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Preface

The Continuing Development of 
Systems Architecting

Architecting, the planning and building of struc-
tures, is as old as human societies — and as modern 
as the exploration of the solar system.

So began this book’s original 1991 predecessor.* The earlier work was 
based on the premise that architectural methods, similar to those formu-
lated centuries before in civil works, were being used, albeit unknowingly, 
to create and build complex aerospace, electronic, software, command, 
control, and manufacturing systems. If so, then still other civil works 
architectural tools and ideas — such as qualitative reasoning and the 
relationships between client, architect, and builder — should be found 
even more valuable in today’s more recent engineering fields. Five and ten 
years later, at the time of the first and second editions of this book, judging 
from several hundred retrospective studies at the University of Southern 
California of dozens of post–World War II systems, the original premise 
was validated. Since then the use of architectural concepts has become 
common in systems engineering discussions. A central premise of the 
application of the civil architecture metaphor, that creating and building 
systems too complex to be treated by engineering analysis alone can be 
addressed through structured methods at the level of heuristics, has been 
further validated.

Of great importance for the future, the new fields have been creat-
ing architectural concepts and tools of their own and at an accelerating 
rate. This book includes a number of the more broadly applicable ones, 
among them heuristic tools, progressive design, intersecting waterfalls, 
feedback architectures, spiral-to-circle software acquisition, technological 

*	 Rechtin, E., Systems Architecting, Creating and Building Complex Systems. Englewood Cliffs, 
NJ: Prentice Hall, 1991, hereafter called Rechtin 1991.
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innovation, architecture and business strategy, and the rules of the politi-
cal process as they affect system design.

Arguably, these developments could, even should, have occurred 
sooner in this modern world of systems. Why now?

Architecting in the Systems World
A strong motivation for expanding the architecting process into new 
fields has been the retrospective observation that success or failure of 
today’s widely publicized (and unpublicized) systems often seems pre-
ordained — that is, traceable to their beginnings. Some system develop-
ment projects start doomed, and no downstream engineering efforts are 
likely to rescue them. Other projects seem fated for success almost in 
spite of poor downstream decisions. The initial concept is so “right” that 
its success is inevitable, even if not necessarily with the first group that 
tries to execute it. This is not a new realization. It was just as apparent 
to the ancient Egyptians, Greeks, and Romans who originated classical 
architecting in response to it. The difference between their times and now 
is in the extraordinary complexity and technological capability of what 
could then and now be built.

Today’s architecting must handle systems of types unknown until 
very recently, for example, systems that are very high quality, real time, 
closed loop, reconfigurable, interactive, software intensive, and, for all 
practical purposes, autonomous. New domains like personal computers, 
intersatellite networks, health services, and joint service command and 
control are calling for new architectures — and for architects specializing 
in those domains. Their needs and lessons learned are in turn leading 
to new architecting concepts and tools and to the acknowledgment of a 
new formalism — and evolving profession — called systems architecting, 
a combination of the principles and concepts of both systems and of 
architecting. However, for all the new complexity, many of the roots of 
success and failure are nearly constant over time. By examining a series 
of case studies, interwoven with a discussion of the particular domains 
to which they belong, we can see how relatively timeless principles (for 
example, technical and operational coupled revolution, strategic consis-
tency) largely govern success and failure.

The reasons behind the general acknowledgment of architecting in 
the new systems world are traceable to that remarkable period immedi-
ately after the end of the Cold War in the mid-1980s. Abruptly, by historical 
standards, a 50-year period of continuity ended. During the same period, 
there was a dramatic upsurge in the use of smart, real-time systems, both 
civilian and military, that required much more than straightforward 
refinements of established system forms. Long-range management strate-
gies and design rules, based on years of continuity, came under challenge. 
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That challenge was not short-lived; instead, it has resorted itself repeatedly 
in the years between editions of this book. It is now apparent that the new 
era of global transportation, global communications, global competition, 
and global security turmoil is not only different in type and direction; it is 
unique technologically and politically. It is a time of restructuring and 
invention, of architecting new products and processes, and of new ways 
of thinking about how systems are created and built.

Long-standing assumptions and methods are under challenge. For 
example, for many engineers, architectures were a given; automobiles, air-
planes, and even spacecraft had the same architectural forms for decades. 
What need was there for architecting? Global competition soon provided 
an answer. Architecturally different systems were capturing markets. 
Consumer product lines and defense systems are well-reported examples. 
Other questions remained: How can software architectures be created 
that evolve as fast as their supporting technologies? How deeply should a 
systems architect go into the details of all the system’s subsystems? What 
are the relationships between the architectures of systems and the human 
organizations that design, build, support, and use them?

Distinguishing between Architecting, 
Engineering, and Project Management
Because it is the most asked by engineers in the new fields, the first issue to 
address is the distinction between architecting and engineering in general 
— that is, regardless of engineering discipline. Although civil engineers 
and civil architects, even after centuries of debate, have not answered 
that question in the abstract, they have in practice. Generally speaking, 
engineering deals almost entirely with measurables using analytic tools 
derived from mathematics and the hard sciences; that is, engineering is a 
deductive process. Architecting deals largely with unmeasurables using 
nonquantitative tools and guidelines based on practical lessons learned; 
that is, architecting is an inductive process. Architecting embraces the 
world of the user/sponsor/client, with all the ambiguity and imprecision 
that may entail. Architecting seeks to communicate across the gap from 
the user/sponsor/client to the engineer/developer, and architecting is 
complete (at least its initial phase) when a system is well-enough defined 
to engage developers. At a more detailed level, engineering is concerned 
more with quantifiable costs, architecting more with qualitative worth. 
Engineering aims for technical optimization, architecting for client satis-
faction. Engineering is more of a science, and architecting is more of an 
art. Although the border between them is often fuzzy, the distinction at 
the end is clear.
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In brief, the practical distinction between engineering and architect-
ing is in the problems faced and the tools used to tackle them. This same 
distinction appears to apply whether the branch involved is civil, mechani-
cal, chemical, electrical, electronic, aerospace, software, or systems.* Both 
architecting and engineering can be found in every one of the established 
disciplines and in multidisciplinary contexts. Architecting and engineer-
ing are roles, distinguished by their characteristics. They represent two 
edges of a continuum of systems practice. Individual engineers often 
fill roles across the continuum at various points in their careers or on 
different systems. The characteristics of the roles, and a suggestion for an 
intermediate role, are shown in Table P.1.

As the table indicates, architecting is characterized by dealing with 
ill-structured situations, situations where neither goals nor means are 
known with much certainty. In systems engineering terms, the require-
ments for the system have not been stated more than vaguely, and the 
architect cannot appeal to the client for a resolution, as the client has 
engaged the architect precisely to assist and advise in such a resolution. 
The architect engages in a joint exploration of requirements and design, in 
contrast to the classic engineering approach of seeking an optimal design 
solution to a clearly defined set of objectives.

*	 The systems branch, possibly new to some readers, is described in Rechtin 1991 and in 
Chapter 1 of this book.

Table P.1  Characteristics of the Roles on the Architecting and 
Engineering Continuum

Characteristic Architecting
Architecting and 

Engineering Engineering
Situation/goals Ill-structured Constrained Understood

Satisfaction Compliance Optimization
Methods Heuristics ←⎯⎯⎯⎯⎯⎯→ Equations

Synthesis ←⎯⎯⎯⎯⎯⎯→ Analysis
Art and science Art and science Science and art

Interfaces Focus on “mis-fits” Critical Completeness
System integrity 
maintained 
through

“Single mind” Clear objectives Disciplined 
methodology and 
process

Management 
issues

Working for client Working with 
Client

Working for 
builder

Conceptualization 
and certification

Whole waterfall Meeting project 
requirements

Confidentiality Conflict of 
interest

Profit versus cost
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Because the situation is ill structured, the goal cannot be optimiza-
tion. The architect seeks satisfactory and feasible problem-solution pairs. 
Good architecture and good engineering are both the products of art and 
science, and a mixture of analysis and heuristics. However, the weight 
will fall on heuristics and “art” during architecting.

An “ill-structured” problem is a problem where the statement of 
the problem depends on the statement of the solution. In other words, 
knowing what you can do changes your mind about what you want to 
do. A solution that appears correct based on an initial understanding of 
the problem may be revealed as wholly inadequate with more experience. 
Architecting embraces ill-structured problems. A basic tenet of architect-
ing is to assume that one will face ill-structured problems and to config-
ure one’s processes so as to allow for it.

One way to clearly see the distinction between architecting and engi-
neering is in the approach to interfaces and system integrity. When a 
complex system is built (say one involving 10,000 person-years of effort), 
only absolute consistency and completeness of interface descriptions 
and disciplined methodology and process will suffice. When a system is 
physically assembled, it matters little whether an interface is high tech or 
low tech; if it is not exactly correct the system does not work. In contrast, 
during architecting, it is necessary only to identify the interfaces that cannot 
work — the mis-fits. Mis-fits must be eliminated during architecting, and 
then interfaces should be resolved in order of criticality and risk as devel-
opment proceeds into engineering.

One important point is that the table represents management in the 
classical paradigm of how architecting is done, not necessarily how it 
actually is done. Classically, architecting is performed by a third party 
working for the client. In practice, the situation is more complex as the 
architecting might be done by the builder before a client is found, might 
be mixed into a competitive procurement, or might be done by the client. 
These variations are taken up in chapters to come.

As for project management, architecting clearly exists within the larger 
project cycle. If we examine the development of systems very holistically, 
looking from the earliest to the latest phases, we see architecting existing 
within that large picture. But, at a practical level, what is usually taught as 
project management has a narrower focus, as does what is usually taught 
as systems engineering. The narrower focus assumes that definite require-
ments (in the unambiguous, orthogonal, measurable, and testable senses) 
exist and can be documented, that budgets and schedules exist and must 
be managed, and that specific end points are defined through contracts or 
other agreements. For a given organization (a contract developer, a gov-
ernment project office), that narrower focus may be all that matters, and 
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may encompass billions of dollars. Often, by the time that narrower focus 
has been arrived at, the architecting is over. Often, by the time that nar-
rower focus has been arrived at, the project is already doomed to failure 
or well on its way to success.

Table P.1 implies an important distinction in architecting as currently 
practiced. The table, and this book, emphasize architecting as decision 
making. Architecting has been accomplished when the fundamental struc-
tural decisions about a system have been made, regardless of what sort of 
architecture description document has been produced. In contrast, many 
“architecture” projects currently being conducted are description-centric. 
Their basis is producing an architecture framework compliant descrip-
tion document about a system or system-of-systems that typically already 
exists. These are sometimes called “as-is” or “baseline” architecture docu-
ments. This book has relatively little to say about such projects. The authors’ 
emphasis, and the emphasis of this book, is on the structural decisions 
that underlie the “as-is” system. The methods of this book could be useful 
applied to making an assessment of those decisions, and reevaluating 
those decisions.

Architecting as Art and Science
Systems architecting is the subject of this book, and the art of it in par-
ticular, because, being the most interdisciplinary, its tools can be most 
easily applied in the other branches. Good architecting is not just an art, 
and virtually all architects of high-technology systems, in the authors’ 
experience, have strong science backgrounds. But, the science needed for 
systems architecting already is the subject of many publications, but few 
address the art systematically and in depth. The overriding objective of 
this book is to bring the reader a toolbox of techniques for handling ill-
structured, architectural problems that are different from the engineering 
methods already taught well and widely published.

It is important in understanding the subject of this book to clarify cer-
tain expressions. The word “architecture” in the context of civil works can 
mean a structure, a process, or a profession; in this text, it refers only to 
the structure, although we will often consider “structures” that are quite 
abstract. The word “architecting” refers only to the process. Architecting 
is an invented word to describe how architectures are created, much as 
engineering describes how “engines” and other artifacts are created. 
In another, subtler, distinction from conventional usage, an “architect” is 
meant here to be an individual engaged in the process of architecting, 
regardless of domain, job title, or employer. By definition and practice, 
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from time to time an architect may perform engineering and an engineer 
may perform architecting — whatever it takes to get the job done.

Clearly, both processes involve elements of the other. Architecting 
requires top-level quantitative analysis to determine feasibility and quan-
titative measures to certify readiness for use. Engineering can and occa-
sionally does require the creation of architecturally different alternatives 
to resolve otherwise intractable design problems. Good engineers are 
armed with an array of heuristics to guide tasks ranging from structur-
ing a mathematical analysis to debugging a piece of electronic hardware. 
For complex systems, both engineering and architecting are essential.* In 
practice, it is usually necessary to draw a sharp line between them only 
when that sharp line is imposed by business or legal requirements.

Criteria for Mature and 
Effective Systems Architecting
An increasingly important need of project managers and clients is for 
criteria to judge the maturity and effectiveness of systems architecting in 
their projects — criteria analogous to those developed for software devel-
opment by Carnegie Mellon’s Software Engineering Institute. Based upon 
experience to date, criteria for systems architecting appear to be, in rough 
order of attainment:

A recognition by clients and others of the need to architect com-•	
plex systems.
An accepted discipline to perform that function; in particular, the •	
existence of architectural methods, standards, and organizations.
A recognized separation of value judgments and technical decisions •	
between client, architect, and builder.
A recognition that architecture is an art as well as a science; in particular, •	
the development and use of nonanalytic as well as analytic techniques.
The effective utilization of an educated professional cadre — that •	
is, of masters-level, if not doctorate-level, individuals and teams 
engaged in the process of systems-level architecting.

By those criteria, systems architecting is in its adolescence, a time of 
challenge, opportunity, and controversy. History and the needs of global 
competition would seem to indicate adulthood is close at hand.

*	 For further elaboration on the related questions of the role of the architect, see Rechtin 
1991, pp. 11–14; on the architect’s tools, Parts I and III of this book; on architecting as a 
profession, Part IV of this book and Systems Engineering, the Journal of the International 
Council on Systems Engineering.
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The Architecture of This Book
The first priority of this book has been to restate and extend into the 
future the retrospective architecting paradigm of Rechtin 1991.* An essen-
tial part of both retrospective and extended paradigms is the recognition 
that systems architecting is part art and part science. Part I of this book 
further develops the art and extends the central role of heuristics. Part II 
introduces five important domains that contribute to the understanding 
of that art. We buttress the retrospective lessons of the original book by 
providing some detailed stories on some of the case studies that motivated 
the original work, and use those case studies to introduce each chapter in 
Part II. Part III helps bridge the space between the science and the art 
of architecting. In particular, it develops the core architecting process of 
modeling and representation. Part IV concentrates on architecting as a 
profession: its relationship to business strategy and activities, the political 
process and its part in system design, and the professionalization of the 
field through education, research, and peer-reviewed journals.

The architecture of Part II deserves an explanation. Without one, the 
reader may inadvertently skip some of the domains — builder-architected 
systems, manufacturing systems, social systems, software systems, and 
collaborative systems — because they are outside the reader’s immediate 
field of interest. These chapters, instead, recognize the diverse origins of 
heuristics, illustrating and exploiting them. Heuristics often first surface 
in a specialized domain where they address an especially prominent 
problem. Then, by abstraction or analogy, they are carried over to others 
and become generic. Such is certainly the case in the selected domains. In 
these chapters, the usual format of stating a heuristic and then illustrating 
it in several domains is reversed. Instead it is stated, but in generic terms, in 
the domain where it is most apparent. Readers are encouraged to scan all 
the chapters of Part II. The chapters may even suggest domains, other than 
the reader’s, where the reader’s experience can be valuable in these times 
of vocational change. References are provided for further exploration. For 
professionals already in one of the domains, the description of each is from 
an architectural perspective, looking for those essentials that yield generic 
heuristics and providing in return other generic ones that might help better 

*	 This second book is an extension of Rechtin 1991, not a replacement for it. However, this 
book reviews enough of the fundamentals that it can stand on its own. If some subjects, 
such as examples of specific heuristics, seem inadequately treated, the reader can probe 
further in the earlier work. There are also a number of areas covered there that are not 
covered here, including the challenges of ultraquality, purposeful opposition, economics, 
and public policy; biological architectures and intelligent behavior; and assessing archi-
tecting and architectures. A third book, Rechtin, E., Systems Architecting of Organizations, 
Why Eagles Can’t Swim, Boca Raton, FL: CRC Press, 1999, introduces a part of systems 
architecting related to, but different from, the first two.
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understand those essentials. In any case, the chapters most emphatically 
are not intended to advise specialists about their specialties.

Architecting is inherently a multidimensional subject, difficult to 
describe in the linear, word-follows-word, format of a book. Consequently, 
it is occasionally necessary to repeat the same concept in several places, 
internally and between books. A good example is the concept of systems. 
Architecting can also be organized around several different themes or 
threads. Rechtin 1991 was organized around the well-known waterfall 
model of system procurement. As such, its applicability to software devel-
opment was limited. This book, more general, is by fundamentals, tools, 
tasks, domains, models, and vocation. Readers are encouraged to choose 
their own personal theme as they go along. It will help tie systems archi-
tecting to their own needs.

Exercises are interspersed in the text, designed for self-test of under-
standing and critiquing the material just presented. If the reader disagrees, 
then the disagreement should be countered with examples and lessons 
learned — the basic way that mathematically unprovable statements are 
accepted or denied. Most of the exercises are thought problems, with no 
correct answers. Read them, and if the response is intuitively obvious, 
charge straight ahead. Otherwise, pause and reflect a bit. A useful insight 
may have been missed. Other exercises are intended to provide opportu-
nities for long-term study and further exploration of the subject. That is, 
they are roughly the equivalent of a master’s thesis.

Notes and references are organized by chapter. Heuristics by tradi-
tion are boldfaced when they appear alone, with an appended list of them 
completing the text.

Changes Since the Second Edition
Since the publication of the second edition, it has become evident that 
some materials available to the authors are not generally available (case 
studies) and some subjects have been extensively developed in the years 
since publication. The authors have benefited from extensive feedback 
from working systems architects through teaching courses, seminars, 
and professional application. Where appropriate, that feedback has been 
incorporated into the book in the form of clearer explanations, useful case 
studies, better examples, and corrections to misunderstandings.

In several areas, we have added new material. A new chapter covers 
the relationships between architecting and the larger business (whether 
commercial or government) in which it is embedded. This subject has 
taken on great importance as it becomes apparent how deeply business 
strategy and architecture interrelate. We argue in this chapter that archi-
tecture can be seen as the physical (or technical) embodiment of strategy. 
Conversely, architecture without strategy is, essentially by definition, 
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incoherent. Many of the common problems encountered in attempting 
to improve architecting practices can be linked directly to problems in 
organizational strategy. Moreover, this linkage provides fertile ground for 
looking at intellectual links with other engineering-related subjects, such 
as decision theory.

The chapter on architecture description frameworks has been revised 
in the light of developments since the second edition. As the importance 
of architectures has become more broadly accepted, standards have been 
promulgated and in some cases mandated. Most of these standards are 
related to architecture description, the equivalent of blueprint standards. 
The standards are roughly similar in intellectual approach, but they use 
distinctly different terminology and make quite different statements 
about what features are important. There is now enough experience in the 
community to identify common problems, and to recommend techniques 
drawn from the metaphor that motivates this book to address them.

We have also folded case study material into the book. The cases 
studied here formed part of the basic story used by the authors in a number 
of educational settings, but many of their details were either hard to find 
in print or became completely out of print. The generally available case 
study materials are also mostly historical and do not try to architecturally 
interpret the decisions that went into the systems. As a result, we have 
compiled some of the most interesting material that fits readily into book 
format here, and interleaved their presentation with the discussion of the 
related system categories.

Readership and Usage of This Book
This book is written for present and future systems architects, for experi-
enced engineers interested in expanding their expertise beyond a single 
field, and for thoughtful individuals concerned with creating, building, or 
using complex systems. It is intended either for simple reading, for refer-
ence in professional practice, or in classroom settings. From experience 
with its predecessor, the book can be used as a reference work for graduate 
studies, for senior capstone courses in engineering and architecture, for 
executive training programs, and for the further education of consultants 
and systems acquisition and integration specialists, and as background 
for legislative staffs.

The book is a basic text for courses in systems architecture and 
engineering at several universities and in several extended professional 
courses. Best practice in using this book in such courses appears to be 
to combine it with selected case studies and an extended case exercise. 
Because architecting is about having skills, not about having rote knowl-
edge, it can only be demonstrated in the doing. The author’s courses 
have been built around course-long case exercises, normally chosen in 
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the student’s individual field. In public courses, such as at universities, the 
case studies presented here are appropriate for use. The source materials 
are reasonably available, and students can expand on what is presented 
here and create their own interpretations. In professional education set-
tings, it is preferable to replace the case studies in class with case studies 
drawn directly from the student’s home organizations.

Everything in this book represents the opinions of the authors and 
does not represent the official position of The Aerospace Corporation or 
its customers. All errors are the responsibility of the authors.

Acknowledgments
Eberhardt Rechtin, who originated and motivated so much of the think-
ing here, passed away in 2006. Although no longer with us, his spirit, and 
words, pervade this book. The first edition of this book was formulated 
while Rechtin taught at the University Southern California (USC). He 
treasured his interactions with his students there and believed that the 
work was enormously improved through the process of teaching them. 
At least a dozen of them deserve special recognition for their unique 
insights and penetrating commentary: Michael Asato, Kenneth Cureton, 
Susan Dawes, Norman P. Geis, Douglas R. King, Kathrin Kjos, Jonathan 
Losk, Ray Madachy, Archie W. Mills, Jerry Olivieri, Tom Pieronek, and 
Marilee Wheaton. The quick understanding and extension of the archi-
tecting process by all the students was been a joy to behold and a privilege 
to acknowledge.

Several members of the USC faculty were instrumental in finding a 
place for this work, and the associated program. In particular, there was 
Associate Dean Richard Miller, now President of Olin College; Associate 
Dean Elliot Axelband, who originally requested this book and directed 
the USC Masters Program in Systems Engineering and Architecture; and 
two members of the School of Engineering staff, Margery Berti and Mary 
Froehlig, who architected the Master of Science in Systems Architecture 
and Engineering out of an experimental course and a flexible array of mul-
tidisciplinary courses at USC. Particular thanks go to Charles Weber, who 
greatly encouraged Eb Rechtin in creating the program, and then encour-
aged his then graduate student, Mark Maier, to take the first class offered 
in systems architecting as part of his Ph.D. in Electrical Engineering 
Systems. Brenda Forman, then of USC, now retired from the Lockheed 
Martin Corporation and the author of Chapter 12, accepted the challenge 
of creating a unique course on the “facts of life” in the national political 
process and how they affect — indeed often determine — architecting 
and engineering design.

Our colleagues at The Aerospace Corporation have been instrumen-
tal in the later development of the ideas that have gone into this book. 



xxvi	 Preface

Mark Maier has taught many versions of this material under the auspices 
of the Aerospace Systems Architecting Program and its derivatives. That 
program was dependent on the support of Mal Depont, William Hiatt, 
Dave Evans, and Bruce Gardner of the Aerospace Institute. The program 
in turn had many other collaborators, including Kevin Kreitman, Andrea 
Amram, Glenn Buchan, and James Martin. Also of great importance to 
the quality of the presentation has been the extensive editing and organi-
zation of the materials in the Aerospace Systems Architecting Program by 
Bonnie Johnston and Margaret Maher.

Manuscripts may be written by authors, but publishing them is a pro-
fession and contribution unto itself requiring judgment, encouragement, 
tact, and a considerable willingness to take risk. For all of these we thank 
Norm Stanton, a senior editor of Tayor & Francis/CRC Press and editor of 
the first edition of this book, who has understood and supported the field 
beginning with the publication of Frederick Brooks’ classic architecting 
book, The Mythical Man-Month, more than two decades ago; and Cindy 
Carelli for her support of subsequent editions of this book.

Of course, a particular acknowledgment is due to the Rechtin and 
Maier families for the inspiration and support they have provided over 
the years, and their continuing support in revising this book.

Mark Maier



Ipart 

Introduction

A Brief Review of Classical Architecting Methods
Architecting: The Art and Science of 
Designing and Building Systems1

The four most important methodologies in the process of architecting are 
characterized as normative, rational, participative, and heuristic2 (Table I.1). 
As might be expected, like architecting itself, they contain both science 
and art. The science is largely contained in the first two, normative and 
rational, and the art in the last two, participative and heuristic.

The normative technique is solution based; it prescribes architecture 
as it “should be” — that is, as given in handbooks, civil codes, and pro-
nouncements by acknowledged masters. Follow it and the result will be 
successful by definition.

Limitations of the normative method — such as responding to major 
changes in needs, preferences, or circumstances — led to the rational 
method, scientific and mathematical principles to be followed in arriving 
at a solution to a stated problem. It is method based or rule based. Both 
the normative and rational methods are analytic, deductive, experiment 

Table I.1  Four Architecting Methodologies
Normative (solution based)
  Examples: building codes and communications standards
Rational (method based)
  Examples: systems analysis and engineering
Participative (stakeholder based)
  Examples: concurrent engineering and brainstorming
Heuristic (lessons learned)
  Examples: Simplify. Simplify. Simplify. and SCOPE!
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based, easily certified, well understood, and widely taught in academia 
and industry. Moreover, the best normative rules are discovered through 
engineering science (think of modern building codes) — truly a formi-
dable set of positives.

However, although science-based methods are absolutely neces-
sary parts of architecting, they are not the focus of this book. They are 
already well treated in a number of architectural and engineering texts. 
Most people who are serious practitioners of systems architecting, or who 
aspire to be serious practitioners, come from an engineering and science 
background. They already realize the necessity of applying scientific and 
quantitative thinking to the design of complex systems. Equally neces-
sary, and the focus of this part of the book, is the art, or practice, needed 
to complement the science for highly complex systems.

In contrast with science-based methodologies, the art or practice 
of architecting — like the practices of medicine, law, and business — is 
nonanalytic, inductive, difficult to certify, less understood, and, at least 
until recently, is seldom taught formally in either academia or industry. 
It is a process of insights, vision, intuitions, judgment calls, and even 
“taste.”3 It is key to creating truly new types of systems for new and often 
unprecedented applications. Here are some of the reasons.

For unprecedented systems, past data are of limited use. For others, 
analysis can be overwhelmed by too many unknowns, too many stake-
holders, too many possibilities, and too little time for data gathering and 
analysis to be practical. To cap it off, many of the most important factors are 
not measurable. Perceptions of worth, safety, affordability, political accep-
tance, environmental impact, public health, and even national security 
provide no realistic basis for numerical analyses — even if they were not 
highly variable and uncertain. Yet, if the system is to be successful, these 
perceptions must be accommodated from the first, top-level, conceptual 
model down through its derivatives.

The art of architecting, therefore, complements its science where science 
is weakest: in dealing with immeasurables, in reducing past experience 
and wisdom to practice, in conceptualization, in inspirationally putting 
disparate things together, in providing “sanity checks,” and in warning of 
likely but unprovable trouble ahead. Terms like reasonable assumptions, 
guidelines, indicators, elegant design, and beautiful performance are not 
out of place in this art, nor are lemon, disaster, snafu, or loser. These terms 
are hardly quantifiable, but are as real in impact as any science.

The participative methodology recognizes the complexities created 
by multiple stakeholders. Its objective is consensus. As a notable example, 
designers and manufacturers need to agree on a multiplicity of details 
if an end product is to be manufactured easily, quickly, and profitably. 
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In simple but common cases, only the client, architect, and contractor have 
to be in agreement. But as systems become more complex, new and differ-
ent participants have to agree as well.

Concurrent engineering, a recurrently popular acquisition method, 
was developed to help achieve consensus among many participants. Its 
greatest values, and its greatest contentions, are for systems in which wide-
spread cooperation is essential for acceptance and success, for example, 
systems that directly impact on the survival of individuals or institutions. 
Its well-known weaknesses are undisciplined design by committee, diver-
sionary brainstorming, the closed minds of “groupthink,” and members 
without power to make decisions but with unbridled right to second guess. 
Arguably, the greatest mistake that can be made in concurrent engineering 
is to attempt to quantify it. It is not a science. It is a very human art.

The heuristics methodology is based on “common sense” — that is, on 
what is sensible in a given context. Contextual sense comes from collective 
experience stated in as simple and concise a manner as possible. These 
statements are called heuristics, the subject of Chapter 2, and are of special 
importance to architecting because they provide guides through the rocks 
and shoals of intractable, “wicked” system problems. Simplify! is the first 
and probably most important of them. They exist in the hundreds if not 
thousands in architecting and engineering, yet they are some of the most 
practical and pragmatic tools in the architect’s kit of tools.

Different Methods for Different Phases of Architecting

The nature of classical architecting changes as the project moves from 
phase to phase. In the earliest stages of a project, it is a structuring of 
an unstructured mix of dreams, hopes, needs, and technical possibilities 
when what is most needed has been called an inspired synthesizing of 
feasible technologies. It is a time for the art of architecting. Later on, archi-
tecting becomes an integration of, and mediation among, competing sub-
systems and interests — a time for rational and normative methodology. 
And finally, there comes certification to all that the system is suitable for 
use, when it may take all the art and science to that point to declare the 
system as built is complete and ready for use.

Not surprisingly, architecting is often individualistic, and the end 
results reflect it. As Frederick P. Brooks put it in 19834 and Robert Spinrad 
stated in 1987,5 the greatest architectures are the product of a single mind 
— or of a very small, carefully structured team. To which should be added 
in all fairness: a responsible and patient client, a dedicated builder, and 
talented designers and engineers.
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1chapter 

Extending the 
Architecting Paradigm

Introduction: The Classical Architecting Paradigm
The recorded history of classical architecting, the process of creating archi-
tectures, began in Egypt more than 4,000 years ago with the pyramids, 
the complexity of which had been overwhelming designers and builders 
alike. This complexity had at its roots the phenomenon that as systems 
became increasingly more ambitious, the number of interrelationships 
among the elements increased far faster than the number of elements. 
These relationships were not solely technical. Pyramids were no longer 
simple burial sites; they had to be demonstrations of political and reli-
gious power, secure repositories of god-like rulers and their wealth, and 
impressive engineering accomplishments. Each demand, of itself, would 
require major resources. When taken together, they generated new levels 
of technical, financial, political, and social complications. Complex inter-
relationships among the combined elements were well beyond what the 
engineers’ and builders’ tools could handle.

From that lack of tools for civil works came classical or civil archi-
tecture. Millennia later, technological advances in shipbuilding created 
the new and complementary fields of marine engineering and naval 
architecture. In this century, rapid advances in aerodynamics, chemistry, 
materials, electrical energy, communications, surveillance, information 
processing, and software have resulted in systems whose complexity is 
again overwhelming past methods and paradigms. One of those is the 
classical architecting paradigm. But, if we are to understand and respond 
to the complexity overwhelming the classical paradigm, we must first 
understand that classical paradigm.

Responding to Complexity
Complex: Composed of interconnected or interwoven 
parts.1
System: A set of different elements so connected or 
related as to perform a unique function not per-
formable by the elements alone.2
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It is generally agreed that increasing complexity* is at the heart of the 
most difficult problems facing today’s systems architecting and engineer-
ing. When architects and builders are asked to explain cost overruns and 
schedule delays, by far the most common, and quite valid, explanation 
is that the system is much more complex than originally thought. The 
greater is the complexity, the greater the difficulty. It is important, there-
fore, to understand what is meant by system complexity if architectural 
progress is to be made in dealing with it.

The definitions of complexity and systems given at the beginning of 
this section are remarkably alike. Both speak to interrelationships (inter-
connections, interfaces, and so forth) among parts or elements. As might 
be expected, the more elements and interconnections, the more complex 
the architecture and the more difficult the system-level problems.

Less apparent is that qualitatively different problem-solving tech-
niques are required at high levels of complexity than at low ones. Purely 
analytical techniques, powerful for the lower levels, can be overwhelmed 
at the higher ones. At higher levels, architecting methods, experience-
based heuristics, abstraction, and integrated modeling must be called into 
play.3 The basic idea behind all of these techniques is to simplify problem 
solving by concentrating on its essentials. Consolidate and simplify the 
objectives. Focus on the things with the highest impact, things that deter-
mine other things. Put to one side minor issues likely to be resolved by the 
resolution of major ones. Discard the nonessentials. Model (abstract) the 
system at as high a level as possible, then progressively reduce the level of 
abstraction. In short: Simplify!

It is important in reading about responses to complexity to under-
stand that they apply throughout system development, not just to the con-
ceptual phase. The concept that a complex system can be progressively 
partitioned into smaller and simpler units, and hence into simpler prob-
lems, omits an inherent characteristic of complexity — interrelationships 
among the units. As a point of fact, poor aggregation and partitioning 
during development can increase complexity, a phenomenon all too appar-
ent in the organization of work breakdown structures.

This primacy of complexity in system design helps explain why a single 
“optimum” seldom if ever exists for such systems. There are just too many 
variables. There are too many stakeholders and too many conflicting 
interests. No practical way may exist for obtaining information critical in 
making a “best” choice among quite different alternatives.

*	 A system need not be large or costly to be complex. The manufacture of a single mechani-
cal part can require over 100 interrelated steps. A $10 microchip can contain millions of 
interconnected active elements.
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The High Rate of Advances in the 
Computer and Information Sciences
Unprecedented rates of advance in the computer and information sciences 
have further exacerbated an already complex picture. The advent of smart, 
software-intensive systems is producing a true paradigm shift in system 
design. Software, long treated as the glue that tied hardware elements 
together, is becoming the center of system design and operation. We see it 
in consumer electronic devices of all types. The precipitous drop in hard-
ware costs has generated a major design shift — from “keep the com-
puter busy” to “keep the user busy.” Designers happily expend hardware 
resources to save redesigning either hardware or software. We see it in 
automobiles, where software increasingly determines the performance, 
quality, cost, and feel of cars and trucks. We see it in aircraft, where controls 
are coming to drive aerodynamic and structural design, and military 
system designers discuss a shift to designing the airframe around the 
sensors instead of designing the sensors around the airframe.

We see the paradigm shift in the design of spacecraft and personal 
computers, where complete character changes can be made in minutes. In 
effect, such software-intensive systems “change their minds” on demand. 
It is no longer a matter of debate whether machines have “intelligence”; 
the only real questions are of what kinds of intelligence and how best 
to use each one. And, because its software largely determines what and 
how the user perceives the system as a whole, its design will soon control 
and precede hardware design much as hardware design controls software 
today. This shift from “hardware first” to “software first” will force major 
changes on when and how system elements are designed, and who, with 
what expertise, will design the system as a whole. The impact on the value 
of systems to the user has been and will continue to be enormous.

One measure of this phenomenon is the proportion of development 
effort devoted to hardware and software for various classes of product. 
Anecdotal reports from a variety of firms in telecommunications and 
consumer electronics commonly show a reversal of the proportion from 
70% hardware and 30% software to 30% hardware and 70% software. This 
shift has created major challenges and destroyed some previously success-
ful companies. When the cost of software development dominates total 
development, systems should be organized to simplify software devel-
opment. But good software architectures and good hardware architec-
tures are often quite different. Good architectures for complex software 
usually emphasize layered structures that cross many physically distinct 
hardware entities. Good software architectures also emphasize informa-
tion hiding and close parallels between implementation constructs and 
domain concepts at the upper layers. These are in contrast to the emphasis 
on hierarchical decomposition, physical locality of communication, and 
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interface transparency in good hardware architectures. Organizations 
find trouble when their workload moves from hardware to software 
dominated, but their management and development skills no longer “fit” 
the systems they should support.

Particularly susceptible to these changes are systems that depend 
upon electronics and information systems and that do not enjoy the for-
mal partnership with architecting that structural engineering has long 
enjoyed. This book is an effort to remedy that lack by showing how the 
historical principles of classical architecting can be extended to modern 
systems architecting.

The Foundations of Modern Systems Architecting
Although the day-to-day practice may differ significantly,4 the founda-
tions of modern systems architecting are much the same across many 
technical disciplines. Generally speaking, they are a systems approach, a 
purpose orientation, a modeling methodology, ultraquality, certification, 
and insight.5 Each will be described in turn.

A Systems Approach

A systems approach is one that focuses on the system as a whole, spe-
cifically linking value judgments (what is desired) and design decisions 
(what is feasible). A true systems approach means that the design process 
includes the “problem” as well as the solution. The architect seeks a joint 
problem–solution pair and understands that the problem statement is 
not fixed when the architectural process starts. At the most fundamen-
tal level, systems are collections of different things that together produce results 
unachievable by the elements alone. For example, only when all elements are 
connected and working together do automobiles produce transportation, 
human organs produce life, and spacecraft produce information. These 
system-produced results, or “system functions,” derive almost solely from 
the interrelationships among the elements, a fact that largely determines 
the technical role and principal responsibilities of the systems architect.

Systems are interesting because they achieve results, and achieving 
those results requires different things to interact. From much experience 
with it over the last decade, it is difficult to underestimate the impor-
tance of this specific definition of systems to what follows, literally on a 
word-by-word basis. Taking a systems approach means paying close 
attention to results, the reasons we build a system. Architecture must be 
grounded in the client’s/user’s/customer’s purpose. Architecture is not just 
about the structure of components. One of the essential distinguishing fea-
tures of architectural design versus other sorts of engineering design is the 
degree to which architectural design embraces results from the perspective 
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of the client/user/customer. The architect does not assume some particular 
problem formulation, as “requirements” is fixed. The architect engages in 
joint exploration, ideally directly with the client/user/customer, of what 
system attributes will yield results worth paying for.

It is the responsibility of the architect to know and concentrate on the 
critical few details and interfaces that really matter and not to become 
overloaded with the rest. It is a responsibility that is important not only for 
the architect personally but for effective relationships with the client and 
builder. To the extent that the architect must be concerned with compo-
nent design and construction, it is with those specific details that critically 
affect the system as a whole.

For example, a loaded question often posed by builders, project man-
agers, and architecting students is, “How deeply should the architect 
delve into each discipline and each subsystem?” A graphic answer to that 
question is shown in Figure 1.1, exactly as sketched by Bob Spinrad in a 
1987 lecture at the University of Southern California. The vertical axis is 
a relative measure of how deep into a discipline or subsystem an archi-
tect must delve to understand its consequences to the system as a whole. 
The horizontal axis lists the disciplines, such as electronics or stress 
mechanics, and the subsystems, such as computers or propulsion systems. 
Depending upon the specific system under consideration, a great deal, or 
a very little depth, of understanding may be necessary.

But that leads to another question, “How can the architect possibly know 
before there is a detailed system design, much less before system test, what 
details of what subsystem are critical?” A quick answer is: only through 
experience, through encouraging open dialog with subsystem specialists, 
and by being a quick, selective, tactful, and effective student of the system 
and its needs. Consequently, and perhaps more than any other specialization, 
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Figure 1.1  The architect’s depth of understanding of subsystem and disciplinary 
details.
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architecting is a continuing, day-to-day learning process. No two systems 
are exactly alike. Some will be unprecedented, never built before.

Exercise: Put yourself in the position of an architect 
asked to help a client build a system of a new type 
whose general nature you understand (a house, a 
spacecraft, a nuclear power plant, or a system in 
your own field) but which must considerably out-
perform an earlier version by a competitor. What do 
you expect to be the critical elements and details and 
in what disciplines or subsystems? What elements 
do you think you can safely leave to others? What 
do you need to learn the most about? Reminder: You 
will still be expected to be responsible for all aspects 
of the system design.

Critical details aside, the architect’s greatest concerns and leverage 
are still, and should be, with the systems’ connections and interfaces: 
First, because they distinguish a system from its components; second, 
because their addition produces unique system-level functions, a primary 
interest of the systems architect; and third, because subsystem special-
ists are likely to concentrate most on the core and least on the periphery 
of their subsystems, viewing the latter as (generally welcomed) external 
constraints on their internal design. Their concern for the system as a 
whole is understandably less than that of the systems architect; if not 
managed well, the system functions can be in jeopardy.

A Purpose Orientation

Systems architecting is a process driven by a client’s purpose or purposes. 
A president wants to meet an international challenge by safely sending 
astronauts to the moon and back. Military services need nearly undetect-
able strike aircraft. Cities call for pollutant-free transportation.

Clearly, if a system is to succeed, it must satisfy a useful purpose at 
an affordable cost for an acceptable period of time. Note the explicit value 
judgments in these criteria: a useful purpose, an affordable cost, and an 
acceptable period of time. Every one is the client’s prerogative and respon-
sibility, emphasizing the criticality of client participation in all phases of 
system acquisition. But of the three criteria, satisfying a useful purpose 
is predominant. Without it being satisfied, all others are irrelevant. 
Architecting therefore begins with, and is responsible for maintaining, 
the integrity of the system’s utility or purpose.

For example, the Apollo manned mission to the moon and back had a 
clear purpose, an agreed cost, and a no-later-than date. It delivered on all 
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three. Those requirements, kept up front in every design decision, deter-
mined the mission profile of using an orbiter around the moon and not 
an earth-orbiting space station, and on developing electronics for a lunar 
orbit rendezvous instead of developing an outsize propulsion system for a 
direct approach to the lunar surface.

As another example, NASA Headquarters, on request, gave the 
NASA/JPL Deep Space Network’s huge ground antennas a clear set of 
priorities: first performance, then cost, then schedule, even though the 
primary missions they supported were locked into the absolute timing of 
planetary arrivals. As a result, the first planetary communication systems 
were designed with an alternate mode of operation in case the antennas 
were not yet ready. As it turned out, and as a direct result of the NASA 
risk-taking decision, the antennas were carefully designed, not rushed, 
and satisfied all criteria not only for the first launch but for all launches 
for the next 40 years or so.

The Douglas Aircraft DC-3, though originally thought by the airline 
(later TWA) to require three engines, was rethought by the client and 
the designers in terms of its underlying purpose — to make a profit on 
providing affordable long-distance air travel over the Rocky and Sierra 
Nevada mountains for paying commercial passengers. The result was the 
two-engine DC-3, the plane that introduced global air travel to the world.

When a system fails to achieve a useful purpose, it is doomed. When 
it achieves some purpose but at an unfavorable cost, its survival is in 
doubt, but it may survive. The purpose for which the Space Shuttle was 
conceived and sold, low-cost transport to low earth orbit, has never been 
achieved. However, its status as the sole U.S. source of manned space 
launch has allowed its survival. Many will argue that the Space Shuttle 
was a tremendous technical achievement, and there is little doubt it was. 
The success of architecting is not measured by technical success, but by 
success in mission. In a similar fashion, it has proven impossible to meet 
the original purpose of the space station at an acceptable cost, but its role 
in the U.S. manned space program and international space diplomacy has 
assured minimum survival. In contrast, the unacceptable cost/benefit 
ratios of the supersonic transport, the space-based ballistic missile defense 
system, and the superconducting supercollider terminated all these proj-
ects before their completion.

Curiously, the end use of a system is not always what was origi-
nally proposed as its purpose. The F-16 fighter aircraft was designed for 
visual air-to-air combat, but in practice it has been most used for ground 
support. The ARPANET-INTERNET communication network originated 
as a government-furnished computer-to-computer linkage in support of 
university research; it is now most used, and paid for, by individuals for 
e-mail and information accessing. Both are judged as successful. Why? 
Because, as circumstances changed, providers and users redefined the 
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meaning of useful, affordable, and acceptable. A useful heuristic comes to 
mind: Design the structure with “good bones.” It comes from the architecting 
of buildings, bridges, and ships, where it refers to structures that are resil-
ient to a wide range of stresses and changes in purpose. It could just as 
well come from physiology and the remarkably adaptable spinal column 
and appendages of all vertebrates — fishes, amphibians, reptiles, birds, 
and mammals.

Exercise: Identify a system whose purpose is clear 
and unmistakable. Identify, contact, and if possible, 
visit its architect. Compare notes and document 
what you learned.

Technology-driven systems, in notable contrast to purpose-driven 
systems, tell a still different story. They are the subject of Chapter 3.

A Modeling Methodology

Modeling is the creation of abstractions or representations of the system to 
predict and analyze performance, costs, schedules, and risks and to pro-
vide guidelines for systems research, development, design, manufacture, 
and management. Modeling is the centerpiece of systems architecting — a 
mechanism of communication to clients and builders, of design manage-
ment with engineers and designers, of maintaining system integrity with 
project management, and of learning for the architect, personally.

Examples: The balsa wood and paper scale models of 
a residence, the full-scale mockup of a lunar lander, 
the rapid prototype of a software application, the 
computer model of a communication network, or 
the mental model of a user.

Modeling is of such importance to architecting that it is the sole sub-
ject of Part III. Modeling is the fabric of architecting because architect-
ing is at a considerable distance of abstraction from actual construction. 
The architect does not manipulate the actual elements of construction. 
The  architect builds models that are passed into more detailed design 
processes. Those processes lead, eventually, to construction drawings or 
the equivalent and actual system fabrication or coding.

Viewing architecting and design as a continuum of modeling refine-
ment leads naturally to the “stopping question.” Where does architect-
ing stop and engineering or design begin? Or, when should we stop any 
design activity and move onto the next stage? From a modeling perspec-
tive, there is no stopping. Rather modeling is seen to progress and evolve, 
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continually solving problems from the beginning of a system’s acquisition 
to its final retirement. There are of course conceptual models, but there are 
also engineering models and subsystem models; models for simulation, 
prototypes, and system test; demonstration models, operational models 
and mental models by the user of how the system behaves. From another 
perspective, careful examination of the “stopping question” leads us to 
a better understanding of the purpose of any particular architecting or 
design phase. Logically, they stop when their purpose is fulfilled.

Models are in fact created by many participants, not just by architects. 
These models must somehow be made consistent with overall system 
imperatives. It is particularly important that they be consistent with the 
architect’s system model, a model that evolves, becoming more and more 
concrete and specific as the system is built. It provides a standard against 
which consistency can be maintained and is a powerful tool in maintain-
ing the larger objective of system integrity. And finally, when the system 
is operational and a deficiency or failure appears, a model — or full-scale 
simulator if one exists — is brought into play to help determine the causes 
and cures of the problem. The more complete the model, the more accu-
rately possible failure mechanisms can be duplicated until the only cause 
is identified.

In brief, modeling is a multipurpose, progressive activity, evolving and 
becoming less abstract and more concrete as the system is built and used.

Ultraquality Implementation

Ultraquality is defined as a level of quality so demanding that it is imprac-
tical to measure defects, much less certify the system prior to use.6 It is 
a limiting case of quality driven to an extreme, a state beyond accept-
able quality limits (AQLs) and statistical quality control. It requires a zero 
defect approach not only to manufacturing but also to design, engineer-
ing, assembly, test, operation, maintenance, adaptation, and retirement — 
in effect, the complete life cycle.

Some examples include a new-technology spacecraft with a design 
lifetime of at least 10 years, a nuclear power plant that will not fail cata-
strophically within the foreseeable future, and a communication network 
of millions of nodes, each requiring almost 100% availability. In each case, 
the desired level of quality cannot, even in principle, be directly measured; 
or, only the absence of the quality desired can be directly measured. 
Ultraquality is a recognition that the more components there are in a 
system, the more reliable each component must be to a point where, at the 
element level, defects become impractical to measure within the time and 
resources available. Or, in a variation on the same theme, the operational 
environment cannot be created during test at a level or for a duration that 
allows measurement at the system level. Yet, the reliability goal of the 
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system as a whole must still be met. In effect, it reflects the reasonable 
demand that a system — regardless of size or complexity — should not 
fail to perform more than about 1% or less of the time. An intercontinental 
ballistic missile (ICBM) should not. A space shuttle, at least 100 times more 
complex, should not. An automobile should not. A passenger airliner, at 
least 100 times more complex, should not; as a matter of fact, we expect the 
airliner to fail far, far less than the family car.

Exercise: Trace the histories of commercial aircraft 
and passenger buses over the last 50 years in terms 
of the number of trips that a passenger would expect 
to make without an accident. What does that mean 
to vehicle reliability as trips lengthen and become 
more frequent, as vehicles get larger, faster, and 
more complex? How were today’s results achieved? 
What trends do you expect in the future? Did more 
software help or hinder vehicle safety?

The subject would be moot if it were not for the implications of this 
“limit state” of zero defects to design. Zero defects, in fact, originated as 
long ago as World War II, largely driven by patriotism. As a motivator, the 
zero defects principle was a prime reason for the success of the Apollo 
mission to the moon.

To show the implications of ultraquality processes, if a manufactur-
ing line operated with zero defects, there would be no need, indeed it 
would be worthless, to build elaborate instrumentation and information-
processing support systems. This would reduce costs and time by 30%. 
If an automobile had virtually no design or production defects, then sales 
outlets would have much less need for large service shops with their high 
capital and labor costs. Indeed, the service departments of the finest auto-
mobile manufacturers are seldom fully booked, resembling something 
like the famous Maytag commercial. Very little repair or service, except 
for routine maintenance, is required for 50,000 to 100,000 miles. Not coin-
cidentally, these shops invariably are spotlessly clean, evidence of both the 
professional pride and discipline required for sustaining an ultraquality 
operation. Conversely, a dirty shop floor is one of the first and best indica-
tors to a visitor or inspector of low productivity, careless workmanship, 
reduced plant yield, and poor product performance. The rocket, ammuni-
tion, solid-state component, and automotive domains all bear witness to 
that fact.

As another example, microprocessor design and development has main-
tained the same per-chip defect rate even as the number and complexity 
of operations increased by factors of thousands. The corresponding failure 
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rate per individual operation is now so low as to be almost unmeasurable. 
Indeed, for personal computer applications, a microprocessor hardware 
failure more than once a year is already unacceptable.

Demonstrating this limit state in high quality is not a simple extension 
of existing quality measures, though the latter may be necessary in order 
to get within range of it. In the latter there is a heuristic: [Measurable] 
acceptance tests must be both complete and passable. How then can inherently 
unmeasurable ultraquality be demanded or certified? The answer is a 
mixture of analytical and heuristic approaches, forming a set of surrogate 
procedures, such as zero defects programs. Measurements play an impor-
tant role but are always indirect because of the immeasurability of the 
core quality factors of interest.

In looking at procedural approaches, a powerful addition to pre-1990 
ultraquality techniques was the concept, introduced in the last few years, 
that each participant in a system acquisition sequence is both a buyer and 
a supplier. The original application, apparently a Japanese idea, was that 
each worker on a production line was a buyer from the preceding worker 
in the production line as well as a supplier to the next. Each role required 
a demand for high quality — that is, a refusal to buy a defective item and 
a concern not to deliver a defective one likely to be refused.7 In effect, the 
supplier–buyer concept generates a self-enforcing quality program with 
built-in inspection. There would seem to be no reason why the same con-
cept should not apply throughout system acquisition — from architect to 
engineer to designer to producer to seller to end user. As with all obvious 
ideas, the wonder is why it was not self-evident earlier.

When discussing ultraquality, it may seem odd to be discussing heu-
ristics. After all, is not something as technologically demanding as quality 
beyond measure, the performance of things like heavy space boosters, not 
the domain of rigorous, mathematical engineering? In part, of course, it is. 
But experience has shown that rigorous engineering is not enough to achieve 
ultraquality systems. Ultraquality is achieved by a mixture of analytical 
and heuristic methods. The analytical side is represented by detailed failure 
analysis and even the employment of proof techniques in system design. In 
some cases, these very rigorous techniques have been essential in allowing 
certain types of ultraquality systems to be architected.

Flight computers are a good example of the mixture of analytical and 
heuristic considerations in ultraquality systems. Flight control computers 
for statically unstable aircraft are typically required to have a mean time 
between failures (where a failure is one that produces incorrect flight control 
commands) on the order of 10 billion hours. This is clearly an ultraquality 
requirement because the entire production run of a given type of flight 
computer will not collectively run for 10 billion hours during its operational 
lifetime. The requirement certainly cannot be proved by measurement and 
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analysis. Nevertheless, aircraft administration authorities require that such 
a reliability requirement be certified.

Achieving the required reliability would seem to necessitate a redun-
dant computer design as individual parts cannot reach that reliability 
level. The problem with redundant designs is that introducing redun-
dancy also introduces new parts and functions, specifically the mecha-
nisms that manage the redundancy, and must lock out the signals from 
redundant sections that have failed. For example, in a triple redundant 
system, the redundant components must be voted to take the majority 
position (locking out a presumptive single failure). The redundancy man-
agement components are subject to failure, and it is possible that a redun-
dant system is actually more likely to fail than one without redundancy. 
Further, “fault tolerance” depends upon the fault to be tolerated. Tolerating 
mechanical failure is of limited value if the fault is human error.

Creating redundant computers has been greatly helped by better 
analysis techniques. There are proof techniques that allow pruning of the 
unworkable failure trees by assuming “Byzantine” failure* models. These 
techniques allow strong statements to be made about the redundancy 
properties of designs. The heuristic part is trying to verify the absence 
of “common-mode-failures,” or failures in which several redundant 
and supposedly independent components fail at the same time for the 
same reason.

The Ariane 5 space launch vehicle was destroyed on its initial flight in 
a classic common mode failure. The software on the primary flight control 
computer caused the computer to crash shortly after launch. The dual 
redundant system then switched to the backup flight control computer, 
which had failed as well moments before for exactly the same reason that 
the primary computer failed. Ironically, the software failure was due to 
code leftover from the Ariane 4 that was not actually necessary for the 
phase of flight in which it was operating. Arguably, in the case of the 
Ariane 5, more rigorous proof-based techniques of the mixed software 
and systems design might have found and eliminated the primary failure. 
But, the failure is a classical example of a “common mode failure,” where 
redundant systems are simultaneously carried away by the same reason. 
Greater rigor in tracing how an implemented system meets the assump-
tions it was built to can never eliminate the failures that are inherent in 
the original assumptions.

Thus, the analytical side is not enough for ultraquality. The best analy-
sis of failure probabilities and redundancy can only verify that the system 

*	 In a Byzantine failure, the failed component does the worst possible thing to the system. It 
is as if the component were possessed by a malign intelligence. The power of the technique 
is that it lends itself to certification, at least within the confines of well-defined models.
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as built agrees with the model analyzed, and that the model possesses 
desired properties. It cannot verify that the model corresponds to reality. 
Well-designed ultraquality systems fail, but they typically fail for reasons 
not anticipatable in the reliability model.

Certification

Certification is a formal statement by the architect to the client or user 
that the system, as built, meets the criteria both for client acceptance and 
for builder receipt of payment; that is, it is ready for use (to fulfill its pur-
poses). Certification is the grade on the “final exams” of system test and 
evaluation. To be accepted, it must be well supported, objective, and fair 
to client and builder alike.

Exercise: Pick a system for which the purposes are 
reasonably clear. What tests would you, as a client, 
demand be passed for you to accept and pay for the 
system? What tests would you, as a builder, contract 
to pass in order to be paid? Whose word would 
each of you accept that the tests had or had not been 
passed? When should such questions be posed? 
(Hopefully, quite early, before the basic concept has 
been decided upon!)

Clearly, if certification is to be unchallenged, then there must be no 
perception of conflict of interest of the architect. This imperative has led 
to three widely accepted, professionally understood, constraints8 on the 
role of the architect:

	 1.	A disciplined avoidance of value judgments — that is, of intruding in 
questions of worth to the client; questions of what is satisfactory, 
what is acceptable, affordable, maintainable, reliable, and so on. 
Those judgments are the imperatives, rights, and responsibilities 
of the client. As a matter of principle, the client should judge on 
desirability and the architect should decide (only) on feasibility. 
To a client’s question of “What would you do in my position?” the 
experienced architect responds only with further questions until the 
client can answer the original one. To do otherwise makes the archi-
tect an advocate and, in some sense, the “owner” of the end system, 
preempting the rights and responsibilities of the client. It may 
make the architect famous, but the client will feel used. Residences, 
satellites, and personal computers have all suffered from such 
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preemption (Frank Lloyd Wright houses, low earth-orbiting satellite 
constellations, and the Lisa computer, respectively).*

	 2.	A clear avoidance of perceived conflict of interest through participation 
in research and development, including ownership or participation 
in organizations that can be, or are, building the system. The most 
evident conflict here is the architect recommending a system element 
that the architect will supply and profit from. This constraint is 
particularly important in builder-architected systems (Chapter 3).†

	 3.	An arms-length relationship with project management — that is, with 
the management of human and financial resources other than 
of the architect’s own staff. The primary reason for this arrange-
ment is the overload and distraction of the architect created by the 
time-consuming responsibilities of project management. A second 
conflict, similar to that of participating in research and development, 
is created whenever architects give project work to themselves. 
If clients, for reasons of their own, nonetheless ask the architect to 
provide project management, it should be considered as a separate 
contract for a different task requiring different resources.

Insight and Heuristics

A picture is worth a thousand words.

Chinese Proverb, 1000 b.c.

One insight is worth a thousand analyses.

Charles Sooter, April 1993

Insight, or the ability to structure a complex situation in a way that greatly 
increases understanding of it, is strongly guided by lessons learned 
from one’s own or others’ experiences and observations. Given enough 
lessons, their meaning can be codified into succinct expressions called 
“heuristics,” a Greek term for guide. Heuristics are an essential comple-
ment to analytics, particularly in situations where analysis alone cannot 
provide either insights or guidelines.9 In many ways, they resemble what 
are called principles in other arts; for example, the importance of balance 
and proportion in a painting, a musical composition, or the ensemble of 
a string quartet. Whether as heuristics or principles, they encapsulate the 

*	 That said, when we break away from the classical architecting paradigm, we will see how 
responsibilities may change, and the freedom and risks inherent in doing so.

†	 Precisely this constraint led the Congress to mandate the formation in 1960 of a nonprofit 
engineering company, The Aerospace Corporation, out of the for-profit TRW Corporation, 
a builder in the aerospace business.
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insights that have to be attained and practiced before a masterwork can 
be achieved.

Both architecting and the fine arts clearly require insight and 
inspiration as well as extraordinary skill to reach the highest levels of 
achievement. Seen from this perspective, the best systems architects 
are indeed artists in what they do. Some are even artists in their own 
right. Renaissance architects like Michaelangelo and Leonardo da Vinci 
were also consummate artists. They not only designed cathedrals, 
they executed the magnificent paintings in them. The finest engineers 
and architects, past and present, are often musicians; Simon Ramo and 
Ivan Getting, famous in the missile and space field, and, respectively, a 
violinist and pianist, are modern-day examples.

The wisdom that distinguishes the great architect from the rest is 
the insight and the inspiration, that combined with well-chosen methods 
and guidelines and fortunate circumstances, creates masterworks. 
Unfortunately, wisdom does not come easily. As one conundrum puts it:

Success comes from wisdom.•	
Wisdom comes from experience.•	
Experience comes from mistakes•	 .

Therefore, because success comes only after many mistakes, something 
few clients would willingly support, one might think it is either unlikely 
or must follow a series of disasters.

This reasoning might well apply to an individual. But applied to 
the profession as a whole, it clearly does not. The required mistakes and 
experience and wisdom gained from them can be those of one’s predeces-
sors, not necessarily one’s own. Organizations that care about success-
ful architecting consider designing their program portfolios to generate 
experience. When staged experience is understood as important, staged 
experience can be designed into an organization.

And from that understanding comes the role of education. It is the 
place of education to research, document, organize, codify, and teach 
those lessons so that the mistakes need not be repeated as a prerequisite 
for future successes. Chapter 2 is a start in that direction for the art of 
systems architecting.

The Architecture Paradigm Summarized
This book uses the terms architect, architecture, and architecting with full 
consciousness of the “baggage” that comes with their use. Civil architec-
ture is a well-established profession with its own professional societies, 
training programs, licensure, and legal status. Systems architecting 
borrows from it its basic attributes:
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	 1.	The architect is principally an agent of the client, not the builder. 
Whatever organization the architect is employed by, the architect 
must act in the best interests of the client for whom the system is 
being developed.

	 2.	The architect works jointly with the client and builder on problem 
and solution definition. System requirements are an output of archi-
tecting, not really an input. Of course, the client will provide the 
architect some requirements, but the architect is expected to jointly 
help the client determine the ultimate requirements to be used in 
acquiring the system. An architect who needs complete and consis-
tent requirements to begin work, though perhaps a brilliant builder, 
is not an architect.

	 3.	The architect’s product, or “deliverable,” is an architecture represen-
tation, a set of abstracted designs of the system. The designs are not 
(usually) ready to use to build something. They have to be refined, 
just as the civil architect’s floor plans, elevations, and other drawings 
must be refined into construction drawings.

	 4.	The architect’s product is not just physical representations. As an 
example, the civil architect’s client certainly expects a “ballpark” 
cost estimate as part of any architecture feasibility question. So, 
too, in systems architecting, where an adequate system architec-
ture description must cover whatever aspects of physical structure, 
behavior, cost, performance, human organization, or other elements 
are needed to clarify the clients’ priorities.

	 5.	An initial architecture is a vision. An architecture description is a 
set of specific models. The architecture of a building is more than 
the blueprints, floor plans, elevations, and cost estimates; it includes 
elements of ulterior motives, belief, and unstated assumptions. This 
distinction is especially important in creating standards. Standards 
for architecture, like community architectural standards, are different 
from blueprint standards promoted by agencies or trade associations.

Architecting takes place within the context of an acquisition process. 
The traditional way of viewing hardware acquisitions is known as the 
waterfall model. The waterfall model captures many important elements of 
architecting practice, but it is also important in understanding other acqui-
sition models, particularly the spiral for software, incremental development 
for evolutionary designing, and collaborative assembly for networks.

The Waterfall Model of Systems Acquisition
As with products and their architectures, no process exists by itself. All 
processes are part of still larger ones. And all processes have subprocesses. 
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As with the product of architecture, so also is the process of architecting a 
part of a still larger activity, the acquisition of useful things.

Hardware acquisition is a sequential process that includes design, 
engineering, manufacturing, testing, and operation. This larger process 
can be depicted as an expanded waterfall, Figure  1.2.10 The architect’s 
functional relationship with this larger process is sketched in Figure 1.3. 
Managerially, the architect could be a member of the client’s or the builder’s 
organization, or of an independent architecting partnership in which per-
ceptions of conflict of interest are to be avoided at all costs. In any case 
and wherever the architect is physically or managerially located, the 
relationships to the client and the acquisition process are essentially as 
shown. The strongest (thickest line) decision ties are with client need and 
resources, conception and model building, and with testing, certification, 
and acceptance. Less prominent are the monitoring ties with engineering 
and manufacturing. There are also important, if indirect, ties with social 
and political factors, the “illities” and the “real world.”

This waterfall model of systems acquisition has served hardware 
systems acquisition well for centuries. However, as new technologies 
create new, larger-scale, more complex systems of all types, others have 
been needed and developed. The most recent ones are due to the needs 
of software-intensive systems, as will be seen in Chapters 4 and 6 and 
in Part III. Although these models change the roles and methods of the 
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Figure 1.2  The expanded waterfall.
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architecting process, the basic functional relationships shown in Figure 1.3 
remain much the same.

In any case, the relationships in Figure  1.3 are more complex than 
simple lines might suggest. As well as indicating channels for two-way 
communication and upward reporting, they infer the tensions to be 
expected between the connected elements, tensions caused by different 
imperatives, needs, and perceptions.

Some of competing technical factors are shown in Figure 1.4.11 This 
figure was drawn such that directly opposing factors pull in exactly 
opposite directions on the chart. For example, continuous evolution pulls 
against product stability; a typical balance is that of an architecturally 
stable, evolving product line. Low-level decisions pull against strict process 
control, which can often be relieved by systems architectural partitioning, 
aggregation, and monitoring. Most of these trade-offs can be expressed 
in analytic terms, which certainly helps, but some cannot, as will become 
apparent in the social systems world of Chapter 5.

Exercise: Give examples from a specific system of 
what information, decisions, recommendations, 
tasks, and tensions might be expected across the 
lines of Figure 1.4.
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Figure 1.3  The architect and the expanded waterfall. (Adapted from Rechtin, E., 
Systems Architecting, Creating and Building Complex Systems. Englewood Cliffs, NJ: 
Prentice Hall, 1991. With permission from Prentice Hall.)
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Spirals, Increments, and Collaborative Assembly
Software developers have long understood that most software-intensive 
projects are not well suited to a sequential process but to a highly iterative 
one such as the spiral. There is a strong incentive to iteratively modify 
software in response to user experience. As the market, or operational 
environment, reveals new desires, those desires are fed back into the 
product. One of the first formalizations of iterative development is due 
to Boehm and his famous spiral model. The spiral model envisions itera-
tive development as a repeating sequence of steps. Instead of traversing 
a sequence of analysis, modeling, development, integration, and test just 
once, software may return over and over to each. The results of each are 
used as inputs to the next. This is depicted in Figure 1.5.

The original spiral model is intended to deliver one, hopefully stable, 
version of the product, the final of which is delivered at the end of the 
last spiral cycle. Multiple cycles are used for risk control. The nominal 
approach is to set a target number of cycles at the beginning of devel-
opment, and partition the whole time available over the target number 
of cycles. The objective of each cycle is to resolve the most risky thing 
remaining. So, for example, if user acceptance was adjudged as the most 
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risky at the beginning of the project, the first spiral would concentrate on 
those parts of the system that produce the greatest elements of user experi-
ence. Even the first cycle tests would focus on increasing user acceptance. 
Similarly, if the most risky element was adjudged to be some internal 
technical performance issue, the product of the initial cycle would focus 
on technical feasibility.

Many software products, or the continuing software portion of many 
product lines, are delivered over and over again. A user may buy the hard-
ware once and expect to be offered a steady series of software upgrades 
that improve system functionality and performance. This alters a spiral 
development process (which has a definite end) to an incremental process, 
which has no definite end. The model is now more like a spiral spiraling 
out to circles, which represent the stable products to be delivered. After 
one circle is reached, an increment is delivered, and the process continues. 
Actually, the notion of incremental delivery appears in the original spiral 
model where the idea is that the product of spirals before the last can be an 
interim product release if, for example, the final product is delayed.

Finally, there are a number of systems in use today that are essentially 
continuously assembled, and where the assembly process is not directly 
controlled. The canonical example is the Internet, where the pieces evolve 
with only loose coupling to the other pieces. Control over development 
and deployment is fundamentally collaborative. Organizations, from 
major corporations to individual users, choose which product versions 
to use and when. No governing body exists (at least, not yet) that can 
control the evolution of the elements. The closest thing at present to a 
governing body, the Internet Society and its engineering arm, the Internet 
Engineering Task Force (IETF), can affect other behavior only through 
persuasion. If member organizations do not choose to support IETF 
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Figure 1.5  The “classic” spiral development model employs multiple cycles 
through the waterfall model’s steps to reach a final release point.
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standards, the IETF has no authority of compel compliance, or to block 
noncomplying implementations.

We call systems like this “collaborative systems.” The development 
process is collaborative assembly. Whether or not such an uncontrolled 
process can continue for systems like the Internet as they become central 
to daily life is unknown, but the logic and heuristics of such systems 
now is the subject of Chapter 7. In Chapter 12 we address again different 
models of programs as examples of “program architecture” or patterns 
for designing a development program. Many strategic goals a client has 
require addressing in the structure of the program rather than in the 
structure of the system.

Scopes of Architecting
What is the scope of systems architecting? By scope, we mean what things 
are inside the architect’s realm of concern and responsibility and which 
are not? In the classic architecting paradigm (what we have discussed so 
far in this chapter), the client has a problem and wants to build a system in 
response. The system is the response to the client’s needs, as constrained 
by the client’s resources and any other outside constraints. The concern 
of architecting is finding a satisfactory and feasible system in response to 
the client’s problem. A primary difference with other conceptualizations 
of similar situations is that architecting does not assume that the client’s 
problem is well structured, or that the client fully understands it. It is 
quite likely a full understanding of the problem will have to emerge from 
the client–architect interaction.

As we look beyond the classic scope of problem and system, we see 
several other issues of scope. First, a system is built within a “program,” 
here defined as the collection of arrangements of funding, contracts, 
builders, and other elements necessary to actually build and deploy a 
system, whether a single-family house or the largest defense system. The 
program has a structure; we can say the program has an architecture. 
The architecture of the program will consist of strategic decisions, like 
is the system delivered once or many times? Is the system incrementally 
developed from breadboard to brassboard, or is it incrementally devel-
oped through fully deployable but reduced functionality deliveries? How 
is the work parceled out to different participants?

Who is responsible for the programmatic architectural decisions? 
In some cases, it may be important to integrate programmatic structure 
into the technical structure of the system. For example, if the system is to 
be partitioned over particular subsystem manufacturers, the system must 
possess a structure in subsystem compatible with what the suppliers can 
produce, and those subsystems must be specifiable in ways that allow 
for eventual integration. Whether or not the programmatic architectural 
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decisions are in the scope of the system architect’s responsibilities, there is 
a scope of programmatic architecture that somebody must carry out.

Moving upward and outward one more layer, the client presumably 
has an organization, even if the organization is only him- or herself. That 
organization may have multiple programs and be concerned with multi
ple systems. The client’s organization also has a structure, which many 
would call an architecture. The principal concerns at the organizational 
scope are the organization’s strategic identity, or how does the organiza-
tion give itself a mission? The organization exists to do something, what 
is that something? Is it to make money in particular markets, to advance a 
particular technology, or to carry out part of a military mission?

From the perspective of the system architect, it is unlikely that the 
strategic identity of the client’s organization is in-play in anything like the 
sense that the basic problem description is. However, the strategic identity 
of the client is important to the system architect. If that strategic identity 
is unclear, or poorly articulated, or simply unrealistic, then it will be very 
difficult for the client to make effective value judgments.

These scopes are illustrated in Figure 1.6. Figure 1.6 also illustrates 
one more issue of scope. Back at the scope of immediate concern to the 
system architect, both the solution and problem may apply well outside 
the immediate program and the client’s organization. Other clients may 
have the same or similar problems. A system developed for one client may 
apply elsewhere. Part of architecting is the one-to-one system-to-client ori-
entation, and individual customization; but this does not mean that others 
many not also be served by similar systems. Depending on the architect, 

Organization 
Strategic Identity 

Program 
Who builds? How? 
Strategy? Form? 

Program 

Problem 

System 
Problem and
System
Scopes
May Extend
beyond the
Immediately
Responsible
Organization

Figure 1.6  The relationship between contexts for architecting. Our core concern 
is with the relationship between problem and system. But, the structure of the 
development program and the identity and portfolio of the responsible organiza-
tion are additional concerns.
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it is quite likely that the issues of scope in problems and systems applying 
outside the immediate client’s realm will be important. We return to these 
issues in detail in Chapter 12.

Conclusion
A system is a collection of different things that together produce results 
unachievable by themselves alone. The value added by systems is in the 
interrelationships of their elements.

Architecting is creating and building structures — that is, “structuring.” 
Systems architecting is creating and building systems. It strives for fit, 
balance, and compromise among the tensions of client needs and resources, 
technology, and multiple stakeholder interests.

Architecting is both an art and a science — both synthesis and analysis, 
induction and deduction, and conceptualization and certification — using 
guidelines from its art and methods from its science. As a process, it is 
distinguished from systems engineering in its greater use of heuristic 
reasoning, lesser use of analytics, closer ties to the client, and particular 
concern with certification of readiness for use.

The foundations of systems architecting are a systems approach, a 
purpose orientation, a modeling methodology, ultraquality, certification, 
and insight. To avoid perceptions of conflict of interest, architects must 
avoid value judgments, avoid perceived conflicts of interest, and keep an 
arms-length relationship with project management.

A great architect must be as skilled as an engineer and as creative as 
an artist or the work will be incomplete. Gaining the necessary skills and 
insights depends heavily on lessons learned by others, a task of education 
to research and teach.

The role of systems architecting in the systems acquisition process 
depends upon the phase of that process. It is strongest during conceptual-
ization and certification, but never absent. Omitting it at any point, as with 
any part of the acquisition process, leads to predictable errors of omission 
at that point to those connected with it.
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2chapter 

Heuristics as Tools

Introduction: A Metaphor
Mathematicians are still smiling over a gentle self-introduction by one 
of their famed members. “There are three kinds of mathematicians,” he 
said, “those that know how to count and those that don’t.” The audience 
waited in vain for the third kind until, with laughter and appreciation, 
they caught on. Either the member could not count to three — ridiculous 
— or he was someone who believed that there was more to mathematics 
than numbers, important as they were. The number theorists appreciated 
his acknowledgement of them. The “those that don’ts” quickly recognized 
him as one of their own, the likes of a Gödel who, using thought processes 
alone, showed that no set of theorems can ever be complete.

Modifying the self-introduction only slightly to the context of this 
chapter: There are three kinds of people in our business, those who know 
how to count and those who do not — including the authors.

Those who know how to count (most engineers) approach their 
design problems using analysis and optimization, powerful and precise 
tools derived from the scientific method and calculus. Those who do not 
(most architects) approach their qualitative problems using guidelines, 
abstractions, and pragmatics generated by lessons learned from experi-
ence — that is, heuristics. As might be expected, the tools each use are dif-
ferent because the kinds of problems they solve are different. We routinely 
and accurately describe an individual as “thinking like an engineer” — or 
architect, or scientist, or artist. Indeed, by their tools and works you will 
know them.

Of course, we exaggerate to make a point. The reality is that architects 
often compute (must compute), and engineers use many heuristics. Both 
are complex amalgams of art and science. To be one who uses heuristics 
does not mean avoiding being systematic and quantitative. Consider how 
people who are very good at debugging hardware or software go about 
their work. Being systematic and quantitative in the search is an essential 
practice, but the search is guided by heuristic. But, the complexity of inte-
grating the art and science can wait. For now we want to understand those 
things that are squarely part of the “art” of systems architecting.
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This chapter, metaphorically, is about architects’ heuristic tools. As 
with the tools of carpenters, painters, and sculptors, there are literally 
hundreds of them — but only a few are needed at any one time and for a 
specific job at hand. To continue the metaphor, although a few tool users 
make their own, the best source is usually a tool supply store — whether 
it be for hardware, artists’ supplies, software — or heuristics. Appendix A, 
Heuristics for Systems-Level Architecting, is a heuristics store, organized 
by task, just like any good hardware store. Customers first browse, and 
then select a kit of tools based on the job, personal skill, and knowledge of 
the origin and intended use of each tool.

Heuristic has a Greek origin, heuriskein, a word meaning “to find a 
way” or “to guide” in the sense of piloting a boat through treacherous 
shoals. Architecting is a form of piloting. Its rocks and shoals are the risks 
and changes of technology, construction, and operational environment 
that characterize complex systems. Its safe harbors are client acceptance 
and safe, dependable, long life. Heuristics are guides along the way — 
channel markings, direction signs, alerts, warnings, and anchorages 
— tools in the larger sense. But they must be used with judgment. No 
two harbors are alike. The guides may not guarantee safe passage, but 
to ignore them may be fatal. The stakes in architecting are just as high — 
reputations, resources, vital services, and, yes, lives. Consonant with their 
origin, the heuristics in this book are intended to be trusted, time-tested 
guidelines for serious problem solving.

Heuristics as so defined are narrower in scope, subject to more critical 
test and selection, and intended for more serious use than other guidelines, 
for example, conventional wisdom, aphorisms, maxims, rules of thumb, 
and the like. For example, a pair of mutually contradictory statements like 
(1) look before you leap and (2) he who hesitates is lost, are hardly useful guides 
when encountering a cliff while running for your life. In this book, neither 
of these pairs would be a valid heuristic because they offer contradictory 
advice for the same problem.

The purpose of this chapter is therefore to help the reader — whether 
architect, engineer, or manager — find or develop heuristics that can be 
trusted, organize them according to need, and use them in practice. The 
first step is to understand that heuristics are abstractions of experience.

Heuristics as Abstractions of Experience
One of the most remarkable characteristics of the human race is its abil-
ity not only to learn, but to pass on to future generations sophisticated 
abstractions of lessons learned from experience. Each generation knows 
more, learns more, plans more, tries more, and succeeds more than the pre-
vious one because it does not need to repeat the time-consuming process 
of re-living the prior experiences. Think of how extraordinarily efficient 
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are such quantifiable abstractions as F = ma, E = mc2 and x = F(y,z,t); of 
algorithms, charts, and graphs; and of the basic principles of economics. 
This kind of efficiency is essential if large, lengthy, complex systems and 
long-lived product lines are to succeed. Few architects ever work on more 
than two or three complex systems in a lifetime. They have neither the 
time nor opportunity to gain the experience needed to create first-rate 
architectures from scratch. By much the same process, qualitative heu-
ristics, condensed and codified practical experience, came into being to 
complement the equations and algorithms of science and engineering in 
the solving of complex problems. Passed from architect to architect, from 
system to system, they worked. They helped satisfy a real need.

In contrast to the symbols of physics and mathematics, the format of 
heuristics is words expressed in the natural languages. Unavoidably, they 
reflect the cultures of engineering, business, exploration, and human rela-
tions in which they arose. The birth of a heuristic begins with anecdotes 
and stories, hundreds of them, in many fields which become parables, 
fables, and myths,1 easily remembered for the lessons they teach. Their 
impact, even at this early stage, can be remarkable not only on politics, 
religion, and business but also on the design of technical systems and 
services. The lessons that have endured are those that have been found to 
apply beyond the original context, extended there by analogy, comparison, 
conjecture, and testing.* At their strongest they are seen as self-evident 
truths requiring no proof.

There is an interesting human test for a good heuristic. An experi-
enced listener, on first hearing one, will know within seconds that it fits 
that individual's model of the world. Without having said a word to the 
speaker, the listener almost invariably affirms its validity by an uncon-
scious nod of the head, and then proceeds to recount a personal experi-
ence that strengthens it. Such is the power of the human mind.

Selecting a Personal Kit of Heuristic Tools
The art in architecting lies not in the wisdom of the 
heuristics, but in the wisdom of knowing which 
heuristics apply, a priori, to the current project.2

All professions and their practitioners have their own kits of tools, 
physical and heuristic, selected from their own and others’ experiences to 

*	 This process is one of inductive reasoning, “a process of truth estimation in the face of 
incomplete knowledge which blends information known from experience with plausible 
conjecture” (Klir, George J., Architecture of Systems Problem Solving. New York: Plenum 
Press, 1985, p. 275). More simply, it is an extension or generalization from specific 
examples. It contrasts with deductive reasoning, which derives solutions for specific cases 
from general principles.
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match their needs and talents. But, in the case of architecting prior to the 
late 1980s, selections were limited and, at best, difficult to acquire. Many 
heuristics existed, but they were mainly in the heads of practitioners. No 
efforts had been made to articulate, organize, and document a useful set. 
The heuristics in this book were codified largely through the University 
of Southern California graduate course in Systems Architecting. The 
students and guest instructors in the course, and later program, were 
predominantly experienced engineers who contributed their own lessons 
learned throughout the West Coast aerospace, electronics, and software 
industries. Both as class exercises, and through the authors’ writings, they 
have been expressed in heuristic form and organized for use by architects, 
educators, researchers, and students.

An initial collection3 of about 100 heuristics was soon surpassed by 
contributions from over 200 students, reaching nearly 1,000 heuristics 
within 6 years.4 Many, of course, were variations on single, central ideas 
— just as there are many variations of hammers, saws, and screwdrivers 
— repeated in different contexts. The four most widely applicable of these 
heuristics were as follows, in decreasing order of popularity:

	 1.	Do not assume that the original statement of the problem is necessarily the 
best, or even the right one.

		  Example: The original statement of the problem for the F-16 fighter 
aircraft asked for a high-supersonic capability, which is difficult and 
expensive to produce. Discussions with the architect, Harry Hillaker, 
brought out that the reason for this statement was to provide a quick 
exit from combat, something far better provided by a high thrust-
to-weight, low supersonic design. In short, the original high speed 
statement was replaced by a high acceleration one, with the added 
advantage of exceptional maneuverability.

	 2.	 In partitioning, choose the elements so that they are as independent as 
possible; that is, choose elements with low external complexity and high 
internal complexity.

		  Example: One of the difficult problems in the design of microchips is 
the efficient use of their surface area. Much of that area is consumed by 
connections between components — that is, by communications rather 
than by processing. Carver Mead of Caltech has now demonstrated 
that a design based on minimum communications between process-
intensive nodes results in much more efficient use of space, with the 
interesting further result that the chip “looks elegant” — a sure sign of 
a fine architecture and another confirmation of the heuristic:

	 3.	The eye is a fine architect. Believe it.
		  Simplify. Simplify. Simplify.

		  Example: One of the best techniques for increasing reliability 
while decreasing cost and time is to reduce the piece part count 
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of a device. Automotive engineers, particularly recently, have pro-
duced remarkable results by substituting single castings for multiple 
assemblies and by reducing the number of fasteners and their asso-
ciated assembly difficulties by better placement.

	 4.	Build in and maintain options as long as possible in the design and imple-
mentation of complex systems. You will need them.

		  Example: In the aircraft business they are called “scars.” In the soft-
ware business they are called “hooks.” Both are planned breaks or 
entry points into a system that can extend the functions the system can 
provide. In aircraft, they are used for lengthening the fuselage to carry 
more passengers or freight. In software, they are used for inserting 
further routines, or to allow integration of data with other programs.

Though these four heuristics do not make for a complete tool kit, 
they do provide good examples for building one. All are aimed at reduc-
ing complexity, a prime objective of systems architecting. All have been 
trusted in one form or another in more than one domain. All have stood 
the test of time for decades if not centuries.

The first step in creating a larger kit of heuristics is to determine the 
criteria for selection. The following were established to eliminate unsub-
stantiated assertions, personal opinions, corporate dogma, anecdotal spec-
ulation, mutually contradictory statements, and the like. As it turned out, 
they also helped generalize domain-specific heuristics into more broadly 
applicable statements. The strongest heuristics passed all the screens easily. 
The criteria were as follows:

The heuristic must make sense in its original domain or context. •	
To be accepted, a strong correlation, if not a direct cause and effect, 
must be apparent between the heuristic and the successes or failures 
of specific systems, products, or processes. Academically speaking, 
both the rationale for the heuristic and the report that provided it 
were subject to peer and expert review. As might be expected, a 
valid heuristic seldom came from a poor report.
The general sense, if not the specific words, of the heuristic should •	
apply beyond the original context. That is, the heuristic should be 
useful in solving or explaining more than the original problem from 
which it arose. An example is the preceding do not assume heuristic. 
Another is Before the flight it is opinion; after the flight it is obvious. In the 
latter, the word “flight” can sensibly be replaced by test, experiment, 
fight, election, proof, or trial. In any case, the heuristic should not 
be wrong or contradictory in other domains where it could lead 
to serious misunderstanding and error. This heuristic applies in 
general to ultraquality systems. When they fail, and they usually 
fail after all the tests are done and they are in actual use, the cause of 
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the failure is typically a deterministic consequence of some incorrect 
assumptions; and we wonder how we missed such an obvious fail-
ure of our assumptions.
The heuristic should be easily rationalized in a few minutes or on •	
less than a page. As one of the heuristics states, If you can’t explain it 
in five minutes, either you don’t understand it or it doesn’t work (Darcy 
McGinn 1992 from David Jones). With that in mind, the more obvious 
the heuristic is on its face, and the fewer the limitations on its use, 
the better. Example: A model is not reality.
The opposite statement of the heuristic should be foolish, clearly not •	
“common sense.” For example: The opposite of Murphy’s Law — If it can 
fail, it will — would be “If it can fail, it won’t,” which is patent nonsense.
The heuristic’s lesson, though not necessarily its most recent for-•	
mulation, should have stood the test of time and earned a broad 
consensus. Originally this criterion was that the heuristic itself had 
stood the test of time, a criterion that would have rejected recently 
formulated heuristics based on retrospective understanding of older 
or lengthy projects. Example: The beginning is the most important part 
of the work (Plato 4th Century b.c.), reformulated more recently as All 
the serious mistakes are made in the first day.*

It is probably true that heuristics can be even more useful if they can 
be used in a set, like wrenches and screwdrivers, hammers and anvils, or 
files and vises. The taxonomy grouping in a subsequent section achieves 
that possibility in part.

It is also probably true that a proposed action or decision is stronger if 
it is consistent with several heuristics rather than only one. A set of heuris-
tics applicable to acceptance procedures substantiates that proposition.

And it would certainly seem desirable that a heuristic, taken in a 
sufficiently restricted context, could be specialized into a design rule, a 
quantifiable, rational evaluation, or a decision algorithm. If so, heuristics 
of this type would be useful bridges between architecting, engineering, 
and design. There are many cases where we have such progressive exten-
sions, from a fairly abstract heuristic that is broadly applicable to a set of 
more narrowly applicable, but directly quantifiable, design rules.

Using Heuristics
Virtually everybody, after brief introspection, sees that heuristics play 
an important role in their design and development activities. However, 
even if we accept that everyone uses heuristics, it is not obvious that those 
heuristics can be communicated and used by others. This book takes the 

*	 Spinrad, Robert, Lecture at the University of Southern California, 1988.
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approach that heuristics can be effectively communicated to others. One 
lesson from student use of Rechtin 1991,5 and previous editions of this 
book, is that heuristics do transfer from one person to another, but not 
always in simple ways. It is useful to document heuristics and teach from 
them, but learning styles differ.

People typically use heuristics in three ways. First, they can be used as 
evocative guides. They work as guides if they evoke new thoughts in the 
reader. Some readers have reported that they use the catalog of heuristics 
in the appendices at random when faced with a difficult design problem. 
If one of the heuristics seems suggestive, they follow up by considering 
how that heuristic could describe the present situation, what solutions it 
might suggest, or what new questions it suggests.

The second usage is as codifications of experience. In this usage, the 
heuristic is like an outline heading, a guide to the detailed discussion that 
follows. In this case, the stories behind the heuristics can be more important 
than the basic statement. The heuristic is a pedagogical tool, a way of teach-
ing lessons not well captured in other engineering teaching methods.

The third usage is the most structured. It is when heuristics are inte-
grated into development processes. This means that the heuristics are 
attached to an overall design process. The design process specifies a series 
of steps and models to be constructed. The heuristics are attached to the 
steps as specific guidelines for accomplishing those steps.

A good example is in software. A number of software development 
methods have a sequence of models, from relatively abstract to code in a pro-
gramming language. Object-oriented methods, for example, usually begin 
with a set of textual requirements, build a model of classes and objects, and 
then refine the class/object model into code in the target programming 
environment. There are often intermediate steps in which the problem-
domain-derived objects are augmented with objects and characteristics 
from the target environment. A problem in all such methods is knowing 
how to construct the models at each step. The transformation from a set of 
textual requirements to classes and objects is not unique, but it involves 
extensive judgment by the practitioner. Some methods provide assistance 
to the practitioner by giving explicit, prescriptive heuristics for each step.

A Process Framework for Architecting Heuristics
In Part III of this book, we will present a basic process framework for 
system architecting. The process framework will define activities repeat-
edly required in effective architecting, and discuss how those activities 
can be arranged relative to each other. We will also place those activi-
ties in a larger architecture project framework. This process framework is 
illustrated in Figure 2.1. As noted above, one method for using heuristics 
is to attach them to steps in a design process. By doing so, the heuristics 



36	 The Art of Systems Architecting

become local guides to each aspect of the process. A complete process 
with step-by-step designated models and transformation heuristics is not 
appropriate for general systems architecting. There is simply too much 
variation from domain to domain, too many unique domain aspects, and 
too many important domain-specific tools. Even so, it is useful to recog-
nize the basic structure of the process framework and how the heuristics 
relate to that framework.

It is important to distinguish between the activity cycle for an entire 
development program and the activity cycle for an architecture project. 
The goal of a development program is to build and deliver a system. The 
goal of an architecture project is something else. In the simplest case, 
the goal of the project is to initiate a development program. Even in the 
simple case we recognize that development programs go in fits and starts. 
There might be several discrete architecture projects, simultaneously or 
sequentially developing architectural concepts for every actual develop-
ment program. Some architecture projects do not have a specific system 
development as their goal, as in the architecture projects that concern 
collaborative systems (which we take up in Chapter 7).

The beginning of an architecting project is “orientation” or determining 
where you are and where you want to go. This refers both to the architec-
ture project as well as the underlying, assumed but not yet existing, system 
development project. Orientation is less technical and more business. Its 
intent is to ensure that the architecture effort can proceed for at least one 
iterative cycle in an organized fashion. Heuristics associated with orienta-
tion relate to topics like identifying the driving characteristics of a project, 
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Figure 2.1  Activities in an architecting process model.
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finding leading stakeholders, and clarifying relationships between the 
architect, sponsors, and downstream users. Orientation is about scoping 
and planning, and so the heuristics of Appendix A and in Chapter 9 under 
the associated topics apply most strongly. Orientation leads to core archi-
tecting, which is characterized by purpose analysis, problem structuring, 
solution structuring, harmonization, and selection-abstraction.

Purpose analysis is a broad-based study of why the capability or sys-
tem of interest has value. It works from an understanding of the client 
strategy and expands to all stakeholders with significant power over the 
eventual construction, deployment, and operation of the system. Purpose 
analysis is an elicitation activity, and so all heuristics that relate to elicita-
tion apply most strongly here.

Problem structuring is where we organize elements of the problem 
space with a primary focus on a “value model.” The value model is an 
explicit model of the most important stakeholder’s preferences, and it 
is intended to capture them without regard to consistency. That is, we 
want to be able to assess alternatives in the value system of each major 
stakeholder, realizing that the resulting preference orderings will not be 
the same. Any reconciliation necessary among them will be conducted 
later. Its concern is on the problem side of the problem–system tension. 
It is a synthesis activity in the sense that we are synthesizing problem 
descriptions, preferably several, with somewhat different scopes. In terms 
of Appendix A and Chapter 9, the associated heuristics are drawn mostly 
from modeling and prioritizing.

In solution structuring, we synthesize models of solutions, again multi-
ple solutions that should differ in scope and scale. The heuristics that apply 
are drawn from those that cover modeling, aggregating, and partitioning.

Harmonization is a dominantly analytical activity in which we inte-
grate problem and solution descriptions and assess value. Harmonization 
is a preparation for selection-abstraction. Selection is easy to understand; 
it is picking answers. An important distinction between the approach of 
systems architecting and most decision analysis texts is that we do not 
assume when we enter selection that there is a unitary, exclusive decision 
to make. At some point in the process, if the overall goal is to build a 
system, we must clearly make a decision about a preferred configuration. 
But we might travel down this process road many times before reaching 
such a unitary decision. Along the way, we may wish to hold onto multiple 
solution configurations, classes of solution configurations, and multiple 
problem descriptions. We make no decision before its time. As it was put 
in Rechtin 1991, Hold onto the agony of decision as long as possible. We also 
introduce the notion of abstraction for those cases where architecting has 
been completed even though no single configuration has been selected.

As an example of abstraction over selection, consider the case of a 
family-of-systems, say the collection of printers made by a single company. 
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There are shared properties or components across the whole family (for 
example, interfaces, software rendering engines, supply chains). These 
shared elements are the concern of the family-of-systems architect, and 
are abstractions of the entire family. It is inaccurate to talk about select-
ing the whole family (though we might select the market-niche structure 
of the whole family), but it is accurate to consider selection of properties 
of the whole family abstract into a family-of-systems architecture. We 
refer to that form of selection as “abstraction.”

Architectural projects ultimately produce architecture descriptions, 
a document. We illustrate this as a following step to Core Architecting 
in Figure 2.1. In reality, architecture descriptions are developed at least 
partially in parallel with the architectural decision making. But, it is help-
ful to illustrate the separation of the two activities to emphasize that archi-
tecting is about decision making, and architectures are about decisions. 
Architecture descriptions can only document those decisions. The quality 
(or lack thereof) of those decisions must stand on its own. An excellently 
drawn description will not make up for poor architecture decisions.

Finally, in practice, architects discover in the process where they need 
additional knowledge. Straightforward progress through an architecture 
study may be interrupted by the discovery that we do not know critical 
numbers related to the cost or performance of a key system element, or 
we do not understand the technicalities of a particular stakeholder prob-
lem, or we lack clear input on preferences from a stakeholder. In most 
cases, it  is more effective to put such issues aside by making suitable 
assumptions, returning to the issues after completing an end-to-end pass 
through architectural analysis, resolving those detailed issues in studies, 
and returning to another iterative cycle through the architecting process.

Heuristics on Heuristics
A phenomenon observed as heuristics discovered by the USC graduate 
students is that the discoverers themselves began thinking heuristically. 
They found themselves creating heuristics directly from observation and dis-
cussion, and then trying them out on professional architects and engineers, 
some of whose experiences had suggested them. (Most interviewees were 
surprised and pleased at the results.) The resultant provisional heuristics 
were then submitted for academic review as parts of class assignments.

Kenneth L. Cureton, carrying the process one step further, generated 
a set of heuristics on how to generate and apply heuristics,6 from which 
the following were chosen.

Generating Useful Heuristics
Humor [and careful choice of words] in a heuristic provides an emo-•	
tional bite that enhances the mnemonic effect [Karklins].
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Use words that transmit the “thrill of insight” into the mind of •	
the beholder.
For maximum effect, try embedding both descriptive and prescrip-•	
tive messages in a heuristic.
Many heuristics can be applied to heuristics [e.g., •	 Simplify! Scope!].
Do not make a heuristic so elegant that it only has meaning to its •	
creator, and thus loses general usefulness.
Rather than adding a conditional statement to a heuristic, consider •	
creating a separate but associated heuristic that focuses on the 
insight of dealing with that conditional situation.

Applying Heuristics

If it works, then it is useful.•	
Knowing when and how to use a heuristic is as important as know-•	
ing what and why.
Heuristics work best when applied early to reduce the solution space.•	
Strive for balance — too much of a good thing or complete elimina-•	
tion of a bad thing may make things worse, not better!
Practice, practice, practice!•	
Heuristics are not reality, either!•	

A Taxonomy of Heuristics
The second step after finding or creating individual heuristics is to orga-
nize them for easy access so that the appropriate ones are at hand for 
the immediate task. The collection mentioned earlier in this chapter was 
accordingly refined and organized by architecting task.* In some ways, 
the resultant list — presented in Appendix A — was self-organizing. 
Heuristics tended to cluster around what became recognized as basic 
architecting tasks. For example, although certifying is shown last and is 
one of the last formal phases in a waterfall, it actually occurs at many 
milestones as “sanity checks” are made along the way and subsystems are 
assembled. The tasks, elaborated in Chapter 9, are as follows:

Scoping and planning•	
Modeling•	
Prioritizing•	
Aggregating•	

*	 The original 100 of Rechtin 1991 were organized by the phases of a waterfall. The list in 
Appendix A of this book recognizes that many heuristics apply to several phases, that 
the spiral model of system development would in any case call for a different catego-
rization, and that many of the tasks described here occur over and over again during 
systems development.
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Partitioning•	
Integrating•	
Certifying•	
Assessing•	
Evolving and rearchitecting•	

The list is further refined by distinguishing between two forms of 
heuristic. One form is descriptive; that is, it describes a situation but does 
not indicate directly what to do about it. Another is prescriptive; that is, 
it prescribes what might be done about the situation. An effort has been 
made in the appendix to group prescriptions under appropriate descrip-
tions with some, but not complete, success. Even so, there are more than 
enough generally applicable heuristics for the reader to get started.

And then there are sets of heuristics that are domain-specific to air-
craft, spacecraft, software, manufacturing, social systems, and so on. Some 
of these can be deduced or specialized from more general ones given here. 
Or, they can be induced or generalized from multiple examples in special-
ized subdomains. Still more fields are explored in Part III, adding further 
heuristics to the general list.

You are encouraged to discover still more, general and specialized, 
in much the same way the more general ones here were — by spotting 
them in technical journals, books,7 project reports, management treatises, 
and conversations.

The Appendix A taxonomy is not the only possible organizing 
scheme, any more than all tool stores are organized in the same way. In 
Appendix A one heuristic follows another, one-dimensionally, as in any 
list. But some are connected to others in different categories, or could just 
as easily be placed there. Some are “close” to others and some are further 
away. Ray Madachy, then a graduate student, using hypertext linking, 
converted the list into a two-dimensional, interconnected “map” in which 
the main nodes were architecting themes: conception and design; the 
systems approach; quality and safety; integration, test, and certification; 
and disciplines.8 To these were linked each of the 100 heuristics in the 
first systems architecting text,9 which in turn were linked to each other. 
The ratio of heuristic-to-heuristic links to total links was about 0.2; that is, 
about 20% of the heuristics overlapped into other nodes.

