqj ] dt (8.250)

where T is the kinetic energy of the structure, V is the strain energy and We is the
electrical energy. The summations represent the virtual work done by all noncon-
servative mechanical and electrical elements in the system. In the present case, f i

are the transverse forces applied to the beam, wi are the transverse displacements,
Vj is the voltage drop across the nonconservative electrical elements (for example, a
load resistance across the electrodes of the piezoelectric sheets) and qj is the electric
charge. Several researchers have adapted this approach to model the electrome-
chanical coupling in structures with piezoelectric material [209, 196, 195, 206].

The other approach makes use of the electric enthalpy and flux linkage to
formulate the variational indicator as [210]

V.I. =
∫ t2

t1
[δ (T − V + W∗

e ) +
∑

i

f iδwi +
∑

j

ij δλj ] dt (8.251)

=
∫ t2

t1
[δ (T − H2) +

∑
i

f iδwi +
∑

j

ij δλj ] dt (8.252)

where W∗
e is the electrical co-energy and ij are the currents flowing through the

dissipative electrical elements in the system. The λj are the flux linkages, which are
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Figure 8.101. Schematic of energy
harvester: cantilever beam with
piezoelectric sheets.

related to voltages by

V = λ̇ (8.253)

It can be shown that the approaches based on the two variational indicators
are equivalent because the internal energy and electric enthalpy are related to each
other by a Legendre transformation.

Applying Hamilton’s principle, integrating by parts and setting the variations
at t1 and t2 equal to zero, we obtain the governing equations of the system. Let us
use the formulation based on internal energy (Eq. 8.249) to derive a model of an
energy harvester consisting of an Aluminum cantilever beam with surface bonded
piezoelectric sheets (Fig. 8.101). An oscillatory force Ftip acting at the tip of the
beam acts as a source of energy. The piezoelectric sheets are connected in parallel
such that the beam is a common electrical ground and the charges induced by the
opposite polarity strains on the top and bottom surfaces add up. The electrical
energy is dissipated across a load resistance connected between the electrodes of the
piezoelectric sheets (Fig. 8.102).

Let the piezoelectric sheets have electrodes parallel to the 1 − 2 planes and poled
along the 3-direction, as shown in Fig. 8.90. The piezoelectric sheets are attached so
that their 1-axis is along the length of the beam (x-direction) and the 3-axis is along
the thickness of the beam (z-direction). The constitutive relations for these sheet
elements are then given by Eq. 8.178. These relations can be rearranged in terms of
the strain and electric displacement as{

σ

E

}
=
[

cD −hT

−h β ε

]{
ε

D

}
(8.254)

In the case of the cantilever beam in the present example, strains along the
y-direction can be ignored, and a one-dimensional representation can be used to
model the device. Reducing Eq. 8.254 to one dimension and substituting the relevant

Piezoelectric
sheets

RL

Load
resistance

Figure 8.102. Schematic of energy har-
vester circuit with load resistance.
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piezoelectric constants from Eq 8.178, yields{
σ11

E3

}
=
[

YD
11 − 1

d′
31

− 1
d′

31

1
e ε

33

]{
ε11

D3

}
(8.255)

where

YD
11 = YE

11

1 − k2
31

= 1

sE11

(
1 − k2

31

) (8.256)

d′
31 = d31

(
1 − k2

31

)
k2

31

(8.257)

e ε
33 = e σ

(
1 − k2

31

)
(8.258)

The superscripts D and ε refer to quantities measured at constant electric dis-
placement and constant strain, respectively. The quantity Y11 is the Young’s modulus
of the piezoelectric material, and the electromechanical coupling factor of the piezo-
electric sheets is defined as

k2
31 = d2

31YE

11

e σ
33

(8.259)

It is convenient to model the coupled behavior of the piezoelectric sheets in
this way because it is relatively simple to measure the constants YE

11, d31 and e σ
33.

Substituting these quantities into Eq. 8.247 yields the internal energy of the device
as

U = 1
2

∫
Vs

σ11ε11dVs + 1
2

∫
Vs

D3E3dVs (8.260)

= 1
2

∫
Vs

(
YD

11ε
2
11 + D2

3

e ε
33

)
dVs −

∫
Vs

D3ε11

d′
31

dVs (8.261)

The integration is performed over the volume of the entire structure, taking
care to set the appropriate material constants over the piezoelectric elements and
the Aluminum beam. Applying the Euler-Bernoulli assumption to the Aluminum
beam results in the longitudinal strain given by

ε11 = −zw′′ (8.262)

where w is the transverse deflection of the beam and z is the coordinate along the
beam thickness, measured from the neutral axis. The assumed modes method is
typically used in the derivation of equations of motion. A superposition of assumed
shape functions φ(x) and generalized displacement coordinates r(t) can be used to
represent the transverse deflection as

w(x, t) =
N∑

i=1

φ(x)r(t) = φr (8.263)

Typically, the most accurate results are obtained when exact solutions (mode
shapes) to the same structure with identical boundary conditions are used as
the assumed shape functions. However, simple polynomials that satisfy the same
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geometric boundary conditions often give satisfactory results. The longitudinal strain
is

ε11 = −zφ′′r (8.264)

Similarly, the electric displacement can be represented as a summation of
assumed functions ψ(z) and generalized charge coordinates q(t) as

D(z, t) =
M∑

j=1

ψ(z)q(t) = ψq (8.265)

Note that if the electric field across the piezoelectric sheets is assumed to be a
constant,

ψ = 1
Ap

(8.266)

where Ap is the area of the electrodes on the piezoelectric sheets. In this case, the
electric displacement is given by

D = q
Ap

(8.267)

where q is the physical charge generated by the piezoelectric sheets. The assump-
tion of constant electric field across the piezoelectric sheets is sufficiently accurate
for most practical purposes. Substituting the strain and electric displacement into
Eq. 8.260, the internal energy can be written as

U = 1
2

∫
Vs

(
rT φ′′T YD

11φ
′′rz2 + qT ψT 1

e ε
33

ψq
)

dVs +
∫

Vs

rT φT d′
31zψqdVs (8.268)

= 1
2

rT Kr + 1
2

qT C′
pq + rT �q (8.269)

where the stiffness matrix K (size N × N) and the coupling matrix � (size N × M)
are given by

K =
∫

Vs

YD
11z2φ′′T φ′′dVs (8.270)

� =
∫

Vs

zφ′′T

d′
31

ψdVs (8.271)

For a uniform electric field across the piezoelectric sheets,

C′
p =

∫
Vp

ψT 1
e ε

33
ψdVp = tp

Ap e ε
33

= 1
Cp

(8.272)

� =
∫

Vs

zφ′′T

d′
31Ap

dVs (8.273)

The subscripts b and p denote quantities corresponding to the beam and the
piezoelectric sheets respectively. Note that the appropriate Young’s modulus must
be used when integrating over the volume of the Aluminum beam; that is, YD

11 must
be substituted by Yb. Similarly, over the volume of the beam, d′

31 = 0.



