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Preface

The Role Robustness in Operations Research and Management
Science

Operations research and management science (OR/MS) models are based on
assumptions and hypotheses about the available data, the modeling parameters,
and the decision context. These are often characterized by uncertainties, fuzziness,
vagueness, and errors, which are due to the complexity of real-world problems. As
a consequence, it is likely that mild changes on the assumptions and hypotheses set
at an early stage of the analysis may require major revisions of the modeling con-
text (e.g., imposing new data requirements, reformulation of objectives, goals, and
constraints), thus ultimately leading to very different conclusions and recommen-
dations. Furthermore, it is often observed that solutions found to be acceptable at
an early stage of the analysis are actually not easy to implement due to differences
(realized a posteriori) between the modeling approach and the actual nature and the
evolving dynamic character of the problem at hand.

Robustness analysis seeks to address such issues by promoting models and so-
lutions, which are acceptable under a wide set of plausible conditions and config-
urations. It is rather difficult to give a unique definition of robustness that fits all
contexts and types of problems. However, the common perspective widely used
in OR/MS is to consider robustness analysis in the framework of decision-making
under uncertainty.

Stewart [8] distinguishes between external and internal uncertainties. External
uncertainties relate to the decision environment involving issues that are usually
outside the direct control of the decision-maker. Internal uncertainties, on the other
hand, relate to problem structuring and modeling issues that arise, for instance, due
to the imprecision and ambiguity of judgmental inputs.

Given such uncertainties, Rosenhead [6] highlights the importance of consider-
ing the flexibility that solutions/decisions offers. He defines this flexibility as the
future opportunity to take decisions toward desired goals. Within this context, he
considers the robustness of a solution as the ratio of the number of acceptably
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vi Preface

performing configurations with which that solution is compatible to the total number
of acceptably performing configurations.

Roy [7], on the other hand, adopts a wider perspective and argues that robust-
ness analysis is a tool that decision analysts use to protect against the approxima-
tions and ignorance zones, which arise due to imperfect knowledge, ill-defined data,
and the specification of modeling parameters. Such issues create a gap between the
“true” model and the one resulting from a computational mechanism. Roy views the
characterization of robustness solely in the context of uncertainty as a restrictive ap-
proach and suggests instead going beyond the traditional scenario-based approach
through the adoption of a version/procedure-based framework that takes into ac-
count different realities for a problem (versions) and processing procedures. This is
similar to the approach proposed by Vincke [9] who described robust solutions as
those that remain acceptable under changes in the problem data and the parameters
of the method used while further highlighting that robustness also applies to the
decision methods used to derive the results of an analysis.

Similar views can also be found in the context of robust optimization, which has
been an active research topic in OR/MS at least since the 1990s [1–3]. For instance,
Mulvey et al. [5] distinguish between the robustness of solutions for a given prob-
lem which are acceptable under different modeling forms and the robustness of the
modeling scheme. They note that reactive approaches relying on post-optimality
techniques (e.g., sensitivity analysis) are not enough as they only take into account
data uncertainties, thus proposing the use of proactive approaches, which focus
on formulations that, by design, provide less sensitive (more robust) solutions to
changes in the problem data. Mulvey et al. further distinguish the robust optimiza-
tion paradigm from traditional OR/MS approaches such as stochastic programming.
The differences between these approaches are also analyzed by Kouvelis and Yu [4]
who provide a formal framework for robust optimization with emphasis on discrete
optimization problems.

All the above different views of robustness cover a broad OR/MS context that
starts from soft OR and decision-aiding tools and extends to a wide range of ana-
lytical techniques for different types of optimization problems. As new challenges
emerge in a “big-data” era, where the information volume, speed of flow, and com-
plexity increase rapidly, and analytics playing a fundamental role for strategic and
operational decision-making at a global level, robustness issues such as the ones out-
lined above become more relevant than ever for providing sound decision support
through more powerful analytic tools.

Outline of the Book

Aims and Scope

Given the multifaceted nature of robustness, the motivation for the preparation of
this book was to publish a unique volume aiming at providing a broad coverage
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of the recent advances in robustness analysis in decision aiding, optimization, and
analytics, adopting an OR/MS perspective.

The board coverage of the volume is a unique feature that enables the compre-
hensive illustration of the challenges that robustness raises in different OR/MS con-
texts and the methodologies proposed from multiple perspectives. Thus, this edited
volume facilitates the presentation of the current state of the art and the communica-
tion of ideas, concepts, and techniques for different OR/MS areas where robustness
concerns are highly relevant.

The volume also includes a part on applications of robust techniques in en-
gineering and management, thus illustrating the robustness issues raised in real-
world problems and their resolution with the lasted advances in robust analytical
techniques.

Organization

The book includes 14 chapters, organized in three main parts that cover a wide
range of topics related to theoretical advances in robustness analysis and their ap-
plications. The first part is devoted to decision aiding. The book starts with the
chapter of Lahdelma and Salminen about stochastic multicriteria acceptability anal-
ysis (SMAA). SMAA is a popular approach for multicriteria decision aid (MCDA)
problems under uncertainty. SMAA enables the evaluation of a discrete set of de-
cision alternatives when there is uncertainty about the data and/or the parameters
of the decision model. Uncertainty is represented through probability distributions,
and probabilistic indicators are constructed that facilitate the formulation of robust
recommendations. The chapter illustrates the main concepts and functionality of
this approach using an easy-to-follow example-based illustration. Implementation
issues and recent advances are further discussed.

The second chapter, by Doumpos and Zopounidis, focuses on preference disag-
gregation analysis (PDA). PDA is widely used in MCDA to infer decision models
from data using optimization-based techniques (usually linear programming mod-
els). Over the past decade, much research has been devoted on the development of
robust PDA approaches that take into consideration a set of decision models (of
the same type/class) rather than a single model. The chapter examines the robust-
ness of such approaches in classification problems, where a finite set of alternative
should be classified into predefined performance categories. The chapter proposes
new robustness indicators based on concepts and techniques from the field of con-
vex optimization, taking into account the geometric properties of the set of feasi-
ble/acceptable values for the parameters of a decision model as specified by a set
of decision instances. The new indicators are illustrated and validated through a
numerical example.

The third chapter of this first part of the book, by Rı́os Insua, Ruggeri, Alfaro, and
Gomez, is devoted to adversarial risk analysis (ARA), which is a risk management
framework for decision situations involving intelligent opponents. ARA has been
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recently applied in a wide range of areas, including business applications, defense,
and security. The latter is the main focus of the chapter, which provides an outline
of the role of robust methods in ARA. The chapter starts by discussing Bayesian
robustness and then presents a game theoretic framework applied to sequential and
simultaneous defend-attack instances. The framework leads to game theoretic solu-
tions, which are improved through robustness analysis and ARA.

The first part of the book closes with the chapter by Sniedovich about Wald’s
maximin paradigm, which has played a central role in decision-making under uncer-
tainty, as a tool for worst-case-based robustness analysis. The chapter presents the
conceptual and modeling aspects of the Wald’s maximin paradigm and analyzes its
differences from other similar frameworks. The relationship between this paradigm
and robust decision-making is also discussed, from the perspective of robust opti-
mization, where the maximin principle has been extensively used for coping with
different types of robustness issues.

The second part of the book contains four chapters about robust optimization.
This part starts with the overview paper of Sözüer and Thiele. The authors provide
a survey of the most recent advances in the theory and applications of robust op-
timization over the past 5 years (2011–2015). The survey covers methodological
issues related to static and multistage decision-making, stochastic optimization, dis-
tributional robustness, and nonlinear optimization, as well as a range of application
areas such as supply chain management, finance, revenue management, and health
care.

In the next chapter, Kasperski and Zieliński focus on robustness for discrete op-
timization problems and discusses the two most popular approaches of modeling
the uncertainty, namely, the discrete and interval uncertainty representations. The
chapter starts with describing the traditional minimax approach and proceeds with
the presentation of new concepts and techniques that have recently appeared in the
literature, such as the use of weighted ordering averaging, robust optimization with
incremental recourse, and two-stage problems. Computational complexity issues,
which are very relevant for this type of problems, are also discussed.

The third chapter in this part, by Chassein and Goerigk, discusses the assessment
of robust solutions in optimization problems. This is a relevant issue, given the wide
range of definitions of robustness concepts, criteria, and metrics, available in the
literature, which naturally create a confusion regarding the selection of the most
appropriate approach for a given problem. The chapter illustrates this issue using as
examples well-known optimization problems, namely, the assignment and knapsack
problems, and proposes formal evaluation frameworks. These are illustrated through
experimental data.

In the last chapter of the second part, Inuiguchi examines fuzzy linear program-
ming (LP) problems. Fuzzy optimization enables the modeling of decision problems
that incorporate ambiguity and vagueness. This chapter focuses on LPs with fuzzy
coefficients in the objective functions. Robustness analysis in this context is more
involved compared to traditional optimization problems. Inuiguchi defines two ap-
proaches based on the minimax and maximin principles. Algorithmic and compu-
tational issues that arise in the implementation of the proposed approaches are also
analyzed.
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The last part of the book is devoted to application of robust OR/MS tech-
niques in engineering and management. This part includes six chapters. The first
of these chapters, by Artigues, Billaut, Cheref, Mebarki, and Yahouni, considers ro-
bust machine scheduling problems under uncertainty with a group sequence struc-
ture, where an ordered partition of jobs is assigned to each machine. Standard ro-
bust scheduling techniques are reviewed together with recoverable robust optimiza-
tion methods. Empirical evidence derived from a real manufacturing system is also
reported.

The next two chapters involve applications related to policy decision-making for
environmental management and energy systems. In particular, Kwakkel, Eker, and
Pruyt adopt a multi-objective optimization framework. The authors consider a case
study related to the European policies for reducing carbon emissions and promoting
the use of renewable energy technologies. A system dynamics model is used to sim-
ulate paths for the European electricity system, considering a number of uncertain
inputs variables. The policy design problems is formulated as an optimization prob-
lem with three objectives, and different robustness metrics are applied to examine
which is the most appropriate one for the making robust policy recommendations.

The next chapter, by Nikas and Doukas, presents a framework based on fuzzy
cognitive mapping for selecting effective climate policies for low carbon transitions
in the European Union. The proposed approach is an analytical framework for de-
veloping robust transition pathways, grounded on existing quantitative models, an
extensive literature review of the risks and uncertainties involved, and qualitative
information deriving from a structured stakeholder engagement process.

The next two chapters focus on portfolio optimization. The uncertainties that
prevail in the financial markets have attracted a lot of interest for robust techniques
in this area. The chapter of Gülpınar and Hu presents an overview of the theory
and applications of robust approaches to portfolio optimization, focusing on the
most fundamental and widely studied single-period context. The authors discuss the
relevance of using symmetric and asymmetric uncertainty sets for modeling asset
returns, cover recent advances in recent developments in data-driven robust opti-
mization, and discuss the connections between robust optimization and financial
risk management.

In the next chapter, Keçeci, Kuzmenko, and Uryasev consider portfolio opti-
mization with stochastic dominance constraints. Stochastic dominance provides a
distribution-free approach that takes into account the entire returns’ distribution.
The authors present efficient numerical algorithms for solving optimization prob-
lems with second-order stochastic dominance constraints. Empirical results are pre-
sented based on data from the Dow Jones and DAX indices in comparison to the
well-known mean-variance portfolio optimization model.

The book closes with the chapter of Atıcı and Gülpınar about performance and
production efficiency measurement, in the context of data envelopment analysis
(DEA). DEA is widely used as a nonparametric efficiency assessment technique,
based on linear programming models. In this chapter, the authors consider the DEA
framework under uncertainty about the data (input/outputs). An imprecise DEA ap-
proach and a robust optimization model are compared using a case study involving



x Preface

the assessment of production efficiency from the agricultural sector (olive-growing
farms). The results lead to insights about how the treatment of uncertainty relates to
the obtained efficiency estimates.
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Chapter 1
SMAA in Robustness Analysis

Risto Lahdelma and Pekka Salminen

Abstract Stochastic multicriteria acceptability analysis (SMAA) is a simulation
based method for discrete multicriteria decision aiding problems where information
is uncertain, imprecise, or partially missing. In SMAA, different kind of uncertain
information is represented by probability distributions. Because SMAA considers
simultaneously the uncertainty in all parameters, it is particularly useful for robust-
ness analysis. Depending on the problem setting, SMAA determines all possible
rankings or classifications for the alternatives, and quantifies the possible results in
terms of probabilities. This chapter describes SMAA in robustness analysis using a
real-life decision problem as an example. Basic robustness analysis is demonstrated
with respect to uncertainty in criteria and preference measurements. Then the anal-
ysis is extended to consider also the structure of the decision model.

