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Foreword

In spring 1986, I started as a PhD student at the Institute of Operations Research
at the University of Bonn. At that time, Hans Jiirgen Promel was a PostDoc there
and quickly became my mentor. Naturally, I was interested in his research and thus
involved myself in proofreading large parts of his Habilitation thesis on Ramsey
Theory for Discrete Structures. 1 still vividly remember that time: [ had never been in
touch with Ramsey theory before (and in fact never after), but I thoroughly enjoyed
that exposure to a new area. The thesis was meant as a first part to a forthcoming
monograph on Ramsey theory to be written jointly with Bernd Voigt. And with this
in mind, the thesis was written. It was much more than a collection of research
papers. It was an introduction to Ramsey Theory in which the author conveyed both
his love for the field and his tremendous insights: a combination that was extremely
fascinating for a first year PhD student.

Unfortunately, as it so happens, life had new challenges for both authors before
the planned book was written. Bernd Voigt left academia and started a new and
successful career in industry. Hans Jiirgen stayed in an academic environment,
but moved his focus, first just within research and then more and more towards
management, culminating in his election as president of TU Darmstadt in 2007.

In September 2013, Hans Jiirgen will celebrate his 60th birthday. We will host a
colloquium in his honor at ETH Ziirich. While thinking about a “birthday present,”
memories of my first year as a PhD student came back, and the idea evolved that a
valuable gift to him, as well as the community, could be to finish his book, not as
the grand monograph as it was once planned but never finished but as a thorough
introduction to Ramsey theory as provided by his Habilitation thesis that I once read
and loved.

Luckily, Springer was immediately very supportive of this idea. What you have
in your hands is what came out of this project: a second edition of a book whose first
edition was never published. Parts I-III are essentially the same as they were in the
thesis. Some references and paragraphs were added, a few sections removed, and
some of the proofs enhanced with more details wherever that seemed appropriate.
Parts IV and V of the thesis are now merged. Some of the more technical and lengthy
deterministic constructions were replaced by a section on random Ramsey theory.
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Finally, a chapter on the recent developments of the polymath project was added,
i.e., a chapter with a combinatorial proof of the density Hales-Jewett theorem.

This project would not have been possible without the tremendous help and
assistance from my student Rajko Nenadov. He not only spotted typos and criticized
the text, but more often than not, he came up with new ideas and suggestions of how
to improve the presentation of the proofs and chapters at hand. In particular, Part IV
would look much different without his invaluable help. In addition to Rajko several
other members of my group helped me finish this project. I am deeply grateful to
all of them. A special thanks to Andreas Noever whose careful proofreading of the
final version ensured that there are now much fewer typos than there were before.
Last but not least, a big thank you to Springer for making this project possible!

Ziirich, Switzerland Angelika Steger
June 2013



Preface

Man kann mit der Frage beginnen: Was ist Abstraktion, und welche Rolle spielt sie im
begrifflichen Denken? Als Antwort kann man etwa formulieren: Abstraktion bezeichnet
die Moglichkeit, einen Gegenstand oder eine Gruppe von Gegenstanden unter einem
Gesichtspunkt unter Absehen von allen anderen Gegenstandseigenschaften zu betrachten.

(Heisenberg 1960)

In the 1890s, D. Hilbert, in connection with investigations on the irreducibility of
rational functions, proved a Ramsey-type result nowadays known as Hilbert’s cube
lemma. Some 25 years later, I. Schur showed in reproving a theorem of Dickson
on a modular version of Fermat’s conjecture that if the positive integers are finitely
colored, one color class contains x, ¥, and z with x+y = z. A conjecture concerning
the distribution of quadratic residues, respectively nonresidues modulo p, led Schur
to a question on arithmetic progressions. This problem was solved in 1927 by
B. L. van der Waerden and the corresponding theorem became famous as van der
Waerden’s theorem on arithmetic progressions.

Around the same time the English mathematician F. P. Ramsey tried to give a
decision procedure for propositional logic. The need for such procedures, we
would say algorithms in the present-day terminology, arose with the crisis of the
foundations of mathematics around 1900. It was more or less the theory of sets and
the arithmetization of analysis which led to this crisis. In response, the programs
of Russell and Whitehead, of Hilbert, and of Brouwer called for a new foundation
trying to overwhelm the doubtful principles of mathematics of that time.

It is a kind of irony that a purely mathematical result from Ramsey’s paper, an
astonishing generalization of the pigeonhole principle, has proved to be of so much
greater consequence than the metamathematical investigations for which they were
made as tools. Even more, for this result Ramsey became eponymous for a part of
discrete mathematics known as Ramsey theory.

These four roots of Ramsey theory were established for different reasons,
unaware of the other. A first culmination point, then, was obtained with the work
of R. Rado, a doctoral student of Schur. In his Studien zur Kombinatorik and several
subsequent papers, Rado unified and extended the results of Hilbert, Schur, and van
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viii Preface

der Waerden giving a complete characterization of those systems of linear equations
which are partition regular.

Quite independently from this direction of research, there was a profound
development based on Ramsey’s theorem, which is closely connected with the name
of P. Erdés. A kind of first step in popularizing Ramsey’s theorem was an application
to a combinatorial problem in geometry due to Erdds and Szekeres: “I am sure
that this paper had a strong influence on both of us. Paul with his deep insight
recognized the possibilities of a vast unexplored territory and opened up a new
world of combinatorial set theory and combinatorial geometry” (Szekeres 1973).
But it took until the middle of the 1960s when A. W. Hales and R. I. Jewett revealed
the combinatorial core of van der Waerden’s theorem on arithmetic progressions
proving a kind of pigeonhole principle for parameter sets. Some years later, R. L.
Graham and B. L. Rothschild extended Hales-Jewett’s result in a remarkable way.
They established a complete analogue to Ramsey’s theorem for the structure of
parameter sets and, as it turns out, Ramsey’s theorem itself is an immediate
consequence of the Graham-Rothschild theorem. But the concept of parameter sets
does not only glue together arithmetic progressions and finite sets. It also provides a
natural framework for seemingly different structures like Boolean lattices, partition
lattices, hypergraphs and Deuber’s (m, p, ¢)-sets, just to mention a few. So, to a
certain extent the Graham-Rothschild theorem can be viewed as a starting point of
Ramsey theory for discrete structures:

Dies kann also beim Vorgang der Abstraktion geschehen: Der im Prozel3 der Abstraktion
gebildete Begriff gewinnt ein eigenes Leben, er 14t eine unerwartete Fiille von Formen
oder ordnenden Strukturen aus sich entstehen, die sich spiter auch beim Verstidndnis der uns
umgebenden Erscheinungen in irgendeiner Weise bewihren konnen (Heisenberg 1960).

The present work is organized as follows. In the first part, we give a more detailed
discussion of the roots of Ramsey theory. Thereafter, we focus on three discrete
structures: sets, parameter sets, and graphs.

The second part of this work contains a thorough discussion of the role of
parameter sets in Ramsey theory. Originally, the idea was to find a combinatorial
abstraction of linear and affine spaces over finite fields. This was motivated by a
conjecture of G. C. Rota proposing a geometric analogue to Ramsey’s theorem.
But the impact of parameter sets goes far beyond the proof of Rota’s conjecture. In
Chap. 3 we present some definitions and several examples of structures which can
be interpreted in terms of parameter sets. Chapters 4 and 5, then, contain the most
fundamental Ramsey-type results for parameter sets, viz., Hales-Jewett’s theorem
and Graham-Rothschild’s Ramsey theorem for n-parameter sets, as well as several
applications thereof. Finally, in Chap.6 we build upon the Graham-Rothschild
theorem to obtain canonical versions of the aforementioned results.

In the third part, we go back to the most basic structure, to sets, and discuss
developments which originate in Ramsey’s theorem itself. One of the oldest areas in
Ramseyean research is the study of Ramsey numbers which essentially starts with
the paper of Erd6s and Szekeres. We devote Chap.7 to review old results as
well as recent progress on Ramsey numbers and on the asymptotic behavior of
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the classical Ramsey functions. In Chap. 8 unprovability results are discussed. As
it turns out, a slight variation of the finite Ramsey theorem is one of the first
mathematical interesting examples for Godel’s incompleteness theorem. Chapter 9
presents product versions of Ramsey’s theorem, whereas Chap. 10 covers a result
on the necessity of irregularities of set partitions. In the final chapter of this part, we
discuss extensions of Ramsey’s theorem to larger cardinals, based on the profound
work of Erd6s, Hajnal, and Rado in this area.

Graphs and hypergraphs seem to be one of the most alive and exciting areas of
research in Ramsey theory nowadays. In Chaps. 12 and 14, we present a complete
solution of the Ramsey problem for finite graphs, respectively hypergraphs, closely
connected with the names of Deuber, Nesetfil, and Rodl. Moreover, we introduce
and develop an amalgamation technique for graphs and hypergraphs which is an
essential tool in proving sparse and restricted Ramsey theorems. In between, in
Chap. 13, we collect some results which are known for infinite graphs, mainly due to
Erdds, Hajnal, and Pdsa. In Chap. 14, we start to consider graphs and hypergraphs in
a broader perspective. Ramsey’s theorem for finite hypergraphs can be viewed as an
induced version of Ramsey’s theorem. Apparently Spencer was the first to consider
graphs and hypergraphs which are defined on more complex structures than just
sets, proving an induced version of van der Waerden’s theorem. In this last part of
Chap. 14 we introduce hypergraphs defined on parameter sets and prove an induced
Graham-Rothschild theorem.

Sparse Ramsey theorems for graphs originate in investigations of graphs having
large chromatic number and high girth. A complete solution to the problem was
first given by Erd6s using probabilistic means and later by Lovész via an explicit
construction. In Chap. 16 we give an account on the probabilistic method for
constructing more general sparse Ramsey configurations.

Several areas of Ramsey theory remain uncovered throughout this work, e.g.,
Euclidean Ramsey theory or topological Ramsey theory. We refer the interested
reader to the excellent monograph Ramsey Theory of Graham et al. (1980), as well
as to the forthcoming volume Mathematics of Ramsey Theory edited by Nesetfil and
R6dl (1990). We also do not discuss any of the recent applications of Ramsey theory
to computer science. Here we refer the reader, for example, to Alon and Maass
(1986), Moran et al. (1985), Nesetfil (1984), and Pudldk (1990), just to mention
a few.