8.10 Energy Harvesting 869

The term Cp is recognized as the capacitance of the piezoelectric sheets (at
constant strain)

The kinetic energy of the structure is given by

T = 1
2

∫
Vs

ρẇ2dVs (8.274)

= 1
2

ṙT Mṙ (8.275)

where the mass matrix is

M =
∫

Vs

ρφT φdVs (8.276)

In the case of the energy harvesting device under consideration, the nonconser-
vative mechanical virtual work arises only due to the force Ftip acting on the tip of
the beam. The nonconservative electrical virtual work is the energy dissipated by
the load resistance.

Substituting the internal energy (Eq. 8.268), kinetic energy (Eq. 8.274) and
nonconservative virtual works into Eq. 8.249 and setting the variational indicator to
zero,

V.I. =
∫ t2

t1
[δ(T − U) + Ftipδw(Lb) + Vδq] dt = 0 (8.277)

yields the equations of motion of energy harvesting device as (assuming constant
electric field across the piezoelectric sheets)

Mr̈ + Kr + �q = Ftipφ(Lb)T (8.278)

�T r + 1
Cp

q − V = 0 (8.279)

In the case of a load resistance connected between the electrodes of the piezo-
electric sheets, the voltage drop is given by

V = −RLi = −RLq̇ (8.280)

Any mechanical damping in the structure can also be incorporated into the
model in terms of a proportional damping matrix [196] C given by

C = αM + βK (8.281)

where the constants α and β are determined from experiments, typically an impulse
response or equivalent test with an appropriate electrical boundary condition for
the piezoelectric sheets. The modal damping can be written as

ζi = α

2ωi
+ βωi

2
(i = 1, 2 . . .N) (8.282)

In the above equation, ωk is the natural frequency of the kth mode, ζk is the
modal damping, and N is the number of modes (equal to the dimension of the
mass and stiffness matrices). An additional damping is introduced due to the energy
dissipation in the internal resistance of the piezoelectric sheets, Ri. This resistance is
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Figure 8.103. Cantilever beam
with surface-bonded piezoelec-
tric sheets and tip mass.

a function of the dissipation factor (expressed as tan δ) of the piezoelectric material.
For small values of tan δ, the internal resistance can be written as [211].

Ri = tan δ
ωCp

(8.283)

whereω is the frequency of voltage across the electrodes of the piezoelectric sheet. At
large values of electric field, the dissipation factor and other piezoelectric constants
become nonlinear functions of the electric field.

The equations of motion can be written in the state-space form by defining a state
vector containing the generalized displacement (consisting of N assumed modes),
generalized velocity and charge.

x =
⎧⎨⎩

r
ṙ
q

⎫⎬⎭ (8.284)

The equations of motion (Eq. 8.278 and Eq. 8.279) can then be written as

ẋ =
⎡⎣ 0(N×N) I(N×N) 0(N×1)

−M−1K −M−1C −M−1�

− 1
RL

�T 0(1×N) − 1
RLCp

⎤⎦ x +
⎧⎨⎩

0(N×1)

M−1φ(Lb)T

0

⎫⎬⎭Ftip (8.285)

These equations can be solved using standard time-marching algorithms to find
the voltage developed and power dissipated by the load resistance.

8.10.4 Worked Example

Consider a cantilever beam with surface-bonded piezoelectric sheets and a tip mass as
shown in Fig. 8.103. The two piezoelectric sheets are connected in parallel with a load
resistance, as in Fig. 8.102. Assume a uniform electric field across the piezoelectric
sheets and a beam transverse displacement given by

w(x, t) = φ1r1 =
(

x
Lb

)3

r1 (8.286)

Derive the equations of motion of the system. For an oscillatory tip force of unit
amplitude at a frequency of 100 Hz, plot the voltage generated and power dissipated
for a range of load resistances. Neglect structural damping.

The parameters of the piezoelectric sheets and the aluminum beam are listed in
Table 8.8.
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Table 8.8. Parameters of example energy harvesting device

Property Symbol Value

Piezoelectric
Strain coefficient (pC/N) d31 −320
Young’s modulus (GPa) YE

11 62
Dielectric constant (nF/m) e σ

33 33.65
Density (kg/m3) ρp 7800
Thickness (mm) tp 0.1905
Length (mm) L2 − L1 50.8
Width (mm) bp 25.4
Offset from beam root (mm) L1 6.35

Beam
Young’s modulus (GPa) Yb 69
Density (kg/m3) ρb 2700
Thickness (mm) tb 0.79375
Length (mm) Lb 152.4
Tip mass (kg) Mtip 0.010

Solution

The equations of motion of the system are given by Eq. 8.285. The stiffness and
coupling matrices are given by Eq. 8.270 and Eq. 8.271. These are obtained by
substituting the assumed deflection and electric displacement. In the present case,
these are scalars.

K =
∫

Vb

Yb(φ′′
1)2z2dVb +

∫
Vp

YD
11(φ′′

1)2z2dVp (8.287)

= Ybbbt3
b

L3
b

+ 8YD
11bp

(
L3

2 − L3
1

)
L6

b

[(
tb
2

+ tp

)3

−
(

tb
2

)3
]

(8.288)

� =
∫

Vp

zφ1

d′
31Ap

dVp (8.289)

= 3d31YE

11bp

L3
bCp tp

tp (tb + tp )
(
L2

2 − L2
1

)
(8.290)

Because of the additional tip mass Mtip , we need to derive an expression for
the kinetic energy of the structure, from which we can obtain the appropriate mass
matrix. The kinetic energy is now given by

T = 1
2

∫
Vs

ρẇ2dVs + 1
2

Mtip (ẇ(Lb))2 (8.291)

= 1
2

ṙT Mṙ (8.292)

From which the mass matrix can be written as

M =
∫

Vs

ρφT φdVs + φ(Lb)T Mtipφ(Lb) (8.293)
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Figure 8.104. Output power as a
function of load resistance at a
forcing frequency 100 Hz.