The Madachy taxonomy, however, shared a limitation common to 
all hypertext methods — the lack of upward scalability into hundreds of 
objects — and consequently was not used for Appendix A. Nonetheless, 
it could be useful for organizing a modest-sized personal tool kit or for 
treating problems already posed in object-oriented form, for example, 
computer-aided design of spacecraft.10
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New Directions
Heuristics are a popular topic in systems and software engineering, 
though they do not often go by that name. A notable example is the 
pattern language. The idea of patterns and pattern languages comes from 
Christopher Alexander and has been adapted to other disciplines by other 
writers. Most of the applications are to software engineering.

A pattern is a specific form of prescriptive heuristic. A number of 
forms have been used in the literature, but all are similar. The basic form 
is a pattern name, a statement of a problem, and a recommended form of 
solution (to that problem). So, for example, a pattern in civil architecture 
has the title “Masters and Apprentices,” the problem statement describes 
the need for junior workers to learn while working from senior master 
workers, and the recommended solution consists of suitable arrangements 
of work spaces.

When a number of patterns in the same domain are collected together, 
they can form a pattern language. The idea of a pattern language is that 
it can be used as a tool for synthesizing complete solutions. The archi-
tect and client use the collected problem statements to choose a set that 
is well-matched to the client’s concerns. The resulting collection of recom-
mended solutions is a collection of fragments of a complete solution. It is the 
job of the architect to harmoniously combine the fragments into a whole.

In general, domain-specific, prescriptive heuristics are the easiest 
for apprentices to explain and use. So, patterns on coding in program-
ming are relatively easy to teach and learn to use. This is borne out by 
the observed utility of coding pattern books in university programming 
courses. Similarly, an easy entry to the use of heuristics is when they are 
attached as step-by-step guides in a structured development process. 
At the opposite end, descriptive heuristics on general systems architect-
ing are the hardest to explain and use. They typically require the most 
experience and knowledge to apply successfully. The catalog of heuristics 
in Appendix A has heuristics across the spectrum.

Conclusion
Heuristics, as abstractions of experience, are trusted, nonanalytic guide-
lines for treating complex, inherently unbounded, ill-structured problems. 
They are used as aids to decision making, value judgments, and assess-
ments. They are found throughout systems architecting, from earliest 
conceptualization through diagnosis and operation. They provide bridges 
between client and builder, concept and implementation, synthesis and 
analysis, and system and subsystem. They provide the successive transi-
tions from qualitative, provisional needs to descriptive and prescriptive 
guidelines, and thence to rational approaches and methods.
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This chapter has introduced the concept of heuristics as tools — 
how to find, create, organize, and use them for treating the qualitative 
problems of systems architecting. Appendix A provides a ready source 
of them organized by architecting task — in effect, a tool store of systems 
architecting heuristic tools.
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New Domains, New Insights
Part II explores from an architectural point of view five domains beyond 
those of aerospace and electronics, the sources of most examples and writ-
ings to date. The chapters can be read for several purposes. For a reader 
familiar with a domain, there are broadly applicable heuristics for more 
effective architecting of its products. For ones unfamiliar with it, there 
are insights to be gained from understanding problems differing in the 
degree but not in kind from one’s own. To coin a metaphor, if the domains 
can be seen as planets, then this part of the book corresponds to compara-
tive planetology, the exploration of other worlds to benefit one’s own. The 
chapters can be read for still another purpose, as a template for exploring 
other, equally instructive, domains. An exercise for that purpose can be 
found at the end of Chapter 7, “Collaborative Systems.”

Each of the chapters is preceded by a brief case study. Each of the 
case studies is chosen to be relevant to the chapter to which it is attached. 
Many students and readers have asked about case studies of real systems 
to assist in understanding the application of the materials. Unfortunately, 
really good engineering and architecting case studies are notoriously hard 
to obtain. The stories and details are rarely published. Books published on 
major systems are more likely to focus on the people involved than on the 
technical decision making. Many of the most interesting stories are buried 
behind walls of proprietary information. By the time the full story can 
be published, it is often old. We, the authors, think the older stories carry 
timeless lessons, so we have included several here. Each includes some 
references back to the original literature, where it is readily available, so 
the interested reader can follow up with further investigation of his or 
her own. In a few cases, we abstracted several cases into one where the 
original stories have not yet been published, and the combination makes 
the lessons clearer.

From an educational point of view, this part is a recognition that one 
of the best ways of learning is by example, even if the example is in a 
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different field or domain. One of the best ways of understanding another 
discipline is to be given examples of problems it solves. And one of the 
best ways of learning architecting is to recognize that there are architects 
in every domain and at every level from which others can learn and with 
whom all can work. At the most fundamental level, all speak the same 
language and carry out the same process, systems architecting. Only the 
examples are different.

Chapter 3 explores systems for which form is predetermined by a 
builder’s perceptions of need. Such systems differ from those that are 
driven by client purposes by finding their end purpose only if they suc-
ceed in the marketplace. The uncertainty of end purpose has risks and 
consequences that it is the responsibility of architects to help reduce or 
exploit. Central to doing so are the protection of critical system parameters 
and the formation of innovative architecting teams. These systems can be 
either evolutionary or revolutionary. Not surprisingly, there are important 
differences in the architectural approach. The case study is an old one, but 
an excellent one, on the development of the DC-3 airplane.

Chapter 4 highlights the fact that manufacturing has its own water-
fall, quasi-independent of the more widely discussed product waterfall, 
and that these two waterfalls must intersect properly at the time of 
production. A spiral-to-circle model is suggested to help understand the 
integration of hardware and software. Ultraquality and feedback are 
shown to be the keys to both lean manufacturing and flexible manufac-
turing, with the latter needing a new information flow architecture in 
addition. The case study is on the development of mass production, par-
ticularly its development at Ford and later Toyota.

Chapter 5 on sociotechnical systems introduces a number of new 
insights to those of the more technical domains. Economic questions and 
value judgments play a much stronger role here, even to the point of out-
right veto of otherwise worthwhile systems. A new tension comes to center 
stage, one central to social systems but too often downplayed in others 
until too late — the tension between facts and perceptions. It is so power-
ful in defining success that it can virtually mandate system design and 
performance, solely because of how that architecture is perceived. The 
case study is on architecting intelligent transportation systems.

Chapter 6 serves to introduce the domain of software as it increas-
ingly becomes the center of almost all modern systems designs. Con-
sequently, whether stand-alone or as part of a larger system, software 
systems must accommodate to continually changing technologies and 
product usage. In very few other domains is annual, much less monthly, 
wholesale replacement of a deployed system economically feasible or even 
considered. In point of fact, it is considered normal in software systems, 
precisely because of software’s unique ability to continuously and rapidly 
evolve in response to changes in technology and user demands. Software 
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has another special property; it can be as hard or as soft as needed. It can 
be hard-wired if certification must be precise and unchanging. Or it can be 
as soft as a virtual environment molded at the will of a user. For these and 
other reasons, software practice is heavily dependent on heuristic guide-
lines and organized, layered modeling. It is a domain in which architect-
ing development is very active, particularly in progressive modeling and 
rapid prototyping. The case study is on the transition from hierarchical 
to layered systems, a major point of contention in software systems. It is 
abstracted from several real cases familiar to the authors.

Chapter 7 introduces an old but newly significant class of systems, 
collaborative systems. Collaborative systems exist only because the par-
ticipants actively and continuously work to keep it in existence. A collab-
orative system is a dynamic assemblage of independently owned and 
operated components, each one of which exists and fulfills its owner’s 
purposes whether or not it is part of the assemblage. These systems 
have been around for centuries in programs of public works. But today 
we find wholly new forms in communications (the Internet and World 
Wide Web), transportation (intelligent transportation systems), militaries 
(multinational reconnaissance-strike and defensive systems), and soft-
ware (open source software). The architecting paradigm begins to shift in 
collaborative systems because the architect no longer has a single client 
who can make and execute decisions. The architect must now deal with 
more complex relationships and must find architectures in less familiar 
structures, such as architecture through communication or command 
protocol specification. The case study is on the Global Positioning System 
(GPS), which did not start as a collaborative system, but which is rapidly 
evolving into one.

The nature of modern software and information-centric systems, 
and their central role in new complex systems makes a natural lead into 
Part III, “Models and Modeling.”
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Case Study 1: DC-3
Even though the DC-3 airplane was designed and built in the 1930s, it is 
not uncommon for someone today to have flown on one. Seventy years 
after its origination, the DC-3 is still flying effectively and profitably, 
albeit mostly only in remote areas. The DC-3 is commonly cited as the 
most successful airplane ever built. What accounts for the extraordinary 
success of the DC-3 airplane? The history of the DC-3’s development 
extensively illustrates many of the key lessons of systems architecting, 
especially the following:

	 1.	The role of the very small architecting team in bringing vision and 
coherence to the system concept.

	 2.	The cooperative nature of the effective architect–client relationship, 
even when the architect belongs to the builder organization.

	 3.	The role of coupled technological and operational change in creating 
revolutionarily successful systems.

	 4.	The role of evolutionary development in enabling revolutionary 
development.

Because of the extraordinary success of the DC-3, there is a broad lit-
erature on its history and on the history of other airplanes at that time. 
One of the most valuable sources for the architectural history of the DC-3, 
and an exceptional source of architecting heuristics, is the paper “The 
Well Tempered Aircraft” by Arthur Raymond.1 A more extensive history 
is presented in the online book provided by the DC-3 history society.2

The History
In a room of the Smithsonian Air and Space Museum devoted to flight 
between World Wars I and II, three key airplanes can be seen together. 
They are the Ford Trimotor, the Boeing 247, and the DC-3. Of these, only 
the DC-3 can be seen outside of an air museum or historical air show. In 
1930 the Ford Trimotor was state-of-the-art in passenger and cargo aircraft. 
It carried eight passengers and enabled passenger and cargo service across 
the United States. But, by modern standards, the airplane was barely usable. 
The large reciprocating motor on the nose coupled noise and vibration 
(and sometimes exhaust) directly into the passenger and cargo areas. The 
framed fuselage put large spars directly through the passenger and cargo 
area, with obvious inconvenience for both types of service. Reliability 
and safety were far from modern standards. Regardless, it was such an 
improvement over its predecessor, and delivered such value, that 199 were 
built (see Figure CS1.1).
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In 1930, aeronautical technology was changing quickly. Engines were 
improving very rapidly in power and power-to-weight ratio, new struc-
tural concepts were being tested, and understanding of aerodynamics 
was improving very rapidly (from prototype airplanes, theoretical study, 
and the first generation of capable wind tunnels). Two young companies 
riding the early boom in aeronautics, Boeing and Douglas Aircraft, were 
developing new airplane concepts exploiting these new technologies. But, 
the two companies faced very different business situations and clients.

At the time, Boeing and United Airlines were very closely related. As 
a result, as Boeing looked into how to exploit the emerging aeronautical 
technologies, they did so with extensive knowledge of United operations 
and sources of revenue. The key insight that came from that knowledge 
was that essentially all of the profit from operations came from carrying 
government subsidized airmail. What we now think of as the regular busi-
ness of airlines, carrying passengers and general freight, was financially 
ancillary to the airmail. As a result, when Boeing conducted design studies 
for how to best exploit the new technology in engines, aerodynamics, and 
structures, they focused on an aircraft that was optimized for the routing 
structure imposed by the U.S. Postal Service. The result was the Boeing 
247. There is no doubt that the Boeing 247 was a revolutionary airplane 
technologically. And from the perspective of passengers, it was far more 
comfortable than the Ford Trimotor, and much faster. United quickly 
ordered sixty, a large leap in production capacity for the Boeing of the 
time. But, it was not revolutionary from a business–operational perspec-
tive. The 247 was intended to do business the way it was being done, just 
much better.

At the same time, Douglas Aircraft, working with the airline TWA 
(and later American), also began design studies for airplanes incorporat-
ing the newly available technology. TWA was originally interested in the 
247 but was unable to obtain any deliveries because of the long backlog to 
United. Unlike Boeing, Douglas and their airline partners were thinking 
well beyond the immediate profit source of airmail. As a result, they began 
designing airplanes larger than necessary for the airmail role. The DC-1 
was produced contemporaneously with the Boeing 247, and was roughly 
the same size. Douglas and their customers realized the advantages of the 
new overall design given the new technologies but believed the airplane 
was too small. They proceeded quickly to the DC-2.

The DC-1 was essentially a proof-of-concept airplane. Douglas and 
the airlines intended it to be a production representative airplane, but it 
served mainly to prove the concept and demonstrate the way forward. 
It also demonstrated what TWA had imposed as a key requirement, that 
the airplane be able to survive a single-engine-out condition anywhere 
in flight, most notably over the highest-altitude mountain points of 
TWA’s routes. This was successfully demonstrated during DC-1 tests. The 
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extensive DC-1 tests also revealed a wide variety of issues with the very 
new design, and the need for significant redesign (significant enough for 
the redesign to be a new airplane) before full production.

The DC-2 was larger, and was commercially successful, as witnessed 
by its production run of 156 aircraft (see Figure CS1.1 for the times and 
figures). The production run of the DC-2 was already larger than the 
Boeing 247, and nearly the size of the Ford Trimotor’s, the previously 
most successful airplane. American airlines, after some experience with 
the DC-2, approached Douglas about a further upsizing, with intent to 
use the airplane in cross-country sleeper service. Douglas and their team 
began design work immediately on the DC-3. It was much larger, with a 
passenger capacity double that of the DC-2. Its production run was much 
larger than any previous airplane, reflecting its revolutionary success in 
the commercial airline business. Even though Douglas was confident of 
the excellence of the DC-3, the magnitude of the success was a surprise. 
The company chose an initial production to produce tooling with a design 
life of 50 units (which Raymond regarded as “rather daring”). That tooling 
lasted through hundreds of aircraft. With 455 of the initial commercial 
model produced, it was the foundation of the modern, then rapidly grow-
ing airline business.

Of course, the story does not end here. Boeing saw the success of the 
DC-3 and moved to counter with an even larger and higher-performance 
aircraft, albeit after some delay. Boeing was well placed to continue to 
move up in aircraft size and performance because of the simultaneous 
work for the U.S. Army Air Corps on the large four engine bombers 
(among them the B-17 and later the B-29 of World War II fame). Boeing 
countered with the Boeing 307, with a capacity of thirty-three passengers, 
larger than the DC-3.

Here history intervenes in the story. The 307 was produced from 1939 
to 1940. At this point, U.S. industry was already converting to war pro-
duction. After the attack on Pearl Harbor in 1941, essentially all airplane 
production was converted to war production, but in large measure, the 
conversion had already begun. The U.S. Army Air Corps needed trans-
ports, bombers, fighters, and all types of aircraft. Boeing, with its advan-
tages in large bombers, moved its production primarily to bombers. The 
DC-3 was an obvious choice as a transport. It was a proven, mature design 
with proven utility and reliability. Enormous contracts for producing 
military variants of the DC-3 came rapidly, and more than 10,000 were 
produced in various military configurations. This huge production base 
became the foundation for the aircraft to fly productively for decades after 
production ended.

After World War II, the competition in commercial airplanes resumed, 
but from a new point. The DC-3 existed in such large numbers there was 
hardly room for a direct competitor. The technology for building and 
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operating much larger aircraft had been extensively developed. The trans-
ports produced after World War II were larger still, mostly four-engine air-
craft. And soon after, the transition to jet engines would revolutionize the 
architecture of commercial aircraft, and the airline industry, once again.

Architecture Interpretation
As interesting as the capsule history of the DC-3 may be, this history is not 
the primary focus here in this book. The reader may find many extensive 
histories of the DC-3 and its competitors. But, we are interested here in 
understanding and interpreting its architecture, not just on its own, but in 
relationship to its competitors and in the context of its builders, sponsors, 
and users.

Three Story Variations
Three different but related contexts can be considered in the DC-3 story. 
The first way of seeing the story is as one of architectural revolution fueled 
by technology. In this way, we see the DC-3 as a technology-enabled 
architectural jump over the Ford Trimotor. The moral of this story is that 
technological advance combined with architectural vision creates a revo-
lutionary system. This story is, of course, true; but it is also incomplete. 
The DC-3 was a revolutionary advance over the Ford Trimotor, and it was 
a combination of technological advance and architectural vision. But, 
it did not happen in one step, it did not happen in only one place, and it 
did not happen all at once. If the DC-3 was a technology-driven jump, than 
so was the Boeing 247. To understand the success of the DC-3 over the 247, 
we need to look beyond the first story of a technology-driven jump.

In the second story we see the Boeing 247 and the DC-3 as a story in 
the hazards of optimality. The moral of the second story is that being opti-
mal with respect to the problem as currently or originally understood is 
not always the best choice. The DC-3 achieved enormous success because 
it did not optimally serve existing markets; instead, it leapfrogged and 
enabled new markets. The revolution was not just in technology of air-
planes, it was in the coupling of technological change with operational 
change. The DC-3 became a huge success when its owners changed their 
business model in response to its capabilities. In this story, we can see 
the Boeing 247 as a cautionary tale to not look too narrowly, especially in 
times of rapid change.

The third story expands the second by seeing what Boeing did after 
the appearance of the DC-3. When the DC-3 opened new markets, Boeing 
did not stand still. They had already invested in the 247, and it was being 
used on airmail routes, but they did not continue to build it in the face of 
the greater success of the DC-3. Instead, they followed where the DC-3 had 
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revealed the market to be (larger, faster, higher-capacity aircraft) by build-
ing the 307. The 307 might have been a highly successful aircraft, except 
that World War II intervened and upset the competition with the forced 
conversion to war production.

The third story must color our perception of success and failure, and 
Boeing versus Douglas’ decision making. Boeing started the revolution 
with the 247. Boeing was eclipsed by the DC-3, but that has to be viewed in 
the larger context of builder’s strategic positions and capabilities. Boeing 
started with a stronger business position and a direct relationship with 
the leading customer, United Air Lines. Boeing also held a “real option”* 
on moving to even larger aircraft in a way that Douglas did not. Thus, 
Boeing could logically make a more conservative decision for the competi-
tive and technological positioning of the 247 than made sense for Douglas. 
This leads naturally to the next question.

Was the Boeing 247 Successfully Architected?
It seems obvious that the DC-3 was very successfully architected. It is gen-
erally regarded as the most successful aircraft of all time, and beautifully 
combined technical and operational innovation. The combination was 
deliberate, if not entirely foreseen.3 The natural follow-on question is to 
ask how successfully was the Boeing 247 architected? Obviously, it was a 
much less successful aircraft. But, it was the aircraft its sponsors requested. 
It did effectively exploit the new technology, and it did what was asked. 
The general question is, if a sponsor gets the system he or she asks for, and 
as a result loses in a competitive environment, did the architects perform 
either job effectively?

There is no universal answer to this question. The answer depends 
very much on how the development environment structures the relation-
ship between the architect and sponsor. In the classical architecting para-
digm, the architect must be careful not to substitute his or her own value 
judgments for those of the client. So, if the system reflects the client’s 
value  judgments, and the system is ultimately unsuccessful because 
those value judgments do not reflect reality, the architecting job has still 
been done well. But, it is also traditionally well within the architect’s 
responsibility to warn the client of the certain or likely consequences of 
proposed courses of action. If it is evident to the architect that the design 
process is leading to something that can be easily opposed, this must be 
made plain to the client. The client may choose to proceed anyway, but 
the consequences should be clear.

*	 A real option in this context is the ability to build alternative systems at relatively low 
cost because of other investments. In this case, Boeing held a real option on larger aircraft 
through its involvement in building large bombers for the U.S. Army Air Corps.
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In some cases, the architect may have an ethical or even legal respon-
sibility beyond that of the responsibility to the client. Public buildings 
must be built in accordance with public safety. A system architect work-
ing for a government has some responsibility beyond just the immedi-
ate acquisition program to the national interest. In our DC-3 story, the 
architect was part of the builder organization and so had a great stake 
in ultimate success or failure. A builder-architect cannot shrug off poor 
client decision making as the builder-architect is also the client and rises 
or falls on the result. The builder-architect should have a level of owner-
ship of the problem a third-party architect need not.

What Is the “Architecture” of the DC-3?
Asking “What is the architecture of the DC-3” illustrates the contrast 
between architecture as physical design and architecture as concept develop-
ment points of view. Both the Boeing 247 and DC-3 shared the same essen-
tial structural, technical features. Both were two-engine, hollow fuselage, 
modern configuration transport aircraft. From the outside, both look quite 
similar. Both used very similar technology. In the sense of overall physical 
design, they are quite similar.

However, in performance attributes and in operational placement, 
they are quite different. The DC-3 is considerably larger and, more impor-
tantly, is enough larger for the performance margin to have great opera-
tional significance. The DC-3 performs missions the Boeing 247 cannot, 
and enables business models that the Boeing 247 cannot. In a larger 
context, the design of the DC-3 embodies a different business strategy 
than the Boeing 247. If we think of architecture as the technical embodi-
ment of strategy, we see the distinct difference between the architectures 
of the two systems.

Art Raymond’s Principles
One of the attractions of the DC-3 story is the excellent Art Raymond 
paper previously referenced. Raymond’s paper provides a set of eight 
timeless principles for architecting that hold as well today as they did 
when first articulated1:

	 1.	Proper environment: This includes the physical facilities in which design-
ers work, but Raymond’s focus was on the confidence and enthusi-
asm of the sponsors and adequate financing. In Raymond’s words:

The thing above all else that makes a project go 
is the enthusiasm of its backers; not false enthusi-
asm put on for effect — sooner or later this is seen 
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through — but rather the enthusiasm that comes 
from the conviction that the project is sound, worth-
while, and due to succeed.

	 2.	Good initial choice: In Raymond’s terms, a good initial choice is 
one that neatly combines value and feasibility. He particularly 
emphasizes the role of elegant compromise between conflicting 
factors and clearly identifying the need or mission for the aircraft. 
The biggest failures come not from systems that are technological 
failures, but from those that fail to meet any need well enough to 
generate demand.

	 3.	Excellence of detail design: Although this book is focused on archi-
tecture as the initial concept, detailed design is likewise important. 
An excellent initial concept can be ruined by poor detailed design 
(although a poor initial concept is very unlikely to be saved by excel-
lence in detailed design).

	 4.	Thorough development: Raymond’s perspective on thorough devel-
opment emphasizes design refinement after the first test flight. 
In Raymond’s era, the refinement of flying qualities of airplanes 
was quite important, and occurred mostly after the first flight. 
Calculations and wind tunnel tests were sufficient for basic per-
formance, but refining handling qualities to a point of excellence 
required extensive flight testing.

	 5.	Follow-through: Follow-through refers to the system life cycle after 
delivery to the operator. In the case of a commercial aircraft, some 
of the important elements include operator and maintainer train-
ing, maintenance and service facilities, development of spare parts, 
design updates in response to service data, and technical manu-
als. The value of the system to its customers/operators is directly 
related to the quality of follow-through. From the perspective of 
systems architecting, the follow-through elements may be inside 
the boundaries of the initial concept development. The quality of 
the initial concept may be determined by its amenability to effective 
follow-through.

	 6.	Thorough exploitation: All successful aircraft are extensively modified 
during their operational lifetimes. The DC-3 was produced in an 
enormous number of variations, and even today there are firms that 
adapt modern avionics to the remaining DC-3 airframes. Successful 
systems are designed to accommodate a range of modifications. 
This is familiar in modern commercial aircraft where many inte-
rior configurations are available, usually several different choices 
of engine, freighter and passenger versions, and extended-range or 
capacity versions.
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	 7.	Correct succession: No matter how successful a system is, there comes 
a time when it is more effective to break away and re-architect. 
Conversely, breaking away when the time is not ripe incurs high 
cost to little effect. The essential judgment here is projection of tech-
nical and operational trends. There is an opportunity for succession 
when either (or better yet both) will move substantially over the time 
required to develop the successor system.

	 8.	Adaptiveness: The DC-1, 2, 3 sequence is the best illustration of 
adaptiveness. Adaptiveness really means responsiveness to the 
future environment as it unfolds, rather than as it was projected. 
Projections are the foundation of planning, and real strategy is the 
ability to adapt to the environment as it unfolds. In this story, we 
see several examples of adaptiveness in architecture. Douglas did 
not settle for the DC-1, even though it met the contractual specifica-
tions provided by TWA. Instead, they adapted to the operational 
environment as it developed, first with the improved DC-2 and then 
with the much upsized DC-3. Likewise, Boeing illustrated effective 
adaptiveness in the sense of retaining (and then exercising) real 
options for larger aircraft. When their first attempt at a revolution-
ary aircraft was insufficient, they used large aircraft technology 
from their military aircraft to upsize their flagship commercial air-
craft to the Boeing 307.

Notes and References
	 1.	 Raymond, A., The Well Tempered Aircraft, 39th Wilbur Wright Memorial 

Lecture, Journal of the Royal Aeronautical Society, September 1951.
	 2.	 A history of the DC-3, referenced from www.dc3history.org/chapters/

chapter_1.
	 3.	 Raymond, op cit.
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3chapter 

Builder-Architected Systems

No system can survive that doesn’t serve a useful 
purpose.

Harry Hillaker*

Introduction: The Form-First Paradigm
The classical architecting paradigm is not the only way to create and build 
large complex systems, nor is it the only regime in which architects and 
architecting is important. A different architectural approach, the “form 
first,” begins with a builder-conceived architecture in mind, rather than 
with a set of client-accepted purposes. Its architects are generally members 
of the technical staff of the company. Their client is the company; although 
the intention is to reach a customer base in the market.

Incremental Development for an Existing Customer

Most builder-initiated architectures are variations of existing ones; as 
examples, consider jet aircraft, personal computers, smart automobiles, 
and follow-on versions of existing software applications. The original 
architectures having proved by use to be sound, variations and exten-
sions should be of low risk. Extensive reuse of existing modules should be 
expected because design assumptions, system functions, and interfaces 
are largely unchanged.

The architect’s responsibilities remain much the same as under the 
classical paradigm, but with an important addition: the identification of 
proprietary architectural features deemed critical to maintaining com-
petitive advantage in the marketplace. Lacking this identification, the 
question “who owns what?” can become so contentious for both builder 
and customer that product introduction can be delayed for years.

Far more important than these relatively low risks is the paradigm 
shift from function-to-form (purpose driven) to one of form-to-function 
(form driven). Unlike the classical paradigm, in form-first architecting, 

*	 Chief architect, General Dynamics F-16 Fighter. As stated in a University of Southern 
California (USC) Systems Architecting lecture, November 1989.
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one’s customers judge the value of the product after rather than before the 
product has been developed and produced. In the classical paradigm, the 
customer is responsible for the value judgments, and so should expect to 
be satisfied with the resultant system. In a form-first, builder-architected 
system, the architect hopes the customer will find it satisfactory, but there 
are no guarantees. The judgment of success begins only after the system 
is built and delivered.

The resultant risk has spawned several risk-reduction strategies. The 
simplest is an early prototype demonstration to present customers, with 
its associated risks of premature rejection. The more rapidly prototypes 
can be developed and delivered, the more rapidly feedback can be gained 
from customers. Another recent strategy is the open source method for 
designing software, a process in which customers become developers, or 
at least active participants with developers. Anyone interested can partici-
pate, comment, submit ideas, develop software, and use the system, all at 
no cost to the participant. The project being tied together by the Internet 
(and some unique social conventions), everyone — and particularly the 
builder and potential clients — knows and can judge its utility. The risk of 
rejection is sharply reduced at the possible cost of control of design. The 
open source community is a principal example of collaborative system 
assembly. We discuss that topic specifically in Chapter 7.

New Markets for Existing Products

The next level of architecting intensity is reached when the builder’s moti-
vation is to reach uncertain or “latent” markets in which the unknown 
customer must acquire the product before judging its value. Almost cer-
tainly, the product will have to be at least partially rearchitected in cost, 
performance, availability, quantities produced, and so forth. To succeed 
in the new venture, architecting must be particularly alert, making sug-
gestions or proposing options without seriously violating the constraints 
of an existing product line. Hewlett-Packard in the 1980s developed this 
architecting technique in a novel way. Within a given product line, say 
that of a “smart” analytic instrument, a small set of feasible “reference” 
architectures are created, each of which is intended to appeal to a different 
kind of customer. Small changes in that architecture then enable tailoring 
to customer-expressed priorities. Latent markets discovered in the process 
can then be quickly exploited by expansion of the product line.

The original product line architecture can be maintained with few 
modifications or risks until a completed system is offered to the market. 
Ideally, the architectural features of the product line are largely invari-
ant, but the architectural features of individual products change rapidly. 
The product line sets out constraints and resources, and the individual 
products use them to produce valued features. The architecture of the 
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product line is dominantly, though not exclusively, the intersection of the 
architectures of the circumscribed products. The architecture of the prod-
uct line is dominated by the common features, the things that bring value 
to taking a product-line approach. In one sense only can the architecture 
of the product line be thought of as the union of the architectures of the 
products, which is the sense in which the product line defines the collec-
tion of niches into which each product will fit. The product line makes 
global decisions about where individual products can be developed, and 
where they cannot.

New Products, New Markets

Of greatest risk are those form-first, technology-driven systems that 
create major qualitative changes in system-level behavior, changes in 
kind rather than of degree. Systems of this type almost invariably require 
across-the-board new starts in design, development, and use. They most 
often arise when radically new technologies become available, such as jet 
engines, new materials, microprocessors, lasers, software architectures, 
and intelligent machines. Although new technologies are infamous for 
creating unpleasant technological and even sociological surprises, by far 
the greatest single risk in these systems is one of timing. Even if the form 
is feasible, introducing a new product either too early or too late can be 
punishing. Douglas Aircraft Company was too late into jet aircraft, losing 
out for years to The Boeing Company. Innumerable small companies have 
been too early, unable to sustain themselves while waiting for the tech-
nologies to evolve into engineered products. High-tech defense systems, 
most often due to a premature commitment to a critical new technology, 
have suffered serious cost overruns and delays.

Technological Substitutions within 
Existing Systems
The second greatest risk is in not recognizing that before they are com-
pleted, technology-driven architectures will require much more than just 
replacing, one at a time, components of an older technology for those of 
a newer one. Painful experience shows that without widespread changes 
in the system and its management, technology-driven initiatives seldom 
meet expectations and too often cost more for less value. As examples, 
direct replacements of factory workers with machines,1 of vacuum tubes 
with transistors, of large inventories with just-in-time deliveries, and 
of experienced analysts with computerized management information 
systems, all collapsed when attempted by themselves in a system that 
was otherwise unchanged. They succeeded only when incorporated in 
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concert with other matched and planned changes. It is not much of an 
exaggeration to say that the latter successes were well architected, the 
former failures were not.

In automobiles, the most recent and continuing change is the inser-
tion of ultraquality electronics and software between the driver and the 
mechanical subsystems of the car. This remarkably rapid evolution removes 
the driver almost completely from contact with, or direct physical control 
of, those subsystems. It considerably changes such overall system charac-
teristics as fuel consumption, aerodynamic styling, driving performance, 
safety, and servicing and repair — as well as the design of such possibly 
unexpected elements as engines, transmissions, tires, dashboards, seats, 
passenger restraints, and freeway exits. As a point of fact, the automotive 
industry expected that by the turn of the century more than 93% of all 
automotive equipment would be computer controlled,2 a trend evidently 
welcomed and used by the general public or it would not have been 
done. A telling indicator of the public’s perception of automotive per-
formance and safety was the virtually undisputed increase in national 
speed limits. Safe, long-distance, highway travel at 70 mph (117 km/hr) 
was rare, even dangerous, two decades ago. Even if the highways were 
designed for it, conventional cars and trucks were not. It is now common, 
safe, and legal. Perhaps the most remarkable fact about this rapid evolu-
tion is that most customers were never aware of it. This result came from 
a commitment to quality so high that a much more complex system could 
be offered that, contrary to the usual experience, worked far better than 
its simpler predecessor.

In aircraft, an equivalent, equally rapid, technology-driven evolution 
is “fly by wire,” a change that, among other things, is forcing a social 
revolution in the role of the pilot and in methods of air traffic control. 
More is involved than the form-fit-function replacement of mechanical 
devices with a combination of electrical, hydraulic, and pneumatic units. 
Aerodynamically stable aircraft, which maintain steady flight with 
nearly all controls inoperative, are steadily being replaced with ones 
that are less stable, more maneuverable, and computer controlled in all 
but emergency conditions. The gain is more efficient, potentially safer 
flight. But the transition has been as difficult as that between visual and 
instrument-controlled flight.

In inventory control, a remarkable innovation has been the very prof-
itable combination in one system of point-of-sale terminals, of a shift of 
inventory to central warehouses and of just-in-time deliveries to the buyer. 
Note the word combination. None of the components has been particularly 
successful by itself. The risk here is greater susceptibility to interruption 
of supply or transportation during crises.

In communications, satellites, packet switching, high-speed fiber-
optic lines, e-mail, the World Wide Web, and electronic commerce have 
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combined for easier access to a global community, but with increasing 
concerns about privacy and security. The innovations now driving the 
communications revolution were not, individually, sufficient to create this 
revolution. It has been the interaction of the innovations, and the changes 
in business processes and personal habits connected to them, that have 
made the revolution.

In all of these examples, far more is affected than product internals. 
Affected also are such externals as manufacturing management, equity 
financing, government regulations, and the minimization of environ-
mental impact, to name but a few. These externals alone could explain 
the growing interest by innovative builders in the tools and techniques 
of systems architecting. How else could well-balanced, well-integrated, 
financially successful, and socially acceptable total systems be created?

Consequences of Uncertainty of End Purpose
Uncertainty of end purpose, no matter what the reason, can have seri-
ous consequences. The most serious is the likelihood of serious error in 
decisions affecting system design, development, and production. Builder-
architected systems are often solutions looking for a problem and hence 
are particularly vulnerable to the infamous “error of the third kind”: 
working on the wrong problem.

Uncertainty in system purposes also weakens them as criteria for 
design management. Unless a well-understood basis for configuration 
control exists and can be enforced, system architectures can be forced 
off course by accommodations to crises of the moment. Some of the most 
expensive cases of record have been in attempts to computerize manage-
ment information systems. Lacking clear statements of business purposes 
and market priorities, irreversible ad hoc decisions were made which 
so affected their performance, cost, and schedule that the systems were 
scrapped. Arguably, the best prevention against “system drift” is to decide 
on provisional or baseline purposes and stick to them. But what if those 
baseline purposes prove to be wrong in the marketplace?

Architecture and Competition
In the classical architecting paradigm, there is little or no role for competi-
tion. The client knows what he or she wants, or learns through interaction 
with the architect. When a system is delivered that is consonant with the 
client’s values, the client should be satisfied. In many other cases, builder-
architected systems prominent among them, success is judged more on 
competitive performance than on adherence to client values.

To reconcile how architecting and architecture relates to competition, 
we must set the context of the organization’s overall competitive strategy. 
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Architecting cannot be talked about in the abstract; it has to be grounded 
in the strategies of the organization conducting it. In builder-architected 
systems, this means the competitive posture of the builder. Broadly speak-
ing, we can identify three major competitive strategies with architectural 
consequences: disrupt and dominate, agile response, and attrition.

Disrupt and Dominate

This strategy is based on creating systems that disrupt existing opera-
tional patterns or markets, and building barriers to prevent others from 
taking advantage of those disruptions. In “Case Study 1”, the DC-3 was 
a disruptive system in that it caused systematic change to how airlines 
did business. However, Douglas was unable to raise a strong barrier to 
prevent Boeing from entering the market space (although Douglas had 
a valuable lead of several years). The Apple iPod and iTunes music store 
combination is an example, where patents, copyrights, secrecy of propri-
etary technologies, and exclusive contractual arrangements have success-
fully formed barriers to competitive entry.

The architectural challenges in supporting this strategy are twofold. 
First, the quality of the architecting must be exceptional, as the architect 
must create beyond the boundaries of current systems. Great imagination 
is required, while simultaneously maintaining sufficient options (see the 
next section) to adapt to the inevitable failures of imagination. Second, the 
approach must allow protection from competitors who will employ an 
agile response strategy.

Agile Response

This strategy emphasizes the organization’s capability to react more quickly 
and effectively than the competition. We emphasize both speed and effec-
tiveness, because an ineffective response quickly delivered is still ineffec-
tive. A key distinction between the disrupt and dominate strategy and 
agile response is that agile response seeks to exploit the underlying flux in 
markets or military situations without disrupting their overall structure. 
An agile responder in a commercial environment produces new products 
within established markets faster and more effectively than the competi-
tion but does not try to create entirely new markets. The agile response 
strategy is especially effective in immature markets where changes in 
consumer preference and technology create many new opportunities.

From an architectural perspective, the challenges for agile response are 
again twofold. First, to carry this strategy out effectively, the organization 
must be able to very rapidly conceive, develop, and deliver new systems. 
This means that architecting must be fast and must support a very com-
pressed development cycle. Second, at one higher level of abstraction, the 
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architecture of the organization and its product lines must support agility. 
The organization and product lines must be structured to facilitate agility. 
Typically the product-line architecture evolves much more slowly than 
the products, and the product-line architecture sets out critical invariants 
allowing rapid development and deployment.

Attrition

The classic example on the military side of the attrition strategy is to win 
by having more firepower, manpower, logistic power, and willingness to 
suffer than your opponent. A business equivalent strategy is to prevail 
through access to large amounts of low-cost capital, low-wage labor, and 
large distribution channels. When coupled to a strong organizational 
capability for learning and improvement, this is a powerful strategy, espe-
cially in mature markets where consumer preference changes slowly.

Architecting in the attrition strategy is relatively slow and deliberate. 
The key architecture is the one embodied in the organization. Successful 
conduct of the attrition strategy is dependent on access to the requisite 
resources, cheaply and at a large scale. The strategy is likely to fail either 
when encountering a still larger and more fit competitor, or when the under-
lying environment (markets, operations, and technology) has an inherent 
rate of change high enough so that an agile response strategy becomes more 
effective, or when the change is sufficient to be open to disruption.

Reducing the Risks of Uncertainty of End Purpose
A powerful architecting guide to protect against the risk of uncertain 
purposes is to build in and maintain options. With options available, early 
decisions can be modified or changed later. Other possibilities include the 
following: Build in options to stop at known points to guarantee at least 
partial satisfaction of user purposes without serious losses in time and 
money, for example, in databases for accounting and personnel adminis-
tration. Create architectural options that permit later additions, a favorite 
strategy for automobiles and trucks. Provisions for doing so are hooks 
in software to add applications and peripherals, scars in aircraft to add 
range and seats, shunts in electrical systems to isolate troubled sections, 
contingency plans in tours to accommodate cancellations, and forgiving 
exits from highways to minimize accidents.

In software, a general strategy is: Use open architectures. You will need 
them once the market starts to respond. As will be seen, a further refinement 
of this domain-specific heuristic will be needed, but this simpler version 
makes the point for now.

And then there is the always welcome heuristic: every once in a while, 
Pause and reflect. Reexamine the cost-effectiveness of system features such 
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as high precision pointing for weather satellites or cross-talk levels for 
tactical communication satellites.* Review why interfaces were placed 
where they were. Check for unstated assumptions such as the Cold War 
continuing indefinitely† or the 1960s generation turning conservative as it 
grew older.

Risk Management by Intermediate Goals
Another strategy to reduce risk in the development of system-critical 
technologies is by scheduling a series of intermediate goals to be reached 
by precursor or partial configurations. For example, build simulators or 
prototypes to tie together and synchronize otherwise disparate research 
efforts.3 Build partial systems, demonstrators, or models to help assess 
the sensitivity of customer acceptance to the builder’s or architect’s value 
judgments,4 a widely used market research technique. And, as will be 
seen in Chapter 7, if these goals result in stable intermediate forms, they 
can be powerful tools for integrating hardware and software.

Clearly, precursor systems have to be almost as well architected as the 
final product. If not, their failure in front of a prospective customer can 
play havoc with future acceptance and ruin any market research program. 
As one heuristic derived from military programs warns, The probability of 
an untimely failure increases with the weight of brass in the vicinity. If precur-
sors and demonstrators are to work well “in public,” they better be well 
designed and well built.

Even if a demonstration of a precursor succeeds, it can generate exces-
sive confidence, particularly if an untested requirement is critical. In one 
case, a U.S. Air Force (USAF) satellite control system successfully and 
very publicly demonstrated the ability to manage one satellite at a time; 
the critical task, however, was to control multiple, different satellites, a 
test it subsequently flunked. Massive changes in the system as a whole 
were required. In another similar case, a small launch vehicle, arguably 
successful as a high-altitude demonstrator of single-stage-to-orbit, could 
not be scaled up to full size or full capability for embarrassingly basic 
mechanical and materials reasons.

These kinds of experiences led to the admonition: Do the hard parts 
first, an extraordinarily difficult heuristic to satisfy if the hard part is a 
unique function of the system as a whole. Such has been the case for a near-
impenetrable missile defense system, a stealthy aircraft, a general aviation 
air traffic control system, a computer operating system, and a national tax 

*	 In real life, both features proved to be unnecessary but could not be eliminated by the 
time that truth was discovered.

†	A half-joking question in defense planning circles in the early 1980s used to be, “What if 
peace broke out?” Five years later, it had.
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reporting system. The only credible precursor, to demonstrate the hard 
parts, had to be almost as complete as the final product.

In risk management terms, if the hard parts are, perhaps necessarily, 
left to last, then the risk level remains high and uncertain to the very end. 
The justification for the system therefore must be very high and the support 
for it very strong or its completion will be unlikely. For private businesses, 
this means high-risk venture capital. For governments, it means support by 
the political process, a factor in system acquisition for which few architects, 
engineers, and technical managers are prepared. Chapter 13 is a primer on 
the subject.

The “What Next?” Quandary
One of the most serious long-term risks faced by a builder of a successful, 
technology-driven system is the lack of, or failure to win a competition 
for, a successor or follow-on to the original success.

The first situation is well exemplified by a start-up company’s lack of 
a successor to its first product. Lacking the resources in its early, profitless, 
years to support more than one research and development effort, it could 
only watch helplessly as competitors caught up and passed it by. Ironically, 
the more successful the initial product, the more competition it will attract 
from established and well-funded producers anxious to profit from a sure 
thing. Soon the company’s first product will be a “commodity,” something 
that many companies can produce at a rapidly decreasing cost and risk. 
Unable to repeat the first success, soon enough the start-up enterprise fails 
or is bought up at fire-sale prices when the innovator can no longer meet 
payroll. Common. Sad. Avoidable? Possibly.

The second situation is the all-too-frequent inability of a well-estab-
lished company that had been successfully supplying a market-valued 
system to win contracts for its follow-on. In this instance, the very strength 
of the successful system, a fine architecture matched with an efficient orga-
nization to build it, can be its weakness in a time of changing technologies 
and shifting market needs. The assumptions and constraints of the present 
architecture can become so ingrained in the thinking of participants that 
options simply do not surface.

In both situations, the problem is largely architectural, as is its 
alleviation.

For the innovative company, it is a matter of control of critical architec-
tural features. For the successful first producer, it is a matter of knowing, 
well ahead of time, when purposes have changed enough that major 
rearchitecting may be required. Each situation will be considered in turn.
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Controlling the Critical Features of the Architecture
The critical part of the answer to the start-up company’s “what next” 
quandary is control of the architecture of its product through proprietary 
ownership of its basic features.5 This is the second half of a disrupt and 
dominate strategy. Examples of such features are computer operating 
systems, interface characteristics, communication protocols, microchip 
configurations, proprietary materials, patents, exclusive agreements with 
critical suppliers or distributors, and unique and expensive manufactur-
ing capabilities. Good products, although certainly necessary, are not 
sufficient. They must also arrive on the market as a steadily improving 
product line, one that establishes, de facto, an architectural standard.

Surprisingly, one way to achieve that objective is to use the competition 
instead of fighting it. Because success invites competition, it may well be 
better for a start-up to make its competition dependent, through licensing, 
upon a company-proprietary architecture rather than to have it incentivized 
to seek architectural alternatives. Finding architectural alternatives takes 
time. But licensing encourages the competition to find new applications, 
add peripherals, and develop markets, further strengthening the architec-
tural base, adding to the source company’s profits and its own develop-
ment base.6 Heuristically: Successful architectures are proprietary, but open.*

This strategy was well exemplified by Microsoft in opening and 
licensing its personal computer (PC) operating system while Apple 
refused to do so for its Macintosh. The resultant widespread cloning of the 
PC expanded not only the market as a whole, but Microsoft’s share of it. 
The Apple share dropped. The dangers of operating in this kind of open 
environment, however, are also illustrated in the case of PC hardware. The 
PC standard proved much more open than IBM intended. Where it was 
assumed they could maintain a price advantage through the economies 
of scale, the advantage disappeared. The commoditization of the PC also 
drove down profit margins until even a large share proved substantially 
unprofitable, at least for a company structured as IBM. IBM struggled for 
years (unsuccessfully) to move the PC market in a direction that would 
allow it to retain some degree of proprietary control and return profits. In 
contrast, Microsoft and Intel have struck a tremendously profitable balance 
between proprietary protection and openness. The Intel instruction set 
architecture has been copied, but no other company has been able to 
achieve a market share close to Intel’s. Microsoft has grown both through 
proprietary and open competition, the former in operating systems and 
the latter in application programs.

Apple was not entirely closed. Apple was “open enough” to create 
a substantial market in software and peripheral devices. Opening up 

*	“Open” here means adaptable, friendly to add-ons, and selectively expandable in capability.
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too far can destroy any possibility of maintaining a competitive advan-
tage. Staying too closed prevents the creation of a synergistic market. 
Architecture and strategy need to be consistent.

A different kind of architectural control is exemplified by the Bell 
telephone system with its technology generated by the Bell Laboratories, 
its equipment produced largely by Western Electric, and its architectural 
standards maintained by usage and regulation. Others include Xerox in 
copiers, Kodak in cameras, and Hewlett-Packard in instruments. All these 
product-line companies began small, controlled the basic features, and 
prospered. But, as each of these also demonstrated, success is not forever.

Thus, for the innovator, the essentials for continued success are not 
only a good product, but also the generation, recognition, and control of 
its basic architectural features. Without these essentials, there may never 
be a successor product. With them, many product architectures, as archi-
tecturally controlled product lines, have lasted for years following the 
initial success. Which adds even more meaning to: There’s nothing like being 
the first success.7

Abandonment of an Obsolete Architecture
A different risk reduction strategy is needed for the company that has 
established and successfully controlled a product-line architecture8 and 
its market, but is losing out to a successor architecture that is proving to 
be better in performance, cost, or schedule. There are many ways that this 
can happen. Perhaps the purposes that original architecture has satisfied 
can better be done in other ways. Typewriters have largely been replaced 
by personal computers. Perhaps the conceptual assumptions of the origi-
nal architecture no longer hold. Energy may no longer be cheap. Perhaps 
competitors found a way of bypassing the original architectural controls 
with a different architecture. Personal computers destroyed the market 
for Wang word processors and eventually for proprietary workstations. 
And, as a final example, cost risk considerations precluded building larger 
and larger spacecraft for the exploration of the solar system.

To avoid being superceded architecturally requires a strategy, worked 
out well ahead of time, to set to one side or cannibalize that first architec-
ture, including the organization matched with it, and to take preemptive action 
to create a new one. The key move is the well-timed establishment of an 
innovative architecting team, unhindered by past success and capable of 
creating a successful replacement. Just such a strategy was undertaken 
by Xerox in a remake of the corporation as it saw its copier architecture 
start to fade. It thereby redefined itself as “the document company.”9 But, 
the failure of Xerox to substantially profit from most of the innovation 
developed by Xerox PARC (Palo Alto Research Center) likewise illustrates 
the difficulty of making the transition. Xerox understood the necessity 
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of making the architectural transition, and invested in it, for many years 
before being organizationally capable of actually making the transition.10

Creating Innovative Teams
Clearly the personalities of members of any team, particularly an inno-
vative architecting team, must be compatible. A series of USC Research 
Reports11 by Jonathan Losk, Tom Pieronek, Kenneth Cureton, and Norman 
P. Geis, based on the Myers-Briggs Type Indicator (MBTI), strongly suggest 
that the preferred personality type for architecting team membership 
is NT.12 That is, members should tend toward systematic and strategic 
analysis in solving problems. As Cureton summarizes, “Systems archi-
tects are made and not born, but some people are more equal than others 
in terms of natural ability for the systems architecting process, and MBTI 
seems to be an effective measure of such natural ability. No single per-
sonality type appears to be the ‘perfect’ systems architect, but the INTP 
personality type often possesses many of the necessary skills.”

Their work also shows the need for later including an ENTP (extro
version, intuition, thinking, perceiving), a “field marshal” or deputy proj-
ect manager, not only to add some practicality to the philosophical bent 
of the INTPs (introversion, intuition, thinking, perceiving), but to help the 
architecting team work smoothly with the teams responsible for building 
the system.

Creating innovative teams is not easy, even if the members work well 
together. The start-up company, having little choice, depends on good 
fortune in its recruiting of charter members. The established company, to 
put it bluntly, has to be willing to change how it is organized and staffed 
from the top down based almost solely on the conclusions of a presumably 
innovative team of “outsiders,” albeit individuals chartered to be such. 
The charter is a critical element, not so much in defining new directions 
as in defining freedoms, rights of access, constraints, responsibilities, and 
prerogatives for the team. For example, can the team go outside the com-
pany for ideas, membership, and such options as corporate acquisition? 
To whom does the team respond and report — and to whom does it not? 
Obviously, the architecting team better be well designed and managed. 
Remember, if the team does not succeed in presenting a new and accepted 
architecture, the company may well fail.

One of the more arguable statements about architecting is the one 
by Frederick P. Brooks Jr. and Robert Spinrad that the best architectures are 
the product of a single mind. For modest-sized projects, that statement is 
reasonable enough. As projects get larger and larger, it remains true but in 
somewhat different form. The complexity and work load of creating large, 
multidisciplinary, technology-driven architectures would overwhelm any 
individual. The observation of a single mind is most easily accommodated 
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by a simple but subtle change from “a single mind” to “a team of a single 
mind.” Some would say “of a single vision” composed of ideas, purposes, 
concepts, presumptions, and priorities. It is also critical to understand the 
difference between composing multidisciplinary teams and how teams 
form decisions. The key to a coherent architecture is coherent decision 
making. Majority votes by large committees are practically the worst-case 
scenario for gaining coherence of decision making over a long series of 
related complex decisions.

One architect put the issue succinctly. When asked about the role 
of multidisciplinary teams, he said: “Multi-disciplinary teams covering 
all stakeholders and major subsystem areas are critical to effective space 
architecting, and I love using them. As long as I get to make all of the 
decisions.” His point was simple — good architecting requires diversity 
of view but unity of decision.

In the simplest case, the single vision would be that of the chief archi-
tect and the team would work to it. For practical as well as team cohesive-
ness reasons, the single vision needs to be a shared one. In no system is 
that more important than in the entrepreneurially motivated one. There 
will always be a tension between the more thoughtful architect and the 
more action-oriented entrepreneur. Fortunately, achieving balance and 
compromise of their natural inclinations works in the system’s favor.

An important corollary of the shared vision is that the architecting 
team, and not just the chief architect, must be seen as creative, communi-
cative, respected, and of a single mind about the system-to-be. Only then 
can the team be credible in fulfilling its responsibilities to the entrepre-
neur, the builder, the system, and its many stakeholders. Internal power 
struggles, basic disagreements on system purpose and values, and advo-
cacies of special interests can only be damaging to that credibility.

As Ben Bauermeister, Harry Hillaker, Archie Mills, Bob Spinrad,13 and 
other friends have stressed in conversations with the authors, innovative 
teams need to be cultural in form, diverse in nature, and almost obsessive 
in dedication.

By cultural is meant a team characterized by informal creativity, easy 
interpersonal relationships, trust and respect, all characteristics necessary 
for team efficiency, exchange of ideas, and personal identification with a 
shared vision. To identify with a vision, they must deeply believe in it and 
in their chief. The members must acknowledge and follow the lead of their 
chief or the team disintegrates.

Diversity in specialization is to be expected; it is one of the reasons for 
forming a team. Equally important, a balanced diversity of style and pro-
grammatic experience is necessary to assure open-mindedness, to spark 
creative thinking in others, and to enliven personal interrelationships. It 
is necessary, too, to avoid the “groupthink” of nearly identical members 
with the same background, interests, personal style, and devotion to past 
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architectures and programs. Indeed, team diversity is one of the better 
protections against the second-product risks mentioned earlier.

Consequently, an increasingly accepted guideline is that, to be truly 
innovative and competitive in today’s world: The team that created and built 
a presently successful product is often the best one for its evolution — but seldom 
for creating its replacement.

A major challenge for the architect, whether as an individual or as the 
leader of a small architecting team, is to maintain dedication and momen-
tum not only within the team but also within the managerial structure 
essential for its support. The vision will need to be continually restated 
as new participants and stakeholders arrive on the scene — engineers, 
managers active and displaced, producers, users, and new clients. Even 
more difficult, it will have to be transformed as the system proceeds from 
a dream to a concrete entity, to a profit maker, and finally to a quality 
production. Cultural collegiality will have to give way to the primacy of 
the bottom line and finally to the necessarily bureaucratic discipline of 
production. Yet the integrity of the vision must never be lost or the system 
will die.

The role of organizations in architectures, and the architecture of organi-
zations, is taken up at much greater length by one of the present authors.14

Architecting “Revolutionary” Systems
A distinction to be made at this point is between architecting in prec-
edented, or evolutionary, environments, and architecting unprecedented 
systems. Whether we call such systems “revolutionary,” “disruptive,” 
or “unprecedented” seems more a matter of fashion. What is important 
is that the system stands apart from all that came before it, and that is 
great change of businesses or militaries operate. One of the most notable 
features of Rechtin (1991)15 was an examination of the architectural history 
of clearly successful and unprecedented systems. A central observation is 
that all such systems have a clearly identifiable architect or small architect 
team. They were not conceived by the consensus of a committee. Their 
basic choices reflect a unified and coherent vision of one individual or 
a very small group. Further reflection, and study by students, has only 
reinforced this basic conclusion, while also filling in some of the more 
subtle details.

Unprecedented systems have been both purpose driven and tech-
nology driven. In the purpose-driven case, the architect has sometimes 
been part of the developer’s organization and sometimes not. In the 
technology-driven case, the architect is almost always in the developer’s 
organization. This should be expected as technology-driven systems 
typically come from intimate knowledge of emerging technology, and 
someone’s vision of where it can be applied to advantage.16 This person is 
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typically not a current user but is rather a technology developer. It is this 
case that is the concern of this section.

The architect has a lead technical role. But this role cannot be properly 
expressed in the absence of good project management. Thus, the pattern 
of a strong duo, project manager and system architect, is also character-
istic of successful systems. In systems of significant complexity, it is very 
difficult to combine the two roles. A project manager is typically besieged 
by short-term problems. The median due date of things on the project 
manager’s desk is probably yesterday. In this environment of immediate 
problems, it is unlikely that a person will be able to devote the serious 
time to longer-term thinking and broad communicating that are essential 
to good architecting.

The most important lesson in revolutionary systems, at least those not 
inextricably tied to a single mission, is that success is commonly not found 
where the original concept thought it would be. The Macintosh computer 
was a success because of desktop publishing, not what the market assumed 
in its original rollout (which was as a personal information appliance). 
Indeed, desktop publishing did not exist as a significant market when 
the Macintosh was introduced.* This pattern of new systems becoming 
successful because of new applications has been common enough in the 
computer industry to have acquired a nickname, “the killer app(lication).” 
Taken narrowly, a “killer app” is an application so valuable that it drives 
the sales of a particular computer platform. Taken more broadly, a “killer 
app” is any new system usage so valuable that, by itself, it drives the 
dissemination of the system.

One approach to unprecedented systems is to seek the killer applica-
tion that can drive the success of a system. A recent noncomputer example 
that illustrates the need, and the difficulty, is the search for a killer appli-
cation for reusable space launch vehicles. Proponents believe that there is 
a stable economic equilibrium with launch costs an order of magnitude 
lower, and flight rates around an order of magnitude higher, than current. 
But, if flight rates increase and space payload costs remain the same, then 
total spending on space systems will have to be far higher (roughly an 
order of magnitude, counting only the payload costs). For there to be a 
justification for high flight rate launch, there has to be an application that 
will realistically exploit it. That is, some application must attract sufficient 
new money to drive up payload mass.

Various proposals have been floated, including large constellations 
of communication satellites, space power generation, and space tourism. 
If the cost of robotic payloads was reduced at the same time, their flight 
rate might increase without total spending going up so much. But the only 

*	 Though the concept was anticipated, as witnessed by the original business plan being 
composed in publishable form on prototype Macintosh systems.
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clear way of doing that is to move to much larger-scale serial production 
of space hardware to take advantage of learning curve cost reductions.17 
This clearly indicates a radical change to the architecture not only of 
launch, but to satellite design, satellite operations, and probably to space 
manufacturing companies as well. And all these changes need to take 
place synchronously for the happy consequence of lowered cost to result. 
So far, this line of reasoning has not produced success. Launches remain 
expensive, and the most efficient course appears to be greater reliability 
and greater functionality per pound of payload, which has the effect of 
driving the launch rate down and making a high-rate/low-cost launch 
approach even more difficult.

Sometimes such synchronized changes do occur. The semiconductor 
industry has experienced decades of 40% annual growth because such 
synchronized changes have become ingrained in the structure of the 
computer industry. As the production and design technology improve, 
the total production base (in transistor quantity and revenue) goes up. 
Lowered unit costs result in increased consumption of electronics even 
larger than the simple scale up of each production generation. The result-
ing revenue increases are sufficient to keep the process going, and coor-
dinated behavior in the production equipment supplier, design system 
supplier, and consumer electronic producers smoothes the process 
sufficiently for it to run stably for decades.

In summary, the successful architect exploits what the market dem-
onstrates as the killer application, assuming he or she can predetermine 
it. The successful innovator exploits the first-to-market position to take 
advantage of the market’s demonstration of what it really wants faster 
than the second-to-market player does. The successful follower beats the 
first-to-market by being able to exploit the market’s demonstration more 
quickly. Each is making a consistent choice of both strategy and architec-
ture (in a technical sense). We explore this issue in depth in Chapter 12.

Systems Architecting and Basic Research
One other relationship should be established, that between architects and 
those engaged in basic research and technology development. Each group 
can further the interests of the other. The architect can learn without con-
flict of interest. The researcher is more likely to become aware of potential 
sponsors and users.

New technologies enable new architectures, though not singly or by 
themselves. Consider solid-state electronics, fiber optics, software languages, 
and molecular resonance imaging for starters. And innovative architec-
tures provide the rationale for underwriting research, often at a very basic 
level. Yet, though both innovative architecting and basic research explore 
the unknown and unprecedented, there seems to be little early contact 
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between their respective architects and researchers. The architectures of 
intelligent machines, the chaotic aerodynamics of active surfaces, the soci-
ology of intelligent transportation systems, and the resolution of conflict 
in multimedia networks are examples of presumably common interests. 
Universities might well provide a natural meeting place for seminars, 
consulting, and the creation and exchange of tools and techniques.

New architectures, driven by perceived purposes, sponsor more basic 
research and technology development than is generally acknowledged. 
Indeed, support for targeted basic research undoubtedly exceeds that moti-
vated by scientific inquiry. Examples abound in communications systems that 
sponsor coding theory, weapons systems that sponsor materials science and 
electromagnetics, aircraft that sponsor fluid mechanics, and space systems 
that sponsor the fields of knowledge acquisition and understanding.

It is therefore very much in the mutual interest of professionals in 
research and development (R&D) and systems architecting to know each 
other well. Architects gain new options. Researchers gain well-motivated 
support. Enough said.

Heuristics for Architecting 
Technology-Driven Systems
General

An insight is worth a thousand market surveys.•	
Success is defined by the customer, not by the architect.•	
In architecting a new program, all the serious mistakes are made in •	
the first day.
The most dangerous assumptions are the unstated ones.•	
The choice between products may well depend upon which set of •	
drawbacks the users can handle best.
As time to delivery decreases, the threat to user utility increases.•	
If you think your design is perfect, it is only because you have not •	
shown it to someone else.
If you do not understand the existing system, you cannot be sure •	
you are building a better one.
Do the hard parts first.•	
Watch out for domain-specific systems. They may become traps •	
instead of useful system niches, especially in an era of rapidly devel-
oping technology.
The team that created and built a presently successful product is •	
often the best one for its evolution — but seldom for creating its 
replacement. (It may be locked into unstated assumptions that no 
longer hold.)
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Specialized

From Morris and Ferguson5:

Good products are not enough. (Their features need to be owned.)•	
Implementations matter. (They help establish architectural control.)•	
Successful architectures are proprietary, but open. (Maintain con-•	
trol over the key standards, protocols, etc., that characterize them 
but make them available to others who can expand the market to 
everyone’s gain.)

From Chapters 2 and 3:
Use open architectures. You will need them once the market starts •	
to respond.

Conclusion
Technology-driven, builder-architected systems, with their greater uncer-
tainty of customer acceptance, encounter greater architectural risks 
than those that are purpose driven. Risks can be reduced by the care-
ful inclusion of options, the structuring of their innovative teams, and 
the application of heuristics found useful elsewhere. At the same time, 
they have lessons to teach in the control of critical system features and the 
response to competition enabled by new technologies.

Exercises
	 1.	The architect can have one of three relationships to the builder and 

client. The architect can be a third party, can be the builder, or can be the 
client. What are the advantages and disadvantages of each relationship? 
For what types of system is one of the three relationships necessary?

	 2.	 In a system familiar to you, discuss how the architecture can allow 
for options to respond to changes in client demands. Discuss the 
pros and cons of product versus product-line architecture as strate-
gies in responding to the need for options. Find examples among 
systems familiar to you.

	 3.	Architects must be employed by builders in commercially marketed 
systems because many customers are unwilling to sponsor long-term 
development; they purchase systems after evaluating the finished 
product according to their then-perceived needs. But placing the 
architect in the builder’s organization will tend to dilute the inde-
pendence needed by the architect. What organizational approaches 
can help to maintain independence while also meeting the needs of 
the builder organization?
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	 4.	The most difficult type of technology-driven system is one that does 
not address any existing market. Examine the history of both suc-
cessful and failed systems of this type. What lessons can be extracted 
from them?
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Case Study 2: Mass and 
Lean Production

Introduction
Today, mass production is pervasive. Everything from cars to electron-
ics is made in quantities of hundreds of thousands to millions. From the 
perspective of 100 years ago, products of extraordinary complexity are 
made in huge numbers. The story of mass production is significantly an 
architectural story. It  is also a story of the interaction of architectures, 
in this case the interaction and synergy between the architectures of 
system-products and systems that built those products. The revolution 
that took place in production was dependent on changes in how the pro-
duced systems were designed, and design changes had synergistic effects 
with production. The characteristics and structures of the surrounding 
human systems were also critical to the story, notions that we will take 
up in later chapters.

This case study is a high-level survey that emphasizes the sweep 
of changes over time instead of details, and the nature of architectural 
decision making in mass production. We start by reviewing the history 
of mass production, from architecture perspective, focusing on the auto 
industry. We cover from the era of auto production as a cottage industry, 
through the seminal development of mass production by the Ford Motor 
Corporation, to the era of competition from other U.S. manufacturers, and 
end of the development with the Toyota Production System (TPS).

An Architectural History of Mass Production
The auto industry is hardly the only example of mass production, but it 
is usually considered as prototypical. The innovations in production at 
Ford, and later Toyota, substantially define the basic structures of modern 
mass production. The Ford system of production became the model for 
industry after industry, and the concepts filtered into society at large. 
The Toyota Production System is the prototype for Lean Production, now 
likewise a fundamental paradigm for organization in multiple industries, 
increasingly including service industries.

In the sections following, we cover major blocks of time and consider 
how decisions about basic organizing structure of production were syner-
gistic (or antagonistic) with how systems were designed. For convenience, 
refer to Figure CS2.1 for the sequencing and relationship of events.
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Cottage Industry (1890s to 1910s)
As auto production began in the 1890s, it was a classic cottage industry. 
Small groups of workers assembled each vehicle in a shop. The process 
involved bringing in a stream of parts (or machining them locally) and 
assembling them as a small team in one place. When the vehicle was 
complete, it was driven or otherwise moved away.

Automobiles built this way were very expensive. Of course, high 
prices and the small market went hand-in-hand. Because the vehicles 
were expensive, they were a luxury item with a very narrow customer 
base. Because the market was small, economies of scale were impossible 
and so prices were high.

Henry Ford was very aware of the problem, and was personally con-
vinced that the way forward was in lower prices and larger production. 
He developed a conviction that high-quality automobiles could be, and 
should be, produced at cost low enough for average people to afford. The 
“car for the masses” would revolutionize society. He clashed repeatedly 
with his business partners over this, as they were convinced higher prof-
its could be realized by concentrating on more expensive, high-margin 
vehicles. Over the short run, they were almost certainly right. Over the 
long run, the situation in automobiles was analogous in some ways to the 
situation in commercial aircraft just before the introduction of the DC-3 
discussed in “Case Study 1.” The introduction of a new system would 
create a qualitative change in the structure of the market (and drive struc-
tural, architectural change in both production and systems).

Birth of Mass Production (1908–1913)
Ford’s dream of a car for the masses was realized with the famous 
Model T. The Model T was introduced in 1908, and was eventually pro-
duced in numbers vastly greater than any car previously. For the first 
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Figure CS2.1  Key events in the architecture of automobile mass production.
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few years it was produced at the Ford Piquette Avenue plant, Detroit, 
Michigan. In the terms of this book, we would say that Henry Ford was 
the sponsor of the mass production system,1 whose architecture would 
become a decades-long invariant. The architecting was done by a very 
small group, with leading credit probably best given to Charles Sorenson,2 
although several others played key roles. Sorenson had primary responsi-
bility for the production system, with several others individually having 
leadership in other basic elements of the Ford production system architec-
ture. According to Sorenson, the first experiments in the production line 
took place at the Piquette Avenue plant in mid-1908 on the Model N, an 
immediate predecessor to the Model T.

The Model N had been introduced as an incomplete prototype at the 
1906 Detroit auto show. It was not disclosed that the show car was incom-
plete, and so the announced price of $500 was a sensation and generated 
terrific demand. The Model N demonstrated the latent demand for a solid, 
low-cost car. The Model T, with its superior engineering for production, 
was able to exploit that demand.

As Sorenson recounts,3 he and a small team spent Sundays during 
the summer of 1908 experimenting on the production floor of the Piquette 
Avenue plant. They laid out the parts required for a car from one end of 
the long narrow building floor to the other. They mounted a frame on 
skids, and then dragged the skid down the floor, stopping along the way 
to add the parts that had been preplaced.

As an amusing aside, and as a wonderful indication of how obvious 
things go unnoticed when great innovations are made, Sorenson points 
out why the assembly line model was not actually used in production 
until 5 years later, in 1913. The main problem was that at the Piquette 
Avenue plant, the assembly floor was the third floor of the building, the 
top floor. In retrospect, this is laughable. Why put the place where you 
need to move all the production parts to and from three floors up off the 
ground? But in the early 1900s, this did not seem so obvious. When you 
make only a few cars, why put that messy operation on the ground floor, 
which has the nicer space for the staff (including sales)?

Once the Model T was introduced, and demand immediately exploded 
beyond the capacity of the Piquette Avenue plant, Ford built an all new 
plant at Highland Park, Michigan, where the assembly line was brought 
to fruition in 1913. As we shall see in a later section of this case study, there 
is more to the structure of the Ford system than the assembly line, and 
those other structural elements play at least as important a role.

Competition from New Quarters (1920s to 1930s)
The Model T and its production system were based on a simple, virtuous 
cycle. Lowering costs allowed prices to be lowered, which increased sales 
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and production, which enabled greater economies of scale, which lowered 
costs. Ford’s pursuit of the Model T was driven by an innate belief in the 
value of a car for the masses. The vision was eventually overturned by an 
alternative vision spawned by market forces.

By the mid 1920s, Chevrolet was rapidly catching up to Ford in produc-
tion numbers. They were catching up primarily by making better-looking, 
more-exciting cars, and marketing looks and excitement. Although the 
Model T was a very solid car, a new era had begun, based on market 
penetration of automobiles being large enough so that people began to 
see them as partially fashion-driven goods. When market penetration 
for automobiles became high, the purely utilitarian aspect of automobile 
ownership began to be replaced by automobiles as status symbols. When 
status played an important role, it quickly became the case that status was 
no longer conveyed simply by having a car, but by the car one had.

Model T production was shut down in 1927. Over the next decade, 
competition between Ford and its competitors (most famously General 
Motors, also Plymouth and Chrysler) moved to the model-year change 
system. Different models were produced for different market segments, 
and those models were regularly changed in external style and engineer-
ing features. The changes were synchronized with marketing campaigns 
to drive demand. Economies of scale in mass production were still of great 
importance, but the scale was not unlimited. The Model T had tested the 
outer envelope of focusing purely on cost reduction through scale, and 
was displaced by a more complex mixture of engineering, production, 
and marketing.

The Toyota Production System (1940s to 1980s)
The development of the Toyota Production System (TPS)4 can be said to 
have revolutionized manufacturing as did Ford’s mass production system. 
Although the revolution was slower and less dramatic, it was in some ways 
more surprising as it occurred in an industry already apparently mature. 
By the 1950s, the automobile business appeared mature. Cars were much 
improved, but their architecture had changed little in decades, and the 
architecture of production likewise changed little. The revolution of the 
TPS has no dramatic moments like the assembly experiments at Piquette 
Avenue. The TPS revolution was a revolution by evolution, a case where 
incrementally changed, accreted steadily enough and long enough, it 
takes on a qualitatively different flavor.

The TPS did not outwardly change the architecture of either cars or 
production. Both cars and factories built in accordance with TPS appear 
much the same as did cars and factories before. But, the improvements 
in quality and cost brought Toyota from a nonentity in the business to a 
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neck-and-neck contender for largest auto manufacturer. This displace-
ment of multiple, dominant, profitable firms is very unusual.

The architecture of the TPS is The Toyota Way (see below). Thus, the 
TPS is a sociotechnical system, and its architecture is likewise more social 
than technical. The most important elements are the shared principles 
and the means of their application.

Metaphor or Vision Changes
At each of the stages, the story is captured by a metaphor or basic vision. 
It is hard to know exactly how important the conceptual vision is, but 
the testimony of the people directly involved indicates that the coherent 
vision, the thing they could aim at, was an inspiration and guide, and 
they gave it great weight. Sorenson reports repeatedly that Henry Ford 
was devoted to his vision of cars for the masses, and his reluctance to rec-
ognize that it had run out of force caused great difficulty when it finally 
became obvious to everybody except Henry Ford that the time of the 
Model T was past.

Craftsmen
Early automobiles were craftsmanly products, like bespoke suits. They 
were made by individual craftsmen and possessing one was a mark of 
status. Being made by individual craftsmen, they carried the marks of 
those craftsmen (sometimes good, sometimes bad). Like nearly all crafts-
manly products, these cars were very expensive.

The craftsmanly approach to cars is still not quite dead. A few cars, 
naturally very expensive and basically toys for adults, are built by individ-
ual teams of craftsman. The individual attention is a selling point, even 
if it objectively probably yields poorer quality than the best cars made in 
lean factories.

A Car for the Masses, or If We Build It, It Will Sell
Henry Ford’s most famous quote is probably “The customer can have 
any color he wants, as long as it is black.” Black was apparently chosen 
mostly because the high-quality black paint of the time was the fastest 
drying and thus allowed the production line to operate more efficiently. 
The paradigm for Ford operations from the introduction of the Model T 
to the mid-1920s was that the only real problem was making more Model 
Ts, cheaper. If they could be made, they could be sold or so the belief ran. 
This was the virtuous cycle of economies of scale and cost reductions. 
For roughly 15  years, this was an effective strategy and reflected the 
(temporary) correctness of Henry Ford’s basic vision.
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Cars as Fashion
By the mid 1920s, cars were no longer a rarity in the United States. There 
were enough reliable cars around that a used car market had begun. As 
Chevrolet and others introduced frequent style and model changes, they 
brought a fashion sensibility to automobiles. Henry Ford’s simple vision 
of cheap transportation for the masses gave way to affordable status and 
transportation for the masses, and eventually a whole hierarchy of desire 
and status much like other mature product areas.

The Supermarket Metaphor
In Taiichi Ohno’s book on the Toyota Production System, he makes a 
striking observation about his inspiration for the TPS.5 He says that when 
he toured the United States in 1956 to see the Ford and General Motors 
factories, he was more impressed by supermarkets. He adopted a super-
market metaphor for the organization of production. The idea was that the 
consumer (who in a production system is also a supplier to a later phase) 
can reach into the supermarket and get exactly what he or she needs, and 
the act of the consumer taking it “pulls” a replacement onto the shelf. In 
contrast to Henry Ford’s paradigm of pushing automobiles out, knowing 
they would be sold, the TPS model is to produce and deliver just what is 
sold, and refill just what is taken. Ohno writes that the supermarket meta-
phor had been in use since the late 1940s, but his trip to the United States 
solidified his commitment to the metaphor.

The Toyota Way
Beyond the supermarket metaphor, Toyota promulgates a larger philoso-
phy known as “The Toyota Way.” The Toyota Way6 could be thought of as a 
metaphor or vision in the large, composed as it is of 14 principles that them-
selves are reasonably complex. The Toyota Way defines an overall approach 
to doing a production-oriented business in general, and is not restricted to 
automobiles. It does not have a distinct end point (as Ford’s vision did); 
rather one of the principles is to embrace a sense of urgency for continuous 
improvement, regardless of current business conditions. The Toyota Way 
is, by design, a more embracing philosophy than single vision.

Elements of the Architecture of the 
Ford Production System
The architecture of Ford mass production was not just the assembly line, 
or the River Rouge factory (Dearborn, Michigan), or the Model T. The 
architecture of the enterprise as a whole, the architecture that brought 
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mass production its power, had three major components: the production 
line, distributed production with synergistic system design, and manage-
ment processes.

The Assembly Line
By far the most famous element of the mass production enterprise is the 
assembly line. As noted above, the experiments in fixing assembly stations 
and moving the vehicle down the factory floor began with the Model N in 
the Piquette Avenue plant. The physical constraints of the plant prevented 
full implementation until the Highland Park plant was built to produce 
the Model T.

The assembly line also led to a variety of other possibilities for effi-
ciencies. Once the basic notion of configuring the flow to optimize material 
handling was present, the full power of engineering and statistics could 
be brought to bear to further improve the process. Moreover, assembly 
production should be (and eventually was) synergistic with design. 
Automobiles eventually were designed to be easy to assemble within the 
Ford enterprise, and the enterprise adjusted itself to what it was possible 
to design.

Enterprise Distribution
The assembly line was just one of the major innovations that enabled mass 
production. As production volumes grew larger and larger the problem of 
factory scaling began to appear. There are upper limits to the practical size 
of a factory. Eventually, the major constraint is transportation. A factory in 
the Detroit area (or anywhere else) simply cannot bring arbitrarily large 
quantities of raw materials and parts and cannot move out arbitrarily 
large quantities of product. Eventually transportation capacity runs out.

So, when it is necessary to build more factories in geographically dis-
tributed locations, how do we divide up the production tasks? The solution 
eventually arrived at in automobiles is to divide production along vehicle 
subsystem lines. So, engines are made in one location, chassis in another, 
bodies in still another, and all are brought together in assembly plants. 
The assembly plants can be located relatively close to major markets, and 
the others can be distributed based on what areas are favorable to the par-
ticular manufacturing task.

This division on vehicle subsystem lines is, or can be, synergistic 
with vehicle design. Design should be synergistic both with the detailed 
problem of assembly and the larger problem of how the production enter-
prise is distributed. For example, tight tolerance processes should be inside 
subsystems, and the interfaces between them should be less demanding. 
The subsystems should be designed in ways that facilitate testing and 
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quality control at the point of production. Over time, the production pro-
cesses, vehicle designs, and supplier networks coevolved.

Management Processes
The assembly line, distribution of plants, and vehicle subsystems are all 
obviously physical structures. But the history also identifies certain man-
agement processes and the synergistic changes they drove as fundamen-
tal structural elements (that is, architectural elements) in the development 
of mass production.

Quality Assurance for Distributed Production
Consider how quality assurance and quality control changes when pro-
duction becomes distributed. If all production steps are under the same 
roof, when a problem appears, an engineer can simply walk from one 
part of the factory to another to understand the source of the problem. 
When the engine, frame, and transmission factories are in different parts 
of the United States, and the year is 1920, moving among the factories to 
straighten out problems was a serious burden.

Part of the success of mass production was the development of new 
quality assurance and control techniques to manage these problems. 
Similarly, new supplier management techniques were introduced. Many 
of the techniques like just-in-time production and negotiated learn-
ing curves that are considered very modern techniques were known to 
Ford and his architects. In Ford’s time, the sophistication level was much 
lower, and the technology did not allow optimization in the ways that it is 
possible today, but the concepts were already known.

Moving to the TPS era, as quality control improved, it eventually 
became possible to make architectural-level changes to the assembly pro-
cess. For example, when very high-quality levels are attained, testing and 
inspection processes can be greatly reduced and simplified. If the defect 
rate is low enough, it is no longer economic to conduct multistep inspec-
tion and testing processes. With an extremely low defect rate, testing and 
inspection can be pushed to the final, full system level.

Devotion to Component-Level Simplification
Ford and his architects were devoted to component-level simplification. 
They continually looked for ways to simplify the production of individual 
components and to simplify major subsystems. A major method was to cast 
larger and more complicated iron assemblies. This eventually resulted in 
the single piece casting of the V8 engine block used in the most successful 
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Ford immediately prior to World War II. That basic engine block casting 
design and technique was used for decades afterward.

The movement to larger and more complex castings is a fine example 
of the Simplify heuristic at work. A dictate to “simplify” sounds good, but 
how does one actually apply it? The application must be in the architect’s 
current context. In the case of Ford and Sorenson, castings that were very 
complex to develop were ultimately “simple” because of the simplifica-
tion they brought to the assembly process. Making the castings was only 
complex up to the point it was fully understood. Once it was understood, 
it could be carried out very consistently and allowed for great simplifica-
tions in downstream assembly.

Social Contract
On the labor relations front, Henry Ford is both famous and infamous. 
He is famous for introducing much higher wages, specifically targeting 
his wages to allow all of his workers to be able to realistically afford one 
of the cars they were building. This was consistent with Ford’s overall 
vision of cars for the masses. After all, what masses could he be building 
cars for if not the masses that he himself employed? Henry Ford is also 
infamous for some of his other labor practices, such as his intrusions into 
the private lives of his workers. The architects of the TPS were well aware 
of both sides of Ford’s labor relations and believed that the architecture 
of the production system must be reconciled with a stable social contract 
with the workers.

All systems of productivity improvement must reconcile the improve-
ments that are in the interests of owners with the interests of the workers. 
If each improvement simply leads to higher worker production quotas 
and job losses, it is hardly likely that workers will be enthusiastic par-
ticipants in the improvement process. In the rapid growth days of Ford, 
when wages were doubled over those otherwise prevailing, Ford workers 
had obvious reasons for believing their own interests were aligned with 
Ford’s. Toyota faced the same difficulty, but under worse circumstances in 
the early years as growth was not so spectacular. However, it is probably 
notable that the Toyota Production System was extensively developed dur-
ing the 1960s when Japan had an extremely high economic growth rate.

Conclusion
Ford and Toyota are the two classic examples of mass production. Both 
have recognizable architectural histories and easily identified architects. 
Both created changes that have rippled into fields well beyond their 
own. Ford was able to pioneer mass production of systems as complex 
as the automobile. The architecture of the Ford production system was 



86	 The Art of Systems Architecting

sociotechnical, but with a heavy emphasis on the technical. We can see 
directly the technical innovations that made it work and that defined its 
essential structures (the assembly line, distributed production, new man-
agement techniques).

The TPS architectural success was smaller in that it did not create a 
new industry, but TPS succeeded against a backdrop of established and 
strong competitors. The development of the TPS is also an example of 
where incremental change, sufficiently accumulated, can eventually 
become revolutionary. The architecture of the TPS is much more socio 
than technical. In its embodiment in the Toyota Way, it is described essen-
tially as philosophy, albeit an operative philosophy, one directly usable in 
practical decision making.
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4chapter 

Manufacturing Systems

Introduction: The Manufacturing Domain
Although manufacturing is often treated as if it were but one step in the 
development of a product, it is also a major system in itself. It has its own 
architecture.1 It has a system function that its elements cannot perform by 
themselves — making other things with machines. And it has an acquisi-
tion waterfall for its construction quite comparable to those of its products. 
Moreover, the architecture of the manufacturing system and the architecture 
of the system of interest must relate to each other. More broadly, both exist 
within the structure of the development program, which should be chosen 
consciously and deliberately to yield the desired properties for the client.

From an architectural point of view, manufacturing has long been a 
quiet field. Such changes as were required were largely a matter of contin-
ual, measurable, incremental improvement — a step at a time on a stable 
architectural base. Though companies came and went, it took decades 
to see a major change in its members. The percentage of sales devoted 
to research and advanced development for manufacturing, per se, was 
small. The need was to make the classical manufacturing architecture 
more effective — that is, to evolve and engineer it.

Beginning two decades or so ago, the world that manufacturing had 
supported for almost a century changed — and at a global scale. Driven 
by political change in China and other countries, and by new technologies 
in global communications, transportation, sources, markets, and finance, 
global manufacturing became practical and then, shortly thereafter, 
dominant. It quickly became clear that qualitative changes were required 
in manufacturing architectures if global competition were to be met. In 
the order of conception, the architectural innovations were ultraquality,2 
dynamic manufacturing,3 lean production,4 and “flexible manufacturing.”* 
The results to date, demonstrated first by the Japanese and now spread-
ing globally, have been greatly increased profits and market share, and 
sharply decreased inventory and time-to-market. Each of these innova-
tions will be presented in turn.

Even so, rapid change is still underway. As seen on the manufacturing 
floor, manufacturing research as such has yet to have a widespread effect. 

*	 Producing different products on demand on the same manufacturing line.
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Real-time software is still a work-in-progress. Trend instrumentation, 
self-diagnosis, and self-correction, particularly for ultraquality systems, 
are far from commonplace. So far, the most sensitive tool for ultraquality 
is the failure of the product being manufactured.

Manufacturing in Context
Before discussing architectural innovations in manufacturing, we need to 
place manufacturing in context. At some point, a system needs to be built 
or it is of little interest. The building is “manufacturing.” But, there are 
several distinct scenarios we should consider.

Full Development Followed by Serial Production

This applies to and is common in situations where we build tens to millions 
of copies of a system after producing one or more complete prototypes. 
The prototypes, which may themselves be the end of a series of interme-
diate prototypes, are essentially identical to the system to be manufac-
tured. The testing conducted on the prototypes is commonly referred to 
as “qualification” testing and is to show that the system to be built is fully 
suitable (in function, environmental suitability, and all other respects) for 
end use. It shows that the system to be manufactured meets the purposes 
of the client in operational use. Because the prototypes are not themselves 
to be delivered to customer use, they can be tested very strongly, indeed 
destructively if desired and warranted.

There are several strategies by which we work up a series of pro-
totypes to result in the representative manufactured system. The most 
common is usually referred to as breadboard-to-brassboard. In this strat-
egy, each prototype contains the full functionality intended for the final 
system but is not packaged in an operationally representative way. The 
first development cycle, the breadboard, may exist just as open units in 
a lab interconnected and discrete subsystems tested individually. A sub-
sequent phase may be packaged into a surrogate platform not yet light or 
strong enough for final use. The development sequence culminates in the 
manufacturing of representative prototypes.

Incremental Development and Release

A contrasting strategy is to develop a series of prototypes where each 
is fully operationally suitable but contains less than the desired level of 
functionality. This is common in software-intensive systems. In software 
systems, the cost of manufacturing and delivery is quite low, nearly zero 
when software is electronically delivered. Thus, the cost impediment of 
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frequent re-release does not exist as in systems where most of the value is 
in hardware.

An incremental development and release strategy facilitates an evo-
lutionary approach to client desires. Instead of needing to get everything 
right at the beginning, the developer can experiment with suppositions 
as to what the client really wants. The client’s learning process using the 
system can be fed back into subsequent releases. A major issue in a fre-
quent release strategy is that test and certification costs are re-incurred 
each time a release cycle is completed. If the release cycles are frequent 
(best for learning feedback), the cost of test and certification will rise 
quickly. The process can be cost efficient only when the costs of test and 
certification can be driven down, usually by automation. In some sense, 
the process of testing and certification for release takes the place of serial 
production in the example of the serial production strategy above.

“Protoflight” Development and Manufacturing

In this strategy, which is common in one-of-a-kind items like spacecraft, 
the developmental unit is also the delivered manufactured unit. That is, 
rather than delivering a completed prototype to be manufactured, we 
deliver the completed prototype to be used (launched, in the case of a 
satellite). The primary advantage for the protoflight approach is cost. 
Obviously, when only a singular item needs to be delivered, the cost of 
manufacturing it is minimized by making only one.

The protoflight test quandary is a mirror image of the test quandary 
in the serial production case. In serial production we can freely test the 
prototypes as thoroughly as we like, including destructively. But, we must 
be concerned about whether or not the prototype units fully represent 
the manufactured units. Usually, if the production run is large enough, 
we will take units off of the serial production line and test them as thor-
oughly as the prototypes were tested. In the protoflight case, we know 
that the prototype and the delivered system are identical (because they 
are the same unit), but we risk damaging the system during test. Tests can 
change the state of the system, perhaps invisibly, and test processes are 
always vulnerable to accidents. We cannot test in certain ways because 
we cannot afford test-induced damage to the flight system. We must also 
continuously trade the risk of not revealing a defect because of lack of test-
ing with the risk of creating defects through testing. The satellite business 
in particular is full of stories of protoflight systems that were damaged 
through accidents in testing (for example, over-limit vibration testing, a 
weather satellite tipped off of its test stand).

In each of these cases, there is a relationship between the system 
architecture, the architecture of the program that builds the system, the 
test strategy, and the architecture of any systems used for testing. When 
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we choose an overall program architecture, we induce constraints on how 
we can test the resulting system. The architecture of the system-of-interest 
will determine the sorts of test approaches that can be supported. That 
likewise affects what sorts of systems we can build for conducting tests. 
Each of these issues cannot be considered and resolved in isolation. In 
mature situations there may be widely accepted solutions and established 
architecture breakdowns. In immature situations there may be great 
leverage in innovative breakdowns.

Example: DARPA Grand Challenge — The U.S. 
Defense Advanced Research Projects Agency spon-
sored a Grand Challenge5 race between autonomous 
ground vehicles. The competing teams all used the 
protoflight approach; they built, tested, and raced a 
single vehicle. Because the single vehicle had to be 
used for testing as well as racing, there were funda-
mental architectural choices that arbitrated between 
these needs. As examples, if more time was devoted 
to building a mechanically more complex vehicle, 
the amount of time available to use the vehicle in 
software testing would be reduced. Was superior 
mechanical performance worth less software testing 
time? Any test instrumentation needed to be built 
into the vehicle so it could be used in field experi-
ments. But, that same test instrumentation would 
need to be carried in the race, or removed at the last 
minute (generating its own risks). Where should 
the trade-off in enhanced testing versus less system 
burden lie? A vehicle optimized for autonomous 
operation would not be drivable by a human, but a 
vehicle that can be alternately human or computer 
driven leads to much simpler field test operations. 
Is  the loss of performance with retaining human 
drivability worth the lessened burden in field test 
operations? As a matter of historical record, dif-
ferent teams participating in the Grand Challenge 
events took distinctly different approaches along 
this spectrum, but the most successful teams took 
relatively similar approaches (simple, production-
vehicle-based mechanical system available very 
early in the development cycle; extensive test instru-
mentation; and human drivability retained).
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Architectural Innovations in Manufacturing
Ultraquality Systems

At the risk of oversimplification, a common perception of quality is that 
quality costs money — that is, quality is a trade-off against cost and profit. 
Not coincidentally, there is an accounting category called “cost of quality.” 
A telling illustration of this perception is the “DeSoto Story.” As the story 
goes, a young engineer at a DeSoto automobile manufacturing plant went 
to his boss with a bright idea on how to make the DeSoto a more reli-
able automobile. The boss’s reply: “Forget it, kid. If it were more reliable it 
would last more years and we would sell fewer of them. It’s called planned 
obsolescence.” DeSoto no longer is in business, but the perception remains 
in the minds of many manufacturers of many products.

The difficulty with this perception is partly traceable to the two dif-
ferent aspects of quality. The first is quality associated with features like 
leather seats and air conditioning. Yes, those features cost money, but the 
buyer perceives them as value added and the seller almost always makes 
money on them. The other aspect of quality is absence of defects. As it 
has now been shown, absence of defects also makes money, and for both 
seller and buyer, through reductions in inventory, warranty costs, repairs, 
documentation, testing, and time to market — provided that the level of 
product quality is high enough* and the whole development and produc-
tion process is architected at that high level.

To understand why absence of defects makes money, imagine a fault-
less process that produces a product with defects so rare that it is imprac-
tical to measure them; that is, none are anticipated within the lifetime of 
the product. Testing can be reduced to the minimum required to certify 
system-level performance of the first unit. Delays and their costs can 
be limited to those encountered during development; if and when later 
defects occur, they can be promptly diagnosed and permanently elimi-
nated. “Spares” inventory, detailed parts histories, and statistical quality 
control can be almost nonexistent. First-pass manufacturing yield can be 
almost 100% instead of today’s highly disruptive 20% to 70%. Service in 
the field is little more than replacing failed units, free.

The only practical measurement of ultraquality would then be an end 
system-level test of the product. Attempting to measure defects at any 
subsystem level would be a waste of time and money — defects would 
have to be too rare to determine with high confidence. Redundancy and 
fault-tolerant designs would be unnecessary. Indeed, they would be 
impractical because, without an expectation of a specific failure (which 
then should be fixed), protection against rare and unspecified defects is 

*	 Roughly less than 1%/year rate of failure at the system level regardless of system size. The 
failure rate for subsystems or elements clearly must be much less.
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not cost effective. Thus, the level of quality achieved could affect the most 
appropriate architecture of the manufacturing system.

To some readers, this ultraquality level may appear to be hopelessly 
unrealistic. Suffice it to say that it has been approached for all practical 
purposes. For decades, no properly built unmanned satellite or spacecraft 
failed because of a defect known before launch (any defect would have 
been fixed beforehand). Microprocessors with millions of active elements, 
sold in the millions, now outlast the computers for which they were built. 
Like the satellites, they become technically and financially obsolete long 
before they fail. Television sets are produced with a production line yield 
of over 99%, far better than the 50% yield of a decade ago, with a major 
improvement in cost, productivity, and profit.

As a further example, the readers should note that consumer elec-
tronic products today are commonly unrepairable, and if defective within 
a warranty period are simply replaced. This approach carries multiple 
benefits. If a system does not need to be repaired, the supplier need not 
maintain a repair and supply network, and can sweep away all the costs 
associated with one. If repairs are not necessary, the unit can be designed 
without repair access or diagnostics, which commonly saves space and 
money, and allows the use of manufacturing techniques (such as sealing) 
that themselves improve reliability.

Today’s challenge, then, is to achieve and maintain such ultraquality 
levels even as systems become more complex. Techniques have been 
developed that certainly help.* More recently, two more techniques have 
been demonstrated that are particularly applicable to manufacturing.

The first is: Everyone in the production line is both a customer and a supplier, 
a customer for the preceding worker and a supplier for the next. Its effect 
is to place quality assurance where it is most needed, at the source.

The second is: The Five Why’s, a diagnostic procedure for finding the 
basic cause of a defect or discrepancy. Why did this occur? Then why did 
that, in turn, occur? Then, why that? and so on until the offending causes 
are discovered and eliminated.

To these techniques can be added a relatively new understanding: 
Some of the worst failures are system failures — that is, they come from the 
interaction of subsystem deficiencies which of themselves do not produce 
an end system failure, but together can and do. Four catastrophic civil 

*	 Rechtin 1991, Chapter 8, pp. 160–187. One technique mentioned there — fault tolerance 
through redundancy — has proved to be less desirable than proponents had hoped. 
Because fault-tolerant designs “hide” single faults by working around them, they accumu-
late until an overall system failure occurs. Diagnostics then become very much more dif-
ficult. Symptoms are intertwined. Certification of complete repair cannot be guaranteed 
because successful-but-partial operation again hides undetected (tolerated) faults. The 
problem is most evident in servicing modern, microprocessor-rich, automobile controls. 
The heuristic still holds, Fault avoidance is preferable to fault tolerance in system design.
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space system failures were of this kind: Apollo 1, Apollo 13, Challenger, 
and the Hubble Telescope. For Tom Clancy buffs, just such a failure almost 
caused World War III in his Debt of Honor. In all these cases, had any one 
of the deficiencies not occurred, the near-catastrophic end result could not 
have occurred. That is, though each deficiency was necessary, none were 
sufficient for end failure. As an admonition to future failure review boards, 
until a diagnosis is made that indicates that the set of presumed causes is 
both necessary and sufficient — and that no other such set exists — the 
discovery-and-fix process is incomplete and ultraquality is not assured.

Successful ultraquality has indeed been achieved, but there is a price 
that must be paid. Should ultraquality not be produced at any point in 
the whole production process, the process may collapse. Therefore, when 
something does go wrong, it must be fixed immediately; there are no 
cushions of inventory, built-in holds, full-time expertise, or planned work-
arounds. Because strikes and boycotts can have instantaneous effects, 
employee, customer, and management understanding and satisfaction 
are essential. Pride in work and dedication to a common cause can be of 
special advantage, as has been seen in the accomplishments of the zero 
defect programs of World War II, the American Apollo lunar landing 
program, and the Japanese drive to world-class products.

In a sense, ultraquality-built systems are fine-tuned to near-perfection 
with all the risks thereof. Just how much of a cushion or insurance policy 
is needed for a particular system is an important value judgment that the 
architect must obtain from the client, the earlier the better. That judgment 
has strong consequences in the architecture of the manufacturing system. 
Clearly, then, ultraquality architectures are very different from the statis-
tical quality assurance architectures of only a few years ago.*

Most important for what follows, it is unlikely that either lean produc-
tion or flexible manufacturing can be made competitive at much less than 
ultraquality levels.

Dynamic Manufacturing Systems
The second architectural change in manufacturing systems is from com-
paratively static configurations to dynamic, virtually real-time, ones. Two 
basic architectural concepts now become much more important. The first 
concerns intersecting waterfalls, and the second, feedback systems.

*	 One of the authors, a veteran of the space business, visited two different manufacturing 
plants and correctly predicted the plant yields (acceptance versus start rates) by simply 
looking at the floors and at the titles (not content) and locations of a few performance 
charts on the walls. In the ultraquality case, the floors were painted white; the charts fea-
tured days-since-last-defect instead of running average defect rates; and the charts were 
placed at the exits of each work area. Details, but indicative.
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Intersecting Waterfalls

The development of a manufacturing system can be represented as a sep-
arate waterfall, distinct from, and intersecting with, that of the product 
it makes. Figure 4.1 depicts the two waterfalls, the process (manufactur-
ing) diagonally and the product vertically, intersecting at the time and 
point of production. The manufacturing one is typically longer in time, 
often decades, and contains more steps than the relatively shorter product 
sequence (months to years) and may end quite differently (the plant is 
shutdown and demolished). Sketching the product development and the 
manufacturing process as two intersecting waterfalls helps emphasize 
the fact that manufacturing has its own steps, time scales, needs, and 
priorities distinct from those of the product waterfall. It also implies the 
problems its systems architect will face in maintaining system integrity, 
in committing well ahead to manufacture products not yet designed, and 
in adjusting to comparatively abrupt changes in product mix and type. 
A notably serious problem is managing the introduction of new technolo-
gies, safely and profitably, into an inherently high-inertia operation.

There are other differences. Manufacturing certification must begin 
well before product certification or the former will preclude the latter; in 
any case, the two must interact. The product equivalent of plant demoli-
tion, not shown in the figure, is recycling, both now matters of national 
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Figure 4.1  The intersecting process and product waterfalls.
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law in Europe. Like certification, demolition is important to plan early, 
given its collateral human costs in the manufacturing sector. The effects 
of environmental regulations, labor contracts, redistribution of usable 
resources, retraining, right-sizing of management, and continuing support 
of the customers are only a few of the manufacturing issues to be resolved 
— and well before the profits are exhausted.