Kehren wir zu der am Anfang gestellten Frage zuriick. Der Zug zur Abstraktion in der
Naturwissenschaft beruht also letzten Endes auf der Notwendigkeit, weiterzufragen, auf
dem Streben nach einem einheitlichen Verstindnis. ... die Menschen, die iiber die Natur
nachdenken, fragen weiter, weil sie die Welt als Einheit begreifen, ihren einheitlichen
Bau verstehen wollen. Sie bilden zu diesem Zweck immer umfassendere Begriffe deren
Zusammenhang mit dem unmittelbaren sinnlichen Erlebnis nur schwer zu erkennen ist
wobei aber das Bestehen eines solchen Zusammenhangs unabdingbare Voraussetzung dafiir
ist, da} die Abstraktion iiberhaupt noch Verstindnis der Welt vermittelt. (Heisenberg 1960)

Bonn, Germany Hans Jiirgen Promel
June 1987






Conventions

Definitions and basic terminology will be introduced throughout this work as
needed. Here we will only agree on some general conventions to get started. Unless
otherwise specified, numbers are nonnegative integers. In particular, i < k is a
shorthand notation for0 < i < k and [i, k] abbreviates the seti, i+1, ..., k—1, k
of integers.

Nonnegative integers are identified with the set of their predecessors, e.g., k =
{0, ...,k — 1} which is the ordinal notation. The smallest infinite ordinal is denoted
by w, the set of nonnegative integers.

For X being a set, we denote by [X ]k the set of all k-subsets of X, i.e.,

[(X)F={y S X ||Y]| =k},

where |Y | denotes the cardinality of Y. In particular, [w]* is the set of all k-element
sets of nonnegative integers, and [w]® is the set of all infinite sets of nonnegative
integers. The set of n-tuples, or words of length n, over an alphabet A4 is denoted
by A”.

If A:n — risamappingand M C n asubset of n = {0,...,n — 1},
then ATM denotes the restriction of A to M. More precisely, the mapping ATM is
defined by (ATM)(i) = A(i) for every i € M. In Ramsey theory, such mappings
are usually called colorings, and if their range is r = {0, ..., r — 1}, they are
r-colorings.

A basic principle in Ramsey theory is the pigeonhole principle (Dirichlets
Schubfachprinzip):

(Finite version) Let m and r be positive integers and n > r - (im — 1) + 1. Then for
every r-coloring A : n — r, there exists an m-subset M € [n]" such that ATM is
a constant coloring.

(Infinite version) Let r be a positive integer. Then for every r-coloring
A w — r, there exists an infinite subset F' in [w]®” such that ATF is a constant
coloring.

To a certain extent, all results contained in this work can be viewed as
generalizations of the pigeonhole principle.

xi



xii Conventions

We denote by N the set of positive integers. The integers, the rationals, and reals
will be denoted by Z, Q, and R, respectively. The greatest integer not greater than
the real number x will be written as | x| and the least integer not less than x as
[x7]. We use Landau’s notation O( f(n)) for a term which, when divided by f(n),
remains bounded as n — oco. Similarly, #(n) = o(g(n)) means that h(n)/g(n) — 0
as n — 00, and, for convenience, i(n) = £2(g(n)) abbreviates that g(n)/h(n) is
bounded as n — oo. Finally, log x denotes the binary logarithm of x, whereas In x
denotes the natural logarithm of x, i.e., the logarithm to the base e.
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Roots of Ramsey Theory



Chapter 1
Ramsey’s Theorem

1.1 Frank Plumpton Ramsey

Frank Plumpton Ramsey was an extraordinary man. He was born in 1903 in
Cambridge as the elder son of A.S. Ramsey who was a mathematician and President
of Magdalene College. His younger brother Michael went on to become Archbishop
of Canterbury.

While, and even before, studying mathematics at Trinity College, Ramsey
was deeply influenced by some of the brilliant Cambridge thinkers of that time:
Ramsey’s early work in logic and philosophy of mathematics was strongly influ-
enced by Bertrand Russell and Ludwig Wittgenstein. His Foundations of mathe-
matics (Ramsey 1926a) is “an attempt to reconstruct the system of” (Russell and
Whitehead’s) “Principia Mathematica so that its blemishes may be avoided but
its excellencies retained”, his Mathematical logic (Ramsey 1926b) is a defense of
logicism ““against formalism of Hilbert and the intuitionism of Brouwer” (quoted
from Braithwaite 1931). However, “neither Whitehead and Russell nor Ramsey suc-
ceeded in attaining the logicistic goal constructively” (quoted from Kleene 1952).
Ramsey translated Wittgenstein’s Tractatus Logico-Philosophicus for C.K. Ogden
in 1922 from German into English, and one of his first scientific papers was a
Critical note of L. Wittgenstein’s Tractatus Logico-Philosophicus (1923).

John Maynard Keynes’ influence on Ramsey took him into two subjects:
probability and economics. In economics Ramsey wrote two papers only, viz.
A contribution to the theory of taxation (1927) and A mathematical theory of saving
(1928). But in his obituary of Ramsey Keynes called the latter “one of the most
remarkable contributions to mathematical economics ever made” (see Braithwaite
1931).

Besides his profound work in mathematical logic and economy, Ramsey devoted
a substantial part of his scientific life to philosophy. To cite Braithwaite (1931),
a friend of Ramsey and latter professor of philosophy in Cambridge, once more:
“though mathematical teaching was Ramsey’s profession, philosophy was his

H.J. Promel, Ramsey Theory for Discrete Structures, 3
DOI 10.1007/978-3-319-01315-2__1,
© Springer International Publishing Switzerland 2013



4 1 Ramsey’s Theorem

vocation”. It is far beyond the scope of this attempt to survey Ramsey’s work.
The interested reader should consult, e.g., Ramsey (1978), for Ramsey’s major
works and for enlightening introductory comments, as well as Mellor (1983) for
an excellent survey on Ramsey and his work.

Frank Plumpton Ramsey, Fellow of King’s College, Cambridge, and University
Lecturer in Mathematics died in 1930 at the age of 26.

1.2 Ramsey’s Theorem

In 1928 Ramsey wrote a paper On a problem in formal logic, published in 1930
in the Proceedings of the London Mathematical Society for which he became
eponymous for a part of discrete mathematics nowadays known as Ramsey theory.

The object was to give a decision procedure for propositional logic. The need
for such procedures, we would say algorithms in the present day terminology,
arose with the crisis of the foundations of mathematics around 1900. It was more
or less the theory of sets and the arithmetization of analysis which led to this
crisis. In response, the programs of Russell and Whitehead, of Hilbert and of
Brouwer called for a new foundation trying to overwhelm the dubious principles
of mathematics of that time.

Itis a kind of irony that a purely mathematical result from Ramsey’s paper proved
to be of so much greater consequence than the metamathematical investigations
for which they were made as tools. Even more, as it was discovered later, the full
strength of Ramsey’s theorem was not necessary to find a decision procedure for
statements in the special class of first order logic investigated by Ramsey.

A few years afterwards two new proofs of Ramsey’s theorem were obtained.
By Skolem (1933) also applying this result to the decision problem of first order
logic and by Erdds and Szekeres (1935) rediscovering Ramsey’s theorem working
on a problem in geometry (cf. Szekeres 1973).

We start discussing Ramsey’s theorem by considering the countable infinite case.
“The theorem which we actually require concerns finite classes only, but we shall
begin with a similar theorem about infinite classes which is easier to prove and gives
a simple example of the method of argument” (quoted from Ramsey 1930).

Theorem 1.1 (Ramsey). Let k and r be positive integers. Then for every r-
coloring A : [w]F — r of the k-subsets of w there exists an infinite subset F € [w]®”
of w such that all k-subsets of F have got the same color, i.e., A|[F]* is a constant
coloring.

Proof. We prove Ramsey’s theorem by induction on k, where the case k =
reduces to the pigeonhole principle. Assume the theorem is true for some k >
and let A : [w]'T* — r be a coloring.

Now assume that for some j < w we have got already j elements xo < ... <
x;—1 and an infinite set G € [w]® with x;_; < y = min G, such that A{x;} x [G]¥

1
1



1.3 Erd&s-Szekeres’ Theorem 5

is constant for every i < j. We fix y. This induces a coloring A’ : [G\{y}]F — r
of the k-subsets of G\{y} by A'(H) = A({y} U H). By the inductive assumption
there is an G’ € [G\{y}]® so that A"][G']F is constant. Hence, choosing x; = y,
we have that A{x;} x [G']* is constant for every i < j. Continuing in this way
we obtain an infinite set X = {x; | i < w} such that A(H) = A(H'), whenever
H, H' € [X]'** satisfy min H = min H’. Applying the pigeonhole principle there
exists F € [X]® such that AJ[F]'** is a constant coloring, completing the proof of
Ramsey’s theorem. O

To facilitate applications of Ramsey’s theorem we introduce the arrow notation.
For cardinals «, A, u and v the symbol k — (4),, denotes the following partition
property: for every partition of [k]" into u classes there exists a set of size A whose
v-subsets are completely contained in one class. Using this notation Theorem 1.1
can be expressed by saying

w — (a))lr‘, for all positive integers k and r.

This arrow notation was first used, in rudimentary form, in Erdés and Rado (1953).
Applying Konig’s lemma, a finite version of Theorem 1.1 can easily be obtained:

Theorem 1.2 (Ramsey). Let k, m and r be positive integers. Then there exists a
least positive integer n = RAM (k,m,r) such that for every r-coloring A : [n]F —
r of the k-subsets of n = {0,...,n — 1} there exists an m-subset M € [n]" of n
such that A[M* is a constant coloring.