Substituting the assumed displacement, we get a scalar equivalent mass of the
system.

M =
∫

Vb

ρbφ
2
1dVb +

∫
Vp

ρpφ
2dVp + Mtipφ

2
1(Lb) (8.294)

= ρbbbtbLb

7
+ 2ρp bp tp

(
L7

2 − L7
1

)
7L6

b

+ Mtip (8.295)

The final equations become⎧⎨⎩
ṙ1

r̈1

q

⎫⎬⎭ =
⎡⎣ 0 1 0

−K/M 0 −�/M
−�/RL 0 −1/(RLCp )

⎤⎦⎧⎨⎩
r1

ṙ1

q

⎫⎬⎭+
⎧⎨⎩

0
1/M

0

⎫⎬⎭Ftip (8.296)

The values of the constants can be obtained by substituting the values given
in Table 8.8. The results of solving the system of equations for a forcing of unit
magnitude are shown in Figs. 8.104–8.106.

It is seen that the output power reaches a maximum for a specific value of
load resistance. This corresponds to the impedance matched condition, where the
load resistance is equal to the output impedance of the piezoelectric sheets. The
voltage generated is seen to increase with increasing load resistance and asymptote
to a constant value. Similarly, the tip displacement increases and asymptotes to a
constant value. This corresponds to the changing stiffness of the piezoelectric sheets
based on the load resistance connected across their electrodes.

8.10.5 Worked Example

Consider a cantilever beam with surface-bonded piezoelectric sheets and a tip force
as shown in Fig. 8.101. The two piezoelectric sheets are connected in parallel with a
load resistance, as in Fig. 8.102. Assume a uniform electric field across the piezoelec-
tric sheets and derive the equations of motion using the electric enthalpy approach.
Neglect structural damping.

Assuming a one-term expression for the displacement, write the equations of
the system in state-space form.
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Solution

The variational indicator in this case is written as in Eq. 8.251. Ignoring strains along
the y-direction, and using a one-dimensional representation to model the device, the
piezoelectric constitutive relations can be written as

{
D3

σ11

}
=
[

e ε
33 d31YE

11

−d31YE

11 YE

11

]{
E3

ε11

}
(8.297)

Using these relations, the electric enthalpy is written as

H2 = 1
2

∫
Vs

σ11ε11dVs − 1
2

∫
Vs

D3E3dVs (8.298)

= 1
2

∫
Vs

(
YE

11ε
2
11 − e ε

33E
2
3 − 2d31YE

11E3ε11
)

dVs (8.299)
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The transverse displacement is given by a summation of assumed shape functions
as

w(x, t) =
N∑

i=1

φ(x)r(t) = φr (8.300)

From the Euler-Bernoulli assumption, the strain is

ε11 = −φ′′rz (8.301)

The kinetic energy of the structure is given by

T = 1
2

∫
Vs

ρẇ2dVs (8.302)

which gives

T − H2 = 1
2

∫
Vs

(
ρṙT φT φṙ − YE

11z2rT φ′′T φ′′r + e ε
33E

2
3 − 2d31YE

11E3zφ′′r
)

dVs

(8.303)
Taking the variation of the above expression yields

δ(T − H2) =
∫

Vs

(
ρδṙT φT φṙ − YE

11z2δrT φ′′T φ′′r + e ε
33E3δE3

−d31YE

11zφ′′rδE3 − d31YE

11zE3δrT φ′′T
)

dVs

(8.304)

The voltage is related to the gradient of the electric field. Assuming a uniform
electric field across the piezoelectric sheets,

V = −E3tp (8.305)

from which we get an expression for the variation of electric field in terms of flux
linkage as

δE3 = −δλ̇

tp
(8.306)

Substituting this in Eq. 8.304 yields

δ(T − H2) = 1
2

∫
Vs

(
ρδṙT φT φṙ − YE

11z2δrT φ′′T φ′′r + e ε
33

t2
p
λ̇δλ̇

+φ′′r
d31YE

11z
tp

δλ̇ + d31YE

11z
tp

δrT φ′′T δλ̇
)

dVs

(8.307)

The mechanical and electrical virtual work terms are given by∑
i

f iδwi = Ftipδwtip = FtipδrT φ(Lb)T (8.308)

∑
j

ij δλj = − V
RL

δλ = − 1
RL

λ̇δλ (8.309)

where the voltage drop across the load resistance has been substituted in terms of
the current flowing through it.



8.10 Energy Harvesting 875

The above expressions are substituted into the variational indicator (Eq. 8.251),
which is then set equal to zero.

V.I. =
∫ t2

t1

[
δṙT Mṙ + Cp λ̇δλ̇ + �rδλ̇ − δrT Kr + δrT �λ̇

+ Ftip δrT φ(Lb)T − 1
RL

λ̇δλ

]
dt

= 0

(8.310)

where the mass, stiffness and coupling matrices are given by

M =
∫

Vs

ρφT φdVs (8.311)

K =
∫

Vs

YE

11z2φ′′T φ′′dVs (8.312)

� =
∫

Vs

d31YE

11z
tp

φ′′T dVs (8.313)

The capacitance of the piezoelectric sheets at constant strain is

Cp =
∫

Vs

e ε
33

t2
p

dVs = e ε
33Ap

tp
(8.314)

The coupling matrix defined using the electric enthalpy, �H2 is related to the
coupling matrix defined using the internal energy approach, �U . Assuming constant
properties over the volume of the piezoelectric material,

�U =
∫

Vs

zφ′′T

Ap d′
31

dVs =
∫

Vs

d31YE

11z(
1 − k2

31

)
e σ

33Ap
φ′′T dVs

= d31YE

11tp(
1 − k2

31

)
e σ

33tp Ap

∫
Vs

zφ′′T dVs

= �H2

1
Cp

(8.315)

Integrating Eq. 8.310 by parts, setting the variations at t1 and t2 to zero and
collecting coefficients of δrT and δλ results in the equations of motion

Mr̈ + Kr − �V = Ftipφ(Lb)T (8.316)

Cp V̇ + �T ṙ + V
RL

= 0 (8.317)

These equations can be put in the state-space form

⎧⎨⎩
ṙ
r̈
V̇

⎫⎬⎭ =
⎡⎣ 0(N×N) I(N×N) 0(N×1)

−M−1K 0(N×N) M−1�

0(1×N) − 1
Cp

�T − 1
RLCp

⎤⎦⎧⎨⎩
r
ṙ
V

⎫⎬⎭+
⎧⎨⎩

0(N×1)

M−1φ(Lb)T

0

⎫⎬⎭Ftip (8.318)
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Figure 8.107. Cantilever beam with surface-bonded piezoelectric sheets and base excitation.

