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Preface

The Role Robustness in Operations Research and Management
Science

Operations research and management science (OR/MS) models are based on
assumptions and hypotheses about the available data, the modeling parameters,
and the decision context. These are often characterized by uncertainties, fuzziness,
vagueness, and errors, which are due to the complexity of real-world problems. As
a consequence, it is likely that mild changes on the assumptions and hypotheses set
at an early stage of the analysis may require major revisions of the modeling con-
text (e.g., imposing new data requirements, reformulation of objectives, goals, and
constraints), thus ultimately leading to very different conclusions and recommen-
dations. Furthermore, it is often observed that solutions found to be acceptable at
an early stage of the analysis are actually not easy to implement due to differences
(realized a posteriori) between the modeling approach and the actual nature and the
evolving dynamic character of the problem at hand.

Robustness analysis seeks to address such issues by promoting models and so-
lutions, which are acceptable under a wide set of plausible conditions and config-
urations. It is rather difficult to give a unique definition of robustness that fits all
contexts and types of problems. However, the common perspective widely used
in OR/MS is to consider robustness analysis in the framework of decision-making
under uncertainty.

Stewart [8] distinguishes between external and internal uncertainties. External
uncertainties relate to the decision environment involving issues that are usually
outside the direct control of the decision-maker. Internal uncertainties, on the other
hand, relate to problem structuring and modeling issues that arise, for instance, due
to the imprecision and ambiguity of judgmental inputs.

Given such uncertainties, Rosenhead [6] highlights the importance of consider-
ing the flexibility that solutions/decisions offers. He defines this flexibility as the
future opportunity to take decisions toward desired goals. Within this context, he
considers the robustness of a solution as the ratio of the number of acceptably
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performing configurations with which that solution is compatible to the total number
of acceptably performing configurations.

Roy [7], on the other hand, adopts a wider perspective and argues that robust-
ness analysis is a tool that decision analysts use to protect against the approxima-
tions and ignorance zones, which arise due to imperfect knowledge, ill-defined data,
and the specification of modeling parameters. Such issues create a gap between the
“true” model and the one resulting from a computational mechanism. Roy views the
characterization of robustness solely in the context of uncertainty as a restrictive ap-
proach and suggests instead going beyond the traditional scenario-based approach
through the adoption of a version/procedure-based framework that takes into ac-
count different realities for a problem (versions) and processing procedures. This is
similar to the approach proposed by Vincke [9] who described robust solutions as
those that remain acceptable under changes in the problem data and the parameters
of the method used while further highlighting that robustness also applies to the
decision methods used to derive the results of an analysis.

Similar views can also be found in the context of robust optimization, which has
been an active research topic in OR/MS at least since the 1990s [1-3]. For instance,
Mulvey et al. [5] distinguish between the robustness of solutions for a given prob-
lem which are acceptable under different modeling forms and the robustness of the
modeling scheme. They note that reactive approaches relying on post-optimality
techniques (e.g., sensitivity analysis) are not enough as they only take into account
data uncertainties, thus proposing the use of proactive approaches, which focus
on formulations that, by design, provide less sensitive (more robust) solutions to
changes in the problem data. Mulvey et al. further distinguish the robust optimiza-
tion paradigm from traditional OR/MS approaches such as stochastic programming.
The differences between these approaches are also analyzed by Kouvelis and Yu [4]
who provide a formal framework for robust optimization with emphasis on discrete
optimization problems.

All the above different views of robustness cover a broad OR/MS context that
starts from soft OR and decision-aiding tools and extends to a wide range of ana-
Iytical techniques for different types of optimization problems. As new challenges
emerge in a “big-data” era, where the information volume, speed of flow, and com-
plexity increase rapidly, and analytics playing a fundamental role for strategic and
operational decision-making at a global level, robustness issues such as the ones out-
lined above become more relevant than ever for providing sound decision support
through more powerful analytic tools.

Outline of the Book

Aims and Scope

Given the multifaceted nature of robustness, the motivation for the preparation of
this book was to publish a unique volume aiming at providing a broad coverage
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of the recent advances in robustness analysis in decision aiding, optimization, and
analytics, adopting an OR/MS perspective.

The board coverage of the volume is a unique feature that enables the compre-
hensive illustration of the challenges that robustness raises in different OR/MS con-
texts and the methodologies proposed from multiple perspectives. Thus, this edited
volume facilitates the presentation of the current state of the art and the communica-
tion of ideas, concepts, and techniques for different OR/MS areas where robustness
concerns are highly relevant.

The volume also includes a part on applications of robust techniques in en-
gineering and management, thus illustrating the robustness issues raised in real-
world problems and their resolution with the lasted advances in robust analytical
techniques.

Organization

The book includes 14 chapters, organized in three main parts that cover a wide
range of topics related to theoretical advances in robustness analysis and their ap-
plications. The first part is devoted to decision aiding. The book starts with the
chapter of Lahdelma and Salminen about stochastic multicriteria acceptability anal-
ysis (SMAA). SMAA is a popular approach for multicriteria decision aid (MCDA)
problems under uncertainty. SMAA enables the evaluation of a discrete set of de-
cision alternatives when there is uncertainty about the data and/or the parameters
of the decision model. Uncertainty is represented through probability distributions,
and probabilistic indicators are constructed that facilitate the formulation of robust
recommendations. The chapter illustrates the main concepts and functionality of
this approach using an easy-to-follow example-based illustration. Implementation
issues and recent advances are further discussed.

The second chapter, by Doumpos and Zopounidis, focuses on preference disag-
gregation analysis (PDA). PDA is widely used in MCDA to infer decision models
from data using optimization-based techniques (usually linear programming mod-
els). Over the past decade, much research has been devoted on the development of
robust PDA approaches that take into consideration a set of decision models (of
the same type/class) rather than a single model. The chapter examines the robust-
ness of such approaches in classification problems, where a finite set of alternative
should be classified into predefined performance categories. The chapter proposes
new robustness indicators based on concepts and techniques from the field of con-
vex optimization, taking into account the geometric properties of the set of feasi-
ble/acceptable values for the parameters of a decision model as specified by a set
of decision instances. The new indicators are illustrated and validated through a
numerical example.

The third chapter of this first part of the book, by Rios Insua, Ruggeri, Alfaro, and
Gomez, is devoted to adversarial risk analysis (ARA), which is a risk management
framework for decision situations involving intelligent opponents. ARA has been
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recently applied in a wide range of areas, including business applications, defense,
and security. The latter is the main focus of the chapter, which provides an outline
of the role of robust methods in ARA. The chapter starts by discussing Bayesian
robustness and then presents a game theoretic framework applied to sequential and
simultaneous defend-attack instances. The framework leads to game theoretic solu-
tions, which are improved through robustness analysis and ARA.

The first part of the book closes with the chapter by Sniedovich about Wald’s
maximin paradigm, which has played a central role in decision-making under uncer-
tainty, as a tool for worst-case-based robustness analysis. The chapter presents the
conceptual and modeling aspects of the Wald’s maximin paradigm and analyzes its
differences from other similar frameworks. The relationship between this paradigm
and robust decision-making is also discussed, from the perspective of robust opti-
mization, where the maximin principle has been extensively used for coping with
different types of robustness issues.

The second part of the book contains four chapters about robust optimization.
This part starts with the overview paper of Soziier and Thiele. The authors provide
a survey of the most recent advances in the theory and applications of robust op-
timization over the past 5 years (2011-2015). The survey covers methodological
issues related to static and multistage decision-making, stochastic optimization, dis-
tributional robustness, and nonlinear optimization, as well as a range of application
areas such as supply chain management, finance, revenue management, and health
care.

In the next chapter, Kasperski and Zielifiski focus on robustness for discrete op-
timization problems and discusses the two most popular approaches of modeling
the uncertainty, namely, the discrete and interval uncertainty representations. The
chapter starts with describing the traditional minimax approach and proceeds with
the presentation of new concepts and techniques that have recently appeared in the
literature, such as the use of weighted ordering averaging, robust optimization with
incremental recourse, and two-stage problems. Computational complexity issues,
which are very relevant for this type of problems, are also discussed.

The third chapter in this part, by Chassein and Goerigk, discusses the assessment
of robust solutions in optimization problems. This is a relevant issue, given the wide
range of definitions of robustness concepts, criteria, and metrics, available in the
literature, which naturally create a confusion regarding the selection of the most
appropriate approach for a given problem. The chapter illustrates this issue using as
examples well-known optimization problems, namely, the assignment and knapsack
problems, and proposes formal evaluation frameworks. These are illustrated through
experimental data.

In the last chapter of the second part, Inuiguchi examines fuzzy linear program-
ming (LP) problems. Fuzzy optimization enables the modeling of decision problems
that incorporate ambiguity and vagueness. This chapter focuses on LPs with fuzzy
coefficients in the objective functions. Robustness analysis in this context is more
involved compared to traditional optimization problems. Inuiguchi defines two ap-
proaches based on the minimax and maximin principles. Algorithmic and compu-
tational issues that arise in the implementation of the proposed approaches are also
analyzed.
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The last part of the book is devoted to application of robust OR/MS tech-
niques in engineering and management. This part includes six chapters. The first
of these chapters, by Artigues, Billaut, Cheref, Mebarki, and Yahouni, considers ro-
bust machine scheduling problems under uncertainty with a group sequence struc-
ture, where an ordered partition of jobs is assigned to each machine. Standard ro-
bust scheduling techniques are reviewed together with recoverable robust optimiza-
tion methods. Empirical evidence derived from a real manufacturing system is also
reported.

The next two chapters involve applications related to policy decision-making for
environmental management and energy systems. In particular, Kwakkel, Eker, and
Pruyt adopt a multi-objective optimization framework. The authors consider a case
study related to the European policies for reducing carbon emissions and promoting
the use of renewable energy technologies. A system dynamics model is used to sim-
ulate paths for the European electricity system, considering a number of uncertain
inputs variables. The policy design problems is formulated as an optimization prob-
lem with three objectives, and different robustness metrics are applied to examine
which is the most appropriate one for the making robust policy recommendations.

The next chapter, by Nikas and Doukas, presents a framework based on fuzzy
cognitive mapping for selecting effective climate policies for low carbon transitions
in the European Union. The proposed approach is an analytical framework for de-
veloping robust transition pathways, grounded on existing quantitative models, an
extensive literature review of the risks and uncertainties involved, and qualitative
information deriving from a structured stakeholder engagement process.

The next two chapters focus on portfolio optimization. The uncertainties that
prevail in the financial markets have attracted a lot of interest for robust techniques
in this area. The chapter of Giilpimnar and Hu presents an overview of the theory
and applications of robust approaches to portfolio optimization, focusing on the
most fundamental and widely studied single-period context. The authors discuss the
relevance of using symmetric and asymmetric uncertainty sets for modeling asset
returns, cover recent advances in recent developments in data-driven robust opti-
mization, and discuss the connections between robust optimization and financial
risk management.

In the next chapter, Kececi, Kuzmenko, and Uryasev consider portfolio opti-
mization with stochastic dominance constraints. Stochastic dominance provides a
distribution-free approach that takes into account the entire returns’ distribution.
The authors present efficient numerical algorithms for solving optimization prob-
lems with second-order stochastic dominance constraints. Empirical results are pre-
sented based on data from the Dow Jones and DAX indices in comparison to the
well-known mean-variance portfolio optimization model.

The book closes with the chapter of Atict and Giilpinar about performance and
production efficiency measurement, in the context of data envelopment analysis
(DEA). DEA is widely used as a nonparametric efficiency assessment technique,
based on linear programming models. In this chapter, the authors consider the DEA
framework under uncertainty about the data (input/outputs). An imprecise DEA ap-
proach and a robust optimization model are compared using a case study involving
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the assessment of production efficiency from the agricultural sector (olive-growing
farms). The results lead to insights about how the treatment of uncertainty relates to
the obtained efficiency estimates.
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Chapter 1
SMAA in Robustness Analysis

Risto Lahdelma and Pekka Salminen

Abstract Stochastic multicriteria acceptability analysis (SMAA) is a simulation
based method for discrete multicriteria decision aiding problems where information
is uncertain, imprecise, or partially missing. In SMAA, different kind of uncertain
information is represented by probability distributions. Because SMAA considers
simultaneously the uncertainty in all parameters, it is particularly useful for robust-
ness analysis. Depending on the problem setting, SMAA determines all possible
rankings or classifications for the alternatives, and quantifies the possible results in
terms of probabilities. This chapter describes SMAA in robustness analysis using a
real-life decision problem as an example. Basic robustness analysis is demonstrated
with respect to uncertainty in criteria and preference measurements. Then the anal-
ysis is extended to consider also the structure of the decision model.

1.1 Introduction

Robustness analysis of a computational model is a type of sensitivity analysis that
considers simultaneous variations of all parameters in a given domain. More general
robustness analysis would also consider the sensitivity of the analysis with respect to
model structure derived from various assumptions. Robustness analysis is necessary
in particular when some input parameters of the model are imprecise or uncertain.
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2 R. Lahdelma and P. Salminen

Stochastic multicriteria acceptability analysis (SMAA) is a simulation based
method for discrete multicriteria decision aiding problems where information is
uncertain, imprecise, or partially missing. In SMAA, different kind of uncertain
information is represented by probability distributions. This approach is similar to
metrology [22]. For example, if the cost of an alternative is not accurately known,
it can be represented by a uniform distribution in a given range, or a normal dis-
tribution with specified expected value and standard deviation (Fig. 1.1). Uncertain
preference information is similarly represented by distributions. Also subsequent
computations in SMAA follow probability theory.

Uniform (u - a, u + a) Normal (u, o)
0.5r 0.5
04r 04
0.3r 03
02} 02t i
0.1F 0.1 i i
0 L . . 0 . i 1 i
u-oc u puto pH-0 u uputo

Fig. 1.1: Representing uncertain criteria measurements as distributions

Depending on the problem setting, SMAA computes statistically for each alter-
native the probability to be most preferred, dominate another alternative, be placed
on a particular rank or fit in a specific category. The computation is implemented by
Monte-Carlo simulation, where values for the uncertain variables are sampled from
their distributions and alternatives are evaluated by applying the decision model.

SMAA can be applied with different decision models. These include linear and
non-linear utility or value functions [8, 15, 16], ELECTRE methods [9, 26], refer-
ence point based methods [11, 17], efficiency score of Data Envelopment Anal-
ysis (DEA) [10], nominal classification method [29], and ordinal classification
method [12]. For a surveys on different variants and applications of SMAA, see
[13, 24]. Recent developments of SMAA include robustness analysis with respect
to shape of the utility function by Lahdelma and Salminen [14], efficient Markov
Chain Monte Carlo simulation technique to treat complex preference information
by Tervonen et al. [27], the SMAA-PROMETHEE method by Corrente et al. [4],
SMAA with Choquet Integral by Angilella et al. [1], and extensions for pairwise
comparison methods such as the analytic hierarchy process (AHP) by Durbach et al.
[6] and the Complementary Judgment Matrix (CJM) method by Wang et al. [28].

Because SMAA considers simultaneously the uncertainty in all parameters, it is
particularly useful for robustness analysis of different multicriteria decision models.
SMAA determines all possible rankings or classifications for the alternatives, and
quantifies the possible results in terms of probabilities. The solution with highest
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probability is typically the recommended solution. However, the probabilities for
other possible solutions are also provided for the decision makers (DMs). This
means that SMAA describes how robust the model is subject to different uncer-
tainties in the input data. SMAA can also be used to analyze the robustness of the
decision problem with respect to the model structure. For example, robustness with
respect to linearity assumptions in utility/value functions can be analyzed by choos-
ing a more general parametrized utility function and exploring how the solutions
change as a function of the degree of non-linearity.

In the following, we describe the SMAA method applied on a real-life decision
problem of choosing a location for an air cargo hub in Morocco [21]. Section 1.2
describes problem representation in SMAA as a stochastic MCDA problem and
how it is analysed using stochastic simulation. Section 1.3 presents the statistical
measures of SMAA and shows how SMAA can be used to assess the robustness of
an MCDA problem with respect to uncertainty in criteria and preference measure-
ments. Section 1.4 extends the robustness analysis to consider the structure of the
decision model.

1.2 Problem Representation in SMAA

1.2.1 Stochastic MCDA Problem

A discrete multi-criteria decision problem consists of a set of m alternatives that
are measured in terms of n criteria. The alternatives are evaluated using a decision
model M(x,w) that depends on the applied decision support method. The matrix
X = [x;;] contains the criteria measurements for each alternative i and criterion j. The
preference information vector w = [w;] represents the DM’s preferences. Typically
w contains importance weights for the criteria. Depending on the decision model, w
can also contain other preference parameters, such as various shape parameters for
non-linear models.

SMAA has been developed for real-life problems, where both criteria and pref-
erence information can be imprecise, uncertain or partially missing. To represent
the incompleteness of the information explicitly, SMAA represents the problem as
a stochastic MCDA model, where criteria and preference information is represented
by suitable (joint) probability distributions:

e fx(x) the density function for stochastic criteria measurements.
e fi(w) the density function for stochastic importance weights or other preference
parameters.

Because all information is represented uniformly as distributions, this allows using
efficient simulation techniques for analyzing the problem and deriving results about
prospective solutions and their robustness.

An example of a stochastic MCDA model is the problem of choosing a location
for a centralized air cargo hub in Morocco [21]. In this problem, nine alternative
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locations were considered. Different socio-economic factors, the geographical loca-
tion, and environmental impacts were formalized as six criteria: INVEST = invest-
ment cost, PROXIMITY = proximity to producers, POTENTIAL = potential of the
site, TRANSPORT = transport cost, SERVICE = service level, ENVIRON = Envi-
ronment. The alternatives, criteria and measurements are presented in Table 1.1.

The INVEST, POTENTIAL, TRANSPORT and SERVICE criteria were
measured on cardinal scales. The values in Table 1.1 for these criteria are dimension-
less quantities that have been obtained by scaling the actual measurements on linear
scales where larger values are better. The uncertainty of these measurements appears
on the last row as a plus/minus percentage. The measurements were then represented
as independent, uniformly distributed random numbers in the plus/minus ranges
around their expected values. In SMAA it is possible to use arbitrary distributions
to represent uncertain criteria measurements. If the uncertainties of the criteria mea-
surements are dependent, this can be represented by joint distributions, such as the
multivariate Gaussian distribution [18, 19].

The PROXIMITY and ENVIRON criteria were evaluated ordinally, i.e. experts
ranked the alternatives with respect to these criteria so that the best alternative obt-
ained rank 1, second best rank 2 etc. Ordinal measurement can be necessary if car-
dinal measurement is too costly, or if it is difficult to form a measurable scale for
the criterion.

Table 1.1: Alternatives and criteria measurements in air cargo hub case (alphabeti-
cal order)

INVEST PROXIMITY POTENTIAL TRANSPORT SERVICE ENVIRON

Alt (max) (min) (max) (max) (max) (min)
Agadir 70 2 165 644 50 2
Benslimane 80 3 560 3718 40 1
Casablanca 65 1 585 3621 80 5
Dakhla 80 8 82 600 20 1
Fez 70 6 385 2872 30 4
Marrakesh 65 5 379 2589 45 1
Oujda 75 7 82 663 25 4
Rabat 65 4 542 3718 45 3
Tangier 70 3 357 1915 60 3
Uncertainty +10% Ordinal +10% +10% +10%  Ordinal

1.2.2 Generic SMAA Simulation

Different variants of SMAA apply the generic simulation scheme of Algorithm 1
for analyzing stochastic MCDA problems. During each iteration, criteria measure-
ments, weights, and possible other preference parameters are drawn from their dis-
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tributions, and the decision model is used to evaluate the alternatives. Depending on
the problem setting and decision model, different statistics are collected during the
simulation and the SMAA measures are computed based on the statistics. For exam-
ple, in the case of a ranking problem, statistics are collected about how frequently
alternatives obtain a given rank.

Algorithm 1. Generic SMAA simulation
Assume a decision model M(x, w) for ranking or classifying the alternatives using precise
information (criteria matrix x and preference information vector w)
Use Monte-Carlo simulation to treat stochastic criteria and preference parameters:
Repeat Ktimes {
Draw <x, w> from their distributions
Rank, sort or classify the alternatives using M(x,w)
Update statistics about alternatives

}

Compute results based on the collected statistics

The efficient implementation and computational efficiency of SMAA methods
have been described by Tervonen and Lahdelma [25]. The computational accuracy
of the main results depends on the square root of the number of iterations, i.e. inc-
reasing the number of iterations by a factor of 100 will increase the accuracy by one
decimal place. In practice about 10,000 iterations yield sufficient accuracy for the
SMAA results.

1.2.3 Decision Model

SMAA can be used with arbitrarily shaped utility functions, and also with other
kinds of decision models that are based on any kind of preference parameters.
A common type of utility function is the additive utility function that defines the
overall utility as a weighted sum of partial utilities:

u(x;, W) = winj +woltip + . .. + Wpltjp (1.1)

The w; are the importance weights for criteria and u;; are the partial utilities obt-
ained by mapping the original criteria measurements (expressed in various units)
to unit-less scales so that the worst outcome is 0 and the best outcome is 1. The
mappings can be linear or non-linear monotonic functions.

In the sample problem linear mappings were applied, leading to a linear overall
utility function. In this study we consider also non-linear mappings in order to ana-
lyze the robustness of the problem with respect to the shape of the utility function.

The weights should be non-negative and normalized so that their sum is 1. By
substituting 1 or O for each partial utility in (1.1) we see that the overall utility is 1
for an ideal alternative, and O for an anti-ideal alternative.
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1.2.4 Preference Information

In SMAA, incomplete preference information is represented using probability dis-
tributions. In the following we consider incomplete weight information. However
the same techniques can be used also for other preference parameters.

With an additive utility function, the weights express the relative importance of
raising each criterion from its worst value to the best value. Ratios between weights
correspond to trade-offs between criteria. In SMAA uncertain or imprecise weights
are represented as a joint probability distribution in the feasible weight space defined
as the set of non-negative and normalized weights

W={w|w;>0andw;+wr+...+w, =1} (1.2)

This means that the feasible weight space is an (n — 1)-dimensional simplex. In the
3-criterion case, the feasible weight space is a triangle with corners (1,0,0), (0,1,0)
and (0,0,1), as illustrated in Fig. 1.2a. In the absence of weight information, we
assume that any feasible weights are equally possible, which is represented by a
uniform distribution in W.

Fig. 1.2: (a) Feasible weight space in the 3-criterion case. (b) Sampling uniformly
distributed weights in the 3-criterion case projected on the (wy,w;) plane

Uniformly distributed normalized weights need to be generated using a special
technique [25]. First n — 1 independent uniformly distributed random numbers in the
interval [0,1] are generated and sorted together with 0 and 1 into ascending order
toget0=ryg <ry <--- <r, =1. From these numbers the weights are computed
as the intervals wy =ry —rg, wp =1, —ry, ..., wy, =1, — 1. It is obvious that
the resulting weights will be non-negative and normalized. For the proof that the
resulting joint distribution is uniform, see [5]. Figure 1.2b illustrates generation of
uniformly distributed weights in the 3-dimensional case, projected on the (wq,w»)
plane where w3 = 1 —w; — wy.
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Preference information can be treated in SMAA by restricting the uniform weight
distribution with additional constraints. Another technique is to apply a non-uniform
distribution for the weights. For example, if the DMs express precise weights with
implicit imprecision, this can be represented by a distribution with decreasing den-
sity around the expressed weights. Suitable distributions are e.g. triangular distribu-
tions and (truncated) normal distributions.

Different ways to restrict the uniform or non-uniform weight distribution with
additional constraints include the following:

e Weight intervals can be expressed as w; € [wf;‘i“,w‘j?‘ax]. Weight intervals may
result from DMs’ preference statements of type “the importance weight for cri-
terion j is between w?’in and w7™*”. Weight intervals can also be computed to
include precise weights or weight intervals of a group of DMs. Figure 1.3a illus-
trates weight intervals in the 3-criterion case.

e Intervals for trade-off ratios between criteria can be expressed as w;/wy €

[wr;}(in, w;‘}f"] Such intervals may result from preference statements like “criterion

Jj is from w?}{in to wr;}fx times more important than criterion k”. These intervals

can also be determined to include the preferences of a group of DMs. Figure 1.3b
illustrates two constraints for trade-off ratios.

e Ordinal preference information can be expressed as linear constraints w; > wy >
--+ > wy. Such constraints represent DMs preference statement that the crite-
rion 1 is most important, 2 is second etc. It is also possible to allow unspecified
importance ranking for some criteria or equal importance (w; = wy). Multiple
DMs may either agree on a common partial ranking, or they can provide their
own rankings, which can then be combined into a partial ranking that is con-
sistent with each DM’s preferences. Figure 1.3c illustrates ordinal preference
information.

e DMs holistic preference statements “alternative x; is more preferred than x;”
result in constraints u(x;, w) > u(xg, w) for the weights. In the case of an additive
utility/value function, these constraints will be linear inequalities in the weight
space. Figure 1.3d illustrates one such holistic preference statement. In the gen-
eral case, with non-additive utility/value functions, outranking models etc., holis-
tic constraints correspond to non-linear constraints in the weight space.

Weight constraints can be implemented by modifying the weight generation proce-
dure to reject weights that do not satisfy the constraints. In most cases this technique
is very efficient. In some cases the Markov Chain Monte Carlo simulation technique
is more efficient [27].

1.2.5 Cardinal Criteria

In the case of a linear utility function, the partial utilities u;; are computed from
the actual cardinal criteria measurements x;; through linear scaling. The best and
worst values can be determined as some natural ideal and anti-ideal values, if such
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Fig. 1.3: Sampling uniformly distributed weights in the 3-criterion case projected
on the (wy,w;) plane: (a) with interval constraints for weights; (b) with two con-
straints for trade-off ratios; (¢) with ordinal preference information w; > wy > ws;
(d) with holistic preference information based on an additive utility/value function

exist. For example, the ideal value for costs could be 0 and the ideal value for an
efficiency ratio could be 100 %. If such ideal and anti-ideal values cannot easily be
defined, it is possible to do the scaling according to the best and worst measurements
among the alternatives, as has been done for the sample problem in Table 1.2. Also
the uncertainties have been scaled accordingly. A downside with scaling based on
best and worst criteria measurements is that the scaling may change if the set of
alternatives or their measurements change during the decision process.

As a result, the uncertainty intervals may contain values outside the [0, 1] range.
This is not a problem, because the scaling interval is arbitrary; any other interval
would order the alternatives identically according to their utilities.
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Table 1.2: Scaled cardinal criteria measurements and their uncertainties in air cargo
hub case

Alt INVEST POTENTIAL TRANSPORT SERVICE
Agadir 0.33+0.47  0.174+0.03 0.01+0.02  0.50+0.08

Benslimane 1.00+0.53  0.95%0.11 1.00£0.12  0.33+0.07
Casablanca 0.00£0.43  1.00+0.12 0.97+0.12  1.00£0.13

Dakhla 1.00£0.53  0.00£0.02 0.00+0.02  0.00£0.03
Fez 0.33+0.47  0.60+0.08 0.73+£0.09  0.17£0.05
Marrakesh  0.00+0.43  0.59+0.08 0.64+0.08  0.42+0.08
Oujda 0.67+0.50  0.00+0.02 0.02+0.02  0.08+0.04
Rabat 0.00+0.43  0.9140.11 1.00£0.12  0.42+0.08

Tangier 0.33+0.47  0.55+0.07 0.42+0.06  0.67£0.10

1.2.6 Ordinal Criteria

Ordinal criteria measurements are imprecise: we know the rank of each alterna-
tive with respect to the ordinal criterion, but we do not know how much better
the first alternative is than the second or third one, etc. In SMAA, ordinal crite-
ria are treated by simulating cardinal values that are consistent with the given or-
dinal ranks. The first rank corresponds to cardinal value s; = 1 and the last rank
R corresponds to sg = 0. The intermediate ranks 2, 3, ..., R — 1 should corre-
spond to a descending sequence of unknown cardinal values between 1 and 0. To
obtain the unknown intermediate values, R — 2 independent uniformly distributed
random numbers in the interval [0, 1] are generated. These values are then sorted
together with 1 and O into descending order to obtain cardinal values that satisfy
l=s51>852>:-2>5p_1 >sg=0.