1.1 Introduction

Robustness analysis of a computational model is a type of sensitivity analysis that
considers simultaneous variations of all parameters in a given domain. More general
robustness analysis would also consider the sensitivity of the analysis with respect to
model structure derived from various assumptions. Robustness analysis is necessary
in particular when some input parameters of the model are imprecise or uncertain.
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2 R. Lahdelma and P. Salminen

Stochastic multicriteria acceptability analysis (SMAA) is a simulation based
method for discrete multicriteria decision aiding problems where information is
uncertain, imprecise, or partially missing. In SMAA, different kind of uncertain
information is represented by probability distributions. This approach is similar to
metrology [22]. For example, if the cost of an alternative is not accurately known,
it can be represented by a uniform distribution in a given range, or a normal dis-
tribution with specified expected value and standard deviation (Fig. 1.1). Uncertain
preference information is similarly represented by distributions. Also subsequent
computations in SMAA follow probability theory.

0
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Fig. 1.1: Representing uncertain criteria measurements as distributions

Depending on the problem setting, SMAA computes statistically for each alter-
native the probability to be most preferred, dominate another alternative, be placed
on a particular rank or fit in a specific category. The computation is implemented by
Monte-Carlo simulation, where values for the uncertain variables are sampled from
their distributions and alternatives are evaluated by applying the decision model.

SMAA can be applied with different decision models. These include linear and
non-linear utility or value functions [8, 15, 16], ELECTRE methods [9, 26], refer-
ence point based methods [11, 17], efficiency score of Data Envelopment Anal-
ysis (DEA) [10], nominal classification method [29], and ordinal classification
method [12]. For a surveys on different variants and applications of SMAA, see
[13, 24]. Recent developments of SMAA include robustness analysis with respect
to shape of the utility function by Lahdelma and Salminen [14], efficient Markov
Chain Monte Carlo simulation technique to treat complex preference information
by Tervonen et al. [27], the SMAA-PROMETHEE method by Corrente et al. [4],
SMAA with Choquet Integral by Angilella et al. [1], and extensions for pairwise
comparison methods such as the analytic hierarchy process (AHP) by Durbach et al.
[6] and the Complementary Judgment Matrix (CJM) method by Wang et al. [28].

Because SMAA considers simultaneously the uncertainty in all parameters, it is
particularly useful for robustness analysis of different multicriteria decision models.
SMAA determines all possible rankings or classifications for the alternatives, and
quantifies the possible results in terms of probabilities. The solution with highest
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probability is typically the recommended solution. However, the probabilities for
other possible solutions are also provided for the decision makers (DMs). This
means that SMAA describes how robust the model is subject to different uncer-
tainties in the input data. SMAA can also be used to analyze the robustness of the
decision problem with respect to the model structure. For example, robustness with
respect to linearity assumptions in utility/value functions can be analyzed by choos-
ing a more general parametrized utility function and exploring how the solutions
change as a function of the degree of non-linearity.

In the following, we describe the SMAA method applied on a real-life decision
problem of choosing a location for an air cargo hub in Morocco [21]. Section 1.2
describes problem representation in SMAA as a stochastic MCDA problem and
how it is analysed using stochastic simulation. Section 1.3 presents the statistical
measures of SMAA and shows how SMAA can be used to assess the robustness of
an MCDA problem with respect to uncertainty in criteria and preference measure-
ments. Section 1.4 extends the robustness analysis to consider the structure of the
decision model.

1.2 Problem Representation in SMAA

1.2.1 Stochastic MCDA Problem

A discrete multi-criteria decision problem consists of a set of m alternatives that
are measured in terms of n criteria. The alternatives are evaluated using a decision
model M(x,w) that depends on the applied decision support method. The matrix
x= [xi j] contains the criteria measurements for each alternative i and criterion j. The
preference information vector w = [wj] represents the DM’s preferences. Typically
w contains importance weights for the criteria. Depending on the decision model, w
can also contain other preference parameters, such as various shape parameters for
non-linear models.

SMAA has been developed for real-life problems, where both criteria and pref-
erence information can be imprecise, uncertain or partially missing. To represent
the incompleteness of the information explicitly, SMAA represents the problem as
a stochastic MCDA model, where criteria and preference information is represented
by suitable (joint) probability distributions:

• fX (x) the density function for stochastic criteria measurements.
• fW (w) the density function for stochastic importance weights or other preference

parameters.

Because all information is represented uniformly as distributions, this allows using
efficient simulation techniques for analyzing the problem and deriving results about
prospective solutions and their robustness.

An example of a stochastic MCDA model is the problem of choosing a location
for a centralized air cargo hub in Morocco [21]. In this problem, nine alternative
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locations were considered. Different socio-economic factors, the geographical loca-
tion, and environmental impacts were formalized as six criteria: INVEST = invest-
ment cost, PROXIMITY = proximity to producers, POTENTIAL = potential of the
site, TRANSPORT = transport cost, SERVICE = service level, ENVIRON = Envi-
ronment. The alternatives, criteria and measurements are presented in Table 1.1.

The INVEST, POTENTIAL, TRANSPORT and SERVICE criteria were
measured on cardinal scales. The values in Table 1.1 for these criteria are dimension-
less quantities that have been obtained by scaling the actual measurements on linear
scales where larger values are better. The uncertainty of these measurements appears
on the last row as a plus/minus percentage. The measurements were then represented
as independent, uniformly distributed random numbers in the plus/minus ranges
around their expected values. In SMAA it is possible to use arbitrary distributions
to represent uncertain criteria measurements. If the uncertainties of the criteria mea-
surements are dependent, this can be represented by joint distributions, such as the
multivariate Gaussian distribution [18, 19].

The PROXIMITY and ENVIRON criteria were evaluated ordinally, i.e. experts
ranked the alternatives with respect to these criteria so that the best alternative obt-
ained rank 1, second best rank 2 etc. Ordinal measurement can be necessary if car-
dinal measurement is too costly, or if it is difficult to form a measurable scale for
the criterion.

Table 1.1: Alternatives and criteria measurements in air cargo hub case (alphabeti-
cal order)

INVEST PROXIMITY POTENTIAL TRANSPORT SERVICE ENVIRON
Alt (max) (min) (max) (max) (max) (min)

Agadir 70 2 165 644 50 2
Benslimane 80 3 560 3718 40 1
Casablanca 65 1 585 3621 80 5
Dakhla 80 8 82 600 20 1
Fez 70 6 385 2872 30 4
Marrakesh 65 5 379 2589 45 1
Oujda 75 7 82 663 25 4
Rabat 65 4 542 3718 45 3
Tangier 70 3 357 1915 60 3

Uncertainty ±10 % Ordinal ±10 % ±10 % ±10 % Ordinal

1.2.2 Generic SMAA Simulation

Different variants of SMAA apply the generic simulation scheme of Algorithm 1
for analyzing stochastic MCDA problems. During each iteration, criteria measure-
ments, weights, and possible other preference parameters are drawn from their dis-
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tributions, and the decision model is used to evaluate the alternatives. Depending on
the problem setting and decision model, different statistics are collected during the
simulation and the SMAA measures are computed based on the statistics. For exam-
ple, in the case of a ranking problem, statistics are collected about how frequently
alternatives obtain a given rank.

Algorithm 1. Generic SMAA simulation
Assume a decision model M(x, w) for ranking or classifying the alternatives using precise
information (criteria matrix x and preference information vector w)
Use Monte-Carlo simulation to treat stochastic criteria and preference parameters:
Repeat Ktimes {

Draw <x, w> from their distributions
Rank, sort or classify the alternatives using M(x,w)
Update statistics about alternatives

}
Compute results based on the collected statistics

The efficient implementation and computational efficiency of SMAA methods
have been described by Tervonen and Lahdelma [25]. The computational accuracy
of the main results depends on the square root of the number of iterations, i.e. inc-
reasing the number of iterations by a factor of 100 will increase the accuracy by one
decimal place. In practice about 10,000 iterations yield sufficient accuracy for the
SMAA results.

1.2.3 Decision Model

SMAA can be used with arbitrarily shaped utility functions, and also with other
kinds of decision models that are based on any kind of preference parameters.
A common type of utility function is the additive utility function that defines the
overall utility as a weighted sum of partial utilities:

u(xi,w) = w1ui1 +w2ui2 + . . .+wnuin (1.1)

The wj are the importance weights for criteria and ui j are the partial utilities obt-
ained by mapping the original criteria measurements (expressed in various units)
to unit-less scales so that the worst outcome is 0 and the best outcome is 1. The
mappings can be linear or non-linear monotonic functions.

In the sample problem linear mappings were applied, leading to a linear overall
utility function. In this study we consider also non-linear mappings in order to ana-
lyze the robustness of the problem with respect to the shape of the utility function.

The weights should be non-negative and normalized so that their sum is 1. By
substituting 1 or 0 for each partial utility in (1.1) we see that the overall utility is 1
for an ideal alternative, and 0 for an anti-ideal alternative.
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1.2.4 Preference Information

In SMAA, incomplete preference information is represented using probability dis-
tributions. In the following we consider incomplete weight information. However
the same techniques can be used also for other preference parameters.

With an additive utility function, the weights express the relative importance of
raising each criterion from its worst value to the best value. Ratios between weights
correspond to trade-offs between criteria. In SMAA uncertain or imprecise weights
are represented as a joint probability distribution in the feasible weight space defined
as the set of non-negative and normalized weights

W = {w |wj ≥ 0 and w1 +w2 + . . .+wn = 1} (1.2)

This means that the feasible weight space is an (n− 1)-dimensional simplex. In the
3-criterion case, the feasible weight space is a triangle with corners (1,0,0), (0,1,0)
and (0,0,1), as illustrated in Fig. 1.2a. In the absence of weight information, we
assume that any feasible weights are equally possible, which is represented by a
uniform distribution in W .

w2

w1

w3

W
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a b

Fig. 1.2: (a) Feasible weight space in the 3-criterion case. (b) Sampling uniformly
distributed weights in the 3-criterion case projected on the (w1,w2) plane

Uniformly distributed normalized weights need to be generated using a special
technique [25]. First n−1 independent uniformly distributed random numbers in the
interval [0,1] are generated and sorted together with 0 and 1 into ascending order
to get 0 = r0 ≤ r1 ≤ ·· · ≤ rn = 1. From these numbers the weights are computed
as the intervals w1 = r1 − r0, w2 = r2 − r1, . . . , wn = rn − rn−1. It is obvious that
the resulting weights will be non-negative and normalized. For the proof that the
resulting joint distribution is uniform, see [5]. Figure 1.2b illustrates generation of
uniformly distributed weights in the 3-dimensional case, projected on the (w1,w2)
plane where w3 = 1−w1−w2.
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Preference information can be treated in SMAA by restricting the uniform weight
distribution with additional constraints. Another technique is to apply a non-uniform
distribution for the weights. For example, if the DMs express precise weights with
implicit imprecision, this can be represented by a distribution with decreasing den-
sity around the expressed weights. Suitable distributions are e.g. triangular distribu-
tions and (truncated) normal distributions.

Different ways to restrict the uniform or non-uniform weight distribution with
additional constraints include the following:

• Weight intervals can be expressed as wj ∈ [wmin
j ,wmax

j ]. Weight intervals may
result from DMs’ preference statements of type “the importance weight for cri-
terion j is between wmin

j and wmax
j ”. Weight intervals can also be computed to

include precise weights or weight intervals of a group of DMs. Figure 1.3a illus-
trates weight intervals in the 3-criterion case.

• Intervals for trade-off ratios between criteria can be expressed as wj/wk ∈
[wmin

jk ,wmax
jk ]. Such intervals may result from preference statements like “criterion

j is from wmin
jk to wmax

jk times more important than criterion k”. These intervals
can also be determined to include the preferences of a group of DMs. Figure 1.3b
illustrates two constraints for trade-off ratios.

• Ordinal preference information can be expressed as linear constraints w1 ≥ w2 ≥
·· · ≥ wn. Such constraints represent DMs preference statement that the crite-
rion 1 is most important, 2 is second etc. It is also possible to allow unspecified
importance ranking for some criteria or equal importance (wj = wk). Multiple
DMs may either agree on a common partial ranking, or they can provide their
own rankings, which can then be combined into a partial ranking that is con-
sistent with each DM’s preferences. Figure 1.3c illustrates ordinal preference
information.

• DMs holistic preference statements “alternative xi is more preferred than xk”
result in constraints u(xi,w)≥ u(xk,w) for the weights. In the case of an additive
utility/value function, these constraints will be linear inequalities in the weight
space. Figure 1.3d illustrates one such holistic preference statement. In the gen-
eral case, with non-additive utility/value functions, outranking models etc., holis-
tic constraints correspond to non-linear constraints in the weight space.

Weight constraints can be implemented by modifying the weight generation proce-
dure to reject weights that do not satisfy the constraints. In most cases this technique
is very efficient. In some cases the Markov Chain Monte Carlo simulation technique
is more efficient [27].

