

T H I R D E D I T I O N

THE ART OF
SYSTEMS

ARCHITECTING

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

T H I R D E D I T I O N

THE ART OF
SYSTEMS

ARCHITECTING

MARK W. MAIER
EBERHARDT RECHTIN

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4200-7913-5 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher can-
not assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Maier, Mark.
The art systems of architecting / Mark W. Maier. -- 3rd ed.

p. cm.
Includes bibliographical references and index.
ISBN 978-1-4200-7913-5 (alk. paper)
1. Systems engineering. I. Title.

TA168.M263 2009
620.001’171--dc22 2008044161

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To Eberhardt Rechtin,
who opened new vistas to

so many of us, and inspired
us to go out and find more.

Mark Maier

Contents
Preface...xv

IPart : Introduction
A Brief Review of Classical Architecting Methods.. 1
Notes... 4

1Chapter 	 Extending the Architecting Paradigm..................................... 5
Introduction: The Classical Architecting Paradigm...................................... 5
Responding to Complexity.. 5
The High Rate of Advances in the Computer and Information Sciences.... 7
The Foundations of Modern Systems Architecting....................................... 8
The Architecture Paradigm Summarized... 19
The Waterfall Model of Systems Acquisition.. 20
Spirals, Increments, and Collaborative Assembly.. 23
Scopes of Architecting.. 25
Conclusion.. 27
Notes and References... 27

2Chapter 	 Heuristics as Tools... 29
Introduction: A Metaphor.. 29
Heuristics as Abstractions of Experience.. 30
Selecting a Personal Kit of Heuristic Tools... 31
Using Heuristics.. 34
A Process Framework for Architecting Heuristics...................................... 35
Heuristics on Heuristics... 38
A Taxonomy of Heuristics... 39
New Directions... 41
Conclusion.. 41
Notes and References... 42

viii	 Contents

IPart I: New Domains, New Insights

Case Study 1: DC-3.. 47
The History.. 47
Architecture Interpretation... 51
Three Story Variations.. 51
Was the Boeing 247 Successfully Architected?... 52
What Is the “Architecture” of the DC-3?... 53
Art Raymond’s Principles.. 53
Notes and References... 55

3Chapter 	 Builder-Architected Systems... 57
Introduction: The Form-First Paradigm.. 57
Technological Substitutions within Existing Systems................................. 59
Consequences of Uncertainty of End Purpose... 61
Architecture and Competition.. 61
Reducing the Risks of Uncertainty of End Purpose.................................... 63
Risk Management by Intermediate Goals... 64
The “What Next?” Quandary.. 65
Controlling the Critical Features of the Architecture................................. 66
Abandonment of an Obsolete Architecture.. 67
Creating Innovative Teams.. 68
Architecting “Revolutionary” Systems.. 70
Systems Architecting and Basic Research... 72
Heuristics for Architecting Technology-Driven Systems........................... 73
Conclusion.. 74
Exercises... 74
Notes and References... 75

Case Study 2: Mass and Lean Production... 77
Introduction... 77
An Architectural History of Mass Production... 77
Cottage Industry (1890s to 1910s).. 78
Birth of Mass Production (1908–1913).. 78
Competition from New Quarters (1920s to 1930s).. 79
The Toyota Production System (1940s to 1980s).. 80
Metaphor or Vision Changes... 81
Craftsmen... 81
A Car for the Masses, or If We Build It, It Will Sell...................................... 81
Cars as Fashion.. 82
The Supermarket Metaphor.. 82
The Toyota Way... 82
Elements of the Architecture of the Ford Production System.................... 82
The Assembly Line... 83

Contents	 ix

Enterprise Distribution.. 83
Management Processes.. 84
Quality Assurance for Distributed Production.. 84
Devotion to Component-Level Simplification.. 84
Social Contract... 85
Conclusion.. 85
Notes and References... 86

4Chapter 	 Manufacturing Systems... 87
Introduction: The Manufacturing Domain... 87
Manufacturing in Context... 88
Architectural Innovations in Manufacturing... 91
Dynamic Manufacturing Systems.. 93
Lean Production.. 105
Flexible Manufacturing.. 108
Heuristics for Architecting Manufacturing Systems.................................111
Conclusion...111
Exercises... 112
Notes and References... 112

Case Study 3: Intelligent Transportation Systems.................................. 115
Introduction..115
ITS Concepts...116
ITS Sociotechnical Issues..118
Who Is the Client for an Architect?...118
Public or Private?..119
Facts and Perceptions... 121
Architecture as Shared Invariants.. 122
Dominance of Economics.. 122
Notes and References... 123

5Chapter 	 Social Systems.. 125
Introduction: Defining Sociotechnical Systems... 125
Public Participation... 125
The Foundations of Sociotechnical Systems Architecting........................ 127
The Separation of Client and User.. 127
Socioeconomic Insights.. 128
The Interaction between the Public and Private Sectors........................... 130
Facts versus Perceptions: An Added Tension... 131
Heuristics for Social Systems.. 134
Conclusion.. 135
Exercises... 135
Notes and References... 136

x	 Contents

Case Study 4: Hierarchical to Layered Systems...................................... 137
Business Background... 137
Motivation for Change... 138
The Layered Alternative.. 140
The Pain of the Transition.. 142
Results... 144

6Chapter 	 Software and Information Technology Systems............... 147
Introduction: The Status of Software Architecting.................................... 147
Software as a System Component.. 151
Systems, Software, and Process Models.. 153
The Problem of Hierarchy..161
The Role of Architecture in Software-Centered Systems......................... 166
Programming Languages, Models, and Expression...................................167
Architectures, “Unifying” Models, and Visions.. 169
Directions in Software Architecting.. 170
Exercises... 178
Notes and References... 179

Case Study 5: The Global Positioning System... 181
The History.. 181
The Origins of GPS: The Foundational Programs..................................... 181
Inertial Navigation and Its Limits.. 182
Weapon Delivery... 182
The Transit Program... 182
TIMATION... 183
621B... 184
The Origin of GPS... 184
Parkinson and Currie... 185
The Fateful Weekend.. 185
The Long Road to Revolution.. 186
The Timeline to Operation.. 186
Commercial Markets and the Gulf War.. 187
Revolution in the Second Generation... 187
Ubiquitous GPS... 188
GPS-Guided Weapons.. 188
Architecture Interpretation... 189
Right Idea, Right Time, Right People... 189
Be Technically Aggressive, But Not Suicidal.. 190
Consensus without Compromise... 191
Architecture as Invariants... 192
Revolution through Coupled Change.. 192
Conclusion.. 193
Notes and References... 194

Contents	 xi

7Chapter 	 Collaborative Systems.. 195
Introduction: Collaboration as a Category.. 195
Collaborative System Examples.. 197
Analogies for Architecting Collaborative Systems.................................... 202
Collaborative System Heuristics... 203
Variations on the Collaborative Theme... 207
Misclassification.. 208
Standards and Collaborative Systems...211
Conclusion.. 213
Exercises..214
Exercises to Close Part II...214
Notes and References... 215

IIPart I: Models and Modeling
Introduction to Part III... 217
A Civil Architecture Analogy... 217
Guide to Part III... 218

8Chapter 	 Representation Models and Systems Architecting.......... 221
Introduction: Roles, Views, and Models.. 221
Roles of Models... 222
Models, Viewpoints, and Views... 223
Classification of Models by View.. 225
Conclusion.. 243
Exercises... 245
Notes and References... 245

9Chapter 	 Design Progression in Systems Architecting.................... 247
Introduction: Architecting Process Components....................................... 247
Design Progression... 248
Introduction by Examples.. 249
Design as the Evolution of Models... 250
Evaluation Criteria and Heuristic Refinement... 250
Design Concepts for Systems Architecture... 254
Architecture and Design Disciplines... 277
Conclusion.. 282
Exercises... 282
Notes and References... 283

1Chapter 0	 Integrated Modeling Methodologies................................... 285
Introduction... 285
General Integrated Models.. 286
Integrated Modeling and Software.. 292

xii	 Contents

Integrated Models for Manufacturing Systems.. 307
Integrated Models for Sociotechnical Systems... 308
Conclusion.. 309
Exercises..310
Notes and References..310

1Chapter 1	 Architecture Frameworks.. 313
Introduction... 313
Defining an Architecture Framework...314
Current Architecture Frameworks... 315
Research Directions.. 327
Adapting Processes to Frameworks... 329
Conclusion.. 333
Notes and References... 333

IPart V: The Systems Architecting Profession

1Chapter 2	 Architecting in Business and Government........................ 339
Problem-System-Program-Organization... 339
Strategy and Architecture in Business and Government......................... 343
Architecture of Programs.. 346
Strategic Architecting of Programs.. 350
Enterprise Architecture... 353
Conclusion.. 359
Notes and References... 359

1Chapter 3	 The Political Process and Systems Architecting............... 361
Brenda Forman

Introduction: The Political Challenge.. 361
Politics as a Design Factor.. 362
The First Skill to Master... 364
Heuristics in the Political Process: “The Facts of Life”.............................. 365
A Few More Skills to Master... 373
Conclusion.. 373

1Chapter 4	 The Professionalization of Systems Architecting............ 375
Elliott Axelband

Introduction... 375
The Profession of Systems Engineering... 375
Systems Architecting and Systems Standards.. 378
The Origins of Systems Standards... 379
Commercial Standards... 382
Company Standards... 384

Contents	 xiii

A Summary of Standards Developments, 1950–1995................................ 385
Systems Architecting Graduate Education.. 386
Curriculum Design... 387
Advanced Study in Systems Architecting... 389
Professional Societies and Publications... 389
Conclusion: An Assessment of the Profession.. 390
Notes and References... 391

A: Appendix Heuristics for Systems-Level Architecting...................... 395
Introduction: Organizing the List.. 395
Heuristic Tool List... 397
Exercises... 407
Notes and References... 407

B: Appendix Reference Texts Suggested for Institutional Libraries....409
Architecting Background.. 409
Management.. 409
Modeling.. 410
Specialty Areas.. 410
Software.. 410
Systems Sciences..411
Systems Thinking..411

C: Appendix On Defining Architecture and Other Terms................... 413
Defining “Architecture”... 413
Models, Viewpoints, and Views... 420
Reference.. 422

Glossary...423

Author Index... 427

Subject Index.. 431

Preface

The Continuing Development of
Systems Architecting

Architecting, the planning and building of struc-
tures, is as old as human societies — and as modern
as the exploration of the solar system.

So began this book’s original 1991 predecessor.* The earlier work was
based on the premise that architectural methods, similar to those formu-
lated centuries before in civil works, were being used, albeit unknowingly,
to create and build complex aerospace, electronic, software, command,
control, and manufacturing systems. If so, then still other civil works
architectural tools and ideas — such as qualitative reasoning and the
relationships between client, architect, and builder — should be found
even more valuable in today’s more recent engineering fields. Five and ten
years later, at the time of the first and second editions of this book, judging
from several hundred retrospective studies at the University of Southern
California of dozens of post–World War II systems, the original premise
was validated. Since then the use of architectural concepts has become
common in systems engineering discussions. A central premise of the
application of the civil architecture metaphor, that creating and building
systems too complex to be treated by engineering analysis alone can be
addressed through structured methods at the level of heuristics, has been
further validated.

Of great importance for the future, the new fields have been creat-
ing architectural concepts and tools of their own and at an accelerating
rate. This book includes a number of the more broadly applicable ones,
among them heuristic tools, progressive design, intersecting waterfalls,
feedback architectures, spiral-to-circle software acquisition, technological

*	 Rechtin, E., Systems Architecting, Creating and Building Complex Systems. Englewood Cliffs,
NJ: Prentice Hall, 1991, hereafter called Rechtin 1991.

xvi	 Preface

innovation, architecture and business strategy, and the rules of the politi-
cal process as they affect system design.

Arguably, these developments could, even should, have occurred
sooner in this modern world of systems. Why now?

Architecting in the Systems World
A strong motivation for expanding the architecting process into new
fields has been the retrospective observation that success or failure of
today’s widely publicized (and unpublicized) systems often seems pre-
ordained — that is, traceable to their beginnings. Some system develop-
ment projects start doomed, and no downstream engineering efforts are
likely to rescue them. Other projects seem fated for success almost in
spite of poor downstream decisions. The initial concept is so “right” that
its success is inevitable, even if not necessarily with the first group that
tries to execute it. This is not a new realization. It was just as apparent
to the ancient Egyptians, Greeks, and Romans who originated classical
architecting in response to it. The difference between their times and now
is in the extraordinary complexity and technological capability of what
could then and now be built.

Today’s architecting must handle systems of types unknown until
very recently, for example, systems that are very high quality, real time,
closed loop, reconfigurable, interactive, software intensive, and, for all
practical purposes, autonomous. New domains like personal computers,
intersatellite networks, health services, and joint service command and
control are calling for new architectures — and for architects specializing
in those domains. Their needs and lessons learned are in turn leading
to new architecting concepts and tools and to the acknowledgment of a
new formalism — and evolving profession — called systems architecting,
a combination of the principles and concepts of both systems and of
architecting. However, for all the new complexity, many of the roots of
success and failure are nearly constant over time. By examining a series
of case studies, interwoven with a discussion of the particular domains
to which they belong, we can see how relatively timeless principles (for
example, technical and operational coupled revolution, strategic consis-
tency) largely govern success and failure.

The reasons behind the general acknowledgment of architecting in
the new systems world are traceable to that remarkable period immedi-
ately after the end of the Cold War in the mid-1980s. Abruptly, by historical
standards, a 50-year period of continuity ended. During the same period,
there was a dramatic upsurge in the use of smart, real-time systems, both
civilian and military, that required much more than straightforward
refinements of established system forms. Long-range management strate-
gies and design rules, based on years of continuity, came under challenge.

Preface	 xvii

That challenge was not short-lived; instead, it has resorted itself repeatedly
in the years between editions of this book. It is now apparent that the new
era of global transportation, global communications, global competition,
and global security turmoil is not only different in type and direction; it is
unique technologically and politically. It is a time of restructuring and
invention, of architecting new products and processes, and of new ways
of thinking about how systems are created and built.

Long-standing assumptions and methods are under challenge. For
example, for many engineers, architectures were a given; automobiles, air-
planes, and even spacecraft had the same architectural forms for decades.
What need was there for architecting? Global competition soon provided
an answer. Architecturally different systems were capturing markets.
Consumer product lines and defense systems are well-reported examples.
Other questions remained: How can software architectures be created
that evolve as fast as their supporting technologies? How deeply should a
systems architect go into the details of all the system’s subsystems? What
are the relationships between the architectures of systems and the human
organizations that design, build, support, and use them?

Distinguishing between Architecting,
Engineering, and Project Management
Because it is the most asked by engineers in the new fields, the first issue to
address is the distinction between architecting and engineering in general
— that is, regardless of engineering discipline. Although civil engineers
and civil architects, even after centuries of debate, have not answered
that question in the abstract, they have in practice. Generally speaking,
engineering deals almost entirely with measurables using analytic tools
derived from mathematics and the hard sciences; that is, engineering is a
deductive process. Architecting deals largely with unmeasurables using
nonquantitative tools and guidelines based on practical lessons learned;
that is, architecting is an inductive process. Architecting embraces the
world of the user/sponsor/client, with all the ambiguity and imprecision
that may entail. Architecting seeks to communicate across the gap from
the user/sponsor/client to the engineer/developer, and architecting is
complete (at least its initial phase) when a system is well-enough defined
to engage developers. At a more detailed level, engineering is concerned
more with quantifiable costs, architecting more with qualitative worth.
Engineering aims for technical optimization, architecting for client satis-
faction. Engineering is more of a science, and architecting is more of an
art. Although the border between them is often fuzzy, the distinction at
the end is clear.

xviii	 Preface

In brief, the practical distinction between engineering and architect-
ing is in the problems faced and the tools used to tackle them. This same
distinction appears to apply whether the branch involved is civil, mechani-
cal, chemical, electrical, electronic, aerospace, software, or systems.* Both
architecting and engineering can be found in every one of the established
disciplines and in multidisciplinary contexts. Architecting and engineer-
ing are roles, distinguished by their characteristics. They represent two
edges of a continuum of systems practice. Individual engineers often
fill roles across the continuum at various points in their careers or on
different systems. The characteristics of the roles, and a suggestion for an
intermediate role, are shown in Table P.1.

As the table indicates, architecting is characterized by dealing with
ill-structured situations, situations where neither goals nor means are
known with much certainty. In systems engineering terms, the require-
ments for the system have not been stated more than vaguely, and the
architect cannot appeal to the client for a resolution, as the client has
engaged the architect precisely to assist and advise in such a resolution.
The architect engages in a joint exploration of requirements and design, in
contrast to the classic engineering approach of seeking an optimal design
solution to a clearly defined set of objectives.

*	 The systems branch, possibly new to some readers, is described in Rechtin 1991 and in
Chapter 1 of this book.

Table P.1  Characteristics of the Roles on the Architecting and
Engineering Continuum

Characteristic Architecting
Architecting and

Engineering Engineering
Situation/goals Ill-structured Constrained Understood

Satisfaction Compliance Optimization
Methods Heuristics ←⎯⎯⎯⎯⎯⎯→ Equations

Synthesis ←⎯⎯⎯⎯⎯⎯→ Analysis
Art and science Art and science Science and art

Interfaces Focus on “mis-fits” Critical Completeness
System integrity
maintained
through

“Single mind” Clear objectives Disciplined
methodology and
process

Management
issues

Working for client Working with
Client

Working for
builder

Conceptualization
and certification

Whole waterfall Meeting project
requirements

Confidentiality Conflict of
interest

Profit versus cost

Preface	 xix

Because the situation is ill structured, the goal cannot be optimiza-
tion. The architect seeks satisfactory and feasible problem-solution pairs.
Good architecture and good engineering are both the products of art and
science, and a mixture of analysis and heuristics. However, the weight
will fall on heuristics and “art” during architecting.

An “ill-structured” problem is a problem where the statement of
the problem depends on the statement of the solution. In other words,
knowing what you can do changes your mind about what you want to
do. A solution that appears correct based on an initial understanding of
the problem may be revealed as wholly inadequate with more experience.
Architecting embraces ill-structured problems. A basic tenet of architect-
ing is to assume that one will face ill-structured problems and to config-
ure one’s processes so as to allow for it.

One way to clearly see the distinction between architecting and engi-
neering is in the approach to interfaces and system integrity. When a
complex system is built (say one involving 10,000 person-years of effort),
only absolute consistency and completeness of interface descriptions
and disciplined methodology and process will suffice. When a system is
physically assembled, it matters little whether an interface is high tech or
low tech; if it is not exactly correct the system does not work. In contrast,
during architecting, it is necessary only to identify the interfaces that cannot
work — the mis-fits. Mis-fits must be eliminated during architecting, and
then interfaces should be resolved in order of criticality and risk as devel-
opment proceeds into engineering.

One important point is that the table represents management in the
classical paradigm of how architecting is done, not necessarily how it
actually is done. Classically, architecting is performed by a third party
working for the client. In practice, the situation is more complex as the
architecting might be done by the builder before a client is found, might
be mixed into a competitive procurement, or might be done by the client.
These variations are taken up in chapters to come.

As for project management, architecting clearly exists within the larger
project cycle. If we examine the development of systems very holistically,
looking from the earliest to the latest phases, we see architecting existing
within that large picture. But, at a practical level, what is usually taught as
project management has a narrower focus, as does what is usually taught
as systems engineering. The narrower focus assumes that definite require-
ments (in the unambiguous, orthogonal, measurable, and testable senses)
exist and can be documented, that budgets and schedules exist and must
be managed, and that specific end points are defined through contracts or
other agreements. For a given organization (a contract developer, a gov-
ernment project office), that narrower focus may be all that matters, and

xx	 Preface

may encompass billions of dollars. Often, by the time that narrower focus
has been arrived at, the architecting is over. Often, by the time that nar-
rower focus has been arrived at, the project is already doomed to failure
or well on its way to success.

Table P.1 implies an important distinction in architecting as currently
practiced. The table, and this book, emphasize architecting as decision
making. Architecting has been accomplished when the fundamental struc-
tural decisions about a system have been made, regardless of what sort of
architecture description document has been produced. In contrast, many
“architecture” projects currently being conducted are description-centric.
Their basis is producing an architecture framework compliant descrip-
tion document about a system or system-of-systems that typically already
exists. These are sometimes called “as-is” or “baseline” architecture docu-
ments. This book has relatively little to say about such projects. The authors’
emphasis, and the emphasis of this book, is on the structural decisions
that underlie the “as-is” system. The methods of this book could be useful
applied to making an assessment of those decisions, and reevaluating
those decisions.

Architecting as Art and Science
Systems architecting is the subject of this book, and the art of it in par-
ticular, because, being the most interdisciplinary, its tools can be most
easily applied in the other branches. Good architecting is not just an art,
and virtually all architects of high-technology systems, in the authors’
experience, have strong science backgrounds. But, the science needed for
systems architecting already is the subject of many publications, but few
address the art systematically and in depth. The overriding objective of
this book is to bring the reader a toolbox of techniques for handling ill-
structured, architectural problems that are different from the engineering
methods already taught well and widely published.

It is important in understanding the subject of this book to clarify cer-
tain expressions. The word “architecture” in the context of civil works can
mean a structure, a process, or a profession; in this text, it refers only to
the structure, although we will often consider “structures” that are quite
abstract. The word “architecting” refers only to the process. Architecting
is an invented word to describe how architectures are created, much as
engineering describes how “engines” and other artifacts are created.
In another, subtler, distinction from conventional usage, an “architect” is
meant here to be an individual engaged in the process of architecting,
regardless of domain, job title, or employer. By definition and practice,

Preface	 xxi

from time to time an architect may perform engineering and an engineer
may perform architecting — whatever it takes to get the job done.

Clearly, both processes involve elements of the other. Architecting
requires top-level quantitative analysis to determine feasibility and quan-
titative measures to certify readiness for use. Engineering can and occa-
sionally does require the creation of architecturally different alternatives
to resolve otherwise intractable design problems. Good engineers are
armed with an array of heuristics to guide tasks ranging from structur-
ing a mathematical analysis to debugging a piece of electronic hardware.
For complex systems, both engineering and architecting are essential.* In
practice, it is usually necessary to draw a sharp line between them only
when that sharp line is imposed by business or legal requirements.

Criteria for Mature and
Effective Systems Architecting
An increasingly important need of project managers and clients is for
criteria to judge the maturity and effectiveness of systems architecting in
their projects — criteria analogous to those developed for software devel-
opment by Carnegie Mellon’s Software Engineering Institute. Based upon
experience to date, criteria for systems architecting appear to be, in rough
order of attainment:

A recognition by clients and others of the need to architect com-•	
plex systems.
An accepted discipline to perform that function; in particular, the •	
existence of architectural methods, standards, and organizations.
A recognized separation of value judgments and technical decisions •	
between client, architect, and builder.
A recognition that architecture is an art as well as a science; in particular, •	
the development and use of nonanalytic as well as analytic techniques.
The effective utilization of an educated professional cadre — that •	
is, of masters-level, if not doctorate-level, individuals and teams
engaged in the process of systems-level architecting.

By those criteria, systems architecting is in its adolescence, a time of
challenge, opportunity, and controversy. History and the needs of global
competition would seem to indicate adulthood is close at hand.

*	 For further elaboration on the related questions of the role of the architect, see Rechtin
1991, pp. 11–14; on the architect’s tools, Parts I and III of this book; on architecting as a
profession, Part IV of this book and Systems Engineering, the Journal of the International
Council on Systems Engineering.

xxii	 Preface

The Architecture of This Book
The first priority of this book has been to restate and extend into the
future the retrospective architecting paradigm of Rechtin 1991.* An essen-
tial part of both retrospective and extended paradigms is the recognition
that systems architecting is part art and part science. Part I of this book
further develops the art and extends the central role of heuristics. Part II
introduces five important domains that contribute to the understanding
of that art. We buttress the retrospective lessons of the original book by
providing some detailed stories on some of the case studies that motivated
the original work, and use those case studies to introduce each chapter in
Part II. Part III helps bridge the space between the science and the art
of architecting. In particular, it develops the core architecting process of
modeling and representation. Part IV concentrates on architecting as a
profession: its relationship to business strategy and activities, the political
process and its part in system design, and the professionalization of the
field through education, research, and peer-reviewed journals.

The architecture of Part II deserves an explanation. Without one, the
reader may inadvertently skip some of the domains — builder-architected
systems, manufacturing systems, social systems, software systems, and
collaborative systems — because they are outside the reader’s immediate
field of interest. These chapters, instead, recognize the diverse origins of
heuristics, illustrating and exploiting them. Heuristics often first surface
in a specialized domain where they address an especially prominent
problem. Then, by abstraction or analogy, they are carried over to others
and become generic. Such is certainly the case in the selected domains. In
these chapters, the usual format of stating a heuristic and then illustrating
it in several domains is reversed. Instead it is stated, but in generic terms, in
the domain where it is most apparent. Readers are encouraged to scan all
the chapters of Part II. The chapters may even suggest domains, other than
the reader’s, where the reader’s experience can be valuable in these times
of vocational change. References are provided for further exploration. For
professionals already in one of the domains, the description of each is from
an architectural perspective, looking for those essentials that yield generic
heuristics and providing in return other generic ones that might help better

*	 This second book is an extension of Rechtin 1991, not a replacement for it. However, this
book reviews enough of the fundamentals that it can stand on its own. If some subjects,
such as examples of specific heuristics, seem inadequately treated, the reader can probe
further in the earlier work. There are also a number of areas covered there that are not
covered here, including the challenges of ultraquality, purposeful opposition, economics,
and public policy; biological architectures and intelligent behavior; and assessing archi-
tecting and architectures. A third book, Rechtin, E., Systems Architecting of Organizations,
Why Eagles Can’t Swim, Boca Raton, FL: CRC Press, 1999, introduces a part of systems
architecting related to, but different from, the first two.

Preface	 xxiii

understand those essentials. In any case, the chapters most emphatically
are not intended to advise specialists about their specialties.

Architecting is inherently a multidimensional subject, difficult to
describe in the linear, word-follows-word, format of a book. Consequently,
it is occasionally necessary to repeat the same concept in several places,
internally and between books. A good example is the concept of systems.
Architecting can also be organized around several different themes or
threads. Rechtin 1991 was organized around the well-known waterfall
model of system procurement. As such, its applicability to software devel-
opment was limited. This book, more general, is by fundamentals, tools,
tasks, domains, models, and vocation. Readers are encouraged to choose
their own personal theme as they go along. It will help tie systems archi-
tecting to their own needs.

Exercises are interspersed in the text, designed for self-test of under-
standing and critiquing the material just presented. If the reader disagrees,
then the disagreement should be countered with examples and lessons
learned — the basic way that mathematically unprovable statements are
accepted or denied. Most of the exercises are thought problems, with no
correct answers. Read them, and if the response is intuitively obvious,
charge straight ahead. Otherwise, pause and reflect a bit. A useful insight
may have been missed. Other exercises are intended to provide opportu-
nities for long-term study and further exploration of the subject. That is,
they are roughly the equivalent of a master’s thesis.

Notes and references are organized by chapter. Heuristics by tradi-
tion are boldfaced when they appear alone, with an appended list of them
completing the text.

Changes Since the Second Edition
Since the publication of the second edition, it has become evident that
some materials available to the authors are not generally available (case
studies) and some subjects have been extensively developed in the years
since publication. The authors have benefited from extensive feedback
from working systems architects through teaching courses, seminars,
and professional application. Where appropriate, that feedback has been
incorporated into the book in the form of clearer explanations, useful case
studies, better examples, and corrections to misunderstandings.

In several areas, we have added new material. A new chapter covers
the relationships between architecting and the larger business (whether
commercial or government) in which it is embedded. This subject has
taken on great importance as it becomes apparent how deeply business
strategy and architecture interrelate. We argue in this chapter that archi-
tecture can be seen as the physical (or technical) embodiment of strategy.
Conversely, architecture without strategy is, essentially by definition,

xxiv	 Preface

incoherent. Many of the common problems encountered in attempting
to improve architecting practices can be linked directly to problems in
organizational strategy. Moreover, this linkage provides fertile ground for
looking at intellectual links with other engineering-related subjects, such
as decision theory.

The chapter on architecture description frameworks has been revised
in the light of developments since the second edition. As the importance
of architectures has become more broadly accepted, standards have been
promulgated and in some cases mandated. Most of these standards are
related to architecture description, the equivalent of blueprint standards.
The standards are roughly similar in intellectual approach, but they use
distinctly different terminology and make quite different statements
about what features are important. There is now enough experience in the
community to identify common problems, and to recommend techniques
drawn from the metaphor that motivates this book to address them.

We have also folded case study material into the book. The cases
studied here formed part of the basic story used by the authors in a number
of educational settings, but many of their details were either hard to find
in print or became completely out of print. The generally available case
study materials are also mostly historical and do not try to architecturally
interpret the decisions that went into the systems. As a result, we have
compiled some of the most interesting material that fits readily into book
format here, and interleaved their presentation with the discussion of the
related system categories.

Readership and Usage of This Book
This book is written for present and future systems architects, for experi-
enced engineers interested in expanding their expertise beyond a single
field, and for thoughtful individuals concerned with creating, building, or
using complex systems. It is intended either for simple reading, for refer-
ence in professional practice, or in classroom settings. From experience
with its predecessor, the book can be used as a reference work for graduate
studies, for senior capstone courses in engineering and architecture, for
executive training programs, and for the further education of consultants
and systems acquisition and integration specialists, and as background
for legislative staffs.

The book is a basic text for courses in systems architecture and
engineering at several universities and in several extended professional
courses. Best practice in using this book in such courses appears to be
to combine it with selected case studies and an extended case exercise.
Because architecting is about having skills, not about having rote knowl-
edge, it can only be demonstrated in the doing. The author’s courses
have been built around course-long case exercises, normally chosen in

Preface	 xxv

the student’s individual field. In public courses, such as at universities, the
case studies presented here are appropriate for use. The source materials
are reasonably available, and students can expand on what is presented
here and create their own interpretations. In professional education set-
tings, it is preferable to replace the case studies in class with case studies
drawn directly from the student’s home organizations.

Everything in this book represents the opinions of the authors and
does not represent the official position of The Aerospace Corporation or
its customers. All errors are the responsibility of the authors.

Acknowledgments
Eberhardt Rechtin, who originated and motivated so much of the think-
ing here, passed away in 2006. Although no longer with us, his spirit, and
words, pervade this book. The first edition of this book was formulated
while Rechtin taught at the University Southern California (USC). He
treasured his interactions with his students there and believed that the
work was enormously improved through the process of teaching them.
At least a dozen of them deserve special recognition for their unique
insights and penetrating commentary: Michael Asato, Kenneth Cureton,
Susan Dawes, Norman P. Geis, Douglas R. King, Kathrin Kjos, Jonathan
Losk, Ray Madachy, Archie W. Mills, Jerry Olivieri, Tom Pieronek, and
Marilee Wheaton. The quick understanding and extension of the archi-
tecting process by all the students was been a joy to behold and a privilege
to acknowledge.

Several members of the USC faculty were instrumental in finding a
place for this work, and the associated program. In particular, there was
Associate Dean Richard Miller, now President of Olin College; Associate
Dean Elliot Axelband, who originally requested this book and directed
the USC Masters Program in Systems Engineering and Architecture; and
two members of the School of Engineering staff, Margery Berti and Mary
Froehlig, who architected the Master of Science in Systems Architecture
and Engineering out of an experimental course and a flexible array of mul-
tidisciplinary courses at USC. Particular thanks go to Charles Weber, who
greatly encouraged Eb Rechtin in creating the program, and then encour-
aged his then graduate student, Mark Maier, to take the first class offered
in systems architecting as part of his Ph.D. in Electrical Engineering
Systems. Brenda Forman, then of USC, now retired from the Lockheed
Martin Corporation and the author of Chapter 12, accepted the challenge
of creating a unique course on the “facts of life” in the national political
process and how they affect — indeed often determine — architecting
and engineering design.

Our colleagues at The Aerospace Corporation have been instrumen-
tal in the later development of the ideas that have gone into this book.

xxvi	 Preface

Mark Maier has taught many versions of this material under the auspices
of the Aerospace Systems Architecting Program and its derivatives. That
program was dependent on the support of Mal Depont, William Hiatt,
Dave Evans, and Bruce Gardner of the Aerospace Institute. The program
in turn had many other collaborators, including Kevin Kreitman, Andrea
Amram, Glenn Buchan, and James Martin. Also of great importance to
the quality of the presentation has been the extensive editing and organi-
zation of the materials in the Aerospace Systems Architecting Program by
Bonnie Johnston and Margaret Maher.

Manuscripts may be written by authors, but publishing them is a pro-
fession and contribution unto itself requiring judgment, encouragement,
tact, and a considerable willingness to take risk. For all of these we thank
Norm Stanton, a senior editor of Tayor & Francis/CRC Press and editor of
the first edition of this book, who has understood and supported the field
beginning with the publication of Frederick Brooks’ classic architecting
book, The Mythical Man-Month, more than two decades ago; and Cindy
Carelli for her support of subsequent editions of this book.

Of course, a particular acknowledgment is due to the Rechtin and
Maier families for the inspiration and support they have provided over
the years, and their continuing support in revising this book.

Mark Maier

Ipart

Introduction

A Brief Review of Classical Architecting Methods
Architecting: The Art and Science of
Designing and Building Systems1

The four most important methodologies in the process of architecting are
characterized as normative, rational, participative, and heuristic2 (Table I.1).
As might be expected, like architecting itself, they contain both science
and art. The science is largely contained in the first two, normative and
rational, and the art in the last two, participative and heuristic.

The normative technique is solution based; it prescribes architecture
as it “should be” — that is, as given in handbooks, civil codes, and pro-
nouncements by acknowledged masters. Follow it and the result will be
successful by definition.

Limitations of the normative method — such as responding to major
changes in needs, preferences, or circumstances — led to the rational
method, scientific and mathematical principles to be followed in arriving
at a solution to a stated problem. It is method based or rule based. Both
the normative and rational methods are analytic, deductive, experiment

Table I.1  Four Architecting Methodologies
Normative (solution based)
  Examples: building codes and communications standards
Rational (method based)
  Examples: systems analysis and engineering
Participative (stakeholder based)
  Examples: concurrent engineering and brainstorming
Heuristic (lessons learned)
  Examples: Simplify. Simplify. Simplify. and SCOPE!

2	 The Art of Systems Architecting

based, easily certified, well understood, and widely taught in academia
and industry. Moreover, the best normative rules are discovered through
engineering science (think of modern building codes) — truly a formi-
dable set of positives.

However, although science-based methods are absolutely neces-
sary parts of architecting, they are not the focus of this book. They are
already well treated in a number of architectural and engineering texts.
Most people who are serious practitioners of systems architecting, or who
aspire to be serious practitioners, come from an engineering and science
background. They already realize the necessity of applying scientific and
quantitative thinking to the design of complex systems. Equally neces-
sary, and the focus of this part of the book, is the art, or practice, needed
to complement the science for highly complex systems.

In contrast with science-based methodologies, the art or practice
of architecting — like the practices of medicine, law, and business — is
nonanalytic, inductive, difficult to certify, less understood, and, at least
until recently, is seldom taught formally in either academia or industry.
It is a process of insights, vision, intuitions, judgment calls, and even
“taste.”3 It is key to creating truly new types of systems for new and often
unprecedented applications. Here are some of the reasons.

For unprecedented systems, past data are of limited use. For others,
analysis can be overwhelmed by too many unknowns, too many stake-
holders, too many possibilities, and too little time for data gathering and
analysis to be practical. To cap it off, many of the most important factors are
not measurable. Perceptions of worth, safety, affordability, political accep-
tance, environmental impact, public health, and even national security
provide no realistic basis for numerical analyses — even if they were not
highly variable and uncertain. Yet, if the system is to be successful, these
perceptions must be accommodated from the first, top-level, conceptual
model down through its derivatives.

The art of architecting, therefore, complements its science where science
is weakest: in dealing with immeasurables, in reducing past experience
and wisdom to practice, in conceptualization, in inspirationally putting
disparate things together, in providing “sanity checks,” and in warning of
likely but unprovable trouble ahead. Terms like reasonable assumptions,
guidelines, indicators, elegant design, and beautiful performance are not
out of place in this art, nor are lemon, disaster, snafu, or loser. These terms
are hardly quantifiable, but are as real in impact as any science.

The participative methodology recognizes the complexities created
by multiple stakeholders. Its objective is consensus. As a notable example,
designers and manufacturers need to agree on a multiplicity of details
if an end product is to be manufactured easily, quickly, and profitably.

Part I: Introduction	 3

In simple but common cases, only the client, architect, and contractor have
to be in agreement. But as systems become more complex, new and differ-
ent participants have to agree as well.

Concurrent engineering, a recurrently popular acquisition method,
was developed to help achieve consensus among many participants. Its
greatest values, and its greatest contentions, are for systems in which wide-
spread cooperation is essential for acceptance and success, for example,
systems that directly impact on the survival of individuals or institutions.
Its well-known weaknesses are undisciplined design by committee, diver-
sionary brainstorming, the closed minds of “groupthink,” and members
without power to make decisions but with unbridled right to second guess.
Arguably, the greatest mistake that can be made in concurrent engineering
is to attempt to quantify it. It is not a science. It is a very human art.

The heuristics methodology is based on “common sense” — that is, on
what is sensible in a given context. Contextual sense comes from collective
experience stated in as simple and concise a manner as possible. These
statements are called heuristics, the subject of Chapter 2, and are of special
importance to architecting because they provide guides through the rocks
and shoals of intractable, “wicked” system problems. Simplify! is the first
and probably most important of them. They exist in the hundreds if not
thousands in architecting and engineering, yet they are some of the most
practical and pragmatic tools in the architect’s kit of tools.

Different Methods for Different Phases of Architecting

The nature of classical architecting changes as the project moves from
phase to phase. In the earliest stages of a project, it is a structuring of
an unstructured mix of dreams, hopes, needs, and technical possibilities
when what is most needed has been called an inspired synthesizing of
feasible technologies. It is a time for the art of architecting. Later on, archi-
tecting becomes an integration of, and mediation among, competing sub-
systems and interests — a time for rational and normative methodology.
And finally, there comes certification to all that the system is suitable for
use, when it may take all the art and science to that point to declare the
system as built is complete and ready for use.

Not surprisingly, architecting is often individualistic, and the end
results reflect it. As Frederick P. Brooks put it in 19834 and Robert Spinrad
stated in 1987,5 the greatest architectures are the product of a single mind
— or of a very small, carefully structured team. To which should be added
in all fairness: a responsible and patient client, a dedicated builder, and
talented designers and engineers.

4	 The Art of Systems Architecting

Notes
	 1.	 Webster’s II, New Riverside University Dictionary. Boston, MA: Riverside 1984.

As adapted for systems by substitution of “building systems” for “erecting
buildings.”

	 2.	 For a full discussion of these methods, see Lang, Jon, Creating Architectural
Theory, The Role of the Behavioral Sciences in Environmental Design. New York:
Van Nostrand Reinhold, 1987; Rowe, Peter G., Design Thinking. Cambridge,
MA: MIT Press, 1987. They are adapted for systems architecting in Rechtin
1991, pp. 14–22.

	 3.	 Spinrad, Robert J., in a lecture at the University of Southern California, 1988.
	 4.	 Brooks, Frederick P., The Mythical Man-Month, Essays on Software Engineering.

Reading, MA: Addison Wesley, 1983.
	 5.	 Spinrad, Robert J., at a Systems Architecting lecture at the University of

Southern California, Fall 1987.

5

1chapter

Extending the
Architecting Paradigm

Introduction: The Classical Architecting Paradigm
The recorded history of classical architecting, the process of creating archi-
tectures, began in Egypt more than 4,000 years ago with the pyramids,
the complexity of which had been overwhelming designers and builders
alike. This complexity had at its roots the phenomenon that as systems
became increasingly more ambitious, the number of interrelationships
among the elements increased far faster than the number of elements.
These relationships were not solely technical. Pyramids were no longer
simple burial sites; they had to be demonstrations of political and reli-
gious power, secure repositories of god-like rulers and their wealth, and
impressive engineering accomplishments. Each demand, of itself, would
require major resources. When taken together, they generated new levels
of technical, financial, political, and social complications. Complex inter-
relationships among the combined elements were well beyond what the
engineers’ and builders’ tools could handle.

From that lack of tools for civil works came classical or civil archi-
tecture. Millennia later, technological advances in shipbuilding created
the new and complementary fields of marine engineering and naval
architecture. In this century, rapid advances in aerodynamics, chemistry,
materials, electrical energy, communications, surveillance, information
processing, and software have resulted in systems whose complexity is
again overwhelming past methods and paradigms. One of those is the
classical architecting paradigm. But, if we are to understand and respond
to the complexity overwhelming the classical paradigm, we must first
understand that classical paradigm.

Responding to Complexity
Complex: Composed of interconnected or interwoven
parts.1
System: A set of different elements so connected or
related as to perform a unique function not per-
formable by the elements alone.2

6	 The Art of Systems Architecting

It is generally agreed that increasing complexity* is at the heart of the
most difficult problems facing today’s systems architecting and engineer-
ing. When architects and builders are asked to explain cost overruns and
schedule delays, by far the most common, and quite valid, explanation
is that the system is much more complex than originally thought. The
greater is the complexity, the greater the difficulty. It is important, there-
fore, to understand what is meant by system complexity if architectural
progress is to be made in dealing with it.

The definitions of complexity and systems given at the beginning of
this section are remarkably alike. Both speak to interrelationships (inter-
connections, interfaces, and so forth) among parts or elements. As might
be expected, the more elements and interconnections, the more complex
the architecture and the more difficult the system-level problems.

Less apparent is that qualitatively different problem-solving tech-
niques are required at high levels of complexity than at low ones. Purely
analytical techniques, powerful for the lower levels, can be overwhelmed
at the higher ones. At higher levels, architecting methods, experience-
based heuristics, abstraction, and integrated modeling must be called into
play.3 The basic idea behind all of these techniques is to simplify problem
solving by concentrating on its essentials. Consolidate and simplify the
objectives. Focus on the things with the highest impact, things that deter-
mine other things. Put to one side minor issues likely to be resolved by the
resolution of major ones. Discard the nonessentials. Model (abstract) the
system at as high a level as possible, then progressively reduce the level of
abstraction. In short: Simplify!

It is important in reading about responses to complexity to under-
stand that they apply throughout system development, not just to the con-
ceptual phase. The concept that a complex system can be progressively
partitioned into smaller and simpler units, and hence into simpler prob-
lems, omits an inherent characteristic of complexity — interrelationships
among the units. As a point of fact, poor aggregation and partitioning
during development can increase complexity, a phenomenon all too appar-
ent in the organization of work breakdown structures.

This primacy of complexity in system design helps explain why a single
“optimum” seldom if ever exists for such systems. There are just too many
variables. There are too many stakeholders and too many conflicting
interests. No practical way may exist for obtaining information critical in
making a “best” choice among quite different alternatives.

*	 A system need not be large or costly to be complex. The manufacture of a single mechani-
cal part can require over 100 interrelated steps. A $10 microchip can contain millions of
interconnected active elements.

Chapter 1:  Extending the Architecting Paradigm	 7

The High Rate of Advances in the
Computer and Information Sciences
Unprecedented rates of advance in the computer and information sciences
have further exacerbated an already complex picture. The advent of smart,
software-intensive systems is producing a true paradigm shift in system
design. Software, long treated as the glue that tied hardware elements
together, is becoming the center of system design and operation. We see it
in consumer electronic devices of all types. The precipitous drop in hard-
ware costs has generated a major design shift — from “keep the com-
puter busy” to “keep the user busy.” Designers happily expend hardware
resources to save redesigning either hardware or software. We see it in
automobiles, where software increasingly determines the performance,
quality, cost, and feel of cars and trucks. We see it in aircraft, where controls
are coming to drive aerodynamic and structural design, and military
system designers discuss a shift to designing the airframe around the
sensors instead of designing the sensors around the airframe.

We see the paradigm shift in the design of spacecraft and personal
computers, where complete character changes can be made in minutes. In
effect, such software-intensive systems “change their minds” on demand.
It is no longer a matter of debate whether machines have “intelligence”;
the only real questions are of what kinds of intelligence and how best
to use each one. And, because its software largely determines what and
how the user perceives the system as a whole, its design will soon control
and precede hardware design much as hardware design controls software
today. This shift from “hardware first” to “software first” will force major
changes on when and how system elements are designed, and who, with
what expertise, will design the system as a whole. The impact on the value
of systems to the user has been and will continue to be enormous.

One measure of this phenomenon is the proportion of development
effort devoted to hardware and software for various classes of product.
Anecdotal reports from a variety of firms in telecommunications and
consumer electronics commonly show a reversal of the proportion from
70% hardware and 30% software to 30% hardware and 70% software. This
shift has created major challenges and destroyed some previously success-
ful companies. When the cost of software development dominates total
development, systems should be organized to simplify software devel-
opment. But good software architectures and good hardware architec-
tures are often quite different. Good architectures for complex software
usually emphasize layered structures that cross many physically distinct
hardware entities. Good software architectures also emphasize informa-
tion hiding and close parallels between implementation constructs and
domain concepts at the upper layers. These are in contrast to the emphasis
on hierarchical decomposition, physical locality of communication, and

8	 The Art of Systems Architecting

interface transparency in good hardware architectures. Organizations
find trouble when their workload moves from hardware to software
dominated, but their management and development skills no longer “fit”
the systems they should support.

Particularly susceptible to these changes are systems that depend
upon electronics and information systems and that do not enjoy the for-
mal partnership with architecting that structural engineering has long
enjoyed. This book is an effort to remedy that lack by showing how the
historical principles of classical architecting can be extended to modern
systems architecting.

The Foundations of Modern Systems Architecting
Although the day-to-day practice may differ significantly,4 the founda-
tions of modern systems architecting are much the same across many
technical disciplines. Generally speaking, they are a systems approach, a
purpose orientation, a modeling methodology, ultraquality, certification,
and insight.5 Each will be described in turn.

A Systems Approach

A systems approach is one that focuses on the system as a whole, spe-
cifically linking value judgments (what is desired) and design decisions
(what is feasible). A true systems approach means that the design process
includes the “problem” as well as the solution. The architect seeks a joint
problem–solution pair and understands that the problem statement is
not fixed when the architectural process starts. At the most fundamen-
tal level, systems are collections of different things that together produce results
unachievable by the elements alone. For example, only when all elements are
connected and working together do automobiles produce transportation,
human organs produce life, and spacecraft produce information. These
system-produced results, or “system functions,” derive almost solely from
the interrelationships among the elements, a fact that largely determines
the technical role and principal responsibilities of the systems architect.

Systems are interesting because they achieve results, and achieving
those results requires different things to interact. From much experience
with it over the last decade, it is difficult to underestimate the impor-
tance of this specific definition of systems to what follows, literally on a
word-by-word basis. Taking a systems approach means paying close
attention to results, the reasons we build a system. Architecture must be
grounded in the client’s/user’s/customer’s purpose. Architecture is not just
about the structure of components. One of the essential distinguishing fea-
tures of architectural design versus other sorts of engineering design is the
degree to which architectural design embraces results from the perspective

Chapter 1:  Extending the Architecting Paradigm	 9

of the client/user/customer. The architect does not assume some particular
problem formulation, as “requirements” is fixed. The architect engages in
joint exploration, ideally directly with the client/user/customer, of what
system attributes will yield results worth paying for.

It is the responsibility of the architect to know and concentrate on the
critical few details and interfaces that really matter and not to become
overloaded with the rest. It is a responsibility that is important not only for
the architect personally but for effective relationships with the client and
builder. To the extent that the architect must be concerned with compo-
nent design and construction, it is with those specific details that critically
affect the system as a whole.

For example, a loaded question often posed by builders, project man-
agers, and architecting students is, “How deeply should the architect
delve into each discipline and each subsystem?” A graphic answer to that
question is shown in Figure 1.1, exactly as sketched by Bob Spinrad in a
1987 lecture at the University of Southern California. The vertical axis is
a relative measure of how deep into a discipline or subsystem an archi-
tect must delve to understand its consequences to the system as a whole.
The horizontal axis lists the disciplines, such as electronics or stress
mechanics, and the subsystems, such as computers or propulsion systems.
Depending upon the specific system under consideration, a great deal, or
a very little depth, of understanding may be necessary.

But that leads to another question, “How can the architect possibly know
before there is a detailed system design, much less before system test, what
details of what subsystem are critical?” A quick answer is: only through
experience, through encouraging open dialog with subsystem specialists,
and by being a quick, selective, tactful, and effective student of the system
and its needs. Consequently, and perhaps more than any other specialization,

Disciplines and Subsystems
A B C D E F G

Re
qu

ire
d

D
ep

th
 o

f U
nd

er
st

an
di

ng

Figure 1.1  The architect’s depth of understanding of subsystem and disciplinary
details.

10	 The Art of Systems Architecting

architecting is a continuing, day-to-day learning process. No two systems
are exactly alike. Some will be unprecedented, never built before.

Exercise: Put yourself in the position of an architect
asked to help a client build a system of a new type
whose general nature you understand (a house, a
spacecraft, a nuclear power plant, or a system in
your own field) but which must considerably out-
perform an earlier version by a competitor. What do
you expect to be the critical elements and details and
in what disciplines or subsystems? What elements
do you think you can safely leave to others? What
do you need to learn the most about? Reminder: You
will still be expected to be responsible for all aspects
of the system design.

Critical details aside, the architect’s greatest concerns and leverage
are still, and should be, with the systems’ connections and interfaces:
First, because they distinguish a system from its components; second,
because their addition produces unique system-level functions, a primary
interest of the systems architect; and third, because subsystem special-
ists are likely to concentrate most on the core and least on the periphery
of their subsystems, viewing the latter as (generally welcomed) external
constraints on their internal design. Their concern for the system as a
whole is understandably less than that of the systems architect; if not
managed well, the system functions can be in jeopardy.

A Purpose Orientation

Systems architecting is a process driven by a client’s purpose or purposes.
A president wants to meet an international challenge by safely sending
astronauts to the moon and back. Military services need nearly undetect-
able strike aircraft. Cities call for pollutant-free transportation.

Clearly, if a system is to succeed, it must satisfy a useful purpose at
an affordable cost for an acceptable period of time. Note the explicit value
judgments in these criteria: a useful purpose, an affordable cost, and an
acceptable period of time. Every one is the client’s prerogative and respon-
sibility, emphasizing the criticality of client participation in all phases of
system acquisition. But of the three criteria, satisfying a useful purpose
is predominant. Without it being satisfied, all others are irrelevant.
Architecting therefore begins with, and is responsible for maintaining,
the integrity of the system’s utility or purpose.

For example, the Apollo manned mission to the moon and back had a
clear purpose, an agreed cost, and a no-later-than date. It delivered on all

Chapter 1:  Extending the Architecting Paradigm	 11

three. Those requirements, kept up front in every design decision, deter-
mined the mission profile of using an orbiter around the moon and not
an earth-orbiting space station, and on developing electronics for a lunar
orbit rendezvous instead of developing an outsize propulsion system for a
direct approach to the lunar surface.

As another example, NASA Headquarters, on request, gave the
NASA/JPL Deep Space Network’s huge ground antennas a clear set of
priorities: first performance, then cost, then schedule, even though the
primary missions they supported were locked into the absolute timing of
planetary arrivals. As a result, the first planetary communication systems
were designed with an alternate mode of operation in case the antennas
were not yet ready. As it turned out, and as a direct result of the NASA
risk-taking decision, the antennas were carefully designed, not rushed,
and satisfied all criteria not only for the first launch but for all launches
for the next 40 years or so.

The Douglas Aircraft DC-3, though originally thought by the airline
(later TWA) to require three engines, was rethought by the client and
the designers in terms of its underlying purpose — to make a profit on
providing affordable long-distance air travel over the Rocky and Sierra
Nevada mountains for paying commercial passengers. The result was the
two-engine DC-3, the plane that introduced global air travel to the world.

When a system fails to achieve a useful purpose, it is doomed. When
it achieves some purpose but at an unfavorable cost, its survival is in
doubt, but it may survive. The purpose for which the Space Shuttle was
conceived and sold, low-cost transport to low earth orbit, has never been
achieved. However, its status as the sole U.S. source of manned space
launch has allowed its survival. Many will argue that the Space Shuttle
was a tremendous technical achievement, and there is little doubt it was.
The success of architecting is not measured by technical success, but by
success in mission. In a similar fashion, it has proven impossible to meet
the original purpose of the space station at an acceptable cost, but its role
in the U.S. manned space program and international space diplomacy has
assured minimum survival. In contrast, the unacceptable cost/benefit
ratios of the supersonic transport, the space-based ballistic missile defense
system, and the superconducting supercollider terminated all these proj-
ects before their completion.

Curiously, the end use of a system is not always what was origi-
nally proposed as its purpose. The F-16 fighter aircraft was designed for
visual air-to-air combat, but in practice it has been most used for ground
support. The ARPANET-INTERNET communication network originated
as a government-furnished computer-to-computer linkage in support of
university research; it is now most used, and paid for, by individuals for
e-mail and information accessing. Both are judged as successful. Why?
Because, as circumstances changed, providers and users redefined the

12	 The Art of Systems Architecting

meaning of useful, affordable, and acceptable. A useful heuristic comes to
mind: Design the structure with “good bones.” It comes from the architecting
of buildings, bridges, and ships, where it refers to structures that are resil-
ient to a wide range of stresses and changes in purpose. It could just as
well come from physiology and the remarkably adaptable spinal column
and appendages of all vertebrates — fishes, amphibians, reptiles, birds,
and mammals.

Exercise: Identify a system whose purpose is clear
and unmistakable. Identify, contact, and if possible,
visit its architect. Compare notes and document
what you learned.

Technology-driven systems, in notable contrast to purpose-driven
systems, tell a still different story. They are the subject of Chapter 3.

A Modeling Methodology

Modeling is the creation of abstractions or representations of the system to
predict and analyze performance, costs, schedules, and risks and to pro-
vide guidelines for systems research, development, design, manufacture,
and management. Modeling is the centerpiece of systems architecting — a
mechanism of communication to clients and builders, of design manage-
ment with engineers and designers, of maintaining system integrity with
project management, and of learning for the architect, personally.

Examples: The balsa wood and paper scale models of
a residence, the full-scale mockup of a lunar lander,
the rapid prototype of a software application, the
computer model of a communication network, or
the mental model of a user.

Modeling is of such importance to architecting that it is the sole sub-
ject of Part III. Modeling is the fabric of architecting because architect-
ing is at a considerable distance of abstraction from actual construction.
The architect does not manipulate the actual elements of construction.
The architect builds models that are passed into more detailed design
processes. Those processes lead, eventually, to construction drawings or
the equivalent and actual system fabrication or coding.

Viewing architecting and design as a continuum of modeling refine-
ment leads naturally to the “stopping question.” Where does architect-
ing stop and engineering or design begin? Or, when should we stop any
design activity and move onto the next stage? From a modeling perspec-
tive, there is no stopping. Rather modeling is seen to progress and evolve,

Chapter 1:  Extending the Architecting Paradigm	 13

continually solving problems from the beginning of a system’s acquisition
to its final retirement. There are of course conceptual models, but there are
also engineering models and subsystem models; models for simulation,
prototypes, and system test; demonstration models, operational models
and mental models by the user of how the system behaves. From another
perspective, careful examination of the “stopping question” leads us to
a better understanding of the purpose of any particular architecting or
design phase. Logically, they stop when their purpose is fulfilled.

Models are in fact created by many participants, not just by architects.
These models must somehow be made consistent with overall system
imperatives. It is particularly important that they be consistent with the
architect’s system model, a model that evolves, becoming more and more
concrete and specific as the system is built. It provides a standard against
which consistency can be maintained and is a powerful tool in maintain-
ing the larger objective of system integrity. And finally, when the system
is operational and a deficiency or failure appears, a model — or full-scale
simulator if one exists — is brought into play to help determine the causes
and cures of the problem. The more complete the model, the more accu-
rately possible failure mechanisms can be duplicated until the only cause
is identified.

In brief, modeling is a multipurpose, progressive activity, evolving and
becoming less abstract and more concrete as the system is built and used.

Ultraquality Implementation

Ultraquality is defined as a level of quality so demanding that it is imprac-
tical to measure defects, much less certify the system prior to use.6 It is
a limiting case of quality driven to an extreme, a state beyond accept-
able quality limits (AQLs) and statistical quality control. It requires a zero
defect approach not only to manufacturing but also to design, engineer-
ing, assembly, test, operation, maintenance, adaptation, and retirement —
in effect, the complete life cycle.

Some examples include a new-technology spacecraft with a design
lifetime of at least 10 years, a nuclear power plant that will not fail cata-
strophically within the foreseeable future, and a communication network
of millions of nodes, each requiring almost 100% availability. In each case,
the desired level of quality cannot, even in principle, be directly measured;
or, only the absence of the quality desired can be directly measured.
Ultraquality is a recognition that the more components there are in a
system, the more reliable each component must be to a point where, at the
element level, defects become impractical to measure within the time and
resources available. Or, in a variation on the same theme, the operational
environment cannot be created during test at a level or for a duration that
allows measurement at the system level. Yet, the reliability goal of the

14	 The Art of Systems Architecting

system as a whole must still be met. In effect, it reflects the reasonable
demand that a system — regardless of size or complexity — should not
fail to perform more than about 1% or less of the time. An intercontinental
ballistic missile (ICBM) should not. A space shuttle, at least 100 times more
complex, should not. An automobile should not. A passenger airliner, at
least 100 times more complex, should not; as a matter of fact, we expect the
airliner to fail far, far less than the family car.

Exercise: Trace the histories of commercial aircraft
and passenger buses over the last 50 years in terms
of the number of trips that a passenger would expect
to make without an accident. What does that mean
to vehicle reliability as trips lengthen and become
more frequent, as vehicles get larger, faster, and
more complex? How were today’s results achieved?
What trends do you expect in the future? Did more
software help or hinder vehicle safety?

The subject would be moot if it were not for the implications of this
“limit state” of zero defects to design. Zero defects, in fact, originated as
long ago as World War II, largely driven by patriotism. As a motivator, the
zero defects principle was a prime reason for the success of the Apollo
mission to the moon.

To show the implications of ultraquality processes, if a manufactur-
ing line operated with zero defects, there would be no need, indeed it
would be worthless, to build elaborate instrumentation and information-
processing support systems. This would reduce costs and time by 30%.
If an automobile had virtually no design or production defects, then sales
outlets would have much less need for large service shops with their high
capital and labor costs. Indeed, the service departments of the finest auto-
mobile manufacturers are seldom fully booked, resembling something
like the famous Maytag commercial. Very little repair or service, except
for routine maintenance, is required for 50,000 to 100,000 miles. Not coin-
cidentally, these shops invariably are spotlessly clean, evidence of both the
professional pride and discipline required for sustaining an ultraquality
operation. Conversely, a dirty shop floor is one of the first and best indica-
tors to a visitor or inspector of low productivity, careless workmanship,
reduced plant yield, and poor product performance. The rocket, ammuni-
tion, solid-state component, and automotive domains all bear witness to
that fact.

As another example, microprocessor design and development has main-
tained the same per-chip defect rate even as the number and complexity
of operations increased by factors of thousands. The corresponding failure

Chapter 1:  Extending the Architecting Paradigm	 15

rate per individual operation is now so low as to be almost unmeasurable.
Indeed, for personal computer applications, a microprocessor hardware
failure more than once a year is already unacceptable.

Demonstrating this limit state in high quality is not a simple extension
of existing quality measures, though the latter may be necessary in order
to get within range of it. In the latter there is a heuristic: [Measurable]
acceptance tests must be both complete and passable. How then can inherently
unmeasurable ultraquality be demanded or certified? The answer is a
mixture of analytical and heuristic approaches, forming a set of surrogate
procedures, such as zero defects programs. Measurements play an impor-
tant role but are always indirect because of the immeasurability of the
core quality factors of interest.

In looking at procedural approaches, a powerful addition to pre-1990
ultraquality techniques was the concept, introduced in the last few years,
that each participant in a system acquisition sequence is both a buyer and
a supplier. The original application, apparently a Japanese idea, was that
each worker on a production line was a buyer from the preceding worker
in the production line as well as a supplier to the next. Each role required
a demand for high quality — that is, a refusal to buy a defective item and
a concern not to deliver a defective one likely to be refused.7 In effect, the
supplier–buyer concept generates a self-enforcing quality program with
built-in inspection. There would seem to be no reason why the same con-
cept should not apply throughout system acquisition — from architect to
engineer to designer to producer to seller to end user. As with all obvious
ideas, the wonder is why it was not self-evident earlier.

When discussing ultraquality, it may seem odd to be discussing heu-
ristics. After all, is not something as technologically demanding as quality
beyond measure, the performance of things like heavy space boosters, not
the domain of rigorous, mathematical engineering? In part, of course, it is.
But experience has shown that rigorous engineering is not enough to achieve
ultraquality systems. Ultraquality is achieved by a mixture of analytical
and heuristic methods. The analytical side is represented by detailed failure
analysis and even the employment of proof techniques in system design. In
some cases, these very rigorous techniques have been essential in allowing
certain types of ultraquality systems to be architected.

Flight computers are a good example of the mixture of analytical and
heuristic considerations in ultraquality systems. Flight control computers
for statically unstable aircraft are typically required to have a mean time
between failures (where a failure is one that produces incorrect flight control
commands) on the order of 10 billion hours. This is clearly an ultraquality
requirement because the entire production run of a given type of flight
computer will not collectively run for 10 billion hours during its operational
lifetime. The requirement certainly cannot be proved by measurement and

16	 The Art of Systems Architecting

analysis. Nevertheless, aircraft administration authorities require that such
a reliability requirement be certified.

Achieving the required reliability would seem to necessitate a redun-
dant computer design as individual parts cannot reach that reliability
level. The problem with redundant designs is that introducing redun-
dancy also introduces new parts and functions, specifically the mecha-
nisms that manage the redundancy, and must lock out the signals from
redundant sections that have failed. For example, in a triple redundant
system, the redundant components must be voted to take the majority
position (locking out a presumptive single failure). The redundancy man-
agement components are subject to failure, and it is possible that a redun-
dant system is actually more likely to fail than one without redundancy.
Further, “fault tolerance” depends upon the fault to be tolerated. Tolerating
mechanical failure is of limited value if the fault is human error.

Creating redundant computers has been greatly helped by better
analysis techniques. There are proof techniques that allow pruning of the
unworkable failure trees by assuming “Byzantine” failure* models. These
techniques allow strong statements to be made about the redundancy
properties of designs. The heuristic part is trying to verify the absence
of “common-mode-failures,” or failures in which several redundant
and supposedly independent components fail at the same time for the
same reason.

The Ariane 5 space launch vehicle was destroyed on its initial flight in
a classic common mode failure. The software on the primary flight control
computer caused the computer to crash shortly after launch. The dual
redundant system then switched to the backup flight control computer,
which had failed as well moments before for exactly the same reason that
the primary computer failed. Ironically, the software failure was due to
code leftover from the Ariane 4 that was not actually necessary for the
phase of flight in which it was operating. Arguably, in the case of the
Ariane 5, more rigorous proof-based techniques of the mixed software
and systems design might have found and eliminated the primary failure.
But, the failure is a classical example of a “common mode failure,” where
redundant systems are simultaneously carried away by the same reason.
Greater rigor in tracing how an implemented system meets the assump-
tions it was built to can never eliminate the failures that are inherent in
the original assumptions.

Thus, the analytical side is not enough for ultraquality. The best analy-
sis of failure probabilities and redundancy can only verify that the system

*	 In a Byzantine failure, the failed component does the worst possible thing to the system. It
is as if the component were possessed by a malign intelligence. The power of the technique
is that it lends itself to certification, at least within the confines of well-defined models.

Chapter 1:  Extending the Architecting Paradigm	 17

as built agrees with the model analyzed, and that the model possesses
desired properties. It cannot verify that the model corresponds to reality.
Well-designed ultraquality systems fail, but they typically fail for reasons
not anticipatable in the reliability model.

Certification

Certification is a formal statement by the architect to the client or user
that the system, as built, meets the criteria both for client acceptance and
for builder receipt of payment; that is, it is ready for use (to fulfill its pur-
poses). Certification is the grade on the “final exams” of system test and
evaluation. To be accepted, it must be well supported, objective, and fair
to client and builder alike.

Exercise: Pick a system for which the purposes are
reasonably clear. What tests would you, as a client,
demand be passed for you to accept and pay for the
system? What tests would you, as a builder, contract
to pass in order to be paid? Whose word would
each of you accept that the tests had or had not been
passed? When should such questions be posed?
(Hopefully, quite early, before the basic concept has
been decided upon!)

Clearly, if certification is to be unchallenged, then there must be no
perception of conflict of interest of the architect. This imperative has led
to three widely accepted, professionally understood, constraints8 on the
role of the architect:

	 1.	A disciplined avoidance of value judgments — that is, of intruding in
questions of worth to the client; questions of what is satisfactory,
what is acceptable, affordable, maintainable, reliable, and so on.
Those judgments are the imperatives, rights, and responsibilities
of the client. As a matter of principle, the client should judge on
desirability and the architect should decide (only) on feasibility.
To a client’s question of “What would you do in my position?” the
experienced architect responds only with further questions until the
client can answer the original one. To do otherwise makes the archi-
tect an advocate and, in some sense, the “owner” of the end system,
preempting the rights and responsibilities of the client. It may
make the architect famous, but the client will feel used. Residences,
satellites, and personal computers have all suffered from such

18	 The Art of Systems Architecting

preemption (Frank Lloyd Wright houses, low earth-orbiting satellite
constellations, and the Lisa computer, respectively).*

	 2.	A clear avoidance of perceived conflict of interest through participation
in research and development, including ownership or participation
in organizations that can be, or are, building the system. The most
evident conflict here is the architect recommending a system element
that the architect will supply and profit from. This constraint is
particularly important in builder-architected systems (Chapter 3).†

	 3.	An arms-length relationship with project management — that is, with
the management of human and financial resources other than
of the architect’s own staff. The primary reason for this arrange-
ment is the overload and distraction of the architect created by the
time-consuming responsibilities of project management. A second
conflict, similar to that of participating in research and development,
is created whenever architects give project work to themselves.
If clients, for reasons of their own, nonetheless ask the architect to
provide project management, it should be considered as a separate
contract for a different task requiring different resources.

Insight and Heuristics

A picture is worth a thousand words.

Chinese Proverb, 1000 b.c.

One insight is worth a thousand analyses.

Charles Sooter, April 1993

Insight, or the ability to structure a complex situation in a way that greatly
increases understanding of it, is strongly guided by lessons learned
from one’s own or others’ experiences and observations. Given enough
lessons, their meaning can be codified into succinct expressions called
“heuristics,” a Greek term for guide. Heuristics are an essential comple-
ment to analytics, particularly in situations where analysis alone cannot
provide either insights or guidelines.9 In many ways, they resemble what
are called principles in other arts; for example, the importance of balance
and proportion in a painting, a musical composition, or the ensemble of
a string quartet. Whether as heuristics or principles, they encapsulate the

*	 That said, when we break away from the classical architecting paradigm, we will see how
responsibilities may change, and the freedom and risks inherent in doing so.

†	 Precisely this constraint led the Congress to mandate the formation in 1960 of a nonprofit
engineering company, The Aerospace Corporation, out of the for-profit TRW Corporation,
a builder in the aerospace business.

Chapter 1:  Extending the Architecting Paradigm	 19

insights that have to be attained and practiced before a masterwork can
be achieved.

Both architecting and the fine arts clearly require insight and
inspiration as well as extraordinary skill to reach the highest levels of
achievement. Seen from this perspective, the best systems architects
are indeed artists in what they do. Some are even artists in their own
right. Renaissance architects like Michaelangelo and Leonardo da Vinci
were also consummate artists. They not only designed cathedrals,
they executed the magnificent paintings in them. The finest engineers
and architects, past and present, are often musicians; Simon Ramo and
Ivan Getting, famous in the missile and space field, and, respectively, a
violinist and pianist, are modern-day examples.

The wisdom that distinguishes the great architect from the rest is
the insight and the inspiration, that combined with well-chosen methods
and guidelines and fortunate circumstances, creates masterworks.
Unfortunately, wisdom does not come easily. As one conundrum puts it:

Success comes from wisdom.•	
Wisdom comes from experience.•	
Experience comes from mistakes•	 .

Therefore, because success comes only after many mistakes, something
few clients would willingly support, one might think it is either unlikely
or must follow a series of disasters.

This reasoning might well apply to an individual. But applied to
the profession as a whole, it clearly does not. The required mistakes and
experience and wisdom gained from them can be those of one’s predeces-
sors, not necessarily one’s own. Organizations that care about success-
ful architecting consider designing their program portfolios to generate
experience. When staged experience is understood as important, staged
experience can be designed into an organization.

And from that understanding comes the role of education. It is the
place of education to research, document, organize, codify, and teach
those lessons so that the mistakes need not be repeated as a prerequisite
for future successes. Chapter 2 is a start in that direction for the art of
systems architecting.

The Architecture Paradigm Summarized
This book uses the terms architect, architecture, and architecting with full
consciousness of the “baggage” that comes with their use. Civil architec-
ture is a well-established profession with its own professional societies,
training programs, licensure, and legal status. Systems architecting
borrows from it its basic attributes:

20	 The Art of Systems Architecting

	 1.	The architect is principally an agent of the client, not the builder.
Whatever organization the architect is employed by, the architect
must act in the best interests of the client for whom the system is
being developed.

	 2.	The architect works jointly with the client and builder on problem
and solution definition. System requirements are an output of archi-
tecting, not really an input. Of course, the client will provide the
architect some requirements, but the architect is expected to jointly
help the client determine the ultimate requirements to be used in
acquiring the system. An architect who needs complete and consis-
tent requirements to begin work, though perhaps a brilliant builder,
is not an architect.

	 3.	The architect’s product, or “deliverable,” is an architecture represen-
tation, a set of abstracted designs of the system. The designs are not
(usually) ready to use to build something. They have to be refined,
just as the civil architect’s floor plans, elevations, and other drawings
must be refined into construction drawings.

	 4.	The architect’s product is not just physical representations. As an
example, the civil architect’s client certainly expects a “ballpark”
cost estimate as part of any architecture feasibility question. So,
too, in systems architecting, where an adequate system architec-
ture description must cover whatever aspects of physical structure,
behavior, cost, performance, human organization, or other elements
are needed to clarify the clients’ priorities.

	 5.	An initial architecture is a vision. An architecture description is a
set of specific models. The architecture of a building is more than
the blueprints, floor plans, elevations, and cost estimates; it includes
elements of ulterior motives, belief, and unstated assumptions. This
distinction is especially important in creating standards. Standards
for architecture, like community architectural standards, are different
from blueprint standards promoted by agencies or trade associations.

Architecting takes place within the context of an acquisition process.
The traditional way of viewing hardware acquisitions is known as the
waterfall model. The waterfall model captures many important elements of
architecting practice, but it is also important in understanding other acqui-
sition models, particularly the spiral for software, incremental development
for evolutionary designing, and collaborative assembly for networks.

The Waterfall Model of Systems Acquisition
As with products and their architectures, no process exists by itself. All
processes are part of still larger ones. And all processes have subprocesses.

Chapter 1:  Extending the Architecting Paradigm	 21

As with the product of architecture, so also is the process of architecting a
part of a still larger activity, the acquisition of useful things.

Hardware acquisition is a sequential process that includes design,
engineering, manufacturing, testing, and operation. This larger process
can be depicted as an expanded waterfall, Figure 1.2.10 The architect’s
functional relationship with this larger process is sketched in Figure 1.3.
Managerially, the architect could be a member of the client’s or the builder’s
organization, or of an independent architecting partnership in which per-
ceptions of conflict of interest are to be avoided at all costs. In any case
and wherever the architect is physically or managerially located, the
relationships to the client and the acquisition process are essentially as
shown. The strongest (thickest line) decision ties are with client need and
resources, conception and model building, and with testing, certification,
and acceptance. Less prominent are the monitoring ties with engineering
and manufacturing. There are also important, if indirect, ties with social
and political factors, the “illities” and the “real world.”

This waterfall model of systems acquisition has served hardware
systems acquisition well for centuries. However, as new technologies
create new, larger-scale, more complex systems of all types, others have
been needed and developed. The most recent ones are due to the needs
of software-intensive systems, as will be seen in Chapters 4 and 6 and
in Part III. Although these models change the roles and methods of the

Client Need and Resources

Conception and Model Building

Interface Description and Systems Engineering

Engineering and Detailed Design
Social and
Political
Factors Development and Production

Testing, Certification, and Acceptance
Quality, Reliability,

 Safety, and Survivability
Operation and Diagnosis

The Real World
Evaluation and Adaptation

Figure 1.2  The expanded waterfall.

22	 The Art of Systems Architecting

architecting process, the basic functional relationships shown in Figure 1.3
remain much the same.

In any case, the relationships in Figure 1.3 are more complex than
simple lines might suggest. As well as indicating channels for two-way
communication and upward reporting, they infer the tensions to be
expected between the connected elements, tensions caused by different
imperatives, needs, and perceptions.

Some of competing technical factors are shown in Figure 1.4.11 This
figure was drawn such that directly opposing factors pull in exactly
opposite directions on the chart. For example, continuous evolution pulls
against product stability; a typical balance is that of an architecturally
stable, evolving product line. Low-level decisions pull against strict process
control, which can often be relieved by systems architectural partitioning,
aggregation, and monitoring. Most of these trade-offs can be expressed
in analytic terms, which certainly helps, but some cannot, as will become
apparent in the social systems world of Chapter 5.

Exercise: Give examples from a specific system of
what information, decisions, recommendations,
tasks, and tensions might be expected across the
lines of Figure 1.4.

Client Need and Resources

The Architect
Conception and Model Building

 Interface Description and Systems Engineering

Engineering and Detailed Design
Social and
Political
Factors Development and Production

Testing, Certification, and Acceptance
Quality, Reliability,

 Safety, and Survivability
Operation and Diagnosis

The Real World
Evaluation and Adaptation

Figure 1.3  The architect and the expanded waterfall. (Adapted from Rechtin, E.,
Systems Architecting, Creating and Building Complex Systems. Englewood Cliffs, NJ:
Prentice Hall, 1991. With permission from Prentice Hall.)

Chapter 1:  Extending the Architecting Paradigm	 23

Spirals, Increments, and Collaborative Assembly
Software developers have long understood that most software-intensive
projects are not well suited to a sequential process but to a highly iterative
one such as the spiral. There is a strong incentive to iteratively modify
software in response to user experience. As the market, or operational
environment, reveals new desires, those desires are fed back into the
product. One of the first formalizations of iterative development is due
to Boehm and his famous spiral model. The spiral model envisions itera-
tive development as a repeating sequence of steps. Instead of traversing
a sequence of analysis, modeling, development, integration, and test just
once, software may return over and over to each. The results of each are
used as inputs to the next. This is depicted in Figure 1.5.

The original spiral model is intended to deliver one, hopefully stable,
version of the product, the final of which is delivered at the end of the
last spiral cycle. Multiple cycles are used for risk control. The nominal
approach is to set a target number of cycles at the beginning of devel-
opment, and partition the whole time available over the target number
of cycles. The objective of each cycle is to resolve the most risky thing
remaining. So, for example, if user acceptance was adjudged as the most

Function

System Requirements

Performance Specifications

Human Needs

Complexity

New Technology

Top Down Plan

Conservative Design

Continuous Evolution

Minimal Interfacing

Process Characterization

Avoid Complexity

Low Level Decisions

Specialized Manufacturing

Flexible Manufacturing

Strict Process Control

Manage Complexity

Process Revolution

Tight Integration

Product Stability

Risk of Overdesign

Bottom Up Implementation

Familiar Technology

Simplicity

Affordability

Strict Acceptance Criteria

Environmental Imperatives

Form

Performance

Cost and Schedule

Fit
Balance

Compromise

Figure 1.4  Tensions in systems architecting. (From Rechtin, E., Systems Architect-
ing, Creating and Building Complex Systems. Englewood Cliffs, NJ: Prentice Hall,
1991. With permission from Prentice Hall.)

24	 The Art of Systems Architecting

risky at the beginning of the project, the first spiral would concentrate on
those parts of the system that produce the greatest elements of user experi-
ence. Even the first cycle tests would focus on increasing user acceptance.
Similarly, if the most risky element was adjudged to be some internal
technical performance issue, the product of the initial cycle would focus
on technical feasibility.

Many software products, or the continuing software portion of many
product lines, are delivered over and over again. A user may buy the hard-
ware once and expect to be offered a steady series of software upgrades
that improve system functionality and performance. This alters a spiral
development process (which has a definite end) to an incremental process,
which has no definite end. The model is now more like a spiral spiraling
out to circles, which represent the stable products to be delivered. After
one circle is reached, an increment is delivered, and the process continues.
Actually, the notion of incremental delivery appears in the original spiral
model where the idea is that the product of spirals before the last can be an
interim product release if, for example, the final product is delayed.

Finally, there are a number of systems in use today that are essentially
continuously assembled, and where the assembly process is not directly
controlled. The canonical example is the Internet, where the pieces evolve
with only loose coupling to the other pieces. Control over development
and deployment is fundamentally collaborative. Organizations, from
major corporations to individual users, choose which product versions
to use and when. No governing body exists (at least, not yet) that can
control the evolution of the elements. The closest thing at present to a
governing body, the Internet Society and its engineering arm, the Internet
Engineering Task Force (IETF), can affect other behavior only through
persuasion. If member organizations do not choose to support IETF

Specify

Design

Build
Integrate

Test

Evaluate

Intermediate
Release Points

Figure 1.5  The “classic” spiral development model employs multiple cycles
through the waterfall model’s steps to reach a final release point.

Chapter 1:  Extending the Architecting Paradigm	 25

standards, the IETF has no authority of compel compliance, or to block
noncomplying implementations.

We call systems like this “collaborative systems.” The development
process is collaborative assembly. Whether or not such an uncontrolled
process can continue for systems like the Internet as they become central
to daily life is unknown, but the logic and heuristics of such systems
now is the subject of Chapter 7. In Chapter 12 we address again different
models of programs as examples of “program architecture” or patterns
for designing a development program. Many strategic goals a client has
require addressing in the structure of the program rather than in the
structure of the system.

Scopes of Architecting
What is the scope of systems architecting? By scope, we mean what things
are inside the architect’s realm of concern and responsibility and which
are not? In the classic architecting paradigm (what we have discussed so
far in this chapter), the client has a problem and wants to build a system in
response. The system is the response to the client’s needs, as constrained
by the client’s resources and any other outside constraints. The concern
of architecting is finding a satisfactory and feasible system in response to
the client’s problem. A primary difference with other conceptualizations
of similar situations is that architecting does not assume that the client’s
problem is well structured, or that the client fully understands it. It is
quite likely a full understanding of the problem will have to emerge from
the client–architect interaction.

As we look beyond the classic scope of problem and system, we see
several other issues of scope. First, a system is built within a “program,”
here defined as the collection of arrangements of funding, contracts,
builders, and other elements necessary to actually build and deploy a
system, whether a single-family house or the largest defense system. The
program has a structure; we can say the program has an architecture.
The architecture of the program will consist of strategic decisions, like
is the system delivered once or many times? Is the system incrementally
developed from breadboard to brassboard, or is it incrementally devel-
oped through fully deployable but reduced functionality deliveries? How
is the work parceled out to different participants?

Who is responsible for the programmatic architectural decisions?
In some cases, it may be important to integrate programmatic structure
into the technical structure of the system. For example, if the system is to
be partitioned over particular subsystem manufacturers, the system must
possess a structure in subsystem compatible with what the suppliers can
produce, and those subsystems must be specifiable in ways that allow
for eventual integration. Whether or not the programmatic architectural

26	 The Art of Systems Architecting

decisions are in the scope of the system architect’s responsibilities, there is
a scope of programmatic architecture that somebody must carry out.

Moving upward and outward one more layer, the client presumably
has an organization, even if the organization is only him- or herself. That
organization may have multiple programs and be concerned with multi
ple systems. The client’s organization also has a structure, which many
would call an architecture. The principal concerns at the organizational
scope are the organization’s strategic identity, or how does the organiza-
tion give itself a mission? The organization exists to do something, what
is that something? Is it to make money in particular markets, to advance a
particular technology, or to carry out part of a military mission?

From the perspective of the system architect, it is unlikely that the
strategic identity of the client’s organization is in-play in anything like the
sense that the basic problem description is. However, the strategic identity
of the client is important to the system architect. If that strategic identity
is unclear, or poorly articulated, or simply unrealistic, then it will be very
difficult for the client to make effective value judgments.

These scopes are illustrated in Figure 1.6. Figure 1.6 also illustrates
one more issue of scope. Back at the scope of immediate concern to the
system architect, both the solution and problem may apply well outside
the immediate program and the client’s organization. Other clients may
have the same or similar problems. A system developed for one client may
apply elsewhere. Part of architecting is the one-to-one system-to-client ori-
entation, and individual customization; but this does not mean that others
many not also be served by similar systems. Depending on the architect,

Organization
Strategic Identity

Program
Who builds? How?
Strategy? Form?

Program

Problem

System
Problem and
System
Scopes
May Extend
beyond the
Immediately
Responsible
Organization

Figure 1.6  The relationship between contexts for architecting. Our core concern
is with the relationship between problem and system. But, the structure of the
development program and the identity and portfolio of the responsible organiza-
tion are additional concerns.

Chapter 1:  Extending the Architecting Paradigm	 27

it is quite likely that the issues of scope in problems and systems applying
outside the immediate client’s realm will be important. We return to these
issues in detail in Chapter 12.

Conclusion
A system is a collection of different things that together produce results
unachievable by themselves alone. The value added by systems is in the
interrelationships of their elements.

Architecting is creating and building structures — that is, “structuring.”
Systems architecting is creating and building systems. It strives for fit,
balance, and compromise among the tensions of client needs and resources,
technology, and multiple stakeholder interests.

Architecting is both an art and a science — both synthesis and analysis,
induction and deduction, and conceptualization and certification — using
guidelines from its art and methods from its science. As a process, it is
distinguished from systems engineering in its greater use of heuristic
reasoning, lesser use of analytics, closer ties to the client, and particular
concern with certification of readiness for use.

The foundations of systems architecting are a systems approach, a
purpose orientation, a modeling methodology, ultraquality, certification,
and insight. To avoid perceptions of conflict of interest, architects must
avoid value judgments, avoid perceived conflicts of interest, and keep an
arms-length relationship with project management.

A great architect must be as skilled as an engineer and as creative as
an artist or the work will be incomplete. Gaining the necessary skills and
insights depends heavily on lessons learned by others, a task of education
to research and teach.

The role of systems architecting in the systems acquisition process
depends upon the phase of that process. It is strongest during conceptual-
ization and certification, but never absent. Omitting it at any point, as with
any part of the acquisition process, leads to predictable errors of omission
at that point to those connected with it.

Notes and References
	 1.	 Webster’s II, New Riverside University Dictionary. Boston, MA: Riverside, 1984,

p. 291.
	 2.	 Rechtin, E., Systems Architecting, Creating and Building Complex Systems.

Englewood Cliffs, NJ: Prentice Hall, 1991, p. 7.
	 3.	 Another factor in overruns and delays is uncertainty, the “unknowns” and

“unknown unknowns.” Uncertainty is highest during conceptualization,
less in design, still less in redesign, and least in an upgrade. As with com-
plexity, the higher the level, the more important become experience-based
architecting methods. See Carpenter, Robert Glenn, System Architects’ Job

28	 The Art of Systems Architecting

Characteristics and Approach to the Conceptualization of Complex Systems.
Doctoral dissertation in Industrial and Systems Engineering, University of
Southern California, Los Angeles, 1995.

	 4.	 Cuff, Dana, Architecture: The Story of Practice. Cambridge, MA: MIT Press, 1991.
	 5.	 Rechtin, Eberhardt, Foundations of Systems Architecting, Systems Engineer-

ing, Journal of the National Council on Systems Engineering, Vol. 1, Number 1,
pp. 35–42, July/September 1994.

	 6.	 Discussed extensively in Juran, J. M., Juran on Planning for Quality. New
York: The Free Press, 1988; Phadke, Madhav S., Quality Engineering Using
Robust Design. Englewood Cliffs, NJ: Prentice Hall, 1989; Rechtin, E., Systems
Architecting, Creating and Building Complex Systems. Englewood Cliffs, NJ:
Prentice Hall, 1991, pp. 160–187.

	 7.	 See also Chapter 4.
	 8.	 From Cantry, Donald, What Architects Do and How to Pay Them, Architec-

tural Forum, Vol. 119, pp. 92–95, September 1963; and from discussions with
Roland Russell, AIA.

	 9.	 See King, Douglas R., The Role of Informality in System Development or,
a Critique of Pure Formality, University of Southern California (USC), 1992
(unpublished but available through USC).

	 10.	 Rechtin, E., Systems Architecting, Creating and Building Complex Systems.
Englewood Cliffs, NJ: Prentice Hall, 1991, p. 4.

	 11.	 Rechtin, E., Systems Architecting, Creating and Building Complex Systems.
Englewood Cliffs, NJ: Prentice Hall, 1991, p. 156.

29

2chapter

Heuristics as Tools

Introduction: A Metaphor
Mathematicians are still smiling over a gentle self-introduction by one
of their famed members. “There are three kinds of mathematicians,” he
said, “those that know how to count and those that don’t.” The audience
waited in vain for the third kind until, with laughter and appreciation,
they caught on. Either the member could not count to three — ridiculous
— or he was someone who believed that there was more to mathematics
than numbers, important as they were. The number theorists appreciated
his acknowledgement of them. The “those that don’ts” quickly recognized
him as one of their own, the likes of a Gödel who, using thought processes
alone, showed that no set of theorems can ever be complete.

Modifying the self-introduction only slightly to the context of this
chapter: There are three kinds of people in our business, those who know
how to count and those who do not — including the authors.

Those who know how to count (most engineers) approach their
design problems using analysis and optimization, powerful and precise
tools derived from the scientific method and calculus. Those who do not
(most architects) approach their qualitative problems using guidelines,
abstractions, and pragmatics generated by lessons learned from experi-
ence — that is, heuristics. As might be expected, the tools each use are dif-
ferent because the kinds of problems they solve are different. We routinely
and accurately describe an individual as “thinking like an engineer” — or
architect, or scientist, or artist. Indeed, by their tools and works you will
know them.

Of course, we exaggerate to make a point. The reality is that architects
often compute (must compute), and engineers use many heuristics. Both
are complex amalgams of art and science. To be one who uses heuristics
does not mean avoiding being systematic and quantitative. Consider how
people who are very good at debugging hardware or software go about
their work. Being systematic and quantitative in the search is an essential
practice, but the search is guided by heuristic. But, the complexity of inte-
grating the art and science can wait. For now we want to understand those
things that are squarely part of the “art” of systems architecting.

30	 The Art of Systems Architecting

This chapter, metaphorically, is about architects’ heuristic tools. As
with the tools of carpenters, painters, and sculptors, there are literally
hundreds of them — but only a few are needed at any one time and for a
specific job at hand. To continue the metaphor, although a few tool users
make their own, the best source is usually a tool supply store — whether
it be for hardware, artists’ supplies, software — or heuristics. Appendix A,
Heuristics for Systems-Level Architecting, is a heuristics store, organized
by task, just like any good hardware store. Customers first browse, and
then select a kit of tools based on the job, personal skill, and knowledge of
the origin and intended use of each tool.

Heuristic has a Greek origin, heuriskein, a word meaning “to find a
way” or “to guide” in the sense of piloting a boat through treacherous
shoals. Architecting is a form of piloting. Its rocks and shoals are the risks
and changes of technology, construction, and operational environment
that characterize complex systems. Its safe harbors are client acceptance
and safe, dependable, long life. Heuristics are guides along the way —
channel markings, direction signs, alerts, warnings, and anchorages
— tools in the larger sense. But they must be used with judgment. No
two harbors are alike. The guides may not guarantee safe passage, but
to ignore them may be fatal. The stakes in architecting are just as high —
reputations, resources, vital services, and, yes, lives. Consonant with their
origin, the heuristics in this book are intended to be trusted, time-tested
guidelines for serious problem solving.

Heuristics as so defined are narrower in scope, subject to more critical
test and selection, and intended for more serious use than other guidelines,
for example, conventional wisdom, aphorisms, maxims, rules of thumb,
and the like. For example, a pair of mutually contradictory statements like
(1) look before you leap and (2) he who hesitates is lost, are hardly useful guides
when encountering a cliff while running for your life. In this book, neither
of these pairs would be a valid heuristic because they offer contradictory
advice for the same problem.

The purpose of this chapter is therefore to help the reader — whether
architect, engineer, or manager — find or develop heuristics that can be
trusted, organize them according to need, and use them in practice. The
first step is to understand that heuristics are abstractions of experience.

Heuristics as Abstractions of Experience
One of the most remarkable characteristics of the human race is its abil-
ity not only to learn, but to pass on to future generations sophisticated
abstractions of lessons learned from experience. Each generation knows
more, learns more, plans more, tries more, and succeeds more than the pre-
vious one because it does not need to repeat the time-consuming process
of re-living the prior experiences. Think of how extraordinarily efficient

Chapter 2:  Heuristics as Tools	 31

are such quantifiable abstractions as F = ma, E = mc2 and x = F(y,z,t); of
algorithms, charts, and graphs; and of the basic principles of economics.
This kind of efficiency is essential if large, lengthy, complex systems and
long-lived product lines are to succeed. Few architects ever work on more
than two or three complex systems in a lifetime. They have neither the
time nor opportunity to gain the experience needed to create first-rate
architectures from scratch. By much the same process, qualitative heu-
ristics, condensed and codified practical experience, came into being to
complement the equations and algorithms of science and engineering in
the solving of complex problems. Passed from architect to architect, from
system to system, they worked. They helped satisfy a real need.

In contrast to the symbols of physics and mathematics, the format of
heuristics is words expressed in the natural languages. Unavoidably, they
reflect the cultures of engineering, business, exploration, and human rela-
tions in which they arose. The birth of a heuristic begins with anecdotes
and stories, hundreds of them, in many fields which become parables,
fables, and myths,1 easily remembered for the lessons they teach. Their
impact, even at this early stage, can be remarkable not only on politics,
religion, and business but also on the design of technical systems and
services. The lessons that have endured are those that have been found to
apply beyond the original context, extended there by analogy, comparison,
conjecture, and testing.* At their strongest they are seen as self-evident
truths requiring no proof.

There is an interesting human test for a good heuristic. An experi-
enced listener, on first hearing one, will know within seconds that it fits
that individual's model of the world. Without having said a word to the
speaker, the listener almost invariably affirms its validity by an uncon-
scious nod of the head, and then proceeds to recount a personal experi-
ence that strengthens it. Such is the power of the human mind.

Selecting a Personal Kit of Heuristic Tools
The art in architecting lies not in the wisdom of the
heuristics, but in the wisdom of knowing which
heuristics apply, a priori, to the current project.2

All professions and their practitioners have their own kits of tools,
physical and heuristic, selected from their own and others’ experiences to

*	 This process is one of inductive reasoning, “a process of truth estimation in the face of
incomplete knowledge which blends information known from experience with plausible
conjecture” (Klir, George J., Architecture of Systems Problem Solving. New York: Plenum
Press, 1985, p. 275). More simply, it is an extension or generalization from specific
examples. It contrasts with deductive reasoning, which derives solutions for specific cases
from general principles.

32	 The Art of Systems Architecting

match their needs and talents. But, in the case of architecting prior to the
late 1980s, selections were limited and, at best, difficult to acquire. Many
heuristics existed, but they were mainly in the heads of practitioners. No
efforts had been made to articulate, organize, and document a useful set.
The heuristics in this book were codified largely through the University
of Southern California graduate course in Systems Architecting. The
students and guest instructors in the course, and later program, were
predominantly experienced engineers who contributed their own lessons
learned throughout the West Coast aerospace, electronics, and software
industries. Both as class exercises, and through the authors’ writings, they
have been expressed in heuristic form and organized for use by architects,
educators, researchers, and students.

An initial collection3 of about 100 heuristics was soon surpassed by
contributions from over 200 students, reaching nearly 1,000 heuristics
within 6 years.4 Many, of course, were variations on single, central ideas
— just as there are many variations of hammers, saws, and screwdrivers
— repeated in different contexts. The four most widely applicable of these
heuristics were as follows, in decreasing order of popularity:

	 1.	Do not assume that the original statement of the problem is necessarily the
best, or even the right one.

		 Example: The original statement of the problem for the F-16 fighter
aircraft asked for a high-supersonic capability, which is difficult and
expensive to produce. Discussions with the architect, Harry Hillaker,
brought out that the reason for this statement was to provide a quick
exit from combat, something far better provided by a high thrust-
to-weight, low supersonic design. In short, the original high speed
statement was replaced by a high acceleration one, with the added
advantage of exceptional maneuverability.

	 2.	 In partitioning, choose the elements so that they are as independent as
possible; that is, choose elements with low external complexity and high
internal complexity.

		 Example: One of the difficult problems in the design of microchips is
the efficient use of their surface area. Much of that area is consumed by
connections between components — that is, by communications rather
than by processing. Carver Mead of Caltech has now demonstrated
that a design based on minimum communications between process-
intensive nodes results in much more efficient use of space, with the
interesting further result that the chip “looks elegant” — a sure sign of
a fine architecture and another confirmation of the heuristic:

	 3.	The eye is a fine architect. Believe it.
		 Simplify. Simplify. Simplify.

		 Example: One of the best techniques for increasing reliability
while decreasing cost and time is to reduce the piece part count

Chapter 2:  Heuristics as Tools	 33

of a device. Automotive engineers, particularly recently, have pro-
duced remarkable results by substituting single castings for multiple
assemblies and by reducing the number of fasteners and their asso-
ciated assembly difficulties by better placement.

	 4.	Build in and maintain options as long as possible in the design and imple-
mentation of complex systems. You will need them.

		 Example: In the aircraft business they are called “scars.” In the soft-
ware business they are called “hooks.” Both are planned breaks or
entry points into a system that can extend the functions the system can
provide. In aircraft, they are used for lengthening the fuselage to carry
more passengers or freight. In software, they are used for inserting
further routines, or to allow integration of data with other programs.

Though these four heuristics do not make for a complete tool kit,
they do provide good examples for building one. All are aimed at reduc-
ing complexity, a prime objective of systems architecting. All have been
trusted in one form or another in more than one domain. All have stood
the test of time for decades if not centuries.

The first step in creating a larger kit of heuristics is to determine the
criteria for selection. The following were established to eliminate unsub-
stantiated assertions, personal opinions, corporate dogma, anecdotal spec-
ulation, mutually contradictory statements, and the like. As it turned out,
they also helped generalize domain-specific heuristics into more broadly
applicable statements. The strongest heuristics passed all the screens easily.
The criteria were as follows:

The heuristic must make sense in its original domain or context. •	
To be accepted, a strong correlation, if not a direct cause and effect,
must be apparent between the heuristic and the successes or failures
of specific systems, products, or processes. Academically speaking,
both the rationale for the heuristic and the report that provided it
were subject to peer and expert review. As might be expected, a
valid heuristic seldom came from a poor report.
The general sense, if not the specific words, of the heuristic should •	
apply beyond the original context. That is, the heuristic should be
useful in solving or explaining more than the original problem from
which it arose. An example is the preceding do not assume heuristic.
Another is Before the flight it is opinion; after the flight it is obvious. In the
latter, the word “flight” can sensibly be replaced by test, experiment,
fight, election, proof, or trial. In any case, the heuristic should not
be wrong or contradictory in other domains where it could lead
to serious misunderstanding and error. This heuristic applies in
general to ultraquality systems. When they fail, and they usually
fail after all the tests are done and they are in actual use, the cause of

34	 The Art of Systems Architecting

the failure is typically a deterministic consequence of some incorrect
assumptions; and we wonder how we missed such an obvious fail-
ure of our assumptions.
The heuristic should be easily rationalized in a few minutes or on •	
less than a page. As one of the heuristics states, If you can’t explain it
in five minutes, either you don’t understand it or it doesn’t work (Darcy
McGinn 1992 from David Jones). With that in mind, the more obvious
the heuristic is on its face, and the fewer the limitations on its use,
the better. Example: A model is not reality.
The opposite statement of the heuristic should be foolish, clearly not •	
“common sense.” For example: The opposite of Murphy’s Law — If it can
fail, it will — would be “If it can fail, it won’t,” which is patent nonsense.
The heuristic’s lesson, though not necessarily its most recent for-•	
mulation, should have stood the test of time and earned a broad
consensus. Originally this criterion was that the heuristic itself had
stood the test of time, a criterion that would have rejected recently
formulated heuristics based on retrospective understanding of older
or lengthy projects. Example: The beginning is the most important part
of the work (Plato 4th Century b.c.), reformulated more recently as All
the serious mistakes are made in the first day.*

It is probably true that heuristics can be even more useful if they can
be used in a set, like wrenches and screwdrivers, hammers and anvils, or
files and vises. The taxonomy grouping in a subsequent section achieves
that possibility in part.

It is also probably true that a proposed action or decision is stronger if
it is consistent with several heuristics rather than only one. A set of heuris-
tics applicable to acceptance procedures substantiates that proposition.

And it would certainly seem desirable that a heuristic, taken in a
sufficiently restricted context, could be specialized into a design rule, a
quantifiable, rational evaluation, or a decision algorithm. If so, heuristics
of this type would be useful bridges between architecting, engineering,
and design. There are many cases where we have such progressive exten-
sions, from a fairly abstract heuristic that is broadly applicable to a set of
more narrowly applicable, but directly quantifiable, design rules.

Using Heuristics
Virtually everybody, after brief introspection, sees that heuristics play
an important role in their design and development activities. However,
even if we accept that everyone uses heuristics, it is not obvious that those
heuristics can be communicated and used by others. This book takes the

*	 Spinrad, Robert, Lecture at the University of Southern California, 1988.

Chapter 2:  Heuristics as Tools	 35

approach that heuristics can be effectively communicated to others. One
lesson from student use of Rechtin 1991,5 and previous editions of this
book, is that heuristics do transfer from one person to another, but not
always in simple ways. It is useful to document heuristics and teach from
them, but learning styles differ.

People typically use heuristics in three ways. First, they can be used as
evocative guides. They work as guides if they evoke new thoughts in the
reader. Some readers have reported that they use the catalog of heuristics
in the appendices at random when faced with a difficult design problem.
If one of the heuristics seems suggestive, they follow up by considering
how that heuristic could describe the present situation, what solutions it
might suggest, or what new questions it suggests.

The second usage is as codifications of experience. In this usage, the
heuristic is like an outline heading, a guide to the detailed discussion that
follows. In this case, the stories behind the heuristics can be more important
than the basic statement. The heuristic is a pedagogical tool, a way of teach-
ing lessons not well captured in other engineering teaching methods.

The third usage is the most structured. It is when heuristics are inte-
grated into development processes. This means that the heuristics are
attached to an overall design process. The design process specifies a series
of steps and models to be constructed. The heuristics are attached to the
steps as specific guidelines for accomplishing those steps.

A good example is in software. A number of software development
methods have a sequence of models, from relatively abstract to code in a pro-
gramming language. Object-oriented methods, for example, usually begin
with a set of textual requirements, build a model of classes and objects, and
then refine the class/object model into code in the target programming
environment. There are often intermediate steps in which the problem-
domain-derived objects are augmented with objects and characteristics
from the target environment. A problem in all such methods is knowing
how to construct the models at each step. The transformation from a set of
textual requirements to classes and objects is not unique, but it involves
extensive judgment by the practitioner. Some methods provide assistance
to the practitioner by giving explicit, prescriptive heuristics for each step.

A Process Framework for Architecting Heuristics
In Part III of this book, we will present a basic process framework for
system architecting. The process framework will define activities repeat-
edly required in effective architecting, and discuss how those activities
can be arranged relative to each other. We will also place those activi-
ties in a larger architecture project framework. This process framework is
illustrated in Figure 2.1. As noted above, one method for using heuristics
is to attach them to steps in a design process. By doing so, the heuristics

36	 The Art of Systems Architecting

become local guides to each aspect of the process. A complete process
with step-by-step designated models and transformation heuristics is not
appropriate for general systems architecting. There is simply too much
variation from domain to domain, too many unique domain aspects, and
too many important domain-specific tools. Even so, it is useful to recog-
nize the basic structure of the process framework and how the heuristics
relate to that framework.

It is important to distinguish between the activity cycle for an entire
development program and the activity cycle for an architecture project.
The goal of a development program is to build and deliver a system. The
goal of an architecture project is something else. In the simplest case,
the goal of the project is to initiate a development program. Even in the
simple case we recognize that development programs go in fits and starts.
There might be several discrete architecture projects, simultaneously or
sequentially developing architectural concepts for every actual develop-
ment program. Some architecture projects do not have a specific system
development as their goal, as in the architecture projects that concern
collaborative systems (which we take up in Chapter 7).

The beginning of an architecting project is “orientation” or determining
where you are and where you want to go. This refers both to the architec-
ture project as well as the underlying, assumed but not yet existing, system
development project. Orientation is less technical and more business. Its
intent is to ensure that the architecture effort can proceed for at least one
iterative cycle in an organized fashion. Heuristics associated with orienta-
tion relate to topics like identifying the driving characteristics of a project,

Orientation

Core
Architecting

Supporting
Analysis

Architecture
Description

Reject Build

Purpose
Analysis

Problem
Structuring

Solution
Structuring

Harmonization

Selection-
Abstraction

Elicitation

Synthesis

Analysis

Decision Making

Figure 2.1  Activities in an architecting process model.

Chapter 2:  Heuristics as Tools	 37

finding leading stakeholders, and clarifying relationships between the
architect, sponsors, and downstream users. Orientation is about scoping
and planning, and so the heuristics of Appendix A and in Chapter 9 under
the associated topics apply most strongly. Orientation leads to core archi-
tecting, which is characterized by purpose analysis, problem structuring,
solution structuring, harmonization, and selection-abstraction.

Purpose analysis is a broad-based study of why the capability or sys-
tem of interest has value. It works from an understanding of the client
strategy and expands to all stakeholders with significant power over the
eventual construction, deployment, and operation of the system. Purpose
analysis is an elicitation activity, and so all heuristics that relate to elicita-
tion apply most strongly here.

Problem structuring is where we organize elements of the problem
space with a primary focus on a “value model.” The value model is an
explicit model of the most important stakeholder’s preferences, and it
is intended to capture them without regard to consistency. That is, we
want to be able to assess alternatives in the value system of each major
stakeholder, realizing that the resulting preference orderings will not be
the same. Any reconciliation necessary among them will be conducted
later. Its concern is on the problem side of the problem–system tension.
It is a synthesis activity in the sense that we are synthesizing problem
descriptions, preferably several, with somewhat different scopes. In terms
of Appendix A and Chapter 9, the associated heuristics are drawn mostly
from modeling and prioritizing.

In solution structuring, we synthesize models of solutions, again multi-
ple solutions that should differ in scope and scale. The heuristics that apply
are drawn from those that cover modeling, aggregating, and partitioning.

Harmonization is a dominantly analytical activity in which we inte-
grate problem and solution descriptions and assess value. Harmonization
is a preparation for selection-abstraction. Selection is easy to understand;
it is picking answers. An important distinction between the approach of
systems architecting and most decision analysis texts is that we do not
assume when we enter selection that there is a unitary, exclusive decision
to make. At some point in the process, if the overall goal is to build a
system, we must clearly make a decision about a preferred configuration.
But we might travel down this process road many times before reaching
such a unitary decision. Along the way, we may wish to hold onto multiple
solution configurations, classes of solution configurations, and multiple
problem descriptions. We make no decision before its time. As it was put
in Rechtin 1991, Hold onto the agony of decision as long as possible. We also
introduce the notion of abstraction for those cases where architecting has
been completed even though no single configuration has been selected.

As an example of abstraction over selection, consider the case of a
family-of-systems, say the collection of printers made by a single company.

38	 The Art of Systems Architecting

There are shared properties or components across the whole family (for
example, interfaces, software rendering engines, supply chains). These
shared elements are the concern of the family-of-systems architect, and
are abstractions of the entire family. It is inaccurate to talk about select-
ing the whole family (though we might select the market-niche structure
of the whole family), but it is accurate to consider selection of properties
of the whole family abstract into a family-of-systems architecture. We
refer to that form of selection as “abstraction.”

Architectural projects ultimately produce architecture descriptions,
a document. We illustrate this as a following step to Core Architecting
in Figure 2.1. In reality, architecture descriptions are developed at least
partially in parallel with the architectural decision making. But, it is help-
ful to illustrate the separation of the two activities to emphasize that archi-
tecting is about decision making, and architectures are about decisions.
Architecture descriptions can only document those decisions. The quality
(or lack thereof) of those decisions must stand on its own. An excellently
drawn description will not make up for poor architecture decisions.

Finally, in practice, architects discover in the process where they need
additional knowledge. Straightforward progress through an architecture
study may be interrupted by the discovery that we do not know critical
numbers related to the cost or performance of a key system element, or
we do not understand the technicalities of a particular stakeholder prob-
lem, or we lack clear input on preferences from a stakeholder. In most
cases, it is more effective to put such issues aside by making suitable
assumptions, returning to the issues after completing an end-to-end pass
through architectural analysis, resolving those detailed issues in studies,
and returning to another iterative cycle through the architecting process.

Heuristics on Heuristics
A phenomenon observed as heuristics discovered by the USC graduate
students is that the discoverers themselves began thinking heuristically.
They found themselves creating heuristics directly from observation and dis-
cussion, and then trying them out on professional architects and engineers,
some of whose experiences had suggested them. (Most interviewees were
surprised and pleased at the results.) The resultant provisional heuristics
were then submitted for academic review as parts of class assignments.

Kenneth L. Cureton, carrying the process one step further, generated
a set of heuristics on how to generate and apply heuristics,6 from which
the following were chosen.

Generating Useful Heuristics
Humor [and careful choice of words] in a heuristic provides an emo-•	
tional bite that enhances the mnemonic effect [Karklins].

Chapter 2:  Heuristics as Tools	 39

Use words that transmit the “thrill of insight” into the mind of •	
the beholder.
For maximum effect, try embedding both descriptive and prescrip-•	
tive messages in a heuristic.
Many heuristics can be applied to heuristics [e.g., •	 Simplify! Scope!].
Do not make a heuristic so elegant that it only has meaning to its •	
creator, and thus loses general usefulness.
Rather than adding a conditional statement to a heuristic, consider •	
creating a separate but associated heuristic that focuses on the
insight of dealing with that conditional situation.