The process described converts ordinal criteria into stochastic cardinal criteria.
Note that the intervals between subsequent values s, — s, are non-negative and
their sum is 1. Subject to these constraints, the intervals follow a uniform distribu-
tion [5].

In the air cargo hub case, the PROXIMITY and ENVIRON criteria were ordinal.
Figure 1.4 shows some random cardinal mappings for these criteria. For the PROX-
IMITY criteria, alternatives Benslimane and Tangier were both ranked on level 3.
Therefore rank levels 1-8 were assigned for the nine alternatives. Similarly, shared
ranks for the ENVIRON criteria resulted in assigning five different rank levels for
that criterion.

1.3 Robustness with Imprecise Criteria and Weights

In the following we demonstrate the SMA A method using the air cargo hub case pre-
sented in Sect. 1.2. A linear utility/value function was used as the decision model
in this application. The simulation scheme presented in Algorithm 1 is applied
and the utility function is used to rank the alternatives. Observe that this approach
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Fig. 1.4: Sample of simulated cardinal values for the air cargo hub case. (a) PROX-
IMITY criterion. (b) ENVIRON criterion

differs from traditional utility function methods that compute the expected utility.
This means that SMAA does not require a cardinal utility function—an ordinal
utility/value function is sufficient. Based on the ranking, the following statistics are
collected during the simulation:

e B;.: The number of times alternative x; obtained rank r.
e Cj: The number of times alternative x; was more preferred than xy.
e W;: Sum of the weight vectors that made alternative x; most preferred.

Based on the collected statistics the basic SMAA measures are computed. These
include rank acceptability indices, pairwise winning indices, central weight vectors,
and confidence factors, as presented in the following sections.

1.3.1 Rank Acceptability Indices

The primary SMAA measure is the rank acceptability index b}. It measures the va-
riety of different preferences that place alternative x; on rank r. It is the share of
all feasible weights that make the alternative acceptable for a particular rank. In
other words, it is the probability that the alternative obtains a certain rank. Particu-
larly interesting is the first rank acceptability index b}, which is the probability that
the alternative is the most preferred one. For inefficient alternatives the first rank
acceptability index is zero. The rank acceptability indices are estimated from the
simulation statistics (with K iterations) as

b* ~ B;, /K (1.3)

The rank acceptability indices can be used for robust choice of one or a few best
alternatives from a large set. Alternatives with high acceptability for the best ranks
are candidates for the most acceptable solution. Alternatives with large acceptability
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Table 1.3: Rank acceptability indices for air cargo hub case (sorted by by)
Alt b! »? b b* b bo b’ bt »°

Benslimane 72.00 23.00 4.00 1.00 0.00 0.00 0.00 0.00 0.00
Casablanca 25.00 33.00 14.00 7.00 5.00 5.00 5.00 3.00 3.00

Dakhla 1.00 7.00 6.00 5.00 5.00 6.00 15.00 41.00 15.00
Agadir 0.40 5.00 9.00 11.00 13.00 20.00 30.00 9.00 3.00
Tangier 0.38 7.00 17.00 28.00 25.00 16.00 4.00 2.00 0.00
Rabat 0.28 14.00 37.00 17.00 13.00 9.00 5.00 3.00 2.00
Marrakesh 0.03 11.00 11.00 22.00 25.00 19.00 6.00 3.00 3.00
Oujda 0.02 0.00 1.00 2.00 200 2.00 4.00 20.00 70.00
Fez 0.00 1.00 2.00 7.00 12.00 23.00 31.00 19.00 4.00

for the worst ranks should be avoided when searching for a robust most preferred alt-
ernative even if they would have fairly high acceptability for the best ranks. If none
of the alternatives receive high acceptability indices for the best ranks, it indicates a
need to measure the criteria, preferences or both more accurately.

Table 1.3 presents the rank acceptability indices for the air cargo hub case and
Fig. 1.5 shows the corresponding acceptability profile. To make the acceptability
profile easy to read, the alternatives are sorted by their first rank acceptability index.
In case of equal first rank indices, order is determined based on the second index
etc. This is called lexicographic order. The most acceptable (best) alternatives are
Benslimane and Casablanca with clearly highest acceptability for the highest ranks.
Benslimane receives 72 % acceptability for the first rank, 23 % for the second rank,
4 % for the third rank, 1 % for the fourth rank, and O for the ranks 5-9. This means
that Benslimane is a robust choice subject to many different possible preferences.
Also Casablanca with 25 % acceptability for the first rank and 33 % for the second
rank is a possible choice subject to suitable preferences. However, Casablanca is not
as robust subject to different preferences, because it can obtain also all other ranks
with some probability.

The rank acceptability indices can also be used for eliminating some of the worst
alternatives. Among the less acceptable alternatives, in particular Oujda receives
either the last or next to last rank with 90 % probability. Eliminating Oujda from the
set of best alternatives would a robust choice.

The acceptability profile will provide only a rough ranking of the alternatives
because there is no objective way to combine acceptability indices for different
ranks to reach a complete ranking. For forming a complete ranking, Lahdelma and
Salminen [8] suggested the holistic acceptability index, which is a weighted sum
of the rank acceptability indices for different ranks. However, the holistic accept-
ability index depends on meta-weights in the weighted sum, and meta-weights are
subjective. Another problem with using the acceptability indices to form a complete
ranking is that if alternatives are removed from or added to the problem, acceptabil-
ity indices may change, and the mutual order of alternatives may change. This is
known as the rank reversal problem, present in several MCDA methods. In SMAA
the above ranking problems can be resolved by the pairwise winning index, which
is presented next.



12 R. Lahdelma and P. Salminen

Benslimane

Rabat
Casablanca

Marrakesh_

Fig. 1.5: Acceptability profile for alternatives in air cargo hub case

1.3.2 Pairwise Winning Indices

The pairwise winning index cj, is the probability for alternative x; being more pre-
ferred than x, considering the uncertainty in criteria and preferences [20]. The pair-
wise winning index is estimated from the simulation statistics as

Cik Q’Cik/K (14)

The pairwise winning indices are useful when comparing the mutual performance of
two alternatives. This information can be used e.g. when it is necessary to eliminate
inferior alternatives that are dominated by other alternatives.

Unlike the rank acceptability index, the pairwise winning index between one pair
of alternatives is independent on the other alternatives. This means that the pairwise
winning index can be used to form a ranking among the alternatives. The ranking is
obtained by ordering the alternatives so that each alternative x; precedes all alterna-
tives xy, for which ¢z > 50 % or some bigger threshold value.

Table 1.4 shows the pairwise winning indices for the air cargo hub case. In this
table the alternatives have been ordered to form a complete ranking, which means
that all pairwise winning indices in the upper triangle are >50% and <50 % in the
lower triangle. Observe that there are problems where a complete ranking cannot
be obtained. For example, three or more alternatives may win each other in a cyclic
manner. In that case such subsets of alternatives obtain the same rank.
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Table 1.4: Pairwise winning indices for air cargo hub case (complete ranking)

Alt Benslimane Casablanca Rabat  Tangier Marrakesh Agadir Fez Dakhla  Oujda
Benslimane - 74 98 97 100 98 100 99 100
Casablanca 26 - 72 78 77 82 91 81 94
Rabat 2 28 - 62 69 72 90 80 94
Tangier 3 22 38 - 54 78 82 81 96
Marrakesh 0.2 23 31 46 - 69 80 82 93
Agadir 2 18 28 22 31 - 58 72 93
Fez 0.01 9 10 18 20 42 - 64 91
Dakhla 1 19 20 19 18 28 36 - 83
Oujda 0.1 6 6 4 7 7 9 17 -

1.3.3 Central Weight Vectors

The central weight vector w{ is the expected center of gravity of the weights that
make an alternative most preferred. The central weight vector represents the pref-
erences of a ‘typical’ DM supporting an alternative. The central weight vectors can
be presented to the DMs in order to help them understand how different weights
correspond to different alternative choices. To justify their decision, the DMs can,
instead of expressing their own trade-off weights for the different criteria, judge if
they are willing to accept the central weights of some alternative. The central weight
vector for an alternative is estimated from the simulation statistics as

w; ~ W;/Bj (1.5)

Figure 1.6 (and Table 1.5) shows the central weight vectors for the air cargo hub
case. The central weight vector for Fez is not defined, because Fez is an inefficient
alternative (first rank acceptability index is zero). For the remaining alternatives
the central weight vectors reveal what kind of preferences favor each alternative.
For example, Benslimane, which is the most widely acceptable alternative, is most
preferred with relatively uniform weights for each criterion. In contrast, Oujda,
which is a nearly inefficient alternative, would require very much weight (68 %)
on the INVEST criterion alone, and very little weight (2 %) on the POTENTIAL
and ENVIRON criteria.

1.3.4 Confidence Factors

The confidence factor pf is the probability for an alternative to obtain the first rank
when its central weight vector is chosen. The confidence factors measure how robust
choice for the first rank an alternative can be if the DMs accept the central weight
vector to represent their preferences. A second simulation, presented in Algorithm 2
below, is needed to compute the confidence factors from collected statistics: P,. The
number of times alternative xi was most preferred using weights w¢.
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Fig. 1.6: Central weight vectors for air cargo hub case
Algorithm 2. Computation of confidence factors in SMAA
Repeat K times {
Draw x from its distribution
For the central weight vector w¢ of each alternative {
Rank the alternatives using u(x;, w)
Update statistics (P;) about alternatives
The confidence factor is estimated from the simulation results as
C ~
i ~P/K (1.6)

If the confidence factors for all alternatives are low, it means that the criteria mea-
surements are not accurate enough for discriminating the alternatives robustly. In
such a situation, collecting more accurate preference information is not sufficient;
instead the criteria should be measured more accurately. In the opposite case, when
some alternatives have high confidence factors, but low acceptability indices for the
best ranks, collecting more accurate preference information may be sufficient.

Table 1.5 presents the confidence factors and corresponding central weight vec-
tors for the alternatives in the air cargo hub case. We can see that only Bensli-
mane and Casablanca are robust choices with suitable preferences falling at or near
their central weight vectors. The remaining alternatives are very unlikely to be most
preferred even with their central weight vectors. Choosing any of the remaining
alternatives would require, besides favorable weights, also more accurate criteria
measurement and a new analysis to reassess their robustness.
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Table 1.5: Confidence factors and central weights for alternatives in air cargo hub
case

Alt pc  INVEST PROXIMITY POTENTIAL TRANSPORT SERVICE ENVIRON
Agadir 6.80 15 39 3 4 19 20
Benslimane 99.98 19 15 17 17 12 20
Casablanca 96.87 8 22 18 16 28 7
Dakhla 17.10 53 9 8 7 11 13
Fez - - - - - - -
Marrakesh 21.68 2 4 2 3 41 48
Oujda 3.81 68 13 2 9 7 2
Rabat 1.68 6 5 22 46 10 11
Tangier 338 23 13 6 5 35 19

1.4 Robustness with Respect to Model Structure

SMAA can be used to analyze the robustness of the decision problem with respect
the structure of the decision model. For example, robustness with respect to linearity
assumptions in utility/value functions can be analyzed by choosing a more general
parametrized utility function and exploring how the solutions change as a func-
tion of the degree of non-linearity [14]. As an example, we consider additive utility
functions (1.1) where the partial utility functions u;(-) are non-linear, exponential
functions (similar to the Constant Absolute Risk Aversion (CARA) model):

1 _ e*CXj
Mj(x]') = | —ec (17)
The parameter ¢ measures the curvature of the function. Positive values of ¢ result in
concave shapes and negative values yield convex shapes. When ¢ — 0, the function
approaches a linear function.

Partial utility functions with positive curvature compose into an overall utility
function favoring alternatives that are uniformly good on each criterion. Negative
curvature favors alternatives that are superior on any single criterion. In any case, a
dominated alternative can never be the most preferred.

To analyze the robustness of the air cargo hub case, we study how the first
rank acceptability indices (b)) and lexicographic ranks of alternatives depend on
the curvature of the partial utility functions. For the cardinally measured crite-
ria (INVEST, POTENTIAL, TRANSPORT, SERVICE) we consider 11 curvature
levels: ¢ € {—8,—4,-2,—1,-0.5,0,0.5,1,2,4,8}. Figure 1.7 illustrates the corre-
sponding partial utility functions. The curvature for ¢ = 8 is very high; the marginal
value at x; = 0 is 2980 times higher than at 1. The different partial utility functions
may have different shapes. In this example we consider only the situation where
each cardinal criterion has the same curvature.

In the following we analyze how much the acceptability indices and the lexi-
cographic rankings of alternatives change when moving from the linear model to
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each of the non-linear models. Table 1.6 shows that the acceptability indices are
very robust subject to small non-linearities. Significant (>5 %) changes in accept-
ability indices occur only for Benslimane and Casablanca at ¢ > 2, for Benslimane
at ¢ < —1, for Casablanca at ¢ < —2, and for Dakhla at ¢ < —4.

Table 1.7 shows that the lexicographic ranking of the top alternatives is very
robust subject to non-linearity. Benslimane and Casablanca preserve their first and
second rank regardless the curvature. Dakhla preserves its third rank for negative
curvature but for positive curvature it loses its position.
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Fig. 1.7: Partial utility functions with different amounts of non-linearity

1.5 Recent Developments of SMAA

Recent developments of SMAA include more efficient computational methods and
extensions to different decision models.

In most cases the SMAA computations can be performed very efficiently using
straight forward Monte Carlo simulation. However, the computation may slow down
in case of complex preference information. In such cases, the Markov Chain Monte
Carlo (MCMC) simulation technique can be used to speed up the computation [27].
The JSMAA open source implementation of SMAA includes the MCMC technique
and performs the simulation as a background process while the user views or edits
the model (see www.smaa.fi, [23]).
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Table 1.6: Acceptability indices (%) of alternatives with different amount of curva-
ture. Over 5 % changes highlighted for illustrative purposes

Curvature ¢
Alternative -8 —4 -2 -1 =05 0 0.5 1 2 4 8

Agadir 0.05 0.09 0.16 026 031 040 048 053 075 1.40 2.00
Benslimane 47.00 54.00 62.00 67.00 70.00 72.00 75.00 76.00 79.00 82.00 85.00
Casablanca 25.00 30.00 31.00 29.00 28.00 25.00 24.00 22.00 18.00 12.00 9.00
Dakhla 23.00 13.00 580 290 1.70 1.00 0.53 0.17 0.01 0.00 0.00

Fez 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Marrakesh ~ 0.00 0.00 0.01 0.01 0.01 0.03 0.04 0.07 0.14 0.72 1.00
Oujda 0.84 041 0.19 0.09 0.05 0.02 001 0.01 0.00 0.00 0.00
Rabat 3.60 200 099 052 043 028 0.15 0.14 0.16 0.19 0.08
Tangier 0.00 0.00 0.05 0.12 022 038 054 073 150 2.80 2.80

Table 1.7: Lexicographic ranks of alternatives with different amount of curvature

Curvature ¢
Alternative -8 -4 -2 -1 -05 0 0.5 1 2 4 8
Agadir 6 6 6 5 5 4 5 4 4 4 4
Benslimane 1 1 1 1 1 1 1 1 1 1 1
Casablanca 2 2 2 2 2 2 2 2 2 2 2
Dakhla 3 3 3 3 3 3 4 5 7 8 8
Fez 9 9 9 9 9 9 9 9 8 7 7
Marrakesh 7 7 8 8 8 7 7 7 6 5 5
Oujda 5 5 5 7 7 8 8 8 9 9 9
Rabat 4 4 4 4 4 6 6 6 5 6 6
Tangier 8 8 7 6 6 5 3 3 3 3 3

Extensions to different decision models include different shaped utility or value
functions and also decision models not based on utility functions. Cohen et al. [3]
applied SMAA with an additive value function where the partial value functions
(marginal value functions) were piecewise linear monotonic mappings. They var-
ied the mappings during simulation using a random process resembling treatment
of ordinal criteria measurements in SMAA. Babalos et al. [2] applied the SMAA-2
framework and considered three different aggregate evaluation measures: the holis-
tic acceptability index, Borda count method, and average score. Kontu et al. [7]
extended the SMAA method to handle a hierarchy of criteria and sub-criteria. A cri-
teria hierarchy is useful when the number of criteria is large.

Additive utility function models assume independence between criteria. SMAA
with Choquet integral by Angilella et al. [1] considers interaction between criteria.
The Choquet integral can be seen as a value function where positive or negative
interaction between criteria is also contributing to the evaluation of alternatives.
The Choquet integral is thus a more general decision model than the additive value
function. Lahdelma and Salminen [14] studied the robustness of decision problems
with respect to the shape of the utility function, as demonstrated in the previous
section.
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The SMAA-PROMETHEE method by Corrente et al. [4] is a recent extension
of SMAA to non-utility function based methods. PROMETHEE is based on an
outranking procedure where fuzzy preference relations between alternatives are
aggregated together to yield a partial order (PROMETHEE 1) or complete or-
der (PROMETHEE II). Durbach et al. [6] extended the analytic hierarchy process
(AHP) to consider imprecise or uncertain pairwise comparisons by probability dis-
tributions. The resulting SMAA-AHP method is suitable for group decision mak-
ing problems, where it is difficult to agree on precise pairwise comparisons. Wang
et al. [28] extended the Complementary Judgement Matrix (CJM) method in a sim-
ilar manner. CJM differs from AHP in the way how the pairwise comparisons are
expressed, and in how the weights are solved from inconsistent comparisons. In
particular, the weights in CJM are determined by minimizing the square sum of
inconsistency errors.

1.6 Discussion

In SMAA uniform distributions are used to represent absence of information both
in criteria and preferences. Ordinal criteria are transformed into cardinal measure-
ments by simulating consistent ordinal to cardinal mappings. The simulation pro-
cess is equivalent to treating the absence of interval information of ordinal scales as
uniform joint distributions. Similarly, absence of weight information is treated as a
uniform joint distribution in the feasible weight space.

Although SMAA can be used with arbitrarily shaped utility functions, in real-life
applications simple forms, such as linear or some concave shapes are most com-
monly applied. Assessing the precise preference structure of DMs can be difficult
and time-consuming in practice. SMAA can be used to test the robustness of the
problem also with respect to the decision model, as illustrated in the previous sec-
tion. If the problem can be identified as robust with respect to model structure, it
may be possible to assume a simpler model in the interaction between the DMs.

The strength of SMAA in robustness analysis of multicriteria decision aiding
problems is that it is able to handle the whole range of uncertain, imprecise or par-
tially missing information flexibly using suitable probability distributions. Typically,
areal-life decision process may start with very vague and uncertain criteria and pref-
erence information. The information will become gradually more accurate during
the process. SMAA can be used in such processes repeatedly after any refinement of
information, until a robust decision can be identified and agreed on. SMAA reveals
if the information is accurate enough for making the decision, and also pinpoints
which parts of the information need to be refined. This can (1) protect the DMs
from making wrong decisions based on insufficient information and also (2) cause
significant savings in information collection if less accurate information is sufficient
for making a robust decision.
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Chapter 2

Data-Driven Robustness Analysis
for Multicriteria Classification Problems
Using Preference Disaggregation Approaches

Michael Doumpos and Constantin Zopounidis

Abstract The preference disaggregation framework of multicriteria decision aid
focuses on inferring decision models from data. In this context, the robustness of the
results is of major importance to ensure that quality recommendations are provided.
In this chapter we examine this issue adopting a data-driven perspective, focusing
on the effect due to changes in the data used for model construction. The analysis is
implemented for decision models expressed in the form of additive value functions
for multicriteria classification problems. Simple analytic measures are introduced
based on well-known optimization tools. The proposed measures enrich existing
robust multicriteria approaches with additional information taken directly from the
available data though an analytical approach. The properties and performance of
the new robustness indicators are illustrated through their application to an example
data set.

2.1 Introduction

Multiple criteria decision aid (MCDA) is involved with supporting the structuring
and modeling of decision problems involving multiple conflicting criteria. Similarly
to other operations research/management science approaches, MCDA methods are
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also based on modeling assumptions, related to the characteristics of the problem,
the aggregation of the decision criteria, and the preferential system of the decision
maker (DM). Naturally, these assumptions incorporate uncertainties, fuzziness, and
errors, thus affecting the quality of the obtained recommendations. Thus, changes in
the decision context and the available data may lead to completely different outputs.

In this framework, robustness analysis has emerged as a major research issue
in MCDA, emphasizing the need to re-think the traditional multicriteria framework
aiming towards providing satisfactory recommendations even in cases where the
decision context is altered. Roy [21] described in detail the robustness concern,
arguing that it is raised by vague approximations and zones of ignorance that cause
the formal representation of a problem to diverge from the real-life context, due
to: (1) the way imperfect knowledge is treated, (2) the inappropriate preferential
interpretation of certain types of data (e.g., transformations of qualitative attributes),
(3) the use of modeling parameters to grasp complex aspects of reality, and (4) the
introduction of technical parameters with no concrete meaning.

MCDA provides a wide arsenal of methodologies and techniques that enable the
systematic treatment of decision problems under multiple criteria. In this chapter
we focus on the preference disaggregation approach (PDA), which is involved with
the inference of preferential information and decision models from data [15]. PDA
techniques can greatly facilitate the model construction process, reducing the cogni-
tive effort required by DMs when specifying complex preferential information and
modeling parameters.

Robustness analysis in the framework of PDA is based on analytic and simulation
techniques (for an overview see [7]). This chapter considers the former approach,
which is based on two main schemes. The first focuses on the construction of a
single decision model that best represents the available decision instances [5, 13],
whereas the second is involved with the formulation of a range of recommendations
on the basis of all models compatible with the given data [10, 12]. In this chapter
we re-analyze the robustness of such approaches and introduce new robustness met-
rics following a data-driven perspective. More specifically, we are concerned with
robustness issues in terms of variations in the data instances used to infer a deci-
sion model. A similar view of robustness is very common on other fields also in-
volved with model inference from data (e.g., statistical learning [6]), but its analytic
treatment in the context of MCDA has been limited so far, despite the existence of
experimental results supporting its significance [8, 24]. This chapter contributes in
that direction and proposes tools based on well-known concepts from optimization
theory. The analysis is focused on decision models expressed in the form of additive
value functions for classification (sorting) problems, which involve the assignment
of a finite set of alternative options into predefined performance categories [27]. For
the purposes of the presentation an illustrative example is used.

The rest of the chapter is organized as four sections. Section 2.2 introduces the
framework of preference disaggregation analysis for classification problems and
presents the main existing robustness analysis techniques and approaches from the
MCDA literature. Section 2.3 discusses the importance of the proposed data-driven
framework for robustness analysis in disaggregation techniques and introduces
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new robustness indicators constructed on the basis of this framework. Section 2.4
presents results from the application on an example data set and finally Sect. 2.5
concludes the chapter and discusses some future research directions.

2.2 Preference Disaggregation for Multicriteria Classification

2.2.1 General Framework

Multicriteria problems involve multi-objective optimization and discrete evaluation
cases. In this chapter we are concerned with the latter type, which is about the eval-
uation of a set X of discrete alternatives over n performance criteria. The result of
the evaluation may be expressed in different forms, such as a choice, ranking, and
classification. The present study focuses on classification problems, where the al-
ternatives under consideration should be classified into g rank-ordered performance
categories C; = C = --- = C,. Category C; is assumed to consist of the best alter-
natives whereas C, consists of the worst performing ones.

In this context, a decision model F(x, ) — {C1,...,C, } aggregates the available
information about the criteria and provides recommendations about the classifica-
tion of the alternatives. The model is explicitly defined by the parameters 3, which
may relate to the relative importance of the criteria or other information about the
aggregation process.

In the field of MCDA there is a wide range of different types of decision and
evaluation models. Some common examples include value functions [17], outrank-
ing models [20, 25], and decision rules [9]. Bouyssou et al. [2] provide a compre-
hensive overview of different MCDA models and their characterization.

For the reminder of the presentation this chapter will focus on additive value
function (AVF) models, which have been widely used in MCDA. The general form
of an AVF is:

n
V(xi) = 2 wivi (Xix) 2.1
k=1
where x; = (x;1,...,Xjy) is the data vector for alternative i (x; ; being the data of
i on criterion j), wy,...,w, > 0 are trade-off constants (normalized to sum up to
one) representing the relative importance of the criteria, and v;(-),...,v,(-) are the
marginal value functions of the criteria. The marginal value functions decompose
the overall performance V(x;) of each alternative i into partial assessments at the
criteria level, each usually scaled between O and 1.
The most straightforward approach to use a value function model to classify an
alternative into predefined rank-ordered classes, is to employ the following decision
rule:

< V(X,’) <t 1exe€C 2.2)
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where 1o =1 > 1 > 1, > --- > 1,1 > t, = 0 are thresholds that distinguish the
classes. Alternative classification rules can also be employed such as the example-
based approach of Greco et al. [12] or the hierarchical model of Zopounidis and
Doumpos [26].

In the framework of PDA, the parameters of the model are inferred from a sam-
ple of m decision instances X" = {x;,y;}/" |, where y; denotes the given class label
for alternative i. This sample (referred to as the reference set) may consist of dec-
isions about alternatives considered in past situations or decisions about a set of
alternatives which can be easily judged by the DM [15].

Formally, the model that is most compatible with the information in the reference

set is defined by parameters ﬁ * such that:

B* = argmin L[Yy/, F (X', B)] (2.3)
Beod

where F(X’, E ) denotes the outputs of a model with parameters E for the alter-
natives in X', & is the set of acceptable parameter values, and L(-) is a function
that measures the differences between the recommendations of the model and the
actual assessments Yy, for the reference alternatives. If the solution of the above
problem (2.3) is judged satisfactory, then the inferred parameters 3* can be used to
extrapolate the model to any other alternative outside the reference set.

For a value function model, problem (2.3) is expressed in a mathematical pro-
gramming form. In particular, the inference of a classification model (weights of the
criteria, marginal value functions, and classification thresholds) from the reference
examples can be expressed as the following optimization problem:

min i ! Y (67" +0;) (2.4)
=1 xiec,

s.t. (X,)-i—G >t+6 vx; €Cp,l=1,...,q—1 2.5)
V(xi)—o <1;—8 Vx;€Cl=2,....q (2.6)
fr—tp41 > € (=1,...,q-2 2.7)
V(x«)=0,V(x*) =1 (2.8)
V(x) > V(x) Vx> x (2.9)
ot,00 >0 i=1,....m (2.10)

The objective function minimizes the total weighted classification error, where
the weights are defined on the basis of the number of reference alternatives from
each class (my,...,my). The error variables o and o~ are defined through con-
straints (2.5)—(2.6) as the magnitude of the violations of the classification rules (2.2)
(0 is a small positive constant used to ensure the string inequalities), whereas con-
straint (2.7) ensures that the class thresholds are defined in a decreasing sequence
(¢ is a small positive constant). Constraint (2.8) defines the scale of the additive
model between 0 and 1 (0 corresponds to the performance of the least preferred
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alternative x, and 1 corresponds to the performance of an ideal action x*). Finally,
constraint (2.9) ensures that the model is non-decreasing with respect to the perfor-
mance criteria (assuming all criteria are in maximization form).