Let us assume the displacement to be given by

w(x, t) = φ1r1 =
(

x
Lb

)3

r1 (8.319)

The equivalent mass, stiffness and coupling matrix of the system are

M =
∫

Vb

ρbφ
2
1dVb +

∫
Vp

ρpφ
2
1dVp (8.320)

= ρbbbtbLb

7
+ 2ρp bp tp

(
L7

2 − L7
1

)
7L6

b

(8.321)

K =
∫

Vb

Yb(φ′′
1)2z2dVb +

∫
Vp

YE

11(φ′′
1)2z2dVp (8.322)

= Ybbbt3
b

L3
b

+ 8YE

11bp
(
L3

2 − L3
1

)
L6

b

[(
tb
2

+ tp

)3

−
(

tb
2

)3
]

(8.323)

� =
∫

Vp

d31YE

11zφ′′
1

tp
dVp (8.324)

= 3d31YE

11bp (tb + tp )

(
L2

2 − L2
1

)
L3

b

(8.325)

The final equations in state-space form become⎧⎨⎩
ṙ1

r̈1

V

⎫⎬⎭
⎡⎣ 0 1 0

−K/M 0 �/M
0 −�/Cp −1/(RLCp )

⎤⎦⎧⎨⎩
r1

ṙ1

V

⎫⎬⎭+
⎧⎨⎩

0
1/M

0

⎫⎬⎭Ftip (8.326)

8.10.6 Worked Example

Consider a cantilever beam with surface-bonded piezoelectric sheets as shown in
Fig. 8.107, being excited by a harmonic base motion. This is a schematic of a typical
vibration based energy harvester. The two piezoelectric sheets are connected in
parallel with a load resistance, as in Fig. 8.102. Derive the equations of motion of the
system assuming a uniform electric field across the piezoelectric sheets and neglecting
structural damping. Assume the beam transverse displacement to be given by

w(x, t) = φ1r1 =
(

x
Lb

)3

r1 (8.327)
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Solution

In this case, the mass, stiffness and coupling terms remain the same as in Eq. 8.276,
Eq. 8.270 and Eq. 8.271.

M =
∫

Vb

ρbφ
2
1dVb +

∫
Vp

ρpφ
2
1dVp (8.328)

= ρbbbtbLb

7
+ 2ρp bp tp

(
L7

2 − L7
1

)
7L6

b

(8.329)

K =
∫

Vp

YD
11z2(φ′′

1)2dVp +
∫

Vb

Ybz2(φ′′
1)2dVb (8.330)

= Ybbbt3
b

L3
b

+ 8YE

11bp
(
L3

2 − L3
1

)
L6

b

[(
tb
2

+ tp

)3

−
(

tb
2

)3
]

(8.331)

� =
∫

Vp

zφ1

d′
31Ap

dVp (8.332)

= 3d31YE

11bp

L3
bCp tp

tp (tb + tp )
(
L2

2 − L2
1

)
(8.333)

In this case, the mechanical virtual work is due to the inertial force acting on the
structure.

δWf =
∫

Vs

f (x, t)δw (8.334)

= −
(∫

Vb

ρbbbtbδwdVb + 2
∫

Vp

ρp bp tpδwdVp

)
ẅo (8.335)

= ω2AδrT

(∫
Vb

ρbbbtbφT dVb + 2
∫

Vp

ρp bp tpφT dVp

)
(8.336)

= δrT Fa (8.337)

Substituting the assumed displacement gives

Fa = ω2A

[
ρbbbtb

∫ Lb

0

(
x

Lb

)3

dx + 2ρp bp tp

∫ L2

L1

(
x

Lb

)3

dx

]
(8.338)

= ω2A

[
ρbbbtbLb

4
+ ρp bp tp

2

(
L4

2 − L4
1

)
L3

b

]
(8.339)

The final equations of the system are⎧⎨⎩
ṙ1

r̈1

q

⎫⎬⎭ =
⎡⎣ 0 1 0

−K/M 0 −�/M
−�/RL 0 −1/(RLCp )

⎤⎦⎧⎨⎩
r1

ṙ1

q

⎫⎬⎭+
⎧⎨⎩

0
1/M

0

⎫⎬⎭Fa (8.340)

8.11 Constrained Layer Damping

Passive surface treatments are extensively used to increase damping of flexible struc-
tures such as plain and sandwich plates, beams, blades and other dynamic systems.
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Damping material

Base structure

Undeformed

Deformed

Figure 8.108. Passive surface damping
treatment (unconstrained).

These passive treatments can be broadly classified into two categories, extensional
(unconstrained) and shear (constrained). The unconstrained layer treatment consists
of a simple layer of high damping viscoelastic material, firmly bonded to the elastic
baseline structure, as in Fig. 8.108. As the surface vibrates in bending, the treatment
deforms cyclically in compression and tension and energy is dissipated. Since there
is a negligible shear deformation in viscoelastic material, a very low level of energy
dissipation takes place. This is not an effective way of damping augmentation. In the
constrained layer treatment, a stiff constrained layer is added to the top surface of
highly damped viscoelastic layer that is firmly bonded to the baseline structure at its
bottom surface, as in Fig. 8.109. The expected flexural modulus of constrained layer
is of the same order as that of baseline structure. During bending motion of base
structure, the viscoelastic layer is forced to deform in shear mode. During dynamic
motion, the energy is dissipated in viscoelastic material. Increasing the thickness of
damping material layer can increase damping, but it will also increase more weight
penalty, which is a critical issue especially for aerospace systems. This approach
of damping augmentation in a structure is simple, reliable and less expensive, but
often is of limited effectiveness. Early works on constrained layer damping can be
attributed to DiTaranto [212], Mead and Markus, [213] who worked on sandwich
beams with viscoelastic cores for axial and bending vibration of beams. Following
these studies, there have been numerous investigations on constrained layer damping
for plates and beams [214, 215].