Applying Heuristics

If it works, then it is useful.•	
Knowing when and how to use a heuristic is as important as know-•	
ing what and why.
Heuristics work best when applied early to reduce the solution space.•	
Strive for balance — too much of a good thing or complete elimina-•	
tion of a bad thing may make things worse, not better!
Practice, practice, practice!•	
Heuristics are not reality, either!•	

A Taxonomy of Heuristics
The second step after finding or creating individual heuristics is to orga-
nize them for easy access so that the appropriate ones are at hand for
the immediate task. The collection mentioned earlier in this chapter was
accordingly refined and organized by architecting task.* In some ways,
the resultant list — presented in Appendix A — was self-organizing.
Heuristics tended to cluster around what became recognized as basic
architecting tasks. For example, although certifying is shown last and is
one of the last formal phases in a waterfall, it actually occurs at many
milestones as “sanity checks” are made along the way and subsystems are
assembled. The tasks, elaborated in Chapter 9, are as follows:

Scoping and planning•	
Modeling•	
Prioritizing•	
Aggregating•	

*	 The original 100 of Rechtin 1991 were organized by the phases of a waterfall. The list in
Appendix A of this book recognizes that many heuristics apply to several phases, that
the spiral model of system development would in any case call for a different catego-
rization, and that many of the tasks described here occur over and over again during
systems development.

40	 The Art of Systems Architecting

Partitioning•	
Integrating•	
Certifying•	
Assessing•	
Evolving and rearchitecting•	

The list is further refined by distinguishing between two forms of
heuristic. One form is descriptive; that is, it describes a situation but does
not indicate directly what to do about it. Another is prescriptive; that is,
it prescribes what might be done about the situation. An effort has been
made in the appendix to group prescriptions under appropriate descrip-
tions with some, but not complete, success. Even so, there are more than
enough generally applicable heuristics for the reader to get started.

And then there are sets of heuristics that are domain-specific to air-
craft, spacecraft, software, manufacturing, social systems, and so on. Some
of these can be deduced or specialized from more general ones given here.
Or, they can be induced or generalized from multiple examples in special-
ized subdomains. Still more fields are explored in Part III, adding further
heuristics to the general list.

You are encouraged to discover still more, general and specialized,
in much the same way the more general ones here were — by spotting
them in technical journals, books,7 project reports, management treatises,
and conversations.

The Appendix A taxonomy is not the only possible organizing
scheme, any more than all tool stores are organized in the same way. In
Appendix A one heuristic follows another, one-dimensionally, as in any
list. But some are connected to others in different categories, or could just
as easily be placed there. Some are “close” to others and some are further
away. Ray Madachy, then a graduate student, using hypertext linking,
converted the list into a two-dimensional, interconnected “map” in which
the main nodes were architecting themes: conception and design; the
systems approach; quality and safety; integration, test, and certification;
and disciplines.8 To these were linked each of the 100 heuristics in the
first systems architecting text,9 which in turn were linked to each other.
The ratio of heuristic-to-heuristic links to total links was about 0.2; that is,
about 20% of the heuristics overlapped into other nodes.

The Madachy taxonomy, however, shared a limitation common to
all hypertext methods — the lack of upward scalability into hundreds of
objects — and consequently was not used for Appendix A. Nonetheless,
it could be useful for organizing a modest-sized personal tool kit or for
treating problems already posed in object-oriented form, for example,
computer-aided design of spacecraft.10

Chapter 2:  Heuristics as Tools	 41

New Directions
Heuristics are a popular topic in systems and software engineering,
though they do not often go by that name. A notable example is the
pattern language. The idea of patterns and pattern languages comes from
Christopher Alexander and has been adapted to other disciplines by other
writers. Most of the applications are to software engineering.

A pattern is a specific form of prescriptive heuristic. A number of
forms have been used in the literature, but all are similar. The basic form
is a pattern name, a statement of a problem, and a recommended form of
solution (to that problem). So, for example, a pattern in civil architecture
has the title “Masters and Apprentices,” the problem statement describes
the need for junior workers to learn while working from senior master
workers, and the recommended solution consists of suitable arrangements
of work spaces.

When a number of patterns in the same domain are collected together,
they can form a pattern language. The idea of a pattern language is that
it can be used as a tool for synthesizing complete solutions. The archi-
tect and client use the collected problem statements to choose a set that
is well-matched to the client’s concerns. The resulting collection of recom-
mended solutions is a collection of fragments of a complete solution. It is the
job of the architect to harmoniously combine the fragments into a whole.

In general, domain-specific, prescriptive heuristics are the easiest
for apprentices to explain and use. So, patterns on coding in program-
ming are relatively easy to teach and learn to use. This is borne out by
the observed utility of coding pattern books in university programming
courses. Similarly, an easy entry to the use of heuristics is when they are
attached as step-by-step guides in a structured development process.
At the opposite end, descriptive heuristics on general systems architect-
ing are the hardest to explain and use. They typically require the most
experience and knowledge to apply successfully. The catalog of heuristics
in Appendix A has heuristics across the spectrum.

Conclusion
Heuristics, as abstractions of experience, are trusted, nonanalytic guide-
lines for treating complex, inherently unbounded, ill-structured problems.
They are used as aids to decision making, value judgments, and assess-
ments. They are found throughout systems architecting, from earliest
conceptualization through diagnosis and operation. They provide bridges
between client and builder, concept and implementation, synthesis and
analysis, and system and subsystem. They provide the successive transi-
tions from qualitative, provisional needs to descriptive and prescriptive
guidelines, and thence to rational approaches and methods.

42	 The Art of Systems Architecting

This chapter has introduced the concept of heuristics as tools —
how to find, create, organize, and use them for treating the qualitative
problems of systems architecting. Appendix A provides a ready source
of them organized by architecting task — in effect, a tool store of systems
architecting heuristic tools.

Notes and References
	 1.	 For more of the philosophical basis of heuristics, see Asato, Michael, The

Power of the Heuristic, University of Southern California, 1988, and Rowe,
Alan J., The Meta Logic of Cognitively Based Heuristics, in Watkins, P. R. and
L. B. Eliot, eds. Expert Systems in Business and Finance: Issues and Applications.
New York: John Wiley & Sons, 1988.

	 2.	 Williams, Paul L., 1992 Systems Architecting Report, University of Southern
California (unpublished).

	 3.	 Rechtin, E., Systems Architecting, Creating and Building Complex Systems.
Englewood Cliffs, NJ: Prentice Hall, 1991, pp. 312–319.

	 4.	 Rechtin, E. ed., Collection of Student Heuristics in Systems Architecting,
1988–93, University of Southern California (unpublished), 1994.

	 5.	 Rechtin, E., Systems Architecting, Creating and Building Complex Systems.
Englewood Cliffs, NJ: Prentice Hall, 1991. Note that throughout the rest of
this chapter, this reference is referred to as Rechtin 1991.

	 6.	 Cureton, Kenneth L., Metaheuristics, USC graduate report, December 9, 1991.
	 7.	 Many of the ones in Appendix A come from a similar appendix in Rechtin 1991.
	 8.	 Madachy, Ray, Thread Map of Architecting Heuristics, University of Southern

California, April 21, 1991 and Formulating Systems Architecting Heuristics
for Hypertext, University of Southern California, April 29, 1991.

	 9.	 Rechtin 1991, Appendix A, pp. 311–319.
	 10.	 As an example, see Asato, Michael, Final Report. Spacecraft Design and Cost

Model, University of Southern California, 1989.

IIpart

New Domains, New Insights
Part II explores from an architectural point of view five domains beyond
those of aerospace and electronics, the sources of most examples and writ-
ings to date. The chapters can be read for several purposes. For a reader
familiar with a domain, there are broadly applicable heuristics for more
effective architecting of its products. For ones unfamiliar with it, there
are insights to be gained from understanding problems differing in the
degree but not in kind from one’s own. To coin a metaphor, if the domains
can be seen as planets, then this part of the book corresponds to compara-
tive planetology, the exploration of other worlds to benefit one’s own. The
chapters can be read for still another purpose, as a template for exploring
other, equally instructive, domains. An exercise for that purpose can be
found at the end of Chapter 7, “Collaborative Systems.”

Each of the chapters is preceded by a brief case study. Each of the
case studies is chosen to be relevant to the chapter to which it is attached.
Many students and readers have asked about case studies of real systems
to assist in understanding the application of the materials. Unfortunately,
really good engineering and architecting case studies are notoriously hard
to obtain. The stories and details are rarely published. Books published on
major systems are more likely to focus on the people involved than on the
technical decision making. Many of the most interesting stories are buried
behind walls of proprietary information. By the time the full story can
be published, it is often old. We, the authors, think the older stories carry
timeless lessons, so we have included several here. Each includes some
references back to the original literature, where it is readily available, so
the interested reader can follow up with further investigation of his or
her own. In a few cases, we abstracted several cases into one where the
original stories have not yet been published, and the combination makes
the lessons clearer.

From an educational point of view, this part is a recognition that one
of the best ways of learning is by example, even if the example is in a

44	 The Art of Systems Architecting

different field or domain. One of the best ways of understanding another
discipline is to be given examples of problems it solves. And one of the
best ways of learning architecting is to recognize that there are architects
in every domain and at every level from which others can learn and with
whom all can work. At the most fundamental level, all speak the same
language and carry out the same process, systems architecting. Only the
examples are different.

Chapter 3 explores systems for which form is predetermined by a
builder’s perceptions of need. Such systems differ from those that are
driven by client purposes by finding their end purpose only if they suc-
ceed in the marketplace. The uncertainty of end purpose has risks and
consequences that it is the responsibility of architects to help reduce or
exploit. Central to doing so are the protection of critical system parameters
and the formation of innovative architecting teams. These systems can be
either evolutionary or revolutionary. Not surprisingly, there are important
differences in the architectural approach. The case study is an old one, but
an excellent one, on the development of the DC-3 airplane.

Chapter 4 highlights the fact that manufacturing has its own water-
fall, quasi-independent of the more widely discussed product waterfall,
and that these two waterfalls must intersect properly at the time of
production. A spiral-to-circle model is suggested to help understand the
integration of hardware and software. Ultraquality and feedback are
shown to be the keys to both lean manufacturing and flexible manufac-
turing, with the latter needing a new information flow architecture in
addition. The case study is on the development of mass production, par-
ticularly its development at Ford and later Toyota.

Chapter 5 on sociotechnical systems introduces a number of new
insights to those of the more technical domains. Economic questions and
value judgments play a much stronger role here, even to the point of out-
right veto of otherwise worthwhile systems. A new tension comes to center
stage, one central to social systems but too often downplayed in others
until too late — the tension between facts and perceptions. It is so power-
ful in defining success that it can virtually mandate system design and
performance, solely because of how that architecture is perceived. The
case study is on architecting intelligent transportation systems.

Chapter 6 serves to introduce the domain of software as it increas-
ingly becomes the center of almost all modern systems designs. Con-
sequently, whether stand-alone or as part of a larger system, software
systems must accommodate to continually changing technologies and
product usage. In very few other domains is annual, much less monthly,
wholesale replacement of a deployed system economically feasible or even
considered. In point of fact, it is considered normal in software systems,
precisely because of software’s unique ability to continuously and rapidly
evolve in response to changes in technology and user demands. Software

Part II: New Domains, New Insights	 45

has another special property; it can be as hard or as soft as needed. It can
be hard-wired if certification must be precise and unchanging. Or it can be
as soft as a virtual environment molded at the will of a user. For these and
other reasons, software practice is heavily dependent on heuristic guide-
lines and organized, layered modeling. It is a domain in which architect-
ing development is very active, particularly in progressive modeling and
rapid prototyping. The case study is on the transition from hierarchical
to layered systems, a major point of contention in software systems. It is
abstracted from several real cases familiar to the authors.

Chapter 7 introduces an old but newly significant class of systems,
collaborative systems. Collaborative systems exist only because the par-
ticipants actively and continuously work to keep it in existence. A collab-
orative system is a dynamic assemblage of independently owned and
operated components, each one of which exists and fulfills its owner’s
purposes whether or not it is part of the assemblage. These systems
have been around for centuries in programs of public works. But today
we find wholly new forms in communications (the Internet and World
Wide Web), transportation (intelligent transportation systems), militaries
(multinational reconnaissance-strike and defensive systems), and soft-
ware (open source software). The architecting paradigm begins to shift in
collaborative systems because the architect no longer has a single client
who can make and execute decisions. The architect must now deal with
more complex relationships and must find architectures in less familiar
structures, such as architecture through communication or command
protocol specification. The case study is on the Global Positioning System
(GPS), which did not start as a collaborative system, but which is rapidly
evolving into one.

The nature of modern software and information-centric systems,
and their central role in new complex systems makes a natural lead into
Part III, “Models and Modeling.”

47

Case Study 1: DC-3
Even though the DC-3 airplane was designed and built in the 1930s, it is
not uncommon for someone today to have flown on one. Seventy years
after its origination, the DC-3 is still flying effectively and profitably,
albeit mostly only in remote areas. The DC-3 is commonly cited as the
most successful airplane ever built. What accounts for the extraordinary
success of the DC-3 airplane? The history of the DC-3’s development
extensively illustrates many of the key lessons of systems architecting,
especially the following:

	 1.	The role of the very small architecting team in bringing vision and
coherence to the system concept.

	 2.	The cooperative nature of the effective architect–client relationship,
even when the architect belongs to the builder organization.

	 3.	The role of coupled technological and operational change in creating
revolutionarily successful systems.

	 4.	The role of evolutionary development in enabling revolutionary
development.

Because of the extraordinary success of the DC-3, there is a broad lit-
erature on its history and on the history of other airplanes at that time.
One of the most valuable sources for the architectural history of the DC-3,
and an exceptional source of architecting heuristics, is the paper “The
Well Tempered Aircraft” by Arthur Raymond.1 A more extensive history
is presented in the online book provided by the DC-3 history society.2

The History
In a room of the Smithsonian Air and Space Museum devoted to flight
between World Wars I and II, three key airplanes can be seen together.
They are the Ford Trimotor, the Boeing 247, and the DC-3. Of these, only
the DC-3 can be seen outside of an air museum or historical air show. In
1930 the Ford Trimotor was state-of-the-art in passenger and cargo aircraft.
It carried eight passengers and enabled passenger and cargo service across
the United States. But, by modern standards, the airplane was barely usable.
The large reciprocating motor on the nose coupled noise and vibration
(and sometimes exhaust) directly into the passenger and cargo areas. The
framed fuselage put large spars directly through the passenger and cargo
area, with obvious inconvenience for both types of service. Reliability
and safety were far from modern standards. Regardless, it was such an
improvement over its predecessor, and delivered such value, that 199 were
built (see Figure CS1.1).

48	 The Art of Systems Architecting

19
30

19
35

19
40

19
9

P
ro

du
ce

d
8

P
as

se
ng

er
s

F
or

d
T

rim
ot

or

75
 P

ro
du

ce
d

10
 P

as
se

ng
er

s+
m

ai
l

B
oe

in
g

24
7

1
P

ro
du

ce
d

12
 P

as
se

ng
er

s

D
C

-1 15
6

P
ro

du
ce

d
14

 P
as

se
ng

er
s

D
C

-245
5+

10
,1

74
 P

ro
du

ce
d

28
 P

as
se

ng
er

s

D
C

-3 19
45

19
50

10
 P

ro
du

ce
d

33
 P

as
se

ng
er

s

B
oe

in
g

30
7

Fi
gu

re
 C

S1
.1

 T
im

el
in

e
of

 th
e

D
C

-3
 a

nd
 r

el
at

ed
 a

ir
cr

af
t.

Case Study 1: DC-3	 49

In 1930, aeronautical technology was changing quickly. Engines were
improving very rapidly in power and power-to-weight ratio, new struc-
tural concepts were being tested, and understanding of aerodynamics
was improving very rapidly (from prototype airplanes, theoretical study,
and the first generation of capable wind tunnels). Two young companies
riding the early boom in aeronautics, Boeing and Douglas Aircraft, were
developing new airplane concepts exploiting these new technologies. But,
the two companies faced very different business situations and clients.

At the time, Boeing and United Airlines were very closely related. As
a result, as Boeing looked into how to exploit the emerging aeronautical
technologies, they did so with extensive knowledge of United operations
and sources of revenue. The key insight that came from that knowledge
was that essentially all of the profit from operations came from carrying
government subsidized airmail. What we now think of as the regular busi-
ness of airlines, carrying passengers and general freight, was financially
ancillary to the airmail. As a result, when Boeing conducted design studies
for how to best exploit the new technology in engines, aerodynamics, and
structures, they focused on an aircraft that was optimized for the routing
structure imposed by the U.S. Postal Service. The result was the Boeing
247. There is no doubt that the Boeing 247 was a revolutionary airplane
technologically. And from the perspective of passengers, it was far more
comfortable than the Ford Trimotor, and much faster. United quickly
ordered sixty, a large leap in production capacity for the Boeing of the
time. But, it was not revolutionary from a business–operational perspec-
tive. The 247 was intended to do business the way it was being done, just
much better.

At the same time, Douglas Aircraft, working with the airline TWA
(and later American), also began design studies for airplanes incorporat-
ing the newly available technology. TWA was originally interested in the
247 but was unable to obtain any deliveries because of the long backlog to
United. Unlike Boeing, Douglas and their airline partners were thinking
well beyond the immediate profit source of airmail. As a result, they began
designing airplanes larger than necessary for the airmail role. The DC-1
was produced contemporaneously with the Boeing 247, and was roughly
the same size. Douglas and their customers realized the advantages of the
new overall design given the new technologies but believed the airplane
was too small. They proceeded quickly to the DC-2.

The DC-1 was essentially a proof-of-concept airplane. Douglas and
the airlines intended it to be a production representative airplane, but it
served mainly to prove the concept and demonstrate the way forward.
It also demonstrated what TWA had imposed as a key requirement, that
the airplane be able to survive a single-engine-out condition anywhere
in flight, most notably over the highest-altitude mountain points of
TWA’s routes. This was successfully demonstrated during DC-1 tests. The

50	 The Art of Systems Architecting

extensive DC-1 tests also revealed a wide variety of issues with the very
new design, and the need for significant redesign (significant enough for
the redesign to be a new airplane) before full production.

The DC-2 was larger, and was commercially successful, as witnessed
by its production run of 156 aircraft (see Figure CS1.1 for the times and
figures). The production run of the DC-2 was already larger than the
Boeing 247, and nearly the size of the Ford Trimotor’s, the previously
most successful airplane. American airlines, after some experience with
the DC-2, approached Douglas about a further upsizing, with intent to
use the airplane in cross-country sleeper service. Douglas and their team
began design work immediately on the DC-3. It was much larger, with a
passenger capacity double that of the DC-2. Its production run was much
larger than any previous airplane, reflecting its revolutionary success in
the commercial airline business. Even though Douglas was confident of
the excellence of the DC-3, the magnitude of the success was a surprise.
The company chose an initial production to produce tooling with a design
life of 50 units (which Raymond regarded as “rather daring”). That tooling
lasted through hundreds of aircraft. With 455 of the initial commercial
model produced, it was the foundation of the modern, then rapidly grow-
ing airline business.

Of course, the story does not end here. Boeing saw the success of the
DC-3 and moved to counter with an even larger and higher-performance
aircraft, albeit after some delay. Boeing was well placed to continue to
move up in aircraft size and performance because of the simultaneous
work for the U.S. Army Air Corps on the large four engine bombers
(among them the B-17 and later the B-29 of World War II fame). Boeing
countered with the Boeing 307, with a capacity of thirty-three passengers,
larger than the DC-3.

Here history intervenes in the story. The 307 was produced from 1939
to 1940. At this point, U.S. industry was already converting to war pro-
duction. After the attack on Pearl Harbor in 1941, essentially all airplane
production was converted to war production, but in large measure, the
conversion had already begun. The U.S. Army Air Corps needed trans-
ports, bombers, fighters, and all types of aircraft. Boeing, with its advan-
tages in large bombers, moved its production primarily to bombers. The
DC-3 was an obvious choice as a transport. It was a proven, mature design
with proven utility and reliability. Enormous contracts for producing
military variants of the DC-3 came rapidly, and more than 10,000 were
produced in various military configurations. This huge production base
became the foundation for the aircraft to fly productively for decades after
production ended.

After World War II, the competition in commercial airplanes resumed,
but from a new point. The DC-3 existed in such large numbers there was
hardly room for a direct competitor. The technology for building and

Case Study 1: DC-3	 51

operating much larger aircraft had been extensively developed. The trans-
ports produced after World War II were larger still, mostly four-engine air-
craft. And soon after, the transition to jet engines would revolutionize the
architecture of commercial aircraft, and the airline industry, once again.

Architecture Interpretation
As interesting as the capsule history of the DC-3 may be, this history is not
the primary focus here in this book. The reader may find many extensive
histories of the DC-3 and its competitors. But, we are interested here in
understanding and interpreting its architecture, not just on its own, but in
relationship to its competitors and in the context of its builders, sponsors,
and users.

Three Story Variations
Three different but related contexts can be considered in the DC-3 story.
The first way of seeing the story is as one of architectural revolution fueled
by technology. In this way, we see the DC-3 as a technology-enabled
architectural jump over the Ford Trimotor. The moral of this story is that
technological advance combined with architectural vision creates a revo-
lutionary system. This story is, of course, true; but it is also incomplete.
The DC-3 was a revolutionary advance over the Ford Trimotor, and it was
a combination of technological advance and architectural vision. But,
it did not happen in one step, it did not happen in only one place, and it
did not happen all at once. If the DC-3 was a technology-driven jump, than
so was the Boeing 247. To understand the success of the DC-3 over the 247,
we need to look beyond the first story of a technology-driven jump.

In the second story we see the Boeing 247 and the DC-3 as a story in
the hazards of optimality. The moral of the second story is that being opti-
mal with respect to the problem as currently or originally understood is
not always the best choice. The DC-3 achieved enormous success because
it did not optimally serve existing markets; instead, it leapfrogged and
enabled new markets. The revolution was not just in technology of air-
planes, it was in the coupling of technological change with operational
change. The DC-3 became a huge success when its owners changed their
business model in response to its capabilities. In this story, we can see
the Boeing 247 as a cautionary tale to not look too narrowly, especially in
times of rapid change.

The third story expands the second by seeing what Boeing did after
the appearance of the DC-3. When the DC-3 opened new markets, Boeing
did not stand still. They had already invested in the 247, and it was being
used on airmail routes, but they did not continue to build it in the face of
the greater success of the DC-3. Instead, they followed where the DC-3 had

52	 The Art of Systems Architecting

revealed the market to be (larger, faster, higher-capacity aircraft) by build-
ing the 307. The 307 might have been a highly successful aircraft, except
that World War II intervened and upset the competition with the forced
conversion to war production.

The third story must color our perception of success and failure, and
Boeing versus Douglas’ decision making. Boeing started the revolution
with the 247. Boeing was eclipsed by the DC-3, but that has to be viewed in
the larger context of builder’s strategic positions and capabilities. Boeing
started with a stronger business position and a direct relationship with
the leading customer, United Air Lines. Boeing also held a “real option”*
on moving to even larger aircraft in a way that Douglas did not. Thus,
Boeing could logically make a more conservative decision for the competi-
tive and technological positioning of the 247 than made sense for Douglas.
This leads naturally to the next question.

Was the Boeing 247 Successfully Architected?
It seems obvious that the DC-3 was very successfully architected. It is gen-
erally regarded as the most successful aircraft of all time, and beautifully
combined technical and operational innovation. The combination was
deliberate, if not entirely foreseen.3 The natural follow-on question is to
ask how successfully was the Boeing 247 architected? Obviously, it was a
much less successful aircraft. But, it was the aircraft its sponsors requested.
It did effectively exploit the new technology, and it did what was asked.
The general question is, if a sponsor gets the system he or she asks for, and
as a result loses in a competitive environment, did the architects perform
either job effectively?

There is no universal answer to this question. The answer depends
very much on how the development environment structures the relation-
ship between the architect and sponsor. In the classical architecting para-
digm, the architect must be careful not to substitute his or her own value
judgments for those of the client. So, if the system reflects the client’s
value judgments, and the system is ultimately unsuccessful because
those value judgments do not reflect reality, the architecting job has still
been done well. But, it is also traditionally well within the architect’s
responsibility to warn the client of the certain or likely consequences of
proposed courses of action. If it is evident to the architect that the design
process is leading to something that can be easily opposed, this must be
made plain to the client. The client may choose to proceed anyway, but
the consequences should be clear.

*	 A real option in this context is the ability to build alternative systems at relatively low
cost because of other investments. In this case, Boeing held a real option on larger aircraft
through its involvement in building large bombers for the U.S. Army Air Corps.

Case Study 1: DC-3	 53

In some cases, the architect may have an ethical or even legal respon-
sibility beyond that of the responsibility to the client. Public buildings
must be built in accordance with public safety. A system architect work-
ing for a government has some responsibility beyond just the immedi-
ate acquisition program to the national interest. In our DC-3 story, the
architect was part of the builder organization and so had a great stake
in ultimate success or failure. A builder-architect cannot shrug off poor
client decision making as the builder-architect is also the client and rises
or falls on the result. The builder-architect should have a level of owner-
ship of the problem a third-party architect need not.

What Is the “Architecture” of the DC-3?
Asking “What is the architecture of the DC-3” illustrates the contrast
between architecture as physical design and architecture as concept develop-
ment points of view. Both the Boeing 247 and DC-3 shared the same essen-
tial structural, technical features. Both were two-engine, hollow fuselage,
modern configuration transport aircraft. From the outside, both look quite
similar. Both used very similar technology. In the sense of overall physical
design, they are quite similar.

However, in performance attributes and in operational placement,
they are quite different. The DC-3 is considerably larger and, more impor-
tantly, is enough larger for the performance margin to have great opera-
tional significance. The DC-3 performs missions the Boeing 247 cannot,
and enables business models that the Boeing 247 cannot. In a larger
context, the design of the DC-3 embodies a different business strategy
than the Boeing 247. If we think of architecture as the technical embodi-
ment of strategy, we see the distinct difference between the architectures
of the two systems.

Art Raymond’s Principles
One of the attractions of the DC-3 story is the excellent Art Raymond
paper previously referenced. Raymond’s paper provides a set of eight
timeless principles for architecting that hold as well today as they did
when first articulated1:

	 1.	Proper environment: This includes the physical facilities in which design-
ers work, but Raymond’s focus was on the confidence and enthusi-
asm of the sponsors and adequate financing. In Raymond’s words:

The thing above all else that makes a project go
is the enthusiasm of its backers; not false enthusi-
asm put on for effect — sooner or later this is seen

54	 The Art of Systems Architecting

through — but rather the enthusiasm that comes
from the conviction that the project is sound, worth-
while, and due to succeed.

	 2.	Good initial choice: In Raymond’s terms, a good initial choice is
one that neatly combines value and feasibility. He particularly
emphasizes the role of elegant compromise between conflicting
factors and clearly identifying the need or mission for the aircraft.
The biggest failures come not from systems that are technological
failures, but from those that fail to meet any need well enough to
generate demand.

	 3.	Excellence of detail design: Although this book is focused on archi-
tecture as the initial concept, detailed design is likewise important.
An excellent initial concept can be ruined by poor detailed design
(although a poor initial concept is very unlikely to be saved by excel-
lence in detailed design).

	 4.	Thorough development: Raymond’s perspective on thorough devel-
opment emphasizes design refinement after the first test flight.
In Raymond’s era, the refinement of flying qualities of airplanes
was quite important, and occurred mostly after the first flight.
Calculations and wind tunnel tests were sufficient for basic per-
formance, but refining handling qualities to a point of excellence
required extensive flight testing.

	 5.	Follow-through: Follow-through refers to the system life cycle after
delivery to the operator. In the case of a commercial aircraft, some
of the important elements include operator and maintainer train-
ing, maintenance and service facilities, development of spare parts,
design updates in response to service data, and technical manu-
als. The value of the system to its customers/operators is directly
related to the quality of follow-through. From the perspective of
systems architecting, the follow-through elements may be inside
the boundaries of the initial concept development. The quality of
the initial concept may be determined by its amenability to effective
follow-through.

	 6.	Thorough exploitation: All successful aircraft are extensively modified
during their operational lifetimes. The DC-3 was produced in an
enormous number of variations, and even today there are firms that
adapt modern avionics to the remaining DC-3 airframes. Successful
systems are designed to accommodate a range of modifications.
This is familiar in modern commercial aircraft where many inte-
rior configurations are available, usually several different choices
of engine, freighter and passenger versions, and extended-range or
capacity versions.

Case Study 1: DC-3	 55

	 7.	Correct succession: No matter how successful a system is, there comes
a time when it is more effective to break away and re-architect.
Conversely, breaking away when the time is not ripe incurs high
cost to little effect. The essential judgment here is projection of tech-
nical and operational trends. There is an opportunity for succession
when either (or better yet both) will move substantially over the time
required to develop the successor system.

	 8.	Adaptiveness: The DC-1, 2, 3 sequence is the best illustration of
adaptiveness. Adaptiveness really means responsiveness to the
future environment as it unfolds, rather than as it was projected.
Projections are the foundation of planning, and real strategy is the
ability to adapt to the environment as it unfolds. In this story, we
see several examples of adaptiveness in architecture. Douglas did
not settle for the DC-1, even though it met the contractual specifica-
tions provided by TWA. Instead, they adapted to the operational
environment as it developed, first with the improved DC-2 and then
with the much upsized DC-3. Likewise, Boeing illustrated effective
adaptiveness in the sense of retaining (and then exercising) real
options for larger aircraft. When their first attempt at a revolution-
ary aircraft was insufficient, they used large aircraft technology
from their military aircraft to upsize their flagship commercial air-
craft to the Boeing 307.

Notes and References
	 1.	 Raymond, A., The Well Tempered Aircraft, 39th Wilbur Wright Memorial

Lecture, Journal of the Royal Aeronautical Society, September 1951.
	 2.	 A history of the DC-3, referenced from www.dc3history.org/chapters/

chapter_1.
	 3.	 Raymond, op cit.

57

3chapter

Builder-Architected Systems

No system can survive that doesn’t serve a useful
purpose.

Harry Hillaker*

Introduction: The Form-First Paradigm
The classical architecting paradigm is not the only way to create and build
large complex systems, nor is it the only regime in which architects and
architecting is important. A different architectural approach, the “form
first,” begins with a builder-conceived architecture in mind, rather than
with a set of client-accepted purposes. Its architects are generally members
of the technical staff of the company. Their client is the company; although
the intention is to reach a customer base in the market.

Incremental Development for an Existing Customer

Most builder-initiated architectures are variations of existing ones; as
examples, consider jet aircraft, personal computers, smart automobiles,
and follow-on versions of existing software applications. The original
architectures having proved by use to be sound, variations and exten-
sions should be of low risk. Extensive reuse of existing modules should be
expected because design assumptions, system functions, and interfaces
are largely unchanged.

The architect’s responsibilities remain much the same as under the
classical paradigm, but with an important addition: the identification of
proprietary architectural features deemed critical to maintaining com-
petitive advantage in the marketplace. Lacking this identification, the
question “who owns what?” can become so contentious for both builder
and customer that product introduction can be delayed for years.

Far more important than these relatively low risks is the paradigm
shift from function-to-form (purpose driven) to one of form-to-function
(form driven). Unlike the classical paradigm, in form-first architecting,

*	 Chief architect, General Dynamics F-16 Fighter. As stated in a University of Southern
California (USC) Systems Architecting lecture, November 1989.

58	 The Art of Systems Architecting

one’s customers judge the value of the product after rather than before the
product has been developed and produced. In the classical paradigm, the
customer is responsible for the value judgments, and so should expect to
be satisfied with the resultant system. In a form-first, builder-architected
system, the architect hopes the customer will find it satisfactory, but there
are no guarantees. The judgment of success begins only after the system
is built and delivered.

The resultant risk has spawned several risk-reduction strategies. The
simplest is an early prototype demonstration to present customers, with
its associated risks of premature rejection. The more rapidly prototypes
can be developed and delivered, the more rapidly feedback can be gained
from customers. Another recent strategy is the open source method for
designing software, a process in which customers become developers, or
at least active participants with developers. Anyone interested can partici-
pate, comment, submit ideas, develop software, and use the system, all at
no cost to the participant. The project being tied together by the Internet
(and some unique social conventions), everyone — and particularly the
builder and potential clients — knows and can judge its utility. The risk of
rejection is sharply reduced at the possible cost of control of design. The
open source community is a principal example of collaborative system
assembly. We discuss that topic specifically in Chapter 7.

New Markets for Existing Products

The next level of architecting intensity is reached when the builder’s moti-
vation is to reach uncertain or “latent” markets in which the unknown
customer must acquire the product before judging its value. Almost cer-
tainly, the product will have to be at least partially rearchitected in cost,
performance, availability, quantities produced, and so forth. To succeed
in the new venture, architecting must be particularly alert, making sug-
gestions or proposing options without seriously violating the constraints
of an existing product line. Hewlett-Packard in the 1980s developed this
architecting technique in a novel way. Within a given product line, say
that of a “smart” analytic instrument, a small set of feasible “reference”
architectures are created, each of which is intended to appeal to a different
kind of customer. Small changes in that architecture then enable tailoring
to customer-expressed priorities. Latent markets discovered in the process
can then be quickly exploited by expansion of the product line.

The original product line architecture can be maintained with few
modifications or risks until a completed system is offered to the market.
Ideally, the architectural features of the product line are largely invari-
ant, but the architectural features of individual products change rapidly.
The product line sets out constraints and resources, and the individual
products use them to produce valued features. The architecture of the

Chapter 3:  Builder-Architected Systems	 59

product line is dominantly, though not exclusively, the intersection of the
architectures of the circumscribed products. The architecture of the prod-
uct line is dominated by the common features, the things that bring value
to taking a product-line approach. In one sense only can the architecture
of the product line be thought of as the union of the architectures of the
products, which is the sense in which the product line defines the collec-
tion of niches into which each product will fit. The product line makes
global decisions about where individual products can be developed, and
where they cannot.

New Products, New Markets

Of greatest risk are those form-first, technology-driven systems that
create major qualitative changes in system-level behavior, changes in
kind rather than of degree. Systems of this type almost invariably require
across-the-board new starts in design, development, and use. They most
often arise when radically new technologies become available, such as jet
engines, new materials, microprocessors, lasers, software architectures,
and intelligent machines. Although new technologies are infamous for
creating unpleasant technological and even sociological surprises, by far
the greatest single risk in these systems is one of timing. Even if the form
is feasible, introducing a new product either too early or too late can be
punishing. Douglas Aircraft Company was too late into jet aircraft, losing
out for years to The Boeing Company. Innumerable small companies have
been too early, unable to sustain themselves while waiting for the tech-
nologies to evolve into engineered products. High-tech defense systems,
most often due to a premature commitment to a critical new technology,
have suffered serious cost overruns and delays.

Technological Substitutions within
Existing Systems
The second greatest risk is in not recognizing that before they are com-
pleted, technology-driven architectures will require much more than just
replacing, one at a time, components of an older technology for those of
a newer one. Painful experience shows that without widespread changes
in the system and its management, technology-driven initiatives seldom
meet expectations and too often cost more for less value. As examples,
direct replacements of factory workers with machines,1 of vacuum tubes
with transistors, of large inventories with just-in-time deliveries, and
of experienced analysts with computerized management information
systems, all collapsed when attempted by themselves in a system that
was otherwise unchanged. They succeeded only when incorporated in

60	 The Art of Systems Architecting

concert with other matched and planned changes. It is not much of an
exaggeration to say that the latter successes were well architected, the
former failures were not.

In automobiles, the most recent and continuing change is the inser-
tion of ultraquality electronics and software between the driver and the
mechanical subsystems of the car. This remarkably rapid evolution removes
the driver almost completely from contact with, or direct physical control
of, those subsystems. It considerably changes such overall system charac-
teristics as fuel consumption, aerodynamic styling, driving performance,
safety, and servicing and repair — as well as the design of such possibly
unexpected elements as engines, transmissions, tires, dashboards, seats,
passenger restraints, and freeway exits. As a point of fact, the automotive
industry expected that by the turn of the century more than 93% of all
automotive equipment would be computer controlled,2 a trend evidently
welcomed and used by the general public or it would not have been
done. A telling indicator of the public’s perception of automotive per-
formance and safety was the virtually undisputed increase in national
speed limits. Safe, long-distance, highway travel at 70 mph (117 km/hr)
was rare, even dangerous, two decades ago. Even if the highways were
designed for it, conventional cars and trucks were not. It is now common,
safe, and legal. Perhaps the most remarkable fact about this rapid evolu-
tion is that most customers were never aware of it. This result came from
a commitment to quality so high that a much more complex system could
be offered that, contrary to the usual experience, worked far better than
its simpler predecessor.

In aircraft, an equivalent, equally rapid, technology-driven evolution
is “fly by wire,” a change that, among other things, is forcing a social
revolution in the role of the pilot and in methods of air traffic control.
More is involved than the form-fit-function replacement of mechanical
devices with a combination of electrical, hydraulic, and pneumatic units.
Aerodynamically stable aircraft, which maintain steady flight with
nearly all controls inoperative, are steadily being replaced with ones
that are less stable, more maneuverable, and computer controlled in all
but emergency conditions. The gain is more efficient, potentially safer
flight. But the transition has been as difficult as that between visual and
instrument-controlled flight.

In inventory control, a remarkable innovation has been the very prof-
itable combination in one system of point-of-sale terminals, of a shift of
inventory to central warehouses and of just-in-time deliveries to the buyer.
Note the word combination. None of the components has been particularly
successful by itself. The risk here is greater susceptibility to interruption
of supply or transportation during crises.

In communications, satellites, packet switching, high-speed fiber-
optic lines, e-mail, the World Wide Web, and electronic commerce have

Chapter 3:  Builder-Architected Systems	 61

combined for easier access to a global community, but with increasing
concerns about privacy and security. The innovations now driving the
communications revolution were not, individually, sufficient to create this
revolution. It has been the interaction of the innovations, and the changes
in business processes and personal habits connected to them, that have
made the revolution.

In all of these examples, far more is affected than product internals.
Affected also are such externals as manufacturing management, equity
financing, government regulations, and the minimization of environ-
mental impact, to name but a few. These externals alone could explain
the growing interest by innovative builders in the tools and techniques
of systems architecting. How else could well-balanced, well-integrated,
financially successful, and socially acceptable total systems be created?

Consequences of Uncertainty of End Purpose
Uncertainty of end purpose, no matter what the reason, can have seri-
ous consequences. The most serious is the likelihood of serious error in
decisions affecting system design, development, and production. Builder-
architected systems are often solutions looking for a problem and hence
are particularly vulnerable to the infamous “error of the third kind”:
working on the wrong problem.

Uncertainty in system purposes also weakens them as criteria for
design management. Unless a well-understood basis for configuration
control exists and can be enforced, system architectures can be forced
off course by accommodations to crises of the moment. Some of the most
expensive cases of record have been in attempts to computerize manage-
ment information systems. Lacking clear statements of business purposes
and market priorities, irreversible ad hoc decisions were made which
so affected their performance, cost, and schedule that the systems were
scrapped. Arguably, the best prevention against “system drift” is to decide
on provisional or baseline purposes and stick to them. But what if those
baseline purposes prove to be wrong in the marketplace?

Architecture and Competition
In the classical architecting paradigm, there is little or no role for competi-
tion. The client knows what he or she wants, or learns through interaction
with the architect. When a system is delivered that is consonant with the
client’s values, the client should be satisfied. In many other cases, builder-
architected systems prominent among them, success is judged more on
competitive performance than on adherence to client values.

To reconcile how architecting and architecture relates to competition,
we must set the context of the organization’s overall competitive strategy.

62	 The Art of Systems Architecting

Architecting cannot be talked about in the abstract; it has to be grounded
in the strategies of the organization conducting it. In builder-architected
systems, this means the competitive posture of the builder. Broadly speak-
ing, we can identify three major competitive strategies with architectural
consequences: disrupt and dominate, agile response, and attrition.

Disrupt and Dominate

This strategy is based on creating systems that disrupt existing opera-
tional patterns or markets, and building barriers to prevent others from
taking advantage of those disruptions. In “Case Study 1”, the DC-3 was
a disruptive system in that it caused systematic change to how airlines
did business. However, Douglas was unable to raise a strong barrier to
prevent Boeing from entering the market space (although Douglas had
a valuable lead of several years). The Apple iPod and iTunes music store
combination is an example, where patents, copyrights, secrecy of propri-
etary technologies, and exclusive contractual arrangements have success-
fully formed barriers to competitive entry.

The architectural challenges in supporting this strategy are twofold.
First, the quality of the architecting must be exceptional, as the architect
must create beyond the boundaries of current systems. Great imagination
is required, while simultaneously maintaining sufficient options (see the
next section) to adapt to the inevitable failures of imagination. Second, the
approach must allow protection from competitors who will employ an
agile response strategy.

Agile Response

This strategy emphasizes the organization’s capability to react more quickly
and effectively than the competition. We emphasize both speed and effec-
tiveness, because an ineffective response quickly delivered is still ineffec-
tive. A key distinction between the disrupt and dominate strategy and
agile response is that agile response seeks to exploit the underlying flux in
markets or military situations without disrupting their overall structure.
An agile responder in a commercial environment produces new products
within established markets faster and more effectively than the competi-
tion but does not try to create entirely new markets. The agile response
strategy is especially effective in immature markets where changes in
consumer preference and technology create many new opportunities.

From an architectural perspective, the challenges for agile response are
again twofold. First, to carry this strategy out effectively, the organization
must be able to very rapidly conceive, develop, and deliver new systems.
This means that architecting must be fast and must support a very com-
pressed development cycle. Second, at one higher level of abstraction, the

Chapter 3:  Builder-Architected Systems	 63

architecture of the organization and its product lines must support agility.
The organization and product lines must be structured to facilitate agility.
Typically the product-line architecture evolves much more slowly than
the products, and the product-line architecture sets out critical invariants
allowing rapid development and deployment.

Attrition

The classic example on the military side of the attrition strategy is to win
by having more firepower, manpower, logistic power, and willingness to
suffer than your opponent. A business equivalent strategy is to prevail
through access to large amounts of low-cost capital, low-wage labor, and
large distribution channels. When coupled to a strong organizational
capability for learning and improvement, this is a powerful strategy, espe-
cially in mature markets where consumer preference changes slowly.

Architecting in the attrition strategy is relatively slow and deliberate.
The key architecture is the one embodied in the organization. Successful
conduct of the attrition strategy is dependent on access to the requisite
resources, cheaply and at a large scale. The strategy is likely to fail either
when encountering a still larger and more fit competitor, or when the under-
lying environment (markets, operations, and technology) has an inherent
rate of change high enough so that an agile response strategy becomes more
effective, or when the change is sufficient to be open to disruption.

Reducing the Risks of Uncertainty of End Purpose
A powerful architecting guide to protect against the risk of uncertain
purposes is to build in and maintain options. With options available, early
decisions can be modified or changed later. Other possibilities include the
following: Build in options to stop at known points to guarantee at least
partial satisfaction of user purposes without serious losses in time and
money, for example, in databases for accounting and personnel adminis-
tration. Create architectural options that permit later additions, a favorite
strategy for automobiles and trucks. Provisions for doing so are hooks
in software to add applications and peripherals, scars in aircraft to add
range and seats, shunts in electrical systems to isolate troubled sections,
contingency plans in tours to accommodate cancellations, and forgiving
exits from highways to minimize accidents.

In software, a general strategy is: Use open architectures. You will need
them once the market starts to respond. As will be seen, a further refinement
of this domain-specific heuristic will be needed, but this simpler version
makes the point for now.

And then there is the always welcome heuristic: every once in a while,
Pause and reflect. Reexamine the cost-effectiveness of system features such

64	 The Art of Systems Architecting

as high precision pointing for weather satellites or cross-talk levels for
tactical communication satellites.* Review why interfaces were placed
where they were. Check for unstated assumptions such as the Cold War
continuing indefinitely† or the 1960s generation turning conservative as it
grew older.

Risk Management by Intermediate Goals
Another strategy to reduce risk in the development of system-critical
technologies is by scheduling a series of intermediate goals to be reached
by precursor or partial configurations. For example, build simulators or
prototypes to tie together and synchronize otherwise disparate research
efforts.3 Build partial systems, demonstrators, or models to help assess
the sensitivity of customer acceptance to the builder’s or architect’s value
judgments,4 a widely used market research technique. And, as will be
seen in Chapter 7, if these goals result in stable intermediate forms, they
can be powerful tools for integrating hardware and software.

Clearly, precursor systems have to be almost as well architected as the
final product. If not, their failure in front of a prospective customer can
play havoc with future acceptance and ruin any market research program.
As one heuristic derived from military programs warns, The probability of
an untimely failure increases with the weight of brass in the vicinity. If precur-
sors and demonstrators are to work well “in public,” they better be well
designed and well built.

Even if a demonstration of a precursor succeeds, it can generate exces-
sive confidence, particularly if an untested requirement is critical. In one
case, a U.S. Air Force (USAF) satellite control system successfully and
very publicly demonstrated the ability to manage one satellite at a time;
the critical task, however, was to control multiple, different satellites, a
test it subsequently flunked. Massive changes in the system as a whole
were required. In another similar case, a small launch vehicle, arguably
successful as a high-altitude demonstrator of single-stage-to-orbit, could
not be scaled up to full size or full capability for embarrassingly basic
mechanical and materials reasons.

These kinds of experiences led to the admonition: Do the hard parts
first, an extraordinarily difficult heuristic to satisfy if the hard part is a
unique function of the system as a whole. Such has been the case for a near-
impenetrable missile defense system, a stealthy aircraft, a general aviation
air traffic control system, a computer operating system, and a national tax

*	 In real life, both features proved to be unnecessary but could not be eliminated by the
time that truth was discovered.

†	A half-joking question in defense planning circles in the early 1980s used to be, “What if
peace broke out?” Five years later, it had.

Chapter 3:  Builder-Architected Systems	 65

reporting system. The only credible precursor, to demonstrate the hard
parts, had to be almost as complete as the final product.

In risk management terms, if the hard parts are, perhaps necessarily,
left to last, then the risk level remains high and uncertain to the very end.
The justification for the system therefore must be very high and the support
for it very strong or its completion will be unlikely. For private businesses,
this means high-risk venture capital. For governments, it means support by
the political process, a factor in system acquisition for which few architects,
engineers, and technical managers are prepared. Chapter 13 is a primer on
the subject.

The “What Next?” Quandary
One of the most serious long-term risks faced by a builder of a successful,
technology-driven system is the lack of, or failure to win a competition
for, a successor or follow-on to the original success.

The first situation is well exemplified by a start-up company’s lack of
a successor to its first product. Lacking the resources in its early, profitless,
years to support more than one research and development effort, it could
only watch helplessly as competitors caught up and passed it by. Ironically,
the more successful the initial product, the more competition it will attract
from established and well-funded producers anxious to profit from a sure
thing. Soon the company’s first product will be a “commodity,” something
that many companies can produce at a rapidly decreasing cost and risk.
Unable to repeat the first success, soon enough the start-up enterprise fails
or is bought up at fire-sale prices when the innovator can no longer meet
payroll. Common. Sad. Avoidable? Possibly.

The second situation is the all-too-frequent inability of a well-estab-
lished company that had been successfully supplying a market-valued
system to win contracts for its follow-on. In this instance, the very strength
of the successful system, a fine architecture matched with an efficient orga-
nization to build it, can be its weakness in a time of changing technologies
and shifting market needs. The assumptions and constraints of the present
architecture can become so ingrained in the thinking of participants that
options simply do not surface.

In both situations, the problem is largely architectural, as is its
alleviation.

For the innovative company, it is a matter of control of critical architec-
tural features. For the successful first producer, it is a matter of knowing,
well ahead of time, when purposes have changed enough that major
rearchitecting may be required. Each situation will be considered in turn.

66	 The Art of Systems Architecting

Controlling the Critical Features of the Architecture
The critical part of the answer to the start-up company’s “what next”
quandary is control of the architecture of its product through proprietary
ownership of its basic features.5 This is the second half of a disrupt and
dominate strategy. Examples of such features are computer operating
systems, interface characteristics, communication protocols, microchip
configurations, proprietary materials, patents, exclusive agreements with
critical suppliers or distributors, and unique and expensive manufactur-
ing capabilities. Good products, although certainly necessary, are not
sufficient. They must also arrive on the market as a steadily improving
product line, one that establishes, de facto, an architectural standard.

Surprisingly, one way to achieve that objective is to use the competition
instead of fighting it. Because success invites competition, it may well be
better for a start-up to make its competition dependent, through licensing,
upon a company-proprietary architecture rather than to have it incentivized
to seek architectural alternatives. Finding architectural alternatives takes
time. But licensing encourages the competition to find new applications,
add peripherals, and develop markets, further strengthening the architec-
tural base, adding to the source company’s profits and its own develop-
ment base.6 Heuristically: Successful architectures are proprietary, but open.*

This strategy was well exemplified by Microsoft in opening and
licensing its personal computer (PC) operating system while Apple
refused to do so for its Macintosh. The resultant widespread cloning of the
PC expanded not only the market as a whole, but Microsoft’s share of it.
The Apple share dropped. The dangers of operating in this kind of open
environment, however, are also illustrated in the case of PC hardware. The
PC standard proved much more open than IBM intended. Where it was
assumed they could maintain a price advantage through the economies
of scale, the advantage disappeared. The commoditization of the PC also
drove down profit margins until even a large share proved substantially
unprofitable, at least for a company structured as IBM. IBM struggled for
years (unsuccessfully) to move the PC market in a direction that would
allow it to retain some degree of proprietary control and return profits. In
contrast, Microsoft and Intel have struck a tremendously profitable balance
between proprietary protection and openness. The Intel instruction set
architecture has been copied, but no other company has been able to
achieve a market share close to Intel’s. Microsoft has grown both through
proprietary and open competition, the former in operating systems and
the latter in application programs.

Apple was not entirely closed. Apple was “open enough” to create
a substantial market in software and peripheral devices. Opening up

*	“Open” here means adaptable, friendly to add-ons, and selectively expandable in capability.

Chapter 3:  Builder-Architected Systems	 67

too far can destroy any possibility of maintaining a competitive advan-
tage. Staying too closed prevents the creation of a synergistic market.
Architecture and strategy need to be consistent.

A different kind of architectural control is exemplified by the Bell
telephone system with its technology generated by the Bell Laboratories,
its equipment produced largely by Western Electric, and its architectural
standards maintained by usage and regulation. Others include Xerox in
copiers, Kodak in cameras, and Hewlett-Packard in instruments. All these
product-line companies began small, controlled the basic features, and
prospered. But, as each of these also demonstrated, success is not forever.

Thus, for the innovator, the essentials for continued success are not
only a good product, but also the generation, recognition, and control of
its basic architectural features. Without these essentials, there may never
be a successor product. With them, many product architectures, as archi-
tecturally controlled product lines, have lasted for years following the
initial success. Which adds even more meaning to: There’s nothing like being
the first success.7

Abandonment of an Obsolete Architecture
A different risk reduction strategy is needed for the company that has
established and successfully controlled a product-line architecture8 and
its market, but is losing out to a successor architecture that is proving to
be better in performance, cost, or schedule. There are many ways that this
can happen. Perhaps the purposes that original architecture has satisfied
can better be done in other ways. Typewriters have largely been replaced
by personal computers. Perhaps the conceptual assumptions of the origi-
nal architecture no longer hold. Energy may no longer be cheap. Perhaps
competitors found a way of bypassing the original architectural controls
with a different architecture. Personal computers destroyed the market
for Wang word processors and eventually for proprietary workstations.
And, as a final example, cost risk considerations precluded building larger
and larger spacecraft for the exploration of the solar system.

To avoid being superceded architecturally requires a strategy, worked
out well ahead of time, to set to one side or cannibalize that first architec-
ture, including the organization matched with it, and to take preemptive action
to create a new one. The key move is the well-timed establishment of an
innovative architecting team, unhindered by past success and capable of
creating a successful replacement. Just such a strategy was undertaken
by Xerox in a remake of the corporation as it saw its copier architecture
start to fade. It thereby redefined itself as “the document company.”9 But,
the failure of Xerox to substantially profit from most of the innovation
developed by Xerox PARC (Palo Alto Research Center) likewise illustrates
the difficulty of making the transition. Xerox understood the necessity

68	 The Art of Systems Architecting

of making the architectural transition, and invested in it, for many years
before being organizationally capable of actually making the transition.10

Creating Innovative Teams
Clearly the personalities of members of any team, particularly an inno-
vative architecting team, must be compatible. A series of USC Research
Reports11 by Jonathan Losk, Tom Pieronek, Kenneth Cureton, and Norman
P. Geis, based on the Myers-Briggs Type Indicator (MBTI), strongly suggest
that the preferred personality type for architecting team membership
is NT.12 That is, members should tend toward systematic and strategic
analysis in solving problems. As Cureton summarizes, “Systems archi-
tects are made and not born, but some people are more equal than others
in terms of natural ability for the systems architecting process, and MBTI
seems to be an effective measure of such natural ability. No single per-
sonality type appears to be the ‘perfect’ systems architect, but the INTP
personality type often possesses many of the necessary skills.”

Their work also shows the need for later including an ENTP (extro
version, intuition, thinking, perceiving), a “field marshal” or deputy proj-
ect manager, not only to add some practicality to the philosophical bent
of the INTPs (introversion, intuition, thinking, perceiving), but to help the
architecting team work smoothly with the teams responsible for building
the system.

Creating innovative teams is not easy, even if the members work well
together. The start-up company, having little choice, depends on good
fortune in its recruiting of charter members. The established company, to
put it bluntly, has to be willing to change how it is organized and staffed
from the top down based almost solely on the conclusions of a presumably
innovative team of “outsiders,” albeit individuals chartered to be such.
The charter is a critical element, not so much in defining new directions
as in defining freedoms, rights of access, constraints, responsibilities, and
prerogatives for the team. For example, can the team go outside the com-
pany for ideas, membership, and such options as corporate acquisition?
To whom does the team respond and report — and to whom does it not?
Obviously, the architecting team better be well designed and managed.
Remember, if the team does not succeed in presenting a new and accepted
architecture, the company may well fail.

One of the more arguable statements about architecting is the one
by Frederick P. Brooks Jr. and Robert Spinrad that the best architectures are
the product of a single mind. For modest-sized projects, that statement is
reasonable enough. As projects get larger and larger, it remains true but in
somewhat different form. The complexity and work load of creating large,
multidisciplinary, technology-driven architectures would overwhelm any
individual. The observation of a single mind is most easily accommodated

Chapter 3:  Builder-Architected Systems	 69

by a simple but subtle change from “a single mind” to “a team of a single
mind.” Some would say “of a single vision” composed of ideas, purposes,
concepts, presumptions, and priorities. It is also critical to understand the
difference between composing multidisciplinary teams and how teams
form decisions. The key to a coherent architecture is coherent decision
making. Majority votes by large committees are practically the worst-case
scenario for gaining coherence of decision making over a long series of
related complex decisions.

One architect put the issue succinctly. When asked about the role
of multidisciplinary teams, he said: “Multi-disciplinary teams covering
all stakeholders and major subsystem areas are critical to effective space
architecting, and I love using them. As long as I get to make all of the
decisions.” His point was simple — good architecting requires diversity
of view but unity of decision.

In the simplest case, the single vision would be that of the chief archi-
tect and the team would work to it. For practical as well as team cohesive-
ness reasons, the single vision needs to be a shared one. In no system is
that more important than in the entrepreneurially motivated one. There
will always be a tension between the more thoughtful architect and the
more action-oriented entrepreneur. Fortunately, achieving balance and
compromise of their natural inclinations works in the system’s favor.

An important corollary of the shared vision is that the architecting
team, and not just the chief architect, must be seen as creative, communi-
cative, respected, and of a single mind about the system-to-be. Only then
can the team be credible in fulfilling its responsibilities to the entrepre-
neur, the builder, the system, and its many stakeholders. Internal power
struggles, basic disagreements on system purpose and values, and advo-
cacies of special interests can only be damaging to that credibility.

As Ben Bauermeister, Harry Hillaker, Archie Mills, Bob Spinrad,13 and
other friends have stressed in conversations with the authors, innovative
teams need to be cultural in form, diverse in nature, and almost obsessive
in dedication.

By cultural is meant a team characterized by informal creativity, easy
interpersonal relationships, trust and respect, all characteristics necessary
for team efficiency, exchange of ideas, and personal identification with a
shared vision. To identify with a vision, they must deeply believe in it and
in their chief. The members must acknowledge and follow the lead of their
chief or the team disintegrates.

Diversity in specialization is to be expected; it is one of the reasons for
forming a team. Equally important, a balanced diversity of style and pro-
grammatic experience is necessary to assure open-mindedness, to spark
creative thinking in others, and to enliven personal interrelationships. It
is necessary, too, to avoid the “groupthink” of nearly identical members
with the same background, interests, personal style, and devotion to past

70	 The Art of Systems Architecting

architectures and programs. Indeed, team diversity is one of the better
protections against the second-product risks mentioned earlier.

Consequently, an increasingly accepted guideline is that, to be truly
innovative and competitive in today’s world: The team that created and built
a presently successful product is often the best one for its evolution — but seldom
for creating its replacement.

A major challenge for the architect, whether as an individual or as the
leader of a small architecting team, is to maintain dedication and momen-
tum not only within the team but also within the managerial structure
essential for its support. The vision will need to be continually restated
as new participants and stakeholders arrive on the scene — engineers,
managers active and displaced, producers, users, and new clients. Even
more difficult, it will have to be transformed as the system proceeds from
a dream to a concrete entity, to a profit maker, and finally to a quality
production. Cultural collegiality will have to give way to the primacy of
the bottom line and finally to the necessarily bureaucratic discipline of
production. Yet the integrity of the vision must never be lost or the system
will die.

The role of organizations in architectures, and the architecture of organi-
zations, is taken up at much greater length by one of the present authors.14

Architecting “Revolutionary” Systems
A distinction to be made at this point is between architecting in prec-
edented, or evolutionary, environments, and architecting unprecedented
systems. Whether we call such systems “revolutionary,” “disruptive,”
or “unprecedented” seems more a matter of fashion. What is important
is that the system stands apart from all that came before it, and that is
great change of businesses or militaries operate. One of the most notable
features of Rechtin (1991)15 was an examination of the architectural history
of clearly successful and unprecedented systems. A central observation is
that all such systems have a clearly identifiable architect or small architect
team. They were not conceived by the consensus of a committee. Their
basic choices reflect a unified and coherent vision of one individual or
a very small group. Further reflection, and study by students, has only
reinforced this basic conclusion, while also filling in some of the more
subtle details.

Unprecedented systems have been both purpose driven and tech-
nology driven. In the purpose-driven case, the architect has sometimes
been part of the developer’s organization and sometimes not. In the
technology-driven case, the architect is almost always in the developer’s
organization. This should be expected as technology-driven systems
typically come from intimate knowledge of emerging technology, and
someone’s vision of where it can be applied to advantage.16 This person is

Chapter 3:  Builder-Architected Systems	 71

typically not a current user but is rather a technology developer. It is this
case that is the concern of this section.

The architect has a lead technical role. But this role cannot be properly
expressed in the absence of good project management. Thus, the pattern
of a strong duo, project manager and system architect, is also character-
istic of successful systems. In systems of significant complexity, it is very
difficult to combine the two roles. A project manager is typically besieged
by short-term problems. The median due date of things on the project
manager’s desk is probably yesterday. In this environment of immediate
problems, it is unlikely that a person will be able to devote the serious
time to longer-term thinking and broad communicating that are essential
to good architecting.

The most important lesson in revolutionary systems, at least those not
inextricably tied to a single mission, is that success is commonly not found
where the original concept thought it would be. The Macintosh computer
was a success because of desktop publishing, not what the market assumed
in its original rollout (which was as a personal information appliance).
Indeed, desktop publishing did not exist as a significant market when
the Macintosh was introduced.* This pattern of new systems becoming
successful because of new applications has been common enough in the
computer industry to have acquired a nickname, “the killer app(lication).”
Taken narrowly, a “killer app” is an application so valuable that it drives
the sales of a particular computer platform. Taken more broadly, a “killer
app” is any new system usage so valuable that, by itself, it drives the
dissemination of the system.

One approach to unprecedented systems is to seek the killer applica-
tion that can drive the success of a system. A recent noncomputer example
that illustrates the need, and the difficulty, is the search for a killer appli-
cation for reusable space launch vehicles. Proponents believe that there is
a stable economic equilibrium with launch costs an order of magnitude
lower, and flight rates around an order of magnitude higher, than current.
But, if flight rates increase and space payload costs remain the same, then
total spending on space systems will have to be far higher (roughly an
order of magnitude, counting only the payload costs). For there to be a
justification for high flight rate launch, there has to be an application that
will realistically exploit it. That is, some application must attract sufficient
new money to drive up payload mass.

Various proposals have been floated, including large constellations
of communication satellites, space power generation, and space tourism.
If the cost of robotic payloads was reduced at the same time, their flight
rate might increase without total spending going up so much. But the only

*	 Though the concept was anticipated, as witnessed by the original business plan being
composed in publishable form on prototype Macintosh systems.

72	 The Art of Systems Architecting

clear way of doing that is to move to much larger-scale serial production
of space hardware to take advantage of learning curve cost reductions.17
This clearly indicates a radical change to the architecture not only of
launch, but to satellite design, satellite operations, and probably to space
manufacturing companies as well. And all these changes need to take
place synchronously for the happy consequence of lowered cost to result.
So far, this line of reasoning has not produced success. Launches remain
expensive, and the most efficient course appears to be greater reliability
and greater functionality per pound of payload, which has the effect of
driving the launch rate down and making a high-rate/low-cost launch
approach even more difficult.

Sometimes such synchronized changes do occur. The semiconductor
industry has experienced decades of 40% annual growth because such
synchronized changes have become ingrained in the structure of the
computer industry. As the production and design technology improve,
the total production base (in transistor quantity and revenue) goes up.
Lowered unit costs result in increased consumption of electronics even
larger than the simple scale up of each production generation. The result-
ing revenue increases are sufficient to keep the process going, and coor-
dinated behavior in the production equipment supplier, design system
supplier, and consumer electronic producers smoothes the process
sufficiently for it to run stably for decades.

In summary, the successful architect exploits what the market dem-
onstrates as the killer application, assuming he or she can predetermine
it. The successful innovator exploits the first-to-market position to take
advantage of the market’s demonstration of what it really wants faster
than the second-to-market player does. The successful follower beats the
first-to-market by being able to exploit the market’s demonstration more
quickly. Each is making a consistent choice of both strategy and architec-
ture (in a technical sense). We explore this issue in depth in Chapter 12.

Systems Architecting and Basic Research
One other relationship should be established, that between architects and
those engaged in basic research and technology development. Each group
can further the interests of the other. The architect can learn without con-
flict of interest. The researcher is more likely to become aware of potential
sponsors and users.

New technologies enable new architectures, though not singly or by
themselves. Consider solid-state electronics, fiber optics, software languages,
and molecular resonance imaging for starters. And innovative architec-
tures provide the rationale for underwriting research, often at a very basic
level. Yet, though both innovative architecting and basic research explore
the unknown and unprecedented, there seems to be little early contact

Chapter 3:  Builder-Architected Systems	 73

between their respective architects and researchers. The architectures of
intelligent machines, the chaotic aerodynamics of active surfaces, the soci-
ology of intelligent transportation systems, and the resolution of conflict
in multimedia networks are examples of presumably common interests.
Universities might well provide a natural meeting place for seminars,
consulting, and the creation and exchange of tools and techniques.

New architectures, driven by perceived purposes, sponsor more basic
research and technology development than is generally acknowledged.
Indeed, support for targeted basic research undoubtedly exceeds that moti-
vated by scientific inquiry. Examples abound in communications systems that
sponsor coding theory, weapons systems that sponsor materials science and
electromagnetics, aircraft that sponsor fluid mechanics, and space systems
that sponsor the fields of knowledge acquisition and understanding.

It is therefore very much in the mutual interest of professionals in
research and development (R&D) and systems architecting to know each
other well. Architects gain new options. Researchers gain well-motivated
support. Enough said.

Heuristics for Architecting
Technology-Driven Systems
General

An insight is worth a thousand market surveys.•	
Success is defined by the customer, not by the architect.•	
In architecting a new program, all the serious mistakes are made in •	
the first day.
The most dangerous assumptions are the unstated ones.•	
The choice between products may well depend upon which set of •	
drawbacks the users can handle best.
As time to delivery decreases, the threat to user utility increases.•	
If you think your design is perfect, it is only because you have not •	
shown it to someone else.
If you do not understand the existing system, you cannot be sure •	
you are building a better one.
Do the hard parts first.•	
Watch out for domain-specific systems. They may become traps •	
instead of useful system niches, especially in an era of rapidly devel-
oping technology.
The team that created and built a presently successful product is •	
often the best one for its evolution — but seldom for creating its
replacement. (It may be locked into unstated assumptions that no
longer hold.)

74	 The Art of Systems Architecting

Specialized

From Morris and Ferguson5:

Good products are not enough. (Their features need to be owned.)•	
Implementations matter. (They help establish architectural control.)•	
Successful architectures are proprietary, but open. (Maintain con-•	
trol over the key standards, protocols, etc., that characterize them
but make them available to others who can expand the market to
everyone’s gain.)

From Chapters 2 and 3:
Use open architectures. You will need them once the market starts •	
to respond.

Conclusion
Technology-driven, builder-architected systems, with their greater uncer-
tainty of customer acceptance, encounter greater architectural risks
than those that are purpose driven. Risks can be reduced by the care-
ful inclusion of options, the structuring of their innovative teams, and
the application of heuristics found useful elsewhere. At the same time,
they have lessons to teach in the control of critical system features and the
response to competition enabled by new technologies.

Exercises
	 1.	The architect can have one of three relationships to the builder and

client. The architect can be a third party, can be the builder, or can be the
client. What are the advantages and disadvantages of each relationship?
For what types of system is one of the three relationships necessary?

	 2.	 In a system familiar to you, discuss how the architecture can allow
for options to respond to changes in client demands. Discuss the
pros and cons of product versus product-line architecture as strate-
gies in responding to the need for options. Find examples among
systems familiar to you.

	 3.	Architects must be employed by builders in commercially marketed
systems because many customers are unwilling to sponsor long-term
development; they purchase systems after evaluating the finished
product according to their then-perceived needs. But placing the
architect in the builder’s organization will tend to dilute the inde-
pendence needed by the architect. What organizational approaches
can help to maintain independence while also meeting the needs of
the builder organization?

Chapter 3:  Builder-Architected Systems	 75

	 4.	The most difficult type of technology-driven system is one that does
not address any existing market. Examine the history of both suc-
cessful and failed systems of this type. What lessons can be extracted
from them?

Notes and References
	 1.	 Majchrzak, Ann, The Human Side of Automation. San Francisco: Jossey-Bass,

1988, pp. 95–102. The challenge: 50%–75% of the attempts at introducing
advanced manufacturing technology into U.S. factories are unsuccessful,
primarily due to lack of human resource planning and management.

	 2.	 Automobile Club of Southern California speaker, Los Angeles, August 1995.
	 3.	 The Goldstone California planetary radar system of the early 1960s tied

together antenna, transmitter, receiver, signal coding, navigation, and com-
munications research and development programs. All had to be completed
and integrated into a working radar at the fixed dates when target planets
were closest to the Earth and well in advance of commitment for system sup-
port of communication and navigation for as-yet-not-designed spacecraft to
be exploring the solar system. Similar research coordination can be found in
NASA aircraft, applications software, and other rapid prototyping efforts.

	 4.	 Hewlett-Packard marketers have long tested customer acceptance of pro-
posed instrument functions by presenting just the front panel and asking for
comment. Both parties understood that what was behind the panel had yet
to be developed, but could be. A more recent adaptation of that technique is
the presentation of “reference architectures.”

	 5.	 Morris, Charles R., and Charles H. Ferguson, How Architecture Wins
Technology Wars, Harvard Business Review, March–April 1993; and its notably
supportive follow-up review, Will Architecture Win the Technology Wars?
in the same publication, May–June 1993 — a seminal article on the subject.

	 6.	 Morris and Ferguson (see Note 5).
	 7.	 Rechtin, E., Systems Architecting, Creating and Building Complex Systems.

Englewood Cliffs, NJ: Prentice Hall, 1991, p. 301. Note that throughout the
rest of the chapter, this reference will be referred to as Rechtin 1991.

	 8.	 It is important to distinguish between a product-line architecture and a prod-
uct in that line. It is the first of these that is the subject here. Hewlett-Packard
is justly famous for the continuing creation of innovative products to the
point where half or less of their products on the market were there 5 years
earlier. Their product lines and their architectures, however, are much longer
lived. Even so, these, too, were replaced in due course, the most famous of
which was the replacement of “dumb” instruments with smart ones.

	 9.	 Described by Robert Spinrad in a 1992 lecture to a USC systems architecting
class. Along with Hewlett-Packard, Xerox demonstrates that it is possible to
make major architectural, or strategic, change without completely disman-
tling the organization. But the timing and nature of the change is critical.
Again, a product architecture and the organization that produces it must
match, not only as they are created but as they decline. For either of the two
to be too far ahead or behind the other can be fatal.

	 10.	 Hiltzik, M. A., Dealers of Lightning. New York: Harper Business Books, 1999.

76	 The Art of Systems Architecting

	 11.	 Geis, Norman P., Profiles of Systems Architecting Teams. USC Research Report,
June 1993, extends and summarizes the earlier work of Losk, Pieronek, and
Cureton.

	 12.	 It is beyond the scope of this book to show how to select individuals for
teams, only to mention that widely used tools are available for doing so. For
further information on MBTI and the meaning of its terms, see Briggs Myers,
Isabel, and Mary H. McCaulley, Manual: A Guide to the Development and Use
of the Myers-Briggs Type Indicator. Palo Alto, CA: Consulting Psychologists
Press, 1989.

	 13.	 Benjamin Bauermeister is an entrepreneur and architect in his own software
company. He sees three successive motivations as product development
proceeds: product, profit, and production corresponding roughly to cultural,
bottom line, and bureaucratic as successive organization forms. Harry
Hillaker is the retired architect of the Air Force F-16 fighter and a regular lec-
turer in systems architecting. Archie W. Mills is a middle-level manager at
Rockwell International and the author of an unpublished study of the prac-
tices of several Japanese and American companies over the first decades of
the 20th century in aircraft and electronics systems. Bob Spinrad is a XEROX
executive and former director of XEROX Palo Alto Research Center (PARC).

	 14.	 Rechtin, E., Systems Architecting of Organizations, Why Eagles Can’t Swim. Boca
Raton, FL: CRC Press, 1999.

	 15.	 Rechtin 1991.
	 16.	 In contrast, and for reasons of demonstrated avoidance of conflict of interest,

independent architects rarely suggest the use of undeveloped technology.
Independent architects, interested in solving the client’s purposes, are inher-
ently conservative.

	 17.	 This is not the first time these arguments have happened. See Rechtin, E.,
A Short History of Shuttle Economics, NRC Paper, April, 1983, which dem-
onstrated this case in detail.

77

Case Study 2: Mass and
Lean Production

Introduction
Today, mass production is pervasive. Everything from cars to electron-
ics is made in quantities of hundreds of thousands to millions. From the
perspective of 100 years ago, products of extraordinary complexity are
made in huge numbers. The story of mass production is significantly an
architectural story. It is also a story of the interaction of architectures,
in this case the interaction and synergy between the architectures of
system-products and systems that built those products. The revolution
that took place in production was dependent on changes in how the pro-
duced systems were designed, and design changes had synergistic effects
with production. The characteristics and structures of the surrounding
human systems were also critical to the story, notions that we will take
up in later chapters.

This case study is a high-level survey that emphasizes the sweep
of changes over time instead of details, and the nature of architectural
decision making in mass production. We start by reviewing the history
of mass production, from architecture perspective, focusing on the auto
industry. We cover from the era of auto production as a cottage industry,
through the seminal development of mass production by the Ford Motor
Corporation, to the era of competition from other U.S. manufacturers, and
end of the development with the Toyota Production System (TPS).

An Architectural History of Mass Production
The auto industry is hardly the only example of mass production, but it
is usually considered as prototypical. The innovations in production at
Ford, and later Toyota, substantially define the basic structures of modern
mass production. The Ford system of production became the model for
industry after industry, and the concepts filtered into society at large.
The Toyota Production System is the prototype for Lean Production, now
likewise a fundamental paradigm for organization in multiple industries,
increasingly including service industries.

In the sections following, we cover major blocks of time and consider
how decisions about basic organizing structure of production were syner-
gistic (or antagonistic) with how systems were designed. For convenience,
refer to Figure CS2.1 for the sequencing and relationship of events.

78	 The Art of Systems Architecting

Cottage Industry (1890s to 1910s)
As auto production began in the 1890s, it was a classic cottage industry.
Small groups of workers assembled each vehicle in a shop. The process
involved bringing in a stream of parts (or machining them locally) and
assembling them as a small team in one place. When the vehicle was
complete, it was driven or otherwise moved away.

Automobiles built this way were very expensive. Of course, high
prices and the small market went hand-in-hand. Because the vehicles
were expensive, they were a luxury item with a very narrow customer
base. Because the market was small, economies of scale were impossible
and so prices were high.

Henry Ford was very aware of the problem, and was personally con-
vinced that the way forward was in lower prices and larger production.
He developed a conviction that high-quality automobiles could be, and
should be, produced at cost low enough for average people to afford. The
“car for the masses” would revolutionize society. He clashed repeatedly
with his business partners over this, as they were convinced higher prof-
its could be realized by concentrating on more expensive, high-margin
vehicles. Over the short run, they were almost certainly right. Over the
long run, the situation in automobiles was analogous in some ways to the
situation in commercial aircraft just before the introduction of the DC-3
discussed in “Case Study 1.” The introduction of a new system would
create a qualitative change in the structure of the market (and drive struc-
tural, architectural change in both production and systems).

Birth of Mass Production (1908–1913)
Ford’s dream of a car for the masses was realized with the famous
Model T. The Model T was introduced in 1908, and was eventually pro-
duced in numbers vastly greater than any car previously. For the first

1900 1910 1920 1930 1940 1950 1960 1970 1980

Ford Experiments
with Vehicles

Ford Motor Founded
Model A Produced

Model T Produced

Model T Introduced

Assembly Line
 Introduced

Ford Trimotor

Model Year Competition
Begins
Ford and Chevrolet Trade
Lead

Primary TPS Development Period

Ohno and Team Visit United States

Figure CS2.1  Key events in the architecture of automobile mass production.

Case Study 2: Mass and Lean Production	 79

few years it was produced at the Ford Piquette Avenue plant, Detroit,
Michigan. In the terms of this book, we would say that Henry Ford was
the sponsor of the mass production system,1 whose architecture would
become a decades-long invariant. The architecting was done by a very
small group, with leading credit probably best given to Charles Sorenson,2
although several others played key roles. Sorenson had primary responsi-
bility for the production system, with several others individually having
leadership in other basic elements of the Ford production system architec-
ture. According to Sorenson, the first experiments in the production line
took place at the Piquette Avenue plant in mid-1908 on the Model N, an
immediate predecessor to the Model T.

The Model N had been introduced as an incomplete prototype at the
1906 Detroit auto show. It was not disclosed that the show car was incom-
plete, and so the announced price of $500 was a sensation and generated
terrific demand. The Model N demonstrated the latent demand for a solid,
low-cost car. The Model T, with its superior engineering for production,
was able to exploit that demand.

As Sorenson recounts,3 he and a small team spent Sundays during
the summer of 1908 experimenting on the production floor of the Piquette
Avenue plant. They laid out the parts required for a car from one end of
the long narrow building floor to the other. They mounted a frame on
skids, and then dragged the skid down the floor, stopping along the way
to add the parts that had been preplaced.

As an amusing aside, and as a wonderful indication of how obvious
things go unnoticed when great innovations are made, Sorenson points
out why the assembly line model was not actually used in production
until 5 years later, in 1913. The main problem was that at the Piquette
Avenue plant, the assembly floor was the third floor of the building, the
top floor. In retrospect, this is laughable. Why put the place where you
need to move all the production parts to and from three floors up off the
ground? But in the early 1900s, this did not seem so obvious. When you
make only a few cars, why put that messy operation on the ground floor,
which has the nicer space for the staff (including sales)?

Once the Model T was introduced, and demand immediately exploded
beyond the capacity of the Piquette Avenue plant, Ford built an all new
plant at Highland Park, Michigan, where the assembly line was brought
to fruition in 1913. As we shall see in a later section of this case study, there
is more to the structure of the Ford system than the assembly line, and
those other structural elements play at least as important a role.

Competition from New Quarters (1920s to 1930s)
The Model T and its production system were based on a simple, virtuous
cycle. Lowering costs allowed prices to be lowered, which increased sales

80	 The Art of Systems Architecting

and production, which enabled greater economies of scale, which lowered
costs. Ford’s pursuit of the Model T was driven by an innate belief in the
value of a car for the masses. The vision was eventually overturned by an
alternative vision spawned by market forces.

By the mid 1920s, Chevrolet was rapidly catching up to Ford in produc-
tion numbers. They were catching up primarily by making better-looking,
more-exciting cars, and marketing looks and excitement. Although the
Model T was a very solid car, a new era had begun, based on market
penetration of automobiles being large enough so that people began to
see them as partially fashion-driven goods. When market penetration
for automobiles became high, the purely utilitarian aspect of automobile
ownership began to be replaced by automobiles as status symbols. When
status played an important role, it quickly became the case that status was
no longer conveyed simply by having a car, but by the car one had.

Model T production was shut down in 1927. Over the next decade,
competition between Ford and its competitors (most famously General
Motors, also Plymouth and Chrysler) moved to the model-year change
system. Different models were produced for different market segments,
and those models were regularly changed in external style and engineer-
ing features. The changes were synchronized with marketing campaigns
to drive demand. Economies of scale in mass production were still of great
importance, but the scale was not unlimited. The Model T had tested the
outer envelope of focusing purely on cost reduction through scale, and
was displaced by a more complex mixture of engineering, production,
and marketing.

The Toyota Production System (1940s to 1980s)
The development of the Toyota Production System (TPS)4 can be said to
have revolutionized manufacturing as did Ford’s mass production system.
Although the revolution was slower and less dramatic, it was in some ways
more surprising as it occurred in an industry already apparently mature.
By the 1950s, the automobile business appeared mature. Cars were much
improved, but their architecture had changed little in decades, and the
architecture of production likewise changed little. The revolution of the
TPS has no dramatic moments like the assembly experiments at Piquette
Avenue. The TPS revolution was a revolution by evolution, a case where
incrementally changed, accreted steadily enough and long enough, it
takes on a qualitatively different flavor.

The TPS did not outwardly change the architecture of either cars or
production. Both cars and factories built in accordance with TPS appear
much the same as did cars and factories before. But, the improvements
in quality and cost brought Toyota from a nonentity in the business to a

Case Study 2: Mass and Lean Production	 81

neck-and-neck contender for largest auto manufacturer. This displace-
ment of multiple, dominant, profitable firms is very unusual.

The architecture of the TPS is The Toyota Way (see below). Thus, the
TPS is a sociotechnical system, and its architecture is likewise more social
than technical. The most important elements are the shared principles
and the means of their application.

Metaphor or Vision Changes
At each of the stages, the story is captured by a metaphor or basic vision.
It is hard to know exactly how important the conceptual vision is, but
the testimony of the people directly involved indicates that the coherent
vision, the thing they could aim at, was an inspiration and guide, and
they gave it great weight. Sorenson reports repeatedly that Henry Ford
was devoted to his vision of cars for the masses, and his reluctance to rec-
ognize that it had run out of force caused great difficulty when it finally
became obvious to everybody except Henry Ford that the time of the
Model T was past.

Craftsmen
Early automobiles were craftsmanly products, like bespoke suits. They
were made by individual craftsmen and possessing one was a mark of
status. Being made by individual craftsmen, they carried the marks of
those craftsmen (sometimes good, sometimes bad). Like nearly all crafts-
manly products, these cars were very expensive.

The craftsmanly approach to cars is still not quite dead. A few cars,
naturally very expensive and basically toys for adults, are built by individ-
ual teams of craftsman. The individual attention is a selling point, even
if it objectively probably yields poorer quality than the best cars made in
lean factories.

A Car for the Masses, or If We Build It, It Will Sell
Henry Ford’s most famous quote is probably “The customer can have
any color he wants, as long as it is black.” Black was apparently chosen
mostly because the high-quality black paint of the time was the fastest
drying and thus allowed the production line to operate more efficiently.
The paradigm for Ford operations from the introduction of the Model T
to the mid-1920s was that the only real problem was making more Model
Ts, cheaper. If they could be made, they could be sold or so the belief ran.
This was the virtuous cycle of economies of scale and cost reductions.
For roughly 15 years, this was an effective strategy and reflected the
(temporary) correctness of Henry Ford’s basic vision.

82	 The Art of Systems Architecting

Cars as Fashion
By the mid 1920s, cars were no longer a rarity in the United States. There
were enough reliable cars around that a used car market had begun. As
Chevrolet and others introduced frequent style and model changes, they
brought a fashion sensibility to automobiles. Henry Ford’s simple vision
of cheap transportation for the masses gave way to affordable status and
transportation for the masses, and eventually a whole hierarchy of desire
and status much like other mature product areas.

The Supermarket Metaphor
In Taiichi Ohno’s book on the Toyota Production System, he makes a
striking observation about his inspiration for the TPS.5 He says that when
he toured the United States in 1956 to see the Ford and General Motors
factories, he was more impressed by supermarkets. He adopted a super-
market metaphor for the organization of production. The idea was that the
consumer (who in a production system is also a supplier to a later phase)
can reach into the supermarket and get exactly what he or she needs, and
the act of the consumer taking it “pulls” a replacement onto the shelf. In
contrast to Henry Ford’s paradigm of pushing automobiles out, knowing
they would be sold, the TPS model is to produce and deliver just what is
sold, and refill just what is taken. Ohno writes that the supermarket meta-
phor had been in use since the late 1940s, but his trip to the United States
solidified his commitment to the metaphor.

The Toyota Way
Beyond the supermarket metaphor, Toyota promulgates a larger philoso-
phy known as “The Toyota Way.” The Toyota Way6 could be thought of as a
metaphor or vision in the large, composed as it is of 14 principles that them-
selves are reasonably complex. The Toyota Way defines an overall approach
to doing a production-oriented business in general, and is not restricted to
automobiles. It does not have a distinct end point (as Ford’s vision did);
rather one of the principles is to embrace a sense of urgency for continuous
improvement, regardless of current business conditions. The Toyota Way
is, by design, a more embracing philosophy than single vision.

Elements of the Architecture of the
Ford Production System
The architecture of Ford mass production was not just the assembly line,
or the River Rouge factory (Dearborn, Michigan), or the Model T. The
architecture of the enterprise as a whole, the architecture that brought

Case Study 2: Mass and Lean Production	 83

mass production its power, had three major components: the production
line, distributed production with synergistic system design, and manage-
ment processes.

The Assembly Line
By far the most famous element of the mass production enterprise is the
assembly line. As noted above, the experiments in fixing assembly stations
and moving the vehicle down the factory floor began with the Model N in
the Piquette Avenue plant. The physical constraints of the plant prevented
full implementation until the Highland Park plant was built to produce
the Model T.

The assembly line also led to a variety of other possibilities for effi-
ciencies. Once the basic notion of configuring the flow to optimize material
handling was present, the full power of engineering and statistics could
be brought to bear to further improve the process. Moreover, assembly
production should be (and eventually was) synergistic with design.
Automobiles eventually were designed to be easy to assemble within the
Ford enterprise, and the enterprise adjusted itself to what it was possible
to design.

Enterprise Distribution
The assembly line was just one of the major innovations that enabled mass
production. As production volumes grew larger and larger the problem of
factory scaling began to appear. There are upper limits to the practical size
of a factory. Eventually, the major constraint is transportation. A factory in
the Detroit area (or anywhere else) simply cannot bring arbitrarily large
quantities of raw materials and parts and cannot move out arbitrarily
large quantities of product. Eventually transportation capacity runs out.

So, when it is necessary to build more factories in geographically dis-
tributed locations, how do we divide up the production tasks? The solution
eventually arrived at in automobiles is to divide production along vehicle
subsystem lines. So, engines are made in one location, chassis in another,
bodies in still another, and all are brought together in assembly plants.
The assembly plants can be located relatively close to major markets, and
the others can be distributed based on what areas are favorable to the par-
ticular manufacturing task.

This division on vehicle subsystem lines is, or can be, synergistic
with vehicle design. Design should be synergistic both with the detailed
problem of assembly and the larger problem of how the production enter-
prise is distributed. For example, tight tolerance processes should be inside
subsystems, and the interfaces between them should be less demanding.
The subsystems should be designed in ways that facilitate testing and

84	 The Art of Systems Architecting

quality control at the point of production. Over time, the production pro-
cesses, vehicle designs, and supplier networks coevolved.

Management Processes
The assembly line, distribution of plants, and vehicle subsystems are all
obviously physical structures. But the history also identifies certain man-
agement processes and the synergistic changes they drove as fundamen-
tal structural elements (that is, architectural elements) in the development
of mass production.

Quality Assurance for Distributed Production
Consider how quality assurance and quality control changes when pro-
duction becomes distributed. If all production steps are under the same
roof, when a problem appears, an engineer can simply walk from one
part of the factory to another to understand the source of the problem.
When the engine, frame, and transmission factories are in different parts
of the United States, and the year is 1920, moving among the factories to
straighten out problems was a serious burden.

Part of the success of mass production was the development of new
quality assurance and control techniques to manage these problems.
Similarly, new supplier management techniques were introduced. Many
of the techniques like just-in-time production and negotiated learn-
ing curves that are considered very modern techniques were known to
Ford and his architects. In Ford’s time, the sophistication level was much
lower, and the technology did not allow optimization in the ways that it is
possible today, but the concepts were already known.

Moving to the TPS era, as quality control improved, it eventually
became possible to make architectural-level changes to the assembly pro-
cess. For example, when very high-quality levels are attained, testing and
inspection processes can be greatly reduced and simplified. If the defect
rate is low enough, it is no longer economic to conduct multistep inspec-
tion and testing processes. With an extremely low defect rate, testing and
inspection can be pushed to the final, full system level.

Devotion to Component-Level Simplification
Ford and his architects were devoted to component-level simplification.
They continually looked for ways to simplify the production of individual
components and to simplify major subsystems. A major method was to cast
larger and more complicated iron assemblies. This eventually resulted in
the single piece casting of the V8 engine block used in the most successful

Case Study 2: Mass and Lean Production	 85

Ford immediately prior to World War II. That basic engine block casting
design and technique was used for decades afterward.

The movement to larger and more complex castings is a fine example
of the Simplify heuristic at work. A dictate to “simplify” sounds good, but
how does one actually apply it? The application must be in the architect’s
current context. In the case of Ford and Sorenson, castings that were very
complex to develop were ultimately “simple” because of the simplifica-
tion they brought to the assembly process. Making the castings was only
complex up to the point it was fully understood. Once it was understood,
it could be carried out very consistently and allowed for great simplifica-
tions in downstream assembly.

Social Contract
On the labor relations front, Henry Ford is both famous and infamous.
He is famous for introducing much higher wages, specifically targeting
his wages to allow all of his workers to be able to realistically afford one
of the cars they were building. This was consistent with Ford’s overall
vision of cars for the masses. After all, what masses could he be building
cars for if not the masses that he himself employed? Henry Ford is also
infamous for some of his other labor practices, such as his intrusions into
the private lives of his workers. The architects of the TPS were well aware
of both sides of Ford’s labor relations and believed that the architecture
of the production system must be reconciled with a stable social contract
with the workers.

All systems of productivity improvement must reconcile the improve-
ments that are in the interests of owners with the interests of the workers.
If each improvement simply leads to higher worker production quotas
and job losses, it is hardly likely that workers will be enthusiastic par-
ticipants in the improvement process. In the rapid growth days of Ford,
when wages were doubled over those otherwise prevailing, Ford workers
had obvious reasons for believing their own interests were aligned with
Ford’s. Toyota faced the same difficulty, but under worse circumstances in
the early years as growth was not so spectacular. However, it is probably
notable that the Toyota Production System was extensively developed dur-
ing the 1960s when Japan had an extremely high economic growth rate.

Conclusion
Ford and Toyota are the two classic examples of mass production. Both
have recognizable architectural histories and easily identified architects.
Both created changes that have rippled into fields well beyond their
own. Ford was able to pioneer mass production of systems as complex
as the automobile. The architecture of the Ford production system was

86	 The Art of Systems Architecting

sociotechnical, but with a heavy emphasis on the technical. We can see
directly the technical innovations that made it work and that defined its
essential structures (the assembly line, distributed production, new man-
agement techniques).

The TPS architectural success was smaller in that it did not create a
new industry, but TPS succeeded against a backdrop of established and
strong competitors. The development of the TPS is also an example of
where incremental change, sufficiently accumulated, can eventually
become revolutionary. The architecture of the TPS is much more socio
than technical. In its embodiment in the Toyota Way, it is described essen-
tially as philosophy, albeit an operative philosophy, one directly usable in
practical decision making.

Notes and References
	 1.	 This is also the position taken by Charles Sorenson. Sorenson, C., My

Forty Years with Ford. Detroit, MI: Wayne State University Press, 2006 (first
published in 1956).

	 2.	 The story of Ford here draws very heavily on the perspectives of Sorenson,
given his association with the entire story and his role as, effectively, the
architect of the production system.

	 3.	 Sorenson, C., My Forty Years with Ford. Detroit, MI: Wayne State University
Press, 2006 (first published in 1956), p. 118.

	 4.	 Ohno, T., Toyota Production System: Beyond Large Scale Production. Florence,
KY: Productivity Press, 1968.

	 5.	 Ohno, T., Toyota Production System: Beyond Large Scale Production. Florence,
KY: Productivity Press, 1968, p. 26.

	 6.	 See, for example, Liker, J., The Toyota Way: 14 Management Principles from the
World’s Greatest Manufacturer. New York: McGraw-Hill Professional, 2004.

87

4chapter

Manufacturing Systems

Introduction: The Manufacturing Domain
Although manufacturing is often treated as if it were but one step in the
development of a product, it is also a major system in itself. It has its own
architecture.1 It has a system function that its elements cannot perform by
themselves — making other things with machines. And it has an acquisi-
tion waterfall for its construction quite comparable to those of its products.
Moreover, the architecture of the manufacturing system and the architecture
of the system of interest must relate to each other. More broadly, both exist
within the structure of the development program, which should be chosen
consciously and deliberately to yield the desired properties for the client.

From an architectural point of view, manufacturing has long been a
quiet field. Such changes as were required were largely a matter of contin-
ual, measurable, incremental improvement — a step at a time on a stable
architectural base. Though companies came and went, it took decades
to see a major change in its members. The percentage of sales devoted
to research and advanced development for manufacturing, per se, was
small. The need was to make the classical manufacturing architecture
more effective — that is, to evolve and engineer it.

Beginning two decades or so ago, the world that manufacturing had
supported for almost a century changed — and at a global scale. Driven
by political change in China and other countries, and by new technologies
in global communications, transportation, sources, markets, and finance,
global manufacturing became practical and then, shortly thereafter,
dominant. It quickly became clear that qualitative changes were required
in manufacturing architectures if global competition were to be met. In
the order of conception, the architectural innovations were ultraquality,2
dynamic manufacturing,3 lean production,4 and “flexible manufacturing.”*
The results to date, demonstrated first by the Japanese and now spread-
ing globally, have been greatly increased profits and market share, and
sharply decreased inventory and time-to-market. Each of these innova-
tions will be presented in turn.

Even so, rapid change is still underway. As seen on the manufacturing
floor, manufacturing research as such has yet to have a widespread effect.

*	 Producing different products on demand on the same manufacturing line.

88	 The Art of Systems Architecting

Real-time software is still a work-in-progress. Trend instrumentation,
self-diagnosis, and self-correction, particularly for ultraquality systems,
are far from commonplace. So far, the most sensitive tool for ultraquality
is the failure of the product being manufactured.

Manufacturing in Context
Before discussing architectural innovations in manufacturing, we need to
place manufacturing in context. At some point, a system needs to be built
or it is of little interest. The building is “manufacturing.” But, there are
several distinct scenarios we should consider.

Full Development Followed by Serial Production

This applies to and is common in situations where we build tens to millions
of copies of a system after producing one or more complete prototypes.
The prototypes, which may themselves be the end of a series of interme-
diate prototypes, are essentially identical to the system to be manufac-
tured. The testing conducted on the prototypes is commonly referred to
as “qualification” testing and is to show that the system to be built is fully
suitable (in function, environmental suitability, and all other respects) for
end use. It shows that the system to be manufactured meets the purposes
of the client in operational use. Because the prototypes are not themselves
to be delivered to customer use, they can be tested very strongly, indeed
destructively if desired and warranted.

There are several strategies by which we work up a series of pro-
totypes to result in the representative manufactured system. The most
common is usually referred to as breadboard-to-brassboard. In this strat-
egy, each prototype contains the full functionality intended for the final
system but is not packaged in an operationally representative way. The
first development cycle, the breadboard, may exist just as open units in
a lab interconnected and discrete subsystems tested individually. A sub-
sequent phase may be packaged into a surrogate platform not yet light or
strong enough for final use. The development sequence culminates in the
manufacturing of representative prototypes.

Incremental Development and Release

A contrasting strategy is to develop a series of prototypes where each
is fully operationally suitable but contains less than the desired level of
functionality. This is common in software-intensive systems. In software
systems, the cost of manufacturing and delivery is quite low, nearly zero
when software is electronically delivered. Thus, the cost impediment of

Chapter 4:  Manufacturing Systems	 89

frequent re-release does not exist as in systems where most of the value is
in hardware.

An incremental development and release strategy facilitates an evo-
lutionary approach to client desires. Instead of needing to get everything
right at the beginning, the developer can experiment with suppositions
as to what the client really wants. The client’s learning process using the
system can be fed back into subsequent releases. A major issue in a fre-
quent release strategy is that test and certification costs are re-incurred
each time a release cycle is completed. If the release cycles are frequent
(best for learning feedback), the cost of test and certification will rise
quickly. The process can be cost efficient only when the costs of test and
certification can be driven down, usually by automation. In some sense,
the process of testing and certification for release takes the place of serial
production in the example of the serial production strategy above.

“Protoflight” Development and Manufacturing

In this strategy, which is common in one-of-a-kind items like spacecraft,
the developmental unit is also the delivered manufactured unit. That is,
rather than delivering a completed prototype to be manufactured, we
deliver the completed prototype to be used (launched, in the case of a
satellite). The primary advantage for the protoflight approach is cost.
Obviously, when only a singular item needs to be delivered, the cost of
manufacturing it is minimized by making only one.

The protoflight test quandary is a mirror image of the test quandary
in the serial production case. In serial production we can freely test the
prototypes as thoroughly as we like, including destructively. But, we must
be concerned about whether or not the prototype units fully represent
the manufactured units. Usually, if the production run is large enough,
we will take units off of the serial production line and test them as thor-
oughly as the prototypes were tested. In the protoflight case, we know
that the prototype and the delivered system are identical (because they
are the same unit), but we risk damaging the system during test. Tests can
change the state of the system, perhaps invisibly, and test processes are
always vulnerable to accidents. We cannot test in certain ways because
we cannot afford test-induced damage to the flight system. We must also
continuously trade the risk of not revealing a defect because of lack of test-
ing with the risk of creating defects through testing. The satellite business
in particular is full of stories of protoflight systems that were damaged
through accidents in testing (for example, over-limit vibration testing, a
weather satellite tipped off of its test stand).

In each of these cases, there is a relationship between the system
architecture, the architecture of the program that builds the system, the
test strategy, and the architecture of any systems used for testing. When

90	 The Art of Systems Architecting

we choose an overall program architecture, we induce constraints on how
we can test the resulting system. The architecture of the system-of-interest
will determine the sorts of test approaches that can be supported. That
likewise affects what sorts of systems we can build for conducting tests.
Each of these issues cannot be considered and resolved in isolation. In
mature situations there may be widely accepted solutions and established
architecture breakdowns. In immature situations there may be great
leverage in innovative breakdowns.

Example: DARPA Grand Challenge — The U.S.
Defense Advanced Research Projects Agency spon-
sored a Grand Challenge5 race between autonomous
ground vehicles. The competing teams all used the
protoflight approach; they built, tested, and raced a
single vehicle. Because the single vehicle had to be
used for testing as well as racing, there were funda-
mental architectural choices that arbitrated between
these needs. As examples, if more time was devoted
to building a mechanically more complex vehicle,
the amount of time available to use the vehicle in
software testing would be reduced. Was superior
mechanical performance worth less software testing
time? Any test instrumentation needed to be built
into the vehicle so it could be used in field experi-
ments. But, that same test instrumentation would
need to be carried in the race, or removed at the last
minute (generating its own risks). Where should
the trade-off in enhanced testing versus less system
burden lie? A vehicle optimized for autonomous
operation would not be drivable by a human, but a
vehicle that can be alternately human or computer
driven leads to much simpler field test operations.
Is the loss of performance with retaining human
drivability worth the lessened burden in field test
operations? As a matter of historical record, dif-
ferent teams participating in the Grand Challenge
events took distinctly different approaches along
this spectrum, but the most successful teams took
relatively similar approaches (simple, production-
vehicle-based mechanical system available very
early in the development cycle; extensive test instru-
mentation; and human drivability retained).

Chapter 4:  Manufacturing Systems	 91

Architectural Innovations in Manufacturing
Ultraquality Systems

At the risk of oversimplification, a common perception of quality is that
quality costs money — that is, quality is a trade-off against cost and profit.
Not coincidentally, there is an accounting category called “cost of quality.”
A telling illustration of this perception is the “DeSoto Story.” As the story
goes, a young engineer at a DeSoto automobile manufacturing plant went
to his boss with a bright idea on how to make the DeSoto a more reli-
able automobile. The boss’s reply: “Forget it, kid. If it were more reliable it
would last more years and we would sell fewer of them. It’s called planned
obsolescence.” DeSoto no longer is in business, but the perception remains
in the minds of many manufacturers of many products.

The difficulty with this perception is partly traceable to the two dif-
ferent aspects of quality. The first is quality associated with features like
leather seats and air conditioning. Yes, those features cost money, but the
buyer perceives them as value added and the seller almost always makes
money on them. The other aspect of quality is absence of defects. As it
has now been shown, absence of defects also makes money, and for both
seller and buyer, through reductions in inventory, warranty costs, repairs,
documentation, testing, and time to market — provided that the level of
product quality is high enough* and the whole development and produc-
tion process is architected at that high level.

To understand why absence of defects makes money, imagine a fault-
less process that produces a product with defects so rare that it is imprac-
tical to measure them; that is, none are anticipated within the lifetime of
the product. Testing can be reduced to the minimum required to certify
system-level performance of the first unit. Delays and their costs can
be limited to those encountered during development; if and when later
defects occur, they can be promptly diagnosed and permanently elimi-
nated. “Spares” inventory, detailed parts histories, and statistical quality
control can be almost nonexistent. First-pass manufacturing yield can be
almost 100% instead of today’s highly disruptive 20% to 70%. Service in
the field is little more than replacing failed units, free.

The only practical measurement of ultraquality would then be an end
system-level test of the product. Attempting to measure defects at any
subsystem level would be a waste of time and money — defects would
have to be too rare to determine with high confidence. Redundancy and
fault-tolerant designs would be unnecessary. Indeed, they would be
impractical because, without an expectation of a specific failure (which
then should be fixed), protection against rare and unspecified defects is

*	 Roughly less than 1%/year rate of failure at the system level regardless of system size. The
failure rate for subsystems or elements clearly must be much less.

92	 The Art of Systems Architecting

not cost effective. Thus, the level of quality achieved could affect the most
appropriate architecture of the manufacturing system.

To some readers, this ultraquality level may appear to be hopelessly
unrealistic. Suffice it to say that it has been approached for all practical
purposes. For decades, no properly built unmanned satellite or spacecraft
failed because of a defect known before launch (any defect would have
been fixed beforehand). Microprocessors with millions of active elements,
sold in the millions, now outlast the computers for which they were built.
Like the satellites, they become technically and financially obsolete long
before they fail. Television sets are produced with a production line yield
of over 99%, far better than the 50% yield of a decade ago, with a major
improvement in cost, productivity, and profit.

As a further example, the readers should note that consumer elec-
tronic products today are commonly unrepairable, and if defective within
a warranty period are simply replaced. This approach carries multiple
benefits. If a system does not need to be repaired, the supplier need not
maintain a repair and supply network, and can sweep away all the costs
associated with one. If repairs are not necessary, the unit can be designed
without repair access or diagnostics, which commonly saves space and
money, and allows the use of manufacturing techniques (such as sealing)
that themselves improve reliability.

Today’s challenge, then, is to achieve and maintain such ultraquality
levels even as systems become more complex. Techniques have been
developed that certainly help.* More recently, two more techniques have
been demonstrated that are particularly applicable to manufacturing.

The first is: Everyone in the production line is both a customer and a supplier,
a customer for the preceding worker and a supplier for the next. Its effect
is to place quality assurance where it is most needed, at the source.

The second is: The Five Why’s, a diagnostic procedure for finding the
basic cause of a defect or discrepancy. Why did this occur? Then why did
that, in turn, occur? Then, why that? and so on until the offending causes
are discovered and eliminated.

To these techniques can be added a relatively new understanding:
Some of the worst failures are system failures — that is, they come from the
interaction of subsystem deficiencies which of themselves do not produce
an end system failure, but together can and do. Four catastrophic civil

*	 Rechtin 1991, Chapter 8, pp. 160–187. One technique mentioned there — fault tolerance
through redundancy — has proved to be less desirable than proponents had hoped.
Because fault-tolerant designs “hide” single faults by working around them, they accumu-
late until an overall system failure occurs. Diagnostics then become very much more dif-
ficult. Symptoms are intertwined. Certification of complete repair cannot be guaranteed
because successful-but-partial operation again hides undetected (tolerated) faults. The
problem is most evident in servicing modern, microprocessor-rich, automobile controls.
The heuristic still holds, Fault avoidance is preferable to fault tolerance in system design.

Chapter 4:  Manufacturing Systems	 93

space system failures were of this kind: Apollo 1, Apollo 13, Challenger,
and the Hubble Telescope. For Tom Clancy buffs, just such a failure almost
caused World War III in his Debt of Honor. In all these cases, had any one
of the deficiencies not occurred, the near-catastrophic end result could not
have occurred. That is, though each deficiency was necessary, none were
sufficient for end failure. As an admonition to future failure review boards,
until a diagnosis is made that indicates that the set of presumed causes is
both necessary and sufficient — and that no other such set exists — the
discovery-and-fix process is incomplete and ultraquality is not assured.

Successful ultraquality has indeed been achieved, but there is a price
that must be paid. Should ultraquality not be produced at any point in
the whole production process, the process may collapse. Therefore, when
something does go wrong, it must be fixed immediately; there are no
cushions of inventory, built-in holds, full-time expertise, or planned work-
arounds. Because strikes and boycotts can have instantaneous effects,
employee, customer, and management understanding and satisfaction
are essential. Pride in work and dedication to a common cause can be of
special advantage, as has been seen in the accomplishments of the zero
defect programs of World War II, the American Apollo lunar landing
program, and the Japanese drive to world-class products.

In a sense, ultraquality-built systems are fine-tuned to near-perfection
with all the risks thereof. Just how much of a cushion or insurance policy
is needed for a particular system is an important value judgment that the
architect must obtain from the client, the earlier the better. That judgment
has strong consequences in the architecture of the manufacturing system.
Clearly, then, ultraquality architectures are very different from the statis-
tical quality assurance architectures of only a few years ago.*

Most important for what follows, it is unlikely that either lean produc-
tion or flexible manufacturing can be made competitive at much less than
ultraquality levels.

Dynamic Manufacturing Systems
The second architectural change in manufacturing systems is from com-
paratively static configurations to dynamic, virtually real-time, ones. Two
basic architectural concepts now become much more important. The first
concerns intersecting waterfalls, and the second, feedback systems.

*	 One of the authors, a veteran of the space business, visited two different manufacturing
plants and correctly predicted the plant yields (acceptance versus start rates) by simply
looking at the floors and at the titles (not content) and locations of a few performance
charts on the walls. In the ultraquality case, the floors were painted white; the charts fea-
tured days-since-last-defect instead of running average defect rates; and the charts were
placed at the exits of each work area. Details, but indicative.

94	 The Art of Systems Architecting

Intersecting Waterfalls

The development of a manufacturing system can be represented as a sep-
arate waterfall, distinct from, and intersecting with, that of the product
it makes. Figure 4.1 depicts the two waterfalls, the process (manufactur-
ing) diagonally and the product vertically, intersecting at the time and
point of production. The manufacturing one is typically longer in time,
often decades, and contains more steps than the relatively shorter product
sequence (months to years) and may end quite differently (the plant is
shutdown and demolished). Sketching the product development and the
manufacturing process as two intersecting waterfalls helps emphasize
the fact that manufacturing has its own steps, time scales, needs, and
priorities distinct from those of the product waterfall. It also implies the
problems its systems architect will face in maintaining system integrity,
in committing well ahead to manufacture products not yet designed, and
in adjusting to comparatively abrupt changes in product mix and type.
A notably serious problem is managing the introduction of new technolo-
gies, safely and profitably, into an inherently high-inertia operation.

There are other differences. Manufacturing certification must begin
well before product certification or the former will preclude the latter; in
any case, the two must interact. The product equivalent of plant demoli-
tion, not shown in the figure, is recycling, both now matters of national

Process Waterfall

Enterprise Need
and Resources

Product Waterfall
Modeling

Engineering Client Need and Resources

Pilot Plant Conception and Model Building

Build Interface Description

Engineering Certify

Production

Certification

Operation and Diagnosis Reconfiguration

Maintenance

Evaluation and Adaptation Adaptation

Shutdown

Figure 4.1  The intersecting process and product waterfalls.

Chapter 4:  Manufacturing Systems	 95

law in Europe. Like certification, demolition is important to plan early,
given its collateral human costs in the manufacturing sector. The effects
of environmental regulations, labor contracts, redistribution of usable
resources, retraining, right-sizing of management, and continuing support
of the customers are only a few of the manufacturing issues to be resolved
— and well before the profits are exhausted.