For the case of an AVF, the above optimization problems can be written in lin-
ear programming form with a piece-wise linear modeling of the marginal values
function (for the modeling details, see [4, 14]).

2.2.2 Robust Approaches

The robustness concern in the context of PDA arises because often alternative
decision models can be inferred in accordance with the information embodied in
the set of reference decision examples that a DM provides (i.e., the optimization
model (2.4)—(2.10) often has multiple optimal solutions). This is particularly true
for reference sets that do not contain inconsistencies, but it is also relevant when
inconsistencies exist (in the PDA context, inconsistencies are usually resolved alg-
orithmically or interactively with the DM before the final model is built; see for
instance [19]).

With a consistent reference set the error variables can be removed from formu-
lation (2.4)—(2.10), which then reduces to a set of feasible linear constraints defin-
ing all acceptable models that are compatible with the assignment of the reference
alternatives.

V(X,‘)Zl[-i-s VX, €Gp,l=1,....q—1

V(xi)<t;—6 Vx; €Gp,l=2,...,q

ty—t 1 > € {=1,....q—2 (2.11)
V(x.) =0, V(x') =1

V(x)>V(x) Vx> x

The size of the polyhedron defined through (2.11) is associated with the robust-
ness of the results and can be affected by a number of factors. The most important
of these factors relate to the adequacy of the set of reference examples and the com-
plexity of the selected decision modeling form. The former is immediately related
to the quality of the information on which model inference is based. Vetschera et
al. [24] performed an experimental analysis to investigate how the size of the ref-
erence set affects the robustness and accuracy of the resulting multicriteria models
in classification problems. They found that small reference sets (e.g., with a limited
number of alternatives with respect to the number of criteria) lead to decision mod-
els that are neither robustness nor accurate. Expect for its size, other characteristics
of the reference set are also relevant, such as the existence of noisy data, outliers,
the existence of correlated criteria, etc. [4].

Traditional disaggregation techniques such as the family of the UTA methods use
linear programming post-optimality techniques [22] in order to build a representa-
tive AVF defined as the average solution of some characteristic extreme points of the
feasible polyhedron (2.11). Other approaches for selecting the most representative
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decision model include the regularization approach of Doumpos and Zopounidis
[5], the analytic center formulation of Bous et al. [1], and the max-min model of
Greco et al. [13]. As explained by Doumpos et al. [8] such approaches seek to iden-
tify (analytically) central solutions to the polyhedron defined by (2.11), which are
expected to be more robust to changes in the data and the setting of the analysis.

Recently, alternative approaches have been proposed that enable the formulation
of recommendations based on multiple decision models. Two main schemes can be
identified in this framework. The first is based on simulation techniques, which are
based on sampling, at random, different solutions (value functions) from the polyhe-
dron defined by (2.11). The simulation process provides an approximate description
of all models compatible with the classifications for the reference set and enables the
formulation of a range of recommendations associated with probabilistic measures
of confidence (see, for instance, [23]).

The second scheme, on which this study is focused, is based on approaches that
seek to characterize the full set of acceptable models through analytic techniques,
rather than using simulation. In particular, Greco et al. [12] introduced a model-
ing framework that takes into account all decision models (AVFs) compatible with
the constraints (2.11). Their approach is based on the definition of necessary and
possible assignments. The set of necessary assignments .#; for a non-reference alt-
ernative j € X’ consists of the classes in which j is classified by all models compat-
ible with the reference set, whereas the set of possible assignments &; includes the
results supported by at least one decision model. Obviously, .#; C &;. Furthermore,
it should be noted that these definitions cover the general case where the reference
alternatives might be classified in multiple classes (rather than the specific case des-
cribed above where each alternative is assigned into only one class, in which case
A is either empty or singleton).

Figure 2.1 provides a graphical illustration of the necessary and possible ass-
ignments for a two-class problem, assuming a linear decision model (linear value
function). With the given reference set consisting of alternatives classified in two
categories (circles and rectangles), it is evident that all models that separate the two
classes assign the non-reference alternative x; into class Cj. On the other hand,
the precise classification of the non-reference action x; is not possible. In fact, this
alternative can be assigned to any of the two categories.

The necessary and possible assignments for a non-reference alternative j can
be obtained through linear programming [12, 16]. In particular, a class Cy belongs
to the set of possible assignments for a non-reference alternative j if the optimal
objective value of the following linear program is strictly positive:

max 7y
st t+y<V(x;) <te1—y (2.12)
constraints (2.11) for X’
Similarly, a class Cy belongs to the set of necessary assignments for alternative j

if either of the following two linear programs has a non-positive optimal objective
function value:
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Fig. 2.1: An illustration of possible and necessary assignments

max ¥ max ¥
st V(xj) >t +y st V(xj) <t —vy (2.13)
constraints (2.11) for X’ constraints (2.11) for X’

If vy <0 in the optimal solution of the left problem, then j cannot be assigned
to any of the classes in the set {Cy,...,C;_;}, which implies that C; € .4;. On the
other hand, if the optimal solution of the right problem yields y < 0, then j cannot
be assigned to any of the classes in the set {Cy,...,C,}, which again implies that
Cre e/%

It follows that, for every non-reference alternative j, the obtained possible ass-
ignments define a range [L;,U;] with the worst and best possible ratings that can be
defined on the basis of the information available in the evaluations of the reference
actions.

The identification of the necessary and possible assignments provides valuable
additional information as opposed to simple point recommendations obtained from
a single decision model, thus enhancing the robustness of the results. However,
given that the necessary and possible assignments are data-driven results (i.e., they
are obtained from a specific reference set), it is apparent that they are also sub-
ject to the robustness concern. Figure 2.2 provides an illustration of this issue.
According to the given two-class reference set (circles and rectangles), the indicated
non-reference alternative is necessarily assigned to class C, by all linear value func-
tions compatible with the available reference evaluations. This result, however, is
not robust because a reconsideration of the evaluations for the two circled reference
alternatives will lead to a different outcome.

Kadzinski and Tervonen [16] proposed the combination of robust analytic pro-
cedures based on the specification of the necessary and analytic assignments with
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simulation techniques. The latter provide further information in probabilistic form
about the necessary and possible assignments. Simulation-based methods, however,
only provide an approximate description of the problem data and they can be com-
putationally intensive for larger data sets involving many alternatives and criteria.
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Fig. 2.2: An example of a necessary assignment that is not robust

In the next section we present new ways and metrics to gain further insight into
the robustness of necessary and robust assignments, without requiring the use of
simulation. The proposed approaches adopt a data-driven perspective, in the sense
that they are based on the properties of the available reference set. Their implemen-
tation is grounded on well-known techniques from optimization theory.

2.3 Data-Driven Robustness Indicators for Multicriteria
Classification Problems

Motivated by the above discussion about the robustness concern for classification
recommendations formulated using a set of decision models, this section presents
simple techniques that can be used to gain a better understanding of the robustness
issue in relation to the problem data, as represented in a set of reference assess-
ments. The main idea is based on the analysis of the changes in the feasible poly-
hedron (2.11) due to the incorporation of the necessary/possible assignments to a
given reference set.

To this end, first a simple support measure can be defined. Assume that accord-
ing to a given reference set X', a non-reference alternative j can be assigned to
any of the classes in the interval [L;,U;]. Then, the support measure S; is defined
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as the minimum number of changes that need to be made in the assignments of
the reference actions in order to allow the classification of j into classes outside
[L;,U;]. The lower this support measure is, the less robust in the obtained interval
assignment [L;, U], because minor changes in the reference set will lead to different
conclusions.

The computation of support can be done in a straightforward manner through the
solution of the following two mixed-integer linear programming problems:

m m
min Y (0] +0;) min Y (o, +0;)
=1 i=1
st V(xj)>1,;-1+6 st V(x;) <ty; -6 (2.14)
constraints (2.5)—(2.9) for X’ constraints (2.5)—(2.9) for X’
Gi+a G; S {07 1} GiJrv Gii € {07 1}

The left problem applied to cases where L; > 2 and returns the minimum number
of changes that need to be made in the assignments of the reference actions in order
to classify the non-reference alternative j to the set of categories {Cy, ... 7CL]-—1}-
Similarly, the right problem applies to cases with U; < g — 1 and returns the mini-
mum number of changes that need to be made in the assignments of the reference
actions in order to classify the non-reference alternative j to the set of categories
{Cu;+1,---,Cy}

The support measure S; can then be defined as the minimum of the two objective
functions at the optimal solutions of the two problems. When L; = 1 and U; = ¢,
then §; is by definition equal to zero. In other cases, if §; is non-zero but low,
then the DM may accept the changes identified through the solution of the above
optimization models, thus forming a new reference set X j’

In order to compare the size of the feasible polyhedron corresponding to the new
reference set to the one of the initially available reference set X', we consider two
measures based on well-known results from optimization theory.

The first measure is based on the radius of the largest ball inscribed inside the
feasible polyhedron. Given a polyhedron {x|A"x < b}, the radius r of the largest
ball inscribed in it can be computed from the following linear program [3]:

max r
S.t. a?x+r|\ai|\2 <b;, Vi 2.15)
where a; is the ith row of A.

This approach can be straightforwardly applied to find the radius rg of the largest
ball inscribed inside the polyhedron (2.11) corresponding to the original reference
set and compare it to the radius r; of the largest ball for the modified reference
set X j’ Then, the following robustness measure can be defined:

logry
P= 2.16
/ logr; ( )
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The case R; > 1 indicates that the modified reference set X j'-, which allows the
classification of the non-reference alternative j outside its first computed range of
assignments [L;, U;], provides more options for choosing an acceptable decision
model. Thus, the modification of X’ towards the new reference set X j’ is likely to
lead to more robust results. On the other hand, the case R; < 1 indicates that the
modified reference set is more restrictive compared to X’, which implies that this
modification is more sensitive to changes of the reference set (i.e., less robust).

Alternatively to the above metric, the size of the polyhedron corresponding to the
set of compatible decision models, can be assessed through the volume of the max-
imum ellipsoid inscribed inside the polyhedron. Compared to the above metric, this
is a more suitable approach for irregular polyhedra, which can not be well described
by the largest ball inscribed inside them (e.g., because they have large extremes).

The volume of the largest ellipsoid inside a polyhedron {x|ATx < b} can be
found from the solution of the following convex optimization problem [3]:

min v = logdetB~!

st. ||Baj|y+a/d<b;, Vi (2.17)

where d is a vector of decision variables defining the center of the ellipsoid whose
volume is proportional to detB. Similarly to the previous measure, this optimization
problem can be used to compare the volume of the largest ellipsoid inscribed inside
the polyhedron (2.11) corresponding to the original reference set, against the volume
for the modified reference set X j’ The robustness measure in this case is defined as
follows: Yo
Vi= v (2.18)
Similarly to the interpretation of (2.16), the case V; > 1 indicates that the modi-
fication of the original reference set to allow the classification of the non-reference
alternative j outside its first computed range of assignments [L;, U], leads to more
available options for selecting an acceptable decision model (i.e., higher robustness),
versus the case V; < 1, which corresponds to a small (less robust) polyhedron.

2.4 Illustrative Results

In order to examine the potentials of the data-driven robustness measures introduced
in the previous section, we present results from their application to a data set taken
from Mousseau et al. [18]. The data involve 100 alternatives evaluated on seven cri-
teria (all in minimization form). The alternatives are classified in three performance
categories: the high performance class (category H), the medium performance group
(category M), and the low performance alternatives (class L).

For the purposes of the analysis, a reference set of 30 randomly selected alt-
ernatives (10 alternatives from each category) is used. Table 2.1 presents the results
for the necessary (.4") and possible () assignments of the 70 non-reference
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alternatives obtained with the chosen reference set, as opposed to their actual clas-
sification (columns). Out of the five alternatives actually belonging in the high per-
formance class, four are assigned to the same category by all models compatible
with the selected reference set (necessary assignments), whereas one alternative is
classified by some ambiguity in classes H or M (possible assignments). Similarly,
17 out of the 28 alternatives from class M are classified in the same category by all
models derived from the selected reference set. However, 11 alternatives from class
M are classified with ambiguity: three can be classified in H or M, five can be clas-
sified in M or L, whereas three actions can be assigned to any of the three categories
(H, M, L). Finally, 20 necessary assignments are specified for alternatives of class
L, whereas the remaining 17 alternatives of this class are assigned to categories M
or L (possible assignments).

Table 2.1: Necessary and possible assignments for the non-reference alternatives

Actual class

H M L Total
A H 4 0 0 4
M 0 17 0 17
L 0 0 2020

2 {HM} 1 3 0 4
{M,L} 5 17 22
{HLM,L}0O 3 0 3

(=]

Total 5 28 3770

To examine the robustness of the above results a resampling exercise is con-
ducted. In particular, first a subsample of 20 alternatives is selected, at random,
from the initial chosen reference set of 30 actions. Using this subsample as a new
reference set, the necessary and possible assignments are computed for all of the 70
non-reference alternatives. A single AVF model is also constructed through formu-
lation (2.4)—(2.10) and it is used to specify a single assignment for each one of the
non-reference actions. The same experiment is repeated 100 times, each based on a
different random subsample (new reference set) of 20 alternatives.

In each one of the above 100 tests, the best and worst assignments are identified
for all non-reference alternatives. Table 2.2 presents the average frequencies with
which each non-reference action is classified in the three categories. The results are
reported in comparison to the necessary and possible assignments identified through
the original reference set of 30 actions. Discrepancies between the results from the
full reference set and the ones obtained from the 100 random tests are shown in
bold.

For the alternatives necessarily assigned to category H, the simulation tests are
mostly consistent with the necessary assignments. There is only a small likelihood
(2.5 %) that an action necessarily assigned to class H under the full set might be



32 M. Doumpos and C. Zopounidis

downgraded to category M if the reference set changes. However, the discrepancies
for the two other categories are higher. For instance, for the alternatives that are

Table 2.2: Classification frequencies (in %) with the full set of AVFs corresponding
to different perturbations of the reference set

Best assignments Worst assignments

H M L H M L

N H 1000 - - 97525 -
M 226 774 - - 803197
L 46 256699 - — 100.0

2 {H,M} 1000 - - - 848153
{M,L} 80 920 - - - 1000
{H,M,L} 1000 - - - — 100.0

necessarily assigned to category M with the full reference set, there is a significant
likelihood (22.6 %) that will be upgraded to category H if the reference set changes.
There is also a notable likelihood (19.7 %) for downgrading these alternatives to
the low performance class L. Thus, claiming that these alternatives are consistently
assigned to class M under all models compatible with the reference, does not seem
to be a very robust conclusion, because variations of the reference set often lead to
different outcomes.

The same also holds true for alternatives that are necessarily assigned to the low
performance class L under the full reference set. In this case, there is notable likeli-
hood (25.6 %) that they could be upgraded to the medium performance category M
with a perturbed reference set, whereas the likelihood of an even further upgrade to
class His 4.6 %.

Similar discrepancies are also observed for the possible assignments, which are
expressed in interval form. For instance, focusing on the alternatives that can be
classified in H or M under the full reference set, the simulation test indicates that
they could actually be classified to category L with some perturbation of the refer-
ence set.

Table 2.3 presents similar results with a single AVF model, obtained through
the solution of problem (2.4)—(2.10) for each reference set in the 100 test runs. In
this case smaller discrepancies are observed (shown in bold) between the results
obtained with a single decision model (columns) and the necessary/possible assign-
ments derived from the full reference set (rows). This should be of no surprise, as
a single model does not provide information about extreme assignments like those
considered in the above results.

The above obtained results support the argument in this study that similarly to
point recommendations derived with a single decision model (AVF), interval results
formulated on a set of decision models are also subject to the robustness concern
when the reference data change.
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Table 2.3: Classification frequencies (in %) with a single AVF for random pertur-
bations of the reference set

Model assignments

H M L

A H 99.8 0.2 -
M 28 95221

L 2.6 34 940

2 {HM} 378605 1.8
{M,L} 0.8 323669
{H,M,L} 29.3 50.3 20.3

Table 2.4 reports some results about the support measure and the uncertainty
of the assignments for the non-reference alternatives. Uncertainty is defined as the
entropy of the assignments over the 100 test runs, with higher entropy values in-
dicating higher ambiguity in the obtained classifications. Results are presented for
the extreme (best and worst) assignments as well as for the assignments obtained
with a single AVF. For the extreme assignments only the cases with positive sup-
port are considered because, as explained earlier a zero support indicates that the
possible assignments cover all classes (e.g., from H to L in this example). For the
results of the single AVF we also consider the cases with zero support to examine
how ambiguous alternatives are classified when a single decision model is used. The
obtained results clearly indicate that higher support is associated with lower ambi-
guity (i.e., lower entropy values) for all classifications, both the interval ones and
the single AVF model assignments.

Table 2.4: Entropy of assignments vs support
Support Best Worst  Support Single AVF

1 0.463 0.306 0 0.784
2 0.386 0.094 1 0.300
3 0.288 0.005 >2 0.212
4 0.080 0.006

>5  0.007 0.004

Regarding the two robustness indicators (2.16)—(2.18) that consider the size of
the feasible polyhedron, they were found to be highly correlated to each other (Pear-
son correlation higher than 0.85) and strongly negatively correlated to the support
measure (correlation about —0.6). The latter result implies the robustness of the
assignments for non-reference alternatives with low support can be improved by
reconsidering the evaluations of the supporting reference actions.

Table 2.5 provides details about the average values of the robustness indicators
R and V, as defined by (2.16)—(2.18), for all assignments of the non-reference alter-
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natives (the results are averages over the 100 tests). It is evident that both indicators
attain their maximum values when the alternatives are classified in their respective
necessary assignments. For instance, for alternatives assigned in category H by all
models compatible with the full reference set, both R and V are equal to one for class
H, whereas their value is lower for classes M (R =0.81,V =0.76) and L (R = 0.84,
V = 0.75). Thus, both indicators confirm that H is the most robust assignment for
these alternatives. The same holds for alternatives necessarily assigned to classes
M and L using the full reference set. For alternatives for which the full reference
set indicates that the can be classified in H or M (possible assignments), again the
two indicators verify that these are the most robust conclusions (classes H and M
correspond to higher values in R and V compared to class L). Similar, conclusions
are also drawn for alternatives possibly assigned to M or L. These results, indicate
that the two proposed robustness indicators are in accordance with the definitions of
necessary and possible assignments, and enhance them with additional information
that provides an analytic estimate of the robustness of the results, without requiring
to resort to approximate simulation-based approaches.

Table 2.5: The robustness indicators for all assignment results (non-reference alter-
natives)

R 1%
NP H M L H M L
H 1.00 0.81 0.84 1.00 0.76 0.75
M 0.87 1.00 0.95 0.78 1.00 0.82
L 0.80 0.84 1.00 0.79 0.81 1.00

{H, M} 0.89 099 0.85 0.88 0.97 0.76
{M, L} 0.81 092 098 0.77 0.88 0.96
{H,M,L} 0.85 1.00 0.83 0.85 1.00 0.83

As a final test for the information content and validity of the two proposed indica-
tors we consider the classification of the alternatives whose classification is ambigu-
ous according to the reference set used in the analysis. These are 29 non-reference
alternatives for which only their possible assignments could be defined (i.e., the
alternatives classified in {H, M}, {M, L}, or {H, M, L}. To specify a single classi-
fication result for these cases we compare three different approaches:

1. For each of the 100 perturbations of the reference set, construct a single AVF
model, use it to classify the alternatives, and finally use a majority rule to aggre-
gate the 100 results for each alternative and specify the most appropriate class
assignment.

2. Classity the alternatives to the class for which the R measure is highest.

3. Classity the alternatives to the class for which the V measure is highest.

The results of these three procedures are compared against the actual classification
of the alternatives. The accuracy rate (i.e., the percentage of correct classifications)
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for the assignments obtained through the majority rule was found to be 89.7 %, the
assignments with the R measure had an accuracy rate of 82.8 %, whereas using the V
measure led to an accuracy of 96.6 %. These results indicate that the two robustness
indicators can constitute the basis for formulating good recommendations about the
most appropriate classification when a reference set leads to ambiguous conclusions.
Between the two indicators, the one based on the volume of the ellipsoid inscribed
inside the feasible polyhedron (V) appears to provide better results.

2.5 Conclusions and Future Research

The robustness of MCDA models has been an active research topic recently having
attracted a lot of interest from different perspectives. In this chapter we focused on
the PDA framework for constructing decision models from data related to classifi-
cation problems. PDA is based on a data-driven scheme. As such, changes in the
data used to construct a decision model can have a significant impact on the results.

Motivated by this fact, this study presented simple, yet effective ways to assess
the robustness of MCDA models in the form of AVFs for classification problems.
The proposed measures provide analytic estimates of the ambiguity resulting from
the information that a given data set provides, based on tools and techniques from
optimization theory. The analytic form of the measures introduced in this study
makes them applicable to all cases, even when dealing with large problem instances
(i.e., reference sets with many actions and criteria).

The illustrative results presented in this chapter indicate that the proposed mea-
sures enhance existing robust MCDA techniques with additional information. Their
connection with the concept of robustness in the data-driven context explained
above was verified and their usefulness for formulating better decision recommen-
dations was demonstrated.

However, the positive properties of the measures introduced in this study and
the preliminary results should be further explored. To this end, applications to large
real data sets and further experimental testing will provide further insights. Compar-
isons with simulation-based approaches could also be useful to construct an unified
framework for analyzing robustness and assess the statistical properties of the pro-
posed measures. Finally, extensions to other types of decision problems, including
ordinal regression [11] should be examined, together with an analysis of cases where
inconsistencies, uncertainties, and fuzziness are present in the data.
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Chapter 3
Robustness for Adversarial Risk Analysis

David Rios Insua, Fabrizio Ruggeri, Cesar Alfaro, and Javier Gomez

Abstract Adversarial Risk Analysis is an emergent paradigm for supporting a
decision maker who faces adversaries in problems in which the consequences are
random and depend on the actions of all participating agents. In this chapter, we
outline a framework for robust analysis methods in Adversarial Risk Analysis. Our
discussion focuses on security applications.

3.1 Introduction

Large scale terrorist events like S-11 led to huge security investments. In turn,
this has promoted many modeling efforts to support how to efficiently allocate
such resources. Parnell et al. [15] provided an in-depth review for the US National
Academy of Sciences on bio-terrorism assessment, concluding, among other things,
that traditional risk analysis tools, like event trees, are not adequate in this applica-
tion area for not accounting for adversarial intentionality; the critical and, in many
contexts, doubtful common knowledge assumptions of game theoretic approaches;
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and, finally, the problems of decision analytic based approaches in forecasting ad-
versarial actions. Merrick and Parnell [12] reviewed numerous approaches in this
research area, commenting favorably on Adversarial Risk Analysis (ARA), which is
a framework to manage risks derived from actions of intelligent adversaries, see [20]
or [1].

ARA aims at providing one-sided prescriptive support to one of the intervening
agents, the Defender (D, she), based on a subjective expected utility model treat-
ing the adversary’s decisions as uncertainties. To do so, we model the adversary’s
(A, Attacker, he) decision making problem and, assuming that he is an expected
utility maximizer, try to assess his probabilities and utilities. We can consequently
forecast his optimal action. However, our uncertainty about the adversary’s proba-
bilities and utilities is propagated to his decision, leading to a random optimal adv-
ersary decision which provides us with the required distribution over the Attacker’s
decision. Sometimes such assessments may lead to a hierarchy of nested decision
problems, as described in [17], similar to the concept of level-k thinking, see [24]. In
contrast with game theoretic approaches, we do not assume the standard, but unre-
alistic, common knowledge hypothesis, see [5], according to which the agents share
information about their utilities and probabilities.

A critical issue in ARA is elicitation. As in any subjective Bayesian analysis, one
needs personal probabilities over the parameters in the problem. Obtaining them is
not easy and we need to cope with many biases, see e.g., [14]. This is aggravated
in our context because of the involved strategic considerations. Nau [13] as well as
Wang and Bier [26] provide discussions of elicitation in the context of adversarial
situations.

The practical difficulty of elicitation raises the question of robustness. One wants
an ARA to be robust to the elicited probabilities and utilities, the model enter-
tained and, when available, the data. A good way forward is sensitivity analysis.
The above mentioned review by Parnell [15] recommends it, and Von Winterfeldt
and O’Sullivan [25] perform a systematic sensitivity analysis with respect to elicited
probabilities in an event tree concerning MANPADS. A different approach is taken
by Kardes [9], who considers robust stochastic games.

Robust Bayesian analysis facilitates finding the entire set of posterior distribu-
tions for a parameter when the prior lies within a class of distributions. The results
are typically expressed in terms of upper and lower bounds on probabilities and
expected utilities. Berger et al. [2] review this methodology which has yet to be
used in ARA. The only direct application is given by McLay et al. [11], who point
the way towards a principled means to incorporate robustness into ARA. They con-
sider a level-k thinking analysis of the sequential Defend-Attack game in which
the Attacker imperfectly observes the decision made by the Defender. The game
is modeled through an information structure comprising several signals and, con-
ditional on the defense choice, there is a specified distribution over the signals, a
model initially proposed by Rothschild et al. [22]. Robustification occurs by setting
upper and lower bounds over parameters for which distributions must be elicited,
and then calculating the outcome under the worst case combination of upper and
lower values.
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This chapter provides a complete outline of the role of robust methods in ARA.
After introducing basic notions in Bayesian robustness, we first describe the robust
ARA approach for sequential games and, then, for simultaneous games. In both
cases, we start by computing the game theoretic solution. We apply robust concepts
to assess such solution. If it is not robust, we use the ARA approach to find an
alternative solution. Again, we criticize it through robust ideas. If the solution is still
unstable, we may appeal to conventional robust concepts, such as the Yy maximin.
We illustrate the ideas with a simple numerical example concerning routing security.

3.2 Bayesian Robustness

We present here the basic ideas on Bayesian robustness. We refer to Rios Insua
and Ruggeri [18] for an in-depth overview. In the Bayesian approach to inference,
prediction and decision making, the interest frequently lies on the behavior of the
posterior distribution on a parameter 6 obtained by combining experimental evi-
dence provided by the likelihood and expert knowledge expressed through the prior
distribution, via Bayes theorem. This is used to compute posterior (and predictive)
expectations of functions g(6) which typically will be set indicators, powers or
utility functions, providing, respectively, set probabilities, moments and expected
utilities. The robust Bayesian approach stems from the practical difficulty of spec-
ifying a unique prior distribution and/or a unique utility function, corresponding,
respectively, to the expert’s beliefs and the decision maker’s preferences. Therefore,
classes of priors and/or utilities are entertained and the consequences of different
possible choices of such pairs are evaluated through synthetic indices which deter-
mine whether the quantity of interest is subject to small or large variations when
changing the prior/utility, i.e. whether there is robustness or not.