The constrained layer analysis is based on the following assumptions: (1) the
constrained layer bends in transverse direction as an integral part of base layer, (2)
viscoelastic layer undergoes pure shear deformation, and (3) the viscoelastic layer
does not undergo change in thickness during deformation. These assumptions appear
quite satisfactory as long as the thickness of viscoelastic layer is comparatively thin.

Undeformed

Deformed

Damping material

Base structure

Constraining sheet

Figure 8.109. Passive surface damping
treatment (constrained).
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Figure 8.110. Beam with uncon-
strained viscoelastic layer.

Let us consider a cantilevered beam of length Lb, thickness tb and Young’s mod-
ulus Eb with unconstrained viscoelastic layer of length lv, thickness tv, and Young’s
modulus Ev. Let us draw a free body diagram of the treated element (Fig. 8.110).
Equilibrium of forces gives

∂σ

∂x
tv = τ (8.341)

σ = Ev

∂u
∂x

(8.342)

Shear strain in the baseline beam is based on the assumption that displacement varies
linearly with thickness as

γb = u − uo

tb
(8.343)

τ = G
(

u − uo

tb

)
(8.344)

where uo is the displacement of the beam surface and G is the shear modulus.
Substituting, we get

Evtv
∂2u
∂x2

= G
(

u − uo

tb

)
(8.345)

which gives

Evtvtb
G

∂2u
∂x2

− u = −uo

tb
(8.346)

Let us define (
Evtvtb

G

) 1
2

= B and εo = uo

tb
(8.347)
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Figure 8.111. Active constrained layer
damping treatment.

The governing equation of the element becomes

B2 ∂
2u
∂x2

− u = −εo (8.348)

with the boundary conditions

at x = ± lv
2

Evtv
∂u
∂x

= 0 i.e.
∂u
∂x

= 0 (8.349)

The solution to the governing equation (Eq. 8.348) is given by

u(x) = εo

[
x − B

sinh(x/B)
cosh(lv/2B)

]
(8.350)

where εo is the strain of the beam surface. The energy dissipated in the damping
layer per cycle is

�W =
∫ lv/2

−lv/2
πtbG′′γ2dx (8.351)

from which the loss coefficient is found to be

η = �W
1
2ε

2
oEvtvlc

(8.352)

8.11.1 Active Constrained Layer Damping (ACLD)

In active surface treatments, the constraining surface for the high damping viscoelas-
tic material layer is an active material sheet such as PZT (Fig. 8.111). This helps to
increase the shearing strain in viscoelastic material and thereby augment the damp-
ing of the passive layer. Even though this technique is more involved than passive
constrained layer damping approach, but it is far more effective to increase specific
damping (damping/weight) of the system. This system inherently has both the capa-
bilities of active and passive constrained-layer damping. Active capability enhances
the damping augmentation, whereas the passive layer introduces robustness and reli-
ability of the system. Early efforts in this area are due to Plump and Hubbard [216],
Baz and Ro [217], Van Nostrand and Inman [218] and Shen [219] for active con-
strained layer damping of beam and plates. Liao and Wang [220] enhanced the active
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Figure 8.112. Beam with con-
strained viscoelastic layer.

constrained layer damping augmentation using a new configuration with edge ele-
ments. This helps to increase the active action transmissibility while retaining passive
damping capability.

Let us consider a beam of length Lb with a constrained layer treatment of
thickness tv over a length lv (Fig. 8.112). The kinematic beam relations are

Beam: εb = ∂ub

∂x
− z

∂2w

∂x2
(8.353)

Constrained layer: εc = ∂uc

∂x
− z

∂2w

∂x2
(8.354)

The shear strain in the viscoelastic is

γ = 1
tv

[
d
∂w

∂x
+ uc − ub

]
(8.355)

where ub and uc are the axial displacements of the host beam and constraint layer
respectively, at the neutral axis, or mid-axis, and d is the distance between the neutral
axis of the beam and the mid-plane of the constraint layer.

d = tb
2

+ tv + tc
2

= tv + tc + tb
2

(8.356)

Assuming that the constraint layer has a negligible effect on the neutral axis, and
neglecting the kinetic energy in the axial direction, the strain energy and kinetic
energy of the beam are

Ub = 1
2

∫ Lb

0
EbIb

(
∂2w

∂x2

)2

dx + 1
2

∫ Lb

0
EbAb

(
∂ub

∂x

)2

dx (8.357)

Tb = 1
2

∫ Lb

0
mb

(
∂w

∂t

)2

dx (8.358)

where mb is the mass per unit length of the beam, EbIb is the flexural stiffness
and EbAb is the extensional stiffness. For the viscoelastic layer, the strain energy is
assumed to be entirely due to the shear strain. The strain energy and kinetic energy
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Figure 8.113. Free body diagram of beam ele-
ment with constrained damping layer.

are given by

Uv = 1
2

∫ x1+lv

x1

GAv

[
tb
2tv

∂w

∂x
+ uc − ub

tv

]2

dx (8.359)

Tv = 1
2

∫ x1+lv

x1

mv

(
∂w

∂t

)2

dx (8.360)

where GAv is the shear stiffness and mv is the mass per unit length of the viscoelastic
material only. The strain energy and kinetic energy of the constraining layer (or
active layer) are

Uc = 1
2

∫ x1+lc

x1

EcIc

(
∂2w

∂x2

)2

dx + 1
2

∫ x1+lc

x1

EcAc

(
∂uc

∂x

)2

dx (8.361)

Tc = 1
2

∫ x1+lc

x1

mc

(
∂w

∂t

)2

dx (8.362)

where EcIc is the flexural stiffness, EcAc is the extensional stiffness and mc is the mass
per unit length. Since the inertial forces in the x-direction are neglected, the static
equilibrium in the axial direction can be uncoupled. From the free body diagram of
the beam element (Fig. 8.113), we get the equilibrium equation for the beam as

tb
∂σb

∂x
+ τ = 0 (8.363)