Theoretically if not explicitly, these intersecting waterfalls have existed 
since the beginning of mass production. But not until recently have they 
been perceived as having equal status, particularly in the United States. 
Belatedly, that perception is changing, driven in large part by the establish-
ment of global manufacturing — clearly not the same system as a wholly 
owned shop in one’s own backyard. The change is magnified by the wide-
spread use of sophisticated software in manufacturing, a boon in manag-
ing inventory but a costly burden in reactive process control.6 Predictably, 
software for manufacturing process and control, more than any element of 
manufacturing, will determine the practicality of flexible manufacturing. 
As a point in proof, Hayes, Wheelright, and Clark7 point out that a change 
in the architecture of [even] a mass production plant, particularly in the 
software for process control, can make dramatic changes in the capabili-
ties of the plant without changing either the machinery or layout.

The development of manufacturing system software adds yet another 
production track. The natural development process for software gener-
ally follows a spiral,* certainly not a conventional waterfall, cycling over 
and over through functions, form, code (building), and test. The software 
spiral shown in Figure 4.2 is typical. It is partially shaded to indicate that 
one cycle has been completed with at least one more to go before final test 
and use. One reason for such a departure from the conventional water-
fall is that software, as such, requires almost no manufacturing, making 
the waterfall model of little use as a descriptor.† The new challenge is to 
synchronize the stepped waterfalls and the repeating spiral processes of 
software-intensive systems. One of the most efficient techniques is through 
the use of stable intermediate forms,8 combining software and hardware 
into partial but working precursors to the final system. Their important 
feature is that they are stable configurations; that is, they are reproducible, 
well-documented, progressively refined baselines — in other words, they 
are identifiable architectural waypoints and must be treated as such. They 

*	 See also Chapter 2.
†	Efforts to represent the manufacturing and product processes as spirals have been com-

parably unsuccessful. Given the need to order long-lead-time items, to “cut metal” at some 
point, and to write off the cost of multiple rapid prototypes, the waterfall is the depiction 
of choice.
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can also act as operationally useful configurations,* built-in “holds” allow-
ing lagging elements to catch up, or parts of strategies for risk reduction as 
suggested in Chapter 3.

The Spiral-to-Circle Model

Visualizing the synchronization technique for the intersecting waterfalls 
and spirals of Figure  4.2 can be made simpler by modifying the spiral 
so that it remains from time to time in stable concentric circles on the 
four-quadrant process diagram. Figure  4.3 shows a typical develop-
ment from a starting point in the function quadrant cycling through all 
quadrants three times — typical of the conceptualization phase — to 
the first intermediate form. There the development may stay for a while, 
changing only slightly, until new functions call for the second form, say 
an operational prototype. In Air Force procurement, that might be a 
“fly-before-buy” form. In space systems, it might be a budget-constrained 
“operational prototype” that is actually flown. In one program, it turned 

*	 Many Commanders of the Air Force Space and Missiles Division have insisted that all 
prototypes and interim configurations have at least some operational utility, if only to 
help increase the acceptance in the field once the final configuration is delivered. In prac-
tice, field tests of interim configurations almost always clarify if not reorder prior value 
judgments of what is most important to the end user in what the system can offer.
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Figure 4.2  Product, process, and software system tracks.
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out to be the only system flown. But, to continue, the final form is gained, 
in this illustration, by way of a complete, four-quadrant cycle.

The spiral-to-circle model can show other histories, for example, a 
failure to spiral to the next form, with a retreat to the preceding one, pos-
sibly with less ambitious goals, or a transition to a still greater circle in a 
continuing evolution, or an abandonment of these particular forms with 
a restart near the origin.

Synchronization can also be helped by recognizing that cycling 
also goes on in the multistep waterfall model, except that it is depicted 
as feedback from one phase to one or more preceding ones. It would be 
quite equivalent to software quadrant spiraling if all waterfall feedback 
returned to the beginning of the waterfall — that is, to the system’s initial 
purposes and functions, and from there down the waterfall again. If truly 
major changes are called for, the impact can be costly, of course, in the 
short run. The impact in the long run might be cost effective, but few 
hardware managers are willing to invest.

The circle-to-spiral model for software-intensive systems in effect 
contains both the expanding-function concept of software and the step

FUNCTION
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Intermediate Form l 

Start 

CERTIFY BUILD 

Figure 4.3  The spiral-to-circle model.
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wise character of the waterfall. It also helps understand what and when 
hardware and software functions are needed in order to satisfy require-
ments by the other part of the system. For example, a stable intermediate 
software form of software should arrive when a stable, working form of 
hardware arrives that needs that software, and vice versa.

It is important to recognize that this model, with its cross-project syn-
chronizations requirement, is notably different from models of procure-
ments in which hardware and software developments can be relatively 
independent of each other. In the spiral-to-circle model, the intermediate 
forms, both software and hardware, must be relatively unchanging and 
bug-free. A software routine that never quite settles down or that depends 
upon the user to find its flaws is a threat, not a help, in software-intensive 
systems procurement. A hardware element that is intended to be replaced 
with a “better and faster” one later is hardly better. Too many subsequent 
decisions may unknowingly rest on what may turn out to be anomalous 
or misunderstood behavior of such elements in system test.

To close this section, although this model may be relatively new, the 
process that it describes is not. Stable intermediate forms, blocks (I, II, and 
so forth), or “test articles” as they are called, are built into many system 
contracts and perform as intended. Yet there remains a serious gap 
between most hardware and software developers in their understanding 
of each other and their joint venture. As the expression goes, “These guys 
just don’t talk to each other.” The modified spiral model should help both 
partners bridge that gap, to accept the reasons both for cycling and for 
steps, and to recognize that neither acquisition process can succeed with-
out the success of the other.

There should be no illusion that the new challenge will be easy to 
meet. Intermediate software forms will have to enable hardware phases 
at specified milestones — not just satisfy separate software engineering 
needs. The forms must be stable, capable of holding at that point indefi-
nitely, and practical as a stopping point in the acquisition process if neces-
sary. Intermediate hardware architectures must have sufficient flexibility 
to accommodate changes in the software — as well as in the hardware. 
And finally, the architects and managers will have a continuing challenge 
in resynchronizing the several processes so that they neither fall behind 
nor get too far ahead. Well-architected intermediate stable forms and 
milestones will be essential.

Concurrent Engineering

To return to Figure 4.2, this intersecting waterfall model also helps identify 
the source of some of the inherent problems in concurrent (simultaneous, 
parallel) engineering — in which product designers and manufactur-
ing engineers work together to create a well-built product. Concurrent 
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engineering in practice, however, has proven to be more than modifying 
designs for manufacturability. However defined, it is confronted with a 
fundamental problem, evident from Figure 4.2 — namely, coordinating 
the two intersecting waterfalls and the spirals, each with different time 
scales, priorities, hardware, software, and profit-and-loss criteria. Because 
each track is relatively independent of the others, the incentives for each 
are to optimize locally even if doing so results in an impact on another 
track or on the end product. After all, it is a human and organizational 
objective to solve one’s own problems, to have authority reasonably com-
mensurate with responsibilities, and to be successful in one’s own right. 
Unfortunately, this objective forces even minor technical disagreements 
to higher, enterprise management where other considerations than just 
system performance come into play.

A typical example: A communications spacecraft 
design was proceeding concurrently in engineering 
and manufacturing until the question came up of 
the spacecraft antenna size. The communications 
engineering department believed that a 14-foot 
diameter was needed; the manufacturing depart-
ment insisted that 10 feet was the practical limit. 
The difference in system performance was a factor 
of two in communications capability and revenue. 
The reason for the limit, it turned out, was that the 
manufacturing department had a first-rate subcon-
tractor with all the equipment needed to build an 
excellent antenna, but no larger than 10 feet. To go 
larger would cause a measurable manufacturing 
cost overrun. The manufacturing manager was 
adamant about staying within his budget, having 
taken severe criticism for an overrun in the pre-
vious project. In any case, the added communica-
tions revenue gain was far larger than the cost of 
re-equipping the subcontractor. Lacking a systems 
architect, the departments had little choice but to 
escalate the argument to a higher level where the 
larger antenna was eventually chosen and the manu-
facturing budget increased slightly. The design pro-
ceeded normally until software engineers wanted 
to add more memory well after manufacturing had 
invested heavily in the original computer hardware 
design. The argument escalated, valuable time was 
lost, department prerogatives were again at stake, 
and so it went.
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The example is not uncommon. A useful management improvement 
would have been to set up a trusted, architect-led team to keep balancing 
the system as a whole within broad top management guidelines of cost, 
performance, risk, and schedule.

If so established, the architectural team’s membership should include 
a corporate-level (or “enterprise”) architect, the product architect, the 
manufacturing architect, and a few specialists in system-critical elements, 
and no more.9 Such a structure does exist implicitly in some major compa-
nies, though seldom with the formal charter, role, and responsibilities of 
systems architecting.

Feedback Systems

Manufacturers have long used feedback to better respond to change. 
Feedback from the customer has been, and is, used directly to maintain 
manufacturing quality and indirectly to accommodate changes in design. 
Comparably important are paths from sales to manufacturing and from 
manufacturing to engineering.

The presence or absence of feedback paths, and their time constants, is 
something that can be deliberately controlled through the architecture of 
the program and organization that envelop a system of interest. Consider 
space exploration systems. An exploration organization can choose to 
pursue large, multimission systems that take a long time, or many more 
smaller, more rapidly turned over programs. Because the payload fraction 
of a spacecraft is generally higher as the spacecraft gets bigger, larger, 
multimission spacecraft are generally more cost efficient. But, because 
they take much longer, the time constant on which the things learned 
on one mission can be fed back into the next is longer. The organization 
has fewer opportunities to incorporate their learning into future mission 
design. In a very mature mission area where needs change slowly, this 
might be a fair trade-off. In an immature mission area where each new 
payload reveals new questions and new preferences, a faster feedback 
loop yields dramatically different characteristics. Moreover, the pace of 
feedback affects the people in the organization. They, likewise, learn (and 
are held accountable) primarily when each full mission feedback loop 
closes. An organization with a fast feedback loop (but not too fast) is a 
rapidly learning organization.

What is new in manufacturing is that the pace has changed. Multiyear 
is now yearly, yearly is now monthly, monthly is now daily, and daily — 
especially for ultraquality systems — has become hourly if not sooner. 
What was a temporary slowdown is now a serious delay. What used to 
affect only adjacent sectors can now affect the whole. What used to be the 
province of planners is now a matter of real-time operations.
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Consequently, accustomed delays in making design changes, cor-
recting supply problems, responding to customer complaints, introduc-
ing new products, reacting to competitors’ actions, and the like were no 
longer acceptable. The partner to ultraquality in achieving global competi-
tiveness was to counter the delays by anticipating them, in other words, 
using anticipatory feedback in as close to real time as practical. The most 
dramatic industrial example to date has been in lean production,10 in 
which feedback to suppliers, coupled with ultraquality techniques, cut 
the costs of inventory in half and resulted in across-the-board competitive 
advantage in virtually all business parameters. More recently, criteria for 
certification, or those of its predecessor, quality assurance, are routinely 
fed back to conceptual design and engineering — one more recognition 
that quality must be designed in, not tested in.

A key factor in the design of any real-time feedback system is loop 
delay, the time it takes for a change to affect the system “loop” as a 
whole. In a feedback system, delay is countered by anticipation based on 
anticipated events (like a failure) or on a trend derived from the integra-
tion of past information. The design of the anticipation, or “correction,” 
mechanism, usually the feedback paths, is crucial. The system as a whole 
can go sluggish on the one hand or oscillatory on the other. Symptoms are 
inventory chaos, unscheduled overtime, share price volatility, exasperated 
sales forces, frustrated suppliers, and, worst of all, departing long-time 
customers. Design questions are as follows: What is measured? How is it 
processed? Where is it sent? And, of course, to what purpose?

Properly designed feedback control systems determine transient 
and steady-state performance, reduce delays and resonances, alleviate 
nonlinearities in the production process, help control product quality, 
and minimize inventory. By way of explanation, in nonlinear systems, 
two otherwise independent input changes interact with each other to 
produce effects different from the sum of the effects of each separately. 
Understandably, the end results can be confusing if not catastrophic. An 
example is a negotiated reduction in wages followed immediately by an 
increase in executive wages. The combination results in a strike; either 
alone would not.

A second key parameter, the resonance time constant, is a measure of 
the frequency at which the system or several of its elements tries to oscil-
late or cycle. Resonances are created in almost every feedback system. The 
more feedback paths there are, the more resonances. The business cycle, 
related to inventory cycling, is one such resonance. Resonances, internal 
and external, can interact to the point of violent, nonlinear oscillation 
and destruction, particularly if they have the same or related resonant 
frequencies. Consequently, a warning: Avoid creating the same resonance 
time constant in more than one location in a [production] system.
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Delay and resonance times, separately and together, are subject to 
design. In manufacturing systems, the factors that determine these param-
eters include inventory size, inventory replacement capacity, information 
acquisition and processing times, fabrication times, supplier capacity, and 
management response times. All can have a strong individual and collec-
tive influence on such overall system time responses as time to market, 
material and information flow rates, inventory replacement rate, model 
change rate, and employee turnover rate. Few, if any, of these factors can 
be chosen or designed independently of the rest, especially in complex 
feedback systems.

Fortunately, there are powerful tools for feedback system design. 
They include linear transform theory, transient analysis, discrete 
event mathematics, fuzzy thinking, and some selected nonlinear and 
time-variant design methods. The properties of at least simple linear 
systems designed by these techniques can be simulated and adjusted 
easily. A certain intuition can be developed based upon long experience 
with them. For example,

Behavior with feedback can be very different from behavior without it.•	
		  Positive example: Provide inventory managers with timely sales 

information and drastically reduce inventory costs. Negative example: 
Ignore customer feedback and drown in unused inventory.
Feedback works. However, the design of the feedback path is critical. Indeed, •	
in the case of strong feedback, its design can be more important than that of 
the forward path.

		  Positive example: Customer feedback needs to be supplemented by 
anticipatory projections of economic trends and of competitor’s responses 
to one’s own strategies and actions to avoid delays and surprises.

		  Negative examples: If feedback signals are “out of step” or of the 
wrong polarity, the system will oscillate, if not go completely out 
of control. Response that is too little, too late is often worse than no 
response at all.
Strong feedback can compensate for many known vagaries, even nonlinearities •	
in the forward path, but it does so “at the margin.”

		  Example: Production lines can be very precisely controlled around 
their operating points; that is, once a desired operating point is 
reached, tight control will maintain it, but off that point or on the 
way to or from it (e.g., start up, synchronization,11 and shut down), 
off-optimum behavior is likely. Example: Just-in-time response works 
well for steady flow and constant volume. It can oscillate if flow is 
intermittent and volume is small.
Feedback systems will inherently resist unplanned or unanticipated change, •	
whether internal or external.
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		  Satisfactory responses to anticipated changes, however, can usu-
ally be assured. In any case, the response will last at least one time constant 
(cycle time) of the system. These properties provide stability against 
disruption. On the other hand, abrupt mandates, however necessary, 
will be resisted and the end results may be considerably different in 
magnitude and timing from what advocates of the change antici-
pated. Example: Social systems, incentive programs, and political 
systems notoriously “readjust” to their own advantage when change 
is mandated. The resultant system behavior is usually less than, later 
than, and modified from, that anticipated.
To make a major change in performance of a presently stable system is likely •	
to require a number of changes in the overall system design.

		  Examples: The change from mass production to lean production to 
flexible production12 and the use of robots and high technology.

Not all systems are linear, however. As a warning against over
dependence on linear-derived intuition, typical characteristics of nonlinear 
systems are as follows:

In general, no two systems of different nonlinearity behave in exactly the •	
same way.
Introducing changes into a nonlinear system will produce different (and •	
probably unexpected) results if they are introduced separately than if they 
are introduced together.
Introducing even very small changes in input magnitude can produce very differ-•	
ent consequences even though all components and processes are deterministic.

		  Example: Chaotic behavior (noiselike but with underlying struc-
ture) close to system limits is such a phenomenon. Example: When the 
phone system is saturated with calls and goes chaotic, the planned 
strategy is to cut off all calls to a particular sector (e.g., California 
after an earthquake) or revert back to the simplest mode possible 
(first come, first serve). Sophisticated routing is simply abandoned 
— it is part of the problem. Example: When a computer abruptly 
becomes erratic as it runs out of memory, the simplest and usually 
successful technique is to turn it off and start it up again (reboot), 
hoping that not too much material has been lost.
Noise and extraneous signals irreversibly intermix with and alter normal, •	
intended ones, generally with deleterious results.

		  Example: Modification of feedback and control signals is equiva-
lent to modifying system behavior — that is, changing its transient 
and steady-state behavior. Nonlinear systems are therefore particu-
larly vulnerable to purposeful opposition (jamming, disinformation, 
overloading).



104	 The Art of Systems Architecting

Creating nonlinear systems is of higher risk than creating well-understood, •	
linear ones.

		  The risk is less that the nonlinear systems will fail under carefully 
framed conditions than that they will behave strangely otherwise. 
Example: In the ultraquality spacecraft business, there is an heuristic: 
If you cannot analyze it, do not build it — an admonition against unnec-
essarily nonlinear feedback systems.

The two most common approaches to nonlinearity are, first, when 
nonlinearities are both unavoidable and undesirable, minimize their effect 
on end-system behavior through feedback and tight control of operating 
parameters over a limited operating region. Second, when nonlinearity 
can improve performance as in discrete and fuzzy control systems, be 
sure to model and simulate performance outside the normal operating 
range to avoid “nonintuitive” behavior.

The architectural and analytic difficulties faced by modern manufac-
turing feedback systems are that they are neither simple nor necessarily 
linear. They are unavoidably complex, probably contain some nonlineari-
ties (limiters and fixed time delays), are multiply interconnected, and are 
subject to sometimes drastic external disturbances, not the least of which 
are sudden design changes and shifts in public perception. Their architec-
tures must therefore be robust and yet flexible. Though inherently com-
plex, they must be simple enough to understand and modify at the system 
level without too many unexpected consequences. In short, they are likely 
to be prime candidates for the heuristic and modeling techniques of 
systems architecting.

Feedback can be thought of at levels beyond the individual system 
and the manufacturing enterprise in normal operation. At the strategic 
level, we configure our enterprises with some level of feedback based on 
achieving, or failing to achieve success. Some measures of success are tied 
into enterprise-level feedback behavior.

Consider the strategic problem of an enterprise with a scientific 
research purpose that conducts missions of varying duration, from a 
few years to a decade.* There is a feedback loop, at both a scientific and 
enterprise-programmatic level, from mission to mission. The scientific 
discoveries on one mission will affect the scientific questions posed on 
the next mission. When unexpected things are found on one mission, like 
clear evidence of water on Mars, it deeply affects the enterprise’s prefer-
ence for what to look for on subsequent missions. Likewise, the success or 

*	 The example is meant to apply, conceptually, to many different public and private 
research enterprises that can make trade-offs between the duration and complexities of 
their missions.
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failure of various systems on a mission will affect their potential use on 
subsequent missions.

The duration of a mission is, in effect, a feedback time constant. 
The shorter that time constant, the more rapidly scientific discoveries 
and mission results are fed back into future missions. If the major goal 
of the enterprise is to produce unexpected scientific discoveries, then a 
shorter time constant may be an effective trade-off for less single mission 
cost-effectiveness. Reprising the maligned slogan “Faster, Better, Cheaper,” 
it could be that faster is better at the enterprise level, even if it is not better 
at a single mission level. But note, such a conclusion is dependent on the 
overall objectives of the enterprise being subject to change from feedback. 
If the overall enterprise objectives are stable, and more like stewardship, a 
shorter time constant would not be a good trade-off.

Similar effects can be imagined at the management level of the enter-
prise. If the mission time constant is short enough, it will last no more than 
one person’s normal assignment period. Program managers, architects, 
systems engineers, principal investigators, and others will serve for the 
full duration of a mission. Instead of end-to-end mission success or failure 
being fed back over several different leaders (as commonly happens with 
decade-long programs), accountability for success or failure is attached 
directly to those leaders. The effects on personnel policies and organiza-
tional learning should be obvious.

Lean Production
One of the most influential books on manufacturing of the last decade 
was the 1990 bestseller, The Machine That Changed the World: The Story of 
Lean Production.13 Although the focus of this extensive survey and study 
was on automobile production in Japan, the United States, and Europe, 
its conclusions are applicable to manufacturing systems in general, par-
ticularly the concepts of quality and feedback. A 1994 follow-up book, 
Comeback, The Fall and Rise of the American Automobile Industry,14 tells the 
story of the American response and the lessons learned from it, though 
calling it a “comeback” may have been premature. The story of lean pro-
duction systems is by no means neat and orderly. Although the principles 
can be traced back to 1960, effective implementation took decades. Lean 
production certainly did not emerge full blown. Ideas and developments 
came from many sources, some prematurely. Credits were sometimes 
misattributed. Many contributors were very old by the time their ideas 
were widely understood and applied. Quality was sometimes seen as an 
end result instead of as a prerequisite for any change. The remarkable 
fact that virtually every critical parameter improved by at least 20%, if not 
50%,15 does not seem to have been anticipated. Then, within a few years, 
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everything worked. But when others attempted to adopt the process, they 
often failed. Why?

One way to answer such questions is to diagram the lean produc-
tion process from an architectural perspective. Figure 4.4 is an architect’s 
sketch of the lean production waterfall derived from the texts of the 
just-mentioned books, highlighting (boldfacing) its nonclassical features 
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Figure 4.4  An architect’s sketch of lean production.



Chapter 4:  Manufacturing Systems	 107

and strengthening its classical ones.* The most apparent feature is the 
number and strength of its feedback paths. Two are especially characteris-
tic of lean production: the supplier waterfall loop and the customer-sales-
delivery loop. Next evident is the quality policies box, crucial not only 
to high quality but to the profitable and proper operation of later steps, 
just-in-time inventory, rework, and implicit warranties. Quality policies 
are active elements in the sequence of steps, are a step through which all 
subsequent orders and specifications must pass, and are as affected by its 
feedback input as any other step; that is, policies must change with time, 
circumstance, technology, and product change and process imperatives.

Research and development (R&D) is not “in the loop” but instead 
is treated as one supplier of possibilities, among many, including one’s 
competitors’ R&D. As described in the 1990 study, R&D is not a driver, 
though it would not be surprising if its future role were different. Strong 
customer feedback, in contrast, is very much within the loop, making the 
loop responsive to customer needs at several key points. Manufacturing 
feedback to suppliers is also a short path, in contrast with the stand-off 
posture of much U.S. procurement.

The success of lean production has induced mass producers to copy 
many of its features, not always successfully. Several reasons for lack of 
success are apparent from the figure. If the policy box does not implement 
ultraquality, little can be expected from changes further downstream 
regardless of how much they ought to be able to contribute. Just-in-time 
(JIT) inventory is an example. Low-quality supply mandates a cushion 
of inventory roughly proportional to the defect rate; shifting that inven-
tory from the manufacturer back to the supplier without a simultaneous 
quality upgrade simply increases transportation and financing costs. To 
decrease inventory, decrease the defect rate, then apply the coordination 
principles of JIT, not before.

Another reason for limited success in converting piecemeal to lean pro-
duction is that any well-operated feedback system, including those used 
in classical mass production, will resist changes in the forward (waterfall) 
path. The “loop” will attempt to self-correct. And, it will take at least one 
loop time constant before all the effects can be seen or even be known. 
To illustrate, if supply inventory is reduced, what is the effect on sales 
and service inventory? If customer feedback to the manufacturing line is 

*	 Strictly speaking, though the authors of the lean production books did not mention it, 
an architect’s perspective should also include the intersecting product waterfalls and 
software spirals. Interestingly, because it seems to be true for all successful systems, it 
is possible to find where and by whom systems architecting was performed. Two of the 
more famous automotive production architects were Taiichi Ohno, the pioneer of the 
Toyota Motor Company Production System, and Yoshiki Yamasaki, head of automobile 
production at Mazda.
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aggressively sought, as it is in Japan, what is the effect on time-to-market 
for new product designs?

A serious question raised in both books is how to convert mass pro-
duction systems into lean production systems. It is not, as the name “lean” 
might imply, a mass production system with the “fat” of inventory, middle 
management, screening, and documentation taken out. It is to recognize 
lean production as a different architecture based on different priorities 
and interrelationships. How then to begin the conversion? What is both 
necessary and sufficient? What can be retained?

The place to begin conversion, given the nature of feedback systems, is 
in the quality policies step. In lean production, quality is not a production 
result determined postproduction and posttest; it is a prerequisite policy 
imperative. Indeed, Japanese innovators experienced years of frustration 
when total quality management (TQM), JIT, and the Taguchi methods 
at first seemed to do very little. The level of quality essential for these 
methods to work had not yet been reached. When it was, the whole system 
virtually snapped into place with results that became famous. Even more 
important for other companies, unless their quality levels are high enough, 
even though all the foregoing methods are in place, the famous results 
will not — and cannot — happen.

Conversely, at an only slightly lower level of quality, lean systems spo-
radically face at least temporary collapse.16 As a speculation, there appears 
to be a direct correlation between how close to the cliff of collapse the 
system operates and the competitive advantage it enjoys. Backing off from 
the cliff would seem to decrease its competitive edge, yet getting too close 
risks imminent collapse — line shutdown, transportation jam-up, short-fuse 
customer anger, and collateral damage to suppliers and customers for whom 
the product is an element of a still larger system production.

To summarize, lean production is an ultraquality, dynamic feedback 
system inherently susceptible to any reduction in quality. It depends 
upon well-designed, multiple feedback. Given ultraquality standards, 
lean production arguably is less complex, simpler, and more efficient 
than mass production. And, by its very nature, it is extraordinarily, 
fiercely, competitive.

Flexible Manufacturing
Flexible manufacturing is the capability of sequentially making more 
than one product on the same production line. In its most common pres-
ent-day form, it customizes products for individual customers, more or 
less on demand, by assembling different modules (options) on a com-
mon base (platform). Individually tailored automobiles, for example, 
have been coming down production lines for years. But with one out of 
three or even one out of ten units having to be sent back or taken out of a 
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production stream, flexible manufacturing in the past has been costly in 
inventory, complex in operation, and high-priced per option compared to 
all-of-a-kind production.

What changed are customer demands and expectations, especially in 
consumer products. Largely because of technological innovation, more 
capability for less cost now controls purchase rate rather than wearout 
and increasing defect rate — an interesting epilogue for the DeSoto story!* 
One consequence of the change is more models per year with fewer units 
per model, the higher costs per unit being offset by use of techniques such 
as preplanned product improvement, standardization of interfaces and 
protocols, and lean production methods.

A natural architecture for the flexible manufacturing of complex 
products would be an extension of lean production with its imperatives — 
additional feedback paths and ultraquality-produced simplicity — and an 
imperative all its own, human-like information command and control.

At its core, flexible manufacturing involves the real-time interaction 
of a production waterfall with multiple product waterfalls. Lacking an 
architectural change from lean production, however, the resultant multi
ple information flows could overwhelm conventional control systems. 
The problem is less that of gathering data than of condensing it. That sug-
gests that flexible manufacturing will need judgmental, multiple-path 
control analogous to that of an air traffic controller in the new “free flight” 
regime. Whether the resultant architecture will be fuzzy, associative, 
neural, heuristic, or largely human, is arguable.

To simplify the flexible manufacturing problem to something more 
manageable, most companies today would limit the flexibility to a product 
line that is forward and backward compatible, uses similar modules (with 
many modules identical), keeps to the same manufacturing standards, 
and is planned to be in business long enough to write off the cost of the 
facility out of product-line profits. In brief, production would be limited to 
products having a single basic architecture, for example, producing either 
Macintosh computers, Hitachi TV sets, or Motorola cellular telephones, 
but not all three on demand on the same production line.

Even that configuration is complex architecturally. To illustrate: A 
central issue in product line design is where in the family of products, 
from low-end to high-end, to optimize. Too high in the series, and the low 
end is needlessly costly. Too low, and the high end adds too little value. 
A related issue arises in the companion manufacturing system. Too much 

*	 Parenthetically, the Japanese countered the automobile obsolescence problem by quadren-
nial government inspections so rigorous that it was often less expensive to turn a car in and 
purchase a new one than to bring the old one up to government standards (Womack et al., 
1990, p. 62).
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capability, and its overhead is too high; too little, and it sacrifices profit to 
specialty suppliers.

Another extension from lean production to flexible manufacturing 
is much closer coordination between the design and development of the 
product line and the design and development of its manufacturing system. 
Failure to achieve this coordination, as illustrated by the problems of intro-
ducing robots into manufacturing, can be warehouses of unopened crates of 
robots and in-work products that cannot be completed as designed. Clearly: 
The product and its manufacturing system must match. At the elementary level, 
this means that the system must be composed of subsystems that distrib-
ute cleanly over the manufacturing enterprise. More specifically, their time 
constants, transient responses, and product-to-machine interfaces must 
match, recognizing that any manufacturing constraint means a product 
constraint, and vice versa. At a more sophisticated level, the elements of 
the process, like quality measurement and control, must be matched across 
the product-system and manufacturing-system boundaries.

As suggested earlier, the key technological innovation is likely to be 
the architecture of the joint information system.17 In that connection, one 
of the greatest determinates of the information system’s size, speed, and 
resolution is the quality of the end product and the yield of its manufac-
turing process — that is, their defect rates. The higher these defect rates, 
the greater the size, cost, complexity, and precision of the information 
system that will be needed to find and eliminate them quickly.

Another strong determinate of information system capacity is piece part 
count, another factor dependent on the match of product and manufactur-
ing techniques. Mechanical engineers have known this for years: whenever 
possible, replace a complicated assembly of parts with a single, specialized 
piece. Nowhere is the advantage of piece part reduction as evident as in the 
continuing substitution of more and more high-capacity microprocessors 
for their lower-capacity predecessors. Remarkably, this substitution, for 
approximately the same cost, also decreases the defect rate per computa-
tional operation. It appears to be an inevitable consequence of the different 
parts of Moore’s law. As technology allows more and more transistors per 
unit area, the cost of the fabrication plant likewise rises. The rise in cost of 
the fabrication plant drives the market toward increasing standardization 
of parts (to spread large capital costs over many units). Increasing stan-
dardization means greater regularization, and higher quality to achieve 
economic throughput in an expensive fabrication plant. The end-user value 
added can then come only from software (a topic we take up later).

And, especially for product lines, the fewer different parts from 
model to model, the better, as long as that commonality does not decrease 
system capability unduly. Once again, there is a close correlation between 
reduced defect rate, reduced information processing, reduced inventory, 
and reduced complexity — all by design.
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Looking further into the future, an extension of the lean production 
architecture is not the only possibility for flexible manufacturing. It is 
possible that flexible manufacturing could take a quite different architec-
tural turn based on a different set of priorities. Is ultraquality produc-
tion really necessary for simple, low-cost, limited-warranty products 
made largely from commercial, off-the-shelf (COTS) units (for example, 
microprocessors and flat screens)? Or is the manufacturing equivalent of 
parallel processors (pipelines) the answer? Should some flexible manu-
facturing hark back to the principles of special, handcrafted products or 
one-of-a-kind planetary spacecraft? The answers should be known in less 
than a decade, considering the profit to be made in finding them.

Heuristics for Architecting Manufacturing Systems
The product and its manufacturing system must match. (In many •	
ways.)
Keep it simple. (Ultraquality helps.)•	
Partition for near-autonomy. (A trade-off with feedback.)•	
In partitioning a manufacturing system, choose the elements so that •	
they minimize the complexity of material and information flow. 
(Savagian, Peter J., 1990, USC)
Watch out for critical mis-fits. (Between intersecting waterfalls.)•	
In making a change in the manufacturing process, how you make it is •	
often more important than the change itself. (Management policy.)
When implementing a change, keep some elements constant to •	
provide an anchor point for people to cling to. (Schmidt, Jeffrey H., 
1993, USC) (A trade-off when a new architecture is needed.)
Install a machine that even an idiot can use and pretty soon everyone •	
working for you is an idiot. (Olivieri, J. M., 1991, USC) (An unexpected 
consequence of mass production Taylorism — see next heuristic.)
Everyone a customer, everyone a supplier.•	
To reduce unwanted nonlinear behavior, linearize!•	
If you cannot analyze it, do not build it.•	
Avoid creating the same resonance time constant in more than one •	
location in a [production] system.
The five why’s. (A technique for finding basic causes, and one used •	
by every inquisitive child to learn about the world at large.)

Conclusion
Modern manufacturing can be portrayed as an ultraquality, dynamic 
feedback system intersecting with that of the product waterfall. The man-
ufacturing systems architect’s added tasks, beyond those of all systems 
architects, include (1) maintaining connections to the product waterfall 
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and the software spiral necessary for coordinated developments, (2) assur-
ing quality levels high enough to avoid manufacturing system collapse or 
oscillation, (3) determining and helping control the system parameters for 
stable and timely performance, and (4) looking farther into the future than 
do most product-line architects.

Exercises
	 1.	Manufacturing systems are complex systems that need to be archi-

tected. If the manufacturing line is software intensive, and repeated 
software upgrades are planned, how can certification of software 
changes be managed?

	 2.	The feedback lags or resonances of a manufacturing system of a 
commercial product interact with the dynamics of market demand. 
Give examples of problems arising from this interaction and possible 
methods for alleviating them.

	 3.	Examine the following hypothesis: Increasing quality levels in manu-
facturing enable architectural changes in the manufacturing system 
that greatly increase productivity but may make the system increas-
ingly sensitive to external disruption. For a research exercise, use 
case studies or a simplified quantitative model.

	 4.	Does manufacturing systems architecture differ in mass produc-
tion systems (thousands of units) and very low-quantity production 
systems (fewer than ten produced systems)? If so, how and why?

	 5.	Current flexible manufacturing systems usually build very small lot 
sizes from a single product line in response to real-time customer 
demand; for example, an automobile production line that builds 
each car to order. Consider two alternative architectures for organiz-
ing such a system, one centralized and one decentralized. The first 
would use close centralized control, centralized production schedul-
ing, and resource planning. The other would use fully distributed 
control based on disseminating customer/supplier relationships to 
each work cell; that is, each job and each work cell interact individu-
ally through an auction for services. What would be advantages and 
disadvantages of both approaches? How would the architecture of 
the supporting information systems (extending to sales and customer 
support) have to differ in the two cases?
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Case Study 3: Intelligent 
Transportation Systems

Introduction
Intelligent transport systems (ITSs)1 are members of a class of systems in 
which humans and their behavior are inextricably part of the system. They 
are also systems whose architectures are distributed, in both a logical and 
physical sense, and are equally distributed in their development, procure-
ment, and management. The key characteristics of such systems, which 
will jointly help define the concept of a collaborative system in Chapter 7, 
include (1) the lack of a single client with ownership and developmen-
tal responsibility for the system, (2)  considerable uncertainty in system 
purposes and a recognition that purposes will evolve in unknown direc-
tions over its lifetime, and (3) the need for extensive voluntary cooperation 
in their deployment and use. This last point, creation through voluntary 
cooperation and interaction, will be the central insight of Chapter  7. In 
Chapter 5, we deal more generally with the concept of sociotechnical 
systems, where humans and their behaviors are inside rather than outside 
the system boundary.

ITS concepts have been around for several decades but started getting 
serious attention in the 1990s. ITS in general refers to transportation-related 
guidance, control, and information systems. These systems use computer 
and information technology to address transportation functions at the 
level of individual vehicles, roadways, and large transportation networks. 
The motivator for developing such systems is the belief that they will 
improve transport network flow, improve safety, reduce environmental 
impact, and be large commercial market opportunities. Many believe that 
the transport improvements gained through the application of informa-
tion technology promise to be cheaper and less environmentally damag-
ing than further expansion of the physical transport infrastructure. Over 
the long term, ITS could evolve into automated highways where vehicles 
are automatically controlled for even larger gains in system performance.

At the time of the writing of this third edition, a variety of intelligent 
transport services are already commonly available. Many vehicles have 
built-in electronic navigators using Global Positioning System (GPS) and 
digital map databases. The systems provide route planning and real-time 
route guidance. Position monitoring systems are in fairly wide use in com-
mercial vehicle fleets. Real-time traffic conditions are available at various 
Web sites. Several different online services provide free maps of virtually 
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every city, and nonurban areas in industrialized countries, with route plan-
ning services. Many metro areas use intelligent traffic control methods in 
managing their stoplights, road admittance systems, and demand lanes.

In most areas, what does not exist today is the interconnection of these 
various services and the centralized exploitation of both information and 
controls. This is striking because many of the early concepts and propo-
nents emphasized the role and value of centralized control. Some steps 
toward centralized systems have been made in a few cities, and there is 
continuing interest in further integration, although perhaps somewhat 
less than in the first run of enthusiasm in the 1990s. The actual experience 
points out that the split between public and private control and responsi-
bility is an architectural choice. When certain services are to be provided 
voluntarily by market means, that is a choice on the overall structure of 
the system. When certain services are reserved to government control, 
likewise that is a choice on the overall structure of the system. To under-
stand the architecture of social systems, one element is division among 
public and private means.

ITS Concepts
Possible ITSs have been extensively described in the literature.2 The most 
common decomposition of ITS services is into five core services and auto-
mated highways, which is considered somewhat farther out. The five core 
services as have been usually defined, with an indication of how they are 
provided today, are as follows:

Advanced Traveler Information Services (ATIS)
	 ATIS is the provision of accurate, real-time information on trans-

portation options and conditions to a traveler anytime, anywhere. 
For example:

	 1.	 Computer-assisted route planning to a street location anywhere 
in the country. This service could be coupled with traffic predic-
tion and multimode transport information. Extensive capabilities 
in this category are available from multiple Web sites (although 
not necessarily tied to traffic conditions) and through in-vehicle 
GPS navigators.

	 2.	 Computer-assisted route guidance to a street location anywhere 
in the country, again possibly coupled to real-time traffic infor-
mation and predictions. Absent the traffic conditions component, 
this is the main selling feature of GPS in-vehicle navigators.

	 3.	 Access to full public transportation schedules in a distant city 
before leaving for that city. Again, this is available today, at least 
in some jurisdictions.
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	 4.	 Broadcast of real-time and predictive traffic conditions on the 
major roads of an urban area. Today this is available with mod-
erate fidelity on Web sites and through radio.

	 5.	 Emergency situation and location reporting, manual and auto-
mated. Various private services, some tied to particular auto 
manufacturers, now provide this.

Advanced Traffic Management Systems (ATMS)
	 The intent of ATMS is to improve the carrying capacity and flow of 

the road network by integrating traffic sensors, remotely operated 
traffic signals, real-time monitoring and prediction, and dissemina-
tion of route information. The service components of ATMS include 
sensing traffic conditions in real time over wide areas, real-time pre-
diction of traffic conditions, and remotely controlling traffic signals 
and signage from central control centers to optimize road network 
conditions. A long-term concept in ATMS is coupling traffic man-
agement with route selection in individual vehicles.

		  ATMS exist today, although their penetration has been less than 
many of the advocates hoped. Coupling of traffic management with 
individual route selection is almost nonexistent, wide area pre-
diction is limited, but wide area real-time monitoring is common. 
Some jurisdictions make use of considerable centralized control, 
including additional mechanisms not previously listed, such as 
demand pricing.

Advanced Vehicle Control Systems (AVCS)
	 AVCS covers driver assistance systems within a single vehicle. This 

is an area of continuing interest with some roll-out in production 
vehicles, mostly in high-end private automobiles. Some examples 
include:

	 1.	 Partially automated braking systems. Today, antilock brake auto-
mation is common, with additional levels of automation rare.

	 2.	 Automated driver assistance in distance following or lateral lane 
keeping. A few high-end vehicles have limited capabilities here.

	 3.	 Obstacle warning and avoidance. Backup sensors are common in 
larger vehicles today, and some limited stability enhancement in 
emergency avoidance maneuvers has been done.

	 4.	 Vision enhancement in reduced visibility conditions. Again, a 
few systems are available.

Commercial Vehicle Operations (CVO)
	 CVO deals with the automation of regulatory functions and record 

keeping, especially in interstate travel. The goal is reduction of time 
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and expense due to regulatory requirements in road transport. 
Although the roll-out to public infrastructure has been limited, 
there has been extensive usage in private fleets. Some examples of 
proposed CVO capabilities include:

	 1.	 Weigh-in-motion for trucks.
	 2.	 Electronic license/tag/permit checking and record keeping.
	 3.	 Hazardous cargo monitoring (coupled with navigation and posi-

tion reporting).
	 4.	 Position monitoring and reporting for fleet management.

Advanced Public Transport (APT)
	 The goal of APT is performance improvements in public transport 

through application of intelligent vehicle and highway system (IVHS) 
technology. Some examples include:

	 1.	 Real-time monitoring of bus, subway, or train position coupled 
with waiting area displays and vehicle dispatch. These systems 
have proved popular and reasonably effective where deployed.

	 2.	 Electronic fare paying systems to improve stopping times and 
allow time-sensitive pricing. Many systems have moved to smart 
card and related electronic payment systems.

ITS Sociotechnical Issues
An ITS is unquestionably a sociotechnical system, in the sense that 
humans and their behavior are irreducible components. People decide 
whether or not to use route planning and guidance systems. When given 
route advice, they choose to use it or ignore it. People choose to pur-
chase (or not) various components of an ITS. At the political level, people 
make joint decisions through their government whether or not to make 
infrastructural investments. So, any discussion of the architecture of an 
ITS must include people, and architecting of an ITS must incorporate 
the sociotechnical nature of the system. The heuristics of sociotechnical 
systems are the primary focus of Chapter 5, with Chapter 7 taking up the 
somewhat narrower, more specialized case of collaborative systems. To 
illustrate, consider how the issues have been resolved, in practice, for the 
ITSs that now exist and are emerging.

Who Is the Client for an Architect?
Borrowing a phrase,3 an ITS will be a system no one owns. ITS plan-
ning, at least in the United States, assumes that purchase, deployment, 
and use will be the result of distributed decisions by governments and 
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consumers.4 In consequence, the integrity of any ITS architecture must 
be maintained through some similarly distributed means. When a single 
client (agency, company, or individual) commissions a system, the integ-
rity of that system can be maintained by an architect hired by the client. 
When no client with that power exists, no architect with the power can 
exist either. This complicates the architecting problem. Lacking the power 
to directly establish and maintain the architecture, the architect must find 
indirect means to do so.

In systems architecting, it is common for the actual users to be dif-
ferent from the system sponsor. When this occurs, the architect must be 
conscious of the possibility that the preferences and needs of the ultimate 
users are different from those of the sponsors, or as perceived by the 
sponsors. The system might seem perfectly satisfactory to the sponsors, 
and yet be unacceptable to the users. If the system is rejected by the users, 
the sponsor is unlikely to perceive the system as successful.

This situation is even more extreme in the case of an ITS. To date, there 
has been little centralized architecting of ITSs, at least of those elements 
deployed and widely used in the United States. The U.S. Department of 
Transportation (DOT) sponsored rather extensive ITS architecture studies. 
But, the U.S. DOT has only limited authority to direct or mandate transpor-
tation developments in the United States. Execution is up to states, metro-
politan traffic authorities, cities, and individuals. By analogy, an architect 
for an ITS is more in the position of an urban planner than a civil architect. 
The urban planner has a great deal of influence, but relatively little power. 
For an urban planner to be effective requires considerable political skill, 
and sponsors who understand the limits of their own paper. Through 
city governments and zoning boards, urban planners can possess a “no” 
authority, that is the ability to say “no” to nonconformant plans. However, 
their ability to say “yes” is much less, and happens only if the government 
employing the urban planner is willing to commit funds.

Public or Private?
In the first wave of excitement over ITSs, many of the concepts seemed to 
assume a dominantly public infrastructure. But, in practice today, many, 
perhaps most, of the interesting traveler information services are private. 
The in-vehicle GPS navigators are privately produced and purchased. The 
online map services are private and advertising supported. Because the 
architecture of an ITS is not currently centrally directed by government 
(at least in the United States), it is probably not a surprise that the private 
side has been the side that has most extensively been developed.

Even if more centralized architecting had been done, the result might 
well have been the same, although there might have been niche areas where 
centralized decision making could take hold. As an elaboration, consider 
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the problem of social collaboration and fully coupled control. In order that 
any of the fully coupled control schemes can be effectively used, the driver 
compliance rate must be high. Why will drivers willingly comply with cen-
tralized route guidance that is knowingly being computed with the benefit 
of the whole in mind? Will people just game the system?

There is a useful heuristic from Rechtin (1991)5:

In introducing technological and social change, how 
you do it is often more important than what you do.

If social cooperation is required, the way in which a 
system is implemented and introduced must be an 
integral part of its architecture.

Using this heuristic requires identifying those architectural characteristics 
that lead to cooperative acceptance and use. In the ITS case, what system 
characteristics are most likely to foster public cooperation and acceptance? 
The answer will not be identical for all countries and cultures. We suggest 
for the United States that ITS general acceptance will be greater for those 
services that are privately and voluntarily contracted for.

The deployment mode for an architectural element should be, in order 
of preference:

	 1.	Private development and purchase.
	 2.	Private development and purchase subject to governmental guidelines 

or standards.
	 3.	Private development and purchase subject to government mandating.
	 4.	Government-financed development and private purchase.
	 5.	Government mandating of deployment with direct finance.

A consequence of using these criteria is that ITS services should be 
partitioned to support and encourage private development of particu-
lar packages. Such packaging requires groupings that provide income 
streams a private firm can capture and defensible markets. This criterion 
suggests that the technical architecture should support such decentraliza-
tion in development and deployment even where centralization would be 
more “efficient,” say on a life-cycle cost basis.

Although the issue of public–private partitioning is not so prominent 
in early writings on ITSs, as noted it has played an important role in actual 
development. The greatest ferment in ITSs has been in private systems, 
and private systems have avoided problems of perception of invasion of 
privacy and monitoring. Of course, the reality is that private monitoring is 
also monitoring, but this only reemphasizes that perceptions may matter 
more than facts.
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Facts and Perceptions
Continuing on that same line of facts versus perceptions, consider how 
ITS-like sociotechnical systems are judged as successes or failures. How 
would we know if ITSs were successful or not? A traditional systems engi-
neering approach would immediately appeal to measures of effectiveness, 
probably measures like average speed on the roads, road throughput, 
life-cycle cost, incident rate, and various other measures easy to imagine 
and cite. But, do the actual stakeholders of ITSs (government authorities 
and the traveling public) perceive those as measures of success? Another 
heuristic: Success is in the eye of the beholder, suggests not. Consider the 
following thought experiment:

Scenario 1: It is 15 years later than the present. Intelligent transportation 
systems are widely deployed in most major urban areas and very 
heavily used. Most urban areas have five or more competing, private 
traffic information service providers. There is extremely active, com-
petitive development of supporting communication, display, and 
algorithmic systems. Market penetration of rich services is above 
85%. But, traffic in major urban areas is much worse than current. 
Most measures of effectiveness (for example, average travel time, 
average speed) have decayed.

Scenario 2: Again, it is 15 years beyond the present. ITSs are likewise 
widely deployed and widely used. Now the various measures are 
substantially improved. But, deployment and compliance have 
come only from vigorous mandates and enforcement. In many 
jurisdictions, the mandates have been tossed out by popular vote. 
Effectiveness is demonstrably highest in those jurisdictions with 
the strictest enforcement and the least responsiveness to popular 
demand.

Although the reader may consider the scenarios fanciful and unreal-
istic, that is not the point. The point is to ask, seriously, whether a system 
should be judged by whether it gives the users what they want, regard-
less of whether the architect thinks what they want makes any sense. The 
classical paradigm says what the sponsors want is what matters, not what 
the architect thinks makes sense. In a sociotechnical and a collaborative 
system, where voluntary interaction is essential to system operation, what 
the users think they want is more important than what the sponsor wants. 
What we have now is a situation more like scenario 1, because the domi-
nant deployments are private.

Although the exact scenarios are not reality, the underlying obser-
vation about success not necessarily coming from the original objec-
tives has been proved in practice. In several cases where ITSs have been 
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found successful in use, a major source of satisfaction has been through 
the impact on travel time variance and predictability, and not on average 
speed. That is, the most valued impact has been how it enables users to 
accurately predict how long a trip will take, and making travel times more 
consistent, rather than making the average time shorter.

Architecture as Shared Invariants
One way of envisioning an architecture of something as complex as an 
ITS is by looking at the shared invariants. For an ITS this means looking 
for the things shared across many or all users, and that do not change 
much with time. In the sense of shared invariants, some of the things that 
could be an ITS architecture include the following:

Shared positioning services (GPS).•	
Map data, specifically the network of roads and their positions rela-•	
tive to GPS locations.
How digital traffic messages are encoded. How do you digitally indi-•	
cate that the flow at a given point on a given road has some value, in 
a system-independent way.
Mobile communication networks over which traffic information •	
flows (networks that may not belong to ITS).

Much less of this kind of invariant definition has been done than could 
have been done. In practice it has been hard to get centralized attention 
to elements that are supportive behind the scenes but are not delivering 
services that are benefits directly.

Dominance of Economics
Finally, a theme of sociotechnical systems that is strongly evident in ITS 
is the role of, or the dominance of, economics. Today, what we have in an 
ITS has largely been driven by what makes a profitable business, in many 
cases rather independently of doing anything about travel. The online 
map services, for example, are widely used and popular. In the course 
of a few short years, people have gone from mostly using paper maps 
to where people commonly pass around map service printouts for direc-
tional instructions. Many Web sites are now modified to simply link to 
one of the main map services whenever a location must be provided.

But, what drives the map services? Because they are free and rather 
modest appendages to larger Internet firms, the answer is mainly adver-
tising. A popular Web service attracts users, a large user base brings 
advertising dollars. Map services are a particularly fine advertising tar-
get because the nature of the search strongly suggests what the user is 
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looking for, hence assisting in advertising targeting. A user can opt out of 
advertising by using a purchased, disk-based version instead, but usage 
rates have proven that most users are not reluctant to abandon a small 
slice of privacy about their location searches in order to have continuously 
updated, online map information. It works because the economics works.

The broader lesson to consider in sociotechnical systems is that 
business is usually a part of them. “Stable forms” includes the notion of 
economically stable, not just technically stable. In Chapter 13 in Part IV, 
we will discuss politicotechnical systems. In a politicotechnical system, 
stability is likewise critical, but there it comes mostly from the nature of 
the constituency instead of the business model.
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5chapter 

Social Systems

Introduction: Defining Sociotechnical Systems
Social: Concerning groups of people or the general public.
Technical: Based on physical sciences and their application.
Sociotechnical Systems: Technical works involving signifi-
cant social participation, interests, and concerns.

Sociotechnical systems are technical works involving the participation of 
groups of people in ways that significantly affect the architectures and 
design of those works. Historically, the most conspicuous have been the 
large civil works — monuments, cathedrals, urban developments, dams, 
and roadways among them. Lessons learned from their construction pro-
vide the basis for much of civil (and systems) architecting and its theory.1

More recently, others, physically quite different, have become much 
more sociotechnical in nature than might have been contemplated at their 
inception — ballistic missile defense, air travel, information networks, 
welfare, and health delivery, for example. Few can even be conceived, much 
less built, without major social participation, planned or not. Experiences 
with them have generated a number of strategies and heuristics of impor-
tance to architects in general. Several are presented here. Among them are 
three heuristics: the four who’s, economic value, and the tension between 
perceptions and facts. In the interests of informed use, as with all heuristics, 
it is important to understand the context within which they evolved, the 
sociotechnical domain. Then, at the end of the chapter are a number of 
general heuristics of applicability to sociotechnical systems in particular.

Public Participation
At the highest level of social participation, members of the public directly 
use — and may own a part of — the system’s facilities. At an intermediate 
level, they are provided a personal service, usually by a public or private 
utility. Most important, individuals and not the utilities — the architect’s 
clients — are the end users. Examples are highways, communication and 
information circuits, general aviation traffic control, and public power. 
Public cooperation and personal responsibility are required for effective 
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operation. That is, users are expected to follow established rules with a 
minimum of policing or control. Drivers and pilots follow the rules of the 
road. Communicators respect the twin rights of free access and privacy.

At the highest level of participation, participating individuals choose 
and collectively own a major fraction of the system structure — cars, 
trucks, aircraft, computers, telephones, electrical and plumbing hardware, 
and so on. In a sense, the public “rents” the rest of the facilities through 
access charges, fees for use, and taxes. Reaction to a facility failure or a 
price change tends to be local in scope, quick and focused. The public’s 
voice is heard through specialized groups such as automobile clubs for 
highways, retired persons associations for health delivery, professional 
societies for power and communications services, and the like. Market 
forces are used to considerable advantage through adverse publicity in 
the media, boycotts, and resistance to stock and bond issues on the one 
hand and through enthusiastic acceptance on the other. Recent exam-
ples of major architectural changes strongly supported by the public are 
superhighways, satellite communications, entertainment cable networks, 
jet aircraft transportation, health maintenance organizations, and a slow 
shift from polluting fossil fuels to alternative sources of energy.

Systems of this sort are best described as collaborative systems, sys-
tems that operate only through the partially voluntary initiative of their 
components. This collaboration is an important subject in its own right, 
because the Internet, the World Wide Web, and open source software are 
collaborative assemblages. We address this topic in detail in Chapter 7.

At the other extreme of social participation are social systems used 
solely by the government, directly or through sponsorship, for broad social 
purposes delegated to it by the public; for example, National Aeronautics 
and Space Administration (NASA) and U.S. Department of Defense (DoD) 
systems for exploration and defense, Social Security, and Medicare man-
agement systems for public health and welfare, research capabilities for 
national well-being, and police systems for public safety. The public pays 
for these services and systems only indirectly, through general taxation. 
The architect’s client and end user is the government. The public’s con-
nection with the design, construction, and operation of these systems is 
sharply limited. Its value judgments are made almost solely through the 
political process, the subject of Chapter 10. They might best be characterized 
as “politicotechnical.”

The phrase “system-of-systems” is now commonly used in the systems 
engineering literature, although not with a consistent definition. Because 
the term system-of-systems is ambiguous on its face (is any system whose 
subsystems are complex enough to be regarded as systems a system-of-
systems?) we prefer the terms we use here. In many writings, sociotechni-
cal systems and systems-of-systems are conflated. In others, collaborative 
systems and systems-of-systems are conflated. For the purposes of this 
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chapter, we will establish the foregoing definition for sociotechnical systems 
and will explore the notion of collaborative systems at some length.

The Foundations of Sociotechnical 
Systems Architecting
The foundations of sociotechnical systems architecting are much the same 
as for all systems: a systems approach, purpose orientation, modeling, certi-
fication, and insight. Social system quality, however, is less a foundation than 
a case-by-case trade-off; that is, the quality desired depends on the system 
to be provided. In nuclear power generation, modern manufacturing, and 
manned space flight, ultraquality is an imperative. But in public health, 
pollution control, and safety, the level of acceptable quality is only one of 
many economic, social, political, and technical factors to be accommodated.

But if sociotechnical systems architecting loses one foundation, ultra-
quality, it gains another — a direct and immediate response to the public’s 
needs and perceptions. Responding to public perceptions is particularly 
difficult, even for an experienced architect. The public’s interests are 
unavoidably diverse and often incompatible. The groups with the stron-
gest interests change with time, sometimes reversing themselves based 
on a single incident. Three Mile Island was such an incident for nuclear 
power utilities. Pictures of the Earth from a lunar-bound Apollo spacecraft 
suddenly focused public attention and support for global environmental 
management. An election of a senator from Pennsylvania avalanched into 
widespread public concern over health insurance and Medicare systems.

The Separation of Client and User
In most sociotechnical systems, the client, the buyer of the architect’s 
services, is not the user. This fact can present a serious ethical, as well 
as technical, problem to the architect: how should conflicts between the 
preferences, if not the imperatives, of the utility agency and those of the 
public (as perceived by the architect) be treated when preferences strongly 
affect system design.

It is not a new dilemma. State governments have partly resolved 
the problem by licensing architects and setting standards for systems 
that affect the health and safety of the public. Buildings, bridges, and 
public power systems come to mind as systems that affect public safety. 
Information systems are already on the horizon. The issuing or denial 
of licenses is one way of making sure that public interest comes first in 
the architect’s mind. The setting of standards provides the architect some 
counterarguments against overreaching demands by the client. But these 
policies do not treat such conflicts as that of the degree of traffic control 
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desired by a manager of an intelligent transportation system (ITS) as com-
pared with that of the individual user/driver, or the degree of govern-
mental regulation of the Internet to assure a balance of access, privacy, 
security, profit making, and system efficiency.

One of the ways of alleviating some of these tensions is through eco-
nomics. Economics has important insights, as economics is fundamentally 
the study of social constructs. In addition, markets have evolved a variety 
of mechanisms, such as market segmentation, that effectively deal with 
essential problems that arise from the nature of sociotechnical, social, and 
collaborative systems architecting.

Socioeconomic Insights
Social economists bring two special insights to sociotechnical systems. 
The first insight, which might be called the four who’s, asks four questions 
that need to be answered as a self-consistent set if the system is to succeed 
economically — namely: Who benefits? Who pays? Who provides? And, as 
appropriate, Who loses?

Example: The answers to these questions of the Bell 
Telephone System were: (1) the beneficiaries were 
the callers and those who received the calls; (2) the 
callers paid based on usage because they initiated 
the calls and could be billed for them; (3) the provider 
was a monopoly whose services and charges were 
regulated by public agencies for public purposes; 
and (4) the losers were those who wished to use the 
telephone facilities for services not offered or to sell 
equipment not authorized for connection to those 
facilities. The telephone monopoly was incentivized 
to carry out widely available basic research because 
it generated more and better service at less cost, a 
result the regulatory agencies desired. International 
and national security agreements were facilitated by 
having a single point of contact, the Bell System, for 
all such matters. Standards were maintained and the 
financial strategy was long term, typically 30 years. 
The system was dismantled when the losers evoked 
antitrust laws, creating a new set of losers, complex 
billing, standards problems, and a loss of research. 
Arguably, it enabled the Internet sooner than otherwise. 
Subsequently, separate satellite and cable services were 
established, further dismantling what had been a 
single service system. The dismantlement also may 
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have assisted in allowing the rapid rollout of wire-
less cellular telephone systems. In other countries, 
some of the most successful wireless cellular rollouts 
have occurred where wireless companies were the 
only allowed alternative to a government-sponsored 
telephone monopoly.

Example: The answers to the four who’s for the 
privatized Landsat System, a satellite-based optical-
infrared surveillance service, were as follows: (1) the 
beneficiaries were those individuals and organiza-
tions who could intermittently use high-altitude 
photographs of the Earth; (2) because the value to the 
user of an individual photograph was unrelated to 
its cost (just as is the case with weather satellite TV), 
the individual users could not be billed effectively; 
(3) the provider was a private, profit-making orga-
nization that understandably demanded a cost-plus-
fixed-fee contract from the government as a surrogate 
customer; and (4) when the government balked at 
this result of privatization, the Landsat system faced 
collapse. Research had been crippled, a French gov-
ernment-sponsored service (SPOT) had acquired 
appreciable market share, and legitimate customers 
faced loss of service. Privatization was reversed and 
the government again became the provider.

Example: Serious debates over the nature of their 
public health systems are underway in many coun-
tries, triggered in large part by the technological 
advances of the last few decades. These advances 
have made it possible for humanity to live longer and 
in better health, but the investments in those gains 
are considerable. The answers to the four who’s are 
at the crux of the debate. Who benefits — everyone 
equally at all levels of health? Who pays — regard-
less of personal health or based on need and ability 
to pay? Who provides — and determines cost to the 
user? Who loses — anyone out of work or above 
some risk level, and who determines who loses?

Regardless of how the reader feels about any of these systems, there is 
no argument that the answers are matters of great social interest and con-
cern. At some point, if there are to be public services at all, the questions 
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must be answered and decisions made. But who makes them and on what 
basis? Who and where is “the architect” in each case? How and where is the 
architecture created? How is the public interest expressed and furthered?

The second economics insight is comparably powerful: In any resource-
limited situation, the true value of a given service or product is determined by 
what a buyer is willing to give up to obtain it. Notice that the subject here is 
value, not price or cost.

Example: The public telephone network provides a 
good example of the difference between cost and 
value. The cost of a telephone call can be accurately 
calculated as a function of time, distance, routing 
(satellite, cable, cellular, landline, and so forth), 
location (urban or rural), bandwidth, facility depre-
ciation, and so on. But the value depends on con-
tent, urgency, priority, personal circumstance, and 
message type, among other things. As an exercise, 
try varying these parameters and then estimating 
what a caller might be willing to pay (give up in 
basic needs or luxuries). What is then a fair alloca-
tion of costs among all users? Should a sick, remote, 
poor caller have to pay the full cost of remote TV 
health service, for example? Should a business that 
can pass costs on to its customers receive volume 
discounts for long-distance calling via satellite? 
Should home TV be pay-per-view for everyone? 
Who should decide on the answers?

These two socioeconomic heuristics, used together, can alleviate the 
inherent tensions among the stakeholders by providing the basis for com-
promise and consensus among them. The complainants are likely to be 
those whose payments are perceived as disproportionate to the benefits 
they receive. The advocates, to secure approval of the system as a whole, 
must give up or pay for something of sufficient value to the complain-
ants that they agree to compromise. Both need to be made to walk in the 
other’s shoes for a while. And therein can be the basis of an economically 
viable solution.

The Interaction between the 
Public and Private Sectors
A third factor in sociotechnical systems architecting is the strong inter-
play between the public and private sectors, particularly in the advanced 
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democracies where the two sectors are comparable in size, capability, 
and influence — but differ markedly in how the general public expresses 
its preferences.

By the middle of the 1990s, the historic boundaries between public 
and private sectors in communications, health delivery, welfare services, 
electric power distribution, and environmental control were in a state of 
flux. This chapter is not the place to debate the pros and cons. Suffice it to 
say, the imperatives, interests, and answers to the economists’ questions 
are sharply different in the two sectors.2 The architect is well advised to 
understand the imperatives of both sectors prior to suggesting architec-
tures that must accommodate them. For example, the private sector must 
make a profit to survive; the public sector does not and treats profits as nec-
essary evils. The public sector must follow the rules; the private sector sees 
rules and regulations as constraints and deterrents to efficiency. Generally 
speaking, the private sector does best in providing well-specified things 
at specified times. The public sector does best at providing services within 
the resources provided.

Because of these differences, one of the better tools for relieving the 
natural tension between the sectors is to change the boundaries between 
them in such negotiable areas as taxation, regulation, services provided, 
subsidies, billing, and employment. Because perceived values in each of 
these areas are different in the two sectors and under different circum-
stances, possibilities can exist where each sector perceives a net gain. The 
architect’s role is to help discover the possibilities, achieve balance through 
compromise on preferences, and assure a good fit across boundaries.

Architecting a system, such as a public health system, that involves 
both the public and private sectors can be extraordinarily difficult, par-
ticularly if agreement does not exist on a mutually trusted architect, on 
the answers to the economist’s questions, or on the social value of the 
system relative to that of other socially desirable projects. The problem 
is only exacerbated by the fundamental difficulties of diverse prefer-
ences. Public-sector projects look for a core of common agreement and an 
absence of “losers” sufficient to generate a powerful negative constituency. 
Private ventures look for segments of users (more is often better) with the 
resources to fund their own needs.

Facts versus Perceptions: An Added Tension
Of all the distinguishing characteristics of social systems, the one that most 
sharply contrasts them with other systems is the tension between facts and 
perceptions about system behavior. To illustrate the impact on design, con-
sider the following: Architects are well familiar with the trade-offs between 
performance, schedule, cost, and risk. These competing factors might be 
thought of as pulling architecting four different directions as sketched in 
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Figure 5.1 and Figure 5.2 can be thought of as the next echelon or ring — the 
different sources or components of performance, schedule, cost, and risk. 
Notice that performance has an aesthetic component as well as technical 
and sociopolitical sources. Automobiles are a clear example. Automobile 
styling often is more important than aerodynamics or environmental con-
cerns in their architectural design. Costs also have several components, of 
which the increased costs to people of cost reduction in money and time 
are especially apparent during times of technological transition, and so on.

To these well-known tensions must be added another, one that social 
systems exemplify but which exist to some degree in all complex systems 
— namely, the tension between perceptions and facts, shown in Figure 5.3. 
Its sources are shown in Figure 5.4. This added tension may be dismaying 
to technically trained architects, but it is all too real to those who deal with 
public issues. Social systems have generated a painful design heuristic: 
It is not the facts; it is the perceptions that count. Some real-world examples 
include the following:

It makes little difference what facts nuclear engineers present about •	
the safety of nuclear power plants, their neighbors’ perception is 
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Figure 5.1  Four basic tensions in architecting.
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Figure 5.2  Underlying sources of the four tensions.
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that someday their local plant will blow up. Remember Three Mile 
Island and Chernobyl? A. M. Weinberg of Oak Ridge Associated 
Universities suggested perhaps the only antidote: “The engineer-
ing task is to design reactors whose safety is so transparent that the 
skeptical elite is convinced, and through them the general public.”3

Airline travel has been made so safe that the most dangerous part of •	
travel can be driving to and from the airport. Yet, every airliner crash 
is headline news. A serious design concern, therefore, is how many 
passengers an airliner should carry — 200? 400? 800? — because 
even though the average accident rate per departure would probably 
remain the same,4 more passengers would die at once in the larger 
planes and a public perception might develop that larger airliners 
are less safe, facts not withstanding.
One of the reasons that health insurance is so expensive is that health •	
care is perceived by employees as nearly “free” because almost all its 
costs are paid for either by the employee’s company or the govern-
ment. The facts are that the costs are either passed on to the consumer, 
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Figure 5.3  Adding facts versus perceptions.
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subtracted from wages and salaries, taken as a business deduction 
against taxes, or paid for by the general taxpayer, or all of the above. 
As any economist will explain, free goods are overconsumed.
One of the most profound and unanticipated results of the Apollo •	
flights to the Moon was a picture of the Earth from afar, a beautiful 
blue, white, brown, and green globe in the blackness of space. We 
certainly had understood that the Earth was round, but that distant 
perspective changed our perception of the vulnerability of our home 
forever, and with it, our actions to preserve and sustain it. Just how 
valuable was Apollo, then and in our future? Is there an equivalent 
value today?

Like it or not, the architect must understand that perceptions can 
be just as real as facts, just as important in defining the system architec-
ture, and just as critical in determining success. As one heuristic states, 
The phrase, “I hate it,” is direction.5 There have even been times when, 
in retrospect, perceptions were “truer” than facts that changed with 
observer, circumstance, technology, and better understanding. Some of 
the most ironic statements begin with, “It can’t be done, because the facts 
are that…”

Alleviating the tension between facts and perceptions can be highly 
individualistic. Some individuals can be convinced — in either direction — 
by education, some by prototyping or anecdotes, some by A. M. Greenberg’s 
antidote given earlier, some by better packaging or presentation, and some 
only by the realities of politics. Some individuals will never be convinced, 
but they might be accepting. In the end, it is a matter of achieving a balance 
of perceived values. The architect’s task is to search out that area of com-
mon agreement that can result in a desirable, feasible system.

Looking more broadly, this is just a strengthened version of the basic 
admonition that an architect must know his or her client and what com-
municates to that client. It does no good to communicate precise and accu-
rate representations that the client does not understand. Some clients are 
convinced only by prototypes. Some are convinced by analyses. In any 
case, the architect must understand what the audience in the domain of 
interest understands and will accept.

Heuristics for Social Systems
Success is in the eyes of the beholder (not the architect).•	
Do not assume that the original statement of the problem is neces-•	
sarily the best, or even the right one. (Most customers would agree.)
In conceptualizing a social system, be sure there are mutually •	
consistent answers to the Four Who’s: Who benefits? Who pays? 
Who supplies (provides)? And, as appropriate, Who loses?



Chapter 5:  Social Systems	 135

In any resource-limited situation, the true value of a given service or •	
product is determined by what one is willing to give up to obtain it.
The choice between the architectures may well depend upon which •	
set of drawbacks the stakeholders can handle best. (Not on which 
advantages are the most appealing.)
Particularly for social systems, it is not the facts, it is the perceptions •	
that count. (Try making a survey of public opinion.)
The phrase, “I hate it.” is direction. (Or were you not listening?)•	
In social systems, •	 how you do something may be more important than 
what you do. (A sometimes bitter lesson for technologists to learn.)
When implementing a change, keep some elements constant as an •	
anchor point for people to cling to. (At least until there are some 
new anchors.)
It is easier to change the technical elements of a social system than •	
the human ones. (Enough said.)

Conclusion
Social systems, in general, place social concerns ahead of technical ones. 
They exemplify the tension between perception and fact. More than most 
systems, they require consistent responses to questions of who benefits? 
who pays? who supplies (provides, builds, and so forth), and, sociologi-
cally at least, who loses? 

Perhaps more than other complex systems, the design and develop-
ment of social ones should be amenable to insights and heuristics. Social 
factors, after all, are notoriously difficult to measure, much less predict. 
But, like heuristics, they come from experience, from failures as well as 
successes, and from lessons learned.

Exercises
	 1.	Public utilities are examples of sociotechnical systems. How are 

the heuristics discussed in this chapter reflected in the regulation, 
design, and operation of a local utility system?

	 2.	Apply the four who’s to a sociotechnical system familiar to you. Examples: 
the Internet, air travel, communication satellites, a social service.

	 3.	Many efforts are underway to build and deploy intelligent transport 
systems using modern information technologies to improve exist-
ing networks and services. Investigate some of the current proposals 
and apply the four who’s to the proposal.

	 4.	Pollution and pollution control are examples of a whole class of socio-
technical systems where disjunctions in the four who’s are common. 
Discuss how governmental regulatory efforts, both through man-
dated standards and pollution license auctions, attempt to reconcile 
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the four who’s. To what extent have they been successful? How did 
you judge success?

	 5.	Among the most fundamental problems in architecting a system 
with many stakeholders is conflicts in purposes and interests. What 
architectural options might be used to reconcile them?

	 6.	Give an example of the application of the heuristic, In introducing 
technological change, how you do it is often more important than 
what you do.
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Case Study 4: Hierarchical 
to Layered Systems
A core concept we will encounter in Chapter 6 is the concept of a layered 
rather than a hierarchical system. Software is naturally constructed as a 
layered system rather than in the classic hierarchy, the basic paradigm of 
systems engineering. As with the other chapters in Part II, we introduce 
the core concepts with examples taken from life before proceeding with 
the chapter. The case study in this section differs from some of the others 
in that it is not drawn from a single, named system. For this case study, 
it has been more convenient to combine and abstract a number of stories 
the authors have encountered over time. The individual stories either 
illustrate only a limited range of issues or are not available to publish with 
full acknowledgment. Nevertheless, a reader with experience should have 
little trouble drawing parallels in his or her own personal experiences. 
The basic stories and issues in making the hierarchical to layered transi-
tion are encountered consistently.

Key points to consider in this case study include the following:

The contrasting logic of layered versus hierarchical construction. •	
In each, what constitutes components, what constitutes connectors 
between components, and how does each relate to others?
The technical structure is (or should be) a reflection of business •	
strategy. Choosing a layered architecture is foremost a business, or 
operational, strategic choice.
The implementation, and the means of implementation, matter a •	
great deal in whether or not the business strategy is realized. Simply 
converting a hierarchical architecture to a layered architecture 
does not embody a coherent business strategy. Implementation of 
the strategy requires details of the implementation (a repeat of the 
heuristic of variable technical depth, but in a different guise).

Many of these points are echoed and expanded in later chapters. For 
example, the relationship between business strategy and architecture is 
studied in depth in Chapter 12. We introduce many of the key points here 
that we will return to at greater length in later chapters.

Business Background
Our fictitious case study company, MedInfo, makes a wide variety of medi-
cal imaging systems, including conventional x-ray, computed tomography 
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(CT), magnetic resonance imaging (MRI), and others. The systems are 
sold to hospitals and clinics, both in the United States and internationally. 
Wherever one of the MedInfo systems is deployed, it will be integrated 
into the user’s technical infrastructure, at least so far as possible. At the 
beginning point in this story, the systems are structured as “stovepipes”; 
that is, each system is designed, manufactured, sold, and operated as its 
own, stand-alone, system. This is illustrated in Figure CS4.1.

The progression of business has been dominated by steady upgrades 
to the individual systems and occasional introduction of new imaging 
systems. The upgrade path is what one would expect, additional user 
features, lowered cost, greater throughput, enhanced sensitivity or coverage 
area, and so forth. The management model for the product family is like-
wise simple and as one would expect. Each of the products has an indi-
vidual product manager. That manager is responsible end-to-end for that 
product. The manager leads design efforts, runs development and produc-
tion, and is responsible for field performance, maintenance, and support. 
Although each product manager has many subordinates responsible for 
different aspects, all responsibility for that product ultimately lies with the 
product manager.

Each system has associated with it a supply chain of subcontractors 
and other suppliers. The subsystems or components supplied are each 
defined through specifications and interface control documents, written 
as needed based on the patterns of interconnecting each system.

Motivation for Change
If MedInfo has a solid record of success with things as they are, what 
motivation is there for change, especially relatively radical, architectural 
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Figure CS4.1  MedInfo’s initial situation. Multiple products are structured as 
stand-alone systems. Their nature as a product line is restricted to marketing and 
branding.
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change? The motivation for change is clearly not incremental improve-
ment. Incremental, steady improvement is clearly possible, and is already 
being realized, with the current architecture. However, business strategy 
issues are pushing MedInfo toward restructuring their family of prod-
ucts. The business strategic drivers for change are as follows:

Software cost reduction: MedInfo management has noticed that the frac-
tion of development cost expended on software has risen steadily, 
and now tops 70%. What used to be hardware-dominated prod-
ucts are now software-dominated products. The shift comes from 
multiple causes. The first is the continued commodification of hard-
ware. Custom processors have disappeared, and larger and more 
complex hardware units are available through subcontracting. 
Second, and related, is that competitive differentiation is increas-
ingly software based. When competitors have access to the same 
hardware components, it is possible to competitively differentiate 
only through software. User demands are also increasingly about 
software capabilities, such as processing algorithms, display forms, 
user customization, and the ability to support process automation. 
A  major source of user demand, and a source of the movement 
toward higher value fractions in software, is the need for intercon-
nection and integration.

User demand for interconnection and integration: Users are increasingly 
dissatisfied with stand-alone systems. A radiologist might need 
access to five different imaging technologies during a day, and have 
to report from any or all of them on a hospital network. Few radi-
ologists (much less other types of doctors) are happy with five com-
puters on their desks and with manual file transfer among systems. 
Users are increasingly demanding both interconnection and inte-
gration. A very simple form of integration is collapsing the number 
of displays and computers on the desk needed to access multiple 
imaging systems. A form of interconnection and integration is the 
ability to move data from different imaging systems onto a common 
reporting platform. A complex form of integration is being able to 
combine, overlay, and otherwise jointly process images from differ-
ent systems. The most complex form of integration is where integra-
tion leads itself to new products and new concepts of operation by 
customers. An example here would be integrating medical imaging 
data into multidisciplinary diagnostic decision support systems.

Rate of product turnover: In MedInfo’s world, as in many other prod-
uct spaces, there is increasing pressure to turn over products. User 
expectations for product cycles are getting shorter. As MedInfo’s 
competition works to lower development cycle time, MedInfo is 
forced to match.
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Lateral and vertical product space expansion: Finally, the pressure to grow 
makes it important to continuously challenge the horizontal and 
vertical boundaries of the product space. If MedInfo machines are 
going to be integrated into larger medical information systems, then 
failing to move one’s own boundary outward to encompass some 
of that larger information space leaves one open to being laterally 
consumed. If the processing and user interface side of a MedInfo 
imager is subsumed into a shared information system, the infor-
mation system supplier will want to capture that part of the value 
stream and push MedInfo back to being a narrower hardware sup-
plier. Integrated system markets can easily become “winner take all” 
markets, meaning one better try to be the winner.

The Layered Alternative
As MedInfo systems become software dominated (in development cost), 
and increasingly interconnected, it becomes obvious that different prod-
ucts are sharing a great deal of software. Networking, data storage and 
transformation, significant processing, and much user interface code are 
either the same, or easily could be the same. Achieving integration is 
largely a matter of achieving protocol sharing, which is often most easily 
accomplished by code sharing. Systems that build with layers that care-
fully isolate the parts with the greatest potential to change from each other, 
through relatively invariant layers, generally have the highest rates of 
effective change. But, hierarchical system decomposition with end-to-end 
product managers with complete vertical responsibility does not encour-
age the discovery and management of that shared code.

An alternative architecture for the MedInfo product line that empha-
sizes horizontal layering is illustrated in Figure CS4.2. In this variant, the 
actual deployed products may or may not look different than before. If a 
customer desired a stand-alone system, he will receive a stand-alone system. 
On the other hand, if a customer desires that the system display on a shared 
display system, then that can be accommodated. In either case, the same 
subsystems are present as before, but now those subsystems are drawn 
from a shared base. There is extensive, designed-in code sharing among 
the different elements of the family. The shared elements form layers.

In a classic hierarchy, a lower-level element is a “part of” a higher-level 
element. This is the relationship among the elements of a chair. The legs of 
the chair, the seat of the chair, and the back of the chair are all parts of the 
chair. A set of chair legs belongs to exactly one chair (although the design 
and manufacturing of those legs may be shared across many identical 
chairs). In a layered system, a lower-layer element provides services to a 
higher-layer element. The lower element does not belong to the upper; it is 
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used by the upper. A layered architecture has a component relationship of 
the “uses” form instead of the “part-of” form.

The layered model is borrowed originally from communication net-
works, where it originated as the well-known seven-layer model. The seven-
layer model of the ISO Open System Interconnect (OSI) standard is now 
of largely historic interest, having been replaced by the 5+ layered model 
of the Internet. In both, the lower four layers (physical, data link, network, 
and transport) and the top layer (application) are largely the same. What 
is different is what is in between. The original OSI model defined two 
specific in-between layers, the session and the presentation. In practice, 
these are not used. Many Internet applications simply are written directly 
onto the transport layer. In modern development libraries, and in this 
case study, the middle area is occupied by various forms of middleware 
(for example, message servers, .NET, Common Object Request Broker 
Architecture [CORBA®]).

Various real companies, and our abstracted MedInfo company, have 
made the transition from a hierarchical to a layered architecture. One can eas-
ily find reports on how the transition went that emphasize the following:

	 1.	The success of the transition is critical to realizing the business stra-
tegic objectives (those discussed above).

	 2.	The transition was intensely traumatic for staff and management, 
leading to extensive attrition and financial difficulties while trying 
to carry it off.

If the benefits to MedInfo of making this transition are clear, what are the 
sources of pain?
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Figure CS4.2  Transformed structure of MedInfo product line. The product line 
allows “mixing and matching” of hardware elements and assembles end-to-end 
applications from a large base of shared modules and commercial products.
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The Pain of the Transition
The first source of pain is in how end-to-end management responsibility 
changes. In a stovepiped world, the product manager has everything nec-
essary within his or her scope of responsibility. When there are problems, 
there is no doubt where to go to demand a fix, and one point of decision on 
how to make the fix. Once the fix is made, the scope of its impact is on the 
product for which the manager is responsible. In the layered construct, 
the situation becomes more complex.

In the layered construct, the end-user product is now assembled out of 
components shared across the product family. It may be delivered, in part, 
on platforms out of the product manager’s responsibility. For example, in 
the layered construct, it may be that an x-ray imager is delivered by deliv-
ering the imaging hardware and software, but that the software and user 
interface reside entirely on computers shared with other imaging systems, 
imaging systems that may not be made by MedInfo (in  a more highly 
integrated case). A large part of the imaging and user interface software is 
shared with other products in the MedInfo family. Being able to do this is 
a major part of the stated MedInfo business strategy.

When things go wrong, either during development or in deployment, 
who is responsible for the fix? The product manager no longer has vertical 
control over the elements that combine to produce a valuable product. If a 
change is required in the shared code base, that change could conceivably 
impact all of the other products that use the shared elements. Various com-
panies and government development groups have reported that handling 
this diffusion of end-to-end responsibility was the most difficult aspect of 
the change to a layered architecture. It is not practical to make the first con-
vergence point for technical issues across the different products the chief 
executive officer (CEO). There has to be a point to resolve the issues lower 
down, but conceivably there is no point of common financial responsibil-
ity lower down. It is not hard to institute cross-product or cross-functional 
engineering teams, but it is likewise not hard to make such teams toothless 
when all financial accountability resides elsewhere.

Related to management responsibility is how MedInfo must do qual-
ity management. In the stovepiped construct, quality can be managed 
product by product. The quality requirements can come directly from the 
expectations of the market for each product. But, how do we do quality 
management for shared infrastructure components? Granted, coming up 
with measures is no problem for the experienced, but where do the thresh-
olds lie, given that quite different thresholds might apply to different 
products within the family? If trade-offs for shared components resolve 
quite differently in different product applications, which trade-off should 
be selected? And, how do we enforce standards when those standards do 
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not directly relate to delivered customer quality but do have immediate 
financial consequences (probably bad)?

Again, various companies have similarly reported on the difficulty of 
these issues and on how they were successfully dealt with. One heuristic 
that stands out is

Subsystem quality requirements that are sufficient when 
the component is an element of a stovepiped system are 
unlikely to be sufficient when the component is shared 
across many systems. Or, the quality requirements on the 
components of a shared layer are likely to be much more 
demanding than when those components are not shared.

More difficult quality requirements may require new quality assess-
ment tools. Some highlights have included the following:

The transition to a layered, family-of-systems architecture drove the •	
development and adoption of a massively parallel and automated 
software regression testing system. All unit-level regression tests 
needed to be run automatically over a weekend (and they were run 
every weekend).
All heavily shared libraries were required to be written with asser-•	
tion statements on all function entrances and exits. All designs with 
assertions must be formally reviewed before production. All soft-
ware had to be tested with the assertions compiled. Any calling 
function that causes an assertion to fail is assumed to be at fault and 
must correct itself.

A related problem in end-to-end management is in how subcontract-
ing or outsourcing is organized. In the hierarchical construct, subcon-
tracting tends to follow physical lines. A subcontractor delivers a box or 
a board, and the specification is written at the box or board level. In a 
layered system, one can likewise imagine doing the subcontracting of a 
whole layer, or components within a layer. But, new difficulties are intro-
duced, such as

The specification for a layer typically looks nothing like the speci-•	
fication for a box. Is the expertise available in-house to write speci-
fications and manage subcontracts when the interfaces change in 
dramatic ways?
Testing and integration of layered elements presupposes access to •	
the shared programming libraries. How will shared programming 
environments be managed with a subcontractor? If the prime con-
tractor has selected some overall software framework to facilitate 
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integration, will all subcontractors buy licenses to the same frame-
work? Is that financially feasible? How will the configurations 
of the separately purchased frameworks be managed to ensure 
compatibility?
What happens when a subcontractor supplying a component that •	
cuts across the whole family-of-systems goes out of business, or 
decides to drop support, or simply releases a poor-quality version?

All of these, leaving aside the detailed technical issues, fall generally 
under the heading of management culture and skills. It is not as if there 
are no solutions to these issues, many companies and government depart-
ments have encountered them and solved them. The impact on manage-
ment culture and practices is most likely when companies frequently 
report high attrition as a cost of transition. In one case known to the 
author, the chief operating officer (COO) of a major company responded 
when asked how his company had successfully managed a stovepipe to 
layered transition that others had failed at, “We became successful when 
management attrition reached 50%.” Unfortunately, this does not appear 
to be uncommon.

Results
Solving the problems imposed by changing architectures is possible, 
but typically quite painful. Is the solution and the pain of arriving at the 
solution worth the strategic gains? In our composite example, MedInfo 
answers “yes,” but with a certain degree of qualification. The transition 
from a stovepiped to layered system addresses the business objectives, at 
least it can when the devilish details are worked out.

An effective layered architecture can drop the total line of code count •	
across a family of systems. If the total size is dropped, cost and devel-
opment time advantages can be expected to follow. However, even 
where there is a software size savings, the savings can be lost if the 
newer development environment has higher overhead, is much more 
expensive, or if access constraints make development more difficult.
A layered architecture can allow much more complete integration •	
among elements of a product line, when all elements of the line have 
made the transition. The end point might be very integrated, but it 
might be a very long march to get to the point at which significant 
benefits are realized. Management needs to know where the cut-over 
point is to make a rational decision.
If the layered architecture effectively isolates areas of change from •	
each other, it can allow for much faster product evolution. The key 
is good choice of invariants. The invariants must flow from a wise 
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identification of things that change, and where an invariant struc-
ture can isolate change. The Transmission Control Protocol/Internet 
Protocol (TCP/IP) are an outstanding example.
The transition is almost invariably very painful. The pain is related •	
much more to the difficulties of the human enterprise than to inher-
ent difficulties in the technologies involved. The new architecture is 
not more complex than the old one; it is simply different, and many 
success factors relevant to the old one must be replaced before the 
new one can be equally as successful.
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6chapter 

Software and Information 
Technology Systems

Today I am more convinced than ever. Conceptual 
integrity is central to product quality. Having a 
system architect is the most important step toward 
conceptual integrity.

Frederick P. Brooks, Jr.
The Mythical Man-Month after Twenty Years

Introduction: The Status of Software Architecting
Software is rapidly becoming the centerpiece of complex system design, in 
the sense that an increasing fraction of system performance and complex-
ity is captured in software, and that software considerations drive overall 
system development. Software is increasingly the portion of the system that 
enables the unique behavioral characteristics of the system. Competitive 
developers of end-user system products find themselves increasingly 
developing software, even though the system combines both hardware 
and software. The reasons stem from software’s ability to create intelli-
gent behavior and quickly to accommodate technical-economic trends in 
hardware development. This capability of software is matched against 
increasing maturity in many other fields containing complex systems. As 
examples, the physical architectures of aircraft have been slowly varying 
since 1970, and the physical architectures of spacecraft have been slowly 
varying since at least 1990.

Although detailed quantitative data are hard to come by, anecdotal 
stories tell a consistent story. A wide variety of companies in different 
industries (for example, telecommunications, consumer electronics, indus-
trial controls) have reported a dramatic shift in the relative engineering 
efforts devoted to hardware and software.* Where 15 to 20 years ago the 
ratio was typically 70% hardware and 30% software, it is now typically 

*	 The numbers are anecdotal but reflect private communications to one of the present 
authors from a wide variety of sources.
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reversed, 30% hardware and 70% software. And the software fraction is 
continuing to grow. This should not be surprising, given how the semi-
conductor industry has changed. Where product developers used to 
build from relatively simple parts (groups of logic gates), they now use 
highly integrated microprocessors with most peripheral devices on the 
chip. The economies of scale in semiconductor design and production 
have pushed the industry toward integrated solutions where the product 
developer primarily differentiates through software. Moreover, micro-
controllers have become so inexpensive and have such low power con-
sumption that they can be placed in nearly any product, even throwaway 
products. The microprocessor-based products acquire their functionality 
by the software that executes on them. The product developer is trans-
formed from a hardware designer to a hardware integrator and software 
developer. As software development libraries become larger, more capable, 
and accepted, many of the software developers will be converted to soft-
ware integrators.

The largest market for software today is usually termed “information 
technology,” which is a term encompassing the larger domain of computers 
and communications applied to business and public enterprises. We con-
sider both here, as software architecture as a field is becoming a distinct 
specialty. What is usually called software architecture, at least in the 
research community, is usually focused on developing original software 
rather than building information-processing systems through integra-
tion of large software and hardware components. Information technol-
ogy practice is less and less concerned with developing complete original 
applications and more and more concerned with building systems through 
integration. What is usually called enterprise architecture, to the extent 
that it is dealing with the architecture of software, is normally dealing 
with integrating large, preexisting software applications.

The focus of this chapter is less on the architecting of software (though 
that is discussed here and in Part III) than it is on the impact of software 
on system architecting. Software possesses two key attributes that affect 
architecting. First, well-architected software can be very rapidly evolved. 
Evolution of deployed software is much more rapid than evolution of 
deployed hardware, because an installed base of software can be regu-
larly replaced at moderate cost. The cost of “manufacturing” software is 
essentially zero (although the cost of certifying it for use may be high), 
and so unlike in hardware systems, regular total replacement is efficient. 
As a result, annual and even quarterly replacement is common. Annual or 
more frequent field software upgrades are normal for operating systems, 
databases, end-user business systems, large-scale engineering tools, and 
communication and manufacturing systems. This puts a demanding pre-
mium on software architectures because they must be explicitly designed 
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to accommodate future changes and to allow repeated certification with 
those changes.

Second, software is an exceptionally flexible medium. Software can 
easily be built which embodies many logically complex concepts such as 
layered languages, rule-driven execution, data relationships, and many 
others. This flexibility of expression makes software an ideal medium with 
which to implement system “intelligence.” In both the national security and 
commercial worlds, intelligent systems are far more valuable to the user 
and far more profitable for the supplier than their simpler predecessors.

In addition, a combination of technical and economic trends favor build-
ing systems from standardized computer hardware and system-unique 
software, especially when computing must be an important element of 
the system. Building digital hardware at very high integration levels 
yields enormous benefits in cost per gate but requires comparably large 
capital investments in design and fabrication systems. These costs are 
fixed, giving a strong competitive advantage to high production volumes. 
Achieving high production volumes requires that the parts be general 
purpose. For a system to reap the benefits of very high integration levels, 
its developers must either use the standard parts (available to all other 
developers as well) or be able to justify the very large fixed expense of a 
custom development. If standard hardware parts are selected, the remain-
ing means to provide unique system functionality is software.

Logically, the same situation applies to writing software. Software 
production costs are completely dominated by design and test. Actual pro-
duction is nearly irrelevant. So, there is likewise an incentive to make use 
of large programming libraries or components and amortize the devel-
opment costs over many products. In fact, this is already taking place. 
Even though much of the software engineering community is frustrated 
with the pace of software reuse, there are many successful examples. One 
obvious one is operating systems. Very few groups who use operating 
systems write one from scratch anymore. Either they use an off-the-shelf 
product from one of the remaining vendors, or they use an open source 
distribution and customize it for their application. Databases, scripting 
languages, and Web applications are all examples of successful reuse of 
large software infrastructures.

The rapid proliferation of open source software is likewise a suc-
cessful example of wide-scale software reuse. When the source code is 
completely open and available for modification and redistribution, many 
groups have built vigorous communities of developers and users. The 
availability of the source code, and the licensing terms for redistribution, 
appear to be key to making this form of reuse work, as is the quality of 
the design.
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A consequence of software’s growing complexity and central role 
is recognition of the importance of software architecture and its role 
in system design. An appreciation of sound architectures and skilled 
architects is broadly accepted. The soundness of the software architec-
ture will strongly influence the quality of the delivered system and the 
ability of the developers to further evolve the system. When a system is 
expected to undergo extensive evolution after deployment, it is usually 
more important that the system be easily evolvable than that it be exactly 
correct at first deployment.

Software architecture is frequently discussed, from both academic and 
industrial perspectives.1 Within the software architecture community, there 
is limited consensus on the borders of what constitutes “architecture.” Many 
groups focus on architecture as high-level physical structure, primarily of 
source code. A distillation of commonly used ideas is that the architecture 
is the overall structure of a software system in terms of components and 
interfaces. This definition would include the major software components, 
their interfaces with each other and the outside world, and the logic of their 
execution (single threaded, interrupted, multithreaded, combination). To 
this is often added principles defining the system’s design and evolution, 
an interesting combination of heuristics with structure to define architec-
ture. A software architectural “style” is seen as a generic framework of com-
ponents or interfaces that defines a class of software structures. The view 
taken in this book, and in some of the literature,2 is more expansive than 
just high-level physical structure, and includes other high-level views of the 
system: behavior, constraints, and applications as well.

High-level advisory bodies to the Department of Defense are calling 
for architects of ballistic missile defense, C4I (command, control, commu-
nications, computers, and intelligence), global surveillance, defense com-
munications, Internetted weapon systems, and other “systems-of-systems.” 
Formal standards have been developed, defining the role, milestones, 
and deliverables of system architecting. Many of the ideas and terms of 
those standards come directly from the software domain, for example, 
object-oriented, spiral process model, and rapid prototyping. The carry
over should not be a surprise; the systems for which architecting is 
particularly important are behaviorally complex, data intensive, and soft-
ware rich. Examples of software-centered systems of similar scope are 
appearing in the civilian world, such as the information superhighway, 
the Internet, global cellular telephony, health care, manned space flight, 
and flexible manufacturing operations.

The consequences to software design of this accelerating trend to 
smarter systems are now becoming apparent. For the same reason that 
guidance and control specialists became the core of systems leadership 
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in the past, software specialists will become the core in the future. In the 
systems world, software will change from having a support role (usually 
after the hardware design is fixed) to becoming the centerpiece of com-
plex systems design and operation. As more of the behavioral complexity 
of systems is embodied in software, software will become the driver of 
system configuration. Hardware will be selected for its ability to support 
software instead of the reverse. This is now common in business informa-
tion systems and other applications where compatibility with a software 
legacy is important.

If software is becoming the centerpiece of system development, it is 
particularly important to reconcile the demands of system and software 
development. Even if 90% of the system-specific engineering effort is put 
into software, the system is still the end product. It is the system, not the 
software inside, the client wishes to acquire. The two worlds share many 
common roots, but their differing demands have led them in distinctly 
different directions. Part of the role of systems architecting is to bring 
them together in an integrated way.

Software engineering is a rich source for integrated models; mod-
els that combine, link, and integrate multiple views of a system. Many 
of the formalisms now used in systems engineering had their roots in 
software engineering. This chapter discusses the differences between 
system architecting and software architecting, current directions in 
software architecting and architecture, and heuristics and guidelines 
for software. Chapter 10 provides further detail on four integrated soft-
ware modeling methods, each aimed at the software component of a 
different type of system.

Software as a System Component
How does the architecture and architecting of software interact with that 
of the system as a whole? Software has unique properties that influence 
overall system structure:

	 1.	Software provides a palette of abstractions for creating system 
behavior. Software is extensible through layered programming to 
provide abstracted user interfaces and development environments. 
Through the layering of software, it is possible to directly implement 
concepts such as relational data, natural language interaction, and 
logic programming that are far removed from their computational 
implementation. Software does not have a natural hierarchical struc-
ture, at least not one that mirrors the system-subsystem-component 
hierarchy of hardware.
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	 2.	 It is economically and technically feasible to use evolutionary deliv-
ery for software. If architected to allow it, the software component of a 
deployed system can be completely replaced on a regular schedule.

	 3.	Software cannot operate independently. Software must always be 
resident on some hardware system and, hence, must be integrated 
with some hardware system. The interaction between, and integra-
tion with, this underlying hardware system becomes a key element 
in software-centered system design.

For the moment there are no emerging technologies that are likely 
to take software’s place in implementing behaviorally complex systems. 
Perhaps some form of biological or nano-agent technology will eventually 
acquire similar capabilities. In these technologies, behavior is expressed 
through the emergent properties of chaotically interacting organisms. But 
the design of such a system can be viewed as a form of logic programming 
in which the “program” is the set of component construction and interface 
rules. Then the system, the behavior that emerges from component inter-
action, is the expression of an implicit program, a highly abstracted form 
of software.

System architecting adapts to software issues through its models and 
processes. To take advantage of the rich functionality, there must be models 
that capture the layered and abstracted nature of complex software. If evo-
lutionary delivery is to be successful, and even just to facilitate successful 
hardware/software integration, the architecture must reconcile continu-
ously changing software with much less frequently changing hardware.