1.2.5 Cardinal Criteria

In the case of a linear utility function, the partial utilities ui j are computed from
the actual cardinal criteria measurements xi j through linear scaling. The best and
worst values can be determined as some natural ideal and anti-ideal values, if such
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Fig. 1.3: Sampling uniformly distributed weights in the 3-criterion case projected
on the (w1,w2) plane: (a) with interval constraints for weights; (b) with two con-
straints for trade-off ratios; (c) with ordinal preference information w1 ≥ w2 ≥ w3;
(d) with holistic preference information based on an additive utility/value function

exist. For example, the ideal value for costs could be 0 and the ideal value for an
efficiency ratio could be 100 %. If such ideal and anti-ideal values cannot easily be
defined, it is possible to do the scaling according to the best and worst measurements
among the alternatives, as has been done for the sample problem in Table 1.2. Also
the uncertainties have been scaled accordingly. A downside with scaling based on
best and worst criteria measurements is that the scaling may change if the set of
alternatives or their measurements change during the decision process.

As a result, the uncertainty intervals may contain values outside the [0, 1] range.
This is not a problem, because the scaling interval is arbitrary; any other interval
would order the alternatives identically according to their utilities.
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Table 1.2: Scaled cardinal criteria measurements and their uncertainties in air cargo
hub case

Alt INVEST POTENTIAL TRANSPORT SERVICE

Agadir 0.33±0.47 0.17±0.03 0.01±0.02 0.50±0.08
Benslimane 1.00±0.53 0.95±0.11 1.00±0.12 0.33±0.07
Casablanca 0.00±0.43 1.00±0.12 0.97±0.12 1.00±0.13
Dakhla 1.00±0.53 0.00±0.02 0.00±0.02 0.00±0.03
Fez 0.33±0.47 0.60±0.08 0.73±0.09 0.17±0.05
Marrakesh 0.00±0.43 0.59±0.08 0.64±0.08 0.42±0.08
Oujda 0.67±0.50 0.00±0.02 0.02±0.02 0.08±0.04
Rabat 0.00±0.43 0.91±0.11 1.00±0.12 0.42±0.08
Tangier 0.33±0.47 0.55±0.07 0.42±0.06 0.67±0.10

1.2.6 Ordinal Criteria

Ordinal criteria measurements are imprecise: we know the rank of each alterna-
tive with respect to the ordinal criterion, but we do not know how much better
the first alternative is than the second or third one, etc. In SMAA, ordinal crite-
ria are treated by simulating cardinal values that are consistent with the given or-
dinal ranks. The first rank corresponds to cardinal value s1 = 1 and the last rank
R corresponds to sR = 0. The intermediate ranks 2, 3, . . ., R − 1 should corre-
spond to a descending sequence of unknown cardinal values between 1 and 0. To
obtain the unknown intermediate values, R− 2 independent uniformly distributed
random numbers in the interval [0, 1] are generated. These values are then sorted
together with 1 and 0 into descending order to obtain cardinal values that satisfy
1 = s1 ≥ s2 ≥ ·· · ≥ sR−1 ≥ sR = 0.

The process described converts ordinal criteria into stochastic cardinal criteria.
Note that the intervals between subsequent values sr − sr+1 are non-negative and
their sum is 1. Subject to these constraints, the intervals follow a uniform distribu-
tion [5].

In the air cargo hub case, the PROXIMITY and ENVIRON criteria were ordinal.
Figure 1.4 shows some random cardinal mappings for these criteria. For the PROX-
IMITY criteria, alternatives Benslimane and Tangier were both ranked on level 3.
Therefore rank levels 1–8 were assigned for the nine alternatives. Similarly, shared
ranks for the ENVIRON criteria resulted in assigning five different rank levels for
that criterion.

1.3 Robustness with Imprecise Criteria and Weights

In the following we demonstrate the SMAA method using the air cargo hub case pre-
sented in Sect. 1.2. A linear utility/value function was used as the decision model
in this application. The simulation scheme presented in Algorithm 1 is applied
and the utility function is used to rank the alternatives. Observe that this approach
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Fig. 1.4: Sample of simulated cardinal values for the air cargo hub case. (a) PROX-
IMITY criterion. (b) ENVIRON criterion

differs from traditional utility function methods that compute the expected utility.
This means that SMAA does not require a cardinal utility function—an ordinal
utility/value function is sufficient. Based on the ranking, the following statistics are
collected during the simulation:

• Bir: The number of times alternative xi obtained rank r.
• Cik: The number of times alternative xi was more preferred than xk.
• Wi: Sum of the weight vectors that made alternative xi most preferred.

Based on the collected statistics the basic SMAA measures are computed. These
include rank acceptability indices, pairwise winning indices, central weight vectors,
and confidence factors, as presented in the following sections.

1.3.1 Rank Acceptability Indices

The primary SMAA measure is the rank acceptability index br
i . It measures the va-

riety of different preferences that place alternative xi on rank r. It is the share of
all feasible weights that make the alternative acceptable for a particular rank. In
other words, it is the probability that the alternative obtains a certain rank. Particu-
larly interesting is the first rank acceptability index b1

i , which is the probability that
the alternative is the most preferred one. For inefficient alternatives the first rank
acceptability index is zero. The rank acceptability indices are estimated from the
simulation statistics (with K iterations) as

bk
i ≈ Bir/K (1.3)

The rank acceptability indices can be used for robust choice of one or a few best
alternatives from a large set. Alternatives with high acceptability for the best ranks
are candidates for the most acceptable solution. Alternatives with large acceptability
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Table 1.3: Rank acceptability indices for air cargo hub case (sorted by b1)

Alt b1 b2 b3 b4 b5 b6 b7 b8 b9

Benslimane 72.00 23.00 4.00 1.00 0.00 0.00 0.00 0.00 0.00
Casablanca 25.00 33.00 14.00 7.00 5.00 5.00 5.00 3.00 3.00
Dakhla 1.00 7.00 6.00 5.00 5.00 6.00 15.00 41.00 15.00
Agadir 0.40 5.00 9.00 11.00 13.00 20.00 30.00 9.00 3.00
Tangier 0.38 7.00 17.00 28.00 25.00 16.00 4.00 2.00 0.00
Rabat 0.28 14.00 37.00 17.00 13.00 9.00 5.00 3.00 2.00
Marrakesh 0.03 11.00 11.00 22.00 25.00 19.00 6.00 3.00 3.00
Oujda 0.02 0.00 1.00 2.00 2.00 2.00 4.00 20.00 70.00
Fez 0.00 1.00 2.00 7.00 12.00 23.00 31.00 19.00 4.00

for the worst ranks should be avoided when searching for a robust most preferred alt-
ernative even if they would have fairly high acceptability for the best ranks. If none
of the alternatives receive high acceptability indices for the best ranks, it indicates a
need to measure the criteria, preferences or both more accurately.

Table 1.3 presents the rank acceptability indices for the air cargo hub case and
Fig. 1.5 shows the corresponding acceptability profile. To make the acceptability
profile easy to read, the alternatives are sorted by their first rank acceptability index.
In case of equal first rank indices, order is determined based on the second index
etc. This is called lexicographic order. The most acceptable (best) alternatives are
Benslimane and Casablanca with clearly highest acceptability for the highest ranks.
Benslimane receives 72 % acceptability for the first rank, 23 % for the second rank,
4 % for the third rank, 1 % for the fourth rank, and 0 for the ranks 5–9. This means
that Benslimane is a robust choice subject to many different possible preferences.
Also Casablanca with 25 % acceptability for the first rank and 33 % for the second
rank is a possible choice subject to suitable preferences. However, Casablanca is not
as robust subject to different preferences, because it can obtain also all other ranks
with some probability.

The rank acceptability indices can also be used for eliminating some of the worst
alternatives. Among the less acceptable alternatives, in particular Oujda receives
either the last or next to last rank with 90 % probability. Eliminating Oujda from the
set of best alternatives would a robust choice.

The acceptability profile will provide only a rough ranking of the alternatives
because there is no objective way to combine acceptability indices for different
ranks to reach a complete ranking. For forming a complete ranking, Lahdelma and
Salminen [8] suggested the holistic acceptability index, which is a weighted sum
of the rank acceptability indices for different ranks. However, the holistic accept-
ability index depends on meta-weights in the weighted sum, and meta-weights are
subjective. Another problem with using the acceptability indices to form a complete
ranking is that if alternatives are removed from or added to the problem, acceptabil-
ity indices may change, and the mutual order of alternatives may change. This is
known as the rank reversal problem, present in several MCDA methods. In SMAA
the above ranking problems can be resolved by the pairwise winning index, which
is presented next.
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Fig. 1.5: Acceptability profile for alternatives in air cargo hub case

1.3.2 Pairwise Winning Indices

The pairwise winning index cik is the probability for alternative xi being more pre-
ferred than xk, considering the uncertainty in criteria and preferences [20]. The pair-
wise winning index is estimated from the simulation statistics as

cik ≈Cik/K (1.4)

The pairwise winning indices are useful when comparing the mutual performance of
two alternatives. This information can be used e.g. when it is necessary to eliminate
inferior alternatives that are dominated by other alternatives.

Unlike the rank acceptability index, the pairwise winning index between one pair
of alternatives is independent on the other alternatives. This means that the pairwise
winning index can be used to form a ranking among the alternatives. The ranking is
obtained by ordering the alternatives so that each alternative xi precedes all alterna-
tives xk for which cik > 50% or some bigger threshold value.

Table 1.4 shows the pairwise winning indices for the air cargo hub case. In this
table the alternatives have been ordered to form a complete ranking, which means
that all pairwise winning indices in the upper triangle are >50% and <50% in the
lower triangle. Observe that there are problems where a complete ranking cannot
be obtained. For example, three or more alternatives may win each other in a cyclic
manner. In that case such subsets of alternatives obtain the same rank.
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Table 1.4: Pairwise winning indices for air cargo hub case (complete ranking)
Alt Benslimane Casablanca Rabat Tangier Marrakesh Agadir Fez Dakhla Oujda
Benslimane - 74 98 97 100 98 100 99 100
Casablanca 26 - 72 78 77 82 91 81 94
Rabat 2 28 - 62 69 72 90 80 94
Tangier 3 22 38 - 54 78 82 81 96
Marrakesh 0.2 23 31 46 - 69 80 82 93
Agadir 2 18 28 22 31 - 58 72 93
Fez 0.01 9 10 18 20 42 - 64 91
Dakhla 1 19 20 19 18 28 36 - 83
Oujda 0.1 6 6 4 7 7 9 17 -

1.3.3 Central Weight Vectors

The central weight vector wc
i is the expected center of gravity of the weights that

make an alternative most preferred. The central weight vector represents the pref-
erences of a ‘typical’ DM supporting an alternative. The central weight vectors can
be presented to the DMs in order to help them understand how different weights
correspond to different alternative choices. To justify their decision, the DMs can,
instead of expressing their own trade-off weights for the different criteria, judge if
they are willing to accept the central weights of some alternative. The central weight
vector for an alternative is estimated from the simulation statistics as

wc
i ≈ Wi/Bi1 (1.5)

Figure 1.6 (and Table 1.5) shows the central weight vectors for the air cargo hub
case. The central weight vector for Fez is not defined, because Fez is an inefficient
alternative (first rank acceptability index is zero). For the remaining alternatives
the central weight vectors reveal what kind of preferences favor each alternative.
For example, Benslimane, which is the most widely acceptable alternative, is most
preferred with relatively uniform weights for each criterion. In contrast, Oujda,
which is a nearly inefficient alternative, would require very much weight (68 %)
on the INVEST criterion alone, and very little weight (2 %) on the POTENTIAL
and ENVIRON criteria.

1.3.4 Confidence Factors

The confidence factor pc
i is the probability for an alternative to obtain the first rank

when its central weight vector is chosen. The confidence factors measure how robust
choice for the first rank an alternative can be if the DMs accept the central weight
vector to represent their preferences. A second simulation, presented in Algorithm 2
below, is needed to compute the confidence factors from collected statistics: Pi. The
number of times alternative xi was most preferred using weights wc

i .
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Fig. 1.6: Central weight vectors for air cargo hub case

Algorithm 2. Computation of confidence factors in SMAA
Repeat K times {

Draw x from its distribution
For the central weight vector wc

i of each alternative {
Rank the alternatives using u(xi,wc

i )
Update statistics (Pi) about alternatives

}
}

The confidence factor is estimated from the simulation results as

pc
i ≈ Pi/K (1.6)

If the confidence factors for all alternatives are low, it means that the criteria mea-
surements are not accurate enough for discriminating the alternatives robustly. In
such a situation, collecting more accurate preference information is not sufficient;
instead the criteria should be measured more accurately. In the opposite case, when
some alternatives have high confidence factors, but low acceptability indices for the
best ranks, collecting more accurate preference information may be sufficient.