Proof. Assume that for every n there exists a coloring A : [n]* — r so that for every
M € [n]™ we have that A][M]F is not constant. Such a A is called a bad coloring.
Obviously, the restriction A][n — 1]% of any bad coloring A : [n]F — risa
bad coloring again. Hence, using the relation of being a restriction of, the bad
colorings form a tree T, having the empty coloring as a root. 7' is locally finite
and, by assumption, infinite. Therefore by Konig’s lemma (Konig 1927), T contains
an infinite path of bad colorings. This path defines a bad coloring of [w]* and, thus,
contradicts Theorem 1.1. O

Ramsey, himself, did not use such a compactness argument to derive the finite
version from the infinite one, but gave a quite elaborated explicit construction.
Actually, the same idea as for the proof of Theorem 1.1 can be used to prove
Theorem 1.2 directly, compare also Chap. 7.

1.3 Erdos-Szekeres’ Theorem

One of the earliest and most popular applications of Ramsey’s theorem is due to
Erd6s and Szekeres (1935). In fact, this application was a kind of first step in
popularizing Ramsey’s theorem also among non-logicians.
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Theorem 1.3 (Erdds, Szekeres). Letm > 3 be a positive integer. Then there exists
a least positive integer n = ES(m) such that any set of n points in the Euclidean
plane, no three of which are collinear, contains m points which are the vertices of a
convex m-gon.

This result was conjectured (and proved in case m = 4) by E. Klein-Szekeres.
The proof given here is from Johnson (1986).

Proof of Theorem 1.3. Choose n according to Ramsey’s theorem such that n —
(m); and let N be any set of n points in the plane, no three of which are collinear.

For a,b,c € N let |abc| denote the number of points of N which lie in the
interior of the triangle spanned by a, b and c¢. Now define A : [N]* — 2 by
A(a,b,c) = 0if |abc| is even and A(a, b, c) = 1 otherwise. By choice of n there
exists M C [N]™ such that A][M]? is constant. Then the points of M form a convex
m-gon. Otherwise, there would be a, b, ¢, d € M so that d lies in the interior of the
triangle abc. Since no three points of M are collinear we have

labc| = |abd| + |acd| + |bed| + 1,

contradicting that A][M]? is constant. O

In their 1935 paper Erdds and Szekeres give two proofs of this result. The second
one, not using Ramsey’s theorem, yields a smaller upper bound for ES(m), viz.
ES(m) < (me__;) + 1. It can be shown that 272 4 1 < ES(m) (Erd6s and Szekeres
1961) and Erdés and Szekeres (1935) believe that ES(m) = 22 + 1 is the correct
value. Apart from some small numbers, this is still an open question.

1.4 Erdos-Rado’s Canonization Theorem

The popularization of Ramsey’s theorem is inherent with the names of Paul Erdés
and Richard Rado. There are numerous of results, of each of them and of both which
are basic in Ramsey theory. A good example is their joint paper A combinatorial
theorem (Erd6s and Rado 1950) which can be viewed as the first one in a part of
Ramsey theory called canonizing Ramsey theory. This result is both: an application
of Ramsey’s theorem and a root for further development in Ramsey theory. The
object of this theorem is to prove a generalization of Ramsey’s theorem in which
the number of colors need not to be finite.

Notation. Let X € [n]*, say X = {xo,...,xs_1} in ascending order, and let J C
k. Then X : J denotes the J-subset of X, i.e.,

X:J={x;|jelJ}

Using this notation, the Erd6s-Rado canonization theorem says:
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Theorem 1.4 (Erdds-Rado canonization theorem). Let k be a positive integer.
Then for every coloring A : [w]* — w of the k-subsets of @ with arbitrary many
colors there exists an infinite set F € [w]* of w and a (possibly empty) set J C k
such that

AX)=A) ifandonlyif X:J =Y :J,

holds for every X,Y € [F]~.

Following ErdSs and Rado, we think it is worth while to state the case k = 2
explicitly:

Corollary 1.5. For every coloring A : [w]> — w of the pairs of w with arbitrary
many colors there exists an infinite set ' C w such that one of the following four
conditions hold for all X,Y € [F)?, say X = {xo,x1}, Y = {yo, y1} in ascending
order:

1. A(X) = A(Y),

2. A(X) = A(Y) ifand only if xo = yo,

3. A(X) = AY) ifand only if x; = y1,

4. A(X) = A(Y) ifand only if xo = yo and x; = Y.

Proof of Theorem 1.4. For a given coloring A : [w] — [w], we choose F € [w]®
to be any set such that

(1) the patterns which A induces on 2k-element subsets of F are all the same,
ie, A(X : 1) = A(X : J)ifandonly if A(YY : I) = A(Y : J) for all
X, Y e [FP*, 1,7 € [2k]*.

To see that such F exists, set r = (zlf) and consider the coloring A : [w]* — ()
defined as follows: for aset X € [w]*,let f : {AX') | X' C X, |X'| =k} —r
be any injective function and set A'(X) = (f(AX")) | X' C X, |X'| = k).
Ramsey’s theorem guarantees an infinite monochromatic set F with respect to A/,
and it is easy to see that such set F satisfies property (1).

For the sake of brevity, we identify F in the following with w. Further, for any
set X and an integer s, we define

X,={x|xeX, x<stU{x+1|xeX, x>s}

We will make use of (1) in two ways. Assume that X = {xo, ..., x¢—;}, ordered
ascendingly. Then forevery i < k we have (1a) that A(Xy,) = A(X,,—1) if and only
it A({0, ..., k}\{i}) = A({O,...,k}\{i + 1}). Secondly, let X = {x¢,...,xx—1}
and Y = {yo,..., Yk—1}, again ordered ascendingly, and consider Z = X U Y.
Assume I, and [, are suchthat Z : I, = X and Z : I, = Y. Then, for any integer
s, we have (1b) that A(X) = A(Y) ifand only if A(Z, : I,) = A(Z, : 1,).

WesetJ = {i < k | A{O,....k}\{i}) # A{O,...,k}\{i + 1})} and
prove that this set J satisfies the property claimed in the theorem. To see this
consider arbitrary sets X = {x¢,...,Xx—1} and ¥ = {yo,..., yk—1}, ordered
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ascendingly. First assume that x; = y; for every j € J. We show by induction
on |{i | x; # y;i}| that A(X) = AY). Leti = max{i | x; # yi}
and, say, x;, < ¥ (< Yiy+1 = Xi41). Then i ¢ J and it thus follows
from (1) and the definition of J that A({xo,...,Xi, Vi, Xig1,..., Xk—1}\{X;}) =
A{X0s s Xis Yis Xit1s - - - Xk=13\{Vi}) = A(X). Thus, by induction, A(X) =
A(Y).

Next assume that A(X) = A(Y). We show that x; = y; forevery j € J.
Suppose not, and let j € J be minimal with x; # y;, say, x; < y;. Let £ be
minimal such that x; < y;, and set Z = X U Y. Either x; < y,. Then by (1b) we
have A(Zy; : 1) = A(Zy; : Iy) and A(Zy;—y @ 1) = A(Zy;—1 : 1y). However,
by the choice of £ wehave Z, : [y = Zy,—1 2 Iy = {yo, ..., ye+1,..., yp—1+1}.
Thus A({xo,...,x;, xj41+1,... . xk1+1}) = A({xo,....x;+1,..., x 1 +1}),
which is a contradictionto j € J.

Or x; = y;. Then the minimality of j implies that £ ¢ J. Hence, using (1a) we
have A(Zy, : Iy) = A(Zy,—1 : Iy). Further, from (1b) we have A(Z,, : 1) =
A(Zy; 1)) = A(Zy, 1 1)), a8 y¢ = xj, and also A(Zy,—y @ Ix) = A(Zy,—1 :
1)) = A(Zy, : I,). However, this implies A(Zy; : 1) = A({xo,...,X;,Xj+1 +
Looooxe— + 1)) = Alxo, .. x; + 1o x,m + 13) = A(Zy;—1 0 ), again
contradicting j € J. O

A proof similar to this one is given in Rado (1986). Using Konig’s lemma, a
finite version of the Erdés-Rado canonization theorem can easily be deduced from
Theorem 1.4:

Corollary 1.6. Let k and m be positive integers. Then there exists a least positive
integern = ER(k,m) such that for every coloring A : [n]* — w of the k-subsets of
n with arbitrary many colors there exists an m-subset M € [n]" of n and a (possibly
empty) set J C k such that

AX)=AY) ifandonlyif X:J =Y :J

holds for every X, Y € [M]F. O

In fact, the same argument as in the proof of Theorem 1.4 can be used to proof
Corollary 1.6, relying on Theorem 1.5. In the next chapter we will also obtain it a
consequence of the canonical Graham-Rothschild theorem.



Chapter 2
From Hilbert’s Cube Lemma to Rado’s Thesis

Quite a while before Ramsey proved his partition theorem for finite sets some
results have been established which can be viewed as the earliest roots of Ramsey
theory. The probably first one is due to David Hilbert (1892). In connection with
investigations on the irreducibility of rational functions with integer coefficients he
proved that for every coloring of some sufficiently large interval [1, n] with r colors,
there exist positive integers a, o, . . . , @y—1; < n such that the affine m-cube

{a + Ze,-a,- | € €{0,1} foreveryi < m}

i<m

is completely contained in one color class. Apparently neither Hilbert himself
nor some other mathematician at that time examined the underlying combinatorial
principles of this lemma.

Others happened to a lemma proved by Issai Schur some 25 years later. In
reproving a theorem of Dickson on a modular version of Fermat’s conjecture, Schur
(1916) showed that for every r-coloring of some sufficiently large interval [1,n]
there exist positive integers ag, a; < n such that the projective 2-cube

{> eiai | & €{0.1} forevery i < 2}\{0}

i<2

is completely contained in one color class.

A conjecture of Schur concerning the distribution of quadratic residues, respec-
tively nonresidues modulo p led Schur to a question on arithmetic progressions,
which became famous as Baudet’s conjecture (cf. Brauer 1973). The problem was
solved by Bartel Leendart van der Waerden (1927). The corresponding theorem,
well known as van der Waerden’s theorem on arithmetic progressions, soon attracted
many mathematicians. For example, Khinchin (1952) writing an elementary book
on number theoretic problems selected this result as one of his Three Pearls in
Number Theory.