Theoretically if not explicitly, these intersecting waterfalls have existed
since the beginning of mass production. But not until recently have they
been perceived as having equal status, particularly in the United States.
Belatedly, that perception is changing, driven in large part by the establish-
ment of global manufacturing — clearly not the same system as a wholly
owned shop in one’s own backyard. The change is magnified by the wide-
spread use of sophisticated software in manufacturing, a boon in manag-
ing inventory but a costly burden in reactive process control.6 Predictably,
software for manufacturing process and control, more than any element of
manufacturing, will determine the practicality of flexible manufacturing.
As a point in proof, Hayes, Wheelright, and Clark7 point out that a change
in the architecture of [even] a mass production plant, particularly in the
software for process control, can make dramatic changes in the capabili-
ties of the plant without changing either the machinery or layout.

The development of manufacturing system software adds yet another
production track. The natural development process for software gener-
ally follows a spiral,* certainly not a conventional waterfall, cycling over
and over through functions, form, code (building), and test. The software
spiral shown in Figure 4.2 is typical. It is partially shaded to indicate that
one cycle has been completed with at least one more to go before final test
and use. One reason for such a departure from the conventional water-
fall is that software, as such, requires almost no manufacturing, making
the waterfall model of little use as a descriptor.† The new challenge is to
synchronize the stepped waterfalls and the repeating spiral processes of
software-intensive systems. One of the most efficient techniques is through
the use of stable intermediate forms,8 combining software and hardware
into partial but working precursors to the final system. Their important
feature is that they are stable configurations; that is, they are reproducible,
well-documented, progressively refined baselines — in other words, they
are identifiable architectural waypoints and must be treated as such. They

*	 See also Chapter 2.
†	Efforts to represent the manufacturing and product processes as spirals have been com-

parably unsuccessful. Given the need to order long-lead-time items, to “cut metal” at some
point, and to write off the cost of multiple rapid prototypes, the waterfall is the depiction
of choice.

96	 The Art of Systems Architecting

can also act as operationally useful configurations,* built-in “holds” allow-
ing lagging elements to catch up, or parts of strategies for risk reduction as
suggested in Chapter 3.

The Spiral-to-Circle Model

Visualizing the synchronization technique for the intersecting waterfalls
and spirals of Figure 4.2 can be made simpler by modifying the spiral
so that it remains from time to time in stable concentric circles on the
four-quadrant process diagram. Figure 4.3 shows a typical develop-
ment from a starting point in the function quadrant cycling through all
quadrants three times — typical of the conceptualization phase — to
the first intermediate form. There the development may stay for a while,
changing only slightly, until new functions call for the second form, say
an operational prototype. In Air Force procurement, that might be a
“fly-before-buy” form. In space systems, it might be a budget-constrained
“operational prototype” that is actually flown. In one program, it turned

*	 Many Commanders of the Air Force Space and Missiles Division have insisted that all
prototypes and interim configurations have at least some operational utility, if only to
help increase the acceptance in the field once the final configuration is delivered. In prac-
tice, field tests of interim configurations almost always clarify if not reorder prior value
judgments of what is most important to the end user in what the system can offer.

Process Waterfall

Enterprise Need
Resources

Product Waterfall
Modeling Software Spiral

Engineering Client Need and Resources
Functions Form

Pilot Plant Conception and Model Building
Form Build Interface Description

Engineering Certify

Test Code
Production

Maintenance Certification

Operation and Diagnosis Reconfiguration

Evaluation and Adaptation Adaptation
Shutdown

Figure 4.2  Product, process, and software system tracks.

Chapter 4:  Manufacturing Systems	 97

out to be the only system flown. But, to continue, the final form is gained,
in this illustration, by way of a complete, four-quadrant cycle.

The spiral-to-circle model can show other histories, for example, a
failure to spiral to the next form, with a retreat to the preceding one, pos-
sibly with less ambitious goals, or a transition to a still greater circle in a
continuing evolution, or an abandonment of these particular forms with
a restart near the origin.

Synchronization can also be helped by recognizing that cycling
also goes on in the multistep waterfall model, except that it is depicted
as feedback from one phase to one or more preceding ones. It would be
quite equivalent to software quadrant spiraling if all waterfall feedback
returned to the beginning of the waterfall — that is, to the system’s initial
purposes and functions, and from there down the waterfall again. If truly
major changes are called for, the impact can be costly, of course, in the
short run. The impact in the long run might be cost effective, but few
hardware managers are willing to invest.

The circle-to-spiral model for software-intensive systems in effect
contains both the expanding-function concept of software and the step

FUNCTION
Final Form

FORM

Intermediate Form 2

Intermediate Form l

Start

CERTIFY BUILD

Figure 4.3  The spiral-to-circle model.

98	 The Art of Systems Architecting

wise character of the waterfall. It also helps understand what and when
hardware and software functions are needed in order to satisfy require-
ments by the other part of the system. For example, a stable intermediate
software form of software should arrive when a stable, working form of
hardware arrives that needs that software, and vice versa.

It is important to recognize that this model, with its cross-project syn-
chronizations requirement, is notably different from models of procure-
ments in which hardware and software developments can be relatively
independent of each other. In the spiral-to-circle model, the intermediate
forms, both software and hardware, must be relatively unchanging and
bug-free. A software routine that never quite settles down or that depends
upon the user to find its flaws is a threat, not a help, in software-intensive
systems procurement. A hardware element that is intended to be replaced
with a “better and faster” one later is hardly better. Too many subsequent
decisions may unknowingly rest on what may turn out to be anomalous
or misunderstood behavior of such elements in system test.

To close this section, although this model may be relatively new, the
process that it describes is not. Stable intermediate forms, blocks (I, II, and
so forth), or “test articles” as they are called, are built into many system
contracts and perform as intended. Yet there remains a serious gap
between most hardware and software developers in their understanding
of each other and their joint venture. As the expression goes, “These guys
just don’t talk to each other.” The modified spiral model should help both
partners bridge that gap, to accept the reasons both for cycling and for
steps, and to recognize that neither acquisition process can succeed with-
out the success of the other.

There should be no illusion that the new challenge will be easy to
meet. Intermediate software forms will have to enable hardware phases
at specified milestones — not just satisfy separate software engineering
needs. The forms must be stable, capable of holding at that point indefi-
nitely, and practical as a stopping point in the acquisition process if neces-
sary. Intermediate hardware architectures must have sufficient flexibility
to accommodate changes in the software — as well as in the hardware.
And finally, the architects and managers will have a continuing challenge
in resynchronizing the several processes so that they neither fall behind
nor get too far ahead. Well-architected intermediate stable forms and
milestones will be essential.

Concurrent Engineering

To return to Figure 4.2, this intersecting waterfall model also helps identify
the source of some of the inherent problems in concurrent (simultaneous,
parallel) engineering — in which product designers and manufactur-
ing engineers work together to create a well-built product. Concurrent

Chapter 4:  Manufacturing Systems	 99

engineering in practice, however, has proven to be more than modifying
designs for manufacturability. However defined, it is confronted with a
fundamental problem, evident from Figure 4.2 — namely, coordinating
the two intersecting waterfalls and the spirals, each with different time
scales, priorities, hardware, software, and profit-and-loss criteria. Because
each track is relatively independent of the others, the incentives for each
are to optimize locally even if doing so results in an impact on another
track or on the end product. After all, it is a human and organizational
objective to solve one’s own problems, to have authority reasonably com-
mensurate with responsibilities, and to be successful in one’s own right.
Unfortunately, this objective forces even minor technical disagreements
to higher, enterprise management where other considerations than just
system performance come into play.

A typical example: A communications spacecraft
design was proceeding concurrently in engineering
and manufacturing until the question came up of
the spacecraft antenna size. The communications
engineering department believed that a 14-foot
diameter was needed; the manufacturing depart-
ment insisted that 10 feet was the practical limit.
The difference in system performance was a factor
of two in communications capability and revenue.
The reason for the limit, it turned out, was that the
manufacturing department had a first-rate subcon-
tractor with all the equipment needed to build an
excellent antenna, but no larger than 10 feet. To go
larger would cause a measurable manufacturing
cost overrun. The manufacturing manager was
adamant about staying within his budget, having
taken severe criticism for an overrun in the pre-
vious project. In any case, the added communica-
tions revenue gain was far larger than the cost of
re-equipping the subcontractor. Lacking a systems
architect, the departments had little choice but to
escalate the argument to a higher level where the
larger antenna was eventually chosen and the manu-
facturing budget increased slightly. The design pro-
ceeded normally until software engineers wanted
to add more memory well after manufacturing had
invested heavily in the original computer hardware
design. The argument escalated, valuable time was
lost, department prerogatives were again at stake,
and so it went.

100	 The Art of Systems Architecting

The example is not uncommon. A useful management improvement
would have been to set up a trusted, architect-led team to keep balancing
the system as a whole within broad top management guidelines of cost,
performance, risk, and schedule.

If so established, the architectural team’s membership should include
a corporate-level (or “enterprise”) architect, the product architect, the
manufacturing architect, and a few specialists in system-critical elements,
and no more.9 Such a structure does exist implicitly in some major compa-
nies, though seldom with the formal charter, role, and responsibilities of
systems architecting.

Feedback Systems

Manufacturers have long used feedback to better respond to change.
Feedback from the customer has been, and is, used directly to maintain
manufacturing quality and indirectly to accommodate changes in design.
Comparably important are paths from sales to manufacturing and from
manufacturing to engineering.

The presence or absence of feedback paths, and their time constants, is
something that can be deliberately controlled through the architecture of
the program and organization that envelop a system of interest. Consider
space exploration systems. An exploration organization can choose to
pursue large, multimission systems that take a long time, or many more
smaller, more rapidly turned over programs. Because the payload fraction
of a spacecraft is generally higher as the spacecraft gets bigger, larger,
multimission spacecraft are generally more cost efficient. But, because
they take much longer, the time constant on which the things learned
on one mission can be fed back into the next is longer. The organization
has fewer opportunities to incorporate their learning into future mission
design. In a very mature mission area where needs change slowly, this
might be a fair trade-off. In an immature mission area where each new
payload reveals new questions and new preferences, a faster feedback
loop yields dramatically different characteristics. Moreover, the pace of
feedback affects the people in the organization. They, likewise, learn (and
are held accountable) primarily when each full mission feedback loop
closes. An organization with a fast feedback loop (but not too fast) is a
rapidly learning organization.

What is new in manufacturing is that the pace has changed. Multiyear
is now yearly, yearly is now monthly, monthly is now daily, and daily —
especially for ultraquality systems — has become hourly if not sooner.
What was a temporary slowdown is now a serious delay. What used to
affect only adjacent sectors can now affect the whole. What used to be the
province of planners is now a matter of real-time operations.

Chapter 4:  Manufacturing Systems	 101

Consequently, accustomed delays in making design changes, cor-
recting supply problems, responding to customer complaints, introduc-
ing new products, reacting to competitors’ actions, and the like were no
longer acceptable. The partner to ultraquality in achieving global competi-
tiveness was to counter the delays by anticipating them, in other words,
using anticipatory feedback in as close to real time as practical. The most
dramatic industrial example to date has been in lean production,10 in
which feedback to suppliers, coupled with ultraquality techniques, cut
the costs of inventory in half and resulted in across-the-board competitive
advantage in virtually all business parameters. More recently, criteria for
certification, or those of its predecessor, quality assurance, are routinely
fed back to conceptual design and engineering — one more recognition
that quality must be designed in, not tested in.

A key factor in the design of any real-time feedback system is loop
delay, the time it takes for a change to affect the system “loop” as a
whole. In a feedback system, delay is countered by anticipation based on
anticipated events (like a failure) or on a trend derived from the integra-
tion of past information. The design of the anticipation, or “correction,”
mechanism, usually the feedback paths, is crucial. The system as a whole
can go sluggish on the one hand or oscillatory on the other. Symptoms are
inventory chaos, unscheduled overtime, share price volatility, exasperated
sales forces, frustrated suppliers, and, worst of all, departing long-time
customers. Design questions are as follows: What is measured? How is it
processed? Where is it sent? And, of course, to what purpose?

Properly designed feedback control systems determine transient
and steady-state performance, reduce delays and resonances, alleviate
nonlinearities in the production process, help control product quality,
and minimize inventory. By way of explanation, in nonlinear systems,
two otherwise independent input changes interact with each other to
produce effects different from the sum of the effects of each separately.
Understandably, the end results can be confusing if not catastrophic. An
example is a negotiated reduction in wages followed immediately by an
increase in executive wages. The combination results in a strike; either
alone would not.

A second key parameter, the resonance time constant, is a measure of
the frequency at which the system or several of its elements tries to oscil-
late or cycle. Resonances are created in almost every feedback system. The
more feedback paths there are, the more resonances. The business cycle,
related to inventory cycling, is one such resonance. Resonances, internal
and external, can interact to the point of violent, nonlinear oscillation
and destruction, particularly if they have the same or related resonant
frequencies. Consequently, a warning: Avoid creating the same resonance
time constant in more than one location in a [production] system.

102	 The Art of Systems Architecting

Delay and resonance times, separately and together, are subject to
design. In manufacturing systems, the factors that determine these param-
eters include inventory size, inventory replacement capacity, information
acquisition and processing times, fabrication times, supplier capacity, and
management response times. All can have a strong individual and collec-
tive influence on such overall system time responses as time to market,
material and information flow rates, inventory replacement rate, model
change rate, and employee turnover rate. Few, if any, of these factors can
be chosen or designed independently of the rest, especially in complex
feedback systems.

Fortunately, there are powerful tools for feedback system design.
They include linear transform theory, transient analysis, discrete
event mathematics, fuzzy thinking, and some selected nonlinear and
time-variant design methods. The properties of at least simple linear
systems designed by these techniques can be simulated and adjusted
easily. A certain intuition can be developed based upon long experience
with them. For example,

Behavior with feedback can be very different from behavior without it.•	
		 Positive example: Provide inventory managers with timely sales

information and drastically reduce inventory costs. Negative example:
Ignore customer feedback and drown in unused inventory.
Feedback works. However, the design of the feedback path is critical. Indeed, •	
in the case of strong feedback, its design can be more important than that of
the forward path.

		 Positive example: Customer feedback needs to be supplemented by
anticipatory projections of economic trends and of competitor’s responses
to one’s own strategies and actions to avoid delays and surprises.

		 Negative examples: If feedback signals are “out of step” or of the
wrong polarity, the system will oscillate, if not go completely out
of control. Response that is too little, too late is often worse than no
response at all.
Strong feedback can compensate for many known vagaries, even nonlinearities •	
in the forward path, but it does so “at the margin.”

		 Example: Production lines can be very precisely controlled around
their operating points; that is, once a desired operating point is
reached, tight control will maintain it, but off that point or on the
way to or from it (e.g., start up, synchronization,11 and shut down),
off-optimum behavior is likely. Example: Just-in-time response works
well for steady flow and constant volume. It can oscillate if flow is
intermittent and volume is small.
Feedback systems will inherently resist unplanned or unanticipated change, •	
whether internal or external.

Chapter 4:  Manufacturing Systems	 103

		 Satisfactory responses to anticipated changes, however, can usu-
ally be assured. In any case, the response will last at least one time constant
(cycle time) of the system. These properties provide stability against
disruption. On the other hand, abrupt mandates, however necessary,
will be resisted and the end results may be considerably different in
magnitude and timing from what advocates of the change antici-
pated. Example: Social systems, incentive programs, and political
systems notoriously “readjust” to their own advantage when change
is mandated. The resultant system behavior is usually less than, later
than, and modified from, that anticipated.
To make a major change in performance of a presently stable system is likely •	
to require a number of changes in the overall system design.

		 Examples: The change from mass production to lean production to
flexible production12 and the use of robots and high technology.

Not all systems are linear, however. As a warning against over
dependence on linear-derived intuition, typical characteristics of nonlinear
systems are as follows:

In general, no two systems of different nonlinearity behave in exactly the •	
same way.
Introducing changes into a nonlinear system will produce different (and •	
probably unexpected) results if they are introduced separately than if they
are introduced together.
Introducing even very small changes in input magnitude can produce very differ-•	
ent consequences even though all components and processes are deterministic.

		 Example: Chaotic behavior (noiselike but with underlying struc-
ture) close to system limits is such a phenomenon. Example: When the
phone system is saturated with calls and goes chaotic, the planned
strategy is to cut off all calls to a particular sector (e.g., California
after an earthquake) or revert back to the simplest mode possible
(first come, first serve). Sophisticated routing is simply abandoned
— it is part of the problem. Example: When a computer abruptly
becomes erratic as it runs out of memory, the simplest and usually
successful technique is to turn it off and start it up again (reboot),
hoping that not too much material has been lost.
Noise and extraneous signals irreversibly intermix with and alter normal, •	
intended ones, generally with deleterious results.

		 Example: Modification of feedback and control signals is equiva-
lent to modifying system behavior — that is, changing its transient
and steady-state behavior. Nonlinear systems are therefore particu-
larly vulnerable to purposeful opposition (jamming, disinformation,
overloading).

104	 The Art of Systems Architecting

Creating nonlinear systems is of higher risk than creating well-understood, •	
linear ones.

		 The risk is less that the nonlinear systems will fail under carefully
framed conditions than that they will behave strangely otherwise.
Example: In the ultraquality spacecraft business, there is an heuristic:
If you cannot analyze it, do not build it — an admonition against unnec-
essarily nonlinear feedback systems.

The two most common approaches to nonlinearity are, first, when
nonlinearities are both unavoidable and undesirable, minimize their effect
on end-system behavior through feedback and tight control of operating
parameters over a limited operating region. Second, when nonlinearity
can improve performance as in discrete and fuzzy control systems, be
sure to model and simulate performance outside the normal operating
range to avoid “nonintuitive” behavior.

The architectural and analytic difficulties faced by modern manufac-
turing feedback systems are that they are neither simple nor necessarily
linear. They are unavoidably complex, probably contain some nonlineari-
ties (limiters and fixed time delays), are multiply interconnected, and are
subject to sometimes drastic external disturbances, not the least of which
are sudden design changes and shifts in public perception. Their architec-
tures must therefore be robust and yet flexible. Though inherently com-
plex, they must be simple enough to understand and modify at the system
level without too many unexpected consequences. In short, they are likely
to be prime candidates for the heuristic and modeling techniques of
systems architecting.

Feedback can be thought of at levels beyond the individual system
and the manufacturing enterprise in normal operation. At the strategic
level, we configure our enterprises with some level of feedback based on
achieving, or failing to achieve success. Some measures of success are tied
into enterprise-level feedback behavior.

Consider the strategic problem of an enterprise with a scientific
research purpose that conducts missions of varying duration, from a
few years to a decade.* There is a feedback loop, at both a scientific and
enterprise-programmatic level, from mission to mission. The scientific
discoveries on one mission will affect the scientific questions posed on
the next mission. When unexpected things are found on one mission, like
clear evidence of water on Mars, it deeply affects the enterprise’s prefer-
ence for what to look for on subsequent missions. Likewise, the success or

*	 The example is meant to apply, conceptually, to many different public and private
research enterprises that can make trade-offs between the duration and complexities of
their missions.

Chapter 4:  Manufacturing Systems	 105

failure of various systems on a mission will affect their potential use on
subsequent missions.

The duration of a mission is, in effect, a feedback time constant.
The shorter that time constant, the more rapidly scientific discoveries
and mission results are fed back into future missions. If the major goal
of the enterprise is to produce unexpected scientific discoveries, then a
shorter time constant may be an effective trade-off for less single mission
cost-effectiveness. Reprising the maligned slogan “Faster, Better, Cheaper,”
it could be that faster is better at the enterprise level, even if it is not better
at a single mission level. But note, such a conclusion is dependent on the
overall objectives of the enterprise being subject to change from feedback.
If the overall enterprise objectives are stable, and more like stewardship, a
shorter time constant would not be a good trade-off.

Similar effects can be imagined at the management level of the enter-
prise. If the mission time constant is short enough, it will last no more than
one person’s normal assignment period. Program managers, architects,
systems engineers, principal investigators, and others will serve for the
full duration of a mission. Instead of end-to-end mission success or failure
being fed back over several different leaders (as commonly happens with
decade-long programs), accountability for success or failure is attached
directly to those leaders. The effects on personnel policies and organiza-
tional learning should be obvious.

Lean Production
One of the most influential books on manufacturing of the last decade
was the 1990 bestseller, The Machine That Changed the World: The Story of
Lean Production.13 Although the focus of this extensive survey and study
was on automobile production in Japan, the United States, and Europe,
its conclusions are applicable to manufacturing systems in general, par-
ticularly the concepts of quality and feedback. A 1994 follow-up book,
Comeback, The Fall and Rise of the American Automobile Industry,14 tells the
story of the American response and the lessons learned from it, though
calling it a “comeback” may have been premature. The story of lean pro-
duction systems is by no means neat and orderly. Although the principles
can be traced back to 1960, effective implementation took decades. Lean
production certainly did not emerge full blown. Ideas and developments
came from many sources, some prematurely. Credits were sometimes
misattributed. Many contributors were very old by the time their ideas
were widely understood and applied. Quality was sometimes seen as an
end result instead of as a prerequisite for any change. The remarkable
fact that virtually every critical parameter improved by at least 20%, if not
50%,15 does not seem to have been anticipated. Then, within a few years,

106	 The Art of Systems Architecting

everything worked. But when others attempted to adopt the process, they
often failed. Why?

One way to answer such questions is to diagram the lean produc-
tion process from an architectural perspective. Figure 4.4 is an architect’s
sketch of the lean production waterfall derived from the texts of the
just-mentioned books, highlighting (boldfacing) its nonclassical features

Process and Product
Research and Development

Architecting and
Systems Engineering

Value Judgments:
Risk Tolerance, Cost

Utility, Quality, and Delivery

Models and
Specifications

Quality Policies
Everyone a Customer
Everyone a Supplier

Simultaneous Design
Taguchi Method

Total Quality Management

(Quality)

Supplier Waterfall Just-in-Time
Inventory

Manufacturing
and Assembly

Needs
Perceptions

Applications

Rework Test and Certify Rework

(Performance, Timing, and Cost)

Delivery

Service Customer Aggressive Selling
Implicit Warranties Market Surveys

Government Inspections
and Disposal

Figure 4.4  An architect’s sketch of lean production.

Chapter 4:  Manufacturing Systems	 107

and strengthening its classical ones.* The most apparent feature is the
number and strength of its feedback paths. Two are especially characteris-
tic of lean production: the supplier waterfall loop and the customer-sales-
delivery loop. Next evident is the quality policies box, crucial not only
to high quality but to the profitable and proper operation of later steps,
just-in-time inventory, rework, and implicit warranties. Quality policies
are active elements in the sequence of steps, are a step through which all
subsequent orders and specifications must pass, and are as affected by its
feedback input as any other step; that is, policies must change with time,
circumstance, technology, and product change and process imperatives.

Research and development (R&D) is not “in the loop” but instead
is treated as one supplier of possibilities, among many, including one’s
competitors’ R&D. As described in the 1990 study, R&D is not a driver,
though it would not be surprising if its future role were different. Strong
customer feedback, in contrast, is very much within the loop, making the
loop responsive to customer needs at several key points. Manufacturing
feedback to suppliers is also a short path, in contrast with the stand-off
posture of much U.S. procurement.

The success of lean production has induced mass producers to copy
many of its features, not always successfully. Several reasons for lack of
success are apparent from the figure. If the policy box does not implement
ultraquality, little can be expected from changes further downstream
regardless of how much they ought to be able to contribute. Just-in-time
(JIT) inventory is an example. Low-quality supply mandates a cushion
of inventory roughly proportional to the defect rate; shifting that inven-
tory from the manufacturer back to the supplier without a simultaneous
quality upgrade simply increases transportation and financing costs. To
decrease inventory, decrease the defect rate, then apply the coordination
principles of JIT, not before.

Another reason for limited success in converting piecemeal to lean pro-
duction is that any well-operated feedback system, including those used
in classical mass production, will resist changes in the forward (waterfall)
path. The “loop” will attempt to self-correct. And, it will take at least one
loop time constant before all the effects can be seen or even be known.
To illustrate, if supply inventory is reduced, what is the effect on sales
and service inventory? If customer feedback to the manufacturing line is

*	 Strictly speaking, though the authors of the lean production books did not mention it,
an architect’s perspective should also include the intersecting product waterfalls and
software spirals. Interestingly, because it seems to be true for all successful systems, it
is possible to find where and by whom systems architecting was performed. Two of the
more famous automotive production architects were Taiichi Ohno, the pioneer of the
Toyota Motor Company Production System, and Yoshiki Yamasaki, head of automobile
production at Mazda.

108	 The Art of Systems Architecting

aggressively sought, as it is in Japan, what is the effect on time-to-market
for new product designs?

A serious question raised in both books is how to convert mass pro-
duction systems into lean production systems. It is not, as the name “lean”
might imply, a mass production system with the “fat” of inventory, middle
management, screening, and documentation taken out. It is to recognize
lean production as a different architecture based on different priorities
and interrelationships. How then to begin the conversion? What is both
necessary and sufficient? What can be retained?

The place to begin conversion, given the nature of feedback systems, is
in the quality policies step. In lean production, quality is not a production
result determined postproduction and posttest; it is a prerequisite policy
imperative. Indeed, Japanese innovators experienced years of frustration
when total quality management (TQM), JIT, and the Taguchi methods
at first seemed to do very little. The level of quality essential for these
methods to work had not yet been reached. When it was, the whole system
virtually snapped into place with results that became famous. Even more
important for other companies, unless their quality levels are high enough,
even though all the foregoing methods are in place, the famous results
will not — and cannot — happen.

Conversely, at an only slightly lower level of quality, lean systems spo-
radically face at least temporary collapse.16 As a speculation, there appears
to be a direct correlation between how close to the cliff of collapse the
system operates and the competitive advantage it enjoys. Backing off from
the cliff would seem to decrease its competitive edge, yet getting too close
risks imminent collapse — line shutdown, transportation jam-up, short-fuse
customer anger, and collateral damage to suppliers and customers for whom
the product is an element of a still larger system production.

To summarize, lean production is an ultraquality, dynamic feedback
system inherently susceptible to any reduction in quality. It depends
upon well-designed, multiple feedback. Given ultraquality standards,
lean production arguably is less complex, simpler, and more efficient
than mass production. And, by its very nature, it is extraordinarily,
fiercely, competitive.

Flexible Manufacturing
Flexible manufacturing is the capability of sequentially making more
than one product on the same production line. In its most common pres-
ent-day form, it customizes products for individual customers, more or
less on demand, by assembling different modules (options) on a com-
mon base (platform). Individually tailored automobiles, for example,
have been coming down production lines for years. But with one out of
three or even one out of ten units having to be sent back or taken out of a

Chapter 4:  Manufacturing Systems	 109

production stream, flexible manufacturing in the past has been costly in
inventory, complex in operation, and high-priced per option compared to
all-of-a-kind production.

What changed are customer demands and expectations, especially in
consumer products. Largely because of technological innovation, more
capability for less cost now controls purchase rate rather than wearout
and increasing defect rate — an interesting epilogue for the DeSoto story!*
One consequence of the change is more models per year with fewer units
per model, the higher costs per unit being offset by use of techniques such
as preplanned product improvement, standardization of interfaces and
protocols, and lean production methods.

A natural architecture for the flexible manufacturing of complex
products would be an extension of lean production with its imperatives —
additional feedback paths and ultraquality-produced simplicity — and an
imperative all its own, human-like information command and control.

At its core, flexible manufacturing involves the real-time interaction
of a production waterfall with multiple product waterfalls. Lacking an
architectural change from lean production, however, the resultant multi
ple information flows could overwhelm conventional control systems.
The problem is less that of gathering data than of condensing it. That sug-
gests that flexible manufacturing will need judgmental, multiple-path
control analogous to that of an air traffic controller in the new “free flight”
regime. Whether the resultant architecture will be fuzzy, associative,
neural, heuristic, or largely human, is arguable.

To simplify the flexible manufacturing problem to something more
manageable, most companies today would limit the flexibility to a product
line that is forward and backward compatible, uses similar modules (with
many modules identical), keeps to the same manufacturing standards,
and is planned to be in business long enough to write off the cost of the
facility out of product-line profits. In brief, production would be limited to
products having a single basic architecture, for example, producing either
Macintosh computers, Hitachi TV sets, or Motorola cellular telephones,
but not all three on demand on the same production line.

Even that configuration is complex architecturally. To illustrate: A
central issue in product line design is where in the family of products,
from low-end to high-end, to optimize. Too high in the series, and the low
end is needlessly costly. Too low, and the high end adds too little value.
A related issue arises in the companion manufacturing system. Too much

*	 Parenthetically, the Japanese countered the automobile obsolescence problem by quadren-
nial government inspections so rigorous that it was often less expensive to turn a car in and
purchase a new one than to bring the old one up to government standards (Womack et al.,
1990, p. 62).

110	 The Art of Systems Architecting

capability, and its overhead is too high; too little, and it sacrifices profit to
specialty suppliers.

Another extension from lean production to flexible manufacturing
is much closer coordination between the design and development of the
product line and the design and development of its manufacturing system.
Failure to achieve this coordination, as illustrated by the problems of intro-
ducing robots into manufacturing, can be warehouses of unopened crates of
robots and in-work products that cannot be completed as designed. Clearly:
The product and its manufacturing system must match. At the elementary level,
this means that the system must be composed of subsystems that distrib-
ute cleanly over the manufacturing enterprise. More specifically, their time
constants, transient responses, and product-to-machine interfaces must
match, recognizing that any manufacturing constraint means a product
constraint, and vice versa. At a more sophisticated level, the elements of
the process, like quality measurement and control, must be matched across
the product-system and manufacturing-system boundaries.

As suggested earlier, the key technological innovation is likely to be
the architecture of the joint information system.17 In that connection, one
of the greatest determinates of the information system’s size, speed, and
resolution is the quality of the end product and the yield of its manufac-
turing process — that is, their defect rates. The higher these defect rates,
the greater the size, cost, complexity, and precision of the information
system that will be needed to find and eliminate them quickly.

Another strong determinate of information system capacity is piece part
count, another factor dependent on the match of product and manufactur-
ing techniques. Mechanical engineers have known this for years: whenever
possible, replace a complicated assembly of parts with a single, specialized
piece. Nowhere is the advantage of piece part reduction as evident as in the
continuing substitution of more and more high-capacity microprocessors
for their lower-capacity predecessors. Remarkably, this substitution, for
approximately the same cost, also decreases the defect rate per computa-
tional operation. It appears to be an inevitable consequence of the different
parts of Moore’s law. As technology allows more and more transistors per
unit area, the cost of the fabrication plant likewise rises. The rise in cost of
the fabrication plant drives the market toward increasing standardization
of parts (to spread large capital costs over many units). Increasing stan-
dardization means greater regularization, and higher quality to achieve
economic throughput in an expensive fabrication plant. The end-user value
added can then come only from software (a topic we take up later).

And, especially for product lines, the fewer different parts from
model to model, the better, as long as that commonality does not decrease
system capability unduly. Once again, there is a close correlation between
reduced defect rate, reduced information processing, reduced inventory,
and reduced complexity — all by design.

Chapter 4:  Manufacturing Systems	 111

Looking further into the future, an extension of the lean production
architecture is not the only possibility for flexible manufacturing. It is
possible that flexible manufacturing could take a quite different architec-
tural turn based on a different set of priorities. Is ultraquality produc-
tion really necessary for simple, low-cost, limited-warranty products
made largely from commercial, off-the-shelf (COTS) units (for example,
microprocessors and flat screens)? Or is the manufacturing equivalent of
parallel processors (pipelines) the answer? Should some flexible manu-
facturing hark back to the principles of special, handcrafted products or
one-of-a-kind planetary spacecraft? The answers should be known in less
than a decade, considering the profit to be made in finding them.

Heuristics for Architecting Manufacturing Systems
The product and its manufacturing system must match. (In many •	
ways.)
Keep it simple. (Ultraquality helps.)•	
Partition for near-autonomy. (A trade-off with feedback.)•	
In partitioning a manufacturing system, choose the elements so that •	
they minimize the complexity of material and information flow.
(Savagian, Peter J., 1990, USC)
Watch out for critical mis-fits. (Between intersecting waterfalls.)•	
In making a change in the manufacturing process, how you make it is •	
often more important than the change itself. (Management policy.)
When implementing a change, keep some elements constant to •	
provide an anchor point for people to cling to. (Schmidt, Jeffrey H.,
1993, USC) (A trade-off when a new architecture is needed.)
Install a machine that even an idiot can use and pretty soon everyone •	
working for you is an idiot. (Olivieri, J. M., 1991, USC) (An unexpected
consequence of mass production Taylorism — see next heuristic.)
Everyone a customer, everyone a supplier.•	
To reduce unwanted nonlinear behavior, linearize!•	
If you cannot analyze it, do not build it.•	
Avoid creating the same resonance time constant in more than one •	
location in a [production] system.
The five why’s. (A technique for finding basic causes, and one used •	
by every inquisitive child to learn about the world at large.)

Conclusion
Modern manufacturing can be portrayed as an ultraquality, dynamic
feedback system intersecting with that of the product waterfall. The man-
ufacturing systems architect’s added tasks, beyond those of all systems
architects, include (1) maintaining connections to the product waterfall

112	 The Art of Systems Architecting

and the software spiral necessary for coordinated developments, (2) assur-
ing quality levels high enough to avoid manufacturing system collapse or
oscillation, (3) determining and helping control the system parameters for
stable and timely performance, and (4) looking farther into the future than
do most product-line architects.

Exercises
	 1.	Manufacturing systems are complex systems that need to be archi-

tected. If the manufacturing line is software intensive, and repeated
software upgrades are planned, how can certification of software
changes be managed?

	 2.	The feedback lags or resonances of a manufacturing system of a
commercial product interact with the dynamics of market demand.
Give examples of problems arising from this interaction and possible
methods for alleviating them.

	 3.	Examine the following hypothesis: Increasing quality levels in manu-
facturing enable architectural changes in the manufacturing system
that greatly increase productivity but may make the system increas-
ingly sensitive to external disruption. For a research exercise, use
case studies or a simplified quantitative model.

	 4.	Does manufacturing systems architecture differ in mass produc-
tion systems (thousands of units) and very low-quantity production
systems (fewer than ten produced systems)? If so, how and why?

	 5.	Current flexible manufacturing systems usually build very small lot
sizes from a single product line in response to real-time customer
demand; for example, an automobile production line that builds
each car to order. Consider two alternative architectures for organiz-
ing such a system, one centralized and one decentralized. The first
would use close centralized control, centralized production schedul-
ing, and resource planning. The other would use fully distributed
control based on disseminating customer/supplier relationships to
each work cell; that is, each job and each work cell interact individu-
ally through an auction for services. What would be advantages and
disadvantages of both approaches? How would the architecture of
the supporting information systems (extending to sales and customer
support) have to differ in the two cases?

Notes and References
	 1.	 Hayes, Robert H., S. C. Wheelwright, and K. B. Clark, Dynamic Manufacturing,

Creating the Learning Organization. New York: The Free Press, 1988, Chapter 7:
The Architecture of Manufacturing: Material and Information Flows, p. 185,

Chapter 4:  Manufacturing Systems	 113

defines a manufacturing architecture as including its hardware, material,
and information flows, their coordination and managerial philosophy. This
textbook is highly recommended, especially Chapters 7, 8, and 9.

	 2.	 Rechtin, E., Systems Architecting, Creating and Building Complex Systems.
Englewood Cliffs, NJ: Prentice Hall, 1991, Chapter 8, pp. 160–187. (Note that
throughout the rest of this chapter, this reference will be referred to as Rechtin
1991.) Ultraquality: Quality (absence of defects) so high as to be impractical
to prove by measure with confidence.

	 3.	 Hayes, Robert H., S. C. Wheelwright, and K. B. Clark, Dynamic Manufacturing,
Creating the Learning Organization. New York: The Free Press, 1988.

	 4.	 Womack, James P., Daniel T. Jones, and Daniel Roos, The Machine That
Changed the World, The Story of Lean Production. New York: Harper Collins,
1990 (paperback 1991), p. 4.

	 5.	 See www.grandchallenge.org.
	 6.	 See also Hayes et al., 1988, Chapter 8, Controlling and Improving the Manu-

facturing Process.
	 7.	 Hayes et al., 1988, Chapter 7, p. 185.
	 8.	 See Brooks, Frederick P., Jr., No Silver Bullet, Essence and Accidents of

Software Engineering, Computer, pp. 10–19, April 1987, especially p. 18;
Simon, Herbert, The Sciences of the Artificial, 2nd ed. Cambridge, MA: MIT
Press, 1987, pp. 200–209.

	 9.	 For the equivalent in a surgical team, see Brooks’ Mythical Man-Month.
	 10.	 See Womak et al., 1990.
	 11.	 See Lindsey, William C., Synchronization Systems in Communication and Control.

Englewood Cliffs, NJ: Prentice Hall, 1972.
	 12.	 Hayes et al., 1988, p. 204.
	 13.	 Womack et al., 1990.
	 14.	 For an update, see Ingrassia, Paul, and Joseph B. White, Comeback, The Fall

and Rise of the American Automobile Industry. New York: Simon & Schuster,
1994.

	 15.	 Womack et al., 1994, title page.
	 16.	 Womack et al., 1990, p. 62.
	 17.	 Hayes et al., 1988, Chapter 7, p. 185.

115

Case Study 3: Intelligent
Transportation Systems

Introduction
Intelligent transport systems (ITSs)1 are members of a class of systems in
which humans and their behavior are inextricably part of the system. They
are also systems whose architectures are distributed, in both a logical and
physical sense, and are equally distributed in their development, procure-
ment, and management. The key characteristics of such systems, which
will jointly help define the concept of a collaborative system in Chapter 7,
include (1) the lack of a single client with ownership and developmen-
tal responsibility for the system, (2) considerable uncertainty in system
purposes and a recognition that purposes will evolve in unknown direc-
tions over its lifetime, and (3) the need for extensive voluntary cooperation
in their deployment and use. This last point, creation through voluntary
cooperation and interaction, will be the central insight of Chapter 7. In
Chapter 5, we deal more generally with the concept of sociotechnical
systems, where humans and their behaviors are inside rather than outside
the system boundary.

ITS concepts have been around for several decades but started getting
serious attention in the 1990s. ITS in general refers to transportation-related
guidance, control, and information systems. These systems use computer
and information technology to address transportation functions at the
level of individual vehicles, roadways, and large transportation networks.
The motivator for developing such systems is the belief that they will
improve transport network flow, improve safety, reduce environmental
impact, and be large commercial market opportunities. Many believe that
the transport improvements gained through the application of informa-
tion technology promise to be cheaper and less environmentally damag-
ing than further expansion of the physical transport infrastructure. Over
the long term, ITS could evolve into automated highways where vehicles
are automatically controlled for even larger gains in system performance.

At the time of the writing of this third edition, a variety of intelligent
transport services are already commonly available. Many vehicles have
built-in electronic navigators using Global Positioning System (GPS) and
digital map databases. The systems provide route planning and real-time
route guidance. Position monitoring systems are in fairly wide use in com-
mercial vehicle fleets. Real-time traffic conditions are available at various
Web sites. Several different online services provide free maps of virtually

116	 The Art of Systems Architecting

every city, and nonurban areas in industrialized countries, with route plan-
ning services. Many metro areas use intelligent traffic control methods in
managing their stoplights, road admittance systems, and demand lanes.

In most areas, what does not exist today is the interconnection of these
various services and the centralized exploitation of both information and
controls. This is striking because many of the early concepts and propo-
nents emphasized the role and value of centralized control. Some steps
toward centralized systems have been made in a few cities, and there is
continuing interest in further integration, although perhaps somewhat
less than in the first run of enthusiasm in the 1990s. The actual experience
points out that the split between public and private control and responsi-
bility is an architectural choice. When certain services are to be provided
voluntarily by market means, that is a choice on the overall structure of
the system. When certain services are reserved to government control,
likewise that is a choice on the overall structure of the system. To under-
stand the architecture of social systems, one element is division among
public and private means.

ITS Concepts
Possible ITSs have been extensively described in the literature.2 The most
common decomposition of ITS services is into five core services and auto-
mated highways, which is considered somewhat farther out. The five core
services as have been usually defined, with an indication of how they are
provided today, are as follows:

Advanced Traveler Information Services (ATIS)
	 ATIS is the provision of accurate, real-time information on trans-

portation options and conditions to a traveler anytime, anywhere.
For example:

	 1.	 Computer-assisted route planning to a street location anywhere
in the country. This service could be coupled with traffic predic-
tion and multimode transport information. Extensive capabilities
in this category are available from multiple Web sites (although
not necessarily tied to traffic conditions) and through in-vehicle
GPS navigators.

	 2.	 Computer-assisted route guidance to a street location anywhere
in the country, again possibly coupled to real-time traffic infor-
mation and predictions. Absent the traffic conditions component,
this is the main selling feature of GPS in-vehicle navigators.

	 3.	 Access to full public transportation schedules in a distant city
before leaving for that city. Again, this is available today, at least
in some jurisdictions.

Case Study 3: Intelligent Transportation Systems	 117

	 4.	 Broadcast of real-time and predictive traffic conditions on the
major roads of an urban area. Today this is available with mod-
erate fidelity on Web sites and through radio.

	 5.	 Emergency situation and location reporting, manual and auto-
mated. Various private services, some tied to particular auto
manufacturers, now provide this.

Advanced Traffic Management Systems (ATMS)
	 The intent of ATMS is to improve the carrying capacity and flow of

the road network by integrating traffic sensors, remotely operated
traffic signals, real-time monitoring and prediction, and dissemina-
tion of route information. The service components of ATMS include
sensing traffic conditions in real time over wide areas, real-time pre-
diction of traffic conditions, and remotely controlling traffic signals
and signage from central control centers to optimize road network
conditions. A long-term concept in ATMS is coupling traffic man-
agement with route selection in individual vehicles.

		 ATMS exist today, although their penetration has been less than
many of the advocates hoped. Coupling of traffic management with
individual route selection is almost nonexistent, wide area pre-
diction is limited, but wide area real-time monitoring is common.
Some jurisdictions make use of considerable centralized control,
including additional mechanisms not previously listed, such as
demand pricing.

Advanced Vehicle Control Systems (AVCS)
	 AVCS covers driver assistance systems within a single vehicle. This

is an area of continuing interest with some roll-out in production
vehicles, mostly in high-end private automobiles. Some examples
include:

	 1.	 Partially automated braking systems. Today, antilock brake auto-
mation is common, with additional levels of automation rare.

	 2.	 Automated driver assistance in distance following or lateral lane
keeping. A few high-end vehicles have limited capabilities here.

	 3.	 Obstacle warning and avoidance. Backup sensors are common in
larger vehicles today, and some limited stability enhancement in
emergency avoidance maneuvers has been done.

	 4.	 Vision enhancement in reduced visibility conditions. Again, a
few systems are available.

Commercial Vehicle Operations (CVO)
	 CVO deals with the automation of regulatory functions and record

keeping, especially in interstate travel. The goal is reduction of time

118	 The Art of Systems Architecting

and expense due to regulatory requirements in road transport.
Although the roll-out to public infrastructure has been limited,
there has been extensive usage in private fleets. Some examples of
proposed CVO capabilities include:

	 1.	 Weigh-in-motion for trucks.
	 2.	 Electronic license/tag/permit checking and record keeping.
	 3.	 Hazardous cargo monitoring (coupled with navigation and posi-

tion reporting).
	 4.	 Position monitoring and reporting for fleet management.

Advanced Public Transport (APT)
	 The goal of APT is performance improvements in public transport

through application of intelligent vehicle and highway system (IVHS)
technology. Some examples include:

	 1.	 Real-time monitoring of bus, subway, or train position coupled
with waiting area displays and vehicle dispatch. These systems
have proved popular and reasonably effective where deployed.

	 2.	 Electronic fare paying systems to improve stopping times and
allow time-sensitive pricing. Many systems have moved to smart
card and related electronic payment systems.

ITS Sociotechnical Issues
An ITS is unquestionably a sociotechnical system, in the sense that
humans and their behavior are irreducible components. People decide
whether or not to use route planning and guidance systems. When given
route advice, they choose to use it or ignore it. People choose to pur-
chase (or not) various components of an ITS. At the political level, people
make joint decisions through their government whether or not to make
infrastructural investments. So, any discussion of the architecture of an
ITS must include people, and architecting of an ITS must incorporate
the sociotechnical nature of the system. The heuristics of sociotechnical
systems are the primary focus of Chapter 5, with Chapter 7 taking up the
somewhat narrower, more specialized case of collaborative systems. To
illustrate, consider how the issues have been resolved, in practice, for the
ITSs that now exist and are emerging.

Who Is the Client for an Architect?
Borrowing a phrase,3 an ITS will be a system no one owns. ITS plan-
ning, at least in the United States, assumes that purchase, deployment,
and use will be the result of distributed decisions by governments and

Case Study 3: Intelligent Transportation Systems	 119

consumers.4 In consequence, the integrity of any ITS architecture must
be maintained through some similarly distributed means. When a single
client (agency, company, or individual) commissions a system, the integ-
rity of that system can be maintained by an architect hired by the client.
When no client with that power exists, no architect with the power can
exist either. This complicates the architecting problem. Lacking the power
to directly establish and maintain the architecture, the architect must find
indirect means to do so.

In systems architecting, it is common for the actual users to be dif-
ferent from the system sponsor. When this occurs, the architect must be
conscious of the possibility that the preferences and needs of the ultimate
users are different from those of the sponsors, or as perceived by the
sponsors. The system might seem perfectly satisfactory to the sponsors,
and yet be unacceptable to the users. If the system is rejected by the users,
the sponsor is unlikely to perceive the system as successful.

This situation is even more extreme in the case of an ITS. To date, there
has been little centralized architecting of ITSs, at least of those elements
deployed and widely used in the United States. The U.S. Department of
Transportation (DOT) sponsored rather extensive ITS architecture studies.
But, the U.S. DOT has only limited authority to direct or mandate transpor-
tation developments in the United States. Execution is up to states, metro-
politan traffic authorities, cities, and individuals. By analogy, an architect
for an ITS is more in the position of an urban planner than a civil architect.
The urban planner has a great deal of influence, but relatively little power.
For an urban planner to be effective requires considerable political skill,
and sponsors who understand the limits of their own paper. Through
city governments and zoning boards, urban planners can possess a “no”
authority, that is the ability to say “no” to nonconformant plans. However,
their ability to say “yes” is much less, and happens only if the government
employing the urban planner is willing to commit funds.

Public or Private?
In the first wave of excitement over ITSs, many of the concepts seemed to
assume a dominantly public infrastructure. But, in practice today, many,
perhaps most, of the interesting traveler information services are private.
The in-vehicle GPS navigators are privately produced and purchased. The
online map services are private and advertising supported. Because the
architecture of an ITS is not currently centrally directed by government
(at least in the United States), it is probably not a surprise that the private
side has been the side that has most extensively been developed.

Even if more centralized architecting had been done, the result might
well have been the same, although there might have been niche areas where
centralized decision making could take hold. As an elaboration, consider

120	 The Art of Systems Architecting

the problem of social collaboration and fully coupled control. In order that
any of the fully coupled control schemes can be effectively used, the driver
compliance rate must be high. Why will drivers willingly comply with cen-
tralized route guidance that is knowingly being computed with the benefit
of the whole in mind? Will people just game the system?

There is a useful heuristic from Rechtin (1991)5:

In introducing technological and social change, how
you do it is often more important than what you do.

If social cooperation is required, the way in which a
system is implemented and introduced must be an
integral part of its architecture.

Using this heuristic requires identifying those architectural characteristics
that lead to cooperative acceptance and use. In the ITS case, what system
characteristics are most likely to foster public cooperation and acceptance?
The answer will not be identical for all countries and cultures. We suggest
for the United States that ITS general acceptance will be greater for those
services that are privately and voluntarily contracted for.

The deployment mode for an architectural element should be, in order
of preference:

	 1.	Private development and purchase.
	 2.	Private development and purchase subject to governmental guidelines

or standards.
	 3.	Private development and purchase subject to government mandating.
	 4.	Government-financed development and private purchase.
	 5.	Government mandating of deployment with direct finance.

A consequence of using these criteria is that ITS services should be
partitioned to support and encourage private development of particu-
lar packages. Such packaging requires groupings that provide income
streams a private firm can capture and defensible markets. This criterion
suggests that the technical architecture should support such decentraliza-
tion in development and deployment even where centralization would be
more “efficient,” say on a life-cycle cost basis.

Although the issue of public–private partitioning is not so prominent
in early writings on ITSs, as noted it has played an important role in actual
development. The greatest ferment in ITSs has been in private systems,
and private systems have avoided problems of perception of invasion of
privacy and monitoring. Of course, the reality is that private monitoring is
also monitoring, but this only reemphasizes that perceptions may matter
more than facts.

Case Study 3: Intelligent Transportation Systems	 121

Facts and Perceptions
Continuing on that same line of facts versus perceptions, consider how
ITS-like sociotechnical systems are judged as successes or failures. How
would we know if ITSs were successful or not? A traditional systems engi-
neering approach would immediately appeal to measures of effectiveness,
probably measures like average speed on the roads, road throughput,
life-cycle cost, incident rate, and various other measures easy to imagine
and cite. But, do the actual stakeholders of ITSs (government authorities
and the traveling public) perceive those as measures of success? Another
heuristic: Success is in the eye of the beholder, suggests not. Consider the
following thought experiment:

Scenario 1: It is 15 years later than the present. Intelligent transportation
systems are widely deployed in most major urban areas and very
heavily used. Most urban areas have five or more competing, private
traffic information service providers. There is extremely active, com-
petitive development of supporting communication, display, and
algorithmic systems. Market penetration of rich services is above
85%. But, traffic in major urban areas is much worse than current.
Most measures of effectiveness (for example, average travel time,
average speed) have decayed.

Scenario 2: Again, it is 15 years beyond the present. ITSs are likewise
widely deployed and widely used. Now the various measures are
substantially improved. But, deployment and compliance have
come only from vigorous mandates and enforcement. In many
jurisdictions, the mandates have been tossed out by popular vote.
Effectiveness is demonstrably highest in those jurisdictions with
the strictest enforcement and the least responsiveness to popular
demand.

Although the reader may consider the scenarios fanciful and unreal-
istic, that is not the point. The point is to ask, seriously, whether a system
should be judged by whether it gives the users what they want, regard-
less of whether the architect thinks what they want makes any sense. The
classical paradigm says what the sponsors want is what matters, not what
the architect thinks makes sense. In a sociotechnical and a collaborative
system, where voluntary interaction is essential to system operation, what
the users think they want is more important than what the sponsor wants.
What we have now is a situation more like scenario 1, because the domi-
nant deployments are private.

Although the exact scenarios are not reality, the underlying obser-
vation about success not necessarily coming from the original objec-
tives has been proved in practice. In several cases where ITSs have been

122	 The Art of Systems Architecting

found successful in use, a major source of satisfaction has been through
the impact on travel time variance and predictability, and not on average
speed. That is, the most valued impact has been how it enables users to
accurately predict how long a trip will take, and making travel times more
consistent, rather than making the average time shorter.

Architecture as Shared Invariants
One way of envisioning an architecture of something as complex as an
ITS is by looking at the shared invariants. For an ITS this means looking
for the things shared across many or all users, and that do not change
much with time. In the sense of shared invariants, some of the things that
could be an ITS architecture include the following:

Shared positioning services (GPS).•	
Map data, specifically the network of roads and their positions rela-•	
tive to GPS locations.
How digital traffic messages are encoded. How do you digitally indi-•	
cate that the flow at a given point on a given road has some value, in
a system-independent way.
Mobile communication networks over which traffic information •	
flows (networks that may not belong to ITS).

Much less of this kind of invariant definition has been done than could
have been done. In practice it has been hard to get centralized attention
to elements that are supportive behind the scenes but are not delivering
services that are benefits directly.

Dominance of Economics
Finally, a theme of sociotechnical systems that is strongly evident in ITS
is the role of, or the dominance of, economics. Today, what we have in an
ITS has largely been driven by what makes a profitable business, in many
cases rather independently of doing anything about travel. The online
map services, for example, are widely used and popular. In the course
of a few short years, people have gone from mostly using paper maps
to where people commonly pass around map service printouts for direc-
tional instructions. Many Web sites are now modified to simply link to
one of the main map services whenever a location must be provided.

But, what drives the map services? Because they are free and rather
modest appendages to larger Internet firms, the answer is mainly adver-
tising. A popular Web service attracts users, a large user base brings
advertising dollars. Map services are a particularly fine advertising tar-
get because the nature of the search strongly suggests what the user is

Case Study 3: Intelligent Transportation Systems	 123

looking for, hence assisting in advertising targeting. A user can opt out of
advertising by using a purchased, disk-based version instead, but usage
rates have proven that most users are not reluctant to abandon a small
slice of privacy about their location searches in order to have continuously
updated, online map information. It works because the economics works.

The broader lesson to consider in sociotechnical systems is that
business is usually a part of them. “Stable forms” includes the notion of
economically stable, not just technically stable. In Chapter 13 in Part IV,
we will discuss politicotechnical systems. In a politicotechnical system,
stability is likewise critical, but there it comes mostly from the nature of
the constituency instead of the business model.

Notes and References
	 1.	 This case study is drawn heavily from a previous work of one of the authors,

Maier, M. W., On Architecting and Intelligent Transport Systems, Joint Issue,
IEEE Transactions on Aerospace and Electronic Systems/System Engineering,
AES33:2, pp. 610–625, April 1997.

	 2.	 Strategic Plan for Intelligent Vehicle-Highway Systems in the United States,
IVHS America, Report No. IVHS-AMER-92-3, Intelligent Vehicle-Highway
Society of America, Washington, DC, 1992.

	 3.	 Schuman, R., Developing an Architecture That No One Owns: The U.S.
Approach to System Architecture, in Proceedings of the First World Congress
on Applications of Transport Telematics and Intelligent Vehicle-Highway Systems,
Paris, France, 1994.

	 4.	 Federal Highway Administration, Intelligent Vehicle Highway Systems:
A Public Private Partnership, Washington, DC, 1991.

	 5.	 Rechtin, E., Systems Architecting. New York: Prentice Hall, 1991, p. 315.

125

5chapter

Social Systems

Introduction: Defining Sociotechnical Systems
Social: Concerning groups of people or the general public.
Technical: Based on physical sciences and their application.
Sociotechnical Systems: Technical works involving signifi-
cant social participation, interests, and concerns.

Sociotechnical systems are technical works involving the participation of
groups of people in ways that significantly affect the architectures and
design of those works. Historically, the most conspicuous have been the
large civil works — monuments, cathedrals, urban developments, dams,
and roadways among them. Lessons learned from their construction pro-
vide the basis for much of civil (and systems) architecting and its theory.1

More recently, others, physically quite different, have become much
more sociotechnical in nature than might have been contemplated at their
inception — ballistic missile defense, air travel, information networks,
welfare, and health delivery, for example. Few can even be conceived, much
less built, without major social participation, planned or not. Experiences
with them have generated a number of strategies and heuristics of impor-
tance to architects in general. Several are presented here. Among them are
three heuristics: the four who’s, economic value, and the tension between
perceptions and facts. In the interests of informed use, as with all heuristics,
it is important to understand the context within which they evolved, the
sociotechnical domain. Then, at the end of the chapter are a number of
general heuristics of applicability to sociotechnical systems in particular.

Public Participation
At the highest level of social participation, members of the public directly
use — and may own a part of — the system’s facilities. At an intermediate
level, they are provided a personal service, usually by a public or private
utility. Most important, individuals and not the utilities — the architect’s
clients — are the end users. Examples are highways, communication and
information circuits, general aviation traffic control, and public power.
Public cooperation and personal responsibility are required for effective

126	 The Art of Systems Architecting

operation. That is, users are expected to follow established rules with a
minimum of policing or control. Drivers and pilots follow the rules of the
road. Communicators respect the twin rights of free access and privacy.

At the highest level of participation, participating individuals choose
and collectively own a major fraction of the system structure — cars,
trucks, aircraft, computers, telephones, electrical and plumbing hardware,
and so on. In a sense, the public “rents” the rest of the facilities through
access charges, fees for use, and taxes. Reaction to a facility failure or a
price change tends to be local in scope, quick and focused. The public’s
voice is heard through specialized groups such as automobile clubs for
highways, retired persons associations for health delivery, professional
societies for power and communications services, and the like. Market
forces are used to considerable advantage through adverse publicity in
the media, boycotts, and resistance to stock and bond issues on the one
hand and through enthusiastic acceptance on the other. Recent exam-
ples of major architectural changes strongly supported by the public are
superhighways, satellite communications, entertainment cable networks,
jet aircraft transportation, health maintenance organizations, and a slow
shift from polluting fossil fuels to alternative sources of energy.

Systems of this sort are best described as collaborative systems, sys-
tems that operate only through the partially voluntary initiative of their
components. This collaboration is an important subject in its own right,
because the Internet, the World Wide Web, and open source software are
collaborative assemblages. We address this topic in detail in Chapter 7.

At the other extreme of social participation are social systems used
solely by the government, directly or through sponsorship, for broad social
purposes delegated to it by the public; for example, National Aeronautics
and Space Administration (NASA) and U.S. Department of Defense (DoD)
systems for exploration and defense, Social Security, and Medicare man-
agement systems for public health and welfare, research capabilities for
national well-being, and police systems for public safety. The public pays
for these services and systems only indirectly, through general taxation.
The architect’s client and end user is the government. The public’s con-
nection with the design, construction, and operation of these systems is
sharply limited. Its value judgments are made almost solely through the
political process, the subject of Chapter 10. They might best be characterized
as “politicotechnical.”

The phrase “system-of-systems” is now commonly used in the systems
engineering literature, although not with a consistent definition. Because
the term system-of-systems is ambiguous on its face (is any system whose
subsystems are complex enough to be regarded as systems a system-of-
systems?) we prefer the terms we use here. In many writings, sociotechni-
cal systems and systems-of-systems are conflated. In others, collaborative
systems and systems-of-systems are conflated. For the purposes of this

Chapter 5:  Social Systems	 127

chapter, we will establish the foregoing definition for sociotechnical systems
and will explore the notion of collaborative systems at some length.

The Foundations of Sociotechnical
Systems Architecting
The foundations of sociotechnical systems architecting are much the same
as for all systems: a systems approach, purpose orientation, modeling, certi-
fication, and insight. Social system quality, however, is less a foundation than
a case-by-case trade-off; that is, the quality desired depends on the system
to be provided. In nuclear power generation, modern manufacturing, and
manned space flight, ultraquality is an imperative. But in public health,
pollution control, and safety, the level of acceptable quality is only one of
many economic, social, political, and technical factors to be accommodated.

But if sociotechnical systems architecting loses one foundation, ultra-
quality, it gains another — a direct and immediate response to the public’s
needs and perceptions. Responding to public perceptions is particularly
difficult, even for an experienced architect. The public’s interests are
unavoidably diverse and often incompatible. The groups with the stron-
gest interests change with time, sometimes reversing themselves based
on a single incident. Three Mile Island was such an incident for nuclear
power utilities. Pictures of the Earth from a lunar-bound Apollo spacecraft
suddenly focused public attention and support for global environmental
management. An election of a senator from Pennsylvania avalanched into
widespread public concern over health insurance and Medicare systems.

The Separation of Client and User
In most sociotechnical systems, the client, the buyer of the architect’s
services, is not the user. This fact can present a serious ethical, as well
as technical, problem to the architect: how should conflicts between the
preferences, if not the imperatives, of the utility agency and those of the
public (as perceived by the architect) be treated when preferences strongly
affect system design.

It is not a new dilemma. State governments have partly resolved
the problem by licensing architects and setting standards for systems
that affect the health and safety of the public. Buildings, bridges, and
public power systems come to mind as systems that affect public safety.
Information systems are already on the horizon. The issuing or denial
of licenses is one way of making sure that public interest comes first in
the architect’s mind. The setting of standards provides the architect some
counterarguments against overreaching demands by the client. But these
policies do not treat such conflicts as that of the degree of traffic control

128	 The Art of Systems Architecting

desired by a manager of an intelligent transportation system (ITS) as com-
pared with that of the individual user/driver, or the degree of govern-
mental regulation of the Internet to assure a balance of access, privacy,
security, profit making, and system efficiency.

One of the ways of alleviating some of these tensions is through eco-
nomics. Economics has important insights, as economics is fundamentally
the study of social constructs. In addition, markets have evolved a variety
of mechanisms, such as market segmentation, that effectively deal with
essential problems that arise from the nature of sociotechnical, social, and
collaborative systems architecting.

Socioeconomic Insights
Social economists bring two special insights to sociotechnical systems.
The first insight, which might be called the four who’s, asks four questions
that need to be answered as a self-consistent set if the system is to succeed
economically — namely: Who benefits? Who pays? Who provides? And, as
appropriate, Who loses?

Example: The answers to these questions of the Bell
Telephone System were: (1) the beneficiaries were
the callers and those who received the calls; (2) the
callers paid based on usage because they initiated
the calls and could be billed for them; (3) the provider
was a monopoly whose services and charges were
regulated by public agencies for public purposes;
and (4) the losers were those who wished to use the
telephone facilities for services not offered or to sell
equipment not authorized for connection to those
facilities. The telephone monopoly was incentivized
to carry out widely available basic research because
it generated more and better service at less cost, a
result the regulatory agencies desired. International
and national security agreements were facilitated by
having a single point of contact, the Bell System, for
all such matters. Standards were maintained and the
financial strategy was long term, typically 30 years.
The system was dismantled when the losers evoked
antitrust laws, creating a new set of losers, complex
billing, standards problems, and a loss of research.
Arguably, it enabled the Internet sooner than otherwise.
Subsequently, separate satellite and cable services were
established, further dismantling what had been a
single service system. The dismantlement also may

Chapter 5:  Social Systems	 129

have assisted in allowing the rapid rollout of wire-
less cellular telephone systems. In other countries,
some of the most successful wireless cellular rollouts
have occurred where wireless companies were the
only allowed alternative to a government-sponsored
telephone monopoly.

Example: The answers to the four who’s for the
privatized Landsat System, a satellite-based optical-
infrared surveillance service, were as follows: (1) the
beneficiaries were those individuals and organiza-
tions who could intermittently use high-altitude
photographs of the Earth; (2) because the value to the
user of an individual photograph was unrelated to
its cost (just as is the case with weather satellite TV),
the individual users could not be billed effectively;
(3) the provider was a private, profit-making orga-
nization that understandably demanded a cost-plus-
fixed-fee contract from the government as a surrogate
customer; and (4) when the government balked at
this result of privatization, the Landsat system faced
collapse. Research had been crippled, a French gov-
ernment-sponsored service (SPOT) had acquired
appreciable market share, and legitimate customers
faced loss of service. Privatization was reversed and
the government again became the provider.

Example: Serious debates over the nature of their
public health systems are underway in many coun-
tries, triggered in large part by the technological
advances of the last few decades. These advances
have made it possible for humanity to live longer and
in better health, but the investments in those gains
are considerable. The answers to the four who’s are
at the crux of the debate. Who benefits — everyone
equally at all levels of health? Who pays — regard-
less of personal health or based on need and ability
to pay? Who provides — and determines cost to the
user? Who loses — anyone out of work or above
some risk level, and who determines who loses?

Regardless of how the reader feels about any of these systems, there is
no argument that the answers are matters of great social interest and con-
cern. At some point, if there are to be public services at all, the questions

130	 The Art of Systems Architecting

must be answered and decisions made. But who makes them and on what
basis? Who and where is “the architect” in each case? How and where is the
architecture created? How is the public interest expressed and furthered?

The second economics insight is comparably powerful: In any resource-
limited situation, the true value of a given service or product is determined by
what a buyer is willing to give up to obtain it. Notice that the subject here is
value, not price or cost.

Example: The public telephone network provides a
good example of the difference between cost and
value. The cost of a telephone call can be accurately
calculated as a function of time, distance, routing
(satellite, cable, cellular, landline, and so forth),
location (urban or rural), bandwidth, facility depre-
ciation, and so on. But the value depends on con-
tent, urgency, priority, personal circumstance, and
message type, among other things. As an exercise,
try varying these parameters and then estimating
what a caller might be willing to pay (give up in
basic needs or luxuries). What is then a fair alloca-
tion of costs among all users? Should a sick, remote,
poor caller have to pay the full cost of remote TV
health service, for example? Should a business that
can pass costs on to its customers receive volume
discounts for long-distance calling via satellite?
Should home TV be pay-per-view for everyone?
Who should decide on the answers?

These two socioeconomic heuristics, used together, can alleviate the
inherent tensions among the stakeholders by providing the basis for com-
promise and consensus among them. The complainants are likely to be
those whose payments are perceived as disproportionate to the benefits
they receive. The advocates, to secure approval of the system as a whole,
must give up or pay for something of sufficient value to the complain-
ants that they agree to compromise. Both need to be made to walk in the
other’s shoes for a while. And therein can be the basis of an economically
viable solution.

The Interaction between the
Public and Private Sectors
A third factor in sociotechnical systems architecting is the strong inter-
play between the public and private sectors, particularly in the advanced

Chapter 5:  Social Systems	 131

democracies where the two sectors are comparable in size, capability,
and influence — but differ markedly in how the general public expresses
its preferences.

By the middle of the 1990s, the historic boundaries between public
and private sectors in communications, health delivery, welfare services,
electric power distribution, and environmental control were in a state of
flux. This chapter is not the place to debate the pros and cons. Suffice it to
say, the imperatives, interests, and answers to the economists’ questions
are sharply different in the two sectors.2 The architect is well advised to
understand the imperatives of both sectors prior to suggesting architec-
tures that must accommodate them. For example, the private sector must
make a profit to survive; the public sector does not and treats profits as nec-
essary evils. The public sector must follow the rules; the private sector sees
rules and regulations as constraints and deterrents to efficiency. Generally
speaking, the private sector does best in providing well-specified things
at specified times. The public sector does best at providing services within
the resources provided.

Because of these differences, one of the better tools for relieving the
natural tension between the sectors is to change the boundaries between
them in such negotiable areas as taxation, regulation, services provided,
subsidies, billing, and employment. Because perceived values in each of
these areas are different in the two sectors and under different circum-
stances, possibilities can exist where each sector perceives a net gain. The
architect’s role is to help discover the possibilities, achieve balance through
compromise on preferences, and assure a good fit across boundaries.

Architecting a system, such as a public health system, that involves
both the public and private sectors can be extraordinarily difficult, par-
ticularly if agreement does not exist on a mutually trusted architect, on
the answers to the economist’s questions, or on the social value of the
system relative to that of other socially desirable projects. The problem
is only exacerbated by the fundamental difficulties of diverse prefer-
ences. Public-sector projects look for a core of common agreement and an
absence of “losers” sufficient to generate a powerful negative constituency.
Private ventures look for segments of users (more is often better) with the
resources to fund their own needs.

Facts versus Perceptions: An Added Tension
Of all the distinguishing characteristics of social systems, the one that most
sharply contrasts them with other systems is the tension between facts and
perceptions about system behavior. To illustrate the impact on design, con-
sider the following: Architects are well familiar with the trade-offs between
performance, schedule, cost, and risk. These competing factors might be
thought of as pulling architecting four different directions as sketched in

132	 The Art of Systems Architecting

Figure 5.1 and Figure 5.2 can be thought of as the next echelon or ring — the
different sources or components of performance, schedule, cost, and risk.
Notice that performance has an aesthetic component as well as technical
and sociopolitical sources. Automobiles are a clear example. Automobile
styling often is more important than aerodynamics or environmental con-
cerns in their architectural design. Costs also have several components, of
which the increased costs to people of cost reduction in money and time
are especially apparent during times of technological transition, and so on.

To these well-known tensions must be added another, one that social
systems exemplify but which exist to some degree in all complex systems
— namely, the tension between perceptions and facts, shown in Figure 5.3.
Its sources are shown in Figure 5.4. This added tension may be dismaying
to technically trained architects, but it is all too real to those who deal with
public issues. Social systems have generated a painful design heuristic:
It is not the facts; it is the perceptions that count. Some real-world examples
include the following:

It makes little difference what facts nuclear engineers present about •	
the safety of nuclear power plants, their neighbors’ perception is

PERFORMANCE

RISK ARCHITECTING SCHEDULE

COST

Figure 5.1  Four basic tensions in architecting.

Technical Aesthetic Sociopolitical

PERFORMANCE

Uncertainty Sequencing

Complexity RISK ARCHITECTING SCHEDULE Events

Management
Coordination

COST

People Money Time

Figure 5.2  Underlying sources of the four tensions.

Chapter 5:  Social Systems	 133

that someday their local plant will blow up. Remember Three Mile
Island and Chernobyl? A. M. Weinberg of Oak Ridge Associated
Universities suggested perhaps the only antidote: “The engineer-
ing task is to design reactors whose safety is so transparent that the
skeptical elite is convinced, and through them the general public.”3

Airline travel has been made so safe that the most dangerous part of •	
travel can be driving to and from the airport. Yet, every airliner crash
is headline news. A serious design concern, therefore, is how many
passengers an airliner should carry — 200? 400? 800? — because
even though the average accident rate per departure would probably
remain the same,4 more passengers would die at once in the larger
planes and a public perception might develop that larger airliners
are less safe, facts not withstanding.
One of the reasons that health insurance is so expensive is that health •	
care is perceived by employees as nearly “free” because almost all its
costs are paid for either by the employee’s company or the govern-
ment. The facts are that the costs are either passed on to the consumer,

PERCEPTIONS
PERFORMANCE

RISK ARCHITECTING SCHEDULE

COST FACTS

Figure 5.3  Adding facts versus perceptions.

Presentations Associations Experience

PERCEPTIONS

PERFORMANCE

RISK ARCHITECTING SCHEDULE

COST
FACTS

Science Measurements Mathematics

Figure 5.4  Sources of facts and perceptions.

134	 The Art of Systems Architecting

subtracted from wages and salaries, taken as a business deduction
against taxes, or paid for by the general taxpayer, or all of the above.
As any economist will explain, free goods are overconsumed.
One of the most profound and unanticipated results of the Apollo •	
flights to the Moon was a picture of the Earth from afar, a beautiful
blue, white, brown, and green globe in the blackness of space. We
certainly had understood that the Earth was round, but that distant
perspective changed our perception of the vulnerability of our home
forever, and with it, our actions to preserve and sustain it. Just how
valuable was Apollo, then and in our future? Is there an equivalent
value today?

Like it or not, the architect must understand that perceptions can
be just as real as facts, just as important in defining the system architec-
ture, and just as critical in determining success. As one heuristic states,
The phrase, “I hate it,” is direction.5 There have even been times when,
in retrospect, perceptions were “truer” than facts that changed with
observer, circumstance, technology, and better understanding. Some of
the most ironic statements begin with, “It can’t be done, because the facts
are that…”

Alleviating the tension between facts and perceptions can be highly
individualistic. Some individuals can be convinced — in either direction —
by education, some by prototyping or anecdotes, some by A. M. Greenberg’s
antidote given earlier, some by better packaging or presentation, and some
only by the realities of politics. Some individuals will never be convinced,
but they might be accepting. In the end, it is a matter of achieving a balance
of perceived values. The architect’s task is to search out that area of com-
mon agreement that can result in a desirable, feasible system.

Looking more broadly, this is just a strengthened version of the basic
admonition that an architect must know his or her client and what com-
municates to that client. It does no good to communicate precise and accu-
rate representations that the client does not understand. Some clients are
convinced only by prototypes. Some are convinced by analyses. In any
case, the architect must understand what the audience in the domain of
interest understands and will accept.

Heuristics for Social Systems
Success is in the eyes of the beholder (not the architect).•	
Do not assume that the original statement of the problem is neces-•	
sarily the best, or even the right one. (Most customers would agree.)
In conceptualizing a social system, be sure there are mutually •	
consistent answers to the Four Who’s: Who benefits? Who pays?
Who supplies (provides)? And, as appropriate, Who loses?

Chapter 5:  Social Systems	 135

In any resource-limited situation, the true value of a given service or •	
product is determined by what one is willing to give up to obtain it.
The choice between the architectures may well depend upon which •	
set of drawbacks the stakeholders can handle best. (Not on which
advantages are the most appealing.)
Particularly for social systems, it is not the facts, it is the perceptions •	
that count. (Try making a survey of public opinion.)
The phrase, “I hate it.” is direction. (Or were you not listening?)•	
In social systems, •	 how you do something may be more important than
what you do. (A sometimes bitter lesson for technologists to learn.)
When implementing a change, keep some elements constant as an •	
anchor point for people to cling to. (At least until there are some
new anchors.)
It is easier to change the technical elements of a social system than •	
the human ones. (Enough said.)

Conclusion
Social systems, in general, place social concerns ahead of technical ones.
They exemplify the tension between perception and fact. More than most
systems, they require consistent responses to questions of who benefits?
who pays? who supplies (provides, builds, and so forth), and, sociologi-
cally at least, who loses?

Perhaps more than other complex systems, the design and develop-
ment of social ones should be amenable to insights and heuristics. Social
factors, after all, are notoriously difficult to measure, much less predict.
But, like heuristics, they come from experience, from failures as well as
successes, and from lessons learned.

Exercises
	 1.	Public utilities are examples of sociotechnical systems. How are

the heuristics discussed in this chapter reflected in the regulation,
design, and operation of a local utility system?

	 2.	Apply the four who’s to a sociotechnical system familiar to you. Examples:
the Internet, air travel, communication satellites, a social service.

	 3.	Many efforts are underway to build and deploy intelligent transport
systems using modern information technologies to improve exist-
ing networks and services. Investigate some of the current proposals
and apply the four who’s to the proposal.

	 4.	Pollution and pollution control are examples of a whole class of socio-
technical systems where disjunctions in the four who’s are common.
Discuss how governmental regulatory efforts, both through man-
dated standards and pollution license auctions, attempt to reconcile

136	 The Art of Systems Architecting

the four who’s. To what extent have they been successful? How did
you judge success?

	 5.	Among the most fundamental problems in architecting a system
with many stakeholders is conflicts in purposes and interests. What
architectural options might be used to reconcile them?

	 6.	Give an example of the application of the heuristic, In introducing
technological change, how you do it is often more important than
what you do.

Notes and References
	 1.	 Lang, Jon, Creating Architectural Theory, The Role of the Behavioral Sciences in

Environmental Design. New York: Van Nostrand Reinhold, 1987.
	 2.	 See Rechtin, E., Systems Architecting, Creating and Building Complex Systems.

Englewood Cliffs, NJ: Prentice Hall, Organizations as Purposeful Systems,
pp. 270–274, 1991; Rechtin, E., Why Not More Straight Commercial Buying,
Government Executive, pp. 46–48, October 1976.

	 3.	 Weinberg, Alvin M., Engineering in an Age of Anxiety: The Search for
Inherent Safety. Engineering and Human Welfare NAE 25, Proceedings of the
25th Annual Meeting, Washington, DC: National Academy of Engineering,
1990.

	 4.	 U.S. Airline Safety, Scheduled Commercial Carriers, The World Almanac® and
Book of Facts, 1994, Funk and Wagnalls Corporation ©1993. According to the
National Transportation Safety Board source, the fatal accidents per 100,000
miles have remained at or less than 0.100 from 1977 through 1992 despite a
40% increase in departures, major technological change, and the addition of
increasingly larger aircraft to the airline fleets.

	 5.	 Gradous, Lori I., University of Southern California, October 18, 1993.

137

Case Study 4: Hierarchical
to Layered Systems
A core concept we will encounter in Chapter 6 is the concept of a layered
rather than a hierarchical system. Software is naturally constructed as a
layered system rather than in the classic hierarchy, the basic paradigm of
systems engineering. As with the other chapters in Part II, we introduce
the core concepts with examples taken from life before proceeding with
the chapter. The case study in this section differs from some of the others
in that it is not drawn from a single, named system. For this case study,
it has been more convenient to combine and abstract a number of stories
the authors have encountered over time. The individual stories either
illustrate only a limited range of issues or are not available to publish with
full acknowledgment. Nevertheless, a reader with experience should have
little trouble drawing parallels in his or her own personal experiences.
The basic stories and issues in making the hierarchical to layered transi-
tion are encountered consistently.

Key points to consider in this case study include the following:

The contrasting logic of layered versus hierarchical construction. •	
In each, what constitutes components, what constitutes connectors
between components, and how does each relate to others?
The technical structure is (or should be) a reflection of business •	
strategy. Choosing a layered architecture is foremost a business, or
operational, strategic choice.
The implementation, and the means of implementation, matter a •	
great deal in whether or not the business strategy is realized. Simply
converting a hierarchical architecture to a layered architecture
does not embody a coherent business strategy. Implementation of
the strategy requires details of the implementation (a repeat of the
heuristic of variable technical depth, but in a different guise).

Many of these points are echoed and expanded in later chapters. For
example, the relationship between business strategy and architecture is
studied in depth in Chapter 12. We introduce many of the key points here
that we will return to at greater length in later chapters.

Business Background
Our fictitious case study company, MedInfo, makes a wide variety of medi-
cal imaging systems, including conventional x-ray, computed tomography

138	 The Art of Systems Architecting

(CT), magnetic resonance imaging (MRI), and others. The systems are
sold to hospitals and clinics, both in the United States and internationally.
Wherever one of the MedInfo systems is deployed, it will be integrated
into the user’s technical infrastructure, at least so far as possible. At the
beginning point in this story, the systems are structured as “stovepipes”;
that is, each system is designed, manufactured, sold, and operated as its
own, stand-alone, system. This is illustrated in Figure CS4.1.

The progression of business has been dominated by steady upgrades
to the individual systems and occasional introduction of new imaging
systems. The upgrade path is what one would expect, additional user
features, lowered cost, greater throughput, enhanced sensitivity or coverage
area, and so forth. The management model for the product family is like-
wise simple and as one would expect. Each of the products has an indi-
vidual product manager. That manager is responsible end-to-end for that
product. The manager leads design efforts, runs development and produc-
tion, and is responsible for field performance, maintenance, and support.
Although each product manager has many subordinates responsible for
different aspects, all responsibility for that product ultimately lies with the
product manager.

Each system has associated with it a supply chain of subcontractors
and other suppliers. The subsystems or components supplied are each
defined through specifications and interface control documents, written
as needed based on the patterns of interconnecting each system.

Motivation for Change
If MedInfo has a solid record of success with things as they are, what
motivation is there for change, especially relatively radical, architectural

X-ray
Imaging

Unit

User
Display

Processing
Hardware

X-ray
Software

Stack

MRI
Imaging

Unit

User
Display

Processing
Hardware

MRI
Software

Stack

CT
Imaging

Unit

User
Display

Processing
Hardware

CT
Software

Stack

X-ray System Product MRI System Product CT System Product

Figure CS4.1  MedInfo’s initial situation. Multiple products are structured as
stand-alone systems. Their nature as a product line is restricted to marketing and
branding.

Case Study 4: Hierarchical to Layered Systems	 139

change? The motivation for change is clearly not incremental improve-
ment. Incremental, steady improvement is clearly possible, and is already
being realized, with the current architecture. However, business strategy
issues are pushing MedInfo toward restructuring their family of prod-
ucts. The business strategic drivers for change are as follows:

Software cost reduction: MedInfo management has noticed that the frac-
tion of development cost expended on software has risen steadily,
and now tops 70%. What used to be hardware-dominated prod-
ucts are now software-dominated products. The shift comes from
multiple causes. The first is the continued commodification of hard-
ware. Custom processors have disappeared, and larger and more
complex hardware units are available through subcontracting.
Second, and related, is that competitive differentiation is increas-
ingly software based. When competitors have access to the same
hardware components, it is possible to competitively differentiate
only through software. User demands are also increasingly about
software capabilities, such as processing algorithms, display forms,
user customization, and the ability to support process automation.
A major source of user demand, and a source of the movement
toward higher value fractions in software, is the need for intercon-
nection and integration.

User demand for interconnection and integration: Users are increasingly
dissatisfied with stand-alone systems. A radiologist might need
access to five different imaging technologies during a day, and have
to report from any or all of them on a hospital network. Few radi-
ologists (much less other types of doctors) are happy with five com-
puters on their desks and with manual file transfer among systems.
Users are increasingly demanding both interconnection and inte-
gration. A very simple form of integration is collapsing the number
of displays and computers on the desk needed to access multiple
imaging systems. A form of interconnection and integration is the
ability to move data from different imaging systems onto a common
reporting platform. A complex form of integration is being able to
combine, overlay, and otherwise jointly process images from differ-
ent systems. The most complex form of integration is where integra-
tion leads itself to new products and new concepts of operation by
customers. An example here would be integrating medical imaging
data into multidisciplinary diagnostic decision support systems.

Rate of product turnover: In MedInfo’s world, as in many other prod-
uct spaces, there is increasing pressure to turn over products. User
expectations for product cycles are getting shorter. As MedInfo’s
competition works to lower development cycle time, MedInfo is
forced to match.

140	 The Art of Systems Architecting

Lateral and vertical product space expansion: Finally, the pressure to grow
makes it important to continuously challenge the horizontal and
vertical boundaries of the product space. If MedInfo machines are
going to be integrated into larger medical information systems, then
failing to move one’s own boundary outward to encompass some
of that larger information space leaves one open to being laterally
consumed. If the processing and user interface side of a MedInfo
imager is subsumed into a shared information system, the infor-
mation system supplier will want to capture that part of the value
stream and push MedInfo back to being a narrower hardware sup-
plier. Integrated system markets can easily become “winner take all”
markets, meaning one better try to be the winner.

The Layered Alternative
As MedInfo systems become software dominated (in development cost),
and increasingly interconnected, it becomes obvious that different prod-
ucts are sharing a great deal of software. Networking, data storage and
transformation, significant processing, and much user interface code are
either the same, or easily could be the same. Achieving integration is
largely a matter of achieving protocol sharing, which is often most easily
accomplished by code sharing. Systems that build with layers that care-
fully isolate the parts with the greatest potential to change from each other,
through relatively invariant layers, generally have the highest rates of
effective change. But, hierarchical system decomposition with end-to-end
product managers with complete vertical responsibility does not encour-
age the discovery and management of that shared code.

An alternative architecture for the MedInfo product line that empha-
sizes horizontal layering is illustrated in Figure CS4.2. In this variant, the
actual deployed products may or may not look different than before. If a
customer desired a stand-alone system, he will receive a stand-alone system.
On the other hand, if a customer desires that the system display on a shared
display system, then that can be accommodated. In either case, the same
subsystems are present as before, but now those subsystems are drawn
from a shared base. There is extensive, designed-in code sharing among
the different elements of the family. The shared elements form layers.

In a classic hierarchy, a lower-level element is a “part of” a higher-level
element. This is the relationship among the elements of a chair. The legs of
the chair, the seat of the chair, and the back of the chair are all parts of the
chair. A set of chair legs belongs to exactly one chair (although the design
and manufacturing of those legs may be shared across many identical
chairs). In a layered system, a lower-layer element provides services to a
higher-layer element. The lower element does not belong to the upper; it is

Case Study 4: Hierarchical to Layered Systems	 141

used by the upper. A layered architecture has a component relationship of
the “uses” form instead of the “part-of” form.

The layered model is borrowed originally from communication net-
works, where it originated as the well-known seven-layer model. The seven-
layer model of the ISO Open System Interconnect (OSI) standard is now
of largely historic interest, having been replaced by the 5+ layered model
of the Internet. In both, the lower four layers (physical, data link, network,
and transport) and the top layer (application) are largely the same. What
is different is what is in between. The original OSI model defined two
specific in-between layers, the session and the presentation. In practice,
these are not used. Many Internet applications simply are written directly
onto the transport layer. In modern development libraries, and in this
case study, the middle area is occupied by various forms of middleware
(for example, message servers, .NET, Common Object Request Broker
Architecture [CORBA®]).

Various real companies, and our abstracted MedInfo company, have
made the transition from a hierarchical to a layered architecture. One can eas-
ily find reports on how the transition went that emphasize the following:

	 1.	The success of the transition is critical to realizing the business stra-
tegic objectives (those discussed above).

	 2.	The transition was intensely traumatic for staff and management,
leading to extensive attrition and financial difficulties while trying
to carry it off.

If the benefits to MedInfo of making this transition are clear, what are the
sources of pain?

X-ray MRI CT User
Display

Networking (COTS)

Development Frameworks (COTS)

Shared Modules (image formation,
analysis, user interaction, data exchange)

Single
System

Application

Multi-
system

Applications

Integration
Applications

Hardware Elements

Shared Software
Elements

User-Visible Software
Elements

Figure CS4.2  Transformed structure of MedInfo product line. The product line
allows “mixing and matching” of hardware elements and assembles end-to-end
applications from a large base of shared modules and commercial products.

142	 The Art of Systems Architecting

The Pain of the Transition
The first source of pain is in how end-to-end management responsibility
changes. In a stovepiped world, the product manager has everything nec-
essary within his or her scope of responsibility. When there are problems,
there is no doubt where to go to demand a fix, and one point of decision on
how to make the fix. Once the fix is made, the scope of its impact is on the
product for which the manager is responsible. In the layered construct,
the situation becomes more complex.

In the layered construct, the end-user product is now assembled out of
components shared across the product family. It may be delivered, in part,
on platforms out of the product manager’s responsibility. For example, in
the layered construct, it may be that an x-ray imager is delivered by deliv-
ering the imaging hardware and software, but that the software and user
interface reside entirely on computers shared with other imaging systems,
imaging systems that may not be made by MedInfo (in a more highly
integrated case). A large part of the imaging and user interface software is
shared with other products in the MedInfo family. Being able to do this is
a major part of the stated MedInfo business strategy.

When things go wrong, either during development or in deployment,
who is responsible for the fix? The product manager no longer has vertical
control over the elements that combine to produce a valuable product. If a
change is required in the shared code base, that change could conceivably
impact all of the other products that use the shared elements. Various com-
panies and government development groups have reported that handling
this diffusion of end-to-end responsibility was the most difficult aspect of
the change to a layered architecture. It is not practical to make the first con-
vergence point for technical issues across the different products the chief
executive officer (CEO). There has to be a point to resolve the issues lower
down, but conceivably there is no point of common financial responsibil-
ity lower down. It is not hard to institute cross-product or cross-functional
engineering teams, but it is likewise not hard to make such teams toothless
when all financial accountability resides elsewhere.

Related to management responsibility is how MedInfo must do qual-
ity management. In the stovepiped construct, quality can be managed
product by product. The quality requirements can come directly from the
expectations of the market for each product. But, how do we do quality
management for shared infrastructure components? Granted, coming up
with measures is no problem for the experienced, but where do the thresh-
olds lie, given that quite different thresholds might apply to different
products within the family? If trade-offs for shared components resolve
quite differently in different product applications, which trade-off should
be selected? And, how do we enforce standards when those standards do

Case Study 4: Hierarchical to Layered Systems	 143

not directly relate to delivered customer quality but do have immediate
financial consequences (probably bad)?

Again, various companies have similarly reported on the difficulty of
these issues and on how they were successfully dealt with. One heuristic
that stands out is

Subsystem quality requirements that are sufficient when
the component is an element of a stovepiped system are
unlikely to be sufficient when the component is shared
across many systems. Or, the quality requirements on the
components of a shared layer are likely to be much more
demanding than when those components are not shared.

More difficult quality requirements may require new quality assess-
ment tools. Some highlights have included the following:

The transition to a layered, family-of-systems architecture drove the •	
development and adoption of a massively parallel and automated
software regression testing system. All unit-level regression tests
needed to be run automatically over a weekend (and they were run
every weekend).
All heavily shared libraries were required to be written with asser-•	
tion statements on all function entrances and exits. All designs with
assertions must be formally reviewed before production. All soft-
ware had to be tested with the assertions compiled. Any calling
function that causes an assertion to fail is assumed to be at fault and
must correct itself.

A related problem in end-to-end management is in how subcontract-
ing or outsourcing is organized. In the hierarchical construct, subcon-
tracting tends to follow physical lines. A subcontractor delivers a box or
a board, and the specification is written at the box or board level. In a
layered system, one can likewise imagine doing the subcontracting of a
whole layer, or components within a layer. But, new difficulties are intro-
duced, such as

The specification for a layer typically looks nothing like the speci-•	
fication for a box. Is the expertise available in-house to write speci-
fications and manage subcontracts when the interfaces change in
dramatic ways?
Testing and integration of layered elements presupposes access to •	
the shared programming libraries. How will shared programming
environments be managed with a subcontractor? If the prime con-
tractor has selected some overall software framework to facilitate

144	 The Art of Systems Architecting

integration, will all subcontractors buy licenses to the same frame-
work? Is that financially feasible? How will the configurations
of the separately purchased frameworks be managed to ensure
compatibility?
What happens when a subcontractor supplying a component that •	
cuts across the whole family-of-systems goes out of business, or
decides to drop support, or simply releases a poor-quality version?

All of these, leaving aside the detailed technical issues, fall generally
under the heading of management culture and skills. It is not as if there
are no solutions to these issues, many companies and government depart-
ments have encountered them and solved them. The impact on manage-
ment culture and practices is most likely when companies frequently
report high attrition as a cost of transition. In one case known to the
author, the chief operating officer (COO) of a major company responded
when asked how his company had successfully managed a stovepipe to
layered transition that others had failed at, “We became successful when
management attrition reached 50%.” Unfortunately, this does not appear
to be uncommon.

Results
Solving the problems imposed by changing architectures is possible,
but typically quite painful. Is the solution and the pain of arriving at the
solution worth the strategic gains? In our composite example, MedInfo
answers “yes,” but with a certain degree of qualification. The transition
from a stovepiped to layered system addresses the business objectives, at
least it can when the devilish details are worked out.

An effective layered architecture can drop the total line of code count •	
across a family of systems. If the total size is dropped, cost and devel-
opment time advantages can be expected to follow. However, even
where there is a software size savings, the savings can be lost if the
newer development environment has higher overhead, is much more
expensive, or if access constraints make development more difficult.
A layered architecture can allow much more complete integration •	
among elements of a product line, when all elements of the line have
made the transition. The end point might be very integrated, but it
might be a very long march to get to the point at which significant
benefits are realized. Management needs to know where the cut-over
point is to make a rational decision.
If the layered architecture effectively isolates areas of change from •	
each other, it can allow for much faster product evolution. The key
is good choice of invariants. The invariants must flow from a wise

Case Study 4: Hierarchical to Layered Systems	 145

identification of things that change, and where an invariant struc-
ture can isolate change. The Transmission Control Protocol/Internet
Protocol (TCP/IP) are an outstanding example.
The transition is almost invariably very painful. The pain is related •	
much more to the difficulties of the human enterprise than to inher-
ent difficulties in the technologies involved. The new architecture is
not more complex than the old one; it is simply different, and many
success factors relevant to the old one must be replaced before the
new one can be equally as successful.

147

6chapter

Software and Information
Technology Systems

Today I am more convinced than ever. Conceptual
integrity is central to product quality. Having a
system architect is the most important step toward
conceptual integrity.

Frederick P. Brooks, Jr.
The Mythical Man-Month after Twenty Years

Introduction: The Status of Software Architecting
Software is rapidly becoming the centerpiece of complex system design, in
the sense that an increasing fraction of system performance and complex-
ity is captured in software, and that software considerations drive overall
system development. Software is increasingly the portion of the system that
enables the unique behavioral characteristics of the system. Competitive
developers of end-user system products find themselves increasingly
developing software, even though the system combines both hardware
and software. The reasons stem from software’s ability to create intelli-
gent behavior and quickly to accommodate technical-economic trends in
hardware development. This capability of software is matched against
increasing maturity in many other fields containing complex systems. As
examples, the physical architectures of aircraft have been slowly varying
since 1970, and the physical architectures of spacecraft have been slowly
varying since at least 1990.

Although detailed quantitative data are hard to come by, anecdotal
stories tell a consistent story. A wide variety of companies in different
industries (for example, telecommunications, consumer electronics, indus-
trial controls) have reported a dramatic shift in the relative engineering
efforts devoted to hardware and software.* Where 15 to 20 years ago the
ratio was typically 70% hardware and 30% software, it is now typically

*	 The numbers are anecdotal but reflect private communications to one of the present
authors from a wide variety of sources.

148	 The Art of Systems Architecting

reversed, 30% hardware and 70% software. And the software fraction is
continuing to grow. This should not be surprising, given how the semi-
conductor industry has changed. Where product developers used to
build from relatively simple parts (groups of logic gates), they now use
highly integrated microprocessors with most peripheral devices on the
chip. The economies of scale in semiconductor design and production
have pushed the industry toward integrated solutions where the product
developer primarily differentiates through software. Moreover, micro-
controllers have become so inexpensive and have such low power con-
sumption that they can be placed in nearly any product, even throwaway
products. The microprocessor-based products acquire their functionality
by the software that executes on them. The product developer is trans-
formed from a hardware designer to a hardware integrator and software
developer. As software development libraries become larger, more capable,
and accepted, many of the software developers will be converted to soft-
ware integrators.

The largest market for software today is usually termed “information
technology,” which is a term encompassing the larger domain of computers
and communications applied to business and public enterprises. We con-
sider both here, as software architecture as a field is becoming a distinct
specialty. What is usually called software architecture, at least in the
research community, is usually focused on developing original software
rather than building information-processing systems through integra-
tion of large software and hardware components. Information technol-
ogy practice is less and less concerned with developing complete original
applications and more and more concerned with building systems through
integration. What is usually called enterprise architecture, to the extent
that it is dealing with the architecture of software, is normally dealing
with integrating large, preexisting software applications.

The focus of this chapter is less on the architecting of software (though
that is discussed here and in Part III) than it is on the impact of software
on system architecting. Software possesses two key attributes that affect
architecting. First, well-architected software can be very rapidly evolved.
Evolution of deployed software is much more rapid than evolution of
deployed hardware, because an installed base of software can be regu-
larly replaced at moderate cost. The cost of “manufacturing” software is
essentially zero (although the cost of certifying it for use may be high),
and so unlike in hardware systems, regular total replacement is efficient.
As a result, annual and even quarterly replacement is common. Annual or
more frequent field software upgrades are normal for operating systems,
databases, end-user business systems, large-scale engineering tools, and
communication and manufacturing systems. This puts a demanding pre-
mium on software architectures because they must be explicitly designed

Chapter 6:  Software and Information Technology Systems	 149

to accommodate future changes and to allow repeated certification with
those changes.

Second, software is an exceptionally flexible medium. Software can
easily be built which embodies many logically complex concepts such as
layered languages, rule-driven execution, data relationships, and many
others. This flexibility of expression makes software an ideal medium with
which to implement system “intelligence.” In both the national security and
commercial worlds, intelligent systems are far more valuable to the user
and far more profitable for the supplier than their simpler predecessors.

In addition, a combination of technical and economic trends favor build-
ing systems from standardized computer hardware and system-unique
software, especially when computing must be an important element of
the system. Building digital hardware at very high integration levels
yields enormous benefits in cost per gate but requires comparably large
capital investments in design and fabrication systems. These costs are
fixed, giving a strong competitive advantage to high production volumes.
Achieving high production volumes requires that the parts be general
purpose. For a system to reap the benefits of very high integration levels,
its developers must either use the standard parts (available to all other
developers as well) or be able to justify the very large fixed expense of a
custom development. If standard hardware parts are selected, the remain-
ing means to provide unique system functionality is software.

Logically, the same situation applies to writing software. Software
production costs are completely dominated by design and test. Actual pro-
duction is nearly irrelevant. So, there is likewise an incentive to make use
of large programming libraries or components and amortize the devel-
opment costs over many products. In fact, this is already taking place.
Even though much of the software engineering community is frustrated
with the pace of software reuse, there are many successful examples. One
obvious one is operating systems. Very few groups who use operating
systems write one from scratch anymore. Either they use an off-the-shelf
product from one of the remaining vendors, or they use an open source
distribution and customize it for their application. Databases, scripting
languages, and Web applications are all examples of successful reuse of
large software infrastructures.

The rapid proliferation of open source software is likewise a suc-
cessful example of wide-scale software reuse. When the source code is
completely open and available for modification and redistribution, many
groups have built vigorous communities of developers and users. The
availability of the source code, and the licensing terms for redistribution,
appear to be key to making this form of reuse work, as is the quality of
the design.

150	 The Art of Systems Architecting

A consequence of software’s growing complexity and central role
is recognition of the importance of software architecture and its role
in system design. An appreciation of sound architectures and skilled
architects is broadly accepted. The soundness of the software architec-
ture will strongly influence the quality of the delivered system and the
ability of the developers to further evolve the system. When a system is
expected to undergo extensive evolution after deployment, it is usually
more important that the system be easily evolvable than that it be exactly
correct at first deployment.

Software architecture is frequently discussed, from both academic and
industrial perspectives.1 Within the software architecture community, there
is limited consensus on the borders of what constitutes “architecture.” Many
groups focus on architecture as high-level physical structure, primarily of
source code. A distillation of commonly used ideas is that the architecture
is the overall structure of a software system in terms of components and
interfaces. This definition would include the major software components,
their interfaces with each other and the outside world, and the logic of their
execution (single threaded, interrupted, multithreaded, combination). To
this is often added principles defining the system’s design and evolution,
an interesting combination of heuristics with structure to define architec-
ture. A software architectural “style” is seen as a generic framework of com-
ponents or interfaces that defines a class of software structures. The view
taken in this book, and in some of the literature,2 is more expansive than
just high-level physical structure, and includes other high-level views of the
system: behavior, constraints, and applications as well.

High-level advisory bodies to the Department of Defense are calling
for architects of ballistic missile defense, C4I (command, control, commu-
nications, computers, and intelligence), global surveillance, defense com-
munications, Internetted weapon systems, and other “systems-of-systems.”
Formal standards have been developed, defining the role, milestones,
and deliverables of system architecting. Many of the ideas and terms of
those standards come directly from the software domain, for example,
object-oriented, spiral process model, and rapid prototyping. The carry
over should not be a surprise; the systems for which architecting is
particularly important are behaviorally complex, data intensive, and soft-
ware rich. Examples of software-centered systems of similar scope are
appearing in the civilian world, such as the information superhighway,
the Internet, global cellular telephony, health care, manned space flight,
and flexible manufacturing operations.

The consequences to software design of this accelerating trend to
smarter systems are now becoming apparent. For the same reason that
guidance and control specialists became the core of systems leadership

Chapter 6:  Software and Information Technology Systems	 151

in the past, software specialists will become the core in the future. In the
systems world, software will change from having a support role (usually
after the hardware design is fixed) to becoming the centerpiece of com-
plex systems design and operation. As more of the behavioral complexity
of systems is embodied in software, software will become the driver of
system configuration. Hardware will be selected for its ability to support
software instead of the reverse. This is now common in business informa-
tion systems and other applications where compatibility with a software
legacy is important.

If software is becoming the centerpiece of system development, it is
particularly important to reconcile the demands of system and software
development. Even if 90% of the system-specific engineering effort is put
into software, the system is still the end product. It is the system, not the
software inside, the client wishes to acquire. The two worlds share many
common roots, but their differing demands have led them in distinctly
different directions. Part of the role of systems architecting is to bring
them together in an integrated way.

Software engineering is a rich source for integrated models; mod-
els that combine, link, and integrate multiple views of a system. Many
of the formalisms now used in systems engineering had their roots in
software engineering. This chapter discusses the differences between
system architecting and software architecting, current directions in
software architecting and architecture, and heuristics and guidelines
for software. Chapter 10 provides further detail on four integrated soft-
ware modeling methods, each aimed at the software component of a
different type of system.

Software as a System Component
How does the architecture and architecting of software interact with that
of the system as a whole? Software has unique properties that influence
overall system structure:

	 1.	Software provides a palette of abstractions for creating system
behavior. Software is extensible through layered programming to
provide abstracted user interfaces and development environments.
Through the layering of software, it is possible to directly implement
concepts such as relational data, natural language interaction, and
logic programming that are far removed from their computational
implementation. Software does not have a natural hierarchical struc-
ture, at least not one that mirrors the system-subsystem-component
hierarchy of hardware.

152	 The Art of Systems Architecting

	 2.	 It is economically and technically feasible to use evolutionary deliv-
ery for software. If architected to allow it, the software component of a
deployed system can be completely replaced on a regular schedule.

	 3.	Software cannot operate independently. Software must always be
resident on some hardware system and, hence, must be integrated
with some hardware system. The interaction between, and integra-
tion with, this underlying hardware system becomes a key element
in software-centered system design.

For the moment there are no emerging technologies that are likely
to take software’s place in implementing behaviorally complex systems.
Perhaps some form of biological or nano-agent technology will eventually
acquire similar capabilities. In these technologies, behavior is expressed
through the emergent properties of chaotically interacting organisms. But
the design of such a system can be viewed as a form of logic programming
in which the “program” is the set of component construction and interface
rules. Then the system, the behavior that emerges from component inter-
action, is the expression of an implicit program, a highly abstracted form
of software.

System architecting adapts to software issues through its models and
processes. To take advantage of the rich functionality, there must be models
that capture the layered and abstracted nature of complex software. If evo-
lutionary delivery is to be successful, and even just to facilitate successful
hardware/software integration, the architecture must reconcile continu-
ously changing software with much less frequently changing hardware.

Software for Modern Systems

Software plays disparate roles in modern systems. Mass market applica-
tion software, one-of-a-kind business systems, real-time analysis and con-
trol software, and human interactive assistants are all software-centered
systems, but each is distinct from the other. The software attributes of
rich functionality and amenability to evolution match the characteristics
of modern systems. These characteristics include the following:

	 1.	Storage of, and semiautonomous and intelligent interpretation of,
large volumes of information.

	 2.	Provision of responsive human interfaces that mask the underlying
machines and present their operation in metaphor.

	 3.	Semiautonomous adaptation to the behavior of the environment and
individual users.

	 4.	Real-time control of hardware at rates beyond human capability
with complex functionality.

Chapter 6:  Software and Information Technology Systems	 153

	 5.	Constructed from mass-produced computing components and
unique system software, with the capability to be customized to
individual customers.

	 6.	Coevolution of systems with customers as experience with system
technology changes perceptions of what is possible.

The marriage of high-level language compilers with general-purpose
computers allows behaviorally complex, evolutionary systems to be devel-
oped at reasonable cost. Although the engineering costs of a large software
system are considerable, they are much less than the costs of developing a
pure hardware system of comparable behavioral complexity. Such a pure
hardware system could not be evolved without incurring large manufactur-
ing costs on each evolutionary cycle. Hardware-centered systems do evolve,
but at a slower pace. They tend to be produced in similar groups for several
years, and then make a major jump to new architectures and capabilities.
The time of the jump is associated with the availability of new capabilities
and the programmatic capability of replacing an existing infrastructure.

Layering of software as a mechanism for developing greater behavioral
complexity is exemplified in the continuous emergence of new software
languages and in Internet and Web applications being built on top of dis-
tributed infrastructures. The trend in programming languages is to move
closer and closer to application domains. The progression of language is
from machine level (machine and assembly languages) to general-purpose
computing (FORTRAN, Pascal, C, C++, Ada) to domain specific (MATLAB,
Visual Basic for Applications, dBase, SQL, PERL, and other scripting
languages). At each level, the models are closer to the application, and the
language components provide more specific abstractions. By using higher
and higher level languages, developers are effectively reusing the coding
efforts that went into the language’s development. Moreover, the new lan-
guages provide new computational abstractions or models not immedi-
ately apparent in the architecture of the hardware on which the software
executes. Consider a logic programming language like PROLOG. A pro-
gram in PROLOG is more in the nature of hypothesis and theorem proof
than arithmetic and logical calculation. But it executes on a general-purpose
computer as invisibly as does a C or even FORTRAN program.

Systems, Software, and Process Models
An architectural challenge is to reconcile the integration needs of software
and hardware to produce an integrated system. This is both a problem of
representation or modeling and of process. Modeling aspects are taken
up subsequently in this chapter, and in Part III. On the process side, hard-
ware is best developed with as little iteration in production as possible,
but software can (and often should) evolve through much iteration.

154	 The Art of Systems Architecting

Hardware should follow a well-planned design and production cycle to
minimize cost, with large-scale production deferred to as close to final
delivery as possible (consistent with adequate time for quality assurance).
But software cannot be reliably developed without access to the targeted
hardware platform for much of its development cycle. Production takes
place nearly continuously, with release cycles now often daily in many
advanced development organizations.

Software distribution costs are comparatively so low that repeated
complete replacement of the installed base is normal practice. When soft-
ware firms ship their yearly (or more frequent) upgrades, they ship a com-
plete product. Firms commonly “ship” patches and limited updates on
the Internet, eliminating even the cost of media distribution. The cycle
of planned replacement is so ingrained that some products (for example,
software development tools) are distributed as a subscription; a quarterly
CD-ROM or Internet download with a new version of the product, applica-
tion notes, documentation, and prerelease components for early review.

In contrast, the costs of hardware are often dominated by the physi-
cal production of the hardware. If the system is mass produced, this will
clearly be the case. Even when production volumes are very low, as in
unique customized systems, the production cost is often comparable to or
higher than the development cost. As a result, it is uneconomic, and hence
impractical, to extensively replace a deployed hardware system with
a relatively minor modification. Any minor replacement must compete
against a full replacement, a replacement with an entirely new system
designed to fulfill new or modified purposes.

One important exception to the rule of low deployment costs for soft-
ware is where the certification costs of new releases are high. For example,
one does not casually replace the flight control software of the Space
Shuttle any more than one casually replaces an engine. Extensive test and
certification procedures are required before a new software release can
be used. Certification costs are analogous to manufacturing costs in that
they are a cost required to distribute each release but do not contribute to
product development.

Waterfalls for Software?

For hardware systems, the process model of choice is a waterfall (in one of
its pure or more refined incarnations). The waterfall model development
stages and tries to keep iterations local — that is, between adjacent tasks
such as requirements and design. Upon reaching production, there is no
assumption of iteration, except the large-scale iteration of system assess-
ment and eventual retirement or replacement. This model fits well within
the traditional architecting paradigm as described in Chapter 1.

Chapter 6:  Software and Information Technology Systems	 155

Software can, and sometimes does, use a waterfall model of devel-
opment. The literature on software development has long embraced the
sequential paradigm of requirements, design, coding, test, delivery. But
dissatisfaction with the waterfall model for software led to the spiral
model and variants. Essentially all successful software systems are itera-
tively delivered. Application software iterations are expected as a matter
of course. Weapon system and manufacturing software is also regularly
updated with refined functionality, new capabilities, and fixes to problems.
One reason for software iterations is to fix problems discovered in the field.
A waterfall model tries to eliminate such problems by doing a very high
quality job of the requirements. Indeed, the success of a waterfall develop-
ment is strongly dependent on the quality of the requirements. But in some
systems, the evolvability of software can be exploited to reach the market
faster and avoid costly, and possibly fruitless, requirements searches.