Table 1.5 presents the confidence factors and corresponding central weight vec-
tors for the alternatives in the air cargo hub case. We can see that only Bensli-
mane and Casablanca are robust choices with suitable preferences falling at or near
their central weight vectors. The remaining alternatives are very unlikely to be most
preferred even with their central weight vectors. Choosing any of the remaining
alternatives would require, besides favorable weights, also more accurate criteria
measurement and a new analysis to reassess their robustness.
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Table 1.5: Confidence factors and central weights for alternatives in air cargo hub
case

Alt pc INVEST PROXIMITY POTENTIAL TRANSPORT SERVICE ENVIRON

Agadir 6.80 15 39 3 4 19 20
Benslimane 99.98 19 15 17 17 12 20
Casablanca 96.87 8 22 18 16 28 7
Dakhla 17.10 53 9 8 7 11 13
Fez – – – – – – –
Marrakesh 21.68 2 4 2 3 41 48
Oujda 3.81 68 13 2 9 7 2
Rabat 1.68 6 5 22 46 10 11
Tangier 3.38 23 13 6 5 35 19

1.4 Robustness with Respect to Model Structure

SMAA can be used to analyze the robustness of the decision problem with respect
the structure of the decision model. For example, robustness with respect to linearity
assumptions in utility/value functions can be analyzed by choosing a more general
parametrized utility function and exploring how the solutions change as a func-
tion of the degree of non-linearity [14]. As an example, we consider additive utility
functions (1.1) where the partial utility functions u j(·) are non-linear, exponential
functions (similar to the Constant Absolute Risk Aversion (CARA) model):

u j(x j) =
1− e−cx j

1− e−c (1.7)

The parameter c measures the curvature of the function. Positive values of c result in
concave shapes and negative values yield convex shapes. When c → 0, the function
approaches a linear function.

Partial utility functions with positive curvature compose into an overall utility
function favoring alternatives that are uniformly good on each criterion. Negative
curvature favors alternatives that are superior on any single criterion. In any case, a
dominated alternative can never be the most preferred.

To analyze the robustness of the air cargo hub case, we study how the first
rank acceptability indices (b1

i ) and lexicographic ranks of alternatives depend on
the curvature of the partial utility functions. For the cardinally measured crite-
ria (INVEST, POTENTIAL, TRANSPORT, SERVICE) we consider 11 curvature
levels: c ∈ {−8,−4,−2,−1,−0.5,0,0.5,1,2,4,8}. Figure 1.7 illustrates the corre-
sponding partial utility functions. The curvature for c = 8 is very high; the marginal
value at x j = 0 is 2980 times higher than at 1. The different partial utility functions
may have different shapes. In this example we consider only the situation where
each cardinal criterion has the same curvature.

In the following we analyze how much the acceptability indices and the lexi-
cographic rankings of alternatives change when moving from the linear model to
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each of the non-linear models. Table 1.6 shows that the acceptability indices are
very robust subject to small non-linearities. Significant (>5%) changes in accept-
ability indices occur only for Benslimane and Casablanca at c > 2, for Benslimane
at c <−1, for Casablanca at c <−2, and for Dakhla at c <−4.

Table 1.7 shows that the lexicographic ranking of the top alternatives is very
robust subject to non-linearity. Benslimane and Casablanca preserve their first and
second rank regardless the curvature. Dakhla preserves its third rank for negative
curvature but for positive curvature it loses its position.
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Fig. 1.7: Partial utility functions with different amounts of non-linearity

1.5 Recent Developments of SMAA

Recent developments of SMAA include more efficient computational methods and
extensions to different decision models.

In most cases the SMAA computations can be performed very efficiently using
straight forward Monte Carlo simulation. However, the computation may slow down
in case of complex preference information. In such cases, the Markov Chain Monte
Carlo (MCMC) simulation technique can be used to speed up the computation [27].
The JSMAA open source implementation of SMAA includes the MCMC technique
and performs the simulation as a background process while the user views or edits
the model (see www.smaa.fi, [23]).

www.smaa.fi


1 SMAA in Robustness Analysis 17

Table 1.6: Acceptability indices (%) of alternatives with different amount of curva-
ture. Over 5 % changes highlighted for illustrative purposes

Curvature c

Alternative −8 −4 −2 −1 −0.5 0 0.5 1 2 4 8

Agadir 0.05 0.09 0.16 0.26 0.31 0.40 0.48 0.53 0.75 1.40 2.00
Benslimane 47.00 54.00 62.00 67.00 70.00 72.00 75.00 76.00 79.00 82.00 85.00
Casablanca 25.00 30.00 31.00 29.00 28.00 25.00 24.00 22.00 18.00 12.00 9.00
Dakhla 23.00 13.00 5.80 2.90 1.70 1.00 0.53 0.17 0.01 0.00 0.00
Fez 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Marrakesh 0.00 0.00 0.01 0.01 0.01 0.03 0.04 0.07 0.14 0.72 1.00
Oujda 0.84 0.41 0.19 0.09 0.05 0.02 0.01 0.01 0.00 0.00 0.00
Rabat 3.60 2.00 0.99 0.52 0.43 0.28 0.15 0.14 0.16 0.19 0.08
Tangier 0.00 0.00 0.05 0.12 0.22 0.38 0.54 0.73 1.50 2.80 2.80

Table 1.7: Lexicographic ranks of alternatives with different amount of curvature

Curvature c

Alternative −8 −4 −2 −1 −0.5 0 0.5 1 2 4 8

Agadir −6 −6 −6 −5 −5 4 5 4 4 4 4
Benslimane −1 −1 −1 −1 −1 1 1 1 1 1 1
Casablanca −2 −2 −2 −2 −2 2 2 2 2 2 2
Dakhla −3 −3 −3 −3 −3 3 4 5 7 8 8
Fez −9 −9 −9 −9 −9 9 9 9 8 7 7
Marrakesh −7 −7 −8 −8 −8 7 7 7 6 5 5
Oujda −5 −5 −5 −7 −7 8 8 8 9 9 9
Rabat −4 −4 −4 −4 −4 6 6 6 5 6 6
Tangier −8 −8 −7 −6 −6 5 3 3 3 3 3

Extensions to different decision models include different shaped utility or value
functions and also decision models not based on utility functions. Cohen et al. [3]
applied SMAA with an additive value function where the partial value functions
(marginal value functions) were piecewise linear monotonic mappings. They var-
ied the mappings during simulation using a random process resembling treatment
of ordinal criteria measurements in SMAA. Babalos et al. [2] applied the SMAA-2
framework and considered three different aggregate evaluation measures: the holis-
tic acceptability index, Borda count method, and average score. Kontu et al. [7]
extended the SMAA method to handle a hierarchy of criteria and sub-criteria. A cri-
teria hierarchy is useful when the number of criteria is large.

Additive utility function models assume independence between criteria. SMAA
with Choquet integral by Angilella et al. [1] considers interaction between criteria.
The Choquet integral can be seen as a value function where positive or negative
interaction between criteria is also contributing to the evaluation of alternatives.
The Choquet integral is thus a more general decision model than the additive value
function. Lahdelma and Salminen [14] studied the robustness of decision problems
with respect to the shape of the utility function, as demonstrated in the previous
section.
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The SMAA-PROMETHEE method by Corrente et al. [4] is a recent extension
of SMAA to non-utility function based methods. PROMETHEE is based on an
outranking procedure where fuzzy preference relations between alternatives are
aggregated together to yield a partial order (PROMETHEE I) or complete or-
der (PROMETHEE II). Durbach et al. [6] extended the analytic hierarchy process
(AHP) to consider imprecise or uncertain pairwise comparisons by probability dis-
tributions. The resulting SMAA-AHP method is suitable for group decision mak-
ing problems, where it is difficult to agree on precise pairwise comparisons. Wang
et al. [28] extended the Complementary Judgement Matrix (CJM) method in a sim-
ilar manner. CJM differs from AHP in the way how the pairwise comparisons are
expressed, and in how the weights are solved from inconsistent comparisons. In
particular, the weights in CJM are determined by minimizing the square sum of
inconsistency errors.

1.6 Discussion

In SMAA uniform distributions are used to represent absence of information both
in criteria and preferences. Ordinal criteria are transformed into cardinal measure-
ments by simulating consistent ordinal to cardinal mappings. The simulation pro-
cess is equivalent to treating the absence of interval information of ordinal scales as
uniform joint distributions. Similarly, absence of weight information is treated as a
uniform joint distribution in the feasible weight space.

Although SMAA can be used with arbitrarily shaped utility functions, in real-life
applications simple forms, such as linear or some concave shapes are most com-
monly applied. Assessing the precise preference structure of DMs can be difficult
and time-consuming in practice. SMAA can be used to test the robustness of the
problem also with respect to the decision model, as illustrated in the previous sec-
tion. If the problem can be identified as robust with respect to model structure, it
may be possible to assume a simpler model in the interaction between the DMs.

The strength of SMAA in robustness analysis of multicriteria decision aiding
problems is that it is able to handle the whole range of uncertain, imprecise or par-
tially missing information flexibly using suitable probability distributions. Typically,
a real-life decision process may start with very vague and uncertain criteria and pref-
erence information. The information will become gradually more accurate during
the process. SMAA can be used in such processes repeatedly after any refinement of
information, until a robust decision can be identified and agreed on. SMAA reveals
if the information is accurate enough for making the decision, and also pinpoints
which parts of the information need to be refined. This can (1) protect the DMs
from making wrong decisions based on insufficient information and also (2) cause
significant savings in information collection if less accurate information is sufficient
for making a robust decision.
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Chapter 2
Data-Driven Robustness Analysis
for Multicriteria Classification Problems
Using Preference Disaggregation Approaches

Michael Doumpos and Constantin Zopounidis

Abstract The preference disaggregation framework of multicriteria decision aid
focuses on inferring decision models from data. In this context, the robustness of the
results is of major importance to ensure that quality recommendations are provided.
In this chapter we examine this issue adopting a data-driven perspective, focusing
on the effect due to changes in the data used for model construction. The analysis is
implemented for decision models expressed in the form of additive value functions
for multicriteria classification problems. Simple analytic measures are introduced
based on well-known optimization tools. The proposed measures enrich existing
robust multicriteria approaches with additional information taken directly from the
available data though an analytical approach. The properties and performance of
the new robustness indicators are illustrated through their application to an example
data set.

2.1 Introduction

Multiple criteria decision aid (MCDA) is involved with supporting the structuring
and modeling of decision problems involving multiple conflicting criteria. Similarly
to other operations research/management science approaches, MCDA methods are
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also based on modeling assumptions, related to the characteristics of the problem,
the aggregation of the decision criteria, and the preferential system of the decision
maker (DM). Naturally, these assumptions incorporate uncertainties, fuzziness, and
errors, thus affecting the quality of the obtained recommendations. Thus, changes in
the decision context and the available data may lead to completely different outputs.

In this framework, robustness analysis has emerged as a major research issue
in MCDA, emphasizing the need to re-think the traditional multicriteria framework
aiming towards providing satisfactory recommendations even in cases where the
decision context is altered. Roy [21] described in detail the robustness concern,
arguing that it is raised by vague approximations and zones of ignorance that cause
the formal representation of a problem to diverge from the real-life context, due
to: (1) the way imperfect knowledge is treated, (2) the inappropriate preferential
interpretation of certain types of data (e.g., transformations of qualitative attributes),
(3) the use of modeling parameters to grasp complex aspects of reality, and (4) the
introduction of technical parameters with no concrete meaning.

MCDA provides a wide arsenal of methodologies and techniques that enable the
systematic treatment of decision problems under multiple criteria. In this chapter
we focus on the preference disaggregation approach (PDA), which is involved with
the inference of preferential information and decision models from data [15]. PDA
techniques can greatly facilitate the model construction process, reducing the cogni-
tive effort required by DMs when specifying complex preferential information and
modeling parameters.

Robustness analysis in the framework of PDA is based on analytic and simulation
techniques (for an overview see [7]). This chapter considers the former approach,
which is based on two main schemes. The first focuses on the construction of a
single decision model that best represents the available decision instances [5, 13],
whereas the second is involved with the formulation of a range of recommendations
on the basis of all models compatible with the given data [10, 12]. In this chapter
we re-analyze the robustness of such approaches and introduce new robustness met-
rics following a data-driven perspective. More specifically, we are concerned with
robustness issues in terms of variations in the data instances used to infer a deci-
sion model. A similar view of robustness is very common on other fields also in-
volved with model inference from data (e.g., statistical learning [6]), but its analytic
treatment in the context of MCDA has been limited so far, despite the existence of
experimental results supporting its significance [8, 24]. This chapter contributes in
that direction and proposes tools based on well-known concepts from optimization
theory. The analysis is focused on decision models expressed in the form of additive
value functions for classification (sorting) problems, which involve the assignment
of a finite set of alternative options into predefined performance categories [27]. For
the purposes of the presentation an illustrative example is used.