H.J. Promel, Ramsey Theory for Discrete Structures, 9
DOI 10.1007/978-3-319-01315-2_2,
© Springer International Publishing Switzerland 2013
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Brauer (1928) used van der Waerden’s theorem on arithmetic progressions to
resolve Schur’s conjecture on quadratic residues. In fact, Schur himself suggested
a strengthening of van der Waerden’s theorem which is in a sense a common
generalization of Schur’s lemma on projective 2-cubes and van der Waerden’s
theorem and allows to derive a stronger form of Schur’s conjecture (Brauer 1928).

A first culmination point of Ramsey theory was obtained with the work of a
student of Schur: Richard Rado. In a series of beautiful papers (Rado 1933a,b,
1943) based on his doctoral dissertation he extended the results of Hilbert, Schur
and van der Waerden in a remarkable way. He gave among other results a
complete characterization of all systems of homogeneous linear equations £ =
L(xo, ..., Xn—1) over Z having the property that for every coloring of Z* with
finitely many colors, £ has a monochromatic solution. Observe that Schur’s lemma
essentially says that x + y = z has this property.

One convention: To avoid trivial cases we dismiss throughout this section the
number 0. We consider colorings of [1,n] = {1,...,n} ratherthann = {0,...,n —
1}, and of N, the set of positive integers, instead of .

2.1 Hilbert’s Cube Lemma

Leta, m and ay, . . ., a,—1 be positive integers. Then the set

{a + Ze,-a,- | €; € {0, 1} foreveryi < m}

i<m

is the affine m-cube generated by a,ay,...,a,—;. Hilbert (1892) proved the
following result:

Theorem 2.1 (Hilbert’s cube lemma). Let m and r be positive integers. Then for
every r-coloring A : N — r of the positive integers there exists an affine m-cube
which is monochromatic.

Hilbert’s cube lemma is probably the earliest result which can be viewed as a
partition theorem (besides the pigeonhole principle, of course). It was established
some 35 years before Ramsey’s theorem. Hilbert’s proof is written in the style of
the late ninetieth century: detailed discussions appealing to the readers mathematical
intuition. But despite its unusualness for todays reader the proof is convincing by its
clarity and worth reading. So we think it is worth while to include the original proof
of Hilbert (though in German). Later in this chapter (Sect.2.3) we obtain Hilbert’s
lemma also from van der Waerden’s theorem on arithmetic progressions.

Unsere Entwickelungen beruhen auf folgendem Hiilfsatze:

Es sei eine unendliche Zahlenreihe ay, a,as, ... vorgelegt, in welcher allgemein a;
eine der a ganzen positiven Zahlen 1,2,...,a bedeutet; es sei iiberdies m irgend eine
ganze positive Zahl. Dann lassen sich stets m ganze positive Zahlen @, u@, .. um

so bestimmen, dass die 2" Elemente
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a,,
Ap+pm,
aH+M12), au+ﬂll)+u(2),

Aptp® s Ay O35 Aty O 455 Ay O 4@ 4135

Qs s Ay p® @05 Q@05 - o oo QD @) o) s

fiir unendlich viele ganzzahlige Werthe p samtlich gleich der nidmlichen Zahl G sind,
wo G eine der Zahlen 1,2, ..., a bedeutet. Dabei wird der Index p + puV des zweiten
Elementes erhalten, indem man die Zahl ;,L(l) zu dem Index u des ersten Elementes addirt;
die Indices des dritten und vierten Elementes entstehen aus den Indices des ersten und
zweiten Elementes, indem man zu diesen die Zahl /,L(z) addirt; die Indices des fiinften,
sechsten, siebenten, achten Elementes entstehen aus den Indices der vier ersten Elemente,
wenn man zu diesen die Zahl ;¥ addirt, und schliesslich erhilt man die Indices der 2" !
letzten Elemente, indem man zu den schon bestimmten Indices der 2! ersten Elemente
die Zahl ;™ addiert.

Beim Beweise ist es nothwendig, einzelne Theile der vorgelegten Reihe fiir sich zu
betrachten. Wenn insbesondere i auf einander folgende Elemente der Reihe herausgegritfen
werden, etwa die Elemente a,,, a,+1,au+2, ..., @u+i—1, 50 nenne ich diese i Elemente ein
Intervall der Reihe von der Lidnge i . Wir grenzen nun innerhalb der vorgelegten Reihe irgend
ein Intervall von der Linge a + 1 ab. In diesem Intervalle tritt dann mindestens eine der
Zahlen 1,2, ..., a etwa die Zahl G, zweimal auf, d.h. in dem Intervalle von der Linge a + 1
kommt jedenfalls eine der folgenden Gruppirungen vor:

g = gg.
gV =g-g.
gV =¢g-.q.
gc(l{il g ......... g

Wie schon durch die Schreibweise kenntlich gemacht ist, bedeutet hierin allgemein gE b ein
Intervall von der Linge s, dessen erstes und letztes Element einander gleich, ndmtlich gleich
der Zahl G sind. Man sieht, dass die Anzahl aller moglichen von einander verschiedenen
Gruppirungen QS“) gleich a? und somit jedenfalls kleiner als die Zahl (a + 1)? ist. Wir
grenzen jetzt innerhalb der vorgelegten Reihe hinter einander (a + 1)? Intervalle ab, deren
jedes die Linge a + 1 besitzt, und betrachten dann das so entstehende Gesammtintervall
von der Linge (¢ + 1)*. In demselben tritt nothwendig mindestens eine der Gruppirungen

S“), etwa die Gruppirung gi}?,, zweimal auf, d.h. in dem Intervalle von der Linge (a + 1)°
kommt jedenfalls eine der folgenden Gruppirungen vor:

@ _ -0 o0
g2v(1) - gv“)gv“)’
@ —_ o L0
92v<1>+1 =G.m 9w

() — -~ (1)
QZv(1>+z = Y,0 "gv“),

@ — o0 (m
g(a+1)3 =Gy G-

11
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Hier bedeutet allgemein G? ein Intervall von der Linge s, welches mit der Gruppirung
gi}f) beginnt und mit der ndmlichen Gruppirung schliesst. Die Anzahl aller von einander
verschiedenen Gruppirungen G®@ ist offenbar kleiner als das Product der Intervalllinge
(a + 1)S in die Anzahl aller moglichen Gruppirungen G, und folglich ist jene Anzahl der
Gruppirungen Qs(z) jedenfalls kleiner als (a + 1)°. Wenn wir daher innerhalb der vorgelegten
Reihe hinter einander (a + 1)° Intervalle abgrenzen und zwar ein jedes von der Linge (a +
1)3, so tritt in dem so entstehenden Intervalle von der Gesammtlinge (a + 1)® mindestens
eine der Gruppirungen g}” , etwa die Gruppirung gﬁ;), zweimal auf, d. h. in dem Intervalle
von der Linge (a + 1)® kommt jedenfalls eine der folgenden Gruppirungen vor:

B _ -2 52
gzv(z) - gv(z) gv(z),
3) )] 2
g2v(2)+1 - gv‘z) ’ gv(z)’
3) )] 2
g2v(2)+2 = gv(Z) : 'g,,(zw

3) —_ @ 2
g(a+1)8 =G G-

Hier bedeutet allgemein G ein Intervall von der Linge s, welches mit der Gruppirung

gf&) beginnt und mit der nimlichen Gruppirung schliesst.
Nach m-maliger Anwendung des niamlichen Verfahrens gelangen wir zu Gruppirungen
von der Gestalt:

g =gtm=0 ... gm=n

und erkennen, dass in jedem Intervall der Reihe von einer gewissen Linge £ nothwendig
eine jener Gruppirungen G vorkommen muss. Dabei bedeutet £ eine bestimmte endliche
und nur von a und m abhingige Zahl. Die Anzahl aller von einander verschiedenen
Gruppirungen G ergiebt sich wiederum kleiner als eine gewisse endliche Zahl k welche
leicht aus @ und m berechnet werden kann. In der vorgelegten Reihe konnen wir nun hinter
einander beliebig viele Intervalle von der Lange abgrenzen, und es folgt daher, dass es unter
den Gruppirungen G nothwendig eine giebt, welche in der vorgelegten Reihe unendlich
oft vorkommt. Diese Gruppirung sei die folgende

(m) __ H(m—1) (m—1)
ng = gv(’”*” ......... QU(WU s

wo QE’(’,,), und giﬁ:}f , Intervalle von der Linge v beziechungsweise von der Linge v~

bedeuten.
Wir erkennen hieraus leicht die Richtigkeit des obigen Hiilfsatzes. Es ist ndmlich die

5’(’,,7), durch die folgenden Recursionsformeln bestimmt:

Gruppirung G

(0]
gv“) = g ......... g’

2 _ A 1)
gv(z) = gvm ......... gvm,
B _ -2 2
gvm = gvm ......... gv(z),

(m) _ o(m=1)
Gy = Gy = 2ee e Gl -
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wo stets die unteren Indices die Anzahl der Elemente angeben, aus denen die betreffenden
Intervalle bestehen. Ich setze

RONSN
u® =@ 0
u® =0 @

= ym =)

und behaupte dann, dass die so entstehenden, ganzen positiven Zahlen p®, @, ... 0™
von derjenigen Beschaffenheit sind, welche unser Hiilfsatz verlangt. In der That: es ist
eben bewiesen worden, dass in der vorgelegten Reihe a;, a», as, ... die Gruppirung gi’(ﬁﬂ))
unendlich oft vorkommt, d. h. es giebt unendlich viele ganzzahlige Werthe von p, fiir
welche

Apdpt1 - Aupyon—1 = gngr(nrr):)

(m)

p(m)

wird. Aus dem Aufbau der Gruppirung G, folgt dann

a, =g,
Ay =G,
Ayt @ = Ay 4,0 =G,

Autp® = A O 453 = gy @4 = Ay O 4, Q) 4,3 = g,

Aty = Ay O o = Ay Oy = oo = Ay O 404 4 m =G,

und damit ist der Hiilfsatz bewiesen.

2.2 Schur’s Lemma

Theorem 2.2 (Schur’s lemma). Let r be a positive integer. Then there exists a
least positive integer n = S(r), such that for every coloring A : [1,n] — r there
exist positive integers x,y < n satisfying

A(x) = Ay) = Alx + ).

Moreover, S(r) < er!, where e is the base of the natural logarithm.