Example: Data communication systems have an
effective requirement of interoperating with what-
ever happens to be present in the installed base.
Deployed systems from a global range of companies
may not fully comply with published standards,
even if the standards are complete and precise
(which they often are not). Hence, determining the
“real” requirements to interoperate is quite difficult.
The most economical way to do so may be to deploy
to the field and compile real experience. But that, in
turn, requires that the systems support the ability
to determine the cause of interoperation problems
and be economically modifiable once deployed to
exploit the knowledge gained.

But, in contrast, a casual attitude toward evolution in systems with
safety or mission-critical requirements can be tragic.

Example: The Therac 25 was a software-controlled
radiation treatment machine in which software
and system failures resulted in six deaths.3 It was
an evolutionary development from a predecessor
machine. The evidence suggests that the safety
requirements were well understood but that the
system and software architectures both failed to
maintain the properties. The system architecture
was flawed in that all hardware safety interlocks
(which had been present in the predecessor model)
were removed, leaving software checks as the sole

156	 The Art of Systems Architecting

safety safeguard. The software architecture was
flawed because it did not guarantee the integrity of
treatment commands entered and checked by the
system operator.

One of the most extensively described software development prob-
lems is customized business systems. These are corporate systems for
accounting, management, and enterprise-specific operations. They are
of considerable economic importance, are built in fairly large numbers
(though no two are exactly alike), and are developed in an environment
relatively free of government restrictions. Popular and widely published
development methods have strongly emphasized detailed requirements
development followed by semiautomated conversion of the requirements
to program code — an application-specific waterfall.

Even though this waterfall is better than ad hoc development, results
have been disappointing. In spite of years of experience in developing
such business systems, large development projects regularly fail. As Tom
DeMarco has noted,4 “somewhere, today, an accounts payable system
development is failing” in spite of the thousands of such systems that
have been developed in the past. Part of the reason is the relatively poor
state of software engineering compared to other fields. Another reason
is failure to make effective use of methods known to be effective. An
important reason is the lack of an architectural perspective and the ben-
efits it brings.5

The architect’s perspective is to explicitly consider implementation,
requirements, and long-term client needs in parallel. A requirements-
centered approach assumes that a complete capture of documentable
requirements can be transformed into a satisfactory design. But existing
requirements modeling methods generally fail to capture performance
requirements and ill-structured requirements like modifiability, flexibility,
and availability. Even where these nonbehavioral requirements are
captured, they cannot be transformed into an implementation in any even
semiautomated way. And it is the nature of serious technological change
that the impact will be unpredictable. As technology changes and experi-
ence is gained, what is demanded from systems will change as well.

The spiral model as originally described did not embrace evolution.
Its spirals were strictly risk based and designed to lead to a fixed system
delivery. Rapid prototyping envisions evolution, but only on a limited
scale. Newer spiral model concepts do embrace evolution.6 Software
processes, as implemented, spiral through the waterfall phases but do so
in a sequential approach to moving release levels. This modified model

Chapter 6:  Software and Information Technology Systems	 157

was introduced in Chapter 4, in the context of integrating software with
manufacturing systems, and it will be further explored below.

Spirals for Hardware?

To use a spiral model for hardware acquisition is equivalent to repeated
prototyping. A one-of-a-kind, hardware-intensive system cannot be pro-
totyped in the usual sense. A complete “prototype” is, in fact, a complete
system. If it performs inadequately, it is a waste of the complete manu-
facturing cost of the final system. Each one, from the first article, needs
to be produced as though it were the only one. As was discussed previ-
ously, under the “protoflight” development strategy, the prototype is the
final system. A true prototype for such a one-of-a-kind system must be a
limited version or component intended to answer specific developmental
questions. We would not “prototype” an aircraft carrier, but we might
well prototype individual pieces and build subscale models for testing.
The development process for one-of-a-kind systems needs to place strong
emphasis on requirements development and attention to detailed pur-
pose throughout the design cycle. Mass-produced systems have greater
latitude in prototyping because of the prototype-to-production-cost ratio,
but still have less than in software. However, the initial “prototype” units
still need to be produced. If they are to be close to the final articles, they
need to be produced on a similar manufacturing line. But setting up a
complete manufacturing line when the system is only in prototype stage
is very expensive. Setting up the manufacturing facilities may be more
expensive than developing the system. As a hardware-intensive system,
the manufacturing line cannot be easily modified, and leaving it idle while
modifying the product to be produced represents a large cost.

Integration: Spirals and Circles

What process model matches the nature of evolutionary, mixed technol-
ogy, behaviorally complex systems? As was suggested earlier, a spiral and
circle framework seems to capture the issues. The system should possess
stable configurations (represented as circles) and development should
iteratively approach those circles. The stable configurations can be soft-
ware release levels, architectural frames, or hardware configurations.

This process model matches the accepted software practice of moving
through defined release levels, with each release produced in cycles
of requirements-design-code-test. Each release level is a stable form
that is used while the next release is developed. Three types of evolu-
tion can be identified. A software product, like an operating system or

158	 The Art of Systems Architecting

shrink-wrapped application, has major increments in behavior indicated
by changes in the release number, and more minor increments by changes
in the number after the “point.” Hence, a release 7.2 product would be
major version seven, second update. The major releases can be envisioned
as circles, with the minor releases cycling into them. On the third level are
those changes that result in new systems or re-architected old systems.
These are conceptually similar to the major releases but represent even
bigger changes. The process with software annotations is illustrated in
Figure 6.1. By using a side view, one can envision the major releases as
vertical jumps. The evolutionary spiral process moves out to the stable
major configurations and then jumps up to the next major change.

Hardware (Typical)

Breadboard Prototype

Production

Design

Software
Release 1 Spiral

Release 2 Spiral

System
Production/Release 1

Production/Release 2

HW/SW Rel 1

SW Rel 2

HW Intermediates

Development
Jump

Build

Integrate/Test
Requirements

Figure 6.1  A typical arrangement of spirals and circles in a project requiring
hardware and software integration. This illustrates the stable intermediate con-
figurations of hardware (typically breadboard and prototype) integrating with a
software spiral. Software is developed on the stable intermediate systems.

Chapter 6:  Software and Information Technology Systems	 159

In practice, evolution on one release level may proceed concurrently with
development of a major change.

Example: The Internet and World Wide Web pro-
vide numerous examples of stable intermediate
forms promoting evolution. The architecture of the
Internet, in the sense of an organizing or unifying
structure, is clearly the Internet Protocol (IP), the
basic packet switching definition. IP defines how
packets are structured and addressed, and how the
routing network interacts with the packets. It deter-
mines the kinds of services that can be offered on
the Internet, and in so doing constrains application
construction. As the Internet has undergone unprec-
edented growth in users, applications, and physical
infrastructure, IP has remained stable. As of the
writing of this book, the transition from version 4
to version 6 of IP is occurring very slowly. It likely
will occur within a few years, but the nature of IPv4
underpins so much of how the Internet operates
that transition is necessarily quite slow. The World
Wide Web has similarly undergone tremendous
growth and evolution on top of a simple set of
elements, the Hypertext Transfer Protocol (HTTP)
and the Hypertext Markup Language (HTML). Both
the Internet and the World Wide Web are classic
examples of systems with nonphysical architecture,
a topic that becomes central in the discussion of
collaborative systems in Chapter 7.

Hardware–software integration adds to the picture. The hardware
configurations must also be stable forms but should appear at different
points than the software intermediates on the development timeline.
Some stable hardware should be available during software develop-
ment to facilitate that development. A typical development cycle for an
integrated hardware–software system illustrates parallel progressions
in hardware and software with each reaching different intermediate
stable forms. The hardware progression might be breadboard, produc-
tion prototype, production, then (possibly) field upgrade. The software
moves through a development spiral aiming at a release 1.0 for the pro-
duction hardware. The number of software iterations may be many more
than for the hardware. In late development stages, new software versions
may be built weekly.7 Before that there will normally be partial releases
that run on the intermediate hardware forms (the breadboards and the

160	 The Art of Systems Architecting

production prototypes). Hardware–software codesign research is work-
ing toward environments in which developing hardware can be repre-
sented faithfully enough so that physical prototypes are unnecessary for
early integration. Such tools may become available, but iteration through
intermediate hardware development levels is still the norm in practice.

A related problem in designing a process for integration is the proper
use of the heuristic: Do the hard part first. Because software is evolved or
iterated, this heuristic implies that the early iterations should address the
most difficult challenges. Unfortunately, honoring the heuristic is often
difficult. In practice, the first iterations are often good-looking interface
demonstrations or constructs of limited functionality. If interface construc-
tion is difficult or user acceptance of the interface is risky or difficult, this
may be a good choice. But if operation to time constraints under loaded
conditions is the key problem, some other early development strategy
should be pursued. In that case, the heuristic suggests gathering realistic
experimental data on loading and timing conditions for the key processes
of the system. That data can then be used to set realistic requirements for
components of the system in its production configuration.

Example: Call distribution systems manage large
numbers of phone personnel and incoming lines
as in technical support or phone sales operation.
By tying the system into sales databases, it is pos-
sible to develop sophisticated support systems that
ensure that full customer information is available
in real time to the phone personnel. To be effective,
the integration of data sources and information
handling must be customized to each installation
and evolve as understanding of what information
is needed and available develops. But, because the
system is real time and critical to customer contact,
it must provide its principal functionality reliably
and immediately upon installation.

Thus, an architectural response to the problems of hardware–software
integration is to architect both the process and the product. The process is
manipulated to allow different segments of development to match them-
selves to the demands of the implementation technology. The product
is designed with interfaces that allow separation of development efforts
where the efforts need to proceed on very different paths. How software
architecture becomes an element of system architecture, and more details
on how this is to be accomplished, are the subjects to come.

Chapter 6:  Software and Information Technology Systems	 161

The Problem of Hierarchy
A central tenet of classic systems engineering is that all systems can be
viewed in hierarchies. A system is composed of subsystems that are com-
posed of small units. A system is also embedded in higher-level systems
in which it acts as a component. One person’s system is another person’s
component. A basic strategy is to decompose any system into subsystems,
decompose the requirements until they can be allocated to subsystems, care-
fully specify and control the interfaces among the subsystems, and repeat
the process on every subsystem until you reach components you can buy
or are the products of disciplinary engineering. Decomposition in design
is followed by integration in reverse. First, the lowest-level components are
integrated into the next-level subsystems, those subsystems are integrated
into larger subsystems, and so on until the entire system is assembled.

Because this logic of decomposition and integration is so central to
classical systems engineering, it is difficult for many systems engineers to
understand why it often does not match software development very well.
To be sure, some software systems are very effectively developed this way.
The same logic of decomposition and integration matches applications
built in procedural languages (like C or Pascal*) and where the develop-
ment effort writes all of the application’s code. In these software systems,
the code begins with a top-level routine, which calls first-level routines,
which call second-level routines, and so forth, to primitive routines
that do not call others. In a strictly procedural language, the lower-level
routines are contained within or encapsulated in the higher-level routines
that use them. If the developer organization writes all the code, or uses
only relatively low-level programming libraries, the decomposition chain
terminates in components much like the hardware decomposition chain
terminates. Like in the classical systems engineering paradigm, we can
integrate and test the software system in much the same way, testing and
integrating from the bottom-up until we reach the topmost module.

As long as the world looks like this, on both the hardware and software
sides, we can think of system decompositions as looking like Figure 6.2.
This figure illustrates the world, and the position of software, as classical
systems engineers would portray it. Software units are contained within
the processor units that execute them. Software is properly viewed as a
subsystem of the processor unit.

However, if we instead went to the software engineering laboratory
of an organization building a modern distributed system and asked the
software engineers to describe the system hierarchy, we might get a very

*	 Strictly speaking, C is not a procedural language, and some of what follows does not
precisely apply to it. Those knowledgeable in comparative programming languages can
consider the details of the procedural versus object-oriented paradigms in the examples
to come.

162	 The Art of Systems Architecting

different story. Much modern software is written using object-oriented
abstractions, is built in layers, and makes extensive use of very large soft-
ware infrastructure objects (like operating systems or databases) that do
not look very much like simple components or the calls to a programming
library. The transition is illustrated in Figure 6.3, and was discussed in the
“Case Study 4” (prior to this chapter). When expanded to the level of inter-
acting bodies of code, the world looks as illustrated in Figure 6.4. Each of
these issues (object orientation and layering) creates a software environ-
ment that does not look like a hierarchical decomposition of encapsulated
parts, and to the extent that a hierarchy exists, it is often quite different
from the systems/hardware hierarchy. We consider each of these issues
in turn.

Object Orientation

The software community engages in many debates about exactly what
“object oriented” should mean, but only the fundamental concepts are
important for systems architecting. An object is a collection of functions

HW Interface Code

A
pp

lic
at

io
n

1

A
pp

lic
at

io
n

2

A
pp

lic
at

io
n

3

HW Interface Code

A
pp

lic
at

io
n

1

A
pp

lic
at

io
n

2

A
pp

lic
at

io
n

3

Middleware

Interface Building Blocks

Figure 6.3  Increasingly, thick applications are being replaced by much thinner
implementations that rely on thicker shared infrastructure layers. This transi-
tion is of high value but introduces problems in quality control and development
methods often unfamiliar to groups accustomed to building thick applications.

SW 1

CPU 1

SW 2

CPU 2

SW 3

CPU 3

Subsystem A External Network

Figure 6.2  System/hardware hierarchy view of a system.

Chapter 6:  Software and Information Technology Systems	 163

(often called methods) and data. Some of the functions are public; that
is, they are exposed to other software objects and can be called by them.
Depending on the specific language and runtime environment, calling a
function may be a literal function call, or it may simply mean sending a
message to the target object, which interprets it and takes action. Objects
can be “active”; that is, they can run concurrently with other objects.
In some software environments, concurrent objects can freely migrate
from computer to computer over an intervening network. Often the soft-
ware developer does not know, and does not want to know, on which
machine a particular object is running and does not want to directly
control its migration. Concurrent execution of the objects is passed to a
distributed operating system, which may control object execution through
separately defined policies.

In object-oriented systems, the number of objects existing when
the software executes can be indeterminate. An object has a defining
“template” (although the word “template” means something slightly dif-
ferent in many object-oriented languages) known as a “class.” A class
is analogous to a type in procedural programming. So, just as one can
declare many variables of type “float,” so one can declare many objects
corresponding to a given class. In most object-oriented languages, the cre-
ation of objects from classes happens at runtime, when the software is
executing. If objects are not created until runtime, the number of them can
be controlled by external events.

CPU 1

Application
Layer Objects

Middleware/OS
Layer Objects

Physical
Layer ObjectsCPU 3CPU 2

Figure 6.4  Layered software hierarchy view of a system.

164	 The Art of Systems Architecting

This is a very powerful method of composing a software system. Each
object is really a computational machine. It has its own data (potentially
a very large amount) and as much of its own program code as the class
author decides. This sort of dynamic object-oriented software can essen-
tially manufacture logical machines, in arbitrary numbers, and set them
to work on a network, in response to events that happen during program
execution. To compare this to classical notions of decomposition, it is as
though one could create subsystems on the fly during system operation.

Layered Design

The objects are typically composed in a layered design as is further illus-
trated in Figure 6.4. Layers are a form of hierarchy, with a critical differ-
ence. In a layered system, the lower-level elements (those making up a lower
layer) are not contained in the upper-layer elements. The elements of a layer
interact to produce a set of services, which are made available to the next
higher layer (in a strictly layered system). Objects in the next higher layer
can use the services offered by the next lower layer but cannot otherwise
access the lower-layer objects. Within a layer, the objects normally treat
each other as peers; that is, no object is contained within another object.
However, object orientation has the notion of encapsulation. An object has
internals, and the internals (functions and data) belong to that object alone,
although they can be duplicated in other objects with the same class.

A modern distributed application may be built as a set of interacting,
concurrent objects. The objects interact with a lower layer, often called
“middleware services.” The middleware services are provided by externally
supplied software units. Some of the services are part of commercial oper-
ating systems; others are individual commercial products. Those middle
ware components ride on lower layers of network software, supplied as
part of the operating system services. In a strong distributed environment,
the application programmers, who are writing the objects at the top level,
do not know what the network configuration is on which their objects ride.
Of course, if there are complex performance requirements, it may be neces-
sary to know and control the network configuration and to program with
awareness of its structure. But in many applications, no such knowledge
is needed, and the knowledge of the application programmers about what
code is actually running ceases when the thread of execution leaves the
application and enters the middleware and operating systems.

The hierarchy problem is that at this point the software hierarchy and
the hardware hierarchy have become disconnected. To the software archi-
tect, the natural structure of the system is layers of concurrent objects,
again as illustrated in Figure 6.3 and Figure 6.4. This means the systems
and software architects may clash in their partitioning of the system,
and inappropriate constraints may be placed on one or the other. Before

Chapter 6:  Software and Information Technology Systems	 165

investigating the issue of reconciliation, we must complete the discussion
with the nature of software components.

Large, Autonomous Components

When taking a decompositional approach to design, the designer decom-
poses until he or she reaches components that can be bought or easily
built. In both hardware and software, some of the components are very
large. In software, in particular, the design decomposition often results in
very large software units, such as operating systems and databases. Both
of these are now often millions of lines of programming language code
and possess rich functionality. More significantly, they act semiautono-
mously when used in a system. An operating system is not a collection of
functions to be passively called by an application. To be sure, that is one of
the services offered by modern operating systems. But modern operating
systems manage program memory, schedule program units on processors,
and synchronize concurrent objects across multiple processors. An
advanced operating system may present unified services that span many
individual computers, possibly widely geographically spread.

These large and autonomous components change architecting because
the architect is forced to adapt to the components. In principle, of course,
the architect and client need not adapt. They can choose to sponsor a
from-scratch development instead. But the cost of attempting to replicate
the enormous software infrastructure that applications now commonly
reuse is prohibitive. So, for example, the market dominance and complex-
ity of very large databases forces us to use commercial products in these
applications. The commercial products support particular kinds of data
models and do not support others. The architecture must take account of
the kinds of data models supported, even when those are not a natural
choice for the problem.

Reconciling the Hierarchies

Our challenge is to reconcile the systems and software worlds. Because
software is becoming the dominant element, in terms of its cost pacing
what can be developed, one might argue for simply adopting software’s
models and abandoning the classic systems view. This is inappropriate for
several reasons. First, the migration of software to object-oriented, layered
structures is only partial. Much software is procedurally structured and
is likely to remain so for many years to come. The infrastructure for
supporting distributed, concurrent, object-oriented applications is not
mature. Although leading-edge applications take this path, many others
with strong reliability or just predictability requirements will use more
traditional structures.

166	 The Art of Systems Architecting

Second, both approaches are fundamentally valid. Figure 6.2 and
Figure 6.4 are correct views of the system, they just represent different
aspects. No single view can claim primacy. As we move into complex,
information-centric systems, we will have to accept the existence of many
views, each representing different concerns, and each targeted at a dif-
ferent stakeholder audience. The architect, and eventually systems engi-
neers, will have to be sure the multiple views are consistent and complete
with respect to the stakeholder’s concerns.

Third, every partitioning has its advantages and drawbacks. Building
a system in which each computational unit has its own software confined
within it has distinct advantages. In that case, each unit will normally
have much greater autonomy (because it has its own software and does
not depend on others). That means each unit can be much more easily out-
sourced or independently developed. Also, the system does not become
dependent on the presence of some piece of software infrastructure.
Software infrastructure elements (operating systems and middleware)
have a poor record for on-schedule delivery and feature completeness.
Anybody depending on an advanced feature of an operating system to be
delivered more than a year out runs a high risk of being left with nothing
when the scheduled delivery date comes by and the operating system
vendor has decided to delay the feature to a future version or has simply
pushed the delivery cycle out another year.

Nevertheless, the modern approaches have tremendous advantages in
many situations. Consider the situation when the units in Figure 6.2 share
a great deal of functionality. If separate development teams are assigned
to each, the functionality is likely to be independently developed as many
times as there are units. Redundant development is likely to be the least of
the problems; however, because those independent units probably interact
with each other, the test burden has the potential for rising as the square
of the number of units. Appropriate code sharing — that is, the use of
layered architectures for software — can alleviate both problems.

The Role of Architecture in
Software-Centered Systems
In software as in systems, the architect’s basic role is the reconciliation
of a physical form with the client’s needs for function, cost, certification,
and technical feasibility. The mindset is the same as described for system
architecting in general, though the areas of concentration are different.
System architecting heuristics are generally good software heuristics,
though they may be refined and specialized. Several examples are given
in Chapter 9. In addition, there are heuristics that apply particularly to
software. Some of these are mentioned at the end of this chapter.

Chapter 6:  Software and Information Technology Systems	 167

The architect develops the architecture. Following Brooks’ term,8 the
architect is the user’s advocate. As envisioned in this book, the architect’s
responsibility goes beyond the conceptual integrity of the systems as seen
by the user, to the conceptual integrity of the system as seen by the builder
and other stakeholders. The architect is responsible for both what-the-
system-does and well as how-the-system-does-it. But that responsibility
extends, on both counts, only as far as is needed to develop a satisfactory
and feasible system concept. After all, the sum of both is nearly the whole
system, and the architect’s role must be limited if an individual or small
team is to carry it out. The latter role, of defining the overall implementa-
tion structure of the system, is closer to some of the notions of software
architecture in recent literature.

The architect’s realm is where views and models combine. Where
models that integrate disparate views are lacking, the architect can supply
the insight. When disparate requirements must interact if satisfaction is
to be achieved, the architect’s insight can ensure that the right character-
istics are considered foremost and that an architecture that can reconcile
the disparate requirements is developed. The perspective required is pre-
dominantly a system perspective. It is the perspective of looking at the
software and its underlying hardware platforms as an integrated whole
that delivers value to the client. Its performance as a whole, behavioral
and otherwise, is what gives it its value.

Architecting for evolution is also an example of the greatest leverage is
at the interfaces heuristic. Make a system evolvable by paying attention to
the interfaces. In software, interfaces are very diverse. With a hardware
emphasis, it is common to think of communication interfaces at the bit,
byte, or message level. But in software communication, interfaces can be
much richer and capture extensively structured data, flow of control, and
application-specific notions. Current work in distributed computing is a
good example. The trend in middleware is to find abstractions well above
the network socket level that allow flexible composition. Network-portable
languages like Java allow each machine to express a common interface for
mobile code (the Java virtual machine). The ambition of service-oriented
architectures is to provide a rich set of intermediate abstractions to allow
end-user development to be further abstracted away from the low-level
programming details.

Programming Languages, Models, and Expression
Models are languages. A programming language is a model of a comput-
ing machine. Like all languages, they have the power to influence, guide,
and restrict our thoughts. Programmers with experience in multiple lan-
guages understand that some problems will decompose easily in one
language, but only with difficulty in another, an example of fitting the

168	 The Art of Systems Architecting

architecture of the solution to that of a prescriptive solution heuristic. The
development of programming languages has been the story of moving
successively higher in abstraction from computing hardware.

The layering of languages is essential to complex software develop-
ment because a high-level language is a form of software reuse. Assembly
languages masked machine instructions; procedural languages modeled
computer instructions in a more language-like prose. Modern languages
containing object and strong structuring concepts continue the pattern by
providing a richer palette of representation tools for implementing com-
puting constructs. Each statement in FORTRAN, Pascal, or C reuses the
compiler writer’s machine-level implementation of that construct. Even
more important examples are the application-specific languages like
mathematical languages or databases. A statement in a mathematical lan-
guage like MATLAB or Mathematica may invoke a complex algorithm
requiring long-term development and deep expertise. A database query
language encapsulates complex data storage and indexing code. The cur-
rent enthusiasm for service-oriented architectures is (or should be) the
same phenomena. By assembling abstractions closer to what end users
are interested in, while maintaining a low enough level of abstraction to
be reusable, we greatly enhance development productivity.

One way of understanding this move up the ladder of abstraction is
a famous software productivity heuristic on programmer productivity.
A purely programming-oriented statement of the heuristic is

Programmers deliver the same number of lines of code per
day regardless of the language they are writing in.

Hence, to achieve high software productivity, programmers must work
in languages that require few lines of code.9 This heuristic can be used to
examine various issues in language and software reuse. The nature of a
programming language, and the available tools and libraries, will deter-
mine the amount of code needed for a particular application. Obviously,
writing machine code from scratch will require the most code. Moving to
high-level languages like C or Ada will reduce the amount of original code
needed, unless the application is fundamentally one that interacts with
the computing hardware at a very low level. Still less original code will be
required if the language directly embodies application domain concepts,
or, equivalently, application-specific code libraries are available.

Application-specific languages imitate domain language already in
use and make it suitable for computing. One of the first and most popu-
lar is spreadsheets. The spreadsheet combines a visual abstraction and a
computational language suited to a range of modeling tasks in business
offices, engineering, and science. An extremely important category is data-
base query languages. Today it would be quite unusual to undertake an

Chapter 6:  Software and Information Technology Systems	 169

application requiring sophisticated database functionality and not use an
existing database product and its associated query language. Another more
recent category includes mathematical languages. These languages, such
as Mathematica, MacSyma, and MatLab, use well-understood mathemati-
cal syntax and then process those languages into computer-processable
form. They allow the mathematically literate user to describe solutions in
a language much closer to the problem than a general-purpose program-
ming language.

Application-specific programming languages are likely to play an
increasingly important role in all systems built in reasonably large num-
bers. The only impediment to use of these abstractions in all systems is the
investment required to develop the language and its associated applica-
tion generator and tools. One-of-a-kind systems will not usually be able to
carry the burden of developing a new language along with a new system
unless they fit into a class of system for which a “meta-language” exists.
Some work along these lines has been done, for example, in command and
control systems.10 As mentioned before, service-oriented architectures are
a currently fashionable take on the same theme.

Architectures, “Unifying” Models, and Visions
Architectures in software can be definitions in terms of tasks and mod-
ules, language or model constructs, or, at the highest abstraction level,
metaphors. Because software is the most flexible and ethereal of media, its
architecture, in the sense of a defining structure, can be equally flexible
and ethereal.

The most famous example is the original use by Macintosh of the
desktop metaphor, a true architecture. To a considerable degree, when the
overall human interface guidelines are added, this metaphor defines the
nature of the system. It defines the types of information that will be han-
dled and it defines much of the logic or processing. The guidelines force
operation to be human centered; that is, the system continuously parses
user actions in terms of the effects on objects in the environment. As a
result, Macintosh, and now Microsoft Windows, programs are dominated
by a main event loop. The foremost structure the programmer must define
is the event loop, a loop in which system-defined events are sequentially
stripped from a queue, mapped to objects in the environment, and their
consequences evaluated and executed.

The power of the metaphor as architecture is twofold. First, the meta-
phor suggests much that will follow. If the metaphor is a desktop, its com-
ponents should operate similarly to their familiar physical counterparts.
This results in fast and retentive learning “by association” to the under
lying metaphor. Second, it provides an easily communicable model for the

170	 The Art of Systems Architecting

system that all can use to evaluate system integrity. System integrity is
being maintained when the implementation to metaphor is clear.

Directions in Software Architecting
Software architecture and architecting have received considerable recent
attention. There have been several special issues of IEEE Software maga-
zine devoted to software architecture. Starting with Shaw and Garlan’s
book,11 a whole series has appeared. Much of the current work in software
architecture focuses on architectural structures and their analysis. Much
as the term “architectural style” has definite meaning in civil architecture,
usage is attached to style in current software work. In the terminology of
this book, work on software architecture styles is attempting to find and
classify the high-level forms of software and their application to particu-
lar software problems.

Focusing on architecture is a natural progression of software and pro-
gramming research that has steadily ascended the ladder of abstraction.
Work on structured programming led to structured design and to the
multitasking and object-oriented models to be described in Chapter 10.
The next stage of the progression is to further classify the large-scale
structures that appear as software systems become progressively larger
and more complex.

Current work in software architecture primarily addresses the prod-
uct of architecting (the structure or architecture) rather than the process
of generating it. The published studies cover topics such as classifying
architectures, mapping architectural styles to particularly appropriate
applications, and using software frameworks to assemble multiple related
software systems. However, newer books are addressing process, and the
work on software architecture patterns is effectively work on process, in
that it provides directive guidance in forming a software architecture.
This book presents some common threads of the architectural process that
underlie the generation of architectures in many domains. Once a particu-
lar domain is entered, such as software, the architect should make full use
of the understood styles, frameworks, or patterns in that domain.

The flavor of current work in software architecture is best captured
by reviewing some of its key ideas. These include the classification of
architectural styles, patterns and pattern languages in software, and soft-
ware frameworks.

Architectural Styles

At the most general level, a style is defined by its components, connec-
tors, and constraints. The components are the things from which the soft-
ware system is composed. The connectors are the interfaces by which the

Chapter 6:  Software and Information Technology Systems	 171

components interact. A style sets the types of components and connectors
that will make up the system. The constraints are the requirements that
define system behavior. In the current usage, the architecture is the defini-
tion in terms of form, which does not explicitly incorporate the constraints.
To understand the constraints, one must look to additional views.

As a simple example, consider the structured design models described
previously. A pure structured style would have only one component type,
the routine, and only one connector type, invocation with explicit data
passing. A software system composed using only these components and
connectors could be said to be in the structured style. But the notion of style
can be extended to include considerations of its application and deviations.

David Garlan and Mary Shaw give this discussion of what constitutes
an architectural style*:

An architectural style, then defines a family of such
systems in terms of a pattern of structural organiza-
tion. More specifically, an architectural style deter-
mines the vocabulary of components and connectors
that can be used in instances of that style. Additionally,
a style might define topological constraints on archi-
tectural descriptions (e.g. no cycles). Other constraints
— say, having to do with execution semantics —
might also be part of the style definition.

Given this framework, we can understand what a
style is by answering the following questions: What
is the structural pattern — the components, connec-
tors, and topologies? What is the underlying com-
putational model? What are the essential invariants
of the style — its “load bearing walls”? What are
some common examples of its use? What are the
advantages and disadvantages of using that style?
What are some of the common specializations?

Garlan and Shaw have gone on to propose several root styles. As an
example, their first style is called “pipe and filter.” The pipe and filter style
contains one type of component, the filter, and one type of connector, the
pipe. Each component inputs and outputs streams of data. All filters can
potentially operate incrementally and concurrently. The streams flow
through the pipes. Likewise, all stream flows are potentially concurrent.
Because each component acts to produce one or more streams from one or

*	 Garlan, D., and M. Shaw, An Introduction to Software Architecture, Technical Report,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, p. 6.

172	 The Art of Systems Architecting

more streams, it can be thought of as an abstract sort of filter. A pipe and
filter system is schematically illustrated in Figure 6.5.

UNIX shell programs and some signal processing systems are com-
mon pipe and filter systems. The UNIX shell provides direct pipe and
filter abstractions with the filters concurrent UNIX processes and the
pipes interprocess communication streams. The pipe and filter abstraction
is a natural representation for block-structured signal-processing systems
in which concurrent entities perform real-time processing on incoming
sampled data streams.

Some other styles proposed include object oriented, event based,
layered, and blackboard. An object-oriented architecture is built from
components that encapsulate both data and function and which exchange
messages. An event-based architecture has as its fundamental structure a
loop that receives events (from external interfaces or generated internally),
interprets the events in the context of system state, and takes actions based
on the combination of event and state. Layered architectures emphasize
horizontal partitioning of the system with explicit message passing and
function calling between layers. Each layer is responsible for providing
a well-defined interface to the layer above. A blackboard architecture is
built from a set of concurrent components that interact by reading and
writing asynchronously to a common area.

Shared I/O
Channel Filter

Data
Input
Filter

Signal
Process

A

Signal
Process

B

Signal
Process

C

Output Format
Process

Queued Pipes

External I/O

External I/O

Figure 6.5  A pipe and filter system. Data flow through the system in pipes, which
may actually have several types depending on their semantics for queuing, data
push or pull, and so forth. Data are processed in filters that read and write pipes.

Chapter 6:  Software and Information Technology Systems	 173

Each style carries its advantages and weaknesses. Each of these styles
is a description of an implementation from an implementer’s point of view,
and specifically from the software implementer’s point of view. They are
not descriptions from the user’s point of view, or even from the point of
view of a hardware implementer on the system. A coherent style, at least
of the type currently described, gives a conceptual integrity that assists
the builder but may be no help to the user. Having a coherent implemen-
tation style may help in construction, but it is not likely to yield dramatic
improvements in productivity or quality because it does not promise to
dramatically cut the size of what must be implemented.

This is reflective of a large fraction of the current software architecture
literature. The primary focus is on the structure of the software, not on the
structure of the problem that the software is to solve. The architecture
description languages being studied are primarily higher-level or more
abstracted descriptions of programming language constructs. Where user
concerns enter the current discussion is typically through analysis. So,
for example, an architecture description language developer may be con-
cerned with how to analyze the security properties of a system description
written in the language. This approach might be termed “structuralist.”
It places the structure of the software first in modeling and attempts to
derive all other views from it. There is an intellectual attraction to this
approach because the structural model becomes the root. If the notation
for structure can be made consistent, then the other views derived from
it should retain that consistency. There is no problem of testing consis-
tency across many views written in different modeling languages. The
weakness of the approach is that it forces the stakeholders other than the
software developers to use an unfamiliar language and trust unfamiliar
analyses. In the security example, instead of using standard methods from
the security community, those concerned with security must trust the
security analysis performed on the architectural language. This approach
may grow to be accepted by broad communities of stakeholders, but it is
likely to be a difficult sell.

In contrast to the perspective that places structure first in architecture,
this book has repeatedly emphasized that only the client’s purpose should
be first. The architect should not be removed from the purpose or require-
ments; the architect should be immersed in them. This is a distinction
between architecting as described here and as is often taught in software
engineering. We do not assume that requirements precede architecture. The
development of requirements is part of architecting, not its preconditions.

The ideal style is one that unifies both the user’s and builder’s views.
The mathematical languages mentioned earlier are examples. They struc-
ture the system from both a user’s and an implementer’s point of view. Of
course, the internals of the implementation of such a complex software
system will contain many layers of abstraction. Almost certainly, new

174	 The Art of Systems Architecting

styles and abstractions specific to the demands of implementation in real
computers will have to arise internally. When ideal styles are not avail-
able, it is still reasonable to seek models or architectural views that unify
some set of considerations larger than just the software implementer. For
implementation of complex systems, it would be a useful topic of research
to find models or styles that encompass a joint hardware–software view.

Architecture through Composition

Patterns, styles, and layered abstraction are inherent parts of software
practice. Except for the rare machine-level program, all software is built
from layered abstractions. High-level programming languages impose
an intellectual model on the computational machine. The nature of that
model inevitably influences what kinds of programs (systems) are built
on the machine.

The modern trend is to build systems from components at higher
and higher levels of abstraction. It is necessary because no other means
are available to build very large and complex systems within acceptable
time and effort limits. Each high-level library of components imposes its
own style and lends itself to certain patterns. The patterns that match
the available libraries are encouraged, and it may be very difficult to
implement architectures that are not allowed for in the libraries.

Example: Graphical Macintosh and Windows pro-
grams are almost always centrally organized around
an event loop and handlers, a type of event-driven
style. This structure is efficient because the operat-
ing systems provide a built-in event loop to capture
user actions such as mouse clicks and key presses.
However, because neither had multithreading abstrac-
tions (at least before 1995), a concurrent, interact-
ing object architecture was difficult to construct.
Many applications would benefit from a concurrent
interaction object architecture, but these architec-
tures were very difficult to implement within the
constraints of existing libraries. As both systems
evolved, direct support for multithreaded, concur-
rent processes has slowly worked its way into all
aspects of both systems, user interfaces included.

The logical extension is to higher and higher level languages and
from libraries to application-specific languages that directly match the
nature of the problem they were meant to solve. The modern mathemati-
cal software packages are, in effect, very high-level software languages

Chapter 6:  Software and Information Technology Systems	 175

designed to mimic the problem they are meant to solve. The object of the
packages is to do technical mathematics. So rather than provide a lan-
guage into which the scientist or engineer must translate mathematics, the
package does the mathematics. This is similar for computer-aided design
packages, and indeed for most of the shrink-wrap software industry.
These packages surround the computer with a layered abstraction that
closely matches the way users are already accustomed to working.

Actually, the relationship between application-specific programming
language, software package, and user is more symbiotic. Programmers
adapt their programs to the abstractions familiar to the users. But users
eventually adapt their abstractions to what is available and relatively easy
to implement. The best example is the spreadsheet. The spreadsheet as
an abstraction partially existed in paper form as the general ledger. The
computer-based abstraction has proven so logical that users have adapted
their thinking processes to match the structure of spreadsheets. It should
probably be assumed that this type of interactive relationship will accel-
erate when the first generation of children to grow up with computers
reaches adulthood.

Heuristics and Guidelines in Software

The software literature is a rich source for heuristics. Most of those heuris-
tics are specific to the software domain and are often specific to restricted
classes of a software-intensive system. The published sets of software
heuristics are quite large. The newer edition of Brook’s The Mythical
Man-Month: Essays in Software Engineering12 includes a new chapter, “The
Propositions of the Mythical Man-Month: True or False?” which lists the
heuristics proposed in the original work. The new chapters reinforce some
of the central heuristics and reject a few others as incorrect.

The heuristics given in Man-Month are broad ranging, covering manage-
ment, design, organization, testing, and other topics. Several other sources
give specific design heuristics. The best sources are detailed design meth-
odologies that combine models and heuristics into a complete approach to
developing software in a particular category or style. Chapter 10 discusses
three of the best documented, ADARTS,* structured design,† and object

*	 The published reference on ADARTS, which is quite thorough, is available through the
Software Productivity Consortium, ADARTS Guidebook, SPC-94040-CMC, Version 2.00.13,
Vols. 1–2, September 1991. ADARTS is an Ada language-specific method, though its ideas
generalize well to other languages. In fact, this has been done, although the resulting
heuristics and examples are available only to Software Productivity Consortium members.

†	Structured design is covered in many books. The original reference is Yourdon, Edward,
and Larry L. Constantine, Structured Design: Fundamentals of a Discipline of Computer
Program and Systems Design. New York: Yourdon Press, 1979.

176	 The Art of Systems Architecting

oriented.* Even more specific guidelines are available for the actual writing
of code. A book by McConnell13 contains guidelines for all phases and a
detailed bibliography.

From this large source set, however, there are a few heuristics that
particularly stand out as broadly applicable and as basic drivers for soft-
ware architecting:

Choose components so that each can be implemented independently •	
of the internal implementation of all others.
Programmer productivity in lines of code per day is largely inde-•	
pendent of language. For high productivity, use languages as close
to the application domain as possible.
The number of defects remaining undiscovered after a test is pro-•	
portional to the number of defects found in the test. The constant of
proportionality depends on the thoroughness of the test but is rarely
less than 0.5.
Very low rates of delivered defects can be achieved only by very low •	
rates of defect insertion throughout software development, and by
layered defect discovery — reviews, unit test, system test.
Software should be grown or evolved, not built.•	
The cost of removing a defect from a software system rises expo-•	
nentially with the number of development phases since the defect
was inserted.
The cost of discovering a defect does not rise. It may be cheaper to •	
discover a requirements defect in customer testing than in any other
way, and hence the importance of prototyping.
Personnel skill dominates all other factors in productivity and quality.•	
Do not fix bugs later; fix them now.•	

As has been discussed, the evolvability of software is one of its most
unique attributes. A related heuristic is: A system will develop and evolve
much more rapidly if there are stable intermediate forms than if there are not. In an
environment where wholesale replacement is the norm, what constitutes a
stable form? The previous discussion has already talked about releases as
stable forms and intermediate hardware configurations. From a different
perspective, the stable intermediate forms are the unchanging components
of the system architecture. These elements that do not change provide the
framework within which the system can evolve. If they are well chosen —
that is, if they are conducive to evolution — they will be stable and facilitate

*	 Again, there are many books on object-oriented design, and many controversies about its
precise definition and the best heuristics or design rules. The book by Rumbaugh, dis-
cussed in Chapter 10, is a good introduction, as is the Unified Modeling Language (UML)
documentation and associated books.

Chapter 6:  Software and Information Technology Systems	 177

further development. A sure sign the architecture has been badly chosen
is the need to change it on every major release. The architectural elements
involved could be the use of specific data or control structures, internal
programming interfaces, or hardware–software interface definitions. Some
examples illustrate the impact of architecture on evolution.

Example: The Point-to-Point Protocol (PPP) is a pub-
licly defined protocol for computer networking over
serial connections (such as modems). Its goal is to
facilitate broad multivendor interoperability and to
require as little manual configuration as possible.
The heart of the protocol is the need to negotiate the
operating parameters of a changing array of layered
protocols (for example, physical link parameters,
authentication, IP control, AppleTalk control, com-
pression, and many others). The list of protocols is
continuously growing in response to user needs and
vendor business perceptions. PPP implements nego-
tiation through a basic state machine that is reused
in all protocols, coupled with a framework for struc-
turing packets. In a good implementation, a single
implementation of the state machine can be “cloned” to
handle each protocol, requiring only a modest amount
of work to add each new protocol. Moreover, the com-
mon format of negotiations facilitates troubleshoot-
ing during test and operation. During the protocols
development, the state machine and packet struc-
ture have been mapped to a wide variety of physi-
cal links and a continuously growing list of network
and communication support protocols.

Example: In the original Apple Macintosh operating
system, the architects decided to not use the feature
of their hardware to separate “supervisor” and “user”
programs. They also decided to implement a variety
of application programming interfaces through access
to global variables. These choices were beneficial to
the early versions because they improved perfor-
mance. But these same choices (because of backward
compatibility demands) greatly complicated efforts to
implement advanced operating system features such
as protected memory and preemptive multitasking.
In the end, dramatic evolution of the operating sys-
tem required wholesale replacement, with limited

178	 The Art of Systems Architecting

backward compatibility. Another architectural
choice was to define the hardware–software interface
through the Macintosh Toolbox and the published
Apple programming guidelines. The combination
proved to be both flexible and stable. It allowed a
long series of dramatic hardware improvements and
even a transfer to a new hardware architecture, with
few gaps in backward compatibility (at least for those
developers who obeyed the guidelines). Even as the
old operating system was entirely replaced, the old
programming interface survived through minimal
modifications allowing recompilation of programs.

Example: The Internet Protocol combined with the
related Transmission Control Protocol (TCP/IP) has
become the software backbone of the global Internet.
Its partitioning of data handling, routing decisions,
and flow control has proven to be robust and ame-
nable to evolutionary development. The combination
has been able to operate across extremely heteroge-
neous networks with equipment built by countless
vendors. Although there are identifiable architects
of the protocol suite, control of protocol develop-
ment is quite distributed with little central author-
ity. In contrast, the proprietary networking protocols
developed and controlled by major vendors per-
formed relatively poorly at scaling to diverse net-
works. One limitation in the current IP protocol
suite that has become clear is the inadequacy of
its 32-bit address space. However, the suite was
designed from the beginning with the capability
to mix protocol versions on a network. As a result,
the deployed protocol version has been upgraded
several times (and will be again to IPv6).

Exercises
	 1.	Consult one or more of the references for software heuristics. Extract sev-

eral heuristics and use them to evaluate a software-intensive system.
	 2.	Requirements defects that are delivered to customers are the most

costly because of the likelihood they will require extensive rework.
But discovering such defects anytime before customer delivery is
likewise very costly because only the customers’ reaction may make
the nature of the defect apparent. One approach to this problem is

Chapter 6:  Software and Information Technology Systems	 179

prototyping to get early feedback. How can software be designed
to allow early prototyping and feedback of the information gained
without incurring the large costs associated with extensive rework?

	 3.	Pick three software-intensive systems of widely varying scope, for
example, a pen computer-based data-entry system for warehouses,
an internetwork communication server, and the flight control soft-
ware for a manned space vehicle. What are the key determinants
of success and failure for each system? As an architect, how would
these determinants change your approach to concept formulation
and certification?

	 4.	Examine some notably successful or unsuccessful software-intensive
systems. To what extent was success or failure due to architectural
(conceptual integrity, feasibility of concept, certification) issues and
to what extent was it due to other software process issues?

	 5.	Are their styles analogous to those proposed for software that jointly
represent hardware and software?

Notes and References
	 1.	 IEEE Software, Special issue on the The Artistry of Software Architecture,

November, 1995. This issue contains a variety of papers on software archi-
tecture, including the role of architecture in reuse, comparisons of styles,
decompositions by view, and building block approaches.

	 2.	 Kruchten, P. B., A 4+1 View Model of Software Architecture, IEEE Software
Magazine, pp. 42–50, November, 1995.

	 3.	 Leveson, N. G., and C. S. Turner, An Investigation of the Therac 25 Accidents,
Computer, pp. 18–41, July, 1993.

	 4.	 DeMarco, T., and T. Lister, Peopleware: Productive Projects and Teams. New
York: Dorset House, 1987.

	 5.	 Lambert, B., Beyond Information Engineering: The Art of Information
Systems Architecture, Technical Report, Broughton Systems, Richmond,
Virginia, 1994.

	 6.	 Software Productivity Consortium, Evolutionary Spiral Process, Vol. 1–3.
	 7.	 Maguire, S., Debugging the Development Process. Redmond, WA: Microsoft

Press, 1994.
	 8.	 Brooks, F., The Mythical Man-Month. Reading, MA: Addison-Wesley, 1975.

This classic book has recently been republished with additional commentary
by Brooks on how his observations have held up over time. See p. 256 in the
new edition.

	 9.	 Data associated with this heuristic can be found in several books. Two sources
are Capers Jones, Programming Productivity. New York: McGraw-Hill, 1986;
Capers Jones, Applied Software Measurement, 3rd ed. New York: McGraw-Hill,
2008.

	 10.	 Domain Specific Software Architectures, University of Southern California
Information Sciences Institute, Technical Report, 1996.

	 11.	 Shaw, M., and D. Garlan, Software Architecture: Perspectives on an Emerging
Discipline, New York: Prentice Hall, 1996.

	 12.	 Brooks, F., The Mythical Man-Month. Reading, MA: Addison-Wesley, 1975.

180	 The Art of Systems Architecting

	 13.	 McConnell, S., Code Complete: A Practical Handbook of Software Construction,
2nd ed. Redmond, WA: Microsoft Press, 2004.

181

Case Study 5: The Global
Positioning System
The Global Positioning System (GPS)1 is one of the great success stories of
the late 20th century. Most readers of this book will have had some experi-
ence with GPS, either in a car or with a handheld unit. GPS is a large system
that has undergone extensive evolution. Early in its history, and in the
history of its predecessor programs, it was a centrally controlled system.
As it has evolved, and become extremely successful, control has gradually
migrated away from the GPS program office. The larger enterprise that is
now GPS is no longer controlled wholly by a single program office; indeed
it is no longer controlled by the U.S. government. If the European Galileo
system eventually flies and is compatible with GPS, GPS will have evolved
into a full-fledged collaborative system, the subject of the next chapter.

GPS is a fitting case study to close Part II, looking either forward or
backward. Looking forward, to Chapter 7, GPS is partially a collabora-
tive system and partially not. As with most partial cases, the fact that it
is not firmly in or out provides a better discussion of just what the border
is. Looking backward, to earlier chapters, we can see many of the other
points we sought to emphasize. GPS illustrates the principles of architec-
ture through invariants, of the importance of a small architecture team,
and of ripe timing with respect to both technology and user and institu-
tional needs.

The History
The moment (actually the weekend) when the GPS architecture was deter-
mined can be easily identified — but that moment was a long time com-
ing. The history of satellite navigation leads up to GPS and then extends
beyond it. That GPS came about when it did and in the form it did is at
least somewhat surprising. It need not have come about. The fact that it
did when and how it did, and how successful it has become, illustrates
major points in the systems architecting of both conventional and collab-
orative systems.

The Origins of GPS: The Foundational Programs
Position determination and navigation are fundamental to military opera-
tions, with air, sea, or land. For all of military history, extensive technolog-
ical effort has been expended to improve navigational capabilities. At the

182	 The Art of Systems Architecting

beginning of the space era (late 1950s), each of the U.S. military services
viewed the navigation problem quite differently.

Inertial Navigation and Its Limits
The U.S. Air Force and Navy were heavily investing in inertial navigation
systems. Inertial navigation was particularly well suited to nuclear missiles.
It was sufficiently accurate to guide a missile (flight times of 30 minutes or
less) with a nuclear warhead (assuming the launch position is accurately
known) and was immune to external interference. For the Air Force this
was a sufficient solution, as launch points were fixed and their locations
known a priori precisely. For the Navy, the initial positioning problem was
significant. Inertial navigation systems inherently drift on time scales of
days. Thus, an inertial navigation system in a ship or submarine, although
very accurate over a day or so, must be “recentered” regularly or its accu-
racy will continuously degrade. Because ships, and especially ballistic mis-
sile submarines, are expected to operate at sea for months at a time, the
problem of correcting the drifting inertial units was central.

A naval ship requires global position determination to moderately
high accuracy (tens to hundreds of meters) at modest update rates (once to a
few times a day). Ships know their altitude, so only two-dimensional posi-
tioning is required. In the 1960s these capabilities were provided mainly
by land-based radio navigation systems (e.g., LORAN [long-range naviga-
tion]), but these systems worked much less well than desired. Strategic
aircraft would use global three-dimensional position determination but
could operate only with the capabilities available at the time.

Weapon Delivery
In the 1950s, air-delivered weapons were notoriously inaccurate. A hard-
ened, fixed target, like a bridge, might require tens of sorties to destroy. A
moving target, like a tank, could only be hit by a pilot flying low and in
short-range direct sight. At the time the primary solution of interest was
sensor-guided weapons. Extensive work at the time was devoted to devel-
oping command, infrared, and radar-guided weapons.

The accuracy requirements for weapon delivery are very challenging.
Accuracy must be a few meters at the most, three-dimensional position is
required, and the platforms move very rapidly. The belief was that only
sensor guidance was suitable to the task.

The Transit Program
Shortly after the launch of Sputnik in 1957, Frank McClure of Johns Hopkins
Applied Physics Laboratory (APL) determined that measurements of

Case Study 5: The Global Positioning System	 183

Doppler shifts on the Sputnik signal could be used to infer lines of posi-
tion at the receiver. Given multiple satellites in orbit and precision orbit
determination, it would be possible to construct a navigation system. This
concept was supported by the Advanced Research Projects Agency (ARPA)
and led to a dedicated satellite launch in 1960. By 1965, 23 satellites had
been launched and the Transit system had been declared operational.

Transit squarely addressed the Navy navigation problem. Transit pro-
vided a two-dimensional position update a few times a day with moder-
ate accuracy, and it did it globally, in all weather, without any land-based
infrastructure. From an architectural perspective, Transit was purpose
driven, had a clear architect and architecture, and the alignment between
the user stakeholders and developers was close. As a result, it was a stable,
evolving, and successful system. The witness to the strength of the link-
age between the user base and the developers is that Transit satellites were
being launched until 1988, and the system operated until 1996, long after
GPS became operational.

Transit was important in the history of GPS in several respects:

	 1.	Transit provided a useful service for roughly two decades before
GPS became operational. Transit demonstrated the feasibility and
utility of satellite navigation.

	 2.	Building and operating Transit forced the resolution of important
technical issues. In particular, it led to great improvements in orbit
determination, in gravity models, and in computing and predicting
signal delays due to propagation through the atmosphere.

	 3.	Transit set a precedent for commercial use. Transit was made avail-
able for commercial use in the late 1960s, and the number of com-
mercial use receivers came to far outnumber the number of military
use receivers (a harbinger of what was to come in GPS).

TIMATION
A related problem to navigation is the problem of time transfer or clock
synchronization. This is the problem of accurately synchronizing clocks
in distant locations, or of transferring a precise time measurement in one
location to a distant location. This was a natural Navy concern as it was
the foundation of the revolution in navigation in the 18th century when
chronometers allowed the determination of longitude.

At the Naval Research Laboratory (NRL) in the 1960s, Roger Easton
made two key realizations. He first realized that satellite clocks with
appropriate signal transmission could be used to allow precision time
transfer. He then realized that simultaneous time transfer from multiple,
synchronized clocks was equivalent to position determination (either

184	 The Art of Systems Architecting

two or three dimensions, depending on the number of satellites). These
realizations were translated into a concept known as TIMATION.

TIMATION was envisioned as a navigation system that would begin
as an improved version of Transit and evolve into a full-blown system
not unlike what GPS is today. The early versions would use small con-
stellations of low Earth-orbiting satellites (like Transit). This is relatively
simple to build, but provides only intermittent access (a few times a day,
like Transit). Over time, the constellation would grow in size and move to
higher orbits until global continuous coverage was achieved.

621B
At the same time, the U.S. Air Force was studying satellite navigation
through the Space and Missile Center (SMC) and its research center The
Aerospace Corporation. The project was known as 621B. The Aerospace
Corporation president, Ivan Getting, had conceived of important elements
of the satellite navigation concept in the 1950s2 and strongly advocated
for it as the Aerospace Corporation president. The Air Force concentrated
on longer-term, more ambitious goals consonant with Air Force mission
needs. The Air Force concept was based on three-dimensional, high-
precision, global position determination and was also concerned with
electronic warfare and other military factors. 621B used the notion of
simultaneous measurement of three delays to three known satellite loca-
tions, like Roger Easton’s concept but with two key differences. First, 621B
performed measurement (or “pseudoranging”) with the then-new scheme
of digital pseudorandom coded signals. Second, 621B was originally based
on high-accuracy clocks in each receiver.

The first difference, the signal, was technically very aggressive for the
time but led to key advantages. At the time, processing digital signals
several Megahertz (MHz) wide was very challenging (though it became
trivial as the microchip revolution proceeded in the 1980s). However, the
digitally coded signal had significant jam and interference resistance, and
largely solved the frequency coordination problem. With pseudorandom
coded signals, all transmitters in the system could operate at the same
frequency and rely on the code processing to separate them.

The Origin of GPS
By the early 1970s, Transit was a stable program with a satisfied user base,
and the larger vision of satellite navigation was not proceeding. The dif-
fering stakeholder groups were engaged in bureaucratic warfare and
making little headway. But, in a remarkably short interval, an architectur-
ally sweet compromise would be found among them all and converted
into a successful development program.

Case Study 5: The Global Positioning System	 185

Parkinson and Currie
The person most often associated with the success of the GPS is Bradford
Parkinson.3 Parkinson arrived in Los Angeles, California, in late 1972 to
run the 621B program and quickly became a believer in the merits of global
satellite navigation. Through happy, though accidental, circumstances, he
was able to spend unusual amounts of time with the Director of Defense
Research and Engineering (DDR&E) Malcolm Currie. Parkinson con-
vinced Currie of the merits of satellite navigation, and Currie was con-
vinced that Parkinson was the right person to lead the effort. Parkinson
was tasked to form a joint proposal to be presented the Defense Systems
Acquisition Review Council (DSARC). The proposal he presented was
essentially the 621B concept, and the DSARC immediately rejected it.

The Fateful Weekend
Over Labor Day weekend 1973, Parkinson assembled a small team of
experts from each of the programs and areas and closeted them away
from interference. Over the long weekend, they reached consensus on a
revised concept. The revised concept combined features from the prede-
cessor programs. The fundamental features of the revised concept are
shown in Table CS5.1.

For those knowledgeable about GPS, the features should look familiar.
They are virtually identical to those of today’s operational GPS system.
The revised concept was again presented to the DSARC, after Currie had
assured Parkinson that a true joint program would have strong support
from his level, and was approved.

As a result of DSARC approval, a joint program office was formed (the
NAVSTAR program office), with Parkinson as the head. They were able to
begin development very rapidly by incorporating major elements of the
preexisting programs, particularly TIMATION. Critical space elements of

Table CS5.1  Features of the Revised 1973 NAVSTAR (to become GPS) Concept
Concept of operations Measure pseudoranges to four (or more) satellites and

process to compute both the master time and
three-dimensional position. All position computations
occur in the receivers that operate entirely passively.

Constellation Twenty-one to twenty-four satellites in inclined
half-geosynchronous orbits.

Source of time Atomic clocks on satellites updated from the ground.
Receiver time computed from multiple satellites
simultaneously with position.

Signal Pseudorandom code at L-band (1,200 MHz). Two codes:
one narrow and unencrypted, one wide and encrypted.

186	 The Art of Systems Architecting

the NAVSTAR-GPS concept were taken directly from TIMATION, and so
the in-development TIMATION hardware was very useful for prototype
demonstrations.

The Long Road to Revolution
Of course, the formation of the GPS concept is far from the end of the
story. Although the essential architecture, in terms of its basic structure
in signals, processing distribution, and constellation, was set in 1973 and
has remained largely invariant, there was a very long road to successful
development and an operational revolution. During the long road to oper-
ations, a key transition was taking place, the transition from a centrally
controlled or “monolithic” system to a collaborative system in which there
was no central authority over the whole. We discuss these two key points
in the following sections.

The Timeline to Operation
The key events in the timeline to operations (and the present day) are
shown in Figure CS5.1.

There were more than 10 years of serious activity, including the
deployment of an operational system, before the architecture of GPS was
set. After the architecture was set, development continued for roughly
20 years before GPS became fully operational. Although it took 20 years
to full operation, GPS delivered real utility much earlier. Not only did it
deliver real utility, it had already broken out of the confines of the Joint

1960 1970 1980 1990 2000

Transit

TIMATION

Air Force
Precursors

GPS

First
Satellite

IOC

Civilian Use

Last
Launch

System
Terminated

TIMATION 1, 2 Launch

Influence

Pseudolite Experiments
Labor Day Design

Rebadged TIMATION Launches

Block 1 Launches (11)

Block II, IIA Launches (28)

Block 11R and
M Launches

(15+)

Commercial Use Begins

IOC, FOC

Figure CS5.1  Timeline for development of Global Positioning System (GPS).

Case Study 5: The Global Positioning System	 187

Program Office and had a large commercial and multiagency component.
By the early 1990s there was even an international component, albeit an
unintended one, in the Soviet Union’s GLONASS system.

Commercial Markets and the Gulf War
The Transit system set a precedent for allowing civilian use of a military
satellite navigation system. This precedent was repeated with GPS in the
1980s. By 1984, in the wake of the shoot-down of the KAL 007 airliner, it
became policy to allow the free use of the C/A (coarse/acquisition) coded
signal. The information necessary to build a C/A code receiver was made
freely available to private industry. Because the C/A code has a narrower
bandwidth than the military signal and is only transmitted on one fre-
quency, the accuracy achieved is considerably less than with the military
signal. In the 1980s and 1990s, accuracy was further degraded through
deliberate introduction of clock noise (known as “selective availability”).

The microelectronics evolution of the 1980s enabled commercial devel-
opment of GPS chipsets. Those chipsets in turn led to low-cost commercial
receivers. As the commercial market expanded, receivers dropped very
quickly in size and cost. Commercial firms also began developing innova-
tive software applications and even transmitter infrastructure systems.

The first Gulf War in 1991 gave a major impetus to GPS development.
The use of receivers by ground troops in the war and GPS support to
widely televised precision air strikes led to considerable publicity for
GPS. The satellite constellation was sufficiently mature to provide sub-
stantial capability, although initial operational capability (IOC) had not
been declared. The very public demonstration of the effectiveness of GPS
in supporting guided weapons led to further interest in new guidance
types. The continuing receiver cost reduction, and a politically driven
requirement for weapons for stealth aircraft, led to the Joint Direct Attack
Munition (JDAM) concept, a highly successful approach to precision
weapons where a low-cost GPS receiver and guidance unit are mated to
legacy “dumb” bombs.

Revolution in the Second Generation
The GPS revolution did not come with its deployment in its intended
mission and in its original context. The original slogan of the program
office was “Five bombs in the same hole.” Although that capability has
long ago been achieved, it itself has not been as valuable as newly con-
ceived applications. It was really in the second generation, the genera-
tion after GPS reached full operational capability, that the revolution
began, with applications and markets well outside those in the original
architectural concept.

188	 The Art of Systems Architecting

Ubiquitous GPS
Between the achievement of GPS full operational capability and the
present day, the number of GPS applications and the number of receivers
have exploded. GPS went from a specialized navigation device to some-
thing that could be included almost as an afterthought in other devices
(for example, cell phones for E911 service). Certain application areas
transitioned to deep dependence on GPS. Among them are surveying
and time synchronization in power transmission and telecommunica-
tions networks.

The ubiquity of GPS was made possible by receiver costs being driven
down by the Moore’s law advance in digital electronics (which depended
on GPS having a digital signal) and the development of new applications.

GPS policy frequently lagged GPS application. One reason was sim-
ply the innovation-driven expansion of applications, enabled by cheap
receivers, which occurred much more quickly than policy could adapt. The
other reason was that GPS had escaped control by the GPS program office
and had even significantly escaped the control of the U.S. government. GPS
had morphed from a large and complicated, but reasonably conventional,
system to a collaborative system, one not under the centralized control of
any single entity. An example of the policy lag relative to the technology
was the period in the 1990s when the U.S. Federal Aviation Administration
(FAA) and Coast Guard were deploying GPS enhancement transmitters at
the same time the U.S. Air Force was maintaining the accuracy degrading
selective availability features. It was not until after 2000 that the United
States abjured the use of selective availability and has only recently begun
flying satellites with the dual-frequency civilian code transmitters neces-
sary for higher accuracy without terrestrial augmentation.

GPS-Guided Weapons
A massive increase in the number of military receivers came with the
development of GPS-guided weapons. As receiver costs dropped, largely
because of the availability of commercial GPS chips, the cost of a receiver
became less than even a very simple weapon. At this point, it became fea-
sible to attach a GPS-based guidance system to a huge number of previ-
ously unguided weapons. The canonical example is a GPS-based guidance
unit attached to 500 to 2,000 lb “dumb” bombs, known as the JDAM.

Even though the JDAM is a fine example of lateral exploitation (to use
Art Raymond’s term from the DC-3 story), the concepts of operation asso-
ciated with the JDAM are more revolutionary. With a JDAM, especially
the lighter-weight 500 lb JDAM, a large high-altitude aircraft, like a B-52
or B-1 bomber, could become a close support aircraft. This concept of
operation was invented on-the-fly during the Afghan war in 2001–2002.

Case Study 5: The Global Positioning System	 189

Large aircraft could loiter persistently in the battle area waiting for calls
from ground troops. To make the concept work, ground troops needed
to be able to precisely measure the GPS coordinates of targets (easily
achieved with laser rangefinders coupled to GPS receivers) and com-
municate directly to the aircraft overhead. When the whole concept was
in place, it could be rapidly improved by realizing that smaller guided
bombs worked as well, or better, than large guided bombs in close sup-
port, given the accurate guidance. With smaller bombs, the large aircraft
could carry many more, and were not limited by persistence over target,
as older dedicated close support aircraft had been. The synergistic effects
were large in combining the technology of GPS with changed concepts of
operation and repurposed platforms.

Architecture Interpretation
GPS provides us with important lessons applicable to other systems and
that relate back to the topics of Part I and Part II. The lessons are: Right
idea, right time, right people; Be technically aggressive, but not suicidal;
Consensus without compromise; Architecture through invariants; and
Revolution through coupled change.

Right Idea, Right Time, Right People
GPS would almost certainly not have happened when it did and how it
did without particular people being in the right place at the right time.
It was not obvious that the U.S. Navy and Air Force could reach a consen-
sus on a global navigation concept, sell that concept through the acquisi-
tion bureaucracy, and then maintain it for more than the decade it took
to become firmly established. Without Parkinson in the key position at
that time, it is unlikely that the Air Force program would have discovered
and adopted key Navy ideas and expanded its scope enough to become
an established program. No stakeholder group in the Air Force needed
global satellite navigation badly enough to allow the program to survive.

On the Navy side, they had a stable program plan. The TIMATION con-
cept was intended to lead, eventually, to a global, high-precision system.
Had the Navy been left alone, would something like GPS eventually
have emerged? Obviously, we cannot ever know for sure, the experiment
cannot be carried out. But, two factors speak against the Navy’s concept
ever growing into the GPS system as it exists today. First, there was no
Navy stakeholder with a combination of need and resources to grow the
system to the level of capability now provided by GPS. Navy needs were
well met by more incremental improvements that were more aligned with
the limited resources of Navy space programs. Second, the most important
Air Force contribution was the signal, the digital pseudorandom coded

190	 The Art of Systems Architecting

ranging signal used in the current GPS. This was a technically aggres-
sive choice in 1973 and was unnecessary for the Navy mission (indeed it
had drawbacks for the Navy mission). However, the pseudorandom noise
(PRN) signal used in GPS provides it with significant jam resistance and
considerably eases the problem of frequency management in crowded
areas (such as urban and suburban areas of industrialized countries).
The signal, and its placement in L-Band, allows high-precision location
(from tens of meters to meters accuracy) to be achieved without severe fre-
quency management problems. This has been an important factor in the
long-term success of GPS, but was of little relevance to the Navy mission
as understood in the 1970s.

Be Technically Aggressive, But Not Suicidal
Parkinson and his team made technically aggressive choices, with wis-
dom that is obvious in retrospect but was not so obvious in prospect. The
most important over the long term was to base GPS ranging on the digital
PRN signal. In the 1970s, processing a digital signal with a modulation
rate from 1 to 10 MHz was very difficult, requiring many boards of custom
hardware. With decades of advance in Moore’s law, processing the same
signals today is a trivial hardware exercise easily fit into communications
chipsets. Even though choosing an all-digital approach was aggressive in
the 1970s, it was central to the achievement of cheap receivers in the 1990s.
The price/performance curve for digital electronics has moved orders of
magnitude in the intervening decade, but the same curve for analog hard-
ware has moved much less. By the 1990s, commercial firms were able to
enter the GPS market with receivers in form factors and prices acceptable
to a wide consumer base only because most of the processing required
was digital.

The choice of half-geosynchronous orbits was also aggressive, but not
excessively. The half-geosynchronous orbit allows for global simultaneous
visibility to four satellites with a constellation of 25 or so satellites. The exact
number depends on the specification for occasional brief outages. Higher
orbits reduce the number of satellites required modestly, but considerably
increase the satellite weight (because of the higher power required). Lower
orbits either incur a large radiation exposure penalty (in the Van Allen
belts) or cause the number of satellites to increase enormously (potentially
to hundreds), although lower orbits result in smaller and simpler satellites.
Building satellites that survive in the half-geosynchronous orbit is more
challenging than in low Earth orbit (because of higher radiation levels), but
not excessively so.

Finally, the selected architecture of GPS placed precision clocks on the
satellites, and not in the receivers. This meant that receivers needed only
digital processing, and all sophisticated computation was done on the

Case Study 5: The Global Positioning System	 191

ground, in receivers. Over the long term, this was very beneficial. It meant
that improved processing techniques could be deployed with each new
generation of receiver, and receiver generations have been far shorter than
spacecraft generation times. However, it also required that atomic clocks
operate precisely and reliably on satellites for up to a decade. Again, the
previous work by the Navy had proven the possibility, and had explored
various design options for precision clocks in orbit, including both crystal
and atomic clocks. Although the technology had to be matured by the GPS
program, the essential trades had already been made and the data required
for those trades had been acquired in well-designed experiments.

In all three cases, Parkinson’s team made technically aggressive deci-
sions but did not incur excessive risk. Although processing megabit/
second PRN signals was challenging in the 1970s, it had already been
demonstrated. The project 621B experiments, and other projects, had
accomplished the task several times. Likewise, the space environment at
half-geosynchronous was known, and the techniques for surviving in it
were known and tested (albeit uncommon and expensive). High-precision
clocks had been, and were being, flown in orbit. In all three cases, the
trade-offs could be made with concrete knowledge of the issues. That
could not have been the case a few years earlier.

Consensus without Compromise
Even though the architecture of GPS reflected a fusion of ideas from
many sources, it was not a watered-down compromise. The fusion genu-
inely took the best aspects of the approaches of several stakeholders and
abandoned inferior aspects. There is little evidence of political compro-
mise, that sort that might have insisted that “Air Force equities require
that we do this and Navy equities require that we do that.” Instead, the
elements selected from the different component programs were those
that reflected consensus best choices, or cut through consensus to adopt
a clear strategic position.

Using the simultaneous position and time determination method from
four pseudoranges can be seen as a clear consensus choice. Essentially
all parties would now agree, and agreed even then, that it represented
the best choice overall. The impact on overall system simplicity is clear.
All position determination is done through the signals broadcast by the
satellites, no auxiliary terrestrial signal is required, the receiver is nearly
all digital, and all serious computation is done in the receiver.

In the case of the choice of the all-digital signal, the consensus is not
clear, but the choice reflects a very clear strategic choice. The all-digital,
L-band signal was easy to frequency manage, allowed all satellites to
share the same frequency, and led to cheap receivers. On the downside,
the L-band signal penetrates poorly in buildings and even foliage and

192	 The Art of Systems Architecting

requires more difficult antennas, and the all-digital signal was challeng-
ing to process in the 1970s. The choice made a clear strategic decision;
GPS would ride the improvements in digital electronics. It would exploit
technology developments then well underway but still far from ready.
Parkinson’s team could have a variety of other choices that would have
compromised among the players and been easier in the near-term, but
would have missed the long-term opportunities.

Architecture as Invariants
GPS is an example of architecture as invariants. Between the origin of
the joint program and 2007, the signals were unchanging, and the orbits
underwent minimal change. Of these two, the signals were much more
significant as an invariant. The constellation had already been morphed
by the inclusion of terrestrial transmitters for local accuracy improvement.
Only in the last few years has any change begun to appear in the signals.
Currently launched satellites add new military signals, known as the
M-code, to augment the legacy military codes. A copy of the unencrypted
civilian signal will shortly be added at a second frequency. The second
signal improves accuracy by allowing direct measurement of ionospheric
delay. This capability has been available for military users since the incep-
tion of GPS, but has been unavailable to civilian users.

Architecture through invariants is particularly effective when evolu-
tion is important to long-term success. In the case of GPS, the invariant
signals have allowed decoupled evolution of the constellation and receiv-
ers. The receivers have undergone extensive evolution programmatically
and technically without that change having to be coupled to change in
the satellites. At the current time, receivers are developed dominantly by
commercial firms with no formal relationship to the GPS program office.

Revolution through Coupled Change
The greatest impact of GPS came only through coupled change to affili-
ated systems and concepts of operation. The original slogan was “five
bombs in the same hole and cheap receivers.” The latter was achieved and
then achieved beyond the original expectations. The former was never as
important as was originally thought. Instead, the proliferation of cheap
receivers enabled a whole range of new applications. Some of the innova-
tions include the following:

Extremely compact and low-cost receivers could be distributed to •	
individual soldiers. Small units can accurately and continuously
determine their position, and reporting of those positions enables
new networked operational concepts.

Case Study 5: The Global Positioning System	 193

As receivers became cheap enough, they could be placed on weap-•	
ons. Instead of guiding the weapon delivery platform to weapon
release, GPS now guides the weapon from release to impact.
The existence of precision-guided weapons at costs little larger than •	
their unguided predecessors has resulted in a radical shift in the
dominant operational concept for aerial weapons delivery (at least
for the United States), from less than 10% of all aerial weapons being
guided to roughly 90% in a period of 15 years.
As guided weapons became the norm, the operational concept for •	
platforms has shifted. In the Afghan war begun in 2001, the B-1
bomber was used for close air support, by loitering for long periods
at high altitude and dropping GPS-guided bombs on targets located
by ground troops. Close air support was performed by small aircraft
whose pilots delivered weapons visually, and is now more effec-
tively performed by an airplane designed originally for delivering
strategic nuclear weapons.
The practice of surveying has been pervasively impacted by GPS. •	
Surveyors, because they do not need position determination at high
update rates, have been able to exploit a wide range of unanticipated
processing techniques.
The ability of GPS to provide very high accuracy, globally referenced •	
time has led to its embedding into electric power and telecommuni-
cations control systems.
GPS is now typically included in cell phones at a marginal cost to •	
support electronic 911 service. The ability to track large numbers of
cell phone users will lead to a wide range of new applications.

Revolution through coupled change is exemplified in GPS, but is
hardly unique to GPS. The most dramatic impacts of new technologies
typically come from uses beyond the originally envisioned application.
Those dramatic applications typically involve rethinking the problem
being solved and the concept of operation involved. A simple application
of a new technology to old concepts of operation is almost never as valu-
able as what can be realized from creating new concepts of operation.

Conclusion
GPS is an exceptional example of architecture in a revolutionary system.
Its original development is a classic example of architecting by a very small
team with a tightly defined mission with the challenges of new technol-
ogy. As it has developed, it has illustrated evolution toward a collaborative
system and revolution through changes to concepts of operation. GPS is
not quite a collaborative system. It is still run by a single, joint program
office. But, many of the factors that drive GPS development are out of the

194	 The Art of Systems Architecting

control of that program office. Commercial receiver builders design in
whatever features they wish. Several agencies continue to develop and
deploy augmentation transmitters. And, most strikingly, international
players are beginning to develop competing programs that may contain
compatible or interfering signals.

The greatest impact of GPS has been in areas outside the original con-
ception of its use, and that success is a testament to the quality of the
architecture. The core architecture of GPS (the signal and the position
determination method) has been robust to extensive lateral exploitation.
The willingness of the program office and the sponsors to cede control
of some segments and applications and allow a collaborative system to
form, has been central to long-term success. The multitude of applications
is a witness to the basic insight that ubiquitous, global satellite navigation
would be tremendously valuable.

Notes and References
	 1.	 There is a great deal of literature on the origins and evolution of the Global

Positioning System. The author is indebted to his aerospace colleague Glenn
Buchan who wrote an exceptionally fine case study from which we have
drawn a great deal. The Air Force Institute of Technology has also published
an extensive case study of the Global Positioning System, though it focuses
more on the program events after the initial concept was formed than before
(O’Brien, P., and J. Griffin, Global Positioning System Systems Engineering
Case Study, Air Force Center for Systems Engineering, Air Force Institute of
Technology, www.afit.edu/cse).

	 2.	 As noted later, considerable controversy exists over credit for GPS. Various
elements of the eventual concept were conceived of early but were reduced to
practice within the Navy, Air Force, and Aerospace programs described here.

	 3.	 A fair amount of literature exists on the controversy over who deserves what
credit for GPS. One distinction that might clarify the issue is who “invented”
GPS versus who was the “architect” or “father” of GPS. It is abundantly
clear that Parkinson was in charge at the key period and led the key deci-
sions that formed GPS as it is today. It is equally clear that Easton originally
came up with most of the concept, save for the signal. For some perspectives,
see Easton, R., Who Invented the Global Positioning System? The Space
Review, May 2006, retrieved from www.thespacereview.com/article/626/1;
Comments on Navstar: Global Positioning System — Ten Years Later, by
Easton, R., with replies by Parkinson and Gilbert, Proceedings of the IEEE,
Vol. 73, Number 1, January 1985.

195

7chapter

Collaborative Systems

Introduction: Collaboration as a Category
Most of the systems discussed so far have been the products of deliberate
and centrally controlled development efforts. There was an identifiable
client or customer (singular or plural), clearly identifiable builders, and
users. Client, in the traditional sense, means the person or organization
who sponsors the architect, and who has the resources and authority to
construct the system of interest. The role of the architect existed, even if it
was hard to trace to a particular individual or organization. The system
was the result of deliberate value judgment by the client and existed under
the control of the client. However, many systems are not under central
control, either in their conception, their development, or their operation.
The Internet is the canonical example, but many others exist, including
electrical power systems, multinational defense systems, joint military
operations, and intelligent transportation systems. These systems are all
collaborative, in the sense that they are assembled and operate through
the voluntary choices of the participants, not through the dictates of an
individual client. These systems are built and operated only through a
collaborative process.

Some systems are born as collaborative systems and others evolve
that way. The Internet was not originally a collaborative system but has
long ago passed out of centralized control. Global Positioning System
(GPS) was not originally a collaborative system but is already at least
partially one and is likely to soon move farther in that direction. Other
systems, such as those architected to be multicompany or multigovern-
ment collaborations are, or should be, considered as collaborative systems
from the beginning.

A problem in this area is the lack of standard terminology for cate-
gories of system. Any system is an assemblage of elements that together
possess capabilities not possessed by an element. This is just saying that
a system possesses emergent properties, indeed that possessing emergent
properties is the defining characteristic of a system. A microwave oven, a
laptop computer, and the Internet are all systems; but each can have radi-
cally different problems in design and development.

This chapter discusses systems distinguished by the voluntary
nature of the systems assembly and operation. Examples of systems in

196	 The Art of Systems Architecting

this category include most intelligent transport systems,1 military C4I and
Integrated Battlespace,2 and partially autonomous flexible manufacturing
systems.3 The arguments here apply to most of what are often referred to
as systems-of-systems, a term some readers may prefer. One of the authors
(Maier) has discussed the contrast between the concepts elsewhere.4

What exactly is a collaborative system? In this chapter, a system is a
“collaborative system” when its components

	 1.	Are complex enough to be regarded as systems in their own right, and
interact to provide functions not provided by any of the components
alone; that is, the components in combination make up a system.

	 2.	The component systems fulfill valid purposes in their own right and
continue to operate to fulfill those purposes if disassembled from
the overall system.

	 3.	The component systems are managed (at least in part) for their own
purposes rather than the purposes of the whole. The component
systems are separately acquired and integrated but maintain a con-
tinuing operational existence independent of the collaborative system.

A separate issue is how the components come to be combined together.
Our interest here is in systems deliberately constructed. Some people are
interested in nondeliberate combinations that form recognizable systems.
Some refer to these as “organic” systems, and there are a variety of inter-
esting examples in human society. DeMarco presented an example known
as the “Bombay Box-Wallah” system,5 and others have described the oper-
ation of an ungoverned, yet organized urban environment.6

Misclassification as a “conventional” system versus a collaborative
system (or vice versa) leads to serious problems. Especially important is a
failure to architect for robust collaboration when direct control is impos-
sible or inadvisable. This can arise when the developers believe they
have greater control over the evolution of a collaborative system than
they actually do. In believing this, they may fail to ensure that critical
properties or elements will be incorporated by failing to provide a mecha-
nism matched to the problem.

As with other domains, collaborative systems have their own heuristics,
and familiar heuristics may have new application. To find them for collab-
orative systems, we look first at important examples and then generalize to
find the heuristics. A key point is the heightened importance of interfaces,
and the need to see interfaces at many layers. The explosion of the Internet
and the World Wide Web is greatly facilitating collaborative system con-
struction, but we find that the “bricks-and-mortar” of Internet-based
collaborative systems are not at all physical. The building blocks are com-
munication protocols, often at higher layers in the communications stack
that is familiar from past systems.

Chapter 7:  Collaborative Systems	 197

Collaborative System Examples
Systems built and operated voluntarily are not unusual, even if they seem
very different from classical systems engineering practice. Most of the
readers of this book will be living in capitalist democracies where social
order through distributed decisions is the philosophical core of govern-
ment and society. Nations differ in the degree to which they choose to
centralize versus decentralize decision making, but the fundamental
principle of organization is voluntary collaboration. This book is con-
cerned with technological systems, albeit sometimes systems with heavy
social or political overtones. So, we take as our examples the systems
whose building blocks are primarily technical. The initial examples are
the Internet, intelligent transportation systems (for road traffic), and joint
air defense systems.

The Internet

When we say “The Internet,” we are not referring to the collection of
applications that have become so popular (e-mail, World Wide Web,
chats, and so forth). We are referring to the underlying communications
infrastructure on which the distributed applications run. A picture of the
Internet that tried to show all physical communications links active at one
time would be a sea of lines with little or no apparent order. But, properly
viewed, the Internet has a clear structure. The structure is a set of pro-
tocols called TCP/IP (Transmission Control Protocol/Internet Protocol).
Their relationship to other protocols commonly encountered in the
Internet is shown in Figure 7.1.7 The TCP/IP suite includes the IP, TCP, and
User Datagram Protocol (UDP) protocols in Figure 7.1. Note in Figure 7.1
that all the applications shown ultimately depend on IP. Applications can
use only communications services supported by IP. IP, in turn, runs on
many link and physical layer protocols. IP is “link friendly” in that it can
be made to work on nearly any communications channel. This has made
it easy to distribute widely, but prevents much exploitation of the unique
features of any particular communication channel.

The TCP/IP family protocols are based on distributed operation and
management. All data are encapsulated in packets, which are indepen-
dently forwarded through the Internet. Routing decisions are made locally
at each routing node. Each routing node develops its own estimate of the
connection state of the system through the exchange of routing messages
(also encapsulated as IP packets). The distributed estimates of connec-
tion state are not, and need not, be entirely consistent or complete. Packet
forwarding works in the presence of some errors in the routing tables
(although introduction of bad information can also lead to collapse).

198	 The Art of Systems Architecting

The distributed nature of routing information, and the memoryless
forwarding, allows the Internet to operate without central control or
direction in the classic sense. Of course, control exists, but it is a collabora-
tive, decentralized mechanism based on agreements-in-practice between
the most important players. A decentralized development community
matches the decentralized nature of control and decentralized architec-
ture itself. There is no central body with coercive power to issue or enforce
standards. There is a central body which issues standards, the Internet
Engineering Task Force (IETF), but its practices are unlike nearly any
other standards body. The IETF approach to standards is, fundamentally,
to issue only those which have already been developed and deployed. The
IETF acts more in a role of recognizing and promulgating standards than
of creating them. Its apparently open structure (almost anybody can go to
the IETF and try and form a working group to build standards in a given
area) actually has considerable structure, albeit structure defined by cus-
tomary practices rather than mandates.

The organization accepts nearly any working group that has the back-
ing of a significant subset of participants. The working group can issue
“Internet-drafts” with minimal overhead. For a draft to advance to the
Internet equivalent of a published standard it must be implemented and
deployed by two or more independent organizations. All Internet stan-
dards are available for free, and very strong efforts are made to keep them
unencumbered by intellectual property. Proprietary elements are usually

IP

TCP

HDLCEthernet

UDP Others

X.25

FTP SMTP HTTP Others

Others

Web
Application

Web
Application

Web
Application

Figure 7.1  Protocol dependencies in the Internet.

Chapter 7:  Collaborative Systems	 199

accepted only as optional extensions to an open standard. But under the
surface, the practices of the organization create different forms of virtual
mandates. Anybody can try to form a working group, but working code
and a willingness to open source it speaks far louder than procedures.
Powerful organizations can find their efforts in the IETF stymied by
smaller players, if those players are faster and more willing to distribute
working implementations, and forge alliances with others who will dem-
onstrate interoperability in working systems.

Distributed operation, distributed development, and distributed man-
agement are linked. The Internet can be developed in a collaborative way
largely because its operation is collaborative. Because the Internet uses
best-effort forwarding and distributed routing, it can easily offer new ser-
vices, as long as those new services depend only on best effort operation,
without changing the underlying protocols. In contrast, services requir-
ing hard network-level guarantees cannot be offered. New services can be
implemented and deployed by groups that have no involvement in devel-
oping or operating the underlying protocols, but only so long as those
new services do not require any new underlying services. So, for exam-
ple, groups were able to develop and deploy IP-Phone (a voice over the
Internet application) without any cooperation from TCP/IP developers or
even Internet service providers. However, the IP-Phone application cannot
offer any quality of service guarantees, because the protocols it is built on
do not offer simultaneous delay and error rate bounding.

In contrast, networks using more centralized control can offer richer
building block network services, including quality of service guarantees.
However, they are much less able to allow distributed operation. Also, the
collaborative environments that have produced telecommunications stan-
dards have been much slower moving than the Internet standards bodies.
They have not adopted some of the practices of the Internet bodies that
have enabled them to move quickly and rapidly capture market share.
Of course, some of those practices would threaten the basic structure of
the existing standards organizations.

In principle, a decentralized system like the Internet should be less
vulnerable to destructive collective phenomena and be able to locally adapt
around problems. In practice, both the Internet with its distributed con-
trol model and the telephone system with its greater centralization have
proven vulnerable to collective phenomena. It turns out that distributed
control protocols like TCP/IP are prone to collective phenomena in both
transmission and routing.8 Careful design and selection of parameters
has been necessary to avoid network collapse phenomena. One reason is
that the Internet uses a “good intentions” model for distributed control,
which is vulnerable to nodes that misbehave either accidentally or delib-
erately. There are algorithms known that are robust against bad inten-
tions faults, but they have not been incorporated into network designs.

200	 The Art of Systems Architecting

The decentralized nature of the system has made it especially difficult to
defend against coordinated distributed attacks (for example, distributed
denial of service attacks). Centralized protocols often deal more easily with
these attacks because they have strong knowledge of where connections
originate and can initiate aggressive load-shedding policies under stress.

Wide area telephone blackouts have attracted media attention and
shown that the more centralized model is also vulnerable. The argument
about decentralized versus centralized fault tolerance has a long history in
the electric power industry, and even today has not reached full resolution.

Intelligent Transportation Systems

The goal of most initiatives in intelligent transportation is to improve road
traffic conditions through the application of information technology. The
subject is broad and cannot be addressed in detail here.9 We already dis-
cussed several aspects of ITSs in “Case Study 3,” preceding Chapter 5. We
pick out one issue to illustrate how a collaborative system may operate
and the architectural challenges in making it happen.

One intelligent transportation concept is called “fully coupled routing
and control.” In this concept, a large fraction of vehicles are equipped with
devices that determine their position and periodically report it to a traffic
monitoring center. The device also allows the driver to enter his or her
destination when beginning a trip. The traffic center uses the traffic con-
ditions report to maintain a detailed estimate of conditions over a large
metropolitan area. When the center gets a destination message, it responds
with a recommended route to that destination, given the vehicle’s current
position. The route could be updated during travel if warranted. The con-
cept is referred to as fully coupled because the route recommendations
can be coupled with traditional traffic controls (for example, traffic lights,
on-ramp lights, and reversible lanes).

Obviously, the concept brings up a wide array of sociotechnical
issues. Many people may object to the lack of privacy inherent in their
vehicle periodically reporting its position. Many people may object to
entering their destination and having it reported to a traffic control center.
Although there are many such issues, we narrow down once again to
just one that best illustrates collaborative system principles. The concept
works only if:

	 1.	A large fraction of vehicles have, and use, the position reporting
device.

	 2.	A large fraction of drivers enter their (actual) destination when
beginning a trip.

	 3.	A large fraction of drivers follow the route recommendations they
are given.

Chapter 7:  Collaborative Systems	 201

Under current conditions, vehicles on the roads are mostly privately
owned and operated for the benefit of their owners. With respect to the
collaborative system conditions, the concept meets it if using the routing
system is voluntary. The vehicles continue to work whether or not they
report their position and destination. And vehicles are still operated for
their owner’s benefit, not for the benefit of some “collective” of road users.
So, if we are architecting a collaborative traffic control system, we have
to explicitly consider how the three conditions above needed to gain the
emergent capabilities are ensured.

One way to ensure them is to not make the system collaborative.
Under some social conditions, we can ensure conditions one to three by
making them legally mandatory and providing enforcement. It is a matter
of judgment whether or not such a mandatory regime could be imposed.

If one judges that a mandatory regime is impossible, then the system
must be collaborative. Given that it is collaborative, there are many archi-
tectural choices that can enhance the cooperation of the participants. For
example, we can break apart the functions of traffic prediction, routing
advice, and traditional controls and allocate some to private markets.
Imagine an urban area with several “Traffic Information Provider”
services. These services are private and subscription based, receive the
position and destination messages, and disseminate the routing advice.
Each driver voluntarily chooses a service, or none at all. If the service pro-
vides accurate predictions and efficient routes, it should thrive. If it cannot
provide good service, it will lose subscribers and die.

Such a distributed, market-based system may not be able to imple-
ment all of the traffic management policies that a centralized system
could. However, it can facilitate social cooperation in ways the centralized
system cannot. A distributed, market-based system also introduces tech-
nical complexities into the architecture that a centralized system does not.
In a private system, it must be possible for service providers to dissemi-
nate their information securely to paying subscribers. In a public, central-
ized system, information on conditions can be transmitted openly.

Joint Air Defense Systems

A military system may seem like an odd choice for collaborative systems.
After all, military systems work by command, not voluntary collaboration.
Leaving aside the social issue that militaries must always induce loyalty,
which is a social process, the degree to which there is a unified command
on military systems or operations is variable. A system acquired and oper-
ated as a single service can count on central direction. A system belonging
to a single nation but spanning multiple services can theoretically count
on central direction, but in practice it is likely to be largely collaborative.
A system that comes together only in the context of multiservice, multi

202	 The Art of Systems Architecting

national, coalition military operations cannot count on central control and
is always a collaborative system.

All joint military systems and operations have a collaborative ele-
ment, but here we consider just air defense. An air defense system must
fuse a complex array of sensors (ground radars, airborne radars, beacon
systems, human observers, and other intelligence systems) into a logi-
cal picture of the air space, and then allocate weapon systems to engage
selected targets. If the system includes elements from several services or
nations, conflicts will arise. Nations, and services, may want to preferen-
tially protect their own assets. Their command channels and procedures
may affect greater self-protection, even when ostensibly operating solely
for the goals of the collective.

Taking a group of air defense systems from different nations and dif-
ferent services and creating an effective integrated system from them is
the challenge. The obvious path might be to try and convert the collec-
tion into something resembling a single service air defense system. This
would entail unifying the command, control, and communications infra-
structure. It would mean removing the element of independent manage-
ment that characterizes collaborative systems. If this could be done, it is
reasonable to expect that the resulting integrating system would be closer
to a kind of point optimum. But, the difficulties of making the unification
are likely to be insurmountable.

If, instead, we accept the independence, then we can try and forge
an effective collaborative system. The technical underpinnings are
clearly important. If the parts are going to collaborate to create integrated
capabilities greater than the sum of the parts, they are going to have to
communicate. So, even if command channels are not fully unified, com-
munications must be highly interoperable. In this example, as in other
sociotechnical examples, the social side should not be ignored. It is possible
that the most important unifying elements in this example will be social.
These might include shared training or educational background, shared
responsibility, or shared social or cultural background.

Analogies for Architecting Collaborative Systems
One analogy that may apply is the urban planner. The urban planner,
like the architect, develops overall structures. The architect structures a
building for effective use by the client; the urban planner structures effec-
tive communities. The client of an urban planner is usually a community
government, or one of its agencies. The urban planner’s client and the
architect’s client differ in important respects. The architect’s client is
making a value judgment for himself or herself, and presumably has the
resources to put into action whatever plan is agreed to with the architect.
When the architect’s plan is received, the client will hire a builder. In

Chapter 7:  Collaborative Systems	 203

contrast, the urban planner’s client does not actually build the city. The
plan is to constrain and guide many other developers and architects who
will come later, and hopefully guide their efforts into a whole greater than
if there had been no overall plan. The urban planner and client are mak-
ing value judgments for other people, the people who will one day inhabit
the community being planned. The urban planner’s client usually lacks
the resources to build the plan, but can certainly stop something from
being built if it is not in the plan. To be successful, the urban planner and
client have to look outward and sell their vision. They cannot bring it
about without the other’s aid, and they normally lack the resources and
authority to do it themselves.

Urban planning also resembles architecting in the spiral or evolution-
ary development process more than in the waterfall. An urban plan must
be continuously adapted as actual conditions change. Road capacity that
was adequate at one time may be inadequate at another. The mix of busi-
nesses that the community can support may change radically. As actual
events unfold, the plan must adapt and be resold to those who participate
in it, or it will be irrelevant.

Another analogy for collaborative systems is in business relation-
ships. A corporation with semi-independent division is a collaborative
system if the divisions have separate business lines, individual profit and
loss responsibilities, and also collaborate to make a greater whole. Now
consider the problem of a postmerger company. Before the merger, the
components (the companies who are merging) were probably centrally
run. After the merger, the components may retain significant indepen-
dence but be part of a greater whole. Now if they are to jointly create
something greater, they must go through a collaborative system instead of
their traditional arrangement. If the executives do not recognize this and
adapt, it is likely to fail. A franchise that grants its franchisees significant
independence is also like a collaborative system. It is made up of indepen-
dently owned and operated elements, which combine to be something
greater than they would achieve individually.

Collaborative System Heuristics
As with builder-architecting, manufacturing, sociotechnical, and software-
intensive systems, collaborative systems have their own heuristics. The
heuristics discussed here have all been given previously, either in this
book or its predecessor. But saying that they have been given previously
does not mean that they have been explored for their unique applications
in collaborative systems. For most people, heuristics do not stand alone as
some sort of distilled wisdom. They function mainly as guides or “outline
headings” to relevant experience. What is different here is their applica-
tion — or the experience with specific respect to collaborative systems that

204	 The Art of Systems Architecting

generated the heuristic. Looking at how heuristics are applied to different
domains gives a greater appreciation for their use and applicability in
all domains.

Stable Intermediate Forms

The heuristic on stable intermediate forms is given originally as:

Complex systems will develop and evolve within an
overall architecture much more rapidly if there are stable
intermediate forms than if there are not.

The original source of this heuristic is the notion of self-support during
construction. It is good practice in constructing a building or bridge to
have a structure that is self-supporting during construction rather than
requiring extensive scaffolding or other weight-bearing elements that are
later removed. The idea generalizes to other systems where it is impor-
tant to design them to be self-supporting before they reach the final con-
figuration. In the broader context, “self-supporting” can be interpreted in
many ways beyond physical self-support. For example, we can think of
economic and political notions of “self-support.”

Stability in the more general context means that intermediate forms
should be technically, economically, and politically self-supporting. Tech-
nical stability means that the system operates to fulfill useful purposes.
Economic stability means that the system generates and captures revenue
streams adequate to maintain its operation. Moreover, it should be in the
economic interests of each participant to continue to operate rather than
disengage. Political stability can be stated as the system has a politically
decisive constituency supporting its continued operation, a subject we
return to in Chapter 13. In collaborative systems, it cannot be assumed
that all participants will continue to collaborate. The system will evolve
based on continuous self-assessments of the desirability for collaboration
by the participants:

Integrated air defense systems are subject to unexpected and violent •	
“reconfiguration” in typical use. As a result, they are designed with
numerous fall-back modes, down to the anti-aircraft gunner work-
ing on his own with a pair of binoculars. Air defense systems built
from weapon systems with no organic sensing and targeting capa-
bility have frequently failed in combat when the network within
which they operate has come under attack.
The Internet allows components nodes to attach and detach at will. •	
Routing protocols adapt their paths as links appear and disappear.
The protocol encapsulation mechanisms of IP allow an undetermined
number of application layer protocols to simultaneously coexist.

Chapter 7:  Collaborative Systems	 205

Policy Triage

This heuristic gives guidance in selecting components and in setting pri-
orities and allocating resources in development. It is given originally as:

The triage: Let the dying die. Ignore those who will
recover on their own. And treat only those who would
die without help.

Triage can apply to any systems, but especially applies to collabora-
tive systems. Part of the scope of a collaborative system is deciding what
not to control. Attempting to overcontrol will fail for lack of authority.
Undercontrol will eliminate the system nature of the integrated whole.
A good choice enhances the desired collaboration.

The Motion Picture Experts Group (MPEG), when forming their •	
original standard from video compression, chose to standardize
only the information needed to decompress a digital video stream.10
The standard defines the format of the data stream and the opera-
tions required to reconstruct the stream of moving picture frames.
However, the compression process is deliberately left undefined. By
standardizing decompression, the usefulness of the standard for
interoperability was assured. By not standardizing compression,
the standard leaves open a broad area for the firms collaborating on
the standard to continue to compete. Interoperability increases the
size of the market, a benefit to the whole collaborative group, while
retaining a space for competition eliminates a reason to not collabo-
rate with the group. Broad collaboration was essential both to ensure
a large market and to ensure that the requisite intellectual property
would be offered for license by the participants.

Leverage at the Interfaces

Two heuristics, here combined, discuss the power of the interfaces:

The greatest leverage in system architecting is at the
interfaces. The greatest dangers are also at the interfaces.

When the components of a system are highly independent, operation-
ally and managerially, the architecture of the system is the interfaces. The
architect is trying to create emergent capability. The emergent capability
is the whole point of the system. But, the architect may only be able to
influence the interfaces among the nearly independent parts. The compo-
nents are outside the scope and control of an architect of the whole.

206	 The Art of Systems Architecting

The Internet oversight bodies concern themselves almost exclu-•	
sively with interface standards. Neither physical interconnections
nor applications above the network protocol layers is standardized.
Actually, both areas are the subject of standards, but not the stan-
dards process of the IETF.

One consequence is attention to different elements than in a conven
tional system development. For example, in a collaborative system,
issues like life-cycle cost are of low importance. The components are
developed collaboratively by the participants, who make choices to do
so independently of any central oversight body. The design team for the
whole cannot choose to minimize life-cycle cost, nor should they, because
the decisions that determine costs are outside their scope. The central
design team can choose interface standards, and can choose them to max-
imize the opportunities for participants to find individually beneficial
investment strategies.

Ensuring Cooperation

If a system requires voluntary collaboration, the mechanism
and incentives for that collaboration must be designed in.

In a collaborative system, the components actively choose to partici-
pate or not. Like a free market, the resulting system is the web of indi-
vidual decisions by the participants. Thus, an economists’ argument that
the costs and benefits of collaboration should be superior to the costs and
benefits of independence for each participant individually should apply.
As an example, the Internet maintains this condition, because the cost
of collaboration is relatively low (using compliant equipment and follow-
ing addressing rules) and the benefits are high (access to the backbone
networks). Similarly in MPEG video standards, compliance costs can be
made low if intellectual property is pooled, and the benefits are high if
the targeted market is larger than the participants could achieve with pro-
prietary products. Without the ability to retain a competitive space in the
market (through differentiation on compression in the case of MPEG), the
balance might have been different. Alternatively, the cost of noncompli-
ance can be made high, though this method is less used.

An alternative means of ensuring collaboration is to produce a situa-
tion in which each participant’s well-being is partially dependent on the
well-being of the other participants. This joint utility approach is known,
theoretically, to produce consistent behavior in groups. A number of
social mechanisms can be thought of as using this principle. For example,
strong social indoctrination in military training ties the individual to the

Chapter 7:  Collaborative Systems	 207

group and serves as a coordinating operational mechanism in integrated
air defense.

Another way of looking at this heuristic is through the metaphor of
the franchise. The heuristic could be rewritten for collaborative systems
as follows:

Consider a collaborative system a franchise. Always ask
why the franchisees choose to join, and then choose to
remain as members.

Variations on the Collaborative Theme
The two criteria provide a sharp definition of a collaborative system,
but they still leave open many variations. Some collaborative systems
are really centrally controlled, but the central authority has decided to
devolve authority in the service of system goals. In some collaborative
systems a central authority exists, but power is expressed only through
collective action. The participants have to mutually decide and act to take
the system in a new direction. And, finally, some collaborative systems
lack any central authority. They are entirely emergent phenomena.

We call a collaborative system where central authority exists and can
act a closed collaborative system. Closed collaborative systems are those in
which the integrated system is built and managed to fulfill specific pur-
poses. It is centrally managed during long-term operation to continue to
fulfill those purposes, and any new purposes the system owners may
wish to address. The component systems maintain an ability to operate
independently, but their normal operational mode is subordinated to the
centrally managed purpose. For example, most single service air defense
networks are centrally managed to defend a region against enemy systems,
although the component systems retain the ability to operate indepen-
dently, and do so when needed under the stress of combat.

Open collaborative systems are distinct from the closed variety in that
the central management organization does not have coercive power to
run the system. The component systems must, more or less, voluntarily
collaborate to fulfill the agreed upon central purposes. The Internet is
an open collaborative system. The IETF works out standards but has no
power to enforce them. IETF standards work because the participants
choose to implement them without proprietary variations, at least for the
most part.

As the Internet becomes more important in daily life, in effect, as
it becomes a new utility like electricity or the telephone, it is natural to
wonder whether or not the current arrangement can last. Services on
which public safety and welfare depends are regulated. Public safety and
welfare, at least in industrial countries, are likely to depend on Internet

208	 The Art of Systems Architecting

operation in the near future, if they do not already. So, will the Internet
and its open processes eventually come under regulation? To some extent,
in some countries, it already has. In other ways, the movement is toward
further decentralization in international bodies. Clearly, the international
governing bodies have less control today over the purposes for which the
Internet is used than did U.S. authorities when it was being rapidly devel-
oped in the 1990s.

Virtual collaborative systems lack both a central management authority
and centrally agreed upon purposes. Large-scale behavior emerges, and
may be desirable, but the overall system must rely upon relatively invis-
ible mechanisms to maintain it.

A virtual system may be deliberate or accidental. Some examples are
the current form of the World Wide Web and national economies. Both
“systems” are distributed physically and managerially. The World Wide
Web is even more distributed than the Internet in that no agency ever
exerted direct central control, except at the earliest stages. Control has been
exerted only through the publication of standards for resource naming,
navigation, and document structure. Although, essentially just by social
agreement, major decisions about Web architecture are filtered through
very few people. Web sites choose to obey the standards or not at their
own discretion. The system is controlled by the forces that make coopera-
tion and compliance to the core standards desirable. The standards do not
evolve in a controlled way, rather they emerge from the market success
of various innovators. Moreover, the purposes the system fulfills are
dynamic and change at the whim of the users.

National economies can be thought of as virtual systems. There are
conscious attempts to architect these systems, through politics, but the
long-term nature is determined by highly distributed, partially invisible
mechanisms. The purposes expressed by the system emerge only through
the collective actions of the system’s participants.

Misclassification
Two general types of misclassification are possible. One is to incorrectly
regard a collaborative system as a conventional system, or the reverse. Another
is to misclassify a collaborative system as directed, voluntary, or virtual.

In the first case, system versus collaborative system, consider open-
source software. Open-source software is often thought of as synonymous
with Linux (or, perhaps more properly, GNU/Linux), a particular open-
source operating system. Actually, there is a great deal of open-source,
“free” software not related to Linux in any way. The success of the Linux
model has spawned an open-source model of development now widely
used for other software projects and some nonsoftware projects. Software
is usually considered open source if the source code is freely available

Chapter 7:  Collaborative Systems	 209

to a large audience, who can use it, modify it, and further redistribute it
under the same open conditions by which they obtained it. Because Linux
has been spectacularly successful, many others have tried to emulate
the open-source model. The open-source model is built on a few basic
principles,11 perhaps heuristics. These include, from Eric Raymond:

	 1.	Designs, and initial implementations, should be carried out by gifted
individuals or very small teams.

	 2.	Software products should be released to the maximum possible
audience, as quickly as possible.

	 3.	Users should be encouraged to become testers, and even codevelopers,
by providing them source code.

	 4.	Code review and debugging can be arbitrarily parallelized, at least
if you distribute source code to your reviewers and testers.

	 5.	 Incremental delivery of small increments, with a very large user/tester
population, leads to very rapid development of high quality software*

Of course, a side effect of the open-source model is losing the ability
to make any significant amount of money distributing software you have
written. The open-source movement advocates counter that effective busi-
ness models may still be built on service and customization, but some
participants in the process are accustomed to the profit margins normally
had from manufacturing software. A number of companies and groups
outside of the Linux community have tried to exploit the success of the
Linux model for other classes of products, with mixed results. But as of
the time of this writing, there are some success stories.

Some of this can be understood by realizing that open-source soft-
ware development is a collaborative system. Companies or groups that
have open-sourced their software without success typically run into one
of two problems that limits collaboration. First, many of the corporate
open-source efforts are not fully open. For example, both Apple and Sun
Microsystems have open-sourced large pieces of strategic software. But
both have released them under licenses that significantly restrict usage
compared to the licenses in the Linux community. They (Apple and Sun)
have argued that their license structure is necessary to their corporate
survival and can lead to a more practical market for all involved. Their
approach is more of a cross between traditional proprietary development
and true open-source development. However, successful open-source
development is a social phenomenon, and even the perception that it is

*	 The speed and quality of Linux releases can be measured, and it is clearly excellent.
Groups of loosely coordinated programmers achieve quality levels equivalent to those of
well-controlled development processes in corporations. This point is even admitted in the
Microsoft “Halloween” memos on Linux, published at www.opensource.org/

210	 The Art of Systems Architecting

less attractive or unfair may be sufficient to destroy the desired collabora-
tion. In both cases, they later had to alter their strategy: in Sun’s case, more
toward full openness, and in Apple’s case, backing away from it.

Second, the hypothesis that the quality of open-source software is
due to the breadth of its review may simply be wrong. The real reason
for the quality may be that Darwinian natural selection is eliminating
poor-quality packages — the disappointed companies among them. In a
corporation, a manager can usually justify putting maintenance money
into a piece of software the company is selling even when the piece is
known to be of very low quality. It will usually seem easier, and cheaper,
to pay for “one more fix” than to start over and rewrite the bad software
from scratch — this time correctly. But in the open-source community,
there are no managers who can insist that a programmer maintain a par-
ticular piece of code. If the code is badly structured, hard to read, prone
to failure, or otherwise unattractive, it will not attract the volunteer labor
needed to keep in the major distributions, and it will effectively disappear.
If nobody works on the code, it does not get distributed and natural selec-
tion has culled it.

For the second case, classification within the types of collaborative
systems, consider a multiservice integrated battle management system.
Military C4I systems are normally thought of as closed collaborative
systems. As the levels of integration cross higher and higher administrative
boundaries, the ability to centrally control the acquisition and operation of
the system lessen. In a multiservice battle management system, there is
likely to be much weaker central control across service boundaries than
within those boundaries. A mechanism that ensures components will col-
laborate within a single service’s system-of-systems, say a set of command
operational procedures, may be insufficient across services.

In general, if a collaborative system is misclassified as closed, the
builders and operators will have less control over purpose and operation
than they may believe. They may use inappropriate mechanisms for insur-
ing collaboration and may assume cooperative operations across admin-
istrative boundaries that will not reliably occur in practice. The designer
of a closed collaborative system can require that an element behave
in a fashion not to its own advantage (at least to an extent). In a closed
collaborative system, the central directive mechanisms exist, but in an
open collaborative system, the central mechanisms do not have directive
authority. In an open collaborative system, it is unlikely that a component
can be induced to behave to its own detriment. In an open collaborative
system, the central authority lacks real authority and can proceed only
through the assembly of voluntary coalitions.