Software for Modern Systems

Software plays disparate roles in modern systems. Mass market applica-
tion software, one-of-a-kind business systems, real-time analysis and con-
trol software, and human interactive assistants are all software-centered 
systems, but each is distinct from the other. The software attributes of 
rich functionality and amenability to evolution match the characteristics 
of modern systems. These characteristics include the following:

	 1.	Storage of, and semiautonomous and intelligent interpretation of, 
large volumes of information.

	 2.	Provision of responsive human interfaces that mask the underlying 
machines and present their operation in metaphor.

	 3.	Semiautonomous adaptation to the behavior of the environment and 
individual users.

	 4.	Real-time control of hardware at rates beyond human capability 
with complex functionality.
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	 5.	Constructed from mass-produced computing components and 
unique system software, with the capability to be customized to 
individual customers.

	 6.	Coevolution of systems with customers as experience with system 
technology changes perceptions of what is possible.

The marriage of high-level language compilers with general-purpose 
computers allows behaviorally complex, evolutionary systems to be devel-
oped at reasonable cost. Although the engineering costs of a large software 
system are considerable, they are much less than the costs of developing a 
pure hardware system of comparable behavioral complexity. Such a pure 
hardware system could not be evolved without incurring large manufactur-
ing costs on each evolutionary cycle. Hardware-centered systems do evolve, 
but at a slower pace. They tend to be produced in similar groups for several 
years, and then make a major jump to new architectures and capabilities. 
The time of the jump is associated with the availability of new capabilities 
and the programmatic capability of replacing an existing infrastructure.

Layering of software as a mechanism for developing greater behavioral 
complexity is exemplified in the continuous emergence of new software 
languages and in Internet and Web applications being built on top of dis-
tributed infrastructures. The trend in programming languages is to move 
closer and closer to application domains. The progression of language is 
from machine level (machine and assembly languages) to general-purpose 
computing (FORTRAN, Pascal, C, C++, Ada) to domain specific (MATLAB, 
Visual Basic for Applications, dBase, SQL, PERL, and other scripting 
languages). At each level, the models are closer to the application, and the 
language components provide more specific abstractions. By using higher 
and higher level languages, developers are effectively reusing the coding 
efforts that went into the language’s development. Moreover, the new lan-
guages provide new computational abstractions or models not immedi-
ately apparent in the architecture of the hardware on which the software 
executes. Consider a logic programming language like PROLOG. A pro-
gram in PROLOG is more in the nature of hypothesis and theorem proof 
than arithmetic and logical calculation. But it executes on a general-purpose 
computer as invisibly as does a C or even FORTRAN program.

Systems, Software, and Process Models
An architectural challenge is to reconcile the integration needs of software 
and hardware to produce an integrated system. This is both a problem of 
representation or modeling and of process. Modeling aspects are taken 
up subsequently in this chapter, and in Part III. On the process side, hard-
ware is best developed with as little iteration in production as possible, 
but software can (and often should) evolve through much iteration. 
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Hardware should follow a well-planned design and production cycle to 
minimize cost, with large-scale production deferred to as close to final 
delivery as possible (consistent with adequate time for quality assurance). 
But software cannot be reliably developed without access to the targeted 
hardware platform for much of its development cycle. Production takes 
place nearly continuously, with release cycles now often daily in many 
advanced development organizations.

Software distribution costs are comparatively so low that repeated 
complete replacement of the installed base is normal practice. When soft-
ware firms ship their yearly (or more frequent) upgrades, they ship a com-
plete product. Firms commonly “ship” patches and limited updates on 
the Internet, eliminating even the cost of media distribution. The cycle 
of planned replacement is so ingrained that some products (for example, 
software development tools) are distributed as a subscription; a quarterly 
CD-ROM or Internet download with a new version of the product, applica-
tion notes, documentation, and prerelease components for early review.

In contrast, the costs of hardware are often dominated by the physi-
cal production of the hardware. If the system is mass produced, this will 
clearly be the case. Even when production volumes are very low, as in 
unique customized systems, the production cost is often comparable to or 
higher than the development cost. As a result, it is uneconomic, and hence 
impractical, to extensively replace a deployed hardware system with 
a relatively minor modification. Any minor replacement must compete 
against a full replacement, a replacement with an entirely new system 
designed to fulfill new or modified purposes.

One important exception to the rule of low deployment costs for soft-
ware is where the certification costs of new releases are high. For example, 
one does not casually replace the flight control software of the Space 
Shuttle any more than one casually replaces an engine. Extensive test and 
certification procedures are required before a new software release can 
be used. Certification costs are analogous to manufacturing costs in that 
they are a cost required to distribute each release but do not contribute to 
product development.

Waterfalls for Software?

For hardware systems, the process model of choice is a waterfall (in one of 
its pure or more refined incarnations). The waterfall model development 
stages and tries to keep iterations local — that is, between adjacent tasks 
such as requirements and design. Upon reaching production, there is no 
assumption of iteration, except the large-scale iteration of system assess-
ment and eventual retirement or replacement. This model fits well within 
the traditional architecting paradigm as described in Chapter 1.
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Software can, and sometimes does, use a waterfall model of devel-
opment. The literature on software development has long embraced the 
sequential paradigm of requirements, design, coding, test, delivery. But 
dissatisfaction with the waterfall model for software led to the spiral 
model and variants. Essentially all successful software systems are itera-
tively delivered. Application software iterations are expected as a matter 
of course. Weapon system and manufacturing software is also regularly 
updated with refined functionality, new capabilities, and fixes to problems. 
One reason for software iterations is to fix problems discovered in the field. 
A waterfall model tries to eliminate such problems by doing a very high 
quality job of the requirements. Indeed, the success of a waterfall develop-
ment is strongly dependent on the quality of the requirements. But in some 
systems, the evolvability of software can be exploited to reach the market 
faster and avoid costly, and possibly fruitless, requirements searches.

Example: Data communication systems have an 
effective requirement of interoperating with what-
ever happens to be present in the installed base. 
Deployed systems from a global range of companies 
may not fully comply with published standards, 
even if the standards are complete and precise 
(which they often are not). Hence, determining the 
“real” requirements to interoperate is quite difficult. 
The most economical way to do so may be to deploy 
to the field and compile real experience. But that, in 
turn, requires that the systems support the ability 
to determine the cause of interoperation problems 
and be economically modifiable once deployed to 
exploit the knowledge gained.

But, in contrast, a casual attitude toward evolution in systems with 
safety or mission-critical requirements can be tragic.

Example: The Therac 25 was a software-controlled 
radiation treatment machine in which software 
and system failures resulted in six deaths.3 It was 
an evolutionary development from a predecessor 
machine. The evidence suggests that the safety 
requirements were well understood but that the 
system and software architectures both failed to 
maintain the properties. The system architecture 
was flawed in that all hardware safety interlocks 
(which had been present in the predecessor model) 
were removed, leaving software checks as the sole 
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safety safeguard. The software architecture was 
flawed because it did not guarantee the integrity of 
treatment commands entered and checked by the 
system operator.

One of the most extensively described software development prob-
lems is customized business systems. These are corporate systems for 
accounting, management, and enterprise-specific operations. They are 
of considerable economic importance, are built in fairly large numbers 
(though no two are exactly alike), and are developed in an environment 
relatively free of government restrictions. Popular and widely published 
development methods have strongly emphasized detailed requirements 
development followed by semiautomated conversion of the requirements 
to program code — an application-specific waterfall.

Even though this waterfall is better than ad hoc development, results 
have been disappointing. In spite of years of experience in developing 
such business systems, large development projects regularly fail. As Tom 
DeMarco has noted,4 “somewhere, today, an accounts payable system 
development is failing” in spite of the thousands of such systems that 
have been developed in the past. Part of the reason is the relatively poor 
state of software engineering compared to other fields. Another reason 
is failure to make effective use of methods known to be effective. An 
important reason is the lack of an architectural perspective and the ben-
efits it brings.5

The architect’s perspective is to explicitly consider implementation, 
requirements, and long-term client needs in parallel. A requirements-
centered approach assumes that a complete capture of documentable 
requirements can be transformed into a satisfactory design. But existing 
requirements modeling methods generally fail to capture performance 
requirements and ill-structured requirements like modifiability, flexibility, 
and availability. Even where these nonbehavioral requirements are 
captured, they cannot be transformed into an implementation in any even 
semiautomated way. And it is the nature of serious technological change 
that the impact will be unpredictable. As technology changes and experi-
ence is gained, what is demanded from systems will change as well.

The spiral model as originally described did not embrace evolution. 
Its spirals were strictly risk based and designed to lead to a fixed system 
delivery. Rapid prototyping envisions evolution, but only on a limited 
scale. Newer spiral model concepts do embrace evolution.6 Software 
processes, as implemented, spiral through the waterfall phases but do so 
in a sequential approach to moving release levels. This modified model 
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was introduced in Chapter 4, in the context of integrating software with 
manufacturing systems, and it will be further explored below.

Spirals for Hardware?

To use a spiral model for hardware acquisition is equivalent to repeated 
prototyping. A one-of-a-kind, hardware-intensive system cannot be pro-
totyped in the usual sense. A complete “prototype” is, in fact, a complete 
system. If it performs inadequately, it is a waste of the complete manu-
facturing cost of the final system. Each one, from the first article, needs 
to be produced as though it were the only one. As was discussed previ-
ously, under the “protoflight” development strategy, the prototype is the 
final system. A true prototype for such a one-of-a-kind system must be a 
limited version or component intended to answer specific developmental 
questions. We would not “prototype” an aircraft carrier, but we might 
well prototype individual pieces and build subscale models for testing. 
The development process for one-of-a-kind systems needs to place strong 
emphasis on requirements development and attention to detailed pur-
pose throughout the design cycle. Mass-produced systems have greater 
latitude in prototyping because of the prototype-to-production-cost ratio, 
but still have less than in software. However, the initial “prototype” units 
still need to be produced. If they are to be close to the final articles, they 
need to be produced on a similar manufacturing line. But setting up a 
complete manufacturing line when the system is only in prototype stage 
is very expensive. Setting up the manufacturing facilities may be more 
expensive than developing the system. As a hardware-intensive system, 
the manufacturing line cannot be easily modified, and leaving it idle while 
modifying the product to be produced represents a large cost.

Integration: Spirals and Circles

What process model matches the nature of evolutionary, mixed technol-
ogy, behaviorally complex systems? As was suggested earlier, a spiral and 
circle framework seems to capture the issues. The system should possess 
stable configurations (represented as circles) and development should 
iteratively approach those circles. The stable configurations can be soft-
ware release levels, architectural frames, or hardware configurations.

This process model matches the accepted software practice of moving 
through defined release levels, with each release produced in cycles 
of requirements-design-code-test. Each release level is a stable form 
that is used while the next release is developed. Three types of evolu-
tion can be identified. A software product, like an operating system or 
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shrink-wrapped application, has major increments in behavior indicated 
by changes in the release number, and more minor increments by changes 
in the number after the “point.” Hence, a release 7.2 product would be 
major version seven, second update. The major releases can be envisioned 
as circles, with the minor releases cycling into them. On the third level are 
those changes that result in new systems or re-architected old systems. 
These are conceptually similar to the major releases but represent even 
bigger changes. The process with software annotations is illustrated in 
Figure 6.1. By using a side view, one can envision the major releases as 
vertical jumps. The evolutionary spiral process moves out to the stable 
major configurations and then jumps up to the next major change. 

Hardware (Typical) 

Breadboard Prototype 

Production

Design 

Software 
Release 1 Spiral 

Release 2 Spiral 

System 
Production/Release 1  

Production/Release 2  

HW/SW Rel 1  

SW Rel 2  

HW Intermediates

Development
Jump

Build 

Integrate/Test 
Requirements 

Figure 6.1  A typical arrangement of spirals and circles in a project requiring 
hardware and software integration. This illustrates the stable intermediate con-
figurations of hardware (typically breadboard and prototype) integrating with a 
software spiral. Software is developed on the stable intermediate systems.
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In practice, evolution on one release level may proceed concurrently with 
development of a major change.

Example: The Internet and World Wide Web pro-
vide numerous examples of stable intermediate 
forms promoting evolution. The architecture of the 
Internet, in the sense of an organizing or unifying 
structure, is clearly the Internet Protocol (IP), the 
basic packet switching definition. IP defines how 
packets are structured and addressed, and how the 
routing network interacts with the packets. It deter-
mines the kinds of services that can be offered on 
the Internet, and in so doing constrains application 
construction. As the Internet has undergone unprec-
edented growth in users, applications, and physical 
infrastructure, IP has remained stable. As of the 
writing of this book, the transition from version 4 
to version 6 of IP is occurring very slowly. It likely 
will occur within a few years, but the nature of IPv4 
underpins so much of how the Internet operates 
that transition is necessarily quite slow. The World 
Wide Web has similarly undergone tremendous 
growth and evolution on top of a simple set of 
elements, the Hypertext Transfer Protocol (HTTP) 
and the Hypertext Markup Language (HTML). Both 
the Internet and the World Wide Web are classic 
examples of systems with nonphysical architecture, 
a topic that becomes central in the discussion of 
collaborative systems in Chapter 7.

Hardware–software integration adds to the picture. The hardware 
configurations must also be stable forms but should appear at different 
points than the software intermediates on the development timeline. 
Some stable hardware should be available during software develop-
ment to facilitate that development. A typical development cycle for an 
integrated hardware–software system illustrates parallel progressions 
in hardware and software with each reaching different intermediate 
stable forms. The hardware progression might be breadboard, produc-
tion prototype, production, then (possibly) field upgrade. The software 
moves through a development spiral aiming at a release 1.0 for the pro-
duction hardware. The number of software iterations may be many more 
than for the hardware. In late development stages, new software versions 
may be built weekly.7 Before that there will normally be partial releases 
that run on the intermediate hardware forms (the breadboards and the 
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production prototypes). Hardware–software codesign research is work-
ing toward environments in which developing hardware can be repre-
sented faithfully enough so that physical prototypes are unnecessary for 
early integration. Such tools may become available, but iteration through 
intermediate hardware development levels is still the norm in practice.

A related problem in designing a process for integration is the proper 
use of the heuristic: Do the hard part first. Because software is evolved or 
iterated, this heuristic implies that the early iterations should address the 
most difficult challenges. Unfortunately, honoring the heuristic is often 
difficult. In practice, the first iterations are often good-looking interface 
demonstrations or constructs of limited functionality. If interface construc-
tion is difficult or user acceptance of the interface is risky or difficult, this 
may be a good choice. But if operation to time constraints under loaded 
conditions is the key problem, some other early development strategy 
should be pursued. In that case, the heuristic suggests gathering realistic 
experimental data on loading and timing conditions for the key processes 
of the system. That data can then be used to set realistic requirements for 
components of the system in its production configuration.

Example: Call distribution systems manage large 
numbers of phone personnel and incoming lines 
as in technical support or phone sales operation. 
By tying the system into sales databases, it is pos-
sible to develop sophisticated support systems that 
ensure that full customer information is available 
in real time to the phone personnel. To be effective, 
the integration of data sources and information 
handling must be customized to each installation 
and evolve as understanding of what information 
is needed and available develops. But, because the 
system is real time and critical to customer contact, 
it must provide its principal functionality reliably 
and immediately upon installation.

Thus, an architectural response to the problems of hardware–software 
integration is to architect both the process and the product. The process is 
manipulated to allow different segments of development to match them-
selves to the demands of the implementation technology. The product 
is designed with interfaces that allow separation of development efforts 
where the efforts need to proceed on very different paths. How software 
architecture becomes an element of system architecture, and more details 
on how this is to be accomplished, are the subjects to come.
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The Problem of Hierarchy
A central tenet of classic systems engineering is that all systems can be 
viewed in hierarchies. A system is composed of subsystems that are com-
posed of small units. A system is also embedded in higher-level systems 
in which it acts as a component. One person’s system is another person’s 
component. A basic strategy is to decompose any system into subsystems, 
decompose the requirements until they can be allocated to subsystems, care-
fully specify and control the interfaces among the subsystems, and repeat 
the process on every subsystem until you reach components you can buy 
or are the products of disciplinary engineering. Decomposition in design 
is followed by integration in reverse. First, the lowest-level components are 
integrated into the next-level subsystems, those subsystems are integrated 
into larger subsystems, and so on until the entire system is assembled.

Because this logic of decomposition and integration is so central to 
classical systems engineering, it is difficult for many systems engineers to 
understand why it often does not match software development very well. 
To be sure, some software systems are very effectively developed this way. 
The same logic of decomposition and integration matches applications 
built in procedural languages (like C or Pascal*) and where the develop-
ment effort writes all of the application’s code. In these software systems, 
the code begins with a top-level routine, which calls first-level routines, 
which call second-level routines, and so forth, to primitive routines 
that do not call others. In a strictly procedural language, the lower-level 
routines are contained within or encapsulated in the higher-level routines 
that use them. If the developer organization writes all the code, or uses 
only relatively low-level programming libraries, the decomposition chain 
terminates in components much like the hardware decomposition chain 
terminates. Like in the classical systems engineering paradigm, we can 
integrate and test the software system in much the same way, testing and 
integrating from the bottom-up until we reach the topmost module.

As long as the world looks like this, on both the hardware and software 
sides, we can think of system decompositions as looking like Figure 6.2. 
This figure illustrates the world, and the position of software, as classical 
systems engineers would portray it. Software units are contained within 
the processor units that execute them. Software is properly viewed as a 
subsystem of the processor unit.

However, if we instead went to the software engineering laboratory 
of an organization building a modern distributed system and asked the 
software engineers to describe the system hierarchy, we might get a very 

*	 Strictly speaking, C is not a procedural language, and some of what follows does not 
precisely apply to it. Those knowledgeable in comparative programming languages can 
consider the details of the procedural versus object-oriented paradigms in the examples 
to come.
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different story. Much modern software is written using object-oriented 
abstractions, is built in layers, and makes extensive use of very large soft-
ware infrastructure objects (like operating systems or databases) that do 
not look very much like simple components or the calls to a programming 
library. The transition is illustrated in Figure 6.3, and was discussed in the 
“Case Study 4” (prior to this chapter). When expanded to the level of inter-
acting bodies of code, the world looks as illustrated in Figure 6.4. Each of 
these issues (object orientation and layering) creates a software environ-
ment that does not look like a hierarchical decomposition of encapsulated 
parts, and to the extent that a hierarchy exists, it is often quite different 
from the systems/hardware hierarchy. We consider each of these issues 
in turn.

Object Orientation

The software community engages in many debates about exactly what 
“object oriented” should mean, but only the fundamental concepts are 
important for systems architecting. An object is a collection of functions 
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Figure 6.3  Increasingly, thick applications are being replaced by much thinner 
implementations that rely on thicker shared infrastructure layers. This transi-
tion is of high value but introduces problems in quality control and development 
methods often unfamiliar to groups accustomed to building thick applications.
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Figure 6.2  System/hardware hierarchy view of a system.
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(often called methods) and data. Some of the functions are public; that 
is, they are exposed to other software objects and can be called by them. 
Depending on the specific language and runtime environment, calling a 
function may be a literal function call, or it may simply mean sending a 
message to the target object, which interprets it and takes action. Objects 
can be “active”; that is, they can run concurrently with other objects. 
In  some software environments, concurrent objects can freely migrate 
from computer to computer over an intervening network. Often the soft-
ware developer does not know, and does not want to know, on which 
machine a particular object is running and does not want to directly 
control its migration. Concurrent execution of the objects is passed to a 
distributed operating system, which may control object execution through 
separately defined policies.

In object-oriented systems, the number of objects existing when 
the software executes can be indeterminate. An object has a defining 
“template” (although the word “template” means something slightly dif-
ferent in many object-oriented languages) known as a “class.” A class 
is analogous to a type in procedural programming. So, just as one can 
declare many variables of type “float,” so one can declare many objects 
corresponding to a given class. In most object-oriented languages, the cre-
ation of objects from classes happens at runtime, when the software is 
executing. If objects are not created until runtime, the number of them can 
be controlled by external events.

CPU 1

Application
Layer Objects

Middleware/OS
Layer Objects

Physical
Layer ObjectsCPU 3CPU 2

Figure 6.4  Layered software hierarchy view of a system.
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This is a very powerful method of composing a software system. Each 
object is really a computational machine. It has its own data (potentially 
a very large amount) and as much of its own program code as the class 
author decides. This sort of dynamic object-oriented software can essen-
tially manufacture logical machines, in arbitrary numbers, and set them 
to work on a network, in response to events that happen during program 
execution. To compare this to classical notions of decomposition, it is as 
though one could create subsystems on the fly during system operation.

Layered Design

The objects are typically composed in a layered design as is further illus-
trated in Figure 6.4. Layers are a form of hierarchy, with a critical differ-
ence. In a layered system, the lower-level elements (those making up a lower 
layer) are not contained in the upper-layer elements. The elements of a layer 
interact to produce a set of services, which are made available to the next 
higher layer (in a strictly layered system). Objects in the next higher layer 
can use the services offered by the next lower layer but cannot otherwise 
access the lower-layer objects. Within a layer, the objects normally treat 
each other as peers; that is, no object is contained within another object. 
However, object orientation has the notion of encapsulation. An object has 
internals, and the internals (functions and data) belong to that object alone, 
although they can be duplicated in other objects with the same class.

A modern distributed application may be built as a set of interacting, 
concurrent objects. The objects interact with a lower layer, often called 
“middleware services.” The middleware services are provided by externally 
supplied software units. Some of the services are part of commercial oper-
ating systems; others are individual commercial products. Those middle
ware components ride on lower layers of network software, supplied as 
part of the operating system services. In a strong distributed environment, 
the application programmers, who are writing the objects at the top level, 
do not know what the network configuration is on which their objects ride. 
Of course, if there are complex performance requirements, it may be neces-
sary to know and control the network configuration and to program with 
awareness of its structure. But in many applications, no such knowledge 
is needed, and the knowledge of the application programmers about what 
code is actually running ceases when the thread of execution leaves the 
application and enters the middleware and operating systems.

The hierarchy problem is that at this point the software hierarchy and 
the hardware hierarchy have become disconnected. To the software archi-
tect, the natural structure of the system is layers of concurrent objects, 
again as illustrated in Figure 6.3 and Figure 6.4. This means the systems 
and software architects may clash in their partitioning of the system, 
and inappropriate constraints may be placed on one or the other. Before 
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investigating the issue of reconciliation, we must complete the discussion 
with the nature of software components.

Large, Autonomous Components

When taking a decompositional approach to design, the designer decom-
poses until he or she reaches components that can be bought or easily 
built. In both hardware and software, some of the components are very 
large. In software, in particular, the design decomposition often results in 
very large software units, such as operating systems and databases. Both 
of these are now often millions of lines of programming language code 
and possess rich functionality. More significantly, they act semiautono-
mously when used in a system. An operating system is not a collection of 
functions to be passively called by an application. To be sure, that is one of 
the services offered by modern operating systems. But modern operating 
systems manage program memory, schedule program units on processors, 
and synchronize concurrent objects across multiple processors. An 
advanced operating system may present unified services that span many 
individual computers, possibly widely geographically spread.

These large and autonomous components change architecting because 
the architect is forced to adapt to the components. In principle, of course, 
the architect and client need not adapt. They can choose to sponsor a 
from-scratch development instead. But the cost of attempting to replicate 
the enormous software infrastructure that applications now commonly 
reuse is prohibitive. So, for example, the market dominance and complex-
ity of very large databases forces us to use commercial products in these 
applications. The commercial products support particular kinds of data 
models and do not support others. The architecture must take account of 
the kinds of data models supported, even when those are not a natural 
choice for the problem.

Reconciling the Hierarchies

Our challenge is to reconcile the systems and software worlds. Because 
software is becoming the dominant element, in terms of its cost pacing 
what can be developed, one might argue for simply adopting software’s 
models and abandoning the classic systems view. This is inappropriate for 
several reasons. First, the migration of software to object-oriented, layered 
structures is only partial. Much software is procedurally structured and 
is likely to remain so for many years to come. The infrastructure for 
supporting distributed, concurrent, object-oriented applications is not 
mature. Although leading-edge applications take this path, many others 
with strong reliability or just predictability requirements will use more 
traditional structures.
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Second, both approaches are fundamentally valid. Figure  6.2 and 
Figure 6.4 are correct views of the system, they just represent different 
aspects. No single view can claim primacy. As we move into complex, 
information-centric systems, we will have to accept the existence of many 
views, each representing different concerns, and each targeted at a dif-
ferent stakeholder audience. The architect, and eventually systems engi-
neers, will have to be sure the multiple views are consistent and complete 
with respect to the stakeholder’s concerns.

Third, every partitioning has its advantages and drawbacks. Building 
a system in which each computational unit has its own software confined 
within it has distinct advantages. In that case, each unit will normally 
have much greater autonomy (because it has its own software and does 
not depend on others). That means each unit can be much more easily out-
sourced or independently developed. Also, the system does not become 
dependent on the presence of some piece of software infrastructure. 
Software infrastructure elements (operating systems and middleware) 
have a poor record for on-schedule delivery and feature completeness. 
Anybody depending on an advanced feature of an operating system to be 
delivered more than a year out runs a high risk of being left with nothing 
when the scheduled delivery date comes by and the operating system 
vendor has decided to delay the feature to a future version or has simply 
pushed the delivery cycle out another year.

Nevertheless, the modern approaches have tremendous advantages in 
many situations. Consider the situation when the units in Figure 6.2 share 
a great deal of functionality. If separate development teams are assigned 
to each, the functionality is likely to be independently developed as many 
times as there are units. Redundant development is likely to be the least of 
the problems; however, because those independent units probably interact 
with each other, the test burden has the potential for rising as the square 
of the number of units. Appropriate code sharing — that is, the use of 
layered architectures for software — can alleviate both problems.

The Role of Architecture in 
Software-Centered Systems
In software as in systems, the architect’s basic role is the reconciliation 
of a physical form with the client’s needs for function, cost, certification, 
and technical feasibility. The mindset is the same as described for system 
architecting in general, though the areas of concentration are different. 
System architecting heuristics are generally good software heuristics, 
though they may be refined and specialized. Several examples are given 
in Chapter 9. In addition, there are heuristics that apply particularly to 
software. Some of these are mentioned at the end of this chapter.
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The architect develops the architecture. Following Brooks’ term,8 the 
architect is the user’s advocate. As envisioned in this book, the architect’s 
responsibility goes beyond the conceptual integrity of the systems as seen 
by the user, to the conceptual integrity of the system as seen by the builder 
and other stakeholders. The architect is responsible for both what-the-
system-does and well as how-the-system-does-it. But that responsibility 
extends, on both counts, only as far as is needed to develop a satisfactory 
and feasible system concept. After all, the sum of both is nearly the whole 
system, and the architect’s role must be limited if an individual or small 
team is to carry it out. The latter role, of defining the overall implementa-
tion structure of the system, is closer to some of the notions of software 
architecture in recent literature.

The architect’s realm is where views and models combine. Where 
models that integrate disparate views are lacking, the architect can supply 
the insight. When disparate requirements must interact if satisfaction is 
to be achieved, the architect’s insight can ensure that the right character-
istics are considered foremost and that an architecture that can reconcile 
the disparate requirements is developed. The perspective required is pre-
dominantly a system perspective. It is the perspective of looking at the 
software and its underlying hardware platforms as an integrated whole 
that delivers value to the client. Its performance as a whole, behavioral 
and otherwise, is what gives it its value.

Architecting for evolution is also an example of the greatest leverage is 
at the interfaces heuristic. Make a system evolvable by paying attention to 
the interfaces. In software, interfaces are very diverse. With a hardware 
emphasis, it is common to think of communication interfaces at the bit, 
byte, or message level. But in software communication, interfaces can be 
much richer and capture extensively structured data, flow of control, and 
application-specific notions. Current work in distributed computing is a 
good example. The trend in middleware is to find abstractions well above 
the network socket level that allow flexible composition. Network-portable 
languages like Java allow each machine to express a common interface for 
mobile code (the Java virtual machine). The ambition of service-oriented 
architectures is to provide a rich set of intermediate abstractions to allow 
end-user development to be further abstracted away from the low-level 
programming details.

Programming Languages, Models, and Expression
Models are languages. A programming language is a model of a comput-
ing machine. Like all languages, they have the power to influence, guide, 
and restrict our thoughts. Programmers with experience in multiple lan-
guages understand that some problems will decompose easily in one 
language, but only with difficulty in another, an example of fitting the 
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architecture of the solution to that of a prescriptive solution heuristic. The 
development of programming languages has been the story of moving 
successively higher in abstraction from computing hardware.

The layering of languages is essential to complex software develop-
ment because a high-level language is a form of software reuse. Assembly 
languages masked machine instructions; procedural languages modeled 
computer instructions in a more language-like prose. Modern languages 
containing object and strong structuring concepts continue the pattern by 
providing a richer palette of representation tools for implementing com-
puting constructs. Each statement in FORTRAN, Pascal, or C reuses the 
compiler writer’s machine-level implementation of that construct. Even 
more important examples are the application-specific languages like 
mathematical languages or databases. A statement in a mathematical lan-
guage like MATLAB or Mathematica may invoke a complex algorithm 
requiring long-term development and deep expertise. A database query 
language encapsulates complex data storage and indexing code. The cur-
rent enthusiasm for service-oriented architectures is (or should be) the 
same phenomena. By assembling abstractions closer to what end users 
are interested in, while maintaining a low enough level of abstraction to 
be reusable, we greatly enhance development productivity.

One way of understanding this move up the ladder of abstraction is 
a famous software productivity heuristic on programmer productivity. 
A purely programming-oriented statement of the heuristic is

Programmers deliver the same number of lines of code per 
day regardless of the language they are writing in.

Hence, to achieve high software productivity, programmers must work 
in languages that require few lines of code.9 This heuristic can be used to 
examine various issues in language and software reuse. The nature of a 
programming language, and the available tools and libraries, will deter-
mine the amount of code needed for a particular application. Obviously, 
writing machine code from scratch will require the most code. Moving to 
high-level languages like C or Ada will reduce the amount of original code 
needed, unless the application is fundamentally one that interacts with 
the computing hardware at a very low level. Still less original code will be 
required if the language directly embodies application domain concepts, 
or, equivalently, application-specific code libraries are available.

Application-specific languages imitate domain language already in 
use and make it suitable for computing. One of the first and most popu-
lar is spreadsheets. The spreadsheet combines a visual abstraction and a 
computational language suited to a range of modeling tasks in business 
offices, engineering, and science. An extremely important category is data-
base query languages. Today it would be quite unusual to undertake an 
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application requiring sophisticated database functionality and not use an 
existing database product and its associated query language. Another more 
recent category includes mathematical languages. These languages, such 
as Mathematica, MacSyma, and MatLab, use well-understood mathemati-
cal syntax and then process those languages into computer-processable 
form. They allow the mathematically literate user to describe solutions in 
a language much closer to the problem than a general-purpose program-
ming language.

Application-specific programming languages are likely to play an 
increasingly important role in all systems built in reasonably large num-
bers. The only impediment to use of these abstractions in all systems is the 
investment required to develop the language and its associated applica-
tion generator and tools. One-of-a-kind systems will not usually be able to 
carry the burden of developing a new language along with a new system 
unless they fit into a class of system for which a “meta-language” exists. 
Some work along these lines has been done, for example, in command and 
control systems.10 As mentioned before, service-oriented architectures are 
a currently fashionable take on the same theme.

Architectures, “Unifying” Models, and Visions
Architectures in software can be definitions in terms of tasks and mod-
ules, language or model constructs, or, at the highest abstraction level, 
metaphors. Because software is the most flexible and ethereal of media, its 
architecture, in the sense of a defining structure, can be equally flexible 
and ethereal.

The most famous example is the original use by Macintosh of the 
desktop metaphor, a true architecture. To a considerable degree, when the 
overall human interface guidelines are added, this metaphor defines the 
nature of the system. It defines the types of information that will be han-
dled and it defines much of the logic or processing. The guidelines force 
operation to be human centered; that is, the system continuously parses 
user actions in terms of the effects on objects in the environment. As a 
result, Macintosh, and now Microsoft Windows, programs are dominated 
by a main event loop. The foremost structure the programmer must define 
is the event loop, a loop in which system-defined events are sequentially 
stripped from a queue, mapped to objects in the environment, and their 
consequences evaluated and executed.

The power of the metaphor as architecture is twofold. First, the meta-
phor suggests much that will follow. If the metaphor is a desktop, its com-
ponents should operate similarly to their familiar physical counterparts. 
This results in fast and retentive learning “by association” to the under
lying metaphor. Second, it provides an easily communicable model for the 
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system that all can use to evaluate system integrity. System integrity is 
being maintained when the implementation to metaphor is clear.

Directions in Software Architecting
Software architecture and architecting have received considerable recent 
attention. There have been several special issues of IEEE Software maga-
zine devoted to software architecture. Starting with Shaw and Garlan’s 
book,11 a whole series has appeared. Much of the current work in software 
architecture focuses on architectural structures and their analysis. Much 
as the term “architectural style” has definite meaning in civil architecture, 
usage is attached to style in current software work. In the terminology of 
this book, work on software architecture styles is attempting to find and 
classify the high-level forms of software and their application to particu-
lar software problems.

Focusing on architecture is a natural progression of software and pro-
gramming research that has steadily ascended the ladder of abstraction. 
Work on structured programming led to structured design and to the 
multitasking and object-oriented models to be described in Chapter 10. 
The next stage of the progression is to further classify the large-scale 
structures that appear as software systems become progressively larger 
and more complex.

Current work in software architecture primarily addresses the prod-
uct of architecting (the structure or architecture) rather than the process 
of generating it. The published studies cover topics such as classifying 
architectures, mapping architectural styles to particularly appropriate 
applications, and using software frameworks to assemble multiple related 
software systems. However, newer books are addressing process, and the 
work on software architecture patterns is effectively work on process, in 
that it provides directive guidance in forming a software architecture. 
This book presents some common threads of the architectural process that 
underlie the generation of architectures in many domains. Once a particu-
lar domain is entered, such as software, the architect should make full use 
of the understood styles, frameworks, or patterns in that domain.

The flavor of current work in software architecture is best captured 
by reviewing some of its key ideas. These include the classification of 
architectural styles, patterns and pattern languages in software, and soft-
ware frameworks.

Architectural Styles

At the most general level, a style is defined by its components, connec-
tors, and constraints. The components are the things from which the soft-
ware system is composed. The connectors are the interfaces by which the 
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components interact. A style sets the types of components and connectors 
that will make up the system. The constraints are the requirements that 
define system behavior. In the current usage, the architecture is the defini-
tion in terms of form, which does not explicitly incorporate the constraints. 
To understand the constraints, one must look to additional views.

As a simple example, consider the structured design models described 
previously. A pure structured style would have only one component type, 
the routine, and only one connector type, invocation with explicit data 
passing. A software system composed using only these components and 
connectors could be said to be in the structured style. But the notion of style 
can be extended to include considerations of its application and deviations.

David Garlan and Mary Shaw give this discussion of what constitutes 
an architectural style*:

An architectural style, then defines a family of such 
systems in terms of a pattern of structural organiza-
tion. More specifically, an architectural style deter-
mines the vocabulary of components and connectors 
that can be used in instances of that style. Additionally, 
a style might define topological constraints on archi-
tectural descriptions (e.g. no cycles). Other constraints 
— say, having to do with execution semantics — 
might also be part of the style definition.

Given this framework, we can understand what a 
style is by answering the following questions: What 
is the structural pattern — the components, connec-
tors, and topologies? What is the underlying com-
putational model? What are the essential invariants 
of the style — its “load bearing walls”? What are 
some common examples of its use? What are the 
advantages and disadvantages of using that style? 
What are some of the common specializations?

Garlan and Shaw have gone on to propose several root styles. As an 
example, their first style is called “pipe and filter.” The pipe and filter style 
contains one type of component, the filter, and one type of connector, the 
pipe. Each component inputs and outputs streams of data. All filters can 
potentially operate incrementally and concurrently. The streams flow 
through the pipes. Likewise, all stream flows are potentially concurrent. 
Because each component acts to produce one or more streams from one or 

*	 Garlan, D., and M. Shaw, An Introduction to Software Architecture, Technical Report, 
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, p. 6.
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more streams, it can be thought of as an abstract sort of filter. A pipe and 
filter system is schematically illustrated in Figure 6.5.

UNIX shell programs and some signal processing systems are com-
mon pipe and filter systems. The UNIX shell provides direct pipe and 
filter abstractions with the filters concurrent UNIX processes and the 
pipes interprocess communication streams. The pipe and filter abstraction 
is a natural representation for block-structured signal-processing systems 
in which concurrent entities perform real-time processing on incoming 
sampled data streams.

Some other styles proposed include object oriented, event based, 
layered, and blackboard. An object-oriented architecture is built from 
components that encapsulate both data and function and which exchange 
messages. An event-based architecture has as its fundamental structure a 
loop that receives events (from external interfaces or generated internally), 
interprets the events in the context of system state, and takes actions based 
on the combination of event and state. Layered architectures emphasize 
horizontal partitioning of the system with explicit message passing and 
function calling between layers. Each layer is responsible for providing 
a well-defined interface to the layer above. A blackboard architecture is 
built from a set of concurrent components that interact by reading and 
writing asynchronously to a common area.
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Figure 6.5  A pipe and filter system. Data flow through the system in pipes, which 
may actually have several types depending on their semantics for queuing, data 
push or pull, and so forth. Data are processed in filters that read and write pipes.
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Each style carries its advantages and weaknesses. Each of these styles 
is a description of an implementation from an implementer’s point of view, 
and specifically from the software implementer’s point of view. They are 
not descriptions from the user’s point of view, or even from the point of 
view of a hardware implementer on the system. A coherent style, at least 
of the type currently described, gives a conceptual integrity that assists 
the builder but may be no help to the user. Having a coherent implemen-
tation style may help in construction, but it is not likely to yield dramatic 
improvements in productivity or quality because it does not promise to 
dramatically cut the size of what must be implemented.

This is reflective of a large fraction of the current software architecture 
literature. The primary focus is on the structure of the software, not on the 
structure of the problem that the software is to solve. The architecture 
description languages being studied are primarily higher-level or more 
abstracted descriptions of programming language constructs. Where user 
concerns enter the current discussion is typically through analysis. So, 
for example, an architecture description language developer may be con-
cerned with how to analyze the security properties of a system description 
written in the language. This approach might be termed “structuralist.” 
It places the structure of the software first in modeling and attempts to 
derive all other views from it. There is an intellectual attraction to this 
approach because the structural model becomes the root. If the notation 
for structure can be made consistent, then the other views derived from 
it should retain that consistency. There is no problem of testing consis-
tency across many views written in different modeling languages. The 
weakness of the approach is that it forces the stakeholders other than the 
software developers to use an unfamiliar language and trust unfamiliar 
analyses. In the security example, instead of using standard methods from 
the security community, those concerned with security must trust the 
security analysis performed on the architectural language. This approach 
may grow to be accepted by broad communities of stakeholders, but it is 
likely to be a difficult sell.

In contrast to the perspective that places structure first in architecture, 
this book has repeatedly emphasized that only the client’s purpose should 
be first. The architect should not be removed from the purpose or require-
ments; the architect should be immersed in them. This is a distinction 
between architecting as described here and as is often taught in software 
engineering. We do not assume that requirements precede architecture. The 
development of requirements is part of architecting, not its preconditions.

The ideal style is one that unifies both the user’s and builder’s views. 
The mathematical languages mentioned earlier are examples. They struc-
ture the system from both a user’s and an implementer’s point of view. Of 
course, the internals of the implementation of such a complex software 
system will contain many layers of abstraction. Almost certainly, new 



174	 The Art of Systems Architecting

styles and abstractions specific to the demands of implementation in real 
computers will have to arise internally. When ideal styles are not avail-
able, it is still reasonable to seek models or architectural views that unify 
some set of considerations larger than just the software implementer. For 
implementation of complex systems, it would be a useful topic of research 
to find models or styles that encompass a joint hardware–software view.

Architecture through Composition

Patterns, styles, and layered abstraction are inherent parts of software 
practice. Except for the rare machine-level program, all software is built 
from layered abstractions. High-level programming languages impose 
an intellectual model on the computational machine. The nature of that 
model inevitably influences what kinds of programs (systems) are built 
on the machine.

The modern trend is to build systems from components at higher 
and higher levels of abstraction. It is necessary because no other means 
are available to build very large and complex systems within acceptable 
time and effort limits. Each high-level library of components imposes its 
own style and lends itself to certain patterns. The patterns that match 
the available libraries are encouraged, and it may be very difficult to 
implement architectures that are not allowed for in the libraries.

Example: Graphical Macintosh and Windows pro-
grams are almost always centrally organized around 
an event loop and handlers, a type of event-driven 
style. This structure is efficient because the operat-
ing systems provide a built-in event loop to capture 
user actions such as mouse clicks and key presses. 
However, because neither had multithreading abstrac-
tions (at least before 1995), a concurrent, interact-
ing object architecture was difficult to construct. 
Many applications would benefit from a concurrent 
interaction object architecture, but these architec-
tures were very difficult to implement within the 
constraints of existing libraries. As both systems 
evolved, direct support for multithreaded, concur-
rent processes has slowly worked its way into all 
aspects of both systems, user interfaces included.

The logical extension is to higher and higher level languages and 
from libraries to application-specific languages that directly match the 
nature of the problem they were meant to solve. The modern mathemati-
cal software packages are, in effect, very high-level software languages 
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designed to mimic the problem they are meant to solve. The object of the 
packages is to do technical mathematics. So rather than provide a lan-
guage into which the scientist or engineer must translate mathematics, the 
package does the mathematics. This is similar for computer-aided design 
packages, and indeed for most of the shrink-wrap software industry. 
These packages surround the computer with a layered abstraction that 
closely matches the way users are already accustomed to working.

Actually, the relationship between application-specific programming 
language, software package, and user is more symbiotic. Programmers 
adapt their programs to the abstractions familiar to the users. But users 
eventually adapt their abstractions to what is available and relatively easy 
to implement. The best example is the spreadsheet. The spreadsheet as 
an abstraction partially existed in paper form as the general ledger. The 
computer-based abstraction has proven so logical that users have adapted 
their thinking processes to match the structure of spreadsheets. It should 
probably be assumed that this type of interactive relationship will accel-
erate when the first generation of children to grow up with computers 
reaches adulthood.

Heuristics and Guidelines in Software

The software literature is a rich source for heuristics. Most of those heuris-
tics are specific to the software domain and are often specific to restricted 
classes of a software-intensive system. The published sets of software 
heuristics are quite large. The newer edition of Brook’s The Mythical 
Man-Month: Essays in Software Engineering12 includes a new chapter, “The 
Propositions of the Mythical Man-Month: True or False?” which lists the 
heuristics proposed in the original work. The new chapters reinforce some 
of the central heuristics and reject a few others as incorrect.

The heuristics given in Man-Month are broad ranging, covering manage-
ment, design, organization, testing, and other topics. Several other sources 
give specific design heuristics. The best sources are detailed design meth-
odologies that combine models and heuristics into a complete approach to 
developing software in a particular category or style. Chapter 10 discusses 
three of the best documented, ADARTS,* structured design,† and object 

*	 The published reference on ADARTS, which is quite thorough, is available through the 
Software Productivity Consortium, ADARTS Guidebook, SPC-94040-CMC, Version 2.00.13, 
Vols. 1–2, September 1991. ADARTS is an Ada language-specific method, though its ideas 
generalize well to other languages. In fact, this has been done, although the resulting 
heuristics and examples are available only to Software Productivity Consortium members.

†	Structured design is covered in many books. The original reference is Yourdon, Edward, 
and Larry L. Constantine, Structured Design: Fundamentals of a Discipline of Computer 
Program and Systems Design. New York: Yourdon Press, 1979.
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oriented.* Even more specific guidelines are available for the actual writing 
of code. A book by McConnell13 contains guidelines for all phases and a 
detailed bibliography.

From this large source set, however, there are a few heuristics that 
particularly stand out as broadly applicable and as basic drivers for soft-
ware architecting:

Choose components so that each can be implemented independently •	
of the internal implementation of all others.
Programmer productivity in lines of code per day is largely inde-•	
pendent of language. For high productivity, use languages as close 
to the application domain as possible.
The number of defects remaining undiscovered after a test is pro-•	
portional to the number of defects found in the test. The constant of 
proportionality depends on the thoroughness of the test but is rarely 
less than 0.5.
Very low rates of delivered defects can be achieved only by very low •	
rates of defect insertion throughout software development, and by 
layered defect discovery — reviews, unit test, system test.
Software should be grown or evolved, not built.•	
The cost of removing a defect from a software system rises expo-•	
nentially with the number of development phases since the defect 
was inserted.
The cost of discovering a defect does not rise. It may be cheaper to •	
discover a requirements defect in customer testing than in any other 
way, and hence the importance of prototyping.
Personnel skill dominates all other factors in productivity and quality.•	
Do not fix bugs later; fix them now.•	

As has been discussed, the evolvability of software is one of its most 
unique attributes. A related heuristic is: A system will develop and evolve 
much more rapidly if there are stable intermediate forms than if there are not. In an 
environment where wholesale replacement is the norm, what constitutes a 
stable form? The previous discussion has already talked about releases as 
stable forms and intermediate hardware configurations. From a different 
perspective, the stable intermediate forms are the unchanging components 
of the system architecture. These elements that do not change provide the 
framework within which the system can evolve. If they are well chosen — 
that is, if they are conducive to evolution — they will be stable and facilitate 

*	 Again, there are many books on object-oriented design, and many controversies about its 
precise definition and the best heuristics or design rules. The book by Rumbaugh, dis-
cussed in Chapter 10, is a good introduction, as is the Unified Modeling Language (UML) 
documentation and associated books.
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further development. A sure sign the architecture has been badly chosen 
is the need to change it on every major release. The architectural elements 
involved could be the use of specific data or control structures, internal 
programming interfaces, or hardware–software interface definitions. Some 
examples illustrate the impact of architecture on evolution.

Example: The Point-to-Point Protocol (PPP) is a pub-
licly defined protocol for computer networking over 
serial connections (such as modems). Its goal is to 
facilitate broad multivendor interoperability and to 
require as little manual configuration as possible. 
The heart of the protocol is the need to negotiate the 
operating parameters of a changing array of layered 
protocols (for example, physical link parameters, 
authentication, IP control, AppleTalk control, com-
pression, and many others). The list of protocols is 
continuously growing in response to user needs and 
vendor business perceptions. PPP implements nego-
tiation through a basic state machine that is reused 
in all protocols, coupled with a framework for struc-
turing packets. In a good implementation, a single 
implementation of the state machine can be “cloned” to 
handle each protocol, requiring only a modest amount 
of work to add each new protocol. Moreover, the com-
mon format of negotiations facilitates troubleshoot-
ing during test and operation. During the protocols 
development, the state machine and packet struc-
ture have been mapped to a wide variety of physi-
cal links and a continuously growing list of network 
and communication support protocols.

Example: In the original Apple Macintosh operating 
system, the architects decided to not use the feature 
of their hardware to separate “supervisor” and “user” 
programs. They also decided to implement a variety 
of application programming interfaces through access 
to global variables. These choices were beneficial to 
the early versions because they improved perfor-
mance. But these same choices (because of backward 
compatibility demands) greatly complicated efforts to 
implement advanced operating system features such 
as protected memory and preemptive multitasking. 
In the end, dramatic evolution of the operating sys-
tem required wholesale replacement, with limited 
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backward compatibility. Another architectural 
choice was to define the hardware–software interface 
through the Macintosh Toolbox and the published 
Apple programming guidelines. The combination 
proved to be both flexible and stable. It allowed a 
long series of dramatic hardware improvements and 
even a transfer to a new hardware architecture, with 
few gaps in backward compatibility (at least for those 
developers who obeyed the guidelines). Even as the 
old operating system was entirely replaced, the old 
programming interface survived through minimal 
modifications allowing recompilation of programs.

Example: The Internet Protocol combined with the 
related Transmission Control Protocol (TCP/IP) has 
become the software backbone of the global Internet. 
Its partitioning of data handling, routing decisions, 
and flow control has proven to be robust and ame-
nable to evolutionary development. The combination 
has been able to operate across extremely heteroge-
neous networks with equipment built by countless 
vendors. Although there are identifiable architects 
of the protocol suite, control of protocol develop-
ment is quite distributed with little central author-
ity. In contrast, the proprietary networking protocols 
developed and controlled by major vendors per-
formed relatively poorly at scaling to diverse net-
works. One limitation in the current IP protocol 
suite that has become clear is the inadequacy of 
its 32-bit address space. However, the suite was 
designed from the beginning with the capability 
to mix protocol versions on a network. As a result, 
the deployed protocol version has been upgraded 
several times (and will be again to IPv6).

Exercises
	 1.	Consult one or more of the references for software heuristics. Extract sev-

eral heuristics and use them to evaluate a software-intensive system.
	 2.	Requirements defects that are delivered to customers are the most 

costly because of the likelihood they will require extensive rework. 
But discovering such defects anytime before customer delivery is 
likewise very costly because only the customers’ reaction may make 
the nature of the defect apparent. One approach to this problem is 
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prototyping to get early feedback. How can software be designed 
to allow early prototyping and feedback of the information gained 
without incurring the large costs associated with extensive rework?

	 3.	Pick three software-intensive systems of widely varying scope, for 
example, a pen computer-based data-entry system for warehouses, 
an internetwork communication server, and the flight control soft-
ware for a manned space vehicle. What are the key determinants 
of success and failure for each system? As an architect, how would 
these determinants change your approach to concept formulation 
and certification?

	 4.	Examine some notably successful or unsuccessful software-intensive 
systems. To what extent was success or failure due to architectural 
(conceptual integrity, feasibility of concept, certification) issues and 
to what extent was it due to other software process issues?

	 5.	Are their styles analogous to those proposed for software that jointly 
represent hardware and software?
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Case Study 5: The Global 
Positioning System
The Global Positioning System (GPS)1 is one of the great success stories of 
the late 20th century. Most readers of this book will have had some experi-
ence with GPS, either in a car or with a handheld unit. GPS is a large system 
that has undergone extensive evolution. Early in its history, and in the 
history of its predecessor programs, it was a centrally controlled system. 
As it has evolved, and become extremely successful, control has gradually 
migrated away from the GPS program office. The larger enterprise that is 
now GPS is no longer controlled wholly by a single program office; indeed 
it is no longer controlled by the U.S. government. If the European Galileo 
system eventually flies and is compatible with GPS, GPS will have evolved 
into a full-fledged collaborative system, the subject of the next chapter.

GPS is a fitting case study to close Part II, looking either forward or 
backward. Looking forward, to Chapter 7, GPS is partially a collabora-
tive system and partially not. As with most partial cases, the fact that it 
is not firmly in or out provides a better discussion of just what the border 
is. Looking backward, to earlier chapters, we can see many of the other 
points we sought to emphasize. GPS illustrates the principles of architec-
ture through invariants, of the importance of a small architecture team, 
and of ripe timing with respect to both technology and user and institu-
tional needs.

The History
The moment (actually the weekend) when the GPS architecture was deter-
mined can be easily identified — but that moment was a long time com-
ing. The history of satellite navigation leads up to GPS and then extends 
beyond it. That GPS came about when it did and in the form it did is at 
least somewhat surprising. It need not have come about. The fact that it 
did when and how it did, and how successful it has become, illustrates 
major points in the systems architecting of both conventional and collab-
orative systems.

The Origins of GPS: The Foundational Programs
Position determination and navigation are fundamental to military opera-
tions, with air, sea, or land. For all of military history, extensive technolog-
ical effort has been expended to improve navigational capabilities. At the 



182	 The Art of Systems Architecting

beginning of the space era (late 1950s), each of the U.S. military services 
viewed the navigation problem quite differently.

Inertial Navigation and Its Limits
The U.S. Air Force and Navy were heavily investing in inertial navigation 
systems. Inertial navigation was particularly well suited to nuclear missiles. 
It was sufficiently accurate to guide a missile (flight times of 30 minutes or 
less) with a nuclear warhead (assuming the launch position is accurately 
known) and was immune to external interference. For the Air Force this 
was a sufficient solution, as launch points were fixed and their locations 
known a priori precisely. For the Navy, the initial positioning problem was 
significant. Inertial navigation systems inherently drift on time scales of 
days. Thus, an inertial navigation system in a ship or submarine, although 
very accurate over a day or so, must be “recentered” regularly or its accu-
racy will continuously degrade. Because ships, and especially ballistic mis-
sile submarines, are expected to operate at sea for months at a time, the 
problem of correcting the drifting inertial units was central.

A naval ship requires global position determination to moderately 
high accuracy (tens to hundreds of meters) at modest update rates (once to a 
few times a day). Ships know their altitude, so only two-dimensional posi-
tioning is required. In the 1960s these capabilities were provided mainly 
by land-based radio navigation systems (e.g., LORAN [long-range naviga-
tion]), but these systems worked much less well than desired. Strategic 
aircraft would use global three-dimensional position determination but 
could operate only with the capabilities available at the time.

Weapon Delivery
In the 1950s, air-delivered weapons were notoriously inaccurate. A hard-
ened, fixed target, like a bridge, might require tens of sorties to destroy. A 
moving target, like a tank, could only be hit by a pilot flying low and in 
short-range direct sight. At the time the primary solution of interest was 
sensor-guided weapons. Extensive work at the time was devoted to devel-
oping command, infrared, and radar-guided weapons.

The accuracy requirements for weapon delivery are very challenging. 
Accuracy must be a few meters at the most, three-dimensional position is 
required, and the platforms move very rapidly. The belief was that only 
sensor guidance was suitable to the task.

The Transit Program
Shortly after the launch of Sputnik in 1957, Frank McClure of Johns Hopkins 
Applied Physics Laboratory (APL) determined that measurements of 
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Doppler shifts on the Sputnik signal could be used to infer lines of posi-
tion at the receiver. Given multiple satellites in orbit and precision orbit 
determination, it would be possible to construct a navigation system. This 
concept was supported by the Advanced Research Projects Agency (ARPA) 
and led to a dedicated satellite launch in 1960. By 1965, 23 satellites had 
been launched and the Transit system had been declared operational.

Transit squarely addressed the Navy navigation problem. Transit pro-
vided a two-dimensional position update a few times a day with moder-
ate accuracy, and it did it globally, in all weather, without any land-based 
infrastructure. From an architectural perspective, Transit was purpose 
driven, had a clear architect and architecture, and the alignment between 
the user stakeholders and developers was close. As a result, it was a stable, 
evolving, and successful system. The witness to the strength of the link-
age between the user base and the developers is that Transit satellites were 
being launched until 1988, and the system operated until 1996, long after 
GPS became operational.

Transit was important in the history of GPS in several respects:

	 1.	Transit provided a useful service for roughly two decades before 
GPS became operational. Transit demonstrated the feasibility and 
utility of satellite navigation.

	 2.	Building and operating Transit forced the resolution of important 
technical issues. In particular, it led to great improvements in orbit 
determination, in gravity models, and in computing and predicting 
signal delays due to propagation through the atmosphere.

	 3.	Transit set a precedent for commercial use. Transit was made avail-
able for commercial use in the late 1960s, and the number of com-
mercial use receivers came to far outnumber the number of military 
use receivers (a harbinger of what was to come in GPS).

TIMATION
A related problem to navigation is the problem of time transfer or clock 
synchronization. This is the problem of accurately synchronizing clocks 
in distant locations, or of transferring a precise time measurement in one 
location to a distant location. This was a natural Navy concern as it was 
the foundation of the revolution in navigation in the 18th century when 
chronometers allowed the determination of longitude.

At the Naval Research Laboratory (NRL) in the 1960s, Roger Easton 
made two key realizations. He first realized that satellite clocks with 
appropriate signal transmission could be used to allow precision time 
transfer. He then realized that simultaneous time transfer from multiple, 
synchronized clocks was equivalent to position determination (either 
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two or three dimensions, depending on the number of satellites). These 
realizations were translated into a concept known as TIMATION.

TIMATION was envisioned as a navigation system that would begin 
as an improved version of Transit and evolve into a full-blown system 
not unlike what GPS is today. The early versions would use small con-
stellations of low Earth-orbiting satellites (like Transit). This is relatively 
simple to build, but provides only intermittent access (a few times a day, 
like Transit). Over time, the constellation would grow in size and move to 
higher orbits until global continuous coverage was achieved.

621B
At the same time, the U.S. Air Force was studying satellite navigation 
through the Space and Missile Center (SMC) and its research center The 
Aerospace Corporation. The project was known as 621B. The Aerospace 
Corporation president, Ivan Getting, had conceived of important elements 
of the satellite navigation concept in the 1950s2 and strongly advocated 
for it as the Aerospace Corporation president. The Air Force concentrated 
on longer-term, more ambitious goals consonant with Air Force mission 
needs. The Air Force concept was based on three-dimensional, high-
precision, global position determination and was also concerned with 
electronic warfare and other military factors. 621B used the notion of 
simultaneous measurement of three delays to three known satellite loca-
tions, like Roger Easton’s concept but with two key differences. First, 621B 
performed measurement (or “pseudoranging”) with the then-new scheme 
of digital pseudorandom coded signals. Second, 621B was originally based 
on high-accuracy clocks in each receiver.

The first difference, the signal, was technically very aggressive for the 
time but led to key advantages. At the time, processing digital signals 
several Megahertz (MHz) wide was very challenging (though it became 
trivial as the microchip revolution proceeded in the 1980s). However, the 
digitally coded signal had significant jam and interference resistance, and 
largely solved the frequency coordination problem. With pseudorandom 
coded signals, all transmitters in the system could operate at the same 
frequency and rely on the code processing to separate them.

The Origin of GPS
By the early 1970s, Transit was a stable program with a satisfied user base, 
and the larger vision of satellite navigation was not proceeding. The dif-
fering stakeholder groups were engaged in bureaucratic warfare and 
making little headway. But, in a remarkably short interval, an architectur-
ally sweet compromise would be found among them all and converted 
into a successful development program.
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Parkinson and Currie
The person most often associated with the success of the GPS is Bradford 
Parkinson.3 Parkinson arrived in Los Angeles, California, in late 1972 to 
run the 621B program and quickly became a believer in the merits of global 
satellite navigation. Through happy, though accidental, circumstances, he 
was able to spend unusual amounts of time with the Director of Defense 
Research and Engineering (DDR&E) Malcolm Currie. Parkinson con-
vinced Currie of the merits of satellite navigation, and Currie was con-
vinced that Parkinson was the right person to lead the effort. Parkinson 
was tasked to form a joint proposal to be presented the Defense Systems 
Acquisition Review Council (DSARC). The proposal he presented was 
essentially the 621B concept, and the DSARC immediately rejected it.

The Fateful Weekend
Over Labor Day weekend 1973, Parkinson assembled a small team of 
experts from each of the programs and areas and closeted them away 
from interference. Over the long weekend, they reached consensus on a 
revised concept. The revised concept combined features from the prede-
cessor programs. The fundamental features of the revised concept are 
shown in Table CS5.1.

For those knowledgeable about GPS, the features should look familiar. 
They are virtually identical to those of today’s operational GPS system. 
The revised concept was again presented to the DSARC, after Currie had 
assured Parkinson that a true joint program would have strong support 
from his level, and was approved.

As a result of DSARC approval, a joint program office was formed (the 
NAVSTAR program office), with Parkinson as the head. They were able to 
begin development very rapidly by incorporating major elements of the 
preexisting programs, particularly TIMATION. Critical space elements of 

Table CS5.1  Features of the Revised 1973 NAVSTAR (to become GPS) Concept
Concept of operations Measure pseudoranges to four (or more) satellites and 

process to compute both the master time and 
three-dimensional position. All position computations 
occur in the receivers that operate entirely passively.

Constellation Twenty-one to twenty-four satellites in inclined 
half-geosynchronous orbits.

Source of time Atomic clocks on satellites updated from the ground. 
Receiver time computed from multiple satellites 
simultaneously with position.

Signal Pseudorandom code at L-band (1,200 MHz). Two codes: 
one narrow and unencrypted, one wide and encrypted.
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the NAVSTAR-GPS concept were taken directly from TIMATION, and so 
the in-development TIMATION hardware was very useful for prototype 
demonstrations.

The Long Road to Revolution
Of course, the formation of the GPS concept is far from the end of the 
story. Although the essential architecture, in terms of its basic structure 
in signals, processing distribution, and constellation, was set in 1973 and 
has remained largely invariant, there was a very long road to successful 
development and an operational revolution. During the long road to oper-
ations, a key transition was taking place, the transition from a centrally 
controlled or “monolithic” system to a collaborative system in which there 
was no central authority over the whole. We discuss these two key points 
in the following sections.

The Timeline to Operation
The key events in the timeline to operations (and the present day) are 
shown in Figure CS5.1.

There were more than 10 years of serious activity, including the 
deployment of an operational system, before the architecture of GPS was 
set. After the architecture was set, development continued for roughly 
20 years before GPS became fully operational. Although it took 20 years 
to full operation, GPS delivered real utility much earlier. Not only did it 
deliver real utility, it had already broken out of the confines of the Joint 
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Program Office and had a large commercial and multiagency component. 
By the early 1990s there was even an international component, albeit an 
unintended one, in the Soviet Union’s GLONASS system.

Commercial Markets and the Gulf War
The Transit system set a precedent for allowing civilian use of a military 
satellite navigation system. This precedent was repeated with GPS in the 
1980s. By 1984, in the wake of the shoot-down of the KAL 007 airliner, it 
became policy to allow the free use of the C/A (coarse/acquisition) coded 
signal. The information necessary to build a C/A code receiver was made 
freely available to private industry. Because the C/A code has a narrower 
bandwidth than the military signal and is only transmitted on one fre-
quency, the accuracy achieved is considerably less than with the military 
signal. In the 1980s and 1990s, accuracy was further degraded through 
deliberate introduction of clock noise (known as “selective availability”).

The microelectronics evolution of the 1980s enabled commercial devel-
opment of GPS chipsets. Those chipsets in turn led to low-cost commercial 
receivers. As the commercial market expanded, receivers dropped very 
quickly in size and cost. Commercial firms also began developing innova-
tive software applications and even transmitter infrastructure systems.

The first Gulf War in 1991 gave a major impetus to GPS development. 
The use of receivers by ground troops in the war and GPS support to 
widely televised precision air strikes led to considerable publicity for 
GPS. The satellite constellation was sufficiently mature to provide sub-
stantial capability, although initial operational capability (IOC) had not 
been declared. The very public demonstration of the effectiveness of GPS 
in supporting guided weapons led to further interest in new guidance 
types. The continuing receiver cost reduction, and a politically driven 
requirement for weapons for stealth aircraft, led to the Joint Direct Attack 
Munition (JDAM) concept, a highly successful approach to precision 
weapons where a low-cost GPS receiver and guidance unit are mated to 
legacy “dumb” bombs.

Revolution in the Second Generation
The GPS revolution did not come with its deployment in its intended 
mission and in its original context. The original slogan of the program 
office was “Five bombs in the same hole.” Although that capability has 
long ago been achieved, it itself has not been as valuable as newly con-
ceived applications. It was really in the second generation, the genera-
tion after GPS reached full operational capability, that the revolution 
began, with applications and markets well outside those in the original 
architectural concept.
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Ubiquitous GPS
Between the achievement of GPS full operational capability and the 
present day, the number of GPS applications and the number of receivers 
have exploded. GPS went from a specialized navigation device to some-
thing that could be included almost as an afterthought in other devices 
(for example, cell phones for E911 service). Certain application areas 
transitioned to deep dependence on GPS. Among them are surveying 
and time synchronization in power transmission and telecommunica-
tions networks.

The ubiquity of GPS was made possible by receiver costs being driven 
down by the Moore’s law advance in digital electronics (which depended 
on GPS having a digital signal) and the development of new applications.

GPS policy frequently lagged GPS application. One reason was sim-
ply the innovation-driven expansion of applications, enabled by cheap 
receivers, which occurred much more quickly than policy could adapt. The 
other reason was that GPS had escaped control by the GPS program office 
and had even significantly escaped the control of the U.S. government. GPS 
had morphed from a large and complicated, but reasonably conventional, 
system to a collaborative system, one not under the centralized control of 
any single entity. An example of the policy lag relative to the technology 
was the period in the 1990s when the U.S. Federal Aviation Administration 
(FAA) and Coast Guard were deploying GPS enhancement transmitters at 
the same time the U.S. Air Force was maintaining the accuracy degrading 
selective availability features. It was not until after 2000 that the United 
States abjured the use of selective availability and has only recently begun 
flying satellites with the dual-frequency civilian code transmitters neces-
sary for higher accuracy without terrestrial augmentation.

GPS-Guided Weapons
A massive increase in the number of military receivers came with the 
development of GPS-guided weapons. As receiver costs dropped, largely 
because of the availability of commercial GPS chips, the cost of a receiver 
became less than even a very simple weapon. At this point, it became fea-
sible to attach a GPS-based guidance system to a huge number of previ-
ously unguided weapons. The canonical example is a GPS-based guidance 
unit attached to 500 to 2,000 lb “dumb” bombs, known as the JDAM.

Even though the JDAM is a fine example of lateral exploitation (to use 
Art Raymond’s term from the DC-3 story), the concepts of operation asso-
ciated with the JDAM are more revolutionary. With a JDAM, especially 
the lighter-weight 500 lb JDAM, a large high-altitude aircraft, like a B-52 
or B-1 bomber, could become a close support aircraft. This concept of 
operation was invented on-the-fly during the Afghan war in 2001–2002. 
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Large aircraft could loiter persistently in the battle area waiting for calls 
from ground troops. To make the concept work, ground troops needed 
to be able to precisely measure the GPS coordinates of targets (easily 
achieved with laser rangefinders coupled to GPS receivers) and com-
municate directly to the aircraft overhead. When the whole concept was 
in place, it could be rapidly improved by realizing that smaller guided 
bombs worked as well, or better, than large guided bombs in close sup-
port, given the accurate guidance. With smaller bombs, the large aircraft 
could carry many more, and were not limited by persistence over target, 
as older dedicated close support aircraft had been. The synergistic effects 
were large in combining the technology of GPS with changed concepts of 
operation and repurposed platforms.

Architecture Interpretation
GPS provides us with important lessons applicable to other systems and 
that relate back to the topics of Part I and Part II. The lessons are: Right 
idea, right time, right people; Be technically aggressive, but not suicidal; 
Consensus without compromise; Architecture through invariants; and 
Revolution through coupled change.

Right Idea, Right Time, Right People
GPS would almost certainly not have happened when it did and how it 
did without particular people being in the right place at the right time. 
It was not obvious that the U.S. Navy and Air Force could reach a consen-
sus on a global navigation concept, sell that concept through the acquisi-
tion bureaucracy, and then maintain it for more than the decade it took 
to become firmly established. Without Parkinson in the key position at 
that time, it is unlikely that the Air Force program would have discovered 
and adopted key Navy ideas and expanded its scope enough to become 
an established program. No stakeholder group in the Air Force needed 
global satellite navigation badly enough to allow the program to survive.

On the Navy side, they had a stable program plan. The TIMATION con-
cept was intended to lead, eventually, to a global, high-precision system. 
Had the Navy been left alone, would something like GPS eventually 
have emerged? Obviously, we cannot ever know for sure, the experiment 
cannot be carried out. But, two factors speak against the Navy’s concept 
ever growing into the GPS system as it exists today. First, there was no 
Navy stakeholder with a combination of need and resources to grow the 
system to the level of capability now provided by GPS. Navy needs were 
well met by more incremental improvements that were more aligned with 
the limited resources of Navy space programs. Second, the most important 
Air Force contribution was the signal, the digital pseudorandom coded 
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ranging signal used in the current GPS. This was a technically aggres-
sive choice in 1973 and was unnecessary for the Navy mission (indeed it 
had drawbacks for the Navy mission). However, the pseudorandom noise 
(PRN) signal used in GPS provides it with significant jam resistance and 
considerably eases the problem of frequency management in crowded 
areas (such as urban and suburban areas of industrialized countries). 
The signal, and its placement in L-Band, allows high-precision location 
(from tens of meters to meters accuracy) to be achieved without severe fre-
quency management problems. This has been an important factor in the 
long-term success of GPS, but was of little relevance to the Navy mission 
as understood in the 1970s.

Be Technically Aggressive, But Not Suicidal
Parkinson and his team made technically aggressive choices, with wis-
dom that is obvious in retrospect but was not so obvious in prospect. The 
most important over the long term was to base GPS ranging on the digital 
PRN signal. In the 1970s, processing a digital signal with a modulation 
rate from 1 to 10 MHz was very difficult, requiring many boards of custom 
hardware. With decades of advance in Moore’s law, processing the same 
signals today is a trivial hardware exercise easily fit into communications 
chipsets. Even though choosing an all-digital approach was aggressive in 
the 1970s, it was central to the achievement of cheap receivers in the 1990s. 
The price/performance curve for digital electronics has moved orders of 
magnitude in the intervening decade, but the same curve for analog hard-
ware has moved much less. By the 1990s, commercial firms were able to 
enter the GPS market with receivers in form factors and prices acceptable 
to a wide consumer base only because most of the processing required 
was digital.

The choice of half-geosynchronous orbits was also aggressive, but not 
excessively. The half-geosynchronous orbit allows for global simultaneous 
visibility to four satellites with a constellation of 25 or so satellites. The exact 
number depends on the specification for occasional brief outages. Higher 
orbits reduce the number of satellites required modestly, but considerably 
increase the satellite weight (because of the higher power required). Lower 
orbits either incur a large radiation exposure penalty (in the Van Allen 
belts) or cause the number of satellites to increase enormously (potentially 
to hundreds), although lower orbits result in smaller and simpler satellites. 
Building satellites that survive in the half-geosynchronous orbit is more 
challenging than in low Earth orbit (because of higher radiation levels), but 
not excessively so.

Finally, the selected architecture of GPS placed precision clocks on the 
satellites, and not in the receivers. This meant that receivers needed only 
digital processing, and all sophisticated computation was done on the 
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ground, in receivers. Over the long term, this was very beneficial. It meant 
that improved processing techniques could be deployed with each new 
generation of receiver, and receiver generations have been far shorter than 
spacecraft generation times. However, it also required that atomic clocks 
operate precisely and reliably on satellites for up to a decade. Again, the 
previous work by the Navy had proven the possibility, and had explored 
various design options for precision clocks in orbit, including both crystal 
and atomic clocks. Although the technology had to be matured by the GPS 
program, the essential trades had already been made and the data required 
for those trades had been acquired in well-designed experiments.

In all three cases, Parkinson’s team made technically aggressive deci-
sions but did not incur excessive risk. Although processing megabit/
second PRN signals was challenging in the 1970s, it had already been 
demonstrated. The project 621B experiments, and other projects, had 
accomplished the task several times. Likewise, the space environment at 
half-geosynchronous was known, and the techniques for surviving in it 
were known and tested (albeit uncommon and expensive). High-precision 
clocks had been, and were being, flown in orbit. In all three cases, the 
trade-offs could be made with concrete knowledge of the issues. That 
could not have been the case a few years earlier.

Consensus without Compromise
Even though the architecture of GPS reflected a fusion of ideas from 
many sources, it was not a watered-down compromise. The fusion genu-
inely took the best aspects of the approaches of several stakeholders and 
abandoned inferior aspects. There is little evidence of political compro-
mise, that sort that might have insisted that “Air Force equities require 
that we do this and Navy equities require that we do that.” Instead, the 
elements selected from the different component programs were those 
that reflected consensus best choices, or cut through consensus to adopt 
a clear strategic position.

Using the simultaneous position and time determination method from 
four pseudoranges can be seen as a clear consensus choice. Essentially 
all parties would now agree, and agreed even then, that it represented 
the best choice overall. The impact on overall system simplicity is clear. 
All position determination is done through the signals broadcast by the 
satellites, no auxiliary terrestrial signal is required, the receiver is nearly 
all digital, and all serious computation is done in the receiver.

In the case of the choice of the all-digital signal, the consensus is not 
clear, but the choice reflects a very clear strategic choice. The all-digital, 
L-band signal was easy to frequency manage, allowed all satellites to 
share the same frequency, and led to cheap receivers. On the downside, 
the L-band signal penetrates poorly in buildings and even foliage and 
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requires more difficult antennas, and the all-digital signal was challeng-
ing to process in the 1970s. The choice made a clear strategic decision; 
GPS would ride the improvements in digital electronics. It would exploit 
technology developments then well underway but still far from ready. 
Parkinson’s team could have a variety of other choices that would have 
compromised among the players and been easier in the near-term, but 
would have missed the long-term opportunities.

Architecture as Invariants
GPS is an example of architecture as invariants. Between the origin of 
the joint program and 2007, the signals were unchanging, and the orbits 
underwent minimal change. Of these two, the signals were much more 
significant as an invariant. The constellation had already been morphed 
by the inclusion of terrestrial transmitters for local accuracy improvement. 
Only in the last few years has any change begun to appear in the signals. 
Currently launched satellites add new military signals, known as the 
M-code, to augment the legacy military codes. A copy of the unencrypted 
civilian signal will shortly be added at a second frequency. The second 
signal improves accuracy by allowing direct measurement of ionospheric 
delay. This capability has been available for military users since the incep-
tion of GPS, but has been unavailable to civilian users.

Architecture through invariants is particularly effective when evolu-
tion is important to long-term success. In the case of GPS, the invariant 
signals have allowed decoupled evolution of the constellation and receiv-
ers. The receivers have undergone extensive evolution programmatically 
and technically without that change having to be coupled to change in 
the satellites. At the current time, receivers are developed dominantly by 
commercial firms with no formal relationship to the GPS program office.

Revolution through Coupled Change
The greatest impact of GPS came only through coupled change to affili-
ated systems and concepts of operation. The original slogan was “five 
bombs in the same hole and cheap receivers.” The latter was achieved and 
then achieved beyond the original expectations. The former was never as 
important as was originally thought. Instead, the proliferation of cheap 
receivers enabled a whole range of new applications. Some of the innova-
tions include the following:

Extremely compact and low-cost receivers could be distributed to •	
individual soldiers. Small units can accurately and continuously 
determine their position, and reporting of those positions enables 
new networked operational concepts.
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As receivers became cheap enough, they could be placed on weap-•	
ons. Instead of guiding the weapon delivery platform to weapon 
release, GPS now guides the weapon from release to impact.
The existence of precision-guided weapons at costs little larger than •	
their unguided predecessors has resulted in a radical shift in the 
dominant operational concept for aerial weapons delivery (at least 
for the United States), from less than 10% of all aerial weapons being 
guided to roughly 90% in a period of 15 years.
As guided weapons became the norm, the operational concept for •	
platforms has shifted. In the Afghan war begun in 2001, the B-1 
bomber was used for close air support, by loitering for long periods 
at high altitude and dropping GPS-guided bombs on targets located 
by ground troops. Close air support was performed by small aircraft 
whose pilots delivered weapons visually, and is now more effec-
tively performed by an airplane designed originally for delivering 
strategic nuclear weapons.
The practice of surveying has been pervasively impacted by GPS. •	
Surveyors, because they do not need position determination at high 
update rates, have been able to exploit a wide range of unanticipated 
processing techniques.
The ability of GPS to provide very high accuracy, globally referenced •	
time has led to its embedding into electric power and telecommuni-
cations control systems.
GPS is now typically included in cell phones at a marginal cost to •	
support electronic 911 service. The ability to track large numbers of 
cell phone users will lead to a wide range of new applications.

Revolution through coupled change is exemplified in GPS, but is 
hardly unique to GPS. The most dramatic impacts of new technologies 
typically come from uses beyond the originally envisioned application. 
Those dramatic applications typically involve rethinking the problem 
being solved and the concept of operation involved. A simple application 
of a new technology to old concepts of operation is almost never as valu-
able as what can be realized from creating new concepts of operation.

Conclusion
GPS is an exceptional example of architecture in a revolutionary system. 
Its original development is a classic example of architecting by a very small 
team with a tightly defined mission with the challenges of new technol-
ogy. As it has developed, it has illustrated evolution toward a collaborative 
system and revolution through changes to concepts of operation. GPS is 
not quite a collaborative system. It is still run by a single, joint program 
office. But, many of the factors that drive GPS development are out of the 
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control of that program office. Commercial receiver builders design in 
whatever features they wish. Several agencies continue to develop and 
deploy augmentation transmitters. And, most strikingly, international 
players are beginning to develop competing programs that may contain 
compatible or interfering signals.

The greatest impact of GPS has been in areas outside the original con-
ception of its use, and that success is a testament to the quality of the 
architecture. The core architecture of GPS (the signal and the position 
determination method) has been robust to extensive lateral exploitation. 
The willingness of the program office and the sponsors to cede control 
of some segments and applications and allow a collaborative system to 
form, has been central to long-term success. The multitude of applications 
is a witness to the basic insight that ubiquitous, global satellite navigation 
would be tremendously valuable.

Notes and References
	 1.	 There is a great deal of literature on the origins and evolution of the Global 

Positioning System. The author is indebted to his aerospace colleague Glenn 
Buchan who wrote an exceptionally fine case study from which we have 
drawn a great deal. The Air Force Institute of Technology has also published 
an extensive case study of the Global Positioning System, though it focuses 
more on the program events after the initial concept was formed than before 
(O’Brien, P., and J. Griffin, Global Positioning System Systems Engineering 
Case Study, Air Force Center for Systems Engineering, Air Force Institute of 
Technology, www.afit.edu/cse).

	 2.	 As noted later, considerable controversy exists over credit for GPS. Various 
elements of the eventual concept were conceived of early but were reduced to 
practice within the Navy, Air Force, and Aerospace programs described here.

	 3.	 A fair amount of literature exists on the controversy over who deserves what 
credit for GPS. One distinction that might clarify the issue is who “invented” 
GPS versus who was the “architect” or “father” of GPS. It is abundantly 
clear that Parkinson was in charge at the key period and led the key deci-
sions that formed GPS as it is today. It is equally clear that Easton originally 
came up with most of the concept, save for the signal. For some perspectives, 
see Easton, R., Who Invented the Global Positioning System? The Space 
Review, May 2006, retrieved from www.thespacereview.com/article/626/1; 
Comments on Navstar: Global Positioning System — Ten Years Later, by 
Easton, R., with replies by Parkinson and Gilbert, Proceedings of the IEEE, 
Vol. 73, Number 1, January 1985.
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Collaborative Systems

Introduction: Collaboration as a Category
Most of the systems discussed so far have been the products of deliberate 
and centrally controlled development efforts. There was an identifiable 
client or customer (singular or plural), clearly identifiable builders, and 
users. Client, in the traditional sense, means the person or organization 
who sponsors the architect, and who has the resources and authority to 
construct the system of interest. The role of the architect existed, even if it 
was hard to trace to a particular individual or organization. The system 
was the result of deliberate value judgment by the client and existed under 
the control of the client. However, many systems are not under central 
control, either in their conception, their development, or their operation. 
The Internet is the canonical example, but many others exist, including 
electrical power systems, multinational defense systems, joint military 
operations, and intelligent transportation systems. These systems are all 
collaborative, in the sense that they are assembled and operate through 
the voluntary choices of the participants, not through the dictates of an 
individual client. These systems are built and operated only through a 
collaborative process.

Some systems are born as collaborative systems and others evolve 
that way. The Internet was not originally a collaborative system but has 
long ago passed out of centralized control. Global Positioning System 
(GPS) was not originally a collaborative system but is already at least 
partially one and is likely to soon move farther in that direction. Other 
systems, such as those architected to be multicompany or multigovern-
ment collaborations are, or should be, considered as collaborative systems 
from the beginning.

A problem in this area is the lack of standard terminology for cate-
gories of system. Any system is an assemblage of elements that together 
possess capabilities not possessed by an element. This is just saying that 
a system possesses emergent properties, indeed that possessing emergent 
properties is the defining characteristic of a system. A microwave oven, a 
laptop computer, and the Internet are all systems; but each can have radi-
cally different problems in design and development.

This chapter discusses systems distinguished by the voluntary 
nature of the systems assembly and operation. Examples of systems in 
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this category include most intelligent transport systems,1 military C4I and 
Integrated Battlespace,2 and partially autonomous flexible manufacturing 
systems.3 The arguments here apply to most of what are often referred to 
as systems-of-systems, a term some readers may prefer. One of the authors 
(Maier) has discussed the contrast between the concepts elsewhere.4

What exactly is a collaborative system? In this chapter, a system is a 
“collaborative system” when its components

	 1.	Are complex enough to be regarded as systems in their own right, and 
interact to provide functions not provided by any of the components 
alone; that is, the components in combination make up a system.

	 2.	The component systems fulfill valid purposes in their own right and 
continue to operate to fulfill those purposes if disassembled from 
the overall system.

	 3.	The component systems are managed (at least in part) for their own 
purposes rather than the purposes of the whole. The component 
systems are separately acquired and integrated but maintain a con-
tinuing operational existence independent of the collaborative system.

A separate issue is how the components come to be combined together. 
Our interest here is in systems deliberately constructed. Some people are 
interested in nondeliberate combinations that form recognizable systems. 
Some refer to these as “organic” systems, and there are a variety of inter-
esting examples in human society. DeMarco presented an example known 
as the “Bombay Box-Wallah” system,5 and others have described the oper-
ation of an ungoverned, yet organized urban environment.6

Misclassification as a “conventional” system versus a collaborative 
system (or vice versa) leads to serious problems. Especially important is a 
failure to architect for robust collaboration when direct control is impos-
sible or inadvisable. This can arise when the developers believe they 
have greater control over the evolution of a collaborative system than 
they actually do. In believing this, they may fail to ensure that critical 
properties or elements will be incorporated by failing to provide a mecha-
nism matched to the problem.

As with other domains, collaborative systems have their own heuristics, 
and familiar heuristics may have new application. To find them for collab-
orative systems, we look first at important examples and then generalize to 
find the heuristics. A key point is the heightened importance of interfaces, 
and the need to see interfaces at many layers. The explosion of the Internet 
and the World Wide Web is greatly facilitating collaborative system con-
struction, but we find that the “bricks-and-mortar” of Internet-based 
collaborative systems are not at all physical. The building blocks are com-
munication protocols, often at higher layers in the communications stack 
that is familiar from past systems.
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Collaborative System Examples
Systems built and operated voluntarily are not unusual, even if they seem 
very different from classical systems engineering practice. Most of the 
readers of this book will be living in capitalist democracies where social 
order through distributed decisions is the philosophical core of govern-
ment and society. Nations differ in the degree to which they choose to 
centralize versus decentralize decision making, but the fundamental 
principle of organization is voluntary collaboration. This book is con-
cerned with technological systems, albeit sometimes systems with heavy 
social or political overtones. So, we take as our examples the systems 
whose building blocks are primarily technical. The initial examples are 
the Internet, intelligent transportation systems (for road traffic), and joint 
air defense systems.

The Internet

When we say “The Internet,” we are not referring to the collection of 
applications that have become so popular (e-mail, World Wide Web, 
chats, and so forth). We are referring to the underlying communications 
infrastructure on which the distributed applications run. A picture of the 
Internet that tried to show all physical communications links active at one 
time would be a sea of lines with little or no apparent order. But, properly 
viewed, the Internet has a clear structure. The structure is a set of pro-
tocols called TCP/IP (Transmission Control Protocol/Internet Protocol). 
Their relationship to other protocols commonly encountered in the 
Internet is shown in Figure 7.1.7 The TCP/IP suite includes the IP, TCP, and 
User Datagram Protocol (UDP) protocols in Figure 7.1. Note in Figure 7.1 
that all the applications shown ultimately depend on IP. Applications can 
use only communications services supported by IP. IP, in turn, runs on 
many link and physical layer protocols. IP is “link friendly” in that it can 
be made to work on nearly any communications channel. This has made 
it easy to distribute widely, but prevents much exploitation of the unique 
features of any particular communication channel.

The TCP/IP family protocols are based on distributed operation and 
management. All data are encapsulated in packets, which are indepen-
dently forwarded through the Internet. Routing decisions are made locally 
at each routing node. Each routing node develops its own estimate of the 
connection state of the system through the exchange of routing messages 
(also encapsulated as IP packets). The distributed estimates of connec-
tion state are not, and need not, be entirely consistent or complete. Packet 
forwarding works in the presence of some errors in the routing tables 
(although introduction of bad information can also lead to collapse).
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The distributed nature of routing information, and the memoryless 
forwarding, allows the Internet to operate without central control or 
direction in the classic sense. Of course, control exists, but it is a collabora-
tive, decentralized mechanism based on agreements-in-practice between 
the most important players. A decentralized development community 
matches the decentralized nature of control and decentralized architec-
ture itself. There is no central body with coercive power to issue or enforce 
standards. There is a central body which issues standards, the Internet 
Engineering Task Force (IETF), but its practices are unlike nearly any 
other standards body. The IETF approach to standards is, fundamentally, 
to issue only those which have already been developed and deployed. The 
IETF acts more in a role of recognizing and promulgating standards than 
of creating them. Its apparently open structure (almost anybody can go to 
the IETF and try and form a working group to build standards in a given 
area) actually has considerable structure, albeit structure defined by cus-
tomary practices rather than mandates.

The organization accepts nearly any working group that has the back-
ing of a significant subset of participants. The working group can issue 
“Internet-drafts” with minimal overhead. For a draft to advance to the 
Internet equivalent of a published standard it must be implemented and 
deployed by two or more independent organizations. All Internet stan-
dards are available for free, and very strong efforts are made to keep them 
unencumbered by intellectual property. Proprietary elements are usually 
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accepted only as optional extensions to an open standard. But under the 
surface, the practices of the organization create different forms of virtual 
mandates. Anybody can try to form a working group, but working code 
and a willingness to open source it speaks far louder than procedures. 
Powerful organizations can find their efforts in the IETF stymied by 
smaller players, if those players are faster and more willing to distribute 
working implementations, and forge alliances with others who will dem-
onstrate interoperability in working systems.

Distributed operation, distributed development, and distributed man-
agement are linked. The Internet can be developed in a collaborative way 
largely because its operation is collaborative. Because the Internet uses 
best-effort forwarding and distributed routing, it can easily offer new ser-
vices, as long as those new services depend only on best effort operation, 
without changing the underlying protocols. In contrast, services requir-
ing hard network-level guarantees cannot be offered. New services can be 
implemented and deployed by groups that have no involvement in devel-
oping or operating the underlying protocols, but only so long as those 
new services do not require any new underlying services. So, for exam-
ple, groups were able to develop and deploy IP-Phone (a voice over the 
Internet application) without any cooperation from TCP/IP developers or 
even Internet service providers. However, the IP-Phone application cannot 
offer any quality of service guarantees, because the protocols it is built on 
do not offer simultaneous delay and error rate bounding.

In contrast, networks using more centralized control can offer richer 
building block network services, including quality of service guarantees. 
However, they are much less able to allow distributed operation. Also, the 
collaborative environments that have produced telecommunications stan-
dards have been much slower moving than the Internet standards bodies. 
They have not adopted some of the practices of the Internet bodies that 
have enabled them to move quickly and rapidly capture market share. 
Of course, some of those practices would threaten the basic structure of 
the existing standards organizations.

In principle, a decentralized system like the Internet should be less 
vulnerable to destructive collective phenomena and be able to locally adapt 
around problems. In practice, both the Internet with its distributed con-
trol model and the telephone system with its greater centralization have 
proven vulnerable to collective phenomena. It turns out that distributed 
control protocols like TCP/IP are prone to collective phenomena in both 
transmission and routing.8 Careful design and selection of parameters 
has been necessary to avoid network collapse phenomena. One reason is 
that the Internet uses a “good intentions” model for distributed control, 
which is vulnerable to nodes that misbehave either accidentally or delib-
erately. There are algorithms known that are robust against bad inten-
tions faults, but they have not been incorporated into network designs. 
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The decentralized nature of the system has made it especially difficult to 
defend against coordinated distributed attacks (for example, distributed 
denial of service attacks). Centralized protocols often deal more easily with 
these attacks because they have strong knowledge of where connections 
originate and can initiate aggressive load-shedding policies under stress.

Wide area telephone blackouts have attracted media attention and 
shown that the more centralized model is also vulnerable. The argument 
about decentralized versus centralized fault tolerance has a long history in 
the electric power industry, and even today has not reached full resolution.

Intelligent Transportation Systems

The goal of most initiatives in intelligent transportation is to improve road 
traffic conditions through the application of information technology. The 
subject is broad and cannot be addressed in detail here.9 We already dis-
cussed several aspects of ITSs in “Case Study 3,” preceding Chapter 5. We 
pick out one issue to illustrate how a collaborative system may operate 
and the architectural challenges in making it happen.

One intelligent transportation concept is called “fully coupled routing 
and control.” In this concept, a large fraction of vehicles are equipped with 
devices that determine their position and periodically report it to a traffic 
monitoring center. The device also allows the driver to enter his or her 
destination when beginning a trip. The traffic center uses the traffic con-
ditions report to maintain a detailed estimate of conditions over a large 
metropolitan area. When the center gets a destination message, it responds 
with a recommended route to that destination, given the vehicle’s current 
position. The route could be updated during travel if warranted. The con-
cept is referred to as fully coupled because the route recommendations 
can be coupled with traditional traffic controls (for example, traffic lights, 
on-ramp lights, and reversible lanes).

Obviously, the concept brings up a wide array of sociotechnical 
issues. Many people may object to the lack of privacy inherent in their 
vehicle periodically reporting its position. Many people may object to 
entering their destination and having it reported to a traffic control center. 
Although there are many such issues, we narrow down once again to 
just one that best illustrates collaborative system principles. The concept 
works only if:

	 1.	A large fraction of vehicles have, and use, the position reporting 
device.

	 2.	A large fraction of drivers enter their (actual) destination when 
beginning a trip.

	 3.	A large fraction of drivers follow the route recommendations they 
are given.
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Under current conditions, vehicles on the roads are mostly privately 
owned and operated for the benefit of their owners. With respect to the 
collaborative system conditions, the concept meets it if using the routing 
system is voluntary. The vehicles continue to work whether or not they 
report their position and destination. And vehicles are still operated for 
their owner’s benefit, not for the benefit of some “collective” of road users. 
So, if we are architecting a collaborative traffic control system, we have 
to explicitly consider how the three conditions above needed to gain the 
emergent capabilities are ensured.

One way to ensure them is to not make the system collaborative. 
Under some social conditions, we can ensure conditions one to three by 
making them legally mandatory and providing enforcement. It is a matter 
of judgment whether or not such a mandatory regime could be imposed.

If one judges that a mandatory regime is impossible, then the system 
must be collaborative. Given that it is collaborative, there are many archi-
tectural choices that can enhance the cooperation of the participants. For 
example, we can break apart the functions of traffic prediction, routing 
advice, and traditional controls and allocate some to private markets. 
Imagine an urban area with several “Traffic Information Provider” 
services. These services are private and subscription based, receive the 
position and destination messages, and disseminate the routing advice. 
Each driver voluntarily chooses a service, or none at all. If the service pro-
vides accurate predictions and efficient routes, it should thrive. If it cannot 
provide good service, it will lose subscribers and die.

Such a distributed, market-based system may not be able to imple-
ment all of the traffic management policies that a centralized system 
could. However, it can facilitate social cooperation in ways the centralized 
system cannot. A distributed, market-based system also introduces tech-
nical complexities into the architecture that a centralized system does not. 
In a private system, it must be possible for service providers to dissemi-
nate their information securely to paying subscribers. In a public, central-
ized system, information on conditions can be transmitted openly.

Joint Air Defense Systems

A military system may seem like an odd choice for collaborative systems. 
After all, military systems work by command, not voluntary collaboration. 
Leaving aside the social issue that militaries must always induce loyalty, 
which is a social process, the degree to which there is a unified command 
on military systems or operations is variable. A system acquired and oper-
ated as a single service can count on central direction. A system belonging 
to a single nation but spanning multiple services can theoretically count 
on central direction, but in practice it is likely to be largely collaborative. 
A system that comes together only in the context of multiservice, multi
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national, coalition military operations cannot count on central control and 
is always a collaborative system.

All joint military systems and operations have a collaborative ele-
ment, but here we consider just air defense. An air defense system must 
fuse a complex array of sensors (ground radars, airborne radars, beacon 
systems, human observers, and other intelligence systems) into a logi-
cal picture of the air space, and then allocate weapon systems to engage 
selected targets. If the system includes elements from several services or 
nations, conflicts will arise. Nations, and services, may want to preferen-
tially protect their own assets. Their command channels and procedures 
may affect greater self-protection, even when ostensibly operating solely 
for the goals of the collective.

Taking a group of air defense systems from different nations and dif-
ferent services and creating an effective integrated system from them is 
the challenge. The obvious path might be to try and convert the collec-
tion into something resembling a single service air defense system. This 
would entail unifying the command, control, and communications infra-
structure. It would mean removing the element of independent manage-
ment that characterizes collaborative systems. If this could be done, it is 
reasonable to expect that the resulting integrating system would be closer 
to a kind of point optimum. But, the difficulties of making the unification 
are likely to be insurmountable.

If, instead, we accept the independence, then we can try and forge 
an effective collaborative system. The technical underpinnings are 
clearly important. If the parts are going to collaborate to create integrated 
capabilities greater than the sum of the parts, they are going to have to 
communicate. So, even if command channels are not fully unified, com-
munications must be highly interoperable. In this example, as in other 
sociotechnical examples, the social side should not be ignored. It is possible 
that the most important unifying elements in this example will be social. 
These might include shared training or educational background, shared 
responsibility, or shared social or cultural background.

Analogies for Architecting Collaborative Systems
One analogy that may apply is the urban planner. The urban planner, 
like the architect, develops overall structures. The architect structures a 
building for effective use by the client; the urban planner structures effec-
tive communities. The client of an urban planner is usually a community 
government, or one of its agencies. The urban planner’s client and the 
architect’s client differ in important respects. The architect’s client is 
making a value judgment for himself or herself, and presumably has the 
resources to put into action whatever plan is agreed to with the architect. 
When the architect’s plan is received, the client will hire a builder. In 
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contrast, the urban planner’s client does not actually build the city. The 
plan is to constrain and guide many other developers and architects who 
will come later, and hopefully guide their efforts into a whole greater than 
if there had been no overall plan. The urban planner and client are mak-
ing value judgments for other people, the people who will one day inhabit 
the community being planned. The urban planner’s client usually lacks 
the resources to build the plan, but can certainly stop something from 
being built if it is not in the plan. To be successful, the urban planner and 
client have to look outward and sell their vision. They cannot bring it 
about without the other’s aid, and they normally lack the resources and 
authority to do it themselves.

Urban planning also resembles architecting in the spiral or evolution-
ary development process more than in the waterfall. An urban plan must 
be continuously adapted as actual conditions change. Road capacity that 
was adequate at one time may be inadequate at another. The mix of busi-
nesses that the community can support may change radically. As actual 
events unfold, the plan must adapt and be resold to those who participate 
in it, or it will be irrelevant.

Another analogy for collaborative systems is in business relation-
ships. A corporation with semi-independent division is a collaborative 
system if the divisions have separate business lines, individual profit and 
loss responsibilities, and also collaborate to make a greater whole. Now 
consider the problem of a postmerger company. Before the merger, the 
components (the companies who are merging) were probably centrally 
run. After the merger, the components may retain significant indepen-
dence but be part of a greater whole. Now if they are to jointly create 
something greater, they must go through a collaborative system instead of 
their traditional arrangement. If the executives do not recognize this and 
adapt, it is likely to fail. A franchise that grants its franchisees significant 
independence is also like a collaborative system. It is made up of indepen-
dently owned and operated elements, which combine to be something 
greater than they would achieve individually.

Collaborative System Heuristics
As with builder-architecting, manufacturing, sociotechnical, and software-
intensive systems, collaborative systems have their own heuristics. The 
heuristics discussed here have all been given previously, either in this 
book or its predecessor. But saying that they have been given previously 
does not mean that they have been explored for their unique applications 
in collaborative systems. For most people, heuristics do not stand alone as 
some sort of distilled wisdom. They function mainly as guides or “outline 
headings” to relevant experience. What is different here is their applica-
tion — or the experience with specific respect to collaborative systems that 



204	 The Art of Systems Architecting

generated the heuristic. Looking at how heuristics are applied to different 
domains gives a greater appreciation for their use and applicability in 
all domains.

Stable Intermediate Forms

The heuristic on stable intermediate forms is given originally as:

Complex systems will develop and evolve within an 
overall architecture much more rapidly if there are stable 
intermediate forms than if there are not.