∂

∂x

[
tbEb

∂ub

∂x

]
+ Gγ = 0 (8.364)

Ebtb
∂2ub

∂x2
+ G

tv

[
d
∂w

∂x
+ uc − ub

]
= 0 (8.365)

From which we get

uc = ub − d
∂w

∂x
+
(

Ebtb
G

tv

)
∂2ub

∂x2
(8.366)
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The equilibrium equation for the constrained layer can be obtained as

tc
∂σc

∂x
− τ = 0 (8.367)

tc
∂

∂x

[
Ec

∂uc

∂x

]
− G

tv

[
d
∂w

∂x
+ uc − ub

]
= 0 (8.368)

Ectc
G

tv
∂2uc

∂x2
− uc + ub − d

∂w

∂x
= 0 (8.369)

Define

Cb = Ebtbtv
G

(8.370)

Cc = Ectctv
G

(8.371)

Baz and Ro [221] examined bending vibration control of flat plates using patches
of active constrained layer damping. Each patch consists of viscoelasric damping
layer sandwiched between two piezoelectric layers, one used as a sensor and second
one as actuator. Numerical simulation is carried out using finite element approach
and results are validated experimentally by testing Aluminum plate by treating
it with two patches (viscoelastic and PVDF piezo films). Active constrained layer
treatment was found to be far effective to attenuate vibration amplitudes than passive
treatment; a three fold increase in damping augmentation.

Huang et al. [222] compared results from three configurations of pure active
control by surface-attached piezoceramics, passive constrained layer damping, and
active constrained layer damping treatments. In these studies, the total thickness of
the damping treatment is restricted. A complex modulus approach is used to model
damping to carry out steady state analysis. It was shown that the active constrained
layer damping treatment provides far superior vibration suppression (i.e., damping
augmentation) than passive damping treatment, and it even outperforms pure active
control for low-gain applications. From open-loop studies, it is possible to determine
the optimal size of active constrained layer treatment, and then the closed-loop
studies provide the optimal control gains, and thereby, assures the robustness of
operation [223]. Shields et al. [224] presented a theoretical (FEM) and experimental
demonstration of the effectiveness of active control of sound radiation from a plate
into an acoustic cavity using patches of active piezoelectric damping composites.
Each patch consists of piezoelectric fibers embedded across the thickness of a vis-
coelastic matrix. This study demonstrated the effectiveness of active control of sound
and low-frequency structural vibration. Chantalakhana and Stanway [225] addressed
the suppression of vibrations of a clamped-clamped plate using active constrained
layer damping, both numerically and experimentally. Active modal controller was
implemented using the reduced order model (FEM transformed to state-space for-
mat). It was shown that the control of first two vibration modes (bending and tor-
sion) could be achieved using only single actuator and single sensor. Overall, the
best configuration is two actuators and two sensors. Some investigators examined
active constraint layer damping augmentation for cylindrical shell structures [226],
rings [227] and arc type shell [228].
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8.12 Interior Noise Control

Interior noise control in automotive, fixed-wing aircraft, and rotorcraft systems is
quite an important issue. For example, the contributions to noise spectra in a heli-
copter are the main rotor, tail rotor, and engine system in the frequency range of
50–500 Hz and gear trains in the main transmission for frequencies above 500 Hz.
To understand the phenomenon, one can examine a simple case of transmission of
noise into an enclosure with flexible walls. For a flexible structure, interior noise
and structural vibration are coupled phenomena. The sound and vibration energy
is propagated in the interior cabin through two modes: structure-borne transmis-
sion and direct air radiation. Passive techniques are widely used to control interior
noise, but these normally result in significant weight penalty. A possible paradigm
for noise control in a three-dimensional enclosure such as helicopter cabin consists
of an active control approach in the low frequency range (below 500 Hz) and a
passive or a combined active/passive approach in the high frequency range (above
500 Hz). Passive approaches include stiffening the structure, isolating the structure,
damping augmentation, and soundproofing treatments (insulation and absorption).
Passive techniques are less effective in the low frequency range because of relatively
large wavelength of acoustic signature as compared to the thickness of the treatment.
Hence, the active control schemes using either secondary force inputs or external
acoustic sources may be used to cancel noise in an enclosure. Among secondary
force inputs, electrodynamic shakers and piezoelectric actuators are adopted. Sam-
path and Balachandran [229] described an analytical formulation for active control
of noise in a three-dimensional enclosure using piezoelectric actuators. They defined
three different performance functions to evaluate the effectiveness of the system.
For external acoustic sources, speakers can be used to cancel a specific noise source.
The nature of acoustics in an enclosure is characterized by a parameter called the
Schroeder frequency, which identifies a transition boundary between a low modal
density frequency range and a high modal density frequency range. From an active
control point of view, sound fields below the Schroeder frequency are important.
For example, in rotorcraft cabins, Schroeder frequency is in the range of 80–100 Hz.
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Energy formulation, 392
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Delta-E effect, 23
Galfenol, 24
induced strain, 23
metglas, 23
Terfenol-D, 22

Martensite volume fraction, 203, 219, 221,
227

Material constant, 306, 311
Material elastic constants, 305
Material stiffness matrix, 306
Matteusi effect, 583
Maximum recoverable strain, 219
Maxwell, 597
Mechanical damper, 685
Mechanical hysteresis, 154
Mechanical systems

check valve, 772
friction based

clamp and release, 772
travelling wave, 772

output rectification, 772
roller clutch, 772

metglas, 583
Modeling approach, 796
Moderately large deflections, 533
Modified Bridgman (MB), 583
Monoclinic material, 307
Monoclinic symmetry, 306
Multi-layer symmetric laminate, 474

bending, 474
extension, 474

Multimorphs, 6

Newtonian fluid, 687
Nickel-Titanium alloy (NiTiNOL), 194
Nitinol, 6
Normal stress, 313

Oersted, 585, 597
Ohm’s law, 599
Ohmic heating, 609
Ohmic loss, 637
Olander, A., 14
Orthotropic lamina, 447, 448
Orthotropic material, 307

Orthotropic ply, 475
Orthotropic symmetry, 307

Paramagnetic, 584, 593
Paul-Jacques Curie, 11, 113
Permeability of free space, 585
Perovskites, 117
Phase

austenite, 195, 197
detwinned, 197
martensite, 195, 197
R-phase, 212, 213
twinned, 197