The rest of the chapter is organized as four sections. Section 2.2 introduces the
framework of preference disaggregation analysis for classification problems and
presents the main existing robustness analysis techniques and approaches from the
MCDA literature. Section 2.3 discusses the importance of the proposed data-driven
framework for robustness analysis in disaggregation techniques and introduces
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new robustness indicators constructed on the basis of this framework. Section 2.4
presents results from the application on an example data set and finally Sect. 2.5
concludes the chapter and discusses some future research directions.

2.2 Preference Disaggregation for Multicriteria Classification

2.2.1 General Framework

Multicriteria problems involve multi-objective optimization and discrete evaluation
cases. In this chapter we are concerned with the latter type, which is about the eval-
uation of a set X of discrete alternatives over n performance criteria. The result of
the evaluation may be expressed in different forms, such as a choice, ranking, and
classification. The present study focuses on classification problems, where the al-
ternatives under consideration should be classified into q rank-ordered performance
categories C1 �C2 � ·· · �Cq. Category C1 is assumed to consist of the best alter-
natives whereas Cq consists of the worst performing ones.

In this context, a decision model F(x,β )→{C1, . . . ,Cq} aggregates the available
information about the criteria and provides recommendations about the classifica-
tion of the alternatives. The model is explicitly defined by the parameters β , which
may relate to the relative importance of the criteria or other information about the
aggregation process.

In the field of MCDA there is a wide range of different types of decision and
evaluation models. Some common examples include value functions [17], outrank-
ing models [20, 25], and decision rules [9]. Bouyssou et al. [2] provide a compre-
hensive overview of different MCDA models and their characterization.

For the reminder of the presentation this chapter will focus on additive value
function (AVF) models, which have been widely used in MCDA. The general form
of an AVF is:

V (xi) =
n

∑
k=1

wkvk(xik) (2.1)

where xi = (xi1, . . . ,xin) is the data vector for alternative i (xi j being the data of
i on criterion j), w1, . . . ,wn ≥ 0 are trade-off constants (normalized to sum up to
one) representing the relative importance of the criteria, and v1(·), . . . ,vn(·) are the
marginal value functions of the criteria. The marginal value functions decompose
the overall performance V (xi) of each alternative i into partial assessments at the
criteria level, each usually scaled between 0 and 1.

The most straightforward approach to use a value function model to classify an
alternative into predefined rank-ordered classes, is to employ the following decision
rule:

t� <V (xi)< t�−1 ⇔ xi ∈C� (2.2)
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where t0 = 1 > t1 > t2 > · · · > tq−1 > tq = 0 are thresholds that distinguish the
classes. Alternative classification rules can also be employed such as the example-
based approach of Greco et al. [12] or the hierarchical model of Zopounidis and
Doumpos [26].

In the framework of PDA, the parameters of the model are inferred from a sam-
ple of m decision instances X ′ = {xi,yi}m

i=1, where yi denotes the given class label
for alternative i. This sample (referred to as the reference set) may consist of dec-
isions about alternatives considered in past situations or decisions about a set of
alternatives which can be easily judged by the DM [15].

Formally, the model that is most compatible with the information in the reference
set is defined by parameters ̂β ∗ such that:

̂β ∗ = arg min
̂β∈A

L[YX ′ ,F(X ′, ̂β )] (2.3)

where F(X ′, ̂β ) denotes the outputs of a model with parameters ̂β for the alter-
natives in X ′, A is the set of acceptable parameter values, and L(·) is a function
that measures the differences between the recommendations of the model and the
actual assessments YX ′ for the reference alternatives. If the solution of the above
problem (2.3) is judged satisfactory, then the inferred parameters ̂β ∗ can be used to
extrapolate the model to any other alternative outside the reference set.

For a value function model, problem (2.3) is expressed in a mathematical pro-
gramming form. In particular, the inference of a classification model (weights of the
criteria, marginal value functions, and classification thresholds) from the reference
examples can be expressed as the following optimization problem:

min
q

∑
�=1

1
m�

∑
xi∈C�

(σ+
i +σ−

i ) (2.4)

s.t. V (xi)+σ+
i ≥ t�+ δ ∀xi ∈C�, �= 1, . . . ,q− 1 (2.5)

V (xi)−σ−
i ≤ t�− δ ∀xi ∈C�, �= 2, . . . ,q (2.6)

t�− t�+1 ≥ ε �= 1, . . . ,q− 2 (2.7)

V (x∗) = 0, V (x∗) = 1 (2.8)

V (x)≥V (x′) ∀x ≥ x′ (2.9)

σ+
i , σ−

i ≥ 0 i = 1, . . . ,m (2.10)

The objective function minimizes the total weighted classification error, where
the weights are defined on the basis of the number of reference alternatives from
each class (m1, . . . ,mq). The error variables σ+ and σ− are defined through con-
straints (2.5)–(2.6) as the magnitude of the violations of the classification rules (2.2)
(δ is a small positive constant used to ensure the string inequalities), whereas con-
straint (2.7) ensures that the class thresholds are defined in a decreasing sequence
(ε is a small positive constant). Constraint (2.8) defines the scale of the additive
model between 0 and 1 (0 corresponds to the performance of the least preferred
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alternative x∗ and 1 corresponds to the performance of an ideal action x∗). Finally,
constraint (2.9) ensures that the model is non-decreasing with respect to the perfor-
mance criteria (assuming all criteria are in maximization form).

For the case of an AVF, the above optimization problems can be written in lin-
ear programming form with a piece-wise linear modeling of the marginal values
function (for the modeling details, see [4, 14]).

2.2.2 Robust Approaches

The robustness concern in the context of PDA arises because often alternative
decision models can be inferred in accordance with the information embodied in
the set of reference decision examples that a DM provides (i.e., the optimization
model (2.4)–(2.10) often has multiple optimal solutions). This is particularly true
for reference sets that do not contain inconsistencies, but it is also relevant when
inconsistencies exist (in the PDA context, inconsistencies are usually resolved alg-
orithmically or interactively with the DM before the final model is built; see for
instance [19]).

With a consistent reference set the error variables can be removed from formu-
lation (2.4)–(2.10), which then reduces to a set of feasible linear constraints defin-
ing all acceptable models that are compatible with the assignment of the reference
alternatives.

V (xi)≥ t�+ δ ∀xi ∈ G�, �= 1, . . . ,q− 1

V (xi)≤ t�− δ ∀xi ∈ G�, �= 2, . . . ,q

t�− t�+1 ≥ ε �= 1, . . . ,q− 2

V (x∗) = 0, V (x∗) = 1

V (x)≥V (x′) ∀x ≥ x′

(2.11)

The size of the polyhedron defined through (2.11) is associated with the robust-
ness of the results and can be affected by a number of factors. The most important
of these factors relate to the adequacy of the set of reference examples and the com-
plexity of the selected decision modeling form. The former is immediately related
to the quality of the information on which model inference is based. Vetschera et
al. [24] performed an experimental analysis to investigate how the size of the ref-
erence set affects the robustness and accuracy of the resulting multicriteria models
in classification problems. They found that small reference sets (e.g., with a limited
number of alternatives with respect to the number of criteria) lead to decision mod-
els that are neither robustness nor accurate. Expect for its size, other characteristics
of the reference set are also relevant, such as the existence of noisy data, outliers,
the existence of correlated criteria, etc. [4].

Traditional disaggregation techniques such as the family of the UTA methods use
linear programming post-optimality techniques [22] in order to build a representa-
tive AVF defined as the average solution of some characteristic extreme points of the
feasible polyhedron (2.11). Other approaches for selecting the most representative
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decision model include the regularization approach of Doumpos and Zopounidis
[5], the analytic center formulation of Bous et al. [1], and the max-min model of
Greco et al. [13]. As explained by Doumpos et al. [8] such approaches seek to iden-
tify (analytically) central solutions to the polyhedron defined by (2.11), which are
expected to be more robust to changes in the data and the setting of the analysis.

Recently, alternative approaches have been proposed that enable the formulation
of recommendations based on multiple decision models. Two main schemes can be
identified in this framework. The first is based on simulation techniques, which are
based on sampling, at random, different solutions (value functions) from the polyhe-
dron defined by (2.11). The simulation process provides an approximate description
of all models compatible with the classifications for the reference set and enables the
formulation of a range of recommendations associated with probabilistic measures
of confidence (see, for instance, [23]).

The second scheme, on which this study is focused, is based on approaches that
seek to characterize the full set of acceptable models through analytic techniques,
rather than using simulation. In particular, Greco et al. [12] introduced a model-
ing framework that takes into account all decision models (AVFs) compatible with
the constraints (2.11). Their approach is based on the definition of necessary and
possible assignments. The set of necessary assignments N j for a non-reference alt-
ernative j �∈ X ′ consists of the classes in which j is classified by all models compat-
ible with the reference set, whereas the set of possible assignments P j includes the
results supported by at least one decision model. Obviously,N j ⊆P j. Furthermore,
it should be noted that these definitions cover the general case where the reference
alternatives might be classified in multiple classes (rather than the specific case des-
cribed above where each alternative is assigned into only one class, in which case
N j is either empty or singleton).

Figure 2.1 provides a graphical illustration of the necessary and possible ass-
ignments for a two-class problem, assuming a linear decision model (linear value
function). With the given reference set consisting of alternatives classified in two
categories (circles and rectangles), it is evident that all models that separate the two
classes assign the non-reference alternative x1 into class C1. On the other hand,
the precise classification of the non-reference action x2 is not possible. In fact, this
alternative can be assigned to any of the two categories.

The necessary and possible assignments for a non-reference alternative j can
be obtained through linear programming [12, 16]. In particular, a class C� belongs
to the set of possible assignments for a non-reference alternative j if the optimal
objective value of the following linear program is strictly positive:

max γ
s.t. t�+ γ ≤V (x j)≤ t�+1 − γ

constraints (2.11) for X ′
(2.12)

Similarly, a class C� belongs to the set of necessary assignments for alternative j
if either of the following two linear programs has a non-positive optimal objective
function value:
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x1 assigned to C1
by all models

x2 can be assigned 
to either class

C1

C2

Fig. 2.1: An illustration of possible and necessary assignments

max γ max γ
s.t. V (x j)≥ t�−1 + γ s.t. V (x j)≤ t�− γ

constraints (2.11) for X ′ constraints (2.11) for X ′
(2.13)

If γ ≤ 0 in the optimal solution of the left problem, then j cannot be assigned
to any of the classes in the set {C1, . . . ,C�−1}, which implies that C� ∈N j. On the
other hand, if the optimal solution of the right problem yields γ ≤ 0, then j cannot
be assigned to any of the classes in the set {C�+1, . . . ,Cq}, which again implies that
C� ∈N j.

It follows that, for every non-reference alternative j, the obtained possible ass-
ignments define a range [Lj ,Uj] with the worst and best possible ratings that can be
defined on the basis of the information available in the evaluations of the reference
actions.

The identification of the necessary and possible assignments provides valuable
additional information as opposed to simple point recommendations obtained from
a single decision model, thus enhancing the robustness of the results. However,
given that the necessary and possible assignments are data-driven results (i.e., they
are obtained from a specific reference set), it is apparent that they are also sub-
ject to the robustness concern. Figure 2.2 provides an illustration of this issue.
According to the given two-class reference set (circles and rectangles), the indicated
non-reference alternative is necessarily assigned to class C2 by all linear value func-
tions compatible with the available reference evaluations. This result, however, is
not robust because a reconsideration of the evaluations for the two circled reference
alternatives will lead to a different outcome.

Kadziński and Tervonen [16] proposed the combination of robust analytic pro-
cedures based on the specification of the necessary and analytic assignments with
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simulation techniques. The latter provide further information in probabilistic form
about the necessary and possible assignments. Simulation-based methods, however,
only provide an approximate description of the problem data and they can be com-
putationally intensive for larger data sets involving many alternatives and criteria.

Necessarily
assigned to C2

C2

C1

Fig. 2.2: An example of a necessary assignment that is not robust

In the next section we present new ways and metrics to gain further insight into
the robustness of necessary and robust assignments, without requiring the use of
simulation. The proposed approaches adopt a data-driven perspective, in the sense
that they are based on the properties of the available reference set. Their implemen-
tation is grounded on well-known techniques from optimization theory.

2.3 Data-Driven Robustness Indicators for Multicriteria
Classification Problems

Motivated by the above discussion about the robustness concern for classification
recommendations formulated using a set of decision models, this section presents
simple techniques that can be used to gain a better understanding of the robustness
issue in relation to the problem data, as represented in a set of reference assess-
ments. The main idea is based on the analysis of the changes in the feasible poly-
hedron (2.11) due to the incorporation of the necessary/possible assignments to a
given reference set.