The original source of this heuristic is the notion of self-support during 
construction. It is good practice in constructing a building or bridge to 
have a structure that is self-supporting during construction rather than 
requiring extensive scaffolding or other weight-bearing elements that are 
later removed. The idea generalizes to other systems where it is impor-
tant to design them to be self-supporting before they reach the final con-
figuration. In the broader context, “self-supporting” can be interpreted in 
many ways beyond physical self-support. For example, we can think of 
economic and political notions of “self-support.”

Stability in the more general context means that intermediate forms 
should be technically, economically, and politically self-supporting. Tech-
nical stability means that the system operates to fulfill useful purposes. 
Economic stability means that the system generates and captures revenue 
streams adequate to maintain its operation. Moreover, it should be in the 
economic interests of each participant to continue to operate rather than 
disengage. Political stability can be stated as the system has a politically 
decisive constituency supporting its continued operation, a subject we 
return to in Chapter 13. In collaborative systems, it cannot be assumed 
that all participants will continue to collaborate. The system will evolve 
based on continuous self-assessments of the desirability for collaboration 
by the participants:

Integrated air defense systems are subject to unexpected and violent •	
“reconfiguration” in typical use. As a result, they are designed with 
numerous fall-back modes, down to the anti-aircraft gunner work-
ing on his own with a pair of binoculars. Air defense systems built 
from weapon systems with no organic sensing and targeting capa-
bility have frequently failed in combat when the network within 
which they operate has come under attack.
The Internet allows components nodes to attach and detach at will. •	
Routing protocols adapt their paths as links appear and disappear. 
The protocol encapsulation mechanisms of IP allow an undetermined 
number of application layer protocols to simultaneously coexist.
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Policy Triage

This heuristic gives guidance in selecting components and in setting pri-
orities and allocating resources in development. It is given originally as:

The triage: Let the dying die. Ignore those who will 
recover on their own. And treat only those who would 
die without help.

Triage can apply to any systems, but especially applies to collabora-
tive systems. Part of the scope of a collaborative system is deciding what 
not to control. Attempting to overcontrol will fail for lack of authority. 
Undercontrol will eliminate the system nature of the integrated whole. 
A good choice enhances the desired collaboration.

The Motion Picture Experts Group (MPEG), when forming their •	
original standard from video compression, chose to standardize 
only the information needed to decompress a digital video stream.10 
The standard defines the format of the data stream and the opera-
tions required to reconstruct the stream of moving picture frames. 
However, the compression process is deliberately left undefined. By 
standardizing decompression, the usefulness of the standard for 
interoperability was assured. By not standardizing compression, 
the standard leaves open a broad area for the firms collaborating on 
the standard to continue to compete. Interoperability increases the 
size of the market, a benefit to the whole collaborative group, while 
retaining a space for competition eliminates a reason to not collabo-
rate with the group. Broad collaboration was essential both to ensure 
a large market and to ensure that the requisite intellectual property 
would be offered for license by the participants.

Leverage at the Interfaces

Two heuristics, here combined, discuss the power of the interfaces:

The greatest leverage in system architecting is at the 
interfaces. The greatest dangers are also at the interfaces.

When the components of a system are highly independent, operation-
ally and managerially, the architecture of the system is the interfaces. The 
architect is trying to create emergent capability. The emergent capability 
is the whole point of the system. But, the architect may only be able to 
influence the interfaces among the nearly independent parts. The compo-
nents are outside the scope and control of an architect of the whole.
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The Internet oversight bodies concern themselves almost exclu-•	
sively with interface standards. Neither physical interconnections 
nor applications above the network protocol layers is standardized. 
Actually, both areas are the subject of standards, but not the stan-
dards process of the IETF.

One consequence is attention to different elements than in a conven
tional system development. For example, in a collaborative system, 
issues like life-cycle cost are of low importance. The components are 
developed collaboratively by the participants, who make choices to do 
so independently of any central oversight body. The design team for the 
whole cannot choose to minimize life-cycle cost, nor should they, because 
the decisions that determine costs are outside their scope. The central 
design team can choose interface standards, and can choose them to max-
imize the opportunities for participants to find individually beneficial 
investment strategies.

Ensuring Cooperation

If a system requires voluntary collaboration, the mechanism 
and incentives for that collaboration must be designed in.

In a collaborative system, the components actively choose to partici-
pate or not. Like a free market, the resulting system is the web of indi-
vidual decisions by the participants. Thus, an economists’ argument that 
the costs and benefits of collaboration should be superior to the costs and 
benefits of independence for each participant individually should apply. 
As an example, the Internet maintains this condition, because the cost 
of collaboration is relatively low (using compliant equipment and follow-
ing addressing rules) and the benefits are high (access to the backbone 
networks). Similarly in MPEG video standards, compliance costs can be 
made low if intellectual property is pooled, and the benefits are high if 
the targeted market is larger than the participants could achieve with pro-
prietary products. Without the ability to retain a competitive space in the 
market (through differentiation on compression in the case of MPEG), the 
balance might have been different. Alternatively, the cost of noncompli-
ance can be made high, though this method is less used.

An alternative means of ensuring collaboration is to produce a situa-
tion in which each participant’s well-being is partially dependent on the 
well-being of the other participants. This joint utility approach is known, 
theoretically, to produce consistent behavior in groups. A number of 
social mechanisms can be thought of as using this principle. For example, 
strong social indoctrination in military training ties the individual to the 
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group and serves as a coordinating operational mechanism in integrated 
air defense.

Another way of looking at this heuristic is through the metaphor of 
the franchise. The heuristic could be rewritten for collaborative systems 
as follows:

Consider a collaborative system a franchise. Always ask 
why the franchisees choose to join, and then choose to 
remain as members.

Variations on the Collaborative Theme
The two criteria provide a sharp definition of a collaborative system, 
but they still leave open many variations. Some collaborative systems 
are really centrally controlled, but the central authority has decided to 
devolve authority in the service of system goals. In some collaborative 
systems a central authority exists, but power is expressed only through 
collective action. The participants have to mutually decide and act to take 
the system in a new direction. And, finally, some collaborative systems 
lack any central authority. They are entirely emergent phenomena.

We call a collaborative system where central authority exists and can 
act a closed collaborative system. Closed collaborative systems are those in 
which the integrated system is built and managed to fulfill specific pur-
poses. It is centrally managed during long-term operation to continue to 
fulfill those purposes, and any new purposes the system owners may 
wish to address. The component systems maintain an ability to operate 
independently, but their normal operational mode is subordinated to the 
centrally managed purpose. For example, most single service air defense 
networks are centrally managed to defend a region against enemy systems, 
although the component systems retain the ability to operate indepen-
dently, and do so when needed under the stress of combat.

Open collaborative systems are distinct from the closed variety in that 
the central management organization does not have coercive power to 
run the system. The component systems must, more or less, voluntarily 
collaborate to fulfill the agreed upon central purposes. The Internet is 
an open collaborative system. The IETF works out standards but has no 
power to enforce them. IETF standards work because the participants 
choose to implement them without proprietary variations, at least for the 
most part.

As the Internet becomes more important in daily life, in effect, as 
it becomes a new utility like electricity or the telephone, it is natural to 
wonder whether or not the current arrangement can last. Services on 
which public safety and welfare depends are regulated. Public safety and 
welfare, at least in industrial countries, are likely to depend on Internet 
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operation in the near future, if they do not already. So, will the Internet 
and its open processes eventually come under regulation? To some extent, 
in some countries, it already has. In other ways, the movement is toward 
further decentralization in international bodies. Clearly, the international 
governing bodies have less control today over the purposes for which the 
Internet is used than did U.S. authorities when it was being rapidly devel-
oped in the 1990s.

Virtual collaborative systems lack both a central management authority 
and centrally agreed upon purposes. Large-scale behavior emerges, and 
may be desirable, but the overall system must rely upon relatively invis-
ible mechanisms to maintain it.

A virtual system may be deliberate or accidental. Some examples are 
the current form of the World Wide Web and national economies. Both 
“systems” are distributed physically and managerially. The World Wide 
Web is even more distributed than the Internet in that no agency ever 
exerted direct central control, except at the earliest stages. Control has been 
exerted only through the publication of standards for resource naming, 
navigation, and document structure. Although, essentially just by social 
agreement, major decisions about Web architecture are filtered through 
very few people. Web sites choose to obey the standards or not at their 
own discretion. The system is controlled by the forces that make coopera-
tion and compliance to the core standards desirable. The standards do not 
evolve in a controlled way, rather they emerge from the market success 
of various innovators. Moreover, the purposes the system fulfills are 
dynamic and change at the whim of the users.

National economies can be thought of as virtual systems. There are 
conscious attempts to architect these systems, through politics, but the 
long-term nature is determined by highly distributed, partially invisible 
mechanisms. The purposes expressed by the system emerge only through 
the collective actions of the system’s participants.

Misclassification
Two general types of misclassification are possible. One is to incorrectly 
regard a collaborative system as a conventional system, or the reverse. Another 
is to misclassify a collaborative system as directed, voluntary, or virtual.

In the first case, system versus collaborative system, consider open-
source software. Open-source software is often thought of as synonymous 
with Linux (or, perhaps more properly, GNU/Linux), a particular open-
source operating system. Actually, there is a great deal of open-source, 
“free” software not related to Linux in any way. The success of the Linux 
model has spawned an open-source model of development now widely 
used for other software projects and some nonsoftware projects. Software 
is usually considered open source if the source code is freely available 
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to a large audience, who can use it, modify it, and further redistribute it 
under the same open conditions by which they obtained it. Because Linux 
has been spectacularly successful, many others have tried to emulate 
the open-source model. The open-source model is built on a few basic 
principles,11 perhaps heuristics. These include, from Eric Raymond:

	 1.	Designs, and initial implementations, should be carried out by gifted 
individuals or very small teams.

	 2.	Software products should be released to the maximum possible 
audience, as quickly as possible.

	 3.	Users should be encouraged to become testers, and even codevelopers, 
by providing them source code.

	 4.	Code review and debugging can be arbitrarily parallelized, at least 
if you distribute source code to your reviewers and testers.

	 5.	 Incremental delivery of small increments, with a very large user/tester 
population, leads to very rapid development of high quality software*

Of course, a side effect of the open-source model is losing the ability 
to make any significant amount of money distributing software you have 
written. The open-source movement advocates counter that effective busi-
ness models may still be built on service and customization, but some 
participants in the process are accustomed to the profit margins normally 
had from manufacturing software. A number of companies and groups 
outside of the Linux community have tried to exploit the success of the 
Linux model for other classes of products, with mixed results. But as of 
the time of this writing, there are some success stories.

Some of this can be understood by realizing that open-source soft-
ware development is a collaborative system. Companies or groups that 
have open-sourced their software without success typically run into one 
of two problems that limits collaboration. First, many of the corporate 
open-source efforts are not fully open. For example, both Apple and Sun 
Microsystems have open-sourced large pieces of strategic software. But 
both have released them under licenses that significantly restrict usage 
compared to the licenses in the Linux community. They (Apple and Sun) 
have argued that their license structure is necessary to their corporate 
survival and can lead to a more practical market for all involved. Their 
approach is more of a cross between traditional proprietary development 
and true open-source development. However, successful open-source 
development is a social phenomenon, and even the perception that it is 

*	 The speed and quality of Linux releases can be measured, and it is clearly excellent. 
Groups of loosely coordinated programmers achieve quality levels equivalent to those of 
well-controlled development processes in corporations. This point is even admitted in the 
Microsoft “Halloween” memos on Linux, published at www.opensource.org/
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less attractive or unfair may be sufficient to destroy the desired collabora-
tion. In both cases, they later had to alter their strategy: in Sun’s case, more 
toward full openness, and in Apple’s case, backing away from it.

Second, the hypothesis that the quality of open-source software is 
due to the breadth of its review may simply be wrong. The real reason 
for the quality may be that Darwinian natural selection is eliminating 
poor-quality packages — the disappointed companies among them. In a 
corporation, a manager can usually justify putting maintenance money 
into a piece of software the company is selling even when the piece is 
known to be of very low quality. It will usually seem easier, and cheaper, 
to pay for “one more fix” than to start over and rewrite the bad software 
from scratch — this time correctly. But in the open-source community, 
there are no managers who can insist that a programmer maintain a par-
ticular piece of code. If the code is badly structured, hard to read, prone 
to failure, or otherwise unattractive, it will not attract the volunteer labor 
needed to keep in the major distributions, and it will effectively disappear. 
If nobody works on the code, it does not get distributed and natural selec-
tion has culled it.

For the second case, classification within the types of collaborative 
systems, consider a multiservice integrated battle management system. 
Military C4I systems are normally thought of as closed collaborative 
systems. As the levels of integration cross higher and higher administrative 
boundaries, the ability to centrally control the acquisition and operation of 
the system lessen. In a multiservice battle management system, there is 
likely to be much weaker central control across service boundaries than 
within those boundaries. A mechanism that ensures components will col-
laborate within a single service’s system-of-systems, say a set of command 
operational procedures, may be insufficient across services.

In general, if a collaborative system is misclassified as closed, the 
builders and operators will have less control over purpose and operation 
than they may believe. They may use inappropriate mechanisms for insur-
ing collaboration and may assume cooperative operations across admin-
istrative boundaries that will not reliably occur in practice. The designer 
of a closed collaborative system can require that an element behave 
in a fashion not to its own advantage (at least to an extent). In a closed 
collaborative system, the central directive mechanisms exist, but in an 
open collaborative system, the central mechanisms do not have directive 
authority. In an open collaborative system, it is unlikely that a component 
can be induced to behave to its own detriment. In an open collaborative 
system, the central authority lacks real authority and can proceed only 
through the assembly of voluntary coalitions.

A virtual collaborative system misclassified as open may show very 
unexpected emergent behaviors. In a virtual collaborative system, neither 
the purpose nor structure are under direct control, even of a collaborative 
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body. Hence, new purposes and corresponding behaviors may arise at 
any time. The large-scale distributed applications on the Internet, for 
example USENET and the World Wide Web, exhibit this. Both were orig-
inally intended for exchange of research information in a collaborative 
environment but are now used for diverse purposes, some undesired and 
even illegal.

Standards and Collaborative Systems
The development of multicompany standards is a laboratory for collab-
orative systems. A standard is a framework for establishing some collab-
orative systems. The standard (for example, a communication protocol or 
programming language standard) creates the environment within which 
independent implementations can coexist and compete.

Example: Telephone standards allow equipment pro-
duced by many companies in many countries to 
operate together in the global telephone network. A 
call placed in country and traverse switches from dif-
ferent manufacturers and media in different countries 
with nearly the same capabilities as if the call were 
within a single country on one company’s equipment.

Example: Application programming interface (API) 
standards allow different implementations of both 
software infrastructure and applications to coexist. 
So, operating systems from different vendors can 
support the same API and allow compliant applica-
tions to run on any systems from any of the vendors.

Historically, there has been a well-established process for setting 
standards. There are recognized national and international bodies with 
the responsibility to set standards, such as the International Standards 
Organization (ISO), the American National Standards Institute (ANSI), and 
so forth. These bodies have a detailed process that has to be followed. The 
process defines how standards efforts are approved, how working groups 
operate, how voting is carried out, and how standards are approved. Most 
of these processes are rigorously democratic (if significantly bureaucratic). 
The intention is that a standard should reflect the honest consensus of the 
concerned community and is thus likely to be adopted.

Since 1985, this established process has been run over, at least within 
the computer field, by Internet, Web, and open-source processes. The 
IETF, which never votes on a standard in anything like the same sense as 
ISO or ANSI, has completely eclipsed the laboriously constructed Open 
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Systems Interconnect (OSI) networking standard. Moreover, the IETF 
model has spread to a wide variety of networking standards. As another 
example, in operating systems the most important standards are either 
proprietary (from Microsoft, Apple, and others) or defined by open-source 
groups (Linux and BSD). Again, the traditional standards bodies and their 
approaches have played only a little role.

Because the landscape is still evolving, it may be premature to con-
clude what the new rules are. It may be that we are in a time of transi-
tion, and that after the computing market settles down we will return to 
more traditional methods. It may be that when the computer and network 
infrastructure is recognized as a central part of the public infrastructure 
(like electricity and telephones), it will be subjected to similar regulation 
and will respond with similar bureaucratic actions. Or, it may be that tra-
ditional standards bodies will recognize the principles that have made the 
Internet efforts so successful and will adapt. Some fusion may prove to be 
the most valuable yet. In that spirit, we consider what heuristics may be 
extracted from the Internet experience. These heuristics are important not 
only to standards efforts, but to collaborative systems as a whole because 
standards are a special case of collaborative system.

Economists call something a “network good” if it increases in value 
the more widely it is consumed. So, for example, telephones are network 
goods. A telephone that does not connect to anybody is not valuable. Two 
cellular telephone networks that cannot interoperate are much less valu-
able than if they can interoperate. The central observation is that:

Standards are network goods, and must be treated 
as such.

Standards are network goods because they are useful only to the 
extent that other people use them. One company’s networking standard 
is of little interest unless other companies support it (unless, perhaps, that 
company is a monopoly). What this tells standards groups is that achiev-
ing large market penetration is critically important. Various practices flow 
from this realization. The IETF, in contrast to most standards groups, gives 
its standards away for free. A price of zero encourages wide dissemina-
tion. Also, the IETF typically gives away reference implementations with 
its standards. That is, a proposal rarely becomes a standard unless it has 
been accompanied by the release of free source code that implements the 
standard. The free source code may not be the most efficient, may not be 
fully featured, probably does not have all the extras in interface that a 
commercial product should have, but it is free and it does provide a refer-
ence case against which everybody else can work. The IETF culture is that 
proponents of an approach are rarely given much credibility unless they 
are distributing implementations.
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The traditional standards organizations protest that they cannot give 
standards away because the revenue from standard sales is necessary to 
support their development efforts. But, the IETF has little trouble support-
ing its efforts. Its working conferences are filled to overflowing and new 
proposals and working groups are appearing constantly. Standards bodies 
do not need to make a profit, indeed should not. If they can support effective 
standards development they are successful, though removing the income 
of standards sales might require substantial organizational change.

Returning to collaborative systems in general, the example of stan-
dards shows the importance of focusing on real collaboration, not the 
image of it. Commitment to real participation in collaboration is not indi-
cated by voting; it is indicated by taking action that costs something. Free 
distribution of standards and reference implementations lowers entrance 
costs. The existence of reference implementations provides clear confor-
mance criteria that can be explicitly tested.

Conclusion
Collaborative systems are those that exist only through the positive choices 
of component operators and managers. These systems have long existed 
as part of the civil infrastructure of industrial societies, but have come 
into greater prominence as high-technology communication systems 
have adopted similar models, as centralized systems have been decentral-
ized through deregulation or divestiture, and as formerly independent 
systems have been loosely integrated into larger wholes. What sets these 
systems apart is their need for voluntary actions on the part of the par-
ticipants to create and maintain the whole. This requires that the architect 
revisit known heuristics for greater emphasis and additional elaboration. 
Among the heuristics that are particularly important are:

	 1.	Stable Intermediate Forms: A collaborative system designer must pay 
closer attention to the intermediate steps in a planned evolution. The 
collaborative system will take on intermediate forms dynamically 
and without direction, as part of its nature.

	 2.	Policy Triage: The collaborative system designer will not have coercive 
control over the system’s configuration and evolution. This makes 
choosing the points at which to influence the design more important.

	 3.	Leverage at the Interfaces: A collaborative system is defined by its emer-
gent capabilities, but its architects have influence on its interfaces. The 
interfaces, whether thought of as the actual physical interconnections 
or as higher-level service abstractions, are the primary points at 
which the architect can exert control.

	 4.	Ensuring Cooperation: A collaborative system exists because the par-
tially independent elements decide to collaborate. The designer must 
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consider why they will choose to collaborate and foster those reasons 
in the design.

	 5.	A collaboration is a network good; the more of it there is, the better. 
Minimize entrance costs and provide clear conformance criteria.

Exercises
	 1.	The Internet, multimedia video standards (MPEG), and the GSM 

digital cellular telephone standard are all collaborative systems. All 
of them also have identifiable architects, a small group of individuals 
who carried great responsibility for the basic technical structures. 
Investigate the history of one of these cases and consider how the 
practices of the collaborative system architect differ from architects 
of conventional systems.

	 2.	 In a collaborative system, the components can all operate on their 
own whether or not they participate in the overall system. Does 
this represent a cost penalty to the overall system? Does it matter? 
Discuss from the perspective of some of the examples.

	 3.	Collaborative systems in computing and communication usually 
evolve much more rapidly than those controlled by traditional 
regulatory bodies, and often more rapidly than those controlled by 
single companies. Is this necessary? Could regulatory bodies and 
companies adopt different practices that would make their systems 
as evolvable as collaborative (for example, Internet or Linux) while 
retaining the advantages of the traditional patterns of control?

Exercises to Close Part II
Explore another domain much as builder-architected, sociotechnical, 
manufacturing, software, and collaborative systems are explored in this 
part. What are the domain’s special characteristics? What more broadly 
applicable lessons can be learned from it? What general heuristics apply to 
it? Some suggested, heuristic-domains to explore include the following:

	 1.	Telecommunications in its several forms: point-to-point telephone net-
work systems, broadcast systems (terrestrial and space), and packet-
switched data (the Internet).

	 2.	Electric power, which is widely distributed with collaborative control, is 
subject to complex loading phenomena (with a social component), and 
is regulated. (Hill, David J., Special Issue on Nonlinear Phenomena 
in Power Systems: Theory and Practical Implications, Proceedings of 
the IEEE, Vol. 83, Number 11, November, 1995.)

	 3.	Transportation, in both its current form and in the form of proposed 
intelligent transportation systems.
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	 4.	Financial systems, including global trading mechanisms and the 
operation of regulated economics as a system.

	 5.	Space systems, with their special characteristics of remote opera-
tion, high initial capital investment, vulnerability to interference 
and attack, and their effects on the design and operation of existing 
earth-borne system performing similar functions.

	 6.	Existing and emerging media systems, including the collection of com-
peting television systems of private broadcast, public broadcast, 
cable, satellite, and video recording.
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Models and Modeling

Introduction to Part III
What is the product of an architect? Although it is tempting to regard the 
building or system as the architect’s product, the relationship is necessar-
ily indirect. The system is actually built by the developer. The architect 
acts to translate between the problem domain concepts of the client and 
the solution domain concepts of the builder. Great architects go beyond the 
role of intermediary to make a visionary combination of technology and 
purpose that exceeds the expectation of builder or client. But the system 
cannot be built as envisioned unless the architect has a mechanism to 
communicate the vision and track construction against it. The concrete, 
deliverable products of the architect, therefore, are models of the system.

Individual models alone are point-in-time representations of a system. 
Architects need to see and treat each as a member of one of several pro-
gressions. The architect’s first models define the system concept. As the 
concept is found satisfactory and feasible, the models progress to the 
detailed, technology-specific models of design engineers. The architect’s 
original models come into play again when the system must be certified.

A Civil Architecture Analogy
Once again, civil architecture provides a familiar example of modeling 
and progression. An architect is retained to ensure that the building is 
pleasing to the client in all senses (aesthetically, functionally, and finan-
cially). One product of the architect is intangible; it is the conceptual vision 
that the physical building embodies and that satisfies the client. But the 
intangible product is worthless without a series of increasingly detailed 
tangible products, all models of some aspect of the building. Table  III.1 
lists some of the models and their purposes.
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The progression of models during the design life cycle can be visu-
alized as a steady reduction of abstraction. Early models may be quite 
abstract. They may convey only the basic floor plan, associated order-of-
magnitude budgets, and renderings encompassing only major aesthetic 
elements. Early models may cover many disparate designs representing 
optional building structures and styles. As decisions are made, the range 
of options narrows and the models become more specific. Eventually, 
the models evolve into construction drawings and itemized budgets and 
pass into the hands of the builders. As the builders work, models are 
used to control the construction process and to ensure the integrity of 
the architectural concept. Even when the building is finished, some of the 
models will be retained to assist in future project developments and to act 
as an as-built record for building alterations.

Making the key design decisions and building the models are obvi-
ously intertwined but still distinct activities. One could build a fine set 
of models that embodied terrible decisions, and excellent decisions could 
be embodied in an incompetently built set of models. The first case will 
undoubtedly lead to disappointment (or disaster), and the second case 
very likely will. The only saving grace in the second case is that later 
implementers might recognize the situation and work to correct it. The 
focus of this book is on decisions over descriptions, but in this part we 
address the issues of modeling and description directly.

Guide to Part III
Although the form of the models differs greatly from civil architecture 
to aerospace, computer, or software architectures, their purposes and 
relationships remain the same. Part III discusses the concrete elements 
of architectural practice, the models of systems, and their development. 
The discussion is from two perspectives broken into three chapters. First, 
models are treated as the concrete representations of the various views 

Table III.1  Models and Purposes in Civil Architecture
Model Purpose

Physical scale model Convey look and site placement of building to 
architect, client, and builder

Floor plans Work with client to ensure building can perform basic 
functions desired

External renderings Convey look of building to architect, client, and builder
Budgets, schedules Ensure building meets client’s financial performance 

objectives, manage builder relationship
Construction blueprints Communicate design requirements to builder, provide 

construction acceptance criteria
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that define a system. This perspective is treated in general in Chapter 8, 
and through domain-specific examples in Chapter 10. Second, the evolu-
tion and development of models are treated as the core of the architecting 
process. Chapter 9 develops the idea of progressive design as an organiz-
ing principle for the architecting process. A community effort at standard-
izing architecture representation models, called architecture description 
frameworks, is the subject of Chapter 11.

Chapter 8 covers the types of models used to represent systems and 
their roles in architecting. Because architecting is multidimensional and 
multidisciplinary, an architecture may require many partially indepen-
dent views. The chapter proposes a set of six basic views and reviews 
major categories of models for each view. It also introduces viewpoint as 
an organizing abstraction for writing architecture description standards. 
Because a coherent and integrated product is the ultimate goal, the models 
chosen must also be designed to integrate with each other. That is, they 
must define and resolve their interdependencies and form a complete 
definition of the system to be constructed.

Chapter 9 looks for principles to organize the eclectic architecting pro-
cess. A particularly useful principle is that of progression — the idea that 
models, heuristics, evaluation criteria, and many other aspects of the sys-
tem evolve on parallel tracks from the abstract to the specific and concrete. 
Progression also helps tie architecting into the more traditional engineering 
design disciplines. This book largely treats system architecting as a general 
process, independent of domain, but in practice it is necessarily strongly 
tied to individual systems and domains. Nevertheless, each domain con-
tains a core of problems not amenable to rational, mechanistic solution that 
are closely associated with reconciling customer or client need and with 
technical capability. This core is the province of architecting. Architects 
are not generalists; they are specialists in systems, and their models must 
refine into the technology-specific models of the domains in which their 
systems are to be realized.

Chapter 10 returns to models, now tying the previous two chapters 
together by looking at specific modeling methods. Examined in the chapter 
is a series of integrating methodologies that illustrate the attributes dis-
cussed in the previous chapters: multiple views, integration across views, 
and progression from abstract to concrete implementation. Examples of 
integrated models and methods are given for computer-based systems, 
performance-oriented systems, software-intensive systems, manufac-
turing systems, and sociotechnical systems. Described in the first part 
of Chapter 10 are two general-purpose integrated modeling methods, 
Hatley-Pirbhai and Quantitative Quality Function Deployment. The 
former specializes in combining behavioral and physical implementation 
models. The latter specializes in integrating quantitative performance 
requirements with behavioral and implementation models. Subsequent 
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sections describe integrated models for software, manufacturing systems, 
and sociotechnical systems.

Chapter 11 looks outward to the community interested in architec-
ture to review recent work in standardizing architecture descriptions. 
Standards for architecture description are usually referred to as architec-
ture description frameworks. The chapter reviews three of the leading 
ones, with some mention of others. They are the U.S. Department of 
Defense Architecture Framework (DODAF), the ISO Reference Model for 
Open Distributed Processing, and the IEEE’s 1471 Recommended Practice 
for Architectural Description of Software-Intensive Systems. This chapter 
continues by discussing some of the current controversies in frameworks 
and possible resolutions.
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Representation Models and 
Systems Architecting

By relieving the mind of all unnecessary work, a good 
notation sets it free to concentrate on more advanced 
problems, and in effect increases the mental power 
of the [human] race.

Alfred North Whitehead

Introduction: Roles, Views, and Models
Models are the primary means of communication with clients, builders, 
and users; models are the language of the architect. Models enable, guide, 
and help assess the construction of systems as they are progressively 
developed and refined. After the system is built, models, from simulators 
to operating manuals, help describe and diagnose its operation.

To be able to express system imperatives and objectives, and manage 
system design, the architect should be fluent, or at least conversant, with 
all the languages spoken in the long process of system development. These 
languages are those of system specifiers, designers, manufacturers, certi-
fiers, distributors, and users.

The most important models are those that define the critical accep-
tance requirements of the client and the overall structure of the system. 
The former are a subset of the entirety of the requirements, and the latter 
are a subset of the complete, detailed system design. Because the architect 
is responsible for total system feasibility, the critical portions may include 
highly detailed models of components on which success depends and 
abstract, top-level models of other components.

Models can be classified by their role or by their content. Role is 
important in relating models to the tasks and responsibilities not only 
of architects, but of many others in the development process. Of special 
importance to architects are modeling methods that tie together otherwise 
separate models into a consistent whole.
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Roles of Models
Models fill many roles in systems architecting, including the following:

	 1.	Communication with client, users, and builders.
	 2.	Maintenance of system integrity through coordination of design 

activities.
	 3.	Design assistance by providing templates, and organizing and record-

ing decisions.
	 4.	Exploration and manipulation of solution parameters and character-

istics; guiding and recording of aggregation and decomposition of 
system functions, components, and objects.

	 5.	Performance prediction; identification of critical system elements.
	 6.	Provision of acceptance criteria for certification for use.

These roles are not independent; each relates to the other. But the 
foremost is to communicate. The architect discusses the system with the 
client, the users (if different), the builders, and possibly many other inter-
est groups. Models of the system are the medium of all such communica-
tion. After all, the system will not come into being for some time to come. 
The models used for communication become documentation of decisions 
and designs and thus vehicles for maintaining design integrity. Powerful, 
well-chosen models will assist in decision making by providing an evoca-
tive picture of the system in development. They will also allow relevant 
parameters and characteristics to be manipulated and the results seen in 
terms relevant to client, user, or builder.

Communication with the client has two goals. First, the architect must 
determine the client’s objectives and constraints. Second, the architect 
must insure that the system to be built reflects the value judgments of the 
client where perfect fulfillment of all objectives is impossible. The first goal 
requires eliciting information on objectives and constraints and casting it 
into forms useful for system design. The second requires that the client 
perceive how the system will operate (objectives and constraints) and that 
the client can have confidence in the progress of design and construc-
tion. In both cases, models must be clear and understandable to the client, 
expressible in the client’s own terminology. It is desirable that the models 
also be expressive in the builder’s terms, but because client expressiveness 
must take priority, proper restatement from client to builder language 
usually falls to the architect.

User communication is similar to client communication. It requires 
the elicitation of needs and the comparison of possible systems to meet 
those needs. When the client is the user, this process is simplified. 
When the client and the users are different (as discussed in Chapter 5 



Chapter 8:  Representation Models and Systems Architecting	 223

on sociotechnical systems), their needs and constraints may conflict. The 
architect is in the position to attempt to reconcile these conflicts.

In two-way communication with the builder, the architect seeks to 
insure that the system will be built as conceived and that system integ-
rity is maintained. In addition, the architect must learn from the builder 
those technical constraints and opportunities that are crucial in insuring 
a feasible and satisfactory design. Models that connect the client and the 
builder are particularly helpful in closing the iterations from builder tech-
nical capability to client objectives.

One influence of the choice of a model set is the nature of its associ-
ated “language” for describing systems. Given a particular model set and 
language, it will be easy to describe some types of systems and awkward 
to describe others, just as natural languages are not equally expressive of 
all human concepts. The most serious risk in the choice is that of being 
blind to important alternate perspectives due to long familiarity (and 
often success) with models, languages, and systems of a particular type.

Models, Viewpoints, and Views
Chapters 8 through 10 discuss this book’s approach to modeling in systems 
architecting. Chapter 11 looks outward to the community to review other 
important approaches and draw contrasts. Unfortunately, there is a lot of 
variation in the usage of important terms. There are three terms that are 
important in setting up a modeling framework: model, view, and viewpoint. 
We use the definitions of model, view, and viewpoint taken from the 
Institute of Electrical and Electronics Engineers (IEEE) standards:

Model: An approximation, representation, or ideal-
ization of selected aspects of the structure, behavior, 
operation, or other characteristics of a real-world 
process, concept, or system (IEEE 610.12-1990).

View: A representation of a system from the per-
spective of related concerns or issues (ANSI/IEEE 
1471-2000).

Viewpoint: A template, pattern, or specification for 
constructing a view (ANSI/IEEE 1471-2000).

As discussed above, a model is just a representation of something; 
in our case some aspect of the architecture of a system. The modeling 
languages of interest have a vocabulary and a grammar. The words are 
the parts of a model; the grammar defines how the words can be linked. 
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Beyond that, a modeling language has to have a method of interpretation; 
the models produced have to mean something, typically within some 
domain. For example, in a block diagramming method, the words are 
the kinds of blocks and lines and the grammar are the allowed patterns 
by which they can be connected. The method also has to define some 
correspondence between the blocks, lines, and connections to things in 
the world. A physical method will have a correspondence to physically 
identifiable things. A functional diagramming technique has a correspon-
dence to more abstract entities — the functions that the system does.

A view is just a collection of models that share the property that they are 
relevant to the same concerns of a system stakeholder. For example, a func-
tional view collects the models that represent a system function. An objec-
tives view collects the models that define the objectives to be met by building 
the system. The idea of view is needed because complex systems tend to 
have complex models and require a higher-level organizing element.

View is inspired by the familiar idea of architectural views. An archi-
tect produces elevations, floor plans, and other representations that show 
the system from a particular perspective. The idea of view here general-
izes this when physical structure is no longer primary.

Viewpoint is an abstraction of view across many systems. It is impor-
tant only in defining standards for architecture description, so we defer 
its use until later.

These concepts are depicted schematically in Figure 8.1.

Viewpoint consists of:
Concerns (of stakeholder)
Methods

�e same viewpoint can be
applied to multiple systems
to produce multiple views.

�e same system will
have different views
corresponding to
different viewpoints.

Figure 8.1  The concept of viewpoint and view.
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Classification of Models by View
A view describes a system with respect to some set of attributes or con-
cerns. The set of views chosen to describe a system is variable. A good set 
of views should be complete (cover all concerns of the architect’s stake-
holders) and mostly independent (capture different pieces of information). 
Table  8.1 lists the set of views chosen here as most important to archi-
tecting. A system can be “projected” into any view, possibly in several 
ways. The projection into views and the collection of models by views 
is shown schematically in Figure  8.2. Each system has some behavior 
(abstracted from implementation), has a physical form, and retains data. 
Views are composed of models. Not all views are equally important to 
system developmental success, and the set will not remain constant over 

Table 8.1  Major System or Architectural Views
Perspective or View Description

Purpose/objective What the client wants
Form What the system is
Behavioral or functional What the system does
Performance objectives or requirements How effectively the system does it
Data The information retained in the system 

and its interrelationships
Managerial The process by which the system is 

constructed and managed

The
System

Behavior

Purpose/Objectives

Performance

Data

Form

Managerial

Bθ ln(K1/K2)σθ =
SNR

$ = C1(LOC)β

%

Figure 8.2  The six views. All views are representations of some aspect of the 
actual system. Each view may contain several models, as needed to capture the 
information of the view.
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time. For example, a system might be behaviorally complex but have rela-
tively simple form. Views that are critical to the architect may play only a 
supporting role in full development.

Although any system can be described in each view, the complexity 
and value of each view’s description can differ considerably. Each class 
of systems emphasizes particular views and has favored modeling meth-
ods, or methods of representation within each view. The architect must 
determine which views are most important to the system and its environ
ment and be expert in the relevant models. The views are chosen to be 
reasonably independent, but there is extensive linkage among views. 
For example, the behavioral aspects of the system are not independent 
of the system’s form. The system can produce the desired behavior only 
if the system’s form supports it. This linkage is conceptually similar to a 
front and side view being linked (both show vertical height) even though 
they are observations from orthogonal directions.

The following sections describe models used for representing a 
system in each of the views of Table 8.1. The section for each view defines 
what information is captured by the view, describes the modeling issues 
within that view, and lists some important modeling methods. Part of the 
architect’s role is to determine which views are most critical to system 
success, build models for those views, and then integrate as necessary to 
maintain system integrity. The integration across views is a special con-
cern of the architect.

Note to the Reader

The sections to follow, which describe models for each view, are difficult to 
understand without examples meaningful to each reader. Rather than try-
ing to present detailed examples of each for each of several system domains 
(a task that might require its own book), we suggest the reader does so on 
his or her own. The examples given in the chapter are not detailed and are 
chosen to be understandable to the widest possible audience. Chapter 10 
describes, in detail, specific modeling methods that span and integrate 
multiple views. The methods of Chapter 10 are what the architect should 
strive for, an integrated picture of all important aspects of a system.

As stated in the Introduction, Part III can be read several ways. The 
chapters can be read in order, which captures the intellectual thread of 
model concepts, modeling processes and heuristics, specific modeling 
methods, and organizing frameworks. In this case, it is useful to read 
ahead to exercises 1 and 2 at the end of this chapter and work them while 
reading each section to follow. The remaining exercises are intended for 
after the chapter is read, although some may be approached as each section 
is completed. An alternative is to read Chapters 8 and 10 in parallel, read-
ing the specific examples of models in Chapter 10 as the views are covered 
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in Chapter 8. Because the approach of Chapter 10 is to look at integrated 
models, models that span views, a one-for-one correspondence is impos-
sible. The linear approach is probably best for those without extensive 
background in modeling methods. Those with a good background in 
integrated modeling methods can use either.

Objectives and Purpose Models

The first modeling view is that of objectives and purposes. Systems are 
built for useful purposes — that is, for what the client wants. Without 
them the system cannot survive. The architect’s first and most basic role 
is to match the desirability of the purposes with the practical feasibility 
of a system to fulfill those purposes. Given a clearly identifiable client, 
the architect’s first step is to work with that client to identify the system’s 
objectives and priorities. Some objectives can be stated and measured 
precisely. Others will be quite abstract, impossible to express quantita-
tively. A civil architect is not surprised to hear a client’s objective is for 
the building to “be beautiful” or to “be in harmony with the natural state 
of the site.” The client will be very unhappy if the architect tells the client 
to come back with unambiguous and testable requirements. The archi-
tect must prepare models to help the client to clarify abstract objectives. 
Abstract objectives require provisional and exploratory models, models 
that may fall by the wayside later as the demands and the resulting system 
become well understood. Ideally, all iterations and explorations become 
part of the systems document set. However, to avoid drowning in a sea 
of paper, it may be necessary to focus on a limited set. If refinement and 
trade-off decisions (the creation of concrete objectives from abstract ones) 
are architectural drivers, they must be maintained, as it is likely the key 
decisions will be repeatedly revisited.

Modeling therefore begins by restating and iterating those initial 
unconstrained objectives from the client’s language until a modeling 
language and methodology emerges, the first major step closer to engi-
neering development. Behavioral objectives are restated in a behavioral 
modeling language. Performance requirements are formulated as mea-
surable satisfaction models. Some objectives may translate directly into 
physical form, others into patterns of form that should be exhibited by 
the system. Complex objectives almost invariably require several steps of 
refinement and indeed may evolve into characteristics or behaviors quite 
different from their original statement.

A low-technology example (though only by modern standards) is the 
European cathedrals of the Middle Ages. A cathedral architect considered 
a broad range of objectives. First, a cathedral must fulfill well-defined 
community needs. It must accommodate celebration-day crowds, serve 
as a suitable seat for the bishop, and operate as a community centerpiece. 
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But, in addition, cathedral clients of that era emphasized that the cathedral 
“communicate the glory of God and reinforce the faithful through its 
very presence.”

Accommodation of holiday celebrants is a matter of size and floor 
layout. It is an objective that can be implemented directly and requires no 
further significant refinement. The clients — the church and community 
leaders — because of their personal familiarity with the functioning of a 
cathedral, could determine for themselves the compliance of the cathe-
dral by examining the floor plan. But what of defining a building that 
“glorifies God?” This is obviously a property only of the structure as a 
whole — its scale, mass, space, light, and integration of decoration and 
detail. Only a person with an exceptional visual imagination is able to 
accurately envision the aesthetic and religious impact of a large structure 
documented only through drawings and renderings. Especially in those 
times, when architectural styles were new and people traveled little, an 
innovative style would be an unprecedented experience for perhaps all 
but the architect.

In this example, we also see the interaction of heuristics and model-
ing. Models define the architect’s approach to the cathedral, but heuristics 
would be needed to guide decision making. How does the architect 
know what building features produce the emotional effect that will be 
regarded as glorifying God and reinforcing the faithful? The architect 
can know only through induction (experience with other buildings) and 
the generalization of that induction through theory. Our own experiences 
should be enough to suggest the elements of appropriate heuristics (for 
example, great vertical height, visual and auditory effects, integration of 
iconography and visual teachings).

Refinement of objectives through models is central to architecting, but 
it is also a source of difficulty. A design that proceeds divorced from direct 
client relevance tends to introduce unnecessary requirements that compli-
cate its implementation. Experience has shown that retaining the client’s 
language throughout the acquisition process can lead to highly efficient, 
domain-specific architectures, for example, in communication systems.

Example: Domain Specific Software Architectures1 
are software application generation frameworks 
in which domain concepts are embedded in the 
architectural components. The framework is used 
to generate a product line of related applications in 
which the client language can be used nearly directly 
in creating the product. For a set of message handler 
applications within command and control systems, 
the specification complexity was reduced 50:1.
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One measure of the power of a design and implementation method 
is its ability to retain the original language. But this poses a dilemma. 
Retention implies the availability of proven, domain-specific methods 
and engineering tools. But unprecedented systems by definition are likely 
to be working in new domains, or near the technical frontiers of existing 
domains. By the very nature of unprecedented system development, such 
methods and tools are unlikely to be available. Consequently, models 
and methodologies must be developed and pass through many stages 
of abstraction, during which the original relevance can easily be lost. 
The architect must therefore search out domain-specific languages and 
methods that can somehow maintain the chain of relevance throughout.

An especially powerful, but challenging, form of modeling converts 
the client or user’s objectives into a meta-model or metaphor that can be 
directly implemented. A famous example is the desktop metaphor adopted 
for Macintosh computers. The user’s objective is to use a computer for 
daily, office-oriented task automation. The solution is to capture the user’s 
objectives directly by presenting a simulation of a desktop on the com-
puter display. Integrity with user needs is automatically maintained by 
maintaining the fidelity of a desktop and file system familiar to the user.

Models of Form

Models of form represent physically identifiable elements of, and inter-
faces to, what will be constructed and integrated to meet client objectives. 
Models of form are closely tied to particular construction technologies, 
whether the concrete and steel of civil architecture or the less tangible 
codes and manuals of software systems. Even less tangible physical forms 
are possible, such as communication protocol standards, a body of laws, 
or a consistent set of policies.

Models of form vary widely in their degree of abstraction and role. For 
example, an abstract model may convey no more than the aesthetic feel of 
the system to the client. A dimensionally accurate but hollow model can 
assure proper interfacing of mechanical parts. Other models of form may 
be tightly coupled to performance modeling, as in the scale model of an 
airplane subjected to wind tunnel testing. The two categories of models of 
form most useful in architecting are scale models and block diagrams.

Scale Models
The most literal models of form are scale models. Scale models are widely 
used for client and builder communication and may function as part 
of behavioral or performance modeling as well. Some major examples 
include the following:
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	 1.	Civil architects build literal models of buildings, often producing 
renderings of considerable artistic quality. These models can be 
abstracted to convey the feel and style of a building or can be pre-
cisely detailed to assist in construction planning.

	 2.	Automobile makers mock up cars in body-only or full running trim. 
These models make the auto show circuit to gauge market interest or 
are used in engineering evaluations.

	 3.	Naval architects model racing yachts to assist in performance evalu-
ation. Scale models are drag tested in water tanks to evaluate drag 
and handling characteristics. Reduced or full-scale models of the 
deck layout are used to run simulated sail handling drills.

	 4.	Spacecraft manufacturers use dimensionally accurate models in fit 
compatibility tests and in crew extravehicular activity rehearsals. 
Even more important are ground simulators for on-orbit diagnostics 
and recovery planning.

	 5.	Software developers use prototypes that demonstrate limited char-
acteristics of a product that are equivalent to scale models. For 
example, user interface prototypes that look like the planned system 
but do not possess full functionality, non-real-time simulations that 
carry extensive functionality but do not run in real-time, or just a set 
of screen shots with scenarios for application use.

Physical scale models are gradually being augmented or replaced 
by virtual reality systems. These “scale” models exist only in a com-
puter and the viewer’s mind. They may, however, carry an even stronger 
impression of reality than a physical scale model because of the sensory 
immersion achievable.

Block Diagrams
A scale model of a circuit board or a silicon chip is unlikely to be of much 
interest alone, except for expanded-scale plots used to check for layout 
errors. Nonetheless, physical block diagrams are ubiquitous in the elec-
tronics industry. To be a model of form, as distinct from a behavioral 
model, the elements of the block diagram must correspond to physically 
identifiable elements of the system. Some common types of block diagrams 
include the following:

	 1.	System interconnect diagrams that show specific physical elements 
(modules) connected by physically identifiable channels. On a high-
level diagram, a module might be an entire computer complex and 
a channel might be a complex internetwork. On a low level, the 
modules could be silicon chips with specific part numbers and the 
channels pin-assigned wires.
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	 2.	System flow diagrams that show modules in the same fashion as 
interconnect diagrams but illustrate the flow of information among 
modules. The abstraction level of information flow defined might 
be high (complex messaging protocols) or low (bits and bytes). The 
two types of diagrams (interconnect and flow) are contrasted in 
Chapter 10, Figure 10.3.

	 3.	Structure charts,2 task diagrams,3 and class and object diagrams4 
that structurally define software systems and map directly to 
implementation. A software system may have several logically 
independent such diagrams, each showing a different aspect of the 
physical structure. Take for example, diagrams that show the invo-
cation tree, the inheritance hierarchy, or the “withing” relationships 
in an Ada program. Examples of several levels of physical software 
diagram are given in Figure 10.5 and Figure 10.6 in Chapter 10.

	 4.	Manufacturing process diagrams are drawn with a standardized set 
of symbols. These represent manufacturing systems at an interme-
diate level of abstraction, showing specific classes of operation but 
not defining the machine or the operational details.

Several authors have investigated formalizing block diagrams over 
a flexible range of architectural levels. The most complete, with widely 
published examples, is that of Hatley and Pirbhai.5 Their method is dis-
cussed in more depth in Chapter 10 as an example of a method for inte-
grating a multiplicity of architectural views across models. A number 
of other methods and tools that add formalized physical modeling to 
behavioral modeling are appearing. Many of these are commercial 
tools so the situation is fluid and their methodologies are often not fully 
defined outside of the tools documentation. Some other examples are the 
system engineering extensions to ADARTS (described later in the context 
of software), RDD-100,6 and StateMate.7

An attribute missing in most block diagram methods is the logic of 
data flow. The diagram may show that a data item flows from module A 
to module B, but it does not show who controls the flow. Control can be of 
many types. A partial enumeration includes the following:

Soft push: The sender sends and the item is lost if the receiver is not 
waiting to receive it.

Hard push: The sender sends and the act of sending interrupts the 
receiver who must take the data.

Blocking pull: The receiver requests the data and waits until the 
sender responds.

Nonblocking pull: The receiver requests the data continues on without it 
if the sender does not send.
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Hard pull: When the receiver requests the data, the sender is interrupted 
and must send.

Queuing channel: The sender can push data onto the channel without 
interrupting the receiver and with data being stored in the channel. 
The receiver can pull data from the channel’s store.

Of course, there are many other combinations as well. The significance 
of the control attribute is primarily in interfacing to disciplinary engi-
neers, especially software engineers. In systems whose development cost 
is dominated by software, which is now virtually all complex systems, it is 
essential that systems activities provide the information needed to enable 
software architecting as quickly as possible. One of the elements of a soft-
ware architecture is the concurrency and synchronization model. The 
constraints on software concurrency and synchronization are determined 
by the data flow control logic around the software–hardware boundary. 
So, it is just the kind of information on data flow control that is needed to 
better match systems activities to software architecture.

Behavioral (Functional) Models

Functional or behavioral models describe specific patterns of behavior by 
the system. These are models of what the system does (how it behaves) 
as opposed to what the system is (which are models of form). Architects 
increasingly need behavioral models as systems become more intelligent 
and their behavior becomes less obvious from the systems form. Unlike 
a building, a client cannot look at a scale model of a software system and 
infer how the system behaves. Only by explicitly modeling the behavior 
can it be understood by the client and builder.

Determining the level of detail or rigor in behavioral specification 
needed during architecting is an important choice. Too little detail or rigor 
will mean the client may not understand the behavior being provided (and 
possibly be unsatisfied) or the builder may misunderstand the behavior 
actually required. Too much detail or rigor may render the specification 
incomprehensible — leading to similar problems — or unnecessarily 
delay development. Eventually, when the system is built, its behavior is 
precisely specified (if only by the actual behavior of the built system).

From the perspective of architecting, what level of behavioral refine-
ment is needed? The best guidance is to focus on the system acceptance 
requirements and to ensure the acceptance requirements are passable 
but complete. Ask what behavioral attributes of the system the client will 
demand be certified before acceptance, and determine through what tests 
those behavioral attributes can be certified. The certifiable behavior is the 
behavior the client will get, no more and no less.
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Example: In software systems with extensive user 
interface components, it has been found by experi-
ence that only a prototype of the interface adequately 
conveys to users how the system will work. Hence, 
to ensure not just client acceptance but also user 
satisfaction, an interface prototype should be devel-
oped very early in the process. Major office applica-
tion developers have videotaped office workers as 
they use prototype applications. The tapes are then 
examined and scored to determine how effective 
various layouts were at encouraging users to make 
use of new features, how rapidly they were able to 
work, and so on.

Example: Hardware and software upgrades to mili-
tary avionics almost always must remain backward 
compatible with other existing avionics systems and 
maintain support for existing weapon systems. The 
architecture of the upgrade must reflect the behav-
ioral requirements of existing system interface. 
Some may imply very simple behavioral require-
ments, like providing particular types of informa-
tion on a communication bus. Others may demand 
complex behaviors, such as target handover to a 
weapon requiring target acquisition, queuing of the 
weapon sensor, real-time synchronization of the 
local and weapon sensor feeds, and complex launch 
codes. The required behavior needs to be captured 
at the level required for client acceptance, and at the 
level needed to extract architectural constraints.

Behavioral tools of particular importance are threads or scenarios, 
data and event flow networks, mathematical systems theory, autonomous 
system theory, and public choice and behavior models.

Threads and Scenarios
A thread or scenario is a sequence of system operations. It is an ordered list 
of events and actions that represents an important behavior. It normally 
does not contain branches; that is, it is a single serial scenario of operation, 
a stimulus and response thread. Branches are represented by additional 
threads. Behavioral requirements can be of two types. The first type is to 
require that the system must produce a given thread — that is, to require 
a particular system behavior. The alternative is to require that a particu-
lar thread not occur — for example, that a hazardous command never be 
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issued without a positive confirmation having occurred first. The former 
is more common, but the latter is just as important.

Threads are useful for client communication. Building the threads 
can be a framework for an interactive dialogue with the client. For each 
input, pose the question “When this input arrives what should happen?” 
Trace the response until an output is produced. In a similar fashion, trace 
outputs backward until inputs are reached. The list of threads generated 
in this way becomes part of the behavioral requirements.

Threads are also useful for builder communication. Even if not com-
plete, they directly convey desired system behavior. They also provide 
useful tools during design reviews and for test planning. Reviewers can 
ask that designers walk through their design as it would operate in each 
of a set of selected threads. This provides a way for reviewers to survey a 
design using criteria very close to the client’s own language. Threads can 
be used similarly as templates for system tests, ensuring that the tests are 
directly tied to the client’s original dialog.

Another name for behavioral specification by threads and scenarios 
is use-cases. Use-case has become the popular term for behavioral speci-
fication by example. The term originally comes from the object-oriented 
software community, but it has been applied much more widely. The 
normal form of a use-case is the listing of an example dialogue between 
the system and an actor. An actor is a human user of the system. The 
use-case consists of the sequence of messages passed between the system 
and actor, augmented by additional explanation in ways specific to each 
method. Use-cases are intended to be narrative. That is, they are specifi-
cally intended to be written in the language of users and to be under-
standable by them. When a system is specified by many use-cases, and 
the use-cases interact, there are a number of diagrams that can be used to 
specify the connections. Chapter 10 briefly discusses these within Unified 
Modeling Language (UML).

Data and Event Flow Networks
A complex system can possess an enormous (perhaps infinite) set of threads. 
A comprehensive list may be impossible, yet without it, the behavioral 
specification is incomplete. Data and event flow networks allow threads 
to be collapsed into more compact but complete models. Data flow models 
define the behavior of a system by a network of functions or processes that 
exchange data objects. The process network is usually defined in a graphi-
cal hierarchy, and most modern versions add some component of finite 
state machine description. Current data flow notations are descendants 
either of DeMarco’s data flow diagram (DFD) notation8 or Functional Flow 
Block Diagrams (FFBD).9 Chapter 10 gives several examples of data flow 
models and their relationships with other model types. Figure 10.1 and 



Chapter 8:  Representation Models and Systems Architecting	 235

Figure 10.2 show examples of data flow diagrams for an imaging system. 
Both the DFD and FFBD methods are based on a set of root principles:

	 1.	The system functions are decomposed hierarchically. Each function 
is composed of a network of subfunctions until a “simple” descrip-
tion can be written in text.

	 2.	The decomposition hierarchy is defined graphically.
	 3.	Data elements are decomposed hierarchically and are separately 

defined in an associated “data dictionary.”
	 4.	Functions are assumed to be data triggered. A process is assumed to 

execute anytime its input data elements are available. Finer control 
is defined by a finite state control model (DFD formalism) or in the 
graphical structure of the decomposition (FFBD formalism).

	 5.	The model structure avoids redundant definition. Coupled with 
graphical structuring, this makes the model much easier to modify.

Mathematical Systems Theory
The traditional meaning of system theory is the behavioral theory of mul-
tidimensional feedback systems. Linear control theory is an example of 
system theory on a limited, well-defined scale. Models of macroeconomic 
systems and operations research are also system theoretic models, but on 
a much larger scale.

System theoretic formalisms are built from two components:

	 1.	A definition of the system boundary in terms of observable quanti-
ties, some of which may be subject to user or designer control.

	 2.	Mathematical machinery that describes the time evolution (the 
behavior) of the boundary quantities given some initial or boundary 
conditions and control strategies.

There are three main mathematical system formalisms distinguished 
by how they treat time and data values:

	 1.	Continuous systems: These systems are classically modeled by dif-
ferential equations, linear and nonlinear. Values are continuous 
quantities and are computable for all times.

	 2.	Temporally discrete (sampled data) systems: These systems have con-
tinuously valued elements measured at discrete time points. Their 
behavior is described by difference equations. Sampled data systems 
are increasingly important because they are the basis of most com-
puter simulations and nearly all real-time digital signal processing.

	 3.	Discrete event systems: A discrete event system is one in which some 
or all of the quantities take on discrete values at arbitrary points in 
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time. Queuing networks are the classical example. Asynchronous 
digital logic is a pure example of a discrete event system. The quanti-
ties of interest (say data packets in a communication network) move 
around the network in discrete units, but they may arrive or leave a 
node at an arbitrary, continuous time.

Continuous systems have a large and powerful body of theory. Linear 
systems have comprehensive analytical and numerical solution methods and 
an extensive theory of estimation and control. Nonlinear systems are still 
incompletely understood, but many numerical techniques are available, some 
analytical stability methods are known, and practical control approaches are 
available. The very active field of dynamical systems addresses nonlinear as 
well as control aspects of systems. Similar results are available for sampled 
data systems. Computational frameworks exist for discrete event systems 
(based on state machines and Petri Nets), but are less complete than those 
for differential or difference equation systems in their ability to determine 
stability and synthesize control laws. A variety of simulation tools are avail-
able for all three types of systems. Some tools attempt to integrate all three 
types into a single framework, though this is difficult.

Many modern systems are a mixture of all three types. For example, 
consider a computer-based temperature controller for a chemical process. 
The complete system may include continuous plant dynamics, a sampled 
data system for control under normal conditions, and discrete event con-
troller behavior associated with threshold crossings and mode changes. 
A comprehensive and practical modern system theory should answer 
the classic questions about such a mixed system — stability, closed-loop 
dynamics, and control law synthesis. No such comprehensive theory exists, 
but constructing one is an objective of current research. Manufacturing 
systems are a special example of large-scale mixed systems for which 
qualitative system understanding can yield architectural guidance.

Autonomous Agent, Chaotic Systems
System-level behavior, as defined in Chapter 1, is behavior not contained 
in any system component but which emerges only from the interaction of 
all the components. A class of system of recent interest is that in which a 
few types of multiply replicated, individually relatively simple, compo-
nents interact to create essentially new (emergent) behaviors. Ant colonies, 
for example, exhibit complex and highly organized behaviors that emerge 
from the interaction of behaviorally simple, nearly identical, sets of compo-
nents (the ants). The behavioral programming of each individual ant, and 
its chaotic local interactions with other ants and the environment, is suffi-
cient for complex high-level behaviors to emerge from the colony as a whole. 
There is considerable interest in using this truly distributed architecture, but 
traditional top-down, decomposition-oriented models and their bottom-up 
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integration-oriented complements do not describe it. Some attempts have 
been made to build theories of such systems from chaos methods. Attempts 
have also been made to find rules or heuristics for the local intelligence and 
interfaces necessary for high-level behaviors to emerge.

Example: In some prototype flexible manufacturing 
plants, instead of trying to solve the very complex 
work scheduling problem, autonomous controllers 
schedule through distributed interaction. Each work 
cell independently “bids” for jobs on its input. Each 
job moving down the line tries to “buy” the produc-
tion and transfer services it needs to be completed.10 
Instead of central scheduling, the equilibrium of the 
pseudo-economic bid system distributes jobs and 
fills work cells. Experiments have shown that rules 
can be designed that result in stable operation, near 
optimality of assignment, and very strong robust-
ness to job changes and work cell failure. But the 
lack of central direction makes it difficult to assure 
particular operational aspects (for example, to 
assure that “oddball” jobs will not be ignored for 
the apparent good of the mean).

Public Choice and Behavior Models
Some systems depend on the behavior of human society as part of the 
system. In such cases, the methods of public choice and consumer analysis 
may need to be invoked to understand the human system. These methods 
are often ad hoc, but many have been widely used in marketing analysis 
by consumer product companies.

Example: One concept in intelligent transportation 
systems proposals (recall the discussion in “Case 
Study 3” on ITS before Chapter 5) is the use of cen-
tralized routing. In a central routing system, each 
driver would inform the center (via some data 
network) of his or her beginning location and his 
or her planned destination for each trip. The center 
would use that information to compute a route for 
each vehicle and communicate the selected route 
back to the driver. The route might be dynamically 
updated in response to accidents or other incidents. 
In principle, the routing center could adjust routes 
to optimize the performance of the network as a 
whole. But would drivers accept centrally selected 
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routes, especially if they thought the route benefited 
the network but not them? Would they even bother 
to send in route information?

A variety of methods could be used to address such questions. At the 
simplest level are consumer surveys and focus groups. A more involved 
approach is to organize multiperson driving simulations with the perfor-
mance of the network determined from individual driver decisions. Over 
the course of many simulations, as drivers evaluate their own strategies, 
stable configurations may emerge.

Performance Models

A performance model describes or predicts how effectively an architec-
ture satisfies some objective, either functional or not. Performance models 
are usually quantitative, and the most interesting performance models 
are those of system-level functions — that is, properties possessed by the 
system as a whole but by no subsystem. Performance models describe 
properties like overall sensitivity, accuracy, latency, adaptation time, 
weight, cost, reliability, and many others. Performance requirements are 
often called “nonfunctional” requirements because they do not define a 
functional thread of operation, at least not explicitly. Cost, for example, 
is not a system behavior, but it is an important property of the system. 
Detection sensitivity to a particular signal, however, does carry with it 
implied functionality. Obviously, a signal cannot be detected unless the 
processing is in place to produce a detection. It will also usually be impos-
sible to formulate a quantitative performance model without constraining 
the system’s behavior and form.

Performance models come from the full range of engineering and 
management disciplines. But the internal structure of performance models 
generally falls into one of three categories:

	 1.	Analytical: Analytical models are the products of the engineering 
sciences. A performance model in this category is a set of lower-level 
system parameters and a mathematical rule of combination that pre-
dicts the performance parameter of interest from lower-level values. 
The model is normally accompanied by a “performance budget” 
or a set of nominal values for the lower-level parameters to meet a 
required performance target.

	 2.	Simulation: When the lower-level parameters can be identified, but an 
easily computable performance prediction cannot, a simulation can 
take the place of the mathematical rule of combination. In essence, 
a simulation of a system is an analytical model of the system’s behavior 
and performance in terms of the simulation parameters. The connection 
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is just more complex and difficult to explicitly identify. A wide variety 
of continuous, discrete time, and discrete event simulators are avail-
able, many with rich sets of constructs for particular domains.

	 3.	 Judgmental: Where analysis and simulation are inadequate or infea-
sible, human judgment may still yield reliable performance indica-
tors. In particular, human judgment, using explicit or implicit design 
heuristics, can often rate one architecture as better than another even 
where a detailed analytical justification is impossible.

Formal Methods
The software engineering community has taken a specialized approach to 
performance modeling known as formal methods. Formal methods seek 
to develop systems that provably produce formally defined functional 
and nonfunctional properties. In formal development, the team defines 
system behavior as sets of allowed and disallowed sequences of opera-
tion, and may add further constraints, such as timing, to those sequences. 
They then develop the system in a manner that guarantees compliance to 
the behavioral and performance definition. Roughly speaking, the formal 
methods approach is as follows:

	 1.	 Identify the inputs and outputs of the system. Identify a set of math-
ematical and logical relations that must exist between the input and 
output sequences when the system is operating as desired.

	 2.	Decompose the system into components, identifying the inputs and 
outputs of each component. Determine mathematical relations on 
each component such that their composition is equivalent to the 
original set of relations one level up.

	 3.	Continue the process iteratively to the level of primitive implemen-
tation elements. In software, this would be programming language 
statements. In digital logic, this might be low-level combinational or 
sequential logic elements.

	 4.	Compose the implementation backward up the chain of inference 
from primitive elements in a way that conserves the decomposed 
correctness relations. The resulting implementation is then equiva-
lent to the original specification.

From the point of view of the architect, the most important applica-
tions of formal methods are in the conceptual phases and in the certifica-
tion of high-assurance and ultraquality systems. Formal methods require 
explicit determination of allowed and disallowed input and output 
sequences. Trying to make that determination can be valuable in eliciting 
client information, even if the resulting information is not captured in 
precise mathematical terms. Formal methods also hold out the promise of 
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being able to certify system characteristics that can never be tested. No set 
of tests can certify that certain event chains cannot occur, but theorems to 
that effect are provable within a formal model.

Various formal and semiformal versions of the process are in limited 
use in software and digital system engineering.11 Although a fully formal 
version of this process is apparently impractical for large systems at the 
present time (and is definitely controversial), semiformal versions of the 
process have been successfully applied to commercial products.

A fundamental problem with the formal methods approach is that 
the system can never be more “correct” than the original specification. 
Because the specification must be written in highly mathematical terms, it 
is particularly difficult to use in communication with the typical client.

Data Models

The next dimension of system complexity is retained data. What data does 
the system retain and what relationships among the data does it develop 
and maintain? Many large corporate and governmental information 
systems have most of their complexity in their data and the data’s internal 
relationships. The most common data models have their origins in soft-
ware development, especially large database developments. Methods for 
modeling complex data relationships were developed in response to the 
need to automate data-intensive, paper-based systems. Although data-
intensive systems are most often thought of as large, automated database 
systems, many working examples are actually paper based. Automating 
legacy paper-based systems requires capturing the complex interrelation-
ships among large amounts of retained data.

Data models are of increasing importance because of the greater intelli
gence being embedded in virtually all systems and the continuing auto-
mation of legacy system. In data-intensive systems, generating intelligent 
behavior is primarily a matter of finding relationships and imposing per-
sistent structure on the records. This implies that the need to find struc-
ture and relationships in large collections of data will be determinants of 
systems architecture.

Example: Manufacturing software systems are no 
longer responsible just for control of work cells. 
They are part of integrated enterprise information 
networks in which real-time data from the manu-
facturing floor, sales, customer operations, and 
other parts of the enterprise are stored and studied. 
Substantial competitive advantages accrue to those 
who can make intelligent judgments from these 
enormous data sets.
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Example: Intelligent transport systems are a complex 
combination of distributed control systems, sensor 
networks, and data fusion. Early deployment stages 
will emphasize only simple behavioral adaptation, 
as in local intelligent light and on-ramp control-
lers. Full deployment will fuse data sources across 
metropolitan areas to generate intelligent predic-
tion and control strategies. These later stages will be 
driven by problems of extracting and using complex 
relationships in very large databases.

The basis for modern data models are the Entity-Relationship diagrams 
developed for relational databases. These diagrams have been generalized 
into a family of object-oriented modeling techniques. An object is a set of 
“attributes” or data elements and a set of “methods” or functions that act 
upon the attributes (and possibly other data or objects as well). Objects 
are instances of classes that can be thought of as templates for specific 
objects. Objects and classes can have relationships of several types. Major 
relationship types include aggregation (or composition); generalization, 
specialization, or inheritance; and association (which may be two-way 
or M-way). Object-oriented modeling methods combine data and behav-
ioral modeling into a single hierarchy organized along and driven by data 
concerns. Behavioral methods like those described earlier also include data 
definitions, but the hierarchy is driven by functional decomposition.

One might think of object-oriented models as turning functional 
decomposition models inside out. Functional decomposition models like 
data flow diagramming describe the system as a hierarchy of functions, 
and hang a data model onto the functional skeleton. The only data rela-
tionship supported is aggregation. An object-oriented model starts with 
a decomposition of the data and hangs a functional model on it. It allows 
all types of data relationships. Some problems decompose cleanly with 
functional methods and only with difficulty in object-oriented methods, 
and some other problems are the opposite.

An example of a well-developed, object-oriented data modeling tech-
nique (OMT) is given in Chapter 10. Figure 10.7 shows a typical example 
of the type of diagram used in that method, which combines conventional 
entity relationship diagram and object-oriented abstraction. OMT has 
further evolved into UML, which is discussed in Chapter 10.

Data-oriented decompositions share the general heuristics of systems 
architecture. The behavioral and physical structuring characteristics have 
direct analogs — composing or aggregation, decomposition, and minimal 
communications. There are also similar problems of scale. Very large data 
models must be highly structured with limited patterns of relationship 
(analogous to limited interfaces) to be implementable.



242	 The Art of Systems Architecting

Managerial Models

To both the client and architect, a project may be as much a matter of 
planning milestones, budgets, and schedules as it is a technical exercise. 
In sociotechnical systems, planning the system deployment may be more 
difficult than assembling its hardware. The managerial or implementa-
tion view describes the process of building the physical system. It also 
tracks construction events as they occur.

Most of the models of this view are the familiar tools of project man-
agement. In addition, management-related metrics that can be calculated 
from other models are invaluable in efforts to create an integrated set of 
models. Some examples include the following:

	 1.	The waterfall and spiral system development meta-models — the 
templates on which project-specific plans are built

	 2.	Program Evaluation and Review Technique/Critical Path Method 
(PERT/CPM) and related task and scheduling dependency charts

	 3.	Cost and progress accounting methods
	 4.	Predictive cost and schedule metrics calculable from physical and 

behavioral models
	 5.	Design or specification time quality metrics — defect counts, post-

simulation design changes, rate of design changes after each review

The architect has two primary interests in managerial models. First, 
the client usually cannot decide to go ahead with system construction 
without solid cost and schedule estimates. Usually producing such esti-
mates requires a significant effort in management models. Second, the 
architect may be called upon to monitor the system as it is developed to 
ensure its conceptual integrity. In this monitoring process, managerial 
models will be very important.

Examples of Integrated Models

As noted earlier, models that integrate multiple views are the special con-
cern of the architect. These integrating models provide the synthesized 
view central to the architect’s concerns. An integrated modeling method 
is a system of representation that links multiple views. The method con-
sists of a set of models for a subset of views and a set of rules or addi-
tional models to link the core views. Most integrated modeling methods 
apply to a particular domain. Listed in Table 8.2 are some representative 
methods. These models are described in greater detail, with examples, in 
Chapter 10. The references are given there, as well.

These methods use different models and cover different views. Their 
components and dimensions are summarized in Table 8.3.
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Conclusion
An architect’s work revolves around models. Because the architect does 
not build the system directly, its integrity during construction must be 
maintained through models acting as surrogates. Models will represent 
and control the specification of the system, its design, and its production 
plan. Even after the system is delivered, modeling will be the mecha-
nism for assessing system behavior and planning its evolution. Because 
the architect’s concerns are broad, architecting models must encompass 
all views of the system. The architect’s knowledge of models, like an 
individual’s knowledge of language, will tend to channel the directions in 
which the system develops and evolves.

Modeling for architects is driven by three key characteristics:

	 1.	Models are the principal language of the architect. Their foremost 
role is to facilitate communication with client and builder. By facili-
tating communication, they carry out their other roles of maintain-
ing design integrity and assisting synthesis.

	 2.	Architects require a multiplicity of views and models. The basic ones 
are objective, form, behavior, performance, data, and management. 
Architects need to be aware of the range of models that are used to 
describe each of these views within their domain of expertise, and 
the content of other views that may become important in the future.

	 3.	Multidisciplinary, integrated modeling methods tie together the 
various views. They allow the design of a system to be refined in 
steps from conceptually abstract to the precisely detailed necessary 
for construction.

The next chapter reconsiders the use of modeling in architecture by 
placing modeling in a larger set of parallel progressions from abstract to 

Table 8.2  Integrated Modeling Methods and Their Domains
Method Reference Domain

Hatley-Pirbhai (H/P) Hatley12,13 Computer-based reactive or 
event-driven systems

Quantitative Quality 
Function Deployment 
(Q2FD)

Maier14 Systems with extensive quantitative 
performance objectives and understood 
performance models

Object Modeling 
Technique (OMT)

Rumbaugh15 Large-scale, data-intensive software 
systems, especially those implemented 
in modern object languages

ADARTS SPC16 Large-scale, real-time software systems
Manufacturing System 
Analysis (MSA)

Baudin17 Intelligent manufacturing systems
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concrete. There the field of view will expand to the whole architectural 
design process and its parallel progressions in heuristics, modeling, eval-
uation, and management.

Exercises
	 1.	Choose a system familiar to you. Formulate a model of your system in 

each of the views discussed in the chapter. How effectively does each 
model capture the system in that view? How effectively do the models 
define the system for the needs of initial concept definition and com-
munication with clients and builders? Are the models integrated? 
That is, can you trace information across the models and views?

	 2.	Repeat exercise 1, but with a system unfamiliar to you, and prefera-
bly embodying different driving issues. Investigate models used for 
the views most unfamiliar to you. In retrospect, does your system 
in exercise 1 contain substantial complexity in the views you are 
unfamiliar with?

	 3.	 Investigate one or more popular computer-aided systems or software 
engineering (CASE) tools. To what extent do they support each of the 
views? To what extent do they allow integration across views?

	 4.	A major distinction in behavioral modeling methods and tools is the 
extent to which they support or demand executability in their models. 
Executability demands a restricted syntax and up-front decision about 
data and execution semantics. Do these restrictions and demands 
help or hinder initial concept formulation and communication with 
builders and clients? If the answer is variable with the system, is there 
a way to combine the best aspects of both approaches?

	 5.	Models of form must be technology specific because they represent 
actual systems. Investigate modeling formalisms for domains not 
covered in the chapter, for example, telecommunication systems, 
business information networks, space systems, integrated weapon 
systems, chemical processing systems, or financial systems.
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9chapter 

Design Progression in 
Systems Architecting

Introduction: Architecting Process Components
Having outlined the products of architecting (models) in Chapter 8, this 
chapter turns to its process. The goal is not a formal process definition. 
Systems are too diverse to allow a fixed or dogmatic approach to archi-
tecting. Instead of trying for a formal process definition, developed in this 
chapter is a set of meta-process concepts for architecting activities and 
their relationships. Architectural design processes are inherently eclectic 
and wide ranging, going abruptly from the intensely creative and indi-
vidualistic to the more prescribed and routine. Even though the processes 
may be eclectic, they can be organized. Of the various organizing con-
cepts, one of the most useful is stepwise progression or “refinement.”

First, a brief review of the architecting process: The architect develops 
system models that span the range of system concerns, from objectives 
to implementation. The architectural approach is from beginning to end 
concerned with the feasibility as well as the desirability of the system 
implementation. An essential characteristic that distinguishes architect-
ing from other engineering is the parallel development of problem and 
solution. Architecting does not assume the problem is fixed. It strives 
for fit, balance, and compromise between client preferences and builder 
capabilities. Compromise can only be assured by an interplay of activities, 
including both high-level structuring and such detailed design as is criti-
cal to overall success.

This chapter presents a three-part approach to the process of systems 
architecting:

	 1.	A conceptual model that connects the unstructured processes of archi-
tecture to the rigorous engineering processes of the specialty domains 
or disciplines. This model is based on stepwise reduction of abstrac-
tion (or progression) in models, evaluation criteria, heuristics, and 
purposes from initial architecting to formal systems engineering.

	 2.	An introduction to and review of the general concepts of design, 
including theories of design, the elements of design, and the processes 
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of creating a design. These frame the activities that make up the pro-
gressions and organize much of the conceptual framework on which 
this book is built.

	 3.	A guide to the organization of architecting and its methods, includ-
ing the placement of specialized design domains and the evolu-
tionary development of domain-specific methods. Architecting is 
recursive within a system as it is defined in terms of its implementa-
tion domains. A split between architecting and engineering is an 
irreducible characteristic of every domain, though the boundaries of 
that split cannot be clear until the scientific basis for the methods in 
a domain are known.

The progressions of architecting are inextricably bound up with the 
progressions of all system development. Architecting is not only iterative, 
it can be recursive. As a system progresses, architecting may reoccur on 
subsystems. The goal here is to understand the intellectual nature of its 
conduct, whether it happens at a very high level or within a subsystem.

Design Progression
Progressive refinement of design is one of the most basic patterns of engi-
neering practice. It permeates the process of architecting from models to 
heuristics, information acquisition, and management. Its real power, espe-
cially in systems architecting, is that it provides a way to organize the 
progressive transition from the ill-structured, chaotic, and heuristic pro-
cesses needed at the beginning to the rigorous engineering and certifica-
tion processes needed later. All can be envisioned as a stepwise reduction 
of abstraction, from mental concept to delivered physical system.

In software, the process is known as stepwise refinement. Stepwise 
refinement is a specific strategy for top-down program development. The 
same notion applies to architecting but is applied in-the-large to complex, 
multidisciplinary system development. Stepwise refinement is the pro-
gressive removal of abstraction in models, evaluation criteria, and goals. 
It is accompanied by an increase in the specificity and volume of infor-
mation recorded about the system and a flow of work from general to 
specialized design disciplines. Within the design disciplines, the pattern 
repeats as disciplinary objectives and requirements are converted into the 
models of form of that discipline. In practice, the process is neither so 
smooth nor continuous. It is better characterized as episodic, with epi-
sodes of abstraction reduction alternating with episodes of reflection and 
purpose expansion.

Stepwise refinement can be thought of as a meta-process model, 
much as the waterfall and spiral. It is not an enactable process for a 
specific project, but it is a model for building a project-specific process. 
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Systems are too diverse to follow a fixed process or dogmatic formula 
for architecting.

Introduction by Examples
Before treating the conceptually difficult process of general systems 
architecting, look to the roots. When a civil architect develops a building, 
does he or she go directly from client words to construction drawings? 
Obviously not; there are many intermediate steps. The first drawings are 
rough floor plans showing the spatial relationships of rooms and sizes and 
external renderings showing the style and feel of the building. Following 
these are intermediate drawings giving specific dimensions and layouts. 
The construction drawings with full details for the builder follow on after. 
The architect’s role does not have a universally applicable stopping point, 
but the normal case is based on the needs of the client. The client hired the 
architect to accomplish a specific portion of the overall development and 
construction process. When the designs are sufficiently refined (in enough 
views) for the client to make the decision to proceed with construction, 
the architect’s conceptual development job is complete. The architect may 
be busy with the project for some time to come in shepherding the concep-
tual design through detailed design, overseeing construction, and advis-
ing the client on certification, but the initial concept role is complete when 
the client can make the construction decision.

In a different domain, the beginning computer programmer is taught 
a similar practice. Stepwise refinement in programming means to write 
the central controlling routine first. Anywhere high complexity occurs, 
ignore it by giving it a descriptive name and making it a subroutine or 
function. Each subroutine or function is “stubbed” — that is, given a 
dummy body as a placeholder. When the controlling routine is complete, 
it is compiled and executed as a test. Of course, it does not do anything 
useful because its subroutines are stubbed. The process is repeated recur-
sively on each subroutine until routines can be easily coded in primitive 
statements in the programming language. At each intermediate step, an 
abstracted version of the whole program exists that has the final program’s 
structure but lacks internal details.

Both examples show progression of system representation or model-
ing. Both examples embed strategy, in terms of ordering of decisions in 
ways that meet client or sponsor needs, into the progressive development 
process. In building, the sponsor needs to set up a distinct decision point 
where financing is resolved and a building contractor is hired. In software 
development, top-down stepwise refinement assembles a program in a 
fashion that facilitates continuous testing and incremental delivery. The 
building sponsor needs a development process (and a relationship with 
the architect) that supports the customary financial arrangements and the 
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limitations of the contracting industry. Software developers, especially 
in commercial markets, prefer mechanisms that facilitate incremental 
delivery and provide full program level “test harnesses.”

Progression also occurs along other dimensions. For example, both the 
civil architect and the programmer may (should) create distinct alternative 
designs in their early stages. How are these partial designs evaluated to 
choose the superior approach? In the earliest stages, both the programmer 
and the civil architect use heuristic reasoning. The civil architect can mea-
sure rough size (to estimate cost), judge the client’s reaction, and ask the 
aesthetic opinion of others. The programmer can judge code size, heuristi-
cally evaluate the coupling and cohesion of the resulting subroutines and 
modules, review applicable patterns from catalogs, and review function-
ality with the client. As their work progresses, both will be able to make 
increasing use of rational and quantitative evaluation criteria. The civil 
architect will have enough details for proven cost models; the programmer 
can measure execution speed, compiled size, and behavioral compliance, 
and invoke quantitative software quality metrics. Programmers will also 
have improved cost models as progression continues. Software cost models 
are predominantly based on code size, and the progressive development 
of the top-down structure supports improved estimates of code size.

Design as the Evolution of Models
All architects, indeed all designers, manipulate models of the system. 
These models become successively less abstract as design progresses. The 
integrated models discussed in Chapter 10 exhibit stepwise reduction of 
abstraction in representation and in their design heuristics.

In Hatley-Pirbhai, the reduction of abstraction is from behavioral 
model, to technology-specific behavioral model, to architecture model. 
There is also hierarchical decomposition within each component. The 
technology of modules is indeterminate at the top level and becomes 
technology specific as the hierarchy develops. The Quantitative Quality 
Function Deployment (Q2FD) performance modeling technique shows 
stepwise refinement of customer objectives into engineering parameters. 
As the Q2FD chain continues, the engineering parameters get closer to 
implementation until, ultimately, they may represent machine settings on 
the factory floor. Likewise, the structure of integrated models in software 
and manufacturing systems follow the same logic or progression.

Evaluation Criteria and Heuristic Refinement
The criteria for evaluating a design progress or evolve in the same manner 
as design models. In evaluation, the desirable progression is from general 
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to system specific to quantitative. For heuristics, the desirable progression is 
from descriptive and prescriptive qualitatives to domain-specific quantita-
tives and rational metrics. This progression is best illustrated by following 
the progression of a widely recognized heuristic into quantitative metrics 
within a particular discipline. Start with the partitioning heuristic:

In partitioning, choose the elements so that they are as 
independent as possible — that is, elements with low 
external complexity and high internal complexity.

This heuristic is largely independent of domain. It serves as an 
evaluation criteria and partitioning guide whether the system is digital 
hardware, software, human driven, or otherwise. But, the guidance is 
nonspecific; neither independence nor complexity is defined. By moving 
to a more restricted domain, computer-based systems in this example, this 
heuristic refines into more prescriptive and specific guidelines. The litera-
ture on structured design for software (or, more generally, computer-based 
systems) includes several heuristics directly related to the partitioning 
heuristic.1 The structure of the progression is illustrated in Figure 9.1.

	 1.	Module fan-in should be maximized. Module fan-out should gener-
ally not exceed 7 ± 2.

	 2.	The coupling between modules should be, in order of preference, 
data, data structure, control, common, and content.

	 3.	The cohesion of the functions allocated to a particular module should 
be, in order of preference, functional/control, sequential, communi-
cational, temporal, periodic, procedural, logical, and coincidental.

These heuristics give complexity and independence more specific 
form. As the domain restricts even farther, the next step is to refine into 
quantitative design quality metrics. This level of refinement requires a 
specific domain and detailed research and is the concern of specialists in 
each domain. But, to finish the example, the heuristic can be formulated 
into a quantitative software complexity metric. A very simple example is 
as follows:

Compute a complexity score by summing: One point for 
each line of code, 2 points for each decision point, 5 points for 
each external routine call, 2 points for each write to a module 
variable, 10 points for each write to a global variable.*

*	 Much more sophisticated complexity metrics have been published in the software engi-
neering literature. One of the most popular is the McCabe metric, for which there is a 
large automated tool set.
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Early evaluation criteria or heuristics must be as unbounded as the 
system choices. As the system becomes constrained, so do the evaluation 
criteria. What was a general heuristic judgment becomes a domain-specific 
guideline and, finally, a quantitative design metric.

Progression of Emphasis

On a more abstract level, the social or political meaning of a system to its 
developers also progresses. A system goes from being a product (some-
thing new), to a source of profit or something of value, to a policy (some-
thing of permanence). In the earliest stages of a system’s life, it is most 
likely viewed as a product. It is something new, an engineering challenge. 
As it becomes established and its development program progresses, 
it becomes an object of value to the organization. Once the system exists, 
it acquires an assumption of permanence. The system, its capabilities, and 

High internal cohesion 
(functional and 
informational), low 
external complexity. 

Vs. Vs. 
High fan-out
implies large
scope of
control. 

Minimize Fan-Out

Minimize Coupling 

types from the
less strongly
linked.

Choose Coupling 

Figure 9.1  Software refinement of coupling and cohesion heuristic. The general 
heuristic is refined into a domain-specific set of heuristics.
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its actions become part of the organization’s nature. To have and operate 
the system becomes a policy that defines the organization.

With commercial systems, the progression is from product innovation 
to business profit to corporate process.2 Groups innovate something new, 
successful systems become businesses, and established corporations per-
petuate a supersystem that encompasses the system, its ongoing develop-
ment, and its support. Public systems follow a similar progression. At their 
inception they are new, at their development they acquire a constituency, 
and they eventually become a bureaucratic producer of a commodity.

Concurrent Progressions

Other concurrent progressions include risk management, cost estimat-
ing, and perceptions of success. Risk management progresses in specific-
ity and goals. Early risk management is primarily heuristic with a mix 
of rational methods. As prototypes are developed and experiments con-
ducted, risk management mixes with interpretation. Solid information 
begins to replace engineering estimates. After system construction, risk 
management shifts to postincident diagnostics. System failures must be 
diagnosed, which is a process that should end in rational analysis but may 
have to be guided by heuristic reasoning.

Cost estimating goes through an evolution similar to other evalua-
tion criteria. Unlike other evaluation criteria, cost is a continually evolving 
characteristic from the systems inception. At the very beginning, the need 
for an estimate is highest and the information available is lowest. Little 
information is available because the design is incomplete and no uncer-
tainties have been resolved. As development proceeds, more information 
is available, both because the design and plans become more complete and 
because actual costs are incurred. Incurred costs are no longer estimates. 
When all costs are in (if such an event can actually be identified), there is 
no longer a need for an estimate. Cost estimating goes through a progres-
sion of declining need but of continuously increasing information.

All of the “ilities” are part of their own parallel progressions. These 
system characteristics are known precisely only when the system is 
deployed. Reliability, for example, is known exactly when measured in 
the field. During development, reliability must be estimated from models 
of the system. Early in the process, the customer’s desires for reliability 
may be well known, but the reliability performance is quite uncertain. 
As the design progresses to lower levels, the information needed to refine 
reliability estimates becomes known, including information like parts 
counts, temperatures, and redundancy.

Perceptions of success evolve from architect to client and back to 
architect. The architect’s initial perception is based on system objectives 
determined through client interaction. The basic measure of success 
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for the architect becomes successful certification. But once the system 
is delivered, the client will perceive success on his or her own terms. 
The project may produce a system that is successfully certified but that 
nonetheless becomes a disappointment. Success is affected by all other 
conditions affecting the client at delivery and operation, whether or not 
anticipated during design.

Episodic Nature

The emphasis on progression appears to define a monotonic process. 
Architecting begins in judgment, rough models, and heuristics. The heuris-
tics are refined along with the models as the system becomes bounded until 
rational, disciplinary engineering is reached. In practice, the process is more 
cyclic or episodic with alternating periods of synthesis, rational analysis, 
and heuristic problem solving. These episodes occur during system archi-
tecting and may appear again in later, domain-specific stages.

The occurrence of the episodes is integral to the architect’s process. 
An architect’s design role is not restricted solely to “high-level” consider-
ations. Architects dig down into specific subsystem and domain details 
where necessary to establish feasibility and determine client-significant 
performance (see Chapter 1, Figure 1.1 and the associated discussion). The 
overall process is one of high-level structuring and synthesis (based on 
heuristic insight) followed by rational analysis of selected details. Facts 
learned from those analyses may cause reconsideration of high-level 
synthesis decisions and spark another episode of synthesis and analysis. 
Eventually, there should be convergence to an architectural configuration 
and the driving role passes to subsystem engineers.

Design Concepts for Systems Architecture
Although systems design is an inherently complicated and irregular prac-
tice, it has well-established and identifiable characteristics and can be orga-
nized into a logical process. As was discussed in the Preface, the activities 
of architecting can be distinguished from other engineering activities, 
even if not crisply. Architecting is characterized by the following:

	 1.	Architecting is, predominantly, an eclectic mix of rational and heu-
ristic engineering. Other elements, such as normative rules and 
group processes, enter in lesser roles (recall the discussion of the 
four theories in Chapter 1).

	 2.	Architecting revolves around models but is composed of the basic 
processes of scoping, synthesis, and certification. Few complete 
rational methods exist for these processes, and the principal guide-
lines are heuristic.
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	 3.	Synthesis can be considered as creative invention and can be use-
fully broken down into iterative design activities.

	 4.	Uncertainty is inherent in complex system design. Heuristics are 
specialized tools to reduce or control but not eliminate uncertainty.

	 5.	Continuous progression on many fronts is an organizing principle 
of architecting, architecture models, and supporting activities.

Civil engineering and architecture are perhaps the most mature of all 
engineering disciplines. Mankind has more experience with engineering 
civil structures than any other field. If any area could have the knowledge 
necessary to make it a fully rational and scientific endeavor, it should be 
civil engineering. But it is in civil practice that the distinction between 
architecture and engineering is best established. Both architects and engi-
neers have their roles, often codified in law, and their professional train-
ing programs emphasize different skills. Architects deal particularly with 
those problems that cannot be entirely rationalized by scientific inquiry. 
The architect’s approach does not ignore science; it combines it with art. 
Civil engineers must likewise deal with unrationalizable problems, but 
the focus of their concerns is with well-understood rational design and 
specification problems. By analogy, this suggests that all design domains 
contain an irreducible kernel of problems that are best addressed through 
creative and heuristic approaches that combine art and science. This 
kernel of problems, it might be called the architectonic kernel, is resistant 
to being subsumed into engineering science because it inherently binds 
together social processes (client interaction) with engineering and science. 
The social side is how we determine and understand people’s needs. The 
engineering and science side is determining the feasibility of a system 
concept. The bridge is the creative process of imagining system concepts 
in response to expressions of client need.

Note that the kernel is independent of modeling or description pro-
cesses. Using a framework-centric process does not relieve us of the ker-
nel. The kernel is decision centric, not model centric. An approach through 
modeling can, at best, clarify the decisions.

Historical Approaches to Architecting

As indicated in the introduction to Part I, civil architects recognize four 
basic theories of design: the normative or pronouncement, the rational, the 
argumentative or participative, and the heuristic. Although all have their 
roots in the civil architecture practice, they are recognizable in modern 
complex systems as well. They have been discussed before, in particular in 
Rechtin 1991,3 and in the Introduction to Part I. The purpose in returning 
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to them here is to indicate their relationship to progressive modeling and 
to bring in their relevance to software-oriented development.*

To review, normative theory is built from pronouncements (state-
ments of what should be — a set of hard rules), most often given as restric-
tions on the content of particular views (usually form). A pronouncement 
demands that a particular type of form be used, essentially unchanged, 
throughout. Alternatively, one may pronounce the reverse and demand 
that certain types of form not be used. In either case, success is defined 
by accurate implementation of the normative pronouncements, not by 
measures of fitness. In the normative theory, success is defined as follow-
ing the rules. Building codes are a prominent example of the normative 
theory at work, in a positive sense.

Consensual or participative system design uses models primarily as a 
means of communicating alternative designs for discussion and negotia-
tion among participants. From the standpoint of modeling, consensuality 
is one of several techniques for obtaining understanding and approval of 
stakeholders, rather than of itself a structured process of design.

Rational system design is tightly integrated with modeling because 
it seeks to derive optimal solutions, and optimality can be defined only 
within a structured and mathematical framework. To be effective, rational 
methods require modeling methods that are broad enough to capture all 
evaluation aspects of a problem, deep enough to capture the characteris-
tics of possible solutions, and mathematically tractable enough to be solved 
for problems of useful size. Given these, rational methods “mechanically” 
synthesize a design from a series of modeled problem statements in pro-
gressively more detailed subsystems.

General heuristics are guides to — and sometimes obtained from — 
models, but they are not models themselves. Heuristics are employed at 
all levels of design, from the most general to domain specific. Heuristics 
are needed whenever the complexity of the problem, solutions, and issues 
overwhelms attempts at complete rational modeling. This occurs as often 
in software or digital logic design as in general system design. Within a 
specific domain, the heuristic approach can be increasingly formalized, 
generating increasingly prescriptive guidance. This formalization is a 
reflection of the progression of all aspects of design — form, evaluation, 
and emphasis — from abstract to concrete.

The power of heuristics in architecting, as discussed in Chapter 2, 
comes by cataloging those that apply in many domains, giving them gen-
erality in those domains, likely extensibility in others, and a system-level 
credibility. Applied consistently through the several levels of system 

*	 Stepwise refinement is a term borrowed from software that describes program develop-
ment by sequential construction of programs, each complete into itself but containing 
increasing fractions of the total desired system functionality.
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architecture, they help insure system integrity. For example, “Quality 
cannot be tested in; it must be designed in” is equally applicable from the 
top-level architectural sketch to the smallest detail. However, the general 
heuristic relies on an experienced system-level architect to select the ones 
appropriate for the system at hand, interpret their application-specific 
meaning, and promulgate them throughout its implementation. 
A catalog of general heuristics is of much less use to the novice; indeed, 
an uninformed selection among them could be dangerous. For example, 
“If it ain’t broke, don’t fix it,” which is questionable at best, can mislead 
one from making the small incremental changes that often characterize 
successful continuous improvement programs and can block one from 
recognizing the qualitative factors, like ultraquality, that redefine the 
product line completely.

Specialized and Formalized Heuristics

Although there are many very useful general heuristics, there really 
is not a general heuristic method as such.* Heuristics most often are 
formalized as part of more formalized methods within specific domains. 
A formalized-heuristic method gives up generality for more direct guid-
ance in its domain. Popular design methods often contain formalized 
heuristics as guidelines for design synthesis. A good example is the 
ADARTS† software engineering methodology. ADARTS provides an exten-
sive set of heuristics to transform a data-flow-oriented behavioral model 
into a multitasking, modular software implementation. Some examples of 
formalized ADARTS prescriptive heuristics include the following:

Map a process to an active I/O process if that transforma-
tion interfaces to an active I/O device.4

Group processes that read or update the same data store 
or data from the same I/O device into a single process.5

As the ADARTS method makes clear, these are recommended 
guidelines and not the success-defining pronouncements of the norma-
tive approach. These heuristics do not produce an optimal, certifiable, or 
even unique result, much less success-by-definition. There is ambiguity in 
their application. Different heuristics may produce conflicting software 

*	 On the other hand, knowledge of a codified set of heuristics can lead to new ways of 
thinking about problems. This could be described as heuristic thinking or qualitative 
reasoning.

†	This method is described in the ADARTS Guidebook, SPC-94040-CMC, Version 2.00.13, 
Volume 1, September 1991, available from the Software Productivity Consortium, now the 
Systems and Software Consortium, Herndon, Virginia.
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structuring. The software engineer must select from the heuristic list and 
interpret the design consequences of a given heuristic with awareness of 
the specific demands of the problem and its implementation environment.

Conceptually, general and domain-specific formalized heuristics 
might be arranged in a hierarchy. In this hierarchy, domain-specific 
heuristics are specializations of general heuristics, and the general are 
abstractions of the specific. Architecting in general and architecting in 
specific domains may be linked through the progressive refinement and 
specialization of heuristics. To date, this hierarchy can be clearly identi-
fied only for a limited set of heuristics. In any case, the pattern of refining 
from abstract to specific is a broadly persistent pattern, and it is essential 
for understanding life-cycle design progression.

Scoping, Synthesis, and Certification

A development can be envisioned as the creation and transformation of 
a series of models. For example, to develop the systems requirements is 
to develop a model of what the system should do and how effectively it 
should do it. To develop a system design is to develop a model of what 
the system is. In a pure waterfall development, there is rough alignment 
between waterfall steps and the views defined in Chapter 8. Requirements 
development develops models for objectives and performance. Functional 
analysis develops models of behavior, and so on down the waterfall chain. 
Architects develop models for all views, though not at equal levels of 
detail. In uncritical views or uncritical portions of the system, the models 
will be rough. In some areas, the models may need to be quite detailed 
from the beginning.

Models are best understood by view because the views reflect their 
content. Although architecting is consistent with waterfall or spiral 
development, it does not traverse the steps in the conventional manner. 
Architects make use of all views and traverse all development steps, but 
at varying levels of detail and completeness. Because architects tend to 
follow complex paths through design activities, some alternative charac-
terization of design activities independent of view is useful. The principal 
activities of the architect are scoping, synthesis, integration, and certifica-
tion. Figure 9.2 lists typical activities in each category and suggests some 
relationships. In a subsequent section, we will reconsider these activities 
in a process model.

Scoping
Scoping procedures are methods for selecting and rejecting problem 
statements, of defining constraints, and of deciding on what is “inside” 
or “outside” the system. Scoping implies the ability to rank alternative 
statements and priorities on the basis of overall desirability or feasibility. 
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Scoping should not design system internals, though some choices may 
implicitly do so for lack of design alternatives. Desirably, scoping limits 
what needs to be considered and why. Scoping is dominantly a problem 
domain activity.

Scoping is central in orientation and purpose analysis, the activities 
illustrated in our process model. Purpose analysis is an inquiry into why 
someone wants the system. Purpose precedes requirements, at least it 
precedes requirements in the sense of specific acquisition requirements. 
Requirements are determined by understanding how having a system is 
valuable to the client, and what combination of fulfilled purposes and 
systems costs represents a satisfactory and feasible solution.*

Scoping is the heart of front-end architecting. A well-scoped system 
is one that is both desirable and feasible, the essential definition of suc-
cess in system architecting. As the project begins, the scope forms, at 
least implicitly. All participants will form mental models of the system 
and its characteristics; in doing so, the system’s scope is being defined. 