Let m and ay, . .., a,— be positive integers. Then the set

{Z €a; | € €1{0,1} foreveryi < m}\{0}

i<m
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is the projective m-cube generated by ay, . . . , a,,—. Using this terminology Schur’s
lemma can be rephrased by saying that for every coloring A : [1, |er!]] — r there
exists a projective 2-cube which is monochromatic. Hence the lemma is a projective
analogue to Hilbert’s (affine) cube lemma for m = 2.

Hilbert used his lemma as a tool to obtain certain results on the irreducibility of
rational functions with integer coefficients. Schur established his lemma to give an
easy proof and moreover to extend a number theoretic theorem of Dickson showing
that for each r the congruence

r

x"+y" =7 (mod p)

has solutions for all sufficiently large primes p.

We give two proofs of Schur’s lemma. The first one follows the lines of Schur’s
original proof yielding the bound S(r) < er! The second one is an application of
Ramsey’s theorem.

First Proof of Schur’s lemma. Letny > er!andlet A : [1,n9] — r be an r-coloring
of the first ny positive integers. Assume that there do not exist integers x, y < ng
such that A(x) = A(y) = A(x + y).

Let iy < r be the color which occurs most frequently under the n( elements and
let A™'(ip) = {x0,...,Xn,—1} be in ascending order. Observe that ng < rn;.

Consider Ng = {x; —xo | 1 < i < n;}. By assumption Ny N A™!(ip) = 0.
Let i; be the most frequent color under the elements of Ny and let Ny N A7) =
{>0, ..., Yn,—1} be in ascending order. Observe thatn; — 1 < (r — 1)n,.

Consider Ni = {y; —yo | 1 < i < ny}. By assumption Ny N A™!(ip) = @
and N; N A~1(i;) = @. Let i, be the most frequent color under the elements of
N; and let Ny N A7'(i2) = {z0,...,2,—1} be in ascending order. Observe that
ny—1<(r—2)n;.

Continue this procedure until some 7 ; becomes 1. At latest n, = 1, as otherwise
N, contains two elements whose difference cannot not be colored by any of the r
colors.

Inserting the above inequalities into each other gives eventually

a contradiction to the choice of ny. Hence, there exist x, y such that A(x) =
A(y) = Alx + y). O

Second proof of Schur’s lemma. Let n be according to the finite Ramsey theorem
such that n — (3)? and let an r-coloring A : [1,n] — r be given. This induces an
r-coloring A* : [n]> — r by A*(a,b) = A(b —a) fora < b. By choice of n there
exist 0 < u < v <w < n so that

A*(u,v) = A" (v, w) = A*(u, w)
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and, hence, A(v —u) = A(w—v) = A(w—u). Puttingx =v—-uandy =w—v
proves Schur’s lemma. O

Irving (1973) has slightly improved Schur’s upper bound on S(r) from |rle|
to [rl(e — ﬁ)]. A lower bound is given in Fredricksen (1975, 1979), viz. S(r) >

¢(315)5 for an appropriate constant c, cf. also Sect. 7.5.

2.3 Van der Waerden’s Theorem

Schur, working on the distribution of quadratic residues and nonresidues, conjec-
tured that for every k and every sufficiently large prime p there exist k consecutive
numbers which are quadratic residues as well as k consecutive numbers which are
quadratic nonresidues modulo p. To attack this conjecture he tried first to prove that
for every k there exists n so that for every 2-coloring of 1, . . ., n one of the two color
classes contains an arithmetic progression of length k. He failed and both questions
remained open for several years (cf. Brauer 1973).

Van der Waerden learned about the conjecture on arithmetic progressions most
probably from P.J.H. Baudet at that time a young Dutch student in G&ttingen.
So his answer to this conjecture (van der Waerden 1927) is entitled Beweis einer
Baudetschen Vermutung.

Theorem 2.3 (van der Waerden). Let k and r be positive integers. Then there
exists a least positive integer n = W(k,r) such that for every r-coloring A :
[1,n] — r there exists an arithmetic progression

{a+id|i <k} C[ln

of length k which is monochromatic.

Years later, van der Waerden (1954, 1971) gave a personal account on How the
proof of Baudet’s conjecture was found — by now a classical contribution to the
psychology of invention in mathematics.

Proof of Theorem 2.3. We prove actually something stronger than van der Waer-
den’s theorem, namely:

Let k, m and r be positive integers. Then there exists a least positive integer
n = S(k,m,r) such that for every coloring A : [1,n] — r there exist positive
integers @ and dy, . .., dy,—; sothata + k- >, d; <nand

Ala+ ., 8idi) = Ala+ ), hid)

whenever g, h € (k + 1), where g = (go,...,8&m—1) and h = (hg, ..., hyu—1),
agree up to their last occurrence of k (in g or h). Note: this implies that any
combination of g, h € k™ is allowed, as then neither of them contains any k.
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Aset{a+ ), ,.8d | g € k™} is called m-fold arithmetic progression.
Observe that for m = 1 we get the standard arithmetic progression of length k,
thus W(k,r) < S(k, 1, r) and van der Waerden’s theorem follows.

We show the following two inequalities hold for all k, m, r:

1. Stk,m+1,r) < S(k,m,r)-S(k, 1, rSkmn),
2. S(k+1.1,r) < S(k.r.1)

Together with the trivial observation that S(1,1,r) = 2 for every r these
inequalities immediately yield the proof of the statement by induction on m and k.

Proof of (I):Let M = S(k,m,r)and N = S(k,1,r5®m7)) and consider A :
[1,M - N] — r. This induces a coloring Ay : [1, N] — rM by

Ayx) ={(A((x =DM + j) |1 =j = M).

By choice of N there exist positive integers b and d so that {b + jd | j < k} C
[, N]and AN1{b + jd | j < k} is a constant coloring. Observe that this means
that forany 1 < j < M we have

A(B-D)M+j) = A(b-1+d)M+j) = ... = A(b-1+(—-1)d)M + ). 2.1)

Next consider Ay : [(b — )M + 1,bM] — r where Ay = Al[(b — 1)M +
1,bM]. By choice of M there exist positive integers a, d, . . ., d,,—1 so that the m-
fold arithmetic progression{a+) _,_,, gidi | g € (k+1)"} is completely contained
in{(b—1)M + 1,bM] and

A(G+Zi<m gidi) = A(a+2i<m hidi) (22)

forall g, h € (k + 1)™ which agree up to their last occurrence of k. Let d,,, :== d M.
We claim that then

Ala+ ., 8di) = Ala+ ), ., hidi)

for all g,h € (k + 1)"*! which agree up to their last occurrence of k. Note that
the proof of this claim implies that (1) holds. In order to see why the claim holds
observe first that if g,, = k or h,, = k then g = h and the claim holds trivially. So
assume g, h,, < k. Then the choice of d,, = dM and (2.1) implies that

Ala+ ) i, 8di) = Ala + Zgidi)

i<m
and

A(a + Zh,d,) = A(a + Zh,d,)

i<m i<m

The claim thus follows immediately from (2.1).
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Proof of (2): Let N = S(k,r,r) and consider A : [1, N] — r. Then there exist
a,do,...,d-_i such that

Ala+ 3., 8idi) = Ala+ 3, _, hidy), (2.3)

whenever g, h € (k + 1)" agree up to their last occurrence of k. Consider

g°=(0.,0,....0)
g =(k,0,....0)
¢ =(k, k,..., k).

By the pigeonhole principle two of these words, say g/ and g” where u < v, have
the property that A(a + Y, _, gi'd;) = Ala + Y, _, g'd;). More precisely,
Ala + kY

d)=Aa+kY,_ d+kYhd).

i<p i<p

On the other hand, from (2.3) we have
Aa+kY, d)=Aa+kY,_, di+jXYiZ,d),

. . r_ ) _ v—1 )
forevery j < k. Thus,settinga’ =a+k > ,_, diandd = Zl:u d;, we have that

i<p
Ala' +j-d|j<k+1}
is a constant coloring. Thus (2) holds. |

The proof given above follows Graham and Rothschild (1974). Like the original
proof of van der Waerden’s theorem this proof also uses substantially that the
assertion is known to be true for k — 1 and all r in order to derive it for k and some
fixed r, say r = 2. Combinatorial proofs where the color number is fixed throughout
the whole proof were obtained by Deuber (1982) using ideas from the proof of
Hales-Jewett’s theorem (cf. Sect. 4.1) and by Taylor (1982) giving a combinatorial
version of the (Furstenberg and Weiss 1978) topological proof of van der Waerden’s
theorem.

The above proof has one disadvantage: the fact that it uses some kind of double
induction yields an upper bound even on W (k) := W(k, 2) which is not primitive
recursive. In contrary to this the best lower bound currently available is W(k +
1) > k2, for k prime, which is due to Berlekamp (1968). Determining the order of
magnitude of W(k) or even proving that W (k) increases slower than the Ackermann
function has long been a challenging open problem in Ramsey theory. This was
finally solved by Shelah (1988) who proved that the van der Waerden numbers are
primitive recursive. The currently best asymptotic upper bound is by Gowers (2001).
Some known exact values of W(k) are W(2) = 3, W(3) = 9, W(4) = 35 and
W(5) = 178 (see Chvatal 1970; Stevens and Shantaram 1978).
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Let H(m,r) denote the least integer for which the assertion of Hilbert’s
cube lemma (Theorem 2.1) is valid, i.e., the smallest number such that for
every r-coloring A : [1, H(m,r)] — r there exists an affine m-cube which is
monochromatic with respect to A. Obviously, H(m,r) < W(m,r), as can be seen
as follows. Let {a¢ + jd | j < m} be a monochromatic arithmetic progression.
Thena,d,d,...,d (m many d’s) generate a monochromatic affine m-cube proving
Hilbert’s cube lemma.

But in fact, H(m,r) is much smaller than the van der Waerden number given
above. Brown et al. (1985) showed using a result on B,-sets that H(2,r) is only
quadratic in r, more precisely,

H2,r) =1+ o0())r%

Moreover, examining Hilbert’s original proof they observed that in general
H(m,r) < r<" for an appropriate constant c. In other words, even for arbitrary
m, the function H(m, r) is bounded by a polynomial in r.