In accordance with the content of this chapter, we shall consider utilities «# in a
class % and probability measures p in a class & (without distinguishing whether
they are priors or posteriors). We suppose that the probability measure p has a den-
sity p(s) over the states s, and the utility function has the form u(d,s), where d is
an action (decision) in the feasible set 2. We are interested in computing the ex-
pected utilities y,,(d) = [u(d,s)p(s)ds for various alternatives d and the feasible
alternative d,;,, € ¢ maximizing expected utility, given such choice u and p.

In a robust context, the interest would typically be in the ranges that relevant
quantities span when p and u vary in the class, e.g. the range of the expected utility
for a certain alternative d

d)= d)— inf d
pW( ) pe;u,tlt)e% ll/up( ) peyl"l?ue% Wup( )7

or the distance between the optimal alternative and a reference alternative d*

Pa = sup e(d;pad*)u
pEP ucU
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for some distance e. Looking at p;, we claim that there is robustness if its value is
small with respect to the entertained problem and the decision maker’s perception.
In this case, essentially any p and u, and the corresponding d,,, may be used for
decision making purposes. Otherwise, efforts are required to get smaller classes
until either robustness can be achieved or no further refinement is possible.

In the latter case, some criterion could be introduced to choose a pair (p,u) and
the corresponding d,;,,. A possible choice for a decision could be the minimum regret

decision,

N

d = argmin max di)— d)|.

g de‘@peﬂ’,ue% [‘Vup( up) Waup( )}

For a related discussion see [19]. In particular, the decision d is conservative in the
sense that it protects against the worst loss in expected utility when replacing an

optimal decision d,,, by another one.

3.3 Sequential Games

We start by considering sequential games: one agent first makes her decision and,
then, the other agent implements his alternative. As an example, imagine a case in
which a company deploys their cybersecurity countermeasures and then, observing
them, a hacker decides whether he launches an attack or not towards such company.

Specifically, we consider a Defend-Attack situation in which a Defender chooses
a defense d € Z and, then, the Attacker, having observed the defense, chooses his
attack a € o7 . The corresponding bi-agent influence diagram is shown in Fig. 3.1. An
arc reflects that the Defender’s choice is observed by the Attacker. The consequences
for both players depend on the success s of the attack. Each decision maker assesses
differently the probability of the result of an attack, which depends on the defense
and attack adopted: pp(s | d,a) and p4(s|d,a). The utility function of the Defender
up(d,s) depends on her chosen defense and the result of the attack. Similarly, the
Attacker’s utility function is u4(a,s). We first recall the standard game theoretic
approach and check its robustness. We then present the ARA solution and, again,
provide a robust analysis.

3.3.1 Game Theoretic Solution and Robustness

The standard game theoretic solution does not require the Attacker to know the
Defender’s probabilities and utilities, since he observes the Defender’s actions.
However, the Defender needs to know the Attacker’s utilities and probabilities
(ua,pa), an example of common knowledge. We then proceed as follows. First,
we compute the expected utilities of the players at node S in Fig. 3.1:
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Fig. 3.1: The two player sequential decision game

l[/A(Cl,d) :/MA(G,S)pA(S|a,d)dS, (31)

yp(a,d) = / up(d,s)po (sla, d)ds.

Then, we compute the Attacker’s best response to the Defender’s action d, which is
a*(d) = argmax, ., ya(a,d).

Knowing this, the Defender’s optimal action is, then,
dgr = argmax ey (a*(d).d).

The solution (a* (dgT),dgT) is a Nash equilibrium and, indeed, a sub-game perfect
equilibrium, see [5]. We call d(;; the Nash defense.

3.3.1.1 Robustness of the Game Theoretic Solution

Since we are supporting the Defender, we could argue that we know reasonably
well (up, pp). However, we would contend that knowledge about (u4,p4) is that
precise, since it would require the Attacker to reveal them (common knowledge).
This is questionable in many application areas including security, cybersecurity and
competitive marketing. We may use robust methods to criticize such information
and, consequently, assess the game theoretic solution.

As discussed in Sect. 3.2, from a conceptual point of view, to perform robustness
we may consider classes for the Attacker’s utilities and probabilities that we model
through u € %, p € #4. Then, mimicking the approach above, for each feasible
(u, p) we could:

e Compute the expected utilities (y,”(d,a), " (d,a)) atnode S in Fig. 3.1.
e Compute the best response attack a;, ,(d) for each d.

u,p
e Compute the optimal defense d, .
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Then, if d;, , remains reasonably stable for the allowed perturbations of u and p,
with u € %, p € P4, the game theoretic solution seems robust. However, if d,j’p
is not that stable, we have an issue which questions, at first sight, the relevance of
the proposed Nash defense dj;;. At a deeper level, it also questions the appropri-
ateness of the (us, pa) assessment, actually serving to criticize the game theoretic
assumptions, specially that of common knowledge, see [16] or [10].

From an operational point of view, the above robustness analysis scheme for the
game theoretic approach boils down to two computational issues:

e Exploring the whole range of perturbations u € %4, p € 4. In some cases, for
classes of probabilities and utilities widely studied in the robust Bayesian lit-
erature, see [2], it is possible to identify the extremal elements of %4 and &4
and compute upper and lower bounds on the quantities of interest (namely opti-
mal decisions dy , and their expected utilities), through numerical optimization
methods. Another possible approach would be to randomly sample elements u, p
from the sets %, &4 and check for eventual large variations in d,i » (and their
expected utilities).

e Declaring whether the effects induced by changes over dy; , and the expected
utility are sufficiently small. As discussed in Sect. 3.2, a possible criterion could
be given by the range spanned by d,, , as utility and probability vary in the
classes, i.e. u € % and p € Py, respectively. Regarding the effects on the
expected utility, a criterion of interest could be based on the regret ry ,(d)
given by the difference in expected utility when considering, for a given pair
(u,p), the Nash defense dg;; and the optimal defense dy, ,. A small value of
SUP (., p) e,y x P,y T, p(d&r) would denote robustness with respect to the choice
of utility and probability and, therefore, any pair (u, p) can be chosen as opin-
ion on the Attacker’s behavior with no significant change in the consequences. If
robustness is not achieved, then we could undertake a minimum regret approach
as discussed in Sect. 3.2.

An alternative would be to move to ARA, as discussed next.

3.3.2 ARA Solution and Robustness

If the game theoretic solution is not robust, then we need to address the issue. One
way forward is to perform an ARA approach. For this, we weaken the common
knowledge assumption. In the sequential game, this means that the Defender does
not know (pa,ua). The problem she faces is depicted in Fig. 3.2.

To solve her problem, the Defender requires more information than pp(s|a,d)
and up(d,s), available from our earlier discussion. She also needs pp(a|d), which is
her assessment of the probability that the Attacker will choose attack a after having
observed that she has chosen the defense d. Once the Defender has completed these
assessments, she can solve the problem. Indeed, the expected utility of d would be
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D —— § |«<—— A

Up

Fig. 3.2: The decision problem as seen by Defender

wold) = [ wo(edpotaaiia= [ | [un(as)polsia.d)is| polalada

Finally, her optimal decision would be djip, = argmax,., Wp(d). Note that, in
terms of classic game theory, the solution dj, for our sequential game may not
correspond to a Nash equilibrium, see the example in Sect. 3.5.

Eliciting pp(a|d) requires the Defender to analyze the problem from the
Attacker’s perspective.

Uy

Fig. 3.3: Defender’s analysis of Attacker’s problem

First, the Defender puts herself in the Attacker’s shoes, and thinks about his deci-
sion problem. Figure 3.3 represents the Attacker’s problem, as seen by the Defender,
assuming he is an expected utility maximizer. The Defender will use all the informa-
tion and judgment that she can obtain about the Attacker’s utilities and probabilities.
Instead of using point estimates for p4 and u4 to find the Attacker’s optimal decision
a*(d) for a given d, the Defender’s uncertainty about the Attacker’s decision should
derive from her uncertainty about the Attacker’s (ps,ua), through a distribution F
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on the space of utilities and probabilities, which we designate random probabilities
and utilities. This induces a distribution over the Attacker’s expected utility in (3.1),
where the random expected utility for A would be

¥a(a.d) = [ Ualas)Pa(sla.d)ds,
for (P4,U4) ~ F. Then, the Defender would find
pplald) = Prpla = argmax, ., 'Wa(x,d)],

in the discrete case and, similarly, in the continuous case. We can use Monte Carlo
simulation to approximate pp(ald) by drawing N samples { (P;,Uj) }5\1:1 from F
and setting

#{a = argmax,. , Wi (x,d)}

N ; (3.2)

pplald) ~

where ¥} (a,d) = [Uj(a,s)P;(s|a,d)ds.

3.3.2.1 Robust Analysis

The above approach leads to a Bayesian decision analysis problem with the peculiar-
ity that we have a complex procedure to forecast the adversarial actions. To do so,
we formulate the adversary decision making problem and propagate our uncertainty
about the adversary judgments to the optimal adversarial action.

We could then think about performing a robust Bayesian analysis. The inputs to
the Defender’s decision analysis are (up(d,s), pp(s|a,d), pp(ald)). We focus here
on sensitivity to the last component pp(a|d), surely the most contentious one, at-
tained through adversarial calculations based on the proposed Uy (a,s), P (s|a,d).
For that, we define classes %, &4 of random utilities and probabilities. For each
pair U, P in such class, we define ng (a|d) through the ARA approach which, in
turn, leads to d;%f.

Then, it is possible to consider the impact of the imprecision about U and P over
three quantities: p% (ald), d3%F and y(d3%%). The first quantity requires the com-
parison of densities (actually of their Monte Carlo approximations) using indices
like the Kullback-Leibler divergence or Gini index. For the first and second quan-
tities, the interest centers around the variation of the decision (for the Defender),
whereas for the third one, the focus is on the expected utility of the decision. The
last quantity should be of major interest. In all three cases, we say that robustness
holds when the value of interest does not change much, whereas additional analysis
should be taken otherwise, as described in Sect. 3.2. In particular, if the distributions
pYF(ald) do not differ too much, it is possible to choose one of them and use ;%
directly.
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3.3.3 A Full Robust Solution

If the ARA analysis is not robust, we may opt for gathering additional information
to reduce the classes %4 and 4. The choice of increasing the sample size in the
Monte Carlo estimation pp(ald) in (3.2) would be useful in reducing the variability
of the distribution. However, it will typically be ineffective in increasing robustness.
Once all possible sources of information have been exploited to try to increase
robustness about d;p, and y(d}y,), then some extra criterion has to be introduced
to make a decision and report a value about the quantity of interest. In any case, such
decision should be reported with the warning of lack of robustness. As discussed in
Sect. 3.2, we could consider the decision di minimizing the maximum regret, i.e.

min,, max | [ (a5 @i da~ [ wole.f (ald)dal.

3.4 Simultaneous Games

We discuss now the simultaneous game model: two agents choose their decisions,
without knowing the action selected by each other. Among others, see [27] for a
related discussion within a game theoretic framework. As an example, imagine a
case in which the EASA decides whether to introduce undercover marshals in an
airplane that might, or not, be hijacked by terrorists.

Assume that the adversaries have alternative sets 2 and 27 of defenses and att-
acks, respectively. The only relevant uncertainty is S, denoting the success s of the
attack. Each decision maker assesses differently the probability of the result of the
attack, which depends on the defense and attack adopted: pp(s | d,a) and pa(s |
d,a). The utility function of the Defender up(d,s) depends on her chosen defense
and the result of the attack. Similarly, the Attacker’s utility function is ua(a,s), as
illustrated in Fig. 3.4.

Fig. 3.4: BAID for the simultaneous Defend-Attack model
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3.4.1 Game Theoretic Solution

Under common knowledge, preferences and beliefs from both the Defender and the
Attacker, (up,pp) and (ua, pa) respectively, are disclosed. Therefore, each adver-
sary knows the expected utility that each pair (d,a) € 2 x & would provide to both
of them, computed through

vp(d,a) = /uD(d,s)pD(s|a,d)ds,

va(d.a) = [ua(a.9)pa(sla.)ds.
A Nash equilibrium (d;;,ay;;) for this game would satisfy

vp(dGr.acr) = ¥p(d,agr) Vd € 2 and
valdgr,agr) > Yaldgr,a) Va € o .

Finding Nash equilibria may require the use of randomized strategies, see [4]. There
could be several equilibria, with no unambiguous criteria to further discern among
them, see [16] for a discussion.

If utilities and probabilities are not common knowledge among the adversaries,
a game-theoretic approach proceeds by modeling the game as one with incomplete
information, see [6-8], by introducing the notion of player types. Each player will
be of a certain type which is known to him but not to his opponent: a player’s type
represents the private information he may have. Harsanyi proposes the Bayes-Nash
equilibrium as a solution concept, still under a strong common knowledge assump-
tion: the adversaries’ beliefs about the opponent’s types are common knowledge and
modeled through a common prior distribution. Moreover, it is assumed that the play-
ers’ beliefs about other uncertainties in the problem are also common knowledge.
Again randomized strategies might be required to find such equilibria.

3.4.1.1 Robustness of the Game Theoretic Solution

We could argue that we know reasonably well (up, pp), since we are supporting
the Defender. However, we would contend that (u4,pa) is properly known, since
it requires common knowledge, which is questionable. To address this concern, we
perform a robust analysis of the Defender’s decision at the Nash equilibrium.

For that, we would consider classes for the Attacker’s utilities and probabilities
represented as u € %, p € 4. Then, for each feasible (u, p) we could compute
the corresponding Nash equilibrium (dy; ,,a;,,). If d;;, remains stable for the feasible
perturbations of 1 and p, the game theoretic solution d(;; seems robust, from the per-
spective of the Defender. However, if d,,,, changes, specially the corresponding ex-
pected utility, we have a problem which questions, at first sight, the relevance of the
proposed d(; and, at a deeper level, the appropriateness of the (u4, pa) assessment,
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actually serving to criticize the game theoretic approach at large and, in particular,
the common knowledge assumption. The two computational issues about finding all
possible optimal decisions and assessing robustness are dealt with as mentioned in
Sect.3.3.3.

Note that we could actually study robustness with respect to (up, pp,ua, pa) and
consider changes in d;, ,, ., . In this case, if the Defender’s Nash equilibrium
decision is sensitive, we might question the Defender’s knowledge, besides the game
theory postulates.

3.4.2 ARA Solution and Robustness

If the Nash equilibrium is unstable, we may try an ARA approach. We have to
weaken the common (prior) knowledge assumptions. As reflected in Fig.3.5, the
Defender has to choose a defense d € &, whose consequences depend on the success
of an attack a € o/ simultaneously chosen by the Attacker, which is, therefore,
uncertain for the Defender at the time she makes her decision.

D ——| § |«<— A

Up

Fig. 3.5: The Defender’s decision analysis

By standard Decision Theory, the Defender should maximize her expected utility,
see [3]. The Defender knows her utility function up(d, s) and her probability assess-
ment pp over S, conditional on (d,a). However, she does not know the Attacker’s
decision a at node A. She expresses her uncertainty through a probability distribu-
tion pp(a). Then, the optimization problem she should solve to find d, is

maxy [ Yp(a,d)pp(a)da=maxy [[[up(d,s)pp(s|la,d)ds] pp(a)da

=maxy [ [up(d,s)pp(sla,d)pp(a)dsda. 3-3)

We could then perform a robust analysis based on up, pp(s|a,d) and pp(a). How-
ever, eliciting this last probability distribution is more difficult. We may use ARA
as follows to get it.

Suppose the Defender thinks that the Attacker is an expected utility maximizer
who tries to solve the decision problem shown in Fig. 3.6. The Attacker would look
for the attack a € o7 providing him maximum expected utility:
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a* = argmax / /uA(a,s)pA(s|a)pA(d)ds dd.
ace/ 7 -

In general, the Defender will be uncertain about the Attacker’s utility function and
probabilities, and she would consider random utilities and probabilities through
F = (Us(a,s),Ps(s|a), P+(d)) and compute the random optimal alternative

A¥|D = argmax / /UA(a,s)PA(s|a)PA(d)dsdd. 3.4
acd 7 -

Then, we would make
pp(a) =P(A" =a|D)

in the discrete case and, similarly, in the continuous case.

D —— § <— A

l

Uy

Fig. 3.6: The Attacker’s decision analysis, as seen by the Defender

Note that (Ux (a, s), Pa(s|a)) would be comparatively easily elicited from the De-
fender, see examples in [1]. However, the elicitation of P4(d) may require further
analysis leading to a next level of recursive thinking: the Defender would need
to think about how the Attacker analyzes her problem. This is why we condition
in (3.4) by (the distribution of) D.

In the above, the Defender presumes that the Attacker thinks she is an expected
utility maximizer trying to solve a decision problem like that described in Fig. 3.5.
Therefore, in order for the Defender to assess the required distribution, she will elicit
(U, Py) from her viewpoint, and assess Py (D) through the analysis of her decision
problem, as thought by the Attacker, mimicking the resolution of problem (3.3) from
the Attacker’s perspective. This reduces the assessment of P4 (D) to computing the
distribution

DA ~ argmax//UD(d,s)PD(S:s |d.a)Pp(A" = a)dsda,
de9

assuming that the Defender is able to assess Pp(A'). A! represents the Attacker’s
decision within the Defender’s second level of recursive thinking in the nested
decision model used by the Defender to predict the Attacker’s analysis of her deci-
sion problem. To complete the assessment, the Defender should elicit (Up, Pp) ~ G,
representing her probabilistic knowledge about how the Attacker may estimate her
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utility function up(d,s) and her probability pp over S|d,a, when she analyzes how
the Attacker thinks about her decision problem. The elicitation of Pp(A') might
require further recursive thinking from the Defender, see our final discussion.

3.4.2.1 Robustness

Performing a robust analysis for the ARA approach to the simultaneous game would
be similar to what described earlier. Consider a class for (Ux(a,s), Pa(s|a), Pa(d)) €
(Un, Pa,24). We use (U, P,Q) to simplify the notation describing the elements in
the classes. Then, for (U, P, Q) satisfying the constraints, replicating the approach
above we could compute ngQ and dzgﬁQ. If dzgﬁQ remains stable with respect to
changes in (U, P,Q), then the problem seems robust and we could apply the ARA
approach with little concern. Otherwise, we could still use a robust solution concept,
like the minimum regret mentioned in Sect. 3.2.

3.5 An Example

As an illustration, we consider a sequential defend-attack security routing problem.
An organization needs to make a trip, either through a safe, but costly, route, or
through a cheaper, but more dangerous, route. In this case, they may invest in sec-
urity, rendering the route less dangerous. See [23] for a case concerning piracy in
Somalia. Table 3.1 displays the consequences, expressed as costs, for various defend
and attack possibilities.

Table 3.1: Loss function in routing problem

Defense Attack  Attack result Def. cons. Att. cons.

Dang. prot  Attack 6, c0+K —d6,+B
No Attack K 0

Dang. unp  Attack 6, c6, —d6,+B
No attack 0 0
Safe H 0

The following parameters are used:

e 0 represents the fraction of assets lost by the organization when attacked but
protected.

e 0, represents the fraction of assets lost by the organization when attacked and
not protected.
c is the cost per unit of assets.
K are the protection costs.

e H is the cost of going through the expensive route.
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e d is the Attacker’s gain per unit of assets lost by the Defender.
e Bis the cost of an attack.

The Defender has beliefs for 6;, with 6; ~ B (a;,b;),i = 1,2. She is risk averse and her
utility function is strategically equivalent to — exp(fx), where x is her cost and 4 > 0
is her risk aversion coefficient. The Attacker has different beliefs for 6; with 6; ~
B(ci,ei),i = 1,2. He is risk prone and his utility function is strategically equivalent
to exp(—mx), where x is his cost and m > 0 is his risk proneness coefficient. Both
agents expect 0; to be smaller than 6,, but not necessarily. This may be reflected
in the choice of the beta parameters, for example with a|/(a; +b;) < az/(az + b3),
in the case of the Defender. Table 3.2 provides the expected utilities for both agents
under various interaction scenarios.

Table 3.2: Expected utilities in routing problem

Interaction Eu. def Eu. att
Prot, Att.  — [eM0+K) £(6,|ay,b)d6, [e"@0—B)f(0)|c1,e;)d6)
Prot.,NoAtt. —ehK 1
NoProt. Att.  — [¢"®2) f(Oy|ar, by)d6, [ e™4027B) £(65]cy,e,)d 6,
NoProt.,NoAtt. -1 1
Safe —eH 1

The problem may be viewed through the game tree in Fig. 3.7, where d; means
going through the dangerous route but protected; d, means going through the dan-
gerous route but unprotected; and, finally, d3 means going through the safe route,
whereas a means attack and @ means no attack.

We are supporting the Defender and assess from her the values ¢ = 200,000,
K =50,000, H = 100,000, & = 3. We also elicit from her the distributions 3 (a;,b;),
with mean 0.3 and standard deviation 0.07, leading to a; = 12.325, b; = 28.76;
and fB(ay,b;), with mean 0.7 and standard deviation 0.18, leading to a; = 3.815,
by =1.635.

3.5.1 Game Theoretic Approach

Under common knowledge, we assume the Defender knows that d = 30,000,
B =10,000, m = 5 and the distributions 3(cy,e;), with mean 0.313 and standard
deviation 0.16, leading to ¢ = 2.272, ¢; = 4.978; and B(c2,e2), with mean 0.324
and standard deviation 0.11, leading to ¢, = 5.49, e; = 11.45. We, then, proceed as
follows:

e At node Ay, compute max (Wu(di,a),wa(di,a)) and call the optimal action
a*(dy). In the example, we have max (1.001,1) = 1.001 and the optimal deci-
sion for the Attacker is a.
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Fig. 3.7: Game tree for the routing problem

e At node Aj, compute max (Yu(dz,a),ya(d2,a)) and call the corresponding
action a*(d). We have max (1.002,1) = 1.002 and the optimal decision for the
Attacker is a.

e Atnode D, compute max (yp(dy,a*(dy)), Wp(dz,a*(dz)), wp(ds)) and call the
optimal action d;. In our case, max (—29.67,—106.03,—20.08) = —20.08 and
the Nash defense d(;; is d3, that is, to choose the safe route.

3.5.2 Robustness of the Game Theoretic Solution

We consider now the robustness of the game theoretic solution. We simplify and
assume that the attack cost B = 10,000 is reasonably well known. Assume that d is
not that well known and we express this through a constraint d € [10000, 50000].
Similarly, suppose that ¢; € [0,3], e; € [1,6], c2 € [2,8] and e, € [10, 14]. We sample
randomly from these intervals 1000 times and repeat the procedure in Sect. 3.5.1.

The three defenses may be Nash, given the constraints. Indeed, based on the
above sampling scheme, we estimate that the probabilities of the three alternatives
being Nash are, respectively, 0.454, 0.236 and 0.31, therefore with no clear winner.
The maximum loss when we implement the defense df;;; = d3 is 19.08. This is
deemed large enough and we need to perform an ARA approach.
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3.5.3 ARA Approach

The problem faced by the Defender is described in the decision tree in Fig. 3.8.

8T

Ay
\
d
6,
/ \
D ) A
a
d3 \

Fig. 3.8: Decision tree for the Defender in the routing problem

The expected utilities of the first two alternatives have the form
vp(di) = pp(aldi)yp(di,a) + pp(ald;) yp(di,a),i=1,2.

Thus, we need to assess the attack probabilities p(a|d;) given the implemented
defense d;.

We illustrate the estimation of pp(a|d;). We assume that d, ¢y, e, cz,e; are uni-
formly distributed over the intervals described in Sect. 3.5.2. Thus, we assume that
d ~ 2/[10000, 500001, ¢y ~ % [0,3],e1 ~ % [1,6],cy ~ % [2,8] and e; ~ % [10, 14].
Then, we may use Algorithm 1 to estimate the required probability, where l//f; (dq,x)
designates the expected utility that the Attacker reaches, when the Defender imple-
ments d; and he implements attack x and the sampled parameters are d*, ¢, ¢, ek k.

In our particular case, with N = 10,000, we obtain p(a|d;) = 0.406 (and, conse-
quently, p(ald,) = 0.594). Similarly, p(a|d,) = 0.764 and p(a|d,) = 0.236. Then,
we have y(d)) = —14.7, y(dy) = —81.2 and y(d3) = —20.08 and the optimal ARA
defense d}j 4 is dy, which is different to d;.
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Algorithm 1: Estimating p(a|d;)

p=0;
for k < 1to N do
Sample dk,c’f,cé,e’f,eé;
if Wﬁ(dlaa) > Wﬁ(dlsﬁ) then

p=p+1;

plaldi) = p/N;

3.5.4 Robustness of the ARA Solution

We consider now the robustness of the ARA solution. For that, we consider classes
of beta distributions with the same support than the corresponding parameters. As an
example, for d, we shall assume that d ~ 3]0, 03] over the interval [10000, 50000],
with 0; € [0.5,1.5], 02 € [0.5,1.5]. Similarly, for the other parameters we use beta
distributions over the previous intervals, with parameters as in Table 3.3, where the
first parameter of the beta distribution is uniform over [LL,LU] and the second
parameter of the beta distribution is uniform over [UL, UU].

We sample 100 times from such distributions and repeat the procedure in
Sect. 3.5.3. Then, the estimated probabilities of each defense being optimal, in the
ARA sense, would be, respectively, p(d;) = 1, p(d,) = 0 and p(d3) = 0. Therefore,
d; seems clearly the most likely alternative for being optimal.

The regrets when we implement various solutions, are respectively, 0 for dj,
37.91 for d, and 8.54 for ds. Thus, the minimum regret defense is d;.

Table 3.3: Upper and lower limits for the parameters of the involved beta distribu-
tions

Parameter LL LU UL UU

c1 05150515
2 05150515
el 05150515
e 05150515

3.6 Discussion

Adversarial Risk Analysis is an emergent paradigm when supporting a decision
maker who faces adversaries and such that the consequences are random and depend
on the actions of all participating agents. The prevalent paradigm in this area is
Game Theory. In this chapter, we have provided a framework for robustness analysis
in this area.
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The approach we have followed is:

e Under common knowledge assumptions compute the game theoretic solution.
Perform a robust analysis for such solution. If it is stable, such solution may be
used with confidence and we do not require further analysis.

e Otherwise, perform an ARA. Undertake a robust analysis for the ARA solution.
If it is stable, the ARA solution may be used with confidence and the analysis
stops. Otherwise, gather more data and/or refine the relevant classes, eventually
declaring the robustness of the ARA solution. If not sufficient, move towards
next stage.

e Undertake a minimum regret (or other robust) concept.

We have illustrated it with two simple models, the sequential defend-attack and
the simultaneous defend-attack, but the ideas would extend to more complex ARA
models. Similarly, we have assumed that the attacker was maximising expected util-
ity but the ideas may be translated to other attacker rationalities, as in [21].