To this end, first a simple support measure can be defined. Assume that accord-
ing to a given reference set X ′, a non-reference alternative j can be assigned to
any of the classes in the interval [Lj,Uj]. Then, the support measure S j is defined
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as the minimum number of changes that need to be made in the assignments of
the reference actions in order to allow the classification of j into classes outside
[Lj,Uj]. The lower this support measure is, the less robust in the obtained interval
assignment [Lj ,Uj], because minor changes in the reference set will lead to different
conclusions.

The computation of support can be done in a straightforward manner through the
solution of the following two mixed-integer linear programming problems:

min
m

∑
i=1

(σ+
i +σ−

i ) min
m

∑
i=1

(σ+
i +σ−

i )

s.t. V (x j)≥ tL j−1 + δ s.t. V (x j)≤ tUj − δ
constraints (2.5)–(2.9) for X ′ constraints (2.5)–(2.9) for X ′

σ+
i , σ−

i ∈ {0, 1} σ+
i , σ−

i ∈ {0, 1}

(2.14)

The left problem applied to cases where Lj ≥ 2 and returns the minimum number
of changes that need to be made in the assignments of the reference actions in order
to classify the non-reference alternative j to the set of categories {C1, . . . ,CLj−1}.
Similarly, the right problem applies to cases with Uj ≤ q− 1 and returns the mini-
mum number of changes that need to be made in the assignments of the reference
actions in order to classify the non-reference alternative j to the set of categories
{CUj+1, . . . ,Cq}.

The support measure S j can then be defined as the minimum of the two objective
functions at the optimal solutions of the two problems. When Lj = 1 and Uj = q,
then S j is by definition equal to zero. In other cases, if S j is non-zero but low,
then the DM may accept the changes identified through the solution of the above
optimization models, thus forming a new reference set X ′

j.
In order to compare the size of the feasible polyhedron corresponding to the new

reference set to the one of the initially available reference set X ′, we consider two
measures based on well-known results from optimization theory.

The first measure is based on the radius of the largest ball inscribed inside the
feasible polyhedron. Given a polyhedron {x |A�x ≤ b}, the radius r of the largest
ball inscribed in it can be computed from the following linear program [3]:

max r
s.t. a�i x+ r‖ai‖2 ≤ bi, ∀ i

(2.15)

where ai is the ith row of A.
This approach can be straightforwardly applied to find the radius r0 of the largest

ball inscribed inside the polyhedron (2.11) corresponding to the original reference
set and compare it to the radius r j of the largest ball for the modified reference
set X ′

j. Then, the following robustness measure can be defined:

R j =
logr0

logr j
(2.16)
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The case R j > 1 indicates that the modified reference set X ′
j, which allows the

classification of the non-reference alternative j outside its first computed range of
assignments [Lj,Uj], provides more options for choosing an acceptable decision
model. Thus, the modification of X ′ towards the new reference set X ′

j is likely to
lead to more robust results. On the other hand, the case R j < 1 indicates that the
modified reference set is more restrictive compared to X ′, which implies that this
modification is more sensitive to changes of the reference set (i.e., less robust).

Alternatively to the above metric, the size of the polyhedron corresponding to the
set of compatible decision models, can be assessed through the volume of the max-
imum ellipsoid inscribed inside the polyhedron. Compared to the above metric, this
is a more suitable approach for irregular polyhedra, which can not be well described
by the largest ball inscribed inside them (e.g., because they have large extremes).

The volume of the largest ellipsoid inside a polyhedron {x |A�x ≤ b} can be
found from the solution of the following convex optimization problem [3]:

min v = logdetB−1

s.t. ‖Bai‖2 + a�i d ≤ bi, ∀ i
(2.17)

where d is a vector of decision variables defining the center of the ellipsoid whose
volume is proportional to detB. Similarly to the previous measure, this optimization
problem can be used to compare the volume of the largest ellipsoid inscribed inside
the polyhedron (2.11) corresponding to the original reference set, against the volume
for the modified reference set X ′

j. The robustness measure in this case is defined as
follows:

Vj =
v0

v j
(2.18)

Similarly to the interpretation of (2.16), the case Vj > 1 indicates that the modi-
fication of the original reference set to allow the classification of the non-reference
alternative j outside its first computed range of assignments [Lj,Uj], leads to more
available options for selecting an acceptable decision model (i.e., higher robustness),
versus the case Vj < 1, which corresponds to a small (less robust) polyhedron.

2.4 Illustrative Results

In order to examine the potentials of the data-driven robustness measures introduced
in the previous section, we present results from their application to a data set taken
from Mousseau et al. [18]. The data involve 100 alternatives evaluated on seven cri-
teria (all in minimization form). The alternatives are classified in three performance
categories: the high performance class (category H), the medium performance group
(category M), and the low performance alternatives (class L).

For the purposes of the analysis, a reference set of 30 randomly selected alt-
ernatives (10 alternatives from each category) is used. Table 2.1 presents the results
for the necessary (N ) and possible (P) assignments of the 70 non-reference
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alternatives obtained with the chosen reference set, as opposed to their actual clas-
sification (columns). Out of the five alternatives actually belonging in the high per-
formance class, four are assigned to the same category by all models compatible
with the selected reference set (necessary assignments), whereas one alternative is
classified by some ambiguity in classes H or M (possible assignments). Similarly,
17 out of the 28 alternatives from class M are classified in the same category by all
models derived from the selected reference set. However, 11 alternatives from class
M are classified with ambiguity: three can be classified in H or M, five can be clas-
sified in M or L, whereas three actions can be assigned to any of the three categories
(H, M, L). Finally, 20 necessary assignments are specified for alternatives of class
L, whereas the remaining 17 alternatives of this class are assigned to categories M
or L (possible assignments).

Table 2.1: Necessary and possible assignments for the non-reference alternatives

Actual class

H M L Total

N H 4 0 0 4
M 0 17 0 17
L 0 0 20 20

P {H, M} 1 3 0 4
{M, L} 0 5 17 22
{H, M, L} 0 3 0 3

Total 5 28 37 70

To examine the robustness of the above results a resampling exercise is con-
ducted. In particular, first a subsample of 20 alternatives is selected, at random,
from the initial chosen reference set of 30 actions. Using this subsample as a new
reference set, the necessary and possible assignments are computed for all of the 70
non-reference alternatives. A single AVF model is also constructed through formu-
lation (2.4)–(2.10) and it is used to specify a single assignment for each one of the
non-reference actions. The same experiment is repeated 100 times, each based on a
different random subsample (new reference set) of 20 alternatives.

In each one of the above 100 tests, the best and worst assignments are identified
for all non-reference alternatives. Table 2.2 presents the average frequencies with
which each non-reference action is classified in the three categories. The results are
reported in comparison to the necessary and possible assignments identified through
the original reference set of 30 actions. Discrepancies between the results from the
full reference set and the ones obtained from the 100 random tests are shown in
bold.

For the alternatives necessarily assigned to category H, the simulation tests are
mostly consistent with the necessary assignments. There is only a small likelihood
(2.5 %) that an action necessarily assigned to class H under the full set might be
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downgraded to category M if the reference set changes. However, the discrepancies
for the two other categories are higher. For instance, for the alternatives that are

Table 2.2: Classification frequencies (in %) with the full set of AVFs corresponding
to different perturbations of the reference set

Best assignments Worst assignments

H M L H M L

N H 100.0 – – 97.5 2.5 –
M 22.6 77.4 – – 80.3 19.7
L 4.6 25.6 69.9 – – 100.0

P {H, M} 100.0 – – – 84.8 15.3
{M, L} 8.0 92.0 – – – 100.0
{H, M, L} 100.0 – – – – 100.0

necessarily assigned to category M with the full reference set, there is a significant
likelihood (22.6 %) that will be upgraded to category H if the reference set changes.
There is also a notable likelihood (19.7 %) for downgrading these alternatives to
the low performance class L. Thus, claiming that these alternatives are consistently
assigned to class M under all models compatible with the reference, does not seem
to be a very robust conclusion, because variations of the reference set often lead to
different outcomes.

The same also holds true for alternatives that are necessarily assigned to the low
performance class L under the full reference set. In this case, there is notable likeli-
hood (25.6 %) that they could be upgraded to the medium performance category M
with a perturbed reference set, whereas the likelihood of an even further upgrade to
class H is 4.6 %.

Similar discrepancies are also observed for the possible assignments, which are
expressed in interval form. For instance, focusing on the alternatives that can be
classified in H or M under the full reference set, the simulation test indicates that
they could actually be classified to category L with some perturbation of the refer-
ence set.

Table 2.3 presents similar results with a single AVF model, obtained through
the solution of problem (2.4)–(2.10) for each reference set in the 100 test runs. In
this case smaller discrepancies are observed (shown in bold) between the results
obtained with a single decision model (columns) and the necessary/possible assign-
ments derived from the full reference set (rows). This should be of no surprise, as
a single model does not provide information about extreme assignments like those
considered in the above results.

The above obtained results support the argument in this study that similarly to
point recommendations derived with a single decision model (AVF), interval results
formulated on a set of decision models are also subject to the robustness concern
when the reference data change.
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Table 2.3: Classification frequencies (in %) with a single AVF for random pertur-
bations of the reference set

Model assignments

H M L

N H 99.8 0.2 –
M 2.8 95.2 2.1
L 2.6 3.4 94.0

P {H, M} 37.8 60.5 1.8
{M, L} 0.8 32.3 66.9
{H, M, L} 29.3 50.3 20.3

Table 2.4 reports some results about the support measure and the uncertainty
of the assignments for the non-reference alternatives. Uncertainty is defined as the
entropy of the assignments over the 100 test runs, with higher entropy values in-
dicating higher ambiguity in the obtained classifications. Results are presented for
the extreme (best and worst) assignments as well as for the assignments obtained
with a single AVF. For the extreme assignments only the cases with positive sup-
port are considered because, as explained earlier a zero support indicates that the
possible assignments cover all classes (e.g., from H to L in this example). For the
results of the single AVF we also consider the cases with zero support to examine
how ambiguous alternatives are classified when a single decision model is used. The
obtained results clearly indicate that higher support is associated with lower ambi-
guity (i.e., lower entropy values) for all classifications, both the interval ones and
the single AVF model assignments.

Table 2.4: Entropy of assignments vs support

Support Best Worst Support Single AVF

1 0.463 0.306 0 0.784
2 0.386 0.094 1 0.300
3 0.288 0.005 ≥2 0.212
4 0.080 0.006
≥5 0.007 0.004

Regarding the two robustness indicators (2.16)–(2.18) that consider the size of
the feasible polyhedron, they were found to be highly correlated to each other (Pear-
son correlation higher than 0.85) and strongly negatively correlated to the support
measure (correlation about −0.6). The latter result implies the robustness of the
assignments for non-reference alternatives with low support can be improved by
reconsidering the evaluations of the supporting reference actions.

Table 2.5 provides details about the average values of the robustness indicators
R and V , as defined by (2.16)–(2.18), for all assignments of the non-reference alter-
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natives (the results are averages over the 100 tests). It is evident that both indicators
attain their maximum values when the alternatives are classified in their respective
necessary assignments. For instance, for alternatives assigned in category H by all
models compatible with the full reference set, both R and V are equal to one for class
H, whereas their value is lower for classes M (R = 0.81, V = 0.76) and L (R = 0.84,
V = 0.75). Thus, both indicators confirm that H is the most robust assignment for
these alternatives. The same holds for alternatives necessarily assigned to classes
M and L using the full reference set. For alternatives for which the full reference
set indicates that the can be classified in H or M (possible assignments), again the
two indicators verify that these are the most robust conclusions (classes H and M
correspond to higher values in R and V compared to class L). Similar, conclusions
are also drawn for alternatives possibly assigned to M or L. These results, indicate
that the two proposed robustness indicators are in accordance with the definitions of
necessary and possible assignments, and enhance them with additional information
that provides an analytic estimate of the robustness of the results, without requiring
to resort to approximate simulation-based approaches.

Table 2.5: The robustness indicators for all assignment results (non-reference alter-
natives)

R V

N /P H M L H M L

H 1.00 0.81 0.84 1.00 0.76 0.75
M 0.87 1.00 0.95 0.78 1.00 0.82
L 0.80 0.84 1.00 0.79 0.81 1.00

{H, M} 0.89 0.99 0.85 0.88 0.97 0.76
{M, L} 0.81 0.92 0.98 0.77 0.88 0.96
{H, M, L} 0.85 1.00 0.83 0.85 1.00 0.83

As a final test for the information content and validity of the two proposed indica-
tors we consider the classification of the alternatives whose classification is ambigu-
ous according to the reference set used in the analysis. These are 29 non-reference
alternatives for which only their possible assignments could be defined (i.e., the
alternatives classified in {H, M}, {M, L}, or {H, M, L}. To specify a single classi-
fication result for these cases we compare three different approaches:

1. For each of the 100 perturbations of the reference set, construct a single AVF
model, use it to classify the alternatives, and finally use a majority rule to aggre-
gate the 100 results for each alternative and specify the most appropriate class
assignment.