2.4 Schur’s Extension of Van der Waerden’s Theorem

“A few days” after van der Waerden answered Schur’s question on arithmetic
progressions, Brauer (1928) was able to use van der Waerden’s result to resolve
Schur’s conjecture on quadratic residues and nonresidues. But Brauer’s paper
contains also a strengthening of van der Waerden’s theorem (and of Schur’s lemma)
which he attributes to Schur (cf. also Brauer 1973):

Theorem 2.4. Let k and r be positive integers. Then there exists a least positive
integer n = SB(k,r) such that for every r-coloring A : [1,n] — r there exists an
arithmetic progression

{a+id|i <k} C[ln]

of length k which is monochromatic and its difference d is in the same color, i.e.,
Ala +id | i <k} U{d}) is a constant coloring.

Proof. We proceed by induction on the color number r, the case r = 1 being trivial
for every k.

Assume that the existence of SB(k,r — 1) has been established for some r > 1.
Choose n = W(k - SB(k,r — 1) + 1,r) and let A : [1, n] — r be an arbitrary
r-coloring. By choice of n there exists an arithmetic progression

{a+jd' | j <k-SBk,r—1)}

which is monochromatic with respect to A, say in color r — 1.



2.4 Schur’s Extension of Van der Waerden’s Theorem 19

Now either for some j,0 < j < SB(k,r — 1), we have A(jd’') = r — 1. In this
case we are done witha andd = jd'. Or A1{jd' | 0 < j < SB(k,r — 1)} is an
(r — 1)-coloring. In that case using the inductive hypothesis finishes the proof. O

We outline the proof of Schur’s conjecture using this strengthening of van der
Waerden’s theorem.

Let p be a prime number and let n be prime to p. Recall that n is a quadratic
residue modulo p if x> = n (mod p) for some positive integer x; otherwise n
is a quadratic nonresidue modulo p. Thus the set of integers is divided into three
classes, the class of quadratic residues, the class of quadratic nonresidues and the
multiples of p. The Legendre symbol (£) is used to indicate the quadratic character
of a number. Its value is £1 according to whether n is (or is not) a quadratic
residue modulo p. There exist %( p — 1) quadratic residues, respectively, %( p—1
non-residues modulo p in Z,.

Theorem 2.5. Let k be a positive integer. Then there exists a positive integer n =
n(k) such that for every prime number p > n there exist k consecutive integers
which are quadratic residues modulo p and there exist k consecutive integers which
are quadratic nonresidues modulo p.

Proof. First we show that for every sufficiently large prime there exist k consecutive
integers which are quadratic residues modulo p.

Let n = SB(k,2) and p > n be a prime number. Color [1, p — 1] according
to being a quadratic residue modulo p. By choice of n there exists an arithmetic
progression

lat+jd|j<kyc(l, p—1]

which is monochromatic and its difference d is in the same color, i.e., the Legendre
symbol (%) is constanton {a + jd | j <k} U {d}.

As the product of two quadratic residues as well as the product of two quadratic
nonresidues are quadratic residues, whereas the product of a quadratic residue and
a quadratic nonresidue is a nonresidue we deduce that

a+ jd

{ | Jj <k}
(with division in the Gallois field Z,) is a sequence of k consecutive quadratic
residues modulo p proving the first part of the theorem.

Now let£ = (k!'—1)(k —1) + 1,n = SB({,2) and p > n be a prime number.
According to the first part of the proof there exists a sequence

b+jlj<fcll.p—1]
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of £ consecutive quadratic residues modulo p. Let d be the smallest nonresidue
modulo p. If d < k! then

b+ jd
<k

T <k

(with division again in the field Z,) is a sequence of k consecutive nonresidues.

So we can assume that d > k!. But then d = k!m + ¢ where ¢ < k!. Therefore

¢—d =0 (mod j)andhence c —d + jd =0 (mod j) forevery 0 < j < k. But

this gives that

c—d

+d<d

and so by assumption % + d is a quadratic residue. Since j < k < d, also

(% + d)j is a quadratic residue. Therefore
e—d)+jd|j<k;

is a progression of quadratic residues but its difference d is a nonresidue. Dividing
by d yields the desired result. O

2.5 Rado’s Thesis

2.5.1 Partition Regular Systems of Homogenous Linear
Equations

Let Ax = 0 be a system of homogenous linear equations in # variables with integer
coefficients. Then Ax = 0 is partition regular if for every coloring of the positive
integers with finitely many colors there exists a monochromatic solution, in other
words, there exist positive integers Xy, ..., X,—; (not necessarily distinct) so that
A(xo, ... ,xn_l)T = 0 and xy, ..., x,_; are all in the same color.

Schur’s lemma asserts that

Xo+x1—x,=0

is partition regular, Schur’s extension of van der Waerden’s theorem that for every
k the system

X1 =x0+d
Xo=x1+d
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Xk =Xk—1+d
is partition regular and Hilbert’s cube lemma implies that

a+2x,-=x1, ICn, I#0

i€l

is a partition regular system of equations.

Observe that using a compactness argument as in the proof of the finite Ramsey
theorem (Theorem 1.2) it follows immediately that if Ax = 0 is partition regular
then for each positive integer r there exists already a positive integer N = N(A4,r)
such that for every r-coloring of [1, N] there exists a monochromatic solution of
Ax =0in[1, N].

The notion of partition regularity is defined only for positive integers and all
examples considered so far deal only with colorings of positive integers. One might
think that additional linear systems of equations turn out to be partition regular if
we consider r-colorings of nonzero rationals. The following lemma shows that this
is not the case.

Lemma 2.6. Let A be a matrix with integer coefficients. Then the following
properties are equivalent:

(1) Ax = 0is partition regular,

(2) For every coloring of the non-zero integers with finitely many colors there exists
a monochromatic solution of Ax = 0,

(3) For every coloring of the non-zero rationals with finitely many colors there
exists a monochromatic solution of Ax = 0.

Proof. Since N C Z\{0} € Q\{0}, we have trivially the implications from (1) to
(2) and from (2) to (3).

Assume (3) and let r be a positive integer. By a compactness argument (Konig’s
lemma) there exists a finite set S € Q\{0} such that for every r-coloring of S there
exists a monochromatic solution of Ax = 0 in S. Multiply S with an appropriate
integer ¢ such that {c¢s | s € S} € Z\{0}. Then for every r-coloring of {cs | s € S}
there exists a monochromatic solution of Ax = 0, showing (2).

Now assume (2) and let A : N — r be a coloring. Define A’ : Z\{0} — 2r by

A if 0
R
A(—z)+r ifz<0O.
Then by homogeneity the required result follows. O

Observe that by homogeneity we could also replace A by a matrix with rational
coefficients.



22 2 From Hilbert’s Cube Lemma to Rado’s Thesis

Based on his thesis written under the supervision of Schur, Rado provided a
complete characterization of all systems of homogenous linear equations which are
partition regular. The crucial notion in this characterization is the column property
of a matrix.

Definition 2.7. Let A be a matrix with integer coefficients, say A = (a°,...,a"™")
where the a’ are the columns of A. Then A has the column property if there exists a
partition of n, say n = Iy U ... U I, for some £ < n, such that

1. Z a = 0, i.e., the columns in 7y add up to 0, and

i€ly

2. forevery j < { there exist rational numbers £;; such that
2= ) e
i€lj41 ieU,<; Iv

i.e., the sum of the columns in /; ¢ is a rational linear combination of the columns
in the previous classes Iy U ... U I;.
We now consider some examples.

(1) The matrix
(1,1,-1)
which describes Schur’s equation xy + x; = X, obviously has the column
property.
(2) The matrix of the system of equations

Xiq1=x+d, i<k

has the column property choosing I and /; as depicted below:

1 —1 0 0

1 0 1 -1 0

1 0 0 1 -1
~——

I Iy

(3) As athird example we consider the matrix corresponding to the system

Zx,-le, I Cn, I #0,

i€l
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which is a projective version of the system of equations we get from Hilbert’s
cube lemma. For n = 2 we obtain the matrix of Example (1) where the trivial
equations are omitted. For n = 3 = {0, 1, 2} the corresponding matrix is given

below
1 1 1 -1 0 0
1 1 0 0 -1 0
1 0 1
1 0 0
0 1 1
0O 1 0
0 0 1 0 oo —1

It can easily be seen that such matrices have the column property: assume that
the matrix is arranged so that the rows are ordered lexicographically from the
top to the bottom with respect to 1 > 0 and the i th row contains exactly one —1
positioned in the (n + i)th column (compare the picture above). Then

Ip=1{a"}U{a", ..., a"**" """}, and
. j n—i j+1 on—i
I ={a/}yU{a"t 5= gt RS T forl < j <o,

gives the desired column partition.

Theorem 2.8 (Rado). Let A be a matrix with integer coefficients. Then the
homogeneous system Ax = 0 of linear equations is partition regular if and only
if the matrix A has the column property.

We postpone the proof of Rado’s theorem until we have introduced the so-called
(m, p, c)-sets which can be viewed as generalizations of arithmetic progressions.
The notion of (m, p, c)-sets was invented by W. Deuber in his doctoral dissertation
where he proved a partition theorem for these sets as a tool to answer a long standing
conjecture of Rado in the affirmative (Deuber 1973).

We will use this partition theorem for (m, p, c)-sets to prove Rado’s theorem.

2.5.2 (m, p,c)-Sets

Definition 2.9. Letm, p, ¢ be positive integers. A set M C N is an (m, p, ¢)-set if
there exist positive integers Xy, . . . , X, such that

M =M, (xo0,...,%n)

m
= {cx; + Z Eixj |& e[—p.plNZforevery j €[i +1,m]andi < m}.
j=itl
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Observe that a (1, k, 1)-set is an arithmetic progression together with its dif-
ference and an (n, 1, 1)-set contains solutions to the system of equations given
in Example (3) in the last section. Intuitively speaking, (m, p, c)-sets are m-fold
arithmetic progressions together with c-fold differences.

We show that every system Ax = 0 of homogeneous linear equations given by
a matrix A having the column property admits to find positive integers m, p and ¢
such that every (m, p, ¢)-set contains a solution of Ax = 0.

Together with a partition theorem for (m, p, c)-sets this will yield that Ax = 0
is partition regular.