Phase Interaction Energy Function (PIEF), 228,
262

Phase transformation, 197
stress-induced, 207
temperature-induced, 207

Phase transformation constant, 219
Pierre Curie, 11, 113
Piezo stack actuators, 6
Piezoceramic, 114, 117

actuator equations, 124
basic characteristics, 119
compliance matrix, 125
constitutive equations, 122
Curie temperature, 124
dielectric permittivity, 130, 131
electric displacement, 131
piezoelectric coefficient matrix, 126, 130
polarization, 123
poling, 121
sensor capacitance, 131
sensor equations, 130
typical properties, 129

Piezoceramic actuator, 146
DC bias, 160
dynamic behavior, 154
dynamic strain, 156
equivalent circuit, 170
power consumption, 169
static behavior, 147

Piezoceramic sensors, 133
Piezoceramic sheet, 123
Piezoceramics, 4
Piezoelectric

actuator equation, 114
coefficient matrices, 117
constant strain, 116
constant stress, 116
constitutive relations, 115
coupling coefficients, 137, 140
coupling matrices, 117
electrical boundary conditions, 138
hysteresis, 145
open-circuit compliance, 138
sensor equation, 114
short-circuit compliance, 138
symbols, 134
voltage coefficient, 134

Piezoelectric active valves, 778
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Piezoelectric actuator
power consumption, 163
strain hysteresis, 154

Piezoelectric coefficients, 127
Piezoelectric pump, 787

work done per cycle, 783, 785
Piezoelectric sensor

effect of temperature, 189
Poisson’s ratio effect, 182
shear lag effect, 183
signal to noise ratio, 185

Piezoelectric sensors, 173
Piezoelectric shunting, 842

capacitive shunt, 850
damping, 844
effective impedance, 844
inductive shunt, 854
open-circuit compliance, 846
resistive shunt, 844, 849
shunt circuits, 847
shunt impedence, 847
stiffness ratio, 847

Piezoelectric transducer, 137
Piezoelectricity, 11, 113

converse effect, 11
curie temperature, 12
direct effect, 11
hysteresis, 13
induced free strain, 13
poling, 13

Piezoelectrics, 4
Piezoelectrics and electrostrictors

differences, 665
Piezomagnetic equations, 611
Pin force model, 320
Piston area, 717
Plastic limit, 312
Plastic viscosity, 690
Plate analysis, 446
PMN-15, 665
PMN-38, 665
PMN-85, 665
PMN-PT, 665
Pockels, F., 113
Poiseulle flow, 701
Polarization, 677
Polyvinylidene Flouride, 7, 133
Porous SMA, 214
Post-yield condition, 690
Pre-yield condition, 690
Preisach model, 159
Pressure electricity, 113
Principal axes, 309
Principle of virtual work, 393, 396, 418
Pseudoelastic hysteresis, 208
Pseudoelasticity, 195, 204
Pumping cycle, 780
Pure bending, 323, 338, 366, 381
Pure extension, 322, 340, 365, 381
PVDF sensor, 184

Pyroelectric effect, 13, 113
PZT, 119

spontaneous polarization, 120
unit cell, 120

PZT-5H, 119, 127, 147, 148
effect of external stresses, 151
small signal characteristics, 127
static free strain, 149

PZT-8, 127

Quadratic response, 671
Quasi-static analysis, 798

R-Phase, 220
R-phase transformation, 213
Rayleigh-Ritz method, 392, 401, 490, 497,

530
Read, 194
Recovery stress, 215
Reissner-Mindlin model, 532
Reluctance, 597
Remanent field, 594
Repoling, 163
Resistive heating, 241
Restrained recovery, 249
Rochelle salt, 11, 113
Rotary motors, 773
Rotor vibratory loads, 811

S-glass, 447
Seignette salt, 12
Self-sensing actuation, 9
Semi-active device, 686
Sensor calibration, 181
Sensors, 8
Shape functions, 413
Shape memory alloy, 6, 194

alloying elements, 195
austenite, 14
constrained recovery, 15
crystal structure, 195
low temperature stress-strain curve, 201
martensite, 14
Nitinol, 14
phase transformation, 16
pseudoelasticity, 15
R-phase, 16
solid engine, 19
thermo-mechanical behavior, 195

Shape memory alloy hybrid composites, 19
Shape memory alloys, 14
Shape memory ceramic actuators, 172
Shape memory effect, 15, 194, 195, 197

all-round shape memory effect (ARSME), 212
one-way (OWSME), 16, 202
reversible, 209
two-way (TWSME), 16, 209

Shape memory properties, 195
Shear correction factor, 423, 542
Shear lag, 183, 337
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Shear lag parameter, 342, 347
Shear stress, 313
Signal conditioning electronics, 177
Single layer generally orthtropic plate

bending, 473
extension, 472

Single layer specially orthtropic plate
bending, 471
extension, 469

Slender beam, 315
Slip, 200
SMA

constitutive model parameters, 246
annealing, 230
constrained recovery, 215
damping capacity, 256
electrical resistance, 269
free recovery, 215
macroscopic phenomenological models, 217
micromechanics-based thermodynamics

macroscopic models, 217
microscopic thermodynamics models, 217
non-quasi-static behavior, 259
power requirements, 269, 289
quasi-static conditions, 259
quasi-static loading, 260
quasi-static macroscopic phenomenological

models, 217
resistance variation, 270
strain energy change rate, 265
strain rate effect, 261, 262
stress-relaxation, 261
tension and compression, 258
thermomechanical energy equilibrium, 264
torsional analysis, 272
torsional testing, 276

SMA actuator
load line, 216

SMA damping, 257
SMA embedded composite, 281, 286, 296
SMA wire, 214

cycling, 229
material constants, 267

SMA wire testing, 229
SMA-in-sleeve, 282, 284, 292, 294
Smart Actuators, 7

output energy density, 8
Smart helicopter rotor, 810

active blade tip, 816
active twist, 812
adaptive controller, 819
bending-torsion coupling, 816
extension-torsion coupling, 817
Froude-scaled, 813
full scale, 818
Mach-scaled, 813
model scale, 812
piezoelectric tube, 818
SMA torsional rod, 824
SMA wire, 824

tip twist, 816
tracking tab, 823
trailing-edge flaps, 813

Smart structure technology
applications, 741, 770
automotive industry, 742
civil structures, 741
electronic equipment, 742
energy harvesting, 743
fixed-wing aircraft, 741
jet engines, 741
machine tools, 742
marine systems, 742
medical systems, 742
rail systems, 743
robotics, 743
rotorcraft, 741
space systems, 741