2. Classify the alternatives to the class for which the R measure is highest.
3. Classify the alternatives to the class for which the V measure is highest.

The results of these three procedures are compared against the actual classification
of the alternatives. The accuracy rate (i.e., the percentage of correct classifications)
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for the assignments obtained through the majority rule was found to be 89.7 %, the
assignments with the R measure had an accuracy rate of 82.8 %, whereas using the V
measure led to an accuracy of 96.6 %. These results indicate that the two robustness
indicators can constitute the basis for formulating good recommendations about the
most appropriate classification when a reference set leads to ambiguous conclusions.
Between the two indicators, the one based on the volume of the ellipsoid inscribed
inside the feasible polyhedron (V ) appears to provide better results.

2.5 Conclusions and Future Research

The robustness of MCDA models has been an active research topic recently having
attracted a lot of interest from different perspectives. In this chapter we focused on
the PDA framework for constructing decision models from data related to classifi-
cation problems. PDA is based on a data-driven scheme. As such, changes in the
data used to construct a decision model can have a significant impact on the results.

Motivated by this fact, this study presented simple, yet effective ways to assess
the robustness of MCDA models in the form of AVFs for classification problems.
The proposed measures provide analytic estimates of the ambiguity resulting from
the information that a given data set provides, based on tools and techniques from
optimization theory. The analytic form of the measures introduced in this study
makes them applicable to all cases, even when dealing with large problem instances
(i.e., reference sets with many actions and criteria).

The illustrative results presented in this chapter indicate that the proposed mea-
sures enhance existing robust MCDA techniques with additional information. Their
connection with the concept of robustness in the data-driven context explained
above was verified and their usefulness for formulating better decision recommen-
dations was demonstrated.

However, the positive properties of the measures introduced in this study and
the preliminary results should be further explored. To this end, applications to large
real data sets and further experimental testing will provide further insights. Compar-
isons with simulation-based approaches could also be useful to construct an unified
framework for analyzing robustness and assess the statistical properties of the pro-
posed measures. Finally, extensions to other types of decision problems, including
ordinal regression [11] should be examined, together with an analysis of cases where
inconsistencies, uncertainties, and fuzziness are present in the data.
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Chapter 3
Robustness for Adversarial Risk Analysis

David Rı́os Insua, Fabrizio Ruggeri, Cesar Alfaro, and Javier Gomez

Abstract Adversarial Risk Analysis is an emergent paradigm for supporting a
decision maker who faces adversaries in problems in which the consequences are
random and depend on the actions of all participating agents. In this chapter, we
outline a framework for robust analysis methods in Adversarial Risk Analysis. Our
discussion focuses on security applications.

3.1 Introduction

Large scale terrorist events like S-11 led to huge security investments. In turn,
this has promoted many modeling efforts to support how to efficiently allocate
such resources. Parnell et al. [15] provided an in-depth review for the US National
Academy of Sciences on bio-terrorism assessment, concluding, among other things,
that traditional risk analysis tools, like event trees, are not adequate in this applica-
tion area for not accounting for adversarial intentionality; the critical and, in many
contexts, doubtful common knowledge assumptions of game theoretic approaches;
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and, finally, the problems of decision analytic based approaches in forecasting ad-
versarial actions. Merrick and Parnell [12] reviewed numerous approaches in this
research area, commenting favorably on Adversarial Risk Analysis (ARA), which is
a framework to manage risks derived from actions of intelligent adversaries, see [20]
or [1].

ARA aims at providing one-sided prescriptive support to one of the intervening
agents, the Defender (D, she), based on a subjective expected utility model treat-
ing the adversary’s decisions as uncertainties. To do so, we model the adversary’s
(A, Attacker, he) decision making problem and, assuming that he is an expected
utility maximizer, try to assess his probabilities and utilities. We can consequently
forecast his optimal action. However, our uncertainty about the adversary’s proba-
bilities and utilities is propagated to his decision, leading to a random optimal adv-
ersary decision which provides us with the required distribution over the Attacker’s
decision. Sometimes such assessments may lead to a hierarchy of nested decision
problems, as described in [17], similar to the concept of level-k thinking, see [24]. In
contrast with game theoretic approaches, we do not assume the standard, but unre-
alistic, common knowledge hypothesis, see [5], according to which the agents share
information about their utilities and probabilities.

A critical issue in ARA is elicitation. As in any subjective Bayesian analysis, one
needs personal probabilities over the parameters in the problem. Obtaining them is
not easy and we need to cope with many biases, see e.g., [14]. This is aggravated
in our context because of the involved strategic considerations. Nau [13] as well as
Wang and Bier [26] provide discussions of elicitation in the context of adversarial
situations.

The practical difficulty of elicitation raises the question of robustness. One wants
an ARA to be robust to the elicited probabilities and utilities, the model enter-
tained and, when available, the data. A good way forward is sensitivity analysis.
The above mentioned review by Parnell [15] recommends it, and Von Winterfeldt
and O’Sullivan [25] perform a systematic sensitivity analysis with respect to elicited
probabilities in an event tree concerning MANPADS. A different approach is taken
by Kardes [9], who considers robust stochastic games.

Robust Bayesian analysis facilitates finding the entire set of posterior distribu-
tions for a parameter when the prior lies within a class of distributions. The results
are typically expressed in terms of upper and lower bounds on probabilities and
expected utilities. Berger et al. [2] review this methodology which has yet to be
used in ARA. The only direct application is given by McLay et al. [11], who point
the way towards a principled means to incorporate robustness into ARA. They con-
sider a level-k thinking analysis of the sequential Defend-Attack game in which
the Attacker imperfectly observes the decision made by the Defender. The game
is modeled through an information structure comprising several signals and, con-
ditional on the defense choice, there is a specified distribution over the signals, a
model initially proposed by Rothschild et al. [22]. Robustification occurs by setting
upper and lower bounds over parameters for which distributions must be elicited,
and then calculating the outcome under the worst case combination of upper and
lower values.
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This chapter provides a complete outline of the role of robust methods in ARA.
After introducing basic notions in Bayesian robustness, we first describe the robust
ARA approach for sequential games and, then, for simultaneous games. In both
cases, we start by computing the game theoretic solution. We apply robust concepts
to assess such solution. If it is not robust, we use the ARA approach to find an
alternative solution. Again, we criticize it through robust ideas. If the solution is still
unstable, we may appeal to conventional robust concepts, such as the γ maximin.
We illustrate the ideas with a simple numerical example concerning routing security.

3.2 Bayesian Robustness

We present here the basic ideas on Bayesian robustness. We refer to Rı́os Insua
and Ruggeri [18] for an in-depth overview. In the Bayesian approach to inference,
prediction and decision making, the interest frequently lies on the behavior of the
posterior distribution on a parameter θ obtained by combining experimental evi-
dence provided by the likelihood and expert knowledge expressed through the prior
distribution, via Bayes theorem. This is used to compute posterior (and predictive)
expectations of functions g(θ ) which typically will be set indicators, powers or
utility functions, providing, respectively, set probabilities, moments and expected
utilities. The robust Bayesian approach stems from the practical difficulty of spec-
ifying a unique prior distribution and/or a unique utility function, corresponding,
respectively, to the expert’s beliefs and the decision maker’s preferences. Therefore,
classes of priors and/or utilities are entertained and the consequences of different
possible choices of such pairs are evaluated through synthetic indices which deter-
mine whether the quantity of interest is subject to small or large variations when
changing the prior/utility, i.e. whether there is robustness or not.

In accordance with the content of this chapter, we shall consider utilities u in a
class U and probability measures p in a class P (without distinguishing whether
they are priors or posteriors). We suppose that the probability measure p has a den-
sity p(s) over the states s, and the utility function has the form u(d,s), where d is
an action (decision) in the feasible set D . We are interested in computing the ex-
pected utilities ψup(d) =

∫

u(d,s)p(s)ds for various alternatives d and the feasible
alternative d∗

up ∈D maximizing expected utility, given such choice u and p.
In a robust context, the interest would typically be in the ranges that relevant

quantities span when p and u vary in the class, e.g. the range of the expected utility
for a certain alternative d

ρψ(d) = sup
p∈P,u∈U

ψup(d)− inf
p∈P,u∈U

ψup(d),

or the distance between the optimal alternative and a reference alternative d∗

ρd = sup
p∈P,u∈U

e(d∗
up,d

∗),
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for some distance e. Looking at ρd , we claim that there is robustness if its value is
small with respect to the entertained problem and the decision maker’s perception.
In this case, essentially any p and u, and the corresponding d∗

up, may be used for
decision making purposes. Otherwise, efforts are required to get smaller classes
until either robustness can be achieved or no further refinement is possible.

In the latter case, some criterion could be introduced to choose a pair (p,u) and
the corresponding d∗

up. A possible choice for a decision could be the minimum regret
decision,

d̂ = argmind∈D max
p∈P,u∈U

[

ψup(d
∗
up)−ψup(d)

]

.

For a related discussion see [19]. In particular, the decision d̂ is conservative in the
sense that it protects against the worst loss in expected utility when replacing an
optimal decision d∗

up by another one.

3.3 Sequential Games

We start by considering sequential games: one agent first makes her decision and,
then, the other agent implements his alternative. As an example, imagine a case in
which a company deploys their cybersecurity countermeasures and then, observing
them, a hacker decides whether he launches an attack or not towards such company.

Specifically, we consider a Defend-Attack situation in which a Defender chooses
a defense d ∈ D and, then, the Attacker, having observed the defense, chooses his
attack a∈A . The corresponding bi-agent influence diagram is shown in Fig. 3.1. An
arc reflects that the Defender’s choice is observed by the Attacker. The consequences
for both players depend on the success s of the attack. Each decision maker assesses
differently the probability of the result of an attack, which depends on the defense
and attack adopted: pD(s | d,a) and pA(s | d,a). The utility function of the Defender
uD(d,s) depends on her chosen defense and the result of the attack. Similarly, the
Attacker’s utility function is uA(a,s). We first recall the standard game theoretic
approach and check its robustness. We then present the ARA solution and, again,
provide a robust analysis.

3.3.1 Game Theoretic Solution and Robustness

The standard game theoretic solution does not require the Attacker to know the
Defender’s probabilities and utilities, since he observes the Defender’s actions.
However, the Defender needs to know the Attacker’s utilities and probabilities
(uA, pA), an example of common knowledge. We then proceed as follows. First,
we compute the expected utilities of the players at node S in Fig. 3.1:
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SD A

UD UA

Fig. 3.1: The two player sequential decision game

ψA(a,d) =
∫

uA(a,s)pA(s|a,d)ds, (3.1)

ψD(a,d) =
∫

uD(d,s)pD(s|a,d)ds.

Then, we compute the Attacker’s best response to the Defender’s action d, which is

a∗(d) = argmaxa∈A ψA(a,d).

Knowing this, the Defender’s optimal action is, then,

d∗
GT = argmaxd∈DψD(a

∗(d),d).

The solution
(

a∗(d∗
GT ),d

∗
GT

)

is a Nash equilibrium and, indeed, a sub-game perfect
equilibrium, see [5]. We call d∗

GT the Nash defense.

3.3.1.1 Robustness of the Game Theoretic Solution

Since we are supporting the Defender, we could argue that we know reasonably
well (uD, pD). However, we would contend that knowledge about (uA, pA) is that
precise, since it would require the Attacker to reveal them (common knowledge).
This is questionable in many application areas including security, cybersecurity and
competitive marketing. We may use robust methods to criticize such information
and, consequently, assess the game theoretic solution.

As discussed in Sect. 3.2, from a conceptual point of view, to perform robustness
we may consider classes for the Attacker’s utilities and probabilities that we model
through u ∈ UA, p ∈ PA. Then, mimicking the approach above, for each feasible
(u, p) we could:

• Compute the expected utilities (ψu,p
A (d,a),ψu,p

D (d,a)) at node S in Fig. 3.1.
• Compute the best response attack a∗u,p(d) for each d.
• Compute the optimal defense d∗

u,p.
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Then, if d∗
u,p remains reasonably stable for the allowed perturbations of u and p,

with u ∈ UA, p ∈ PA, the game theoretic solution seems robust. However, if d∗
u,p

is not that stable, we have an issue which questions, at first sight, the relevance of
the proposed Nash defense d∗

GT . At a deeper level, it also questions the appropri-
ateness of the (uA, pA) assessment, actually serving to criticize the game theoretic
assumptions, specially that of common knowledge, see [16] or [10].