Lemma 2.10. Let A be a matrix with integer coefficients having the column
property. Then there exist positive integers m, p and c such that every (m, p,c)-
set contains a solution of Ax = 0.

Proof. Let A = (a°,...,a"™"). By definition there exists a partitionn = IoU...U
Iy suchthat ) ., a' = 0 and forevery j < £ there exist rationals &; so that

Z ai = Z éijai.

€141 i€Upz; Iv

Putm = £ + 1 and let ¢ be the least common multiple of the denominators of the
&;;. Finally, define p to be the maximum of the absolute values of the &; and put
p = p - c. We claim that m, p and ¢ have the desired properties.

We now show by induction on k that every (k, p, ¢)-set contains a solution of the
matrix A consisting of those columns of A4 belonging to the classes | J; . /;.

Clearly, this is true for the matrix 49 = (a’ | i € Iy) since every singleton
provides a solution of Apx = 0. Now consider the (k + 1, p,c)-set M =
Mp (X0, ..., xk41) for some k& > 0. By induction hypothesis we know that the
(k,p,c)-set Mp.(xo,...,xx) € M contains a solution of A4y = (a' | i €

Ujgk 1;), say

Z yia' =0, wherey; € M, (xo,...,x;) foreveryi.

ierSk Ij

By the column property of A and by choice of p there exist integers &5, with
|€5. | < p so that

Z £a +c Z a =0.

ieUj<k 1 i1€l41

Multiplying this equation with x4 and adding it to the first one yields

Z (Eickxk‘f'l + J’i)ai + Z C)Ck.l,_lai = 0.

ieUj<k 1) i €141



2.5 Rado’s Thesis 25

Recall that y; € M, (xo,...,x;) for every i and || < p. Hence, y; +

4 Xk+1 € My, (xo,...,Xk+1). Obviously, cxxy1 € Mpc(Xo,. .., Xk+1). Thus
we have constructed a solution of Az41x = 0 which is contained in M, .(xo,
Cee xk+1). O

The following partition theorem for (m, p, c)-sets is from Deuber (1973):

Theorem 2.11 (Deuber). Let m, p, ¢ and r be positive integers. Then there exist
positive integers n, g and d such that for every coloring A : N — r of the positive
integers every (n,q,d)-set N C N contains a monochromatic (m, p, c)-set.

Combining this result with Lemma 2.10 proves the partition theoretic part of
Rado’s theorem, viz. that A having the column property implies that Ax = 0 is
partition regular. In fact Theorem 2.11 is stronger than needed for our purposes.
Deuber used this full partition theorem for (m, p, c)-sets to answer a conjecture of
Rado:

A subset S C N is called partition regular if every partition regular system of
equations is solvable in S. Deuber showed that if S is partition regular and S is
colored with finitely many colors then one of the color classes is again partition
regular.

Originally, Theorem 2.11 was proved with the help of van der Waerden’s theorem
on arithmetic progressions. Later, Leeb (1975) observed that the use of Hales-
Jewett’s theorem provides a more elegant proof.

A proof of Deuber’s theorem based on Hales-Jewett’s theorem will be given in
Sect.4.2.

2.5.3 Proof of Rado’s Theorem

Deuber’s Theorem 2.11 together with Lemma 2.10 implies that the column property
of A implies that Ax = 0 is partition regular. Hence, it remains to show that the
partition regularity of Ax = 0 implies the column property of A.

Let A = (a° ...,a" ") be a k x n-matrix such that Ax = 0 is partition regular.

Let I C n and a # 0 be a vector in ZF that is not a (rational) linear combination
ofthea’,i € I.Let P(I,a) be the set of all primes p such that for some nonnegative
integer m we have that p" -a is a linear combination of the a’,i € I, modulo p™*!.
Then P(1, a) is finite.

To see this let b € QF be such that b7 -a’ = 0 foreveryi € I butb” -a # 0.
Without loss of generality we can assume that b € Z* and, hence, b” - a € Z.

Let m be some nonnegative integer. Then

pla=3 & (mod p"t)

i€l
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implies that
b p™a =0 (mod p"tY).

Hence, p | b7 - a which is only true for finitely many primes.

Now choose a prime p which is not in P(Z, a) for every a = Zje] a’ where
J C n and a is not a linear combination of @',i € I. Moreover, let p be not one
of the finitely many primes which have the property that Y ;., @' = 0 (mod p) for
some I € nwith) ., a" #0.

Every positive integer x admits a unique representation as x = y(x) p*™*) where
y(x) # 0 (mod p). Let A, : N — [1, p — 1] be the coloring given by Ap(x) =
y(x) (mod p). Since Ax = 0 is partition regular there exists a solution which is
monochromatic with respect to A ,. This solution has the form
xi = p™“(pa(x;) +r) foreveryi <n,
where r € [1, p — 1] is the same for every i. Without loss of generality we can
assume that

2(x0) < ... < z(xp—1).

We will partition n according to the z(x;)-values and show that this partition proves
that A has the column property. For this purpose let

mo = z(xp) = ... = z(x;))
my = Z(xi1+l) =...= Z(.X,'z)
my=z(x;+1)=... = z(x,—1) and

mo<mp<... <mny
Now put

Io=10,....i1}
L={ii+1,... i

I[Z{lt+1,,n—l}
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First we verify that Zie I a’ = 0. Since X, . .., X,—; is a solution we have that

Zx,-ai =0.

i<n

Thus in particular

ijiai + Z xia' =0 (mod p™th.

i€ly iGn\I()

Fori € n \ Iy we have that x; = 0 (mod p™*!) and for every i € I, that x; =
p"(pa(x;) + r). Hence

r-Zai =0 (mod p).

i€l

Since r € [1, p — 1] and by choice of p it follows that ) ., a =0.

Now we verify along the same lines that for k > 0 the sum of the columns in
class I is a linear combination of the columns in the previous classes. As before,
we have that

Z xia + inai + Z xia' =0 (mod pmth),

iU 1 i€l S

Hence, reducing modulo p gives

Z xia' + rp™k Zai =0 (mod p™T1).

ieUj 1y i€l

Thus by choice of p we obtain the desired result, completing the proof of Rado’s

theorem. O
It should be mentioned that Furstenberg (1981) obtained a proof of Rado’s

theorem of completely different nature using methods from topological dynamics.

2.5.4 Finite and Infinite Sums

Of course, Rado’s theorem covers Hilbert’s cube lemma, Schur’s lemma and van
der Waerden’s theorem as well as Schur’s extension of it. Because of its particular
interest we will briefly discuss one other special case of Rado’s theorem.

Recalling Example (3) we get as an immediate consequence of Rado’s theorem
the following finite sum theorem:
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Theorem 2.12 (Rado, Folkman, Sanders). Let m and r be positive integers. Then
there exists a least positive integer n = FS(m,r) such that for every coloring
A : [1,n] — r there are m positive integers ay, . . . , ay—1 such that for all nonempty
sets 1, J C m it follows that

AQ ai) = A a)).

iel jeJ

Theorem 2.12 was rediscovered several times, among others by Folkman (see
Graham 1981 or Graham et al. 1980) and Sanders (1968) leading to the present
name of this theorem.

Folkman’s proof uses van der Waerden’s theorem. The idea of the second proof
of Schur’s lemma (cf. Sect.2.2) has been extended by NeSetfil and Rodl (1983a)
to obtain a proof of the Rado-Folkman-Sanders theorem from Ramsey’s theorem.
In Sect.5.2.4 we will get the finite sum theorem as an immediate application of
Hales-Jewett’s theorem.

Another combinatorial proof of the finite sum theorem was given by Taylor
(1981). His proof is remarkable because it provides the least known upper bound
on FS(m,r), viz.

_r3
r3-. }Zr(m—l)

FS < 2" . > 2.

Having the finite sum theorem in hands it is natural to ask whether or not
an infinite version of it is valid. Graham and Rothschild (1971) conjectured an
infinite generalization of the Rado-Folkman-Sanders theorem which was proved by
Hindman (1974):

Theorem 2.13 (Hindman). Let r be a positive integer. Then for every coloring A :
N — r there exist infinitely many integers ao, ai, ax, . . . such that for all nonempty
finite sets I, J C w it follows that

AQ ai) = A a)).

iel jes
i.e., all finite sums of the a; get the same color.

Several proofs have been given for this theorem, e.g., by Baumgartner (1974)
using some kind of combinatorial forcing, by Glazer (see, Hindman 1979) using
idempotent ultrafilters in SN and by Furstenberg and Weiss (1978) using topological
dynamics. The reader may consult one of these references for a proof of Hindman’s
theorem.

Assuming the axiom of choice it is easy to see that (coloring the reals) one cannot
expect to get also infinite sums in the same color. Of course, taking infinite sums
necessarily requires convergence. But restricting to in a sense constructive colorings,
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viz. colorings having the property that each color class has the property of Baire, it
can be proved that there always exists an infinite sequence of reals (whose sum
converges) such that all their sum (finite or infinite, but without repetition) get the
same color (Promel and Voigt 1990).



Part I1
A Starting Point of Ramsey Theory:
Parameter Sets



Chapter 3
Definitions and Basic Examples

In their by now classical paper Ramsey’s theorem for n-parameter sets
Graham and Rothschild (1971) introduced the concept of parameter sets. The
idea was to find a combinatorial abstraction of linear and affine vector spaces over
finite fields. This was motivated by a conjecture of Rota, proposing a geometric
analogue to Ramsey’s theorem. In fact, the Ramsey theorem for n-parameter sets
implies Rota’s conjecture directly for lower dimensional cases and, as it has turned
out, the method used in the proof of this theorem contains also the seeds of the ideas
to prove Rota’s conjecture in its full strength. This was done in Graham, Leeb and
Rothschild (1972).

But the impact of parameter sets goes far beyond the proof of Rota’s conjecture.
For example, Ramsey’s theorem itself is an immediate consequence of the
Graham-Rothschild theorem.

In a more rudimentary form parameter sets occur already in the paper Regularity
and positional games by Hales and Jewett, published in 1963, who proved in a sense
a pigeon hole principle for parameter sets.