*	 Kevin Kreitman has pointed out the extensive literature in soft systems theory that applies 
to purpose analysis.

Scoping 
Purpose Expansion/Contraction
Behavioral Definition/Analysis 
Large Scale Alternative Consideration
Client Satisfaction–Builder Feasibility

Synthesis 
Problem Reformulation/Replacement
Creative Invention
Iteration 

Aggregation  Partitioning  
Functional Aggregation (abstract)
Functional Aggregation (to physical units) 
Physical Components to Subsystems
Interface Definition/Analysis
Assembly on Timelines or Behavioral Chains
Collection into Decoupled Threads

Behavioral–Functional Decomposition 
Physical Decomposition (to lower level design)
Performance Model Construction
Interface Definition/Analysis
Decomposition to Cyclic Processes
Decomposition into Threads

Certification 
Operational Walkthroughs 
Test and Evaluation 
Verification 
Formal Methods Verification 
Failure Assessment  

Figure 9.2  Typical activities within scoping, synthesis, aggregation, partitioning, 
and certification.
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If incompatible models appear, scoping has failed through inconsis-
tency. Heuristics suggest that scoping is among the most important of all 
system design activities. One of the most popular heuristics in Rechtin 
(1991) was: All the really important mistakes are made the first day. Its popu-
larity certainly suggests that badly chosen system scope is a common 
source for system disasters.

Of course, it is as impossible to prevent mistakes on the first day as it 
is on any other day. What the heuristic indicates is that mistakes of initial 
conception will have the worst long-term impact on the project. Therefore, 
one must be particularly careful that a mistake of scope is discovered and 
corrected as soon as possible.* One way of doing this is to defer absolute 
decisions on scope by retaining expansive and restrictive options as 
long as possible — a course of action recommended by other heuristics 
(the options heuristics of Appendix A).

In principle, scope can be determined rationally through decision the-
ory. Decision theory applies to any selection problem. In this case, the things 
being selected are problem statements, constraints, and system contexts. In 
practice, the limits of decision theory apply especially strongly to scoping 
decisions. These limits, discussed in greater detail in a subsequent section, 
include the problems of utility for multiple system stakeholders, problem 
scale, and uncertainty. The judgments of experienced architects, at least as 
expressed through heuristics (see Appendix A for a detailed list), is that 
the most useful techniques to establish system scope are qualitative.

Scoping heuristics and decision theory share an emphasis on careful 
consideration of who will use the system and will judge success. Decision 
theory requires a utility function, a mathematical representation of system 
value as a function of its attributes. A utility function can be determined 
only by knowing whose judgments of system value will have priority 
and what the evaluation criteria are. Compare the precision of the utility 
method to related heuristics:

Success is defined by the beholder, not by the architect.

The most important single element of success is to listen 
closely to what the customer perceives as his require-
ments and to have the will and ability to be responsive. 
(J. E. Steiner, 1978)

*	 A formalized heuristic with a similar idea comes from software engineering. It says: The 
cost of removing a defect rises exponentially with the time (in project phases) between its insertion 
and discovery. Hence, mistakes of scope (the very earliest) are potentially dominant in 
defect costs.
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Ask early about how you will evaluate the success of your 
efforts. (F. Hayes-Roth et al., 1983)

Scoping heuristics suggest approaches to setting scope that are outside 
the usual compromise procedures of focused engineering. One way to resolve 
intractable problems of scope is to expand. The heuristic is as follows:

Moving to a larger purpose widens the range of solutions. 
(Gerald Nadler, 1990)

The goal of scoping is to form a concept of what the system will do, 
how effectively it will do it, and how it will interact with the outside world. 
The level of detail required is the level required to gain customer accep-
tance, first of continued development and ultimately of the built system. 
Thus, the scope of the architect’s activities is governed not by the ultimate 
needs of system development, but by the requirements of the architect’s 
further role. The natural conclusion to scoping is certification, where the 
architect determines that the system is fit for use. Put another way, the 
certification is that the system is appropriate for its scope.

Scoping is not solely a requirements-related activity. For scope to be 
successfully determined, the resulting system must be both satisfactory 
and feasible. The feasibility part requires some development of the system 
design. The primary activities in design by architects are aggregation and 
partitioning, the basic structuring of the system into components.

Synthesis
Synthesis is creation. Specifically, synthesis is constructing new solution 
concepts, and sometimes new problem concepts, in response to the under-
standing of client purpose. Because synthesis is fundamentally a creative 
act, we can go to the literature on inventive creativity for heuristics and 
processes. That literature is very large, and so we will not attempt to 
review it here. We will highlight some key heuristics, first addressing the 
more pure synthesis or creativity oriented side, than the more building 
block side (aggregation and partitioning).

Often the most striking and innovative solutions come from 
realizing that your concept of the problem was wrong.6

One of the authors was once involved in an assessment of the risks of 
implementing some very advanced database technology. The technology 
was being considered in order to synchronize databases distributed over 
several globally distributed sites. It was important to the researcher-users 
that the databases each saw in his own location be accurately synchro-
nized with the databases seen by other researchers elsewhere. Because 
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the databases were quite large and in nearly continuous use, the problem 
of synchronizing them was considerable. After extended discussion, one 
of the outside participants asked “How did we get into this mess? Is it 
impossible to just use one database and have everybody access it?” The 
reason that was “not possible” was because there was insufficient inter
national communications capacity. So, the natural question was why not 
buy more? Granted, international capacity is expensive, but the database 
solution being considered was likewise expensive and technologically 
risky as well. The answer was “International communication capacity 
comes out of a different budget, and we can’t trade that budget for this.” 
In this particular case, the ultimate owner of both was a single, commer-
cial company, and so those budgets could be traded, if one went high 
enough in the corporate hierarchy. Study of the solution revealed that the 
problem was not database synchronization; it was the operating pattern 
of the researchers and their inability to purchase certain types of assets 
because of internal rules.

Plan to throw one away, you will anyway.7

In coming up with great solutions, we rarely, if ever, come up with one 
right away. We usually come up with some bad ideas, and do not address 
the problems with our ideas until we have explored them quite a ways. 
The more innovative the system concept is, the more likely it will have 
to be exposed to the market and users for an extended period before the 
desirable approach is revealed. The more innovative the solution is, the 
more likely it is that extensive, linked operational changes will have to be 
made before anything like full value can be realized. Those changes will 
often involve “throwing away” the early attempts. Consider some of the 
following examples:

	 1.	Personal digital assistant (PDA) devices were on the market for many 
years before becoming popular. A wide variety of form factors and 
user interface styles were tried. It was not until the Palm Pilot® (Palm, 
Inc., Sunnyvale, California) hit the market with its key combination 
of features (form factor that fit into a shirt pocket, usable stylus-based 
input, and one-touch computer synchronization) that the market 
began growing very rapidly. Ironically, but not surprisingly, the pre-
Palm leaders were generally unable to follow Palm’s lead even after 
the Pilot had shown the market-winning combination of features.

	 2.	The Global Positioning System (GPS) became a huge success only 
after two events not linked to the GPS program office occurred. 
First, commercial companies invested in GPS chipsets that drove 
the cost down, and volume up, for commercial receivers. Second, the 
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U.S. military pioneered an entirely new bombing CONOPS based on 
locating targets to GPS coordinates with high precision and receiv-
ers so cheap they could be put on the weapons.

	 3.	 In the DC-3 story (Part II) we note that it was the DC-3 (and not the 
DC-1 or DC-2) that revolutionized the airline business. Intermediate 
systems had to be thrown away.

	 4.	Although the original Macintosh computer could be said to have 
revolutionized personal computing, that revolution was dependent 
on extensive evolution. First came the Macintosh with the product of 
failed systems by Apple (the Apple III and Lisa), not to mention its 
Xerox precursors. Second, the original Macintosh had to be rather 
extensively reengineered to accommodate the desktop publishing 
market (that it had almost single-handedly created). Third, the revo-
lution truly began to be global only when the key interface ideas were 
ported to Microsoft operating system based personal computers.

These large-scale examples of the heuristic, where the program that 
surrounds the system “throws one away,” either intentionally or not, are 
mirrored in small-scale design activity. It is rare that we can derive a best 
solution or representation, much like the first drafts of written works are 
rarely very good. We improve our designs, like we improve our writing, 
and like we improve our systems, by iterative development.

Much of synthesis is in the detail rather than grand visions and strate-
gies. We can usefully classify the details as aggregation and partitioning.

Aggregation and Partitioning
Aggregation and partitioning are the grouping and separation of related 
solutions and problems. They are two sides of the same coin. Both are the 
processes by which the system is defined as components. One can argue 
about which precedes the other, but in fact they are used so iteratively 
and repeatedly that neither can be usefully said to precede the other. 
Conventionally, the components are arranged into hierarchies with a 
modest number of components at each level of the hierarchy (the famous 
7 ± 2 structuring heuristic). The most important aggregation and partition-
ing heuristics are to minimize external coupling and maximize internal 
cohesion, usually worded as follows8:

In partitioning, choose the elements so that they are as 
independent as possible — that is, elements with low 
external complexity and high internal cohesion.

Group elements that are strongly related to each other; 
separate elements that are unrelated.
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These two heuristics are especially interesting because they are part of 
the clearest hierarchy in heuristic refinement. Design is usefully viewed as 
progressive or stepwise refinement. Models, evaluation criteria, heuristics, 
and other factors are all refined as design progresses from abstract to 
concrete and specific. Ideally, heuristics exist in hierarchies that con-
nect general design guidance, such as the two preceding heuristics, to 
domain-specific design guidelines. The downward direction of refinement 
is the deduction of domain-specific guidelines from general heuristics. 
The upward abstraction is the induction of general heuristics from similar 
guidelines across domains.

The deductive direction asks, taking the coupling heuristic as an 
example, how can coupling be measured? Or, for the cohesion heuristic, 
given alternative designs, which is the most cohesive? Within a specific 
domain, the questions should have more specific answers. For example, 
within the software domain, these questions are answered with greater 
refinement, though still heuristically. Studies have demonstrated quan-
titative impact on system properties as the two heuristics are more and 
less embodied in a systems design. A generally accepted software mea-
sure of partitioning is based on interface characterization and has five 
ranked levels. A related metric for aggregation quality (or cohesion) has 
seven ranked levels of cohesion.* Studies of large software systems show 
a strong correlation between coupling and cohesion levels, defect rates, 
and maintenance costs. A major study9 found that routines with the worst 
coupling-to-cohesion ratios (interface complexity to internal coherence) 
had seven times more errors and 20 times higher maintenance costs than 
the routines with the best ratios.

Aggregation and partitioning with controlled fan-out and limited 
communication is a tested approach to building systems in comprehen-
sible hierarchies. Numerous studies in specific domains have shown that 
choosing loosely coupled and highly cohesive elements leads to systems 
with low maintenance cost and low defect rates. However, nature sug-
gests that much flatter hierarchies can yield systems of equal or greater 
robustness, in certain circumstances.

Chapter 8 introduced an ant colony as an example of flat hierarchy 
system that exhibits complex and adaptive behavior. The components of 
an ant colony, a few classes of ants, interact in a very flat system hierarchy. 
Communication is loose and hierarchically unstructured. There is no 
intelligent central direction. Nevertheless, the colony as a whole produces 
complex system-level behavior. The patterns of local, nonhierarchical 

*	 The cohesion and coupling levels are carefully discussed in Yourdon, E., and L. L. Constantine, 
Structured Design: Fundamentals of a Discipline of Computer Program and Systems Design. 
New York: Yourdon Press, 1979. They were introduced earlier by the same authors and 
others in several papers.
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interaction produce very complex operations. The colony is also very 
robust in that large numbers of its components (except the queen) can be 
removed catastrophically and the system will smoothly adapt. A perhaps 
related technological example is the Internet. Again, the system as a whole 
has a relatively flat hierarchy and no strong central direction. However, 
the patterns of local communication and resulting collaboration are able 
to produce complex, stable, and robust system-level behavior.

The observations that controlled and limited fan-out and interaction 
(the 7 ± 2 heuristic and coupling and cohesion studies) and that extreme 
fan-out and high distributed communication and control (ant colonies 
and the Internet) can both lead to high-quality systems is not contradic-
tory. Rather they are complementary observations of the refinement of 
aggregation and partitioning into specific domains. In both cases, a happy 
choice of aggregations and partitions yields good systems. But the specific 
indicators of what constitutes good aggregation and partitioning vary 
with the domain. The general heuristic stands for all, but prescriptive or 
formalized guidance must be adapted for the domain.

Certification
To certify a system is to give an assurance to the paying client that the 
system is fit for use. Certifications can be elaborate, formal, and very com-
plex or the opposite. The complexity and thoroughness are dependent on 
the system. A house can be certified by visual inspection. A computer 
flight control system might require highly detailed testing, extensive 
product and process inspections, and even formal mathematical proofs 
of design elements. Certification presents two distinct problems. The first 
is determining that the functionality desired by the client and created by 
the builder is acceptable. The second is the assessment of defects revealed 
during testing and inspection and the evaluation of those failures with 
respect to client demands.

Whether or not a system possesses a desired property can be stated as 
a mathematically precise proposition. Formal methods develop and track 
and verify such propositions throughout development, ideally leading to a 
formal proof that the system as designed possesses the desired properties. 
However, architecting practice has been to treat such questions heuristi-
cally, relying on judgment and experience to formulate tests and acceptance 
procedures. The heuristics on certification criteria do not address what such 
criteria should be, but they address the process for developing the criteria. 
Essentially, certification should not be treated separately from scoping or 
design. Certifiability must be inherent in the design. Two summarizing 
heuristics — actually on scoping and planning — are as follows:
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For a system to meet its acceptance criteria to the satis-
faction of all parties, it must be architected, designed and 
built to do so — no more and no less.

Define how an acceptance criterion is to be certified at the 
same time the criterion is established.

The first part of certification is intimately connected to the concep-
tual phase. The system can be certified as possessing desired criteria 
only to the extent it is designed to support such certification. The second 
element of certification, dealing with failure, carries its own heuristics. 
These heuristics emphasize a highly organized and rigorous approach 
to defect analysis and removal. Once a defect is discovered, it should 
not be considered resolved until it has been traced to its original source, 
corrected, the correction tested at least as thoroughly as was needed to 
find the defect originally, and the process recorded. Deming’s famous 
heuristic summarizes:

Tally the defects, analyze them, trace them to the source, 
make corrections, keep a record of what happens after-
wards and keep repeating it.

A complex problem in ultraquality systems is the need to certify levels 
of performance that cannot be directly observed. Suppose a missile system 
is required to have a 99% success rate with 95% confidence. Suppose fur-
ther that only 50 missiles are fired in acceptance tests (perhaps because 
of cost constraints). Even if no failures are experienced during testing, 
the requirement cannot be quantitatively certified. Even worse, suppose 
a few failures occurred early in the 50 tests but were followed by flawless 
performance after repair of some design defects. How can the architect 
certify the system? It is quite possible that the system meets the require-
ment, but it cannot be proven within statistical criteria.

Certification of ultraquality might be deemed a problem of require-
ments. Many would argue that no requirement should be levied that cannot 
be quantitatively shown. But the problem will not go away. The only accept-
able failure levels in one-of-a-kind systems and those with large public 
safety impacts will be immeasurable. No such systems can be certified if 
certification in the absence of quantitatively provable data is not possible.

Some heuristics address this problem. The Deming approach, given 
as a heuristic above, seeks to achieve any quality level by continuous 
incremental improvement. Interestingly, there is a somewhat contradic-
tory heuristic in the software domain. When a software system is tested, 
the number of defects discovered should level off as testing continues. 
The amount of additional test time to find each additional defect should 
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increase, and the total number of discovered defects will level out. The 
leveling out of the number of defects discovered gives an illusion that the 
system is now defect free. In practice, testing or reviews at any level rarely 
consistently find more than 60% of the defects present in a system. But if 
testing at a given level finds only a fixed percentage of defects, it likewise 
leaves a fixed percentage undiscovered. And the size of that undiscovered 
set will be roughly proportional to the number found in that same level of 
test or review. The heuristic can be given in two forms:

The number of defects remaining in a system after a given 
level of test or review (design review, unit test, system 
test, etc.) is proportional to the number found during that 
test or review.

Testing can indicate the absence of defects in a system 
only when: (1) The test intensity is known from other 
systems to find a high percentage of defects, and (2) Few 
or no defects are discovered in the system under test.

So the discovery and removal of defects is not necessarily an indica-
tion of a high-quality system. A variation of the “zero-defects” philosophy 
is that ultraquality requires ultraquality throughout all development pro-
cesses. That is, certify a lack of defects in the final product by insisting on 
a lack of defects anywhere in the development process. The ultraquality 
problem is a particular example of the interplay of uncertainty, heuristics, 
and rational methods in making architectural choices. That interplay 
needs to be examined directly to understand how heuristic and rational 
methods interact in the progression of system design.

Organization into a Process Model

Even though effective architecting rarely proceeds on a linear, predeter-
mined course, many people have found it convenient to have some refer-
ence model for how to organize the activities. A model found particularly 
useful is illustrated in Figure  9.3, originally introduced in Chapter 2. 
The figure illustrates a core set of activities associated with architect-
ing and their relationships. The presence of multiple feedback channels 
shows that one does not proceed linearly through the activities. In prac-
tice, even within a cycle the path is often not linear, a subject we take up 
subsequently. The activities in Figure 9.3 are defined as orientation, pur-
pose analysis, problem structuring, solution structuring, harmonization, 
selection or abstraction, architecture description, and supporting study.
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Orientation
Orientation is the process of understanding the context of an architect-
ing project. When one finds oneself beginning what appears to be an 
architecting project, orientation is the set of activities necessary to make 
a preliminary definition of the project (although the system of interest 
presumably emerges). A simple heuristic to guide orientation is to ask the 
following questions:

	 1.	What is the system-of-interest to the architecting effort (at least, the 
assumed system-of-interest)? What sort of system does the sponsor 
believe will eventually emerge?

	 2.	What is the scope of the system-of-interest (and of the overall effort)? 
Is the system-of-interest a narrowly defined system with a single mis-
sion, a complex multimission system, or some assemblage of multiple 
systems (for example, a family of systems or a collaborative system)?

	 3.	What is the apparent technology level? That is, is everything needed 
to accomplish the basic purpose well within current state-of-practice, 
pushing state-of-practice, or well beyond it?

	 4.	What hard constraints are believed to exist (like a fixed delivery 
date)? Are they really hard constraints or just assumptions?

	 5.	What resources are available for the effort, can more be acquired, if so 
how, and what are the expectations for interacting with the sponsor? 
Is the sponsor prepared to engage in value discussions with the 
team, and is sponsor time available to have the discussions?

Orientation
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Figure 9.3  Expanded activities in an Architecting Process Model.
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	 6.	When the architecture effort is complete, what will be done with 
its products? Will they be used to start a system acquisition, to 
guide other acquisitions, to guide research and development (R&D) 
activities, to mark off completion of a bureaucratic requirement, or 
for some other purpose?

	 7.	Are the purposes of the system-of-interest, the architecting effort, 
and the architecture documentation to be developed all consistent 
with each other?

	 8.	What is motivating the investigation into constructing the system-
of-interest? Is it the sponsor needs, a new technology believed to be 
able to create value, or some other reason?

Purpose Analysis
Purpose analysis is the process of determining what the system of interest 
is for, and why the sponsor wants it (or at least believes he or she wants it). 
Purpose analysis is a broad-scoped investigation in the system-of-interest. 
It does not consist of just trying to discover and record assumed require-
ments or objectives. The intent is to delve more deeply into why the 
sponsor believes that having the system-of-interest will create value. One 
of the most useful heuristics in Purpose analysis is the Four Who’s: Always 
ask who benefits, who supplies, who pays, and who loses?

Problem Structuring
Where purpose analysis is broad based and inclusive, problem structur-
ing seeks to narrow. Purpose analysis accepts the full range of stake-
holder inputs, whether precisely stated or not, whether unambiguous 
or not, and whether feasible or not. Problem structuring seeks to con-
vert the rich picture of stakeholder concerns from purpose analysis into 
more rigorously structured models. To accomplish that without losing 
the richness of the original presentations, it may be necessary to spawn 
multiple problem descriptions. There may not be a single problem to 
solve; perhaps the best representation of the problem space is as multiple 
problems that will eventually be separately (if at all) addressed. The most 
useful heuristics and techniques in problem structuring include problem 
framing, expansion and contraction heuristics, use-case analysis, and 
functional decomposition.

Solution Structuring
In parallel with problem structuring, we can synthesize solutions. We 
can do this in parallel (that is, without full knowledge of objectives or 
requirements) because we assume that exposure to solution alternatives 
will affect sponsor beliefs about the nature of his or her problem. This is 
one of the basic tenets of ill-structured problem solving, that exposure 
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to solutions changes perceptions of problems, and because we wish to 
embrace that change, we must let the two sides of the process influence 
each other. Solution structuring makes use of the synthesis heuristics, 
including those for aggregation and partitioning. The products of solution 
structuring are models of the system of interest, and so usually include 
block diagrams in all their forms and other models of form (discussed 
elsewhere in this book).

Harmonization
Harmonization is where we match up problem and solution descriptions 
to determine what can go together and what cannot. Harmonization is 
analytical, if not always rigorously so. The most useful techniques in 
harmonization are thus analytical and include functional walkthroughs, 
performance analysis, and executable simulations.

Selection or Abstraction
At some point, we have to make choices. One choice might be to drop the 
whole pursuit (perhaps a very wise choice in some circumstances, and one 
best made early). If the fundamental purpose is to emerge from architect-
ing and arrange for construction of the system-of-interest, at some point 
we must select the configuration desired. In family-of-system and collab-
orative system cases, “abstraction” may be a better concept. By abstraction 
we mean selecting from the family or collaboration the things that are 
common, and likewise leaving out the things that are not common and 
leaving those to performing individuals or programs.

Architecture Description
Architecture description moves from collections of working models 
to more formalized groupings structuring as reference documents. 
Architecture models are organized into a formal architecture description, 
often using an “Architecture Framework,” a concept defined subsequently. 
The key here is to avoid confusing the architecture description from the 
work process that precedes it. An architecture description is (or should be) 
a consequence of good architecting work.

Supporting Study
In practice, effective architecting often depends on relatively specialized 
and in-depth data. Recall the heuristic of variable technical depth. Good 
architecting is typified by deep investigation of particular, narrow areas 
in subsystems or subdisciplines (the heuristic of Variable Technical Depth). 
These deeper investigations are typically done separately from the core 
process of architecting. A cycle of architecting reveals the areas needing 
in-depth investigation. The architect sets up the in-depth study, and those 
results are fed back into further architecting.
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Certainty, Rationality, and Choice

All of the design processes — scoping, partitioning, aggregation, and cer-
tification — require decisions. They require decisions on which problem 
statement to accept, what components to organize the system into, or when 
the system has reached an acceptable level of development. A by-product 
of a heuristic-based approach is continuous uncertainty. Looking back on 
their projects, most architects interviewed for the University of Southern 
California program concluded that the key choices they made were rarely 
obvious decisions at the time. Although, in retrospect, it may be obvious 
that a decision was either a very good or a very bad one, at the time the 
decision was actually made it was not clear at all. The heuristic summa-
rizing is: Before the flight it was opinion; after the flight it was obvious. The 
members of the teams were constantly arguing and a decision was reached 
only through the authority of the leading architect for the project.*

A considerable effort has been made to develop rational decision-
making methods. The goal of a fully rational or scientific approach is to 
make decisions optimally with respect to rigorously determined criteria. 
Again, the model of architecting practice presented here is a pragmatic 
mixture of heuristic and rigor. Decision theory works well when the 
problem can be parameterized with a modest number of values, uncer-
tainty is limited, and estimates are reliable, and the client or users possess 
consistent utility functions with tractable mathematical expression. The 
absence of any of these conditions weakens or precludes the approach. 
Unfortunately, some or all of the conditions are usually absent in architect-
ing problems (and even in more restricted disciplinary design problems). 
To understand why, one must understand the elements of the decision 
theoretic approach:

	 1.	 Identify the attributes contributing to client satisfaction and an algo-
rithm for estimating the value of sets of attributes. More formally, this 
is determining the set over which the client will express preference.

	 2.	Determine a utility function, a function that combines all the attributes 
and represents overall client satisfaction. Weighted, additive utility 
functions are commonly used, but not required. The utility function 
converts preferences into mathematically useful objective function.

	 3.	 Include uncertainty by determining probabilities, calculating the 
utility probability distribution, and determining the client’s risk 
aversion curve. The risk aversion curve is a utility theory quantity 
that measures the client’s willingness to trade risk for return.

	 4.	Select the decision with the highest weighted expected utility.

*	 Comments by Harry Hillaker at USC on his experience as YF-16 architect.
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The first problem in applying this framework to architecting problems 
is scale. To choose an optimum, the decision theory user must be able to 
maximize the utility functions over the decision set. If the set is very large, 
the problem is computationally infeasible. If the relationship between the 
parameters and utility is nonlinear, only relatively small problems are 
solvable. Unfortunately, both conditions commonly apply to the architect-
ing and creation of complex systems.

The second problem is to workably and rationally include the effects of 
uncertainty or risk. In principle, uncertainty and unreliability in estimates 
can be folded into the decision theoretic framework through probability 
and assessment of the client’s risk aversion curve. The risk aversion curve 
measures the client’s willingness to trade risk and return. A risk-neutral 
client wants the strategy that maximizes expected return. A risk-averse 
client prefers a strategy with certainty over opportunity for greater return. 
A risk-disposed client prefers the opposite — wanting the opportunity for 
greater return even if the expectation of the return is less.

In practice, however, the process of including uncertainty is heavily 
subjective. For example, how can one estimate probabilities for unprec-
edented events? If the probabilities are inaccurate, the whole framework 
loses its claim to optimality. Estimation of risk aversion curves is like-
wise subjective, at least in practice. When so much subjective judgment 
has been introduced, it is unclear if maintaining the analytical framework 
leads to much benefit or if it is simply a gloss.

One clear benefit of the decision theory framework is that it makes 
the decision criteria explicit and, thus, subject to direct criticism and 
discussion. This beneficial explicitness can be obtained without the full 
framework. This approach is to drop the analytic gloss, make decisions 
based on heuristics and architectural judgment, but (and this is more 
honored in the breach) require the basis be explicitly given and recorded.

A third problem with attempting to fully rationalize architectural 
decisions is that for many of them there will be multiple clients who have 
some claim to express a preference. Single clients can be assumed to have 
consistent preferences and, hence, consistent utility functions. However, 
consistent utility functions do not generally exist when the client or user 
is a group, as in sociotechnical systems.* Even with single clients, value 
judgments may change, especially after the system is delivered and the 
client acquires direct experience.†

*	 This problem with multiple clients and decision theory has been extensively studied in 
literature on public choice and political philosophy. A tutorial reference is Mueller, D. C., 
Public Choice. London; New York: Cambridge University Press, 1979.

†	 Nonutility theory based decision methods, such as the Analytic Hierarchy Process, have 
many of the same problems. Most writers have discussed that the primary role of deci-
sion theoretic methods should be to elucidate the underlying preferences. See Saaty, T., 
The Analytic Network Process. Pittsburgh, PA: RWS Publications, 1996, Preface and Chapter 1.
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An observation about decision theory, paraphrased from Keeney, is that 
decision analysis is most applicable when it is least important. When doing 
decision analysis, one often finds one of the following two situations:

	 1.	Analysis of the objective function shows that one alternative is much 
better than the rest. So, choosing the optimum is of high value. But, it is 
rarely hard to find such a clear winner; it usually stands out obviously 
from analysis of the objectives. Clear analysis of the objectives leads 
to the inevitable conclusion even without the full formal machinery.

	 2.	The optimal choice cannot be found without the full machinery, but 
the true optimum is not much better than nearby choices. Any of the 
nearby choices would be almost as good, and given uncertainties, 
not distinguishable.

Thus, pursuit of the true optimum is of much less importance than 
the supporting reasoning, in objectives, and in fully exploring the alter-
native space. We get more benefit from the systematic thinking associated 
with decision analysis than we get from the machinery itself.10

Rational and analytical methods produce a gloss of certainty, but 
often hide highly subjective choices. No hard and fast guideline exists for 
choosing between analytical choice and heuristic choice when unquanti-
fied uncertainties exist. Certainly, when the situation is well understood 
and uncertainties can be statistically measured, the decision theoretic 
framework is appropriate. When even the right questions are in doubt, 
it adds little to the process to quantify them. Intermediate conditions call 
for intermediate criteria and methods. For example, a system might have 
as client objectives “be flexible” and “leave in options.” Obviously, these 
criteria are open to interpretation. The refinement approach is to derive 
or specialize increasingly specific criteria from very general criteria. 
This process creates a continuous progression of evaluation criteria from 
general to specific and eventually measurable.

Example: The U.S. Department of Transportation 
has financed an Intelligent Transport System (ITS) 
architecture development effort. Among their eval-
uation criteria was “system flexibility,” obviously 
a very loose criteria.11 An initial refinement of the 
loose criteria could be as follows:

	1.	Architecture components should fit in many 
alternative architectures.

	2.	Architecture components should support mul-
tiple services.
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3.	 Architecture components should expand with 
linear or sublinear cost to address greater load.

4.	 Components should support non-ITS services.

These refined heuristic evaluation criteria can be applied directly to 
candidate architectures. Or they can be further refined into quantitative 
and measurable criteria. The intermediate refinement on the way to quan-
titative and measurable criteria creates a progression that threads through 
the whole development process. Instead of thinking of design as begin-
ning and stopping, it continuously progresses. Sophisticated mixtures of 
the heuristics and rational methods are part of architecting practice in 
some domains. This progression is the topic of the next section.

Although architecting problems rarely can be effectively modeled and 
resolved as simple decision theoretic problems, the decision theoretic pro-
cess holds much value, if used appropriately. The decision theoretic process 
of building a decision model is a valuable guide to good architecting:

	 1.	Make objectives or attributes explicit and visible to all stakeholders 
(build a value model). Encourage debate, and hopefully agreement, 
on objectives.

	 2.	Use the objectives to search for solutions better than any currently 
known. Instead of using weights and trades to “pick the best of a bad 
lot,” use the objectives to focus the search for higher-valued possi-
bilities (the “Value Focused Thinking” notion of Keeney12).

	 3.	Build explicit models of uncertainty. Use those models to search for 
ways that uncertainty can be exploited instead of merely adapted to.

Stopping or Progressing?

When does architecting and modeling stop? The short answer is that 
given earlier: they never stop; they progress. The architecting process 
(along with many other parallel tracks) continuously progresses from the 
abstract to the concrete in a steady reduction of abstraction. In a narrow 
sense, there are recognizable points at which some aspects of architecting 
and modeling must stop. To physically fabricate a component of a system, 
its design must be frozen. It may not stop until the lathe stops turning or 
the final line of code is typed in, but the physical object is the realization 
of some design. In the broader sense, even physical fabrication does not 
stop architecting. Operations can be interpreted only through recourse 
to models, though those models may be quite precise when driven by 
real data. In some systems, such as distant space probes, even operational 
modeling is still somewhat remote.

The significant progressions in architecting are promoted by the role 
of the architect. The architect’s role makes two decisions foremost: the 
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selection of a system concept and the certification of the built system. The 
former decision is almost certain to be driven by heuristic criteria; the 
latter is more open, depending on how precisely the criteria of fitness for 
use can be defined. A system concept is suitable when it is both satisfactory 
and feasible. Only the client can judge the system “satisfactory,” though 
the client will have to rely on information provided by the architect. 
In builder-architected systems, the architect must often make the judg-
ment for the client (who will hopefully appear after the system reaches the 
market). Feasible means the system can be developed and deployed with 
acceptable risk. Certification requires that the system as built adequately 
fulfills the client’s purposes, including cost, as well as the contract with 
the builder.

Risk, a principal element in judging feasibility, is almost certain to be 
judged heuristically. The rational means of handling risk is through prob-
ability, but a probabilistic risk assessment requires some set of precedents 
to estimate over — that is, a series of developments of similar nature for 
which the performance and cost history is known. By definition, such a 
history cannot be available for unprecedented systems. So the architect 
is left to estimate risk by other means. In well-defined domains, past 
history should be able to provide a useful guide; it certainly does for civil 
architects. Civil architects are expected to control cost and schedule risk 
for new structures and can do so because construction cost estimation 
methods are reasonably well developed. The desired approach is to use 
judgment, and perhaps a catalog of domain-specific heuristics, to size the 
development effort against past systems, and use documented develop-
ment data from those past systems to estimate risk. For example, in soft-
ware systems, cost models based on code size estimates are known and 
are often calibrated against past development projects in builder organi-
zations. If the architect can deduce code size, and possible variation in 
code size, reliably, a traceable estimate of cost risk is possible.

The judgment of how satisfactory a concept is and the certification 
process both depend on how well customer purposes can be specified. 
Here there is great latitude for both heuristic and rational means. If cus-
tomer purposes can be precisely specified, it may be possible to precisely 
judge how well a system fulfills them, either in prospect or retrospect. In 
prospect, it depends on having behavior and performance models that 
are firmly attached to customer purposes. With good models with certain 
connection between the models and implementation technology, the 
architect can confidently predict how well the planned system will fulfill 
the desired purposes. The retrospective problem is that of certification, of 
determining how well the built system fulfills customer purposes. Again, 
well-founded, scientific models and mature implementation technologies 
make system assessment relatively certain.
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More heuristic problems arise when the same factors do not apply. 
Mainly this occurs when it is hard to formulate precise customer pur-
pose models, when it is hard to determine whether or not a built system 
fulfills a precisely stated purpose, or when there is uncertainty about the 
connection between model and implemented system. The second two are 
related because they both concern retrospective assessment of architec-
ture models against a built system in the presence of uncertainty.

The first case applies when customer purposes are vague or likely 
to change in response to actual experience with the system. When the 
customer is relatively inexperienced with systems of the type, his or her 
perception of the system’s value and requirements is likely to change, 
perhaps radically, with experience. Vague customer purposes can be 
addressed through the architecture. Take, for example, an emphasis on 
options in the architecture and a development plan that includes early 
user prototypes with the ability to feed prototype experience back into 
the architecture. This is nicely captured in two heuristics:

Firm commitments are best made after the prototype 
works.13

Hang on to the agony of decision as long as possible.14

The second case, problems in determining whether or not a built system 
fulfills a given purpose, is mainly a problem when requirements are 
fundamentally immeasurable or when performance is demanded in an 
environment that cannot be provided for test. For example, a space system 
may require a failure rate so low it will never occur during any practi-
cal test (the ultraquality problem). Or, a weapon system may be required 
to operate in the presence of hostile countermeasures that will not exist 
outside a real combat environment. Neither of these requirements can be 
certified by test or analysis. To certify a system with requirements like 
these, it is necessary to either substitute surrogate requirements agreed to 
by the client or to find alternative certification criteria.

To architect-in certifiable criteria essentially means to substitute a 
refined set of measurable criteria for the client’s immeasurable criteria. 
This requires that the architect be able to convince the client of the validity 
of a model for connecting the refined criteria to the original criteria. One 
advantage of a third-party architect is the independent architect’s greater 
credibility in making just such arguments, which may be critical to devel-
oping a certifiable system. A builder-architect, with an apparent conflict 
of interest, may not have the same credibility. The model that connects 
the surrogate criteria to the real, immeasurable criteria may be a detailed 
mathematical model or may be quite heuristic. An example of the former 
category is failure tree analysis that tries to certify untestable reliability 
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levels from testable subsystem reliability levels. A more heuristic model 
may be more appropriate for certifying performance in uncertain combat 
environments. Although the performance required is uncertain, criteria 
like flexibility, reprogrammability, performance reserve, fallback modes, 
and ability to withstand damage can be specified and measured.

Rational and heuristic methods can be combined to develop ultraqual-
ity systems. A good example is a paper by Jaynarayan.15 This paper dis-
cusses the architectural principles for developing flight control computers 
with failure rates as low as 10–10 per hour. Certification of such systems 
is a major problem. The authors discuss a two-pronged approach. First, 
instead of using a brute-force failure modes and effects analysis with 
its enormous fault trees, they design for “Byzantine failure.” Byzantine 
failure means failure in which the failed element actively, intelligently, 
and malevolently attempts to cause system failure. They go on to describe 
formal methods for designing systems resistant to a given number of 
Byzantine faults, thus replacing the need to trace fault trees for each type 
of failure. The analysis of failure trees is then brought down to tractable 
size. The approach is based on designs that do not allow information 
or energy from a possibly failed element to propagate outside an error 
confinement region. The second prong is a collection of guidelines for 
minimizing common mode failures. In a common mode failure, several 
nominally independent redundant units fail simultaneously for the same 
reason. These are the system failures due to design errors rather than com-
ponent failures. Because one cannot design-in resistance to design failure, 
other means are necessary. The guidelines, partially a set of heuristics, 
provide guidance in this otherwise nonmeasurable area.

The third and last case is uncertainty about the connection between 
the model and the actual system. This is an additional case where 
informed judgment and heuristics are needed. To reduce the uncertainty 
in modeling requires tests and prototypes. The best guidance on archi-
tecting prototypes is to realize that all prototypes should be purpose 
driven. Even when the purposes of the system are less than clear, the 
purposes of the prototype should be quite clear. Thus, the architecting 
of the prototype can be approached as architecting a system, with the 
architect as the client.

Architecture and Design Disciplines
Not very many years ago, the design of a system of the complexity of several 
tens-of-thousands of logic gates was a major undertaking. It was an archi-
tectural task in the sense it was probably motivated by an explicit purpose 
and required the coordination of a multidisciplinary design effort. Today, 
components of much higher complexity are the everyday building blocks 
of the specialized digital designer. No architectural effort is required to 
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use such a component, or even to design a new one. In principle, art has 
been largely removed from the design process because the discipline has 
a firm scientific basis. In other words, the design discipline or domain is 
well worked out, and the practitioners are recognized specialists. Today 
it is common to discuss digital logic synthesis directly from fairly level 
specifications, even if automated synthesis is not yet common practice. 
So, there should be no surprise if systems that today tax our abilities and 
require architectural efforts one day become routine with recognized 
design methodologies taught in undergraduate courses.

The discussion of progression leads to further understanding of the 
distinctions between architecture and engineering. The basic distinction 
was reviewed in the Preface, along with the types of problems addressed 
and the tools used to address them. A refinement of the distinction was 
discussed in Chapter 1, the extent to which the practitioner is primarily 
concerned with scoping, conceptualizing, and certification. By looking at 
the spectrum of architecture and engineering across systems disciplines, 
these distinctions become clearer and can be further refined. First, the 
methods most associated with architecting (heuristics) work best one step 
beyond where rational design disciplines have been worked out. This 
may or may not be at the forefront of component technology. Large-scale 
systems, by their nature, push the limits of scientific engineering at what-
ever level of technology development is current. But, as design and man-
ufacturing technology change the level of integration that is considered 
a component, the relative working position of the architect inevitably 
changes. Where the science does not exist, the designer must be guided 
by art. With familiarity and repetition, much that was done heuristically 
can now be done scientifically or procedurally.

However, this does not imply that where technology is mature, archi-
tecting does not exist. If it did, there would be no need for civil archi-
tects. Only systems that are relatively unique need to be architected. 
Development issues for unique systems contain a kernel of architectural 
concerns that transcend whatever technology or scientific level is current. 
This kernel concerns the bridge between human needs (which must be 
determined through social interaction and are not the domain of science) 
and technological systems. In low-technology systems, like buildings, 
only the nonroutine building needs to be architected. But dealing with 
the nonroutine, the unique, the client/user customized, is different from 
other engineering practices. It contains an irreducible component of art. 
A series of related unprecedented systems establishes a precedent. The 
precedent establishes recognized patterns, sometimes called architec-
tures, of recognized worth. Further systems in the field will commonly 
use those established architectures, with variations more on style than in 
core structure.
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Current development in software engineering provides an example 
of evolution to a design discipline. Until relatively recently, the notion 
of software engineering hardly existed; there was only programming. 
Programming is the process of assembling software from programming 
language statements. Programming language statements do not provide a 
very rich language for expressing system behaviors. They are constrained 
to basic arithmetic, logical, and assignment operations. To build complex 
system behaviors, programs are structured into higher-level components 
that begin to express system domain concepts. But in traditional program-
ming, each of the components must be handcrafted from the raw material 
of programming languages.

The progression in software is through the construction and standard-
ization of components embodying behaviors closer and closer to problem 
domains. Instead of programming in what was considered a “high-level 
language,” the engineer can now build a system from components close to 
the problem domain. Where the programming language is still, but it may 
be used primarily to knit together prebuilt components. Programming 
libraries have been in common use for many years. The libraries shipped 
with commercial software development environments are often very large 
and contain extensive class or object libraries. In certain domains, the gap 
has grown very small.

Example: The popular mathematics package MATLAB® 
(Natick, Massachusetts) allows direct manipulation 
of matrices and vectors. It also provides a rich library 
of functions targeted at control engineers, image 
processing specialists, and other fields. One can 
dispense with the matrices and vectors all together 
by “programming” with a graphical block diagram 
interface that hides the computational details and 
provides hundreds of prebuilt blocks. Further exten-
sions allow the block diagram to be compiled into 
executable programs that run on remote machines. 
Increasingly it is possible to compile for direct con-
nection to real-time embedded systems.

Wherever a family of related systems is built, a set of accepted models 
and abstractions appears and forms the basis for a specialized design dis-
cipline. If the family becomes important enough, the design discipline will 
attract enough research attention to build scientific foundations. It  will 
truly become a design discipline when universities form departments 
devoted to it. At the same time, a set of common design abstractions will 
be recognized as “architectures” for the family. Mary Shaw, observing the 
software field, finds components and patterns constrained by component 
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and connector vocabulary, topology, and semantic constraints. These 
patterns can be termed “styles” of architecture in the field, as was dis-
cussed in Chapter 6 for software.

Architecture and Patterns

The progression from “inspired” architecture to formal design method is 
through long experience. Long experience in the discipline by its practi-
tioners eventually yields tested patterns of function and form. Patterns, 
pattern languages, and styles are a formalization of this progression. 
Architecting in a domain matures as architects identify reusable compo-
nents and repeating styles of connection. Put another way, they recognize 
recurring patterns of form and their relationships to patterns in problems. 
In a mature domain, patterns in both the problem and solution domains 
develop rigorous expression. In digital logic (a relatively mature design 
domain), problems are stated in formal logic and solutions in equally 
mathematically well-founded components. In a less mature domain, the 
patterns are more abstract or heuristic.

A formalization of patterns in architecture is due to Christopher 
Alexander.16 Working within civil architecture and urban design, 
Alexander developed an approach to synthesis based on the composi-
tion of formalized patterns. A pattern is a reoccurring structure within a 
design domain. A pattern consists of both a problem or functional objec-
tive for a system and a solution. Patterns may be quite concrete (such as “A 
sunny corner”) or relatively abstract (such as “Masters and apprentices”). 
A template for defining a pattern is as follows:

	 1.	A brief name that describes what the pattern accomplishes.
	 2.	A concise problem statement.
	 3.	A description of the problem including the motivation for the pattern 

and the issues in resolving the problem.
	 4.	A solution, preferably stated in the form of an instruction.
	 5.	A discussion of how the pattern relates to other patterns in the 

language.

A pattern language is a set of patterns complete enough for design 
within a domain. It is a method for composing patterns to synthesis solu-
tions to diverse objectives. In the Alexandrian method, the architect con-
sults sets of patterns and chooses from them those patterns that evoke the 
elements desired in a project. The patterns become the building blocks 
for synthesis, or suggest important elements that should be present in the 
building. The patterns each suggest instructions for solution structure, or 
contain a solution fragment. The fragments and instructions are merged 
to yield a system design.
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Because the definition of a pattern and a pattern language are quite 
general, they can be applied to other forms of architecture. The ideas of 
patterns and pattern languages are now a subject of active interest in soft-
ware engineering.* Software architects often use the term style to refer to 
reoccurring patterns in high-level software design. Various authors have 
suggested patterns in software using a pattern template similar to that of 
Alexander. An example of a software pattern is “Callbacks and Handlers,” 
a commonly used style of organizing system-dependent bindings of code 
to fixed behavioral requirements.

The concept of a style is related to Alexandrian patterns because 
each style can be described using the pattern template. Patterns are also 
a special class of heuristic. A pattern is a prescriptive heuristic describing 
particular choices of form and their relationship to particular problems. 
Unlike patterns, heuristics are not tied to a particular domain.

Although the boundaries are not sharp, heuristics, patterns, styles, 
and integrated design methods can be thought to form a progression. 
Heuristics are the most general, spanning domains and categories of guid-
ance. However, they are also the least precise and give the least guidance 
to the novice. Patterns are specially documented, prescriptive heuristics 
of form. They prescribe (perhaps suggest) particular solutions to partic-
ular problems within a domain. A style is still more precisely defined 
guidance, this time in the form of domain-specific structure. Still farther 
along the maturity curve are fully integrated design methods. These have 
domain-specific models and specific procedures for building the models, 
transforming models of one type into another type, and implementing a 
system from the models.

Thus, the largest-scale progression is from architecting to a rigorous 
and disciplined design method; one that is essential to the normative 
theory of design. Along the way, the domain acquires heuristics, patterns, 
and styles of proven worth. As the heuristics, patterns, and styles become 
more specific, precise, and prescriptive, they give the most guidance to 
the novice and come closest to the normative (what should be) theory of 
design. As design methods become more precise and rigorous, they also 
become more amenable to scientific study and improvement. Thus, the 
progression carries from a period requiring (and encouraging) highly 
creative and innovative architecting to one defined by quantifiable and 
provable science.

Civil architecture experience suggests that at the end of the road 
there will still be a segment of practice that is best addressed through a 
fusion of art and science. This segment will be primarily concerned with 
the clients of a system and will seek to reconcile client satisfaction and 

*	 A brief summary with some further references is Bercuzk, C., Hot Topics, Finding Solutions 
through Pattern Languages, IEEE Computer, Vol. 27, Number 12, pp. 75–76, 1995.
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technical feasibility. The choice of method will depend on the question. 
If you want to know how a building will fare in a hurricane, you know to 
ask a structural engineer. If you want the building to express your desires, 
and do so in a way beyond a rote calculation of floor space and room 
types, you know to ask an architect.

Conclusion
A fundamental challenge in defining a systems architecting method or 
a systems architecting tool kit is its unstructured and eclectic nature. 
Architecting is synthesis oriented and operates in domains and with con-
cerns that preclude rote synthesis. Successful architects proceed through a 
mixture of heuristic and rational or scientific methods. One meta-method 
that helps organize the architecting process is that of progression.

Architecting proceeds from the abstract and general to the domain 
specific. The transition from the unstructured and broad concerns of 
architecting to the structured and narrow concerns of developed design 
domains is not sharp. It is progressive as abstract models are gradually 
given form through transformation to increasingly domain-specific 
models. At the same time, all other aspects of the system undergo concur-
rent progressions from general to specific.

The emphasis has been on the heuristic and unstructured compo-
nents of the process, but that is not to undervalue the quantitative and 
scientific elements required. The rational and scientific elements are 
tied to the specific domains where systems are sufficiently constrained 
to allow scientific study. The broad outlines of architecting are best seen 
apart from any specific domain. A few examples of the intermediate steps 
in progression were given in this chapter. The next chapter brings these 
threads together by showing specific examples of models and their asso-
ciation with heuristic progression. In part this is done for the domains of 
Part II, and in part for other recognized large not domains not specifically 
discussed in Part II.

Exercises
	 1.	Find an additional heuristic progression by working from the 

specific to the general. Find one or more related design heuristics in 
a technology-specific domain. Generalize those heuristics to one or 
more heuristics that apply across several domains.

	 2.	Find an additional heuristic progression by working from the gen-
eral to the specific. Choose one or more heuristics from Appendix A. 
Find or deduce domain specific heuristic design guidelines in a 
technology domain familiar to you.
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	 3.	Examine the hypothesis that there is an identifiable set of “architec-
tural” concerns in a domain familiar to you. What issues in the domain 
are unlikely to be reducible to normative rules or rational synthesis?

	 4.	Trace the progression of behavioral modeling throughout the devel-
opment cycle of a system familiar to you.

	 5.	Trace the progression of physical modeling throughout the develop-
ment cycle of a system familiar to you.

	 6.	Trace the progression of performance modeling throughout the 
development cycle of a system familiar to you.

	 7.	Trace the progression of cost estimation throughout the development 
cycle of a system familiar to you.
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10chapter 

Integrated Modeling Methodologies

Introduction
The previous two chapters explored the concepts of model views, model 
integration, and progression along parallel paths. This chapter brings 
together these threads by presenting examples of integrated modeling 
methodologies. Part III concludes in the next chapter where we review the 
architecture community’s standards for architecture description. The dis-
tinction between this chapter and the next is twofold. First, in this chapter 
we study modeling methods without concern for how their elements com-
bine in formal documents. The focus is on integrated, multiview modeling 
methods as tools for architecting, not as descriptors within a document. 
Second, this chapter is concerned with methods from the literature 
whether or not they are formally standardized. De facto standardization 
or standardization in the scientific literature is sufficient in this chapter. 
The next chapter is concerned with how models are brought together in 
formalized architecture description documents and with community 
efforts at formal standardization. The methodologies in this chapter are 
further divided by domain specificity, with the first models more nearly 
domain independent and later models more domain specific.

Architecting clearly is domain dependent. A good architect of avion-
ics systems, for example, may not be able to effectively architect social 
systems. Hence, there is no attempt to introduce a single set of models suit-
able for architecting everything. The models of greatest interest are those 
tied to the domain of interest, although they must support the level of 
abstraction needed in architecting. The integrated models chosen for this 
chapter include two principally intended for real-time, computer-based, 
mixed hardware/software systems (H/P and Q2FD), three methods for 
software-based systems, one method for manufacturing systems, and, 
conceptually, at least, some methods for including human behavior in 
sociotechnical system descriptions.

The examples for each method were chosen from relatively simple 
systems. They are intended as illustrations of the methods and their rel-
evance to architectural modeling and to fit within the scope of the book. 
They are not intended as case studies in system architecting. Brief case 
studies at the decision level precede each chapter in Part II.
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In choosing integrated modeling methods to present, we look for the 
following factors:

	 1.	The collection of models spans three or more of the baseline views 
illustrated in Figure 8.2.

	 2.	The syntax and semantics of the modeling language is defined with 
enough formality that it supports both intraview and interview con-
sistency checking rules.

	 3.	The models can be used at levels of abstraction from concept pre-
sentation to transition to disciplinary engineering. That is, the 
models support progressive refinement from architecting through 
systems engineering.

General Integrated Models
Two very general integrated modeling methods are Hatley-Pirbhai (H/P) 
and Q2FD. The Unified Modeling Language (UML) is also quite general, 
although in practice it is used mostly in software systems. The more recent 
extensions to the UML, known as Systems Modeling Language (SysML), 
are of greater applicability for integrated modeling, although we shall see 
limitations there as well.

Hatley-Pirbhai — Computer-Based, Reactive Systems
A computer-based, reactive system senses and reacts to events in the phys-
ical world, with much of the implementation complexity in programmable 
computers. Multifunction automobile engine controllers, programmable 
manufacturing robots, and military avionics systems (among many others) 
all fall into this category. They are distinguished by mixing continuous, 
discrete, and discrete event logics and being implemented largely through 
modern computer technology. The integrated models used to describe 
these systems emphasize detailed behavior descriptions, form descriptions 
matched to software and computer hardware technologies, and some per-
formance modeling. Efforts in the recent past at defining an Engineering of 
Computer Based Systems discipline1 are directed at systems of this type.

Several different investigators have worked to build integrated models 
for computer-based reactive systems. The most complete example of such 
integration is the Hatley-Pirbhai (H/P) methodology.* Other methods 

*	 Wood, D. P., and W. G. Wood, Comparative Evaluation of Four Specification Methods for 
Real-Time Systems, Software Engineering Institute Technical Report, CMU/SEI-89-TR-36, 
1989. This study compared four popular system modeling methods. Their conclusion was 
that the Hatley-Pirbhai method was the most complete of the four, though similarities 
were more important than the differences. In the intervening time, many of the popular 
methods have been extended and additional tools reflecting multiview integration have 
begun to appear, although actual use seems to have faded. The Hatley-Pirbhai method 
has been likewise further extended.
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developed contemporaneously with Hatley-Pirbhai are of similar levels of 
integration. The UML is also close to this level of completeness. The practi-
cal reality is that many of these methods, whether well-founded or not, have 
fallen out of fashion. Today, discussions of integrated modeling methods for 
architecting are likely to focus on UML, SysML, or one of the architecture 
description frameworks. However, the issues with these current approaches 
are better understood with some historical context on integrated modeling, 
as the historical approaches make both the strengths and weaknesses or the 
current approaches more clear. This section concentrates on the structure 
of H/P. With the concepts of H/P in mind, it is straightforward to make a 
comparative assessment of other tools and methods.

H/P defines a system through three primary models: two behavioral 
models (the “Requirements Model” [RM] and the “Enhanced Requirements 
Model” [ERM]) and a model of form called the “Architecture Model” 
(AM). The two behavioral models are linked through an embedding pro-
cess. Static allocation tables link the behavioral and form models. The per-
formance view is linked statically through timing allocation tables. More 
complex performance models have been integrated with H/P, but descrip-
tions have only recently been published. A dictionary defines the data 
view. This dictionary provides a hierarchical data element decomposition 
but does not provide a syntax for defining dynamic data relationships. 
No managerial view is provided, although managerial metrics have been 
defined for models of the H/P type.

Both behavioral models are based on DeMarco-style data flow dia-
grams. The data flow diagrams are extended to include finite state and 
event processing through what is called the “Control Model.” The con-
trol model uses data flow diagram syntax with discrete events and finite 
state machine processing specifications. The behavioral modeling syntax 
is deliberately nonrigorous and is not designed for automated execution. 
This “lack” of rigor is deliberate; it is intended to encourage flexibility in 
client and user communication. The method believes the flexibility rather 
than rigor at this stage enhances communication with clients and users. 
The method also believes, through its choice of data flow diagrams, that 
functional decomposition better communicates to stakeholders than does 
specification by example methods, such as use-cases. The ERM is a super-
set of the requirements model. It surrounds the core behavioral model and 
provides a behavioral specification of the processing necessary to resolve 
the physical interfaces into problem domain logical interfaces. The ERM 
defines implementation-dependent behaviors, such as user interface and 
physical I/O.

Example: Microsatellite Imaging System — Some por-
tions of the H/P model formulated for the imaging 
(camera) subsystem of a microsatellite provide an 
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illustration of the H/P concepts. This example is to 
present the flavor of the H/P idiom for architects, not 
to fully define the imaging system. The level chosen 
is representative of that of a subsystem architecture 
(not all architecting has to be done on systems of 
enormous scale). Figure  10.1 shows the top-level 
behavioral model of the imaging system, defined as 
a data flow diagram (DFD). Each circle on the dia-
gram represents a data-triggered function or pro-
cess. So, for example, process number 2, “Evaluate 
Image,” is triggered by the presence of a “Raw 
Image” data element. Also from the diagram, pro-
cess number 2 produces a data element of the same 
type (the outgoing arrow labeled “Raw Image”) and 
another data element called “Image Evals.”

Each process in the behavior model is defined either by its own data 
flow diagram or by a textual specification. During early development, pro-
cesses may be defined with brief and nonrigorous textual specifications. 
Later, as processes are allocated to physical modules, the specifications 
are expanded in greater detail until implementation-appropriate rigor is 
reached. Complex processes may have more detailed specifications even 
early in the process. For example, in Figure 10.2, process number 1 “Form 
Image” is expanded into its own diagram.
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Figure 10.1  Top-level data flow diagram for a microsatellite imaging system.
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Figure  10.2 also introduces control flow. The dotted arrows indi-
cate flow of control elements, and the solid line into which they flow is 
a control specification. The control specification is shown as part of the 
same figure. Control flows may be interpreted either as continuous time, 
discrete valued data items, or discrete events. The latter interpretation 
is more widely used, although it is not preferred in the published H/P 
examples. The control specification is a finite state machine, here shown 
as a state transition diagram, although other forms are also possible. The 
actions produced by the state machine are to activate or deactivate pro-
cesses on the associated data flow diagram.

All data elements appearing on a diagram are defined in the data dic-
tionary. Each may be defined in terms of lower-level data elements. For 
example, the flow “Raw Image” appearing in Figure 10.2 appears in the 
data dictionary as follows:

Raw Image = 768{484{Pixel}}

It indicates, in this case, that Raw Image is composed of 768 × 484 
repetitions of the element “Pixel.” At early stages, Pixel is defined quali-
tatively as a range of luminance values. In later design stages, the defini-
tion will be augmented, though not replaced, by a definition in terms of 
implementation-specific data elements.

In addition to the two behavior models, the H/P method contains 
an “Architecture Model.” The architecture model is the model of form 
that defines the physical implementation. The architecture model is hier-
archical. It allows sequential definition in greater detail by expansion of 
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modules. Figure 10.3 shows the paired architecture flow and interconnect 
models for the microsatellite imaging system.

The H/P block diagram syntax partitions a system into modules, that 
are defined as physically identifiable implementation elements. The flow 
diagram shows the exchange of data elements among the modules. Which 
data elements are exchanged among the modules is defined by the alloca-
tion of behavioral model processes to the modules.

The interconnection model defines the physical channels through 
which the data elements flow. Each interconnect is further defined in a 
separate specification. For example, the interconnect “Tputer channel 1” 
connects the processor module and the camera control module. Allocation 
requires camera commands to flow over the channel. Augmentations to 
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the data dictionary define a mapping between the logical camera com-
mands and the line codes of the channel. If the channel requires message 
framing, protocol processing, or the like, it is defined in the interconnec-
tion specification. Again, the level of detail provided can vary during 
design based on the interface’s impact on risk and feasibility.

Quantitative QFD (Q2FD) — Performance-Driven Systems

Many systems are driven by quantitatively stated performance objectives. 
These systems may also contain complex behavior or other attributes, but 
its performance objectives are of utmost importance to the client. For these 
systems, it is common practice to take a performance-centered approach 
to system specification, decomposition, and synthesis. A particularly 
attractive way of organizing decomposition is through extended Quality 
Function Deployment (QFD) matrices.2

QFD is a Japanese-originated method for visually organizing the 
decomposition of customer objectives.3 It builds a graphical hierarchy 
of how customer objectives are addressed throughout a system design, 
and carries the relevance of customer objectives throughout design. A 
Q2FD-based approach requires that the architect do the following:

	 1.	 Identify a set of performance objectives of interest to the customer. 
Determine appropriate values or ranges for meeting these objectives 
through competitive analysis.

	 2.	 Identify the set of system-level design parameters that determine 
the performance for each objective. Determine suitable satisfaction 
models that relate the parameters and objectives.

	 3.	Determine the relationships of the parameters and objectives and 
the interrelationships among the parameters. Which affect which?

	 4.	Set one or more values for each parameter. Multiple values may be 
set — for example, minimum, nominal, and target. Additional slots 
provide tracking from detailed design activities.

	 5.	Repeat the process iteratively using the system design parameters as 
objectives. At each stage, the parameters at the next level up become 
the objectives at the next level down.

	 6.	Continue the process of decomposition as many levels as desired. 
As detailed designs are developed, their parameter values can flow 
up the hierarchy to track estimated performance for customer objec-
tives. The structure is illustrated in Figure 10.4.

Unfortunately, QFD models for real problems tend to produce quite 
large matrices. Because they map directly to computer spreadsheets, this 
causes no difficulty in modern work environments, but it does cause a 
problem in presenting an example. Also, the graphic of the matrix shows 
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the result but hides the satisfaction models. The satisfaction models are 
equations, simulations, or assessment processes necessary to determine 
the performance measure value. The original reference on QFD by Hauser 
contains a qualitative example of using QFD for objective decomposition, 
as do other books on QFD. Two papers by one of the present authors4 
contain detailed, quantitative examples of QFD performance decomposi-
tion using analytical engineering models.

Integrated Modeling and Software
Chapters 8 and 9 introduced the ideas of model views and stepwise refine-
ment-in-the-large. Both of these ideas have featured prominently in the 
software engineering literature. Software methods have been the princi-
pal sources for detailed methods for expressing multiple views and devel-
opment through refinement. Software engineers have developed several 
integrated modeling and development methodologies that integrate across 
views and employ explicit heuristics. Three of those methods are described 
in detail: structured analysis and design, Ada-Based Design Approach 
for Real-Time Systems (ADARTS), and object modeling technique (OMT). 
We also take up the current direction in an integrated language for 
software-centric systems, the Unified Modeling Language (UML).
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Figure 10.4  Quantitative Quality Function Deployment (QFD) Hierarchy Tree. 
The basic matrix shows the interrelationships of customer objectives and engi-
neering design parameters. QFD matrices are arranged in a hierarchy that can 
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The three methods are targeted at different kinds of software sys-
tems. Structured analysis and design was developed in the late 1970s and 
early 1980s and is intended for single-threaded software systems written 
in structured procedural languages. ADARTS was intended for large, 
real-time, multithreaded systems written in Ada. OMT was intended for 
database-intensive systems, especially those written in object-oriented 
programming languages. The UML is a merger of object-oriented con-
cepts from OMT and other sources.

Structured Analysis and Design

The first of the integrated models for software was the combination of 
structured analysis with structured design.5 The software modeling and 
design paradigms established in that book have continued to the present as 
one of the fundamental approaches to software development. Structured 
analysis and design models two system views, uses a variety of heuristics 
to form each view, and connects to the management view through mea-
surable characteristics of the analysis and design models (metrics).

The method prescribes development in three basic steps. Each step 
is quite complex and is composed of many internal steps of refinement. 
The first step is to prepare a data flow decomposition of the system to be 
built. The second step is to transform that data flow decomposition into a 
function and module hierarchy that fully defines the structure of the soft-
ware in subroutines and their interaction. The design hierarchy is then 
coded in the programming language of choice. The design hierarchy can 
be mechanically converted to software code (several tools do automatic 
forward and backward conversion of structured design diagrams and 
code). The internals of each routine are coded from the included process 
specifications, though this requires human effort.

The first step, known as structured analysis, is to prepare a data flow 
decomposition of the system to be built. A data flow decomposition is a tree 
hierarchy of data flow diagrams, textual specifications for the leaf nodes 
of the hierarchy, and an associated data dictionary. This method was first 
popularized by DeMarco,6 though the ideas had appeared previously and 
it has since been extensively modified and re-presented. Figure 10.1 and 
Figure 10.2, discussed in a previous section, are examples of data flow dia-
grams. Behavioral analysis by data flow diagram originated in software 
and has since been applied to more general systems as well. The basic 
tenets of structured analysis are as follows:

	 1.	Show the structure of the problem graphically, engaging the mind’s 
ability to perceive structure and relationships in graphics.

	 2.	Limit the scope of information presented in any diagram to five to 
nine processes and their associated data flows.
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	 3.	Use short (<1 page) free form and textual specifications at the leaf 
nodes to express detailed processing requirements.

	 4.	Structure the models so each piece of information is defined in one 
and only one place. This eases maintenance.

	 5.	Build models in which the processes are loosely coupled, strongly 
cohesive, and which obey a defined syntax for balance and correctness.

Structured design follows structured analysis and transforms a struc-
tured analysis model into the framework for a software implementation. 
The basic structured design model is the structure chart. A structure chart, 
as illustrated in Figure 10.5, shows a tree hierarchy of software routines. The 
arrows connecting boxes indicate the invocation of one routine or subroutine 
by another. The circles, arrows, and names show the exchange of variables 
and are known as data couples. Additional symbols are available for patho-
logical connection among routines, such as unconditional jumps. Each box 
on the structure chart is linked to a textual specification of the requirements 
for that routine. The data couples are linked to a data dictionary.
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Figure 10.5  Example of a structure chart. A structure chart shows the compo-
nents and interfaces for a hierarchically structured software system. This simple 
example illustrates routines as components (boxes), collection of routines into 
modules (boxes encapsulating other boxes), invocation of one routine by another 
(arrows connecting boxes), data elements (the labeled oval), and data passing 
among routines (solid circles with arrows).
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Structure charts are closely aligned with the ideas and methods 
of structured programming, which was a major innovation at the time 
structured design was introduced. Structure charts can be mechanically 
converted to nested subroutines in languages that support the structured 
programming concepts. In combination, the chart structure, the interfaces 
shown on the chart, and the linked module specifications define a compil-
able shell for the program and an extended set of code comments. If the 
module specifications are written formally, they can be the module’s pro-
gram design language or can be compiled as module precondition and 
postcondition assertions.

The structured analysis and design method goes farther in providing 
detailed heuristics for transformation of an analysis model into a structure 
chart and for evaluation of alternative designs. The heuristics are strongly 
prescriptive in the sense that they are stated procedurally. However, they 
are still heuristics because their guidance is provisional and subject to 
interpretation in the overall context of the problem. The transformation is 
a type of refinement or reduction of abstraction. The data flow network of 
the analysis phase defines data exchange, but it does not define execution 
order beyond that implied by the data flow. Hence, the structure chart 
removes the abstraction of flow of control by fixing the invocation hierar-
chy. The heuristics provided are of two types. One type gives guidelines 
for transforming a data flow model fragment into a module hierarchy. 
The other type measures comparative design quality to assist in selection 
among alternative designs. The following are examples of the first type:

Step one: Classify each data flow diagram as “transform 
oriented” or “transaction oriented” (these terms are further 
defined in the method).

Step two: In each case, find either the “transform center” or 
the “transaction center” of the diagram and begin factoring 
the modules from there.

Further heuristics follow for structuring transform-centered and 
transaction-centered processes. In the second category are several quite 
famous design heuristics:

Choose designs that are loosely coupled. Coupling, from 
loosest to tightest, is measured as: Data, data structure, 
control, global, and content.

Choose designs in which the modules are strongly cohe-
sive. Cohesion is rated as ( from strongest to weakest): 
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Functional, sequential, communicational, procedural, tem-
poral, logical, and coincidental.

Choose modules with high fan-in and low fan-out.

As discussed in Chapter 9, very general and domain-specific heuris-
tics may be related by chains of refinement. In structured analysis and 
design, the software designer transforms rough ideas into data flow dia-
grams, data flow diagrams into structure charts, and structure charts into 
code. At the same time, heuristic guidelines like “strive for loose coupling” 
are given measurable form as the design is refined into specific program-
ming constructs.

Various efforts have also been made to tie structured analysis and 
design to managerial models by predicting cost, effort, and quality from 
measurable attributes of data flow diagrams or structure charts. This is 
done both directly and indirectly. A direct approach computes a system 
complexity metric from the data flow diagrams or the structure charts. 
That complexity metric then must be correlated to effort, cost, schedule, 
or other quantities of management interest. A later work by DeMarco7 
describes a detailed approach on these lines, but the suggested metrics 
have not become popular nor have they been widely validated on signifi-
cant projects. Other metrics, such as function or feature points, that are 
more loosely related to structured analysis decompositions have found 
some popularity. Software metrics is an ongoing research area and there 
is a growing body of literature on measurements that appear to correlate 
well with project performance.

An alternative linkage is indirect by using the analysis and design 
models to guide estimates of the most widely accepted metrics, the con-
structive cost model (COCOMO) and effective lines of code (ELOC). 
COCOMO is Barry Boehm’s famous effort estimation formula. The model 
predicts development effort from a formula involving the total lines of 
code, an exponent dependent on the project type, and various weighting 
factors. One problem with the original COCOMO model is that it does not 
differentiate between newly written lines of code and reused code. One 
method (there are others) of extending the COCOMO model is to use ELOC 
in place of total lines of code. ELOC measures the size of a software project, 
giving allowance for modified and reused code. A new line of code counts 
for one ELOC, modified and unmodified, reused code packages count for 
somewhat less. The weight factors given to each are typically determined 
organization by organization based on past measurements. The counts by 
subtype are summed with their weights and the total treated as new lines 
in the COCOMO model.

The alternative approach is to use the models to guide ELOC estima-
tion. Early in the process, when no code has been written, the main source 
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of error in COCOMO is likely to be errors in the ELOC estimate. With a 
data flow model in hand, engineers and managers can go through it pro-
cess by process and compare the requirements to past efforts by the orga-
nization. This, at least, structures the estimation problem to identifiable 
pieces. Similarly, the structured design model can be used in the same 
way, with estimates of the ELOC for each module flowing upward into a 
system-level estimate. As code is written, the estimates become facts, and, 
hopefully, the estimated and actual efforts will converge. Of course, if the 
organization is incapable of producing a given ELOC level predictably, 
any linkage of analysis and design models to managerial models is moot.

The architect needs to be cognizant of these issues insofar as they 
affect judgments of feasibility. As the architect develops models of the 
system, they should be used jointly by client and builder. The primary 
importance of cost models is in the effect they have on the client’s willing-
ness to go forward with a project. A client’s resources are always limited, 
and an intelligent decision on system construction can be made only with 
knowledge of the resources it will consume. Of course, there will be risk, 
and in immature fields like software, the use of risk mitigation tech-
niques (such as spiral development) may partially replace accurate early 
estimates. As the client’s value judgments should be made in the context 
of the models, the builder’s estimates should be as well. If builder organi-
zations have a lot of variance in what effort is required to deliver a fixed 
complexity system, then that variance is a risk to the client.

ADARTS

Ada-Based Design Approach for Real-Time Systems (ADARTS) is an 
extensively documented example of a more advanced integrated model-
ing method for software. Even though neither classic structured analysis 
and design nor Ada-based development is currently cutting edge in large 
software systems, we examine them for the principles they elucidate. 
ADARTS may be obsolete, but the principles it embodies are not. The 
original work on data flow techniques was directly tied to the advanced 
implementation paradigms of the day. In a similar way, the discrete event 
system-oriented specification methods like H/P can be closely tied to 
implementation models. In the case of real-time, event-driven software, 
one of the most extensive methods was the ADARTS8 methodology of the 
Software Productivity Consortium (SPC) (since renamed). Of course, the 
method still exists; it is not in the past tense, except in that Ada-based 
development is no longer the leading edge of software development. The 
ADARTS method combines a discrete-event-based behavioral model 
with a detailed, stepwise refined, physical design model. The behavioral 
model is based on data flow diagrams extended with the discrete event 
formalisms of Ward and Mellor9 (which are similar to those of H/P). 
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The physical model includes evolving abstractions for software tasks or 
threads, objects, routines, and interfaces. It also includes provisions for 
software distributed across separate machines and their communication. 
ADARTS includes a catalog of heuristics for choosing and refining the 
physical structure through several levels of abstraction.

ADARTS links the behavioral and physical models through allocation 
tables. Performance decomposition and modeling is considered specifi-
cally, but only in the context of timing. There are links to sophisticated 
scheduling formalisms and SPC developed simulation methodologies as 
part of this performance link. Again, managerial views are supported 
through metrics, where they can be calculated from the models. Software 
domain-specific methods can more easily perform the management 
metric integration because a variety of cost and quality metrics that can 
be (at least roughly) calculated from software design models are known.

The example shown is a simplified version of the first two design 
refinements required by ADARTS applied to the microsatellite imaging 
system originally discussed in the Hatley-Pirbhai example. The result-
ing diagrams are shown in Figure 10.6. The ADARTS process takes the 
functional hierarchy of the behavioral model and breaks it into undif-
ferentiated components. Each component is shown on the diagram by a 
cloud-shaped symbol, indicating its specific implementation structure has 
not yet been decided. The clouds exchange data elements dependent on 
the behavior allocated to each cloud. Various heuristics and engineering 
judgment guide the choice of clouds.

The next refinement specializes the clouds to tasks, modules or 
objects, and routines. ADARTS actually uses several discrete steps for 
this, but they are combined into one for the simple example given here. 
Again, the designer uses ADARTS-provided heuristics and individual 
judgment in making the refinements. In the example, the two tasks result 
from the need to provide asynchronous external communications and 
overall system control. The clouds that hide the physical and logical inter-
faces to hardware are multientry modules. The entries are chosen from 
the principal user functions addressed by the interface. For example, the 
Camera I/O module has entries that correspond to its controls (camera 
shutter speed, camera gain, filter wheel position, and so forth). The single 
thread sequence of taking an image is implemented as a simple routine 
calling tree.

To avoid diagram clutter, the diagram is not fully annotated with the 
data elements and their flow directions. In complex systems, diagram 
clutter is a serious problem, and one not well addressed by existing tools. 
The architect needs to suppress some detail to process the larger picture. 
But correct software ultimately depends on getting each detail right. In 
the second part of the figure, the arrowed lines indicate direction of con-
trol, not direction of data flow. Additional enhancements specify flow. The 
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next step in the ADARTS process, not shown here, is to refine the task and 
module definitions once again into language- and system-specific soft-
ware units. ADARTS as published assumes the use of the Ada language for 
implementation. When implementing in the Ada language, tasks become 
Ada tasks and multientry modules become packages. The public/private 
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interface structure of the modules is implemented directly using constructs 
of the Ada language. Other languages can be accommodated in the same 
framework by working out language- and operation-specific constructs 
equivalent to tasks, modules, and routines. For example, in the C language 
there is no language construct for tasks or multientry modules. But multi-
entry modules can be implemented in a nearly standard way using sepa-
rately compilable files on the development system, the static declaration, 
and suitable header files. Similarly, many implementation environments 
support multitasking and some development environments supply task 
abstractions for the programmer’s use. In C++ there is no direct language 
implementation of tasks, but multientry modules are easily implemented 
through classes and objects. This is similar in Java, except in Java a direct 
implementation of the general concept of a task does exist (called a thread), 
although the communication semantics for Java threads are quite differ-
ent than for Ada tasks.

Once again, the pattern of stepwise reduction of abstraction is evident. 
Design is conducted through steps, and at each step a model of the client 
needs is refined in an implementation environment dependent way. 
In environments well matched to the problem modeling method, the 
number of steps is small; client relevant models can be nearly directly 
implemented. In less well-suited environments, layers of implementation 
abstraction become necessary.

OMT

The Hatley-Pirbhai method and its cousins are derived from structured 
functional decomposition, structured software design, and hardware 
system engineering practice. The object-oriented methods, of which OMT10 
is a leading member, derive from data-oriented and relational database 
software design practice. Relational modeling methods focus solely on 
data structure and content and are largely restricted to database design 
(where they are very powerful). Object-oriented methods package data 
and functional decomposition together. Where structured methods build a 
functional decomposition backbone on which they attempt to integrate data 
decomposition, the object-oriented methods emphasize a data decomposi-
tion on which the functional decomposition is arranged. Some problems 
naturally decompose nicely in one method and not in the other. Complex 
systems can be decomposed with either, but either approach will yield 
subsections where the dominant decomposition paradigm is awkward.

OMT combines the data (relational), behavioral, and physical views. 
The physical view is well captured for software-only systems, but spe-
cific abstractions are not given for hardware components. Even though, 
in principle, OMT and other object-oriented methods can be extended to 
mixed hardware/software systems and even more general systems, there 
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is a lack of real examples to demonstrate feasibility. Broad, real experience 
has been obtained only for predominantly software-based systems.

Neither the OMT nor other object-oriented methods substantially inte-
grate the performance view. Again, managerial views can be integrated to 
the extent that useful management metrics can be derived from the object 
models. Because of the software orientation of object-oriented methods, there 
have been some efforts to integrate formal methods into object models.

As an example of the key ideas of object-oriented methods, we pres-
ent part of an object model. Object modeling starts by identifying classes. 
Classes can be thought of (for those unfamiliar with object concepts) as 
templates for objects or types for abstract data types. They define the object 
in terms of associated simple data items and functions associated with the 
object. Classes can specialize into subclasses that share the behavior and 
data of their parent while adding new attributes and behavior. Objects may 
be composed of complex elements or relate to other objects. Both composi-
tion or aggregation and association are part of a class system definition. 
The microsatellite imager described in the preceding section will produce 
images of various types. Consider an image database for storing the data 
produced by the imager. A basic class diagram is shown in Figure 10.7 to 
illustrate specific instances of some of the concepts.

A core assumption, which the model must capture, is that images are 
of several distinct but related types. The actual images captured by the 
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cameras are single, gray-scale images. Varying sets of gray-scale images 
captured through different filters are combined into composite multi
band images, with a particular gray-scale image possibly part of several 
composite images. In addition, images will be displayed on multiple 
platforms so we demand a common “rendered” image form. Each of these 
considerations is illustrated in Figure 10.7.

The top box labeled “Image” indicates there is a data class “Image.” That 
class contains two data attributes — CompressedSize and ExpandedSize 
— and three operations or “methods” (the functions Render(), Compress(), 
and Expand()). The triangle boxed lines down to the class boxes “Multi-
Band Image” and “Single Image” define those two classes as subclasses of 
Image. As subclasses, they are different than their parent class but inherit 
the parent class’s data attributes and associated methods.

The class Single Image is the basic image data object descriptor. It con-
tains two data arrays: one to hold the raw image and the other to hold the 
compressed form. It also has basic image processing methods associated. 
A multiband image is actually made up of many single images suitably 
processed and composited. This is defined on the diagram by the round 
headed line connecting the two class boxes. The labeling defines a 1 to N 
way association named “Built From.” The additional methods associated 
with Multi-Band Image build the image from its associated simple images.

The two additional associations define other record keeping and dis-
play. The associated line between Single Image and Shot Record associ-
ates an image with a potentially complicated data record of when it was 
taken and the conditions at that moment. The association line to Display 
Picture shows the association of an image with a common display data 
structure. Both associations, in these cases, are one to one.

Figure 10.7 is considerably simplified on several points. A complete 
definition in OMT would require various enhancements to show actual 
types associated with data attributes and operations. In addition, several 
enhancements are required to distinguish abstract methods and derived 
attributes. A brief explanation of the former is in order. Consider the 
method Compress in the class Image. The implementation of image 
compression may be quite different for a single gray-scale image and 
for a composited multiband image. A method that is reimplemented in 
subclasses is called either virtual or abstracted and may be noted by a 
diagrammatic enhancement.

The logic of object-oriented methods is to decompose the system in 
a data-first fashion, with functions and data tightly bound together in 
classes. Instead of a functional decomposition hierarchy, we have a class 
hierarchy. Functional definition is deferred to the detailed definition of 
the classes. The object-oriented logic works well where data and espe-
cially data relation complexity dominates the system.
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Object-oriented methods also follow a stepwise reduction of abstrac-
tion approach to design. From the basic class model, we next add imple-
mentation specific considerations. These will determine whether or 
not additional model refinements or enhancements are required. If the 
implementation environment is strongly object oriented, there will be 
direct implementations for all of the model constructs. For example, in 
an object-oriented database system, one can declare a class with attri-
butes and methods directly and have long-term storage (or “persistence”) 
automatically managed. In nonobject environments, it may be neces-
sary to manually flatten class hierarchies and add manual implementa-
tions of the model features. Manual adjustments can be captured in an 
intermediate model of similar type. The steps of abstraction reduction 
depend on the environment. In a favorable implementation environment, 
the model nearest to the client’s domain can be implemented almost 
directly. In unfavorable environments, we have no choice but to add addi-
tional layers of refinement.

UML

As object-oriented methods became popular in the 1990s, there emerged 
several distinctive styles of notation. These notations differed enough to 
make tools incompatible and automated translation difficult. But the nota-
tions did not capture fundamentally different concepts. The basic concepts 
of class, object, and relationship were present in all of them, with only 
slight notational differences. The differences were more in the additional 
views and how the parts were integrated. They also differed somewhat 
more fundamentally in their approach to the design process and which 
portions they chose to emphasize. For example, some of the object-oriented 
methods emphasized front-end problem analysis through use-cases. 
Others were more design oriented and focused on building information 
models after there was a well-understood problem statement.

Because the profusion of notations was not helpful to the community, 
there was some pressure to settle on a collective standard. This was done, 
partially through several of the leading “gurus” of the different methods 
all moving to work for one company (the Rational Corporation). The 
product of their collaboration, and a large standards effort, is the Unified 
Modeling Language11 (UML). Because the UML has successfully incorpo-
rated most of the best features of its roots and has gained a fairly broad 
industry consensus, it is increasingly popular. Probably the most signifi-
cant complaint about the UML is its complexity. It is certainly true that if 
you tried to model a system using all the parts of the UML, the resulting 
model would be quite complex. But the content of the UML should not 
be confused with a process. A designer is no more compelled to use all 
the parts of the UML than a writer is compelled to use all the words in 
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the English language. Of course, it is not simple to figure out which parts 
should be used in any given situation, and it can take fairly deep knowl-
edge of the UML to know how to ignore features.

The primary importance of UML is that it may lead to more broadly 
accepted standardization of software and systems engineering notations. 
The notations are fundamentally software-centric, but as the software 
fraction (measured as percentage of development effort) makes up the 
majority of a development effort, this will seem appropriate. The two 
viewpoints within UML, use-cases and class-object models, most com-
monly discussed are the two that are the most software-centric. There are 
several other views that are more clearly systems oriented.

The use-case view within UML has two parts: the textual use-cases 
and diagrams that show the relationships among use-cases and actors. The 
textual form of a use-case is not strictly defined. In general, it is a narrative 
listing of messages that pass between an “actor,” a system stakeholder, 
and the system. Thus, a use-case, in its pure form, follows the definition 
of the systems boundary. The use-case diagram shows the relationships 
between actors and use-cases, including linkages among use-cases.

A simple form for a textual use-case has four required parts and a 
group of optional parts*:

	 1.	Title (preferably evocative).
	 2.	Actors, a list.
	 3.	Purpose, what the actors accomplish through this use-case, why the 

actors use the system.
	 4.	Dialogue, a step-by-step sequence of messages exchanged across the 

actor–system boundary. The use-case gives the normal sequence. 
Alternative sequences (from errors or other choices) can be inte-
grated into the use-case, given as different use-cases, or organized 
into the optional section.

	 5.	Optional material. Some useful adjuncts include type (such as essen-
tial, optional, phase X, and so forth), an overview for a very complex 
use-case, and alternative paths.

UML uses class-object models similar to those described in the OMT 
section. The differences are primarily details of notation, such as the 
graphic element used to indicate a particular type of relationship. There is 
also a fairly complex set of textual notations for showing the components of 
the classes (data and methods). For example, there are textual indications 
for public, private, and virtual elements. The discussion of class-object 

*	 There are many different formats for use-cases in use. The forms described here are 
inspired by various UML documents and Kevin Kreitman in private communication.
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notations in the OMT section gives the flavor of how a model of the same 
sort would work if written in UML.

UML does introduce some modeling elements not discussed to this 
point and of high interest to system architects. On the behavioral side, the 
UML defines sequence diagrams. A sequence diagram depicts both the 
pattern of message passing among the system’s objects and the timing 
relationships. The sequence diagram is useful both for specification and 
for diagnosis. When the client has a complex legacy system with which 
the new system must interface, or when the client’s problems are primar-
ily expressed in term of deficiencies in a current system, the sequence dia-
gram is a method for visually presenting time relationships. This is often 
quite important in real-time software-intensive systems.

SysML

Since 2000, there has been activity on extending (or in some cases con-
tracting) the UML for systems engineering purposes. The resulting lan-
guage is known as SysML or Systems Modeling Language. SysML is, at 
the time of this writing, the subject of active standardization efforts with a 
version 1.0 specification completed. The most up-to-date information can 
be found at www.sysmlforum.com. The motivation of the SysML devel-
opers was primarily that the UML is weak in constructs that support 
traditional aspects of systems engineering (for example, requirements 
decomposition and allocation) but overprovides diagram types that are 
not relevant to systems engineering (for example, constructs to model 
software implementations). Nonetheless, the SysML developers adopted 
the UML approach to language specification and built SysML with UML 
extensions. SysML differs from UML primarily in the following:

	 1.	A number of UML diagram types applicable almost exclusively to 
software implementations (for example, component, communication, 
deployment, and object diagrams) are dropped from the specification.

	 2.	The class and structure diagram aspects of UML are heavily modi-
fied into Block Definition and Internal Block diagrams. These block 
diagram types more closely resemble the usual block diagram 
notions of systems engineering.

	 3.	Requirement and Parametric diagram types are added to support 
the requirement trees and quantitative performance view break-
downs commonly used in systems engineering.

	 4.	The Package Diagram constructs are altered to match the view 
and viewpoint constructs of ANSI/IEEE Std-1471-2000 (ANSI/IEEE 
Recommended Practice for Architecture Description of Software 
Intensive Systems).
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For the architectural purposes of this book, SysML may or may not 
be an improvement over the UML for any particular problem. Software 
architects may apply the overall heuristics and methods described in this 
book to a software-only system, in which case the adaptation of SysML 
may seem counterproductive to just using UML methods. On the other 
hand, for largely hardware systems, the integrated modeling methods of 
SysML are likely to be much better suited.

SysML addresses the issues of multiple view and integration across 
views directly. Multiple views are explicitly provided, and a model type 
for checking across views (the allocation table) is provided. SysML intends 
to be applicable to general systems, but it is necessarily better suited to 
some cases than others. A notable issue for mixed hardware–software 
systems is the role of layering. A central abstraction for complex systems 
today is their arrangement into layers, in which the higher layers do not 
contain the elements of the lower layers but rather just use them. This issue 
was discussed in some depth in Chapter 6 and “Case Study 4.” Direct sup-
port for layering abstractions is absent in SysML (as it is absent in most 
other methods). This lack is significant for many architecting projects 
because of the need for layered abstractions to control the complexity of 
large systems.

Performance Integration: Scheduling

One area of nonfunctional performance that is very important to software, 
and for which there is large body of science, is timing and scheduling. 
Real-time systems must perform their behaviors within a specified time-
line. Absolute deadlines produce “hard real-time systems.” More flexible 
deadlines produce “soft real-time systems.” The question of whether or 
not a given software design will meet a set of deadlines has been exten-
sively studied.* To integrate these timing considerations with the design 
requires integration of scheduling and scheduling analysis.

In spite of the extensive study, scheduling design is still at least partly 
art. Theoretical results yield scheduling and performance bounds, and 
associated scheduling rules, but can do so only for relatively simple sys-
tems. When system functions execute interchangeably on parallel proces-
sors, run times are random, and when events requiring reaction occur 
randomly, there are no deducible, provably optimal solutions. Some mea-
sure of insight and heuristic guidance is needed to make the system both 
efficient and robust.

*	 Stankovic, J. A., M. Spuri, M. Di Natale, and G. C. Buttazzo, Implications of Classical 
Scheduling Results for Real-Time Systems, IEEE Computer, pp. 16–25, June 1995, provides 
a good tutorial introduction to the basic results and a guide to the literature.
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Integrated Models for Manufacturing Systems
The domain of manufacturing systems contains nice examples of inte-
grated models. The modeling method of Baudin12 integrates four modeling 
components (data flow, data structure, physical manufacturing flow, and 
cash flow) into an interconnected model of the manufacturing process. 
Baudin further shows how this model can then be used to analyze pro-
duction scheduling under different algorithms. The four parts of the core 
model are as follows:

	 1.	A data flow model using the notations of DeMarco and state transi-
tion models.

	 2.	A data model based on entity-relationship diagrams.
	 3.	A material flow model of the actual production process — the model 

of physical form — using American Society of Mechanical Engineers 
(ASME) and Japanese notations.

	 4.	A funds flow model.

These parts, which mostly use the same component models familiar 
from previous discussion, form an integrated architect’s tool kit for the man-
ufacturing domain. They are shown in Figure 10.8. The data flow models 
are in the same fashion as the requirements model of Hatley-Pirbhai. The 
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Flow and Processing model uses manufacturing-specific symbology for assembly, 
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data model is more complex and uses basic object-oriented concepts. In 
the material flow model, the progression of removal of abstraction is taken 
to a logical conclusion. Because the physical architecture of manufactur-
ing systems is restricted, the architecture model components are similarly 
restricted. Baudin incorporates, in fact exploits, the restricted physical 
structure of manufacturing systems by using a standardized notation for 
the physical or form model.

Baudin further integrates domain-specific performance and system 
models by considering the relationship to production planning in its 
several forms (MRP-II, OPT, JIT). As he shows, these formalisms can be 
usefully placed into context on the integrated models. In the terms used 
in Chapter 8, this is a form of performance model integration.

Integrated Models for Sociotechnical Systems
On the surface, the modeling of sociotechnical systems is not greatly dif-
ferent from other systems, but the deeper reality is quite different. The 
physical structure of sociotechnical systems is the same as of other systems, 
though it spans a considerable range of abstraction, from the concrete and 
steel of transportation networks to the pure laws and policy of communi
cation standards. But people and their behavior are inextricably part of 
sociotechnical systems. Sociotechnical system models must deal with the 
wide diversity of views and the tension between facts and perceptions as 
surely as they must deal with the physics of the physical systems.

Physical system representation is the same as in other domains. A 
civil transport system is modeled with transportation tools. A communi
cations network is modeled with communications tools. If part of the 
system is an abstract set of laws or policies, it can be modeled as proposed 
laws and policies. The fact that part of the system is abstract does not 
prevent its representation, but it does make understanding the interaction 
between the representation and the surrounding environment difficult. 
In general, modeling the physical component of sociotechnical systems 
does not present any insurmountable intellectual challenges. The unique 
complexity is in the interface to the humans who are components of the 
system and in their joint behavior.

In purely technical systems, the environment and the system interact. 
But it is uncommon to ascribe intelligent, much less purposively hostile 
behavior to their environments. But human systems constantly adapt. 
If  an intelligent transport system unclogs highways, people may move 
farther away from work and reclog the highways until a new equilibrium 
is reached. A complete model of sociotechnical system behavior must 
include the joint modeling of system and user behavior, including adap-
tive behavior on the part of the users.
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This joint behavioral modeling is one area where modeling tools are 
lacking. The tools that are available fall into a few categories: econometrics, 
experimental microeconomics and equilibrium theory, law and econom-
ics, and general system dynamics. Other social science fields also provide 
guidance, but not generally descriptive and predictive behavior.

Econometrics provides models of large-scale economic activity as 
derived from past behavior. It is statistically based and usually operates 
by trying to discover models in the data rather than imposing models 
on data. In contrast, general system dynamics* builds dynamic models of 
social behavior by analysis of what linkages should be present and then 
tests their aggregated models against history. System dynamics attempts 
to find large-scale behavioral patterns that are robust to the quantitative 
details of the model internals. Econometrics tries to make better quantita-
tive predictions without having an avenue to abstract larger-scale struc-
tural behavior.

Experimental economics and equilibrium theory try to discover and 
manipulate a population’s behavior in markets through use of micro
economic theory. As a real example, groups have applied these methods 
to pricing strategies for pollution licenses. Instead of setting pollution 
regulations, economists have argued that licenses to pollute should be 
auctioned. This would provide control over the allowed pollution level 
(by  the number of licenses issued) and be economically efficient. This 
strategy has been implemented in some markets and the strategies for 
conducting the auctions were tested by experimental groups before hand. 
The object is to produce an auction system that results in stable equilib-
rium price for the licenses.

Law and economics is a branch of legal studies that applies micro- 
and macroeconomic principles to the analysis of legal and policy issues. 
It endeavors to assure economic efficiency in policies and to find least-cost 
strategies to fulfill political goals. Although the concepts have gained 
fairly wide acceptance, they are inherently limited to those policy areas, 
for market distribution is considered politically acceptable.

Conclusion
A variety of powerful integrated modeling methods already exist in 
large domains. These methods exhibit, more or less explicitly, the pro-
gressions of refinement and evaluation noted as the organizing principle 
of architecting. In some domains, such as software, the models are very 
well organized, cover a wide range of development projects, and include 

*	 An introductory reference on system dynamics is Wolstenholme, E. F., System Enquiry: 
A System Dynamics Approach. Chichester: Wiley, 1990, which explains the rationale, gives 
examples of application, and references the more detailed writings.
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a full set of views. However, even in these domains, the models are not in 
very wide use and have less than complete support from computer tools. 
In some domains, such as sociotechnical systems, the models are much 
more abstract and uncertain. But in these domains, the abstraction of the 
models matches the relative abstraction of the problems (purposes) and 
the systems built to fulfill the purposes.

Exercises
	 1.	For a system familiar to you, investigate the models commonly used 

to architecturally define such systems. Do these models cover all 
important views? How are the models integrated? Is it possible to 
trace the interaction of issues from one model to another?

	 2.	Build an integrated model of a system familiar to you covering at 
least three views. If the models in any view seem unsatisfactory, or 
integration is lacking, investigate other models for those views to see 
if they could be usefully applied.

	 3.	Choose an implementation technology extensively used in a system 
familiar to you (software, board-level digital electronics, micro-
waves, or any other). What models are used to specify a system to 
be built? That is, what are the equivalents of buildable blueprints 
in this technology? What issues would be involved in scaling those 
models up one level of abstraction so they could be used to specify 
the system before implementation design?

	 4.	What models are used to specify systems (again, familiar to you) to 
implementation designers? What transformations must be made on 
those models to specify an implementation? How can the two levels 
be made better integrated?
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Architecture Frameworks

Introduction
A great deal of architecture discussion in the engineering community 
revolves around the use of architecture frameworks. Even though discus-
sion of architecture frameworks is widespread, and numerous architec-
ture frameworks exist, there is actually relatively little agreement on what 
an architecture framework is. However, architecture frameworks are a 
primary vehicle for standardization.

In the terms used in this book, standards could cover architecture 
content, architecture description, or architecture processes. By analogy, 
a standard on architecture content is like a building code in that it would 
place standardized constraints on how actual systems are built. An archi-
tecture description standard is analogous to a blueprint standard in that 
it defines how a description document or model is written. An architec-
ture process standard would be analogous to a development standard that 
defines how the design process is conducted.

The standards that have advanced to official status are primarily archi-
tecture description standards. These are often referred to as “Architecture 
Frameworks.” Architecture frameworks are standards for the description 
of architectures. A framework typically defines what products the archi-
tect must deliver (to the client or to some other agency with authority) 
and how those products must be constructed. The framework generally 
does not constrain the contents of any of those products, although such 
constraints could be incorporated.

Architecture frameworks serve much the same purposes as blue-
print standards, although their developers have had additional purposes 
in mind as well. It is hoped these standards will improve the quality 
of architecting efforts by institutionalizing best practices and fostering 
communication about architectures through standardizing languages. 
Standardized architectural description languages may also facilitate archi-
tecture evaluation by standardizing the elements that must be considered 
in the evaluation.

In the sections to follow, we first define the framework concept, then 
explore the most popular current frameworks, review some common 
problems in application, and then discuss research and practice develop-
ment activities.
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Defining an Architecture Framework
To evaluate an architecture description framework, we need to under-
stand its goals, its definition of “architectural level” (as opposed to other 
design levels), and its organizing concepts. We treat each of these in turn, 
although the discussion of description concepts (viewpoints and views) 
has largely been given previously in Chapter 8 and is discussed in more 
detail in Appendix C.

Goals of the Frameworks

Each group developing and promulgating a standard has asserted differ-
ent goals, but they generally fall into a few common categories:

	 1.	Codify best practices for architectural description and by so doing 
improve the state of the practice.

	 2.	Ensure that the sponsors of the framework receive architectural 
information in the format they desire.

	 3.	Facilitate comparative evaluation of architectures through standard-
ization of their means of description.

	 4.	 Improve the productivity of development teams by presenting basic 
designs in a standard way.

	 5.	 Improve interoperability of information systems by requiring that 
interoperation critical elements be described, and be described in a 
common way.

The fairest way of evaluating different frameworks is against their 
own goals. If an architecture description is developed under the con-
straints (or with the guidelines) of a framework, and such a description 
reliably fulfills the purposes of the framework, than we can say the frame-
work is successful. Likewise, if following the framework does not reliably 
produce description documents that fulfill the identified purpose, the 
framework is poorly constructed. Even a well-conceived and constructed 
framework may be inappropriate for a given project.