There are many other sensitivity analysis questions relevant in ARA. For ex-
ample, we mentioned above the recursive assessment required in the simultaneous
game, which may be expressed as follows, see [17]:

Algorithm 2: Recursive assessment required in the simultaneous game

for i < 1to oo do
Find IT},-1 (A’) by solving

A'| D' ~ argmax Y, { S Ui(a,s) Pi(S=s|d,a)| (D' =d)

acd  deg s€{0,1}
with (UL, P}) ~ F'

Find I, (D) by solving

D'|A™! ~ argmax Y, { Y, Up(d.s) Pb(S_AVld’a)} o=
d€9  qco s€{0,1}

with (U}, P}) ~ G

i=i+l;

This hierarchy would stop when the Defender lacks the information necessary to
assess the distribution F’ or G’ associated with the decision analysis of A’ and D',
respectively. At this point, the Defender would assign an unconditional probabil-
ity distribution over A’ or D/, respectively, without going deeper into the hierarchy,
summarizing all the information she might have through the direct assessment of
-1 (A?) or I,i(D'), as might correspond. Should she have no additional informa-
tion to do so, she could assign a noninformative distribution, see [3].
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However, climbing up one level in the hierarchy entails a lot of effort. We could
question whether this is worth it by using value of information types of computation.
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Chapter 4

From Statistical Decision Theory to Robust
Optimization: A Maximin Perspective
on Robust Decision-Making

Moshe Sniedovich

Abstract As attested by the prevalence of worst-case-based robustness analysis in
many fields, Wald’s maximin paradigm (circa 1940) plays a central role in the broad
area of decision-making under uncertainty. The objective of this chapter is there-
fore twofold. First, to examine the basic conceptual and modeling aspects of this
ostensibly intuitive, yet controversial paradigm, so as to clarify some of the issues
involved in its deployment in decision-making in the face of a non-probabilistic
uncertainty. Second, to elucidate the differences between this paradigm and other
maximin paradigms, such as those used in error analysis and game theory.

We thereby chart the journey of this paradigm from the field of statistical deci-
sion theory to that of modern robust optimization, highlighting its use in the latter,
as a tool for dealing with both local and global robustness. We also look briefly at
the relationship between probabilistic and worst-case-based robustness analysis.

4.1 Introduction

No more than a cursory examination of the literature on the employment of the
apparently immediately intelligible concept robustness in such diverse fields as
statistics, decision theory, control theory, optimization, economics, engineering,
machine learning, and so on, suffices to see that the decision-making models used
in these fields are often minimax, or maximin models.
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This is hardly surprising, considering that the robustness criterion that is often
invoked in these and other fields is based on a worst-case approach to uncertainty
and variability, and that maximin models provide the most obvious formal frame-
work for implementing such an approach in a decision-making environment.

That said, it ought to be emphasized straightaway that maximin models are used
for various other purposes as well. This means that it is important to be clear in what
way, if any, do maximin models used in worst-case-based robustness analysis differ
from maximin models that are used for other ends.

For this reason, we focus in this discussion not only on the mathematical structure
of generic maximin models, but also on their conceptual dimension, that is, on the
conceptual purport of the abstract mathematical objects comprising these models
and on the manner in which they hang together.

Our discussion is thus organized along the following lines. We begin with a brief
informal description of the decision problem that is of concern to us in this discus-
sion, and we explain how the maximin paradigm approaches such problems:

Section 4.2: The fundamental decision problem
Section 4.3: Wald’s maximin paradigm

Section 4.4: Maximin models at a glance
Section 4.5: The Wald factor

Next, we outline the kinds of robustness that are furnished by Wald-type maximin
models and we illustrate some of the issues associated with the use of such models:

Section 4.6: Robustness
Section 4.7: A perspective on robust decision-making

We conclude the discussion with some general comments on Wald’s maximin
paradigm, notably its role and place in robust-decision-making:

Section 4.8: Can Wald’s maximin paradigm save the world?

And so, our first task in charting the maximin paradigm’s journey from statis-
tical decision theory (circa 1940) to modern robust optimization is to examine the
fundamental decision problem that is at the heart of the discussion on this issue.

4.2 The Fundamental Decision Problem

Under consideration in this discussion are situations where the objective is to iden-
tify a decision d € D that is robust against variations in the state of the system,
s € S. By this we mean a decision d € D that performs “well” (relatively to other
decisions) with respect to given performance criteria, in the face of variations in
the value of s € S. We refer to set D as the decision space and to set S as the state
space. We further assume that the decision maker has full control over the value of
the decision variable d, but no control over the value of the state variable, s.
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Of particular interest to us here are situations where the state variable represents
uncertainty, in which case we assume that the value of s is selected from S by Nature
in response to the decision maker selecting a decision d from D. One of the impli-
cations of this is that the decision maker is ignorant as to which value of s will be
realized in response to his/her selection of a decision d from D.

To simplify matters, let us focus on two performance criteria, namely payoff and
feasibility. In this framework the payoffis assumed to be a numeric scalar such that
the larger it is the better; and feasibility amounts to satisfying constraints imposed on
the (decision, state) pairs. Satisfying these constraints is assumed to be preferable to
violating them. Thus, a robust decision is one that (relative to other decisions) yields
a large payoff and satisfies the constraints under consideration over a large subset of
the state space S.

In this framework then, the fundamental decision problem faced by the decision
maker can be stated informally as follows:

e Select a decision d € D that is robust against variations in the value of s over §
with respect to the payoffs and constraints under consideration such that (relative
to other decisions) it yields a large payoff and satisfies the constraints over a large
subset of S .

To render the notation and terminology simple, let O(d,s) denote the outcome
generated by decision d and state s, so in the above simple framework O(d,s) =
(p,c) where p denotes the payoff generated by d and s and c is an indicator stip-
ulating whether the pair (d,s) satisfies the performance constraints. Regarding the
latter, let V indicate that the constraints are satisfied and let x indicate that at least
one of the constraints is violated. To illustrate, consider the situation where d can
take three values, s can take five values, and the respective outcomes are as follows:

od,s) sV @& B @ 6

d) (55,%) (43,Vv) (18,V) (63,V) (37,%)
d® (38,v) (22,v) (11,Vv) (12,Vv) (10,V)
dB®)  (85,v) (83,x) (23,x) (72,V) (50, %)

A.1)

By inspection, decision d® performs very well with respect to the constraints
and decision d®) performs very well with respect to the payoff. The questions nat-
urally arising are therefore these:

e How do we measure robustness in this case?
e How do we determine the best (optimal) decision in this case?

Wald’s maximin paradigm offers a simple (some might argue simplistic) recipe
to deal with questions of this type: assume the worst!
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4.3 Wald’s Maximin Paradigm

Wald’s maximin paradigm exemplifies an approach to dealing with uncertainty and
variability that, however controversial, can arguably be described as natural and
intuitive: in the face of uncertainty . .. assume the worst!

Thus, putting this approach into action, the paradigm prescribes ranking dec-
isions according to their worst performance, whereupon the decision that yields
the best (over decisions) worst (over states) outcome, is deemed the best (optimal)
decision. In other words, the decision rule articulated by this paradigm can be stated
in plain language as follows [34, pp. 152-153]:

The maximin rule tells us to rank alternatives by their worst possible outcomes: we are to
adopt the alternative the worst outcome of which is superior to the worst outcome of the
others.

To illustrate its working, consider how the decision problem whose outcomes are
specified by (4.1) would be handled on grounds of this rule. Central to its imple-
mentation is the supposition of a tradeoff between payoffs and feasibility, where the
underlying idea is, as in optimization theory, that feasibility (constraints satisfac-
tion) takes precedence over payoff. This means that an outcome (p,V) is superior
to an outcome (p’, X ), regardless of the values of the payoffs p and p’. And in this
vein, the worst outcomes (WO) pertaining to the three decisions considered in (4.1)
are as indicated by the last column of the following table:

0dys) sV s & @ O wo

d)(55,x) (43,v) (18,v) (63,V) (37,x) (37,%) 42)
d? (38,v) (22,v) (11,v) (12,Vv) (10,Vv) (10,V) '
d®  (85,V) (83,%) (23,x) (72,V) (50,%) (23,%)

The implication is that, according to the precepts of Wald’s maximin paradigm,
the best decision (alternative) is d ) , the second-best decision is d (1) and the third-
best decision is d). The respective worst outcomes are (10, V), (37, x) and (23, x).

While “outcome tables”, such as those displayed above, give an immediate ill-
ustration of the basic ideas informing Wald’s maximin paradigm and the decision
rule it proposes, the full picture of this paradigm’s prowess is brought to light by
its operation in the framework of constrained optimization problems. So, to set the
scene for a discussion of this point, we formulate a generic maximin model, and two
of its instances, that are particularly suitable for this purpose.

As a prelude, we note that for simplicity of exposition, we assume that the opti-
mization problems under consideration are (unless explicitly stated otherwise) well-
behaved in the sense that they possess (global) optimal solutions. With this in mind,
let us examine three generic maximin models.
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4.4 Maximin Models at a Glance

Let f(d,s) denote the payoff generated by decision d € D and state s € S and let
constraints(d,s) denote the list of constraints imposed on (d, s) pairs. Formally, we
can regard f as a real-valued function on D X S. Since in many applications only a
subset of S is relevant with regard to a particular decision, it is instructive to consider
the case where each decision has its own set of states.

Hence, let S(d) denote the set of all the possible/plausible values of s that can
be generated by decision d and let S := UyepS(d). Then, as feasibility (constraints
satisfaction) has priority over payoffs, an implementation of the maximin decision
rule would yield the following maximin model:

= i d,s): traints(d,s),Vs € S(d)}. 4.3
7 i=max min {f(d,s) : constraints(d,s),Vs € S(d) } (4.3)

Note that in this model the Vs € S(d) clause is a worst-case requirement which
gives expression to the priority of feasibility over payoffs. Thus, granted this prior-
ity, a decision d’ € D that satisfies the constraints for all s € §(d’) is strictly supe-
rior to any decision d € D that violates (at least one of) these constraints for some
s € S(d), regardless of the payoffs generated by d’ and d.

I call maximin models of this type Full Monty maximin models for the obvious
reason that they seek robustness with respect to both payoff and constraints. The
former is represented by the mingegy) operation and the latter by the Vs € § (d)
requirement.

Now, consider the instance of this model that is characterized by the property that
the payoff f(d,s) is independent of s. In this case, the payoff generated by decision
d is denoted f(d) rather than f(d,s). Note that in this case the operation mingcg(y)
is superfluous in (4.3). Hence, this instance of (4.3) takes this form:

= max {f(d) : constraints(d,s),Vs € S(d)}. (4.4)

I call maximin models of this type state-free-payoff maximin models to under-
score the fact that in these models payoffs are independent of the state variable, and
therefore robustness against variations in the value of s is sought only with respect
to the constraints.

And, to complete this sketch, consider what to many readers probably epitomizes
the maximin paradigm, namely the generic maximin model that is devoid of explicit
constraints on (d, s) pairs. This is the instance of (4.3) where the list constraints(d, s)
is empty. This model has this simple form:

= i d,s). 4.5
T A “

I call maximin models of this type textbook maximin models. They represents
situations where robustness is sought only with respect to payoffs.
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Having said all that, it should be emphasized that, from a modeling point of view,
these three generic maximin models are interchangeable. That is, each one of these
models can be reformulated so as to assume the format of anyone of the other two.
For instance, the generic Full Monty maximin model can be rewritten as follows:

7= max {t:t< f(d,s),constraints(d,s),Vs € S(d)} (4.6)
deDgeR

where R denotes the real-line. Clearly, this is a state-free-payoff maximin model.

4.4.1 Security Levels

In the idiom of decision theory, the worst payoff pertaining to decision d € D,
yielded by the inner minimization problem in a maximin model, is termed security
level. Thus, the security level of decision d is equal to the smallest payoff pertaining
to this decision, assuming that the decision satisfies the worst-case constraints, if
any. Hence, in the context of fextbook maximin models the security level of decision
d is defined as follows:

SL(d):= min f(d,s), d €D. 4.7
seS(d)

In cases where there are explicit constraints on (d,s) pairs, let D@ denote the
subset of D whose elements satisfy the constraints for all the states pertaining to the
respective decision, namely define

DY) :={d € D: constraints(d,s),V¥s € S(d)}. 4.8)

Observe that if there are no explicit constraints on the (d,s) pairs, as in the case
of the textbook model, then D@ = p, Hence, in the context of Full Monty maximin
models, the security level of decision d € D is defined as follows:

min f(d,s) , d €D
SL(d) := { se5(d) ,deD. (4.9)
inadmissible , d ¢ D@

Needless to say, if all the decisions are inadmissible, namely if D% is empty, then
the maximin problem has no feasible, let alone optimal, solution. Also, observe that
if D = D then the constraints are superfluous and therefore can be ignored. For
this reason we focus on cases where D@ is a non-empty proper subset of D.

Note that in the context of state-free-payoff models, the expression for SL(d)
simplifies to

(4.10)

SL(d) := 74) , deD?
" |inadmissible , d ¢ D@,
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In all these cases the maximin models can be written as follows:

Z" :=max SL(d). 4.11)
deD
In this setting, the operation max,cp ignores inadmissible decisions. So, if all
the decisions are inadmissible, the problem has no optimal solution. Hence, the
formulation of the maximin rule can be fine-tuned as follows:

Maximin rule:

Rank admissible decisions according to their security level: the larger the security
level the better. Hence, select an admissible decision whose security level is the
largest.

4.4.2 Optimal Solutions

To be clear on what constitutes an optimal solution to a maximin problem of the
type examined in this chapter, observe that such a solution is a pair (d*,s*) such
that * € D\9), s* € S(d*) and
f(d*,s*) = SL(d*) = max SL(d). (4.12)
deD

Note also that in the case of state-free-payoff maximin models, all the elements
of S(d*) are optimal with respect to d*.

And as a final note, to avoid becoming bogged down by technical issues related
to the existence of optimal solutions for maximin problems, this discussion is pred-
icated on the supposition that the maximin problems under consideration have
optimal solutions.

4.4.3 A Constrained Optimization Perspective

As we saw above, Full Monty and textbook maximin models can be written as
state-free-payoff maximin models. The question therefore arising is: what renders
maximin problems different from “conventional” constrained optimization prob-
lems, namely problems seeking the optimization of a real-valued objective function
subject to a finite list of constraints on the decision variable. To address this issue,
let us juxtapose the following two generic optimization problems against each other:

Maximization problem State-free-payoff maximin problem

max {f(d) : constraints(d)} max {f(d) : constraints(d,s),Vs € S(d)} (4.13)
deD deD

where constraints(d) is a list of constraints imposed on the decision variable d
(in addition to the domain constraint d € D).
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Clearly, the two problems are similar in that both require the maximization of a
real-valued objective function subject to constraints imposed on the decision vari-
able. The difference between them is in the structures of their respective constraints.
Thus, while the constraints of the maximization problem apply only to the decision
variable d, the constraints of the state-free-payoff maximin model apply to (d,s)
pairs, what is more, they are required to be satisfied for all s € S(d).

The upshot of this is that in cases where the sets S(d),d € D consist of infi-
nitely many elements, the state-free-payoff maximin problem has infinitely many
constraints. Namely, the maximin problem is a semi-infinite optimization problem
[20, 43]. Furthermore, given the possible interaction between d and s, keep in mind
that constraints that are say linear with respect to d and linear with respect to s,
may not necessarily be linear with respect to (d,s). This means that incorporating
a state variable in a system of linear constraints imposed on the decision variable
d may render the constraints nonlinear (with respect to (d,s) pairs) in the context
of the maximin problem. Similarly, incorporating a state variable in a system of say
convex constraints on the decision variable d, may render the constraints non-convex
(with respect to (d,s) pairs) in the context of the maximin problem.

For these reasons, the state-free-payoff maximin counterpart of a conventional
optimization problem is often far more difficult to solve than the conventional opti-
mization problem.

4.5 The Wald Factor

The fact that the maximin models considered in this chapter are discussed under the
rubric Wald’s maximin paradigm does not in any way imply that the maximin con-
cept, principle, or paradigm, originated in the work of the mathematician Abraham
Wald (1902-1951). Clearly, this is not the case, even if the proliferation, since the
1940s, in the use of maximin and minimax models in applied mathematics and other
fields, might give the impression that maximin, as a concept, is a recent invention.
The fact of the matter is that its use can be traced back at least to error analysis,
namely, at least to Leonhard Euler (1707-1783). Thus, for an idea of the distant roots
of these models, consider for instance the article Origin of the theory of errors by
Sheynin [38] who argues that Johann Heinrich Lambert (1728—1777) “.. . should be
given precedence over Gauss as the originator of the theory of errors ...” because,
as [38, p. 1004] points out:

(f) An enunciation of the “minimax” principle (minimization of the maximum residual error
in geodetic adjustments—the minimum being sought among all possible solutions . ... But
Lambert confessed that he did not know how to use this principle “in a general manner,
without many devious ways” (auf eine allgemeine Art, und ohne viele Umwege). The use
of this principle in a rudimentary form for solving a redundant system of linear algebraic
equations should be credited to Euler. ...
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In a nutshell, the maximin paradigm under discussion here is the one that was
first introduced by the mathematician Abraham Wald (1902-1950) into statistical
decision theory in 1939, from whence it entered decision theory in the 1950s, and
subsequently many other disciplines, including robust decision-making and robust
optimization.

To be precise, it is the paradigm that was introduced in the seminal article
Contributions to the theory of statistical estimation and testing hypothesis where

[46, p. 305] argued as follows (emphasis added):

There exist in general many systems M, which are admissible relative to the weight function
given. The question arises as to how can we distinguish among them. Denote by ry,, the
maximum of the risk function corresponding to the system M; of regions and to the given
weight function. If we do not take into consideration a priori probabilities of 6, then it
seems reasonable to choose that system M, for which ry;; becomes minimum.

It therefore must not be conflated with the classical maximin paradigm of zero-
sum 2-person games which became popular with the publication of [45] seminal
book Theory of Games and Economic Behavior.

The importance of Wald’s paradigm was immediately recognized, as indeed
attested, for example, by Morgenstern [28, pp. 355-356]:

In practical and scientific affairs there is always need to decide upon courses of action, as
a rule on the basis of incomplete information. This problem is one of whether to accept or
to reject a particular course, or, more generally, to find the optimum course from a wider
set of possibilities, where a wrong choice results in a loss to be suffered. The best that
can be hoped for is to minimize the maximum loss. This principle of action is known as
the minimax principle. Wald introduced it into statistics and has given it basic importance
for the theory of statistical decision functions. It has been claimed that “it is the only rule
of comparable generality proposed since [that of] Bayes’ was published in 1763 The
minimax principle is central in the theory of games, and, when that theory was published
in its present form in 1944, it attracted Wald immediately. In various papers he set forth
the applicability of the theory of two-person zero-sum games to the theory of statistics and
extended certain game theoretical results, notably generalizing the main theorem to the case
of a denumerably infinite set of strategies.

3Savage [36, p. 59]

For the record, though, it is important to note that no reference whatsoever is
made in [46] to game theory, and the idea of minimizing the maximum risk adv-
anced in this article is not based on any game theoretic concept, or argument. Only 6
years later, in the article Statistical decision functions which minimize the maximum
risk, did [47] discuss the connection between the model proposed in [46] and zero-
sum, 2-person games.

The central difference between Wald-type maximin models and maximin models
associated with zero-sum, 2-person games is that the former do not postulate any
equilibrium conditions. Therefore, a solution to a Wald-type maximin problem is
not required to be a saddle point. To illustrate, consider the following simple case
consisting of 3 decisions, 5 states, and the payoffs are as follows:
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fd,s) s @ B @& & g
dV 55 43 48 63 37 37
d¥ 8 92 71 10 20 10
d® 85 83 47 72 50 47

(4.14)

The SL column contains the security levels pertaining to the three decisions
where, as we saw above, in the maximin context, the assumption is that the larger
the payoff the better.

Thus, from a Wald’s maximin paradigm standpoint, the optimal solution to the
maximin problem defined by this payoff table is (d*,s*) = (d®),s(3)), yielding a
payoff of 47. But, from a zero-sum, 2-person game standpoint, this pair is not in
equilibrium, that is (d3),s()) is not a saddle point: despite it being the smallest
element in its row, it is not the largest element in its column. Hence, (d(3) , s(3)) does
not constitute a solution to the zero-sum, 2-person maximin game defined by this
payoff table. But more than that, this game has no saddle point, it therefore has no
optimal solution that is a pure strategy.

Conceptually, Wald-type maximin and minimax models can be regarded as
games between two players: the decision maker and Nature which embodies the
decision maker’s opponent. Such a game consists of the following moves:

Step 1. The decision maker moves first by selecting a decision d € D.
Step 2. In response, Nature selects a state s € S(d).
Step 3. Then, an outcome O(d, s) is realized.

That is, in this game the decision maker, who “plays” first, seeks the best out-
come, whereas Nature who “plays” second, seeks the worst outcome. So if the
decision maker selects say decision d’ € D, then Nature will select a state s’ € S(d’)
that yields the worst outcome O(d’,s’) over all s € S(d’). In symbols,

Z" 1= best worst O(d, s) (4.15)
deD seS(d)

where the operation best;-p determines the best outcome over the set of decisions
available to the decision maker, and the operation worstcg(;) determines the worst
outcome over the set of states associated with decision d.

In cases where the outcomes are expressed in terms of payoffs and constraints,
as done in Sect. 4.2, using the term pessimization as the antonym of optimization
(see [4, 7, 12, 24, 30, 31]), enables formulating the following abstract Wald-type
decision-making model:

Z":=opt pes {f(d,s): constraints(d,s),Vs € S(d)} (4.16)
deD seS(d)

where “pes” denotes the converse of “opt”, namely

opt=min <¢— pes= max 4.17)
opt=max <—> pes=min. (4.18)
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Observe that the models specified by (4.15) and (4.16) encompass both minimax
(opt=min) and maximin (opt=max) models.

In view of what we have seen thus far, we can now sum up the essential features
that distinguish Wald-type maximin/minimax models from other minimax/maximin
models. In this discussion then the term Wald-type designates maximin/minimax
models where:

e The state variable s represents ‘“non-probabilistic” uncertainty.
e The decision maker “plays” first.
e Nature’s sole goal is to inflict the greatest possible harm on the decision maker.

The phrase “non-probabilistic” is designed to indicate that not only is the unc-
ertainty in the true value of the state variable s not quantified probabilistically, no
measure of “likelihood”, or “chance”, or “plausibility”, or “belief” is associated
with s. The assumption is that all that is known about the (unknown) true value of
s is that it is an element of S(d). Also note that the notation s € S(d) implies that
the uncertainty in the true value of s may be affected by the decision d € D made by
the decision maker in the sense that the set of possible/plausible values of this true
value may depend on d.

As for Nature’s hostile antagonistic stance towards the decision maker, inter-
estingly the upshot of this is that it effectively eliminates the uncertainty as to the
game’s outcome. Namely, if the decision maker selects decision d € D then in the
context of (4.16) there is no uncertainty whatsoever regarding the game’s outcome:
it is certain to be equal to

SL(d):= pes {f(d,s): constraints(d,s),¥s € S(d)} (4.19)
s€S(d)

which is the security level of decision d.
The implication is that it is important to distinguish between the following two
cases:

pes f(d,s) , constraints(d,s),¥s € S(d)
SL(d) = { s€8(d) ,deD. (4.20)
inadmissible , otherwise

This means that the generic model specified by (4.16) can be written as follows:

Z":= opt SL(d) (4.21)
deD

assuming that here the operation opt,, ignores inadmissible decisions.

And to sum it all up, Wald-type models are maximin and minimax models where
the state variable, s, represents uncertainty, namely it is a parameter of the decision-
making model whose true value is uncertain.
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4.6 Robustness

Before we proceed to examine the kind of robustness that Wald-type maximin mod-
els are concerned with, let us first examine the meaning of the concept “robust-
ness” by considering, albeit very briefly, how this concept functions in a number of
disciples.

A quick scan of publications from various fields suggest that although the concept
“robustness” may be given specific definitions in different disciplines to reflect their
specific concerns and objectives, in essence the meanings that the various definitions
seek to convey build on the purport of the concept “robustness” that is familiar to us
from ordinary language. Thus, definitions of “robustness” from various disciplines

LEINNT3

tend to explain “robustness” in terms of “an ability to withstand ...”, “resilience
to ...”, “insensitivity to ...”, and so on. And to illustrate, consider the definitions
articulated in the following publications.

According to [25, p. 126], the Eurocode (EN 1991-7-1 Clause 1.5.14) defines

robustness of structures as follows:

Robustness is the ability of a structure to withstand events like fire, explosions, impact or
the consequences of human error, without being damaged to an extent disproportionate to
the original cause.

And according to [33, p. 183]:

Robustness as a mathematical concept was introduced in a short paper by Andronov and
Pontriagin' and developed in a later book by Andronov et al.2 The original definition was
of the local type, i.e. it characterized variations in the behaviour of a dynamic system under
small variations in its velocity field. The robustness was interpreted both as a qualitative,
geometrical property (invariance of a topological structure) and as a qualitative, analytical
property (uniform continuity of solutions depending on a parameter characterizing the small
variations).

[1] = Andronov and Pontriagin [1]; [2] = Andronov et al. [2]

And the synopsis of the article Permutation theory in the derivation of robust
criteria and the study of departures from assumption [9, p. 1] asserts the following:

In the practical circumstances in which statistical procedures are applied, little is usually
known of the validity of assumptions such as normality of the error distribution. Procedures
are required which are “robust” (insensitive to changes in extraneous factors not under test)
as well as powerful (sensitive to specific factors under test). Permutation theory, which
provides one method for deriving robust criteria, is discussed and applied to the problem of
comparing variances.

We call attention to the fact that although our main concern in this chapter is
with worst-case-based robustness, it is important to keep in mind that the latter is
rivaled by probabilistic robustness as indicated in the article Probabilistic robust-
ness analysis—risks, complexity, and algorithms [11, p. 2693] where we read the
following:
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In recent years, a number of researchers have proposed probabilistic control methods for
overcoming the computational complexity and conservatism of the deterministic worst-case
robust control framework ...

The philosophy of probabilistic control theory is to sacrifice cases of extreme uncertainty.
Such a paradigm has led to the concept of confidence degradation function (originated by
Barmish, Lagoa, and Tempo [2]), which has been demonstrated to be extremely powerful
for the robustness analysis of uncertain systems.

[2] = Barmish et al. [3]

And with this in mind, let us now examine the robustness that is sought by Wald-
type maximin models.

4.6.1 Worst-Case-Based Robustness

As we noted already, Wald’s worst-case-based maximin paradigm exemplifies a
rather grim, indeed pessimistic view of uncertainty, which however controversial,
can arguably be described as natural and intuitive. Indeed, one might further argue
that such an approach underlies time old adages such as when in doubt assume the
worst! and hope for the best but plan for the worst! And that it is most certainly
reflected in the following stanza from William Shakespeare’s Julius Caesar (Act 5
Scene 1) which serves as an epigraph to Rustem and Howe’s [35] book Algorithms
for Worst-case Design and Applications to Risk Management that is dedicated to
“those who have suffered the worst case”:

The gods to-day stand friendly, that we may,
Lovers in peace, lead on our days to age!

But, since the affairs of men rest still incertain
Let’s reason with the worst that may befall.

To be sure, one might counter that, for all our claimed inclination to “reason with
the worst that may befall”, experience with natural and man-made disasters shows
time and again, that individuals, organizations, societies and nations are very often
ill-prepared for events that are far less extreme than worst-case scenarios such as
say the so-called 100-year flood—Iet alone Noah’s flood!

This, in large part, is due to the fact that one of the most vexing difficulties posed
by a worst-case-based approach to uncertainty is that its implementation can come
at an exorbitant cost and may demand radical changes in our way of life.

We discuss these and related issues associated with the implementation of worst-
case-based robustness models in the ensuing sections. Prior to that, let us clarify
in broad terms how Wald’s maximin paradigm, as an exponent, indeed the ultimate
exponent, of a worst-case-based approach to uncertainty, quantifies the intuitive con-
cept “robustness”.