The theorem of Hales and Jewett revealed the combinatorial core of van der
Waerden’s theorem on arithmetic progressions. But the concept of parameter words
does not only glue together arithmetic progressions and finite sets. It allows a
unifying approach to several seemingly different structures like Boolean lattices,
Partition lattices, hypergraphs, and Deuber’s (m, p, ¢)-sets, just to mention a few.

To a certain extend the Graham-Rothschild theorem can be viewed as a starting
point of Ramsey theory.

Besides the various applications, several ramifications and generalizations of
the original Graham-Rothschild theorem have been discovered. In this chapter we
discuss the origins and some developments based on and related to the structure of
Graham-Rothschild parameter sets.

H.J. Promel, Ramsey Theory for Discrete Structures, 33
DOI 10.1007/978-3-319-01315-2__3,
© Springer International Publishing Switzerland 2013
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Fig. 3.1 The lines of A2 when A = 3 (left) and the lines of A> when A = 2 (right)

3.1 Parameter Words

Unless stated otherwise, A is a finite set (alphabet). We are concerned with A",
the set of n-tuples over A, certain subsets of this set, parameter sets, and their
representations, parameter word.

Zero-parameter sets are simply singleton elements of A”. A one-parameter set
(or combinatorial line) L C A" is a set of size | A| such that there exists a nonempty
set I C n of coordinates and for every i € n\[ there exists an element a; € A such
that

L ={(xo,....xs—1) | x;, = x; foralli,j e l andx; =a; € Afor i & I}.

Intuitively speaking the set / consists of the moving coordinates and the coordinates
i € n\I that are constant.

Obviously, putting t = |A| there are (f 4+ 1)" —¢" lines in A”. As examples, in
Fig.3.1 we indicate the lines of A> when A = 3 = {0,1,2} and the lines of A°
when A =2 = {0, 1}.

Every one-parameter set can be represented by a one-parameter word f €
(A U {Ao})", containing the parameter A at least once, such that L results from
f by replacing A by elements of A. Thus the parameter A, indicates the moving
coordinates. For example, L = {(0,1,0),(1,1,1)} < 23 is represented by the one-
parameter word f = (A¢, 1, Ag).

In general, an m-parameter set (or combinatorial m-space) M C A" is given
by an m-parameter word f € (A U {Ag,...,A,—1})". We require that each
parameter A;, i < m, occurs at least once in f. The m distinct parameters
Ao, - .., Am—1 represent m mutually disjoint sets of moving coordinates. In order
to avoid ambiguities we assume that A N {A; | i < m} = @, i.e., the set of constants
a € A should be distinguished from the set of parameters A;,i < m.If f €
(AU{Ao, ..., Au—1})" is an m-parameter word in A” and g € (AU{Ao, ..., Ak—1})"
is a k-parameter word in A™, the composition f - g € (AU {Ag, ..., Ax—1})" is the



3.1 Parameter Words 35

k-parameter word in A" resulting from replacing the parameter A; in f by g;, the
i-th component of g. In particular, for k = 0,

M ={f-(a0,...,am_1) | (ao,...,am_l) eA’"}gA"

is the m-parameter set represented by f.

Clearly, two parameter words yield the same parameter set if they differ only by
a permutation of their parameters. We get a rigid representation, i.e., a one-to-one
correspondence between parameter sets and words, requiring the first occurrences
of different parameters to be in increasing order, first ¢, then 4, etc.

We summarize these ideas in a formal definition. The concept of parameter sets
is due to Graham and Rothschild (1971), the formal calculus of parameter words
has been introduced by Leeb (1973, unpublished).

Definition 3.1. For nonnegative integers m < n we denote by [A](}’;) the set of all
words (mappings) f : n — A U {Ao,...,A,—1} such that for every j < m there
exists i < n with f(i) = A;, and min f~'(};) < min f~'(X;) foralli < j < m.
The elements of [A4] (Z) are called m-parameter words of length n over A. For f €

[A]() and g € [4](}) the composition f - g € [A](]) is defined by

fG) if f(i) e A, and

f -9)0) =
FOU= ) it fi) =,

For f € [A](]) the set

M={f-glgelA(})}=r 1A41(})

is the m-parameter subset of A" described by f. Observe that [A](g) = A".
From the presentation of parameter sets via parameter words it easily follows
that there are

1 & .
Sy(t) = ) ;)(—1)’"" (’7) (t+10)

m-parameter subsets of A", putting again |A| = ¢. The numbers S}, (¢) are known
as noncentral Stirling numbers of the second kind. Compare, e.g. Carlitz (1980) or
Benzait and Voigt (1989) for discussion and combinatorial interpretation of these
numbers.

Note that we have defined parameter words with respect to arbitrary finite
alphabets (sets), including the empty and the one-element alphabet. Corresponding
to different alphabets, parameter words admit different interpretations.
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3.1.1 Parameter Words Over the Empty Alphabet

Partition lattices. Parameter words f € [Q)](Z) represent surjections from n onto
k which are rigid in the sense that min f~'(A;) < min f~'(;) fori < j. So they
represent uniquely the equivalence relations onn = {0, ...,n — 1} with precisely &
equivalence classes, and vice versa. The ith equivalence class is given by f~'(1;).
Hence, [0](n) = U<, [Q)](Z) is the set of all equivalence relations on 7.

For f € [9](") and g € [](}) put / < g if and only if there exists & € [0](7)
such that g = f - h. Then I1(n) ~ ([#](n), <) becomes the partition lattice of rank
n, i.e., the lattice of equivalence relations on #.

3.1.2 Parameter Words Over a One-Element Alphabet

Sets. Consider ¢ : [{O}](Z) — [n]" defined by ¢(f) = {min f~'(X;) | i < m}.
Obviously, ¢ is surjective. Assume [n]” to be given as the set of strictly ascending
injections from m into n, i.e., ¢(f) : m — n, where ¢(f)(i) = min f~'(L;).
Then ¢ has the property that for f € [{0}](") and g € [{0}](}) it follows that
d(f - g) = d(f) - #(g). In the language of categories this is to say that ¢ is a
functor.

A-systems. Parameter words f € [{0}] (:1) represent families of m nonempty and
disjoint subsets of n = {0,...,n — 1}, viz., f~'(A;), i < m. Then f - [{0}](’;’)
is the set of all nonempty unions of these m sets. Using the language of extremal

problems, [{O}](’Z) is the set of strong A-systems with m terms.

3.1.3 Parameter Words Over a Two-Element Alphabet

Boolean lattices. Let A = 2 = {0, 1}. Every f € [2] (g) can be interpreted as the
characteristic function of a subset of n = {0, ..., n — 1}, where the letter 1 indicates
the occurrence of an element in this subset. The inclusion of subsets imposes a
lattice structure < on [2] (g) Provided with this order ([2] (g) <) is isomorphic to
the Boolean lattice B(n) of rank n. Parameter words f € [2] (Z) represent 5(k)-
sublattices in 3(n), and vice versa. The composition f - g corresponds to taking a
sublattice inside a sublattice. In Fig. 3.2 the images of B(1) under g and f - g are
drawn boldfaced.

A partial order on Boolean sublattices of B(n) can be defined using the
composition of parameter words. For f € [2](]) and g € [2](}) put f < g if
there exists & € [2](}) such that /' = g - h.
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011

001
.7

000

Fig. 3.2 The images of B(1) under g = (0, A¢) and f - g = (0, Ao, 1) are drawn boldfaced. The
B(2) and B(3)-lattice are given by their Hasse-diagrams

3.1.4 Parameter Words Over a k-Element Alphabet

Arithmetic progressions. Let A = k = {0,...,k — 1} and consider the mapping
¥ : A" — N given by

lll(ao, ce ,an_l) = Za,’.

i<n

Although ¥ is not one-to-one, we have that for every combinatorial line f € [k] ('f)
the set {W(f -i) | i < k} is an arithmetic progression of length k.
If we choose the k-adic expansion of integers instead, i.e., k : A" — N given by

K(ao. ... an-1) = Y _ aik’,

then
W(f-i) i <k}

is also an arithmetic progression for every combinatorial line f and, moreover, « is
one-to-one. In fact, k is a bijection between A" and the first k" nonnegative integers.

3.1.5 Parameter Words Over GF(q)

Affine spaces. Let GF(g), g a prime power, be the Gallois field with g elements.
Then every m-parameter word f € [GF(q)] (Z), resp., the corresponding
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m-parameter subset in GF(g)", is an m-dimensional affine subspace. However,
in general there exist affine subspaces which are not parameter subsets.

3.2 Parameter Words and Finite Groups

In this section the notion of parameter words (resp., parameter sets) will be slightly
generalized allowing a finite group G to act on A.

Let G be a finite group, with unit element e, operating on A, i.e., there exists an
operation G x A — A suchthat («-B)-a =«a-(f-a)foralle, f € G anda € A.

Definition 3.2. Let m < n be nonnegative integers and G be any finite group
acting on A. Then [A4, G](:,) denotes the set of all mappings f : n — A U (G X
{A0,...,Am—1}) such that

UG x{A}) £ 0 for every i < m,

f(min f7H(G x {A;})) = (e, L)) for every i < m, and

min /(G x {A;}) < min /(G x {A;}) foralli < j <m.

The elements of [A4, G](”;) are m-parameter words of length n over [A, G].
For / € [A.G](") and g € [4,G](}) the composition f - g € [A,G](}) is
defined by

fi) if f(i)eA
(f-9l)=1a-a if f(i)=(x,A;)andg(j)=aecA
(a-B.Ag) if f(i) = (@, ;) and g(j) = (B. Ao).

What has changed is that parameters A; are labeled by group elements. To make
these parameter words rigid the first occurrence of A; is labeled with the unit
element e. The composition then is defined via group multiplication, resp., via the
group action on A.

In fact, this is the original concept of parameter sets as it was introduced in
Graham and Rothschild (1971).

3.2.1 Parameter Words Over [{0}, GF(q)*]

Linear spaces. Consider the multiplicative group GF(g)* operating on {0}, where
0 is the zero element of the Galois field GF(q). Every f € [{0}, GF(¢q)*](")
represents an m-dimensional (homogeneous) linear subspace of the n-dimensional
vector space over GF(q). In general, there exist additional m-dimensional