Understanding “Architectural Level”

An architecture framework specifies information about architectures, as 
opposed to about detailed design, program management, or some other 
set of concerns. So, a framework needs to distinguish what information is 
“architectural” as opposed to something else. In this book, the separation 
is connected to purpose. Information is architectural if it is needed to 
resolve the purposes of the client, particularly with respect to fitness or 
use or feasibility to build. The distinction is pragmatic not theoretical. 
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Moreover, we recognize that architecting and engineering are on a con-
tinuum of practice and sharp distinctions cannot be drawn. Other frame-
works take different positions.

Organization of an Architecture Description Framework

The architecture frameworks described here use a few basic concepts, 
though they use them differently and sometimes with different termi-
nology. All of them organize architecture descriptions into collections 
of related models. The obvious question is, by what relationship should 
models be gathered into collections? Following the terminology use of 
several standards, and our previous definitions in this book (though not 
necessarily the exact meaning), we will call a collection of models that rep-
resent the whole system from the perspective of a set of related stakeholder 
concerns a “view.” We refer to the stakeholder concerns that define the 
perspective and the model language rules used within the view as a 
“viewpoint.” Thus, a viewpoint is the template or specification for a view, 
and a view is a particular instance of description for a given system. Thus, 
an architecture framework consists of (or should consist of) the following:

	 1.	A purpose and audience for which the compliant architecture 
description is to be written.

	 2.	A set of viewpoints that when used should satisfy the purpose of #1.
	 3.	The normative requirement that a compliant architecture descrip-

tion provide a set of views of the architecture of the system using the 
required viewpoints.

	 4.	Tests for consistency and completeness among the views produced.
	 5.	As a practical matter, an architecture framework may contain other 

advisory information, like guidelines on its use.

All of the frameworks discussed below are roughly consist with the 
five points above. We will use this simple formalism for what an architec-
ture framework is to better compare some of the existing standards.

Current Architecture Frameworks
Several standards explicitly labeled architecture frameworks have 
emerged from the 1990s to the 2000s. The four standards we con-
sider here are the U.S. Department of Defense Architecture Framework 
(DODAF), the Ministry of Defence Architecture Framework (MODAF), 
the International Standards Organization’s RM-ODP standard, and the 
ANSI/IEEE 1471 Recommended Practice for Architectural Description for 
Software-Intensive Systems (now ISO 42010). All four use the basic con-
cepts given above but take different approaches to the selection of views, 
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the models specified, and the overall approach to formalization and rigor. 
We also discuss current research problems and issues that commonly 
arise in application of the current architecture frameworks.

U.S. DODAF

In the early 1990s, the U.S. Department of Defense (DoD) undertook to 
develop an architecture framework for Command, Control, Communica-
tions, Computing, Intelligence, Surveillance, and Reconnaissance (C4ISR) 
systems. The stated goal for this project was to improve interoperability 
across commands, services, and agencies by standardizing how archi-
tectures of C4ISR systems are represented. It also became a response to 
U.S. Congressional requirements for reform in how information technol-
ogy systems are acquired.

The Architecture Working Group (AWG) published a version 1.0 of the 
framework (which became known as the C4ISR Architecture Framework) 
in June 1996. This was followed by a version 2.0 document in December 
1997. The version 2.0 document was widely published and is available 
through the U.S. DoD Web sites, although it would now be considered 
obsolete. Subsequent to the publishing of the C4ISR Framework, it was 
further extended and designated the DOD Architecture Framework,1 now 
applicable to a much wider array of systems. The DODAF reached version 
1.0 status in October 2003. A 1.5 version was released in August 2007.

The DODAF requires that the architecture description be organized 
into summary information (also referred to as a “view”) and three addi-
tional “architecture views.” The three views are called the “Operational 
Architecture View,” the “System Architecture View,” and the “Technical 
Architecture View.” These are often contracted in discussion to the “Opera-
tional Architecture” or “Operational View,” the “System Architecture” 
or “System View,” and the “Technical Architecture” or “Technical View.” 
Speaking of the “operational view of the architecture” is more consistent 
with the notion of view than any of the common contractions.

The DODAF is a blueprint standard in that it defines how to repre-
sent a system’s architecture, but it does not restrict the nature of the archi-
tecture of the underlying system. It is possible to embed the equivalent 
of “building codes” using the mechanisms of the DODAF, however. For 
example, the Joint Technical Architecture (JTA) was a particular instance 
of a standards profile that could be incorporated as the technical architec-
ture view. Although there was at one time an intent to do exactly that, to 
drive compliance via inclusion of broader standards documents within 
system-specific architecture descriptions, it has not been successful. The 
JTA effort still exists, but it is not included within DODAF compliant 
documents by mandate.
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In describing the contents of the DODAF, we draw directly from it in 
some cases, and interpolate commentary and guidelines from the point of 
view of this book.

Summary Information
The required summary information is contained in the “all-view” and is 
denoted AV-1 Overview and Summary Information and AV-2 Integrated 
Dictionary. Both are simple, textual objects. The first is information on 
scope, purpose, intended users, findings, and so forth. The second is 
definitions of all terms used in the description.

Operational View
The operational view shows how military operations are carried out 
through the exchange of information. It is defined as follows:

Operational View: A description of task and activi-
ties, operation elements, and information flows inte-
grated to accomplish support military operations.

There are nine individual models defined within the DODAF opera-
tional view of the architecture. Each has a specified modeling language, 
although none of the languages is defined very formally. Some are entirely 
informal, as in the required High Level Concept Graphic (OV-1), while 
others (such as the Logical Data Model, OV-7) suggest the use of more 
formalized notations, though they do not require it. The defined elements 
are as follows:

High-Level Operational Concept Graphic (OV-1): A relatively unstructured 
graphical description of all aspects of the systems operation, including 
organizations, missions, geographic configuration, and connectivity. 
The rules for composing this are loose with no real requirements.

Operational Node Connectivity Description (OV-2): Defines the opera-
tional nodes, and activities at each node, and the information flows 
between nodes. The rules for composing this are more structured 
than for OV-1 but are still loose.

Operational Information Exchange Matrix (OV-3): A matrix description of 
the information flows among nodes. This is normally done as an 
augmented form of data dictionary table.

Command Relationships Model (OV-4): A modestly structured model of 
command relationships.

Activity Model (OV-5): Similar to a data flow diagram for operational 
activities.

Operational Rules Model (OV-6a): Defines the sequencing and timing of 
activities and information exchange through textual rules.
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Operational State Transition Model (OV-6b): Defines the sequencing and 
timing of activities and information exchange through a state transi-
tion model, which is usually quite formal.

Operational Event/Trace Description (OV-6a): Defines the sequencing and 
timing of activities and information exchange through scenarios or 
use-cases. This is behavioral specification by example, as discussed 
in Chapter 8.

Logical Data Model (OV-7): Usually a class-object model or other type of 
relational data model. No specific notation is required, but most of 
the popular notations used are fairly formal. The intent of the OV-7 
is to define the data requirements and relationships.

As a guideline, it is suggested that the OV-1, OV-2, OV-3, and OV-5 
should always be provided. It is not mandated that they be, but it is typi-
cally done.

System View
The system view is defined as follows:

System View: Description, including graphics, of 
a system and interconnections providing for, and 
supporting, warfighting functions.

There are 16 individually defined elements within the DODAF under 
the system view, although several are just small variations on each other. 
The most important is as follows:

System Interface Description (SV-1): This model identifies the systems 
physical nodes and their interconnections. It is similar to an architec-
ture interconnection diagram in the Hatley-Pirbhai sense, described 
in Chapters 8 and 10. A graphic representation method is called out 
but is not formally defined.

The 15 other elements are mostly concerned with more detailed 
descriptions of system-level data interchange or operation. However, some 
of the supporting products wander very far afield from these concerns. 
For example, the System/Services Technology Forecast (SV-9) is a tabular 
compilation of the technologies expected to be available, broken out by 
time frame, for the system.

Technical View
The technical view is concerned with standards. The technical sets out the 
required or forecast standards (typically information technology standards) 
that are to be used in the construction of the system. It has two elements:
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Technical Standards Profile (TV-1): A listing of the standards mandatory 
for the system being described.

Technical Standards Forecast (TV-2): A projection of how standards and 
products compliant with standards will emerge during the time the 
system is developed and operated.

Evaluation and Issues with the Use of the DODAF
The DODAF has been available and in wide use long enough for a body of 
experience to be generated. One clear issue is that it is often being misused 
for purposes for which it was not intended. Recall that the purpose was pri-
marily to facilitate interoperability through commonality of description. 
Interoperability specification, analysis, and improvement are highlighted 
as primary goals. There is no stated intention, within the DODAF, for it 
to be considered as a framework for acquisition documentation. So there 
is no place in the views for performance models, cost models, acquisition 
requirement documents, or other management models. Yet all of those are 
clearly necessary when the client is an acquirer and must make acquisi-
tion decisions.

Likewise, the DODAF does not contain the elements necessary to 
cover all the architectural concerns of a builder of, for example, software-
intensive systems. We have a fairly good understanding of best practices in 
software architecture description, and those practices are not mirrored in 
the DODAF. This cannot be considered a fault of the DODAF developers, 
as it was not part of their original purpose. It is a fault of those who spec-
ify use of the DODAF for purposes for which it is not intended.

Just as an architecture must be fit for purpose, so must an architecture 
description framework. If the DODAF is misused, the fault is much more 
in the misuser than in the framework. Nevertheless, it can be cited as a 
weakness of the DODAF that its parts are very loosely related. Very dis-
parate concerns and models are lumped together into the views. Neither 
intraview nor interview consistency is addressed at all. The individual 
models are so loosely defined, especially in some of the required elements, 
that ostensibly compliant descriptions can be produced that will not come 
close to guaranteeing interoperability. Because the DODAF adopts such 
a neutral stance to methodology, it cannot enforce stronger consistency 
and completeness checks. It is probably not possible to strengthen consis-
tency and completeness properties without adopting much more formal 
modeling methods, which would negatively impact ongoing programs on 
which the DODAF might be mandated.

Aside from this large issue, there are numerous practical and concep-
tual problems that must be resolved by individual user groups:

	 1.	The notion of what constitutes an “operational node” in the oper-
ational view is unclear and inconsistently used. In the activity 
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modeling sections of an operational view, an operational node is 
purely functional. In the higher-level diagrams, like OV-1s and OV-2s, 
common usage, and even examples in the defining documents, 
equate operational nodes to specific physical entities (for example, 
an AWACS aircraft, a command center).

	 2.	The high-level operational view diagrams are often, in practice, elab-
orately produced professional graphics with little technical content. 
Yet, they are held up in examples as centerpieces.

	 3.	The hierarchy in the system view does not incorporate the widely 
accepted layering concepts from computer networks. At least five 
layers of the network stack (physical, data-link, network, transport, 
and application) are firmly established in theory and practice, but 
the concept is absent from the system view definitions. This is a 
barrier as systems are built that incorporate the widely available 
off-the-shelf network components.

	 4.	The models in the system view do not make clear distinctions between 
node and connector types by layer. Within a particular layer (for 
example, physical or network), the identity of the physical nodes and 
the nature of connection channel and data exchange is usually clear. 
But, the DODAF models do not directly support that information.

	 5.	The definitions of the elements within a view focus on diagrams 
rather than graphics independent models, which could have various 
visualizations. As a result, users fixate on the diagrams rather than 
the model content.

	 6.	There is relatively little in the way of explicit consistency and com-
pleteness checks, especially between views. There has been some 
improvement on this point, but it is still immature.

MODAF2

The Ministry of Defence Architecture Framework (MODAF) is a United 
Kingdom Ministry of Defence extension to and modification of the 
DODAF. In many ways, it can be seen as a reaction to the issues encoun-
tered in use of the DODAF. The primary differences between the MODAF 
and the DODAF are as follows:

	 1.	Terminology has been adjusted, and in some cases sharpened. The 
concepts and terminology are generally close to those in ANSI/IEEE 
1471, now ISO 42010 (see later in this chapter for additional detail). 
The terminology associated with what is an operational versus a 
system node has been sharpened.

	 2.	Various models are broken out into more formal pieces. For example, 
the high-level operational depiction, OV-1 in DODAF, is broken into a 
purely pictorial element and other tabular and even quantitative parts.
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	 3.	A “Strategic Viewpoint” has been added. This viewpoint specifies 
models of policy, capability deployment, and related trade-offs for 
larger-scale planning. Its intended audience is mainly higher-level 
planners and staffers.

	 4.	An “Acquisition Viewpoint” has been added. This is largely in 
response to the practice of mandating Framework-compliant docu-
ments for acquisition programs. If compliant documents are going to 
be required for an acquisition to go forward, then it would be desir-
able that the standard incorporate acquisition concerns. Compared 
to the full range of models usually used by project managers, the 
specified set here is rather thin. However, the intent in the MODAF 
is mainly to support planning and visibility between projects, so the 
models focus on dependencies and the clustering of projects.

The DODAF and MODAF address descriptions where the objects 
of interest are themselves significant systems and programs instead of 
the component-level elements that were typical in our discussion of inte-
grated modeling methods. A description standard that reaches much 
further down the hierarchy is ISO RM-ODP.

ISO RM-ODP

The International Standards Organization (ISO) has also developed an 
architecture description framework known as Reference Model for Open 
Distributed Processing (RM-ODP).3 As the name implies, RM-ODP is 
computation and software-centric. It addresses open distributed process-
ing — that is, multivendor, multiorganization, heterogeneous computing 
systems whose processing nodes are spatially distributed. As defined in 
RM-ODP, a distributed system is generally characterized by one that is 
spatially distributed, does not have a global state or clock, may have indi-
vidual node failures, and operates concurrently.

The scope of RM-ODP is larger than just architectural description. 
RM-ODP makes extensive normative statements about how systems should 
be described but also goes on to specify functions they should provide, and 
structuring rules to provide those functions. The architecture concerns of 
RM-ODP include both description (through viewpoints) and the provision 
of what are considered critical functions, called “transparencies” in the 
RM-ODP model.

The RM-ODP defines the following*:

	 1.	A division of an ODP system specification into viewpoints in order 
to simplify the description of complex systems.

*	 ISO/IEC 10746-1: 1995 DIS (E), p. 8.
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	 2.	A set of general concepts for the expression of those viewpoint 
specifications.

	 3.	A model for an infrastructure supporting, through the provision of 
distribution transparencies, the general concepts it offers as specifi-
cation tools.

	 4.	Principles for assessing conformance for ODP systems.

This is certainly larger than just description of architectures. Points 
one and two of RM-ODP are our concern here. RM-ODP is much more 
strongly normative than the other architecture frameworks discussed in 
this chapter. It takes a more normative approach both because of the incli-
nations of the authors (and their beliefs about best practices) and because 
the domain of application is narrower. RM-ODP applies to a particular 
class of computing systems (albeit a broad class), and it seeks to be both a 
consistent and complete approach to describing such systems.

The heart of RM-ODP in regard to descriptions is its five normative 
viewpoints. RM-ODP uses viewpoint to mean essentially what view 
means here, although it also carries the meaning of a generic specification 
method to be applied to any system. The RM-ODP notion of viewpoint 
is really a mixture of the language specification, the concerns covered, 
and the actual model instances for a particular system. The five ODP 
viewpoints are enterprise, information, computational, engineering, and 
technology. ODP adopts the notion that each viewpoint is a “projection” of 
the system’s whole specification onto some set of concerns (using a specific 
language). The five viewpoints are chosen to be complete with respect to 
the concerns assumed to be relevant for an open distributed processing 
system. The definitions of the five viewpoints are as follows*:

	 1.	An enterprise specification of an ODP system is a model of the system 
and the environment with which the system interacts. It covers the 
role of the system in the business, and the human user roles and 
business policies related to the system. The enterprise viewpoint is 
a viewpoint on the system and its environment that focuses on the 
purpose, scope, and policies for the system.

	 2.	The information specification of an ODP system is a model of the 
information that it holds and of the information processing that it 
carries out. The information model is extracted from the individual 
components and provides a consistent common view that can be 
referenced by the specifications of information sources and sinks, 
and the information flows between them. The information viewpoint 
on the system and its environment focuses on the semantics of the 
information and information processing performed.

*	 Ibid, pp. 8–9, 16.
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	 3.	The computational specification of an ODP system is a model of the 
system in terms of the individual, logical components that are sources 
and sinks of information. Using the computational language, compu-
tational specifications can express the requirements of the full range 
of distributed systems, providing the maximum potential for porta-
bility and interworking and enabling the definition of constraints on 
distribution, while not specifying the detailed mechanisms involved. 
The computational viewpoint is a viewpoint on the system and its 
environment that enables distribution through functional decomposi-
tion of the system into objects that interact at interfaces.

	 4.	The engineering specification of an ODP system defines a networked 
computing infrastructure that supports the system structure defined 
in the computational specification and provides the distribution trans-
parencies that it identifies. It describes mechanisms corresponding 
to the elements of the programming model, effectively defining an 
abstract machine that can carry out the computational actions and the 
provision of the various transparencies needed to support distribu-
tion. The engineering viewpoint is a viewpoint on the system and its 
environment that focuses on the mechanisms and functions required 
to support distributed interaction between objects in the system.

	 5.	The technology specification defines how a system is structured in 
terms of hardware and software components. The technology view-
point is a viewpoint on the system and its environment that focuses 
on the choice of technology in that system.

Each viewpoint has a language associated with it, defined in the 
RM-ODP standard. The language specification in the standard is less 
specific than a typical programming language. The language specifica-
tion consists of the definitions of the terms used to compose the language 
and constraints on constructing statements. All terms and constructions 
are in-built on object modeling concepts. The RM-ODP standard uses 
OMT conventions, although they could as easily be transferred to Unified 
Modeling Language (UML). Because RM-ODP is a component of the 
Object Management Group (OMG) of standards (UML is also a prominent 
component), such a transfer is already under way. ISO/IEC 10746-4 has 
mappings between the viewpoint language concepts and mathematically 
based formal languages from computer science.

RM-ODP recognizes the problem of interview and interview consis-
tency. A conformant description must perform a number of cross-view 
checks for consistency. These checks are not a true guarantee, and the 
models involved do not have a precise notion of consistency built in, but 
the checks do serve as an explicit attempt to look for inconsistencies.
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Proprietary and Semi-Open Information Technology Standards

Architecture has been widely addressed through proprietary and semi-
open standards in information technology. Many firms have architectural 
standards, and many have developed their own description standards, 
typically as part of a development process standardization activity. The 
architectural description standard is typically tied to making specific 
go-ahead decisions about system development. Standardization of descrip-
tion products helps make those go-ahead decisions more consistent and 
facilitates process standardization.

One of the more widely known architecture description frameworks 
in information technology is usually called the Zachman framework 
after the name of the author. The Zachman framework is not fixed as it 
has evolved with Zachman’s writings. There are a number of similarities 
between the various Zachman frameworks and the RM-ODP standard as 
some of Zachman’s early work popularized some notions of viewpoints 
and viewpoint languages. More recent published works by Zachman have 
added many more views than five, and have particularly emphasized the 
enterprise and business management aspects of choosing information 
technology architectures.

ANSI/IEEE 1471, ISO 42010

In April 1995, the IEEE Software Engineering Standards Committee (SESC) 
convened an Architecture Planning Group (APG) to study the development 
of an architecture standard for software-intensive systems. After publica-
tion of their report, the APG upgraded to the Architecture Working Group 
and was charged with the development of a Recommended Practice for 
architectural description, a particular type of standard. A Recommended 
Practice is one form of standard, commonly used for relatively imma-
ture fields as it provides more general guidance rather than normative 
requirements. After extended debate and community consensus build-
ing, a Recommended Practice for architecture description was published.* 
Subsequently, the standard was accepted by the American National 
Standards Institute as ANSI/IEEE 1471. In 2006 and 2007 the standard was 
submitted to ISO and adopted as ISO 42010, though with the proviso that 
it enter a revision cycle with the IEEE. At the time of this writing, that 
revision cycle is ongoing.

The 1471 project was intended to codify the areas of community con-
sensus on architecture description. Originally it was envisioned that the 

*	 IEEE 1471 Recommended Practice for Architectural Description of Software-Intensive 
Systems, 2000. 1471 is part of the Computer Society’s software engineering standards set. 
This standard subsequently became ANSI/IEEE 1471 and ISO 42010.
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standard would codify the notion of view and prescribe the use of partic-
ular views. In the end, consensus developed around a framework of views 
and viewpoints and an organizing structure for architecture descriptions, 
but there was no prescription of any particular views. As a recommended 
practice, it is assumed that community experience will eventually lead to 
greater detail within the standard. In practice, 1471 has become useful for 
other standards groups in organizing more domain-specific architecture 
description frameworks. Some application in this fashion was already 
seen in the review of how the MODAF extends and clarifies the DODAF.

1471 Concepts
Because the ontology of 1471 is independent of a specific framework of 
views and viewpoints, its ideas have been threaded into the discussion of 
this book. Thus, much of what 1471 contains will already be familiar to the 
reader. 1471 codifies the structure of an architecture description and the 
definitions of its parts. The terminology of 1471 is shown in Figure 11.1. The 
diagram is written in UML, but it can be easily interpreted even without 
knowledge of UML. In the 1471 ontology, every system has one architec-
ture. That architecture can have several architecture descriptions. This 
expresses the idea that an architecture is a conceptual property of a thing, 
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Figure 11.1  Information model of ANSI/IEEE 1471 concepts.
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but an architecture description is a representation of the conceptual object. 
Again, we should be familiar with this concept from the earliest chapters of 
this book. Several mutually consistent representations of a thing can exist, 
so we need not specify that there be a single representation. 1471 does not 
make a distinction between types of system, so the relationship of archi-
tecture and architecture description could hold for an individual system, a 
family-of-systems, a system-of-systems, or a subsystem.

Returning to Figure  11.1, an architecture description is composed of 
stakeholders, concerns, viewpoints, views, and models. Stakeholders have 
concerns. Viewpoints cover stakeholders and concerns by their choice of lan-
guage with which to represent the system. Views are groups of models, which 
must conform to exactly one viewpoint by using its language and rules.

Viewpoints may be drawn from a viewpoint library. A viewpoint 
library is not required by 1471, but it is expected in organizations that 
frequently develop architectural descriptions.

1471 makes an explicit distinction between the concepts of viewpoint 
and view, a distinction adopted in the MODAF, although not made in 
the DODAF and RM-ODP. If our goal is simply to write an architecture 
description, or to form a single standard, it is not necessary to separate the 
concepts. It is necessary to separate the concepts in 1471 because 1471 may 
be used to form many standards. Viewpoints are the vehicle for form-
ing a standard. Indeed, viewpoints may be placed into a library to be 
drawn from at the discretion of the architect and the specific stakeholders 
involved in a particular project. Thus, this organizing element must be 
separately named and defined to allow them to be separately assembled 
for the needs of different sets of clients.

The viewpoints of RM-ODP are examples of 1471 compliant view-
points. The only distinction between the viewpoint concept in RM-ODP 
and 1471 is that the RM-ODP version combines the abstraction (the 1471 
viewpoint) and the actual instance of a representation of a particular 
system (the 1471 view).

1471 Normative Requirements
The normative requirements of 1471 are limited, particularly compared to 
RM-ODP and even the DODAF. An architecture description conformant 
to 14714 must meet the following main requirements:

	 1.	The stakeholders identified must include users, acquirers, developers, 
and maintainers of the system.

	 2.	The architecture description must define its viewpoints, with some 
specific elements required.

	 3.	The system’s architecture must be documented in a set of views in 
one-to-one correspondence with the selected viewpoints, and each view 
must be conformant to the requirements of its associated viewpoint.
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	 4.	The architecture description document must include any known 
interview inconsistencies and a rationale for the selection of the 
described architecture.

There are a variety of other relatively minor normative requirements, 
along with various recommendations. Many of these are to make 1471 
consistent with other IEEE software engineering standards, notably the 
overarching software engineering standard 12207.

Research Directions
The current state of the art and practice in architecture description leaves 
much work undone. As the RM-ODP example shows, the basic archi-
tectural concepts of viewpoint, view, stakeholder, and concern can be 
extensively refined and tied to modeling formalisms if the domain of 
application is narrowed. A cost is the intellectual complexity of the result-
ing methods. RM-ODP is a complex standard. Its conceptual makeup is 
not complex in comparison to other areas in computer science, but it is 
quite complex compared to common practice in information technology. 
There may be strong benefits in mastering the complexity, but it acts as a 
barrier to the adoption of this technology. To make it more widely used, 
we need better tools and better explanation and training mechanisms to 
pass these ideas on to the professional community.

As we move to more general systems, the range of formalized models 
drops off dramatically. It seems very unlikely that we can develop a really 
general architecture framework that will simultaneously be formalizable. 
It seems more likely that we must continue to work up from the engi-
neering disciplines to create more general notations. One problem will be 
dealing the disjunction between models common in the hardware (and 
some of the systems engineering) world and those coming from computer 
science and software. The hardware models are typically performance-
centric and physics based. They work from physical objects. The com-
puter science models are now commonly based on object-orientation 
and encapsulation of functionality within data models. It is not obvious 
how these will be reconciled or to what extent it is necessary. It may be a 
better approach to leave the modeling techniques as they are, taking the 
modeling techniques as they have been validated within the engineer-
ing disciplines. The higher-level challenge will then be to develop inter-
view consistency checking techniques that do not require the disciplinary 
modeling methods to be altered but can work with them as they are.

There are two notable, relatively structured areas of research for 
frameworks: data relationships in subsystem flowdown and choosing 
models to match analytical needs.
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Subsystem Architecture Flowdown

Architecture frameworks are commonly employed in situations of high 
complexity, where the elements of the main system of interest are rea-
sonably complex systems. We might ascribe the term “system-of-systems” 
here, except, as argued in the chapter on collaborative systems, the concept 
is not well formed until we introduce the intentionality of the integration. 
Nevertheless, it is clear in normal usage that the standard architecture 
frameworks are typically employed only in cases where subsystems are 
reasonably complex. So, a natural question is, if we write an architecture 
view of a given system, and that system has subsystems, what is the rela-
tionship between the subsystems corresponding architecture views?

To be more formal, suppose we are interested in a system S, which may 
or may not exist at the time we write an architecture description. System 
S is composed of subsystems S1 through SN. For design purposes, we form 
architecture views of S, each composed of various models. Let those views 
be denoted V1(S) through VM(S). For the moment, we need not be concerned 
with the identity of the views. Some subsequent design groups may also 
be concerned with forming views of one or more subsystem. The direction 
of formation need not be downward in the hierarchy. We might start with 
a set of subsystems and views of those subsystems and want to form the 
architecture views of some integrated supersystem of those subsystems. 
Indeed, this upward assembly might be the usual case.

Given the terminology, some representative questions are as follows:

	 1.	What is (or should be) the relationship between Vk(S) and Vk(Sn)?
	 2.	What is the relationship between Vk(S) and the collection Vk(S1) 

through Vk(SN)? What views other than Vk need to be interrogated to 
make the determination?

	 3.	Given Vk(S), what is the relationship between Vk(Si) and Vk(Sj)?
	 4.	 If S1 through SN are to be integrated into S, and they have a given 

set of views, can you derive the corresponding views of the inte-
grated whole? Is the corresponding view of the integrated whole 
completely specified?

Some of the integrated modeling methods discussed earlier provide 
some interesting examples of these issues. Consider a data flow, functional 
decomposition view of a system. If that system is divided into subsystems, 
there are clearly some required relationships between the corresponding 
data flow, functional decomposition views. The decompositions must 
match across corresponding partitions of the functions. Methods like 
Hatley-Pirbhai have a set of formal consistency and completeness checks 
based on how those models decompose. Physical models from system to 
subsystem produce requirements for correspondence on interfaces.
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It seems unlikely that there are very general rules for relating views. 
In any particular instance, various strong constraints can be worked out, 
but it does not appear that the rules carry over in detail from one case to 
another. On the other hand, viewpoints, the rules and templates for con-
structing views, do carry over strongly from one case to another.

Matching Analytical Needs

We do not (or should not) build complex architecture description docu-
ments in compliance to frameworks without clear purposes in mind. The 
main reason for having an architecture framework is so that the uses of 
the document can be consistently performed. For example, a stakeholder 
group may want to evaluate all systems being constructed within their pur-
view for mutual interoperability. In order to facilitate that analysis, they 
could specify in an architecture framework that a set of models needed in 
interoperability analysis be provided. In this way, the framework would be 
linked to a specific set of purposes — in this case interoperability analysis.

In principle, today’s architecture frameworks are supposed to be linked 
to particular analyses. In practice, the linkage is often disappointing. 
For example, the DOD Architecture Framework is intended to facilitate 
interoperability analysis. Compliant documents have been used for 
interoperability analysis. However, there have been many problems with 
such use,* and it cannot be claimed that the analysis tools are firmly linked 
to architecture products, especially as a matter of consistent practice. This 
is an area where there could be clear improvement through research on 
linking analysis tools and framework compliant products.

Adapting Processes to Frameworks
At their best, architecture frameworks are still only the equivalent of blue-
print standards. There remains the problem of how to organize the architect-
ing process to reliably produce both useful documents and corresponding 
systems fit for use. Unfortunately, many groups, when faced with the challenge 
of building a framework compliant architecture description, simply default 
to producing a set of models that “check off the boxes” in the framework 
document. This is very unlikely to lead to a useful document.

*	 The U.S. military Joint Staff (specifically J8) was tasked to critique architecture-based plan-
ning. A variety of shortcomings, some reflected in the discussion here, were identified in 
the report from that study. The results of that study, although not formally published, have 
been generally available. See SPG-Directed Planning Task, Integrated Architectures, from 
the Joint Staff, 17-May-04. A paper from roughly the same time, Mara, M., and J. Grobman, 
A Capability-Based Planning Methodology for Networked Systems-of-Systems, The Phalanx, 
Military Operations Research Society-Military Applications Society of INFORMS, Vol. 36, 
Number 4, 2003, contains several of the major points from the longer briefing report.
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We can identify a variety of heuristics that are useful for guiding the 
development of framework compliant (or framework-driven) architecture 
description documents.

Focus on Architecture Decisions, and 
Let Descriptions Flow from the Decisions

Having an architecture description document, no matter its size or the 
expense of construction, is no guarantee that any architectural deci-
sions have been made well. The value of the system to its stakeholders is 
determined by the structure and content of that system (determined by 
architectural decisions), not by the architecture description document. So, 
architecture work should focus squarely on the decisions foremost, and 
let the documents flow from those decisions.

This leads to a rather simple test for managers or evaluators of an 
architecture description. When faced with a large architecture descrip-
tion document (enterprise architecture projects are especially notorious), 
ask “What decisions about changing our systems are contained in this 
document?” If the answer is “none,” or something equivocal, it is clear 
that the volume of the document is no guide to its value. If there are crisp 
answers, then the rationale for those answers can be pursued and evalu-
ated. If the rationale is sound, the document is probably sound (although 
an edit down to the crisp decisions might be worthwhile).

Always Use an Iterative Process to Do Architecting

Architecting is something you can virtually never get right at the begin-
ning. It requires pursuit of multiple paths and the presentation of dis
parate alternatives to stakeholders. Any architecting process that requires 
a year or more to execute, and does not result in any clear decisions before 
its end, is almost certain to be ineffective. Aside from the substantial risk 
that issues will change over the year, the most likely failure path is that the 
initial understanding of the problem will be poor, resulting in poor alter-
natives. It is easy to advocate “just get the problem right at the beginning,” 
but the reality is that we are unlikely to know whether the problem is 
“right” until multiple solutions have been examined.

Do Not Overstaff Early; the Best Architectures 
Come from Small Teams

Another common failure path is that once a project at the architecting 
phase is initiated, it quickly comes under pressure to spend at a rate com-
mensurate with its full budget later in the development cycle. Even worse, a 
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large staff may be assigned to the architect very early on. The consequence 
is that the architects and managers are quickly consumed with getting 
people working on anything that results in a stream of visible deliverables, 
whether or not they are directly relevant to the architecting-specific goals. 
The important work (the decision-centric, strategic work) is swamped by 
visible document production. The only cure is to strictly avoid early over-
staffing, and for management to make go-ahead decisions on the basis of 
strategic issues and not on the basis of unread document delivery.

A particular form of this problem is the project that gets mired in 
as-is data collection and documentation. Very often a project that requires 
significant architecting needs to begin by evaluating the state of existing 
systems (the “as-is architecture”). While this is often necessary, an as-is 
documentation effort has the potential to expand to fill all available funds 
and staff. The as-is documentation work is in many ways tailor-made for 
project management. It is well structured, relatively easy to measure prog-
ress, and requires the coordination of a potentially large staff. It is easy to 
see how staff can become enamored with endless pursuit of broader and 
deeper as-is documentation, and want to avoid the hard choices, complex 
decision making, and political difficulties of prescribing future change.

Avoid Underreach and Overreach

Effective architectures must constrain enough, but not too much. A defect 
in some architecture efforts is to either draw their scope too large (result-
ing in attempts to control things the team has no hope of controlling) or 
drawing the scope too narrow (resulting in a failure of the constraints to 
ensure that enough joint functionality is present to be useful). Architecture 
framework standards do not themselves help define an appropriate scope; 
the scope definition (an essential architectural decision) must come from 
those directing the project.

A famous example of good scoping and effective decision making is 
the Motion Pictures Expert Group (MPEG) standard.5 The MPEG standard 
was a multicompany effort to create a standard for encoding compressed 
digital video. The motivations of the players were to build the largest 
possible market, while avoiding a destructive standards war (as in the 
case of VHS versus Betamax). With regard to underreach and overreach, 
the key is the scope of the standard. The standard as structured defines 
the structure of a compressed stream and defines a free reference decom-
pressor. The standard leaves open the exact compression algorithm.* As a 
result, end-to-end quality is a free variable; a given piece of source mate-

*	 It is more correct to say that the standards leave open a large number of algorithmic 
parameters rather than the algorithm itself, although pre- and postprocessing algorithms 
are left undefined, but the details are immaterial to the discussion here.



332	 The Art of Systems Architecting

rial at a given bit rate has a huge number of compliant encodings. This 
particular scope works effectively for all of the stakeholders concerned, 
though a larger or small scope likely would not have:

	 1.	The scope implemented guarantees interoperability between all 
content providers and all equipment providers. This is the primary 
concern of the consumer.

	 2.	The scope of the standard is narrow enough to minimize the need 
of the participants to contribute intellectual property to the licens-
ing pool. This is important to those stakeholders concerned about 
poststandard competitiveness.

	 3.	The undefined elements of the standard encourage further technology 
development. Because consumer content is typically compressed once 
and decompressed millions of times, there are great advantages into put-
ting a lot of intelligence into the compression side. A significant market 
has grown up for boutique compression providers who know how to 
optimize algorithm parameters and preprocessing to specific types 
of material (for example, sports programming, movies, animation).

Orient the Project Effectively

To orient an architecture project means to define its context and effective 
attributes as it begins. Many architecture projects that are driven to use 
frameworks are not oriented effectively, perhaps because the orientation 
questions are not embedded in the framework. For an architecture project 
to be oriented effectively, the following questions should be answered:

	 1.	What is the “system-of-interest” to the project? Typically this is a 
new, discrete system to be produced; a family-of-systems or product-
line; a collaborative system; or a document.

	 2.	What is the basis for the project, or the driving reason that we are 
pursuing it? Typical answers are purpose driven (it is being done for 
a specific user-client), technology driven (we wish to exploit a tech-
nology without client-user available), or bureaucracy driven (it is a 
mandate to produce an architecture description document).

	 3.	What is the scope of the effort? Is the scope restricted to a controlled 
system-of-interest or does it range outside to systems controlled by 
others outside the control of the sponsor?

	 4.	What will be done with the product of the architecture effort when 
it is completed?

	 5.	Can we disentangle the purposes of the system-of-interest, the 
architecture project, and any architecture description document 
being produced? In many cases, these three properly have different 
purposes, but they need to be known.
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Conclusion
The problem of “blueprint” standards for complex systems architec-
tures has yielded a number of architecture frameworks that are true or 
de facto standards. None is an ideal solution, but all contain important 
ideas. The architect faced with a normative requirement to use one of the 
frameworks must keep in mind their limitations and the architect’s core 
role. The architect’s core role is to assist the system’s client in making the 
key technical decisions, particularly what system concept to go-ahead on 
construction with or how to constrain a larger assemblage like a family 
of systems or a collaborative system. This places a premium on models 
and methods that communicate effectively with the client, regardless of 
their correspondence (or lack thereof) to engineering models. Only as the 
architect’s role evolves to transitioning the system to development and 
maintaining conceptual integrity during development does that corre-
spondence to engineering methods become foremost.

A number of common problems with employing frameworks have 
been identified, and some important mitigations and relevant heuristics 
have been presented. The most important is to concentrate on the architect’s 
core role in facilitating effective decision making. Architecture documen-
tation plays a key role in the architect’s work but is never a substitute 
for decision making. Architecture frameworks work best when their role 
is understood — to establish a common language among stakeholders 
within which architectural decision making can be conducted.

Notes and References
	 1.	 The DODAF documentation is distributed electronically by the U.S. 

Department of Defense. See www.defenselink.mil/cio-nii/docs/DoDAF_
Volume_I.pdf for the current main volume.

	 2.	 See www.modaf.org.uk for online documentation on the MODAF and a 
detailed discussion of its concepts.

	 3.	 ISO/IEC JTC1/SC21/WG7 Reference Model for Open Distributed Processing 
officially titled ITU-T X.901 ISO/IEC 10746 Reference Model, Parts 1–4.

	 4.	 The complete details are in the standard, ANSI/IEEE 1471 Recommended 
Practice for Architectural Description of Software-Intensive Systems, issued 
in 2000.

	 5.	 The architect within the early MPEG standards was clearly Leonardo 
Chiariglione, a classic example of an architect within a collaborative system 
environment. A particularly good article on this is Leonardo’s Art in the now 
defunct Brill’s Content magazine. There is an interview with Chiariglione at 
www.eetimes.com/disruption/interviews/chiariglione retrieved 15-May-2008, 
as well as numerous other interviews and articles.





IVpart 

The Systems Architecting 
Profession
The first three parts of this book have been about systems architecting as 
an activity or as a role in systems development. This fourth part is about 
systems architecting as a profession — that is, as a recognized vocation in 
a specialized field. Three factors are addressed here. The first is the embed-
ding of architecting in the context of commercial or government systems 
developments, with primary attention to how architecting and organiza-
tional strategy overlap and interrelate. This is vital because architecting 
can only happen in a supportive organizational environment, whether in 
business or government. The second, the political process,* is important 
because it interacts strongly with the architecting process, directly affect-
ing the missions and designs of large-scale complex systems. The third, 
the professionalization of systems architecting, is important because it 
affects how the government, industry, and academia perceive systems 
architects as a group.

Chapter 12 covers the situating of architecting in business and govern-
ment in general, but its major focus is on how strategy relates to archi-
tecture. Organizations have strategies in the sense of objectives, selected 
means for achieving those objectives, and patterns for changing as their 
environment changes. Of course, the dominant means of executing strat-
egy is the conduct of operations by an organization’s personnel. But, 
organizations also build systems, create programs to build systems, 
and structure themselves as organizations. Building is, at least in part, 
an architectural activity. Because the architecting of systems is already 
the subject of most of this book, Chapter 12 focuses primarily on the 
architecting of programs, and how the architecture of systems, programs, 
and organizational strategy relate.

*	 By “political process” is meant the art and science of government, especially the process 
by which it acquires large-scale, complex systems.
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Chapter 13 is based on a course originated and taught at the University 
of Southern California by Brenda Forman of the University of Southern 
California and the Lockheed Martin Corporation. The chapter describes 
the political process of the American government and the heuristics that 
characterize it. The federal process, instead of company politics or execu-
tive decision making,* was chosen for the course and for this book on 
architecting for three reasons.

First, federal governments are major sponsors and clients of complex 
systems and their development. Second, the American federal political 
process is a well-documented, readily available, open source for case 
studies to support the heuristics given here. And third, the process is 
assumed by far too many technologists to be uninformed, unprofessional, 
and self-serving. Nothing could be worse, less true, or more damaging 
to a publicly supported system and its creators than acting under such 
assumptions. In actuality, the political process is the properly constituted 
and legal mechanism by which the general public expresses its judg-
ments on the value to it of the goods and services that it needs. The fact 
that the process is time consuming, messy, litigious, not always fair to all, 
and certainly not always logical in a technical sense, is far more a conse-
quence of inherent conflicts of interests and values of the general public 
than of base motives or intrigue of its representatives in government.

The point that has been made many times in this book is that value 
judgments must be made by the client — the individual or authority that 
pays the bills — and not by the architect. For public services in representa-
tive democratic countries, that client is represented by the legislative, and 
occasionally the judicial, branch of the government.† Chapter 13 states a 
number of heuristics, the “facts of life,” if you will, describing how that 
client operates. In the political domain, those rules are as strong as any 
in the engineering world. The architect should treat them with at least as 
much respect as any engineering principle or heuristic. For example, one 
of the facts of life states:

The best engineering solutions are not necessarily the 
best political solutions.

Ignoring such a fact is as great a risk as ignoring a principle of mathematics 
or physics — one can make the wrong moves and get the wrong answers.

*	 Company politics were felt to be too company specific, too little documented, and too 
arguable for credible heuristics. Readers with experience in corporate politics will have 
little difficulty extending the heuristics of the chapter to other political settings. Executive 
decisions are the province of decision theory and are best considered in that context.

†	 In the United States, the executive branch implements the value judgments made by the 
Congress unless the Congress expressly delegates certain ones to the executive branch.
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Chapter 14 addresses the challenge in the Preface to this book to 
professionalize the field — that is, to establish it as a profession* recog
nized by its peers and its clients. In university terms, this means at least a 
graduate-level, specialized education, successful graduates, peer-reviewed 
publications, and university-level research. In industry terms, it means 
the existence of acknowledged experts and specialized techniques. 
Elliott Axelband† reports on progress toward such professionalization by 
tracing the evolution of systems standards toward architectural guide-
lines, by describing architecture-related programs in the universities, 
and by indicating professional societies and publications in the field. 
Axelband concludes the book with an assessment of the profession and 
its likely future.

*	 “Any occupation or vocation requiring training in the liberal arts or the sciences and 
advanced study in a specialized field.” Webster’s II, New Riverside University Dictionary. 
Boston, MA: Riverside, 1984, p. 939.

†	Formerly, at the time of the original writing, Associate Dean, School of Engineering, 
University of Southern California, and the director of the Systems Architecting and 
Engineering program. Axelband previously was an executive of the Hughes Aircraft 
Company until his retirement in early 1994. He is currently on staff at the RAND 
Corporation.
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12chapter 

Architecting in Business and 
Government

Architecture is the technical embodiment of strategy.

Most engineering disciplines continue to make sense when divorced from 
the context of their application. You do not have to know that someone is 
working for a builder or a government department to judge the applica-
tion of aerodynamics or circuit design. Aerodynamics and circuit design 
(and most other methods from the established engineering disciplines) 
are application neutral. The equations are the same no matter who applies 
them. They are grounded primarily in physics and mathematics, and we 
can judge much of their work by the standards of science.

Architecting is much more deeply embedded in the context of its 
practice. Although many techniques will remain constant from one con-
text to another, the architect’s practice is heavily influenced by where it is 
carried out. Moreover, architecting is not just about the technical nature 
of the system of interest. It is about the structure of the program that 
builds and operates the system and the organization that either buys or 
conducts architecting.

This chapter explores that linkage between architecting and the busi-
ness or governmental organization in which it is embedded. The focus, 
as suggested by the opening quote, is on strategy. There are many occa-
sions when the architect may feel more like a strategic consultant than an 
engineer. Sometimes this is a sign of healthy practice, and sometimes it is 
a sign of looming trouble. This chapter will examine how we might tell 
the conditions apart.

Problem-System-Program-Organization
We can identify many different scopes of interest, but architecture and 
strategy are most clearly understood with four scopes: problem, system, 
program, and organization. Problem is that we are trying to solve or 
achieve by way of building a system. A system is a technical object we 
build to solve a problem. The program is the means by which the system 
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is developed, produced, and deployed. The organization, really the orga-
nizations, is the human construct that carries out the program. This is 
schematically illustrated in Figure 12.1 (refer also to Figure 1.6).

First-level systems architecting is about the relationship between prob-
lem and system. The architect seeks a consistent and harmonious linkage 
between a problem to be solved and a system to do it. Architecting is a 
problem-seeking activity and not solely a problem-solving activity. Good 
architecting examines the problem scope in parallel with solutions. The 
best architectural solution often involves reformulating the problem.

DC-3 Example: The DC-3 was a success because it 
allowed the restructuring of the airline business. 
The Boeing 247, using nearly identical technology, 
was optimized for the operational environment of 
the time, where profits came from carrying airmail. 
The DC-3 had the size, capacity, range, and safety 
margin to allow profitable operation without sub-
sidized airmail. To some extent, this was a happy 
accident, as the predecessors of the DC-3 (the DC-1 
and DC-2) failed to pass the revolutionary threshold, 
although they were excellent airplanes. But, the 
architects of the DC-3 knew they were aiming at a 
new problem, space, as well as a new exploitation of 
system technology.

Organization 
Strategic Identity:
Missions, goals,
what it’s good at,
what it doesn’t do

Program 
Who builds? 
How do they build? 
What order? 
Who operates? 

Program 

System 
What is the system? 
What are components? 
How is it tested? 

Problem 
What do we provide? 
What creates value? 
What is success? 

Figure 12.1  Organizations have programs that build systems in response to prob-
lems. Each exists in its own context, with issues unique to each context.
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GPS Example: The revolutionary aspects of the Global 
Positioning System (GPS) have come from exploi-
tation into new problems. The original problem 
formulation was to navigate platforms to improve 
weapons delivery; thus the slogan “five bombs in 
the same hole.” But, the most effective exploita-
tions have been in placing guidance on weapons, in 
surveying, in network synchronization, and other 
civilian applications. Those applications represent 
not only the application of GPS technology but the 
reformulation of concepts of operation for both 
military and civilian activities.

In the scope of problem-system, we talk about the fundamental struc-
ture of the system, its architecture. But, the system has to be brought 
into being. Beyond the architecture design, it has to be fully developed, 
produced (in quantities from one to millions), deployed to users, and 
supported over a life cycle. We refer to these activities as the “program.” 
A program also has a fundamental or organizing structure or an archi-
tecture. We can identify a number of basic forms or architectural styles, 
which we discuss in detail in a subsequent section:

Single object, waterfall construction, as in buildings and occasional •	
one-of-a-kind systems.
Prototype development followed by serial production, with parallel •	
manufacturing system development (discussed in Chapter 4).
Breadboard-Brassboard-Flight incremental development, a typically •	
hardware-centric process where functionality remains constant 
while environmental fitness is improved.
Risk-spiral incremental development, where increments represent •	
case-specific steepest-descent reduction of risk.
Incremental delivery, where multiple systems are delivered with •	
increasing functionality.

Program structure may play an equal role with the architecture of the 
system in realizing stakeholder value. A fine system may be crippled by 
poor execution or doomed by a program structure that is inappropriate to 
the surrounding circumstances. Conversely, a well-chosen program struc-
ture may allow successful adaptation to errors in execution and surprises 
in technology or operational conditions.

Layered software is a response to rapidly changing technology and 
uncertainties in user demands. Well-chosen and implemented layers 
isolate areas of rapid change from each other and allow change in those 
isolated areas to proceed as quickly as technology or market changes 
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demand. The Internet Protocol (IP) layer in the Internet effectively sep-
arated the very high rates of change in physical communication tech-
nologies and network applications from each other, and allowed both 
to repeatedly abandon existing legacies independently. In negative 
contrast, layered architectures can introduce broad dependencies that 
may damage an organization’s ability to deliver. A change to a deeper 
layer may have rippling effects in all of the higher-layer applications that 
use the shared, deep layer. If the deeper layers are pushed to change in 
response to user demands falling on applications, and the surrounding 
organization and technological infrastructure is unable to make changes 
without risk of affecting all applications, the layered structure may lead 
to development paralysis.

A program is carried out by an organization, which may be a single 
company or government division or a consortium of many. By organiza-
tion we simply mean an organized grouping of humans whose purpose 
here is to carry out programs to build systems. Programmatic structures 
should be chosen to best fit the programmatically related objectives of a 
given development. In practice, the structures will also be influenced by 
the standing concerns of the organization. So, if the overall identity of the 
organization is well aligned with the programmatic and system mission, 
things are likely to go well. If the strategic identity of the organization 
is in conflict with stakeholder concerns, programmatic imperatives, and 
system objectives, things are likely to go badly. This rising scope, and 
changing nature of concerns, is illustrated in Figure 12.2.

The strategic identity of an organization is the basic representation 
of what it does. The strategic identity should be a shared understanding 

Problem System 

Program 

Organization 

Core Concern of Systems
Architecting

Extended Concerns of
Architecting, as We Consider
Organizational Strategic
Identity and Management

Executive Domain,
Architecting of Organizations

Figure 12.2  Systems architecting is primarily concerned with the relationships 
between elements, whether at the level of system-problem, program and manage-
ment, or (occasionally) at the level of organizations.
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among the organization’s members. A strategic identity specifies what an 
organization’s mission is, how that mission relates to other organization’s 
missions, and how the organization’s members can take action in service 
of that mission. Organization’s can be viewed productively as systems, 
and so have their own architectures. The architecture of an organiza-
tion is its basic structure, not just in organizational chart terms, but in 
the fuller terms of expertise, experiences, working relationships internal 
and external, shared objectives among its members, and resources avail-
able to it. The architecture of an organization is not a principal concern of 
this book,1 but we cannot understand the architecting of systems without 
considering how the hierarchy of contexts from problem to organization 
relate, through the system and program.

Strategy and Architecture in 
Business and Government
In the classic model of architecting, the paradigm derived directly from 
classic civil architecting, the architect is an executor of the client’s strategy. 
The client has a strategy. Perhaps it is to build a house well suited to his 
or her family’s life, to build a profit-making facility in a given business, 
to combine business return with brand identity, or to build a long-term 
educational institution. Whatever that strategy is, the job of the architect is 
to understand it well enough to be able to produce a fit physical, technical 
embodiment of that strategy.

The architect does not create the strategy, although he may need to elicit 
the client well beyond just asking “what is your strategy?” Architecting 
accepts that the problem is unlikely to be presented in well-structured 
form, and is probably fundamentally ill structured. With ill-structured 
problems, the process of forming a solution influences the client’s under-
standing of his or her problem, and not just the architect’s. Thus, to some 
extent, the process of working with an architect may help a client formu-
late his or her own strategy, even though it is not the architect’s role to 
formulate the client’s strategy.

As we talk about unprecedented systems, the sharp border between 
the architect and client in strategy becomes unclear. Who formulated the 
strategy of moving to operations and capabilities for global positioning 
beyond the concept in the original program? It was not entirely the client 
or the architect. In the case of GPS, the long-term revolution was driven 
by organizations beyond the client, and that in many cases did not even 
exist when the program was formed. These lateral exploitation applica-
tions, which are growing to the point they now drive global positioning 
well beyond one program, were inside the original architect’s visions, 
but were not the original architect’s responsibility. Many others had to 
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become participants, typically independent participants in what became 
a collaborative system, for the revolution to happen.

When the border between architecting and strategy formation 
becomes fuzzy, the architect may find himself or herself acting more like a 
strategy consultant than an architect. Even though it is not impossible for 
this to be effective, it is fraught with difficulty and danger. Architecting 
requires technical depth, and good architects have that technical depth. 
Effective strategy formulation requires much more knowledge and insight 
into the operational situation faced by an organization (whether business, 
military, or diplomatic) than is necessary for architecting, and requires 
much less technical depth. Both architects and strategists are bridging the 
engineering to operations gap, but they approach the gap from opposite 
sides. As such, they can be extremely effective partners but are less likely 
to be effective substitutes.

A basic embodiment of strategy produced by architecture is in the 
structure of the program. Architecture may also embody strategy in other 
ways, but program structure is the most common. To explore this, we 
need to consider different forms of strategy as related to technical system 
development, specifically static and dynamic strategies.

Static Strategies

A static strategy is unchanging, or slowly changing. Static strategies 
seek to understand the world and to determine a set of objectives for 
systems that will yield a superior position. Typical static strategies 
include the following:

Be the low-cost producer or supplier. This involves leaning down •	
design, production, and delivery systems relative to other competitors.
Be feature superior to the competition. Deliver systems with supe-•	
rior quality, cost, and delivery, measured on the same scales as the 
competition.
Bring superior firepower and concentration to the battlefield.•	
Use concepts of operation similar to one’s opponent, but with longer •	
range, greater accuracy, and larger effect.

Architecting in a static strategy environment is relatively similar 
to classic systems engineering. The problem may still be ill structured, 
because we do not know where in the feature space we will find suitable 
problem–solution combinations, but the feature space is assumed to be 
knowable. The objective of architecting is to elaborate on the problem and 
solution spaces and find excellent combinations.
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Dynamic Strategies

A dynamic strategic approach assumes that the playing field is continu-
ously changing, or even better, and that our actions can force the playing 
field to change.2 Instead of trying to beat competitors at an established 
game, we seek to create new games. We try to avoid head-to-head com-
petition on features, cost, or delivery and instead choose actions that are 
unexpected by the competition and that the competition is incapable of 
imitating. A truly dynamic approach to strategy is to further assume that 
any dominant move we make is temporary and must be followed by a 
succession of game-changing moves.

Architecting in a dynamic strategy is a twofold process. First, the archi-
tect is driven to come up with unprecedented system concepts. A dynamic 
strategy has a continuous appetite for the new and unexpected. Second, 
the organizational processes and supporting system must be architected 
to support continuous and rapid change. An organization very good at 
executing a static strategy is unlikely to be good at executing a dynamic 
strategy, and vice versa.

The real world is not cleanly divided between exponents of static and 
dynamic strategy. Even if one believes that a dynamic strategy is inher-
ently superior, in considerable measure much of economic and military 
life is dominated by mature operational concepts where fierce competi-
tion in static strategy prevails. Where the investment in legacy capabili-
ties is very large, it is very uncommon for dynamic shifts to upset the 
entire operational picture quickly. Even when the operational picture can 
be changed quickly, it may settle down to maturity with time. A useful 
metric for understanding where static or dynamic strategies are likely to 
play a larger role is system obsolescence time or depreciation rate. How 
quickly after introduction does a system lose most of its value? In how 
much time will the original system owner be willing to throw away the 
system and find it is not worth the upkeep?

In aircraft, from the 1920s to the early 1960s, aircraft depreciated in •	
5 years, lengthening to 10 years. Military aircraft built at the end 
of World War II were of low value within 5 years and scrap before 
10 years elapsed. This time lengthened considerably from the 1960s 
to the present, when both military and civilian aircraft are still flying 
usefully 25 years or longer.
At the beginning of the space era, a given satellite design was useful •	
for a few years at most. By the 1970s, satellite architectures settled 
down. Lifetimes of 5 to 10 years are now not unusual, and designs 
can be valuable longer.
A 5-year-old computer is, with few exceptions, something to sell at •	
a flea market.
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Cell phones and related personal electronics are disposable on a •	
2-year timeline.

An organization should have an explicit strategic position about 
which it pursues its mission. Some organizations, those supporting stable 
mission areas or markets, logically pursue strategies that are mostly static. 
This is not a bad thing. If a static strategy that carefully focuses on stable 
sources of value and stable means of delivering value can achieve a com-
petitive advantage against static strategy measures, that is very hard to 
match or overcome. As an example, various automakers, both U.S. and 
Japanese, established long-term competitive advantages that endured for 
decades (in different eras). But, static strategies can be overcome by frontal 
competition, and by “end-runs” when strategic conditions change.

Organizations that pursue pure dynamic strategies can likewise be 
very successful, and can fail abjectly. An organization that solely pur-
sues the unprecedented is vulnerable every few years. Even for the most 
capable, the business of producing unprecedented capabilities is very 
uncertain. Luck is required, and runs of luck always come to an end. If the 
organization cannot weather a string of failures, it will disappear.

Architecture of Programs
As discussed above, the next step of context above Problem-System is 
Program. At the program level we are concerned with the structure of the 
effort to develop, produce, deploy, and maintain the system of interest. 
Obviously, as with systems, there are countless possible such structures. 
We cannot enumerate them all. However, we can identify a number of 
program styles or repeating patterns of program organization, and the 
heuristics for their application. These program styles relate directly to an 
organization’s pursuit of a dominantly static or dynamic strategy.

Single Pass, Waterfall Construction

The paradigm for this case is constructing a house or other building. 
The process normally proceeds very linearly: A design is developed and 
approved, contractors are hired, the building is constructed on the site, 
and approved for occupancy and delivery after completion. There are 
few or no intermediates. Modeling is conducted during design and may 
involve the construction of scale models, but we do not build trial build-
ings as part of the process. On occasion, some subsystem elements might 
be built early for testing. An example is building a unit of windows for a 
major skyscraper to test their weather integrity if they use an innovative 
method of holding the window glass.
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In practice, there may be some level of incrementalism. For example, in 
a building complex, we may build all of the infrastructure but only some 
of the buildings in an initial phase, with the remaining buildings deferred 
for a later phase after the first set are occupied and in use. Sometimes a 
building is designed with options for remodeling or extension in mind. 
However, the basic pattern is simple; we directly design and build the 
final system we intend to deliver in one pass.

This programmatic pattern is most applicable where:

Only a single system is to be built and delivered.•	
Risks are low. There is high certainty that a satisfactory system can •	
be built and delivered at predictable cost from a design.
The strategy is static. We can build a system in response to the strategy •	
and believe it will be fit for the natural lifetime of the system.

Serial Production

The basic pattern here is that we build one or more prototype systems, 
probably using the one-shot waterfall pattern, freeze a final design from 
analysis of the prototype, and then produce many copies of that prototype 
design. Alternatively, we may use one of the other patterns for prototype 
developments before freezing the design and proceeding to production. 
This pattern is most applicable when:

Many copies of the system are required.•	
The cost of production is high relative to the cost of design and •	
development. The overall cost is dominated by the costs incurred in 
production (typical for hardware-centric systems).
Risks can be resolved by a prototype. Once we have the prototype, •	
and have worked with it, we can have confidence that the produced 
system will be fully acceptable.

Breadboard-Brassboard-Flight

This pattern is an incremental pattern, in that we build a series of systems 
that are less capable than the final system and that lead to the final system. 
In the breadboard-brassboard-flight pattern, the series of systems that we 
build should all be functionally equivalent to the final delivered system, 
but are not all environmentally suitable for operation in the delivered 
systems environment. In the classic version of this pattern, the breadboard 
system is spread out over laboratory benches. In electronics, it consists of 
large boards with many parts and no effort of design shrink. In optics, the 
components are spread over an optical bench. In chemical engineering, 
the early versions are physically much smaller than the target version, 
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with far lower capacity (the direction of improvement is increasing scale 
instead of decreasing size). The brassboard version has classically been 
shrunk to an operationally suitable size and form factor, but is not yet fully 
hardened or reliable enough for operational use. The “Flight” version is 
the final version to be delivered to operational use.

This pattern is particularly applicable when:

Functional risks are low. We have high confidence that we can iden-•	
tify all of the desired functional characteristics early in the design 
process.
Technology and implementation risks are (relatively) high. We have •	
low confidence that we can build and package the desired functional 
characteristics in an environmentally suitable unit.
Production numbers can either be very low (a single flight system), •	
or this can be combined with the serial production pattern.
The strategy allows for a static functional aim point.•	

Because of the second bullet, the pattern is mostly seen in hardware-
centric systems. In most software-centric systems, the technology and 
implementation risks are relatively low. We know that if we can write 
functionally acceptable software we can probably package it in an 
acceptable way. Obviously, many exceptions exist, but the point is that 
in software-centric systems we are typically driven by functional risks 
rather than technology and packaging risks. In contrast, in many sensor, 
aircraft, and spacecraft systems, we have mature knowledge of how to 
build a functionally acceptable system but not how to make it operate in 
the environmentally constrained environment of the operational target. 
Consider the problem of sending remote sensing instruments to Jupiter. 
In most cases, the instruments we wish to send are well understood 
and widely used already in terrestrial or even earth-orbiting environ-
ments. But, packaging the instrument in a size, weight, power, reliability, 
radiation-resistant form factor usable in an outer planets mission is always 
a great challenge.

Incremental Delivery

The incremental delivery pattern can be thought of as the converse of the 
breadboard-brassboard-flight pattern. In the incremental delivery pattern, 
we again build a series of systems, each different from the previous, but 
the sequence grows in functional capability and not in environmental suit-
ability. Each member of the sequence is fully usable. In the classic version 
of this, each member of the sequence is not just fully usable, but each is 
delivered and used operationally. In commercial market terms, this is a 
series of incrementally developed products.
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This pattern is particularly applicable where:

The risks and uncertainty about what is functionally acceptable are •	
high and can only be resolved by operational experience. No amount 
of requirements elicitation in the absence of a real system can be 
expected to resolve the questions about what functional capabilities 
the users really want.
Risks in developing an environmentally suitable system are low. •	
It  is not difficult to meet user expectations of size, weight, power, 
reliability, or other physical quality characteristics.
The cost, price, and revenue issues are such that multiple replace-•	
ments of a delivered system are acceptable (or even desired).
The strategy is dynamic, and we realize value substantially by •	
adapting to change and new knowledge with different system 
configurations.

The third bullet is characteristic of software-centric systems, because 
software production deployment costs can be very low. The third bullet 
may also apply to systems with significant hardware content where 
market forces lead to rapid turnover. As an example, consider many con-
sumer electronic segments where people rarely keep a device for more 
than 2 to 3 years and are willing to pay for replacements (as long as they 
offer new features).

Risk Spiral

The risk spiral is an integrated combination of breadboard-brassboard 
incrementalism and incremental delivery. In the risk spiral (the concept 
original to Boehm), each cycle through development yields a system. The 
objectives of each cycle are driven by an overall assessment of risk. If the 
assessment is that currently the risks and uncertainties about what func-
tions have value to users, then the next spiral cycle will emphasize a user 
delivered system that can assess the value of functions. If the assessment 
is that the highest risk is engineering and packaging, then the next spiral 
cycle will emphasize the breadboard-brassboard-type of development.

Each spiral cycle consists of all of the conventional activities of the 
waterfall: requirements analysis, design, build, integration, and test, as 
illustrated in Figure 1.5 and Figure 6.1. Architecting in all spiral or incre-
mental situations differs in two basic ways from one-shot or waterfall 
architecting. First, architecting becomes episodic. We do architecting 
every time we go around the spiral. Each cycle around the spiral requires 
decisions about the problem and solution content of that cycle around the 
spiral. Each cycle is a complete pass through development and requires 
a set of architectural decisions on the concept to be developed (at the 
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beginning of the cycle), and decisions on acceptance for use (at the end 
of the cycle). Second, we architect the invariants, or the things that do not 
change as we spiral.

In addition, the choice of an incremental development approach, 
versus a one-shot development or some other pattern, is an architectural 
choice. It is the choice of program architecture. That choice, of program 
architecture, is rooted in an understanding of the overall strategy and 
how architectural decisions embody that strategy.

Collaborative Formation

In Chapter 7 we examined the concept of a collaborative system, a system 
formed by the partially or whole voluntary interaction of autonomous 
systems. We can undertake the formation of a collaborative system as 
a deliberate effort, although the fact that we cannot control all aspects 
means that there is an element of uncertainty. In creating a program 
whose goal is the collaboration formation of a system, we are deliberately 
choosing to orchestrate a process whose end point we cannot precisely 
predict. We must accept the uncertainty of the collaborative assemblage 
process in return for the benefits that it brings. A collaborative formation 
approach is especially appropriate when:

The strategy is dynamic, and we believe our power to shape is greater •	
than our power to actually implement.
The environment inherently contains multiple autonomous players, •	
and it is neither sensible nor feasible to replace them.
The risks associated with the strong preexisting players are more •	
significant than the risks of a particular configuration being achieved 
or not.

Strategic Architecting of Programs
Given that programs have architectures, and that the architecture of the 
program needs to be considered in parallel with the architecture of the 
system, how does the architect go about it? Architectural thinking in 
business and government should consist of all of the following:

Understand the organizational context in which architecting takes •	
place.

Who are the competitors?−−
Who are the opponents (not the same as competitors)?−−
Is the organization involved with architecting a constant or vari-−−
able? Is a new organization logically an outcome of architecting?
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Understand the overall strategy of the organization involved with •	
architecting. What are the static and dynamic aspects of the strategy? 
What is the strategic identity of the organization?
Use the context in Problem-System aspects of architecting. Begin •	
exploration of the program architecture as system concepts emerge.
Select system and program styles consistently with the strategic •	
identity of the organization.

Consider how these factors interrelated in the DC-3 example. The 
example involved several organizations with different positions relative to 
each other, different strategies, and different architecting responsibilities. 
Boeing was responsible for architecting (and building) airplanes to satisfy 
a commercial mission (make money by being sold to airlines to be oper-
ated commercially by those airlines). Their strategy, at the level of the 247, 
was a static strategy — perform existing missions with better perfor-
mance and cost. At the level of the whole company, the strategy was much 
more dynamic because of their parallel pursuit of much larger, military 
aircraft with technology that overlaps with commercial applications. The 
strategic identity of the 247 group was the pursuit of the static strategy. 
The strategic identity of the corporation as a whole was a dynamic one of 
shaping the aircraft market. The architects of the 247 dutifully pursued 
the static strategy of performance and cost improvements and were suc-
cessful within that context. The program style was prototyping followed 
by serial production. There was no incremental development. When the 
DC-3 overtook the 247, Boeing’s response was to make another architec-
tural jump (the corporate-level dynamic strategy), but that was cut off by 
the beginning of World War II.

Douglas and Boeing were competitors, and at the corporate level they 
were pursuing similar dynamic strategies. At the local level of the air-
craft program, Douglas pursued a more dynamic strategy. Considering 
the DC-1, DC-2, and DC-3 as a series, we see an incremental development 
strategy. The architectural jump on the problem side was to move away 
from the known airmail market. As a result of the uncertainties, this was 
pursued with incremental development, with each subsequent aircraft 
a bigger step into the unknown in size and performance. The program 
style was incremental development because each of the models was a 
fully usable, customer deliverable system. Indeed, all three models were 
customer delivered, although the total production of the DC-3 swamps 
the other two.

Jump and Exploit

The DC-3 and its numerous models are an illustration of a larger heuristic 
applicable at the program and organization level, the pattern of “jump 
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and exploit.” Jump and exploit describes the strategic approach of seeking 
unprecedented systems (the jump) followed by extensive lateral exploita-
tion of the unprecedented jump. This combines the notions of static and 
dynamic strategy. We make jumps in creating new systems and coupled 
new concepts of operation or markets. When the jump is successful, we 
vigorously pursue the static strategy of improving performance and cost 
for the newly revealed operational concept or market.

The interplay of architectural jumps and long-term steady improve-
ment is a strategic challenge. Leaders must be able to evaluate when the 
time for a jump is ripe, invest when the time is ripe, and stop focusing 
on incremental improvement. Conversely, failing to run a strategy of 
focused incremental improvement can easily cede competitive advantage 
to another player who does focus on continuous improvement. While 
recognizing when each situation pertains is inherently hard, one heuristic 
has been found useful.

An architectural leap can rarely be justified when the con-
sequence of a successful leap is a drop in revenue. Markets 
must expand to make cost reductions justifiable.

This is a hard heuristic to swallow in many cases, but it is impor-
tant to examine. The simplest case is where an essentially fixed number 
of systems will be produced. Consider the case of space launch vehicles. 
Imagine that the government buys an average of five of a particular 
type per year. If each launch vehicle costs $100 million, the government 
expends an average of $500 million a year with this particular supplier. 
Now suppose there is a proposal to develop a new launch vehicle with the 
same performance but an estimated per launch cost of $50 million. Is this 
likely to be a workable proposal? The heuristics suggest it would not be, 
and the heuristic is developed from past experience with space systems 
and other limited market systems where demand is inelastic with price.

Why might this be so, and when might it not be true? When the sup-
plier base is relatively fixed, we can imagine that existing suppliers would 
be less than enthusiastic about a program that promises to cut their revenue 
in half. Even if the government was to pay for the development, the over-
all situation is unlikely to be favorable. Financial capital is not the only 
capital of importance. Human capital is attracted to growing markets and 
is an essential fuel. In most cases, the program to cut costs in half is likely 
to be successful only if price elasticity is such that volume will likewise 
increase by at least a factor of two. Our hypothetical launch vehicle cost 
reduction program might be successful if a price cut by a half would more 
than double the launch rate. We see this effect in play in the electronics 
industry. While the price per transistor drops steadily by factors of two, 
total production and sales of transistors goes up even more quickly. The 
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total revenues of the electronics industry have risen rapidly. Were that not 
so, they would be unlikely to have been able to attract the capital (both 
financial and human) that was necessary to fuel the growth.

Enterprise Architecture
A natural conclusion to this discussion of architecting in organizations 
is enterprise architecture. Enterprise architecture is big business. It exists 
as an established practice with numerous books, consultants, service pro-
viders, methods, and courses. The purpose of this book is not to replace 
any of the large body of work, or even to engage in a detailed critique. 
Nevertheless, the concepts of this book, and especially this chapter, can be 
used to usefully inform the practice of enterprise architecture and under-
stand some of the most commonly encountered difficulties.

Given that the field is large and the companies are so diverse, it is 
perhaps not surprising that there is a good deal of disagreement on what 
enterprise architecture is. If we take an enterprise to be an organization 
with a defined mission (a company and a government department would 
both normally qualify), then a “natural” definition of the architecture of 
an enterprise would be the fundamental and unifying structure of the 
enterprise. Then the practice of enterprise architecture would concern 
itself largely with business strategy and business processes and how the 
enterprise might be best organized to carry out its mission. In the case 
of a company, this would mean long-term value creation in particular 
markets. In the case of a government department, it would depend on 
the case (human services versus environment versus research versus 
security). But in reality, enterprise architecture as actually practiced 
almost always is largely concerned with information technology, either 
substantially or solely.

A good definition of enterprise architecture comes from Peter Weill of 
the Massachusetts Institute of Technology (MIT):

The organizing logic for key business processes and 
IT capabilities reflecting the integration and standard-
ization requirements of the firm’s operating model.3

This book is concerned primarily with the architecting of systems. 
The information technology of a firm is certainly a system. The structure 
of that system should support the overall mission of the firm. As stated 
at the beginning of this chapter, the architecture of the firm’s information 
technology (IT) should embody the strategy for the firm. From a simple 
insight, we can glean some important lessons.
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The strategy an IT system embodies should be that of the 
organization it belongs to as a whole, not that of just the 
IT controlling organization.

Several times one of the present authors has encountered the situation 
of how a research and development (R&D) group’s IT is arranged within a 
larger organization of which R&D is a small part. Consider a hypothetical 
large specialty chemical manufacturer. The firm will undoubtedly have a 
chief information officer (CIO) and a corporate-wide information system. 
That corporate-wide information system needs to support internal func-
tions (such as time and attendance, human resources, corporate-wide 
e-mail, and so forth) as well as core business activities. The core busi-
ness activities would include sales and marketing, customer interaction, 
production and transportation planning, finance and reporting, and 
many others. Because these core functions represent virtually all of the 
firm’s revenue, the CIO is likely to be very concerned with how they are 
supported. The CIO’s priorities are likely to be dominated by system and 
application stability, availability, security, regulatory compliance, and cost 
control. When the CIO’s office conducts an enterprise architecture exercise, 
it is likely to focus on central control and standardization. The ideal will 
change slowly, be carefully controlled, and provide a well-chosen set of 
common services with high availability.

Within this large manufacturer, there is likely to be a R&D group. The 
R&D group may have dominant responsibility for new products and pro-
duction methods. At any given time, they are not a revenue source; they 
are likely a sink for money. However, the long-term future of the company 
(5  and 10  years out) depends almost totally on the success of the R&D 
group. In an environment where products age out in 5 to 10 years, failure 
to have a full pipeline of new products will spell the end of the company 
and its value. How do the information technology needs of the R&D group 
align with the priorities of the CIO? In many cases, they align very poorly.

On the one hand, the employees of the R&D group have many of the 
same needs for centralized information services as everybody else. They 
need access to corporate-wide e-mail, human resources applications, and 
other centralized tools just like other groups. But, today, the R&D group 
in a specialty chemical company is likely to be trying to rapidly exploit 
computational chemistry, cheminformatics, a myriad of tools for chemi-
cal engineering, biology-based products and production methods, and 
collaborations with groups around the world. This environment changes 
quickly with tools being updated monthly, tools coming from all over 
the world, and all being run on a diversity of platforms. There is often a 
serious collision of strategies between the R&D group and the CIO.

Good enterprise architecture recognizes the diversity of business 
strategies within a firm and tries to appropriately accommodate them 
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all. It realizes that the strategy the whole firm’s IT should embody is the 
strategy of the whole firm, not that of a narrow segment. The IT in a firm 
should be there to execute the purpose of the firm, over both the long and 
the short term. Good architecting goes back, again and again if necessary, 
to root purpose. The purpose of a firm’s IT is not to cost less than it did last 
year (even if that makes somebody’s metrics look good); it is to support the 
business strategy of the whole firm. This is the holistic view of architecting, 
a system that we embraced from Chapter 1.

An architecture description is not an architecture, and 
neither is an architecture framework.

This is simply a reiteration of a point made early in this book to not 
confuse architecture with architecture description. It is, unfortunately, 
not uncommon for a group to point at a large binder and say “This is 
our enterprise architecture.” It is not and cannot be. At best, the binder 
will contain a description of the decisions that define the architecture of 
the enterprise. At best, those decisions will be good ones and will have 
captured the firm’s business strategy effectively. Unfortunately, the best 
may not be true. Quite possibly the key decisions contained in that binder 
are buried from view and unwise to boot. If the decisions are clear, the 
architect should be able to highlight and explain them without many 
pages of description in the binder. If the decisions are wise, the reasoning 
should be clear and explainable and not buried in an opaque trade study 
where an answer is touted as the best simply because it scored the best on 
an evaluation function but nobody can clearly articulate why and with 
what sensitivity.

The frameworks commonly cited in the enterprise architecture lit-
erature are all architecture description frameworks. That is, they define 
how to write a document about a system or systems. They do not define 
the decisions, and in most cases they provide little guidance on how 
to go about the decision making. By itself this is not a great problem. 
Standardization of description methods can be quite useful in promoting 
wide communication. Where it becomes a problem is when framework 
adherence and unthinking artifact production take the place of critical 
thinking about an organization’s missions, the diversity of missions that 
make up the overall mission, and the sources of value from what is being 
architected. Rote application of frameworks typically yields large docu-
ments that are then either applied inflexibly or ignored (which may be 
better than inflexible application).

In thinking about the example of the large chemical company above, 
no amount of framework application will resolve the essential tensions. 
The essential tensions are how to balance the need for diversity, change, 
and local control within the R&D group with the need for stability and 
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standardization in the firm as a whole. Technology or business process 
adaptation may provide ways to relieve that tension. The tension is unlikely 
to ever be fully resolved, and there will inevitably be problems between 
the R&D group and other groups over how IT is selected and used. But, the 
absence of perfection is no excuse to avoid deep thinking about how best 
to resolve the tension. There is almost certainly a great deal of long-term 
business value to allowing R&D to fully utilize the rapidly growing tech-
nology in accelerating product and production development and a great 
threat in the possibility that competitors will resolve it better, sooner.

Program structure may be as important, or more important, 
than product structure.

In a large firm, the way they select, procure, deploy, and operate their 
IT is likely to be more important than the precise components chosen. In 
the terms of the chapter, the structure of the program is likely to be as 
important as or more important than the Problem-System pair. The struc-
ture of the program must be inside the scope of architectural consideration, 
not outside it.

Good architecting thinks as much or more about the 
problem as about the solution. Architecting teams need the 
skills relevant to the problem scope they are engaged in.

It often seems natural that an IT-centric enterprise architecture job 
should be done by IT specialists. But, if the scope of consideration includes 
how we might change business processes in concert with IT deployments 
in order to better carry out the firm’s mission, an all-IT-specialist team 
will be wholly inadequate. This is reflective of the basic nature of systems 
architecting. As discussed here, the lowest scope that is “architectural” 
is Problem-System. That is, the problem is inside the scope of investiga-
tion, not outside it. As discussed in the beginning chapters of the book, 
architecting addresses ill-structured problems where the statement of the 
problem is in-play. If all the requirements can be readily determined, it is 
not architecting. If the nature of the problem is “Find the best solution 
to this precisely stated and well-structured problem,” it might be a very 
worthy and difficult thing to do, but it is not architecting. If it is not archi-
tecting, it does not need the machinery of architecting, and we can rely 
instead on the established machinery of engineering science.

In the enterprise case, the situation is often more difficult because the 
problem includes basic strategic issues for the firm. A team constructed to 
do what is viewed as a technical architecting job rarely contains the exper-
tise and authority to challenge enterprise-level strategic decisions. They 
may be unable to command sufficient attention from senior executives 
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whose purview definitely includes strategy. Lacking that attention, they 
may default to extracting a well-structured problem they can solve, 
whether or not that is really relevant to the organization’s greatest need.

Many darkly humorous tales can be told of the technologist supposedly 
empowered to make a revolution in a firm running after executives try-
ing to have a strategic discussion,4 or giving up, pursuing a technological 
solution, and failing because of an inability of the firm to connect techno-
logical success to business strategy. The DC-3 and GPS stories are stories 
of success, albeit with all of the fits and starts and blind alleys of the real 
world. One of the most famous stories of failure to connect technological 
architecting to business strategy execution is Xerox PARC5 in the 1970s. 
The story is lengthy and well told in the published literature, but certain 
points bear repeating.

Xerox executives had a clear strategic vision of the need to make a 
change from the copier business by the late 1960s. They took tremen-
dous advantage of the availability of a whole cadre of the best computer 
scientists and engineers who became available as a result of U.S. Defense 
Advanced Research Projects Agency (DARPA) funding cuts. They set 
their recruits up in a new organization that produced an unprecedented 
series of technical innovations (laser printers, object-oriented program-
ming languages, and window-mouse-graphics displays famously among 
them), with many of those innovations taken to the point of prototype 
products. But, they were then unable to convert those innovations and 
products into revenue. The failure was largely one of mismatched strate-
gies and a lack of coupled change in business models (that is, operational 
concepts) to go with the innovative products. To turn the new products 
into value would have required new business concepts to go with them. 
As it turned out, other firms were much faster to find those altered opera-
tional concepts and implement them.

Ironically, it was the ability and willingness of Xerox to discover 
and use coupled technological and business model change in the 1950s, 
replacing a purchase model for copiers with a lease and per-page-charge 
model that made the company such an enormous success originally. But 
what was possible in the start-up days became impossible in the days of 
maturity. The lesson is only reinforced from the other case studies. Dealing 
with change at the right scope is critical. The biggest successes come from 
coupled change in technology, system, and operational concept.

Of course, this story about Xerox is only loosely about a firm’s IT archi-
tecture. But, that is exactly the point. Good architecting knows its scope. 
Focusing on just a firm’s IT architecture is a narrow focus, one unlikely 
to lead to changes in strategy or overall approach, but likely to lead to 
efficiency and improvements within a mission area. It leads to small solu-
tions within preexisting mission areas instead of large solutions in new 
mission areas. Focusing on efficiencies can create strong competitive 
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advantage when missions or markets are stable. When missions or markets 
are unstable, and revolution is in the air, focusing on efficiencies is a dis-
traction, and possibly a fatal distraction. Of course, the opposite is also 
possible when missions and markets are stable, and one can be distracted 
by a futile search for revolutions where none can exist and fail to develop 
the efficiencies that others will use to win the competition. An organiza-
tion has to be wise enough to know the difference.

An Enterprise Thought Experiment

Let us return briefly to Chapter 6 on software and the case discussion on 
layered systems. Many exercises in enterprise architecture turn, one way 
or another, on how to provide common services across a large enterprise. 
A popular buzz-word is “services-oriented architecture” (SOA). As a 
thought experiment, what are issues in the program or strategic sense for 
providing a common infrastructure of software services? Two program-
matic alternatives (of course, there are others) are to license a commer-
cial enterprise service bus (ESB) and have new software written on top of 
it, and to license an open-source ESB equivalent and write new software 
on top of it using a continuing open-source rule (all components written 
become enterprise shared property). Some of the issues are as follows:

What is the impact on which developers can be used? Will some •	
developers refuse to contract to write code that is shared with other 
enterprise developers? With a commercial ESB, will the cost of devel-
oper licenses inhibit how many developers can be used and when 
(for example, cannot afford experimental programming)?
In either case, will making a transition away from current practice •	
devalue current developers? Can the organization afford the costs 
involved in building a new developer community? As an aside, that 
cost might run from very large to negative depending on the nature 
of the market and the skills of the current developers.
Does business with other enterprises on the part of the ESB vendor •	
bring economies of scale? Versus, is there a significant open-source 
development community beyond the local enterprise for an open-
source alternative?
How are third-party developers impacted? If you want a particular •	
tool of high importance brought in to the enterprise service environ-
ment, how will that tool vendor integrate with the ESB (commercial 
from another party versus open source)?
Does the choice of implementation strategy affect how the larger •	
business strategy will be achieved?
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Conclusion
Architecting must be situated in its business or government operational 
context. When viewed in its context, the relationship to strategy becomes 
evident. Where strategies are clear, good architecting can follow. Where 
strategies are unclear, good architecting will be very difficult. As we 
consider not just the classic architecting relationship of problem-system 
but expand the focus to the structure of development programs, there 
becomes a synergy of architectural and strategic thinking.

The most successful, unprecedented systems involve changes to busi-
ness or operational models in parallel with new systems and technology. 
Just introducing a new system is not enough; when the system is revo-
lutionary, the context has to change as well for the greatest success to be 
realized. Coupled business or operational change must be enabled by the 
organization’s strategy.

The leading guidelines in this chapter were as follows:

Remember problem-system-program-organization.•	
Understand static and dynamic strategies, and how they map into •	
program styles.
Have a catalog of development program styles and understand •	
where each is best suited.
Know when to jump, and know when to settle for continuous improve-•	
ment.
Architect holistically for strategy, not just for local stakeholders.•	
Do not confuse architectures, architecture descriptions, and archi-•	
tecture description frameworks.
Think of architecture as the technical embodiment of strategy.•	
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The Political Process and 
Systems Architecting*

Brenda Forman

Introduction: The Political Challenge
The process of systems architecting requires two things above all others 
— value judgments by the client and technical choices by the architect. 
The political process is the way that the general public, when it is the 
end client, expresses its value judgments. High-tech, high-budget, 
high-visibility, publicly supported programs are therefore far more than 
engineering challenges; they are political challenges of the first magnitude. 
A program may have the technological potential of producing the most 
revolutionary weapon system since gunpowder, elegantly engineered and 
technologically superb, but if it is to have any real life-expectancy or even 
birth, its managers must take its political element as seriously as any other 
element. It is not only possible but likely that the political process will not 
only drive such design factors as safety, security, producibility, quantity, 
and reliability, but may even influence the choice of technologies to be 
employed.† The bottom line is:

If the politics don’t fly, the system never will.

*	 This chapter is based on a course originated and taught at the University of Southern 
California by Dr. Forman, now with the Lockheed Martin Corporation in Washington, 
DC. As indicated in the Introduction to Part IV, the political process of the American 
Federal Government was chosen for the course for three reasons: it is the process by 
which the general public expresses its value judgments as a customer, it is well docu-
mented and publicized, and it is seriously misunderstood by the engineering community, 
to the detriment of effective architecting.

†	Outside of the government sphere, it may seem that politics disappears, but it does not. 
Large corporations are also political entities, and the heuristics of politics operate in orga-
nizations on many levels. Of course, as an organization becomes commercially focused, 
its objectives are different and the motivations of its leaders are likewise different, but 
many of the same rules will apply. Thus, this chapter can be seen as a guide to the political 
demands on architects, even outside of the purely political sphere.
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Politics as a Design Factor
Politics is a determining design factor in today’s high-tech engineering. 
Its rules and variables must be understood as clearly as stress analysis, 
electronics, or support requirements. However, its rules differ profoundly 
from those of Aristotelian logic. Its many variables can be bewildering in 
their complexity and often downright orneriness.

In addition to the formal political institutions of the Congress and the 
White House, a program must deal with a political process that includes 
interagency rivalries, intra-agency tensions, dozens of lobbying groups, 
influential external technical review groups, powerful individuals both 
within and outside government, and always and everywhere, the media.

These groups, organizations, institutions, and individuals interact 
in a process of great complexity. This confusing and at times chaotic 
activity, however, determines the budgetary funding levels that either 
enable the engineering design process to go forward or threaten outright 
cancellation. More often of late, it directly affects the design in the form of 
detailed budget allocations, assignments of work, environmental impact 
statements, and the reporting of risks or threats.

Understanding the political process and dealing successfully with it 
are therefore crucial to program success.

Example: Perhaps no major program has seen as many 
cuts, stretch outs, reviews, mandated designs, and risk 
of cancellation as the planetary exploration program 
of the 1970s and 1980s. Much of the cause was the need 
to fund the much larger Shuttle program. For more 
than a decade, there were no planetary launches and 
virtually no new starts. From year to year changes 
were mandated in spacecraft design, the launch vehi-
cles to be used, and even the planets and asteroids to 
be explored. The collateral damage to the planetary 
program of the Shuttle Challenger loss was enor-
mous in delayed opportunities, redesigns, and wasted 
energy. Yet the program was so engineered that it still 
produced a long series of dramatic successes, widely 
publicized and applauded, using spacecraft designed 
and launched many years before.*

*	 As a follow-up, in the 1990s, JPL made an aggressive move toward shorter missions with 
more rapid turnover. This can be seen as emphasizing the longer term importance of 
learning and adapting in scientific exploration over immediate cost efficiency. A consis-
tent, year-to-year stream of results also helps build constituency. But, ironically, in the 
mid-2000’s planetary exploration is once again under pressure, this time from the expense 
of terminating the Shuttle program.



Chapter 13:  The Political Process and Systems Architecting	 363

Begin by understanding that power is very widely distributed in 
Washington. There is no single, clear-cut locus of authority to which to turn 
for support for long-term, expensive programs. Instead support must be 
continuously and repeatedly generated from widely varying groups, each 
of which may perceive the program’s expected benefits in quite different 
ways and many of whose interests may diverge rather sharply when the 
pressure is on.

Example: The nation’s space program is confronted 
with extraordinary tensions, none of which are 
resolvable by any single authority, agency, branch, or 
individual. There are tensions between civilian and 
military, between science and application, between 
manned and unmanned flight, between com-
plete openness and the tightest security, between 
the military services, between NASA centers and 
between the commercial and government sectors, to 
name a few. Typical of the contested issues are launch 
vehicle development, acquisition and use; allocations 
of work to different sections of the country and the 
rest of the world; and of the future direction of every 
program. No one, anywhere, has sufficient authority 
to resolve any of these tensions and issues, much less 
to resolve them all simultaneously.

This broad dispersion of power repeatedly confuses anyone expecting 
that somebody will really be in charge there. Rather the opposite is true: 
anything that happens in Washington is resultant of dozens of political 
vectors, all pulling in different directions. Everything is the product of 
maneuver and compromise. When those fail, the result is policy paralysis 
— and all too possibly, program cancellation by default or failure to act.

There are no clear-cut chains of command in the government. It is 
nothing like the military or even like a corporation. The process gets even 
more complicated because power does not stay put in Washington. Power 
relationships are constantly changing, sometimes quietly and gradually, 
at other times suddenly, under the impact of a major election or a domestic 
or international crisis. These shifts can alter the policy agenda — and 
therefore funding priorities — abruptly and with little advance warning. 
A prime example is the ever-changing contest over future defense spend-
ing levels in the wake of the welcomed end of the Cold War.

The entire process is far better understood in dynamic than static 
terms. There is a continuous ebb and flow of power and influence between 
the Congress and the White House, among and within the rival agencies, 
and among ambitious individuals. And through it all, everyone is playing 
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to the media, particularly to television, in efforts to change public percep-
tions, value judgments, and support.

The First Skill to Master
To deal effectively with this process, the first skill to master is the ability to 
think in political terms. And that requires understanding that the political 
process functions in terms of an entirely different logic system than 
the one in which scientists, engineers, and military officers are trained. 
Washington functions in terms of the logic of politics. It is a system every 
bit as rigorous in its way as any other, but its premises and rules are pro-
foundly different. It will therefore repeatedly arrive at conclusions quite different 
from those of engineering logic, based on the same data.

Scientists and engineers are trained to marshal their facts and pro-
ceed from them to proof: for them, proof is a matter of firm assumptions, 
accurate data, and logical deduction. Political thinking is structured 
entirely differently. It depends not on logical proof but on past experi-
ences, negotiation, compromise, and perceptions. Proof is a matter of 
“having the votes.” If a majority of votes can be mustered in Congress 
to pass a program budget, then — by definition — the program has been 
judged to be worthy, useful, and beneficial to the nation. If the program 
cannot, then no matter what its technological merits, the program will 
lose out to other programs that can.

Mustering the votes depends only in part on engineering or tech-
nological merit. These are always important — but getting the votes 
frequently depends as much or even more on a quite different value judg-
ment, the program’s benefits in terms of jobs and revenues among the 
Congressional districts.

Example: After the Lockheed Corporation won 
NASA’s Advanced Solid Rocket Motor (ASRM) 
program, the program found strong support in 
the Congress because Lockheed located its plant 
in the Mississippi district of the then Chairman of 
the House Appropriations Committee. Lockheed’s 
factory was only partially built when the chairman 
suffered a crippling stroke and was forced to retire 
from his Congressional duties. Shortly thereafter, 
the Congress, no longer obliged to the chairman, 
reevaluated and then cancelled the program.

In addition to the highest engineering skills, therefore, the successful 
architect-engineer must have at least a basic understanding of this political 
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process. The alternative is to be repeatedly blindsided by political events 
— and worse yet, not even to comprehend why.

Heuristics in the Political Process: 
“The Facts of Life”
Following are some basic concepts for navigating these rocky rapids — 
“The Facts of Life.” They are often unpleasant for the dedicated engineer, 
but they are perilous to ignore. Understanding them, on the other hand, 
will go far to help anticipate problems and cope more effectively with 
them. They are as follows and will be discussed in turn:

Politics, not technology, sets the limits of what technology is allowed •	
to achieve.
Cost rules.•	
A strong, coherent constituency is essential.•	
Technical problems become political problems.•	
The best engineering solutions are not necessarily the best politi-•	
cal solutions.

FACT OF LIFE # 1: Politics, not technology, sets the limits 
of what technology is allowed to achieve.

If funding is unavailable for it, any program will die, and getting the fund-
ing — not to mention keeping it over time — is a political undertaking. 
Furthermore, funding — or rather, the lack of it — sets limits that are 
considerably narrower than what our technological and engineering 
capabilities could accomplish in a world without budgetary constraints. 
Our technological reach increasingly exceeds our budgetary grasp. This can 
be intensely frustrating to the creative engineer working on a good and 
promising program.

Example: The space station program can trace its 
origins to the mid-1950s. By the early 1960s it was a 
preferred way station for traveling to and from the 
moon. But when, for reasons of launch vehicle size 
and schedule, the Apollo program chose a flight 
profile that bypassed any space station and elected 
instead a direct flight to lunar orbit, the space station 
concept went into limbo until the Apollo had suc-
cessfully accomplished its mission. The question then 
was, what next in manned spaceflight? A favored 
concept was a manned space station as a waypoint 
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to the moon and planets, built and supported by a 
shuttle vehicle to and from orbit. Technologically, 
the concept was feasible; some argued that it was 
easier than the lunar mission. Congress balked. 
The President was otherwise occupied. Finally, 
in 1972, the Shuttle was born as an overpromised, 
underbudgeted fleet, without a space station to 
serve. Architecturally speaking, major commit-
ments and decisions were made before feasibility 
and desirability had been brought together in a 
consistent whole.

FACT OF LIFE #2: Cost rules.

High technology gets more expensive by the year. As a result, the only 
pockets deep enough to afford it are increasingly those of the government.* 
The fundamental equation to remember is Money = Politics. Reviews and 
hearings will spend much time on presumably technical issues, but the 
fundamental and absolutely determining consideration is always afford-
ability — and affordability is decided by whichever side has the most votes.

Funding won in one year, moreover, does not stay won. Instead it 
must be fought for afresh every year. With exceedingly few exceptions, 
no program in the entire federal budget is funded for more than one year 
at a time. Every year is therefore a new struggle to head off attackers who 
want the program’s money spent somewhere else, to rally constituents, to 
persuade the waverers, and, if possible, to add new supporters.

This is an intense, continuous, and demanding process requiring huge 
amounts of time and energy. And after one year’s budget is finally passed, 
the process starts all over again. There is always next year. Keeping a 
program “sold,” in short, is a continuous political exercise, and like the 
heroine in the old movie serial, “The Perils of Pauline,” some programs at 
the ragged edge will have to be rescued from sudden death on a regular 
basis. Rescue, if and when, may be only partial — not every feature can or 
will be sustained. If one of the lost features is a system function, the end 
may be near.

*	 Although the economic expansion through the end of the 1990s sets an interesting counter
point. The government is less and less able to influence technology in certain areas, for 
example, computing, simply because the commercial market has become so large relative 
to the federal market. Similarly, some of the most ambitious space and launch ventures 
in the 1990s were privately funded. Although many of those did not come to fruition, 
the continuing development of some such efforts is testimony to the role of return-on-
investment thinking over cash-flow thinking.
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Example: After the Shuttle had become operational, 
the question again was, what next in manned 
spaceflight? Although a modestly capable space sta-
tion had been successfully launched by a Saturn 
launch vehicle, the space station program had 
otherwise been shelved once the Shuttle began 
its resource-consuming development. With devel-
opmental skill again available, the space station 
concept was again brought forward. However, 
order-of-magnitude life-cycle cost estimates of the 
proposed program placed the cost at approximately 
that of the Apollo, which in 1990-decade dollars 
would have been about $100  billion — clearly too 
much for the size of constituency it could com-
mand. The result has been an almost interminable 
series of designs and redesigns, all unaffordable as 
judged by Congressional votes. Even more serious, 
the cost requirement has resulted in a spiraling 
loss of system functions, users, and supporters. 
Microgravity experiments, drug testing, on-board 
repair of on-orbit satellites, zero-g manufacturing, 
optical telescopes, animal experiments, military 
research and development — one after another 
had to be reduced to the point of lack of interest by 
potential users. A clearly implied initial purpose of 
the space station, to build one because the Soviet 
Union had one, was finally put to rest with the U.S. 
government’s decision to bring Russia into a joint 
program with the United States, Japan, Canada, 
and the European Space Agency. One apparent cer-
tainty: the U.S. Congress made the value judgment 
that a yearly cap of $2.1 billion is all that a space 
station program is worth. The design must comply 
or risk cancellation. Cost rules.

Example: Now that the decision to terminate the 
Shuttle has been made, a new program (Constellation) 
is required to maintain U.S. human access to space. 
All agree that the Shuttle should not be terminated 
until the new system is flying to avoid a break in U.S. 
human access to space. However, that can be accom-
plished only by an expensive overlap of the program 
of several years that requires a large (several billion 
U.S. dollars) increase in the NASA top-line budget. 
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NASA has instead structured the programs with a 
multiyear gap in space access, but avoids the fund-
ing hiccup (using savings from Shuttle termination 
to ramp up production funding for Constellation). 
Although there is widespread unhappiness, in 
Congress and NASA, about the resulting gap, there 
is no willingness to raise budgets enough to close it. 
Again, cost rules.

FACT OF LIFE #3: A strong, coherent constituency 
is essential.

No program ever gets funded solely — or even primarily — on the 
basis of its technological merit or its engineering elegance. By and large, 
the Congress is not concerned with its technological or engineering 
content (unless, of course, those run into problems — see Fact of Life #4). 
Instead, program funding depends directly on the strength and staying 
power of its supporters — that is, its constituency.

Constituents support programs for any number of reasons, from the 
concrete to the idealistic. At times, the reasons given by different sup-
porters will even seem contradictory. From the direct experience of one 
of the authors, some advocates may support defense research programs 
because they are building capability; others because research in promis-
ing better systems in the future permits reduction if not cancellation of 
present production programs.