Observe then that from the standpoint of Wald’s maximin paradigm, the robust-
ness of decision d is a measure of how well or how poorly does it perform if the
worst state in S(d) is realized. This worst-case performance is quantified by the
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security level of decision d, namely by SL(d), defined in Sect. 4.4.1. In other words,
in the framework of Wald-type maximin models, the robustness of decision d against
the uncertainty in the true value of s is equal to the security level of decision d. In
this framework, the larger the security level the better, hence the optimal decision is
that whose security level is the largest.

In parallel, in the framework of minimax models, the smaller the security level
the better, hence the optimal decision is that whose security level is the smallest.
Hence, it is only natural that, in the context of minimax models, the security level of
decision d would be regarded as a measure of its fragility rather than its robustness.
Minimax models thus rank decisions according to their fragility: the smaller the
fragility the better.

In the next subsection we take up the meaning and practical aspects of the
term worst in the framework of worst-case analysis including Wald-type maximin
models.

4.6.2 How Bad Should Worst Be?

One of the precepts guiding the analysis of a decision’s robustness against uncer-
tainty in the true value of a parameter, is that the values of the parameter that are
considered by the analysis for this purpose ought to give a sound representation of
the parameter’s variability. In the context of a worst-case analysis, this means of
course that the values of the parameter that are examined by the analysis ought to
give a proper representation of the “worst value” of the parameter.

But this, it would seem, is “easier said than done” because, as pointed out by
Hart et al. [21, p. 18], the whole question is:

How worst is “worst-case”? Is the scenario literally the very worst (possible or imaginable?)
case. Or is it a “realistic” (how realistic?) worst case. Or does it represent some known
centile (95™, 99t ?) of a distribution of cases?

To appreciate how this issue comes into play in the context of Wald-type maximin
models, keep in mind that, as explained in Sect. 4.4, S(d) denotes the set of all the
possible/plausible values of s that can be generated by decision d. Therefore, the
question as to how “realistic” is the worst-case analysis conducted by Wald-type
maximin models is intimately connected to the question of how “realistic” are the
sets S(d),d € D.

And this question, one need hardly point out, goes straight to the centrally imp-
ortant issue of mathematical modeling in general, and maximin modeling in partic-
ular. The point is that an answer to this question would in the first place depend on
the analyst, namely on his/her insights, experience and skills in the art of maximin
modeling, not the paradigm itself. Thus, in practice, it would all come down to the
analyst ensuring that the sets S(d),d € D are quantified properly.

We address this issue in Sect.4.7.2. In the next section we take up a related
matter, which is the ability of Wald’s maximin paradigm to deal with both local and
global robustness.
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4.6.3 Global vs Local Robustness

There are many situations where it is convenient and/or advisable and/or necessary,
to limit the robustness analysis to a relatively small neighborhood of the uncertainty
space under consideration. Hence the distinction between global and local robust-
ness.

Informally, this distinction entails that a global robustness analysis is one that
is conducted over the entire uncertainty space under consideration, whereas a local
robustness analysis is one that is conducted over a relatively small neighborhood
of the uncertainty space. Clearly, this distinction is reminiscent of the familiar dis-
tinction made in optimization theory between local and global optimization. It also
reminds us of the distinctions between a local and a global anesthetic, a local and a
global economy, local and global weather, local and global news, etc.

From a decision-making point of view, this distinction means that the choice of
a robustness model, namely global versus local, should be compatible with, among
other things, the type of uncertainty that we face, or postulate.

To explain this point, consider the situation depicted in Fig. 4.1, where the large
rectangle represents the uncertainty space under consideration, denoted S, and the
small white circle, denoted %, represents a neighborhood of S.

S

Fig. 4.1: An example of an uncertainty space S and one of its neighborhoods, %

In this case, a global robustness analysis is one that is conducted over the ent-
ire uncertainty space S. In contrast, a robustness analysis that is conducted over a
relatively small neighborhood of S, such as 4, is local.

From a robustness perspective, the point to note about the distinction between
S and & is that £ is not merely a small subset of S, it is a small neighborhood
of S. The difference between “a small subset of”” and “a small neighborhood of” is
profound because by its very nature a small neighborhood of a large set gives only
a local picture of the large set. On the other hand, in the context of Fig. 4.1, a small
subset of S, say a dense grid over S, can give a very good indication of the variability
of s over S.
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Informally then, a global robustness analysis would be appropriate when we seek
robustness against variations in the value of s over S, whereas a local robustness
analysis would be appropriate when we seek robustness against variations in the
value of s over a small neighborhood of S, say the neighborhood Z depicted in
Fig.4.1.

And the implication is that as § denotes the set of all possible/plausible values
of s, the use of a local robustness model needs to be justified. That is, we need to
explain and justify on what grounds do we exclude from the robustness analysis
all the possible/plausible values of s that are outside the neighborhood over which
the local robustness analysis is conducted. Barring such a justification, the local
analysis might be exposed to the valid criticism of lacking any logical foundation
(see Sect. 4.7.3).

And with this as background, let us now examine how the distinction between
a local and a global analysis is manifested in worst-case-based robustness models,
notably maximin models.

In fact our objective is to make it clear that maximin models can, as a matter of
principle, perform both local and global robustness analyses. To this end we need
to recast, indeed extend, the definitions given to the sets S(d),d € S(d). Keeping in
mind then that in Sect. 4.4 we let S(d) denote the set of all the possible/plausible
values of s that are generated by decision d, we now distinguish between three sets
associated with decision d, namely:

S(d) : = set of all possible/plausible states generated by decision d. (4.22)

S(d) : = subset of S(d) used in the robustness analysis of decisiond.  (4.23)
S(d)\ S(d) (complement of S(d)). (4.24)

=
Sy

~—
[

Note that, by definition, the robustness analysis of decision d is confined to set
S(d), meaning that it ignores all the states in S(d).

Now consider the maximin model obtained from (4.3) by replacing S(d) with
S(d), namely consider this maximin model:

Z":=max min {f(d,s): constraints(d,s),Vs € S(d)}. (4.25)
deD seS(d)

The implication is that in view of the above, if S(d) = S(d),Vd € D, then this
maximin model is a model of global robustness. And if for every d € D the set S(d)
is a relatively small neighborhood of S(d), then this maximin model is a model of
local robustness. To illustrate, consider the following robustness model:

p(qli) := max {o : stab-con(q,u),Yu e U(et,ii)} , g€ O (4.26)
o>

where Q is some given set, U (¢, i) is a neighborhood of size o around i associated
with some uncertainty space %, ii € % is a nominal value of u, and stab-con(q, u)
is a list of constraints on (g, u) pairs. We refer to p(q|i) as the radius of stability of
q at i.



4 A Maximin Perspective on Robust Decision-Making 75

In words: the radius of stability of g at i, denoted p(g|i), is equal to the size,
o, of the largest neighborhood U (o, %) around i all whose elements satisfy the
stability constraints listed in stab-con(g,u). This is illustrated in Fig. 4.2 where the
large rectangle represents the uncertainty set %/, the gray area represents the values
of u that violate the stability constraints, and the circles centered at ii represents
neighborhoods around .

Thus, the radius of stability of system g at i is equal to the radius of the largest
circle centered at # that is contained in the white area.

w

Region of instability

Region of stability

Fig. 4.2: Radius of stability of system g at i

Such models are used extensively in many fields to model the local stability
and/or robustness of systems to perturbations in a nominal value of a parameter
[23, 26, 50, 51].

In this context, seeking the most robust system entails seeking a system whose
radius of stability is the largest, which amounts to solving this maximin problem:

p (i) : = max max {c : stab-con(q,u),Vu € U(a.,ii)} (4.27)
qeQ o>0
= max {o:stab-con(q,u),Yu € U(o,ii)}. (4.28)
q€0,0>0

Observe then that radius of stability models are (local) maximin models. Specif-
ically, the model specified by (4.26) is that instance of the maximin model that is
specified by (4.25) yielded by setting s = u; d = o; D = [0,0); S(d) = U (@, ii); and
constraints(d,s) = stab-con(q, u).

The global counterpart of the radius of stability model specified in (4.26) is
obtained by replacing the neighborhood U (o, %) by a subset of the uncertainty space
% and replacing o by a measure of the size of such a subset. The end result is this
maximin model:
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w(qlit) := max {#(V) : stab-con(q,u),Yu eV}, gecQ (4.29)

where #(V') denotes the “size” of set V. For example, if V consists of finitely many
elements, we can let #(V) denote the cardinality of V.

In words, according to (4.29), the (global) robustness of g, denoted w(q|i), is
equal to the size of the largest subset of %/ all whose elements satisfy the stability
constraints.

In the idiom of the maximin paradigm, u denotes the state variable in this model,
V the decision variable, and #(V) the payoff generated by V and u. Clearly, this is a
state-free-payoff maximin model.

The situation depicted in Fig. 4.3 illustrates the difference between the radius of
stability model and its global counterpart.

u | u
Region of stability of system ¢’ Region of instability of system g"

Fig. 4.3: Local and global robustness of two systems: ¢’ and ¢”. The white areas
represent regions of stability, the gray areas represent regions of instability and
the circles represent the largest neighborhoods around i that are contained in the
respective regions of stability

The idea is then, as illustrated in Fig. 4.3, that if we measure the size of subsets of
% by the “area” they take up, then the global robustness of a system would be equal
to the size of the area covered by its region of stability. In this case, the robustness
of the system would be equal to the size of the white area representing the region
of stability of the system. Hence, according to this measure of robustness, in the
context of Fig. 4.3, system ¢’ is much more robust then system ¢”. In contrast, at
ii, the radius of stability of system ¢’ is much smaller than the radius of stability of
system ¢”. Hence, the implication is that, globally, decision d’ is more robust than
decision d” whereas, locally at i, decision d” is more robust than d’.

The point we want to make then is that, given its innate ability to provide a variety
of measures of robustness, Wald’s maximin paradigm proves an indispensable tool
for robust decision-making.
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4.7 A Robust Decision-Making Perspective

Before we take up the topic of robust decision-making, it is important to make it
abundantly clear that in this discussion, the phrase robust decision-making refers
to the wide-ranging, highly active multidisciplinary field of expertise that is con-
cerned with a variety of theoretical, technical, and conceptual issues pertaining to
robust decision-making, rather than to the specific methodology bearing this name
that was developed at the Rand Corporation (see https://en.wikipedia.org/wiki/Robust
decision-making).

Thus, our main thrust in this section is to examine the role of the worst-case
approach to uncertainty, more specifically that of Wald’s maximin paradigm, as a
tool of thought and as a practical instrument used in robust decision-making, notably
for situations subject to a non-probabilistic uncertainty.

In fact, in certain disciplines, such as robust optimization, this paradigm domi-
nates the scene. For this reason, it is instructive to examine how Wald’s maximin
paradigm came to play this role in this discipline.

4.7.1 Robust Optimization

One of the thorniest difficulties afflicting “conventional” optimization problems is
that optimal solutions to such problems often prove sensitive, sometimes highly sen-
sitive, to perturbations in the values of the problems’ parameters. This fact renders
the identification of “robust solutions” extremely important in optimization theory.
To examine then how this issue arises in this field, let us consider the following
abstract constrained optimization problem:

ProblemP: w*:= max {g(x) : constraints(x)} (4.30)
X€

where g is a real-valued function on some set X and constraints(x) denotes a list of
constraints on the decision variable x. We refer to g as the objective function. Let X*
denote the set of optimal solutions to this problem.

Now, suppose that both the objective function g and the constraints under con-
sideration depend on a parameter, call it u, and let % denotes the set of all the
values of u under consideration. We can thus deduce from Problem P the following
parametric optimization problem:

Problem P(u) : w*(u) := max {g(x;u) : constraints(x;u)} , ue % (4.31)
xe
where the notation (x;u) is used to highlight the fact that u is a parameter of the
object under consideration. Let X*(u) denote the set of optimal solutions to this
problem for the specified value of u. Note that for each u € %, Problem P(u) is a
conventional constrained optimization problem.
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Informally, a robust solution to this parametric optimization problem is a solution
x € X that performs “well” (relatively to other solutions) with respect to the objective
function and the constraints, against the variations in the value of parameter u. The
following definition is therefore self-evident:

Definition. An element of X, say x*, is said to be a SUPER-ROBUST solution to the
parametric problem (4.31) iff x* € X*(u),Yu € %, that is iff x* is an optimal solution
to Problem P(u) forallu € % .

There are of course situations where super-robust solutions exist, namely sit-
uations where the optimal solutions recovered for Problem P prove insensitive to
the variation in the optimization problem’s parameters. But such situations are the
exception, rather than the rule.

The question therefore arising is this: what constitutes a “robust solution” to the
parametric optimization problem specified by (4.31) in cases where no super-robust
solutions exist?

If we adopt a worst-case approach to the variability of u over % , then the answer
to this question is as follows:

e A robust solution to the above parametric problem should satisfy the constraints
under consideration for the worst u in %/ (whatever it is), hence for all u € % .

e A robust solution to this parametric problem should yield the best (largest over
all x € X satisfying the worst-case constraints) worst (smallest over u € %) value
of g(x;u).

In short, a worst-case approach to the variability of u over 7 yields the following
maximin counterpart for the above parametric problem:

Problem RC:  w("®) := max min {g(x;u) : constraints(x;u),Yu e %}. (4.32)

x€X uc¥

In the literature on robust optimization (e.g. Ben-Tal et al. [5]) this maximin prob-
lem is called the robust counterpart problem. Any value of x € X that is an optimal
solution to this maximin problem is regarded a robust solution to the parametric
problem (4.31).

The idea of incorporating the maximin paradigm in the formulation of optimiza-
tion problems so as to obtain solutions that are robust against variations in the val-
ues of the problem’s parameters, goes back to at least the 1960s (e.g., Dorato and
Drenick [15]). The phrase robust optimization became popular in the mid 1990s
(e.g., Mulvey et al. [29]).

Interestingly, although in the broad literature on robust optimization the phrase
robust optimization does not refer exclusively to maximin-based robustness (e.g.,
Mulvey et al. [29]), some scholars hold that robust optimization effectively boils
down to the solution of maximin problems (e.g., Bertsimas et al. [8, pp. 465-466]
and Ben-Tal et al. [7, p. 628]). This position, one need hardly point out, gives ex-
pression to the prominent role that the maximin paradigm has come to play in robust
optimization in recent years.
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In a nutshell, the element distinguishing the field of robust optimization from
other fields where maximin models are used to obtain robust solutions to problems,
is that in robust optimization the focus is on classical mathematical programming
problems such as linear programming problems, quadratic programming problems,
dynamic programming problems, and so on. For an overview of recent advances in
robust optimization see [18].

4.7.2 Conservatism

For obvious reasons, decisions that are based on worst-case-analysis, compared to
decisions that are based on other approaches to uncertainty, may be deemed conser-
vative. Indeed, they might even be labeled paranoid. Because, given our individual
and common experience, it seems safe to say that, while “worst-case scenarios” do
occur, these would typically be “rare events”. Clearly then, the worst-case approach
to uncertainty is not based on evidence that the “worst-case scenario” is a good
“estimate”, or a good “approximation”, of the “true” (unknown) scenario.

The question is then how should we understand the attribute “conservative” as it
is applied to worst-case-analysis-based decisions considering the type of outcomes
they yield.

The answer to that seems to be that this is very much a problem-oriented issue.
The question as to whether a decision is “conservative” may depends on the problem
one deals with, on the context in which it is dealt with, on the objectives one has,
and so on.

The point to keep in mind here is that a decision that fares satisfactorily under a
“worst-case scenario” would not necessarily fare satisfactorily under more “realis-
tic” scenarios, particularly in the sense that it can turn out to be far too costly should
a “realistic”, rather than “worst-case scenario”, be realized. Such a decision may
well be deemed “conservative”.

But, on the other hand, in cases where, for whatever reasons, the declared obj-
ective of an investigation, a project, and so on, is to identify decisions that per-
form well against “worst-case scenarios”, then such decisions will obviously not be
judged “conservative” at all.

And, as pointed out by Gabrel et al. [18, p. 472], the same applies for worst-case-
based robustness:

When uncertainty affects the feasibility of a solution, robust optimization seeks to obtain a
solution that will be feasible for any realization taken by the unknown coefficients; how-
ever, complete protection from adverse realizations often comes at the expense of a severe
deterioration in the objective. This extreme approach can be justified in some engineering
applications of robustness, such as robust control theory, but is less advisable in opera-
tions research, where adverse events such as low customer demand do not produce the
high-profile repercussions that engineering failures—such as a doomed satellite launch or a
destroyed unmanned robot—can have.
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As for the maximin paradigm, the charge of “conservatism’ has been leveled at it
ever since its introduction into decision theory in the 1950s. And to illustrate what is
meant by this, consider the maximin problem associated with the following payoff
table:

db 2 2 2 2 21 1 (4.33)
d? 999 999 999 999 999 (.99 0.99

In this case, the security level (SL) of decision d!) is larger than the security
level of decision d(!), hence the maximin paradigm, deems decision d 1) superior to
(more robust than) decision d @),

However, much as decision d(!) performs better than decision d (2) under the
worst-case scenario (state), decision d(?) performs far better than decision d (1) under
all other scenarios (states).

As we pointed out already, the verdict as to whether or not decisions yielded
by the maximin paradigm are “conservative” is a problem-oriented issue. Thus, it
may well apply in cases where one seeks decisions that perform well in relation to
“realistic” rather than “worst-case” scenarios. But ...

Consider the point raised by Wasserman [49, Sect. 4]:

The claim that minimax theory is driven by the worst case is a more substantial criticism.
I happen to think worst case analysis is a good thing. I want an estimator that does reason-
ably well under any circumstances.

The inference therefore is that the deployment of the maximin paradigm as a
framework for identifying decisions that perform well under “realistic” rather than
“worst-case” scenarios, ought to be reasoned out carefully. It most certainly ought
to be justified, regardless of whether the decisions yielded, for the case considered,
are judged to be “conservative”.

4.7.3 Irresponsible Decision-Making

On the face of it, rendering a worst-case analysis less “conservative” and more “real-
istic” seems to be straightforward. Indeed, all we need to do to this end is to exclude
from the worst-case analysis “unrealistic” scenarios. Thus, in [18, p. 472], we read
the following:

To make the robust methodology appealing to business practitioners, robust optimization
thus focuses on obtaining a solution that will be feasible for any realization taken by the
unknown coefficients within a smaller, “realistic” set, called the uncertainty set, which is
centered around the nominal values of the uncertain parameters. The goal becomes to opt-
imize the objective, over the set of solutions that are feasible for all coefficient values in
the uncertainty set. The specific choice of the set plays an important role in ensuring com-
putational tractability of the robust problem and limiting deterioration of the objective at
optimality, and must be thought through carefully by the decision maker.
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To bring out the distinction between “realistic” and “unrealistic” scenarios (states)
and some of the implications of this distinction, let

S = set of all possible/plausible scenarios (states). (4.34)
S) = get of all the “realistic” scenarios in S. (4.35)

S — get of all “unrealistic” scenarios in S, namely s .— g \ s, (4.36)

Clearly, this distinction is similar to that made in Sect.4.6.3 between the sets

S(d), S(d) and S(d) underlying the distinction between a local and a global analysis.

The implication is then that the proposition to deal with the “conservatism” is-
sue by means of a worst-case analysis over S () rather than over S must be thor-
oughly justified. Namely, such a proposition must be accompanied by a cogent argu-
ment justifying the criteria used to distinguish between “realistic” and “unrealistic”
scenarios.

Ben-Tal et al. [6] address a similar distinction between the physically possible
values of the uncertainty parameter and the parameter’s “normal range”, arguing
convincingly that a robustness model that effectively ignores all values of the param-
eter outside the “normal range” represents a ‘...somewhat “irresponsible” decision
maker ... .

Along the same line, in the article Severe uncertainty and info-gap decision the-
ory [22, p. 609], point out that in the framework of info-gap decision theory there
is a stark incongruity between the severity of the uncertainty under consideration
and the local orientation of the robustness analysis, implying that, methodologically
speaking, conclusions based on this theory may “...have no logical foundation...”.

And in this vein, Sniedovich [39—42] argues that a failure to appreciate the dis-
tinction between local and global robustness and the ramifications of this distinc-
tion, especially with regard to situations subject to a severe uncertainty, may lead to
“voodoo decision-making”, namely to decision-making that is based on unrealistic,
and/or misguided, and/or contradictory, and/or delusional assumptions.

From a “maximin perspective”, this means that the worst-case analysis conducted
by maximin models must be consistent with the quantification of the uncertainty
under consideration and with the type of robustness sought by the decision maker.
Thus, to prevent “irresponsible” decision-making, it is imperative to justify the exc-
lusion of “unrealistic” scenarios from the robustness analysis and the criteria used
to distinguish between “realistic” and “unrealistic” scenarios (states).

4.7.4 A Probabilistic Perspective on Worst-Case Analysis

One of the consequences of limiting a worst-case-based robustness analyses to
“realistic” scenarios, is that such an analysis might produce results that would not
be less risky than those produced by a probabilistic analysis that is conducted over
a larger uncertainty space. Indeed, they might even be more risky. And to illustrate,
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consider the following text comprising the abstract of the article Risk analysis in
robust control—making the case for probabilistic robust control ([10]; emphasis
added):

This paper offers a critical view of the “worst-case” approach that is the cornerstone of
robust control design. It is our contention that a blind acceptance of worst-case scenarios
may lead to designs that are actually more dangerous than designs based on probabilistic
techniques with a built-in risk factor. The real issue is one of modeling. If one accepts
that no mathematical model of uncertainties is perfect then a probabilistic approach can
lead to more reliable control even if it cannot guarantee stability for all possible cases. Our
presentation is based on case analysts. We first establish that worst-case is not necessarily
“all-encompassing”. In fact, we show that for some uncertain control problems to have a
conventional robust control solution it is necessary to make assumptions that leave out some
feasible cases. Once we establish that point, we argue that it is not uncommon for the risk
of unaccounted cases in worst-case design to be greater than that of the accepted risk
in a probabilistic approach. With an example, we quantify the risks and show that worst-
case can be significantly more risky. Finally, we argue that the deterministic worst-case
analysis is not necessary more reliable than the probabilistic analysis.

Chen et al. [10]

The idea here is that, while a probabilistic analysis would be conducted over the
entire uncertainty space, a restricted worst-case analysis would leave out values of
the uncertainty parameter that are outside a small subset of the uncertainty set.

Aside from that, it is also important to highlight another aspect of the relation
between a deterministic worst-case analysis and a probabilistic analysis. This is the
fact that certain probabilistic models have obvious deterministic worst-case equiv-
alents, a fact that some scholars regard as remarkable (e.g., Elishakoff and Ohsaki
[16, p. 12, p. 245]). The objective of the brief discussion below is to explain why
this fact is anything but remarkable, observing that it is a direct implication of the
relation between the fundamental probabilistic concepts almost surely and surely.

Recall then that certain probabilistic models are in fact “probabilistic in-name-
only”. That is, such models are not “genuine” probabilistic models but are rather
deterministic models that are dressed (formulated) in a probabilistic garb. Differ-
ently put, they are “degenerate” probabilistic models that have obvious equivalent
deterministic counterparts. Also, bear in mind that surely probabilistic events in-
volving constraints have obvious worst-case deterministic counterparts.

For our purposes it suffices to examine a simple example. Consider then the
following two constraints associated with random variable Y

Probabilistic constraint Deterministic (worst-case) constraint 4.37)
Ph(Y)eC)=1 h(y)eC,¥yeY '
where C is a subset of the real line, y denotes a realization of Y, Y denotes the set
of possible realizations of Y, & is a real-valued function on Y, and P(E) denotes the
probability of event E.

Next, recall the difference between almost surely and surely events: the former
occur with probability 1 and the latter occur “for sure”. To be precise, in the context
of the above constraints,
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surely almost surely

- -~ ~ ~ -~ ~
hy)eC,VyeY — P(h(Y)eC) =1 (4.38)

but not necessarily vice versa.
The point is, however, that there are many cases where almost surely events are
also surely events, the implication being that in such cases we have

surely almost surely

~ -~ ~ ~ -~ ~
h(y)€C,VyeY «— P(h(Y)eC)=1. (4.39)

To illustrate, consider the case where Y and C are closed, bounded intervals of
the real line, say Y = [y,y], and C = [¢,c]; h is continuous on Y, and the cumula-
tive distribution function of Y is strictly increasing on Y. Then clearly in this case
P(h(Y) € C) =1 entails that h(y) € C, ¥y € Y, hence (4.39) holds and C contains
the set (interval) 2(Y) := {h(y) : y € Y}. Observe that this implies that the smallest
interval C satisfying the probabilistic constraint P(h(Y) € C) =1 is C* = h(Y).

For similar reasons, subject to the above assumptions on z and Y, we have the fol-
lowing equivalence between a probabilistic constrained optimization problem and
its deterministic worst-case counterpart:

Probabilistic Problem Deterministic equivalent
opt {f(x): P(h(Y) € H(x)) =1} opt {f(x) :(y) € H(x).¥y € ¥} (440
xXe xe

where f is a real-valued function on some set X and H(x) is a bounded interval of
the real-line whose endpoints depend on x. These problems are equivalent in the
sense that they possess the same optimal solutions. Observe that the deterministic
equivalent problem is a state-free-payoff maximin or minimax problem, depending
on whether opt = max or opt = min, respectively.

In sum, there is nothing remarkable, or surprising, about the fact that a determin-
istic worst-case analysis and a probabilistic analysis of constraints associated with
surely events yield the same results.

4.8 Can Wald’s Maximin Paradigm Save the World?

The heading of this closing section paraphrases the apparently tongue in cheek
heading Minimax Theory Saves the World of a post on Prof. Larry Wasserman’s
website entitled Normal Deviate (see Wasserman [49, Sect. 4]), where we read the
following:

Minimax theory is the best thing in statistical machine learning—or the worst—depending
on your point of view.
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and

5. Minimaxity Gets the Last Word?
Minimax theory was important in statistics for a while then it sort of faded. But it had a
revival, partly due to the work of Donoho et al.

But what is really interesting is that I see more and more minimax analyses in ML outlets
such as NIPS, JMLR etc. So perhaps the marketplace of ideas is telling us that minimax
theory is gaining in importance?

where ML = machine learning, JMLR = Journal of Machine Learning Research,
NIPS = Neural Information Processing Systems, Donoho et al. = Donoho et al.
[14], Donoho and Johnstone [13].

An interesting perspective on Wald’s maximin paradigm from the viewpoint of
machine learning can be found in the article Machine Wald [32].

The provocative tone of the above heading and the claims associated with it raise
a number of issues whose clarification should serve as a fitting ending to the discus-
sion in this chapter.

To begin with, consider the observation regarding a revival in the engagement
with this paradigm. Looking at the various literatures in the broad area of decision-
making under uncertainty, it would appear that the growing interest in Wald’s max-
imin paradigm in the past 20 years or so can in fact be attributed to a number of
factors foremost of which is the development of new algorithms for the solution of
large scale maximin problems [5, 8, 18].

But more than that, as much as the popularity of the paradigm may have waned
and waxed over the years in various disciplines, the fact remains that for all the con-
troversy surrounding it, Wald’s maximin paradigm has retained its status as a major
methodological and practical tool for decision-making under (a non-probabilistic)
uncertainty in various areas of engineering, economics, management, operation
research and so on.