A virtual collaborative system misclassified as open may show very
unexpected emergent behaviors. In a virtual collaborative system, neither
the purpose nor structure are under direct control, even of a collaborative

Chapter 7:  Collaborative Systems	 211

body. Hence, new purposes and corresponding behaviors may arise at
any time. The large-scale distributed applications on the Internet, for
example USENET and the World Wide Web, exhibit this. Both were orig-
inally intended for exchange of research information in a collaborative
environment but are now used for diverse purposes, some undesired and
even illegal.

Standards and Collaborative Systems
The development of multicompany standards is a laboratory for collab-
orative systems. A standard is a framework for establishing some collab-
orative systems. The standard (for example, a communication protocol or
programming language standard) creates the environment within which
independent implementations can coexist and compete.

Example: Telephone standards allow equipment pro-
duced by many companies in many countries to
operate together in the global telephone network. A
call placed in country and traverse switches from dif-
ferent manufacturers and media in different countries
with nearly the same capabilities as if the call were
within a single country on one company’s equipment.

Example: Application programming interface (API)
standards allow different implementations of both
software infrastructure and applications to coexist.
So, operating systems from different vendors can
support the same API and allow compliant applica-
tions to run on any systems from any of the vendors.

Historically, there has been a well-established process for setting
standards. There are recognized national and international bodies with
the responsibility to set standards, such as the International Standards
Organization (ISO), the American National Standards Institute (ANSI), and
so forth. These bodies have a detailed process that has to be followed. The
process defines how standards efforts are approved, how working groups
operate, how voting is carried out, and how standards are approved. Most
of these processes are rigorously democratic (if significantly bureaucratic).
The intention is that a standard should reflect the honest consensus of the
concerned community and is thus likely to be adopted.

Since 1985, this established process has been run over, at least within
the computer field, by Internet, Web, and open-source processes. The
IETF, which never votes on a standard in anything like the same sense as
ISO or ANSI, has completely eclipsed the laboriously constructed Open

212	 The Art of Systems Architecting

Systems Interconnect (OSI) networking standard. Moreover, the IETF
model has spread to a wide variety of networking standards. As another
example, in operating systems the most important standards are either
proprietary (from Microsoft, Apple, and others) or defined by open-source
groups (Linux and BSD). Again, the traditional standards bodies and their
approaches have played only a little role.

Because the landscape is still evolving, it may be premature to con-
clude what the new rules are. It may be that we are in a time of transi-
tion, and that after the computing market settles down we will return to
more traditional methods. It may be that when the computer and network
infrastructure is recognized as a central part of the public infrastructure
(like electricity and telephones), it will be subjected to similar regulation
and will respond with similar bureaucratic actions. Or, it may be that tra-
ditional standards bodies will recognize the principles that have made the
Internet efforts so successful and will adapt. Some fusion may prove to be
the most valuable yet. In that spirit, we consider what heuristics may be
extracted from the Internet experience. These heuristics are important not
only to standards efforts, but to collaborative systems as a whole because
standards are a special case of collaborative system.

Economists call something a “network good” if it increases in value
the more widely it is consumed. So, for example, telephones are network
goods. A telephone that does not connect to anybody is not valuable. Two
cellular telephone networks that cannot interoperate are much less valu-
able than if they can interoperate. The central observation is that:

Standards are network goods, and must be treated
as such.

Standards are network goods because they are useful only to the
extent that other people use them. One company’s networking standard
is of little interest unless other companies support it (unless, perhaps, that
company is a monopoly). What this tells standards groups is that achiev-
ing large market penetration is critically important. Various practices flow
from this realization. The IETF, in contrast to most standards groups, gives
its standards away for free. A price of zero encourages wide dissemina-
tion. Also, the IETF typically gives away reference implementations with
its standards. That is, a proposal rarely becomes a standard unless it has
been accompanied by the release of free source code that implements the
standard. The free source code may not be the most efficient, may not be
fully featured, probably does not have all the extras in interface that a
commercial product should have, but it is free and it does provide a refer-
ence case against which everybody else can work. The IETF culture is that
proponents of an approach are rarely given much credibility unless they
are distributing implementations.

Chapter 7:  Collaborative Systems	 213

The traditional standards organizations protest that they cannot give
standards away because the revenue from standard sales is necessary to
support their development efforts. But, the IETF has little trouble support-
ing its efforts. Its working conferences are filled to overflowing and new
proposals and working groups are appearing constantly. Standards bodies
do not need to make a profit, indeed should not. If they can support effective
standards development they are successful, though removing the income
of standards sales might require substantial organizational change.

Returning to collaborative systems in general, the example of stan-
dards shows the importance of focusing on real collaboration, not the
image of it. Commitment to real participation in collaboration is not indi-
cated by voting; it is indicated by taking action that costs something. Free
distribution of standards and reference implementations lowers entrance
costs. The existence of reference implementations provides clear confor-
mance criteria that can be explicitly tested.

Conclusion
Collaborative systems are those that exist only through the positive choices
of component operators and managers. These systems have long existed
as part of the civil infrastructure of industrial societies, but have come
into greater prominence as high-technology communication systems
have adopted similar models, as centralized systems have been decentral-
ized through deregulation or divestiture, and as formerly independent
systems have been loosely integrated into larger wholes. What sets these
systems apart is their need for voluntary actions on the part of the par-
ticipants to create and maintain the whole. This requires that the architect
revisit known heuristics for greater emphasis and additional elaboration.
Among the heuristics that are particularly important are:

	 1.	Stable Intermediate Forms: A collaborative system designer must pay
closer attention to the intermediate steps in a planned evolution. The
collaborative system will take on intermediate forms dynamically
and without direction, as part of its nature.

	 2.	Policy Triage: The collaborative system designer will not have coercive
control over the system’s configuration and evolution. This makes
choosing the points at which to influence the design more important.

	 3.	Leverage at the Interfaces: A collaborative system is defined by its emer-
gent capabilities, but its architects have influence on its interfaces. The
interfaces, whether thought of as the actual physical interconnections
or as higher-level service abstractions, are the primary points at
which the architect can exert control.

	 4.	Ensuring Cooperation: A collaborative system exists because the par-
tially independent elements decide to collaborate. The designer must

214	 The Art of Systems Architecting

consider why they will choose to collaborate and foster those reasons
in the design.

	 5.	A collaboration is a network good; the more of it there is, the better.
Minimize entrance costs and provide clear conformance criteria.

Exercises
	 1.	The Internet, multimedia video standards (MPEG), and the GSM

digital cellular telephone standard are all collaborative systems. All
of them also have identifiable architects, a small group of individuals
who carried great responsibility for the basic technical structures.
Investigate the history of one of these cases and consider how the
practices of the collaborative system architect differ from architects
of conventional systems.

	 2.	 In a collaborative system, the components can all operate on their
own whether or not they participate in the overall system. Does
this represent a cost penalty to the overall system? Does it matter?
Discuss from the perspective of some of the examples.

	 3.	Collaborative systems in computing and communication usually
evolve much more rapidly than those controlled by traditional
regulatory bodies, and often more rapidly than those controlled by
single companies. Is this necessary? Could regulatory bodies and
companies adopt different practices that would make their systems
as evolvable as collaborative (for example, Internet or Linux) while
retaining the advantages of the traditional patterns of control?

Exercises to Close Part II
Explore another domain much as builder-architected, sociotechnical,
manufacturing, software, and collaborative systems are explored in this
part. What are the domain’s special characteristics? What more broadly
applicable lessons can be learned from it? What general heuristics apply to
it? Some suggested, heuristic-domains to explore include the following:

	 1.	Telecommunications in its several forms: point-to-point telephone net-
work systems, broadcast systems (terrestrial and space), and packet-
switched data (the Internet).

	 2.	Electric power, which is widely distributed with collaborative control, is
subject to complex loading phenomena (with a social component), and
is regulated. (Hill, David J., Special Issue on Nonlinear Phenomena
in Power Systems: Theory and Practical Implications, Proceedings of
the IEEE, Vol. 83, Number 11, November, 1995.)

	 3.	Transportation, in both its current form and in the form of proposed
intelligent transportation systems.

Chapter 7:  Collaborative Systems	 215

	 4.	Financial systems, including global trading mechanisms and the
operation of regulated economics as a system.

	 5.	Space systems, with their special characteristics of remote opera-
tion, high initial capital investment, vulnerability to interference
and attack, and their effects on the design and operation of existing
earth-borne system performing similar functions.

	 6.	Existing and emerging media systems, including the collection of com-
peting television systems of private broadcast, public broadcast,
cable, satellite, and video recording.

Notes and References
	 1.	 IVHS America, Strategic Plan for Intelligent Vehicle-Highway Systems in the

United States, IVHS America, Report IVHS-AMER-92-3, Intelligent Vehicle-
Highway Society of America (ITS), Washington, DC, 1992; U.S. Department
of Transportation (USDOT), National Program Plan for ITS, 1995.

	 2.	 Butler, S., D. Diskin, N. Howes, and K. Jordan, The Architectural Design of
the Common Operating Environment for the Global Command and Control
System, IEEE Software, pp. 57–66, November 1996.

	 3.	 Hayes, Robert H., S. C. Wheelwright, and K. B. Clark, Dynamic Manufacturing.
New York: The Free Press, 1988.

	 4.	 Maier, M. W., Architecting Principles for Systems-of-Systems, Systems Engi-
neering, Vol. 2, Number 1, pp. 1–18, 1999.

	 5.	 DeMarco, T., On Systems Architecture, Monterey Workshop on Specification-
Based Software Architectures, U.S. Naval Postgraduate School, Monterey,
CA, September 1995.

	 6.	 Lambot, I., and G. Girard, City of Darkness — Life in Kowloon City. San
Francisco, CA: Watermark Press, 1999. The book contains extensive photo
graphs and observations on the development of Kowloon Walled City outside
of Hong Kong, an area that could be said to have “organic” or uncontrolled
architecture.

	 7.	 Modeled after Peterson, L., and B. Davie, Computer Networks: A Systems
Approach. San Francisco, CA: Morgan Kaufman, 1996.

	 8.	 See Bersekas, D., and R. Gallager, Data Networks, 2nd ed. New York: Prentice
Hall, 1992, particularly Chapter 6.

	 9.	 See the IVHS America and USDOT references above. Also, Maier, M. W.,
On Architecting and Intelligent Transport Systems, Joint Issue IEEE Transactions
on Aerospace and Electronic Systems/System Engineering, AES33:2, pp. 610–625,
April 1997, by one of the present authors discusses the architectural issues
specifically.

	 10.	 Chiariglione, L., Impact of MPEG Standards on Multimedia Industry, IEEE
Proceedings, Vol. 86, Number 6, pp. 1222–1227, June, 1998.

	 11.	 The Cathedral and the Bazaar by Eric Raymond was the original source for
these heuristics, referenced at www.catb.org/~esr/writings/cathedral-bazaar/
The open-source initiative at www.opensource.org has other additional details.

IIIpart

Models and Modeling

Introduction to Part III
What is the product of an architect? Although it is tempting to regard the
building or system as the architect’s product, the relationship is necessar-
ily indirect. The system is actually built by the developer. The architect
acts to translate between the problem domain concepts of the client and
the solution domain concepts of the builder. Great architects go beyond the
role of intermediary to make a visionary combination of technology and
purpose that exceeds the expectation of builder or client. But the system
cannot be built as envisioned unless the architect has a mechanism to
communicate the vision and track construction against it. The concrete,
deliverable products of the architect, therefore, are models of the system.

Individual models alone are point-in-time representations of a system.
Architects need to see and treat each as a member of one of several pro-
gressions. The architect’s first models define the system concept. As the
concept is found satisfactory and feasible, the models progress to the
detailed, technology-specific models of design engineers. The architect’s
original models come into play again when the system must be certified.

A Civil Architecture Analogy
Once again, civil architecture provides a familiar example of modeling
and progression. An architect is retained to ensure that the building is
pleasing to the client in all senses (aesthetically, functionally, and finan-
cially). One product of the architect is intangible; it is the conceptual vision
that the physical building embodies and that satisfies the client. But the
intangible product is worthless without a series of increasingly detailed
tangible products, all models of some aspect of the building. Table III.1
lists some of the models and their purposes.

218	 The Art of Systems Architecting

The progression of models during the design life cycle can be visu-
alized as a steady reduction of abstraction. Early models may be quite
abstract. They may convey only the basic floor plan, associated order-of-
magnitude budgets, and renderings encompassing only major aesthetic
elements. Early models may cover many disparate designs representing
optional building structures and styles. As decisions are made, the range
of options narrows and the models become more specific. Eventually,
the models evolve into construction drawings and itemized budgets and
pass into the hands of the builders. As the builders work, models are
used to control the construction process and to ensure the integrity of
the architectural concept. Even when the building is finished, some of the
models will be retained to assist in future project developments and to act
as an as-built record for building alterations.

Making the key design decisions and building the models are obvi-
ously intertwined but still distinct activities. One could build a fine set
of models that embodied terrible decisions, and excellent decisions could
be embodied in an incompetently built set of models. The first case will
undoubtedly lead to disappointment (or disaster), and the second case
very likely will. The only saving grace in the second case is that later
implementers might recognize the situation and work to correct it. The
focus of this book is on decisions over descriptions, but in this part we
address the issues of modeling and description directly.

Guide to Part III
Although the form of the models differs greatly from civil architecture
to aerospace, computer, or software architectures, their purposes and
relationships remain the same. Part III discusses the concrete elements
of architectural practice, the models of systems, and their development.
The discussion is from two perspectives broken into three chapters. First,
models are treated as the concrete representations of the various views

Table III.1  Models and Purposes in Civil Architecture
Model Purpose

Physical scale model Convey look and site placement of building to
architect, client, and builder

Floor plans Work with client to ensure building can perform basic
functions desired

External renderings Convey look of building to architect, client, and builder
Budgets, schedules Ensure building meets client’s financial performance

objectives, manage builder relationship
Construction blueprints Communicate design requirements to builder, provide

construction acceptance criteria

Part III: Models and Modeling	 219

that define a system. This perspective is treated in general in Chapter 8,
and through domain-specific examples in Chapter 10. Second, the evolu-
tion and development of models are treated as the core of the architecting
process. Chapter 9 develops the idea of progressive design as an organiz-
ing principle for the architecting process. A community effort at standard-
izing architecture representation models, called architecture description
frameworks, is the subject of Chapter 11.

Chapter 8 covers the types of models used to represent systems and
their roles in architecting. Because architecting is multidimensional and
multidisciplinary, an architecture may require many partially indepen-
dent views. The chapter proposes a set of six basic views and reviews
major categories of models for each view. It also introduces viewpoint as
an organizing abstraction for writing architecture description standards.
Because a coherent and integrated product is the ultimate goal, the models
chosen must also be designed to integrate with each other. That is, they
must define and resolve their interdependencies and form a complete
definition of the system to be constructed.

Chapter 9 looks for principles to organize the eclectic architecting pro-
cess. A particularly useful principle is that of progression — the idea that
models, heuristics, evaluation criteria, and many other aspects of the sys-
tem evolve on parallel tracks from the abstract to the specific and concrete.
Progression also helps tie architecting into the more traditional engineering
design disciplines. This book largely treats system architecting as a general
process, independent of domain, but in practice it is necessarily strongly
tied to individual systems and domains. Nevertheless, each domain con-
tains a core of problems not amenable to rational, mechanistic solution that
are closely associated with reconciling customer or client need and with
technical capability. This core is the province of architecting. Architects
are not generalists; they are specialists in systems, and their models must
refine into the technology-specific models of the domains in which their
systems are to be realized.

Chapter 10 returns to models, now tying the previous two chapters
together by looking at specific modeling methods. Examined in the chapter
is a series of integrating methodologies that illustrate the attributes dis-
cussed in the previous chapters: multiple views, integration across views,
and progression from abstract to concrete implementation. Examples of
integrated models and methods are given for computer-based systems,
performance-oriented systems, software-intensive systems, manufac-
turing systems, and sociotechnical systems. Described in the first part
of Chapter 10 are two general-purpose integrated modeling methods,
Hatley-Pirbhai and Quantitative Quality Function Deployment. The
former specializes in combining behavioral and physical implementation
models. The latter specializes in integrating quantitative performance
requirements with behavioral and implementation models. Subsequent

220	 The Art of Systems Architecting

sections describe integrated models for software, manufacturing systems,
and sociotechnical systems.

Chapter 11 looks outward to the community interested in architec-
ture to review recent work in standardizing architecture descriptions.
Standards for architecture description are usually referred to as architec-
ture description frameworks. The chapter reviews three of the leading
ones, with some mention of others. They are the U.S. Department of
Defense Architecture Framework (DODAF), the ISO Reference Model for
Open Distributed Processing, and the IEEE’s 1471 Recommended Practice
for Architectural Description of Software-Intensive Systems. This chapter
continues by discussing some of the current controversies in frameworks
and possible resolutions.

221

8chapter

Representation Models and
Systems Architecting

By relieving the mind of all unnecessary work, a good
notation sets it free to concentrate on more advanced
problems, and in effect increases the mental power
of the [human] race.

Alfred North Whitehead

Introduction: Roles, Views, and Models
Models are the primary means of communication with clients, builders,
and users; models are the language of the architect. Models enable, guide,
and help assess the construction of systems as they are progressively
developed and refined. After the system is built, models, from simulators
to operating manuals, help describe and diagnose its operation.

To be able to express system imperatives and objectives, and manage
system design, the architect should be fluent, or at least conversant, with
all the languages spoken in the long process of system development. These
languages are those of system specifiers, designers, manufacturers, certi-
fiers, distributors, and users.

The most important models are those that define the critical accep-
tance requirements of the client and the overall structure of the system.
The former are a subset of the entirety of the requirements, and the latter
are a subset of the complete, detailed system design. Because the architect
is responsible for total system feasibility, the critical portions may include
highly detailed models of components on which success depends and
abstract, top-level models of other components.

Models can be classified by their role or by their content. Role is
important in relating models to the tasks and responsibilities not only
of architects, but of many others in the development process. Of special
importance to architects are modeling methods that tie together otherwise
separate models into a consistent whole.

222	 The Art of Systems Architecting

Roles of Models
Models fill many roles in systems architecting, including the following:

	 1.	Communication with client, users, and builders.
	 2.	Maintenance of system integrity through coordination of design

activities.
	 3.	Design assistance by providing templates, and organizing and record-

ing decisions.
	 4.	Exploration and manipulation of solution parameters and character-

istics; guiding and recording of aggregation and decomposition of
system functions, components, and objects.

	 5.	Performance prediction; identification of critical system elements.
	 6.	Provision of acceptance criteria for certification for use.

These roles are not independent; each relates to the other. But the
foremost is to communicate. The architect discusses the system with the
client, the users (if different), the builders, and possibly many other inter-
est groups. Models of the system are the medium of all such communica-
tion. After all, the system will not come into being for some time to come.
The models used for communication become documentation of decisions
and designs and thus vehicles for maintaining design integrity. Powerful,
well-chosen models will assist in decision making by providing an evoca-
tive picture of the system in development. They will also allow relevant
parameters and characteristics to be manipulated and the results seen in
terms relevant to client, user, or builder.

Communication with the client has two goals. First, the architect must
determine the client’s objectives and constraints. Second, the architect
must insure that the system to be built reflects the value judgments of the
client where perfect fulfillment of all objectives is impossible. The first goal
requires eliciting information on objectives and constraints and casting it
into forms useful for system design. The second requires that the client
perceive how the system will operate (objectives and constraints) and that
the client can have confidence in the progress of design and construc-
tion. In both cases, models must be clear and understandable to the client,
expressible in the client’s own terminology. It is desirable that the models
also be expressive in the builder’s terms, but because client expressiveness
must take priority, proper restatement from client to builder language
usually falls to the architect.

User communication is similar to client communication. It requires
the elicitation of needs and the comparison of possible systems to meet
those needs. When the client is the user, this process is simplified.
When the client and the users are different (as discussed in Chapter 5

Chapter 8:  Representation Models and Systems Architecting	 223

on sociotechnical systems), their needs and constraints may conflict. The
architect is in the position to attempt to reconcile these conflicts.

In two-way communication with the builder, the architect seeks to
insure that the system will be built as conceived and that system integ-
rity is maintained. In addition, the architect must learn from the builder
those technical constraints and opportunities that are crucial in insuring
a feasible and satisfactory design. Models that connect the client and the
builder are particularly helpful in closing the iterations from builder tech-
nical capability to client objectives.

One influence of the choice of a model set is the nature of its associ-
ated “language” for describing systems. Given a particular model set and
language, it will be easy to describe some types of systems and awkward
to describe others, just as natural languages are not equally expressive of
all human concepts. The most serious risk in the choice is that of being
blind to important alternate perspectives due to long familiarity (and
often success) with models, languages, and systems of a particular type.

Models, Viewpoints, and Views
Chapters 8 through 10 discuss this book’s approach to modeling in systems
architecting. Chapter 11 looks outward to the community to review other
important approaches and draw contrasts. Unfortunately, there is a lot of
variation in the usage of important terms. There are three terms that are
important in setting up a modeling framework: model, view, and viewpoint.
We use the definitions of model, view, and viewpoint taken from the
Institute of Electrical and Electronics Engineers (IEEE) standards:

Model: An approximation, representation, or ideal-
ization of selected aspects of the structure, behavior,
operation, or other characteristics of a real-world
process, concept, or system (IEEE 610.12-1990).

View: A representation of a system from the per-
spective of related concerns or issues (ANSI/IEEE
1471-2000).

Viewpoint: A template, pattern, or specification for
constructing a view (ANSI/IEEE 1471-2000).

As discussed above, a model is just a representation of something;
in our case some aspect of the architecture of a system. The modeling
languages of interest have a vocabulary and a grammar. The words are
the parts of a model; the grammar defines how the words can be linked.

224	 The Art of Systems Architecting

Beyond that, a modeling language has to have a method of interpretation;
the models produced have to mean something, typically within some
domain. For example, in a block diagramming method, the words are
the kinds of blocks and lines and the grammar are the allowed patterns
by which they can be connected. The method also has to define some
correspondence between the blocks, lines, and connections to things in
the world. A physical method will have a correspondence to physically
identifiable things. A functional diagramming technique has a correspon-
dence to more abstract entities — the functions that the system does.

A view is just a collection of models that share the property that they are
relevant to the same concerns of a system stakeholder. For example, a func-
tional view collects the models that represent a system function. An objec-
tives view collects the models that define the objectives to be met by building
the system. The idea of view is needed because complex systems tend to
have complex models and require a higher-level organizing element.

View is inspired by the familiar idea of architectural views. An archi-
tect produces elevations, floor plans, and other representations that show
the system from a particular perspective. The idea of view here general-
izes this when physical structure is no longer primary.

Viewpoint is an abstraction of view across many systems. It is impor-
tant only in defining standards for architecture description, so we defer
its use until later.

These concepts are depicted schematically in Figure 8.1.

Viewpoint consists of:
Concerns (of stakeholder)
Methods

�e same viewpoint can be
applied to multiple systems
to produce multiple views.

�e same system will
have different views
corresponding to
different viewpoints.

Figure 8.1  The concept of viewpoint and view.

Chapter 8:  Representation Models and Systems Architecting	 225

Classification of Models by View
A view describes a system with respect to some set of attributes or con-
cerns. The set of views chosen to describe a system is variable. A good set
of views should be complete (cover all concerns of the architect’s stake-
holders) and mostly independent (capture different pieces of information).
Table 8.1 lists the set of views chosen here as most important to archi-
tecting. A system can be “projected” into any view, possibly in several
ways. The projection into views and the collection of models by views
is shown schematically in Figure 8.2. Each system has some behavior
(abstracted from implementation), has a physical form, and retains data.
Views are composed of models. Not all views are equally important to
system developmental success, and the set will not remain constant over

Table 8.1  Major System or Architectural Views
Perspective or View Description

Purpose/objective What the client wants
Form What the system is
Behavioral or functional What the system does
Performance objectives or requirements How effectively the system does it
Data The information retained in the system

and its interrelationships
Managerial The process by which the system is

constructed and managed

The
System

Behavior

Purpose/Objectives

Performance

Data

Form

Managerial

Bθ ln(K1/K2)σθ =
SNR

$ = C1(LOC)β

%

Figure 8.2  The six views. All views are representations of some aspect of the
actual system. Each view may contain several models, as needed to capture the
information of the view.

226	 The Art of Systems Architecting

time. For example, a system might be behaviorally complex but have rela-
tively simple form. Views that are critical to the architect may play only a
supporting role in full development.

Although any system can be described in each view, the complexity
and value of each view’s description can differ considerably. Each class
of systems emphasizes particular views and has favored modeling meth-
ods, or methods of representation within each view. The architect must
determine which views are most important to the system and its environ
ment and be expert in the relevant models. The views are chosen to be
reasonably independent, but there is extensive linkage among views.
For example, the behavioral aspects of the system are not independent
of the system’s form. The system can produce the desired behavior only
if the system’s form supports it. This linkage is conceptually similar to a
front and side view being linked (both show vertical height) even though
they are observations from orthogonal directions.

The following sections describe models used for representing a
system in each of the views of Table 8.1. The section for each view defines
what information is captured by the view, describes the modeling issues
within that view, and lists some important modeling methods. Part of the
architect’s role is to determine which views are most critical to system
success, build models for those views, and then integrate as necessary to
maintain system integrity. The integration across views is a special con-
cern of the architect.

Note to the Reader

The sections to follow, which describe models for each view, are difficult to
understand without examples meaningful to each reader. Rather than try-
ing to present detailed examples of each for each of several system domains
(a task that might require its own book), we suggest the reader does so on
his or her own. The examples given in the chapter are not detailed and are
chosen to be understandable to the widest possible audience. Chapter 10
describes, in detail, specific modeling methods that span and integrate
multiple views. The methods of Chapter 10 are what the architect should
strive for, an integrated picture of all important aspects of a system.

As stated in the Introduction, Part III can be read several ways. The
chapters can be read in order, which captures the intellectual thread of
model concepts, modeling processes and heuristics, specific modeling
methods, and organizing frameworks. In this case, it is useful to read
ahead to exercises 1 and 2 at the end of this chapter and work them while
reading each section to follow. The remaining exercises are intended for
after the chapter is read, although some may be approached as each section
is completed. An alternative is to read Chapters 8 and 10 in parallel, read-
ing the specific examples of models in Chapter 10 as the views are covered

Chapter 8:  Representation Models and Systems Architecting	 227

in Chapter 8. Because the approach of Chapter 10 is to look at integrated
models, models that span views, a one-for-one correspondence is impos-
sible. The linear approach is probably best for those without extensive
background in modeling methods. Those with a good background in
integrated modeling methods can use either.

Objectives and Purpose Models

The first modeling view is that of objectives and purposes. Systems are
built for useful purposes — that is, for what the client wants. Without
them the system cannot survive. The architect’s first and most basic role
is to match the desirability of the purposes with the practical feasibility
of a system to fulfill those purposes. Given a clearly identifiable client,
the architect’s first step is to work with that client to identify the system’s
objectives and priorities. Some objectives can be stated and measured
precisely. Others will be quite abstract, impossible to express quantita-
tively. A civil architect is not surprised to hear a client’s objective is for
the building to “be beautiful” or to “be in harmony with the natural state
of the site.” The client will be very unhappy if the architect tells the client
to come back with unambiguous and testable requirements. The archi-
tect must prepare models to help the client to clarify abstract objectives.
Abstract objectives require provisional and exploratory models, models
that may fall by the wayside later as the demands and the resulting system
become well understood. Ideally, all iterations and explorations become
part of the systems document set. However, to avoid drowning in a sea
of paper, it may be necessary to focus on a limited set. If refinement and
trade-off decisions (the creation of concrete objectives from abstract ones)
are architectural drivers, they must be maintained, as it is likely the key
decisions will be repeatedly revisited.

Modeling therefore begins by restating and iterating those initial
unconstrained objectives from the client’s language until a modeling
language and methodology emerges, the first major step closer to engi-
neering development. Behavioral objectives are restated in a behavioral
modeling language. Performance requirements are formulated as mea-
surable satisfaction models. Some objectives may translate directly into
physical form, others into patterns of form that should be exhibited by
the system. Complex objectives almost invariably require several steps of
refinement and indeed may evolve into characteristics or behaviors quite
different from their original statement.

A low-technology example (though only by modern standards) is the
European cathedrals of the Middle Ages. A cathedral architect considered
a broad range of objectives. First, a cathedral must fulfill well-defined
community needs. It must accommodate celebration-day crowds, serve
as a suitable seat for the bishop, and operate as a community centerpiece.

228	 The Art of Systems Architecting

But, in addition, cathedral clients of that era emphasized that the cathedral
“communicate the glory of God and reinforce the faithful through its
very presence.”

Accommodation of holiday celebrants is a matter of size and floor
layout. It is an objective that can be implemented directly and requires no
further significant refinement. The clients — the church and community
leaders — because of their personal familiarity with the functioning of a
cathedral, could determine for themselves the compliance of the cathe-
dral by examining the floor plan. But what of defining a building that
“glorifies God?” This is obviously a property only of the structure as a
whole — its scale, mass, space, light, and integration of decoration and
detail. Only a person with an exceptional visual imagination is able to
accurately envision the aesthetic and religious impact of a large structure
documented only through drawings and renderings. Especially in those
times, when architectural styles were new and people traveled little, an
innovative style would be an unprecedented experience for perhaps all
but the architect.

In this example, we also see the interaction of heuristics and model-
ing. Models define the architect’s approach to the cathedral, but heuristics
would be needed to guide decision making. How does the architect
know what building features produce the emotional effect that will be
regarded as glorifying God and reinforcing the faithful? The architect
can know only through induction (experience with other buildings) and
the generalization of that induction through theory. Our own experiences
should be enough to suggest the elements of appropriate heuristics (for
example, great vertical height, visual and auditory effects, integration of
iconography and visual teachings).

Refinement of objectives through models is central to architecting, but
it is also a source of difficulty. A design that proceeds divorced from direct
client relevance tends to introduce unnecessary requirements that compli-
cate its implementation. Experience has shown that retaining the client’s
language throughout the acquisition process can lead to highly efficient,
domain-specific architectures, for example, in communication systems.

Example: Domain Specific Software Architectures1
are software application generation frameworks
in which domain concepts are embedded in the
architectural components. The framework is used
to generate a product line of related applications in
which the client language can be used nearly directly
in creating the product. For a set of message handler
applications within command and control systems,
the specification complexity was reduced 50:1.

Chapter 8:  Representation Models and Systems Architecting	 229

One measure of the power of a design and implementation method
is its ability to retain the original language. But this poses a dilemma.
Retention implies the availability of proven, domain-specific methods
and engineering tools. But unprecedented systems by definition are likely
to be working in new domains, or near the technical frontiers of existing
domains. By the very nature of unprecedented system development, such
methods and tools are unlikely to be available. Consequently, models
and methodologies must be developed and pass through many stages
of abstraction, during which the original relevance can easily be lost.
The architect must therefore search out domain-specific languages and
methods that can somehow maintain the chain of relevance throughout.

An especially powerful, but challenging, form of modeling converts
the client or user’s objectives into a meta-model or metaphor that can be
directly implemented. A famous example is the desktop metaphor adopted
for Macintosh computers. The user’s objective is to use a computer for
daily, office-oriented task automation. The solution is to capture the user’s
objectives directly by presenting a simulation of a desktop on the com-
puter display. Integrity with user needs is automatically maintained by
maintaining the fidelity of a desktop and file system familiar to the user.

Models of Form

Models of form represent physically identifiable elements of, and inter-
faces to, what will be constructed and integrated to meet client objectives.
Models of form are closely tied to particular construction technologies,
whether the concrete and steel of civil architecture or the less tangible
codes and manuals of software systems. Even less tangible physical forms
are possible, such as communication protocol standards, a body of laws,
or a consistent set of policies.

Models of form vary widely in their degree of abstraction and role. For
example, an abstract model may convey no more than the aesthetic feel of
the system to the client. A dimensionally accurate but hollow model can
assure proper interfacing of mechanical parts. Other models of form may
be tightly coupled to performance modeling, as in the scale model of an
airplane subjected to wind tunnel testing. The two categories of models of
form most useful in architecting are scale models and block diagrams.

Scale Models
The most literal models of form are scale models. Scale models are widely
used for client and builder communication and may function as part
of behavioral or performance modeling as well. Some major examples
include the following:

230	 The Art of Systems Architecting

	 1.	Civil architects build literal models of buildings, often producing
renderings of considerable artistic quality. These models can be
abstracted to convey the feel and style of a building or can be pre-
cisely detailed to assist in construction planning.

	 2.	Automobile makers mock up cars in body-only or full running trim.
These models make the auto show circuit to gauge market interest or
are used in engineering evaluations.

	 3.	Naval architects model racing yachts to assist in performance evalu-
ation. Scale models are drag tested in water tanks to evaluate drag
and handling characteristics. Reduced or full-scale models of the
deck layout are used to run simulated sail handling drills.

	 4.	Spacecraft manufacturers use dimensionally accurate models in fit
compatibility tests and in crew extravehicular activity rehearsals.
Even more important are ground simulators for on-orbit diagnostics
and recovery planning.

	 5.	Software developers use prototypes that demonstrate limited char-
acteristics of a product that are equivalent to scale models. For
example, user interface prototypes that look like the planned system
but do not possess full functionality, non-real-time simulations that
carry extensive functionality but do not run in real-time, or just a set
of screen shots with scenarios for application use.

Physical scale models are gradually being augmented or replaced
by virtual reality systems. These “scale” models exist only in a com-
puter and the viewer’s mind. They may, however, carry an even stronger
impression of reality than a physical scale model because of the sensory
immersion achievable.

Block Diagrams
A scale model of a circuit board or a silicon chip is unlikely to be of much
interest alone, except for expanded-scale plots used to check for layout
errors. Nonetheless, physical block diagrams are ubiquitous in the elec-
tronics industry. To be a model of form, as distinct from a behavioral
model, the elements of the block diagram must correspond to physically
identifiable elements of the system. Some common types of block diagrams
include the following:

	 1.	System interconnect diagrams that show specific physical elements
(modules) connected by physically identifiable channels. On a high-
level diagram, a module might be an entire computer complex and
a channel might be a complex internetwork. On a low level, the
modules could be silicon chips with specific part numbers and the
channels pin-assigned wires.

Chapter 8:  Representation Models and Systems Architecting	 231

	 2.	System flow diagrams that show modules in the same fashion as
interconnect diagrams but illustrate the flow of information among
modules. The abstraction level of information flow defined might
be high (complex messaging protocols) or low (bits and bytes). The
two types of diagrams (interconnect and flow) are contrasted in
Chapter 10, Figure 10.3.

	 3.	Structure charts,2 task diagrams,3 and class and object diagrams4
that structurally define software systems and map directly to
implementation. A software system may have several logically
independent such diagrams, each showing a different aspect of the
physical structure. Take for example, diagrams that show the invo-
cation tree, the inheritance hierarchy, or the “withing” relationships
in an Ada program. Examples of several levels of physical software
diagram are given in Figure 10.5 and Figure 10.6 in Chapter 10.

	 4.	Manufacturing process diagrams are drawn with a standardized set
of symbols. These represent manufacturing systems at an interme-
diate level of abstraction, showing specific classes of operation but
not defining the machine or the operational details.

Several authors have investigated formalizing block diagrams over
a flexible range of architectural levels. The most complete, with widely
published examples, is that of Hatley and Pirbhai.5 Their method is dis-
cussed in more depth in Chapter 10 as an example of a method for inte-
grating a multiplicity of architectural views across models. A number
of other methods and tools that add formalized physical modeling to
behavioral modeling are appearing. Many of these are commercial
tools so the situation is fluid and their methodologies are often not fully
defined outside of the tools documentation. Some other examples are the
system engineering extensions to ADARTS (described later in the context
of software), RDD-100,6 and StateMate.7

An attribute missing in most block diagram methods is the logic of
data flow. The diagram may show that a data item flows from module A
to module B, but it does not show who controls the flow. Control can be of
many types. A partial enumeration includes the following:

Soft push: The sender sends and the item is lost if the receiver is not
waiting to receive it.

Hard push: The sender sends and the act of sending interrupts the
receiver who must take the data.

Blocking pull: The receiver requests the data and waits until the
sender responds.

Nonblocking pull: The receiver requests the data continues on without it
if the sender does not send.

232	 The Art of Systems Architecting

Hard pull: When the receiver requests the data, the sender is interrupted
and must send.

Queuing channel: The sender can push data onto the channel without
interrupting the receiver and with data being stored in the channel.
The receiver can pull data from the channel’s store.

Of course, there are many other combinations as well. The significance
of the control attribute is primarily in interfacing to disciplinary engi-
neers, especially software engineers. In systems whose development cost
is dominated by software, which is now virtually all complex systems, it is
essential that systems activities provide the information needed to enable
software architecting as quickly as possible. One of the elements of a soft-
ware architecture is the concurrency and synchronization model. The
constraints on software concurrency and synchronization are determined
by the data flow control logic around the software–hardware boundary.
So, it is just the kind of information on data flow control that is needed to
better match systems activities to software architecture.

Behavioral (Functional) Models

Functional or behavioral models describe specific patterns of behavior by
the system. These are models of what the system does (how it behaves)
as opposed to what the system is (which are models of form). Architects
increasingly need behavioral models as systems become more intelligent
and their behavior becomes less obvious from the systems form. Unlike
a building, a client cannot look at a scale model of a software system and
infer how the system behaves. Only by explicitly modeling the behavior
can it be understood by the client and builder.

Determining the level of detail or rigor in behavioral specification
needed during architecting is an important choice. Too little detail or rigor
will mean the client may not understand the behavior being provided (and
possibly be unsatisfied) or the builder may misunderstand the behavior
actually required. Too much detail or rigor may render the specification
incomprehensible — leading to similar problems — or unnecessarily
delay development. Eventually, when the system is built, its behavior is
precisely specified (if only by the actual behavior of the built system).

From the perspective of architecting, what level of behavioral refine-
ment is needed? The best guidance is to focus on the system acceptance
requirements and to ensure the acceptance requirements are passable
but complete. Ask what behavioral attributes of the system the client will
demand be certified before acceptance, and determine through what tests
those behavioral attributes can be certified. The certifiable behavior is the
behavior the client will get, no more and no less.

Chapter 8:  Representation Models and Systems Architecting	 233

Example: In software systems with extensive user
interface components, it has been found by experi-
ence that only a prototype of the interface adequately
conveys to users how the system will work. Hence,
to ensure not just client acceptance but also user
satisfaction, an interface prototype should be devel-
oped very early in the process. Major office applica-
tion developers have videotaped office workers as
they use prototype applications. The tapes are then
examined and scored to determine how effective
various layouts were at encouraging users to make
use of new features, how rapidly they were able to
work, and so on.

Example: Hardware and software upgrades to mili-
tary avionics almost always must remain backward
compatible with other existing avionics systems and
maintain support for existing weapon systems. The
architecture of the upgrade must reflect the behav-
ioral requirements of existing system interface.
Some may imply very simple behavioral require-
ments, like providing particular types of informa-
tion on a communication bus. Others may demand
complex behaviors, such as target handover to a
weapon requiring target acquisition, queuing of the
weapon sensor, real-time synchronization of the
local and weapon sensor feeds, and complex launch
codes. The required behavior needs to be captured
at the level required for client acceptance, and at the
level needed to extract architectural constraints.

Behavioral tools of particular importance are threads or scenarios,
data and event flow networks, mathematical systems theory, autonomous
system theory, and public choice and behavior models.

Threads and Scenarios
A thread or scenario is a sequence of system operations. It is an ordered list
of events and actions that represents an important behavior. It normally
does not contain branches; that is, it is a single serial scenario of operation,
a stimulus and response thread. Branches are represented by additional
threads. Behavioral requirements can be of two types. The first type is to
require that the system must produce a given thread — that is, to require
a particular system behavior. The alternative is to require that a particu-
lar thread not occur — for example, that a hazardous command never be

234	 The Art of Systems Architecting

issued without a positive confirmation having occurred first. The former
is more common, but the latter is just as important.

Threads are useful for client communication. Building the threads
can be a framework for an interactive dialogue with the client. For each
input, pose the question “When this input arrives what should happen?”
Trace the response until an output is produced. In a similar fashion, trace
outputs backward until inputs are reached. The list of threads generated
in this way becomes part of the behavioral requirements.

Threads are also useful for builder communication. Even if not com-
plete, they directly convey desired system behavior. They also provide
useful tools during design reviews and for test planning. Reviewers can
ask that designers walk through their design as it would operate in each
of a set of selected threads. This provides a way for reviewers to survey a
design using criteria very close to the client’s own language. Threads can
be used similarly as templates for system tests, ensuring that the tests are
directly tied to the client’s original dialog.

Another name for behavioral specification by threads and scenarios
is use-cases. Use-case has become the popular term for behavioral speci-
fication by example. The term originally comes from the object-oriented
software community, but it has been applied much more widely. The
normal form of a use-case is the listing of an example dialogue between
the system and an actor. An actor is a human user of the system. The
use-case consists of the sequence of messages passed between the system
and actor, augmented by additional explanation in ways specific to each
method. Use-cases are intended to be narrative. That is, they are specifi-
cally intended to be written in the language of users and to be under-
standable by them. When a system is specified by many use-cases, and
the use-cases interact, there are a number of diagrams that can be used to
specify the connections. Chapter 10 briefly discusses these within Unified
Modeling Language (UML).

Data and Event Flow Networks
A complex system can possess an enormous (perhaps infinite) set of threads.
A comprehensive list may be impossible, yet without it, the behavioral
specification is incomplete. Data and event flow networks allow threads
to be collapsed into more compact but complete models. Data flow models
define the behavior of a system by a network of functions or processes that
exchange data objects. The process network is usually defined in a graphi-
cal hierarchy, and most modern versions add some component of finite
state machine description. Current data flow notations are descendants
either of DeMarco’s data flow diagram (DFD) notation8 or Functional Flow
Block Diagrams (FFBD).9 Chapter 10 gives several examples of data flow
models and their relationships with other model types. Figure 10.1 and

Chapter 8:  Representation Models and Systems Architecting	 235

Figure 10.2 show examples of data flow diagrams for an imaging system.
Both the DFD and FFBD methods are based on a set of root principles:

	 1.	The system functions are decomposed hierarchically. Each function
is composed of a network of subfunctions until a “simple” descrip-
tion can be written in text.

	 2.	The decomposition hierarchy is defined graphically.
	 3.	Data elements are decomposed hierarchically and are separately

defined in an associated “data dictionary.”
	 4.	Functions are assumed to be data triggered. A process is assumed to

execute anytime its input data elements are available. Finer control
is defined by a finite state control model (DFD formalism) or in the
graphical structure of the decomposition (FFBD formalism).

	 5.	The model structure avoids redundant definition. Coupled with
graphical structuring, this makes the model much easier to modify.

Mathematical Systems Theory
The traditional meaning of system theory is the behavioral theory of mul-
tidimensional feedback systems. Linear control theory is an example of
system theory on a limited, well-defined scale. Models of macroeconomic
systems and operations research are also system theoretic models, but on
a much larger scale.

System theoretic formalisms are built from two components:

	 1.	A definition of the system boundary in terms of observable quanti-
ties, some of which may be subject to user or designer control.

	 2.	Mathematical machinery that describes the time evolution (the
behavior) of the boundary quantities given some initial or boundary
conditions and control strategies.

There are three main mathematical system formalisms distinguished
by how they treat time and data values:

	 1.	Continuous systems: These systems are classically modeled by dif-
ferential equations, linear and nonlinear. Values are continuous
quantities and are computable for all times.

	 2.	Temporally discrete (sampled data) systems: These systems have con-
tinuously valued elements measured at discrete time points. Their
behavior is described by difference equations. Sampled data systems
are increasingly important because they are the basis of most com-
puter simulations and nearly all real-time digital signal processing.

	 3.	Discrete event systems: A discrete event system is one in which some
or all of the quantities take on discrete values at arbitrary points in

236	 The Art of Systems Architecting

time. Queuing networks are the classical example. Asynchronous
digital logic is a pure example of a discrete event system. The quanti-
ties of interest (say data packets in a communication network) move
around the network in discrete units, but they may arrive or leave a
node at an arbitrary, continuous time.

Continuous systems have a large and powerful body of theory. Linear
systems have comprehensive analytical and numerical solution methods and
an extensive theory of estimation and control. Nonlinear systems are still
incompletely understood, but many numerical techniques are available, some
analytical stability methods are known, and practical control approaches are
available. The very active field of dynamical systems addresses nonlinear as
well as control aspects of systems. Similar results are available for sampled
data systems. Computational frameworks exist for discrete event systems
(based on state machines and Petri Nets), but are less complete than those
for differential or difference equation systems in their ability to determine
stability and synthesize control laws. A variety of simulation tools are avail-
able for all three types of systems. Some tools attempt to integrate all three
types into a single framework, though this is difficult.

Many modern systems are a mixture of all three types. For example,
consider a computer-based temperature controller for a chemical process.
The complete system may include continuous plant dynamics, a sampled
data system for control under normal conditions, and discrete event con-
troller behavior associated with threshold crossings and mode changes.
A comprehensive and practical modern system theory should answer
the classic questions about such a mixed system — stability, closed-loop
dynamics, and control law synthesis. No such comprehensive theory exists,
but constructing one is an objective of current research. Manufacturing
systems are a special example of large-scale mixed systems for which
qualitative system understanding can yield architectural guidance.

Autonomous Agent, Chaotic Systems
System-level behavior, as defined in Chapter 1, is behavior not contained
in any system component but which emerges only from the interaction of
all the components. A class of system of recent interest is that in which a
few types of multiply replicated, individually relatively simple, compo-
nents interact to create essentially new (emergent) behaviors. Ant colonies,
for example, exhibit complex and highly organized behaviors that emerge
from the interaction of behaviorally simple, nearly identical, sets of compo-
nents (the ants). The behavioral programming of each individual ant, and
its chaotic local interactions with other ants and the environment, is suffi-
cient for complex high-level behaviors to emerge from the colony as a whole.
There is considerable interest in using this truly distributed architecture, but
traditional top-down, decomposition-oriented models and their bottom-up

Chapter 8:  Representation Models and Systems Architecting	 237

integration-oriented complements do not describe it. Some attempts have
been made to build theories of such systems from chaos methods. Attempts
have also been made to find rules or heuristics for the local intelligence and
interfaces necessary for high-level behaviors to emerge.

Example: In some prototype flexible manufacturing
plants, instead of trying to solve the very complex
work scheduling problem, autonomous controllers
schedule through distributed interaction. Each work
cell independently “bids” for jobs on its input. Each
job moving down the line tries to “buy” the produc-
tion and transfer services it needs to be completed.10
Instead of central scheduling, the equilibrium of the
pseudo-economic bid system distributes jobs and
fills work cells. Experiments have shown that rules
can be designed that result in stable operation, near
optimality of assignment, and very strong robust-
ness to job changes and work cell failure. But the
lack of central direction makes it difficult to assure
particular operational aspects (for example, to
assure that “oddball” jobs will not be ignored for
the apparent good of the mean).

Public Choice and Behavior Models
Some systems depend on the behavior of human society as part of the
system. In such cases, the methods of public choice and consumer analysis
may need to be invoked to understand the human system. These methods
are often ad hoc, but many have been widely used in marketing analysis
by consumer product companies.

Example: One concept in intelligent transportation
systems proposals (recall the discussion in “Case
Study 3” on ITS before Chapter 5) is the use of cen-
tralized routing. In a central routing system, each
driver would inform the center (via some data
network) of his or her beginning location and his
or her planned destination for each trip. The center
would use that information to compute a route for
each vehicle and communicate the selected route
back to the driver. The route might be dynamically
updated in response to accidents or other incidents.
In principle, the routing center could adjust routes
to optimize the performance of the network as a
whole. But would drivers accept centrally selected

238	 The Art of Systems Architecting

routes, especially if they thought the route benefited
the network but not them? Would they even bother
to send in route information?

A variety of methods could be used to address such questions. At the
simplest level are consumer surveys and focus groups. A more involved
approach is to organize multiperson driving simulations with the perfor-
mance of the network determined from individual driver decisions. Over
the course of many simulations, as drivers evaluate their own strategies,
stable configurations may emerge.

Performance Models

A performance model describes or predicts how effectively an architec-
ture satisfies some objective, either functional or not. Performance models
are usually quantitative, and the most interesting performance models
are those of system-level functions — that is, properties possessed by the
system as a whole but by no subsystem. Performance models describe
properties like overall sensitivity, accuracy, latency, adaptation time,
weight, cost, reliability, and many others. Performance requirements are
often called “nonfunctional” requirements because they do not define a
functional thread of operation, at least not explicitly. Cost, for example,
is not a system behavior, but it is an important property of the system.
Detection sensitivity to a particular signal, however, does carry with it
implied functionality. Obviously, a signal cannot be detected unless the
processing is in place to produce a detection. It will also usually be impos-
sible to formulate a quantitative performance model without constraining
the system’s behavior and form.

Performance models come from the full range of engineering and
management disciplines. But the internal structure of performance models
generally falls into one of three categories:

	 1.	Analytical: Analytical models are the products of the engineering
sciences. A performance model in this category is a set of lower-level
system parameters and a mathematical rule of combination that pre-
dicts the performance parameter of interest from lower-level values.
The model is normally accompanied by a “performance budget”
or a set of nominal values for the lower-level parameters to meet a
required performance target.

	 2.	Simulation: When the lower-level parameters can be identified, but an
easily computable performance prediction cannot, a simulation can
take the place of the mathematical rule of combination. In essence,
a simulation of a system is an analytical model of the system’s behavior
and performance in terms of the simulation parameters. The connection

Chapter 8:  Representation Models and Systems Architecting	 239

is just more complex and difficult to explicitly identify. A wide variety
of continuous, discrete time, and discrete event simulators are avail-
able, many with rich sets of constructs for particular domains.

	 3.	 Judgmental: Where analysis and simulation are inadequate or infea-
sible, human judgment may still yield reliable performance indica-
tors. In particular, human judgment, using explicit or implicit design
heuristics, can often rate one architecture as better than another even
where a detailed analytical justification is impossible.

Formal Methods
The software engineering community has taken a specialized approach to
performance modeling known as formal methods. Formal methods seek
to develop systems that provably produce formally defined functional
and nonfunctional properties. In formal development, the team defines
system behavior as sets of allowed and disallowed sequences of opera-
tion, and may add further constraints, such as timing, to those sequences.
They then develop the system in a manner that guarantees compliance to
the behavioral and performance definition. Roughly speaking, the formal
methods approach is as follows:

	 1.	 Identify the inputs and outputs of the system. Identify a set of math-
ematical and logical relations that must exist between the input and
output sequences when the system is operating as desired.

	 2.	Decompose the system into components, identifying the inputs and
outputs of each component. Determine mathematical relations on
each component such that their composition is equivalent to the
original set of relations one level up.

	 3.	Continue the process iteratively to the level of primitive implemen-
tation elements. In software, this would be programming language
statements. In digital logic, this might be low-level combinational or
sequential logic elements.

	 4.	Compose the implementation backward up the chain of inference
from primitive elements in a way that conserves the decomposed
correctness relations. The resulting implementation is then equiva-
lent to the original specification.

From the point of view of the architect, the most important applica-
tions of formal methods are in the conceptual phases and in the certifica-
tion of high-assurance and ultraquality systems. Formal methods require
explicit determination of allowed and disallowed input and output
sequences. Trying to make that determination can be valuable in eliciting
client information, even if the resulting information is not captured in
precise mathematical terms. Formal methods also hold out the promise of

240	 The Art of Systems Architecting

being able to certify system characteristics that can never be tested. No set
of tests can certify that certain event chains cannot occur, but theorems to
that effect are provable within a formal model.

Various formal and semiformal versions of the process are in limited
use in software and digital system engineering.11 Although a fully formal
version of this process is apparently impractical for large systems at the
present time (and is definitely controversial), semiformal versions of the
process have been successfully applied to commercial products.

A fundamental problem with the formal methods approach is that
the system can never be more “correct” than the original specification.
Because the specification must be written in highly mathematical terms, it
is particularly difficult to use in communication with the typical client.

Data Models

The next dimension of system complexity is retained data. What data does
the system retain and what relationships among the data does it develop
and maintain? Many large corporate and governmental information
systems have most of their complexity in their data and the data’s internal
relationships. The most common data models have their origins in soft-
ware development, especially large database developments. Methods for
modeling complex data relationships were developed in response to the
need to automate data-intensive, paper-based systems. Although data-
intensive systems are most often thought of as large, automated database
systems, many working examples are actually paper based. Automating
legacy paper-based systems requires capturing the complex interrelation-
ships among large amounts of retained data.

Data models are of increasing importance because of the greater intelli
gence being embedded in virtually all systems and the continuing auto-
mation of legacy system. In data-intensive systems, generating intelligent
behavior is primarily a matter of finding relationships and imposing per-
sistent structure on the records. This implies that the need to find struc-
ture and relationships in large collections of data will be determinants of
systems architecture.

Example: Manufacturing software systems are no
longer responsible just for control of work cells.
They are part of integrated enterprise information
networks in which real-time data from the manu-
facturing floor, sales, customer operations, and
other parts of the enterprise are stored and studied.
Substantial competitive advantages accrue to those
who can make intelligent judgments from these
enormous data sets.

Chapter 8:  Representation Models and Systems Architecting	 241

Example: Intelligent transport systems are a complex
combination of distributed control systems, sensor
networks, and data fusion. Early deployment stages
will emphasize only simple behavioral adaptation,
as in local intelligent light and on-ramp control-
lers. Full deployment will fuse data sources across
metropolitan areas to generate intelligent predic-
tion and control strategies. These later stages will be
driven by problems of extracting and using complex
relationships in very large databases.

The basis for modern data models are the Entity-Relationship diagrams
developed for relational databases. These diagrams have been generalized
into a family of object-oriented modeling techniques. An object is a set of
“attributes” or data elements and a set of “methods” or functions that act
upon the attributes (and possibly other data or objects as well). Objects
are instances of classes that can be thought of as templates for specific
objects. Objects and classes can have relationships of several types. Major
relationship types include aggregation (or composition); generalization,
specialization, or inheritance; and association (which may be two-way
or M-way). Object-oriented modeling methods combine data and behav-
ioral modeling into a single hierarchy organized along and driven by data
concerns. Behavioral methods like those described earlier also include data
definitions, but the hierarchy is driven by functional decomposition.

One might think of object-oriented models as turning functional
decomposition models inside out. Functional decomposition models like
data flow diagramming describe the system as a hierarchy of functions,
and hang a data model onto the functional skeleton. The only data rela-
tionship supported is aggregation. An object-oriented model starts with
a decomposition of the data and hangs a functional model on it. It allows
all types of data relationships. Some problems decompose cleanly with
functional methods and only with difficulty in object-oriented methods,
and some other problems are the opposite.

An example of a well-developed, object-oriented data modeling tech-
nique (OMT) is given in Chapter 10. Figure 10.7 shows a typical example
of the type of diagram used in that method, which combines conventional
entity relationship diagram and object-oriented abstraction. OMT has
further evolved into UML, which is discussed in Chapter 10.

Data-oriented decompositions share the general heuristics of systems
architecture. The behavioral and physical structuring characteristics have
direct analogs — composing or aggregation, decomposition, and minimal
communications. There are also similar problems of scale. Very large data
models must be highly structured with limited patterns of relationship
(analogous to limited interfaces) to be implementable.

242	 The Art of Systems Architecting

Managerial Models

To both the client and architect, a project may be as much a matter of
planning milestones, budgets, and schedules as it is a technical exercise.
In sociotechnical systems, planning the system deployment may be more
difficult than assembling its hardware. The managerial or implementa-
tion view describes the process of building the physical system. It also
tracks construction events as they occur.

Most of the models of this view are the familiar tools of project man-
agement. In addition, management-related metrics that can be calculated
from other models are invaluable in efforts to create an integrated set of
models. Some examples include the following:

	 1.	The waterfall and spiral system development meta-models — the
templates on which project-specific plans are built

	 2.	Program Evaluation and Review Technique/Critical Path Method
(PERT/CPM) and related task and scheduling dependency charts

	 3.	Cost and progress accounting methods
	 4.	Predictive cost and schedule metrics calculable from physical and

behavioral models
	 5.	Design or specification time quality metrics — defect counts, post-

simulation design changes, rate of design changes after each review

The architect has two primary interests in managerial models. First,
the client usually cannot decide to go ahead with system construction
without solid cost and schedule estimates. Usually producing such esti-
mates requires a significant effort in management models. Second, the
architect may be called upon to monitor the system as it is developed to
ensure its conceptual integrity. In this monitoring process, managerial
models will be very important.

Examples of Integrated Models

As noted earlier, models that integrate multiple views are the special con-
cern of the architect. These integrating models provide the synthesized
view central to the architect’s concerns. An integrated modeling method
is a system of representation that links multiple views. The method con-
sists of a set of models for a subset of views and a set of rules or addi-
tional models to link the core views. Most integrated modeling methods
apply to a particular domain. Listed in Table 8.2 are some representative
methods. These models are described in greater detail, with examples, in
Chapter 10. The references are given there, as well.

These methods use different models and cover different views. Their
components and dimensions are summarized in Table 8.3.

Chapter 8:  Representation Models and Systems Architecting	 243

Conclusion
An architect’s work revolves around models. Because the architect does
not build the system directly, its integrity during construction must be
maintained through models acting as surrogates. Models will represent
and control the specification of the system, its design, and its production
plan. Even after the system is delivered, modeling will be the mecha-
nism for assessing system behavior and planning its evolution. Because
the architect’s concerns are broad, architecting models must encompass
all views of the system. The architect’s knowledge of models, like an
individual’s knowledge of language, will tend to channel the directions in
which the system develops and evolves.

Modeling for architects is driven by three key characteristics:

	 1.	Models are the principal language of the architect. Their foremost
role is to facilitate communication with client and builder. By facili-
tating communication, they carry out their other roles of maintain-
ing design integrity and assisting synthesis.

	 2.	Architects require a multiplicity of views and models. The basic ones
are objective, form, behavior, performance, data, and management.
Architects need to be aware of the range of models that are used to
describe each of these views within their domain of expertise, and
the content of other views that may become important in the future.

	 3.	Multidisciplinary, integrated modeling methods tie together the
various views. They allow the design of a system to be refined in
steps from conceptually abstract to the precisely detailed necessary
for construction.

The next chapter reconsiders the use of modeling in architecture by
placing modeling in a larger set of parallel progressions from abstract to

Table 8.2  Integrated Modeling Methods and Their Domains
Method Reference Domain

Hatley-Pirbhai (H/P) Hatley12,13 Computer-based reactive or
event-driven systems

Quantitative Quality
Function Deployment
(Q2FD)

Maier14 Systems with extensive quantitative
performance objectives and understood
performance models

Object Modeling
Technique (OMT)

Rumbaugh15 Large-scale, data-intensive software
systems, especially those implemented
in modern object languages

ADARTS SPC16 Large-scale, real-time software systems
Manufacturing System
Analysis (MSA)

Baudin17 Intelligent manufacturing systems

244	 The Art of Systems Architecting

Ta
bl

e
8.

3 
C

om
pa

ri
so

n
of

 R
ep

re
se

nt
at

iv
e

M
od

el
in

g
M

et
ho

d
s

V
ie

w
H

/P
O

M
T

A
D

A
R

T
S

Q
2 F

D
M

SA
O

bj
ec

ti
ve

s
Te

xt
Te

xt
Te

xt
N

um
be

rs
Te

xt
B

eh
av

io
r

D
at

a/
co

nt
ro

l fl
ow

C

la
ss

 d
ia

gr
am

s,

d
at

a
fl

ow
,

St
at

eC
ha

rt
s

D
at

a/
ev

en
t fl

ow
L

in
ks

 o
nl

y
D

at
a

fl
ow

Pe
rf

or
m

an
ce

Te
xt

 (t
im

in
g

on
ly

)
Te

xt
Te

xt
Sa

ti
sf

ac
ti

on
 m

od
el

s,

Q
FD

 m
at

ri
ce

s
Te

xt
, l

in
ks

 to
 s

ta
nd

ar
d

sc

he
d

ul
in

g
m

od
el

s
D

at
a

D
ic

ti
on

ar
y

C
la

ss
/

ob
je

ct

d
ia

gr
am

s
D

ic
ti

on
ar

y
N

/
A

E
nt

it
y–

re
la

ti
on

sh
ip

d

ia
gr

am
s

Fo
rm

Fo
rm

al
iz

ed
 b

lo
ck

d

ia
gr

am
s

O
bj

ec
t d

ia
gr

am
s

Ta
sk

-o
bj

ec
t-

st
ru

ct
ur

e
ch

ar
ts

 (m
ul

ti
le

ve
l)

L
in

ks
 b

y
al

lo
ca

ti
on

SM
E

 p
ro

ce
ss

 fl
ow

d

ia
gr

am
s

M
an

ag
er

ia
l

N
/

A
 (l

in
k

vi
a

m
et

ri
cs

)
N

/
A

N
/A

 (l
in

k
vi

a
m

et
ri

cs
)

N
/

A
Fu

nd
s

fl
ow

 m
od

el
,

sc
he

d
ul

in
g

be
ha

vi
or

N
ot

es
:	

H
/

P,
 H

at
le

y-
Pi

rb
ha

i;
O

M
T,

 O
bj

ec
t M

od
el

in
g

Te
ch

ni
qu

e;
 A

D
A

R
T

S,
 A

d
a-

B
as

ed
 D

es
ig

n
A

pp
ro

ac
h

fo
r

R
ea

l-
Ti

m
e

Sy
st

em
s;

 Q
2 F

D
, Q

ua
nt

it
at

iv
e

Q
ua

lit
y

Fu
nc

ti
on

 D
ep

lo
ym

en
t;

M
SA

, M
an

uf
ac

tu
ri

ng
 S

ys
te

m
 A

na
ly

si
s.

Chapter 8:  Representation Models and Systems Architecting	 245

concrete. There the field of view will expand to the whole architectural
design process and its parallel progressions in heuristics, modeling, eval-
uation, and management.

Exercises
	 1.	Choose a system familiar to you. Formulate a model of your system in

each of the views discussed in the chapter. How effectively does each
model capture the system in that view? How effectively do the models
define the system for the needs of initial concept definition and com-
munication with clients and builders? Are the models integrated?
That is, can you trace information across the models and views?

	 2.	Repeat exercise 1, but with a system unfamiliar to you, and prefera-
bly embodying different driving issues. Investigate models used for
the views most unfamiliar to you. In retrospect, does your system
in exercise 1 contain substantial complexity in the views you are
unfamiliar with?

	 3.	 Investigate one or more popular computer-aided systems or software
engineering (CASE) tools. To what extent do they support each of the
views? To what extent do they allow integration across views?

	 4.	A major distinction in behavioral modeling methods and tools is the
extent to which they support or demand executability in their models.
Executability demands a restricted syntax and up-front decision about
data and execution semantics. Do these restrictions and demands
help or hinder initial concept formulation and communication with
builders and clients? If the answer is variable with the system, is there
a way to combine the best aspects of both approaches?

	 5.	Models of form must be technology specific because they represent
actual systems. Investigate modeling formalisms for domains not
covered in the chapter, for example, telecommunication systems,
business information networks, space systems, integrated weapon
systems, chemical processing systems, or financial systems.

Notes and References
	 1.	 Balzer, B., and D. Wile, Domain Specific Software Architectures, Technical

Reports, Information Sciences Institute, University of Southern California,
Los Angeles, California, 1996.

	 2.	 Yourdon, Edward, and Larry L. Constantine, Structured Design: Fundamentals
of a Discipline of Computer Program and Systems Design. New York: Yourdon
Press, 1979.

	 3.	 ADARTS Guidebook, SPC-94040-CMC, Version 2.00.13, Vols. 1–2, September
1991. Available through the Software Productivity Consortium, Herndon,
Virginia.

246	 The Art of Systems Architecting

	 4.	 Rumbaugh, J. et. al., Object-Oriented Modeling and Design. Upper Saddle River,
NJ: Prentice Hall, 1991.

	 5.	 Hatley, D. J., and I. Pirbhai, Strategies for Real-Time System Specification. New
York: Dorset House, 1988.

	 6.	 A comprehensive system modeling tool marketed by Ascent Logic Corpora-
tion, Princeton, New Jersey.

	 7.	 A tool with both discrete event behavioral modeling and physical block
diagrams marketed by i-Logix.

	 8.	 DeMarco, T., Structured Analysis and System Specification. New York: Yourdon
Press, 1979.

	 9.	 Functional Flow Diagrams, AFSCP 375-5 MIL-STD-499, USAF, DI-S-3604/
S-126-1, Form DD 1664, June, 1968. Much more modern implementations
exist, for example, the RDD-100 modeling and simulation tool developed
and marketed by Ascent Logic Corporation, Princeton, New Jersey.

	 10.	 Morley, R. E., The Chicken Brain Approach to Agile Manufacturing, Proceed-
ings Manufacturing, Engineering, Design, Automation Workshop, Stanford, Palo
Alto, California, pp. 19–24, 1992.

	 11.	 Two references can be noted: for theory, Hoare, C. A. R., Communicating
Sequential Processes. Upper Saddle River, NJ: Prentice Hall, 1985; for appli-
cation in software, Mills, H. D., Stepwise Refinement and Verification in
Box-Structured Systems, IEEE Computer, pp. 23–36, June 1988.

	 12.	 Hatley, D., and I. Pirbhai, Strategies for Real Time System Specification. Hoboken,
NJ: John Wiley and Sons, 1988.

	 13.	 Hatley, D., P. Hruschka, and I. Pirbhai, Process for System Architecture and
Requirements Engineering, New York: Dorset House, 2000.

	 14.	 Maier, M. W., Quantitative Engineering Analysis with QFD, Quality Engineering,
7:4, pp. 733–746, 1995.

	 15.	 Rumbaugh, J. et al, Object-Oriented Modeling and Design. Upper Saddle River,
NJ: Prentice Hall, 1991.

	 16.	 ADARTS Guidebook, SPC-94040-CMC, Version 2.00.13, Vols. 1–2, September
1991.

	 17.	 Baudin, M., Manufacturing Systems Analysis. New York: Yourdon Press Com-
puting Series, 1990.

247

9chapter

Design Progression in
Systems Architecting

Introduction: Architecting Process Components
Having outlined the products of architecting (models) in Chapter 8, this
chapter turns to its process. The goal is not a formal process definition.
Systems are too diverse to allow a fixed or dogmatic approach to archi-
tecting. Instead of trying for a formal process definition, developed in this
chapter is a set of meta-process concepts for architecting activities and
their relationships. Architectural design processes are inherently eclectic
and wide ranging, going abruptly from the intensely creative and indi-
vidualistic to the more prescribed and routine. Even though the processes
may be eclectic, they can be organized. Of the various organizing con-
cepts, one of the most useful is stepwise progression or “refinement.”

First, a brief review of the architecting process: The architect develops
system models that span the range of system concerns, from objectives
to implementation. The architectural approach is from beginning to end
concerned with the feasibility as well as the desirability of the system
implementation. An essential characteristic that distinguishes architect-
ing from other engineering is the parallel development of problem and
solution. Architecting does not assume the problem is fixed. It strives
for fit, balance, and compromise between client preferences and builder
capabilities. Compromise can only be assured by an interplay of activities,
including both high-level structuring and such detailed design as is criti-
cal to overall success.

This chapter presents a three-part approach to the process of systems
architecting:

	 1.	A conceptual model that connects the unstructured processes of archi-
tecture to the rigorous engineering processes of the specialty domains
or disciplines. This model is based on stepwise reduction of abstrac-
tion (or progression) in models, evaluation criteria, heuristics, and
purposes from initial architecting to formal systems engineering.

	 2.	An introduction to and review of the general concepts of design,
including theories of design, the elements of design, and the processes

248	 The Art of Systems Architecting

of creating a design. These frame the activities that make up the pro-
gressions and organize much of the conceptual framework on which
this book is built.

	 3.	A guide to the organization of architecting and its methods, includ-
ing the placement of specialized design domains and the evolu-
tionary development of domain-specific methods. Architecting is
recursive within a system as it is defined in terms of its implementa-
tion domains. A split between architecting and engineering is an
irreducible characteristic of every domain, though the boundaries of
that split cannot be clear until the scientific basis for the methods in
a domain are known.

The progressions of architecting are inextricably bound up with the
progressions of all system development. Architecting is not only iterative,
it can be recursive. As a system progresses, architecting may reoccur on
subsystems. The goal here is to understand the intellectual nature of its
conduct, whether it happens at a very high level or within a subsystem.

Design Progression
Progressive refinement of design is one of the most basic patterns of engi-
neering practice. It permeates the process of architecting from models to
heuristics, information acquisition, and management. Its real power, espe-
cially in systems architecting, is that it provides a way to organize the
progressive transition from the ill-structured, chaotic, and heuristic pro-
cesses needed at the beginning to the rigorous engineering and certifica-
tion processes needed later. All can be envisioned as a stepwise reduction
of abstraction, from mental concept to delivered physical system.

In software, the process is known as stepwise refinement. Stepwise
refinement is a specific strategy for top-down program development. The
same notion applies to architecting but is applied in-the-large to complex,
multidisciplinary system development. Stepwise refinement is the pro-
gressive removal of abstraction in models, evaluation criteria, and goals.
It is accompanied by an increase in the specificity and volume of infor-
mation recorded about the system and a flow of work from general to
specialized design disciplines. Within the design disciplines, the pattern
repeats as disciplinary objectives and requirements are converted into the
models of form of that discipline. In practice, the process is neither so
smooth nor continuous. It is better characterized as episodic, with epi-
sodes of abstraction reduction alternating with episodes of reflection and
purpose expansion.

Stepwise refinement can be thought of as a meta-process model,
much as the waterfall and spiral. It is not an enactable process for a
specific project, but it is a model for building a project-specific process.

Chapter 9:  Design Progression in Systems Architecting	 249

Systems are too diverse to follow a fixed process or dogmatic formula
for architecting.

Introduction by Examples
Before treating the conceptually difficult process of general systems
architecting, look to the roots. When a civil architect develops a building,
does he or she go directly from client words to construction drawings?
Obviously not; there are many intermediate steps. The first drawings are
rough floor plans showing the spatial relationships of rooms and sizes and
external renderings showing the style and feel of the building. Following
these are intermediate drawings giving specific dimensions and layouts.
The construction drawings with full details for the builder follow on after.
The architect’s role does not have a universally applicable stopping point,
but the normal case is based on the needs of the client. The client hired the
architect to accomplish a specific portion of the overall development and
construction process. When the designs are sufficiently refined (in enough
views) for the client to make the decision to proceed with construction,
the architect’s conceptual development job is complete. The architect may
be busy with the project for some time to come in shepherding the concep-
tual design through detailed design, overseeing construction, and advis-
ing the client on certification, but the initial concept role is complete when
the client can make the construction decision.

In a different domain, the beginning computer programmer is taught
a similar practice. Stepwise refinement in programming means to write
the central controlling routine first. Anywhere high complexity occurs,
ignore it by giving it a descriptive name and making it a subroutine or
function. Each subroutine or function is “stubbed” — that is, given a
dummy body as a placeholder. When the controlling routine is complete,
it is compiled and executed as a test. Of course, it does not do anything
useful because its subroutines are stubbed. The process is repeated recur-
sively on each subroutine until routines can be easily coded in primitive
statements in the programming language. At each intermediate step, an
abstracted version of the whole program exists that has the final program’s
structure but lacks internal details.

Both examples show progression of system representation or model-
ing. Both examples embed strategy, in terms of ordering of decisions in
ways that meet client or sponsor needs, into the progressive development
process. In building, the sponsor needs to set up a distinct decision point
where financing is resolved and a building contractor is hired. In software
development, top-down stepwise refinement assembles a program in a
fashion that facilitates continuous testing and incremental delivery. The
building sponsor needs a development process (and a relationship with
the architect) that supports the customary financial arrangements and the

250	 The Art of Systems Architecting

limitations of the contracting industry. Software developers, especially
in commercial markets, prefer mechanisms that facilitate incremental
delivery and provide full program level “test harnesses.”

Progression also occurs along other dimensions. For example, both the
civil architect and the programmer may (should) create distinct alternative
designs in their early stages. How are these partial designs evaluated to
choose the superior approach? In the earliest stages, both the programmer
and the civil architect use heuristic reasoning. The civil architect can mea-
sure rough size (to estimate cost), judge the client’s reaction, and ask the
aesthetic opinion of others. The programmer can judge code size, heuristi-
cally evaluate the coupling and cohesion of the resulting subroutines and
modules, review applicable patterns from catalogs, and review function-
ality with the client. As their work progresses, both will be able to make
increasing use of rational and quantitative evaluation criteria. The civil
architect will have enough details for proven cost models; the programmer
can measure execution speed, compiled size, and behavioral compliance,
and invoke quantitative software quality metrics. Programmers will also
have improved cost models as progression continues. Software cost models
are predominantly based on code size, and the progressive development
of the top-down structure supports improved estimates of code size.

Design as the Evolution of Models
All architects, indeed all designers, manipulate models of the system.
These models become successively less abstract as design progresses. The
integrated models discussed in Chapter 10 exhibit stepwise reduction of
abstraction in representation and in their design heuristics.

In Hatley-Pirbhai, the reduction of abstraction is from behavioral
model, to technology-specific behavioral model, to architecture model.
There is also hierarchical decomposition within each component. The
technology of modules is indeterminate at the top level and becomes
technology specific as the hierarchy develops. The Quantitative Quality
Function Deployment (Q2FD) performance modeling technique shows
stepwise refinement of customer objectives into engineering parameters.
As the Q2FD chain continues, the engineering parameters get closer to
implementation until, ultimately, they may represent machine settings on
the factory floor. Likewise, the structure of integrated models in software
and manufacturing systems follow the same logic or progression.

Evaluation Criteria and Heuristic Refinement
The criteria for evaluating a design progress or evolve in the same manner
as design models. In evaluation, the desirable progression is from general

Chapter 9:  Design Progression in Systems Architecting	 251

to system specific to quantitative. For heuristics, the desirable progression is
from descriptive and prescriptive qualitatives to domain-specific quantita-
tives and rational metrics. This progression is best illustrated by following
the progression of a widely recognized heuristic into quantitative metrics
within a particular discipline. Start with the partitioning heuristic:

In partitioning, choose the elements so that they are as
independent as possible — that is, elements with low
external complexity and high internal complexity.

This heuristic is largely independent of domain. It serves as an
evaluation criteria and partitioning guide whether the system is digital
hardware, software, human driven, or otherwise. But, the guidance is
nonspecific; neither independence nor complexity is defined. By moving
to a more restricted domain, computer-based systems in this example, this
heuristic refines into more prescriptive and specific guidelines. The litera-
ture on structured design for software (or, more generally, computer-based
systems) includes several heuristics directly related to the partitioning
heuristic.1 The structure of the progression is illustrated in Figure 9.1.

	 1.	Module fan-in should be maximized. Module fan-out should gener-
ally not exceed 7 ± 2.

	 2.	The coupling between modules should be, in order of preference,
data, data structure, control, common, and content.

	 3.	The cohesion of the functions allocated to a particular module should
be, in order of preference, functional/control, sequential, communi-
cational, temporal, periodic, procedural, logical, and coincidental.

These heuristics give complexity and independence more specific
form. As the domain restricts even farther, the next step is to refine into
quantitative design quality metrics. This level of refinement requires a
specific domain and detailed research and is the concern of specialists in
each domain. But, to finish the example, the heuristic can be formulated
into a quantitative software complexity metric. A very simple example is
as follows:

Compute a complexity score by summing: One point for
each line of code, 2 points for each decision point, 5 points for
each external routine call, 2 points for each write to a module
variable, 10 points for each write to a global variable.*

*	 Much more sophisticated complexity metrics have been published in the software engi-
neering literature. One of the most popular is the McCabe metric, for which there is a
large automated tool set.

252	 The Art of Systems Architecting

Early evaluation criteria or heuristics must be as unbounded as the
system choices. As the system becomes constrained, so do the evaluation
criteria. What was a general heuristic judgment becomes a domain-specific
guideline and, finally, a quantitative design metric.

Progression of Emphasis

On a more abstract level, the social or political meaning of a system to its
developers also progresses. A system goes from being a product (some-
thing new), to a source of profit or something of value, to a policy (some-
thing of permanence). In the earliest stages of a system’s life, it is most
likely viewed as a product. It is something new, an engineering challenge.
As it becomes established and its development program progresses,
it becomes an object of value to the organization. Once the system exists,
it acquires an assumption of permanence. The system, its capabilities, and

High internal cohesion
(functional and
informational), low
external complexity.

Vs. Vs.
High fan-out
implies large
scope of
control.

Minimize Fan-Out

Minimize Coupling

types from the
less strongly
linked.

Choose Coupling

Figure 9.1  Software refinement of coupling and cohesion heuristic. The general
heuristic is refined into a domain-specific set of heuristics.

Chapter 9:  Design Progression in Systems Architecting	 253

its actions become part of the organization’s nature. To have and operate
the system becomes a policy that defines the organization.

With commercial systems, the progression is from product innovation
to business profit to corporate process.2 Groups innovate something new,
successful systems become businesses, and established corporations per-
petuate a supersystem that encompasses the system, its ongoing develop-
ment, and its support. Public systems follow a similar progression. At their
inception they are new, at their development they acquire a constituency,
and they eventually become a bureaucratic producer of a commodity.

Concurrent Progressions

Other concurrent progressions include risk management, cost estimat-
ing, and perceptions of success. Risk management progresses in specific-
ity and goals. Early risk management is primarily heuristic with a mix
of rational methods. As prototypes are developed and experiments con-
ducted, risk management mixes with interpretation. Solid information
begins to replace engineering estimates. After system construction, risk
management shifts to postincident diagnostics. System failures must be
diagnosed, which is a process that should end in rational analysis but may
have to be guided by heuristic reasoning.

Cost estimating goes through an evolution similar to other evalua-
tion criteria. Unlike other evaluation criteria, cost is a continually evolving
characteristic from the systems inception. At the very beginning, the need
for an estimate is highest and the information available is lowest. Little
information is available because the design is incomplete and no uncer-
tainties have been resolved. As development proceeds, more information
is available, both because the design and plans become more complete and
because actual costs are incurred. Incurred costs are no longer estimates.
When all costs are in (if such an event can actually be identified), there is
no longer a need for an estimate. Cost estimating goes through a progres-
sion of declining need but of continuously increasing information.

All of the “ilities” are part of their own parallel progressions. These
system characteristics are known precisely only when the system is
deployed. Reliability, for example, is known exactly when measured in
the field. During development, reliability must be estimated from models
of the system. Early in the process, the customer’s desires for reliability
may be well known, but the reliability performance is quite uncertain.
As the design progresses to lower levels, the information needed to refine
reliability estimates becomes known, including information like parts
counts, temperatures, and redundancy.

Perceptions of success evolve from architect to client and back to
architect. The architect’s initial perception is based on system objectives
determined through client interaction. The basic measure of success

254	 The Art of Systems Architecting

for the architect becomes successful certification. But once the system
is delivered, the client will perceive success on his or her own terms.
The project may produce a system that is successfully certified but that
nonetheless becomes a disappointment. Success is affected by all other
conditions affecting the client at delivery and operation, whether or not
anticipated during design.

Episodic Nature

The emphasis on progression appears to define a monotonic process.
Architecting begins in judgment, rough models, and heuristics. The heuris-
tics are refined along with the models as the system becomes bounded until
rational, disciplinary engineering is reached. In practice, the process is more
cyclic or episodic with alternating periods of synthesis, rational analysis,
and heuristic problem solving. These episodes occur during system archi-
tecting and may appear again in later, domain-specific stages.

The occurrence of the episodes is integral to the architect’s process.
An architect’s design role is not restricted solely to “high-level” consider-
ations. Architects dig down into specific subsystem and domain details
where necessary to establish feasibility and determine client-significant
performance (see Chapter 1, Figure 1.1 and the associated discussion). The
overall process is one of high-level structuring and synthesis (based on
heuristic insight) followed by rational analysis of selected details. Facts
learned from those analyses may cause reconsideration of high-level
synthesis decisions and spark another episode of synthesis and analysis.
Eventually, there should be convergence to an architectural configuration
and the driving role passes to subsystem engineers.

Design Concepts for Systems Architecture
Although systems design is an inherently complicated and irregular prac-
tice, it has well-established and identifiable characteristics and can be orga-
nized into a logical process. As was discussed in the Preface, the activities
of architecting can be distinguished from other engineering activities,
even if not crisply. Architecting is characterized by the following:

	 1.	Architecting is, predominantly, an eclectic mix of rational and heu-
ristic engineering. Other elements, such as normative rules and
group processes, enter in lesser roles (recall the discussion of the
four theories in Chapter 1).

	 2.	Architecting revolves around models but is composed of the basic
processes of scoping, synthesis, and certification. Few complete
rational methods exist for these processes, and the principal guide-
lines are heuristic.

Chapter 9:  Design Progression in Systems Architecting	 255

	 3.	Synthesis can be considered as creative invention and can be use-
fully broken down into iterative design activities.

	 4.	Uncertainty is inherent in complex system design. Heuristics are
specialized tools to reduce or control but not eliminate uncertainty.

	 5.	Continuous progression on many fronts is an organizing principle
of architecting, architecture models, and supporting activities.

Civil engineering and architecture are perhaps the most mature of all
engineering disciplines. Mankind has more experience with engineering
civil structures than any other field. If any area could have the knowledge
necessary to make it a fully rational and scientific endeavor, it should be
civil engineering. But it is in civil practice that the distinction between
architecture and engineering is best established. Both architects and engi-
neers have their roles, often codified in law, and their professional train-
ing programs emphasize different skills. Architects deal particularly with
those problems that cannot be entirely rationalized by scientific inquiry.
The architect’s approach does not ignore science; it combines it with art.
Civil engineers must likewise deal with unrationalizable problems, but
the focus of their concerns is with well-understood rational design and
specification problems. By analogy, this suggests that all design domains
contain an irreducible kernel of problems that are best addressed through
creative and heuristic approaches that combine art and science. This
kernel of problems, it might be called the architectonic kernel, is resistant
to being subsumed into engineering science because it inherently binds
together social processes (client interaction) with engineering and science.
The social side is how we determine and understand people’s needs. The
engineering and science side is determining the feasibility of a system
concept. The bridge is the creative process of imagining system concepts
in response to expressions of client need.

Note that the kernel is independent of modeling or description pro-
cesses. Using a framework-centric process does not relieve us of the ker-
nel. The kernel is decision centric, not model centric. An approach through
modeling can, at best, clarify the decisions.

Historical Approaches to Architecting

As indicated in the introduction to Part I, civil architects recognize four
basic theories of design: the normative or pronouncement, the rational, the
argumentative or participative, and the heuristic. Although all have their
roots in the civil architecture practice, they are recognizable in modern
complex systems as well. They have been discussed before, in particular in
Rechtin 1991,3 and in the Introduction to Part I. The purpose in returning

256	 The Art of Systems Architecting

to them here is to indicate their relationship to progressive modeling and
to bring in their relevance to software-oriented development.*

To review, normative theory is built from pronouncements (state-
ments of what should be — a set of hard rules), most often given as restric-
tions on the content of particular views (usually form). A pronouncement
demands that a particular type of form be used, essentially unchanged,
throughout. Alternatively, one may pronounce the reverse and demand
that certain types of form not be used. In either case, success is defined
by accurate implementation of the normative pronouncements, not by
measures of fitness. In the normative theory, success is defined as follow-
ing the rules. Building codes are a prominent example of the normative
theory at work, in a positive sense.

Consensual or participative system design uses models primarily as a
means of communicating alternative designs for discussion and negotia-
tion among participants. From the standpoint of modeling, consensuality
is one of several techniques for obtaining understanding and approval of
stakeholders, rather than of itself a structured process of design.

Rational system design is tightly integrated with modeling because
it seeks to derive optimal solutions, and optimality can be defined only
within a structured and mathematical framework. To be effective, rational
methods require modeling methods that are broad enough to capture all
evaluation aspects of a problem, deep enough to capture the characteris-
tics of possible solutions, and mathematically tractable enough to be solved
for problems of useful size. Given these, rational methods “mechanically”
synthesize a design from a series of modeled problem statements in pro-
gressively more detailed subsystems.

General heuristics are guides to — and sometimes obtained from —
models, but they are not models themselves. Heuristics are employed at
all levels of design, from the most general to domain specific. Heuristics
are needed whenever the complexity of the problem, solutions, and issues
overwhelms attempts at complete rational modeling. This occurs as often
in software or digital logic design as in general system design. Within a
specific domain, the heuristic approach can be increasingly formalized,
generating increasingly prescriptive guidance. This formalization is a
reflection of the progression of all aspects of design — form, evaluation,
and emphasis — from abstract to concrete.

The power of heuristics in architecting, as discussed in Chapter 2,
comes by cataloging those that apply in many domains, giving them gen-
erality in those domains, likely extensibility in others, and a system-level
credibility. Applied consistently through the several levels of system

*	 Stepwise refinement is a term borrowed from software that describes program develop-
ment by sequential construction of programs, each complete into itself but containing
increasing fractions of the total desired system functionality.

Chapter 9:  Design Progression in Systems Architecting	 257

architecture, they help insure system integrity. For example, “Quality
cannot be tested in; it must be designed in” is equally applicable from the
top-level architectural sketch to the smallest detail. However, the general
heuristic relies on an experienced system-level architect to select the ones
appropriate for the system at hand, interpret their application-specific
meaning, and promulgate them throughout its implementation.
A catalog of general heuristics is of much less use to the novice; indeed,
an uninformed selection among them could be dangerous. For example,
“If it ain’t broke, don’t fix it,” which is questionable at best, can mislead
one from making the small incremental changes that often characterize
successful continuous improvement programs and can block one from
recognizing the qualitative factors, like ultraquality, that redefine the
product line completely.

Specialized and Formalized Heuristics

Although there are many very useful general heuristics, there really
is not a general heuristic method as such.* Heuristics most often are
formalized as part of more formalized methods within specific domains.
A formalized-heuristic method gives up generality for more direct guid-
ance in its domain. Popular design methods often contain formalized
heuristics as guidelines for design synthesis. A good example is the
ADARTS† software engineering methodology. ADARTS provides an exten-
sive set of heuristics to transform a data-flow-oriented behavioral model
into a multitasking, modular software implementation. Some examples of
formalized ADARTS prescriptive heuristics include the following:

Map a process to an active I/O process if that transforma-
tion interfaces to an active I/O device.4

Group processes that read or update the same data store
or data from the same I/O device into a single process.5

As the ADARTS method makes clear, these are recommended
guidelines and not the success-defining pronouncements of the norma-
tive approach. These heuristics do not produce an optimal, certifiable, or
even unique result, much less success-by-definition. There is ambiguity in
their application. Different heuristics may produce conflicting software

*	 On the other hand, knowledge of a codified set of heuristics can lead to new ways of
thinking about problems. This could be described as heuristic thinking or qualitative
reasoning.

†	This method is described in the ADARTS Guidebook, SPC-94040-CMC, Version 2.00.13,
Volume 1, September 1991, available from the Software Productivity Consortium, now the
Systems and Software Consortium, Herndon, Virginia.

258	 The Art of Systems Architecting

structuring. The software engineer must select from the heuristic list and
interpret the design consequences of a given heuristic with awareness of
the specific demands of the problem and its implementation environment.

Conceptually, general and domain-specific formalized heuristics
might be arranged in a hierarchy. In this hierarchy, domain-specific
heuristics are specializations of general heuristics, and the general are
abstractions of the specific. Architecting in general and architecting in
specific domains may be linked through the progressive refinement and
specialization of heuristics. To date, this hierarchy can be clearly identi-
fied only for a limited set of heuristics. In any case, the pattern of refining
from abstract to specific is a broadly persistent pattern, and it is essential
for understanding life-cycle design progression.

Scoping, Synthesis, and Certification

A development can be envisioned as the creation and transformation of
a series of models. For example, to develop the systems requirements is
to develop a model of what the system should do and how effectively it
should do it. To develop a system design is to develop a model of what
the system is. In a pure waterfall development, there is rough alignment
between waterfall steps and the views defined in Chapter 8. Requirements
development develops models for objectives and performance. Functional
analysis develops models of behavior, and so on down the waterfall chain.
Architects develop models for all views, though not at equal levels of
detail. In uncritical views or uncritical portions of the system, the models
will be rough. In some areas, the models may need to be quite detailed
from the beginning.

Models are best understood by view because the views reflect their
content. Although architecting is consistent with waterfall or spiral
development, it does not traverse the steps in the conventional manner.
Architects make use of all views and traverse all development steps, but
at varying levels of detail and completeness. Because architects tend to
follow complex paths through design activities, some alternative charac-
terization of design activities independent of view is useful. The principal
activities of the architect are scoping, synthesis, integration, and certifica-
tion. Figure 9.2 lists typical activities in each category and suggests some
relationships. In a subsequent section, we will reconsider these activities
in a process model.

Scoping
Scoping procedures are methods for selecting and rejecting problem
statements, of defining constraints, and of deciding on what is “inside”
or “outside” the system. Scoping implies the ability to rank alternative
statements and priorities on the basis of overall desirability or feasibility.

Chapter 9:  Design Progression in Systems Architecting	 259

Scoping should not design system internals, though some choices may
implicitly do so for lack of design alternatives. Desirably, scoping limits
what needs to be considered and why. Scoping is dominantly a problem
domain activity.

Scoping is central in orientation and purpose analysis, the activities
illustrated in our process model. Purpose analysis is an inquiry into why
someone wants the system. Purpose precedes requirements, at least it
precedes requirements in the sense of specific acquisition requirements.
Requirements are determined by understanding how having a system is
valuable to the client, and what combination of fulfilled purposes and
systems costs represents a satisfactory and feasible solution.*

Scoping is the heart of front-end architecting. A well-scoped system
is one that is both desirable and feasible, the essential definition of suc-
cess in system architecting. As the project begins, the scope forms, at
least implicitly. All participants will form mental models of the system
and its characteristics; in doing so, the system’s scope is being defined.

*	 Kevin Kreitman has pointed out the extensive literature in soft systems theory that applies
to purpose analysis.

Scoping
Purpose Expansion/Contraction
Behavioral Definition/Analysis
Large Scale Alternative Consideration
Client Satisfaction–Builder Feasibility

Synthesis
Problem Reformulation/Replacement
Creative Invention
Iteration

Aggregation Partitioning
Functional Aggregation (abstract)
Functional Aggregation (to physical units)
Physical Components to Subsystems
Interface Definition/Analysis
Assembly on Timelines or Behavioral Chains
Collection into Decoupled Threads

Behavioral–Functional Decomposition
Physical Decomposition (to lower level design)
Performance Model Construction
Interface Definition/Analysis
Decomposition to Cyclic Processes
Decomposition into Threads

Certification
Operational Walkthroughs
Test and Evaluation
Verification
Formal Methods Verification
Failure Assessment

Figure 9.2  Typical activities within scoping, synthesis, aggregation, partitioning,
and certification.

260	 The Art of Systems Architecting

If incompatible models appear, scoping has failed through inconsis-
tency. Heuristics suggest that scoping is among the most important of all
system design activities. One of the most popular heuristics in Rechtin
(1991) was: All the really important mistakes are made the first day. Its popu-
larity certainly suggests that badly chosen system scope is a common
source for system disasters.

Of course, it is as impossible to prevent mistakes on the first day as it
is on any other day. What the heuristic indicates is that mistakes of initial
conception will have the worst long-term impact on the project. Therefore,
one must be particularly careful that a mistake of scope is discovered and
corrected as soon as possible.* One way of doing this is to defer absolute
decisions on scope by retaining expansive and restrictive options as
long as possible — a course of action recommended by other heuristics
(the options heuristics of Appendix A).

In principle, scope can be determined rationally through decision the-
ory. Decision theory applies to any selection problem. In this case, the things
being selected are problem statements, constraints, and system contexts. In
practice, the limits of decision theory apply especially strongly to scoping
decisions. These limits, discussed in greater detail in a subsequent section,
include the problems of utility for multiple system stakeholders, problem
scale, and uncertainty. The judgments of experienced architects, at least as
expressed through heuristics (see Appendix A for a detailed list), is that
the most useful techniques to establish system scope are qualitative.

Scoping heuristics and decision theory share an emphasis on careful
consideration of who will use the system and will judge success. Decision
theory requires a utility function, a mathematical representation of system
value as a function of its attributes. A utility function can be determined
only by knowing whose judgments of system value will have priority
and what the evaluation criteria are. Compare the precision of the utility
method to related heuristics:

Success is defined by the beholder, not by the architect.

The most important single element of success is to listen
closely to what the customer perceives as his require-
ments and to have the will and ability to be responsive.
(J. E. Steiner, 1978)

*	 A formalized heuristic with a similar idea comes from software engineering. It says: The
cost of removing a defect rises exponentially with the time (in project phases) between its insertion
and discovery. Hence, mistakes of scope (the very earliest) are potentially dominant in
defect costs.

Chapter 9:  Design Progression in Systems Architecting	 261

Ask early about how you will evaluate the success of your
efforts. (F. Hayes-Roth et al., 1983)

Scoping heuristics suggest approaches to setting scope that are outside
the usual compromise procedures of focused engineering. One way to resolve
intractable problems of scope is to expand. The heuristic is as follows:

Moving to a larger purpose widens the range of solutions.
(Gerald Nadler, 1990)

The goal of scoping is to form a concept of what the system will do,
how effectively it will do it, and how it will interact with the outside world.
The level of detail required is the level required to gain customer accep-
tance, first of continued development and ultimately of the built system.
Thus, the scope of the architect’s activities is governed not by the ultimate
needs of system development, but by the requirements of the architect’s
further role. The natural conclusion to scoping is certification, where the
architect determines that the system is fit for use. Put another way, the
certification is that the system is appropriate for its scope.

Scoping is not solely a requirements-related activity. For scope to be
successfully determined, the resulting system must be both satisfactory
and feasible. The feasibility part requires some development of the system
design. The primary activities in design by architects are aggregation and
partitioning, the basic structuring of the system into components.

Synthesis
Synthesis is creation. Specifically, synthesis is constructing new solution
concepts, and sometimes new problem concepts, in response to the under-
standing of client purpose. Because synthesis is fundamentally a creative
act, we can go to the literature on inventive creativity for heuristics and
processes. That literature is very large, and so we will not attempt to
review it here. We will highlight some key heuristics, first addressing the
more pure synthesis or creativity oriented side, than the more building
block side (aggregation and partitioning).

Often the most striking and innovative solutions come from
realizing that your concept of the problem was wrong.6

One of the authors was once involved in an assessment of the risks of
implementing some very advanced database technology. The technology
was being considered in order to synchronize databases distributed over
several globally distributed sites. It was important to the researcher-users
that the databases each saw in his own location be accurately synchro-
nized with the databases seen by other researchers elsewhere. Because

262	 The Art of Systems Architecting

the databases were quite large and in nearly continuous use, the problem
of synchronizing them was considerable. After extended discussion, one
of the outside participants asked “How did we get into this mess? Is it
impossible to just use one database and have everybody access it?” The
reason that was “not possible” was because there was insufficient inter
national communications capacity. So, the natural question was why not
buy more? Granted, international capacity is expensive, but the database
solution being considered was likewise expensive and technologically
risky as well. The answer was “International communication capacity
comes out of a different budget, and we can’t trade that budget for this.”
In this particular case, the ultimate owner of both was a single, commer-
cial company, and so those budgets could be traded, if one went high
enough in the corporate hierarchy. Study of the solution revealed that the
problem was not database synchronization; it was the operating pattern
of the researchers and their inability to purchase certain types of assets
because of internal rules.

Plan to throw one away, you will anyway.7

In coming up with great solutions, we rarely, if ever, come up with one
right away. We usually come up with some bad ideas, and do not address
the problems with our ideas until we have explored them quite a ways.
The more innovative the system concept is, the more likely it will have
to be exposed to the market and users for an extended period before the
desirable approach is revealed. The more innovative the solution is, the
more likely it is that extensive, linked operational changes will have to be
made before anything like full value can be realized. Those changes will
often involve “throwing away” the early attempts. Consider some of the
following examples:

	 1.	Personal digital assistant (PDA) devices were on the market for many
years before becoming popular. A wide variety of form factors and
user interface styles were tried. It was not until the Palm Pilot® (Palm,
Inc., Sunnyvale, California) hit the market with its key combination
of features (form factor that fit into a shirt pocket, usable stylus-based
input, and one-touch computer synchronization) that the market
began growing very rapidly. Ironically, but not surprisingly, the pre-
Palm leaders were generally unable to follow Palm’s lead even after
the Pilot had shown the market-winning combination of features.

	 2.	The Global Positioning System (GPS) became a huge success only
after two events not linked to the GPS program office occurred.
First, commercial companies invested in GPS chipsets that drove
the cost down, and volume up, for commercial receivers. Second, the

Chapter 9:  Design Progression in Systems Architecting	 263

U.S. military pioneered an entirely new bombing CONOPS based on
locating targets to GPS coordinates with high precision and receiv-
ers so cheap they could be put on the weapons.

	 3.	 In the DC-3 story (Part II) we note that it was the DC-3 (and not the
DC-1 or DC-2) that revolutionized the airline business. Intermediate
systems had to be thrown away.

	 4.	Although the original Macintosh computer could be said to have
revolutionized personal computing, that revolution was dependent
on extensive evolution. First came the Macintosh with the product of
failed systems by Apple (the Apple III and Lisa), not to mention its
Xerox precursors. Second, the original Macintosh had to be rather
extensively reengineered to accommodate the desktop publishing
market (that it had almost single-handedly created). Third, the revo-
lution truly began to be global only when the key interface ideas were
ported to Microsoft operating system based personal computers.

These large-scale examples of the heuristic, where the program that
surrounds the system “throws one away,” either intentionally or not, are
mirrored in small-scale design activity. It is rare that we can derive a best
solution or representation, much like the first drafts of written works are
rarely very good. We improve our designs, like we improve our writing,
and like we improve our systems, by iterative development.

Much of synthesis is in the detail rather than grand visions and strate-
gies. We can usefully classify the details as aggregation and partitioning.

Aggregation and Partitioning
Aggregation and partitioning are the grouping and separation of related
solutions and problems. They are two sides of the same coin. Both are the
processes by which the system is defined as components. One can argue
about which precedes the other, but in fact they are used so iteratively
and repeatedly that neither can be usefully said to precede the other.
Conventionally, the components are arranged into hierarchies with a
modest number of components at each level of the hierarchy (the famous
7 ± 2 structuring heuristic). The most important aggregation and partition-
ing heuristics are to minimize external coupling and maximize internal
cohesion, usually worded as follows8:

In partitioning, choose the elements so that they are as
independent as possible — that is, elements with low
external complexity and high internal cohesion.

Group elements that are strongly related to each other;
separate elements that are unrelated.

264	 The Art of Systems Architecting

These two heuristics are especially interesting because they are part of
the clearest hierarchy in heuristic refinement. Design is usefully viewed as
progressive or stepwise refinement. Models, evaluation criteria, heuristics,
and other factors are all refined as design progresses from abstract to
concrete and specific. Ideally, heuristics exist in hierarchies that con-
nect general design guidance, such as the two preceding heuristics, to
domain-specific design guidelines. The downward direction of refinement
is the deduction of domain-specific guidelines from general heuristics.
The upward abstraction is the induction of general heuristics from similar
guidelines across domains.

The deductive direction asks, taking the coupling heuristic as an
example, how can coupling be measured? Or, for the cohesion heuristic,
given alternative designs, which is the most cohesive? Within a specific
domain, the questions should have more specific answers. For example,
within the software domain, these questions are answered with greater
refinement, though still heuristically. Studies have demonstrated quan-
titative impact on system properties as the two heuristics are more and
less embodied in a systems design. A generally accepted software mea-
sure of partitioning is based on interface characterization and has five
ranked levels. A related metric for aggregation quality (or cohesion) has
seven ranked levels of cohesion.* Studies of large software systems show
a strong correlation between coupling and cohesion levels, defect rates,
and maintenance costs. A major study9 found that routines with the worst
coupling-to-cohesion ratios (interface complexity to internal coherence)
had seven times more errors and 20 times higher maintenance costs than
the routines with the best ratios.

Aggregation and partitioning with controlled fan-out and limited
communication is a tested approach to building systems in comprehen-
sible hierarchies. Numerous studies in specific domains have shown that
choosing loosely coupled and highly cohesive elements leads to systems
with low maintenance cost and low defect rates. However, nature sug-
gests that much flatter hierarchies can yield systems of equal or greater
robustness, in certain circumstances.

Chapter 8 introduced an ant colony as an example of flat hierarchy
system that exhibits complex and adaptive behavior. The components of
an ant colony, a few classes of ants, interact in a very flat system hierarchy.
Communication is loose and hierarchically unstructured. There is no
intelligent central direction. Nevertheless, the colony as a whole produces
complex system-level behavior. The patterns of local, nonhierarchical

*	 The cohesion and coupling levels are carefully discussed in Yourdon, E., and L. L. Constantine,
Structured Design: Fundamentals of a Discipline of Computer Program and Systems Design.
New York: Yourdon Press, 1979. They were introduced earlier by the same authors and
others in several papers.

Chapter 9:  Design Progression in Systems Architecting	 265

interaction produce very complex operations. The colony is also very
robust in that large numbers of its components (except the queen) can be
removed catastrophically and the system will smoothly adapt. A perhaps
related technological example is the Internet. Again, the system as a whole
has a relatively flat hierarchy and no strong central direction. However,
the patterns of local communication and resulting collaboration are able
to produce complex, stable, and robust system-level behavior.

The observations that controlled and limited fan-out and interaction
(the 7 ± 2 heuristic and coupling and cohesion studies) and that extreme
fan-out and high distributed communication and control (ant colonies
and the Internet) can both lead to high-quality systems is not contradic-
tory. Rather they are complementary observations of the refinement of
aggregation and partitioning into specific domains. In both cases, a happy
choice of aggregations and partitions yields good systems. But the specific
indicators of what constitutes good aggregation and partitioning vary
with the domain. The general heuristic stands for all, but prescriptive or
formalized guidance must be adapted for the domain.

Certification
To certify a system is to give an assurance to the paying client that the
system is fit for use. Certifications can be elaborate, formal, and very com-
plex or the opposite. The complexity and thoroughness are dependent on
the system. A house can be certified by visual inspection. A computer
flight control system might require highly detailed testing, extensive
product and process inspections, and even formal mathematical proofs
of design elements. Certification presents two distinct problems. The first
is determining that the functionality desired by the client and created by
the builder is acceptable. The second is the assessment of defects revealed
during testing and inspection and the evaluation of those failures with
respect to client demands.

Whether or not a system possesses a desired property can be stated as
a mathematically precise proposition. Formal methods develop and track
and verify such propositions throughout development, ideally leading to a
formal proof that the system as designed possesses the desired properties.
However, architecting practice has been to treat such questions heuristi-
cally, relying on judgment and experience to formulate tests and acceptance
procedures. The heuristics on certification criteria do not address what such
criteria should be, but they address the process for developing the criteria.
Essentially, certification should not be treated separately from scoping or
design. Certifiability must be inherent in the design. Two summarizing
heuristics — actually on scoping and planning — are as follows:

266	 The Art of Systems Architecting

For a system to meet its acceptance criteria to the satis-
faction of all parties, it must be architected, designed and
built to do so — no more and no less.

Define how an acceptance criterion is to be certified at the
same time the criterion is established.

The first part of certification is intimately connected to the concep-
tual phase. The system can be certified as possessing desired criteria
only to the extent it is designed to support such certification. The second
element of certification, dealing with failure, carries its own heuristics.
These heuristics emphasize a highly organized and rigorous approach
to defect analysis and removal. Once a defect is discovered, it should
not be considered resolved until it has been traced to its original source,
corrected, the correction tested at least as thoroughly as was needed to
find the defect originally, and the process recorded. Deming’s famous
heuristic summarizes:

Tally the defects, analyze them, trace them to the source,
make corrections, keep a record of what happens after-
wards and keep repeating it.

A complex problem in ultraquality systems is the need to certify levels
of performance that cannot be directly observed. Suppose a missile system
is required to have a 99% success rate with 95% confidence. Suppose fur-
ther that only 50 missiles are fired in acceptance tests (perhaps because
of cost constraints). Even if no failures are experienced during testing,
the requirement cannot be quantitatively certified. Even worse, suppose
a few failures occurred early in the 50 tests but were followed by flawless
performance after repair of some design defects. How can the architect
certify the system? It is quite possible that the system meets the require-
ment, but it cannot be proven within statistical criteria.

Certification of ultraquality might be deemed a problem of require-
ments. Many would argue that no requirement should be levied that cannot
be quantitatively shown. But the problem will not go away. The only accept-
able failure levels in one-of-a-kind systems and those with large public
safety impacts will be immeasurable. No such systems can be certified if
certification in the absence of quantitatively provable data is not possible.

Some heuristics address this problem. The Deming approach, given
as a heuristic above, seeks to achieve any quality level by continuous
incremental improvement. Interestingly, there is a somewhat contradic-
tory heuristic in the software domain. When a software system is tested,
the number of defects discovered should level off as testing continues.
The amount of additional test time to find each additional defect should

Chapter 9:  Design Progression in Systems Architecting	 267

increase, and the total number of discovered defects will level out. The
leveling out of the number of defects discovered gives an illusion that the
system is now defect free. In practice, testing or reviews at any level rarely
consistently find more than 60% of the defects present in a system. But if
testing at a given level finds only a fixed percentage of defects, it likewise
leaves a fixed percentage undiscovered. And the size of that undiscovered
set will be roughly proportional to the number found in that same level of
test or review. The heuristic can be given in two forms:

The number of defects remaining in a system after a given
level of test or review (design review, unit test, system
test, etc.) is proportional to the number found during that
test or review.

Testing can indicate the absence of defects in a system
only when: (1) The test intensity is known from other
systems to find a high percentage of defects, and (2) Few
or no defects are discovered in the system under test.

So the discovery and removal of defects is not necessarily an indica-
tion of a high-quality system. A variation of the “zero-defects” philosophy
is that ultraquality requires ultraquality throughout all development pro-
cesses. That is, certify a lack of defects in the final product by insisting on
a lack of defects anywhere in the development process. The ultraquality
problem is a particular example of the interplay of uncertainty, heuristics,
and rational methods in making architectural choices. That interplay
needs to be examined directly to understand how heuristic and rational
methods interact in the progression of system design.