Smart Structures, 3
active structures, 4
adaptive structures, 4
controlled structures, 4
intelligent structures, 4
sensory structures, 4

Smart structures programs, 31
active aeroelastic wing, 43, 49
active automobile suspension, 72
active engine mount, 74
active flow control, 46
active interior noise control, 51
active knee brace, 77
active palpation sensor, 81
active railway vehicle relief buffer, 88
active space truss, 37
active twist rotor blade, 57
actively controlled response of buffet affected

tail, 50
adaptive reflector, 41
adaptive satellite mirror, 41
adaptive skin, 44
ADAPTRONIK, 32
artificial fingers, 78
artificial hand, 78
artificial muscles, 78
ASSET, 32
automobile interior noise control, 74
automotive systems, 71
beam steering antennae, 88
bending-torsion coupled beam, 56
biocompatible MR fluid, 81
CHAP, 32
civil structures, 61
CLAS, 32
deformable mirror control, 37
double-lever amplification mechanism, 56
earthquake mitigation, 67
electronic damping control, 35
electronics equipment, 86
energy harvesting, 90
ER/MR dampers for large civil structures, 67
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Smart structures programs (cont.)
evaluation of new actuators in buffet loads

environment, 49
fiber bragg grating sensors, 40
fixed-wing aircraft, 41
German buffet suppression program, 50
haptic feedback devices, 75
health monitoring of civil structures, 62
helicopter interior noise control, 60
high-speed machining, 68
high-speed train bogies, 89
high-speed traversing mechanism, 70
human blood vessel microrobot, 82
inflatable space structures, 39
integrated vehicle health monitoring, 45
intelligent press, 71
jet engines, 51
machine tools, 68
magnetorheological finishing, 71
marine systems, 75
medical systems, 77
minimally invasive surgery, 81
MR force feedback system, 81
multifunctional structures, 45
NASA morphing project, 34, 50
piezoelectric fuel injectors, 75
piezoelectric transformer, 87
prosthetic devices, 77
rail, 88
reconfigurable wing, 44
robotic gripper, 90
robots, 89
rotary-wing aircraft, 53
Sandia gamma truss, 39
satellite ultra-quiet isolation technology

experiment, 40
shape memory alloy thermal tailoring

experiment, 38
SMA actuated hydrofoil, 76
SMA anal sphincter, 80
SMA catheter, 83
SMA eye prosthesis, 79
SMA eyeglass frames, 83
SMA implants, 85
SMA stents, 83
SMA torsional tube actuator, 59
SMA tracking tab, 58
smart aircraft and marine propulsion system

demonstration project, 53
smart material actuated rotor technology, 60
smart materials and structural systems, 33
smart paper mill, 70
smart skins structures technology demonstrator,

32
smart sleeve demonstration system, 76
smart structural systems, 33
smart tip rotor, 56
smart wing program, 47
space experiment and mid-deck active control

experiment, 40
space systems, 35

SPICES, 32
structural acoustic control, 40
synthetic jets, 46
trailing-edge flaps, 55
ultrasonic motors, 87
URI, 31
variable geometry chevrons, 52
variable geometry nozzles, 52
variable resistance exercise machine, 80
vibration isolation, suppression, and steering,

40
X-frame mechanism, 56

Soft piezoelectric material, 118
Solenoid, 588
Sommerfeld convention, 596
Specific energy index, 769
Specific heat, 266
Spontaneous magnetostriction, 602
Squeeze mode, 734
State space method, 799
Static free strain, 159
Stiffness matrix, 308
Storage modulus, 853
Strain energy

bending, 404
extensional, 404

Strain energy distribution, 565
Strain hysteresis, 608, 673
Strain sensors, 173
Strain vector, 115
Strain-force index, 144
Strain-temperature curve, 235
Stress

axial, 362
normal, 362

Stress induced martensite, 204
Stress influence coefficient, 219
Stress resultant, 454
Stress vector, 115
Stress-induced martensite volume fraction,

221
Stress-strain-temperature diagram, 204
Stroke amplification

mechanisms, 744
Superelasticity, 204
Swashplateless rotor, 812
Symmetric laminated plate, 492

Tanaka model, 218, 263
Temperature effect, 607, 676
Temperature-induced martensite volume fraction,

221
Tensorial notation, 314
Terfenol-D, 6, 581, 582, 600, 601, 612, 613, 617,

621, 623, 625, 627
material properties, 617

Tesla, 591, 597
Thermo-elastic constant, 219
Thin bond, 346
Timoshenko beam theory, 420, 532
Tip slope, 384
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Tonpilz transducer, 625
Training

two-way shape memory effect, 210
Transformation function, 223
Transformation temperature, 202, 231, 233

austenite finish (Af ), 202
austenite start (As), 202
martensite finish (Mf ), 202
martensite start (Ms), 202

Transmission line approach, 804
Transresistance amplifier, 180
Transverse shear forces, 455
Transversely isotropic symmetry, 311
Trigger line, 207
Twin pair, 198
Twin variant, 644

field-preferred, 645
stress-preferred, 646

Twinning, 198
Type I material, 202

Ultrasonic motor, 626
Ultrasonic motors, 774
Uniform strain model, 337, 392
Units system

CGSM (Centimeter-Gram-Second-abampere),
596

MKSA (Meter-Kilogram-Second-Ampere), 596
SI, 596

Variable stiffness composite beams, 282
Variable-geometry truss, 33
Villari effect, 22, 583, 625
Virtual strain energy, 488
Virtual work, 491
Viscoelastic material, 848, 878
Viscosity measurement techniques, 687
Voigt, W., 12, 113
Voltage follower, 177
Volume factor, 694
von Hippel, 12
von Karman analysis, 537
von Karman nonlinear strain, 534

Weber, 597
Wiedemann effect, 583
Winslow, W., 26, 685

Yield behavior, 690
Yield strain rate, 699
Yield stress

dynamic, 691
static, 691

Young’s Modulus, 678
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