It is important therefore to keep in mind that to correctly appreciate its scope
of operation, its capabilities and its limitations, one must never lose sight of the
fact that, methodologically speaking, the paradigm was not introduced as a general
purpose tool for the treatment of non-probabilistic uncertain in a decision-making
environment. Rather it was introduced as an ad hoc approach to such an uncertainty,
where the only justification given [46—48] for its worst-case stance was that in the
face of complete ignorance it is not unreasonable to . ..assume the worst!

And to illustrate, consider the article Statistical decision functions which mini-
mize the maximum risk where we read the following (Wald [47, p. 279]; emphasis
added):

A problem of statistical inference may be interpreted as a zero sum two person game as
follows: Player 1 is Nature and Player 2 is the statistician. The variable r; is the parameter
point 6 the value of which is chosen by Nature. The variable r; is the statistical decision
function @(E) which is chosen by the statistician. The outcome K[6, 0(E)] of the game is
the risk r[6|@(E)] of the statistician. Clearly, the statistician wishes to minimize r[6|©(E)].
However, if the statistician is in complete ignorance as to Nature’s choice, it is perhaps
not unreasonable to base the theory of a proper choice of ®(E) on the assumption that
Nature wants to maximize r[0|®(E)].
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The point is of course that even if we grant that the idea underlying the max-
imin paradigm is intuitive and comes naturally to us, grounding it on this thought
because “it is perhaps not unreasonable”, leaves it wide open to valid criticism, not
to mention misuse and abuse. Because, strictly speaking, as pointed out by many
scholars, there are no grounds for assuming that Nature is an adversarial opponent
in this setup.

That said, it should be emphasized that the difficulty here is not that it is impos-
sible to axiomatize Wald’s maximin paradigm and to thereby ground it on a solid
foundation, at least for a certain class of decision-making problems. Rather, the
trouble is that such an axiomatization (e.g., Gilboa and Schmeider [19]) requires the
presupposition of highly restrictive assumptions. Obviously, other decision theories
encounter similar difficulties when it comes to axiomatization [17, 27]. But this is
cold comfort.

Finally, we might add that, as intimated by Tintner [44, p. 24], apparently Wald
himself was not fully satisfied with the paradigm and its conservative bent:

Wald advocated the minimax principle in a tentative way and because of certain formal
advantages. I am informed that he was still interested in finding a less conservative and
more satisfactory principle for statistical inference.

And to sum it all up, methodologically and practically, Wald’s maximin paradigm
should be considered a tool that is suitable for decision-making in situations where
it is reasonable (or advisable, or required) to adopt a worst-case approach to uncer-
tainty, or variability. It is not, indeed, never was meant to be, a panacea for dealing
with non-probabilistic uncertainty. Thus, as noted by Savage [37, pp. 578-579]:

Studies of the minimax rule have been stimulating for statistics, and modifications and
outgrowths of the rule may prove of great value, but those of us who, 12 or 13 years ago,
hoped to find in this rule an almost universal answer to the dilemma posed by abstinence
from Bayes’ theorem have had to accept disappointment.

The inevitable conclusion therefore seems to be that, for all its long and dis-
tinguished service since 1939, Wald’s maximin paradigm does not, indeed cannot
“save the world”. It continues, however, to offer an important tool of thought to
decision makers dealing with uncertainty.

Hence, analysts and scholars who doubt the efficacy of this stalwart of robust
decision-making should ask themselves whether when in doubt they would, or
should, ...

assume the worst!
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Chapter 5
The State of Robust Optimization

Secil Soziier and Aurélie C. Thiele

Abstract This survey presents a broad overview of the developments in robust
optimization over the past 5 years, i.e., between 2011 and 2015. We highlight the
advancement of knowledge both with respect to the theory of robust optimization
and application areas. From a theoretical standpoint, we describe novel findings in
static and multi-stage decision making, the connection with stochastic optimization,
distributional robustness and robust nonlinear optimization. In terms of application
areas, we consider inventory and logistics, finance, revenue management and health
care. We conclude with guidelines for researchers interested in immunizing their
problem against uncertainty.

5.1 Introduction

A classical assumption in mathematical programming is that the input data is per-
fectly known; however, in practice this is a rather rare situation and researchers have
attempted to take data uncertainty into account since the seminal work of Charnes
and Cooper [35] on chance-constrained programming. Unfortunately, many settings
in today’s fast-changing environments do not lend themselves to a probabilistic des-
cription of uncertainty. Robust optimization was first proposed in the early 1970s in
order to provide a decision-making framework when probabilistic models are either
unavailable or intractable, and has been the focus of significant research attention
from the 1990s onwards.
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Robust optimization assumes that the uncertain data belongs to a convex and
bounded set, called uncertainty set, and aims to find a solution that would remain
feasible for all possible instances of the data parameters while achieving the best
possible worst-case performance, as measured by the objective for the worst-case
realization of the parameters. The specific choice of the set naturally plays an im-
portant role in terms of tractability and insightfulness of the optimal solution. Key
to the tractability of robust optimization is the ability to optimize this worst-case
criterion efficiently in presence of two conflicting imperatives: (1) a high level of
robustness (protection against uncertainty) (2) the attainment of high-quality objec-
tive values (close to the objective of the nominal problem).

Soyster [107] took the first step toward the attainment of a robust optimization
methodology in 1973. In order to find a solution immune to data uncertainty in lin-
ear programming, he injected the worst-case value of each uncertain parameter into
the mathematical programming model; however, the model was deemed too conser-
vative for practical implementation by many business practitioners. Then, in the late
1990s, significant progress in tackling the issue of over-conservatism was made by
Ben-Tal and Nemirovski [14—16], El-Ghaoui and Lebret [45] and El-Ghaoui et al.
[46]. These papers provided the foundation for modern robust optimization. (Note
that the earlier paper of Mulvey et al. [91] uses a different concept also called robust
optimization that builds upon the stochastic programming problem and optimizes a
weighted combination of the traditional Stochastic Programming (SP) objective and
a feasibility penalty function, which penalizes violations of the control constraints.
This different definition for robust optimization will not be explored here.) The fo-
cus was mainly on constructing models more relevant to practitioners by controlling
the degree of conservatism in uncertain linear problems with ellipsoidal uncertainty
sets centered at the nominal value of the parameters. These problems were reformu-
lated as second-order cone problems [15]. A drawback is that the resulting model
is computationally less efficient than its nominal counterpart due to the added non-
linearity. This makes extensions to integer decision variables challenging from a
computational standpoint.

In a milestone work, Bertsimas and Sim [25] investigated novel ways to decrease
over-conservatism by tackling what they call the Price of Robustness using polyhe-
dral uncertainty sets, which they connect to probabilities of constraint guarantees.
Their approach offers full control on the level of conservatism for each constraint
through a parameter called the budget of uncertainty that is adjusted by the decision
maker. The interpretation of this budget of uncertainty is that it limits the number
of uncertain parameters that can deviate from their nominal value. In this approach,
the robust counterpart of a linear program remains linear, so that the robust model
retains the advantages of a linear optimization model in terms of computational eff-
iciency. Further, it can be readily generalized to discrete optimization, so that the
robust counterpart of a integer linear program remains an integer linear problem.

For a comprehensive book treatment and survey on robust optimization, the
reader is referred to Ben-Tal et al. [18] and Ben-Tal and Nemirovski [17], respec-
tively. Also, Gorissen et al. [56] provide a practical guide to robust optimization that
should be of significant interest to researchers attempting to immunize their prob-
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lems against parameter ambiguity. Gabrel et al. [50] present an overview of recent
advances in robust optimization between 2007 and 2012.

The present chapter focuses on studies indexed in Web of Science and published
between 2011 and 2015 included, belonging to the area of Operations Research and
Management Science, and having “robust” and “optimization” in their title. We nar-
rowed the list of papers to over one hundred we deemed most significant by taking
into account the research area, citation number, authors’ track record in robust opti-
mization and the journal’s impact factor. This was necessarily a subjective process
and some recent papers not listed here will certainly go on to have substantial im-
pact on the field; however, we hope that this survey provides a good starting point
into robust optimization today. Related book treatments and milestone works are
also presented for reference. Papers are grouped by theme; within each theme they
are listed in alphabetical order.

5.2 Theory of Robust Optimization

Since robust static (single-objective) linear programming is now well understood,
current research efforts have mostly focused on (1) developing a stronger connection
with stochastic optimization, (2) incorporating robust optimization to ambiguous
probability distributions of random parameters rather than to ambiguous parameters
of unknown but fixed value, (3) studying robust static nonlinear optimization, (4)
considering multiple objective criteria, leading to the theory of robust Pareto effi-
ciency, and (5) investigating robust dynamic decision-making. Note that Sniedovich
[106] cautions against attempts to tackle severe uncertainty, characterized by a poor
point estimate, a likelihood-free quantification of uncertainty and a large uncertainty
space, using local robustness models based on the “radius of stability” concept.

5.2.1 Connection with Stochastic Optimization

In Stochastic Optimization, the uncertain data is assumed to be random. In the sim-
plest case, these random parameters have a known probability distribution, while
in more advanced settings, this distribution is only partially known. While robust
optimization first emerged as a deterministic (worst-case) alternative to stochastic
programming, each arising from different models of uncertainty, in recent years in-
creasing numbers of researchers have strived to connect the robust optimization and
stochastic optimization paradigms so that the models can be best tailored to the
available information.
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5.2.1.1 Foundational Work

The most important developments have led to a greater connection between the
robust and stochastic optimization descriptions of uncertainty. They have been:
(1) an argument that uncertainty sets, approached through robust optimization,
should serve as the primitive for stochastic systems and (2) the design of safe
tractable approximations of chance constraints to obtain guarantees of constraint vi-
olation and their Robust Counterpart representations and (3) a connection between
linear problems with uncertain probabilities and uncertainty sets constructed as con-
fidence sets using phi-divergences, with a size of the uncertainty set being controlled
by the confidence level of the confidence set. Finally, a fourth work tackles robust
nonlinear inequalities and thus develops tractable robust counterparts for new, pre-
viously unstudied classes of optimization problems.

Bandi and Bertsimas [8] investigate tractable stochastic analysis in high dimen-
sions via robust optimization. They propose a new approach for stochastic systems
based on robust optimization, to address the issue of computational tractability that
arises when stochasticity is modeled using probabilities in areas such as queueing
networks or multi-bidder auctions. Their framework relies on replacing the Kol-
mogorov axioms and the concept of random variables as primitives of probability
theory, with uncertainty sets derived from some of the implications of probability
theory like the central limit theorem. Performance analysis of stochastic systems in
this new paradigm leads to linear, semidefinite or mixed integer optimization prob-
lems for which efficient algorithms capable of solving problems in high dimensions
are available. Further, Bandi and Bertsimas [9] develop an optimal design frame-
work for multi-item auctions based on robust optimization where they adopt an
uncertainty set based model instead of using probability distributions.

Nemirovski [93] provides safe tractable approximations of chance constraints
when data uncertainty is incorporated through randomly perturbed constraints. He
reviews several simulation-based and simulation-free computationally tractable ap-
proximations of chance constrained convex programs, primarily, those found in
chance constrained linear, conic quadratic and semidefinite programming, when the
data is affinely parametrized by a random vector of partially known distribution. The
models considered include Conditional Value-at-Risk and Bernstein approximations
of the chance constraint. Robust counterpart representations of the approximations
are also described.

Ben-Tal et al. [21] investigate robust linear optimization problems where the un-
certain parameters with uncertainty regions defined by phi-divergences, which arise
in settings involving moments of random variables and expected utility, and applica-
tions to asset pricing and the multi-item newsvendor problem. Phi-divergences refer
to families of functions that measure “distance” between two vectors. The authors
first derive confidence sets that are only asymptotically valid and then describe ways
to improve the approximation by considering a modified statistic that uses correc-
tion parameters. They finally describe the robust counterpart with phi-divergence
uncertainty and study its tractability. This is a special case of distributional robust
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optimization, which we review in more details below. (The reader is also referred to
Bayraksan and Love [11] for a tutorial on data-driven stochastic programming using
phi-divergences.)

Finally, Ben-Tal et al. [22] present a model to formulate the robust counterpart of
a nonlinear uncertain inequality that is concave in the uncertain parameters, using
convex analysis and in particular Fenchel duality. Hence, robust models can be for-
mulated for new classes of optimization models, for which tractable reformulations
were not previously available. With respect to tractability, the authors further show
that many robust counterparts can be written as linear, quadratic or conic quadratic
constraints, or admit a self-concordant barrier function, which implies that the opti-
mization problem can be solved in polynomial time.

5.2.1.2 Distributionally Robust Optimization and Chance Constraints

Ben-Tal et al. [19] consider chance constrained uncertain classification and inves-
tigate the problem of constructing robust classifiers when the training is plagued
with uncertainty. They also discuss methodologies for classifying uncertain test data
points and error measures for evaluating classifiers robust to uncertain data.

Dupacova and Kopa [42] consider stochastic programs whose set of feasible so-
lutions depends on probability distributions that are not fully known, and adopt a
contamination technique to study the robustness of results to perturbations on the
probabilities. They suggest a robust efficiency test with respect to the second order
stochastic dominance criterion.

With motivation drawn from data-driven decision making and sampling prob-
lems, Xu et al. [115] study the probabilistic interpretations of robust optimization
by showing the connection between robust optimization and distributionally robust
stochastic programming, and utilize this result to construct robust optimization for-
mulations for sampled problems.

Zymler et al. [121] develop tractable approximations based on semidefinite
programming for distributionally robust chance constraints where only the first-
and second-order moments and support of the uncertain parameters are given.
They investigate Worst-Case Conditional Value-at-Risk (CVaR) approximations and
show that the approximation is tight for robust individual chance constraints with
quadratic or concave constraint functions. For joint chance constraints, they show
that the Worst-Case CVaR is provably tighter than two benchmark approximations.
Further, a distributionally robust joint chance constrained optimization model for
the case of the dynamic network design problem under demand uncertainty is devel-
oped by Sun et al. [108]. They propose an approach to approximate a joint chance-
constrained cell transmission model based system optimal dynamic network design
problem with only partial distributional information of uncertain demand.

Wiesemann et al. [113] consider Markov Decision Processes (MDP) with uncer-
tain parameters when an observation history of the MDP is available. They derive a
confidence region that contains the unknown parameters with a prespecified prob-
ability and obtain a policy that attains the best worst-case performance over this
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confidence region, using the solution of conic programming problems of moderate
size. Further, Wiesemann et al. [114] suggest a unifying framework for modeling
and solving distributionally robust convex optimization problems based on standard-
ized ambiguity sets that contain all distributions with prescribed conic representable
confidence sets and encompass many ambiguity sets from the literature as special
cases. They also model information about statistical indicators that have not yet been
considered in the robust optimization literature, such as higher-order moments and
the marginal median. The authors determine sharp conditions under which distribu-
tionally robust optimization problems based on their approach are computationally
tractable, and tractable conservative approximations otherwise.

Alvarez-Miranda et al. [4] presents a note on the Bertsimas and Sim algorithm for
robust combinatorial optimization problems with interval uncertainty, where they
describe a method to solve fewer deterministic problems to obtain a robust solution.
Long and Qi [85] investigate discrete optimization under the distributionally robust
framework where they optimize the Entropic Value-at-Risk, a coherent risk measure
that serves as a convex approximation of the chance constraint. They propose an ap-
proximation algorithm to solve the problem as a sequence of nominal problems and
show in computational experiments that the number of nominal problems required
is small for various distributional uncertainty sets.

Duzgun and Thiele [43] study 0-1 linear programming with uncertain objective
coefficients using a safe tractable approximation of chance constraints, when the
decision maker only knows the first two moments and the support of the random
variables. They obtain a series of 0-1 linear programming problems parametrized
by only one additional variable and show in numerical experiments that their model
solves significantly faster than the benchmark robust model.

Zhen [119] investigates a variant of the task assignment problem under uncer-
tainty based on stochastic programming and robust optimization. He develops both
a stochastic programming model that tackles the issue of arbitrary probability dis-
tributions for the tasks’ random workload requirements, and a robust optimization
model which can cope with limited information about probability distributions.

Further, Duzgun and Thiele [44] bridge descriptions of uncertainty based on
stochastic and robust optimization by considering multiple ranges for each uncer-
tain parameter and setting the maximum number of parameters that can fall within
each range, in a model reminiscent of histograms. The corresponding optimization
problem can be reformulated in a tractable manner using the total unimodularity
property of the uncertainty set and allows for a finer description of uncertainty while
preserving tractability.

5.2.2 Nonlinear Optimization

We have already mentioned the work by Ben-Tal et al. [22], which presents a model
to formulate the robust counterpart of a nonlinear uncertain inequality concave in
the uncertain parameters. In this section, we list additional work pertaining to robust
nonlinear optimization.
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A specific case of nonlinear problems that are linear in the decision variables
but convex in the uncertainty when the worst-case objective is to be maximized
is investigated in Kawas and Thiele [76] in the context of portfolio management
with uncertain continuously compounded rates of return. In that setting, exact and
tractable robust counterparts can be derived. The authors extend their approach to
short sales in [77], where they examine a class of non-convex robust optimization
problems where the decision variables can be negative, leading to a non-convex
problem in the uncertainty.

Ben-Tal and den Hertog [13] immunize conic quadratic optimization problems
against ellipsoidal implementation errors. They prove that the robust counterpart of
a convex quadratic constraint with ellipsoidal implementation error is equivalent to
a system of conic quadratic constraints. They then extend the result to the case in
which the uncertainty set is the intersection of two convex quadratic inequalities and
show that the robust counterpart for this case is also equivalent to a system of conic
quadratic constraints.

Doan et al. [41] build upon the fact that current successful methods for solv-
ing semidefinite programs are based on primal-dual interior-point methods and
they approach robustness from an algorithmic perspective in order to address ill-
conditioning and instability issues. Houska and Diehl [63] present a convex bilevel
programming algorithm for the nonlinear min-max problems in semi-infinite pro-
gramming. A conservative approximation strategy and optimality conditions are
provided along with an analysis about strong global and locally quadratic conver-
gence properties.

Poss [98] develops a robust combinatorial optimization model where the uncer-
tain parameters belong to the image of multifunctions of the problem variables. A
mixed-integer programming reformulation for the problem, based on the dualization
technique is proposed since the feasibility set of the problem is non-convex. Jeyaku-
mar and Li [69] focus on the trust-region problem, which minimizes a nonconvex
quadratic function over a ball, and utilize the properties of the problems such as
semi-definite linear programming relaxation (SDP-relaxation) and strong duality.

Finally, Suzuki et al. [109] investigate surrogate duality for robust nonlinear op-
timization and they prove surrogate duality theorems for robust quasiconvex opti-
mization problems and surrogate min-max duality theorems for robust convex opti-
mization problems. They provide necessary and sufficient constraint qualifications
for surrogate duality and surrogate min-max duality, and give some examples at
which such duality results are used effectively.

5.2.3 Multiple Objectives and Pareto Optimization

A large branch of Robust Optimization focuses on single-objective problems; how-
ever, multiple objectives are sometimes considered as well. Hu and Mehrotra [64]
studies a family of models for multiexpert multicriteria decision making. Those
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models utilize the concept of weight robustness in order to identify a (robust) Pareto
decision that minimizes the worst-case weighted sum of objectives over a given
weight region. The model is then extended to include ambiguity or randomness
in the weight region as well as the objective functions. A multi-objective, multi-
mode, multi-commodity, and multi-period stochastic robust optimization model is
considered by Najafi et al. [92] where the purpose is to achieve the best possible
emergency relief for earthquake response. Their method use hierarchical objective
functions.

Fliege and Werner [49] consider general convex parametric multiobjective robust
optimization problems under data uncertainty. They also present a characterization
of the location of the robust Pareto frontier with respect to its nominal counterpart
and illustrate their approach on a mean-variance problem. Robust optimization for
interactive multiobjective programming with imprecise information is investigated
by Hassanzadeh et al. [61] where there are clashing objectives and uncertainty oc-
curs in both objective functions and constraints. They use an iterative procedure to
capture the tradeoffs between the objectives.

Fang et al. [47] develop a multiobjective robust optimization model in order to
enhance the performance and the robustness simultaneously. The multiobjective par-
ticle swarm optimization (MOPSO) algorithm is utilized for producing a set of non-
dominated solutions over the entire Pareto space for a non-convex problem, which
provides designers with more insightful information. Koebis [79] studied the re-
lation between Scalar Robust Optimization and Unconstrained Multicriteria Opti-
mization with a finite uncertainty set and showed that a unique solution of a robust
optimization problem is Pareto optimal for the unconstrained optimization problem.

Iancu and Trichakis [66] incorporate Pareto efficiency to robust linear optimiza-
tion problems and they present a characterization of Pareto robustly optimal so-
lutions. Specifically, they argue that the classical RO paradigm may not produce
solutions that possess the associated property of Pareto optimality, leading to poten-
tial inefficiencies and they propose practical methods that generate Pareto robustly
optimal solutions by solving optimization problems that are of the same complex-
ity as the underlying robust problems. Their numerical experiments are drawn not
only from portfolio optimization—the best-known application area for Pareto op-
timal solutions—but also inventory management and project management. Hu and
Mehrotra [65] consider robust decision making over a set of random targets or risk-
averse utilities. In their setting, the random target has a concave cumulative distri-
bution function or a risk-averse manager’s utility is concave. Finally, Tong and Wu
[111] investigate robust reward-risk ratio optimization models based on the positive
homogenous and concave/convex measures of reward and risk.

5.2.4 Multi-Stage Decision-Making

While the main focus of robust optimization was static decision making when it was
first investigated in the 1990s (following Soyster’s 1973 work), multi-stage robust
decision making has garnered substantial attention in recent years. In this setting,
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uncertainty is revealed in stages and the decision maker adjusts his strategy based
on the new information. The ability to take recourse action also allows the decision
maker to tackle over-conservatism issues that affect static robust optimization when
applied over multiple time periods. Delage and Iancu [40] provide an excellent tut-
orial on robust multi-stage decision-making.

5.2.4.1 Two Stages

Due to the difficulty inherent in multiple stages, many works have focused on two-
stage robust optimization. The most notable works in this category are Bertsimas et
al. [28], Hanasusanto et al. [60] and Ben-Tal et al. [23].

Bertsimas et al. [28] analyze the performance of static solutions for two-stage
adjustable robust linear optimization problems with uncertain constraint and ob-
jective coefficients. They show that for a fairly general class of uncertainty sets, a
static solution is optimal for two-stage adjustable robust linear optimization, which
is quite counter-intuitive since static policies are generally believed to be conser-
vative. Further, they develop a tight characterization of the adaptivity gap when no
static solution is optimal. Their results lead to new geometric intuition about the
performance of static robust solutions for adjustable robust problems, based on a
certain transformation of the uncertainty set which helps highlight properties of the
set when static robust policies do not perform well. Hence, the paper provides guid-
ance in selecting the uncertainty set such that the adjustable robust problem can be
well approximated by a static solution.

Hanasusanto et al. [60] extends the robust optimization methodology to problems
with integer recourse, by approximating two-stage robust binary programs by their
corresponding K-adaptability problems, in which the decision maker pre-commits in
the first stage to K second-stage policies and implements the best of these policies
once the uncertain parameters are realized. The authors study the quality of their
approximation and the computational complexity of the K-adaptability problem.
Further, they propose two mixed-integer linear programming reformulations that
can be solved with off-the-shelf software.

Ben-Tal et al. [23] develop a method for approximately solving a robust optimiza-
tion problem using tools from online convex optimization, where at every stage a
standard (nonrobust) optimization program is solved. They find an approximate ro-
bust solution using a number of calls to an oracle that solves the original (nonrobust)
problem that is inversely proportional to the square of the target accuracy. Their ap-
proach yields significant computational benefits when finding the exact solution of
the robust problem is a NP-hard problem, for instance in the case of robust support
vector machine with an ellipsoidal uncertainty set.

Additional work includes the following. Minoux [89] introduces a new subclass
of polynomially solvable two-stage robust optimization problems with uncertainty
on the right-hand side coefficients. Remli and Rekik [101] investigate the prob-
lem of combinatorial auctions in transportation services under uncertain shipment
volumes and develop a two-stage robust formulation where they use a constraint
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generation algorithm. Chan et al. [33] propose a computationally tractable and dy-
namic multi-stage decision methodology that can hedge against uncertainty by uti-
lizing information from the previous stage iteratively, with an application to IMRT
(intensity-modulated radiation therapy) treatment planning for lung cancer. Bo and
Zhao [118] solve two-stage robust optimization problems by developing a column-
and-constraint generation algorithm and compare their approach with the existing
Benders-style cutting plane methods.

5.2.4.2 Optimal and Approximate Policies

We have already mentioned Bertsimas et al. [28], where the authors investigate the
performance of static policies in two-stage robust linear optimization. Further, Bert-
simas et al. [27] analyze the effect of geometric properties of uncertainty sets, such
as symmetry, in the power of finite adaptability in multi-stage stochastic and adap-
tive optimization. They investigate finitely adaptable solutions, which generalize the
notion of static robust solutions in the sense that a small set of solutions is specified
for each stage and the solution policy implements the best solution from the set, de-
pending on the realization of the uncertain parameters in past stages. In particular,
they show that a class of finitely adaptable solutions is a good approximation for
both the multistage stochastic and the adaptive optimization problem.

Kuhn et al. [80] consider primal and dual linear decision rule policies in stochas-
tic and robust programming, and compute the loss of optimality due to this pol-
icy. They show that both approximate problems are equivalent to tractable linear
or semidefinite programs of moderate sizes. Shapiro [104] considers the adjustable
robust approach to multistage optimization, derives related dynamic programming
equations and connects the problem to risk-averse stochastic programming. He also
shows that, as in the risk-neutral case, a basestock policy is optimal.

Supermodularity and affine policies in a particular class of dynamic robust op-
timization problems are investigated by Iancu et al. [67]. They aim to provide a
connection between dynamic programming and decision rules, and solve tractable
convex optimization problems. Bertsimas and Goyal [24] consider adjustable robust
versions of convex optimization problems where the constraints and objectives are
uncertain and they show that a static robust solution yields a good approximation
for these problems under general assumptions.

5.3 Application Areas of Robust Optimization

5.3.1 Classical Logistics Problems

5.3.1.1 Newsvendor Problem

The newsvendor problem is the building block of modern inventory theory. While
robust newsvendor problems were first studied long before the time window for
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publication of interest in this review, they continue to be the focus of significant
research. Jiang et al. [71] consider robust newsvendor competition under asymmet-
ric information about future demand realizations. They devise an approach based on
absolute regret minimization and derive closed-form expressions for the robust opti-
mization Nash equilibrium solution for a game with an arbitrary number of players.
Qiu et al. [100] investigate the robust inventory decision-making problem faced by
risk-averse managers with incomplete demand information with ellipsoidal uncer-
tainty in a newsvendor setting. Three basic models are developed: expected profit
maximization, Conditional Value-at-Risk (or CVaR)-based profit maximization, and
a combination of these two.

Finally, Hanasusanto et al. [59] consider multi-item newsvendor problems from
a distributional robust optimization perspective when the demand distributions are
multimodal. The products considered are subject to fashion trends that are not fully
grasped at the time when orders are placed. Spatially separated clusters of probabil-
ity mass lack a complete description. The decision-maker minimizes the worst-case
risk of the order portfolio over all distributions compatible with the modality infor-
mation. The authors show the robust problem admits a conservative, tractable ap-
proximation using quadratic decision rules, which achieves a high level of accuracy
in numerical tests.