Organization into a Process Model

Even though effective architecting rarely proceeds on a linear, predeter-
mined course, many people have found it convenient to have some refer-
ence model for how to organize the activities. A model found particularly
useful is illustrated in Figure 9.3, originally introduced in Chapter 2.
The figure illustrates a core set of activities associated with architect-
ing and their relationships. The presence of multiple feedback channels
shows that one does not proceed linearly through the activities. In prac-
tice, even within a cycle the path is often not linear, a subject we take up
subsequently. The activities in Figure 9.3 are defined as orientation, pur-
pose analysis, problem structuring, solution structuring, harmonization,
selection or abstraction, architecture description, and supporting study.

268	 The Art of Systems Architecting

Orientation
Orientation is the process of understanding the context of an architect-
ing project. When one finds oneself beginning what appears to be an
architecting project, orientation is the set of activities necessary to make
a preliminary definition of the project (although the system of interest
presumably emerges). A simple heuristic to guide orientation is to ask the
following questions:

	 1.	What is the system-of-interest to the architecting effort (at least, the
assumed system-of-interest)? What sort of system does the sponsor
believe will eventually emerge?

	 2.	What is the scope of the system-of-interest (and of the overall effort)?
Is the system-of-interest a narrowly defined system with a single mis-
sion, a complex multimission system, or some assemblage of multiple
systems (for example, a family of systems or a collaborative system)?

	 3.	What is the apparent technology level? That is, is everything needed
to accomplish the basic purpose well within current state-of-practice,
pushing state-of-practice, or well beyond it?

	 4.	What hard constraints are believed to exist (like a fixed delivery
date)? Are they really hard constraints or just assumptions?

	 5.	What resources are available for the effort, can more be acquired, if so
how, and what are the expectations for interacting with the sponsor?
Is the sponsor prepared to engage in value discussions with the
team, and is sponsor time available to have the discussions?

Orientation

Core
Architecting

Supporting
Analysis

Architecture
Description

Reject Build

Purpose
Analysis

Problem
Structuring

Solution
Structuring

Harmonization

Selection-
Abstraction

Elicitation

Synthesis

Analysis

Decision Making

Scoping/
Planning

Aggregation
Partitioning

Figure 9.3  Expanded activities in an Architecting Process Model.

Chapter 9:  Design Progression in Systems Architecting	 269

	 6.	When the architecture effort is complete, what will be done with
its products? Will they be used to start a system acquisition, to
guide other acquisitions, to guide research and development (R&D)
activities, to mark off completion of a bureaucratic requirement, or
for some other purpose?

	 7.	Are the purposes of the system-of-interest, the architecting effort,
and the architecture documentation to be developed all consistent
with each other?

	 8.	What is motivating the investigation into constructing the system-
of-interest? Is it the sponsor needs, a new technology believed to be
able to create value, or some other reason?

Purpose Analysis
Purpose analysis is the process of determining what the system of interest
is for, and why the sponsor wants it (or at least believes he or she wants it).
Purpose analysis is a broad-scoped investigation in the system-of-interest.
It does not consist of just trying to discover and record assumed require-
ments or objectives. The intent is to delve more deeply into why the
sponsor believes that having the system-of-interest will create value. One
of the most useful heuristics in Purpose analysis is the Four Who’s: Always
ask who benefits, who supplies, who pays, and who loses?

Problem Structuring
Where purpose analysis is broad based and inclusive, problem structur-
ing seeks to narrow. Purpose analysis accepts the full range of stake-
holder inputs, whether precisely stated or not, whether unambiguous
or not, and whether feasible or not. Problem structuring seeks to con-
vert the rich picture of stakeholder concerns from purpose analysis into
more rigorously structured models. To accomplish that without losing
the richness of the original presentations, it may be necessary to spawn
multiple problem descriptions. There may not be a single problem to
solve; perhaps the best representation of the problem space is as multiple
problems that will eventually be separately (if at all) addressed. The most
useful heuristics and techniques in problem structuring include problem
framing, expansion and contraction heuristics, use-case analysis, and
functional decomposition.

Solution Structuring
In parallel with problem structuring, we can synthesize solutions. We
can do this in parallel (that is, without full knowledge of objectives or
requirements) because we assume that exposure to solution alternatives
will affect sponsor beliefs about the nature of his or her problem. This is
one of the basic tenets of ill-structured problem solving, that exposure

270	 The Art of Systems Architecting

to solutions changes perceptions of problems, and because we wish to
embrace that change, we must let the two sides of the process influence
each other. Solution structuring makes use of the synthesis heuristics,
including those for aggregation and partitioning. The products of solution
structuring are models of the system of interest, and so usually include
block diagrams in all their forms and other models of form (discussed
elsewhere in this book).

Harmonization
Harmonization is where we match up problem and solution descriptions
to determine what can go together and what cannot. Harmonization is
analytical, if not always rigorously so. The most useful techniques in
harmonization are thus analytical and include functional walkthroughs,
performance analysis, and executable simulations.

Selection or Abstraction
At some point, we have to make choices. One choice might be to drop the
whole pursuit (perhaps a very wise choice in some circumstances, and one
best made early). If the fundamental purpose is to emerge from architect-
ing and arrange for construction of the system-of-interest, at some point
we must select the configuration desired. In family-of-system and collab-
orative system cases, “abstraction” may be a better concept. By abstraction
we mean selecting from the family or collaboration the things that are
common, and likewise leaving out the things that are not common and
leaving those to performing individuals or programs.

Architecture Description
Architecture description moves from collections of working models
to more formalized groupings structuring as reference documents.
Architecture models are organized into a formal architecture description,
often using an “Architecture Framework,” a concept defined subsequently.
The key here is to avoid confusing the architecture description from the
work process that precedes it. An architecture description is (or should be)
a consequence of good architecting work.

Supporting Study
In practice, effective architecting often depends on relatively specialized
and in-depth data. Recall the heuristic of variable technical depth. Good
architecting is typified by deep investigation of particular, narrow areas
in subsystems or subdisciplines (the heuristic of Variable Technical Depth).
These deeper investigations are typically done separately from the core
process of architecting. A cycle of architecting reveals the areas needing
in-depth investigation. The architect sets up the in-depth study, and those
results are fed back into further architecting.

Chapter 9:  Design Progression in Systems Architecting	 271

Certainty, Rationality, and Choice

All of the design processes — scoping, partitioning, aggregation, and cer-
tification — require decisions. They require decisions on which problem
statement to accept, what components to organize the system into, or when
the system has reached an acceptable level of development. A by-product
of a heuristic-based approach is continuous uncertainty. Looking back on
their projects, most architects interviewed for the University of Southern
California program concluded that the key choices they made were rarely
obvious decisions at the time. Although, in retrospect, it may be obvious
that a decision was either a very good or a very bad one, at the time the
decision was actually made it was not clear at all. The heuristic summa-
rizing is: Before the flight it was opinion; after the flight it was obvious. The
members of the teams were constantly arguing and a decision was reached
only through the authority of the leading architect for the project.*

A considerable effort has been made to develop rational decision-
making methods. The goal of a fully rational or scientific approach is to
make decisions optimally with respect to rigorously determined criteria.
Again, the model of architecting practice presented here is a pragmatic
mixture of heuristic and rigor. Decision theory works well when the
problem can be parameterized with a modest number of values, uncer-
tainty is limited, and estimates are reliable, and the client or users possess
consistent utility functions with tractable mathematical expression. The
absence of any of these conditions weakens or precludes the approach.
Unfortunately, some or all of the conditions are usually absent in architect-
ing problems (and even in more restricted disciplinary design problems).
To understand why, one must understand the elements of the decision
theoretic approach:

	 1.	 Identify the attributes contributing to client satisfaction and an algo-
rithm for estimating the value of sets of attributes. More formally, this
is determining the set over which the client will express preference.

	 2.	Determine a utility function, a function that combines all the attributes
and represents overall client satisfaction. Weighted, additive utility
functions are commonly used, but not required. The utility function
converts preferences into mathematically useful objective function.

	 3.	 Include uncertainty by determining probabilities, calculating the
utility probability distribution, and determining the client’s risk
aversion curve. The risk aversion curve is a utility theory quantity
that measures the client’s willingness to trade risk for return.

	 4.	Select the decision with the highest weighted expected utility.

*	 Comments by Harry Hillaker at USC on his experience as YF-16 architect.

272	 The Art of Systems Architecting

The first problem in applying this framework to architecting problems
is scale. To choose an optimum, the decision theory user must be able to
maximize the utility functions over the decision set. If the set is very large,
the problem is computationally infeasible. If the relationship between the
parameters and utility is nonlinear, only relatively small problems are
solvable. Unfortunately, both conditions commonly apply to the architect-
ing and creation of complex systems.

The second problem is to workably and rationally include the effects of
uncertainty or risk. In principle, uncertainty and unreliability in estimates
can be folded into the decision theoretic framework through probability
and assessment of the client’s risk aversion curve. The risk aversion curve
measures the client’s willingness to trade risk and return. A risk-neutral
client wants the strategy that maximizes expected return. A risk-averse
client prefers a strategy with certainty over opportunity for greater return.
A risk-disposed client prefers the opposite — wanting the opportunity for
greater return even if the expectation of the return is less.

In practice, however, the process of including uncertainty is heavily
subjective. For example, how can one estimate probabilities for unprec-
edented events? If the probabilities are inaccurate, the whole framework
loses its claim to optimality. Estimation of risk aversion curves is like-
wise subjective, at least in practice. When so much subjective judgment
has been introduced, it is unclear if maintaining the analytical framework
leads to much benefit or if it is simply a gloss.

One clear benefit of the decision theory framework is that it makes
the decision criteria explicit and, thus, subject to direct criticism and
discussion. This beneficial explicitness can be obtained without the full
framework. This approach is to drop the analytic gloss, make decisions
based on heuristics and architectural judgment, but (and this is more
honored in the breach) require the basis be explicitly given and recorded.

A third problem with attempting to fully rationalize architectural
decisions is that for many of them there will be multiple clients who have
some claim to express a preference. Single clients can be assumed to have
consistent preferences and, hence, consistent utility functions. However,
consistent utility functions do not generally exist when the client or user
is a group, as in sociotechnical systems.* Even with single clients, value
judgments may change, especially after the system is delivered and the
client acquires direct experience.†

*	 This problem with multiple clients and decision theory has been extensively studied in
literature on public choice and political philosophy. A tutorial reference is Mueller, D. C.,
Public Choice. London; New York: Cambridge University Press, 1979.

†	 Nonutility theory based decision methods, such as the Analytic Hierarchy Process, have
many of the same problems. Most writers have discussed that the primary role of deci-
sion theoretic methods should be to elucidate the underlying preferences. See Saaty, T.,
The Analytic Network Process. Pittsburgh, PA: RWS Publications, 1996, Preface and Chapter 1.

Chapter 9:  Design Progression in Systems Architecting	 273

An observation about decision theory, paraphrased from Keeney, is that
decision analysis is most applicable when it is least important. When doing
decision analysis, one often finds one of the following two situations:

	 1.	Analysis of the objective function shows that one alternative is much
better than the rest. So, choosing the optimum is of high value. But, it is
rarely hard to find such a clear winner; it usually stands out obviously
from analysis of the objectives. Clear analysis of the objectives leads
to the inevitable conclusion even without the full formal machinery.

	 2.	The optimal choice cannot be found without the full machinery, but
the true optimum is not much better than nearby choices. Any of the
nearby choices would be almost as good, and given uncertainties,
not distinguishable.

Thus, pursuit of the true optimum is of much less importance than
the supporting reasoning, in objectives, and in fully exploring the alter-
native space. We get more benefit from the systematic thinking associated
with decision analysis than we get from the machinery itself.10

Rational and analytical methods produce a gloss of certainty, but
often hide highly subjective choices. No hard and fast guideline exists for
choosing between analytical choice and heuristic choice when unquanti-
fied uncertainties exist. Certainly, when the situation is well understood
and uncertainties can be statistically measured, the decision theoretic
framework is appropriate. When even the right questions are in doubt,
it adds little to the process to quantify them. Intermediate conditions call
for intermediate criteria and methods. For example, a system might have
as client objectives “be flexible” and “leave in options.” Obviously, these
criteria are open to interpretation. The refinement approach is to derive
or specialize increasingly specific criteria from very general criteria.
This process creates a continuous progression of evaluation criteria from
general to specific and eventually measurable.

Example: The U.S. Department of Transportation
has financed an Intelligent Transport System (ITS)
architecture development effort. Among their eval-
uation criteria was “system flexibility,” obviously
a very loose criteria.11 An initial refinement of the
loose criteria could be as follows:

	1.	Architecture components should fit in many
alternative architectures.

	2.	Architecture components should support mul-
tiple services.

274	 The Art of Systems Architecting

3.	 Architecture components should expand with
linear or sublinear cost to address greater load.

4.	 Components should support non-ITS services.

These refined heuristic evaluation criteria can be applied directly to
candidate architectures. Or they can be further refined into quantitative
and measurable criteria. The intermediate refinement on the way to quan-
titative and measurable criteria creates a progression that threads through
the whole development process. Instead of thinking of design as begin-
ning and stopping, it continuously progresses. Sophisticated mixtures of
the heuristics and rational methods are part of architecting practice in
some domains. This progression is the topic of the next section.

Although architecting problems rarely can be effectively modeled and
resolved as simple decision theoretic problems, the decision theoretic pro-
cess holds much value, if used appropriately. The decision theoretic process
of building a decision model is a valuable guide to good architecting:

	 1.	Make objectives or attributes explicit and visible to all stakeholders
(build a value model). Encourage debate, and hopefully agreement,
on objectives.

	 2.	Use the objectives to search for solutions better than any currently
known. Instead of using weights and trades to “pick the best of a bad
lot,” use the objectives to focus the search for higher-valued possi-
bilities (the “Value Focused Thinking” notion of Keeney12).

	 3.	Build explicit models of uncertainty. Use those models to search for
ways that uncertainty can be exploited instead of merely adapted to.

Stopping or Progressing?

When does architecting and modeling stop? The short answer is that
given earlier: they never stop; they progress. The architecting process
(along with many other parallel tracks) continuously progresses from the
abstract to the concrete in a steady reduction of abstraction. In a narrow
sense, there are recognizable points at which some aspects of architecting
and modeling must stop. To physically fabricate a component of a system,
its design must be frozen. It may not stop until the lathe stops turning or
the final line of code is typed in, but the physical object is the realization
of some design. In the broader sense, even physical fabrication does not
stop architecting. Operations can be interpreted only through recourse
to models, though those models may be quite precise when driven by
real data. In some systems, such as distant space probes, even operational
modeling is still somewhat remote.

The significant progressions in architecting are promoted by the role
of the architect. The architect’s role makes two decisions foremost: the

Chapter 9:  Design Progression in Systems Architecting	 275

selection of a system concept and the certification of the built system. The
former decision is almost certain to be driven by heuristic criteria; the
latter is more open, depending on how precisely the criteria of fitness for
use can be defined. A system concept is suitable when it is both satisfactory
and feasible. Only the client can judge the system “satisfactory,” though
the client will have to rely on information provided by the architect.
In builder-architected systems, the architect must often make the judg-
ment for the client (who will hopefully appear after the system reaches the
market). Feasible means the system can be developed and deployed with
acceptable risk. Certification requires that the system as built adequately
fulfills the client’s purposes, including cost, as well as the contract with
the builder.

Risk, a principal element in judging feasibility, is almost certain to be
judged heuristically. The rational means of handling risk is through prob-
ability, but a probabilistic risk assessment requires some set of precedents
to estimate over — that is, a series of developments of similar nature for
which the performance and cost history is known. By definition, such a
history cannot be available for unprecedented systems. So the architect
is left to estimate risk by other means. In well-defined domains, past
history should be able to provide a useful guide; it certainly does for civil
architects. Civil architects are expected to control cost and schedule risk
for new structures and can do so because construction cost estimation
methods are reasonably well developed. The desired approach is to use
judgment, and perhaps a catalog of domain-specific heuristics, to size the
development effort against past systems, and use documented develop-
ment data from those past systems to estimate risk. For example, in soft-
ware systems, cost models based on code size estimates are known and
are often calibrated against past development projects in builder organi-
zations. If the architect can deduce code size, and possible variation in
code size, reliably, a traceable estimate of cost risk is possible.

The judgment of how satisfactory a concept is and the certification
process both depend on how well customer purposes can be specified.
Here there is great latitude for both heuristic and rational means. If cus-
tomer purposes can be precisely specified, it may be possible to precisely
judge how well a system fulfills them, either in prospect or retrospect. In
prospect, it depends on having behavior and performance models that
are firmly attached to customer purposes. With good models with certain
connection between the models and implementation technology, the
architect can confidently predict how well the planned system will fulfill
the desired purposes. The retrospective problem is that of certification, of
determining how well the built system fulfills customer purposes. Again,
well-founded, scientific models and mature implementation technologies
make system assessment relatively certain.

276	 The Art of Systems Architecting

More heuristic problems arise when the same factors do not apply.
Mainly this occurs when it is hard to formulate precise customer pur-
pose models, when it is hard to determine whether or not a built system
fulfills a precisely stated purpose, or when there is uncertainty about the
connection between model and implemented system. The second two are
related because they both concern retrospective assessment of architec-
ture models against a built system in the presence of uncertainty.

The first case applies when customer purposes are vague or likely
to change in response to actual experience with the system. When the
customer is relatively inexperienced with systems of the type, his or her
perception of the system’s value and requirements is likely to change,
perhaps radically, with experience. Vague customer purposes can be
addressed through the architecture. Take, for example, an emphasis on
options in the architecture and a development plan that includes early
user prototypes with the ability to feed prototype experience back into
the architecture. This is nicely captured in two heuristics:

Firm commitments are best made after the prototype
works.13

Hang on to the agony of decision as long as possible.14

The second case, problems in determining whether or not a built system
fulfills a given purpose, is mainly a problem when requirements are
fundamentally immeasurable or when performance is demanded in an
environment that cannot be provided for test. For example, a space system
may require a failure rate so low it will never occur during any practi-
cal test (the ultraquality problem). Or, a weapon system may be required
to operate in the presence of hostile countermeasures that will not exist
outside a real combat environment. Neither of these requirements can be
certified by test or analysis. To certify a system with requirements like
these, it is necessary to either substitute surrogate requirements agreed to
by the client or to find alternative certification criteria.

To architect-in certifiable criteria essentially means to substitute a
refined set of measurable criteria for the client’s immeasurable criteria.
This requires that the architect be able to convince the client of the validity
of a model for connecting the refined criteria to the original criteria. One
advantage of a third-party architect is the independent architect’s greater
credibility in making just such arguments, which may be critical to devel-
oping a certifiable system. A builder-architect, with an apparent conflict
of interest, may not have the same credibility. The model that connects
the surrogate criteria to the real, immeasurable criteria may be a detailed
mathematical model or may be quite heuristic. An example of the former
category is failure tree analysis that tries to certify untestable reliability

Chapter 9:  Design Progression in Systems Architecting	 277

levels from testable subsystem reliability levels. A more heuristic model
may be more appropriate for certifying performance in uncertain combat
environments. Although the performance required is uncertain, criteria
like flexibility, reprogrammability, performance reserve, fallback modes,
and ability to withstand damage can be specified and measured.

Rational and heuristic methods can be combined to develop ultraqual-
ity systems. A good example is a paper by Jaynarayan.15 This paper dis-
cusses the architectural principles for developing flight control computers
with failure rates as low as 10–10 per hour. Certification of such systems
is a major problem. The authors discuss a two-pronged approach. First,
instead of using a brute-force failure modes and effects analysis with
its enormous fault trees, they design for “Byzantine failure.” Byzantine
failure means failure in which the failed element actively, intelligently,
and malevolently attempts to cause system failure. They go on to describe
formal methods for designing systems resistant to a given number of
Byzantine faults, thus replacing the need to trace fault trees for each type
of failure. The analysis of failure trees is then brought down to tractable
size. The approach is based on designs that do not allow information
or energy from a possibly failed element to propagate outside an error
confinement region. The second prong is a collection of guidelines for
minimizing common mode failures. In a common mode failure, several
nominally independent redundant units fail simultaneously for the same
reason. These are the system failures due to design errors rather than com-
ponent failures. Because one cannot design-in resistance to design failure,
other means are necessary. The guidelines, partially a set of heuristics,
provide guidance in this otherwise nonmeasurable area.

The third and last case is uncertainty about the connection between
the model and the actual system. This is an additional case where
informed judgment and heuristics are needed. To reduce the uncertainty
in modeling requires tests and prototypes. The best guidance on archi-
tecting prototypes is to realize that all prototypes should be purpose
driven. Even when the purposes of the system are less than clear, the
purposes of the prototype should be quite clear. Thus, the architecting
of the prototype can be approached as architecting a system, with the
architect as the client.

Architecture and Design Disciplines
Not very many years ago, the design of a system of the complexity of several
tens-of-thousands of logic gates was a major undertaking. It was an archi-
tectural task in the sense it was probably motivated by an explicit purpose
and required the coordination of a multidisciplinary design effort. Today,
components of much higher complexity are the everyday building blocks
of the specialized digital designer. No architectural effort is required to

278	 The Art of Systems Architecting

use such a component, or even to design a new one. In principle, art has
been largely removed from the design process because the discipline has
a firm scientific basis. In other words, the design discipline or domain is
well worked out, and the practitioners are recognized specialists. Today
it is common to discuss digital logic synthesis directly from fairly level
specifications, even if automated synthesis is not yet common practice.
So, there should be no surprise if systems that today tax our abilities and
require architectural efforts one day become routine with recognized
design methodologies taught in undergraduate courses.

The discussion of progression leads to further understanding of the
distinctions between architecture and engineering. The basic distinction
was reviewed in the Preface, along with the types of problems addressed
and the tools used to address them. A refinement of the distinction was
discussed in Chapter 1, the extent to which the practitioner is primarily
concerned with scoping, conceptualizing, and certification. By looking at
the spectrum of architecture and engineering across systems disciplines,
these distinctions become clearer and can be further refined. First, the
methods most associated with architecting (heuristics) work best one step
beyond where rational design disciplines have been worked out. This
may or may not be at the forefront of component technology. Large-scale
systems, by their nature, push the limits of scientific engineering at what-
ever level of technology development is current. But, as design and man-
ufacturing technology change the level of integration that is considered
a component, the relative working position of the architect inevitably
changes. Where the science does not exist, the designer must be guided
by art. With familiarity and repetition, much that was done heuristically
can now be done scientifically or procedurally.

However, this does not imply that where technology is mature, archi-
tecting does not exist. If it did, there would be no need for civil archi-
tects. Only systems that are relatively unique need to be architected.
Development issues for unique systems contain a kernel of architectural
concerns that transcend whatever technology or scientific level is current.
This kernel concerns the bridge between human needs (which must be
determined through social interaction and are not the domain of science)
and technological systems. In low-technology systems, like buildings,
only the nonroutine building needs to be architected. But dealing with
the nonroutine, the unique, the client/user customized, is different from
other engineering practices. It contains an irreducible component of art.
A series of related unprecedented systems establishes a precedent. The
precedent establishes recognized patterns, sometimes called architec-
tures, of recognized worth. Further systems in the field will commonly
use those established architectures, with variations more on style than in
core structure.

Chapter 9:  Design Progression in Systems Architecting	 279

Current development in software engineering provides an example
of evolution to a design discipline. Until relatively recently, the notion
of software engineering hardly existed; there was only programming.
Programming is the process of assembling software from programming
language statements. Programming language statements do not provide a
very rich language for expressing system behaviors. They are constrained
to basic arithmetic, logical, and assignment operations. To build complex
system behaviors, programs are structured into higher-level components
that begin to express system domain concepts. But in traditional program-
ming, each of the components must be handcrafted from the raw material
of programming languages.

The progression in software is through the construction and standard-
ization of components embodying behaviors closer and closer to problem
domains. Instead of programming in what was considered a “high-level
language,” the engineer can now build a system from components close to
the problem domain. Where the programming language is still, but it may
be used primarily to knit together prebuilt components. Programming
libraries have been in common use for many years. The libraries shipped
with commercial software development environments are often very large
and contain extensive class or object libraries. In certain domains, the gap
has grown very small.

Example: The popular mathematics package MATLAB®
(Natick, Massachusetts) allows direct manipulation
of matrices and vectors. It also provides a rich library
of functions targeted at control engineers, image
processing specialists, and other fields. One can
dispense with the matrices and vectors all together
by “programming” with a graphical block diagram
interface that hides the computational details and
provides hundreds of prebuilt blocks. Further exten-
sions allow the block diagram to be compiled into
executable programs that run on remote machines.
Increasingly it is possible to compile for direct con-
nection to real-time embedded systems.

Wherever a family of related systems is built, a set of accepted models
and abstractions appears and forms the basis for a specialized design dis-
cipline. If the family becomes important enough, the design discipline will
attract enough research attention to build scientific foundations. It will
truly become a design discipline when universities form departments
devoted to it. At the same time, a set of common design abstractions will
be recognized as “architectures” for the family. Mary Shaw, observing the
software field, finds components and patterns constrained by component

280	 The Art of Systems Architecting

and connector vocabulary, topology, and semantic constraints. These
patterns can be termed “styles” of architecture in the field, as was dis-
cussed in Chapter 6 for software.

Architecture and Patterns

The progression from “inspired” architecture to formal design method is
through long experience. Long experience in the discipline by its practi-
tioners eventually yields tested patterns of function and form. Patterns,
pattern languages, and styles are a formalization of this progression.
Architecting in a domain matures as architects identify reusable compo-
nents and repeating styles of connection. Put another way, they recognize
recurring patterns of form and their relationships to patterns in problems.
In a mature domain, patterns in both the problem and solution domains
develop rigorous expression. In digital logic (a relatively mature design
domain), problems are stated in formal logic and solutions in equally
mathematically well-founded components. In a less mature domain, the
patterns are more abstract or heuristic.

A formalization of patterns in architecture is due to Christopher
Alexander.16 Working within civil architecture and urban design,
Alexander developed an approach to synthesis based on the composi-
tion of formalized patterns. A pattern is a reoccurring structure within a
design domain. A pattern consists of both a problem or functional objec-
tive for a system and a solution. Patterns may be quite concrete (such as “A
sunny corner”) or relatively abstract (such as “Masters and apprentices”).
A template for defining a pattern is as follows:

	 1.	A brief name that describes what the pattern accomplishes.
	 2.	A concise problem statement.
	 3.	A description of the problem including the motivation for the pattern

and the issues in resolving the problem.
	 4.	A solution, preferably stated in the form of an instruction.
	 5.	A discussion of how the pattern relates to other patterns in the

language.

A pattern language is a set of patterns complete enough for design
within a domain. It is a method for composing patterns to synthesis solu-
tions to diverse objectives. In the Alexandrian method, the architect con-
sults sets of patterns and chooses from them those patterns that evoke the
elements desired in a project. The patterns become the building blocks
for synthesis, or suggest important elements that should be present in the
building. The patterns each suggest instructions for solution structure, or
contain a solution fragment. The fragments and instructions are merged
to yield a system design.

Chapter 9:  Design Progression in Systems Architecting	 281

Because the definition of a pattern and a pattern language are quite
general, they can be applied to other forms of architecture. The ideas of
patterns and pattern languages are now a subject of active interest in soft-
ware engineering.* Software architects often use the term style to refer to
reoccurring patterns in high-level software design. Various authors have
suggested patterns in software using a pattern template similar to that of
Alexander. An example of a software pattern is “Callbacks and Handlers,”
a commonly used style of organizing system-dependent bindings of code
to fixed behavioral requirements.

The concept of a style is related to Alexandrian patterns because
each style can be described using the pattern template. Patterns are also
a special class of heuristic. A pattern is a prescriptive heuristic describing
particular choices of form and their relationship to particular problems.
Unlike patterns, heuristics are not tied to a particular domain.

Although the boundaries are not sharp, heuristics, patterns, styles,
and integrated design methods can be thought to form a progression.
Heuristics are the most general, spanning domains and categories of guid-
ance. However, they are also the least precise and give the least guidance
to the novice. Patterns are specially documented, prescriptive heuristics
of form. They prescribe (perhaps suggest) particular solutions to partic-
ular problems within a domain. A style is still more precisely defined
guidance, this time in the form of domain-specific structure. Still farther
along the maturity curve are fully integrated design methods. These have
domain-specific models and specific procedures for building the models,
transforming models of one type into another type, and implementing a
system from the models.

Thus, the largest-scale progression is from architecting to a rigorous
and disciplined design method; one that is essential to the normative
theory of design. Along the way, the domain acquires heuristics, patterns,
and styles of proven worth. As the heuristics, patterns, and styles become
more specific, precise, and prescriptive, they give the most guidance to
the novice and come closest to the normative (what should be) theory of
design. As design methods become more precise and rigorous, they also
become more amenable to scientific study and improvement. Thus, the
progression carries from a period requiring (and encouraging) highly
creative and innovative architecting to one defined by quantifiable and
provable science.

Civil architecture experience suggests that at the end of the road
there will still be a segment of practice that is best addressed through a
fusion of art and science. This segment will be primarily concerned with
the clients of a system and will seek to reconcile client satisfaction and

*	 A brief summary with some further references is Bercuzk, C., Hot Topics, Finding Solutions
through Pattern Languages, IEEE Computer, Vol. 27, Number 12, pp. 75–76, 1995.

282	 The Art of Systems Architecting

technical feasibility. The choice of method will depend on the question.
If you want to know how a building will fare in a hurricane, you know to
ask a structural engineer. If you want the building to express your desires,
and do so in a way beyond a rote calculation of floor space and room
types, you know to ask an architect.

Conclusion
A fundamental challenge in defining a systems architecting method or
a systems architecting tool kit is its unstructured and eclectic nature.
Architecting is synthesis oriented and operates in domains and with con-
cerns that preclude rote synthesis. Successful architects proceed through a
mixture of heuristic and rational or scientific methods. One meta-method
that helps organize the architecting process is that of progression.

Architecting proceeds from the abstract and general to the domain
specific. The transition from the unstructured and broad concerns of
architecting to the structured and narrow concerns of developed design
domains is not sharp. It is progressive as abstract models are gradually
given form through transformation to increasingly domain-specific
models. At the same time, all other aspects of the system undergo concur-
rent progressions from general to specific.

The emphasis has been on the heuristic and unstructured compo-
nents of the process, but that is not to undervalue the quantitative and
scientific elements required. The rational and scientific elements are
tied to the specific domains where systems are sufficiently constrained
to allow scientific study. The broad outlines of architecting are best seen
apart from any specific domain. A few examples of the intermediate steps
in progression were given in this chapter. The next chapter brings these
threads together by showing specific examples of models and their asso-
ciation with heuristic progression. In part this is done for the domains of
Part II, and in part for other recognized large not domains not specifically
discussed in Part II.

Exercises
	 1.	Find an additional heuristic progression by working from the

specific to the general. Find one or more related design heuristics in
a technology-specific domain. Generalize those heuristics to one or
more heuristics that apply across several domains.

	 2.	Find an additional heuristic progression by working from the gen-
eral to the specific. Choose one or more heuristics from Appendix A.
Find or deduce domain specific heuristic design guidelines in a
technology domain familiar to you.

Chapter 9:  Design Progression in Systems Architecting	 283

	 3.	Examine the hypothesis that there is an identifiable set of “architec-
tural” concerns in a domain familiar to you. What issues in the domain
are unlikely to be reducible to normative rules or rational synthesis?

	 4.	Trace the progression of behavioral modeling throughout the devel-
opment cycle of a system familiar to you.

	 5.	Trace the progression of physical modeling throughout the develop-
ment cycle of a system familiar to you.

	 6.	Trace the progression of performance modeling throughout the
development cycle of a system familiar to you.

	 7.	Trace the progression of cost estimation throughout the development
cycle of a system familiar to you.

Notes and References
	 1.	 Yourdon, E., and L. L. Constantine, Structured Design: Fundamentals of a

Discipline of Computer Program and Systems Design. New York: Yourdon Press,
1979.

	 2.	 Ben Baumeister, personal communication.
	 3.	 Rechtin, E., Systems Architecting, Creating and Building Complex Systems.

Englewood Cliffs, NJ: Prentice Hall, 1991, pp. 14–24. (Please note that further
reference to this citation will be referred to as Rechtin 1991.)

	 4.	 ADARTS Guidebook, pp. 8-4.
	 5.	 ADARTS Guidebook, pp. 8–15.
	 6.	 Raymond, Eric S., The Cathedral and the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary. Sebastopol, CA: O’Reilly Media, 2001.
	 7.	 Brooks, F., The Mythical Man-Month: Essays on Software Engineering, 2nd ed.

Reading, MA: Addison-Wesley, 1995.
	 8.	 Rechtin 1991, p. 312.
	 9.	 Selby, R. W., and V. R. Basili, Analyzing Error-Prone System Structure, IEEE

Transactions on Software Engineering, SE-17, Number 2, pp. 141–152, February
1991.

	 10.	 See Keeney, R. L., Making Better Decision Makers, Decision Analysis, Vol. 1,
Number 4, pp. 193–204, December 2004, for the original observations.

	 11.	 Discussed further by one author in Maier, M. W., On Architecting and
Intelligent Transport Systems, Joint Issue IEEE Transactions on Aerospace and
Electronic Systems/System Engineering, AES33:2, pp. 610–625, April 1997.

	 12.	 Keeney, R. L., Value Focused Thinking. Cambridge, MA: Harvard University
Press, 1996.

	 13.	 Comments to the authors on Rechtin (1991) by L. Bernstein in the context of
large network software systems.

	 14.	 Rechtin 1991.
	 15.	 Jaynarayan, H., and R. Harper, Architectural Principles for Safety-Critical

Real-Time Applications, Proceedings of the IEEE, Vol. 82, Number 1, pp. 25-40,
January 1994.

	 16.	 Alexander, C., The Timeless Way of Building. Oxford: Oxford University
Press, 1979; Alexander, C., A Pattern Language: Towns, Buildings, Construction.
Oxford: Oxford University Press, 1977.

285

10chapter

Integrated Modeling Methodologies

Introduction
The previous two chapters explored the concepts of model views, model
integration, and progression along parallel paths. This chapter brings
together these threads by presenting examples of integrated modeling
methodologies. Part III concludes in the next chapter where we review the
architecture community’s standards for architecture description. The dis-
tinction between this chapter and the next is twofold. First, in this chapter
we study modeling methods without concern for how their elements com-
bine in formal documents. The focus is on integrated, multiview modeling
methods as tools for architecting, not as descriptors within a document.
Second, this chapter is concerned with methods from the literature
whether or not they are formally standardized. De facto standardization
or standardization in the scientific literature is sufficient in this chapter.
The next chapter is concerned with how models are brought together in
formalized architecture description documents and with community
efforts at formal standardization. The methodologies in this chapter are
further divided by domain specificity, with the first models more nearly
domain independent and later models more domain specific.

Architecting clearly is domain dependent. A good architect of avion-
ics systems, for example, may not be able to effectively architect social
systems. Hence, there is no attempt to introduce a single set of models suit-
able for architecting everything. The models of greatest interest are those
tied to the domain of interest, although they must support the level of
abstraction needed in architecting. The integrated models chosen for this
chapter include two principally intended for real-time, computer-based,
mixed hardware/software systems (H/P and Q2FD), three methods for
software-based systems, one method for manufacturing systems, and,
conceptually, at least, some methods for including human behavior in
sociotechnical system descriptions.

The examples for each method were chosen from relatively simple
systems. They are intended as illustrations of the methods and their rel-
evance to architectural modeling and to fit within the scope of the book.
They are not intended as case studies in system architecting. Brief case
studies at the decision level precede each chapter in Part II.

286	 The Art of Systems Architecting

In choosing integrated modeling methods to present, we look for the
following factors:

	 1.	The collection of models spans three or more of the baseline views
illustrated in Figure 8.2.

	 2.	The syntax and semantics of the modeling language is defined with
enough formality that it supports both intraview and interview con-
sistency checking rules.

	 3.	The models can be used at levels of abstraction from concept pre-
sentation to transition to disciplinary engineering. That is, the
models support progressive refinement from architecting through
systems engineering.

General Integrated Models
Two very general integrated modeling methods are Hatley-Pirbhai (H/P)
and Q2FD. The Unified Modeling Language (UML) is also quite general,
although in practice it is used mostly in software systems. The more recent
extensions to the UML, known as Systems Modeling Language (SysML),
are of greater applicability for integrated modeling, although we shall see
limitations there as well.

Hatley-Pirbhai — Computer-Based, Reactive Systems
A computer-based, reactive system senses and reacts to events in the phys-
ical world, with much of the implementation complexity in programmable
computers. Multifunction automobile engine controllers, programmable
manufacturing robots, and military avionics systems (among many others)
all fall into this category. They are distinguished by mixing continuous,
discrete, and discrete event logics and being implemented largely through
modern computer technology. The integrated models used to describe
these systems emphasize detailed behavior descriptions, form descriptions
matched to software and computer hardware technologies, and some per-
formance modeling. Efforts in the recent past at defining an Engineering of
Computer Based Systems discipline1 are directed at systems of this type.

Several different investigators have worked to build integrated models
for computer-based reactive systems. The most complete example of such
integration is the Hatley-Pirbhai (H/P) methodology.* Other methods

*	 Wood, D. P., and W. G. Wood, Comparative Evaluation of Four Specification Methods for
Real-Time Systems, Software Engineering Institute Technical Report, CMU/SEI-89-TR-36,
1989. This study compared four popular system modeling methods. Their conclusion was
that the Hatley-Pirbhai method was the most complete of the four, though similarities
were more important than the differences. In the intervening time, many of the popular
methods have been extended and additional tools reflecting multiview integration have
begun to appear, although actual use seems to have faded. The Hatley-Pirbhai method
has been likewise further extended.

Chapter 10:  Integrated Modeling Methodologies	 287

developed contemporaneously with Hatley-Pirbhai are of similar levels of
integration. The UML is also close to this level of completeness. The practi-
cal reality is that many of these methods, whether well-founded or not, have
fallen out of fashion. Today, discussions of integrated modeling methods for
architecting are likely to focus on UML, SysML, or one of the architecture
description frameworks. However, the issues with these current approaches
are better understood with some historical context on integrated modeling,
as the historical approaches make both the strengths and weaknesses or the
current approaches more clear. This section concentrates on the structure
of H/P. With the concepts of H/P in mind, it is straightforward to make a
comparative assessment of other tools and methods.

H/P defines a system through three primary models: two behavioral
models (the “Requirements Model” [RM] and the “Enhanced Requirements
Model” [ERM]) and a model of form called the “Architecture Model”
(AM). The two behavioral models are linked through an embedding pro-
cess. Static allocation tables link the behavioral and form models. The per-
formance view is linked statically through timing allocation tables. More
complex performance models have been integrated with H/P, but descrip-
tions have only recently been published. A dictionary defines the data
view. This dictionary provides a hierarchical data element decomposition
but does not provide a syntax for defining dynamic data relationships.
No managerial view is provided, although managerial metrics have been
defined for models of the H/P type.

Both behavioral models are based on DeMarco-style data flow dia-
grams. The data flow diagrams are extended to include finite state and
event processing through what is called the “Control Model.” The con-
trol model uses data flow diagram syntax with discrete events and finite
state machine processing specifications. The behavioral modeling syntax
is deliberately nonrigorous and is not designed for automated execution.
This “lack” of rigor is deliberate; it is intended to encourage flexibility in
client and user communication. The method believes the flexibility rather
than rigor at this stage enhances communication with clients and users.
The method also believes, through its choice of data flow diagrams, that
functional decomposition better communicates to stakeholders than does
specification by example methods, such as use-cases. The ERM is a super-
set of the requirements model. It surrounds the core behavioral model and
provides a behavioral specification of the processing necessary to resolve
the physical interfaces into problem domain logical interfaces. The ERM
defines implementation-dependent behaviors, such as user interface and
physical I/O.

Example: Microsatellite Imaging System — Some por-
tions of the H/P model formulated for the imaging
(camera) subsystem of a microsatellite provide an

288	 The Art of Systems Architecting

illustration of the H/P concepts. This example is to
present the flavor of the H/P idiom for architects, not
to fully define the imaging system. The level chosen
is representative of that of a subsystem architecture
(not all architecting has to be done on systems of
enormous scale). Figure 10.1 shows the top-level
behavioral model of the imaging system, defined as
a data flow diagram (DFD). Each circle on the dia-
gram represents a data-triggered function or pro-
cess. So, for example, process number 2, “Evaluate
Image,” is triggered by the presence of a “Raw
Image” data element. Also from the diagram, pro-
cess number 2 produces a data element of the same
type (the outgoing arrow labeled “Raw Image”) and
another data element called “Image Evals.”

Each process in the behavior model is defined either by its own data
flow diagram or by a textual specification. During early development, pro-
cesses may be defined with brief and nonrigorous textual specifications.
Later, as processes are allocated to physical modules, the specifications
are expanded in greater detail until implementation-appropriate rigor is
reached. Complex processes may have more detailed specifications even
early in the process. For example, in Figure 10.2, process number 1 “Form
Image” is expanded into its own diagram.

Scene

1
Form
Image 2

Evaluate
Image

3
Compress

Image

Image_
Archive

Raw_Image
Raw_Image

Comped_
Image

Transfer_
Image

Send_
Image_Msg

Tether_
Cut_Msg

Image_Cmd Image_Evals

4
Transfer
Images

5
Sequence

Images

6
Comm

to
CDS

CDS_
Msg

SW_Reload_
Msg

7
Reload

SW

Figure 10.1  Top-level data flow diagram for a microsatellite imaging system.

Chapter 10:  Integrated Modeling Methodologies	 289

Figure 10.2 also introduces control flow. The dotted arrows indi-
cate flow of control elements, and the solid line into which they flow is
a control specification. The control specification is shown as part of the
same figure. Control flows may be interpreted either as continuous time,
discrete valued data items, or discrete events. The latter interpretation
is more widely used, although it is not preferred in the published H/P
examples. The control specification is a finite state machine, here shown
as a state transition diagram, although other forms are also possible. The
actions produced by the state machine are to activate or deactivate pro-
cesses on the associated data flow diagram.

All data elements appearing on a diagram are defined in the data dic-
tionary. Each may be defined in terms of lower-level data elements. For
example, the flow “Raw Image” appearing in Figure 10.2 appears in the
data dictionary as follows:

Raw Image = 768{484{Pixel}}

It indicates, in this case, that Raw Image is composed of 768 × 484
repetitions of the element “Pixel.” At early stages, Pixel is defined quali-
tatively as a range of luminance values. In later design stages, the defini-
tion will be augmented, though not replaced, by a definition in terms of
implementation-specific data elements.

In addition to the two behavior models, the H/P method contains
an “Architecture Model.” The architecture model is the model of form
that defines the physical implementation. The architecture model is hier-
archical. It allows sequential definition in greater detail by expansion of

Scene

Raw_Image

Image_Cmd

Image_Evals

1
Panoramic

Video

2
Telephoto

Video

NTSC_Video

NTSC_
Video

Filter_Setting+
Iris_Setting

Pixels

3
Digitize
Video

4
Format
Image

5
Determine

Camera
Settings

Take_
Image

Image_
Complete

Figure 10.2  Expanded data and control flow diagram for the top-level process
“Form Image.”

290	 The Art of Systems Architecting

modules. Figure 10.3 shows the paired architecture flow and interconnect
models for the microsatellite imaging system.

The H/P block diagram syntax partitions a system into modules, that
are defined as physically identifiable implementation elements. The flow
diagram shows the exchange of data elements among the modules. Which
data elements are exchanged among the modules is defined by the alloca-
tion of behavioral model processes to the modules.

The interconnection model defines the physical channels through
which the data elements flow. Each interconnect is further defined in a
separate specification. For example, the interconnect “Tputer channel 1”
connects the processor module and the camera control module. Allocation
requires camera commands to flow over the channel. Augmentations to

Host PC

µWay
T-Puter SCC-100

Development
Board

PAL
Camera

Assembly

Weber Video
Digitizer

Camera
Control
Board(s)

Display

Images

Cmds

Camera_Commands

Camera_
Drives

Pixels

Handshakes
NTSC_Video

Display_Images

Host PC

µWay
T-Puter

SCC-100
Development

Board

PAL
Camera

Assembly

Weber Video
Digitizer

Camera
Control
Board(s)

Display

T-Puter
Channel 0

T-Puter/C00-11 Channel
T-Puter Link Mode 2
SCC-100 SMI Bus
Discretes

Video
I/O

Card

Video
I/O

Card

Packed
Pixels

Video_
Cmds

T-Puter
Channel 2

Weber Byte Bus

T-Puter Channel 1

Figure 10.3  Architecture flow and interconnect diagrams for the example of
microsatellite imaging system laboratory prototype.

Chapter 10:  Integrated Modeling Methodologies	 291

the data dictionary define a mapping between the logical camera com-
mands and the line codes of the channel. If the channel requires message
framing, protocol processing, or the like, it is defined in the interconnec-
tion specification. Again, the level of detail provided can vary during
design based on the interface’s impact on risk and feasibility.

Quantitative QFD (Q2FD) — Performance-Driven Systems

Many systems are driven by quantitatively stated performance objectives.
These systems may also contain complex behavior or other attributes, but
its performance objectives are of utmost importance to the client. For these
systems, it is common practice to take a performance-centered approach
to system specification, decomposition, and synthesis. A particularly
attractive way of organizing decomposition is through extended Quality
Function Deployment (QFD) matrices.2

QFD is a Japanese-originated method for visually organizing the
decomposition of customer objectives.3 It builds a graphical hierarchy
of how customer objectives are addressed throughout a system design,
and carries the relevance of customer objectives throughout design. A
Q2FD-based approach requires that the architect do the following:

	 1.	 Identify a set of performance objectives of interest to the customer.
Determine appropriate values or ranges for meeting these objectives
through competitive analysis.

	 2.	 Identify the set of system-level design parameters that determine
the performance for each objective. Determine suitable satisfaction
models that relate the parameters and objectives.

	 3.	Determine the relationships of the parameters and objectives and
the interrelationships among the parameters. Which affect which?

	 4.	Set one or more values for each parameter. Multiple values may be
set — for example, minimum, nominal, and target. Additional slots
provide tracking from detailed design activities.

	 5.	Repeat the process iteratively using the system design parameters as
objectives. At each stage, the parameters at the next level up become
the objectives at the next level down.

	 6.	Continue the process of decomposition as many levels as desired.
As detailed designs are developed, their parameter values can flow
up the hierarchy to track estimated performance for customer objec-
tives. The structure is illustrated in Figure 10.4.

Unfortunately, QFD models for real problems tend to produce quite
large matrices. Because they map directly to computer spreadsheets, this
causes no difficulty in modern work environments, but it does cause a
problem in presenting an example. Also, the graphic of the matrix shows

292	 The Art of Systems Architecting

the result but hides the satisfaction models. The satisfaction models are
equations, simulations, or assessment processes necessary to determine
the performance measure value. The original reference on QFD by Hauser
contains a qualitative example of using QFD for objective decomposition,
as do other books on QFD. Two papers by one of the present authors4
contain detailed, quantitative examples of QFD performance decomposi-
tion using analytical engineering models.

Integrated Modeling and Software
Chapters 8 and 9 introduced the ideas of model views and stepwise refine-
ment-in-the-large. Both of these ideas have featured prominently in the
software engineering literature. Software methods have been the princi-
pal sources for detailed methods for expressing multiple views and devel-
opment through refinement. Software engineers have developed several
integrated modeling and development methodologies that integrate across
views and employ explicit heuristics. Three of those methods are described
in detail: structured analysis and design, Ada-Based Design Approach
for Real-Time Systems (ADARTS), and object modeling technique (OMT).
We also take up the current direction in an integrated language for
software-centric systems, the Unified Modeling Language (UML).

Design
Parameters

Interaction
Matrix

Interaction
Matrix

Parameter Budgets

Cu
st

om
er

O
bj

ec
tiv

es

Cu
st

om
er

O
bj

ec
tiv

es
Parameter Budgets

Satisfaction
Models

Design
Parameters

Subsystem Allocation
and Refinement

Backward Flow of
Current Design Status

Satisfaction
Models

Figure 10.4  Quantitative Quality Function Deployment (QFD) Hierarchy Tree.
The basic matrix shows the interrelationships of customer objectives and engi-
neering design parameters. QFD matrices are arranged in a hierarchy that can
mirror the decomposition of a system into subsystems and modules.

Chapter 10:  Integrated Modeling Methodologies	 293

The three methods are targeted at different kinds of software sys-
tems. Structured analysis and design was developed in the late 1970s and
early 1980s and is intended for single-threaded software systems written
in structured procedural languages. ADARTS was intended for large,
real-time, multithreaded systems written in Ada. OMT was intended for
database-intensive systems, especially those written in object-oriented
programming languages. The UML is a merger of object-oriented con-
cepts from OMT and other sources.

Structured Analysis and Design

The first of the integrated models for software was the combination of
structured analysis with structured design.5 The software modeling and
design paradigms established in that book have continued to the present as
one of the fundamental approaches to software development. Structured
analysis and design models two system views, uses a variety of heuristics
to form each view, and connects to the management view through mea-
surable characteristics of the analysis and design models (metrics).

The method prescribes development in three basic steps. Each step
is quite complex and is composed of many internal steps of refinement.
The first step is to prepare a data flow decomposition of the system to be
built. The second step is to transform that data flow decomposition into a
function and module hierarchy that fully defines the structure of the soft-
ware in subroutines and their interaction. The design hierarchy is then
coded in the programming language of choice. The design hierarchy can
be mechanically converted to software code (several tools do automatic
forward and backward conversion of structured design diagrams and
code). The internals of each routine are coded from the included process
specifications, though this requires human effort.

The first step, known as structured analysis, is to prepare a data flow
decomposition of the system to be built. A data flow decomposition is a tree
hierarchy of data flow diagrams, textual specifications for the leaf nodes
of the hierarchy, and an associated data dictionary. This method was first
popularized by DeMarco,6 though the ideas had appeared previously and
it has since been extensively modified and re-presented. Figure 10.1 and
Figure 10.2, discussed in a previous section, are examples of data flow dia-
grams. Behavioral analysis by data flow diagram originated in software
and has since been applied to more general systems as well. The basic
tenets of structured analysis are as follows:

	 1.	Show the structure of the problem graphically, engaging the mind’s
ability to perceive structure and relationships in graphics.

	 2.	Limit the scope of information presented in any diagram to five to
nine processes and their associated data flows.

294	 The Art of Systems Architecting

	 3.	Use short (<1 page) free form and textual specifications at the leaf
nodes to express detailed processing requirements.

	 4.	Structure the models so each piece of information is defined in one
and only one place. This eases maintenance.

	 5.	Build models in which the processes are loosely coupled, strongly
cohesive, and which obey a defined syntax for balance and correctness.

Structured design follows structured analysis and transforms a struc-
tured analysis model into the framework for a software implementation.
The basic structured design model is the structure chart. A structure chart,
as illustrated in Figure 10.5, shows a tree hierarchy of software routines. The
arrows connecting boxes indicate the invocation of one routine or subroutine
by another. The circles, arrows, and names show the exchange of variables
and are known as data couples. Additional symbols are available for patho-
logical connection among routines, such as unconditional jumps. Each box
on the structure chart is linked to a textual specification of the requirements
for that routine. The data couples are linked to a data dictionary.

Manage
Imaging

Image Manager

Storage
Manager

Eval-
uate

Com-
press

Store

Raw Image

Record

Schedule
Shots

Take
Image

Set
Camera

Grab
Frame

Get
Frame

nextTime

Settings

Low Level
I/O Operations

Error

Quality Size

Figure 10.5  Example of a structure chart. A structure chart shows the compo-
nents and interfaces for a hierarchically structured software system. This simple
example illustrates routines as components (boxes), collection of routines into
modules (boxes encapsulating other boxes), invocation of one routine by another
(arrows connecting boxes), data elements (the labeled oval), and data passing
among routines (solid circles with arrows).

Chapter 10:  Integrated Modeling Methodologies	 295

Structure charts are closely aligned with the ideas and methods
of structured programming, which was a major innovation at the time
structured design was introduced. Structure charts can be mechanically
converted to nested subroutines in languages that support the structured
programming concepts. In combination, the chart structure, the interfaces
shown on the chart, and the linked module specifications define a compil-
able shell for the program and an extended set of code comments. If the
module specifications are written formally, they can be the module’s pro-
gram design language or can be compiled as module precondition and
postcondition assertions.

The structured analysis and design method goes farther in providing
detailed heuristics for transformation of an analysis model into a structure
chart and for evaluation of alternative designs. The heuristics are strongly
prescriptive in the sense that they are stated procedurally. However, they
are still heuristics because their guidance is provisional and subject to
interpretation in the overall context of the problem. The transformation is
a type of refinement or reduction of abstraction. The data flow network of
the analysis phase defines data exchange, but it does not define execution
order beyond that implied by the data flow. Hence, the structure chart
removes the abstraction of flow of control by fixing the invocation hierar-
chy. The heuristics provided are of two types. One type gives guidelines
for transforming a data flow model fragment into a module hierarchy.
The other type measures comparative design quality to assist in selection
among alternative designs. The following are examples of the first type:

Step one: Classify each data flow diagram as “transform
oriented” or “transaction oriented” (these terms are further
defined in the method).

Step two: In each case, find either the “transform center” or
the “transaction center” of the diagram and begin factoring
the modules from there.

Further heuristics follow for structuring transform-centered and
transaction-centered processes. In the second category are several quite
famous design heuristics:

Choose designs that are loosely coupled. Coupling, from
loosest to tightest, is measured as: Data, data structure,
control, global, and content.

Choose designs in which the modules are strongly cohe-
sive. Cohesion is rated as (from strongest to weakest):

296	 The Art of Systems Architecting

Functional, sequential, communicational, procedural, tem-
poral, logical, and coincidental.

Choose modules with high fan-in and low fan-out.

As discussed in Chapter 9, very general and domain-specific heuris-
tics may be related by chains of refinement. In structured analysis and
design, the software designer transforms rough ideas into data flow dia-
grams, data flow diagrams into structure charts, and structure charts into
code. At the same time, heuristic guidelines like “strive for loose coupling”
are given measurable form as the design is refined into specific program-
ming constructs.

Various efforts have also been made to tie structured analysis and
design to managerial models by predicting cost, effort, and quality from
measurable attributes of data flow diagrams or structure charts. This is
done both directly and indirectly. A direct approach computes a system
complexity metric from the data flow diagrams or the structure charts.
That complexity metric then must be correlated to effort, cost, schedule,
or other quantities of management interest. A later work by DeMarco7
describes a detailed approach on these lines, but the suggested metrics
have not become popular nor have they been widely validated on signifi-
cant projects. Other metrics, such as function or feature points, that are
more loosely related to structured analysis decompositions have found
some popularity. Software metrics is an ongoing research area and there
is a growing body of literature on measurements that appear to correlate
well with project performance.

An alternative linkage is indirect by using the analysis and design
models to guide estimates of the most widely accepted metrics, the con-
structive cost model (COCOMO) and effective lines of code (ELOC).
COCOMO is Barry Boehm’s famous effort estimation formula. The model
predicts development effort from a formula involving the total lines of
code, an exponent dependent on the project type, and various weighting
factors. One problem with the original COCOMO model is that it does not
differentiate between newly written lines of code and reused code. One
method (there are others) of extending the COCOMO model is to use ELOC
in place of total lines of code. ELOC measures the size of a software project,
giving allowance for modified and reused code. A new line of code counts
for one ELOC, modified and unmodified, reused code packages count for
somewhat less. The weight factors given to each are typically determined
organization by organization based on past measurements. The counts by
subtype are summed with their weights and the total treated as new lines
in the COCOMO model.

The alternative approach is to use the models to guide ELOC estima-
tion. Early in the process, when no code has been written, the main source

Chapter 10:  Integrated Modeling Methodologies	 297

of error in COCOMO is likely to be errors in the ELOC estimate. With a
data flow model in hand, engineers and managers can go through it pro-
cess by process and compare the requirements to past efforts by the orga-
nization. This, at least, structures the estimation problem to identifiable
pieces. Similarly, the structured design model can be used in the same
way, with estimates of the ELOC for each module flowing upward into a
system-level estimate. As code is written, the estimates become facts, and,
hopefully, the estimated and actual efforts will converge. Of course, if the
organization is incapable of producing a given ELOC level predictably,
any linkage of analysis and design models to managerial models is moot.

The architect needs to be cognizant of these issues insofar as they
affect judgments of feasibility. As the architect develops models of the
system, they should be used jointly by client and builder. The primary
importance of cost models is in the effect they have on the client’s willing-
ness to go forward with a project. A client’s resources are always limited,
and an intelligent decision on system construction can be made only with
knowledge of the resources it will consume. Of course, there will be risk,
and in immature fields like software, the use of risk mitigation tech-
niques (such as spiral development) may partially replace accurate early
estimates. As the client’s value judgments should be made in the context
of the models, the builder’s estimates should be as well. If builder organi-
zations have a lot of variance in what effort is required to deliver a fixed
complexity system, then that variance is a risk to the client.

ADARTS

Ada-Based Design Approach for Real-Time Systems (ADARTS) is an
extensively documented example of a more advanced integrated model-
ing method for software. Even though neither classic structured analysis
and design nor Ada-based development is currently cutting edge in large
software systems, we examine them for the principles they elucidate.
ADARTS may be obsolete, but the principles it embodies are not. The
original work on data flow techniques was directly tied to the advanced
implementation paradigms of the day. In a similar way, the discrete event
system-oriented specification methods like H/P can be closely tied to
implementation models. In the case of real-time, event-driven software,
one of the most extensive methods was the ADARTS8 methodology of the
Software Productivity Consortium (SPC) (since renamed). Of course, the
method still exists; it is not in the past tense, except in that Ada-based
development is no longer the leading edge of software development. The
ADARTS method combines a discrete-event-based behavioral model
with a detailed, stepwise refined, physical design model. The behavioral
model is based on data flow diagrams extended with the discrete event
formalisms of Ward and Mellor9 (which are similar to those of H/P).

298	 The Art of Systems Architecting

The physical model includes evolving abstractions for software tasks or
threads, objects, routines, and interfaces. It also includes provisions for
software distributed across separate machines and their communication.
ADARTS includes a catalog of heuristics for choosing and refining the
physical structure through several levels of abstraction.

ADARTS links the behavioral and physical models through allocation
tables. Performance decomposition and modeling is considered specifi-
cally, but only in the context of timing. There are links to sophisticated
scheduling formalisms and SPC developed simulation methodologies as
part of this performance link. Again, managerial views are supported
through metrics, where they can be calculated from the models. Software
domain-specific methods can more easily perform the management
metric integration because a variety of cost and quality metrics that can
be (at least roughly) calculated from software design models are known.

The example shown is a simplified version of the first two design
refinements required by ADARTS applied to the microsatellite imaging
system originally discussed in the Hatley-Pirbhai example. The result-
ing diagrams are shown in Figure 10.6. The ADARTS process takes the
functional hierarchy of the behavioral model and breaks it into undif-
ferentiated components. Each component is shown on the diagram by a
cloud-shaped symbol, indicating its specific implementation structure has
not yet been decided. The clouds exchange data elements dependent on
the behavior allocated to each cloud. Various heuristics and engineering
judgment guide the choice of clouds.

The next refinement specializes the clouds to tasks, modules or
objects, and routines. ADARTS actually uses several discrete steps for
this, but they are combined into one for the simple example given here.
Again, the designer uses ADARTS-provided heuristics and individual
judgment in making the refinements. In the example, the two tasks result
from the need to provide asynchronous external communications and
overall system control. The clouds that hide the physical and logical inter-
faces to hardware are multientry modules. The entries are chosen from
the principal user functions addressed by the interface. For example, the
Camera I/O module has entries that correspond to its controls (camera
shutter speed, camera gain, filter wheel position, and so forth). The single
thread sequence of taking an image is implemented as a simple routine
calling tree.

To avoid diagram clutter, the diagram is not fully annotated with the
data elements and their flow directions. In complex systems, diagram
clutter is a serious problem, and one not well addressed by existing tools.
The architect needs to suppress some detail to process the larger picture.
But correct software ultimately depends on getting each detail right. In
the second part of the figure, the arrowed lines indicate direction of con-
trol, not direction of data flow. Additional enhancements specify flow. The

Chapter 10:  Integrated Modeling Methodologies	 299

next step in the ADARTS process, not shown here, is to refine the task and
module definitions once again into language- and system-specific soft-
ware units. ADARTS as published assumes the use of the Ada language for
implementation. When implementing in the Ada language, tasks become
Ada tasks and multientry modules become packages. The public/private

Manage
Imaging

CDS
I/O

Memory
I/O

Video
I/O

Memory Blocks

Video
Bus
Codes

CDS Message
Blocks

CDS
Commands,
Transfers

Camera
I/O

Camera
Bus
Codes

Digitizer
Bus
Words

Images

Comped
Images

Shot
Parameters

Image
Cmd

CDS
I/O

Manage
Imaging

Initialize

Channel I/O

Memory I/O

Camera I/O

Video I/O

Shoot
Image

Determine
Shot

Parameters

Compress
Image imgblock

Links 0–3
SMI Bus

First
Structuring

Second
Iteration

Figure 10.6  Example of a two-step design refinement in Ada-Based Design
Approach for Real-Time Systems (ADARTS).

300	 The Art of Systems Architecting

interface structure of the modules is implemented directly using constructs
of the Ada language. Other languages can be accommodated in the same
framework by working out language- and operation-specific constructs
equivalent to tasks, modules, and routines. For example, in the C language
there is no language construct for tasks or multientry modules. But multi-
entry modules can be implemented in a nearly standard way using sepa-
rately compilable files on the development system, the static declaration,
and suitable header files. Similarly, many implementation environments
support multitasking and some development environments supply task
abstractions for the programmer’s use. In C++ there is no direct language
implementation of tasks, but multientry modules are easily implemented
through classes and objects. This is similar in Java, except in Java a direct
implementation of the general concept of a task does exist (called a thread),
although the communication semantics for Java threads are quite differ-
ent than for Ada tasks.

Once again, the pattern of stepwise reduction of abstraction is evident.
Design is conducted through steps, and at each step a model of the client
needs is refined in an implementation environment dependent way.
In environments well matched to the problem modeling method, the
number of steps is small; client relevant models can be nearly directly
implemented. In less well-suited environments, layers of implementation
abstraction become necessary.

OMT

The Hatley-Pirbhai method and its cousins are derived from structured
functional decomposition, structured software design, and hardware
system engineering practice. The object-oriented methods, of which OMT10
is a leading member, derive from data-oriented and relational database
software design practice. Relational modeling methods focus solely on
data structure and content and are largely restricted to database design
(where they are very powerful). Object-oriented methods package data
and functional decomposition together. Where structured methods build a
functional decomposition backbone on which they attempt to integrate data
decomposition, the object-oriented methods emphasize a data decomposi-
tion on which the functional decomposition is arranged. Some problems
naturally decompose nicely in one method and not in the other. Complex
systems can be decomposed with either, but either approach will yield
subsections where the dominant decomposition paradigm is awkward.

OMT combines the data (relational), behavioral, and physical views.
The physical view is well captured for software-only systems, but spe-
cific abstractions are not given for hardware components. Even though,
in principle, OMT and other object-oriented methods can be extended to
mixed hardware/software systems and even more general systems, there

Chapter 10:  Integrated Modeling Methodologies	 301

is a lack of real examples to demonstrate feasibility. Broad, real experience
has been obtained only for predominantly software-based systems.

Neither the OMT nor other object-oriented methods substantially inte-
grate the performance view. Again, managerial views can be integrated to
the extent that useful management metrics can be derived from the object
models. Because of the software orientation of object-oriented methods, there
have been some efforts to integrate formal methods into object models.

As an example of the key ideas of object-oriented methods, we pres-
ent part of an object model. Object modeling starts by identifying classes.
Classes can be thought of (for those unfamiliar with object concepts) as
templates for objects or types for abstract data types. They define the object
in terms of associated simple data items and functions associated with the
object. Classes can specialize into subclasses that share the behavior and
data of their parent while adding new attributes and behavior. Objects may
be composed of complex elements or relate to other objects. Both composi-
tion or aggregation and association are part of a class system definition.
The microsatellite imager described in the preceding section will produce
images of various types. Consider an image database for storing the data
produced by the imager. A basic class diagram is shown in Figure 10.7 to
illustrate specific instances of some of the concepts.

A core assumption, which the model must capture, is that images are
of several distinct but related types. The actual images captured by the

Image

Render()
Compress()
DeCompress()

MultiBand Image Single Image

PseudoColor()
Register()
Composite()

rawpixelarray
jpgblock 1 N

Built From

Display Picture

RGBArray
XSize
YSize

Renders CompressedSize
ExpandedSize

Shot Record

globaltime
attitudevector

NadirCenter()

Equalize()
SatMask()

vectorpixelarray

Figure 10.7  Class structure diagram for an image database.

302	 The Art of Systems Architecting

cameras are single, gray-scale images. Varying sets of gray-scale images
captured through different filters are combined into composite multi
band images, with a particular gray-scale image possibly part of several
composite images. In addition, images will be displayed on multiple
platforms so we demand a common “rendered” image form. Each of these
considerations is illustrated in Figure 10.7.

The top box labeled “Image” indicates there is a data class “Image.” That
class contains two data attributes — CompressedSize and ExpandedSize
— and three operations or “methods” (the functions Render(), Compress(),
and Expand()). The triangle boxed lines down to the class boxes “Multi-
Band Image” and “Single Image” define those two classes as subclasses of
Image. As subclasses, they are different than their parent class but inherit
the parent class’s data attributes and associated methods.

The class Single Image is the basic image data object descriptor. It con-
tains two data arrays: one to hold the raw image and the other to hold the
compressed form. It also has basic image processing methods associated.
A multiband image is actually made up of many single images suitably
processed and composited. This is defined on the diagram by the round
headed line connecting the two class boxes. The labeling defines a 1 to N
way association named “Built From.” The additional methods associated
with Multi-Band Image build the image from its associated simple images.

The two additional associations define other record keeping and dis-
play. The associated line between Single Image and Shot Record associ-
ates an image with a potentially complicated data record of when it was
taken and the conditions at that moment. The association line to Display
Picture shows the association of an image with a common display data
structure. Both associations, in these cases, are one to one.

Figure 10.7 is considerably simplified on several points. A complete
definition in OMT would require various enhancements to show actual
types associated with data attributes and operations. In addition, several
enhancements are required to distinguish abstract methods and derived
attributes. A brief explanation of the former is in order. Consider the
method Compress in the class Image. The implementation of image
compression may be quite different for a single gray-scale image and
for a composited multiband image. A method that is reimplemented in
subclasses is called either virtual or abstracted and may be noted by a
diagrammatic enhancement.

The logic of object-oriented methods is to decompose the system in
a data-first fashion, with functions and data tightly bound together in
classes. Instead of a functional decomposition hierarchy, we have a class
hierarchy. Functional definition is deferred to the detailed definition of
the classes. The object-oriented logic works well where data and espe-
cially data relation complexity dominates the system.

Chapter 10:  Integrated Modeling Methodologies	 303

Object-oriented methods also follow a stepwise reduction of abstrac-
tion approach to design. From the basic class model, we next add imple-
mentation specific considerations. These will determine whether or
not additional model refinements or enhancements are required. If the
implementation environment is strongly object oriented, there will be
direct implementations for all of the model constructs. For example, in
an object-oriented database system, one can declare a class with attri-
butes and methods directly and have long-term storage (or “persistence”)
automatically managed. In nonobject environments, it may be neces-
sary to manually flatten class hierarchies and add manual implementa-
tions of the model features. Manual adjustments can be captured in an
intermediate model of similar type. The steps of abstraction reduction
depend on the environment. In a favorable implementation environment,
the model nearest to the client’s domain can be implemented almost
directly. In unfavorable environments, we have no choice but to add addi-
tional layers of refinement.

UML

As object-oriented methods became popular in the 1990s, there emerged
several distinctive styles of notation. These notations differed enough to
make tools incompatible and automated translation difficult. But the nota-
tions did not capture fundamentally different concepts. The basic concepts
of class, object, and relationship were present in all of them, with only
slight notational differences. The differences were more in the additional
views and how the parts were integrated. They also differed somewhat
more fundamentally in their approach to the design process and which
portions they chose to emphasize. For example, some of the object-oriented
methods emphasized front-end problem analysis through use-cases.
Others were more design oriented and focused on building information
models after there was a well-understood problem statement.

Because the profusion of notations was not helpful to the community,
there was some pressure to settle on a collective standard. This was done,
partially through several of the leading “gurus” of the different methods
all moving to work for one company (the Rational Corporation). The
product of their collaboration, and a large standards effort, is the Unified
Modeling Language11 (UML). Because the UML has successfully incorpo-
rated most of the best features of its roots and has gained a fairly broad
industry consensus, it is increasingly popular. Probably the most signifi-
cant complaint about the UML is its complexity. It is certainly true that if
you tried to model a system using all the parts of the UML, the resulting
model would be quite complex. But the content of the UML should not
be confused with a process. A designer is no more compelled to use all
the parts of the UML than a writer is compelled to use all the words in

304	 The Art of Systems Architecting

the English language. Of course, it is not simple to figure out which parts
should be used in any given situation, and it can take fairly deep knowl-
edge of the UML to know how to ignore features.

The primary importance of UML is that it may lead to more broadly
accepted standardization of software and systems engineering notations.
The notations are fundamentally software-centric, but as the software
fraction (measured as percentage of development effort) makes up the
majority of a development effort, this will seem appropriate. The two
viewpoints within UML, use-cases and class-object models, most com-
monly discussed are the two that are the most software-centric. There are
several other views that are more clearly systems oriented.

The use-case view within UML has two parts: the textual use-cases
and diagrams that show the relationships among use-cases and actors. The
textual form of a use-case is not strictly defined. In general, it is a narrative
listing of messages that pass between an “actor,” a system stakeholder,
and the system. Thus, a use-case, in its pure form, follows the definition
of the systems boundary. The use-case diagram shows the relationships
between actors and use-cases, including linkages among use-cases.

A simple form for a textual use-case has four required parts and a
group of optional parts*:

	 1.	Title (preferably evocative).
	 2.	Actors, a list.
	 3.	Purpose, what the actors accomplish through this use-case, why the

actors use the system.
	 4.	Dialogue, a step-by-step sequence of messages exchanged across the

actor–system boundary. The use-case gives the normal sequence.
Alternative sequences (from errors or other choices) can be inte-
grated into the use-case, given as different use-cases, or organized
into the optional section.

	 5.	Optional material. Some useful adjuncts include type (such as essen-
tial, optional, phase X, and so forth), an overview for a very complex
use-case, and alternative paths.

UML uses class-object models similar to those described in the OMT
section. The differences are primarily details of notation, such as the
graphic element used to indicate a particular type of relationship. There is
also a fairly complex set of textual notations for showing the components of
the classes (data and methods). For example, there are textual indications
for public, private, and virtual elements. The discussion of class-object

*	 There are many different formats for use-cases in use. The forms described here are
inspired by various UML documents and Kevin Kreitman in private communication.

Chapter 10:  Integrated Modeling Methodologies	 305

notations in the OMT section gives the flavor of how a model of the same
sort would work if written in UML.

UML does introduce some modeling elements not discussed to this
point and of high interest to system architects. On the behavioral side, the
UML defines sequence diagrams. A sequence diagram depicts both the
pattern of message passing among the system’s objects and the timing
relationships. The sequence diagram is useful both for specification and
for diagnosis. When the client has a complex legacy system with which
the new system must interface, or when the client’s problems are primar-
ily expressed in term of deficiencies in a current system, the sequence dia-
gram is a method for visually presenting time relationships. This is often
quite important in real-time software-intensive systems.

SysML

Since 2000, there has been activity on extending (or in some cases con-
tracting) the UML for systems engineering purposes. The resulting lan-
guage is known as SysML or Systems Modeling Language. SysML is, at
the time of this writing, the subject of active standardization efforts with a
version 1.0 specification completed. The most up-to-date information can
be found at www.sysmlforum.com. The motivation of the SysML devel-
opers was primarily that the UML is weak in constructs that support
traditional aspects of systems engineering (for example, requirements
decomposition and allocation) but overprovides diagram types that are
not relevant to systems engineering (for example, constructs to model
software implementations). Nonetheless, the SysML developers adopted
the UML approach to language specification and built SysML with UML
extensions. SysML differs from UML primarily in the following:

	 1.	A number of UML diagram types applicable almost exclusively to
software implementations (for example, component, communication,
deployment, and object diagrams) are dropped from the specification.

	 2.	The class and structure diagram aspects of UML are heavily modi-
fied into Block Definition and Internal Block diagrams. These block
diagram types more closely resemble the usual block diagram
notions of systems engineering.

	 3.	Requirement and Parametric diagram types are added to support
the requirement trees and quantitative performance view break-
downs commonly used in systems engineering.

	 4.	The Package Diagram constructs are altered to match the view
and viewpoint constructs of ANSI/IEEE Std-1471-2000 (ANSI/IEEE
Recommended Practice for Architecture Description of Software
Intensive Systems).

306	 The Art of Systems Architecting

For the architectural purposes of this book, SysML may or may not
be an improvement over the UML for any particular problem. Software
architects may apply the overall heuristics and methods described in this
book to a software-only system, in which case the adaptation of SysML
may seem counterproductive to just using UML methods. On the other
hand, for largely hardware systems, the integrated modeling methods of
SysML are likely to be much better suited.

SysML addresses the issues of multiple view and integration across
views directly. Multiple views are explicitly provided, and a model type
for checking across views (the allocation table) is provided. SysML intends
to be applicable to general systems, but it is necessarily better suited to
some cases than others. A notable issue for mixed hardware–software
systems is the role of layering. A central abstraction for complex systems
today is their arrangement into layers, in which the higher layers do not
contain the elements of the lower layers but rather just use them. This issue
was discussed in some depth in Chapter 6 and “Case Study 4.” Direct sup-
port for layering abstractions is absent in SysML (as it is absent in most
other methods). This lack is significant for many architecting projects
because of the need for layered abstractions to control the complexity of
large systems.

Performance Integration: Scheduling

One area of nonfunctional performance that is very important to software,
and for which there is large body of science, is timing and scheduling.
Real-time systems must perform their behaviors within a specified time-
line. Absolute deadlines produce “hard real-time systems.” More flexible
deadlines produce “soft real-time systems.” The question of whether or
not a given software design will meet a set of deadlines has been exten-
sively studied.* To integrate these timing considerations with the design
requires integration of scheduling and scheduling analysis.

In spite of the extensive study, scheduling design is still at least partly
art. Theoretical results yield scheduling and performance bounds, and
associated scheduling rules, but can do so only for relatively simple sys-
tems. When system functions execute interchangeably on parallel proces-
sors, run times are random, and when events requiring reaction occur
randomly, there are no deducible, provably optimal solutions. Some mea-
sure of insight and heuristic guidance is needed to make the system both
efficient and robust.

*	 Stankovic, J. A., M. Spuri, M. Di Natale, and G. C. Buttazzo, Implications of Classical
Scheduling Results for Real-Time Systems, IEEE Computer, pp. 16–25, June 1995, provides
a good tutorial introduction to the basic results and a guide to the literature.

Chapter 10:  Integrated Modeling Methodologies	 307

Integrated Models for Manufacturing Systems
The domain of manufacturing systems contains nice examples of inte-
grated models. The modeling method of Baudin12 integrates four modeling
components (data flow, data structure, physical manufacturing flow, and
cash flow) into an interconnected model of the manufacturing process.
Baudin further shows how this model can then be used to analyze pro-
duction scheduling under different algorithms. The four parts of the core
model are as follows:

	 1.	A data flow model using the notations of DeMarco and state transi-
tion models.

	 2.	A data model based on entity-relationship diagrams.
	 3.	A material flow model of the actual production process — the model

of physical form — using American Society of Mechanical Engineers
(ASME) and Japanese notations.

	 4.	A funds flow model.

These parts, which mostly use the same component models familiar
from previous discussion, form an integrated architect’s tool kit for the man-
ufacturing domain. They are shown in Figure 10.8. The data flow models
are in the same fashion as the requirements model of Hatley-Pirbhai. The

Camera

Housing

Assemble

Assembly

Elect
Test

Sat. Bus
Assembly

Thermal
Test

Retained Data
Model

Financial
Model

Entity-
Relationship

Object-
Oriented

Cost
Accounting
Flow
Payback,
ROI,
Revenue
Analysis

Information
Flow Model

Material
Flow/Processing
Model

Uses Data Flow Diagrams

Example Assembly and
Inspection Operations

Figure 10.8  The manufacturing model elements of the method of Baudin. The
information flow and retained data models are the same as before. The Material
Flow and Processing model uses manufacturing-specific symbology for assembly,
inspection, and other operations.

308	 The Art of Systems Architecting

data model is more complex and uses basic object-oriented concepts. In
the material flow model, the progression of removal of abstraction is taken
to a logical conclusion. Because the physical architecture of manufactur-
ing systems is restricted, the architecture model components are similarly
restricted. Baudin incorporates, in fact exploits, the restricted physical
structure of manufacturing systems by using a standardized notation for
the physical or form model.

Baudin further integrates domain-specific performance and system
models by considering the relationship to production planning in its
several forms (MRP-II, OPT, JIT). As he shows, these formalisms can be
usefully placed into context on the integrated models. In the terms used
in Chapter 8, this is a form of performance model integration.

Integrated Models for Sociotechnical Systems
On the surface, the modeling of sociotechnical systems is not greatly dif-
ferent from other systems, but the deeper reality is quite different. The
physical structure of sociotechnical systems is the same as of other systems,
though it spans a considerable range of abstraction, from the concrete and
steel of transportation networks to the pure laws and policy of communi
cation standards. But people and their behavior are inextricably part of
sociotechnical systems. Sociotechnical system models must deal with the
wide diversity of views and the tension between facts and perceptions as
surely as they must deal with the physics of the physical systems.

Physical system representation is the same as in other domains. A
civil transport system is modeled with transportation tools. A communi
cations network is modeled with communications tools. If part of the
system is an abstract set of laws or policies, it can be modeled as proposed
laws and policies. The fact that part of the system is abstract does not
prevent its representation, but it does make understanding the interaction
between the representation and the surrounding environment difficult.
In general, modeling the physical component of sociotechnical systems
does not present any insurmountable intellectual challenges. The unique
complexity is in the interface to the humans who are components of the
system and in their joint behavior.

In purely technical systems, the environment and the system interact.
But it is uncommon to ascribe intelligent, much less purposively hostile
behavior to their environments. But human systems constantly adapt.
If an intelligent transport system unclogs highways, people may move
farther away from work and reclog the highways until a new equilibrium
is reached. A complete model of sociotechnical system behavior must
include the joint modeling of system and user behavior, including adap-
tive behavior on the part of the users.

Chapter 10:  Integrated Modeling Methodologies	 309

This joint behavioral modeling is one area where modeling tools are
lacking. The tools that are available fall into a few categories: econometrics,
experimental microeconomics and equilibrium theory, law and econom-
ics, and general system dynamics. Other social science fields also provide
guidance, but not generally descriptive and predictive behavior.

Econometrics provides models of large-scale economic activity as
derived from past behavior. It is statistically based and usually operates
by trying to discover models in the data rather than imposing models
on data. In contrast, general system dynamics* builds dynamic models of
social behavior by analysis of what linkages should be present and then
tests their aggregated models against history. System dynamics attempts
to find large-scale behavioral patterns that are robust to the quantitative
details of the model internals. Econometrics tries to make better quantita-
tive predictions without having an avenue to abstract larger-scale struc-
tural behavior.

Experimental economics and equilibrium theory try to discover and
manipulate a population’s behavior in markets through use of micro
economic theory. As a real example, groups have applied these methods
to pricing strategies for pollution licenses. Instead of setting pollution
regulations, economists have argued that licenses to pollute should be
auctioned. This would provide control over the allowed pollution level
(by the number of licenses issued) and be economically efficient. This
strategy has been implemented in some markets and the strategies for
conducting the auctions were tested by experimental groups before hand.
The object is to produce an auction system that results in stable equilib-
rium price for the licenses.

Law and economics is a branch of legal studies that applies micro-
and macroeconomic principles to the analysis of legal and policy issues.
It endeavors to assure economic efficiency in policies and to find least-cost
strategies to fulfill political goals. Although the concepts have gained
fairly wide acceptance, they are inherently limited to those policy areas,
for market distribution is considered politically acceptable.

Conclusion
A variety of powerful integrated modeling methods already exist in
large domains. These methods exhibit, more or less explicitly, the pro-
gressions of refinement and evaluation noted as the organizing principle
of architecting. In some domains, such as software, the models are very
well organized, cover a wide range of development projects, and include

*	 An introductory reference on system dynamics is Wolstenholme, E. F., System Enquiry:
A System Dynamics Approach. Chichester: Wiley, 1990, which explains the rationale, gives
examples of application, and references the more detailed writings.

310	 The Art of Systems Architecting

a full set of views. However, even in these domains, the models are not in
very wide use and have less than complete support from computer tools.
In some domains, such as sociotechnical systems, the models are much
more abstract and uncertain. But in these domains, the abstraction of the
models matches the relative abstraction of the problems (purposes) and
the systems built to fulfill the purposes.

Exercises
	 1.	For a system familiar to you, investigate the models commonly used

to architecturally define such systems. Do these models cover all
important views? How are the models integrated? Is it possible to
trace the interaction of issues from one model to another?

	 2.	Build an integrated model of a system familiar to you covering at
least three views. If the models in any view seem unsatisfactory, or
integration is lacking, investigate other models for those views to see
if they could be usefully applied.

	 3.	Choose an implementation technology extensively used in a system
familiar to you (software, board-level digital electronics, micro-
waves, or any other). What models are used to specify a system to
be built? That is, what are the equivalents of buildable blueprints
in this technology? What issues would be involved in scaling those
models up one level of abstraction so they could be used to specify
the system before implementation design?

	 4.	What models are used to specify systems (again, familiar to you) to
implementation designers? What transformations must be made on
those models to specify an implementation? How can the two levels
be made better integrated?

Notes and References
	 1.	 White, S. et al., Systems Engineering of Computer-Based Systems, IEEE

Computer, Vol. 26, Number 11, pp. 54–65, November 1993.
	 2.	 Maier, M. W., Quantitative Engineering Analysis with QFD, Quality

Engineering, Vol. 7, Number 4, pp. 733–746, 1995.
	 3.	 Hauser, J. R., and D. Clausing, The House of Quality, Harvard Business Review,

Vol. 66, Number 3, pp. 63–73, May–June 1988.
	 4.	 The above-mentioned 1995 as well as Maier, M. W., Integrated Modeling:

A Unified Approach to System Engineering, Journal of Systems and Software,
Vol. 32, Number 2, February 1996.

	 5.	 Yourdon, E., and L. L. Constantine, Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design. New York: Yourdon Press,
1979.

	 6.	 DeMarco, T., Structured Analysis and System Specification. New York: Yourdon
Press, 1979.

Chapter 10:  Integrated Modeling Methodologies	 311

	 7.	 DeMarco, T., Controlling Software Projects. New York: Yourdon Press, 1982.
	 8.	 ADARTS Guidebook, SPC-94040-CMC, Version 2.00.13, Vols. 1–2, September

1991. Formerly available through the Software Productivity Consortium,
Herndon, Virginia; Lykins, H., R. Kirk, and D. Smith, Using the CoRE
Requirements Method with ADARTS, Report Number A151972, Software
Productivity Consortium, March 1994; Cochran, M., and H. Gomaa, Validating
the ADARTS Software Design Method for Real-Time Systems, Proceedings of
the Conference on TRI-Ada 1991, San Jose, California, pp. 33–44, 1991.

	 9.	 Ward, P. T., and S. J. Mellor, Structured Development for Real-Time Systems,
Vol. 1–3. New York: Yourdon Press, 1985.

	 10.	 Rumbaugh, J. et. al., Object-Oriented Modeling and Design. Upper Saddle River,
NJ: Prentice Hall, 1991.

	 11.	 There is a great deal of published material on UML. The Rational Corporation
Web site (www.rational.com) has online copies of the basic language guides,
including the language reference and user guides.

	 12.	 Baudin, M., Manufacturing Systems Analysis. New York: Yourdon Press
Computing Series, 1990.

313

11chapter

Architecture Frameworks

Introduction
A great deal of architecture discussion in the engineering community
revolves around the use of architecture frameworks. Even though discus-
sion of architecture frameworks is widespread, and numerous architec-
ture frameworks exist, there is actually relatively little agreement on what
an architecture framework is. However, architecture frameworks are a
primary vehicle for standardization.

In the terms used in this book, standards could cover architecture
content, architecture description, or architecture processes. By analogy,
a standard on architecture content is like a building code in that it would
place standardized constraints on how actual systems are built. An archi-
tecture description standard is analogous to a blueprint standard in that
it defines how a description document or model is written. An architec-
ture process standard would be analogous to a development standard that
defines how the design process is conducted.

The standards that have advanced to official status are primarily archi-
tecture description standards. These are often referred to as “Architecture
Frameworks.” Architecture frameworks are standards for the description
of architectures. A framework typically defines what products the archi-
tect must deliver (to the client or to some other agency with authority)
and how those products must be constructed. The framework generally
does not constrain the contents of any of those products, although such
constraints could be incorporated.

Architecture frameworks serve much the same purposes as blue-
print standards, although their developers have had additional purposes
in mind as well. It is hoped these standards will improve the quality
of architecting efforts by institutionalizing best practices and fostering
communication about architectures through standardizing languages.
Standardized architectural description languages may also facilitate archi-
tecture evaluation by standardizing the elements that must be considered
in the evaluation.

In the sections to follow, we first define the framework concept, then
explore the most popular current frameworks, review some common
problems in application, and then discuss research and practice develop-
ment activities.

314	 The Art of Systems Architecting

Defining an Architecture Framework
To evaluate an architecture description framework, we need to under-
stand its goals, its definition of “architectural level” (as opposed to other
design levels), and its organizing concepts. We treat each of these in turn,
although the discussion of description concepts (viewpoints and views)
has largely been given previously in Chapter 8 and is discussed in more
detail in Appendix C.

Goals of the Frameworks

Each group developing and promulgating a standard has asserted differ-
ent goals, but they generally fall into a few common categories:

	 1.	Codify best practices for architectural description and by so doing
improve the state of the practice.

	 2.	Ensure that the sponsors of the framework receive architectural
information in the format they desire.

	 3.	Facilitate comparative evaluation of architectures through standard-
ization of their means of description.

	 4.	 Improve the productivity of development teams by presenting basic
designs in a standard way.

	 5.	 Improve interoperability of information systems by requiring that
interoperation critical elements be described, and be described in a
common way.

The fairest way of evaluating different frameworks is against their
own goals. If an architecture description is developed under the con-
straints (or with the guidelines) of a framework, and such a description
reliably fulfills the purposes of the framework, than we can say the frame-
work is successful. Likewise, if following the framework does not reliably
produce description documents that fulfill the identified purpose, the
framework is poorly constructed. Even a well-conceived and constructed
framework may be inappropriate for a given project.

Understanding “Architectural Level”

An architecture framework specifies information about architectures, as
opposed to about detailed design, program management, or some other
set of concerns. So, a framework needs to distinguish what information is
“architectural” as opposed to something else. In this book, the separation
is connected to purpose. Information is architectural if it is needed to
resolve the purposes of the client, particularly with respect to fitness or
use or feasibility to build. The distinction is pragmatic not theoretical.

Chapter 11:  Architecture Frameworks	 315

Moreover, we recognize that architecting and engineering are on a con-
tinuum of practice and sharp distinctions cannot be drawn. Other frame-
works take different positions.

Organization of an Architecture Description Framework

The architecture frameworks described here use a few basic concepts,
though they use them differently and sometimes with different termi-
nology. All of them organize architecture descriptions into collections
of related models. The obvious question is, by what relationship should
models be gathered into collections? Following the terminology use of
several standards, and our previous definitions in this book (though not
necessarily the exact meaning), we will call a collection of models that rep-
resent the whole system from the perspective of a set of related stakeholder
concerns a “view.” We refer to the stakeholder concerns that define the
perspective and the model language rules used within the view as a
“viewpoint.” Thus, a viewpoint is the template or specification for a view,
and a view is a particular instance of description for a given system. Thus,
an architecture framework consists of (or should consist of) the following:

	 1.	A purpose and audience for which the compliant architecture
description is to be written.

	 2.	A set of viewpoints that when used should satisfy the purpose of #1.
	 3.	The normative requirement that a compliant architecture descrip-

tion provide a set of views of the architecture of the system using the
required viewpoints.

	 4.	Tests for consistency and completeness among the views produced.
	 5.	As a practical matter, an architecture framework may contain other

advisory information, like guidelines on its use.

All of the frameworks discussed below are roughly consist with the
five points above. We will use this simple formalism for what an architec-
ture framework is to better compare some of the existing standards.

Current Architecture Frameworks
Several standards explicitly labeled architecture frameworks have
emerged from the 1990s to the 2000s. The four standards we con-
sider here are the U.S. Department of Defense Architecture Framework
(DODAF), the Ministry of Defence Architecture Framework (MODAF),
the International Standards Organization’s RM-ODP standard, and the
ANSI/IEEE 1471 Recommended Practice for Architectural Description for
Software-Intensive Systems (now ISO 42010). All four use the basic con-
cepts given above but take different approaches to the selection of views,

316	 The Art of Systems Architecting

the models specified, and the overall approach to formalization and rigor.
We also discuss current research problems and issues that commonly
arise in application of the current architecture frameworks.

U.S. DODAF

In the early 1990s, the U.S. Department of Defense (DoD) undertook to
develop an architecture framework for Command, Control, Communica-
tions, Computing, Intelligence, Surveillance, and Reconnaissance (C4ISR)
systems. The stated goal for this project was to improve interoperability
across commands, services, and agencies by standardizing how archi-
tectures of C4ISR systems are represented. It also became a response to
U.S. Congressional requirements for reform in how information technol-
ogy systems are acquired.

The Architecture Working Group (AWG) published a version 1.0 of the
framework (which became known as the C4ISR Architecture Framework)
in June 1996. This was followed by a version 2.0 document in December
1997. The version 2.0 document was widely published and is available
through the U.S. DoD Web sites, although it would now be considered
obsolete. Subsequent to the publishing of the C4ISR Framework, it was
further extended and designated the DOD Architecture Framework,1 now
applicable to a much wider array of systems. The DODAF reached version
1.0 status in October 2003. A 1.5 version was released in August 2007.

The DODAF requires that the architecture description be organized
into summary information (also referred to as a “view”) and three addi-
tional “architecture views.” The three views are called the “Operational
Architecture View,” the “System Architecture View,” and the “Technical
Architecture View.” These are often contracted in discussion to the “Opera-
tional Architecture” or “Operational View,” the “System Architecture”
or “System View,” and the “Technical Architecture” or “Technical View.”
Speaking of the “operational view of the architecture” is more consistent
with the notion of view than any of the common contractions.

The DODAF is a blueprint standard in that it defines how to repre-
sent a system’s architecture, but it does not restrict the nature of the archi-
tecture of the underlying system. It is possible to embed the equivalent
of “building codes” using the mechanisms of the DODAF, however. For
example, the Joint Technical Architecture (JTA) was a particular instance
of a standards profile that could be incorporated as the technical architec-
ture view. Although there was at one time an intent to do exactly that, to
drive compliance via inclusion of broader standards documents within
system-specific architecture descriptions, it has not been successful. The
JTA effort still exists, but it is not included within DODAF compliant
documents by mandate.

Chapter 11:  Architecture Frameworks	 317

In describing the contents of the DODAF, we draw directly from it in
some cases, and interpolate commentary and guidelines from the point of
view of this book.

Summary Information
The required summary information is contained in the “all-view” and is
denoted AV-1 Overview and Summary Information and AV-2 Integrated
Dictionary. Both are simple, textual objects. The first is information on
scope, purpose, intended users, findings, and so forth. The second is
definitions of all terms used in the description.

Operational View
The operational view shows how military operations are carried out
through the exchange of information. It is defined as follows:

Operational View: A description of task and activi-
ties, operation elements, and information flows inte-
grated to accomplish support military operations.

There are nine individual models defined within the DODAF opera-
tional view of the architecture. Each has a specified modeling language,
although none of the languages is defined very formally. Some are entirely
informal, as in the required High Level Concept Graphic (OV-1), while
others (such as the Logical Data Model, OV-7) suggest the use of more
formalized notations, though they do not require it. The defined elements
are as follows:

High-Level Operational Concept Graphic (OV-1): A relatively unstructured
graphical description of all aspects of the systems operation, including
organizations, missions, geographic configuration, and connectivity.
The rules for composing this are loose with no real requirements.

Operational Node Connectivity Description (OV-2): Defines the opera-
tional nodes, and activities at each node, and the information flows
between nodes. The rules for composing this are more structured
than for OV-1 but are still loose.

Operational Information Exchange Matrix (OV-3): A matrix description of
the information flows among nodes. This is normally done as an
augmented form of data dictionary table.

Command Relationships Model (OV-4): A modestly structured model of
command relationships.

Activity Model (OV-5): Similar to a data flow diagram for operational
activities.

Operational Rules Model (OV-6a): Defines the sequencing and timing of
activities and information exchange through textual rules.

318	 The Art of Systems Architecting

Operational State Transition Model (OV-6b): Defines the sequencing and
timing of activities and information exchange through a state transi-
tion model, which is usually quite formal.

Operational Event/Trace Description (OV-6a): Defines the sequencing and
timing of activities and information exchange through scenarios or
use-cases. This is behavioral specification by example, as discussed
in Chapter 8.

Logical Data Model (OV-7): Usually a class-object model or other type of
relational data model. No specific notation is required, but most of
the popular notations used are fairly formal. The intent of the OV-7
is to define the data requirements and relationships.

As a guideline, it is suggested that the OV-1, OV-2, OV-3, and OV-5
should always be provided. It is not mandated that they be, but it is typi-
cally done.

System View
The system view is defined as follows:

System View: Description, including graphics, of
a system and interconnections providing for, and
supporting, warfighting functions.

There are 16 individually defined elements within the DODAF under
the system view, although several are just small variations on each other.
The most important is as follows:

System Interface Description (SV-1): This model identifies the systems
physical nodes and their interconnections. It is similar to an architec-
ture interconnection diagram in the Hatley-Pirbhai sense, described
in Chapters 8 and 10. A graphic representation method is called out
but is not formally defined.

The 15 other elements are mostly concerned with more detailed
descriptions of system-level data interchange or operation. However, some
of the supporting products wander very far afield from these concerns.
For example, the System/Services Technology Forecast (SV-9) is a tabular
compilation of the technologies expected to be available, broken out by
time frame, for the system.

Technical View
The technical view is concerned with standards. The technical sets out the
required or forecast standards (typically information technology standards)
that are to be used in the construction of the system. It has two elements:

Chapter 11:  Architecture Frameworks	 319

Technical Standards Profile (TV-1): A listing of the standards mandatory
for the system being described.

Technical Standards Forecast (TV-2): A projection of how standards and
products compliant with standards will emerge during the time the
system is developed and operated.

Evaluation and Issues with the Use of the DODAF
The DODAF has been available and in wide use long enough for a body of
experience to be generated. One clear issue is that it is often being misused
for purposes for which it was not intended. Recall that the purpose was pri-
marily to facilitate interoperability through commonality of description.
Interoperability specification, analysis, and improvement are highlighted
as primary goals. There is no stated intention, within the DODAF, for it
to be considered as a framework for acquisition documentation. So there
is no place in the views for performance models, cost models, acquisition
requirement documents, or other management models. Yet all of those are
clearly necessary when the client is an acquirer and must make acquisi-
tion decisions.

Likewise, the DODAF does not contain the elements necessary to
cover all the architectural concerns of a builder of, for example, software-
intensive systems. We have a fairly good understanding of best practices in
software architecture description, and those practices are not mirrored in
the DODAF. This cannot be considered a fault of the DODAF developers,
as it was not part of their original purpose. It is a fault of those who spec-
ify use of the DODAF for purposes for which it is not intended.

Just as an architecture must be fit for purpose, so must an architecture
description framework. If the DODAF is misused, the fault is much more
in the misuser than in the framework. Nevertheless, it can be cited as a
weakness of the DODAF that its parts are very loosely related. Very dis-
parate concerns and models are lumped together into the views. Neither
intraview nor interview consistency is addressed at all. The individual
models are so loosely defined, especially in some of the required elements,
that ostensibly compliant descriptions can be produced that will not come
close to guaranteeing interoperability. Because the DODAF adopts such
a neutral stance to methodology, it cannot enforce stronger consistency
and completeness checks. It is probably not possible to strengthen consis-
tency and completeness properties without adopting much more formal
modeling methods, which would negatively impact ongoing programs on
which the DODAF might be mandated.

Aside from this large issue, there are numerous practical and concep-
tual problems that must be resolved by individual user groups:

	 1.	The notion of what constitutes an “operational node” in the oper-
ational view is unclear and inconsistently used. In the activity

320	 The Art of Systems Architecting

modeling sections of an operational view, an operational node is
purely functional. In the higher-level diagrams, like OV-1s and OV-2s,
common usage, and even examples in the defining documents,
equate operational nodes to specific physical entities (for example,
an AWACS aircraft, a command center).

	 2.	The high-level operational view diagrams are often, in practice, elab-
orately produced professional graphics with little technical content.
Yet, they are held up in examples as centerpieces.

	 3.	The hierarchy in the system view does not incorporate the widely
accepted layering concepts from computer networks. At least five
layers of the network stack (physical, data-link, network, transport,
and application) are firmly established in theory and practice, but
the concept is absent from the system view definitions. This is a
barrier as systems are built that incorporate the widely available
off-the-shelf network components.

	 4.	The models in the system view do not make clear distinctions between
node and connector types by layer. Within a particular layer (for
example, physical or network), the identity of the physical nodes and
the nature of connection channel and data exchange is usually clear.
But, the DODAF models do not directly support that information.

	 5.	The definitions of the elements within a view focus on diagrams
rather than graphics independent models, which could have various
visualizations. As a result, users fixate on the diagrams rather than
the model content.

	 6.	There is relatively little in the way of explicit consistency and com-
pleteness checks, especially between views. There has been some
improvement on this point, but it is still immature.

MODAF2

The Ministry of Defence Architecture Framework (MODAF) is a United
Kingdom Ministry of Defence extension to and modification of the
DODAF. In many ways, it can be seen as a reaction to the issues encoun-
tered in use of the DODAF. The primary differences between the MODAF
and the DODAF are as follows:

	 1.	Terminology has been adjusted, and in some cases sharpened. The
concepts and terminology are generally close to those in ANSI/IEEE
1471, now ISO 42010 (see later in this chapter for additional detail).
The terminology associated with what is an operational versus a
system node has been sharpened.

	 2.	Various models are broken out into more formal pieces. For example,
the high-level operational depiction, OV-1 in DODAF, is broken into a
purely pictorial element and other tabular and even quantitative parts.

Chapter 11:  Architecture Frameworks	 321

	 3.	A “Strategic Viewpoint” has been added. This viewpoint specifies
models of policy, capability deployment, and related trade-offs for
larger-scale planning. Its intended audience is mainly higher-level
planners and staffers.

	 4.	An “Acquisition Viewpoint” has been added. This is largely in
response to the practice of mandating Framework-compliant docu-
ments for acquisition programs. If compliant documents are going to
be required for an acquisition to go forward, then it would be desir-
able that the standard incorporate acquisition concerns. Compared
to the full range of models usually used by project managers, the
specified set here is rather thin. However, the intent in the MODAF
is mainly to support planning and visibility between projects, so the
models focus on dependencies and the clustering of projects.

The DODAF and MODAF address descriptions where the objects
of interest are themselves significant systems and programs instead of
the component-level elements that were typical in our discussion of inte-
grated modeling methods. A description standard that reaches much
further down the hierarchy is ISO RM-ODP.

ISO RM-ODP

The International Standards Organization (ISO) has also developed an
architecture description framework known as Reference Model for Open
Distributed Processing (RM-ODP).3 As the name implies, RM-ODP is
computation and software-centric. It addresses open distributed process-
ing — that is, multivendor, multiorganization, heterogeneous computing
systems whose processing nodes are spatially distributed. As defined in
RM-ODP, a distributed system is generally characterized by one that is
spatially distributed, does not have a global state or clock, may have indi-
vidual node failures, and operates concurrently.

The scope of RM-ODP is larger than just architectural description.
RM-ODP makes extensive normative statements about how systems should
be described but also goes on to specify functions they should provide, and
structuring rules to provide those functions. The architecture concerns of
RM-ODP include both description (through viewpoints) and the provision
of what are considered critical functions, called “transparencies” in the
RM-ODP model.

The RM-ODP defines the following*:

	 1.	A division of an ODP system specification into viewpoints in order
to simplify the description of complex systems.

*	 ISO/IEC 10746-1: 1995 DIS (E), p. 8.

322	 The Art of Systems Architecting

	 2.	A set of general concepts for the expression of those viewpoint
specifications.

	 3.	A model for an infrastructure supporting, through the provision of
distribution transparencies, the general concepts it offers as specifi-
cation tools.

	 4.	Principles for assessing conformance for ODP systems.

This is certainly larger than just description of architectures. Points
one and two of RM-ODP are our concern here. RM-ODP is much more
strongly normative than the other architecture frameworks discussed in
this chapter. It takes a more normative approach both because of the incli-
nations of the authors (and their beliefs about best practices) and because
the domain of application is narrower. RM-ODP applies to a particular
class of computing systems (albeit a broad class), and it seeks to be both a
consistent and complete approach to describing such systems.

The heart of RM-ODP in regard to descriptions is its five normative
viewpoints. RM-ODP uses viewpoint to mean essentially what view
means here, although it also carries the meaning of a generic specification
method to be applied to any system. The RM-ODP notion of viewpoint
is really a mixture of the language specification, the concerns covered,
and the actual model instances for a particular system. The five ODP
viewpoints are enterprise, information, computational, engineering, and
technology. ODP adopts the notion that each viewpoint is a “projection” of
the system’s whole specification onto some set of concerns (using a specific
language). The five viewpoints are chosen to be complete with respect to
the concerns assumed to be relevant for an open distributed processing
system. The definitions of the five viewpoints are as follows*:

	 1.	An enterprise specification of an ODP system is a model of the system
and the environment with which the system interacts. It covers the
role of the system in the business, and the human user roles and
business policies related to the system. The enterprise viewpoint is
a viewpoint on the system and its environment that focuses on the
purpose, scope, and policies for the system.

	 2.	The information specification of an ODP system is a model of the
information that it holds and of the information processing that it
carries out. The information model is extracted from the individual
components and provides a consistent common view that can be
referenced by the specifications of information sources and sinks,
and the information flows between them. The information viewpoint
on the system and its environment focuses on the semantics of the
information and information processing performed.

*	 Ibid, pp. 8–9, 16.

Chapter 11:  Architecture Frameworks	 323

	 3.	The computational specification of an ODP system is a model of the
system in terms of the individual, logical components that are sources
and sinks of information. Using the computational language, compu-
tational specifications can express the requirements of the full range
of distributed systems, providing the maximum potential for porta-
bility and interworking and enabling the definition of constraints on
distribution, while not specifying the detailed mechanisms involved.
The computational viewpoint is a viewpoint on the system and its
environment that enables distribution through functional decomposi-
tion of the system into objects that interact at interfaces.

	 4.	The engineering specification of an ODP system defines a networked
computing infrastructure that supports the system structure defined
in the computational specification and provides the distribution trans-
parencies that it identifies. It describes mechanisms corresponding
to the elements of the programming model, effectively defining an
abstract machine that can carry out the computational actions and the
provision of the various transparencies needed to support distribu-
tion. The engineering viewpoint is a viewpoint on the system and its
environment that focuses on the mechanisms and functions required
to support distributed interaction between objects in the system.

	 5.	The technology specification defines how a system is structured in
terms of hardware and software components. The technology view-
point is a viewpoint on the system and its environment that focuses
on the choice of technology in that system.

Each viewpoint has a language associated with it, defined in the
RM-ODP standard. The language specification in the standard is less
specific than a typical programming language. The language specifica-
tion consists of the definitions of the terms used to compose the language
and constraints on constructing statements. All terms and constructions
are in-built on object modeling concepts. The RM-ODP standard uses
OMT conventions, although they could as easily be transferred to Unified
Modeling Language (UML). Because RM-ODP is a component of the
Object Management Group (OMG) of standards (UML is also a prominent
component), such a transfer is already under way. ISO/IEC 10746-4 has
mappings between the viewpoint language concepts and mathematically
based formal languages from computer science.

RM-ODP recognizes the problem of interview and interview consis-
tency. A conformant description must perform a number of cross-view
checks for consistency. These checks are not a true guarantee, and the
models involved do not have a precise notion of consistency built in, but
the checks do serve as an explicit attempt to look for inconsistencies.

324	 The Art of Systems Architecting

Proprietary and Semi-Open Information Technology Standards

Architecture has been widely addressed through proprietary and semi-
open standards in information technology. Many firms have architectural
standards, and many have developed their own description standards,
typically as part of a development process standardization activity. The
architectural description standard is typically tied to making specific
go-ahead decisions about system development. Standardization of descrip-
tion products helps make those go-ahead decisions more consistent and
facilitates process standardization.

One of the more widely known architecture description frameworks
in information technology is usually called the Zachman framework
after the name of the author. The Zachman framework is not fixed as it
has evolved with Zachman’s writings. There are a number of similarities
between the various Zachman frameworks and the RM-ODP standard as
some of Zachman’s early work popularized some notions of viewpoints
and viewpoint languages. More recent published works by Zachman have
added many more views than five, and have particularly emphasized the
enterprise and business management aspects of choosing information
technology architectures.

ANSI/IEEE 1471, ISO 42010

In April 1995, the IEEE Software Engineering Standards Committee (SESC)
convened an Architecture Planning Group (APG) to study the development
of an architecture standard for software-intensive systems. After publica-
tion of their report, the APG upgraded to the Architecture Working Group
and was charged with the development of a Recommended Practice for
architectural description, a particular type of standard. A Recommended
Practice is one form of standard, commonly used for relatively imma-
ture fields as it provides more general guidance rather than normative
requirements. After extended debate and community consensus build-
ing, a Recommended Practice for architecture description was published.*
Subsequently, the standard was accepted by the American National
Standards Institute as ANSI/IEEE 1471. In 2006 and 2007 the standard was
submitted to ISO and adopted as ISO 42010, though with the proviso that
it enter a revision cycle with the IEEE. At the time of this writing, that
revision cycle is ongoing.