Example: The astonishing success of the V-22 tilt-rotor 
Osprey aircraft program in surviving 4 years of hos-
tility during the 1988–1992 period, and several fatal 
accidents, is directly attributable to the strength of 
its constituency, one that embraced not merely its 
original Marine Corps constituency but other Armed 
Services as well — plus groups that see it as benefit-
ing the environment (by diminishing airport conges-
tion), as improving the balance of trade (by tapping a 
large export market), and as maintaining U.S. tech-
nological leadership in the aerospace arena.

Assembling the right constituency can be a delicate challenge because 
a constituency broad enough to win the necessary votes in Congress can 
also easily fall prey to internal divisions and conflicts. Such was the case 
for the Shuttle and is the case for the Space Station. The scientific commu-
nity proved to be a poor constituency for major programs; the more fields 
that were brought in, the less the ability to agree on mission priorities. On 
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the other hand, a tight homogeneous constituency is probably too small 
to win the necessary votes. The superconducting supercollider proved to 
be such. The art of politics is to knit these diverse motivations together 
firmly enough to survive successive budget battles and keep the selected 
program funded. Generally speaking, satellites for national security pur-
poses have succeeded in this political art. It can require the patience of a 
saint coupled with the wiliness of a Metternich, but such are the survival 
skills of politics.

FACT OF LIFE #4: Technical problems become politi-
cal problems.

In a high-budget, high-technology, high-visibility program, there is no 
such thing as a purely technical problem. Program opponents will be constantly 
on the lookout for ammunition with which to attack the program, and 
technical problems are tailor-made to that end.

And the problems will normally be reported in a timely fashion. As 
many programs have learned, mistakes are understandable; failing to report 
them is inexcusable. In any case, reviews are mandated by the Congress as 
a natural part of the program’s funding legislation. Any program that is 
stretching the technological envelope will inevitably encounter technical 
difficulties at one stage or another. The political result is that “technical” 
reports inevitably become political documents as opponents berate and 
advocates defend the program for its real or perceived shortcomings.

Judicious damage prevention and control, therefore, are constantly 
required. Reports from prestigious scientific groups such as the Nuclear 
Regulatory Commission (NRC) or Defense Science Board (DSB) will 
routinely precipitate Congressional hearings in which hostile and friendly 
Congressmen will pit their respective expert witnesses against one another 
and the program’s fate may then depend not only on the expertise, but 
on the political agility and articulateness of the supporting witnesses. 
Furthermore, although such hearings will spend much time on ostensibly 
technical issues, the fundamental and absolutely determining consider-
ation is always affordability — and affordability is decided by whichever 
side has the most votes.

Examples: Decades-long developments are particu-
larly prone to have their technical problems become 
political. Large investments have to be made every 
year before any useful systems appear. The widely 
reported technical difficulties of the B-1 and B-2 
bombers, the C-17 cargo carrier, the Hubble telescope, 
and the Galileo Jupiter spacecraft became matters of 
public as well as legislative concern. The futures of 
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long-distance air cargo transport, of space explo-
ration, and even of NASA are all brought up for 
debate and reconsideration every year. Architects, 
engineers, and program managers have good rea-
son to be concerned.

FACT OF LIFE #5: The best engineering solutions are 
not necessarily the best political solutions.

Remember that we are dealing with two radically different logic 
systems here. The requirements of political logic repeatedly run counter of those 
of engineering logic. Take construction schedules: in engineering terms, 
an optimum construction schedule is one that makes the best and most 
economical use of resources and time and yields the lowest unit cost. 
In political terms, the optimum construction schedule is the one that the 
political process decides is affordable in the current fiscal year. These two 
definitions routinely collide; the political definition always wins.

Example: NASA and other agencies often refer to 
what is called the program cost curve. It plots total 
cost of development and manufacture as a function 
of its duration (Figure 13.1).

The foregoing example leads to another provisional heuristic:

With few exceptions, schedule delays and life-cycle cost 
increases are accepted grudgingly; annual cost overruns 
are not, and for good reason.

The reason is basic. A cost overrun — that is, an increase over budget 
in a given year — will force the client to take the excess from some other 
program, and that is not only difficult to do, it is hard to explain to the 
blameless loser and to that program’s supporters. Schedule delays mean 
postponing benefits at some future cost — neither of which affect anyone 
today. At the worst end of this heuristic, it leads to managers “kicking 
problems down the road” knowing they will have moved on before the 
problem comes due.

Example: Shuttle cost overruns cost the unmanned 
space program and its scientific constituency two 
decades of unpostponable opportunities, timely 
mission analyses, and individual careers based on 
presidentially supported, wide-consensus planning.
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By the same token, a well-run program that sticks to budget can 
encounter very difficult technical problems and survive.

Examples: Communication and surveillance satellite 
programs.

As an aside, this heuristic leads us directly back to observations on 
program and organization architecture and the role of feedback loops at 
the enterprise level. Consider what happens when an organization caps the 
duration of programs within its sphere of responsibility to, for example, 
5 years. If they do so honestly they will, of course, push some long-term, 
ambitious endeavors out of feasibility. But, they will have created a situ-
ation where program managers and architects can be expected to be 
assigned to the same program for its full lifetime. They can expect to be 
personally accountable for the end-point consequences of their start-point 
actions. Moreover, when selecting program managers and architects for 
the next program, executives can use the actual results of past programs 
in evaluations, not the results reported before the responsible parties have 
moved onto other projects. In the language of economists, the “moral 
hazard” issue of people undertaking risks that others will have to suffer 
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Figure 13.1  The curve is logical and almost always true. But, it is irrelevant because 
the government functions on a cash-flow basis. Long-term savings will almost 
always be foregone in favor of minimizing immediate outlays. Overall life-cycle 
economies of scale will repeatedly be sacrificed in favor of slower appropriations, 
even if they cause higher unit costs and greater overall program expense. There is 
also the contradictory perception that if a given program is held to a tight, short 
schedule it will cost less, facts notwithstanding. (See Chapter 5, “Social Systems,” 
Facts versus Perceptions: An Added Tension.)
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from would be largely eliminated. The feedback loop at the enterprise 
level now synchronizes programmatic and human responses.

The political process can be bewildering and intimidating to the 
uninitiated. But it need not be so. Because in addition to being confus-
ing and chaotic, this is a profoundly interesting and engrossing process, 
every bit as challenging as the knottiest engineering problem. Indeed it 
is an engineering challenge because it molds the context in which systems 
architecting and engineering must function.*

The reader may well find the craziness of the political process distaste-
ful — but it will not go away. The politically naive architect may experience 
more than a fair share of disillusion, bitterness, and failure. The politi-
cally astute program manager, on the other hand, will understand the 
political process, will have a strategy to accommodate it, and will counsel 
the architect accordingly. Some suggestions for the architect: It helps to 
document accurately when and why less-than-ideal technical decisions 
were made — and how to mitigate them later, if necessary. It helps to 
budget for contingencies and reasonably foreseeable risks. It helps to have 
stable and operationally useful interim configurations and fallback posi-
tions. It helps to acknowledge the client’s right to have a change of mind or 
to make difficult choices without complaint from the supplier. Above all, 
it helps to acknowledge that living in the client’s world can be painful, too. 
And finally, select a kit of prescriptions for the pain such as the following 
from Appendix A:

The Triage, when there is only so much that can be done: Let the •	
dying die. Ignore those who will recover on their own. And treat 
only those who would die without help.
The most important single element of success is to listen closely •	
to what the customer [in this case, the Congress] perceives as his 
requirements and to have the will and ability to be responsive. 
(J. E. Steiner, The Boeing Company, 1978)
Look out for hidden agendas.•	

That does not mean that architects and engineers have to become 
expert lobbyists — but it does mean having an understanding of the polit-
ical context within which programs must function, the budget battle’s 
rules of engagement, and of those factors that are conducive to success or 
failure. The political process is not outside, it is an essential element of, the 
process of creating and building systems.

*	 This is one area where commercial and government politics are often dramatically 
different. Commercial enterprises tend to be return-on-investment driven rather than 
cash-flow driven. However, firms that are driven by quarterly results will tend to resemble 
the cash-flow-driven government budgeting process.
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A Few More Skills to Master
Following are a few more basic coping skills for the successful systems 
architect. Foremost, understand that the Congress and the political process 
are the owners of your project. They are the ultimate clients. It is absolutely 
essential to deal with them accordingly by making sure they understand 
what you are trying to do, why it is important, and why it makes political 
sense for them to support you.

Be informed. This is your life, so be active. Learn the political process 
for yourself and keep track of what is going on. Figure out what informa-
tion the political system needs in order to understand what the program 
needs — and arrange to supply it to them. A chief engineer has utterly 
different information requirements from a Congressional oversight com-
mittee. Learn what sort of information furthers your program’s fortunes 
in Washington and then get it to your program managers so they can get 
it to the political decision makers who determine your program’s funding. 
Maybe your program has a great job-multiplier effect in some crucial 
lawmaker’s district. Maybe its technology has some great potential com-
mercial applications in areas where the United States is losing a competi-
tive battle with another country.

The point is that the political process bases its decisions on very dif-
ferent information than does the engineering process. Learn to satisfy 
both those sets of requirements by plan.

Conclusion
The political process is a necessary element of the process of creating and 
building systems. It is not incomprehensible; it is different. Only when 
they are not understood do the political Facts of Life instill cynicism or 
a sense of powerlessness. Once understood, they become tools like any 
others in the hands of an astute architect. It is a compliment to the client 
to use them well.
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The Professionalization of 
Systems Architecting

Elliott Axelband

Profession: Any occupation or vocation requir-
ing training in the liberal arts or the sciences and 
advanced study in a specialized field.1

Introduction
To readers who have progressed this far, the existence of systems archi-
tecting as a process, regardless of who performs it, can be taken for granted. 
Functions and forms have to be matched, system integrity has to be main-
tained throughout development, and systems have to be certified for use. 
Visions have to be created, realized, and demonstrated.

This chapter, in contrast, covers the evolution of the systems archi-
tecting profession. An appropriate place to begin is with the history of the 
closely related profession of systems engineering, the field from which 
systems architecting evolved.

The Profession of Systems Engineering
Systems engineering as a process began in the early 1900s in the commu-
nication and aircraft industries. It evolved rapidly during and after World 
War II as an important contributor to the development of large, innovative, 
and increasingly complex systems. By the early 1950s, systems engineering 
had reached the status of a recognized, valued profession. Communication 
networks, ballistic missiles, radars, computers, and satellites were all recog-
nized as systems. The “systems approach” entered into everyday language 
in many fields, social as well as technical. Government regulations and 
standards explicitly addressed systems issues and techniques. Thousands 
of engineers called systems engineering their vocation. Professional 
societies formed sections with journals devoted to systems and their 
development.2 Universities established systems engineering departments 
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or systems-oriented programs.* Books addressing the process, or aspects 
of it, started to appear.3 Most recently, the profession became formally rep-
resented with the establishment of the International Council on Systems 
Engineering (INCOSE).4

The core of the systems approach from its beginnings has been the 
definition and management of system interfaces and trade-offs, of which 
there can be hundreds in any one system. Systems analysis, systems inte-
gration, systems test, and computer-aided system design were progres-
sively developed as powerful and successful problem-solving techniques. 
Some have become self-standing professions of their own under the rubric 
of systems engineering. Their academic, industrial, and governmental 
credentials are now well established.

All are science based — that is, based on measurables and a set of 
assumptions. In brief, these are that requirements and risks can be quan-
tified, solutions can be optimized, and compliance specified. But these 
same assumptions are also constraints on the kinds of problems that can 
be solved. In particular, science-based systems engineering does not do 
well in problems that are abstract, data deficient, perceptual, or for which 
the criteria are immeasurable.

For example, the meanings of such words as safe, survivable, afford-
able, reliable, acceptable, good, and bad, are either outside the scope of 
systems engineering — “ask the client for some numbers” — or are force-
fitted to it by subjective estimates. Yet these words are the language of 
the clients. Quantifying them can distort their inherent vagueness into an 
unintended constraint.

There is no group of professionals that better understands these dif-
ficulties than systems engineers and executives — nor who wish more 
to convert immeasurable factors to quantitatively statable problems by 
whatever techniques can help. The first step they made was to recognize 
the nature of the problems. The second was to realize that almost all of 
them occur at the front (and back) ends of the engineering cycle. Consider 
the following descriptive heuristics, developed long ago from systems 
engineering experience:

All the serious mistakes are made in the first day.•	
Regardless of what has gone before, the acceptance criteria deter-•	
mine what is actually built.
Reliability has to be designed in, not tested in.•	

*	Among the best known are the University of Arizona at Tucson, Boston University, 
Carnegie Tech, Case Western Reserve, the University of Florida, Georgia Tech, the 
University of Maryland, George Mason University, Ohio State, MIT (Aerospace), New 
York Polytech, the University of Tel Aviv, the University of Southern California, Virginia 
Polytechnic Institute, and the University of Washington.
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It is no coincidence that many systems engineers, logically enough, 
now consider systems architecting to be “the front end of systems engineer-
ing” and that architectures are “established structures.” More precisely, 
systems architecting can be seen as setting up the necessary conditions 
for systems engineering and certifying its results. In short, systems archi-
tecting provides concepts for analysis and criteria for success. In evolving 
systems, the functions of systems architecting, systems engineering, and 
disciplinary engineering are all more episodic. Concepts for analysis and 
criteria for success are established in early phases, but are revised with 
each new spiral through the development process. Systems engineers 
must control interfaces through many cycles of design, development, and 
integration, not just through one. In addition to conducting classical archi-
tecting episodically, the systems architect must also consider the issue of 
stable forms. The evolving system should not change everything on each 
cycle; it needs to retain stable substructures to evolve effectively. The defi-
nition of these substructures is part of the architect’s role.

The immediate incentive for making architecting an explicit process, 
the necessary precursor to establishing it as a self-standing profession 
complementary to systems engineering, was the recognition in the late 
1980s by systems executives that “something was missing” in systems 
development and acquisition. And the omission was causing serious 
trouble: system rejection by users, loss of competitive bids to innovators, 
products stuck in unprofitable niches, military failures in joint opera-
tions, system overruns in cost and schedule, and so on — all traceable to 
their beginnings. Yet there was a strong clue to the answer. Retrospective 
examinations of earlier, highly successful systems showed the existence 
in each case of an overarching vision, created and maintained by a very 
small group, that characterized the program from start to finish.5

Software engineers and their clients were among the first to recog-
nize that the source of many of their software system problems was struc-
tural — that is, architectural.* Research in software architecture followed 
in such universities as Carnegie Mellon, the University of North Carolina 
Chapel Hill, the University of California at Irvine, and the University 
of Southern California. Practitioners began identifying themselves as 
software architects and forming architectural teams. Communication, 
electronics, and aerospace systems architects followed shortly thereafter.

*	One of the earliest and most famous books on systems architecting is The Mythical 
Man-Month, Essays on Software Engineering by Frederick P. Brooks, Jr. (1974, Addison-
Wesley, Reading, MA), which not only recognized the structural problems in software 
but explicitly, on p. 37, calls for a systems architect, a select team, conceptual integrity, 
and for the architect to “confine himself scrupulously to architecture” and to stay clear 
of implementation. Brook’s analogy for the architectural team was a surgical team. He 
credits a 1971 Harlan Mills proposal as the source of these precepts.
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Societies established architecture working groups, notably the 
INCOSE Systems Architecting Working Group6 and the IEEE Software 
Engineering Standards Committee’s Architecture Working Group,7 to 
formulate standard definitions of terms and descriptions for systems and 
software architectures. These activities are essential to the development 
both of a common internal language for systems architecting and for the 
integration of software architecture models and overall systems architec-
tures in complex, software-intensive systems.

At the scale of the profession of engineering, the recognition that 
something was missing led to identifying it, by direct analogy with the 
processes of the classical architectural profession, as systems architecting.8 
Not surprisingly, the evolution of systems architecting tools was found to 
be already underway in model building, discussed in Part III, and systems 
standards,* discussed in the next section.

Systems Architecting and Systems Standards
Earlier chapters have pointed out that the abstract problems of the concep-
tual and certification phases require different tools from the analytic ones of 
system development, production, and test. One of the most important sets of 
tools is that of systems standards. Chapter 11 discussed one type of archi-
tecture standard, standards for architecture description. Here we discuss 
a different category of standards, those that define development processes. 
For historical reasons, architectural process standards were not developed as 
a separate set. Instead, general systems process standards were developed 
that included systems architecting elements and principles understood at the 
time, most of them induced from lessons learned in individual programs. As 
will be seen, some key elements appeared as early as in the 1950s.

Driven by much the same needs, the recognition of systems archi-
tecting in the late 1980s was paralleled, independently, by a recognition 
that existing systems standards needed to be modified or supplemented 
to respond to long-standing systems-level structuring problems. Bringing 
the two tracks, architecting and standards, together should soon help 
both. Architecting can improve systems standards. Systems standards 
can provide valuable tools for the systems architecting profession.

Some of the earliest systems standards in which elements of systems 
architecting appeared were those of system specification, interface descrip-
tion, and interface management. They proliferated rapidly. A system speci-
fication can beget 10 subsystem specifications, each of which is supported 

*	Systems standards, for the purposes of this book, are those engineering standards having 
impact on the system as a whole, whether explicitly identified as such in their titles or not. 
They are a relatively small part of the totality of engineering standards. Many, if not most, 
are interface and test standards.
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by 10 lower-level subsystem specifications, and so on. All of these had to be 
knitted together by a system of 100 or so interface specifications.

Even though modern computer tools (computer-assisted system 
engineering [CASE] tools) have been developed to help keep track of the 
systems engineering process, extraordinarily disciplined efforts are still 
required to maintain the systems integrity.9

As systems complexity increased, systems engineers were faced with 
increasingly difficult tasks of assuring that the evolving form of the system 
met client needs, guaranteeing that trade-offs maintained system intent in 
the face of complications arising during development, and finally assuring 
that the system was properly tested and certified for use. In due course, 
the proliferation of detailed specifications led to a need for overarching 
guidelines, an overview mechanism for “structuring” the complexity that 
had begun to obscure system intent and integrity.

Before continuing, it should be pointed out that overarching guidelines 
are not, and cannot be, a replacement for quantitative system standards and 
specifications. The latter represent decades of corporate memory, measur-
able acceptance criteria, and certified practices. Guidelines — performance 
specifications, tailorable limits, heuristics, and the like — have a fundamen-
tal limitation. They cannot be certified by measurables. They are too “soft” 
and too prone to subjective perceptions to determine to the nearest few 
percentage points whether a system performs, or costs, what it should. At 
some point, the system has to be measured if it is to be judged objectively.

From the standpoint of an architecting profession, the most impor-
tant fact about system standards is that they are changing. To understand 
the trend, their development will be reviewed in some detail, recognizing 
that some of them are continuing to be updated and revised.

The Origins of Systems Standards
The Ballistic Missile Program of the 1950s
Urgent needs induce change, and, eventually, improvement. The U.S./Soviet 
ballistic missile race begun in the mid-to-late 1950s brought about signifi-
cant change, as it led to the development and fielding of innovative and 
complex systems in an environment where national survival was threat-
ened. To its credit, the U.S. Air Force recognized the urgent need to develop 
and manage the process of complex system evolution, and did so.* The 

*	Those responsible for this development, Simon Ramo and General Bernard Schriever, 
in particular, from time to time referred to their respective organizations as architects 
as well as system integrators. “Architecture,” as a formalism, was largely bypassed in 
the urgency to build ballistic missiles as credible deterrents. Nonetheless, the essential 
“architectural” step of certification of readiness for launch was incorporated from the 
beginning and executed by all successor organizations. It became a centerpiece for the 
space launch programs of the 1960s and thereafter.
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response in the area of standards was the “375” System Standard, subse-
quently applied to the development of all new complex Air Force equip-
ment and systems.

“375” required several things that are now commonplace in systems 
architecting and engineering. Timelines depicting the time-sequenced 
flow of system operation were to be used as a first step in system analysis.* 
From these, system functional block diagrams and functional require-
ments were to be derived as a basis for subsequent functional analysis and 
decomposition. The functional decomposition process in turn generated 
the subsystems that with their connections and constraints comprised 
the system, and allowed the generation of subsystem requirements via 
trade-off processes.

“375” was displaced in 1969 by a MILSTD 499 (Military Standard — 499),† 
which was applied throughout the Department of Defense. MILSTD 499A, an 
upgrade, was released in 1974 and was in effect for 20 years. MILSTD 499B, a 
later upgrade, was unofficially released in 1994, and was almost immediately 
replaced by EIA/IS 632 Interim Systems Engineering Standard.10

The Beginning of a New Era of Standards

The era of MILSTDs 499/499A/499B was an era in which military stan-
dards became increasingly detailed. It was not only these documents 
that governed system architecting and engineering, but they in turn 
referenced numerous other DoD (Department of Defense) MILSTDs that 
addressed aspects of system engineering, and which were imposed on 
the military system engineering process as a consequence. To cite a few: 
MILSTD 490, Specification Practices, 1972; MILSTD 481A, Configuration 
Control — Engineering Changes, Deviations and Waivers (Short Form), 
1972; MILSTD 1519, Test Requirements Document, 1977; and MILSTD 1543, 
Reliability Program Requirements for Space and Missile Systems,  1977. 
See Eisner (1994)11 for additional examples.

This mindset changed with the end of the Cold War in the late 1980s. 
Cost became an increasingly important decisive factor in competitions 
for military programs, supplanting performance, which had been the 
dominant factor in the prior era. Lowest cost, it was argued, could only 
be achieved if the restrictions of the military standards were muted. The 
detailed process (“how to”) standards of the past, which specified how to 
conduct systems engineering and other program operations, needed to be 

*	This is not necessarily appropriate for all systems, but it was well suited to the missile, 
airplane, and weapon systems the Air Force had in mind at the time.

†	The official form is “Mil. Std. - 499,” but for ease of reading in a text, an alternate form, 
“MILSTD 499,” will be used here.
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replaced by standards that only provided guidelines,* leaving the engi-
neering specifics to the proposing companies that would select these so as 
to be able to offer a low-cost product.12 Further supporting this reasoning 
was the reality that the most sophisticated components and systems in 
fields such as electronic computer chips and computers were now avail-
able at low cost from commercial sources, whereas in the past the state of 
the art was available only from MILSTD-qualified sources. It was in this 
environment that EIA/IS 632 was born.

EIA/IS 632, an Architectural Perspective

EIA/IS 632 is short by comparison with other military standards. Its main 
body is 36 pages. Including appendices, its total length is 60 pages, and 
these include several which have been left intentionally blank. And most 
significantly, no other standards are referenced.

The scope and intent of the document is best conveyed by the follow-
ing quotes from its contents:

“The scope … of systems engineering (activities) are defined in terms •	
of what should be done, not how to do … (them).” (p. i)
“(EIA/IS-632) identifies and defines the systems engineering tasks •	
that are generally applicable throughout the system life cycle for any 
program.” (p. 7)

From a systems architecting perspective, it is clear that the scope of the life-cycle 
perspective includes the modern understanding of systems architecting.

One of the major activities of the systems architect, that of giving form 
to function, is addressed in pages 9 through 11. These pages summarize, in 
their own words and style, the client/architect relationship, the establish-
ment of the defining system functions, the development of the system’s 
architecture, and the process of allocating system functions to architectural 
elements via trade-offs. By implication, the trade-offs continue, with 
varying degrees of concentration, throughout the life cycle.

Curiously, test and validation are deferred to a later section entitled 
“4.0  Detailed Requirements.” This is consistent with the historical 
organization of the preceding military standards, wherein section 4 was 
dedicated to product assurance, a term that included system test. It is, 
however, a significant departure from the systems architecting point of 
view. A basic tenet of systems architecting is that certification for use is 
one of its most important functions, and that this should be developed 

*	As noted earlier, replacement is a questionable motivation for guidelines. Nonetheless, the 
establishment of a high-level guideline document — a key architecting technique — was 
a milestone.
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in parallel with, and as a part of, the development of a system’s archi-
tecture. Consider, for example, some of the architecting heuristics that 
could apply:

To be tested, a system must be designed to be tested.•	
Regardless of what has gone before, the acceptance (and test) criteria •	
determine what is actually built.

There are other sound and basic architecting principles that, suitably 
explained, could and should have been included as historically validated 
guiding principles in EIA/IS 632 which, in its own words, “provides guid-
ance for the conduct of a systems engineering effort.” Some applicable 
heuristics would include the following:

Simplify. Simplify. Simplify.•	
The greatest leverage in systems architecting is at the interfaces.•	
Except for good and sufficient reasons, functional and physical •	
structuring should match.
In partitioning a system into subsystems, choose a configuration •	
with minimal communications between subsystems.
It is easier to match a system to the human one that supports it than •	
the reverse.

Beyond these, the need for an unbiased agent — the systems architect — 
to represent the client and technically guide the process is absent and a 
serious omission.

Commercial Standards
Even though EIA/IS 632 applies only to military systems engineering, 
that was not its original intent. The objective was to develop a universal 
standard for systems engineering that would apply to both the military 
and commercial worlds and be ratified by all of industry. However, there 
was an urgency to publish a new military standard and in the 4-month 
schedule that was assigned, only it could be developed. This led to two 
consequences. First, IEEE 1220,13 a commercial systems engineering stan-
dard, was separately published. Second, the merging of EIA/IS 632 with 
IEEE 1220 to create the first universal standard for system engineering 
was planned for publication in 1997. The development of this universal 
systems engineering standard involves personnel from several organiza-
tions including ANSI (American National Standards Institute) and EIA.

At the international level, ISO (The International Standards Organi
zation) has issued an overall standard covering the development and 
engineering of systems (15288). This standard is not a systems engineering 
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standard per se, but it lays out a set of activities, including systems engi-
neering activities, associated with developing a system. 15288 is intended 
to be a standard at a level above that of the other cited standards.

IEEE 1220, An Architectural Perspective

The IEEE working group that generated 1220 was sponsored by the IEEE 
Computer Society and included representatives from INCOSE, the EIA, 
and the IEEE AES Society. It is the first commercial standard to formally 
address systems engineering. 1220’s similarity with EIA/IS 632 derives 
from a fair degree of common authorship plus a deliberate effort to 
(1) coordinate efforts in order to present a common view of systems engi-
neering and (2) anticipate the eventual merger of the two documents. The 
similarities are therefore not surprising, but there are significant differ-
ences that are worthy of mention.

To begin with similarities, both standards are guides and not “how to” 
instruction manuals. Both address the entire life cycle of a product. Both 
share a common architecture, addressing in similar ways things that are 
becoming similar — the processes of system engineering in the military 
and commercial environments. This extends to a fair degree of common 
vocabulary, although mercifully 1220 is freer of acronyms.

Compared to EIA/IS 632, 1220 is more complex and longer (58 pages in 
the body of the report versus 36, and 66 pages overall versus 60). It is much 
more rigorous in its definitions and use of system hierarchical structures. 
It has several significant differences that tend to favor the recognition and 
processes of systems architecting.

The subsystems that comprise a system are understood and treated •	
as systems. (pp. 2, 4, 13)
The customer (client) is explicitly identified along with a need to •	
determine and quantify his or her expectations. (page 35)
External constraints including public and political constraints are •	
recognized as part of the process. (page 35)
The role of system boundaries and constraints in system evolution is •	
considered. (page 36).
The need to evolve test plans with product evolution is expressed. •	
(pp. 18, 19)
The explicit need to generate functional and physical architectures •	
is recognized, unfortunately (from a systems architect’s view), in the 
same section of the document which through usage defines systems 
architecture as the sum of the product and its defining data package. 
(page A-3)
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In summary, 1220 better recognizes the systems architecting process 
than does EIA/IS 632. It does, however, have significant systems archi-
tecting shortfalls and would better serve as a systems engineering guide 
if the role of the systems architect were included and if the architecting 
heuristics given in this chapter were added.

A continuing problem in all of these systems standards, highlighted in 
Chapter 6, is the difference in system/subsystem hierarchies across hard-
ware and software. Both can be thought of hierarchically, but the hierar-
chical model for software is often changed to become layered, and the 
hierarchy of software units in a distributed system often does not match 
the associated hardware. This often leads to significant problems in devel-
opment and contributes to poorly structured software in systems where 
software development cost dominates total development cost. Standards 
for distributed system development, such as Reference Model for Open 
Distributed Processing (RM-ODP) and Unified Modeling Language 
(UML), recognize the disjunction and allow the software and hardware 
elements to be represented in their own hierarchies. This frees the soft-
ware architects from an imposed, and often damaging, hardware-based 
hierarchy, but introduces new problems in reconciling the two models to 
assure consistency. Engineering process standards have only begun to 
address this issue.

Company Standards
Each company has its own set of standards and practices that incorporate 
unique core competencies, practices, and policies. These need to evolve for 
a company to improve its performance and competitive posture. Company 
standards serve two other functions: instructing its initiates and relating to 
its customers. The latter function is stimulated whenever customers change 
their standards, and it is from this perspective that the systems engineer-
ing standards of several companies were examined. This was not an easy 
task because systems architecting and engineering are viewed by those 
companies engaged in them as an enabler of efficient product generation, 
and as such, applicable practices providing a competitive advantage are 
considered trade secrets.

Several generalizations are possible. Today’s competitive pressures 
have caused self-examination and particularly reengineering to become 
a regular way of life. This has also been encouraged by popularized busi-
ness literature.14 Process, as opposed to product, is the focus of such insti-
tutionalized activity. In reviewing the process of product generation and 
support, systems architecting and, in some cases, systems architects are 
gaining recognition, although not always in a way clearly separated from 
systems engineering.
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The Harris Corporation Information Systems Division culminated 
4 years of activity by publishing their revised Systems Engineering Guide 
Book. A generalized description is provided in Honour 1993.15 The 128-page 
book is company proprietary. Discussions with its author, Eric Honour, 
indicated that although systems architecting is not delineated per se, the 
processes that constitute systems architecting account for approximately 
25% of its pages.

Sarah Sheard and Elliot Margolis reported on the evolving systems 
engineering process within The Loral Federal Systems Organization.16 
Their conclusion is that there is an important relationship between the 
nature of a product and the team developing it, and that as such there is 
no one best organization for product development. However, their recent 
experience indicates success with a team structure that includes a dis-
tinct architecture team, with a clearly identified chief architect, working 
in conjunction with a management team and both software and hardware 
development teams. Their use of the terms architect, architectures, and 
architecting are consistent with those of this book.

Hughes Aircraft published its 3-inch thick Systems Engineering Handbook 
in 1994.17 Its objective, stated on page P-1, is to “improve both the quality 
and efficiency of systems engineering at Hughes.” The Handbook describes 
the then-applicable MILSTD 499B and the Hughes systems engineering 
processes for both DoD and non-DoD programs, including Hughes’ orga-
nizational and other resources available to implement these. It is a very 
comprehensive user-friendly book, clearly adapted from MILSTD 499B, 
and includes the activities of the systems architect — who is never identi-
fied by that name — within the framework of systems engineering. The 
systems engineering function and organization are identified as the tech-
nical lead organization for product development and provided a unique 
identity in all forms of organization discussed: functional, projectized, 
and matrix. In that the Handbook is patterned after MILSTD 499B, which 
has a strong resemblance to EIA/IS 632, the comments made earlier with 
respect to EIA/IS 632 apply.

A Summary of Standards Developments, 
1950–1995
For a variety of reasons and by a number of routes, system standards and 
specifications are evolving consistent with the principles and techniques 
of systems architecting. The next step is the use of systems architects to 
help improve systems standards, particularly in system conception, test, 
and certification. At the same time, improved systems standards can 
provide powerful tools for the systems architecting profession.
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A cautionary note: the recent and understandable enthusiasm of the 
Department of Defense to streamline standards and eliminate all refer-
ences to prior MILSTDs could make systems architecting considerably 
more difficult. Useful as guidelines are, they are no substitute for quanti-
tative standards for bidding purposes, for certifying a system for use, or 
for establishing responsibility and liability.* MILSTDs in many instances 
incorporate specific philosophical and quantitative requirements based on 
lessons dearly learned in the real world. They reduce uncertainty in areas 
that should not or need not be uncertain. To ignore these by omission is to 
run the risk of learning them all over again, at great cost. To the extent that 
the lessons relearned are architectural, the risks can be enormous. As the 
heuristic states, all the serious mistakes are made on the first day.

Systems Architecting Graduate Education
Systems Engineering Universities and Systems Architecting

Graduate education, advanced study, and research give a profession its 
character. They distinguish it from routine work by making it a vocation, 
a calling of the particularly qualified.

The first university to offer masters and doctorate degrees in systems 
engineering was the University of Arizona, beginning in 1961. The pro-
gram began as a graduate program; an undergraduate program and the 
addition of Industrial Engineering to the department title came later. Still 
in existence, the graduate department has well over 1,000 alumni.

The next to offer advanced degrees was the Virginia Institute of 
Technology in 1971, but not until after 1984 did additional universities join 
the systems engineering ranks. They included Boston University, George 
Mason University, the Massachusetts Institute of Technology (MIT), 
the University of Maryland, the University of Southern California (USC), 
the University of Tel Aviv, and the University of Washington. It is worth 
noting that all are located at major centers of industry or government, the 
principal clients and users of systems engineering.

To the best knowledge of the authors of this book, the University of 
Southern California was the first to offer a graduate degree in Systems 
Architecting and Engineering with the focus on systems architecting. 
However, of the universities offering graduate degrees in systems engi-
neering, some half dozen now include systems achitecting within 
their curricula. Notable among them is the MIT Systems Design and 
Management (SDM) program. This program, which is intended as a new 

*	 In this connection, the Department of Defense has explicitly retained interface and certi-
fication standards as essential, not to be considered as candidates for elimination.
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kind of graduate education program for technical professionals, is built 
on three core subjects: Systems Engineering, Systems Architecture, and 
Project Management. Although the degree is not focused on systems 
architecting, that subject forms a major part of the curriculum’s core. The 
MIT SDM curriculum is becoming more of a national model as it is spread 
through the Product Development in the 21st century (PD21) program. 
PD21 is creating programs that are similar to MIT’s SDM program in 
universities across the country. The current universities involved are the 
Rochester Institute of Technology, the University of Detroit–Mercy, and 
the Naval Postgraduate School.

Architecting is also becoming a strong interest in universities offering 
advanced degrees in computer science with specializations in software 
and computer architectures; notably, Carnegie Mellon University, the 
Universities of California at Berkeley and Irvine, and USC. At USC, the 
systems architecture and engineering degree began with an experimental 
course in 1989, and formally became a master’s degree program in 1993 
following its strong acceptance by students and industry.

In the last 10 years, there has been growing recognition of the value of 
interdisciplinary programs, which of itself would favor systems architect-
ing and engineering. These have been soul-searching years for industry, 
and the value of systems architecting and engineering has become appre-
ciated as a factor in achieving a competitive advantage. Also, the restruc-
turing of industry has caused a rethinking of the university as a place 
to provide industry-specific education. These trends, augmented by the 
success of the systems architecting and engineering education programs, 
have caused university architect-engineering programs to prosper.

The success of these programs can be measured in several ways. First, 
the direction is one of growth. Seven out of the eight existing masters 
programs were started in the last 20 years. And the Universities of 
Maryland, Tel Aviv, and Southern California are all considering expand-
ing their programs to include a Ph.D. MIT has formed a cross-cutting 
Engineering Systems Division (ESD) that draws from all of the traditional 
departments, and offers a Ph.D. in Engineering Systems. Second, systems 
architecting and systems architecting education are making a positive 
difference in industry, as supported by industry surveys. In point of fact, 
company-sponsored systems architecting enrollments have increased even 
during the part of this period where there was industrial contraction.

Curriculum Design
It is not enough in establishing a profession to show that universities are 
interested in the subject. The practical question is what is actually taught; 
that is, the curriculum. Because USC was apparently the first university 
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to offer an advanced degree specifically in systems architecture and engi-
neering, its curriculum is described. It should be pointed out that this 
curriculum is at the graduate level. To date, no undergraduate degree is 
offered or planned.

The USC master’s program admits students satisfying the School of 
Engineering’s academic requirements and having a minimum of 3 years 
applicable industrial experience. Students propose a 10-course curricu-
lum that is reviewed, modified if required, and accepted as part of their 
admission. The curriculum requires graduate-level courses as follows:

An anchor systems architecting course.•	
An advanced engineering economics course.•	
One of several specified engineering design courses.•	
Two elective courses in technical management from a list of eleven •	
that are offered.
One of eight general technical area elective courses.•	
Four courses from one of eleven identified technical specialization •	
areas, each of which has six or more courses offered.

The structure of this M.S. in Systems Architecture and Engineering 
curriculum has been designed based on both industrial and academic 
advice. Systems architecture is better taught in context. It is too much 
to generally expect a student to appreciate the subtleties of the subject 
without some experience. And the material is best understood through a 
familiar specialty area in which the student already practices. The 3-year 
minimum experience requirement and the requirement of four courses in 
a technical specialty area derive from this reasoning.

The need for an anchor course is self-evident. Systems architecture 
derives from inductive and heuristic reasoning, unlike the deductive rea-
soning used in most other engineering courses. To fully appreciate this 
difference, the anchor course is taken early, if not first, in the sequence. The 
course contains no exams as such, but requires two professional-quality 
reports so that the student can best experience the challenges of systems 
architecting and architecture by applying his or her knowledge in a dedi-
cated and concentrated way.

Experience has shown that a design experience course, the advanced 
economics course, and courses in technical management are valuable to 
the systems architect, and therefore they are curriculum requirements. 
The additional course in a general technical area allows the student to 
select a course that most rounds out the student’s academic experience. 
Possibilities include a systems architecting seminar, a course on decision 
support systems, and a course on the political process in systems archi-
tecture design.
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Advanced Study in Systems Architecting
A major component of advanced study in any profession is graduate-level 
research and refereed publications at major universities. In systems archi-
tecting, advanced study can be divided into two relatively distinct parts: 
that of its science, closely related to that of systems engineering, and of its 
art. The universities committed to systems engineering education were 
given earlier. Advanced study in its art, though often illustrated by engi-
neering examples, has many facets, including research in the following:

Complexity•	 , by Flood and Carson18 at City University London, England
Problem solving•	 , by Klir19 at the State University of New York at 
Binghamton and by Rubinstein20 at the University of California at 
Los Angeles
Systems and their modeling•	 , by Churchman21 at the University of 
California at Berkeley (UCB) and Nadler22 and Rechtin23 at the 
University of Southern California (USC)
The behavioral theory of architecting•	 , by Lang24 at the University of 
Pennsylvania, Rowe25 at Harvard, and Losk, Pieronek, Cureton, 
Geis, and Carpenter26 at USC
The practice of architecture•	 , by Alexander27 and Kostof28 at UCB
Machine (artificial) intelligence and computer science•	 , by Genesereth 
and Nilsson29 at Stanford, Newell30 and Simon31 at Carnegie Mellon 
University and Brooks32 at the University of North Carolina at 
Chapel Hill
Software architecting•	 , by Garlan and Shaw33 at Carnegie Mellon 
University and Barry Boehm at USC

All have contributed basic architectural ideas to the field. Many are 
standard references for an increasing number of professional articles by a 
growing number of authors. Most deal explicitly with systems, architec-
tures, and architects, although the practical art of systems architecting was 
seldom the primary motivation for the work. That situation predictably 
will change rapidly as both industry and government face international 
competition in a new era.

Professional Societies and Publications
Existing journals and societies were the initial professional media for 
the new fields of systems architecting and engineering. Because much 
early work was done in aerospace and defense, it is understandable that 
the IEEE  Society on Systems Man and Cybernetics, the IEEE Aerospace 
Electronics Society, and the American Institute of Aeronautics and 
Astronautics, and their journals, along with others, became the professional 
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outlets for these fields. One excellent sample paper from this period 
(Booton and Ramo 198434) explained the contributions that systems engi-
neering had made to the U.S. ballistic missile program.

The situation changed in 1990 when the first International Council on 
Systems Engineering conference was held and attracted 100 engineers. 
INCOSE became the first professional society dedicated to systems engi-
neering and soon established a Systems Architecture Working Group.

The society, with a current membership of 3,500 (one-third of which 
are outside the United States), publishes a quarterly newsletter and a 
journal. The journal first appeared in 1994, and it published jointly with 
the IEEE AES Society in 1996. Since then, it has become a stand-alone, 
quarterly publication.

Conclusion: An Assessment of the Profession
The profession of systems architecting has come a long way — and its 
journey has just begun. Its present body of professionals in industry and 
academia, beginning most often in electronics, control, and software 
systems, soon broadened into systems engineering, formed the core of 
small design teams, and now consider themselves as architects. The pro-
fession has been nurtured within the framework of systems engineering, 
and no doubt will maintain a tight relationship with it. A masters-level 
university curricula now exists, and the material and ideas are suffusing 
into many other systems-oriented programs. Applicable research is 
underway in universities. Applicable standards and tools are being devel-
oped at the national level. It has an acknowledged home within INCOSE 
as well as other professional societies that, together with their publica-
tions, provide a medium for professional expression and development.

It is interesting to speculate on where the profession might be going 
and how it might get there. The cornerstone thought is that the future 
of a profession of systems architecting will be largely determined by the 
perceptions of its utility by its clients. If a profession is useful, it will be 
sponsored by them and prosper. To date, all indicators are positive.

Judging by the events that have led to its status today, and by comparable 
developments in the history of classical architecture, systems architecting 
could well evolve as a separate business entity. The future could hold more 
systems architecting firms that bid for the business of acting as the techni-
cal representative or agent of clients with their builders. There are related 
precedents today in Federally Funded Research and Development Centers 
(FFRDCs) and Systems Engineering and Test Assistance Contractors 
(SETACs), independent entities selected by the Department of Defense to 
represent it with defense contractors that build end products. Similar prec-
edents exist in NASA and the Department of Energy.
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The role of graduate education is likely to grow and spread. Today’s 
products and processes are more netted and interrelated than those of 
10 years ago, and tomorrow’s will be even more so. System thinking is 
proving to be fundamental to commercial success, and systems architect-
ing will increasingly become a crucial part of new product development. 
It is incumbent upon universities to capture the intellectual content of this 
phenomenon and embody it in their curricula. This will require a tight 
coupling with industry to be aware of important real-world problems, a 
dedication to research to provide some of the solutions, and an education 
program that trains students in relevant architectural thinking.

Published peer-reviewed research has stood the test of time, providing 
the best medium for the rapid dissemination of state-of-the-art thinking. 
Today INCOSE’s Systems Architecture Working Group provides one such 
outlet. Still others will be needed for further growth.

In summary, all the indicators point to a future of high promise and 
value to all stakeholders.
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Appendix A: 
Heuristics for Systems-Level 
Architecting

Experience is the hardest kind of teacher.
It gives you the test first and the lesson afterward.

Susan Ruth, 1993

Introduction: Organizing the List
The heuristics to follow were selected from Rechtin 1991,1 the Collection 
of Student Heuristics in Systems Architecting, 1988–1993,2 and from subse-
quent studies in accordance with the selection criteria of Chapter 2. The 
list is intended as a tool store for top-level systems architecting. Heuristics 
continue to be developed and refined not only for this level, but for 
domain-specific applications as well, often migrating from domain-specific 
to system level and vice versa.*

*	 The manufacturing, social, communication, software, management, business, and eco-
nomics fields are particularly active in proposing and generating heuristics — though 
they usually are called principles, laws, rules, or axioms.
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For easy search and use, the heuristics are grouped by architectural 
task and categorized by being either descriptive or prescriptive — that is, 
by whether they describe an encountered situation or prescribe an archi-
tectural approach to it, respectively.

There are over 180 heuristics in the listing to follow, far too many to 
study at any one time. Nor were they intended to be. The listing is intended 
to be scanned as one would scan software tools on software store shelves, 
looking for ones that can be useful immediately, but remembering that 
others are also there. Although some are variations of other heuristics, the 
vast majority stand on their own, related primarily to others in the near 
vicinity on the list. Odds are that the reader will find the most interesting 
heuristics in clusters, the location of which will depend on the reader’s 
interests at the time. The section headings are by architecting task. A “D” 
signifies a descriptive heuristic; a “P” signifies a prescriptive one. When 
readily apparent, prescriptions are grouped by insetting under appropri-
ate descriptions or alternate prescriptions; otherwise not. In the interests 
of brevity, an individual heuristic is listed in the task where it is most 
likely to be used most often. As noted in Chapter 2, some 20% can be tied 
to related ones in other tasks.

A major difference between a heuristic and an unsupported assertion 
is the credibility of the source. To the extent possible, the heuristics are 
credited to the individuals who, to the authors’ knowledge, first suggested 
them. To further aid the reader in judging credibility or in finding the 
sources, the heuristics to follow are given symbols. These symbols indi-
cate the following:

[ ]	An informal discussion with the individual indicated, unpublished.
( )	A formal, dated source, with examples, located in the University of 

Southern California (USC) Master of Science in Systems Architecture 
and Engineering (MS-SAE) program archive, especially in the 
Collection of Student Heuristics in Systems Architecting, 1988–1993. 
For further information, contact the Master of Science Program in 
Systems Architecture and Engineering, USC School of Engineering, 
University Park, Los Angeles, California 90089-1450.

*	 Rechtin 1991, where it is sourced more formally. By permission of 
Prentice Hall Inc., Englewood Cliffs, New Jersey 07632.

Bold Key words useful for quick search. Otherwise, heuristics to follow 
are in plain type to make page reading easier. Real-world examples 
of each can be found in the references indicated.

The authors apologize in advance for any miscrediting of sources. 
Corrections are welcome. The readers are reminded that not all heuristics 
apply to all circumstances, just most to most.
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Heuristic Tool List
Multitask Heuristics

D	 Performance, cost, and schedule cannot be specified independently. 
At least one of the three must depend on the others.**

D	 With few exceptions, schedule delays will be accepted grudgingly; 
cost overruns will not, and for good reason.

D	 The time to completion is proportional to the ratio of the time spent 
to the time planned to date. The greater the ratio is, the longer the 
time to go.

D	 Relationships among the elements are what give systems their 
added value.*

D	 Efficiency is inversely proportional to universality. (Douglas R. 
King 1992)

D	 Murphy’s Law, “If anything can go wrong, it will.”*
P	 Simplify. Simplify. Simplify.*
P	 The first line of defense against complexity is simplicity of design.
P	 Simplify, combine and eliminate. (Suzaki 1987)
P	 Simplify with smarter elements. (N. P. Geiss 1991)
P	 The most reliable part on an airplane is the one that isn’t there — 

because it isn’t needed. [DC-9 Chief Engineer 1989]
D	 One person’s architecture is another person’s detail. One person’s 

system is another’s component. [Robert Spinrad 1989]*
P	 In order to understand anything, you must not try to under-

stand everything. (Aristotle, 4th century B.C.)
P	 Don’t confuse the functioning of the parts for the functioning of 

the system. (Jerry Olivieri 1992)
D	 In general, each system level provides a context for the level(s) below. 

(G. G. Lendaris 1986)
P	 Leave the specialties to the specialist. The level of detail required 

by the architect is only to the depth of an element or component 
critical to the system as a whole. (Robert Spinrad 1990) But the 
architect must have access to that level and know, or be informed, 
about its criticality and status. (Rechtin 1990)

P	 Complex systems will develop and evolve within an overall 
architecture much more rapidly if there are stable intermediate 
forms than if there are not. (Simon 1969)*

D	 Particularly for social systems, it’s the perceptions, not the facts, 
that count.

*	 As indicated in the introduction to this appendix, an asterisk indicates that this heuristic 
is taken from Rechtin 1991. (With permission of Prentice Hall, Englewood Cliffs, New 
Jersey.)
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D	 In introducing technological and social change, how you do it is 
often more important than what you do.*
P	 If social cooperation is required, the way in which a system is 

implemented and introduced must be an integral part of its 
architecture.*

D	 If the politics don’t fly, the hardware never will. (Brenda Forman 1990)
D	 Politics, not technology, sets the limits of what technology is 

allowed to achieve.
D	 Cost rules.
D	 A strong, coherent constituency is essential.
D	 Technical problems become political problems.
D	 There is no such thing as a purely technical problem.
D	 The best engineering solutions are not necessarily the best politi-

cal solutions.
D	 Good products are not enough. Implementations matter. (Morris 

and Ferguson 1993)
P	 To remain competitive, determine and control the keys to the 

architecture from the very beginning.

Scoping and Planning

The beginning is the most important part of the 
work.

Plato, 4th century b.c.

Scope! Scope! Scope!

William C. Burkett, 1992

D	 Success is defined by the beholder, not by the architect.*
P	 The most important single element of success is to listen closely 

to what the customer perceives as his requirements and to have 
the will and ability to be responsive. (J. E. Steiner 1978)*

P	 Ask early about how you will evaluate the success of your 
efforts. (F. Hayes-Roth et al., 1983)

P	 For a system to meet its acceptance criteria to the satisfaction of 
all parties, it must be architected, designed, and built to do so — 
no more and no less.*

P	 Define how an acceptance criterion is to be certified at the same 
time the criterion is established.*

D	 Given a successful organization or system with valid criteria for 
success, there are some things it cannot do — or at least not do 
well. Don’t force it!
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P	 The strengths of an organization or system in one context can be 
its weaknesses in another. Know when and where!*

D	 There’s nothing like being the first success.*
P	 If at first you don’t succeed, but the architecture is sound, try, 

try again. Success sometimes is where you find it. Sometimes it 
finds you.*

D	 A system is successful when the natural intersection of technol-
ogy, politics, and economics is found. (A. D. Wheelon 1986)*

D	 Four questions, the Four Who’s, need to be answered as a self-
consistent set if a system is to succeed economically; namely, 
who benefits? who pays? and, as appropriate, who loses?

D	 Risk is (also) defined by the beholder, not the architect.
P	 If being absolute is impossible in estimating system risks, then 

be relative.*
D	 No complex system can be optimum to all parties concerned, nor all 

functions optimized.*
P	 Look out for hidden agendas.*
P	 It is sometimes more important to know who the customer is 

than to know what the customer wants. (Whankuk Je 1993)
D	 The phrase, “I hate it,” is direction. (Lori I. Gradous 1993)

P	 Sometimes, but not always, the best way to solve a difficult problem 
is to expand the problem, itself.*
P	 Moving to a larger purpose widens the range of solutions. 

(Gerald Nadler 1990)
P	 Sometimes it is necessary to expand the concept in order to sim-

plify the problem. (Michael Forte 1993)
P	 [If in difficulty,] reformulate the problem and re-allocate the 

system functions. (Norman P. Geis 1991)
P	 Use open architectures. You will need them once the market 

starts to respond.
P	 Plan to throw one away. You will anyway. (F. P. Brooks, Jr. 1982)

P	 You can’t avoid redesign. It’s a natural part of design.*
P	 Don’t make an architecture too smart for its own good.*
D	 Amid a wash of paper, a small number of documents become 

critical pivots around which every project’s management revolves. 
(F. P. Brooks, Jr. 1982)*
P	 Just because it’s written, doesn’t make it so. (Susan Ruth 1993)

D	 In architecting a new [software] program, all the serious mistakes 
are made in the first day. [Spinrad 1988]
P	 The most dangerous assumptions are the unstated ones. 

(Douglas R. King 1991)
D	 Some of the worst failures are systems failures.

D	 In architecting a new [aerospace] system, by the time of the first design 
review, performance, cost, and schedule have been predetermined. 
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One might not know what they are yet, but to first order all the criti-
cal assumptions and choices have been made which will determine 
those key parameters.*

P	 Don’t assume that the original statement of the problem is neces-
sarily the best, or even the right, one.*
P	 Extreme requirements, expectations, and predictions should 

remain under challenge. throughout system design, implemen-
tation, and operation.

P	 Any extreme requirement must be intrinsic to the system’s 
design philosophy and must validate its selection. “Everything 
must pay its way on to the airplane.” [Harry Hillaker 1993]

P	 Don’t assume that previous studies are necessarily complete, 
current, or even correct. (James Kaplan 1992)

P	 Challenge the process and solution, for surely someone else will 
do so. (Kenneth L. Cureton 1991)

P	 Just because it worked in the past there’s no guarantee that it will 
work now or in the future. (Kenneth L. Cureton 1991)

P	 Explore the situation from more than one point of view. A seem-
ingly impossible situation might suddenly become transparently 
simple. (Christopher Abts 1988)

P	 Work forward and backward. (A set of heuristics from Rubinstein 
1975)*
Generalize or specialize.
Explore multiple directions based on partial evidence.
Form stable substructures.
Use analogies and metaphors.
Follow your emotions.

P	 Try to hit a solution that, at worst, won’t put you out of business. 
(Bill Butterworth as reported by Laura Noel 1991)

P	 The order in which decisions are made can change the architecture as 
much as the decisions themselves. (Rechtin 1975, IEEE SPECTRUM)

P	 Build in and maintain options as long as possible in the design and 
build of complex systems. You will need them. OR … Hang on to the 
agony of decision as long as possible. [Robert Spinrad 1988]*
P	 Successful architectures are proprietary, but open. [Morrison 

and Ferguson 1993]
D	 Once the architecture begins to take shape, the sooner contextual 

constraints and sanity checks are made on assumptions and require-
ments, the better.*

D	 Concept formulation is complete when the builder thinks the system 
can be built to the client’s satisfaction.*

D	 The realities at the end of the conceptual phase are not the models 
but the acceptance criteria.*

P	 Do the hard parts first.
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P	 Firm commitments are best made after the prototype works.

Modeling*

P	 If you can’t analyze it, don’t build it.
D	 Modeling is a craft and at times an art. (William C. Burkett 1994)
D	 A vision is an imaginary architecture … no better, no worse than 

the rest of the models. (M. B. Renton Spring 1995)
D	 From psychology: If the concepts in the mind of one person are very 

different from those in the mind of the other, there is no common 
model of the topic and no communication. [Taylor 1975] OR … From 
telecommunications: The best receiver is one that contains an inter-
nal model of the transmitter and the channel. [Robert Parks & Frank 
Lehan 1954]*

D	 A model is not reality.*
D	 The map is not the territory. (Douglas R. King 1991)*
P	 Build reality checks into model-driven development. [Larry 

Dumas 1989]*
P	 Don’t believe nth order consequences of a first order [cost] model. 

[R. W. Jensen circa 1989]
D	 Constants aren’t and variables don’t. (William C. Burkett 1992)
D	 One insight is worth a thousand analyses. (Charles W. Sooter 1993)

P	 Any war game, systems analysis, or study whose results can’t 
easily be explained on the back of an envelope is not just worth-
less, it is probably dangerous. [Brookner-Fowler circa 1988]

D	 Users develop mental models of systems based [primarily] upon the 
user-to-system interface. (Jeffrey H. Schmidt)

D	 If you can’t explain it in five minutes, either you don’t understand it 
or it doesn’t work. (Darcy McGinn 1992 from David Jones)

P	 The eye is a fine architect. Believe it. [Wernher von Braun 1950]
D	 A good solution somehow looks nice. (Robert Spinrad 1991)

P	 Taste: an aesthetic feeling that will accept a solution as right 
only when no more direct or simple approach can be envisaged. 
[Robert Spinrad 1994]

P	 Regarding intuition, trust but verify. (Jonathan Losk 1989)

Prioritizing (Trades, Options, and Choices)

D	 In any resource-limited situation, the true value of a given service or 
product is determined by what one is willing to give up to obtain it.

P	 When choices must be made with unavoidably inadequate informa-
tion, choose the best available and then watch to see whether future 

*	 See also Chapters 3 and 4.
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solutions appear faster than future problems. If so, the choice was at 
least adequate. If not, go back and choose again.*

P	 When a decision makes sense through several different frames, it’s 
probably a good decision. (J. E. Russo 1989)

D	 The choice between architectures may well depend upon which set 
of drawbacks the client can handle best.*

P	 If trade results are inconclusive, then the wrong selection criteria 
were used. Find out [again] what the customer wants and why they 
want it, then repeat the trade using those factors as the [new] selec-
tion criteria. (Kenneth Cureton 1991)

P	 The triage: Let the dying die. Ignore those who will recover on their 
own. And treat only those who would die without help.*

P	 Every once in a while you have to go back and see what the real 
world is telling you. [Harry Hillaker 1993]

Aggregating (“Chunking”)

P	 Group elements that are strongly related to each other, separate ele-
ments that are unrelated.

D	 Many of the requirements can be brought together to complement 
each other in the total design solution. Obviously the more the design 
is put together in this manner, the more probable the overall success. 
(J. E. Steiner 1978)

P	 Subsystem interfaces should be drawn so that each subsystem can 
be implemented independently of the specific implementation of the 
subsystems to which it interfaces. (Mark Maier 1988)

P	 Choose a configuration with minimal communications between 
the subsystems. (computer networks)*
P	 Choose the elements so that they are as independent as possible; 

that is, elements with low external complexity (low coupling) and 
high internal complexity (high cohesion). (Christopher Alexander 
1964 modified by Jeff Gold 1991)*

P	 Choose a configuration in which local activity is high speed and 
global activity is slow change. (P. J. Courtois 1985) *

P	 Poor aggregation results in gray boundaries and red performance. 
(M. B. Renton Spring 1995)
P	 Never aggregate systems that have a conflict of interest; partition 

them to ensure checks and balances. (Aubrey Bout 1993)
P	 Aggregate around “testable” subunits of the product; partition 

around logical subassemblies. (Ray Cavola 1993)
P	 Iterate the partition/aggregation procedure until a model con-

sisting of 7 ± 2 chunks emerge. (Moshe F. Rubinstein 1975)
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P	 The optimum number of architectural elements is the amount 
that leads to distinct action, not general planning. (M. B. Renton 
Spring 1995)

P	 System structure should resemble functional structure.*
P	 Except for good and sufficient reasons, functional and physical 

structuring should match.*
P	 The architecture of a support element must fit that of the system 

which it supports. It is easier to match a support system to the 
human it supports than the reverse.*

P	 Unbounded limits on element behavior may be a trap in unexpected 
scenarios. [Bernard Kuchta 1989]*

Partitioning (Decompositioning)

P	 Do not slice through regions where high rates of information 
exchange are required. (computer design)*

D	 The greatest leverage in architecting is at the interfaces.*
P	 Guidelines for a good quality interface specification: They must 

be simple, unambiguous, complete, concise, and focus on sub-
stance. Working documents should be the same as customer 
deliverables; that is, always use the customer’s language, not 
engineering jargon. [Harry Hillaker 1993]

P	 The efficient architect, using contextual sense, continually looks 
for likely misfits and redesigns the architecture so as to elimi-
nate or minimize them. (Christopher Alexander 1964)* It is inad-
equate to architect up to the boundaries or interfaces of a system; 
one must architect across them. (Robert Spinrad as reported by 
Susan Ruth 1993)

P	 Since boundaries are inherently limiting, look for solutions out-
side the boundaries. (Steven Wolf 1992)

P	 Be prepared for reality to add a few interfaces of its own.*
P	 Design the structure with good “bones.”*
P	 Organize personnel tasks to minimize the time individuals spend 

interfacing. (R. C. Tausworthe 1988)*

Integrating

D	 Relationships among the elements are what give systems their 
added value.*
P	 The greatest leverage in system architecting is at the interfaces.*
P	 The greatest dangers are also at the interfaces. [Raymond 1988]
P	 Be sure to ask the question, “What is the worst thing that other 

elements could do to you across the interface?” [Kuchta 1989]
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D	 Just as a piece and its template must match, so must a system and 
the resources which make, test, and operate it. Or, more briefly, the 
product and process must match. Or, by extension, a system archi-
tecture cannot be considered complete lacking a suitable match with 
the process architecture.*
P	 When confronted with a particularly difficult interface, try 

changing its characterization.*
P	 Contain excess energy as close to the source as possible.*

P	 Place barriers in the paths between energy sources and the ele-
ments the energy can damage. (Kjos 1988)*

Certifying (System Integrity, Quality, and Vision)
D	 As time to delivery decreases, the threat to functionality increases. 

(Steven Wolf 1992)
P	 If it is a good design, insure that it stays sold. (Dianna Sammons 

1991)
D	 Regardless of what has gone before, the acceptance criteria deter-

mine what is actually built.*
D	 The number of defects remaining in a (software) system after a 

given level of test or review (design review, unit test, system test, etc.) 
is proportional to the number found during that test or review.

P	 Tally the defects, analyze them, trace them to the source, make 
corrections, keep a record of what happens afterwards and keep 
repeating it. [Deming]

P	 Discipline. Discipline. Discipline. (Douglas R. King 1991)
P	 The principles of minimum communications and proper parti-

tioning are key to system testability and fault isolation. (Daniel 
Ley 1991)*

P	 The five whys of Toyota’s lean manufacturing. (To find the basic 
cause of a defect, keep asking “why” from effect to cause to cause 
five times.)

D	 The test setup for a system is itself a system.*
P	 The test system should always allow a part to pass or fail on its 

own merit. [James Liston 1991]*
P	 To be tested, a system must be designed to be tested.*

D	 An element “good enough” in a small system is unlikely to be good 
enough in a more complex one.*

D	 Within the same class of products and processes, the failure rate of 
a product is linearly proportional to its cost.*

D	 The cost to find and fix an inadequate or failed part increases by 
an order of magnitude as it is successively incorporated into higher 
levels in the system.
P	 The least expensive and most effective place to find and fix a 

problem is at its source.



Appendix A: Heuristics for Systems-Level Architecting	 405

D	 Knowing a failure has occurred is more important than the actual 
failure. (Kjos 1988)

D	 Mistakes are understandable, failing to report them is inexcusable.
D	 Recovery from failure or flaw is not complete until a specific mecha-

nism, and no other, has been shown to be the cause.*
D	 Reducing failure rate by each factor of two takes as much effort as 

the original development.*
D	 Quality can’t be tested in, it has to be built in.*

D	 You can’t achieve quality … unless you specify it. (Deutsch 1988)
P	 Verify the quality close to the source. (Jim Burruss 1993)
P	 The five why’s of Japan’s lean manufacturing. (Hayes et al. 1988)3

D	 High-quality, reliable systems are produced by high-quality 
architecting, engineering, design and manufacture, not by inspec-
tion, test, and rework.*

P	 Everyone in the development and production line is both a 
customer and a supplier.

D	 Next to interfaces, the greatest leverage in architecting is in aiding 
the recovery from, or exploitation of, deviations in system perfor-
mance, cost or schedule.*

Assessing Performance, Cost, Schedule, and Risk

D	 A good design has benefits in more than one area. (Trudy Benjamin 
1993)

D	 System quality is defined in terms of customer satisfaction, not 
requirements satisfaction. (Jeffrey Schmidt 1993)

D	 If you think your design is perfect, it’s only because you haven’t 
shown it to someone else. [Harry Hillaker, 1993]
P	 Before proceeding too far, pause and reflect! Cool off periodi-

cally and seek an independent review. (Douglas R. King 1991)
D	 Qualification and acceptance tests must be both definitive and 

passable.*
P	 High confidence, not test completion, is the goal of successful 

qualification. (Daniel Gaudet 1991)
P	 Before ordering a test decide what you will do if it is 1) positive 

or if 2) it is negative. If both answers are the same, don’t do the 
test. (R. Matz, M.D. 1977)

D	 “Proven” and “state of the art” are mutually exclusive qualities. 
(Lori I. Gradous 1993)

D	 The bitterness of poor performance remains long after the sweetness 
of low prices and prompt delivery are forgotten. (Jerry Lim 1994)

D	 The reverse of diagnostic techniques are good architectures. 
(M. B. Renton 1995)
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D	 Unless everyone who needs to know does know, somebody, some-
where will foul up.
P	 Because there’s no such thing as immaculate communication, 

don’t ever stop talking about the system. (Losk 1989)*
D	 Before it’s tried, it’s opinion. After it’s tried, it’s obvious. (Wm. 

C. Burkett 1992)
D	 Before the war, it’s opinion. After the war, it’s too late! (Anthony 

Cerveny 1991)
D	 The first quick look analyses are often wrong.*
D	 In correcting system deviations and failures, it is important that all 

the participants know not only what happened and how it happened, 
but why as well.*
P	 Failure reporting without a close out system is meaningless. 

(April Gillam 1989)
P	 Common, if undesirable, responses to indeterminate outcomes 

or failures:*
If it ain’t broke, don’t fix it.
Let’s wait and see if it goes away or happens again.
It was just a random failure. One of those things.
Just treat the symptom. Worry about the cause later.
Fix everything that might have caused the problem.
Your guess is as good as mine.

D	 Chances for recovery from a single failure or flaw, even with 
complex consequences, are fairly good. Recovery from two or 
more independent failures is unlikely in real time and uncertain 
in any case.*

Re-Architecting, Evolving, Modifying, and Adapting

The test of a good architecture is that it will last.
The sound architecture is an enduring pattern.

[Robert Spinrad 1988]

P	 The team that created and built a presently successful product is often the 
best one for its evolution — but seldom for creating its replacement.

D	 If you don’t understand the existing system, you can’t be sure you’re 
rearchitecting a better one. (Susan Ruth 1993)

P	 When implementing a change, keep some elements constant to pro-
vide an anchor point for people to cling to. (Jeffrey H. Schmidt 1993)
P	 In large, mature systems, evolution should be a process of 

ingress and egress. (IEEE 1992, Jeffrey Schmidt 1992)
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P	 Before the change, it is your opinion. After the change it is your 
problem. (Jeffrey Schmidt 1992)

D	 Unless constrained, rearchitecting has a natural tendency to pro-
ceed unchecked until it results in a substantial transformation of the 
system. (Charles W. Sooter 1993)

D	 Given a change, if the anticipated actions don’t occur, then there is 
probably an invisible barrier to be identified and overcome. (Susan 
Ruth 1993)

Exercises
Exercise: What favorite heuristics, rules of thumb, 
facts of life, or just plain common sense do you apply 
to your own day-to-day living — at work, at home, at 
play? What heuristics have you heard on TV or the 
radio (for example, on talk radio, action TV, children’s 
programs)? Which ones would you trust?

Exercise: Choose a system, product, or process with 
which you are familiar and assess it using the 
appropriate foregoing heuristics. What was the 
result? Which heuristics are or were particularly 
applicable? What further heuristics were suggested 
by the system chosen?

Were any of the heuristics clearly incorrect for 
this system? If so, why?

Exercise: Try to spot heuristics and insights in the 
technical literature. Some are easy; they are often 
listed as principles or rules. The more difficult ones 
are buried in the text but contain the essence of the 
article or state something of far broader application 
than the subject of the piece.

Exercise: Try to create a heuristic of your own — a 
guide to action, decision making, or to instruction 
of others.

Notes and References
	 1.	 Rechtin, E., Systems Architecting, Creating and Building Complex Systems. 

Englewood Cliffs, NJ: Prentice Hall, 1991. Note that throughout chapter, this 
reference will be referred to as Rechtin 1991.
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1988–1993. Los Angeles, CA: University of Southern California, March 15, 
1994 (unpublished but available to students and researchers on request).

	 3.	 Hayes, Robert H., S. C. Wheelwright, and Kim B. Clark, Dynamic Manufactur-
ing, Creating the Learning Organization. New York: The Free Press, 1988.
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Appendix B: 
Reference Texts Suggested 
for Institutional Libraries

The following list of texts is offered as a brief guide to books that would 
be particularly appropriate to an architecting library.

Architecting Background
Alexander, C., A Pattern Language: Towns, Buildings, Construction, Oxford University 

Press, New York, 1977.
Alexander, C., Notes on the Synthesis of Form, Harvard University Press, Cambridge, 

MA, 1964.
Alexander, C., The Timeless Way of Building, Oxford University Press, New York, 1979.
Kostoff, Spiro, The Architect, Oxford University Press, New York, 1977 (paperback).
Lang, Jon, Creating Architectural Theory, Van Nostrand Reinhold, New York, 1987.
Rowe, P. G., Design Theory, MIT Press, Cambridge, MA, 1987.
Vitruvius, The Ten Books on Architecture, Dover Publications, Mineola, New York, 

1960 (paperback). Translated by Morris Hicky Morgan.

Management
Augustine, N. R., Augustine’s Laws, AIAA, Inc., Reston, VA, 1982.
Deal, Terrence E., and A. A. Kennedy, Corporate Cultures, The Rites and Rituals of 

Corporate Life, Addison-Wesley, Reading, MA, 1988.
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DeMarco, Tom, and Timothy Lister, Peopleware: Productive Projects and Teams, Dorset 
House, New York, 1987.

Juran, J. M., Juran on Planning for Quality, The Free Press, New York, 1988.

Modeling
Eisner, H., Computer Aided Systems Engineering, Prentice Hall, Upper Saddle River, 

NJ, 1988.
Hatley, D. J., and I. Pirbhai, Strategies for Real-Time System Specification, Dorset 

House, New York, 1988.
Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented 

Modeling and Design, Prentice Hall, Upper Saddle River, NJ, 1991.
Ward, P. T., and S. J. Mellor, Structured Development for Real-Time Systems, Volume 1: 

Introduction and Tools, Yourdon Press (Prentice Hall), New York, 1985.

Specialty Areas
Baudin, M., Manufacturing Systems Analysis, Yourdon Press Computing Series, 

New York, 1990.
Hammond, J. S., R. L. Keeney, and H. Raiffa, Smart Choices: A Practical Guide to 

Making Better Decisions, Broadway Books, New York, 2002.
Hayes, Robert H., S. C. Wheelwright, and K. B. Clark, Dynamic Manufacturing, The 

Free Press, New York, 1988.
Keeney, R. L., Value Focused Thinking, Harvard University Press, Cambridge, 

MA, 1992.
Miller, J. G., Living Systems, McGraw-Hill, New York, 1978.
Simon, H. A., Sciences of the Artificial, MIT Press, Cambridge, MA, 1981.
Thome, B., editor, Systems Engineering: Principles and Practice of Computer-Based 

Systems Engineering, John Wiley, Chichester, Wiley Series on Software Based 
Systems, 1993.

Software
Boehm, B., Software Engineering Economics, Prentice Hall, Englewood Cliffs, NJ, 1981.
Brooks, F. P. Jr., The Mythical Man-Month, Essays on Software Engineering, 20th Anni-

versary Edition, Addison-Wesley, Reading, MA, 1995.
Deutsch, M. S., and R. R. Willis, Software Quality Engineering, Prentice-Hall, Upper 

Saddle River, NJ, 1988.
Gajski, D. D., V. M. Milutinovic, H. J. Siegel, and B. P. Furht, Computer Architecture, 

The Computer Society of the IEEE, Piscataway, NJ, 1987 (Tutorial).
Gamma, E. et al., Design Patterns: Elements of Reusable Object-Oriented Software 

Architecture, Addison-Wesley, Reading, MA, 1994.
Shaw, M., and D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, 

Prentice Hall, Upper Saddle River, NJ, 1996.
Software Productivity Consortium, ADARTS Guidebook, SPC-94040-CMC, Version 

2.00.13, Vols. 1–2, September, 1991.
Yourdon, E., and L. L. Constantine, Structured Design: Fundamentals of a Discipline of 

Computer Program and Systems Design, Yourdon Press, New York, 1979.
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Systems Sciences
Flood, R. L., and E. R. Carson, Dealing with Complexity, an Introduction to the Theory 

and Application of System Sciences, Plenum Press, New York, 1988.
Genesereth, M. S., and N. J. Nilsson, Logical Foundations of Artificial Intelligence, 

Morgan Kaufmann, San Francisco, CA, 1987.
Gerstein, Dean R. et al., Editors, The Behavioral and Social Sciences, Achievements and 

Opportunities, National Academy Press, Washington, 1988.
Klir, G. J., Architecture of Systems Problem Solving, Plenum Press, New York, 1985.

Systems Thinking
Arbib, M. A., Brains, Machines, and Mathematics, 2nd edition, Springer-Verlag, 

Heidelberg, 1987.
Beam, Walter R., Systems Engineering, Architecture and Design, McGraw-Hill, New 

York, 1990.
Boorstin, Daniel J., The Discoverers, Vintage Books, New York, 1985.
Boyes, J. L., editor, Principles of Command and Control, AFCEA International Press, 

Fairfax, VA, 1987.
Davis, S. M., Future Perfect, Addison-Wesley, Reading, MA, 1987.
Gause, Donald C., and G. M. Weinberg, Exploring Requirements, Quality Before 

Design, Dorset House, New York, 1989.
Hofstadter, D. R., Gödel, Escher, Bach: An Eternal Golden Braid, Vintage Books, New 

York, 1980.
Norman, Donald A., The Psychology of Everyday Things, Basic Books, New York, 1988.
Pearl, Judea, Heuristics, Addison-Wesley, Reading, MA, 1984.
Rechtin, E., Systems Architecting: Creating and Building Complex Systems, Prentice 

Hall, Englewood Cliffs, NJ, 1991.
Rubinstein, Moshe F., Patterns of Problem Solving, Prentice Hall, Englewood Cliffs, 

NJ, 1975.
Weinberg, Gerald M., Rethinking Systems Analysis and Design, Dorset House, New 

York, 1988.
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Appendix C: 
On Defining Architecture 
and Other Terms

This appendix is for those who need to come to a consensus in a group on 
a definition for architecture or other major terms used in this book. There 
are many who might have such a need, and for those who have a need, this 
appendix might be very useful. Deciding on formal definitions is commonly 
part of setting up an official corporate training course or documenting a 
standard (public or corporate). In these situations, an inordinate amount of 
time can be spent arguing about fine details of definitions. It may be hard 
to pick and choose among the definitions offered by different standards 
because they usually do not record the reasoning that brought them to a 
decision. This appendix is a record of some of the definition-related discus-
sions one of the authors (Maier) has been involved in over several years. It 
is offered to help others who need to arrive at a group consensus on defini-
tions a ready-made set of choices and reasoning.

Defining “Architecture”
One might think that, with 5,000 years of history, the notion of architec-
ture in buildings would be clearly and crisply defined. Presumably then, 
the definition could be extended to give a clear and crisp definition to 
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architecture in other fields. However, this is not the case. A formal defi-
nition of architecture is elusive even in the case of buildings. And if the 
definition is elusive in its original domain, is it surprising that a wholly 
satisfactory definition is elusive in more general domains?

The communities involved in architecture in systems, software, hard-
ware, and other domains have struggled with finding a formal definition. 
Each group that has set out a formal definition has usually made a unique 
choice. The choices are often similar, but reflect significantly different 
ideas. The sections to follow review some of the more distinctive choices. 
Of course, there are many small variations on each one.

To make sense of the different definitions, it is important to review 
them with some criteria in mind. In reviewing these definitions, try to 
answer the following questions with respect to each definition:

	 1.	How does the definition establish what is the concern of the architect 
and what is not?

	 2.	What is the purpose of the definition? Some purposes might be 
defining an element of design, education, organizational survival or 
politics, setting legal boundaries, or even humor.

	 3.	Choose a building you are familiar with. What is its architecture, 
according to the definition? How well does the definition implied 
architecture match what you would expect to be the building archi-
tect’s scope of work?

	 4.	Choose a system you are familiar with. What is its architecture, 
according to the definition? What things are uniquely determined 
about the system from the application of that definition?

	 5.	What is the architecture of the Internet, according to the definition?

Webster’s Dictionary Definition

We begin with the dictionary’s definition.1

Architecture: 1. The art or science of building; spe-
cifically, the art or practice of designing and building 
structures and esp. habitable ones. 2a. Formation or 
construction as or as if the result of conscious act <the 
~ of the garden> b. a unifying or coherent form or 
structure <the novel lacks ~> 3. Architectural prod-
uct or work 4. A method or style of building 5. The 
manner in which the components of a computer or 
computer system are organized and integrated.

The interesting part of this definition, for our purposes, is part 2. The 
first definition uses architecture in the sense of the profession, not what 
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we are looking for here. This definition says to speak of the architecture of 
a thing is to speak of its “unifying or coherent form.” Unfortunately, it is 
not obvious what aspect of form is “unifying or coherent.” It is something 
that can be judged, but is hard to define crisply. The civil building example 
suggests several other ideas about architecture:

	 1.	Architecture is tied to the structure of components, but if a novel 
can have an architecture, the notion of components is relatively 
abstract. Components may need to be interpreted broadly in some 
contexts. No one would confuse the structure of a novel with its 
organization into chapters — which is the “packaging” of that struc-
ture, and is analogous to confusing the architecture of a system 
with its module structure.

	 2.	The distinction between an architectural level of description and some 
other level of design description is not crisp. Architectural descrip-
tion is concerned with unifying characteristics or style, and an engi-
neering description is concerned with construction or acquisition.

	 3.	 In common use, “architecture” can mean a conceptual thing, the 
work of architects, and architectural products. Other definitions 
make sharper distinctions.

This Book

The definition of architecture given in the glossary of this book is as follows:

Architecture: The structure — in terms of compo-
nents, connections, and constraints — of a product, 
process, or element.

This definition is specific, it is talking about structure (although that 
term is open to some interpretation). Components, connections, and con-
straints are the descriptive terms for architecture. And we can talk about 
the architecture of a wide variety of things. This book is primarily about 
architecting, rather than architecture. The reason is that the most impor-
tant constraints come from the process of doing the architect’s role. The 
most important things come from working with clients to understand 
purpose and limitations. Architecture should, by the tenets of this book, 
proceed from the client’s needs rather than a presupposed notion of what 
constitutes an architectural-level definition of a system.

IEEE Architecture Working Group (AWG)

After extended discussion in 1995–1996 in association with developing 
ANSI/IEEE 1471 Recommended Practice for Architectural Description 
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of Software-Intensive Systems, the Institute of Electrical and Electronics 
Engineers (IEEE) Working Group chose the following definition:

An Architecture is the highest-level concept of a system in its 
environment.

“System” in this definition refers back to the official IEEE definition, 
“a collection of components organized to accomplish a specific function or 
set of functions.” This definition of architecture was intended to capture 
several ideas:

	 1.	An architecture is a property of a thing or a concept, not a structure. 
The term “structure” is avoided specifically to avoid any connotation 
that architecture was solely a matter of physical structure. Concept, 
which is obviously much more generic, is used instead.

	 2.	The term “highest-level” is used to indicate that architecture is an 
abstraction, and that it is a fundamental abstraction. A major defect 
of this definition is that highest-level carries a connotation of levels 
of hierarchy, and in particular a single hierarchy, which exactly is 
one of the connotations to be avoided. Also, “highest-level concept” 
leaves a great deal of room for interpretation.

	 3.	The definition says that architecture is not a property of the system 
alone, but that the system’s environment must be included in a defi-
nition of the system’s architecture. This has often been referred to as 
“architecture in context” as opposed to “architecture as structure.” 
It was there to capture the idea that architecture has to encompass 
purpose and the relationship of the system to its stakeholders. The 
reader must judge whether or not that interpretation is clear.

This definition was used in several drafts of the 1471 standard but was 
replaced in the final balloted version. The definition in the final balloted 
version was as follows:

Architecture: the fundamental organization of a 
system embodied in its components, their relation-
ships to each other and to the environment and the 
principles guiding its design and evolution.

This definition is a refinement of definitions from the software engi-
neering community, as discussed below. Those who do not like it might 
be more inclined to say it was a compromise between conflicting points 
of view that suffers from the usual problems of a committee decision. The 
definition starts with the software communities definitions (discussed 
shortly) and then adds back some of the ideas of the original 1471 definition. 
The primary refinement is the deemphasis on physical structure and to 
say that architecture is “embodied” in components, relationships, and 
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principles. Put another way, the definition tries to recognize that, for most 
systems, most of the time, the architecture is in the arrangement of physi-
cal components and their relationships. But, sometimes, the fundamental 
organization is on a more abstract level.

INCOSE SAWG

The International Council on Systems Engineering (INCOSE) Systems 
Architecture Working Group (SAWG) adopted a definition for systems 
architecture. It could as well be read as a definition for “Architecture, of a 
system.” It is as follows:

Systems Architecture: The fundamental and unifying 
system structure defined in terms of system elements, 
interfaces, processes, constraints, and behaviors.

This definition borrows the core of the dictionary definition that 
architecture represents fundamental, unifying, or essential structure. 
Exactly what constitutes fundamental, unifying, or essential is not easily 
defined. It is presumed that recognizing it is partially art and up to the 
participants. In this definition, the role of multiple aspects making up the 
architecture is made explicit through the listing of elements, interfaces, 
processes, constraints, and behaviors. This definition makes, or facilitates 
making, a sharper separation between an architecture as a conceptual 
object, an architecture description as concrete object, and the process or 
act of creating architectures (architecting).

MIL-STD-498

MIL-STD-498, now canceled, had a definition of architecture that specifi-
cally pertained to a designated development task.

Architecture: The organizational structure of a sys-
tem or CSCI, identifying its components, their inter-
faces, and a concept of execution among them.

Here architecture is described specifically in three parts: components, 
interfaces, and a concept of execution. In this sense, it supports the idea 
of architecture as inherently multiview, although it specifically defines 
the views where others leave them open. The meaning of “organizational 
structure” as opposed to some other structure (conceptual, implementa-
tion, detailed, and so forth) is not made clear, although the idea is congru-
ent of the common usage of architecture. It also uses “concept” within the 
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definition, but only in referring to execution. Like most definitions, it does 
not clearly make a distinction between architectural and design concerns.

This definition is also “structuralist” in the sense that it emphasizes 
the structure of the system rather than its purposes or other relation-
ships. One could interpret the definition to mean that the architect was 
not concerned with the system’s purpose, that architecture came after 
requirements were fully defined. In fact, that is exactly the interpretation 
it should be given, at least in the way the associated standards envisioned 
the systems engineering process executing.

The original IEEE definition (in IEEE 610.12-1990) is a shorter version 
of this:

The organizational structure of a system or compo-
nent.

Perry-Garlan

A widely used definition in the software community is due to Perry and 
Garlan, although the exact place it first appeared is somewhat obscure.

The structure of the components of a system, their 
interrelationships, and principles and guidelines 
governing their design and evolution over time.

An almost identical definition is used as the definition of architecture 
in the U.S. DoD C4ISR Architecture Framework, where it is incorrectly 
credited to the IEEE 610.12 standard for terminology. This definition is 
another three-part specification: components, interrelationships, and 
principles-guidelines. As this definition is commonly used, components 
and interrelationships usually refer to physically identifiable elements. 
This definition is mostly used in the software architecture community, 
and there it is common to see components identified as code units, classes, 
packages, tasks, and other code abstractions. The interrelationships would 
be calls or lines of inheritance.

The two basic objections to this definition are that it implies (if pri-
marily through use rather than the words) that architecture is the same as 
physical structure, and that it makes no distinction in level of abstraction. 
The common usage of architecture is in reference to abstracted properties 
of things, not to the details. The Perry-Garlan definition can presumably 
apply to the structure of components at any level of abstraction. Although 
applicability to multiple levels is, in part, desirable, it is also desirable to 
distinguish between what constitutes an architectural-level description 
(whether of a whole system or of a component) from descriptions at lower 
levels of abstraction.
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Maier’s Tongue-in-Cheek Rule-of-Thumb

A slightly flip, but illustrative way of defining architecture is to go back to 
what architects are supposed to do.

An Architecture is the set of information that defines 
a systems value, cost, and risk sufficiently for the 
purposes of the systems sponsor.

Obviously, this definition reflects the issue back to architecting, when 
the definition of architecture reflects back to architecture. The point of 
this definition is that architecture is what architects produce, and that 
what architects do is help clients make decisions about building systems. 
When the client makes acquisition decisions, architecture has been done 
(perhaps unconsciously, and perhaps very badly, but done).

Internet Discussion

One of the questions given at the beginning was “What is the architec-
ture of the Internet?” The point of the question is that no reasonable 
notion of unifying, organizing, or coherent form will produce a physical 
description of the Internet. The specific pattern of physical links is 
continuously changing and of little interest. However, there is a very 
clear unifying structure, but it is a structure in protocols. It is not even 
a structure in software components, as exactly what software compo-
nents implement the protocols is not known even to the participating 
elements. The point about protocols being the organizing structure of 
the Internet, and in particular the Internet Protocol (IP), was made in 
Chapter 7 and Figure 7.1.

Summary

Those who must choose definitions have a lot to work with, probably 
more than they would want. The precise form of the definition is less 
important than the background of what architecture should be about. 
What architecting should be was discussed at length in Chapter 1. The 
specifics of what architects will produce — that is, what an architecture 
actually looks like — will differ from domain to domain. Ideally, the 
definition for a given organization should come from that knowledge, 
the knowledge of what is needed to successfully define a system concept 
and take it through development. If the organization has that knowledge, 
it should be able to choose a formal definition that encapsulates it. If the 
organization does not have that knowledge, then no formal definition 
will produce it.
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Models, Viewpoints, and Views
The terms model, view, and viewpoint are important in setting architec-
ture description standards, or architecture frameworks using the com-
munity terminology of Chapter 11. The meaning of these terms changes 
from standard to standard. The discussion below is intended to capture 
an argument for a distinction between the two meanings. The distinction 
can be useful in writing standards, though it is not important in writing 
architecture descriptions nor is it extensively used in this book.

Why do we need some organizing abstraction beyond just models? 
Experience teaches that particular collections of models are logically related 
by the kinds of issues or concerns they address. The idea of a view comes 
from architectural drawings. In a drawing we talk about the top view or the 
side view of an object in referring to its physical representation as seen from 
a point. A view is the representation of a system from a particular point or 
perspective. A view is a representation of the whole system with respect 
to a set of related concerns. A viewpoint is the abstraction of many related 
views; it is the idea of viewing something from “the front,” for example.

A view need not correspond to physical appearance. A functional 
view is a representation of a system abstracting away all nonfunctional 
or nonbehavioral details. A cutaway view shows some mixture of internal 
and external physical features in a mixture defined by the illustrator.

A view can be thought of both projectively and constructively. In the 
projective sense, a view is formed by taking the system and abstracting 
away all the details unnecessary to the view. It is analogous to taking a 
multidimensional object and projecting it onto a lower-dimensional space 
(like a viewing plane). So, for example, a behavioral view is the system 
pared down to only its behaviors, its set of input to output traces.

In the constructive sense, we build a complete model of the system by 
building a series of views. Each represents the system from one perspec-
tive, and with enough the system should be “completely” defined. It is 
like sketching a front view, a side view, a top view, and then inferring the 
structure of the whole object. In more general systems, we might build a 
functional view, then a physical view, then a data view, then return to the 
functional view, and so forth, until a complete model is formed from the 
joint set of views.

In practice, it usually takes several models to represent that whole 
system relative to typical concerns, at least for high-technology systems. 
So, a view is usually a collection of models. For example, physical represen-
tation seems simple enough, but how many different models are needed to 
represent the components of an information-intensive system? A complete 
physical view might need conventional block diagrams of information flow, 
block diagrams of communication interconnection, facilities layouts, and 
software component diagrams.
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Viewpoints are motivated noticing that we build similar views, using 
similar methods, for many systems. By analogy, we will want to draw a 
top view of most systems we build. The civil architect always draws a set 
of elevations, and elevation drawings share common rules and structures. 
And an information systems architect will build information models 
using standard methods for each system. This similarity is because related 
systems will typically have similar stakeholders, and these stakeholders 
find their concerns consistently addressed by particular types of models 
and analysis methods. Hence, a viewpoint can be thought of as a set of 
modeling or analysis methods together with the concerns those methods 
address and the stakeholders possessing those concerns.

Working Definitions

These are summarizing definitions, augmented with the notions of con-
sistency and completeness. The concepts here refer to the 1471 informa-
tion model in Figure 11.1.

Model: An approximation, representation, or idealization of selected 
aspects of the structure, behavior, operation, or other characteristics 
of a real-world process, concept, or system (IEEE 610.12-1990).

Viewpoint: A template, pattern, or specification for constructing a 
view (IEEE 1471-2000).

View: A representation of a system from the perspective of related 
concerns or issues (IEEE 1471-2000).

Consistency, of views: Two or more views are consistent if at least one 
can exist that possesses the given views.

Completeness, of view: A set of views is complete if they satisfy 
(or “cover”) all of the concerns of all stakeholders of interest.

Consistency and Completeness

Given multiple views (like top, front, and side) of a physical object, the 
ideas of consistency and completeness clear. A set of views is consistent 
if they are abstractions of the same object. A little more generally, they 
are consistent if at least one real object exists that has the given views. 
Consistency for physical object and views can be checked through solid 
geometry. Figure C.1 illustrates the point. The views are consistent if the 
geometrical object produces them when projected onto the appropri-
ate subspace. Even without the actual object, we can perform geometric 
checks on the different views.

We cannot (yet) treat consistency in the same rigorous manner if 
the views are functional and physical and of a complex system. As we 
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employ more complex views it is useful to return to the heuristic notion of 
consistency. Given a few models of a system being architected, we say they 
are consistent if at least one implementation exists that has the models as 
abstractions of itself.

Completeness can also be heuristically understood through the geo-
metric analogy. Suppose we have set of visual representations of a material 
object. What does it mean to claim that the set of representations (views) 
is “complete”? Logically, it means that the views completely define the 
object. But, any set of external visual representations can only define the 
external shape of the object; it cannot define the internal structure, if any. 
This trivial observation is actually extremely important for understand-
ing architecture. No set of representations is ever truly complete. A set of 
representations can be complete only with respect to something, say with 
respect to some set of concerns. If the concerns are external shape, then 
some set of external visual representations can be complete. If the con-
cerns are extended to include internal structures, or strength properties, 
or weight, or any number of other things, then the set of views must 
likewise be extended to be “complete.”

Reference
	 1.	 Merriam Webster’s Collegiate Dictionary, 10th edition, p. 61.

Consistency of a front, top,
and perspective view can be
grounded in geometry.

Figure C.1  A geometric illustration of the concept of consistency in views.
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Glossary

The fields of systems engineering and systems architecting are sufficiently 
new that many terms have not yet been standardized. Common usage is often 
different among different groups and in different contexts. However, for the 
purposes of this book, the meanings of the following terms are as follows:

Abstraction:  A representation in terms of presumed essentials, with a 
corresponding suppression of the nonessential.

ADARTS:  Ada-Based Design Approach for Real-Time Systems. A software 
development method (including models, processes, and heuristics) 
developed and promoted by the Software Productivity Consortium.

Aggregation:  The gathering together of closely related elements, purposes, 
or functions.

Architecting:  The processing of creating and building architectures; 
depending on one’s perspective, architecting may or may not be 
seen as a separable part of engineering. Those aspects of system 
development most concerned with conceptualization, objective 
definition, and certification for use.

Architectural style:  A form or pattern of design with a shared vocabu-
lary of design idioms and rules for using them (See Shaw and 
Garlan, 1996, page 19).

Architecture:  The structure — in terms of components, connections, and 
constraints — of a product, process, or element.

Architecture, open:  An architecture designed to facilitate addition, exten-
sion, or adaptation for use.
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Architecture (communication, software, or hardware):  The architecture 
of the particular designated aspect of a large system.

ARPANET/INTERNET:  The global computer internetwork, principally 
based on the TCP/IP packet communications protocol. The ARPANET 
was the original prototype of the current INTERNET.

Certification:  A formal, but not necessarily mathematical, statement that 
defined system properties or requirements that have been met.

Client:  The individual or organization that pays the bills. May or may not 
be the user.

Complexity:  A measure of the numbers and types of interrelationships 
among system elements. Generally speaking, the more complex a 
system, the more difficult it is to design, build, and use.

Deductive reasoning:  Proceeding from an established principle to its 
application.

Design:  The detailed formulation of the plans or instructions for making 
a defined system element; a follow-on step to systems architecting 
and engineering.

Domain:  A recognized field of activity and expertise, or of specialized 
theory and application.

Engineering:  Creating cost-effective solutions to practical problems by 
applying scientific knowledge to building things in the service of 
mankind (Shaw and Garlan, 1996, page 6). May or may not include 
the art of architecting.

Engineering, concurrent:  Narrowly defined (here) as the process by 
which product designers and manufacturing process engineers 
work together to create a manufacturable product.

Heuristic:  A guideline for architecting, engineering, or design. Lessons 
learned expressed as a guideline. A natural language abstraction 
of experience that passes the tests of Chapter 2.

Heuristic, descriptive:  A heuristic that describes a situation.
Heuristic, prescriptive:  A heuristic that prescribes a course of action.
IEEE P 1220:  An Institute of Electrical and Electronic Engineers standard 

for systems engineering.
Inductive reasoning:  Extrapolating the results of examples to a more 

general principle.
Manufacturing, flexible:  Creating different products on demand using 

the same manufacturing line. In practice, all products on that line 
come from the same family.

Manufacturing, lean:  An efficient and cost-effective manufacturing or pro-
duction system based on ultraquality and feedback. (See Womack 
et al., 1990.)

MBTI:  Meyer-Briggs Type Indicator. A psychological test for indicating 
the temperaments associated with selected classes of problem 
solving. (See Meyers, Briggs, and McCaulley, 1989.)
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Metaphor:  A description of an object or system using the terminology 
and properties of another. For example, the desktop metaphor for 
computerized document processing.

MIL-STD:  Standards for defense system acquisition and development.
Model:  An abstracted representation of some aspect of a system.
Model, satisfaction:  A model that predicts the performance of a system 

in language relevant to the client.
Modeling:  Creating and using abstracted representations of actual systems, 

devices, attributes, processes, or software.
Models, integrated:  A set of models, representing different views, form-

ing a consistent representation of the whole system.
Normative method:  A design or architectural method based on “what 

should be” — that is, on a predetermined definition of success.
OMT:  Object Modeling Technique. An object-oriented software develop-

ment method. (See Rumbaugh et al., 1991.)
Objectives:  Client needs and goals, however stated.
Paradigm:  A scheme of things, a defining set of principles, a way of look-

ing at an activity, for example, classical architecting.
Participative method:  A design method based on wide participation of 

interested parties. Designing through a group process.
Partitioning:  The dividing up of a system into subsystems.
Progressive design:  The concept of a continuing succession of design activi-

ties throughout product or process development. The succession 
progressively reduces the abstraction of the system through models 
until physical implementation is reached and the system used.

Purpose:  A reason for building a system.
Rational method:  A design method based on deduction from the princi-

ples of mathematics and science.
Requirement:  An objective regarded by the client as an absolute — that 

is, either passed or not.
Scoping:  Sizing; defining the boundaries and defining the constraints of 

a process, product, or project.
Spiral:  A model of system development that repeatedly cycles from func-

tion to form, build, test, and back to function. Originally proposed 
as a risk-driven process, particularly applicable to software devel-
opment with multiple release cycles.

System:  A collection of things or elements that, working together, pro-
duce a result not achievable by the things alone.

Systems, builder-architected:  Systems architected by their builders, gen-
erally without a committed client.

Systems, feedback:  Systems that are strongly affected by feedback of the 
output to the input.
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Systems, form first:  Systems that begin development with a defined form 
(or architecture) instead of a defined purpose. Typical of builder-
architected systems.

Systems, politicotechnical:  Technological systems, the development and 
use of which are strongly influenced by the political processes of 
government.

Systems, sociotechnical:  Technological systems, the development and 
use of which are strongly affected by diverse social groups. 
Systems in which social considerations equal or exceed technical 
ones.

Systems architecting:  The art and science of creating and building com-
plex systems. That part of systems development most concerned 
with scoping, structuring, and certification.

Systems architecting, the art of:  That part of systems architecting based 
on qualitative heuristic principles and techniques — that is, on 
lessons learned, value judgments, and unmeasurables.

Systems architecting, the science of:  That part of systems architecting 
based on quantitative analytic techniques — that is, on mathe-
matics and science and measurables.

Systems engineering:  A multidisciplinary engineering discipline in 
which decisions and designs are based on their effect on the sys-
tem as a whole.

Technical decisions:  Architectural decisions based on engineering 
feasibility.

Ultraquality:  Quality so high that measuring it in time and at reasonable 
cost is impractical. (See Rechtin, 1991, Chapter 8.)

Value judgments:  Conclusions based on worth (to the client and other 
stakeholders).

View:  A perspective on a system describing some related set of attributes. 
A view is represented by one or more models.

Waterfall:  A development model based on a single sequence of steps; 
typically applied to the making of major hardware elements.

Zero defects:  A production technique based on an objective of making 
everything perfectly. Related to the “everyone a supplier, every-
one a customer” technique for eliminating defects at the source. 
Contrasts with acceptable quality limits in which defects are 
accepted providing they do not exceed specified limits in number 
or performance.
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