5.3.1.2 Combinatorial Optimization Problems

Remli and Rekik [101] study the robust winner determination problem for combi-
natorial auctions in transportation services when shipment volumes are uncertain
and propose a two-stage robust formulation solved using a constraint generation
algorithm.

Poss [98] extends the Bertsimas-and-Sim model for robust combinatorial opti-
mization using variable budgeted uncertainty, which is less conservative than (tradi-
tional) budget of uncertainty for vectors with few non-zero components. The author
uses a mixed-integer programming reformulation for the problem and compare his
approach with that of Bertsimas and Sim on the robust knapsack problem, where
variable budgeted uncertainty achieves a reduction of the price of robustness by an
average of 18 %.

Chassein and Goerigk [36] propose a new bound for the midpoint solution in
minmax regret optimization, which evaluates a solution against the respective opti-
mum objective value in each scenario and aims to find robust solutions that achieves
the lowest worst-case difference between the two. Heuristics with performance guar-
antees have potentially great value in this context because most polynomially solv-
able optimization problems have strongly NP-hard minmax regret counterparts. One
of these approximations is the midpoint solution, obtained when the decision maker
approximates the uncertain parameters by the average of their lower and upper
bound and solves that problem. They derive an instance-dependent performance
guarantee for the midpoint solution of at most 2 and apply their methodology to the
robust shortest path problem.
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5.3.1.3 Scheduling

Robust berth scheduling at marine container terminals where vessel arrival and han-
dling times are uncertain is studied by Golias et al. in [55]. They propose a bi-
objective optimization problem and a heuristic algorithm, and test the results using
simulation.

Varas et al. [112] focus on production scheduling for a sawmill where the uncer-
tainty arises from the supply of logs and the finished product orders. Using a two-
stage adaptive robust optimization approach, Lima et al. [84] investigate weekly
self-scheduling, forward contracting, and pool involvement for an electricity pro-
ducer operating a mixed power generation station.

Che et al. [37] study the cyclic hoist scheduling problem with processing time
window constraints. The uncertainty comes from the perturbations or variations of
certain degree in the hoist transportation times. The authors propose a method to
measure the robustness of a cyclic hoist schedule and develop a bi-objective mixed
integer linear programming model to optimize cycle time and robustness.

5.3.2 Facility Location

Facility location is concerned with the optimal placement of facilities to minimize
the design and transportation costs while considering factors such as customer sat-
isfaction, covering/serving a certain area, or avoiding placing hazardous materials
near housing. Baron et al. [10] applied robust optimization to a capacitated multi-
period fixed-charge network location problem in a network under uncertain demand
over multiple periods. Their goal is to determine the number of facilities, their lo-
cation and capacities, as well as the production amount and allocation of demand to
facilities.

Another network design problem has been studied by Li et al. [83], for the plan-
ning of network infrastructure such as roads, pipelines and telecommunication sys-
tems. Uncertainty originates from the demand, and maintenance related issues such
as operating costs, degradation rates. They propose an efficient and tractable ap-
proach for finding robust optimum solutions to linear and quadratic programming
problems with interval uncertainty using a worst case analysis.

Robust hub location problems are studied in Alumur et al. [2] where the uncer-
tainty arises due to the set-up costs for the hubs and the demands to be transported
between the nodes. The authors analyze the changes in the solutions driven by the
different sources of uncertainty when considered either in isolation or in combina-
tion.

Guelpinar et al. [58] consider a stochastic facility location problem in which
multiple capacitated facilities serve customers with a single product, given uncertain
customer demand and a constraint on the stock-out probability. Robust optimization
strategies for facility location appear to have better worst-case performance than
non-robust strategies.
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Gabrel et al. [51] investigate a robust version of the location transportation prob-
lem with an uncertain demand using a two-stage formulation. The resulting robust
formulation is a convex (nonlinear) program, and the authors apply a cutting plane
algorithm in order to solve the problem exactly. Finally, Ghezavati et al. [53] in-
vestigate the optimization of reliability for a hierarchical facility location problem
under disaster relief situations by a chance-constrained programming, with the aim
of rapidly bringing the appropriate emergency supplies to the affected villages.

5.3.3 Supply Chain Management

Supply chain problems deal with the management of the flow of goods and services
from the producer to the customer. It includes the movement and storage of raw ma-
terials, work-in-process inventory, and finished goods from point of origin to point
of consumption in a way that ensures good service level and high profit. There exists
uncertainty in many parts of a supply chain especially due to demand uncertainty.

A production planning problem in small-size furniture companies has been stud-
ied by Alem et al. [1]. They utilized robust optimization tools to derive robust
combined lot-sizing and cutting-stock models when production costs and product
demands are uncertainty. Their motivation to adopt robust optimization instead of
two-stage stochastic programming was the absence of an explicit probabilistic de-
scription of the input data and the incentive of not having to deal with a large number
of scenarios in robust optimization.

Aouam and Brahimi [6] considered an integrated production planning problem
and order acceptance decisions under demand uncertainty. Orders/customers are
classified into classes with respect to the marginal revenue, quantity they are willing
to buy and reliability assessment. Their model provides flexibility to decide on the
fraction of demand to be satisfied from each customer class and consider production-
related constraints as well as factors such as congestion on production lead times.
An order acceptance strategy allows the decision maker to maintain an appropriate
level of utilization.

Schoenlein et al. [103] investigate the measurement and optimization of the ro-
bust stability of multiclass queueing networks with an application to dynamic supply
chains. Stability of these networks implies that the total number of customers in the
network remains bounded over time. The authors rely on fluid network analysis to
quantify robustness using a single number, called the stability radius.

Qiu and Shang [99] study robust multi-period inventory decisions for risk-averse
managers with partial demand distribution information for products with a short life
cycle. The three inventory models we developed aim respectively to maximize ex-
pected profit, maximize conditional value-at-risk-based profit, and balance between
the two objectives where the corresponding robust counterparts are presented.
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Ashayeri et al. [7] consider a supply chain where a company faces bankruptcy
to fulfill its debt obligation with limited financial resources. The uncertainty arises
from demands and exchange rates. They formulate a MIP model with specific down-
sizing features, which maximizes the utilization of resources through a combined
operation of demand selection and production assets reallocation. A pulp produc-
tion planning and supply chain management has been studied in Carlsson et al.
[32]. They utilize a robust optimization approach to handle the demand uncertainty
and to establish a distribution plan, together with related inventory management.
In this setup, they observe that there is no need for explicit safety stock levels
and they achieve higher profit. Kawas et al. [78] study a game-theoretic setup of
a production planning problem under uncertainty in which a company is exposed
to the risk of failing authoritative inspections due to non-compliance with enforced
regulations.

Finally, Kang et al. [74] investigate distribution-dependent robust linear opti-
mization with applications to inventory control where every element of the con-
straint matrix is subject to uncertainty and is modeled as a random variable with a
bounded support.

5.3.4 Industry-Specific Applications

In this section, we reference papers on three industry-specific logistics-driven appli-
cations that have received substantial attention in the robust optimization literature.

In warehouse management, Ang et al. [5] propose a robust storage assignment
approach in unit-load warehouses facing variable supply and uncertain demand in a
multi-period setting. They assume a factor-based demand model and minimize the
worst-case expected total travel in the warehouse with distributional ambiguity of
demand.

In train timetabling operations, Cacchiani et al. [30] focus on Lagrangian heuris-
tics the application of train time-tabling. Galli [52] describes the models and algo-
rithms that arise from implementing recoverable robust optimization to train plat-
forming and rolling stock planning, where the concept of recoverable robustness
has been defined in Liebchen et al. A survey of nominal and robust train timetabling
problems in its nominal and robust versions is presented in Cacchiani and Toth [29].

In the sawmill planning problem, in addition to previously-mentioned Varas et al.
[112], which focuses on production scheduling for a sawmill where the uncertainty
arises from the supply of logs and the finished product orders, Alvarez and Vera [3]
consider a related formulation where variability affects the yield coefficients related
to the cutting patterns used. Finally, Ide et al. [68] investigate an application of
deterministic and robust optimization in the wood cutting industry with the goal of
attaining resource efficiency.
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5.3.5 Finance

5.3.5.1 General Portfolio Problems

Robust portfolio optimization is studied by Ye et al. [117] in the context of a
Markowitz mean-variance model with uncertainty on mean and covariance matrix.
They formulate the robust problem as a second-order cone programming problem
and show in computational experiments that the portfolios generated by the robust
model are not as sensitive to input errors as the ones given by the classical model.

Nguyen and Lo [94] develop robust portfolio optimization models based on in-
vestors’ rankings of the assets instead of estimates of their parameters such as ex-
pected returns, when the ranking is subject to uncertainty. They solve a robust rank-
ing problem using a constraint generation scheme. Marzban et al. [87] study a multi-
period robust optimization model including stocks and American style options. The
decision maker selects the level of robustness through the length and the type of the
uncertainty set.

5.3.5.2 Risk Measures

Chen et al. [38] considers robust portfolio problems where expected utility is max-
imized under ambiguous distributions of the investment return, while Moon and
Yao [90] investigate robust portfolio management when absolute deviation from the
mean is used as a risk measure, leading to a linear programming problem. The au-
thors test the robust strategies on real market data and discuss performance of the
robust optimization model based on financial elasticity, standard deviation, and mar-
ket condition such as growth, steady state, and decline in trend.

Fertis et al. [48] propose the concept of robust risk measure, defined as the worst
possible of predefined risks when each among a set of given probability measures
is likely to occur. In particular, they introduce a robust version of CVaR and of
entropy-based risk measures, and show how to compute and optimize the Robust
CVaR using convex duality methods.

Kakouris and Rustem [73] consider robust portfolio optimization with copulas,
where copulas are used to describe the dependence between random variables. They
provide the copula formulation of the CVaR of a portfolio and extend their approach
to Worst Case CVaR (WCVaR) though the use of rival copulas exploiting a variety
of dependence structures.

Kapsos et al. [75] investigate the worst-case robust Omega ratio, where the
Omega ratio is a performance measure addressing the shortcomings of the Sharpe
ratio and is defined as the probability weighted ratio of gains versus losses for some
threshold return target. The authors investigate the problem arising from the proba-
bility distribution of the asset returns being only partially known and show that the
problem remains tractable for three types of uncertainty.

In the most recent body of work, Lagos et al. [§1] analyzes the characterizations
of the robust uncertainty sets related to coherent and distortion risk measures and
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aim to mitigate estimation errors of the Conditional Value-at-Risk. Maillet et al.
[86] investigate global minimum variance portfolio optimization under some model
risk based on a robust regression-based approach. The robust portfolio corresponds
to the global minimum variance portfolio in the worst-case scenario and it pro-
vides protection against errors in the reference sample covariance matrix. Finally,
Bertsimas and Takeda [26] study optimization over coherent risk measures and non-
convexities where the relation between coherent risk measures and uncertainty sets
of robust optimization is taken into consideration.

5.3.6 Machine Learning and Statistics

The incorporation of Machine Learning and Robust Optimization is a growing field.
The reader is referred to Caramanis et al. [31] for an overview of robust optimization
in machine learning. Ben-Tal et al. [19] focus on the problem of constructing robust
classifiers when the training is subject to uncertainty. The problem is formulated as
a chance-constrained program that is relaxed utilizing Bernstein’s approximation to
yield a second-order cone problem whose solution is guaranteed to be feasible for
the original problem. Xu et al. [116] study robust principal component analysis in
the presence of contaminated data.

Ozmen et al. [96] utilize Conic Multivariate Adaptive Regression Splines
(CMARS) for generalizing the model identification problem including the exis-
tence of uncertainty with the aim to increase the trustworthiness of the solution
in case of data perturbation. Beliakov and Kelarev [12] study global non-smooth
optimization in robust multivariate regression where the objective is non-smooth,
non-convex and expensive to calculate. They analyze the numerical performance of
several derivative-free optimization algorithms with the aim of computing robust
multivariate estimators.

Support vector machine (SVM) classifiers with uncertain knowledge sets via
robust optimization are studied by Jeyakumar et al. [70]. They show how data
uncertainty in knowledge sets can be handled in SVM classification and provide
knowledge-based SVM classifiers with uncertain knowledge sets using convex
quadratic optimization duality.

5.3.7 Energy Systems

Another area that has seen significant growth recently is robust optimization in en-
ergy. An application of robust optimization to renewable energy, specifically wind
energy, is investigated in Jiang et al. [72], with the objective of providing a robust
unit commitment schedule for the thermal generators in the day-ahead market that
minimizes the total cost under wind output uncertainty.
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Classen et al. [39] study a robust optimization model and cutting planes for
the planning of energy-efficient wireless networks under demand uncertainty where
they apply three different cutting plane methods. Goryashko and Nemirovski [57]
study robust energy cost optimization of a water distribution system with uncertain
demand with the aim to optimize daily operation of pumping stations based on the
concept of Affinely Adjustable Robust Optimization.

Lima [84] works on weekly self-scheduling, forward contracting, and pool in-
volvement for an electricity producer under three different scenarios, corresponding
to electricity price forecasts. Sauma et al. [102] adopt a robust optimization ap-
proach to assess the effect of delays in the connection-to-the-grid time of new gen-
eration power plants over transmission expansion planning where the uncertainty
arises from construction times of new power plants. Finally, Zugno and Conejo
[120] work on the energy and reserve dispatch in electricity markets where they
cast the problem as an adaptive robust optimization problem instead of a stochastic
programming problem due to computational efficiency issues.

5.3.8 Public Good

The public good applications aim to improve the health, safety and well-being of the
general public. Two main fields are humanitarian relief and health care applications.
Examples include determining treatment plans in a hospital, patient transportation
among hospitals, patient-doctor scheduling and constructing emergency evacuation
routes during a disaster (fire, tsunami, earthquake).

5.3.8.1 Humanitarian Logistics/Emergency Logistics Planning

After a disaster occurs, humanitarian and state organizations gather resources and
staff to serve a community’s needs in an efficient way. Robust optimization has great
relevance in humanitarian relief supply chains since we face data uncertainty during
disasters.

Ben-Tal et al. [20] investigate a robust logistics plan generation methodology that
can hedge against demand uncertainty. They study the dynamic emergency response
assignment and evacuation traffic flow problems. They apply an affinely adjustable
robust counterpart approach in order to provide better emergency logistics plans. A
multi-objective robust optimization model for logistics planning during earthquake
is proposed in Najafi et al. [92]. This paper propose a multi-objective, multi-mode,
multi-commodity, and multi-period stochastic model to manage the scarce sources
efficiently and they ensure that the distribution plan performs well under the various
situations due to robustness.

Tajik et al. [110] adopt a robust optimization approach for the pollution routing
problem with pickup and delivery under uncertain data where the aim is to reduce
fuel consumption and decrease green house gases emission due to their harmful
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effects on environment and human health. Their study addresses a new time window
pickup-delivery pollution routing problem (TWPDPRP) to deal with uncertain input
data.

The most recent developments in robust humanitarian logistics are the following.
Lassiter et al. [82] consider the flexible allocation of the workforce after a disaster
in order take into account changing (uncertain) needs and volunteer preferences.
They use robust optimization to handle the uncertainty in task demands and derive
Pareto optimality and allocation decisions for any level of conservativeness. Gheza-
vati et al. [53] investigate a hierarchical facility location problem under disaster
relief situations where robust optimization and chance-constrained programming
are applied. Shishebori and Babadi [105] design a robust and reliable medical ser-
vices network under uncertain environment and system disruptions. Finally, Paul
and Wang [97] study the United States Department of Agriculture food aid bid allo-
cations, which aims at providing food aid annually in response to global emergen-
cies and famine.

5.3.8.2 Health Care Applications

Chan et al. [33] consider an adaptive robust optimization approach to IMRT (intensity-
modulated radiation therapy) treatment planning for lung cancer. They propose a
computationally tractable and dynamic multi-stage decision methodology that can
hedge against uncertainty by utilizing the information from the previous stage iter-
atively. Nha et al. [95] develops a new robust design optimization procedure based
on a lexicographical dynamic goal programming approach for implementing time-
series based multi-responses for drug formulations in the pharmaceutical industry.

Holte and Mannino [62] study the problem of allocating scarce resources such as
operating rooms or medical staff to medical staff when the exact number of patients
for each specialty is uncertain and when the allocation is defined over a short period
of time such as a week and subsequently repeated over the time horizon. They adopt
an adjustable optimization approach and develop a row and column generation al-
gorithm to solve it efficiently.

Chan et al. [34] consider a robust-CVaR optimization approach with application
to breast cancer therapy where the loss distribution is dependent on the state of an
underlying system and the fraction of time spent in each state is uncertain. Finally,
Meng et al. [88] investigate a robust optimization model for managing elective adm-
ission in a public hospital, given the priority of emergency patients over elective
ones. They propose an optimized budget of variation approach that maximizes the
level of uncertainty the admission system can withstand without violating the exp-
ected bed shortfall constraint and solve the robust optimization model by deriving a
second order conic programming counterpart of the model.



5 The State of Robust Optimization 107

5.4 Conclusions and Guidelines for Implementation

We have provided an overview of recent developments in robust optimization over
the past 5 years. As robust optimization is now about 20 years old, it has become a
well-established tool to address decision-making under uncertainty but also remains
a thriving research area. We remind the reader of the practical guide to implement-
ing robust optimization provided in Gorissen et al. [56]. The researcher interested in
implementing robust optimization faces several modeling choices, which will im-
pact the structure of the robust problem, its tractability and the insights the decision
maker can gain into the optimal solution.

First, should the uncertainty be on the problem parameters themselves (leading to
the classical robust optimization paradigm) or their underlying probabilistic distri-
butions (yielding distributionally robust optimization or DRO)? DRO is particularly
suitable if the stochastic programming version of the problem is tractable and the
decision maker feels confident that he knows specific attributes of the family of
probability distributions, such as their first two moments. If the SP version of the
problem suffers from tractability issues, then adding robustness to that formulation
will make the problem at least as computationally demanding; hence, it will then be
more promising to apply robust optimization to the ambiguous parameters.

Second, what is the type of uncertainty set most suitable for the problem at hand?
When the uncertainty is on the ambiguous parameters, the decision maker can then
either use polyhedral uncertainty sets, which do not change the complexity of the
mathematical programming problems considered but lead to additional constraints
and variables in the tractable reformulation, or ellipsoidal uncertainty sets, which do
not require any new variable or constraint but introduce non-linearities. When some
decision variables are integer, polyhedral uncertainty sets thus seem particularly
suitable. When the uncertainty is on the probability distributions, the uncertainty set
may for instance incorporate knowledge of support, mean, covariance, directional
deviations in the manner of Goh and Sim [54].

Third, is it possible to take corrective action after part of the uncertainty is re-
vealed? If yes, adaptive or adjustable robust optimization will be advisable to ad-
dress potential over-conservatism issues and lead to decision rules that are easy to
implement in practice. The choice of those decision rules and the fine-tuning of their
parameters have implications on computational tractability, closeness to optimality
and insightfulness of the optimal solution.

In today’s fast-changing environment, robust optimization presents an appealing
framework that is both intuitive and lends itself to computationally tractable refor-
mulations that either are exact or approximations documented in numerical experi-
ments to perform well against benchmarks. RO is hence expected to keep increasing
in relevance and importance in the arsenal of decision making tools of the operations
research professional. In the future, researchers are likely to continue investigating
improved approaches to multi-stage optimization, and to further connect RO with
SP in order to provide an integrated approach to decision-making under uncertainty.
Cutting-edge areas of interest include, but are not limited to, complex problems
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such as adversarial risk analysis, policy design, performance evaluation, optimiza-
tion with multiple criteria or objectives, alternative models of uncertainty such as
fuzzy optimization, new insights into sensitivity analysis and application-specific
results on topics that remain of prime relevance today such as job-shop scheduling
and portfolio management.
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Chapter 6

Robust Discrete Optimization Under Discrete
and Interval Uncertainty: A Survey

Adam Kasperski and Pawet Zielinski

Abstract In this chapter a review of recent results on robust discrete optimization
is presented. The most popular discrete and interval uncertainty representations are
discussed. Various robust concepts are presented, namely the traditional minmax
(regret) approach with some of its recent extensions, and several two-stage concepts.
A special attention is paid to the computational properties of the robust problems
considered.

6.1 Introduction

In this chapter we will be concerned with a class of discrete optimization prob-
lems defined as follows. We are given a finite set of elements E = {ey,...,e,}
and a set of feasible solutions @ C 2E. Each element ¢; € E has a nonnegative
cost ¢; and we seek a feasible solution X € @ which minimizes the total cost
f(X) =2X,ex ci. This traditional deterministic discrete optimization problem will be
denoted by &. The above formulation encompasses, for instance, an important class
of network problems. Namely, E can be identified with the set of arcs of a network
G = (V,E) and @ contains some objects in G such as s — ¢ paths, spanning trees,
s —t cuts, perfect matchings, or Hamiltonian cycles. We thus get the well known and
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basic problems such as SHORTEST PATH, MINIMUM SPANNING TREE, MINIMUM
S-T CUT, MINIMUM ASSIGNMENT, or TRAVELING SALESPERSON, respectively.
A comprehensive description of the class of deterministic network problems can be
found, for example, in books [1, 78].

In most cases, & can be alternatively formulated as a 0-1 programming problem.
Indeed, a binary variable x; € {0, 1} is associated with element ¢; € E and so & has
the following formulation:

min 2?:16‘,‘)6,‘
st (X1,...,%,) € ch(D),

where ch(®) is the set of characteristic vectors of @, described in a compact form
by a system of constraints involving x, ..., x,. For example, when we have one con-
straint of the form Y ; wix; > p, we obtain the KNAPSACK problem. If, additionally,
w; = 1 for each i € [n] and p is an integer in [n] ([n] denotes the set {1,...,n}), then
we get the SELECTION problem. An optimal solution to this problem can be com-
puted in O(n) time by choosing p elements out of E of the smallest costs. In this
chapter, we will also discuss the following REPRESENTATIVES SELECTION prob-
lem (it is also called WEIGHTED HITTING DISJOINT SET, see, e.g., [17]). Let us
partition the set [n] into u disjoint subsets T7,...,T,. Then ch(®) is described by a
system of constraints of the form ZieTj x; = 1 for each j € [u]. Hence, each feasible
solution is composed of exactly one element e; from each T;. An important char-
acteristic of this problem is the value of rmax = max e, |7}|. An optimal solution
to this problem is composed of elements of the smallest costs from each 7;. Both
SELECTION and REPRESENTATIVES SELECTION problems become nontrivial under
uncertainty. We will discuss them later in detail as they allow us to obtain strong neg-
ative complexity results for many robust versions of discrete optimization problems.

In many practical applications the element costs are often uncertain, which means
that their precise values are not known before computing a solution. In this case a
scenario set % , containing all possible realizations of the element costs, is a part
of input. Each particular cost realization (c?,...,c;) € % is called a scenario. Then
f(X,8) =X ex cf is the cost of solution X under scenario S. In this chapter we
will focus on two popular methods of defining set % —discrete and interval un-
certainty representations. For the discrete uncertainty representation [61], scenario
set, denoted by %p, contains K explicitly listed scenarios. This uncertainty repre-
sentation is appropriate when each scenario corresponds to an event which globally
influences the element costs. For example, an uncertain weather forecast can glob-
ally change a system environment, and these uncertain weather conditions can be
modeled by discrete scenarios. For the interval uncertainty representation [15], sce-
nario set, denoted by ﬁZ// is defined as follows. We assume that the cost of element
e; can take any value within the interval [c;,¢; + d;], where ¢; is a nominal cost and
d; is the maximum deviation of the value of the cost from its nominal value. Then
@/f is a subset of the Cartesian product of these intervals, under the additional as-
sumption that in each scenario in @/f , the costs of at most £ elements can be greater
than their nominal values. The value of ¢ € [0,#] is fixed and allows us to control
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the degree of uncertainty. When ¢ = 0, then we get a deterministic problem with one
scenario. On the other hand, when ¢ = n, then we get the traditional interval uncer-
tainty representation [61], in which scenario set is equal to the Cartesian product of
all the uncertainty intervals. We will denote this particular special case of scenario
set by % = ,". The scenario set %, models a local uncertainty, i.e. we assume
that the cost of each element may vary independently on the costs of the remaining
elements. For instance, a traveling time of some link is often uncertain and can be
modeled by a closed interval which provides us a bound on the minimum and the
maximum possible value of the traveling time. It is often not possible to measure
some costs precisely and the measurement error can also be expressed as a closed
interval.

In mathematical programming problems some other types of scenario sets, in
particular the ellipsoidal uncertainty or the column-wise uncertainty set, are also
used. In general %/ can be any set, typically assumed to be convex [14]. In this
chapter we will not be concerned with such more general scenario sets. Some dis-
cussion on them can be found in the recent survey [38]. In robust optimization, also
the set of feasible solutions can be uncertain and may depend on a scenario (see,
e.g. [65]). In the class of problems discussed in this chapter the set of feasible solu-
tions @ is deterministic, i.e. it remains the same for each scenario in % . Under this
assumption, the discrete and interval uncertainty representations are the easiest and,
in many cases, possess sufficient expressive power.

If no additional information for % (such as a probability distribution) is pro-
vided, then we face a decision problem under uncertainty. In order to choose a
solution we can use some well known criteria used in decision theory under uncer-
tainty (see e.g. [63]). Among them there are the minmax and minmax regret criteria,
which assume that the decision maker is risk averse and seeks a solution minimizing
the cost or opportunity loss in a worst case, i.e under a worst scenario which may
occur. By using the minmax (regret) criterion we obtain the robust minmax (regret)
optimization problem. This traditional robust approach to discrete optimization has
some well known drawbacks, which we will discuss in more detail in Sect. 6.2. By
applying the minmax (regret) criterion we may sometimes get unreasonable solu-
tions (we will show some examples in Sect. 6.2). Furthermore, it is not true that
decision makers are always extremely risk averse. Hence, there is a need to soften
the very conservative minmax (regret) criterion. Also, in many practical applications
decision makers have some additional information provided with % . For example,
a probability distribution in %/ or its estimation may be available. This information
should be taken into account while computing a solution. In Sect. 6.3 we will present
some recent extensions of the robust approach which take into account both an att-
itude of decision makers towards a risk and an information about the probability
distribution in % .

The minmax approach can be generalized by considering the robust optimization
problem with incremental recourse [72]. This problem can be seen as a zero-sum
game against the nature with the following rules. The decision maker chooses first
a solution X whose cost f(X) is precisely known. Then nature picks a scenario
S from 7/ and the decision maker, chooses the next solution Y after observing S.
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The solution Y has the cost f(Y,S) and must be of some predefined distance from X.
The decision maker wants to minimize the total cost f(X)+ f(Y,S) while the nature
aims to maximize this total cost, i.e. it always picks the worst scenario for solu-
tion X. It is easily seen that the robust optimization problem with incremental re-
course contains the minmax problem as a special case. Indeed, by assuming that the
initial cost of X is always 0 and ¥ must be the same as X (no modification of X
is allowed) we arrive to the minmax problem. The robust optimization with incre-
mental recourse is similar to robust recoverable optimization [17, 18, 62], because a
limited recovery action is allowed after observing which scenario has occurred. We
will study the robust optimization problems with incremental recourse in Sect. 6.4.

The traditional min-max (regret) approach is a one-stage decision problem, i.e. a
complete solution must be computed before a true scenario reveals. However, many
practical problems have a two-s