The 1471 project was intended to codify the areas of community con-
sensus on architecture description. Originally it was envisioned that the

*	 IEEE 1471 Recommended Practice for Architectural Description of Software-Intensive
Systems, 2000. 1471 is part of the Computer Society’s software engineering standards set.
This standard subsequently became ANSI/IEEE 1471 and ISO 42010.

Chapter 11:  Architecture Frameworks	 325

standard would codify the notion of view and prescribe the use of partic-
ular views. In the end, consensus developed around a framework of views
and viewpoints and an organizing structure for architecture descriptions,
but there was no prescription of any particular views. As a recommended
practice, it is assumed that community experience will eventually lead to
greater detail within the standard. In practice, 1471 has become useful for
other standards groups in organizing more domain-specific architecture
description frameworks. Some application in this fashion was already
seen in the review of how the MODAF extends and clarifies the DODAF.

1471 Concepts
Because the ontology of 1471 is independent of a specific framework of
views and viewpoints, its ideas have been threaded into the discussion of
this book. Thus, much of what 1471 contains will already be familiar to the
reader. 1471 codifies the structure of an architecture description and the
definitions of its parts. The terminology of 1471 is shown in Figure 11.1. The
diagram is written in UML, but it can be easily interpreted even without
knowledge of UML. In the 1471 ontology, every system has one architec-
ture. That architecture can have several architecture descriptions. This
expresses the idea that an architecture is a conceptual property of a thing,

Architecture Description

Stakeholder

System

Viewpoint ViewConcern

Model

Architecture

Viewpoint
Library

1

1..*

1..*

1..*

1 1

1..*

1..*

1..*1..*1..*1..* Conforms to

Described by

Defines
Method

Has

Covers

Covers

1..*
1..*

Has

Figure 11.1  Information model of ANSI/IEEE 1471 concepts.

326	 The Art of Systems Architecting

but an architecture description is a representation of the conceptual object.
Again, we should be familiar with this concept from the earliest chapters of
this book. Several mutually consistent representations of a thing can exist,
so we need not specify that there be a single representation. 1471 does not
make a distinction between types of system, so the relationship of archi-
tecture and architecture description could hold for an individual system, a
family-of-systems, a system-of-systems, or a subsystem.

Returning to Figure 11.1, an architecture description is composed of
stakeholders, concerns, viewpoints, views, and models. Stakeholders have
concerns. Viewpoints cover stakeholders and concerns by their choice of lan-
guage with which to represent the system. Views are groups of models, which
must conform to exactly one viewpoint by using its language and rules.

Viewpoints may be drawn from a viewpoint library. A viewpoint
library is not required by 1471, but it is expected in organizations that
frequently develop architectural descriptions.

1471 makes an explicit distinction between the concepts of viewpoint
and view, a distinction adopted in the MODAF, although not made in
the DODAF and RM-ODP. If our goal is simply to write an architecture
description, or to form a single standard, it is not necessary to separate the
concepts. It is necessary to separate the concepts in 1471 because 1471 may
be used to form many standards. Viewpoints are the vehicle for form-
ing a standard. Indeed, viewpoints may be placed into a library to be
drawn from at the discretion of the architect and the specific stakeholders
involved in a particular project. Thus, this organizing element must be
separately named and defined to allow them to be separately assembled
for the needs of different sets of clients.

The viewpoints of RM-ODP are examples of 1471 compliant view-
points. The only distinction between the viewpoint concept in RM-ODP
and 1471 is that the RM-ODP version combines the abstraction (the 1471
viewpoint) and the actual instance of a representation of a particular
system (the 1471 view).

1471 Normative Requirements
The normative requirements of 1471 are limited, particularly compared to
RM-ODP and even the DODAF. An architecture description conformant
to 14714 must meet the following main requirements:

	 1.	The stakeholders identified must include users, acquirers, developers,
and maintainers of the system.

	 2.	The architecture description must define its viewpoints, with some
specific elements required.

	 3.	The system’s architecture must be documented in a set of views in
one-to-one correspondence with the selected viewpoints, and each view
must be conformant to the requirements of its associated viewpoint.

Chapter 11:  Architecture Frameworks	 327

	 4.	The architecture description document must include any known
interview inconsistencies and a rationale for the selection of the
described architecture.

There are a variety of other relatively minor normative requirements,
along with various recommendations. Many of these are to make 1471
consistent with other IEEE software engineering standards, notably the
overarching software engineering standard 12207.

Research Directions
The current state of the art and practice in architecture description leaves
much work undone. As the RM-ODP example shows, the basic archi-
tectural concepts of viewpoint, view, stakeholder, and concern can be
extensively refined and tied to modeling formalisms if the domain of
application is narrowed. A cost is the intellectual complexity of the result-
ing methods. RM-ODP is a complex standard. Its conceptual makeup is
not complex in comparison to other areas in computer science, but it is
quite complex compared to common practice in information technology.
There may be strong benefits in mastering the complexity, but it acts as a
barrier to the adoption of this technology. To make it more widely used,
we need better tools and better explanation and training mechanisms to
pass these ideas on to the professional community.

As we move to more general systems, the range of formalized models
drops off dramatically. It seems very unlikely that we can develop a really
general architecture framework that will simultaneously be formalizable.
It seems more likely that we must continue to work up from the engi-
neering disciplines to create more general notations. One problem will be
dealing the disjunction between models common in the hardware (and
some of the systems engineering) world and those coming from computer
science and software. The hardware models are typically performance-
centric and physics based. They work from physical objects. The com-
puter science models are now commonly based on object-orientation
and encapsulation of functionality within data models. It is not obvious
how these will be reconciled or to what extent it is necessary. It may be a
better approach to leave the modeling techniques as they are, taking the
modeling techniques as they have been validated within the engineer-
ing disciplines. The higher-level challenge will then be to develop inter-
view consistency checking techniques that do not require the disciplinary
modeling methods to be altered but can work with them as they are.

There are two notable, relatively structured areas of research for
frameworks: data relationships in subsystem flowdown and choosing
models to match analytical needs.

328	 The Art of Systems Architecting

Subsystem Architecture Flowdown

Architecture frameworks are commonly employed in situations of high
complexity, where the elements of the main system of interest are rea-
sonably complex systems. We might ascribe the term “system-of-systems”
here, except, as argued in the chapter on collaborative systems, the concept
is not well formed until we introduce the intentionality of the integration.
Nevertheless, it is clear in normal usage that the standard architecture
frameworks are typically employed only in cases where subsystems are
reasonably complex. So, a natural question is, if we write an architecture
view of a given system, and that system has subsystems, what is the rela-
tionship between the subsystems corresponding architecture views?

To be more formal, suppose we are interested in a system S, which may
or may not exist at the time we write an architecture description. System
S is composed of subsystems S1 through SN. For design purposes, we form
architecture views of S, each composed of various models. Let those views
be denoted V1(S) through VM(S). For the moment, we need not be concerned
with the identity of the views. Some subsequent design groups may also
be concerned with forming views of one or more subsystem. The direction
of formation need not be downward in the hierarchy. We might start with
a set of subsystems and views of those subsystems and want to form the
architecture views of some integrated supersystem of those subsystems.
Indeed, this upward assembly might be the usual case.

Given the terminology, some representative questions are as follows:

	 1.	What is (or should be) the relationship between Vk(S) and Vk(Sn)?
	 2.	What is the relationship between Vk(S) and the collection Vk(S1)

through Vk(SN)? What views other than Vk need to be interrogated to
make the determination?

	 3.	Given Vk(S), what is the relationship between Vk(Si) and Vk(Sj)?
	 4.	 If S1 through SN are to be integrated into S, and they have a given

set of views, can you derive the corresponding views of the inte-
grated whole? Is the corresponding view of the integrated whole
completely specified?

Some of the integrated modeling methods discussed earlier provide
some interesting examples of these issues. Consider a data flow, functional
decomposition view of a system. If that system is divided into subsystems,
there are clearly some required relationships between the corresponding
data flow, functional decomposition views. The decompositions must
match across corresponding partitions of the functions. Methods like
Hatley-Pirbhai have a set of formal consistency and completeness checks
based on how those models decompose. Physical models from system to
subsystem produce requirements for correspondence on interfaces.

Chapter 11:  Architecture Frameworks	 329

It seems unlikely that there are very general rules for relating views.
In any particular instance, various strong constraints can be worked out,
but it does not appear that the rules carry over in detail from one case to
another. On the other hand, viewpoints, the rules and templates for con-
structing views, do carry over strongly from one case to another.

Matching Analytical Needs

We do not (or should not) build complex architecture description docu-
ments in compliance to frameworks without clear purposes in mind. The
main reason for having an architecture framework is so that the uses of
the document can be consistently performed. For example, a stakeholder
group may want to evaluate all systems being constructed within their pur-
view for mutual interoperability. In order to facilitate that analysis, they
could specify in an architecture framework that a set of models needed in
interoperability analysis be provided. In this way, the framework would be
linked to a specific set of purposes — in this case interoperability analysis.

In principle, today’s architecture frameworks are supposed to be linked
to particular analyses. In practice, the linkage is often disappointing.
For example, the DOD Architecture Framework is intended to facilitate
interoperability analysis. Compliant documents have been used for
interoperability analysis. However, there have been many problems with
such use,* and it cannot be claimed that the analysis tools are firmly linked
to architecture products, especially as a matter of consistent practice. This
is an area where there could be clear improvement through research on
linking analysis tools and framework compliant products.

Adapting Processes to Frameworks
At their best, architecture frameworks are still only the equivalent of blue-
print standards. There remains the problem of how to organize the architect-
ing process to reliably produce both useful documents and corresponding
systems fit for use. Unfortunately, many groups, when faced with the challenge
of building a framework compliant architecture description, simply default
to producing a set of models that “check off the boxes” in the framework
document. This is very unlikely to lead to a useful document.

*	 The U.S. military Joint Staff (specifically J8) was tasked to critique architecture-based plan-
ning. A variety of shortcomings, some reflected in the discussion here, were identified in
the report from that study. The results of that study, although not formally published, have
been generally available. See SPG-Directed Planning Task, Integrated Architectures, from
the Joint Staff, 17-May-04. A paper from roughly the same time, Mara, M., and J. Grobman,
A Capability-Based Planning Methodology for Networked Systems-of-Systems, The Phalanx,
Military Operations Research Society-Military Applications Society of INFORMS, Vol. 36,
Number 4, 2003, contains several of the major points from the longer briefing report.

330	 The Art of Systems Architecting

We can identify a variety of heuristics that are useful for guiding the
development of framework compliant (or framework-driven) architecture
description documents.

Focus on Architecture Decisions, and
Let Descriptions Flow from the Decisions

Having an architecture description document, no matter its size or the
expense of construction, is no guarantee that any architectural deci-
sions have been made well. The value of the system to its stakeholders is
determined by the structure and content of that system (determined by
architectural decisions), not by the architecture description document. So,
architecture work should focus squarely on the decisions foremost, and
let the documents flow from those decisions.

This leads to a rather simple test for managers or evaluators of an
architecture description. When faced with a large architecture descrip-
tion document (enterprise architecture projects are especially notorious),
ask “What decisions about changing our systems are contained in this
document?” If the answer is “none,” or something equivocal, it is clear
that the volume of the document is no guide to its value. If there are crisp
answers, then the rationale for those answers can be pursued and evalu-
ated. If the rationale is sound, the document is probably sound (although
an edit down to the crisp decisions might be worthwhile).

Always Use an Iterative Process to Do Architecting

Architecting is something you can virtually never get right at the begin-
ning. It requires pursuit of multiple paths and the presentation of dis
parate alternatives to stakeholders. Any architecting process that requires
a year or more to execute, and does not result in any clear decisions before
its end, is almost certain to be ineffective. Aside from the substantial risk
that issues will change over the year, the most likely failure path is that the
initial understanding of the problem will be poor, resulting in poor alter-
natives. It is easy to advocate “just get the problem right at the beginning,”
but the reality is that we are unlikely to know whether the problem is
“right” until multiple solutions have been examined.

Do Not Overstaff Early; the Best Architectures
Come from Small Teams

Another common failure path is that once a project at the architecting
phase is initiated, it quickly comes under pressure to spend at a rate com-
mensurate with its full budget later in the development cycle. Even worse, a

Chapter 11:  Architecture Frameworks	 331

large staff may be assigned to the architect very early on. The consequence
is that the architects and managers are quickly consumed with getting
people working on anything that results in a stream of visible deliverables,
whether or not they are directly relevant to the architecting-specific goals.
The important work (the decision-centric, strategic work) is swamped by
visible document production. The only cure is to strictly avoid early over-
staffing, and for management to make go-ahead decisions on the basis of
strategic issues and not on the basis of unread document delivery.

A particular form of this problem is the project that gets mired in
as-is data collection and documentation. Very often a project that requires
significant architecting needs to begin by evaluating the state of existing
systems (the “as-is architecture”). While this is often necessary, an as-is
documentation effort has the potential to expand to fill all available funds
and staff. The as-is documentation work is in many ways tailor-made for
project management. It is well structured, relatively easy to measure prog-
ress, and requires the coordination of a potentially large staff. It is easy to
see how staff can become enamored with endless pursuit of broader and
deeper as-is documentation, and want to avoid the hard choices, complex
decision making, and political difficulties of prescribing future change.

Avoid Underreach and Overreach

Effective architectures must constrain enough, but not too much. A defect
in some architecture efforts is to either draw their scope too large (result-
ing in attempts to control things the team has no hope of controlling) or
drawing the scope too narrow (resulting in a failure of the constraints to
ensure that enough joint functionality is present to be useful). Architecture
framework standards do not themselves help define an appropriate scope;
the scope definition (an essential architectural decision) must come from
those directing the project.

A famous example of good scoping and effective decision making is
the Motion Pictures Expert Group (MPEG) standard.5 The MPEG standard
was a multicompany effort to create a standard for encoding compressed
digital video. The motivations of the players were to build the largest
possible market, while avoiding a destructive standards war (as in the
case of VHS versus Betamax). With regard to underreach and overreach,
the key is the scope of the standard. The standard as structured defines
the structure of a compressed stream and defines a free reference decom-
pressor. The standard leaves open the exact compression algorithm.* As a
result, end-to-end quality is a free variable; a given piece of source mate-

*	 It is more correct to say that the standards leave open a large number of algorithmic
parameters rather than the algorithm itself, although pre- and postprocessing algorithms
are left undefined, but the details are immaterial to the discussion here.

332	 The Art of Systems Architecting

rial at a given bit rate has a huge number of compliant encodings. This
particular scope works effectively for all of the stakeholders concerned,
though a larger or small scope likely would not have:

	 1.	The scope implemented guarantees interoperability between all
content providers and all equipment providers. This is the primary
concern of the consumer.

	 2.	The scope of the standard is narrow enough to minimize the need
of the participants to contribute intellectual property to the licens-
ing pool. This is important to those stakeholders concerned about
poststandard competitiveness.

	 3.	The undefined elements of the standard encourage further technology
development. Because consumer content is typically compressed once
and decompressed millions of times, there are great advantages into put-
ting a lot of intelligence into the compression side. A significant market
has grown up for boutique compression providers who know how to
optimize algorithm parameters and preprocessing to specific types
of material (for example, sports programming, movies, animation).

Orient the Project Effectively

To orient an architecture project means to define its context and effective
attributes as it begins. Many architecture projects that are driven to use
frameworks are not oriented effectively, perhaps because the orientation
questions are not embedded in the framework. For an architecture project
to be oriented effectively, the following questions should be answered:

	 1.	What is the “system-of-interest” to the project? Typically this is a
new, discrete system to be produced; a family-of-systems or product-
line; a collaborative system; or a document.

	 2.	What is the basis for the project, or the driving reason that we are
pursuing it? Typical answers are purpose driven (it is being done for
a specific user-client), technology driven (we wish to exploit a tech-
nology without client-user available), or bureaucracy driven (it is a
mandate to produce an architecture description document).

	 3.	What is the scope of the effort? Is the scope restricted to a controlled
system-of-interest or does it range outside to systems controlled by
others outside the control of the sponsor?

	 4.	What will be done with the product of the architecture effort when
it is completed?

	 5.	Can we disentangle the purposes of the system-of-interest, the
architecture project, and any architecture description document
being produced? In many cases, these three properly have different
purposes, but they need to be known.

Chapter 11:  Architecture Frameworks	 333

Conclusion
The problem of “blueprint” standards for complex systems architec-
tures has yielded a number of architecture frameworks that are true or
de facto standards. None is an ideal solution, but all contain important
ideas. The architect faced with a normative requirement to use one of the
frameworks must keep in mind their limitations and the architect’s core
role. The architect’s core role is to assist the system’s client in making the
key technical decisions, particularly what system concept to go-ahead on
construction with or how to constrain a larger assemblage like a family
of systems or a collaborative system. This places a premium on models
and methods that communicate effectively with the client, regardless of
their correspondence (or lack thereof) to engineering models. Only as the
architect’s role evolves to transitioning the system to development and
maintaining conceptual integrity during development does that corre-
spondence to engineering methods become foremost.

A number of common problems with employing frameworks have
been identified, and some important mitigations and relevant heuristics
have been presented. The most important is to concentrate on the architect’s
core role in facilitating effective decision making. Architecture documen-
tation plays a key role in the architect’s work but is never a substitute
for decision making. Architecture frameworks work best when their role
is understood — to establish a common language among stakeholders
within which architectural decision making can be conducted.

Notes and References
	 1.	 The DODAF documentation is distributed electronically by the U.S.

Department of Defense. See www.defenselink.mil/cio-nii/docs/DoDAF_
Volume_I.pdf for the current main volume.

	 2.	 See www.modaf.org.uk for online documentation on the MODAF and a
detailed discussion of its concepts.

	 3.	 ISO/IEC JTC1/SC21/WG7 Reference Model for Open Distributed Processing
officially titled ITU-T X.901 ISO/IEC 10746 Reference Model, Parts 1–4.

	 4.	 The complete details are in the standard, ANSI/IEEE 1471 Recommended
Practice for Architectural Description of Software-Intensive Systems, issued
in 2000.

	 5.	 The architect within the early MPEG standards was clearly Leonardo
Chiariglione, a classic example of an architect within a collaborative system
environment. A particularly good article on this is Leonardo’s Art in the now
defunct Brill’s Content magazine. There is an interview with Chiariglione at
www.eetimes.com/disruption/interviews/chiariglione retrieved 15-May-2008,
as well as numerous other interviews and articles.

IVpart

The Systems Architecting
Profession
The first three parts of this book have been about systems architecting as
an activity or as a role in systems development. This fourth part is about
systems architecting as a profession — that is, as a recognized vocation in
a specialized field. Three factors are addressed here. The first is the embed-
ding of architecting in the context of commercial or government systems
developments, with primary attention to how architecting and organiza-
tional strategy overlap and interrelate. This is vital because architecting
can only happen in a supportive organizational environment, whether in
business or government. The second, the political process,* is important
because it interacts strongly with the architecting process, directly affect-
ing the missions and designs of large-scale complex systems. The third,
the professionalization of systems architecting, is important because it
affects how the government, industry, and academia perceive systems
architects as a group.

Chapter 12 covers the situating of architecting in business and govern-
ment in general, but its major focus is on how strategy relates to archi-
tecture. Organizations have strategies in the sense of objectives, selected
means for achieving those objectives, and patterns for changing as their
environment changes. Of course, the dominant means of executing strat-
egy is the conduct of operations by an organization’s personnel. But,
organizations also build systems, create programs to build systems,
and structure themselves as organizations. Building is, at least in part,
an architectural activity. Because the architecting of systems is already
the subject of most of this book, Chapter 12 focuses primarily on the
architecting of programs, and how the architecture of systems, programs,
and organizational strategy relate.

*	 By “political process” is meant the art and science of government, especially the process
by which it acquires large-scale, complex systems.

336	 The Art of Systems Architecting

Chapter 13 is based on a course originated and taught at the University
of Southern California by Brenda Forman of the University of Southern
California and the Lockheed Martin Corporation. The chapter describes
the political process of the American government and the heuristics that
characterize it. The federal process, instead of company politics or execu-
tive decision making,* was chosen for the course and for this book on
architecting for three reasons.

First, federal governments are major sponsors and clients of complex
systems and their development. Second, the American federal political
process is a well-documented, readily available, open source for case
studies to support the heuristics given here. And third, the process is
assumed by far too many technologists to be uninformed, unprofessional,
and self-serving. Nothing could be worse, less true, or more damaging
to a publicly supported system and its creators than acting under such
assumptions. In actuality, the political process is the properly constituted
and legal mechanism by which the general public expresses its judg-
ments on the value to it of the goods and services that it needs. The fact
that the process is time consuming, messy, litigious, not always fair to all,
and certainly not always logical in a technical sense, is far more a conse-
quence of inherent conflicts of interests and values of the general public
than of base motives or intrigue of its representatives in government.

The point that has been made many times in this book is that value
judgments must be made by the client — the individual or authority that
pays the bills — and not by the architect. For public services in representa-
tive democratic countries, that client is represented by the legislative, and
occasionally the judicial, branch of the government.† Chapter 13 states a
number of heuristics, the “facts of life,” if you will, describing how that
client operates. In the political domain, those rules are as strong as any
in the engineering world. The architect should treat them with at least as
much respect as any engineering principle or heuristic. For example, one
of the facts of life states:

The best engineering solutions are not necessarily the
best political solutions.

Ignoring such a fact is as great a risk as ignoring a principle of mathematics
or physics — one can make the wrong moves and get the wrong answers.

*	 Company politics were felt to be too company specific, too little documented, and too
arguable for credible heuristics. Readers with experience in corporate politics will have
little difficulty extending the heuristics of the chapter to other political settings. Executive
decisions are the province of decision theory and are best considered in that context.

†	 In the United States, the executive branch implements the value judgments made by the
Congress unless the Congress expressly delegates certain ones to the executive branch.

Part IV: The Systems Architecting Profession	 337

Chapter 14 addresses the challenge in the Preface to this book to
professionalize the field — that is, to establish it as a profession* recog
nized by its peers and its clients. In university terms, this means at least a
graduate-level, specialized education, successful graduates, peer-reviewed
publications, and university-level research. In industry terms, it means
the existence of acknowledged experts and specialized techniques.
Elliott Axelband† reports on progress toward such professionalization by
tracing the evolution of systems standards toward architectural guide-
lines, by describing architecture-related programs in the universities,
and by indicating professional societies and publications in the field.
Axelband concludes the book with an assessment of the profession and
its likely future.

*	 “Any occupation or vocation requiring training in the liberal arts or the sciences and
advanced study in a specialized field.” Webster’s II, New Riverside University Dictionary.
Boston, MA: Riverside, 1984, p. 939.

†	Formerly, at the time of the original writing, Associate Dean, School of Engineering,
University of Southern California, and the director of the Systems Architecting and
Engineering program. Axelband previously was an executive of the Hughes Aircraft
Company until his retirement in early 1994. He is currently on staff at the RAND
Corporation.

339

12chapter

Architecting in Business and
Government

Architecture is the technical embodiment of strategy.

Most engineering disciplines continue to make sense when divorced from
the context of their application. You do not have to know that someone is
working for a builder or a government department to judge the applica-
tion of aerodynamics or circuit design. Aerodynamics and circuit design
(and most other methods from the established engineering disciplines)
are application neutral. The equations are the same no matter who applies
them. They are grounded primarily in physics and mathematics, and we
can judge much of their work by the standards of science.

Architecting is much more deeply embedded in the context of its
practice. Although many techniques will remain constant from one con-
text to another, the architect’s practice is heavily influenced by where it is
carried out. Moreover, architecting is not just about the technical nature
of the system of interest. It is about the structure of the program that
builds and operates the system and the organization that either buys or
conducts architecting.

This chapter explores that linkage between architecting and the busi-
ness or governmental organization in which it is embedded. The focus,
as suggested by the opening quote, is on strategy. There are many occa-
sions when the architect may feel more like a strategic consultant than an
engineer. Sometimes this is a sign of healthy practice, and sometimes it is
a sign of looming trouble. This chapter will examine how we might tell
the conditions apart.

Problem-System-Program-Organization
We can identify many different scopes of interest, but architecture and
strategy are most clearly understood with four scopes: problem, system,
program, and organization. Problem is that we are trying to solve or
achieve by way of building a system. A system is a technical object we
build to solve a problem. The program is the means by which the system

340	 The Art of Systems Architecting

is developed, produced, and deployed. The organization, really the orga-
nizations, is the human construct that carries out the program. This is
schematically illustrated in Figure 12.1 (refer also to Figure 1.6).

First-level systems architecting is about the relationship between prob-
lem and system. The architect seeks a consistent and harmonious linkage
between a problem to be solved and a system to do it. Architecting is a
problem-seeking activity and not solely a problem-solving activity. Good
architecting examines the problem scope in parallel with solutions. The
best architectural solution often involves reformulating the problem.

DC-3 Example: The DC-3 was a success because it
allowed the restructuring of the airline business.
The Boeing 247, using nearly identical technology,
was optimized for the operational environment of
the time, where profits came from carrying airmail.
The DC-3 had the size, capacity, range, and safety
margin to allow profitable operation without sub-
sidized airmail. To some extent, this was a happy
accident, as the predecessors of the DC-3 (the DC-1
and DC-2) failed to pass the revolutionary threshold,
although they were excellent airplanes. But, the
architects of the DC-3 knew they were aiming at a
new problem, space, as well as a new exploitation of
system technology.

Organization
Strategic Identity:
Missions, goals,
what it’s good at,
what it doesn’t do

Program
Who builds?
How do they build?
What order?
Who operates?

Program

System
What is the system?
What are components?
How is it tested?

Problem
What do we provide?
What creates value?
What is success?

Figure 12.1  Organizations have programs that build systems in response to prob-
lems. Each exists in its own context, with issues unique to each context.

Chapter 12:  Architecting in Business and Government	 341

GPS Example: The revolutionary aspects of the Global
Positioning System (GPS) have come from exploi-
tation into new problems. The original problem
formulation was to navigate platforms to improve
weapons delivery; thus the slogan “five bombs in
the same hole.” But, the most effective exploita-
tions have been in placing guidance on weapons, in
surveying, in network synchronization, and other
civilian applications. Those applications represent
not only the application of GPS technology but the
reformulation of concepts of operation for both
military and civilian activities.

In the scope of problem-system, we talk about the fundamental struc-
ture of the system, its architecture. But, the system has to be brought
into being. Beyond the architecture design, it has to be fully developed,
produced (in quantities from one to millions), deployed to users, and
supported over a life cycle. We refer to these activities as the “program.”
A program also has a fundamental or organizing structure or an archi-
tecture. We can identify a number of basic forms or architectural styles,
which we discuss in detail in a subsequent section:

Single object, waterfall construction, as in buildings and occasional •	
one-of-a-kind systems.
Prototype development followed by serial production, with parallel •	
manufacturing system development (discussed in Chapter 4).
Breadboard-Brassboard-Flight incremental development, a typically •	
hardware-centric process where functionality remains constant
while environmental fitness is improved.
Risk-spiral incremental development, where increments represent •	
case-specific steepest-descent reduction of risk.
Incremental delivery, where multiple systems are delivered with •	
increasing functionality.

Program structure may play an equal role with the architecture of the
system in realizing stakeholder value. A fine system may be crippled by
poor execution or doomed by a program structure that is inappropriate to
the surrounding circumstances. Conversely, a well-chosen program struc-
ture may allow successful adaptation to errors in execution and surprises
in technology or operational conditions.

Layered software is a response to rapidly changing technology and
uncertainties in user demands. Well-chosen and implemented layers
isolate areas of rapid change from each other and allow change in those
isolated areas to proceed as quickly as technology or market changes

342	 The Art of Systems Architecting

demand. The Internet Protocol (IP) layer in the Internet effectively sep-
arated the very high rates of change in physical communication tech-
nologies and network applications from each other, and allowed both
to repeatedly abandon existing legacies independently. In negative
contrast, layered architectures can introduce broad dependencies that
may damage an organization’s ability to deliver. A change to a deeper
layer may have rippling effects in all of the higher-layer applications that
use the shared, deep layer. If the deeper layers are pushed to change in
response to user demands falling on applications, and the surrounding
organization and technological infrastructure is unable to make changes
without risk of affecting all applications, the layered structure may lead
to development paralysis.

A program is carried out by an organization, which may be a single
company or government division or a consortium of many. By organiza-
tion we simply mean an organized grouping of humans whose purpose
here is to carry out programs to build systems. Programmatic structures
should be chosen to best fit the programmatically related objectives of a
given development. In practice, the structures will also be influenced by
the standing concerns of the organization. So, if the overall identity of the
organization is well aligned with the programmatic and system mission,
things are likely to go well. If the strategic identity of the organization
is in conflict with stakeholder concerns, programmatic imperatives, and
system objectives, things are likely to go badly. This rising scope, and
changing nature of concerns, is illustrated in Figure 12.2.

The strategic identity of an organization is the basic representation
of what it does. The strategic identity should be a shared understanding

Problem System

Program

Organization

Core Concern of Systems
Architecting

Extended Concerns of
Architecting, as We Consider
Organizational Strategic
Identity and Management

Executive Domain,
Architecting of Organizations

Figure 12.2  Systems architecting is primarily concerned with the relationships
between elements, whether at the level of system-problem, program and manage-
ment, or (occasionally) at the level of organizations.

Chapter 12:  Architecting in Business and Government	 343

among the organization’s members. A strategic identity specifies what an
organization’s mission is, how that mission relates to other organization’s
missions, and how the organization’s members can take action in service
of that mission. Organization’s can be viewed productively as systems,
and so have their own architectures. The architecture of an organiza-
tion is its basic structure, not just in organizational chart terms, but in
the fuller terms of expertise, experiences, working relationships internal
and external, shared objectives among its members, and resources avail-
able to it. The architecture of an organization is not a principal concern of
this book,1 but we cannot understand the architecting of systems without
considering how the hierarchy of contexts from problem to organization
relate, through the system and program.

Strategy and Architecture in
Business and Government
In the classic model of architecting, the paradigm derived directly from
classic civil architecting, the architect is an executor of the client’s strategy.
The client has a strategy. Perhaps it is to build a house well suited to his
or her family’s life, to build a profit-making facility in a given business,
to combine business return with brand identity, or to build a long-term
educational institution. Whatever that strategy is, the job of the architect is
to understand it well enough to be able to produce a fit physical, technical
embodiment of that strategy.

The architect does not create the strategy, although he may need to elicit
the client well beyond just asking “what is your strategy?” Architecting
accepts that the problem is unlikely to be presented in well-structured
form, and is probably fundamentally ill structured. With ill-structured
problems, the process of forming a solution influences the client’s under-
standing of his or her problem, and not just the architect’s. Thus, to some
extent, the process of working with an architect may help a client formu-
late his or her own strategy, even though it is not the architect’s role to
formulate the client’s strategy.

As we talk about unprecedented systems, the sharp border between
the architect and client in strategy becomes unclear. Who formulated the
strategy of moving to operations and capabilities for global positioning
beyond the concept in the original program? It was not entirely the client
or the architect. In the case of GPS, the long-term revolution was driven
by organizations beyond the client, and that in many cases did not even
exist when the program was formed. These lateral exploitation applica-
tions, which are growing to the point they now drive global positioning
well beyond one program, were inside the original architect’s visions,
but were not the original architect’s responsibility. Many others had to

344	 The Art of Systems Architecting

become participants, typically independent participants in what became
a collaborative system, for the revolution to happen.

When the border between architecting and strategy formation
becomes fuzzy, the architect may find himself or herself acting more like a
strategy consultant than an architect. Even though it is not impossible for
this to be effective, it is fraught with difficulty and danger. Architecting
requires technical depth, and good architects have that technical depth.
Effective strategy formulation requires much more knowledge and insight
into the operational situation faced by an organization (whether business,
military, or diplomatic) than is necessary for architecting, and requires
much less technical depth. Both architects and strategists are bridging the
engineering to operations gap, but they approach the gap from opposite
sides. As such, they can be extremely effective partners but are less likely
to be effective substitutes.

A basic embodiment of strategy produced by architecture is in the
structure of the program. Architecture may also embody strategy in other
ways, but program structure is the most common. To explore this, we
need to consider different forms of strategy as related to technical system
development, specifically static and dynamic strategies.

Static Strategies

A static strategy is unchanging, or slowly changing. Static strategies
seek to understand the world and to determine a set of objectives for
systems that will yield a superior position. Typical static strategies
include the following:

Be the low-cost producer or supplier. This involves leaning down •	
design, production, and delivery systems relative to other competitors.
Be feature superior to the competition. Deliver systems with supe-•	
rior quality, cost, and delivery, measured on the same scales as the
competition.
Bring superior firepower and concentration to the battlefield.•	
Use concepts of operation similar to one’s opponent, but with longer •	
range, greater accuracy, and larger effect.

Architecting in a static strategy environment is relatively similar
to classic systems engineering. The problem may still be ill structured,
because we do not know where in the feature space we will find suitable
problem–solution combinations, but the feature space is assumed to be
knowable. The objective of architecting is to elaborate on the problem and
solution spaces and find excellent combinations.

Chapter 12:  Architecting in Business and Government	 345

Dynamic Strategies

A dynamic strategic approach assumes that the playing field is continu-
ously changing, or even better, and that our actions can force the playing
field to change.2 Instead of trying to beat competitors at an established
game, we seek to create new games. We try to avoid head-to-head com-
petition on features, cost, or delivery and instead choose actions that are
unexpected by the competition and that the competition is incapable of
imitating. A truly dynamic approach to strategy is to further assume that
any dominant move we make is temporary and must be followed by a
succession of game-changing moves.

Architecting in a dynamic strategy is a twofold process. First, the archi-
tect is driven to come up with unprecedented system concepts. A dynamic
strategy has a continuous appetite for the new and unexpected. Second,
the organizational processes and supporting system must be architected
to support continuous and rapid change. An organization very good at
executing a static strategy is unlikely to be good at executing a dynamic
strategy, and vice versa.

The real world is not cleanly divided between exponents of static and
dynamic strategy. Even if one believes that a dynamic strategy is inher-
ently superior, in considerable measure much of economic and military
life is dominated by mature operational concepts where fierce competi-
tion in static strategy prevails. Where the investment in legacy capabili-
ties is very large, it is very uncommon for dynamic shifts to upset the
entire operational picture quickly. Even when the operational picture can
be changed quickly, it may settle down to maturity with time. A useful
metric for understanding where static or dynamic strategies are likely to
play a larger role is system obsolescence time or depreciation rate. How
quickly after introduction does a system lose most of its value? In how
much time will the original system owner be willing to throw away the
system and find it is not worth the upkeep?

In aircraft, from the 1920s to the early 1960s, aircraft depreciated in •	
5 years, lengthening to 10 years. Military aircraft built at the end
of World War II were of low value within 5 years and scrap before
10 years elapsed. This time lengthened considerably from the 1960s
to the present, when both military and civilian aircraft are still flying
usefully 25 years or longer.
At the beginning of the space era, a given satellite design was useful •	
for a few years at most. By the 1970s, satellite architectures settled
down. Lifetimes of 5 to 10 years are now not unusual, and designs
can be valuable longer.
A 5-year-old computer is, with few exceptions, something to sell at •	
a flea market.

346	 The Art of Systems Architecting

Cell phones and related personal electronics are disposable on a •	
2-year timeline.

An organization should have an explicit strategic position about
which it pursues its mission. Some organizations, those supporting stable
mission areas or markets, logically pursue strategies that are mostly static.
This is not a bad thing. If a static strategy that carefully focuses on stable
sources of value and stable means of delivering value can achieve a com-
petitive advantage against static strategy measures, that is very hard to
match or overcome. As an example, various automakers, both U.S. and
Japanese, established long-term competitive advantages that endured for
decades (in different eras). But, static strategies can be overcome by frontal
competition, and by “end-runs” when strategic conditions change.

Organizations that pursue pure dynamic strategies can likewise be
very successful, and can fail abjectly. An organization that solely pur-
sues the unprecedented is vulnerable every few years. Even for the most
capable, the business of producing unprecedented capabilities is very
uncertain. Luck is required, and runs of luck always come to an end. If the
organization cannot weather a string of failures, it will disappear.

Architecture of Programs
As discussed above, the next step of context above Problem-System is
Program. At the program level we are concerned with the structure of the
effort to develop, produce, deploy, and maintain the system of interest.
Obviously, as with systems, there are countless possible such structures.
We cannot enumerate them all. However, we can identify a number of
program styles or repeating patterns of program organization, and the
heuristics for their application. These program styles relate directly to an
organization’s pursuit of a dominantly static or dynamic strategy.

Single Pass, Waterfall Construction

The paradigm for this case is constructing a house or other building.
The process normally proceeds very linearly: A design is developed and
approved, contractors are hired, the building is constructed on the site,
and approved for occupancy and delivery after completion. There are
few or no intermediates. Modeling is conducted during design and may
involve the construction of scale models, but we do not build trial build-
ings as part of the process. On occasion, some subsystem elements might
be built early for testing. An example is building a unit of windows for a
major skyscraper to test their weather integrity if they use an innovative
method of holding the window glass.

Chapter 12:  Architecting in Business and Government	 347

In practice, there may be some level of incrementalism. For example, in
a building complex, we may build all of the infrastructure but only some
of the buildings in an initial phase, with the remaining buildings deferred
for a later phase after the first set are occupied and in use. Sometimes a
building is designed with options for remodeling or extension in mind.
However, the basic pattern is simple; we directly design and build the
final system we intend to deliver in one pass.

This programmatic pattern is most applicable where:

Only a single system is to be built and delivered.•	
Risks are low. There is high certainty that a satisfactory system can •	
be built and delivered at predictable cost from a design.
The strategy is static. We can build a system in response to the strategy •	
and believe it will be fit for the natural lifetime of the system.

Serial Production

The basic pattern here is that we build one or more prototype systems,
probably using the one-shot waterfall pattern, freeze a final design from
analysis of the prototype, and then produce many copies of that prototype
design. Alternatively, we may use one of the other patterns for prototype
developments before freezing the design and proceeding to production.
This pattern is most applicable when:

Many copies of the system are required.•	
The cost of production is high relative to the cost of design and •	
development. The overall cost is dominated by the costs incurred in
production (typical for hardware-centric systems).
Risks can be resolved by a prototype. Once we have the prototype, •	
and have worked with it, we can have confidence that the produced
system will be fully acceptable.

Breadboard-Brassboard-Flight

This pattern is an incremental pattern, in that we build a series of systems
that are less capable than the final system and that lead to the final system.
In the breadboard-brassboard-flight pattern, the series of systems that we
build should all be functionally equivalent to the final delivered system,
but are not all environmentally suitable for operation in the delivered
systems environment. In the classic version of this pattern, the breadboard
system is spread out over laboratory benches. In electronics, it consists of
large boards with many parts and no effort of design shrink. In optics, the
components are spread over an optical bench. In chemical engineering,
the early versions are physically much smaller than the target version,

348	 The Art of Systems Architecting

with far lower capacity (the direction of improvement is increasing scale
instead of decreasing size). The brassboard version has classically been
shrunk to an operationally suitable size and form factor, but is not yet fully
hardened or reliable enough for operational use. The “Flight” version is
the final version to be delivered to operational use.

This pattern is particularly applicable when:

Functional risks are low. We have high confidence that we can iden-•	
tify all of the desired functional characteristics early in the design
process.
Technology and implementation risks are (relatively) high. We have •	
low confidence that we can build and package the desired functional
characteristics in an environmentally suitable unit.
Production numbers can either be very low (a single flight system), •	
or this can be combined with the serial production pattern.
The strategy allows for a static functional aim point.•	

Because of the second bullet, the pattern is mostly seen in hardware-
centric systems. In most software-centric systems, the technology and
implementation risks are relatively low. We know that if we can write
functionally acceptable software we can probably package it in an
acceptable way. Obviously, many exceptions exist, but the point is that
in software-centric systems we are typically driven by functional risks
rather than technology and packaging risks. In contrast, in many sensor,
aircraft, and spacecraft systems, we have mature knowledge of how to
build a functionally acceptable system but not how to make it operate in
the environmentally constrained environment of the operational target.
Consider the problem of sending remote sensing instruments to Jupiter.
In most cases, the instruments we wish to send are well understood
and widely used already in terrestrial or even earth-orbiting environ-
ments. But, packaging the instrument in a size, weight, power, reliability,
radiation-resistant form factor usable in an outer planets mission is always
a great challenge.

Incremental Delivery

The incremental delivery pattern can be thought of as the converse of the
breadboard-brassboard-flight pattern. In the incremental delivery pattern,
we again build a series of systems, each different from the previous, but
the sequence grows in functional capability and not in environmental suit-
ability. Each member of the sequence is fully usable. In the classic version
of this, each member of the sequence is not just fully usable, but each is
delivered and used operationally. In commercial market terms, this is a
series of incrementally developed products.

Chapter 12:  Architecting in Business and Government	 349

This pattern is particularly applicable where:

The risks and uncertainty about what is functionally acceptable are •	
high and can only be resolved by operational experience. No amount
of requirements elicitation in the absence of a real system can be
expected to resolve the questions about what functional capabilities
the users really want.
Risks in developing an environmentally suitable system are low. •	
It is not difficult to meet user expectations of size, weight, power,
reliability, or other physical quality characteristics.
The cost, price, and revenue issues are such that multiple replace-•	
ments of a delivered system are acceptable (or even desired).
The strategy is dynamic, and we realize value substantially by •	
adapting to change and new knowledge with different system
configurations.

The third bullet is characteristic of software-centric systems, because
software production deployment costs can be very low. The third bullet
may also apply to systems with significant hardware content where
market forces lead to rapid turnover. As an example, consider many con-
sumer electronic segments where people rarely keep a device for more
than 2 to 3 years and are willing to pay for replacements (as long as they
offer new features).

Risk Spiral

The risk spiral is an integrated combination of breadboard-brassboard
incrementalism and incremental delivery. In the risk spiral (the concept
original to Boehm), each cycle through development yields a system. The
objectives of each cycle are driven by an overall assessment of risk. If the
assessment is that currently the risks and uncertainties about what func-
tions have value to users, then the next spiral cycle will emphasize a user
delivered system that can assess the value of functions. If the assessment
is that the highest risk is engineering and packaging, then the next spiral
cycle will emphasize the breadboard-brassboard-type of development.

Each spiral cycle consists of all of the conventional activities of the
waterfall: requirements analysis, design, build, integration, and test, as
illustrated in Figure 1.5 and Figure 6.1. Architecting in all spiral or incre-
mental situations differs in two basic ways from one-shot or waterfall
architecting. First, architecting becomes episodic. We do architecting
every time we go around the spiral. Each cycle around the spiral requires
decisions about the problem and solution content of that cycle around the
spiral. Each cycle is a complete pass through development and requires
a set of architectural decisions on the concept to be developed (at the

350	 The Art of Systems Architecting

beginning of the cycle), and decisions on acceptance for use (at the end
of the cycle). Second, we architect the invariants, or the things that do not
change as we spiral.

In addition, the choice of an incremental development approach,
versus a one-shot development or some other pattern, is an architectural
choice. It is the choice of program architecture. That choice, of program
architecture, is rooted in an understanding of the overall strategy and
how architectural decisions embody that strategy.

Collaborative Formation

In Chapter 7 we examined the concept of a collaborative system, a system
formed by the partially or whole voluntary interaction of autonomous
systems. We can undertake the formation of a collaborative system as
a deliberate effort, although the fact that we cannot control all aspects
means that there is an element of uncertainty. In creating a program
whose goal is the collaboration formation of a system, we are deliberately
choosing to orchestrate a process whose end point we cannot precisely
predict. We must accept the uncertainty of the collaborative assemblage
process in return for the benefits that it brings. A collaborative formation
approach is especially appropriate when:

The strategy is dynamic, and we believe our power to shape is greater •	
than our power to actually implement.
The environment inherently contains multiple autonomous players, •	
and it is neither sensible nor feasible to replace them.
The risks associated with the strong preexisting players are more •	
significant than the risks of a particular configuration being achieved
or not.

Strategic Architecting of Programs
Given that programs have architectures, and that the architecture of the
program needs to be considered in parallel with the architecture of the
system, how does the architect go about it? Architectural thinking in
business and government should consist of all of the following:

Understand the organizational context in which architecting takes •	
place.

Who are the competitors?−−
Who are the opponents (not the same as competitors)?−−
Is the organization involved with architecting a constant or vari-−−
able? Is a new organization logically an outcome of architecting?

Chapter 12:  Architecting in Business and Government	 351

Understand the overall strategy of the organization involved with •	
architecting. What are the static and dynamic aspects of the strategy?
What is the strategic identity of the organization?
Use the context in Problem-System aspects of architecting. Begin •	
exploration of the program architecture as system concepts emerge.
Select system and program styles consistently with the strategic •	
identity of the organization.

Consider how these factors interrelated in the DC-3 example. The
example involved several organizations with different positions relative to
each other, different strategies, and different architecting responsibilities.
Boeing was responsible for architecting (and building) airplanes to satisfy
a commercial mission (make money by being sold to airlines to be oper-
ated commercially by those airlines). Their strategy, at the level of the 247,
was a static strategy — perform existing missions with better perfor-
mance and cost. At the level of the whole company, the strategy was much
more dynamic because of their parallel pursuit of much larger, military
aircraft with technology that overlaps with commercial applications. The
strategic identity of the 247 group was the pursuit of the static strategy.
The strategic identity of the corporation as a whole was a dynamic one of
shaping the aircraft market. The architects of the 247 dutifully pursued
the static strategy of performance and cost improvements and were suc-
cessful within that context. The program style was prototyping followed
by serial production. There was no incremental development. When the
DC-3 overtook the 247, Boeing’s response was to make another architec-
tural jump (the corporate-level dynamic strategy), but that was cut off by
the beginning of World War II.

Douglas and Boeing were competitors, and at the corporate level they
were pursuing similar dynamic strategies. At the local level of the air-
craft program, Douglas pursued a more dynamic strategy. Considering
the DC-1, DC-2, and DC-3 as a series, we see an incremental development
strategy. The architectural jump on the problem side was to move away
from the known airmail market. As a result of the uncertainties, this was
pursued with incremental development, with each subsequent aircraft
a bigger step into the unknown in size and performance. The program
style was incremental development because each of the models was a
fully usable, customer deliverable system. Indeed, all three models were
customer delivered, although the total production of the DC-3 swamps
the other two.

Jump and Exploit

The DC-3 and its numerous models are an illustration of a larger heuristic
applicable at the program and organization level, the pattern of “jump

352	 The Art of Systems Architecting

and exploit.” Jump and exploit describes the strategic approach of seeking
unprecedented systems (the jump) followed by extensive lateral exploita-
tion of the unprecedented jump. This combines the notions of static and
dynamic strategy. We make jumps in creating new systems and coupled
new concepts of operation or markets. When the jump is successful, we
vigorously pursue the static strategy of improving performance and cost
for the newly revealed operational concept or market.

The interplay of architectural jumps and long-term steady improve-
ment is a strategic challenge. Leaders must be able to evaluate when the
time for a jump is ripe, invest when the time is ripe, and stop focusing
on incremental improvement. Conversely, failing to run a strategy of
focused incremental improvement can easily cede competitive advantage
to another player who does focus on continuous improvement. While
recognizing when each situation pertains is inherently hard, one heuristic
has been found useful.

An architectural leap can rarely be justified when the con-
sequence of a successful leap is a drop in revenue. Markets
must expand to make cost reductions justifiable.

This is a hard heuristic to swallow in many cases, but it is impor-
tant to examine. The simplest case is where an essentially fixed number
of systems will be produced. Consider the case of space launch vehicles.
Imagine that the government buys an average of five of a particular
type per year. If each launch vehicle costs $100 million, the government
expends an average of $500 million a year with this particular supplier.
Now suppose there is a proposal to develop a new launch vehicle with the
same performance but an estimated per launch cost of $50 million. Is this
likely to be a workable proposal? The heuristics suggest it would not be,
and the heuristic is developed from past experience with space systems
and other limited market systems where demand is inelastic with price.

Why might this be so, and when might it not be true? When the sup-
plier base is relatively fixed, we can imagine that existing suppliers would
be less than enthusiastic about a program that promises to cut their revenue
in half. Even if the government was to pay for the development, the over-
all situation is unlikely to be favorable. Financial capital is not the only
capital of importance. Human capital is attracted to growing markets and
is an essential fuel. In most cases, the program to cut costs in half is likely
to be successful only if price elasticity is such that volume will likewise
increase by at least a factor of two. Our hypothetical launch vehicle cost
reduction program might be successful if a price cut by a half would more
than double the launch rate. We see this effect in play in the electronics
industry. While the price per transistor drops steadily by factors of two,
total production and sales of transistors goes up even more quickly. The

Chapter 12:  Architecting in Business and Government	 353

total revenues of the electronics industry have risen rapidly. Were that not
so, they would be unlikely to have been able to attract the capital (both
financial and human) that was necessary to fuel the growth.

Enterprise Architecture
A natural conclusion to this discussion of architecting in organizations
is enterprise architecture. Enterprise architecture is big business. It exists
as an established practice with numerous books, consultants, service pro-
viders, methods, and courses. The purpose of this book is not to replace
any of the large body of work, or even to engage in a detailed critique.
Nevertheless, the concepts of this book, and especially this chapter, can be
used to usefully inform the practice of enterprise architecture and under-
stand some of the most commonly encountered difficulties.

Given that the field is large and the companies are so diverse, it is
perhaps not surprising that there is a good deal of disagreement on what
enterprise architecture is. If we take an enterprise to be an organization
with a defined mission (a company and a government department would
both normally qualify), then a “natural” definition of the architecture of
an enterprise would be the fundamental and unifying structure of the
enterprise. Then the practice of enterprise architecture would concern
itself largely with business strategy and business processes and how the
enterprise might be best organized to carry out its mission. In the case
of a company, this would mean long-term value creation in particular
markets. In the case of a government department, it would depend on
the case (human services versus environment versus research versus
security). But in reality, enterprise architecture as actually practiced
almost always is largely concerned with information technology, either
substantially or solely.

A good definition of enterprise architecture comes from Peter Weill of
the Massachusetts Institute of Technology (MIT):

The organizing logic for key business processes and
IT capabilities reflecting the integration and standard-
ization requirements of the firm’s operating model.3

This book is concerned primarily with the architecting of systems.
The information technology of a firm is certainly a system. The structure
of that system should support the overall mission of the firm. As stated
at the beginning of this chapter, the architecture of the firm’s information
technology (IT) should embody the strategy for the firm. From a simple
insight, we can glean some important lessons.

354	 The Art of Systems Architecting

The strategy an IT system embodies should be that of the
organization it belongs to as a whole, not that of just the
IT controlling organization.

Several times one of the present authors has encountered the situation
of how a research and development (R&D) group’s IT is arranged within a
larger organization of which R&D is a small part. Consider a hypothetical
large specialty chemical manufacturer. The firm will undoubtedly have a
chief information officer (CIO) and a corporate-wide information system.
That corporate-wide information system needs to support internal func-
tions (such as time and attendance, human resources, corporate-wide
e-mail, and so forth) as well as core business activities. The core busi-
ness activities would include sales and marketing, customer interaction,
production and transportation planning, finance and reporting, and
many others. Because these core functions represent virtually all of the
firm’s revenue, the CIO is likely to be very concerned with how they are
supported. The CIO’s priorities are likely to be dominated by system and
application stability, availability, security, regulatory compliance, and cost
control. When the CIO’s office conducts an enterprise architecture exercise,
it is likely to focus on central control and standardization. The ideal will
change slowly, be carefully controlled, and provide a well-chosen set of
common services with high availability.

Within this large manufacturer, there is likely to be a R&D group. The
R&D group may have dominant responsibility for new products and pro-
duction methods. At any given time, they are not a revenue source; they
are likely a sink for money. However, the long-term future of the company
(5 and 10 years out) depends almost totally on the success of the R&D
group. In an environment where products age out in 5 to 10 years, failure
to have a full pipeline of new products will spell the end of the company
and its value. How do the information technology needs of the R&D group
align with the priorities of the CIO? In many cases, they align very poorly.

On the one hand, the employees of the R&D group have many of the
same needs for centralized information services as everybody else. They
need access to corporate-wide e-mail, human resources applications, and
other centralized tools just like other groups. But, today, the R&D group
in a specialty chemical company is likely to be trying to rapidly exploit
computational chemistry, cheminformatics, a myriad of tools for chemi-
cal engineering, biology-based products and production methods, and
collaborations with groups around the world. This environment changes
quickly with tools being updated monthly, tools coming from all over
the world, and all being run on a diversity of platforms. There is often a
serious collision of strategies between the R&D group and the CIO.

Good enterprise architecture recognizes the diversity of business
strategies within a firm and tries to appropriately accommodate them

Chapter 12:  Architecting in Business and Government	 355

all. It realizes that the strategy the whole firm’s IT should embody is the
strategy of the whole firm, not that of a narrow segment. The IT in a firm
should be there to execute the purpose of the firm, over both the long and
the short term. Good architecting goes back, again and again if necessary,
to root purpose. The purpose of a firm’s IT is not to cost less than it did last
year (even if that makes somebody’s metrics look good); it is to support the
business strategy of the whole firm. This is the holistic view of architecting,
a system that we embraced from Chapter 1.

An architecture description is not an architecture, and
neither is an architecture framework.

This is simply a reiteration of a point made early in this book to not
confuse architecture with architecture description. It is, unfortunately,
not uncommon for a group to point at a large binder and say “This is
our enterprise architecture.” It is not and cannot be. At best, the binder
will contain a description of the decisions that define the architecture of
the enterprise. At best, those decisions will be good ones and will have
captured the firm’s business strategy effectively. Unfortunately, the best
may not be true. Quite possibly the key decisions contained in that binder
are buried from view and unwise to boot. If the decisions are clear, the
architect should be able to highlight and explain them without many
pages of description in the binder. If the decisions are wise, the reasoning
should be clear and explainable and not buried in an opaque trade study
where an answer is touted as the best simply because it scored the best on
an evaluation function but nobody can clearly articulate why and with
what sensitivity.

The frameworks commonly cited in the enterprise architecture lit-
erature are all architecture description frameworks. That is, they define
how to write a document about a system or systems. They do not define
the decisions, and in most cases they provide little guidance on how
to go about the decision making. By itself this is not a great problem.
Standardization of description methods can be quite useful in promoting
wide communication. Where it becomes a problem is when framework
adherence and unthinking artifact production take the place of critical
thinking about an organization’s missions, the diversity of missions that
make up the overall mission, and the sources of value from what is being
architected. Rote application of frameworks typically yields large docu-
ments that are then either applied inflexibly or ignored (which may be
better than inflexible application).

In thinking about the example of the large chemical company above,
no amount of framework application will resolve the essential tensions.
The essential tensions are how to balance the need for diversity, change,
and local control within the R&D group with the need for stability and

356	 The Art of Systems Architecting

standardization in the firm as a whole. Technology or business process
adaptation may provide ways to relieve that tension. The tension is unlikely
to ever be fully resolved, and there will inevitably be problems between
the R&D group and other groups over how IT is selected and used. But, the
absence of perfection is no excuse to avoid deep thinking about how best
to resolve the tension. There is almost certainly a great deal of long-term
business value to allowing R&D to fully utilize the rapidly growing tech-
nology in accelerating product and production development and a great
threat in the possibility that competitors will resolve it better, sooner.

Program structure may be as important, or more important,
than product structure.

In a large firm, the way they select, procure, deploy, and operate their
IT is likely to be more important than the precise components chosen. In
the terms of the chapter, the structure of the program is likely to be as
important as or more important than the Problem-System pair. The struc-
ture of the program must be inside the scope of architectural consideration,
not outside it.

Good architecting thinks as much or more about the
problem as about the solution. Architecting teams need the
skills relevant to the problem scope they are engaged in.

It often seems natural that an IT-centric enterprise architecture job
should be done by IT specialists. But, if the scope of consideration includes
how we might change business processes in concert with IT deployments
in order to better carry out the firm’s mission, an all-IT-specialist team
will be wholly inadequate. This is reflective of the basic nature of systems
architecting. As discussed here, the lowest scope that is “architectural”
is Problem-System. That is, the problem is inside the scope of investiga-
tion, not outside it. As discussed in the beginning chapters of the book,
architecting addresses ill-structured problems where the statement of the
problem is in-play. If all the requirements can be readily determined, it is
not architecting. If the nature of the problem is “Find the best solution
to this precisely stated and well-structured problem,” it might be a very
worthy and difficult thing to do, but it is not architecting. If it is not archi-
tecting, it does not need the machinery of architecting, and we can rely
instead on the established machinery of engineering science.

In the enterprise case, the situation is often more difficult because the
problem includes basic strategic issues for the firm. A team constructed to
do what is viewed as a technical architecting job rarely contains the exper-
tise and authority to challenge enterprise-level strategic decisions. They
may be unable to command sufficient attention from senior executives

Chapter 12:  Architecting in Business and Government	 357

whose purview definitely includes strategy. Lacking that attention, they
may default to extracting a well-structured problem they can solve,
whether or not that is really relevant to the organization’s greatest need.

Many darkly humorous tales can be told of the technologist supposedly
empowered to make a revolution in a firm running after executives try-
ing to have a strategic discussion,4 or giving up, pursuing a technological
solution, and failing because of an inability of the firm to connect techno-
logical success to business strategy. The DC-3 and GPS stories are stories
of success, albeit with all of the fits and starts and blind alleys of the real
world. One of the most famous stories of failure to connect technological
architecting to business strategy execution is Xerox PARC5 in the 1970s.
The story is lengthy and well told in the published literature, but certain
points bear repeating.

Xerox executives had a clear strategic vision of the need to make a
change from the copier business by the late 1960s. They took tremen-
dous advantage of the availability of a whole cadre of the best computer
scientists and engineers who became available as a result of U.S. Defense
Advanced Research Projects Agency (DARPA) funding cuts. They set
their recruits up in a new organization that produced an unprecedented
series of technical innovations (laser printers, object-oriented program-
ming languages, and window-mouse-graphics displays famously among
them), with many of those innovations taken to the point of prototype
products. But, they were then unable to convert those innovations and
products into revenue. The failure was largely one of mismatched strate-
gies and a lack of coupled change in business models (that is, operational
concepts) to go with the innovative products. To turn the new products
into value would have required new business concepts to go with them.
As it turned out, other firms were much faster to find those altered opera-
tional concepts and implement them.

Ironically, it was the ability and willingness of Xerox to discover
and use coupled technological and business model change in the 1950s,
replacing a purchase model for copiers with a lease and per-page-charge
model that made the company such an enormous success originally. But
what was possible in the start-up days became impossible in the days of
maturity. The lesson is only reinforced from the other case studies. Dealing
with change at the right scope is critical. The biggest successes come from
coupled change in technology, system, and operational concept.

Of course, this story about Xerox is only loosely about a firm’s IT archi-
tecture. But, that is exactly the point. Good architecting knows its scope.
Focusing on just a firm’s IT architecture is a narrow focus, one unlikely
to lead to changes in strategy or overall approach, but likely to lead to
efficiency and improvements within a mission area. It leads to small solu-
tions within preexisting mission areas instead of large solutions in new
mission areas. Focusing on efficiencies can create strong competitive

358	 The Art of Systems Architecting

advantage when missions or markets are stable. When missions or markets
are unstable, and revolution is in the air, focusing on efficiencies is a dis-
traction, and possibly a fatal distraction. Of course, the opposite is also
possible when missions and markets are stable, and one can be distracted
by a futile search for revolutions where none can exist and fail to develop
the efficiencies that others will use to win the competition. An organiza-
tion has to be wise enough to know the difference.

An Enterprise Thought Experiment

Let us return briefly to Chapter 6 on software and the case discussion on
layered systems. Many exercises in enterprise architecture turn, one way
or another, on how to provide common services across a large enterprise.
A popular buzz-word is “services-oriented architecture” (SOA). As a
thought experiment, what are issues in the program or strategic sense for
providing a common infrastructure of software services? Two program-
matic alternatives (of course, there are others) are to license a commer-
cial enterprise service bus (ESB) and have new software written on top of
it, and to license an open-source ESB equivalent and write new software
on top of it using a continuing open-source rule (all components written
become enterprise shared property). Some of the issues are as follows:

What is the impact on which developers can be used? Will some •	
developers refuse to contract to write code that is shared with other
enterprise developers? With a commercial ESB, will the cost of devel-
oper licenses inhibit how many developers can be used and when
(for example, cannot afford experimental programming)?
In either case, will making a transition away from current practice •	
devalue current developers? Can the organization afford the costs
involved in building a new developer community? As an aside, that
cost might run from very large to negative depending on the nature
of the market and the skills of the current developers.
Does business with other enterprises on the part of the ESB vendor •	
bring economies of scale? Versus, is there a significant open-source
development community beyond the local enterprise for an open-
source alternative?
How are third-party developers impacted? If you want a particular •	
tool of high importance brought in to the enterprise service environ-
ment, how will that tool vendor integrate with the ESB (commercial
from another party versus open source)?
Does the choice of implementation strategy affect how the larger •	
business strategy will be achieved?

Chapter 12:  Architecting in Business and Government	 359

Conclusion
Architecting must be situated in its business or government operational
context. When viewed in its context, the relationship to strategy becomes
evident. Where strategies are clear, good architecting can follow. Where
strategies are unclear, good architecting will be very difficult. As we
consider not just the classic architecting relationship of problem-system
but expand the focus to the structure of development programs, there
becomes a synergy of architectural and strategic thinking.

The most successful, unprecedented systems involve changes to busi-
ness or operational models in parallel with new systems and technology.
Just introducing a new system is not enough; when the system is revo-
lutionary, the context has to change as well for the greatest success to be
realized. Coupled business or operational change must be enabled by the
organization’s strategy.

The leading guidelines in this chapter were as follows:

Remember problem-system-program-organization.•	
Understand static and dynamic strategies, and how they map into •	
program styles.
Have a catalog of development program styles and understand •	
where each is best suited.
Know when to jump, and know when to settle for continuous improve-•	
ment.
Architect holistically for strategy, not just for local stakeholders.•	
Do not confuse architectures, architecture descriptions, and archi-•	
tecture description frameworks.
Think of architecture as the technical embodiment of strategy.•	

Notes and References
	 1.	 Although see Rechtin, E., Systems Architecting of Organizations: Why Eagles

Can’t Swim. Boca Raton, FL: CRC Press, 1999.
	 2.	 This discussion of static and dynamic strategy is heavily influenced by the

strategy concepts of Colonel John Boyd. Boyd’s concepts have become well
known in spite of there being no regularly published reference. The brief-
ings that capture Boyd’s concepts are generally available on the Internet,
see www.d-n-i.net/dni/john-r-boyd/ for a collection. The most relevant
references here are the Boyd briefing entitled Patterns of Conflict and the
book Certain to Win by Boyd’s long-time colleague Chet Richards. In Boyd’s
terms, one can regard a static strategy as “attrition warfare” and a dynamic
strategy as “maneuver warfare.” Boyd comes down strongly on the side of
the superiority of maneuver warfare, but it must be admitted that attrition
warfare armies win wars too, albeit often at terrible cost.

360	 The Art of Systems Architecting

	 3.	 Weill, Peter, Innovating with Information Systems: What Do the Most Agile
Firms in the World Do? Sixth e-business conference PwC and IESE Barcelona,
Spain, March 27, 2007. Retrieved from www.iese.edu/en/files/6_29338.pdf
14-May-2008.

	 4.	 A favorite is My Year at a Big High Tech Company by Joe Kay, appearing
from August to November 2000 in Forbes ASAP.

	 5.	 See Hiltzik, M. A., Dealers of Lightning. New York: Harper Business, 2000,
for a detailed recounting.

361

13chapter

The Political Process and
Systems Architecting*

Brenda Forman

Introduction: The Political Challenge
The process of systems architecting requires two things above all others
— value judgments by the client and technical choices by the architect.
The political process is the way that the general public, when it is the
end client, expresses its value judgments. High-tech, high-budget,
high-visibility, publicly supported programs are therefore far more than
engineering challenges; they are political challenges of the first magnitude.
A program may have the technological potential of producing the most
revolutionary weapon system since gunpowder, elegantly engineered and
technologically superb, but if it is to have any real life-expectancy or even
birth, its managers must take its political element as seriously as any other
element. It is not only possible but likely that the political process will not
only drive such design factors as safety, security, producibility, quantity,
and reliability, but may even influence the choice of technologies to be
employed.† The bottom line is:

If the politics don’t fly, the system never will.

*	 This chapter is based on a course originated and taught at the University of Southern
California by Dr. Forman, now with the Lockheed Martin Corporation in Washington,
DC. As indicated in the Introduction to Part IV, the political process of the American
Federal Government was chosen for the course for three reasons: it is the process by
which the general public expresses its value judgments as a customer, it is well docu-
mented and publicized, and it is seriously misunderstood by the engineering community,
to the detriment of effective architecting.

†	Outside of the government sphere, it may seem that politics disappears, but it does not.
Large corporations are also political entities, and the heuristics of politics operate in orga-
nizations on many levels. Of course, as an organization becomes commercially focused,
its objectives are different and the motivations of its leaders are likewise different, but
many of the same rules will apply. Thus, this chapter can be seen as a guide to the political
demands on architects, even outside of the purely political sphere.

362	 The Art of Systems Architecting

Politics as a Design Factor
Politics is a determining design factor in today’s high-tech engineering.
Its rules and variables must be understood as clearly as stress analysis,
electronics, or support requirements. However, its rules differ profoundly
from those of Aristotelian logic. Its many variables can be bewildering in
their complexity and often downright orneriness.

In addition to the formal political institutions of the Congress and the
White House, a program must deal with a political process that includes
interagency rivalries, intra-agency tensions, dozens of lobbying groups,
influential external technical review groups, powerful individuals both
within and outside government, and always and everywhere, the media.

These groups, organizations, institutions, and individuals interact
in a process of great complexity. This confusing and at times chaotic
activity, however, determines the budgetary funding levels that either
enable the engineering design process to go forward or threaten outright
cancellation. More often of late, it directly affects the design in the form of
detailed budget allocations, assignments of work, environmental impact
statements, and the reporting of risks or threats.

Understanding the political process and dealing successfully with it
are therefore crucial to program success.

Example: Perhaps no major program has seen as many
cuts, stretch outs, reviews, mandated designs, and risk
of cancellation as the planetary exploration program
of the 1970s and 1980s. Much of the cause was the need
to fund the much larger Shuttle program. For more
than a decade, there were no planetary launches and
virtually no new starts. From year to year changes
were mandated in spacecraft design, the launch vehi-
cles to be used, and even the planets and asteroids to
be explored. The collateral damage to the planetary
program of the Shuttle Challenger loss was enor-
mous in delayed opportunities, redesigns, and wasted
energy. Yet the program was so engineered that it still
produced a long series of dramatic successes, widely
publicized and applauded, using spacecraft designed
and launched many years before.*

*	 As a follow-up, in the 1990s, JPL made an aggressive move toward shorter missions with
more rapid turnover. This can be seen as emphasizing the longer term importance of
learning and adapting in scientific exploration over immediate cost efficiency. A consis-
tent, year-to-year stream of results also helps build constituency. But, ironically, in the
mid-2000’s planetary exploration is once again under pressure, this time from the expense
of terminating the Shuttle program.

Chapter 13:  The Political Process and Systems Architecting	 363

Begin by understanding that power is very widely distributed in
Washington. There is no single, clear-cut locus of authority to which to turn
for support for long-term, expensive programs. Instead support must be
continuously and repeatedly generated from widely varying groups, each
of which may perceive the program’s expected benefits in quite different
ways and many of whose interests may diverge rather sharply when the
pressure is on.

Example: The nation’s space program is confronted
with extraordinary tensions, none of which are
resolvable by any single authority, agency, branch, or
individual. There are tensions between civilian and
military, between science and application, between
manned and unmanned flight, between com-
plete openness and the tightest security, between
the military services, between NASA centers and
between the commercial and government sectors, to
name a few. Typical of the contested issues are launch
vehicle development, acquisition and use; allocations
of work to different sections of the country and the
rest of the world; and of the future direction of every
program. No one, anywhere, has sufficient authority
to resolve any of these tensions and issues, much less
to resolve them all simultaneously.

This broad dispersion of power repeatedly confuses anyone expecting
that somebody will really be in charge there. Rather the opposite is true:
anything that happens in Washington is resultant of dozens of political
vectors, all pulling in different directions. Everything is the product of
maneuver and compromise. When those fail, the result is policy paralysis
— and all too possibly, program cancellation by default or failure to act.

There are no clear-cut chains of command in the government. It is
nothing like the military or even like a corporation. The process gets even
more complicated because power does not stay put in Washington. Power
relationships are constantly changing, sometimes quietly and gradually,
at other times suddenly, under the impact of a major election or a domestic
or international crisis. These shifts can alter the policy agenda — and
therefore funding priorities — abruptly and with little advance warning.
A prime example is the ever-changing contest over future defense spend-
ing levels in the wake of the welcomed end of the Cold War.

The entire process is far better understood in dynamic than static
terms. There is a continuous ebb and flow of power and influence between
the Congress and the White House, among and within the rival agencies,
and among ambitious individuals. And through it all, everyone is playing

364	 The Art of Systems Architecting

to the media, particularly to television, in efforts to change public percep-
tions, value judgments, and support.

The First Skill to Master
To deal effectively with this process, the first skill to master is the ability to
think in political terms. And that requires understanding that the political
process functions in terms of an entirely different logic system than
the one in which scientists, engineers, and military officers are trained.
Washington functions in terms of the logic of politics. It is a system every
bit as rigorous in its way as any other, but its premises and rules are pro-
foundly different. It will therefore repeatedly arrive at conclusions quite different
from those of engineering logic, based on the same data.

Scientists and engineers are trained to marshal their facts and pro-
ceed from them to proof: for them, proof is a matter of firm assumptions,
accurate data, and logical deduction. Political thinking is structured
entirely differently. It depends not on logical proof but on past experi-
ences, negotiation, compromise, and perceptions. Proof is a matter of
“having the votes.” If a majority of votes can be mustered in Congress
to pass a program budget, then — by definition — the program has been
judged to be worthy, useful, and beneficial to the nation. If the program
cannot, then no matter what its technological merits, the program will
lose out to other programs that can.

Mustering the votes depends only in part on engineering or tech-
nological merit. These are always important — but getting the votes
frequently depends as much or even more on a quite different value judg-
ment, the program’s benefits in terms of jobs and revenues among the
Congressional districts.

Example: After the Lockheed Corporation won
NASA’s Advanced Solid Rocket Motor (ASRM)
program, the program found strong support in
the Congress because Lockheed located its plant
in the Mississippi district of the then Chairman of
the House Appropriations Committee. Lockheed’s
factory was only partially built when the chairman
suffered a crippling stroke and was forced to retire
from his Congressional duties. Shortly thereafter,
the Congress, no longer obliged to the chairman,
reevaluated and then cancelled the program.

In addition to the highest engineering skills, therefore, the successful
architect-engineer must have at least a basic understanding of this political

Chapter 13:  The Political Process and Systems Architecting	 365

process. The alternative is to be repeatedly blindsided by political events
— and worse yet, not even to comprehend why.

Heuristics in the Political Process:
“The Facts of Life”
Following are some basic concepts for navigating these rocky rapids —
“The Facts of Life.” They are often unpleasant for the dedicated engineer,
but they are perilous to ignore. Understanding them, on the other hand,
will go far to help anticipate problems and cope more effectively with
them. They are as follows and will be discussed in turn:

Politics, not technology, sets the limits of what technology is allowed •	
to achieve.
Cost rules.•	
A strong, coherent constituency is essential.•	
Technical problems become political problems.•	
The best engineering solutions are not necessarily the best politi-•	
cal solutions.

FACT OF LIFE # 1: Politics, not technology, sets the limits
of what technology is allowed to achieve.

If funding is unavailable for it, any program will die, and getting the fund-
ing — not to mention keeping it over time — is a political undertaking.
Furthermore, funding — or rather, the lack of it — sets limits that are
considerably narrower than what our technological and engineering
capabilities could accomplish in a world without budgetary constraints.
Our technological reach increasingly exceeds our budgetary grasp. This can
be intensely frustrating to the creative engineer working on a good and
promising program.

Example: The space station program can trace its
origins to the mid-1950s. By the early 1960s it was a
preferred way station for traveling to and from the
moon. But when, for reasons of launch vehicle size
and schedule, the Apollo program chose a flight
profile that bypassed any space station and elected
instead a direct flight to lunar orbit, the space station
concept went into limbo until the Apollo had suc-
cessfully accomplished its mission. The question then
was, what next in manned spaceflight? A favored
concept was a manned space station as a waypoint

366	 The Art of Systems Architecting

to the moon and planets, built and supported by a
shuttle vehicle to and from orbit. Technologically,
the concept was feasible; some argued that it was
easier than the lunar mission. Congress balked.
The President was otherwise occupied. Finally,
in 1972, the Shuttle was born as an overpromised,
underbudgeted fleet, without a space station to
serve. Architecturally speaking, major commit-
ments and decisions were made before feasibility
and desirability had been brought together in a
consistent whole.

FACT OF LIFE #2: Cost rules.

High technology gets more expensive by the year. As a result, the only
pockets deep enough to afford it are increasingly those of the government.*
The fundamental equation to remember is Money = Politics. Reviews and
hearings will spend much time on presumably technical issues, but the
fundamental and absolutely determining consideration is always afford-
ability — and affordability is decided by whichever side has the most votes.

Funding won in one year, moreover, does not stay won. Instead it
must be fought for afresh every year. With exceedingly few exceptions,
no program in the entire federal budget is funded for more than one year
at a time. Every year is therefore a new struggle to head off attackers who
want the program’s money spent somewhere else, to rally constituents, to
persuade the waverers, and, if possible, to add new supporters.

This is an intense, continuous, and demanding process requiring huge
amounts of time and energy. And after one year’s budget is finally passed,
the process starts all over again. There is always next year. Keeping a
program “sold,” in short, is a continuous political exercise, and like the
heroine in the old movie serial, “The Perils of Pauline,” some programs at
the ragged edge will have to be rescued from sudden death on a regular
basis. Rescue, if and when, may be only partial — not every feature can or
will be sustained. If one of the lost features is a system function, the end
may be near.

*	 Although the economic expansion through the end of the 1990s sets an interesting counter
point. The government is less and less able to influence technology in certain areas, for
example, computing, simply because the commercial market has become so large relative
to the federal market. Similarly, some of the most ambitious space and launch ventures
in the 1990s were privately funded. Although many of those did not come to fruition,
the continuing development of some such efforts is testimony to the role of return-on-
investment thinking over cash-flow thinking.

Chapter 13:  The Political Process and Systems Architecting	 367

Example: After the Shuttle had become operational,
the question again was, what next in manned
spaceflight? Although a modestly capable space sta-
tion had been successfully launched by a Saturn
launch vehicle, the space station program had
otherwise been shelved once the Shuttle began
its resource-consuming development. With devel-
opmental skill again available, the space station
concept was again brought forward. However,
order-of-magnitude life-cycle cost estimates of the
proposed program placed the cost at approximately
that of the Apollo, which in 1990-decade dollars
would have been about $100 billion — clearly too
much for the size of constituency it could com-
mand. The result has been an almost interminable
series of designs and redesigns, all unaffordable as
judged by Congressional votes. Even more serious,
the cost requirement has resulted in a spiraling
loss of system functions, users, and supporters.
Microgravity experiments, drug testing, on-board
repair of on-orbit satellites, zero-g manufacturing,
optical telescopes, animal experiments, military
research and development — one after another
had to be reduced to the point of lack of interest by
potential users. A clearly implied initial purpose of
the space station, to build one because the Soviet
Union had one, was finally put to rest with the U.S.
government’s decision to bring Russia into a joint
program with the United States, Japan, Canada,
and the European Space Agency. One apparent cer-
tainty: the U.S. Congress made the value judgment
that a yearly cap of $2.1 billion is all that a space
station program is worth. The design must comply
or risk cancellation. Cost rules.

Example: Now that the decision to terminate the
Shuttle has been made, a new program (Constellation)
is required to maintain U.S. human access to space.
All agree that the Shuttle should not be terminated
until the new system is flying to avoid a break in U.S.
human access to space. However, that can be accom-
plished only by an expensive overlap of the program
of several years that requires a large (several billion
U.S. dollars) increase in the NASA top-line budget.

368	 The Art of Systems Architecting

NASA has instead structured the programs with a
multiyear gap in space access, but avoids the fund-
ing hiccup (using savings from Shuttle termination
to ramp up production funding for Constellation).
Although there is widespread unhappiness, in
Congress and NASA, about the resulting gap, there
is no willingness to raise budgets enough to close it.
Again, cost rules.

FACT OF LIFE #3: A strong, coherent constituency
is essential.

No program ever gets funded solely — or even primarily — on the
basis of its technological merit or its engineering elegance. By and large,
the Congress is not concerned with its technological or engineering
content (unless, of course, those run into problems — see Fact of Life #4).
Instead, program funding depends directly on the strength and staying
power of its supporters — that is, its constituency.

Constituents support programs for any number of reasons, from the
concrete to the idealistic. At times, the reasons given by different sup-
porters will even seem contradictory. From the direct experience of one
of the authors, some advocates may support defense research programs
because they are building capability; others because research in promis-
ing better systems in the future permits reduction if not cancellation of
present production programs.

Example: The astonishing success of the V-22 tilt-rotor
Osprey aircraft program in surviving 4 years of hos-
tility during the 1988–1992 period, and several fatal
accidents, is directly attributable to the strength of
its constituency, one that embraced not merely its
original Marine Corps constituency but other Armed
Services as well — plus groups that see it as benefit-
ing the environment (by diminishing airport conges-
tion), as improving the balance of trade (by tapping a
large export market), and as maintaining U.S. tech-
nological leadership in the aerospace arena.

Assembling the right constituency can be a delicate challenge because
a constituency broad enough to win the necessary votes in Congress can
also easily fall prey to internal divisions and conflicts. Such was the case
for the Shuttle and is the case for the Space Station. The scientific commu-
nity proved to be a poor constituency for major programs; the more fields
that were brought in, the less the ability to agree on mission priorities. On

Chapter 13:  The Political Process and Systems Architecting	 369

the other hand, a tight homogeneous constituency is probably too small
to win the necessary votes. The superconducting supercollider proved to
be such. The art of politics is to knit these diverse motivations together
firmly enough to survive successive budget battles and keep the selected
program funded. Generally speaking, satellites for national security pur-
poses have succeeded in this political art. It can require the patience of a
saint coupled with the wiliness of a Metternich, but such are the survival
skills of politics.

FACT OF LIFE #4: Technical problems become politi-
cal problems.

In a high-budget, high-technology, high-visibility program, there is no
such thing as a purely technical problem. Program opponents will be constantly
on the lookout for ammunition with which to attack the program, and
technical problems are tailor-made to that end.

And the problems will normally be reported in a timely fashion. As
many programs have learned, mistakes are understandable; failing to report
them is inexcusable. In any case, reviews are mandated by the Congress as
a natural part of the program’s funding legislation. Any program that is
stretching the technological envelope will inevitably encounter technical
difficulties at one stage or another. The political result is that “technical”
reports inevitably become political documents as opponents berate and
advocates defend the program for its real or perceived shortcomings.

Judicious damage prevention and control, therefore, are constantly
required. Reports from prestigious scientific groups such as the Nuclear
Regulatory Commission (NRC) or Defense Science Board (DSB) will
routinely precipitate Congressional hearings in which hostile and friendly
Congressmen will pit their respective expert witnesses against one another
and the program’s fate may then depend not only on the expertise, but
on the political agility and articulateness of the supporting witnesses.
Furthermore, although such hearings will spend much time on ostensibly
technical issues, the fundamental and absolutely determining consider-
ation is always affordability — and affordability is decided by whichever
side has the most votes.

Examples: Decades-long developments are particu-
larly prone to have their technical problems become
political. Large investments have to be made every
year before any useful systems appear. The widely
reported technical difficulties of the B-1 and B-2
bombers, the C-17 cargo carrier, the Hubble telescope,
and the Galileo Jupiter spacecraft became matters of
public as well as legislative concern. The futures of

370	 The Art of Systems Architecting

long-distance air cargo transport, of space explo-
ration, and even of NASA are all brought up for
debate and reconsideration every year. Architects,
engineers, and program managers have good rea-
son to be concerned.

FACT OF LIFE #5: The best engineering solutions are
not necessarily the best political solutions.

Remember that we are dealing with two radically different logic
systems here. The requirements of political logic repeatedly run counter of those
of engineering logic. Take construction schedules: in engineering terms,
an optimum construction schedule is one that makes the best and most
economical use of resources and time and yields the lowest unit cost.
In political terms, the optimum construction schedule is the one that the
political process decides is affordable in the current fiscal year. These two
definitions routinely collide; the political definition always wins.

Example: NASA and other agencies often refer to
what is called the program cost curve. It plots total
cost of development and manufacture as a function
of its duration (Figure 13.1).

The foregoing example leads to another provisional heuristic:

With few exceptions, schedule delays and life-cycle cost
increases are accepted grudgingly; annual cost overruns
are not, and for good reason.

The reason is basic. A cost overrun — that is, an increase over budget
in a given year — will force the client to take the excess from some other
program, and that is not only difficult to do, it is hard to explain to the
blameless loser and to that program’s supporters. Schedule delays mean
postponing benefits at some future cost — neither of which affect anyone
today. At the worst end of this heuristic, it leads to managers “kicking
problems down the road” knowing they will have moved on before the
problem comes due.

Example: Shuttle cost overruns cost the unmanned
space program and its scientific constituency two
decades of unpostponable opportunities, timely
mission analyses, and individual careers based on
presidentially supported, wide-consensus planning.

Chapter 13:  The Political Process and Systems Architecting	 371

By the same token, a well-run program that sticks to budget can
encounter very difficult technical problems and survive.

Examples: Communication and surveillance satellite
programs.

As an aside, this heuristic leads us directly back to observations on
program and organization architecture and the role of feedback loops at
the enterprise level. Consider what happens when an organization caps the
duration of programs within its sphere of responsibility to, for example,
5 years. If they do so honestly they will, of course, push some long-term,
ambitious endeavors out of feasibility. But, they will have created a situ-
ation where program managers and architects can be expected to be
assigned to the same program for its full lifetime. They can expect to be
personally accountable for the end-point consequences of their start-point
actions. Moreover, when selecting program managers and architects for
the next program, executives can use the actual results of past programs
in evaluations, not the results reported before the responsible parties have
moved onto other projects. In the language of economists, the “moral
hazard” issue of people undertaking risks that others will have to suffer

Duration in Years

To
ta

l C
os

t

High

Low

Too Short Too LongBest

Figure 13.1  The curve is logical and almost always true. But, it is irrelevant because
the government functions on a cash-flow basis. Long-term savings will almost
always be foregone in favor of minimizing immediate outlays. Overall life-cycle
economies of scale will repeatedly be sacrificed in favor of slower appropriations,
even if they cause higher unit costs and greater overall program expense. There is
also the contradictory perception that if a given program is held to a tight, short
schedule it will cost less, facts notwithstanding. (See Chapter 5, “Social Systems,”
Facts versus Perceptions: An Added Tension.)

372	 The Art of Systems Architecting

from would be largely eliminated. The feedback loop at the enterprise
level now synchronizes programmatic and human responses.

The political process can be bewildering and intimidating to the
uninitiated. But it need not be so. Because in addition to being confus-
ing and chaotic, this is a profoundly interesting and engrossing process,
every bit as challenging as the knottiest engineering problem. Indeed it
is an engineering challenge because it molds the context in which systems
architecting and engineering must function.*

The reader may well find the craziness of the political process distaste-
ful — but it will not go away. The politically naive architect may experience
more than a fair share of disillusion, bitterness, and failure. The politi-
cally astute program manager, on the other hand, will understand the
political process, will have a strategy to accommodate it, and will counsel
the architect accordingly. Some suggestions for the architect: It helps to
document accurately when and why less-than-ideal technical decisions
were made — and how to mitigate them later, if necessary. It helps to
budget for contingencies and reasonably foreseeable risks. It helps to have
stable and operationally useful interim configurations and fallback posi-
tions. It helps to acknowledge the client’s right to have a change of mind or
to make difficult choices without complaint from the supplier. Above all,
it helps to acknowledge that living in the client’s world can be painful, too.
And finally, select a kit of prescriptions for the pain such as the following
from Appendix A:

The Triage, when there is only so much that can be done: Let the •	
dying die. Ignore those who will recover on their own. And treat
only those who would die without help.
The most important single element of success is to listen closely •	
to what the customer [in this case, the Congress] perceives as his
requirements and to have the will and ability to be responsive.
(J. E. Steiner, The Boeing Company, 1978)
Look out for hidden agendas.•	

That does not mean that architects and engineers have to become
expert lobbyists — but it does mean having an understanding of the polit-
ical context within which programs must function, the budget battle’s
rules of engagement, and of those factors that are conducive to success or
failure. The political process is not outside, it is an essential element of, the
process of creating and building systems.

*	 This is one area where commercial and government politics are often dramatically
different. Commercial enterprises tend to be return-on-investment driven rather than
cash-flow driven. However, firms that are driven by quarterly results will tend to resemble
the cash-flow-driven government budgeting process.

Chapter 13:  The Political Process and Systems Architecting	 373

A Few More Skills to Master
Following are a few more basic coping skills for the successful systems
architect. Foremost, understand that the Congress and the political process
are the owners of your project. They are the ultimate clients. It is absolutely
essential to deal with them accordingly by making sure they understand
what you are trying to do, why it is important, and why it makes political
sense for them to support you.

Be informed. This is your life, so be active. Learn the political process
for yourself and keep track of what is going on. Figure out what informa-
tion the political system needs in order to understand what the program
needs — and arrange to supply it to them. A chief engineer has utterly
different information requirements from a Congressional oversight com-
mittee. Learn what sort of information furthers your program’s fortunes
in Washington and then get it to your program managers so they can get
it to the political decision makers who determine your program’s funding.
Maybe your program has a great job-multiplier effect in some crucial
lawmaker’s district. Maybe its technology has some great potential com-
mercial applications in areas where the United States is losing a competi-
tive battle with another country.

The point is that the political process bases its decisions on very dif-
ferent information than does the engineering process. Learn to satisfy
both those sets of requirements by plan.

Conclusion
The political process is a necessary element of the process of creating and
building systems. It is not incomprehensible; it is different. Only when
they are not understood do the political Facts of Life instill cynicism or
a sense of powerlessness. Once understood, they become tools like any
others in the hands of an astute architect. It is a compliment to the client
to use them well.

375

14chapter

The Professionalization of
Systems Architecting

Elliott Axelband

Profession: Any occupation or vocation requir-
ing training in the liberal arts or the sciences and
advanced study in a specialized field.1

Introduction
To readers who have progressed this far, the existence of systems archi-
tecting as a process, regardless of who performs it, can be taken for granted.
Functions and forms have to be matched, system integrity has to be main-
tained throughout development, and systems have to be certified for use.
Visions have to be created, realized, and demonstrated.

This chapter, in contrast, covers the evolution of the systems archi-
tecting profession. An appropriate place to begin is with the history of the
closely related profession of systems engineering, the field from which
systems architecting evolved.

The Profession of Systems Engineering
Systems engineering as a process began in the early 1900s in the commu-
nication and aircraft industries. It evolved rapidly during and after World
War II as an important contributor to the development of large, innovative,
and increasingly complex systems. By the early 1950s, systems engineering
had reached the status of a recognized, valued profession. Communication
networks, ballistic missiles, radars, computers, and satellites were all recog-
nized as systems. The “systems approach” entered into everyday language
in many fields, social as well as technical. Government regulations and
standards explicitly addressed systems issues and techniques. Thousands
of engineers called systems engineering their vocation. Professional
societies formed sections with journals devoted to systems and their
development.2 Universities established systems engineering departments

376	 The Art of Systems Architecting

or systems-oriented programs.* Books addressing the process, or aspects
of it, started to appear.3 Most recently, the profession became formally rep-
resented with the establishment of the International Council on Systems
Engineering (INCOSE).4

The core of the systems approach from its beginnings has been the
definition and management of system interfaces and trade-offs, of which
there can be hundreds in any one system. Systems analysis, systems inte-
gration, systems test, and computer-aided system design were progres-
sively developed as powerful and successful problem-solving techniques.
Some have become self-standing professions of their own under the rubric
of systems engineering. Their academic, industrial, and governmental
credentials are now well established.

All are science based — that is, based on measurables and a set of
assumptions. In brief, these are that requirements and risks can be quan-
tified, solutions can be optimized, and compliance specified. But these
same assumptions are also constraints on the kinds of problems that can
be solved. In particular, science-based systems engineering does not do
well in problems that are abstract, data deficient, perceptual, or for which
the criteria are immeasurable.

For example, the meanings of such words as safe, survivable, afford-
able, reliable, acceptable, good, and bad, are either outside the scope of
systems engineering — “ask the client for some numbers” — or are force-
fitted to it by subjective estimates. Yet these words are the language of
the clients. Quantifying them can distort their inherent vagueness into an
unintended constraint.

There is no group of professionals that better understands these dif-
ficulties than systems engineers and executives — nor who wish more
to convert immeasurable factors to quantitatively statable problems by
whatever techniques can help. The first step they made was to recognize
the nature of the problems. The second was to realize that almost all of
them occur at the front (and back) ends of the engineering cycle. Consider
the following descriptive heuristics, developed long ago from systems
engineering experience:

All the serious mistakes are made in the first day.•	
Regardless of what has gone before, the acceptance criteria deter-•	
mine what is actually built.
Reliability has to be designed in, not tested in.•	

*	Among the best known are the University of Arizona at Tucson, Boston University,
Carnegie Tech, Case Western Reserve, the University of Florida, Georgia Tech, the
University of Maryland, George Mason University, Ohio State, MIT (Aerospace), New
York Polytech, the University of Tel Aviv, the University of Southern California, Virginia
Polytechnic Institute, and the University of Washington.

Chapter 14:  The Professionalization of Systems Architecting	 377

It is no coincidence that many systems engineers, logically enough,
now consider systems architecting to be “the front end of systems engineer-
ing” and that architectures are “established structures.” More precisely,
systems architecting can be seen as setting up the necessary conditions
for systems engineering and certifying its results. In short, systems archi-
tecting provides concepts for analysis and criteria for success. In evolving
systems, the functions of systems architecting, systems engineering, and
disciplinary engineering are all more episodic. Concepts for analysis and
criteria for success are established in early phases, but are revised with
each new spiral through the development process. Systems engineers
must control interfaces through many cycles of design, development, and
integration, not just through one. In addition to conducting classical archi-
tecting episodically, the systems architect must also consider the issue of
stable forms. The evolving system should not change everything on each
cycle; it needs to retain stable substructures to evolve effectively. The defi-
nition of these substructures is part of the architect’s role.

The immediate incentive for making architecting an explicit process,
the necessary precursor to establishing it as a self-standing profession
complementary to systems engineering, was the recognition in the late
1980s by systems executives that “something was missing” in systems
development and acquisition. And the omission was causing serious
trouble: system rejection by users, loss of competitive bids to innovators,
products stuck in unprofitable niches, military failures in joint opera-
tions, system overruns in cost and schedule, and so on — all traceable to
their beginnings. Yet there was a strong clue to the answer. Retrospective
examinations of earlier, highly successful systems showed the existence
in each case of an overarching vision, created and maintained by a very
small group, that characterized the program from start to finish.5

Software engineers and their clients were among the first to recog-
nize that the source of many of their software system problems was struc-
tural — that is, architectural.* Research in software architecture followed
in such universities as Carnegie Mellon, the University of North Carolina
Chapel Hill, the University of California at Irvine, and the University
of Southern California. Practitioners began identifying themselves as
software architects and forming architectural teams. Communication,
electronics, and aerospace systems architects followed shortly thereafter.

*	One of the earliest and most famous books on systems architecting is The Mythical
Man-Month, Essays on Software Engineering by Frederick P. Brooks, Jr. (1974, Addison-
Wesley, Reading, MA), which not only recognized the structural problems in software
but explicitly, on p. 37, calls for a systems architect, a select team, conceptual integrity,
and for the architect to “confine himself scrupulously to architecture” and to stay clear
of implementation. Brook’s analogy for the architectural team was a surgical team. He
credits a 1971 Harlan Mills proposal as the source of these precepts.

378	 The Art of Systems Architecting

Societies established architecture working groups, notably the
INCOSE Systems Architecting Working Group6 and the IEEE Software
Engineering Standards Committee’s Architecture Working Group,7 to
formulate standard definitions of terms and descriptions for systems and
software architectures. These activities are essential to the development
both of a common internal language for systems architecting and for the
integration of software architecture models and overall systems architec-
tures in complex, software-intensive systems.

At the scale of the profession of engineering, the recognition that
something was missing led to identifying it, by direct analogy with the
processes of the classical architectural profession, as systems architecting.8
Not surprisingly, the evolution of systems architecting tools was found to
be already underway in model building, discussed in Part III, and systems
standards,* discussed in the next section.

Systems Architecting and Systems Standards
Earlier chapters have pointed out that the abstract problems of the concep-
tual and certification phases require different tools from the analytic ones of
system development, production, and test. One of the most important sets of
tools is that of systems standards. Chapter 11 discussed one type of archi-
tecture standard, standards for architecture description. Here we discuss
a different category of standards, those that define development processes.
For historical reasons, architectural process standards were not developed as
a separate set. Instead, general systems process standards were developed
that included systems architecting elements and principles understood at the
time, most of them induced from lessons learned in individual programs. As
will be seen, some key elements appeared as early as in the 1950s.

Driven by much the same needs, the recognition of systems archi-
tecting in the late 1980s was paralleled, independently, by a recognition
that existing systems standards needed to be modified or supplemented
to respond to long-standing systems-level structuring problems. Bringing
the two tracks, architecting and standards, together should soon help
both. Architecting can improve systems standards. Systems standards
can provide valuable tools for the systems architecting profession.

Some of the earliest systems standards in which elements of systems
architecting appeared were those of system specification, interface descrip-
tion, and interface management. They proliferated rapidly. A system speci-
fication can beget 10 subsystem specifications, each of which is supported

*	Systems standards, for the purposes of this book, are those engineering standards having
impact on the system as a whole, whether explicitly identified as such in their titles or not.
They are a relatively small part of the totality of engineering standards. Many, if not most,
are interface and test standards.

Chapter 14:  The Professionalization of Systems Architecting	 379

by 10 lower-level subsystem specifications, and so on. All of these had to be
knitted together by a system of 100 or so interface specifications.

Even though modern computer tools (computer-assisted system
engineering [CASE] tools) have been developed to help keep track of the
systems engineering process, extraordinarily disciplined efforts are still
required to maintain the systems integrity.9

As systems complexity increased, systems engineers were faced with
increasingly difficult tasks of assuring that the evolving form of the system
met client needs, guaranteeing that trade-offs maintained system intent in
the face of complications arising during development, and finally assuring
that the system was properly tested and certified for use. In due course,
the proliferation of detailed specifications led to a need for overarching
guidelines, an overview mechanism for “structuring” the complexity that
had begun to obscure system intent and integrity.

Before continuing, it should be pointed out that overarching guidelines
are not, and cannot be, a replacement for quantitative system standards and
specifications. The latter represent decades of corporate memory, measur-
able acceptance criteria, and certified practices. Guidelines — performance
specifications, tailorable limits, heuristics, and the like — have a fundamen-
tal limitation. They cannot be certified by measurables. They are too “soft”
and too prone to subjective perceptions to determine to the nearest few
percentage points whether a system performs, or costs, what it should. At
some point, the system has to be measured if it is to be judged objectively.

From the standpoint of an architecting profession, the most impor-
tant fact about system standards is that they are changing. To understand
the trend, their development will be reviewed in some detail, recognizing
that some of them are continuing to be updated and revised.

The Origins of Systems Standards
The Ballistic Missile Program of the 1950s
Urgent needs induce change, and, eventually, improvement. The U.S./Soviet
ballistic missile race begun in the mid-to-late 1950s brought about signifi-
cant change, as it led to the development and fielding of innovative and
complex systems in an environment where national survival was threat-
ened. To its credit, the U.S. Air Force recognized the urgent need to develop
and manage the process of complex system evolution, and did so.* The

*	Those responsible for this development, Simon Ramo and General Bernard Schriever,
in particular, from time to time referred to their respective organizations as architects
as well as system integrators. “Architecture,” as a formalism, was largely bypassed in
the urgency to build ballistic missiles as credible deterrents. Nonetheless, the essential
“architectural” step of certification of readiness for launch was incorporated from the
beginning and executed by all successor organizations. It became a centerpiece for the
space launch programs of the 1960s and thereafter.

380	 The Art of Systems Architecting

response in the area of standards was the “375” System Standard, subse-
quently applied to the development of all new complex Air Force equip-
ment and systems.

“375” required several things that are now commonplace in systems
architecting and engineering. Timelines depicting the time-sequenced
flow of system operation were to be used as a first step in system analysis.*
From these, system functional block diagrams and functional require-
ments were to be derived as a basis for subsequent functional analysis and
decomposition. The functional decomposition process in turn generated
the subsystems that with their connections and constraints comprised
the system, and allowed the generation of subsystem requirements via
trade-off processes.

“375” was displaced in 1969 by a MILSTD 499 (Military Standard — 499),†
which was applied throughout the Department of Defense. MILSTD 499A, an
upgrade, was released in 1974 and was in effect for 20 years. MILSTD 499B, a
later upgrade, was unofficially released in 1994, and was almost immediately
replaced by EIA/IS 632 Interim Systems Engineering Standard.10

The Beginning of a New Era of Standards

The era of MILSTDs 499/499A/499B was an era in which military stan-
dards became increasingly detailed. It was not only these documents
that governed system architecting and engineering, but they in turn
referenced numerous other DoD (Department of Defense) MILSTDs that
addressed aspects of system engineering, and which were imposed on
the military system engineering process as a consequence. To cite a few:
MILSTD 490, Specification Practices, 1972; MILSTD 481A, Configuration
Control — Engineering Changes, Deviations and Waivers (Short Form),
1972; MILSTD 1519, Test Requirements Document, 1977; and MILSTD 1543,
Reliability Program Requirements for Space and Missile Systems, 1977.
See Eisner (1994)11 for additional examples.

This mindset changed with the end of the Cold War in the late 1980s.
Cost became an increasingly important decisive factor in competitions
for military programs, supplanting performance, which had been the
dominant factor in the prior era. Lowest cost, it was argued, could only
be achieved if the restrictions of the military standards were muted. The
detailed process (“how to”) standards of the past, which specified how to
conduct systems engineering and other program operations, needed to be

*	This is not necessarily appropriate for all systems, but it was well suited to the missile,
airplane, and weapon systems the Air Force had in mind at the time.

†	The official form is “Mil. Std. - 499,” but for ease of reading in a text, an alternate form,
“MILSTD 499,” will be used here.

Chapter 14:  The Professionalization of Systems Architecting	 381

replaced by standards that only provided guidelines,* leaving the engi-
neering specifics to the proposing companies that would select these so as
to be able to offer a low-cost product.12 Further supporting this reasoning
was the reality that the most sophisticated components and systems in
fields such as electronic computer chips and computers were now avail-
able at low cost from commercial sources, whereas in the past the state of
the art was available only from MILSTD-qualified sources. It was in this
environment that EIA/IS 632 was born.

EIA/IS 632, an Architectural Perspective

EIA/IS 632 is short by comparison with other military standards. Its main
body is 36 pages. Including appendices, its total length is 60 pages, and
these include several which have been left intentionally blank. And most
significantly, no other standards are referenced.

The scope and intent of the document is best conveyed by the follow-
ing quotes from its contents:

“The scope … of systems engineering (activities) are defined in terms •	
of what should be done, not how to do … (them).” (p. i)
“(EIA/IS-632) identifies and defines the systems engineering tasks •	
that are generally applicable throughout the system life cycle for any
program.” (p. 7)

From a systems architecting perspective, it is clear that the scope of the life-cycle
perspective includes the modern understanding of systems architecting.

One of the major activities of the systems architect, that of giving form
to function, is addressed in pages 9 through 11. These pages summarize, in
their own words and style, the client/architect relationship, the establish-
ment of the defining system functions, the development of the system’s
architecture, and the process of allocating system functions to architectural
elements via trade-offs. By implication, the trade-offs continue, with
varying degrees of concentration, throughout the life cycle.

Curiously, test and validation are deferred to a later section entitled
“4.0 Detailed Requirements.” This is consistent with the historical
organization of the preceding military standards, wherein section 4 was
dedicated to product assurance, a term that included system test. It is,
however, a significant departure from the systems architecting point of
view. A basic tenet of systems architecting is that certification for use is
one of its most important functions, and that this should be developed

*	As noted earlier, replacement is a questionable motivation for guidelines. Nonetheless, the
establishment of a high-level guideline document — a key architecting technique — was
a milestone.

382	 The Art of Systems Architecting

in parallel with, and as a part of, the development of a system’s archi-
tecture. Consider, for example, some of the architecting heuristics that
could apply:

To be tested, a system must be designed to be tested.•	
Regardless of what has gone before, the acceptance (and test) criteria •	
determine what is actually built.

There are other sound and basic architecting principles that, suitably
explained, could and should have been included as historically validated
guiding principles in EIA/IS 632 which, in its own words, “provides guid-
ance for the conduct of a systems engineering effort.” Some applicable
heuristics would include the following:

Simplify. Simplify. Simplify.•	
The greatest leverage in systems architecting is at the interfaces.•	
Except for good and sufficient reasons, functional and physical •	
structuring should match.
In partitioning a system into subsystems, choose a configuration •	
with minimal communications between subsystems.
It is easier to match a system to the human one that supports it than •	
the reverse.

Beyond these, the need for an unbiased agent — the systems architect —
to represent the client and technically guide the process is absent and a
serious omission.

Commercial Standards
Even though EIA/IS 632 applies only to military systems engineering,
that was not its original intent. The objective was to develop a universal
standard for systems engineering that would apply to both the military
and commercial worlds and be ratified by all of industry. However, there
was an urgency to publish a new military standard and in the 4-month
schedule that was assigned, only it could be developed. This led to two
consequences. First, IEEE 1220,13 a commercial systems engineering stan-
dard, was separately published. Second, the merging of EIA/IS 632 with
IEEE 1220 to create the first universal standard for system engineering
was planned for publication in 1997. The development of this universal
systems engineering standard involves personnel from several organiza-
tions including ANSI (American National Standards Institute) and EIA.

At the international level, ISO (The International Standards Organi
zation) has issued an overall standard covering the development and
engineering of systems (15288). This standard is not a systems engineering

Chapter 14:  The Professionalization of Systems Architecting	 383

standard per se, but it lays out a set of activities, including systems engi-
neering activities, associated with developing a system. 15288 is intended
to be a standard at a level above that of the other cited standards.

IEEE 1220, An Architectural Perspective

The IEEE working group that generated 1220 was sponsored by the IEEE
Computer Society and included representatives from INCOSE, the EIA,
and the IEEE AES Society. It is the first commercial standard to formally
address systems engineering. 1220’s similarity with EIA/IS 632 derives
from a fair degree of common authorship plus a deliberate effort to
(1) coordinate efforts in order to present a common view of systems engi-
neering and (2) anticipate the eventual merger of the two documents. The
similarities are therefore not surprising, but there are significant differ-
ences that are worthy of mention.

To begin with similarities, both standards are guides and not “how to”
instruction manuals. Both address the entire life cycle of a product. Both
share a common architecture, addressing in similar ways things that are
becoming similar — the processes of system engineering in the military
and commercial environments. This extends to a fair degree of common
vocabulary, although mercifully 1220 is freer of acronyms.

Compared to EIA/IS 632, 1220 is more complex and longer (58 pages in
the body of the report versus 36, and 66 pages overall versus 60). It is much
more rigorous in its definitions and use of system hierarchical structures.
It has several significant differences that tend to favor the recognition and
processes of systems architecting.

The subsystems that comprise a system are understood and treated •	
as systems. (pp. 2, 4, 13)
The customer (client) is explicitly identified along with a need to •	
determine and quantify his or her expectations. (page 35)
External constraints including public and political constraints are •	
recognized as part of the process. (page 35)
The role of system boundaries and constraints in system evolution is •	
considered. (page 36).
The need to evolve test plans with product evolution is expressed. •	
(pp. 18, 19)
The explicit need to generate functional and physical architectures •	
is recognized, unfortunately (from a systems architect’s view), in the
same section of the document which through usage defines systems
architecture as the sum of the product and its defining data package.
(page A-3)

384	 The Art of Systems Architecting

In summary, 1220 better recognizes the systems architecting process
than does EIA/IS 632. It does, however, have significant systems archi-
tecting shortfalls and would better serve as a systems engineering guide
if the role of the systems architect were included and if the architecting
heuristics given in this chapter were added.

A continuing problem in all of these systems standards, highlighted in
Chapter 6, is the difference in system/subsystem hierarchies across hard-
ware and software. Both can be thought of hierarchically, but the hierar-
chical model for software is often changed to become layered, and the
hierarchy of software units in a distributed system often does not match
the associated hardware. This often leads to significant problems in devel-
opment and contributes to poorly structured software in systems where
software development cost dominates total development cost. Standards
for distributed system development, such as Reference Model for Open
Distributed Processing (RM-ODP) and Unified Modeling Language
(UML), recognize the disjunction and allow the software and hardware
elements to be represented in their own hierarchies. This frees the soft-
ware architects from an imposed, and often damaging, hardware-based
hierarchy, but introduces new problems in reconciling the two models to
assure consistency. Engineering process standards have only begun to
address this issue.

Company Standards
Each company has its own set of standards and practices that incorporate
unique core competencies, practices, and policies. These need to evolve for
a company to improve its performance and competitive posture. Company
standards serve two other functions: instructing its initiates and relating to
its customers. The latter function is stimulated whenever customers change
their standards, and it is from this perspective that the systems engineer-
ing standards of several companies were examined. This was not an easy
task because systems architecting and engineering are viewed by those
companies engaged in them as an enabler of efficient product generation,
and as such, applicable practices providing a competitive advantage are
considered trade secrets.

Several generalizations are possible. Today’s competitive pressures
have caused self-examination and particularly reengineering to become
a regular way of life. This has also been encouraged by popularized busi-
ness literature.14 Process, as opposed to product, is the focus of such insti-
tutionalized activity. In reviewing the process of product generation and
support, systems architecting and, in some cases, systems architects are
gaining recognition, although not always in a way clearly separated from
systems engineering.

Chapter 14:  The Professionalization of Systems Architecting	 385

The Harris Corporation Information Systems Division culminated
4 years of activity by publishing their revised Systems Engineering Guide
Book. A generalized description is provided in Honour 1993.15 The 128-page
book is company proprietary. Discussions with its author, Eric Honour,
indicated that although systems architecting is not delineated per se, the
processes that constitute systems architecting account for approximately
25% of its pages.

Sarah Sheard and Elliot Margolis reported on the evolving systems
engineering process within The Loral Federal Systems Organization.16
Their conclusion is that there is an important relationship between the
nature of a product and the team developing it, and that as such there is
no one best organization for product development. However, their recent
experience indicates success with a team structure that includes a dis-
tinct architecture team, with a clearly identified chief architect, working
in conjunction with a management team and both software and hardware
development teams. Their use of the terms architect, architectures, and
architecting are consistent with those of this book.

Hughes Aircraft published its 3-inch thick Systems Engineering Handbook
in 1994.17 Its objective, stated on page P-1, is to “improve both the quality
and efficiency of systems engineering at Hughes.” The Handbook describes
the then-applicable MILSTD 499B and the Hughes systems engineering
processes for both DoD and non-DoD programs, including Hughes’ orga-
nizational and other resources available to implement these. It is a very
comprehensive user-friendly book, clearly adapted from MILSTD 499B,
and includes the activities of the systems architect — who is never identi-
fied by that name — within the framework of systems engineering. The
systems engineering function and organization are identified as the tech-
nical lead organization for product development and provided a unique
identity in all forms of organization discussed: functional, projectized,
and matrix. In that the Handbook is patterned after MILSTD 499B, which
has a strong resemblance to EIA/IS 632, the comments made earlier with
respect to EIA/IS 632 apply.

A Summary of Standards Developments,
1950–1995
For a variety of reasons and by a number of routes, system standards and
specifications are evolving consistent with the principles and techniques
of systems architecting. The next step is the use of systems architects to
help improve systems standards, particularly in system conception, test,
and certification. At the same time, improved systems standards can
provide powerful tools for the systems architecting profession.

386	 The Art of Systems Architecting

A cautionary note: the recent and understandable enthusiasm of the
Department of Defense to streamline standards and eliminate all refer-
ences to prior MILSTDs could make systems architecting considerably
more difficult. Useful as guidelines are, they are no substitute for quanti-
tative standards for bidding purposes, for certifying a system for use, or
for establishing responsibility and liability.* MILSTDs in many instances
incorporate specific philosophical and quantitative requirements based on
lessons dearly learned in the real world. They reduce uncertainty in areas
that should not or need not be uncertain. To ignore these by omission is to
run the risk of learning them all over again, at great cost. To the extent that
the lessons relearned are architectural, the risks can be enormous. As the
heuristic states, all the serious mistakes are made on the first day.

Systems Architecting Graduate Education
Systems Engineering Universities and Systems Architecting

Graduate education, advanced study, and research give a profession its
character. They distinguish it from routine work by making it a vocation,
a calling of the particularly qualified.

The first university to offer masters and doctorate degrees in systems
engineering was the University of Arizona, beginning in 1961. The pro-
gram began as a graduate program; an undergraduate program and the
addition of Industrial Engineering to the department title came later. Still
in existence, the graduate department has well over 1,000 alumni.

The next to offer advanced degrees was the Virginia Institute of
Technology in 1971, but not until after 1984 did additional universities join
the systems engineering ranks. They included Boston University, George
Mason University, the Massachusetts Institute of Technology (MIT),
the University of Maryland, the University of Southern California (USC),
the University of Tel Aviv, and the University of Washington. It is worth
noting that all are located at major centers of industry or government, the
principal clients and users of systems engineering.

To the best knowledge of the authors of this book, the University of
Southern California was the first to offer a graduate degree in Systems
Architecting and Engineering with the focus on systems architecting.
However, of the universities offering graduate degrees in systems engi-
neering, some half dozen now include systems achitecting within
their curricula. Notable among them is the MIT Systems Design and
Management (SDM) program. This program, which is intended as a new

*	 In this connection, the Department of Defense has explicitly retained interface and certi-
fication standards as essential, not to be considered as candidates for elimination.

Chapter 14:  The Professionalization of Systems Architecting	 387

kind of graduate education program for technical professionals, is built
on three core subjects: Systems Engineering, Systems Architecture, and
Project Management. Although the degree is not focused on systems
architecting, that subject forms a major part of the curriculum’s core. The
MIT SDM curriculum is becoming more of a national model as it is spread
through the Product Development in the 21st century (PD21) program.
PD21 is creating programs that are similar to MIT’s SDM program in
universities across the country. The current universities involved are the
Rochester Institute of Technology, the University of Detroit–Mercy, and
the Naval Postgraduate School.

Architecting is also becoming a strong interest in universities offering
advanced degrees in computer science with specializations in software
and computer architectures; notably, Carnegie Mellon University, the
Universities of California at Berkeley and Irvine, and USC. At USC, the
systems architecture and engineering degree began with an experimental
course in 1989, and formally became a master’s degree program in 1993
following its strong acceptance by students and industry.

In the last 10 years, there has been growing recognition of the value of
interdisciplinary programs, which of itself would favor systems architect-
ing and engineering. These have been soul-searching years for industry,
and the value of systems architecting and engineering has become appre-
ciated as a factor in achieving a competitive advantage. Also, the restruc-
turing of industry has caused a rethinking of the university as a place
to provide industry-specific education. These trends, augmented by the
success of the systems architecting and engineering education programs,
have caused university architect-engineering programs to prosper.

The success of these programs can be measured in several ways. First,
the direction is one of growth. Seven out of the eight existing masters
programs were started in the last 20 years. And the Universities of
Maryland, Tel Aviv, and Southern California are all considering expand-
ing their programs to include a Ph.D. MIT has formed a cross-cutting
Engineering Systems Division (ESD) that draws from all of the traditional
departments, and offers a Ph.D. in Engineering Systems. Second, systems
architecting and systems architecting education are making a positive
difference in industry, as supported by industry surveys. In point of fact,
company-sponsored systems architecting enrollments have increased even
during the part of this period where there was industrial contraction.

Curriculum Design
It is not enough in establishing a profession to show that universities are
interested in the subject. The practical question is what is actually taught;
that is, the curriculum. Because USC was apparently the first university

388	 The Art of Systems Architecting

to offer an advanced degree specifically in systems architecture and engi-
neering, its curriculum is described. It should be pointed out that this
curriculum is at the graduate level. To date, no undergraduate degree is
offered or planned.

The USC master’s program admits students satisfying the School of
Engineering’s academic requirements and having a minimum of 3 years
applicable industrial experience. Students propose a 10-course curricu-
lum that is reviewed, modified if required, and accepted as part of their
admission. The curriculum requires graduate-level courses as follows:

An anchor systems architecting course.•	
An advanced engineering economics course.•	
One of several specified engineering design courses.•	
Two elective courses in technical management from a list of eleven •	
that are offered.
One of eight general technical area elective courses.•	
Four courses from one of eleven identified technical specialization •	
areas, each of which has six or more courses offered.

The structure of this M.S. in Systems Architecture and Engineering
curriculum has been designed based on both industrial and academic
advice. Systems architecture is better taught in context. It is too much
to generally expect a student to appreciate the subtleties of the subject
without some experience. And the material is best understood through a
familiar specialty area in which the student already practices. The 3-year
minimum experience requirement and the requirement of four courses in
a technical specialty area derive from this reasoning.

The need for an anchor course is self-evident. Systems architecture
derives from inductive and heuristic reasoning, unlike the deductive rea-
soning used in most other engineering courses. To fully appreciate this
difference, the anchor course is taken early, if not first, in the sequence. The
course contains no exams as such, but requires two professional-quality
reports so that the student can best experience the challenges of systems
architecting and architecture by applying his or her knowledge in a dedi-
cated and concentrated way.

Experience has shown that a design experience course, the advanced
economics course, and courses in technical management are valuable to
the systems architect, and therefore they are curriculum requirements.
The additional course in a general technical area allows the student to
select a course that most rounds out the student’s academic experience.
Possibilities include a systems architecting seminar, a course on decision
support systems, and a course on the political process in systems archi-
tecture design.

Chapter 14:  The Professionalization of Systems Architecting	 389

Advanced Study in Systems Architecting
A major component of advanced study in any profession is graduate-level
research and refereed publications at major universities. In systems archi-
tecting, advanced study can be divided into two relatively distinct parts:
that of its science, closely related to that of systems engineering, and of its
art. The universities committed to systems engineering education were
given earlier. Advanced study in its art, though often illustrated by engi-
neering examples, has many facets, including research in the following:

Complexity•	 , by Flood and Carson18 at City University London, England
Problem solving•	 , by Klir19 at the State University of New York at
Binghamton and by Rubinstein20 at the University of California at
Los Angeles
Systems and their modeling•	 , by Churchman21 at the University of
California at Berkeley (UCB) and Nadler22 and Rechtin23 at the
University of Southern California (USC)
The behavioral theory of architecting•	 , by Lang24 at the University of
Pennsylvania, Rowe25 at Harvard, and Losk, Pieronek, Cureton,
Geis, and Carpenter26 at USC
The practice of architecture•	 , by Alexander27 and Kostof28 at UCB
Machine (artificial) intelligence and computer science•	 , by Genesereth
and Nilsson29 at Stanford, Newell30 and Simon31 at Carnegie Mellon
University and Brooks32 at the University of North Carolina at
Chapel Hill
Software architecting•	 , by Garlan and Shaw33 at Carnegie Mellon
University and Barry Boehm at USC

All have contributed basic architectural ideas to the field. Many are
standard references for an increasing number of professional articles by a
growing number of authors. Most deal explicitly with systems, architec-
tures, and architects, although the practical art of systems architecting was
seldom the primary motivation for the work. That situation predictably
will change rapidly as both industry and government face international
competition in a new era.

Professional Societies and Publications
Existing journals and societies were the initial professional media for
the new fields of systems architecting and engineering. Because much
early work was done in aerospace and defense, it is understandable that
the IEEE Society on Systems Man and Cybernetics, the IEEE Aerospace
Electronics Society, and the American Institute of Aeronautics and
Astronautics, and their journals, along with others, became the professional

390	 The Art of Systems Architecting

outlets for these fields. One excellent sample paper from this period
(Booton and Ramo 198434) explained the contributions that systems engi-
neering had made to the U.S. ballistic missile program.

The situation changed in 1990 when the first International Council on
Systems Engineering conference was held and attracted 100 engineers.
INCOSE became the first professional society dedicated to systems engi-
neering and soon established a Systems Architecture Working Group.

The society, with a current membership of 3,500 (one-third of which
are outside the United States), publishes a quarterly newsletter and a
journal. The journal first appeared in 1994, and it published jointly with
the IEEE AES Society in 1996. Since then, it has become a stand-alone,
quarterly publication.

Conclusion: An Assessment of the Profession
The profession of systems architecting has come a long way — and its
journey has just begun. Its present body of professionals in industry and
academia, beginning most often in electronics, control, and software
systems, soon broadened into systems engineering, formed the core of
small design teams, and now consider themselves as architects. The pro-
fession has been nurtured within the framework of systems engineering,
and no doubt will maintain a tight relationship with it. A masters-level
university curricula now exists, and the material and ideas are suffusing
into many other systems-oriented programs. Applicable research is
underway in universities. Applicable standards and tools are being devel-
oped at the national level. It has an acknowledged home within INCOSE
as well as other professional societies that, together with their publica-
tions, provide a medium for professional expression and development.

It is interesting to speculate on where the profession might be going
and how it might get there. The cornerstone thought is that the future
of a profession of systems architecting will be largely determined by the
perceptions of its utility by its clients. If a profession is useful, it will be
sponsored by them and prosper. To date, all indicators are positive.

Judging by the events that have led to its status today, and by comparable
developments in the history of classical architecture, systems architecting
could well evolve as a separate business entity. The future could hold more
systems architecting firms that bid for the business of acting as the techni-
cal representative or agent of clients with their builders. There are related
precedents today in Federally Funded Research and Development Centers
(FFRDCs) and Systems Engineering and Test Assistance Contractors
(SETACs), independent entities selected by the Department of Defense to
represent it with defense contractors that build end products. Similar prec-
edents exist in NASA and the Department of Energy.

Chapter 14:  The Professionalization of Systems Architecting	 391

The role of graduate education is likely to grow and spread. Today’s
products and processes are more netted and interrelated than those of
10 years ago, and tomorrow’s will be even more so. System thinking is
proving to be fundamental to commercial success, and systems architect-
ing will increasingly become a crucial part of new product development.
It is incumbent upon universities to capture the intellectual content of this
phenomenon and embody it in their curricula. This will require a tight
coupling with industry to be aware of important real-world problems, a
dedication to research to provide some of the solutions, and an education
program that trains students in relevant architectural thinking.

Published peer-reviewed research has stood the test of time, providing
the best medium for the rapid dissemination of state-of-the-art thinking.
Today INCOSE’s Systems Architecture Working Group provides one such
outlet. Still others will be needed for further growth.

In summary, all the indicators point to a future of high promise and
value to all stakeholders.

Notes and References
	 1.	 Webster’s II, New Riverside University Dictionary, Boston, MA: Riverside, 1984,

p. 939.
	 2.	 Transactions on Systems, Man and Cybernetics, Institute of Electrical and

Electronic Engineers (IEEE), New York; IEEE Transactions on Aerospace and
Electronic Systems, Institute of Electrical and Electronic Engineers (IEEE),
New York; Journal of the American Institute of Aeronautics and Astronautics,
American Institute of Aeronautics and Astronautics, Washington, DC.

	 3.	 Machol, R. E., Systems Engineering Handbook. New York: McGraw-Hill, 1965;
Chestnut, Harold, Systems Engineering Methods. New York: John Wiley, 1967;
Blanchard, Benjamin S., and W. J. Fabrycky, Systems Engineering and Analysis.
Upper Saddle River, NJ: Prentice Hall, 1981.

	 4.	 Proceedings of the First Annual Symposium of the National Council on Systems
Engineering, National Council on Systems Engineering, Seattle, WA, 1990;
The Journal of the National Council on Systems Engineering, Inaugural Issue,
National Council on Systems Engineering, Seattle, WA, 1994; Tools for System
Engineering, A Brochure. Ascent Logic Corporation, San Jose, CA, 1995.

	 5.	 Rechtin, E., Systems Architecting, Creating and Building Complex Systems.
Englewood Cliffs, NJ: Prentice Hall, 1991, pp. 299–301. Note that throughout
the rest of the chapter, this reference will be referred to as Rechtin 1991.

	 6.	 See the Inaugural Issue of Systems Engineering, the Journal of the National
Council on Systems Engineering, Vol. 1, Number 1, July/September 1994.

	 7.	 See Toward a Recommended Practice for Architectural Description of the
IEEE SESC Architecture Planning Group, April 9, 1996.

	 8.	 Rechtin 1991.
	 9.	 Doors. A Brochure. Zycad Corporation, Freemont, CA, 1995; SEDA — System

Engineering and Design Automation. A Brochure. Nu Thena Systems, Inc.,
McLean, VA, 1995.

392	 The Art of Systems Architecting

	 10.	 EIA Standard IS-632. Electronic Industries Association Publication, Washing-
ton, DC, 1994.

	 11.	 Eisner, Howard, Computer Aided Systems Engineering. Upper Saddle River,
NJ: Prentice Hall, 1988.

	 12.	 Perry, William J., Specifications and Standards — A New Way of Doing Business.
DODI 5000.2, Part 6, Section I. Department of Defense. Washington, DC, 1995.

	 13.	 IEEE P1220 Trail Use Standard for Application and Management of the Systems
Engineering Process. IEEE Standards Department, New York, 1994.

	 14.	 Hammer, Michael, and James Champy, Reengineering the Corporation. New
York: Harper, 1994; Hamel, Gary, and C. K. Prahalad, Competing for the Future.
Boston, MA: Harvard Business School Press, 1994.

	 15.	 Honour, Eric C., TQM Development of a Systems Engineering Process.
Proceedings of the Third Annual Symposium of the National Council on Systems
Engineering. Sunnyvale, CA: National Council on Systems Engineering, 1993.

	 16.	 Sheard, Sarah A., and Elliot M. Margolis, Team Structures for Systems
Engineering in an IPT Environment. Proceedings of the Fifth Annual Symposium
of the National Council on Systems Engineering. Sunnyvale, CA: National
Council on Systems Engineering, 1995.

	 17.	 Systems Engineering Handbook. Culver City, CA: Hughes Aircraft Company,
1994.

	 18.	 Flood, Robert L., and Ewart R. Carson, Dealing with Complexity, An Introduction
to the Theory and Application of Systems Science. New York: Plenum Press,
1988.

	 19.	 Klir, George J., Architecture of Problem Solving. New York: Plenum Press,
1988.

	 20.	 Rubinstein, Moshe F., Patterns of Problem Solving. Englewood Cliffs, NJ:
Prentice Hall, 1975.

	 21.	 Churchman, C. W., The Design of Inquiring Systems. New York: Basic Books,
1971.

	 22.	 Nadler, Gerald, The Planning and Design Approach, New York: John Wiley &
Sons, 1981.

	 23.	 Rechtin 1991.
	 24.	 Lang, Jon, Creating Architectural Theory, The Role of the Behavioral Sciences in

Environmental Design. New York: Van Nostrand Reinhold, 1987.
	 25.	 Rowe, Peter G., Design Thinking. Cambridge, MA: MIT Press, 1987.
	 26. Losk, Pieronek, Cureton, Geis, and Carpenter graduate reports are unpub-

lished but available through the USC School of Engineering, Los Angeles,
CA, 0089-1450.

	 27.	 Alexander, Christopher, Notes on the Synthesis of Form. Cambridge, MA:
Harvard University Press, 1964. The first in a series of books on the subject.

	 28.	 Kostof, Spiro, The Architect, Chapters in the History of the Profession. New York:
Oxford University Press, 1977.

	 29.	 Genesereth, Michael R., and Nils J. Nilsson, Logical Foundations of Artificial
Intelligence. Los Altos, CA: Morgan Kaufmann, 1987.

	 30.	 Newell, Allen, Unified Theories of Cognition. Cambridge, MA: Harvard
University Press, 1990.

	 31.	 Simon, Herbert A., The Sciences of the Artificial. Cambridge, MA: MIT Press,
1988.

	 32.	 Brooks, Frederick P., Jr., The Mythical Man-Month. Reading, MA: Addison-
Wesley, 1982.

Chapter 14:  The Professionalization of Systems Architecting	 393

	 33.	 Garlan, David, and Mary Shaw, An Introduction to Software Architecture.
Pittsburgh, PA: Carnegie Mellon University, 1993.

	 34.	 Booton, Richard C., Jr., and S. Ramo, The Development of Systems Engineer-
ing. The IEEE Transactions on Aerospace and Electronic Systems AES–20, Vol. 4,
pp. 306–309, July 1984.

395

Appendix A:
Heuristics for Systems-Level
Architecting

Experience is the hardest kind of teacher.
It gives you the test first and the lesson afterward.

Susan Ruth, 1993

Introduction: Organizing the List
The heuristics to follow were selected from Rechtin 1991,1 the Collection
of Student Heuristics in Systems Architecting, 1988–1993,2 and from subse-
quent studies in accordance with the selection criteria of Chapter 2. The
list is intended as a tool store for top-level systems architecting. Heuristics
continue to be developed and refined not only for this level, but for
domain-specific applications as well, often migrating from domain-specific
to system level and vice versa.*

*	 The manufacturing, social, communication, software, management, business, and eco-
nomics fields are particularly active in proposing and generating heuristics — though
they usually are called principles, laws, rules, or axioms.

396	 Appendix A: Heuristics for Systems-Level Architecting

For easy search and use, the heuristics are grouped by architectural
task and categorized by being either descriptive or prescriptive — that is,
by whether they describe an encountered situation or prescribe an archi-
tectural approach to it, respectively.

There are over 180 heuristics in the listing to follow, far too many to
study at any one time. Nor were they intended to be. The listing is intended
to be scanned as one would scan software tools on software store shelves,
looking for ones that can be useful immediately, but remembering that
others are also there. Although some are variations of other heuristics, the
vast majority stand on their own, related primarily to others in the near
vicinity on the list. Odds are that the reader will find the most interesting
heuristics in clusters, the location of which will depend on the reader’s
interests at the time. The section headings are by architecting task. A “D”
signifies a descriptive heuristic; a “P” signifies a prescriptive one. When
readily apparent, prescriptions are grouped by insetting under appropri-
ate descriptions or alternate prescriptions; otherwise not. In the interests
of brevity, an individual heuristic is listed in the task where it is most
likely to be used most often. As noted in Chapter 2, some 20% can be tied
to related ones in other tasks.

A major difference between a heuristic and an unsupported assertion
is the credibility of the source. To the extent possible, the heuristics are
credited to the individuals who, to the authors’ knowledge, first suggested
them. To further aid the reader in judging credibility or in finding the
sources, the heuristics to follow are given symbols. These symbols indi-
cate the following:

[]	An informal discussion with the individual indicated, unpublished.
()	A formal, dated source, with examples, located in the University of

Southern California (USC) Master of Science in Systems Architecture
and Engineering (MS-SAE) program archive, especially in the
Collection of Student Heuristics in Systems Architecting, 1988–1993.
For further information, contact the Master of Science Program in
Systems Architecture and Engineering, USC School of Engineering,
University Park, Los Angeles, California 90089-1450.

*	 Rechtin 1991, where it is sourced more formally. By permission of
Prentice Hall Inc., Englewood Cliffs, New Jersey 07632.

Bold Key words useful for quick search. Otherwise, heuristics to follow
are in plain type to make page reading easier. Real-world examples
of each can be found in the references indicated.

The authors apologize in advance for any miscrediting of sources.
Corrections are welcome. The readers are reminded that not all heuristics
apply to all circumstances, just most to most.

Appendix A: Heuristics for Systems-Level Architecting	 397

Heuristic Tool List
Multitask Heuristics

D	 Performance, cost, and schedule cannot be specified independently.
At least one of the three must depend on the others.**

D	 With few exceptions, schedule delays will be accepted grudgingly;
cost overruns will not, and for good reason.

D	 The time to completion is proportional to the ratio of the time spent
to the time planned to date. The greater the ratio is, the longer the
time to go.

D	 Relationships among the elements are what give systems their
added value.*

D	 Efficiency is inversely proportional to universality. (Douglas R.
King 1992)

D	 Murphy’s Law, “If anything can go wrong, it will.”*
P	 Simplify. Simplify. Simplify.*
P	 The first line of defense against complexity is simplicity of design.
P	 Simplify, combine and eliminate. (Suzaki 1987)
P	 Simplify with smarter elements. (N. P. Geiss 1991)
P	 The most reliable part on an airplane is the one that isn’t there —

because it isn’t needed. [DC-9 Chief Engineer 1989]
D	 One person’s architecture is another person’s detail. One person’s

system is another’s component. [Robert Spinrad 1989]*
P	 In order to understand anything, you must not try to under-

stand everything. (Aristotle, 4th century B.C.)
P	 Don’t confuse the functioning of the parts for the functioning of

the system. (Jerry Olivieri 1992)
D	 In general, each system level provides a context for the level(s) below.

(G. G. Lendaris 1986)
P	 Leave the specialties to the specialist. The level of detail required

by the architect is only to the depth of an element or component
critical to the system as a whole. (Robert Spinrad 1990) But the
architect must have access to that level and know, or be informed,
about its criticality and status. (Rechtin 1990)

P	 Complex systems will develop and evolve within an overall
architecture much more rapidly if there are stable intermediate
forms than if there are not. (Simon 1969)*

D	 Particularly for social systems, it’s the perceptions, not the facts,
that count.

*	 As indicated in the introduction to this appendix, an asterisk indicates that this heuristic
is taken from Rechtin 1991. (With permission of Prentice Hall, Englewood Cliffs, New
Jersey.)

398	 Appendix A: Heuristics for Systems-Level Architecting

D	 In introducing technological and social change, how you do it is
often more important than what you do.*
P	 If social cooperation is required, the way in which a system is

implemented and introduced must be an integral part of its
architecture.*

D	 If the politics don’t fly, the hardware never will. (Brenda Forman 1990)
D	 Politics, not technology, sets the limits of what technology is

allowed to achieve.
D	 Cost rules.
D	 A strong, coherent constituency is essential.
D	 Technical problems become political problems.
D	 There is no such thing as a purely technical problem.
D	 The best engineering solutions are not necessarily the best politi-

cal solutions.
D	 Good products are not enough. Implementations matter. (Morris

and Ferguson 1993)
P	 To remain competitive, determine and control the keys to the

architecture from the very beginning.

Scoping and Planning

The beginning is the most important part of the
work.

Plato, 4th century b.c.

Scope! Scope! Scope!

William C. Burkett, 1992

D	 Success is defined by the beholder, not by the architect.*
P	 The most important single element of success is to listen closely

to what the customer perceives as his requirements and to have
the will and ability to be responsive. (J. E. Steiner 1978)*

P	 Ask early about how you will evaluate the success of your
efforts. (F. Hayes-Roth et al., 1983)

P	 For a system to meet its acceptance criteria to the satisfaction of
all parties, it must be architected, designed, and built to do so —
no more and no less.*

P	 Define how an acceptance criterion is to be certified at the same
time the criterion is established.*

D	 Given a successful organization or system with valid criteria for
success, there are some things it cannot do — or at least not do
well. Don’t force it!

Appendix A: Heuristics for Systems-Level Architecting	 399

P	 The strengths of an organization or system in one context can be
its weaknesses in another. Know when and where!*

D	 There’s nothing like being the first success.*
P	 If at first you don’t succeed, but the architecture is sound, try,

try again. Success sometimes is where you find it. Sometimes it
finds you.*

D	 A system is successful when the natural intersection of technol-
ogy, politics, and economics is found. (A. D. Wheelon 1986)*

D	 Four questions, the Four Who’s, need to be answered as a self-
consistent set if a system is to succeed economically; namely,
who benefits? who pays? and, as appropriate, who loses?

D	 Risk is (also) defined by the beholder, not the architect.
P	 If being absolute is impossible in estimating system risks, then

be relative.*
D	 No complex system can be optimum to all parties concerned, nor all

functions optimized.*
P	 Look out for hidden agendas.*
P	 It is sometimes more important to know who the customer is

than to know what the customer wants. (Whankuk Je 1993)
D	 The phrase, “I hate it,” is direction. (Lori I. Gradous 1993)

P	 Sometimes, but not always, the best way to solve a difficult problem
is to expand the problem, itself.*
P	 Moving to a larger purpose widens the range of solutions.

(Gerald Nadler 1990)
P	 Sometimes it is necessary to expand the concept in order to sim-

plify the problem. (Michael Forte 1993)
P	 [If in difficulty,] reformulate the problem and re-allocate the

system functions. (Norman P. Geis 1991)
P	 Use open architectures. You will need them once the market

starts to respond.
P	 Plan to throw one away. You will anyway. (F. P. Brooks, Jr. 1982)

P	 You can’t avoid redesign. It’s a natural part of design.*
P	 Don’t make an architecture too smart for its own good.*
D	 Amid a wash of paper, a small number of documents become

critical pivots around which every project’s management revolves.
(F. P. Brooks, Jr. 1982)*
P	 Just because it’s written, doesn’t make it so. (Susan Ruth 1993)

D	 In architecting a new [software] program, all the serious mistakes
are made in the first day. [Spinrad 1988]
P	 The most dangerous assumptions are the unstated ones.

(Douglas R. King 1991)
D	 Some of the worst failures are systems failures.

D	 In architecting a new [aerospace] system, by the time of the first design
review, performance, cost, and schedule have been predetermined.

400	 Appendix A: Heuristics for Systems-Level Architecting

One might not know what they are yet, but to first order all the criti-
cal assumptions and choices have been made which will determine
those key parameters.*

P	 Don’t assume that the original statement of the problem is neces-
sarily the best, or even the right, one.*
P	 Extreme requirements, expectations, and predictions should

remain under challenge. throughout system design, implemen-
tation, and operation.

P	 Any extreme requirement must be intrinsic to the system’s
design philosophy and must validate its selection. “Everything
must pay its way on to the airplane.” [Harry Hillaker 1993]

P	 Don’t assume that previous studies are necessarily complete,
current, or even correct. (James Kaplan 1992)

P	 Challenge the process and solution, for surely someone else will
do so. (Kenneth L. Cureton 1991)

P	 Just because it worked in the past there’s no guarantee that it will
work now or in the future. (Kenneth L. Cureton 1991)

P	 Explore the situation from more than one point of view. A seem-
ingly impossible situation might suddenly become transparently
simple. (Christopher Abts 1988)

P	 Work forward and backward. (A set of heuristics from Rubinstein
1975)*
Generalize or specialize.
Explore multiple directions based on partial evidence.
Form stable substructures.
Use analogies and metaphors.
Follow your emotions.

P	 Try to hit a solution that, at worst, won’t put you out of business.
(Bill Butterworth as reported by Laura Noel 1991)

P	 The order in which decisions are made can change the architecture as
much as the decisions themselves. (Rechtin 1975, IEEE SPECTRUM)

P	 Build in and maintain options as long as possible in the design and
build of complex systems. You will need them. OR … Hang on to the
agony of decision as long as possible. [Robert Spinrad 1988]*
P	 Successful architectures are proprietary, but open. [Morrison

and Ferguson 1993]
D	 Once the architecture begins to take shape, the sooner contextual

constraints and sanity checks are made on assumptions and require-
ments, the better.*

D	 Concept formulation is complete when the builder thinks the system
can be built to the client’s satisfaction.*

D	 The realities at the end of the conceptual phase are not the models
but the acceptance criteria.*

P	 Do the hard parts first.

Appendix A: Heuristics for Systems-Level Architecting	 401

P	 Firm commitments are best made after the prototype works.

Modeling*

P	 If you can’t analyze it, don’t build it.
D	 Modeling is a craft and at times an art. (William C. Burkett 1994)
D	 A vision is an imaginary architecture … no better, no worse than

the rest of the models. (M. B. Renton Spring 1995)
D	 From psychology: If the concepts in the mind of one person are very

different from those in the mind of the other, there is no common
model of the topic and no communication. [Taylor 1975] OR … From
telecommunications: The best receiver is one that contains an inter-
nal model of the transmitter and the channel. [Robert Parks & Frank
Lehan 1954]*

D	 A model is not reality.*
D	 The map is not the territory. (Douglas R. King 1991)*
P	 Build reality checks into model-driven development. [Larry

Dumas 1989]*
P	 Don’t believe nth order consequences of a first order [cost] model.

[R. W. Jensen circa 1989]
D	 Constants aren’t and variables don’t. (William C. Burkett 1992)
D	 One insight is worth a thousand analyses. (Charles W. Sooter 1993)

P	 Any war game, systems analysis, or study whose results can’t
easily be explained on the back of an envelope is not just worth-
less, it is probably dangerous. [Brookner-Fowler circa 1988]

D	 Users develop mental models of systems based [primarily] upon the
user-to-system interface. (Jeffrey H. Schmidt)

D	 If you can’t explain it in five minutes, either you don’t understand it
or it doesn’t work. (Darcy McGinn 1992 from David Jones)

P	 The eye is a fine architect. Believe it. [Wernher von Braun 1950]
D	 A good solution somehow looks nice. (Robert Spinrad 1991)

P	 Taste: an aesthetic feeling that will accept a solution as right
only when no more direct or simple approach can be envisaged.
[Robert Spinrad 1994]

P	 Regarding intuition, trust but verify. (Jonathan Losk 1989)

Prioritizing (Trades, Options, and Choices)

D	 In any resource-limited situation, the true value of a given service or
product is determined by what one is willing to give up to obtain it.

P	 When choices must be made with unavoidably inadequate informa-
tion, choose the best available and then watch to see whether future

*	 See also Chapters 3 and 4.

402	 Appendix A: Heuristics for Systems-Level Architecting

solutions appear faster than future problems. If so, the choice was at
least adequate. If not, go back and choose again.*

P	 When a decision makes sense through several different frames, it’s
probably a good decision. (J. E. Russo 1989)

D	 The choice between architectures may well depend upon which set
of drawbacks the client can handle best.*

P	 If trade results are inconclusive, then the wrong selection criteria
were used. Find out [again] what the customer wants and why they
want it, then repeat the trade using those factors as the [new] selec-
tion criteria. (Kenneth Cureton 1991)

P	 The triage: Let the dying die. Ignore those who will recover on their
own. And treat only those who would die without help.*

P	 Every once in a while you have to go back and see what the real
world is telling you. [Harry Hillaker 1993]

Aggregating (“Chunking”)

P	 Group elements that are strongly related to each other, separate ele-
ments that are unrelated.

D	 Many of the requirements can be brought together to complement
each other in the total design solution. Obviously the more the design
is put together in this manner, the more probable the overall success.
(J. E. Steiner 1978)

P	 Subsystem interfaces should be drawn so that each subsystem can
be implemented independently of the specific implementation of the
subsystems to which it interfaces. (Mark Maier 1988)

P	 Choose a configuration with minimal communications between
the subsystems. (computer networks)*
P	 Choose the elements so that they are as independent as possible;

that is, elements with low external complexity (low coupling) and
high internal complexity (high cohesion). (Christopher Alexander
1964 modified by Jeff Gold 1991)*

P	 Choose a configuration in which local activity is high speed and
global activity is slow change. (P. J. Courtois 1985) *

P	 Poor aggregation results in gray boundaries and red performance.
(M. B. Renton Spring 1995)
P	 Never aggregate systems that have a conflict of interest; partition

them to ensure checks and balances. (Aubrey Bout 1993)
P	 Aggregate around “testable” subunits of the product; partition

around logical subassemblies. (Ray Cavola 1993)
P	 Iterate the partition/aggregation procedure until a model con-

sisting of 7 ± 2 chunks emerge. (Moshe F. Rubinstein 1975)

Appendix A: Heuristics for Systems-Level Architecting	 403

P	 The optimum number of architectural elements is the amount
that leads to distinct action, not general planning. (M. B. Renton
Spring 1995)

P	 System structure should resemble functional structure.*
P	 Except for good and sufficient reasons, functional and physical

structuring should match.*
P	 The architecture of a support element must fit that of the system

which it supports. It is easier to match a support system to the
human it supports than the reverse.*

P	 Unbounded limits on element behavior may be a trap in unexpected
scenarios. [Bernard Kuchta 1989]*

Partitioning (Decompositioning)

P	 Do not slice through regions where high rates of information
exchange are required. (computer design)*

D	 The greatest leverage in architecting is at the interfaces.*
P	 Guidelines for a good quality interface specification: They must

be simple, unambiguous, complete, concise, and focus on sub-
stance. Working documents should be the same as customer
deliverables; that is, always use the customer’s language, not
engineering jargon. [Harry Hillaker 1993]

P	 The efficient architect, using contextual sense, continually looks
for likely misfits and redesigns the architecture so as to elimi-
nate or minimize them. (Christopher Alexander 1964)* It is inad-
equate to architect up to the boundaries or interfaces of a system;
one must architect across them. (Robert Spinrad as reported by
Susan Ruth 1993)

P	 Since boundaries are inherently limiting, look for solutions out-
side the boundaries. (Steven Wolf 1992)

P	 Be prepared for reality to add a few interfaces of its own.*
P	 Design the structure with good “bones.”*
P	 Organize personnel tasks to minimize the time individuals spend

interfacing. (R. C. Tausworthe 1988)*

Integrating

D	 Relationships among the elements are what give systems their
added value.*
P	 The greatest leverage in system architecting is at the interfaces.*
P	 The greatest dangers are also at the interfaces. [Raymond 1988]
P	 Be sure to ask the question, “What is the worst thing that other

elements could do to you across the interface?” [Kuchta 1989]

404	 Appendix A: Heuristics for Systems-Level Architecting

D	 Just as a piece and its template must match, so must a system and
the resources which make, test, and operate it. Or, more briefly, the
product and process must match. Or, by extension, a system archi-
tecture cannot be considered complete lacking a suitable match with
the process architecture.*
P	 When confronted with a particularly difficult interface, try

changing its characterization.*
P	 Contain excess energy as close to the source as possible.*

P	 Place barriers in the paths between energy sources and the ele-
ments the energy can damage. (Kjos 1988)*

Certifying (System Integrity, Quality, and Vision)
D	 As time to delivery decreases, the threat to functionality increases.

(Steven Wolf 1992)
P	 If it is a good design, insure that it stays sold. (Dianna Sammons

1991)
D	 Regardless of what has gone before, the acceptance criteria deter-

mine what is actually built.*
D	 The number of defects remaining in a (software) system after a

given level of test or review (design review, unit test, system test, etc.)
is proportional to the number found during that test or review.

P	 Tally the defects, analyze them, trace them to the source, make
corrections, keep a record of what happens afterwards and keep
repeating it. [Deming]

P	 Discipline. Discipline. Discipline. (Douglas R. King 1991)
P	 The principles of minimum communications and proper parti-

tioning are key to system testability and fault isolation. (Daniel
Ley 1991)*

P	 The five whys of Toyota’s lean manufacturing. (To find the basic
cause of a defect, keep asking “why” from effect to cause to cause
five times.)

D	 The test setup for a system is itself a system.*
P	 The test system should always allow a part to pass or fail on its

own merit. [James Liston 1991]*
P	 To be tested, a system must be designed to be tested.*

D	 An element “good enough” in a small system is unlikely to be good
enough in a more complex one.*

D	 Within the same class of products and processes, the failure rate of
a product is linearly proportional to its cost.*

D	 The cost to find and fix an inadequate or failed part increases by
an order of magnitude as it is successively incorporated into higher
levels in the system.
P	 The least expensive and most effective place to find and fix a

problem is at its source.

Appendix A: Heuristics for Systems-Level Architecting	 405

D	 Knowing a failure has occurred is more important than the actual
failure. (Kjos 1988)

D	 Mistakes are understandable, failing to report them is inexcusable.
D	 Recovery from failure or flaw is not complete until a specific mecha-

nism, and no other, has been shown to be the cause.*
D	 Reducing failure rate by each factor of two takes as much effort as

the original development.*
D	 Quality can’t be tested in, it has to be built in.*

D	 You can’t achieve quality … unless you specify it. (Deutsch 1988)
P	 Verify the quality close to the source. (Jim Burruss 1993)
P	 The five why’s of Japan’s lean manufacturing. (Hayes et al. 1988)3

D	 High-quality, reliable systems are produced by high-quality
architecting, engineering, design and manufacture, not by inspec-
tion, test, and rework.*

P	 Everyone in the development and production line is both a
customer and a supplier.

D	 Next to interfaces, the greatest leverage in architecting is in aiding
the recovery from, or exploitation of, deviations in system perfor-
mance, cost or schedule.*

Assessing Performance, Cost, Schedule, and Risk

D	 A good design has benefits in more than one area. (Trudy Benjamin
1993)

D	 System quality is defined in terms of customer satisfaction, not
requirements satisfaction. (Jeffrey Schmidt 1993)

D	 If you think your design is perfect, it’s only because you haven’t
shown it to someone else. [Harry Hillaker, 1993]
P	 Before proceeding too far, pause and reflect! Cool off periodi-

cally and seek an independent review. (Douglas R. King 1991)
D	 Qualification and acceptance tests must be both definitive and

passable.*
P	 High confidence, not test completion, is the goal of successful

qualification. (Daniel Gaudet 1991)
P	 Before ordering a test decide what you will do if it is 1) positive

or if 2) it is negative. If both answers are the same, don’t do the
test. (R. Matz, M.D. 1977)

D	 “Proven” and “state of the art” are mutually exclusive qualities.
(Lori I. Gradous 1993)

D	 The bitterness of poor performance remains long after the sweetness
of low prices and prompt delivery are forgotten. (Jerry Lim 1994)

D	 The reverse of diagnostic techniques are good architectures.
(M. B. Renton 1995)

406	 Appendix A: Heuristics for Systems-Level Architecting

D	 Unless everyone who needs to know does know, somebody, some-
where will foul up.
P	 Because there’s no such thing as immaculate communication,

don’t ever stop talking about the system. (Losk 1989)*
D	 Before it’s tried, it’s opinion. After it’s tried, it’s obvious. (Wm.

C. Burkett 1992)
D	 Before the war, it’s opinion. After the war, it’s too late! (Anthony

Cerveny 1991)
D	 The first quick look analyses are often wrong.*
D	 In correcting system deviations and failures, it is important that all

the participants know not only what happened and how it happened,
but why as well.*
P	 Failure reporting without a close out system is meaningless.

(April Gillam 1989)
P	 Common, if undesirable, responses to indeterminate outcomes

or failures:*
If it ain’t broke, don’t fix it.
Let’s wait and see if it goes away or happens again.
It was just a random failure. One of those things.
Just treat the symptom. Worry about the cause later.
Fix everything that might have caused the problem.
Your guess is as good as mine.

D	 Chances for recovery from a single failure or flaw, even with
complex consequences, are fairly good. Recovery from two or
more independent failures is unlikely in real time and uncertain
in any case.*

Re-Architecting, Evolving, Modifying, and Adapting

The test of a good architecture is that it will last.
The sound architecture is an enduring pattern.

[Robert Spinrad 1988]

P	 The team that created and built a presently successful product is often the
best one for its evolution — but seldom for creating its replacement.

D	 If you don’t understand the existing system, you can’t be sure you’re
rearchitecting a better one. (Susan Ruth 1993)

P	 When implementing a change, keep some elements constant to pro-
vide an anchor point for people to cling to. (Jeffrey H. Schmidt 1993)
P	 In large, mature systems, evolution should be a process of

ingress and egress. (IEEE 1992, Jeffrey Schmidt 1992)

Appendix A: Heuristics for Systems-Level Architecting	 407

P	 Before the change, it is your opinion. After the change it is your
problem. (Jeffrey Schmidt 1992)

D	 Unless constrained, rearchitecting has a natural tendency to pro-
ceed unchecked until it results in a substantial transformation of the
system. (Charles W. Sooter 1993)

D	 Given a change, if the anticipated actions don’t occur, then there is
probably an invisible barrier to be identified and overcome. (Susan
Ruth 1993)

Exercises
Exercise: What favorite heuristics, rules of thumb,
facts of life, or just plain common sense do you apply
to your own day-to-day living — at work, at home, at
play? What heuristics have you heard on TV or the
radio (for example, on talk radio, action TV, children’s
programs)? Which ones would you trust?

Exercise: Choose a system, product, or process with
which you are familiar and assess it using the
appropriate foregoing heuristics. What was the
result? Which heuristics are or were particularly
applicable? What further heuristics were suggested
by the system chosen?

Were any of the heuristics clearly incorrect for
this system? If so, why?

Exercise: Try to spot heuristics and insights in the
technical literature. Some are easy; they are often
listed as principles or rules. The more difficult ones
are buried in the text but contain the essence of the
article or state something of far broader application
than the subject of the piece.

Exercise: Try to create a heuristic of your own — a
guide to action, decision making, or to instruction
of others.

Notes and References
	 1.	 Rechtin, E., Systems Architecting, Creating and Building Complex Systems.

Englewood Cliffs, NJ: Prentice Hall, 1991. Note that throughout chapter, this
reference will be referred to as Rechtin 1991.

408	 Appendix A: Heuristics for Systems-Level Architecting

	 2.	 Rechtin, E., ed., Collection of Student Heuristics in Systems Architecting,
1988–1993. Los Angeles, CA: University of Southern California, March 15,
1994 (unpublished but available to students and researchers on request).

	 3.	 Hayes, Robert H., S. C. Wheelwright, and Kim B. Clark, Dynamic Manufactur-
ing, Creating the Learning Organization. New York: The Free Press, 1988.

409

Appendix B:
Reference Texts Suggested
for Institutional Libraries

The following list of texts is offered as a brief guide to books that would
be particularly appropriate to an architecting library.

Architecting Background
Alexander, C., A Pattern Language: Towns, Buildings, Construction, Oxford University

Press, New York, 1977.
Alexander, C., Notes on the Synthesis of Form, Harvard University Press, Cambridge,

MA, 1964.
Alexander, C., The Timeless Way of Building, Oxford University Press, New York, 1979.
Kostoff, Spiro, The Architect, Oxford University Press, New York, 1977 (paperback).
Lang, Jon, Creating Architectural Theory, Van Nostrand Reinhold, New York, 1987.
Rowe, P. G., Design Theory, MIT Press, Cambridge, MA, 1987.
Vitruvius, The Ten Books on Architecture, Dover Publications, Mineola, New York,

1960 (paperback). Translated by Morris Hicky Morgan.

Management
Augustine, N. R., Augustine’s Laws, AIAA, Inc., Reston, VA, 1982.
Deal, Terrence E., and A. A. Kennedy, Corporate Cultures, The Rites and Rituals of

Corporate Life, Addison-Wesley, Reading, MA, 1988.

410	 Appendix B: Reference Texts Suggested for Institutional Libraries

DeMarco, Tom, and Timothy Lister, Peopleware: Productive Projects and Teams, Dorset
House, New York, 1987.

Juran, J. M., Juran on Planning for Quality, The Free Press, New York, 1988.

Modeling
Eisner, H., Computer Aided Systems Engineering, Prentice Hall, Upper Saddle River,

NJ, 1988.
Hatley, D. J., and I. Pirbhai, Strategies for Real-Time System Specification, Dorset

House, New York, 1988.
Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented

Modeling and Design, Prentice Hall, Upper Saddle River, NJ, 1991.
Ward, P. T., and S. J. Mellor, Structured Development for Real-Time Systems, Volume 1:

Introduction and Tools, Yourdon Press (Prentice Hall), New York, 1985.

Specialty Areas
Baudin, M., Manufacturing Systems Analysis, Yourdon Press Computing Series,

New York, 1990.
Hammond, J. S., R. L. Keeney, and H. Raiffa, Smart Choices: A Practical Guide to

Making Better Decisions, Broadway Books, New York, 2002.
Hayes, Robert H., S. C. Wheelwright, and K. B. Clark, Dynamic Manufacturing, The

Free Press, New York, 1988.
Keeney, R. L., Value Focused Thinking, Harvard University Press, Cambridge,

MA, 1992.
Miller, J. G., Living Systems, McGraw-Hill, New York, 1978.
Simon, H. A., Sciences of the Artificial, MIT Press, Cambridge, MA, 1981.
Thome, B., editor, Systems Engineering: Principles and Practice of Computer-Based

Systems Engineering, John Wiley, Chichester, Wiley Series on Software Based
Systems, 1993.

Software
Boehm, B., Software Engineering Economics, Prentice Hall, Englewood Cliffs, NJ, 1981.
Brooks, F. P. Jr., The Mythical Man-Month, Essays on Software Engineering, 20th Anni-

versary Edition, Addison-Wesley, Reading, MA, 1995.
Deutsch, M. S., and R. R. Willis, Software Quality Engineering, Prentice-Hall, Upper

Saddle River, NJ, 1988.
Gajski, D. D., V. M. Milutinovic, H. J. Siegel, and B. P. Furht, Computer Architecture,

The Computer Society of the IEEE, Piscataway, NJ, 1987 (Tutorial).
Gamma, E. et al., Design Patterns: Elements of Reusable Object-Oriented Software

Architecture, Addison-Wesley, Reading, MA, 1994.
Shaw, M., and D. Garlan, Software Architecture: Perspectives on an Emerging Discipline,

Prentice Hall, Upper Saddle River, NJ, 1996.
Software Productivity Consortium, ADARTS Guidebook, SPC-94040-CMC, Version

2.00.13, Vols. 1–2, September, 1991.
Yourdon, E., and L. L. Constantine, Structured Design: Fundamentals of a Discipline of

Computer Program and Systems Design, Yourdon Press, New York, 1979.

Appendix B: Reference Texts Suggested for Institutional Libraries	 411

Systems Sciences
Flood, R. L., and E. R. Carson, Dealing with Complexity, an Introduction to the Theory

and Application of System Sciences, Plenum Press, New York, 1988.
Genesereth, M. S., and N. J. Nilsson, Logical Foundations of Artificial Intelligence,

Morgan Kaufmann, San Francisco, CA, 1987.
Gerstein, Dean R. et al., Editors, The Behavioral and Social Sciences, Achievements and

Opportunities, National Academy Press, Washington, 1988.
Klir, G. J., Architecture of Systems Problem Solving, Plenum Press, New York, 1985.

Systems Thinking
Arbib, M. A., Brains, Machines, and Mathematics, 2nd edition, Springer-Verlag,

Heidelberg, 1987.
Beam, Walter R., Systems Engineering, Architecture and Design, McGraw-Hill, New

York, 1990.
Boorstin, Daniel J., The Discoverers, Vintage Books, New York, 1985.
Boyes, J. L., editor, Principles of Command and Control, AFCEA International Press,

Fairfax, VA, 1987.
Davis, S. M., Future Perfect, Addison-Wesley, Reading, MA, 1987.
Gause, Donald C., and G. M. Weinberg, Exploring Requirements, Quality Before

Design, Dorset House, New York, 1989.
Hofstadter, D. R., Gödel, Escher, Bach: An Eternal Golden Braid, Vintage Books, New

York, 1980.
Norman, Donald A., The Psychology of Everyday Things, Basic Books, New York, 1988.
Pearl, Judea, Heuristics, Addison-Wesley, Reading, MA, 1984.
Rechtin, E., Systems Architecting: Creating and Building Complex Systems, Prentice

Hall, Englewood Cliffs, NJ, 1991.
Rubinstein, Moshe F., Patterns of Problem Solving, Prentice Hall, Englewood Cliffs,

NJ, 1975.
Weinberg, Gerald M., Rethinking Systems Analysis and Design, Dorset House, New

York, 1988.

413

Appendix C:
On Defining Architecture
and Other Terms

This appendix is for those who need to come to a consensus in a group on
a definition for architecture or other major terms used in this book. There
are many who might have such a need, and for those who have a need, this
appendix might be very useful. Deciding on formal definitions is commonly
part of setting up an official corporate training course or documenting a
standard (public or corporate). In these situations, an inordinate amount of
time can be spent arguing about fine details of definitions. It may be hard
to pick and choose among the definitions offered by different standards
because they usually do not record the reasoning that brought them to a
decision. This appendix is a record of some of the definition-related discus-
sions one of the authors (Maier) has been involved in over several years. It
is offered to help others who need to arrive at a group consensus on defini-
tions a ready-made set of choices and reasoning.

Defining “Architecture”
One might think that, with 5,000 years of history, the notion of architec-
ture in buildings would be clearly and crisply defined. Presumably then,
the definition could be extended to give a clear and crisp definition to

414	 Appendix C: On Defining Architecture and Other Terms

architecture in other fields. However, this is not the case. A formal defi-
nition of architecture is elusive even in the case of buildings. And if the
definition is elusive in its original domain, is it surprising that a wholly
satisfactory definition is elusive in more general domains?

The communities involved in architecture in systems, software, hard-
ware, and other domains have struggled with finding a formal definition.
Each group that has set out a formal definition has usually made a unique
choice. The choices are often similar, but reflect significantly different
ideas. The sections to follow review some of the more distinctive choices.
Of course, there are many small variations on each one.

To make sense of the different definitions, it is important to review
them with some criteria in mind. In reviewing these definitions, try to
answer the following questions with respect to each definition:

	 1.	How does the definition establish what is the concern of the architect
and what is not?

	 2.	What is the purpose of the definition? Some purposes might be
defining an element of design, education, organizational survival or
politics, setting legal boundaries, or even humor.

	 3.	Choose a building you are familiar with. What is its architecture,
according to the definition? How well does the definition implied
architecture match what you would expect to be the building archi-
tect’s scope of work?

	 4.	Choose a system you are familiar with. What is its architecture,
according to the definition? What things are uniquely determined
about the system from the application of that definition?

	 5.	What is the architecture of the Internet, according to the definition?

Webster’s Dictionary Definition

We begin with the dictionary’s definition.1

Architecture: 1. The art or science of building; spe-
cifically, the art or practice of designing and building
structures and esp. habitable ones. 2a. Formation or
construction as or as if the result of conscious act <the
~ of the garden> b. a unifying or coherent form or
structure <the novel lacks ~> 3. Architectural prod-
uct or work 4. A method or style of building 5. The
manner in which the components of a computer or
computer system are organized and integrated.

The interesting part of this definition, for our purposes, is part 2. The
first definition uses architecture in the sense of the profession, not what

Appendix C: On Defining Architecture and Other Terms	 415

we are looking for here. This definition says to speak of the architecture of
a thing is to speak of its “unifying or coherent form.” Unfortunately, it is
not obvious what aspect of form is “unifying or coherent.” It is something
that can be judged, but is hard to define crisply. The civil building example
suggests several other ideas about architecture:

	 1.	Architecture is tied to the structure of components, but if a novel
can have an architecture, the notion of components is relatively
abstract. Components may need to be interpreted broadly in some
contexts. No one would confuse the structure of a novel with its
organization into chapters — which is the “packaging” of that struc-
ture, and is analogous to confusing the architecture of a system
with its module structure.

	 2.	The distinction between an architectural level of description and some
other level of design description is not crisp. Architectural descrip-
tion is concerned with unifying characteristics or style, and an engi-
neering description is concerned with construction or acquisition.

	 3.	 In common use, “architecture” can mean a conceptual thing, the
work of architects, and architectural products. Other definitions
make sharper distinctions.

This Book

The definition of architecture given in the glossary of this book is as follows:

Architecture: The structure — in terms of compo-
nents, connections, and constraints — of a product,
process, or element.

This definition is specific, it is talking about structure (although that
term is open to some interpretation). Components, connections, and con-
straints are the descriptive terms for architecture. And we can talk about
the architecture of a wide variety of things. This book is primarily about
architecting, rather than architecture. The reason is that the most impor-
tant constraints come from the process of doing the architect’s role. The
most important things come from working with clients to understand
purpose and limitations. Architecture should, by the tenets of this book,
proceed from the client’s needs rather than a presupposed notion of what
constitutes an architectural-level definition of a system.

IEEE Architecture Working Group (AWG)

After extended discussion in 1995–1996 in association with developing
ANSI/IEEE 1471 Recommended Practice for Architectural Description

416	 Appendix C: On Defining Architecture and Other Terms

of Software-Intensive Systems, the Institute of Electrical and Electronics
Engineers (IEEE) Working Group chose the following definition:

An Architecture is the highest-level concept of a system in its
environment.

“System” in this definition refers back to the official IEEE definition,
“a collection of components organized to accomplish a specific function or
set of functions.” This definition of architecture was intended to capture
several ideas:

	 1.	An architecture is a property of a thing or a concept, not a structure.
The term “structure” is avoided specifically to avoid any connotation
that architecture was solely a matter of physical structure. Concept,
which is obviously much more generic, is used instead.

	 2.	The term “highest-level” is used to indicate that architecture is an
abstraction, and that it is a fundamental abstraction. A major defect
of this definition is that highest-level carries a connotation of levels
of hierarchy, and in particular a single hierarchy, which exactly is
one of the connotations to be avoided. Also, “highest-level concept”
leaves a great deal of room for interpretation.

	 3.	The definition says that architecture is not a property of the system
alone, but that the system’s environment must be included in a defi-
nition of the system’s architecture. This has often been referred to as
“architecture in context” as opposed to “architecture as structure.”
It was there to capture the idea that architecture has to encompass
purpose and the relationship of the system to its stakeholders. The
reader must judge whether or not that interpretation is clear.

This definition was used in several drafts of the 1471 standard but was
replaced in the final balloted version. The definition in the final balloted
version was as follows:

Architecture: the fundamental organization of a
system embodied in its components, their relation-
ships to each other and to the environment and the
principles guiding its design and evolution.

This definition is a refinement of definitions from the software engi-
neering community, as discussed below. Those who do not like it might
be more inclined to say it was a compromise between conflicting points
of view that suffers from the usual problems of a committee decision. The
definition starts with the software communities definitions (discussed
shortly) and then adds back some of the ideas of the original 1471 definition.
The primary refinement is the deemphasis on physical structure and to
say that architecture is “embodied” in components, relationships, and

Appendix C: On Defining Architecture and Other Terms	 417

principles. Put another way, the definition tries to recognize that, for most
systems, most of the time, the architecture is in the arrangement of physi-
cal components and their relationships. But, sometimes, the fundamental
organization is on a more abstract level.

INCOSE SAWG

The International Council on Systems Engineering (INCOSE) Systems
Architecture Working Group (SAWG) adopted a definition for systems
architecture. It could as well be read as a definition for “Architecture, of a
system.” It is as follows:

Systems Architecture: The fundamental and unifying
system structure defined in terms of system elements,
interfaces, processes, constraints, and behaviors.

This definition borrows the core of the dictionary definition that
architecture represents fundamental, unifying, or essential structure.
Exactly what constitutes fundamental, unifying, or essential is not easily
defined. It is presumed that recognizing it is partially art and up to the
participants. In this definition, the role of multiple aspects making up the
architecture is made explicit through the listing of elements, interfaces,
processes, constraints, and behaviors. This definition makes, or facilitates
making, a sharper separation between an architecture as a conceptual
object, an architecture description as concrete object, and the process or
act of creating architectures (architecting).

MIL-STD-498

MIL-STD-498, now canceled, had a definition of architecture that specifi-
cally pertained to a designated development task.

Architecture: The organizational structure of a sys-
tem or CSCI, identifying its components, their inter-
faces, and a concept of execution among them.

Here architecture is described specifically in three parts: components,
interfaces, and a concept of execution. In this sense, it supports the idea
of architecture as inherently multiview, although it specifically defines
the views where others leave them open. The meaning of “organizational
structure” as opposed to some other structure (conceptual, implementa-
tion, detailed, and so forth) is not made clear, although the idea is congru-
ent of the common usage of architecture. It also uses “concept” within the

418	 Appendix C: On Defining Architecture and Other Terms

definition, but only in referring to execution. Like most definitions, it does
not clearly make a distinction between architectural and design concerns.

This definition is also “structuralist” in the sense that it emphasizes
the structure of the system rather than its purposes or other relation-
ships. One could interpret the definition to mean that the architect was
not concerned with the system’s purpose, that architecture came after
requirements were fully defined. In fact, that is exactly the interpretation
it should be given, at least in the way the associated standards envisioned
the systems engineering process executing.

The original IEEE definition (in IEEE 610.12-1990) is a shorter version
of this:

The organizational structure of a system or compo-
nent.

Perry-Garlan

A widely used definition in the software community is due to Perry and
Garlan, although the exact place it first appeared is somewhat obscure.

The structure of the components of a system, their
interrelationships, and principles and guidelines
governing their design and evolution over time.

An almost identical definition is used as the definition of architecture
in the U.S. DoD C4ISR Architecture Framework, where it is incorrectly
credited to the IEEE 610.12 standard for terminology. This definition is
another three-part specification: components, interrelationships, and
principles-guidelines. As this definition is commonly used, components
and interrelationships usually refer to physically identifiable elements.
This definition is mostly used in the software architecture community,
and there it is common to see components identified as code units, classes,
packages, tasks, and other code abstractions. The interrelationships would
be calls or lines of inheritance.

The two basic objections to this definition are that it implies (if pri-
marily through use rather than the words) that architecture is the same as
physical structure, and that it makes no distinction in level of abstraction.
The common usage of architecture is in reference to abstracted properties
of things, not to the details. The Perry-Garlan definition can presumably
apply to the structure of components at any level of abstraction. Although
applicability to multiple levels is, in part, desirable, it is also desirable to
distinguish between what constitutes an architectural-level description
(whether of a whole system or of a component) from descriptions at lower
levels of abstraction.

Appendix C: On Defining Architecture and Other Terms	 419

Maier’s Tongue-in-Cheek Rule-of-Thumb

A slightly flip, but illustrative way of defining architecture is to go back to
what architects are supposed to do.

An Architecture is the set of information that defines
a systems value, cost, and risk sufficiently for the
purposes of the systems sponsor.

Obviously, this definition reflects the issue back to architecting, when
the definition of architecture reflects back to architecture. The point of
this definition is that architecture is what architects produce, and that
what architects do is help clients make decisions about building systems.
When the client makes acquisition decisions, architecture has been done
(perhaps unconsciously, and perhaps very badly, but done).

Internet Discussion

One of the questions given at the beginning was “What is the architec-
ture of the Internet?” The point of the question is that no reasonable
notion of unifying, organizing, or coherent form will produce a physical
description of the Internet. The specific pattern of physical links is
continuously changing and of little interest. However, there is a very
clear unifying structure, but it is a structure in protocols. It is not even
a structure in software components, as exactly what software compo-
nents implement the protocols is not known even to the participating
elements. The point about protocols being the organizing structure of
the Internet, and in particular the Internet Protocol (IP), was made in
Chapter 7 and Figure 7.1.

Summary

Those who must choose definitions have a lot to work with, probably
more than they would want. The precise form of the definition is less
important than the background of what architecture should be about.
What architecting should be was discussed at length in Chapter 1. The
specifics of what architects will produce — that is, what an architecture
actually looks like — will differ from domain to domain. Ideally, the
definition for a given organization should come from that knowledge,
the knowledge of what is needed to successfully define a system concept
and take it through development. If the organization has that knowledge,
it should be able to choose a formal definition that encapsulates it. If the
organization does not have that knowledge, then no formal definition
will produce it.

420	 Appendix C: On Defining Architecture and Other Terms

Models, Viewpoints, and Views
The terms model, view, and viewpoint are important in setting architec-
ture description standards, or architecture frameworks using the com-
munity terminology of Chapter 11. The meaning of these terms changes
from standard to standard. The discussion below is intended to capture
an argument for a distinction between the two meanings. The distinction
can be useful in writing standards, though it is not important in writing
architecture descriptions nor is it extensively used in this book.

Why do we need some organizing abstraction beyond just models?
Experience teaches that particular collections of models are logically related
by the kinds of issues or concerns they address. The idea of a view comes
from architectural drawings. In a drawing we talk about the top view or the
side view of an object in referring to its physical representation as seen from
a point. A view is the representation of a system from a particular point or
perspective. A view is a representation of the whole system with respect
to a set of related concerns. A viewpoint is the abstraction of many related
views; it is the idea of viewing something from “the front,” for example.

A view need not correspond to physical appearance. A functional
view is a representation of a system abstracting away all nonfunctional
or nonbehavioral details. A cutaway view shows some mixture of internal
and external physical features in a mixture defined by the illustrator.

A view can be thought of both projectively and constructively. In the
projective sense, a view is formed by taking the system and abstracting
away all the details unnecessary to the view. It is analogous to taking a
multidimensional object and projecting it onto a lower-dimensional space
(like a viewing plane). So, for example, a behavioral view is the system
pared down to only its behaviors, its set of input to output traces.

In the constructive sense, we build a complete model of the system by
building a series of views. Each represents the system from one perspec-
tive, and with enough the system should be “completely” defined. It is
like sketching a front view, a side view, a top view, and then inferring the
structure of the whole object. In more general systems, we might build a
functional view, then a physical view, then a data view, then return to the
functional view, and so forth, until a complete model is formed from the
joint set of views.

In practice, it usually takes several models to represent that whole
system relative to typical concerns, at least for high-technology systems.
So, a view is usually a collection of models. For example, physical represen-
tation seems simple enough, but how many different models are needed to
represent the components of an information-intensive system? A complete
physical view might need conventional block diagrams of information flow,
block diagrams of communication interconnection, facilities layouts, and
software component diagrams.

Appendix C: On Defining Architecture and Other Terms	 421

Viewpoints are motivated noticing that we build similar views, using
similar methods, for many systems. By analogy, we will want to draw a
top view of most systems we build. The civil architect always draws a set
of elevations, and elevation drawings share common rules and structures.
And an information systems architect will build information models
using standard methods for each system. This similarity is because related
systems will typically have similar stakeholders, and these stakeholders
find their concerns consistently addressed by particular types of models
and analysis methods. Hence, a viewpoint can be thought of as a set of
modeling or analysis methods together with the concerns those methods
address and the stakeholders possessing those concerns.

Working Definitions

These are summarizing definitions, augmented with the notions of con-
sistency and completeness. The concepts here refer to the 1471 informa-
tion model in Figure 11.1.

Model: An approximation, representation, or idealization of selected
aspects of the structure, behavior, operation, or other characteristics
of a real-world process, concept, or system (IEEE 610.12-1990).

Viewpoint: A template, pattern, or specification for constructing a
view (IEEE 1471-2000).

View: A representation of a system from the perspective of related
concerns or issues (IEEE 1471-2000).

Consistency, of views: Two or more views are consistent if at least one
can exist that possesses the given views.

Completeness, of view: A set of views is complete if they satisfy
(or “cover”) all of the concerns of all stakeholders of interest.

Consistency and Completeness

Given multiple views (like top, front, and side) of a physical object, the
ideas of consistency and completeness clear. A set of views is consistent
if they are abstractions of the same object. A little more generally, they
are consistent if at least one real object exists that has the given views.
Consistency for physical object and views can be checked through solid
geometry. Figure C.1 illustrates the point. The views are consistent if the
geometrical object produces them when projected onto the appropri-
ate subspace. Even without the actual object, we can perform geometric
checks on the different views.

We cannot (yet) treat consistency in the same rigorous manner if
the views are functional and physical and of a complex system. As we

422	 Appendix C: On Defining Architecture and Other Terms

employ more complex views it is useful to return to the heuristic notion of
consistency. Given a few models of a system being architected, we say they
are consistent if at least one implementation exists that has the models as
abstractions of itself.

Completeness can also be heuristically understood through the geo-
metric analogy. Suppose we have set of visual representations of a material
object. What does it mean to claim that the set of representations (views)
is “complete”? Logically, it means that the views completely define the
object. But, any set of external visual representations can only define the
external shape of the object; it cannot define the internal structure, if any.
This trivial observation is actually extremely important for understand-
ing architecture. No set of representations is ever truly complete. A set of
representations can be complete only with respect to something, say with
respect to some set of concerns. If the concerns are external shape, then
some set of external visual representations can be complete. If the con-
cerns are extended to include internal structures, or strength properties,
or weight, or any number of other things, then the set of views must
likewise be extended to be “complete.”

Reference
	 1.	 Merriam Webster’s Collegiate Dictionary, 10th edition, p. 61.

Consistency of a front, top,
and perspective view can be
grounded in geometry.

Figure C.1  A geometric illustration of the concept of consistency in views.

423

Glossary

The fields of systems engineering and systems architecting are sufficiently
new that many terms have not yet been standardized. Common usage is often
different among different groups and in different contexts. However, for the
purposes of this book, the meanings of the following terms are as follows:

Abstraction:  A representation in terms of presumed essentials, with a
corresponding suppression of the nonessential.

ADARTS:  Ada-Based Design Approach for Real-Time Systems. A software
development method (including models, processes, and heuristics)
developed and promoted by the Software Productivity Consortium.

Aggregation:  The gathering together of closely related elements, purposes,
or functions.

Architecting:  The processing of creating and building architectures;
depending on one’s perspective, architecting may or may not be
seen as a separable part of engineering. Those aspects of system
development most concerned with conceptualization, objective
definition, and certification for use.

Architectural style:  A form or pattern of design with a shared vocabu-
lary of design idioms and rules for using them (See Shaw and
Garlan, 1996, page 19).

Architecture:  The structure — in terms of components, connections, and
constraints — of a product, process, or element.

Architecture, open:  An architecture designed to facilitate addition, exten-
sion, or adaptation for use.

424	 Glossary

Architecture (communication, software, or hardware):  The architecture
of the particular designated aspect of a large system.

ARPANET/INTERNET:  The global computer internetwork, principally
based on the TCP/IP packet communications protocol. The ARPANET
was the original prototype of the current INTERNET.

Certification:  A formal, but not necessarily mathematical, statement that
defined system properties or requirements that have been met.

Client:  The individual or organization that pays the bills. May or may not
be the user.

Complexity:  A measure of the numbers and types of interrelationships
among system elements. Generally speaking, the more complex a
system, the more difficult it is to design, build, and use.

Deductive reasoning:  Proceeding from an established principle to its
application.

Design:  The detailed formulation of the plans or instructions for making
a defined system element; a follow-on step to systems architecting
and engineering.

Domain:  A recognized field of activity and expertise, or of specialized
theory and application.

Engineering:  Creating cost-effective solutions to practical problems by
applying scientific knowledge to building things in the service of
mankind (Shaw and Garlan, 1996, page 6). May or may not include
the art of architecting.

Engineering, concurrent:  Narrowly defined (here) as the process by
which product designers and manufacturing process engineers
work together to create a manufacturable product.

Heuristic:  A guideline for architecting, engineering, or design. Lessons
learned expressed as a guideline. A natural language abstraction
of experience that passes the tests of Chapter 2.

Heuristic, descriptive:  A heuristic that describes a situation.
Heuristic, prescriptive:  A heuristic that prescribes a course of action.
IEEE P 1220:  An Institute of Electrical and Electronic Engineers standard

for systems engineering.
Inductive reasoning:  Extrapolating the results of examples to a more

general principle.
Manufacturing, flexible:  Creating different products on demand using

the same manufacturing line. In practice, all products on that line
come from the same family.

Manufacturing, lean:  An efficient and cost-effective manufacturing or pro-
duction system based on ultraquality and feedback. (See Womack
et al., 1990.)

MBTI:  Meyer-Briggs Type Indicator. A psychological test for indicating
the temperaments associated with selected classes of problem
solving. (See Meyers, Briggs, and McCaulley, 1989.)

Glossary	 425

Metaphor:  A description of an object or system using the terminology
and properties of another. For example, the desktop metaphor for
computerized document processing.

MIL-STD:  Standards for defense system acquisition and development.
Model:  An abstracted representation of some aspect of a system.
Model, satisfaction:  A model that predicts the performance of a system

in language relevant to the client.
Modeling:  Creating and using abstracted representations of actual systems,

devices, attributes, processes, or software.
Models, integrated:  A set of models, representing different views, form-

ing a consistent representation of the whole system.
Normative method:  A design or architectural method based on “what

should be” — that is, on a predetermined definition of success.
OMT:  Object Modeling Technique. An object-oriented software develop-

ment method. (See Rumbaugh et al., 1991.)
Objectives:  Client needs and goals, however stated.
Paradigm:  A scheme of things, a defining set of principles, a way of look-

ing at an activity, for example, classical architecting.
Participative method:  A design method based on wide participation of

interested parties. Designing through a group process.
Partitioning:  The dividing up of a system into subsystems.
Progressive design:  The concept of a continuing succession of design activi-

ties throughout product or process development. The succession
progressively reduces the abstraction of the system through models
until physical implementation is reached and the system used.

Purpose:  A reason for building a system.
Rational method:  A design method based on deduction from the princi-

ples of mathematics and science.
Requirement:  An objective regarded by the client as an absolute — that

is, either passed or not.
Scoping:  Sizing; defining the boundaries and defining the constraints of

a process, product, or project.
Spiral:  A model of system development that repeatedly cycles from func-

tion to form, build, test, and back to function. Originally proposed
as a risk-driven process, particularly applicable to software devel-
opment with multiple release cycles.

System:  A collection of things or elements that, working together, pro-
duce a result not achievable by the things alone.

Systems, builder-architected:  Systems architected by their builders, gen-
erally without a committed client.

Systems, feedback:  Systems that are strongly affected by feedback of the
output to the input.

426	 Glossary

Systems, form first:  Systems that begin development with a defined form
(or architecture) instead of a defined purpose. Typical of builder-
architected systems.

Systems, politicotechnical:  Technological systems, the development and
use of which are strongly influenced by the political processes of
government.

Systems, sociotechnical:  Technological systems, the development and
use of which are strongly affected by diverse social groups.
Systems in which social considerations equal or exceed technical
ones.

Systems architecting:  The art and science of creating and building com-
plex systems. That part of systems development most concerned
with scoping, structuring, and certification.

Systems architecting, the art of:  That part of systems architecting based
on qualitative heuristic principles and techniques — that is, on
lessons learned, value judgments, and unmeasurables.

Systems architecting, the science of:  That part of systems architecting
based on quantitative analytic techniques — that is, on mathe-
matics and science and measurables.

Systems engineering:  A multidisciplinary engineering discipline in
which decisions and designs are based on their effect on the sys-
tem as a whole.

Technical decisions:  Architectural decisions based on engineering
feasibility.

Ultraquality:  Quality so high that measuring it in time and at reasonable
cost is impractical. (See Rechtin, 1991, Chapter 8.)

Value judgments:  Conclusions based on worth (to the client and other
stakeholders).

View:  A perspective on a system describing some related set of attributes.
A view is represented by one or more models.

Waterfall:  A development model based on a single sequence of steps;
typically applied to the making of major hardware elements.

Zero defects:  A production technique based on an objective of making
everything perfectly. Related to the “everyone a supplier, every-
one a customer” technique for eliminating defects at the source.
Contrasts with acceptable quality limits in which defects are
accepted providing they do not exceed specified limits in number
or performance.

427

Author Index

A
Abts, C., 400
Alexander, C., 41, 280–281, 402, 403
Arbib, M. A., 411
Axelband, E., 337, 375–391

B
Balzer, B., 245
Basili, V. R., 283
Baudin, M., 243, 307–308
Bauermeister, B., 76, 283
Beam, W. R., 411
Benjamin, T., 405
Bercuzk, C., 281
Bernstein, L., 283
Blaha, M., 410
Blanchard, B. S., 391
Boehm, B., 23, 296, 349, 389, 410
Boorstin, D. J., 411
Booton, R. C., 390, 393
Bout, A., 402
Boyes, J. L., 411
Brookner-Fowler, 401
Brooks, F. P., 3, 68, 147, 167, 179, 283, 377,

389, 410
Burkett, W. C., 398, 401, 406

Burruss, J., 405
Butler, S., 215
Buttazzo, G. C., 306

C
Cantry, D., 28
Carpenter, R., 27, 389
Carson, E. R., 389, 392, 411
Cavola, R., 402
Cerveny, A., 406
Champy, J., 392
Chiariglione, L., 215, 333
Churchman, C. W., 389, 392
Clark, K. B., 95, 112, 113, 215, 408, 410
Clausing, D., 310
Constantine, L. L., 175, 245, 264, 283, 310
Courtois, P. J., 402
Cuff, D., 28
Cureton, K., 38, 42, 68, 76, 400, 402

D
Davie, B., 215
Davis, S. M., 411
Deal, T. E., 409
DeMarco, T., 156, 179, 196, 215, 234, 246, 287,

293, 296, 307, 410

428	 Author Index

Deming, 266, 404
Deutsch, M. S., 405, 410
Di Natale, M., 306
Diskin, D., 215

E
Eddy, F., 410
Eisner, H., 380, 392, 410

F
Fabrycky, W. J., 391
Ferguson, C. H., 74, 75, 398, 400
Flood, R. L., 389, 392, 411
Forman, B., 336, 361–373, 398
Forte, M., 399
Furht, B. P., 410

G
Gajski, D. D., 410
Gamma, E., 410
Garlan, D., 170–171, 179, 389, 393, 418, 424
Gaudet, D., 405
Gause, D. C., 411
Geis, N. P., 68, 76, 389, 397, 399
Genesereth, M. R., 389, 392
Genesereth, M. S., 411
Gerstein, D. R., 411
Getting, I., 19, 184
Gillam, A., 406
Gödel, 29
Gold, J., 402
Gradous, L. I., 136, 399, 405
Greenberg, A. M., 134

H
Hammer, M., 392
Harper, R., 283
Hatley, D. J., 219, 231, 243, 246, 250, 286–287,

298, 300, 307, 318, 328, 410
Hauser, J. R., 292, 310
Hayes, R. H., 95, 112, 113, 215, 405, 410
Hayes-Roth, F., 261, 398
Hill, D. J., 214
Hillaker, H., 32, 57–76, 271, 400, 402, 403, 405
Hofstadter, D. R., 411
Honour, E. C., 385, 392
Howes, N., 215

J
Jaynarayan, H., 277, 283
Je, W., 283, 399
Jensen, R. W., 401
Jones, D., 34, 113, 401
Jordan, K., 215
Juran, J. M., 410

K
Kaplan, J., 400
Kennedy, A. A., 409
King, D. R., 28, 397, 399, 401, 404, 405
Kjos, K., 404, 405
Klir, G. J., 31, 389, 411
Kostoff, S., 389, 409
Kreitman, K., 259, 304
Kruchten, P. B., 179
Kuchta, B., 403

L
Lambert, B., 179
Lang, J., 4, 136, 389, 402
Lehan, F., 401
Lendaris, G. G., 397
Leveson, N. G., 179
Ley, D., 404
Lim, J., 405
Lindsey, W. C., 113
Lister, T., 179, 410
Liston, J., 404
Lorensen, W., 410
Losk, J., 68, 76, 389, 401, 406

M
Madachy, R., 40, 42
Maguire, S., 179
Maier, M., 123, 196, 215, 243, 283, 310, 402,

413, 419
Majchrzak, A., 75
Margolis, E. M., 385, 392
Matz, R., 405
McConnell, S., 176, 179
McGinn, D., 34, 401
Mead, C., 32
Mellor, S. J., 297, 311, 410
Miller, R., 410
Mills, A., 69, 76, 246

Author Index	 429

Mills, H., 377
Milutinovic, V. M., 410
Morley, R. E., 246
Morris, C. R., 74, 75, 398
Morrison, 400
Mueller, D. C., 272

N
Nadler, G., 261, 389, 399
Newell, A., 389, 392
Nilsson, N. J., 389, 411
Noel, L., 400
Norman, D. A., 411

O
Ohno, T., 78, 82, 107
Olivieri, J., 111, 397

P
Parks, R., 401
Pearl, J., 411
Perry, W. J., 392, 418
Peterson, L., 215
Pieronek, T., 68, 76, 389, 392
Pirbhai, I., 219, 231, 243, 250, 286–287, 300,

307, 318, 328, 410
Premerlani, W., 410

R
Ramo, S., 19, 379, 390, 393
Raymond, A., 47, 50, 53–54, 188
Raymond, E., 209, 215, 283
Rechtin, E., 4, 22, 23, 35, 37, 39, 42, 70, 92,

113, 120, 123, 126, 255, 260, 283,
359, 385, 395, 396, 400, 411, 426

Renton, M. B., 401–403, 405
Rowe, A. J., 42
Rowe, P. G., 4, 389, 392, 409
Rubinstein, M. F., 389, 392, 400, 402, 411
Rumbaugh, J., 176, 243, 246, 311, 410, 425
Russo, J. E., 402
Ruth, Susan, 395, 399, 403, 406, 407

S
Saaty, T., 272
Savagian, P. J., 111
Schmidt, J. H., 111, 401, 405, 406, 407

Schriever, B., 379
Selby, R. W., 283
Shaw, M., 170–171, 179, 279, 389, 410, 423, 424
Sheard, S., 385, 392
Siegel, H. J., 410
Simon, H. A., 113, 389, 392, 397, 410
Sooter, C., 18, 401, 407
Spinrad, R., 3, 4, 9, 34, 68, 69, 75, 76, 397, 399,

400, 401, 403, 406
Spuri, M., 306
Stankovic, J. A., 306
Steiner, J. E., 260, 372, 398, 402
Suzaki, 397

T
Tausworthe, R. C., 403
Taylor, 111, 401
Thome, B., 410
Turner, C. S., 179

V
von Braun, W., 401

W
Ward, P. T., 297, 311, 410
Weinberg, A. M., 133, 136
Weinberg, G. M., 411
Wheelon, A. D., 399
Wheelright, S. C., 95
White, A. N., 221
White, J. B., 113
White, S., 310
Wile, D., 245
Williams, P. L., 42
Willis, R. R., 410
Wolf, S., 403, 404
Wolstenholme, E. F., 309
Womack, J. P., 109, 113, 424
Wood, D. P., 286
Wood, W. G., 286

Y
Yamasaki, Y., 107
Yourdon, E., 175, 245, 246, 264, 283, 310, 410

Z
Zachman, 324

431

Subject Index

621B, 184

A
Abstraction, 30–31, 270, 423
Acceptable quality limits (AQLs), 13
Acceptance criteria, 23, 218, 222, 398, 400, 404
Accounting methods, 242
Acquisition process, 20–23, 27, 98, 228
Activity model (OV-5), 317, 318
Ada language, 175, 299–300
ADARTS, 175, 231, 243, 257, 292–293, 297–300,

423
Aerodynamics, 5, 7, 49, 339
Aerospace
	 IEEE Aerospace Electronics Society, 389
	 systems, 377, 399
	 West Coast industry, 32
Aggregation, 6, 22, 222, 241, 259, 261, 263–265,

402, 423
Air defense systems, 197, 201–202, 204
Air Force, 64, 96, 182, 184, 188–189, 191,

379–380
Aircraft
	 heuristics domain-specific to, 40
	 program, Osprey, 368
Airline travel, 133

AM; see Architecture Model
American National Standards Institute

(ANSI), 211, 223, 305, 315, 324–327,
382, 415

Animal experiments, 367
ANSI; see American National Standards

Institute
APG; see Architecture Planning Group
API; see Application programming

interface
Apollo mission, 10, 14, 93, 365
Apple, 62, 66, 209–210, 263
AppleTalk control, 177–178
Application programming interface (API),

177, 211
Application-specific languages, 168, 174
AQL; see Acceptable quality limits
Architecting
	 as art and science, 1–3
	 classical paradigm, 5
	 collaborative systems and, 202
	 foundations of, 8–19
	 heuristics, 35–38, 395–406
	 scope of, 25–27
	 software and, 147–151, 170
Architecting, in business and government,

339–359

432	 Subject Index

	 architecture of programs, 346–350
	 enterprise architecture, 353–359
	 problem-system-program-organization,

339–343
	 strategic architecting of programs,

350–353
	 strategy and architecture, 343–345
Architectural level, understanding, 314
Architectural styles, 170–171, 423
Architecture, defined, 413–421
	 consistency and completeness, 421
	 IEEE Architecture Working Group, 415
	 INCOSE SAWG, 417
	 Internet discussion, 419
	 Maier’s tongue-in-cheek rule of thumb,

419
	 MIL-STD-498, 417
	 Perry-Garlan, 418
	 Webster’s Dictionary definition, 414
	 working definitions, 421
Architecture, frameworks, 313–333
	 adapting processes to, 327–329
	 current frameworks, 315–324
	 defining, 314–315
	 overview, 313
	 research directions, 327–329
Architecture Model (AM), 218, 250, 255, 270,

287, 289
Architecture paradigm, 5–27
	 architecting scope, 25
	 classical paradigm, 5
	 foundations of modern systems

architecting, 8–19
	 high rate of advances in, 7–8
	 responding to complexity, 5–7
	 spirals, increments, and collaborative

assembly, 23–25
	 summarized, 19–20
	 waterfall method of systems acquisition,

20–23
Architecture Planning Group (APG), 324
Architecture Working Group (AWG), 316,

415–416
Ariane 5 space launch, 16
Aristotelian logic, 362
ARPANET-INTERNET communication

network, 11, 424
Assessment, 405
Authentication, 177
Automobiles
	 AVCS and, 117
	 facts vs. perceptions, 132

	 flexible manufacturing and, 108–109
	 lean production and, 105
	 mass production and, 78–85
	 scale models, 230
	 smart, 57
	 software and, 7, 63
	 systems architecture and, 14
	 ultraquality systems and, 91
AWG; see Architecture Working Group

B
Ballistic missile defense, 11, 125, 150,

379–380
Beacon systems, 202
Behavioral programming, 236
Bell Laboratories, 67
Bell Telephone System, 67, 128
Block diagrams, 224, 230–232, 305, 420;

see also Functional Flow Block
Diagrams

Blocking pull, 231
Blueprint standards, 20, 313, 316, 333;

see also U.S. Department of
Defense Architecture Framework

Boston University, 376, 386
Boycotts, 93, 126
Breadboard-brassboard-flight, 347
Builder-architected systems, 57–74
	 abandonment of obsolete architecture,

67
	 architecting “revolutionary” systems,

70–72
	 architecture and competition, 61–63
	 consequences of uncertainty of end

purpose, 61
	 controlling critical features, 66
	 creating innovative teams, 68–70
	 form-first paradigm, 57–59
	 heuristics for architecting technology-

driven systems, 73
	 reducing risks of uncertainty of end

purpose, 63
	 risk management by intermediate goals,

64
	 systems architecture and basic research,

72
	 technological substitutions within

existing systems, 59–61
	 “what next?” quandary, 65
Building codes, 1–2, 256, 316
Byzantine failure, 16, 277

Subject Index	 433

C
C language, 300
C4I systems, 150, 196, 210
C4ISR framework (CAF), 316, 418
CAF; see C4ISR framework
Call distribution systems, 160
Carnegie Mellon University, 171, 377, 387,

389
CASE tools; see Computer-aided system

engineering (CASE) tools
CD-ROMs, 154
Cellular telephones, 129–130, 150, 214
Certification, 17–18, 27, 94–96
Chaotic behavior, 73, 103, 236–237
Chernobyl, 133
Chunking, 402
Circle-to-spiral model, 97–98
Civil architecture, 20, 217
Civil engineering, 255
Civil works architecture, 5, 125
COCOMO; see Constructive cost model
Coding theory, 73
Cold War, 64, 363, 380
Collaborative assembly, 25
Collaborative formation, 350
Collaborative systems, 195–214
	 analogies for architecting, 202–203
	 collaboration as category, 195–196
	 examples of, 197–202
	 heuristics, 203–206
	 misclassification, 208–211
	 standards and, 211–213
	 variations on collaborative theme,

207–208
Command relationships model (OV-4), 317
Commercial off-the-shelf (COTS) units, 111
Commercial standards, 382–384
CompressedSize, 302
Compression, 177, 205, 302, 331–332
Computational frameworks, 236
Computational specification, 323
Computer-aided system engineering

(CASE) tools, 245, 379
Concept formulation, 179, 245, 400
Concurrent engineering, 3, 98–100
Concurrent progressions, 253–254
Conflict of interest, 18, 76, 402
Congress, 18, 316, 336, 362–369, 373
Construction blueprints, 218
Constructive cost model (COCOMO),

296–297
Consumer electronics, 7, 72, 92, 349

Cost estimates, 20, 253
COTS; see Commercial off-the-shelf (COTS)

units
Customers
	 acceptance/uncertainty of, 64, 75
	 feedback, 100–102, 107
	 flexible manufacturing and, 108–109
	 incremental development for, 57–58
	 -sales-delivery loop, 107

D
Data
	 attributes, 302
	 communication systems, 155
	 entry-system, computer-based, 179
	 exchange, 295, 320
	 flow, 167, 172, 231–232, 234–235, 285–289,

293–297
Data flow diagrams (DFDs), 234–235, 288
Databases, 115, 148–149, 168–169, 261–262
Decision theory, 261, 271–273, 336
Decompositioning, 403
Defect rate, 14, 84, 107, 109–110
Design
	 hierarchy, 293
	 layered, 164
	 politics as factor in, 362–364
	 progression, 248–249
	 reviews, 234, 399, 404
Design progression, in systems

architecting, 247–282
	 architecture and design disciplines,

277–280
	 design as evolution of models, 250
	 design concepts for systems

architecture, 254–277
	 design progression, 248
	 evaluation criteria and heuristic

refinement, 250–254
	 examples, 250
	 overview, 247
Desktop publishing, 71, 263
DeSoto story, 91, 109
DFDs; see Data flow diagrams
Diagnostic procedures, 92
Digital electronics, 188, 190, 192, 310
Discrete event systems, 102, 235–236, 239,

286–287
DODAF; see U.S. Department of Defense

Architecture Framework
Domain-specific languages, 229

434	 Subject Index

Don’t assume heuristics, 400
Drug testing, 367
Dynamic manufacturing, 93–105

E
Econometrics, 309
Economic stability, 204
Effective lines of code (ELOC), 296–297
Electric power distribution, 131, 214
Electronics industry, 130, 352–353
ELOC; see Effective lines of code
E-mail, 11, 60, 197, 354
Engineering
	 concurrent, 3, 98–100
	 models, 13, 292
	 profession of, 375–378
	 solutions, 336–337, 365, 370, 398
	 specifications, ODP systems, 323
Enhanced Requirements Model (ERM), 287
Enterprise architecture, 353–358
Enterprise distribution, 83–84
Entity-Relationship diagrams, 241, 307
ENTP personality type, 68
Environmental control, 131
ERM; see Enhanced Requirements Model
Event flow networks, 233, 234
Evolving and re-architecting, 406
Execution semantics, 171, 245
ExpandedSize, 301–302

F
Facilities layouts, 420
Facts of life, 365–373
Failure
	 rate, 91, 276–277, 404, 405
	 system, 92, 399
Fault tolerance, 16, 91–92, 200
Federal government, 336, 361
Federally Funded Research and

Development Centers (FFRDCs),
390

Feedback
	 customers and, 58
	 loops, 371–372
	 release cyclees and, 89
	 systems, 93, 100–105, 425
	 ultraquality systems and, 44
	 waterfall, 97
FFBD; see Functional Flow Block Diagrams

FFRDCs; see Federally Funded Research
and Development Centers

Fiber optics, 72
Flat screen monitors, 11
Flexible manufacturing, 108–111
Flight control, 15–16, 154, 179, 265, 277
Floor plans, 20, 218, 224, 249
FORTRAN, 153, 168
Free flight, 109
Free software, 208
Functional Flow Block Diagrams (FFBD), 234;

see also Block diagrams
Funds flow model, 244, 307
Fuzzy control systems, 104, 109

G
Global Positioning Systems (GPS), 181–193
	 621B, 184
	 architecture as invariants, 192
	 architecture interpretation, 189
	 commercial markets and Gulf War, 187
	 consensus without compromise, 191
	 fateful weekend, 185
	 guided weapons, 188
	 history, 181
	 inertial navigation and limits, 182
	 long road to revolution, 186
	 origins of, 181, 184
	 Parkinson and Currie, 185
	 revolution in second generation, 187
	 revolution through coupled change, 192
	 success of, 189
	 TIMATION, 183
	 timeline to operation, 186
	 transit program, 182
	 ubiquity of, 188
	 weapon delivery, 182
Government regulations, 61, 375
GPS; see Global Positioning Systems
Graduate education, 386
Ground radar, 202; see also Radar
Groundthink, 3, 69
GSM digital cellular telephone standard, 214

H
Hard pull, 232
Hard push, 231
Hardware
	 architecture, 7–8, 72, 166–168

Subject Index	 435

	 costs, 7, 97–98
	 hierarchy, 161–162, 164
	 integration of, 44, 157–160
	 IT systems and, 147–149, 151–154
	 software and, 176–179
	 spirals for, 157
	 upgrades, 24
	 waterfall model and, 20–21
Harris Corporation Infomation Systems

Division, 385
Hatley-Pirbhai modeling method, 250,

286–291
Heuristics
	 for architecting manufacturing systems,

111
	 for architecting technology-driven

systems, 73
	 collaborative systems and, 203–206
	 in political process, 356–373
	 refinement, 250–254
	 for social systems, 134
	 software and, 175–178
	 specialized and formalized, 257
Heuristics, as tools, 29–41
	 as abstractions of experience, 30–31
	 heuristics on heuristics, 38
	 new directions, 41
	 process framework for, 35–38
	 selecting personal kit of tools, 31–34
	 taxonomy of, 39–41
	 using, 34
Heuristics, for systems-level architecting,

395–407
	 aggregating, 402
	 assessing performance, 405
	 certifying, 404
	 integrating, 403
	 modeling, 401
	 multitask heuristics, 397
	 organizing the list, 395–397
	 partitioning, 403
	 prioritizing, 401
	 rearchitecting, 406
	 scoping and planning, 398–401
	 tool list, 397–407
Hewlett-Packard, 58, 67, 75
Hierarchical systems, 137–144
	 business background, 137
	 layerd alternative, 140–142
	 motivation for change, 138–140
	 pain of transition, 142–144
Hierarchy, 161–165
	 large, autonomous components, 165

	 layered design, 164
	 object orientation, 162–164
	 reconciling, 165
High technology, cost of, 366
High-level language, 153, 168, 279
High-Level Operational Concept Graphic

(OV-1), 317, 320
Highway travel, 60
Hitachi, 109
Hughes Aircraft, 337, 385
Human observers, 202
Humor, 38, 414

I
IBM, 66
IEEE, 324, 383, 415–417, 421, 424
IEEE Software Engineering Standards

Committee (SESC), 324
IETF; see Internet Engineering Task Force
INCOSE, 376, 383, 390–391
INCOSE SAWG, 378, 417
Incremental delivery, 348
Industrial controls, 147
Information
	 flow, 44, 102, 109, 111, 231, 317
	 networks, 125, 245
	 processing, 5, 110, 148, 322
	 specifications, ODP systems, 322
	 system capacity, 110
Information technology systems, 147–178
	 architectures, unifying models, and

visions, 169
	 directions in software architecting,

170–175
	 hierarchy, 161–165
	 programming languages, 167–169
	 role of architecture in software-

centered systems, 166
	 software as status component, 151–153
	 status of software architecting, 147–151
	 systems, software, and process models,

153–154
Insights
	 heuristics and, 18–19
	 socioeconomic, 128–130
	 thrill of, 39
Integrated modeling, 115–122, 242, 285–310
	 general models, 286–292
	 for manufacturing systems, 307
	 overview, 286
	 for sociotechnical systems, 308

436	 Subject Index

	 software and, 292–306
Intelligent Transport Systems (ITS),

115–122, 128
	 architecture as shared invariants, 122
	 clients, 118
	 concepts, 116–118
	 dominance of economics, 122
	 facts vs. perceptions, 121
	 public vs. private, 119–121
	 sociotechnical issues, 118
Interagency rivalries, 362
International Council on Systems

Engineering (INCOSE), 383,
390–391

International Systems Organization (ISO),
211, 320–324, 382

Internet
	 as collaborative system, 24–25, 45, 126,

195, 204–208
	 Department of Defense and, 150
	 layered systems and, 141
	 open source design and, 58
	 Protocol (IP), 159, 419
	 regulation, 128
	 software and, 153–154
	 standards and, 211–212
	 TCP/IP, 145, 178, 197–199, 342
Internet Engineering Task Force (IETF),

24–25, 198–199, 206, 211–213
Internetwork communication server, 179
INTP personality type, 68
ISO; see International Systems

Organization
Iterative development, 23
ITS; see Intelligent Transport Systems

J
Java, 167, 300
Jet aircraft, 57, 59, 126
JIT inventory; see Just-in-time (JIT) inventory
Joint Technical Architecture (JTA), 316
Jump and exploit, 351–353
Just-in-time (JIT) inventory, 107–108, 308

K
Key presses, 174
Killer apps, 71, 72
Kodak, 67

L
Landsat System, 129
Languages, 153
	 Ada, 153
	 application-specific, 168, 174
	 C++, 153
	 domain-specific, 229
	 FORTRAN, 153
	 meta-, 169
	 Pascal, 153
Laptop computers, 195
Latent markets, 58
Lean manufacturing, 44, 404, 405
Lean production, 77–86, 105–108
Linux, 208–209, 212, 214
Lobbyists, 362, 372
Logical Data Model (OV-7), 317, 318
Loop delay, 101
Lunar missions, 11–12, 93, 127, 366

M
Macintosh computers, 66, 71, 109, 169,

177–178, 229, 263
Madachy taxonomy, 40
Managerial models, 242
Manufacturing
	 certification, 94
	 dynamic, 93–105
	 flexible, 108–111
	 heuristics domain-specific to, 111
	 lean, 44, 404, 405
	 zero-g, 367
Manufacturing systems, 87–112
	 architectural innovations, 91–93
	 dynamic, 93–105
	 flexible manufacturing and, 108–111
	 heuristics, 111
	 lean production and, 105–108
	 manufacturing in context, 88–91
Market research, 64
Mass production, 77–79
Massachusetts Institute of Technology (MIT),

353, 386–387
Mathematical systems theory, 233, 235–236
Mathematicans, 29
MATLAB, 153, 168–169, 279
MBTI; see Myers-Briggs Type Indicator
Medicare management systems, 126, 127
Mental models, 13, 259, 401
Meta-languages, 169

Subject Index	 437

Meta-models, 229, 242
Microchips, 6, 32, 66, 184
Microgravity experiments, 367
Microprocessors, 14–15, 59, 92, 110–111, 148
Microsatellite Imaging System, 287–288,

290, 298
Microsoft, 66, 169, 209, 212, 263
Microwaves, 195, 310
Military
	 C4I systems, 150, 196, 210
MIT; see Massachusetts Institute of

Technology
Modeling methodologies, integrated,

115–122, 242, 285–310
	 general models, 286–292
	 for manufacturing systems, 307
	 overview, 286
	 for sociotechnical systems, 308
	 software and, 292–306
Models; see also Integrated modeling
	 behavioral, 232–238
	 classifications by view, 225–242
	 data, 240
	 defined, 425
	 design as evolution of, 250
	 of form, 229–232
	 integrated, 242
	 managerial, 242
	 objectives and purpose, 227
	 performance, 238–240
	 representation and systems architecting,

221–245
	 roles of, 222
Molecular resonance imaging, 72
Motion Picture Experts Group (MPEG),

205, 206, 214, 331, 333
Multinational reconnaissance-strike

systems, 45
Multitask heuristics, 397
Murphy’s Law, 34, 397
Myers-Briggs Type Indicator (MBTI), 68, 424

N
NASA, 11, 75, 126, 363, 367–368, 390
National security, 2, 128, 149, 369
Natural languages, 31, 151, 223
Networks
	 event flow, 233, 234–235
	 portable languages, 167
Node failures, 321

Nonblocking pull, 231
Nonlinearity, 101–104, 111, 236

O
Object Management Group (OMG), 323
Object Modeling Technique (OMT), 243,

292, 301, 425
ODP systems, 322–324
OMG; see Object Management Group
OMT; see Object Modeling Technique
On-orbit diagnostics, 230, 367
Open architectures, 63, 74, 399
Open collaborative systems, 207, 210
Open source software, 58, 126, 149, 208–212
Open System Interconnect (OSI), 141
Operational Event/Trace Description

(OV-6a), 318
Operational Information Exchange Matrix

(OV-3), 317
Operational Node Connectivity

Description (OV-2), 317
Operational Rules Model (OV-6a), 317
Operational State Transition Model (OV-6b),

318
OSI; see Open System Interconnect
OV-1; see High-Level Operational Concept

Graphic
OV-2; see Operational Node Connectivity

Description
OV-3; see Operational Information

Exchange Matrix
OV-4; see Command relationships model
OV-5; see Activity model
OV-6a; see Operational Rules Model
OV-6b; see Operational State Transition

Model
OV-7; see Logical Data Model (OV-7)

P
Packet forwarding, 197
Partitioning, 403
Pascal, 153, 161, 168
Pattern language, 41, 170, 280–281
Performance
	 assessing, 405
	 -driven systems, 291
	 integration, 306
	 models, 238
Perry-Garlan, 418

438	 Subject Index

Personal computers, 67
Personality types, 68
Petri Nets, 236
Physical link parameters, 177
Pipe and filter style, 171–172
Point-to-Point Protocol (PPP), 177
Policy triage, 205
Political process, systems architecting and,

361–373
	 first skills to master, 364
	 heuristics, 365–373
	 politics as design factor, 362–364
Political solutions, 365, 398
Poor performance, 405
PPP; see Point-to-Point Protocol
Precursor systems, 64–65, 95
Prioritizing, 401
Production
	 lean, 77–86, 105–108
	 lines, 15, 79, 81, 102, 108–109, 112
	 mass, 77–79
	 prototype, 159–160
Productivity, 14, 85, 92, 112, 168, 176
Product-to-machine interfaces, 110
Professionalization, of systems

architecting, 375–390
	 advanced study, 389
	 assessment of profession, 390
	 commercial standards, 382–384
	 company standards, 384
	 curriculum design, 387–389
	 graduate education, 386
	 origins of systems standards, 379–382
	 societies and publications, 389
	 summary of standards developments,

385
	 systems architecting and systems

standards, 378–379
Program architecture, 346–350
	 breadboard-brassboard-flight, 347
	 collaborative formation, 350
	 incremental delivery, 348
	 risk spiral, 349
	 serial production, 347
	 single pass, waterfall construction, 347
Program development, top-down, 248
Programming languages, 167–169
Project management, 18, 27, 71, 242, 321
PROLOG, 153
Propulsion systems, 9, 11
Prototyping, rapid, 12, 45, 75, 95, 150, 156
Public choice models, 233, 237–238
Public perception, 104, 121, 127, 133

Q
Quality Function Deployment (QFD), 291
Quantitative QFD (Q2*FD), 291
Queuing channel, 232

R
Radar, 75, 182, 202, 375
Rational Corporation, 303
Raw images, 288–289
Reactive systems, 286–291
Real-time software, 88
Rebooting, 103
Reconnaissance-strike systems,

multinational, 45
Reference architectures, 58, 75
Reference Model for Open Distributed

Processing (RM-ODP), 315,
321–324

Reference texts, suggested for institutional
libraries, 409–411

	 architecting background, 409
	 management, 409
	 modeling, 410
	 software, 410
	 specialty areas, 410
	 system sciences, 411
	 system thinking, 411
Refinement, 250–254
Renaissance architects, 19
Representation models, systems

architecting and, 221–245
	 behavioral, 232–238
	 classifications by view, 223–225, 225–242
	 data, 240
	 of form, 229–232
	 integrated, 242
	 managerial, 242
	 models, viewpoints, and views, 223–225
	 objectives and purpose, 227
	 performance, 238–240
	 roles of, 222
Requirements Model, 287
Risk spiral, 349
Risks
	 assessing, 405
	 management of, 64
reducing, 63
	 spiral, 349
	 RM; see Requirements Model

Subject Index	 439

RM-ODP; see Reference Model for Open
Distributed Processing

S
Sanity checks, 2, 39, 400
SAWG; see INCOSE SAWG
Scale models, 12, 157, 218, 229–230
Scars, 33, 63
Scenarios, manufacturing, 88–90
	 full development and serial production,

88
	 incremental development and release,

88–89
	 protoflight development and

manufacturing, 89–90
Scoping, 258, 398
Scripting languages, 149, 153
SDM program; see Massachusetts Institute

of Technology
Semiconductor industry, 72, 148
Serial production, 347
SESC; see IEEE Software Engineering

Standards Committee
SETACs; see Systems Engineering and Test

Assistance Contractors
Single Image, 302
Single pass, waterfall construction, 347
Social systems, 125–136
	 defining sociotechnical systems, 125
	 facts vs. perceptions, 131–134
	 foundations of modern systems

architecting, 127
	 heuristics, 134
	 public and private sector interaction, 130
	 public participation, 125–127
	 separation of client and user, 127
	 socioeconomic insights, 128–130
Sociotechnical systems, 125
Soft push, 231
Software, 147–178
	 architectures, unifying models, and

visions, 169
	 directions in software architecting,

170–175
	 hierarchy, 161–165
	 and process models, 153–154
	 programming languages, 167–169
	 role of architecture in software-

centered systems, 166
	 as status component, 151–153
	 status of software architecting, 147–151

Solid-state electronics, 72
Source code, 149–150, 208–209; see also Open

source software
Space station program, 365–368
Spacecraft, heuristics domain-specific to, 40
Specialization, 69–70, 257
Spirals, 23, 157–161, 349, 425
SPOT, 129
Standards, 211–213, 324, 378–385
Stepwise refinement, 248–250, 256
Strikes, 93
Structuralism, 173, 418
Structure charts, 231, 294–296
Subsystem specialists, 9–10
Success, 398–399
Sun Microsystems, 209
Supplier-buyer concept, 15
Surveillance, 5, 129, 150; see also C4ISR

framework
SV-1; see System Interface Description
Synchronization, 318
SysML, 305–306
System Interface Description (SV-1), 318
Systems
	 aerospace, 377, 399
	 air defense, 197, 201–202, 204
	 architecture, 14
	 collaborative, 202
	 waterfall method of acquisitions, 20–23
Systems Engineering and Test Assistance

Contractors (SETACs), 390

T
Taguchi method, 108
Taxonomy
	 of heuristics, 39–41
	 Madachy, 40
TCP/IP; see Transmission Control

Protocol/Internet Protocol
Technical Standards Forecast (TV-2), 319
Technical Standards Profile (TV-1), 319
TIMATION, 183
Total quality management (TQM), 108
TQM; see Total quality management
Transaction oriented data flow diagrams,

295
Transform oriented data flow diagrams, 295
Transmission Control Protocol/Internet

Protocol (TCP/IP), 145, 178, 197, 199
Transportation, 8, 44–45, 73, 82–83

440	 Subject Index

TV-1; see Technical Standards Profile
TV-2; see Technical Standards Forecast

U
Ultraquality, 13–17
UML, 303–305; see Unified Modeling

Language
Unified Modeling Language (UML), 303–305
Unifying models, 169
University of Maryland, 376, 386, 387
University of North Carolina, 377, 389
University of Tel Aviv, 376, 386, 387
University programming courses, 41
Univesity of Southern California (USC),

9, 32, 271, 336
UNIX, 172
Upward reporting, 22
Urban development, 125
Urban planning, 119, 202–203
U.S. Department of Defense Architecture

Framework (DODAF), 220,
316–320; see also Blueprint
standards

	 evaluation and issues with use of,
319–320

	 operational view, 317–318
	 summary information, 317
	 system view, 318
	 technical view, 318–319

USAF satellite control system, 64
USENET, 211

V
Value judgments, avoidance of, 17

W
Wang word processors, 67
Waterfalls, 20–23, 347, 426
Weapons systems, 73
Web applications, 149, 153
Welfare, 125–126, 131
Western Electric, 67
“What Next?” quandary, 65
“Wicked” system problems, 3
Windows; see Microsoft
Word processors, Wang, 67

X
Xerox, 67

Z
Zero defect approach, 13–15
Zero-g manufacturing, 367

	Front cover
	Contents
	Preface
	part I: Introduction
	chapter 1. Extending the Architecting Paradigm
	chapter 2. Heuristics as Tools
	part II: New Domains, New Insights
	chapter 3. Builder-Architected Systems
	chapter 4. Manufacturing Systems
	chapter 5. Social Systems
	chapter 6. Software and Information Technology Systems
	chapter 7. Collaborative Systems
	part III: Models and Modeling
	chapter 8. Representation Models and Systems Architecting
	chapter 9. Design Progression in Systems Architecting
	chapter 10. Integrated Modeling Methodologies
	chapter 11. Architecture Frameworks
	part IV: The Systems Architecting Profession
	chapter 12. Architecting in Business and Government
	chapter 13. The Political Process and Systems Architecting*
	chapter 14. The Professionalization of Systems Architecting
	Appendix A: Heuristics for Systems-Level Architecting
	Appendix B: Reference Texts Suggested for Institutional Libraries
	Appendix C: On Defining Architecture and Other Terms
	Author Index
	Subject Index
	Back cover