From an operational point of view, the above robustness analysis scheme for the
game theoretic approach boils down to two computational issues:

• Exploring the whole range of perturbations u ∈UA, p ∈PA. In some cases, for
classes of probabilities and utilities widely studied in the robust Bayesian lit-
erature, see [2], it is possible to identify the extremal elements of UA and PA

and compute upper and lower bounds on the quantities of interest (namely opti-
mal decisions d∗

u,p and their expected utilities), through numerical optimization
methods. Another possible approach would be to randomly sample elements u, p
from the sets UA,PA and check for eventual large variations in d∗

u,p (and their
expected utilities).

• Declaring whether the effects induced by changes over d∗
u,p and the expected

utility are sufficiently small. As discussed in Sect. 3.2, a possible criterion could
be given by the range spanned by d∗

u,p as utility and probability vary in the
classes, i.e. u ∈ UA and p ∈ PA, respectively. Regarding the effects on the
expected utility, a criterion of interest could be based on the regret ru,p(d∗

GT )
given by the difference in expected utility when considering, for a given pair
(u, p), the Nash defense d∗

GT and the optimal defense d∗
u,p. A small value of

sup(u,p)∈UA ×PA
ru,p(d∗

GT ) would denote robustness with respect to the choice
of utility and probability and, therefore, any pair (u, p) can be chosen as opin-
ion on the Attacker’s behavior with no significant change in the consequences. If
robustness is not achieved, then we could undertake a minimum regret approach
as discussed in Sect. 3.2.

An alternative would be to move to ARA, as discussed next.

3.3.2 ARA Solution and Robustness

If the game theoretic solution is not robust, then we need to address the issue. One
way forward is to perform an ARA approach. For this, we weaken the common
knowledge assumption. In the sequential game, this means that the Defender does
not know (pA,uA). The problem she faces is depicted in Fig. 3.2.

To solve her problem, the Defender requires more information than pD(s|a,d)
and uD(d,s), available from our earlier discussion. She also needs pD(a|d), which is
her assessment of the probability that the Attacker will choose attack a after having
observed that she has chosen the defense d. Once the Defender has completed these
assessments, she can solve the problem. Indeed, the expected utility of d would be
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SD A

UD

Fig. 3.2: The decision problem as seen by Defender

ψD(d) =
∫

ψD(a,d)pD(a|d)da =

∫
[
∫

uD(d,s)pD(s|a,d)ds

]

pD(a|d)da.

Finally, her optimal decision would be d∗
ARA = argmaxd∈D ψD(d). Note that, in

terms of classic game theory, the solution d∗
ARA for our sequential game may not

correspond to a Nash equilibrium, see the example in Sect. 3.5.
Eliciting pD(a|d) requires the Defender to analyze the problem from the

Attacker’s perspective.

SD A

UA

Fig. 3.3: Defender’s analysis of Attacker’s problem

First, the Defender puts herself in the Attacker’s shoes, and thinks about his deci-
sion problem. Figure 3.3 represents the Attacker’s problem, as seen by the Defender,
assuming he is an expected utility maximizer. The Defender will use all the informa-
tion and judgment that she can obtain about the Attacker’s utilities and probabilities.
Instead of using point estimates for pA and uA to find the Attacker’s optimal decision
a∗(d) for a given d, the Defender’s uncertainty about the Attacker’s decision should
derive from her uncertainty about the Attacker’s (pA,uA), through a distribution F
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on the space of utilities and probabilities, which we designate random probabilities
and utilities. This induces a distribution over the Attacker’s expected utility in (3.1),
where the random expected utility for A would be

ΨA(a,d) =
∫

UA(a,s)PA(s|a,d)ds,

for (PA,UA)∼ F . Then, the Defender would find

pD(a|d) = IPF [a = argmaxx∈AΨA(x,d)],

in the discrete case and, similarly, in the continuous case. We can use Monte Carlo
simulation to approximate pD(a|d) by drawing N samples

{(

Pi
A,U

i
A

)}N
i=1 from F

and setting

p̂D(a|d)≈ #{a = argmaxx∈A Ψ i
A(x,d)}

N
, (3.2)

whereΨ i
A(a,d) =

∫

Ui
A(a,s)P

i
A(s|a,d)ds.

3.3.2.1 Robust Analysis

The above approach leads to a Bayesian decision analysis problem with the peculiar-
ity that we have a complex procedure to forecast the adversarial actions. To do so,
we formulate the adversary decision making problem and propagate our uncertainty
about the adversary judgments to the optimal adversarial action.

We could then think about performing a robust Bayesian analysis. The inputs to
the Defender’s decision analysis are (uD(d,s), pD(s|a,d), pD(a|d)). We focus here
on sensitivity to the last component pD(a|d), surely the most contentious one, at-
tained through adversarial calculations based on the proposed UA(a,s),PA(s|a,d).
For that, we define classes UA, PA of random utilities and probabilities. For each
pair U,P in such class, we define pUP

D (a|d) through the ARA approach which, in
turn, leads to d∗UP

ARA .
Then, it is possible to consider the impact of the imprecision about U and P over

three quantities: pUP
D (a|d), d∗UP

ARA and ψ(d∗UP
ARA). The first quantity requires the com-

parison of densities (actually of their Monte Carlo approximations) using indices
like the Kullback-Leibler divergence or Gini index. For the first and second quan-
tities, the interest centers around the variation of the decision (for the Defender),
whereas for the third one, the focus is on the expected utility of the decision. The
last quantity should be of major interest. In all three cases, we say that robustness
holds when the value of interest does not change much, whereas additional analysis
should be taken otherwise, as described in Sect. 3.2. In particular, if the distributions
pUP

D (a|d) do not differ too much, it is possible to choose one of them and use d∗UP
ARA

directly.
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3.3.3 A Full Robust Solution

If the ARA analysis is not robust, we may opt for gathering additional information
to reduce the classes UA and PA. The choice of increasing the sample size in the
Monte Carlo estimation p̂D(a|d) in (3.2) would be useful in reducing the variability
of the distribution. However, it will typically be ineffective in increasing robustness.

Once all possible sources of information have been exploited to try to increase
robustness about d∗

ARA and ψ(d∗
ARA), then some extra criterion has to be introduced

to make a decision and report a value about the quantity of interest. In any case, such
decision should be reported with the warning of lack of robustness. As discussed in
Sect. 3.2, we could consider the decision d∗

R minimizing the maximum regret, i.e.

min
d

max
U∈UA ,P∈PA

[
∫

ψD(a,d
∗UP
ARA)pUP

D (a|d∗UP
ARA)da−

∫

ψD(a,d)pUP
D (a|d)da

]

.

3.4 Simultaneous Games

We discuss now the simultaneous game model: two agents choose their decisions,
without knowing the action selected by each other. Among others, see [27] for a
related discussion within a game theoretic framework. As an example, imagine a
case in which the EASA decides whether to introduce undercover marshals in an
airplane that might, or not, be hijacked by terrorists.

Assume that the adversaries have alternative sets D and A of defenses and att-
acks, respectively. The only relevant uncertainty is S, denoting the success s of the
attack. Each decision maker assesses differently the probability of the result of the
attack, which depends on the defense and attack adopted: pD(s | d,a) and pA(s |
d,a). The utility function of the Defender uD(d,s) depends on her chosen defense
and the result of the attack. Similarly, the Attacker’s utility function is uA(a,s), as
illustrated in Fig. 3.4.

SD A

UD UA

Fig. 3.4: BAID for the simultaneous Defend-Attack model
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3.4.1 Game Theoretic Solution

Under common knowledge, preferences and beliefs from both the Defender and the
Attacker, (uD, pD) and (uA, pA) respectively, are disclosed. Therefore, each adver-
sary knows the expected utility that each pair (d,a)∈D×A would provide to both
of them, computed through

ψD(d,a) =
∫

uD(d,s)pD(s|a,d)ds,

ψA(d,a) =
∫

uA(a,s)pA(s|a,d)ds.

A Nash equilibrium (d∗
GT ,a

∗
GT ) for this game would satisfy

ψD(d
∗
GT ,a

∗
GT )≥ ψD(d,a

∗
GT ) ∀d ∈D and

ψA(d
∗
GT ,a

∗
GT )≥ ψA(d

∗
GT ,a) ∀a ∈A .

Finding Nash equilibria may require the use of randomized strategies, see [4]. There
could be several equilibria, with no unambiguous criteria to further discern among
them, see [16] for a discussion.

If utilities and probabilities are not common knowledge among the adversaries,
a game-theoretic approach proceeds by modeling the game as one with incomplete
information, see [6–8], by introducing the notion of player types. Each player will
be of a certain type which is known to him but not to his opponent: a player’s type
represents the private information he may have. Harsanyi proposes the Bayes-Nash
equilibrium as a solution concept, still under a strong common knowledge assump-
tion: the adversaries’ beliefs about the opponent’s types are common knowledge and
modeled through a common prior distribution. Moreover, it is assumed that the play-
ers’ beliefs about other uncertainties in the problem are also common knowledge.
Again randomized strategies might be required to find such equilibria.

3.4.1.1 Robustness of the Game Theoretic Solution

We could argue that we know reasonably well (uD, pD), since we are supporting
the Defender. However, we would contend that (uA, pA) is properly known, since
it requires common knowledge, which is questionable. To address this concern, we
perform a robust analysis of the Defender’s decision at the Nash equilibrium.

For that, we would consider classes for the Attacker’s utilities and probabilities
represented as u ∈ UA, p ∈ PA. Then, for each feasible (u, p) we could compute
the corresponding Nash equilibrium (d∗

up,a
∗
up). If d∗

up remains stable for the feasible
perturbations of u and p, the game theoretic solution d∗

GT seems robust, from the per-
spective of the Defender. However, if d∗

up changes, specially the corresponding ex-
pected utility, we have a problem which questions, at first sight, the relevance of the
proposed d∗

GT and, at a deeper level, the appropriateness of the (uA, pA) assessment,
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actually serving to criticize the game theoretic approach at large and, in particular,
the common knowledge assumption. The two computational issues about finding all
possible optimal decisions and assessing robustness are dealt with as mentioned in
Sect. 3.3.3.

Note that we could actually study robustness with respect to (uD, pD,uA, pA) and
consider changes in d∗

uA,pA,uD,pD
. In this case, if the Defender’s Nash equilibrium

decision is sensitive, we might question the Defender’s knowledge, besides the game
theory postulates.

3.4.2 ARA Solution and Robustness

If the Nash equilibrium is unstable, we may try an ARA approach. We have to
weaken the common (prior) knowledge assumptions. As reflected in Fig. 3.5, the
Defender has to choose a defense d ∈D , whose consequences depend on the success
of an attack a ∈ A simultaneously chosen by the Attacker, which is, therefore,
uncertain for the Defender at the time she makes her decision.

SD A

UD

Fig. 3.5: The Defender’s decision analysis

By standard Decision Theory, the Defender should maximize her expected utility,
see [3]. The Defender knows her utility function uD(d,s) and her probability assess-
ment pD over S, conditional on (d,a). However, she does not know the Attacker’s
decision a at node A. She expresses her uncertainty through a probability distribu-
tion pD(a). Then, the optimization problem she should solve to find d∗

ARA is

maxd
∫

ψD(a,d)pD(a)da= maxd
∫

[
∫

uD(d,s)pD(s|a,d)ds] pD(a)da
= maxd

∫ ∫

uD(d,s)pD(s|a,d)pD(a)dsda.
(3.3)

We could then perform a robust analysis based on uD, pD(s|a,d) and pD(a). How-
ever, eliciting this last probability distribution is more difficult. We may use ARA
as follows to get it.

Suppose the Defender thinks that the Attacker is an expected utility maximizer
who tries to solve the decision problem shown in Fig. 3.6. The Attacker would look
for the attack a ∈A providing him maximum expected utility:
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a∗ = argmax
a∈A

∫ ∫

uA(a,s)pA(s|a)pA(d)ds dd.

In general, the Defender will be uncertain about the Attacker’s utility function and
probabilities, and she would consider random utilities and probabilities through
F = (UA(a,s),PA(s|a), PA(d)) and compute the random optimal alternative

A∗|D = argmax
a∈A

∫ ∫

UA(a,s)PA(s|a)PA(d)dsdd. (3.4)

Then, we would make
pD(a) = P(A∗ = a|D)

in the discrete case and, similarly, in the continuous case.

SD A

UA

Fig. 3.6: The Attacker’s decision analysis, as seen by the Defender

Note that (UA(a,s),PA(s|a)) would be comparatively easily elicited from the De-
fender, see examples in [1]. However, the elicitation of PA(d) may require further
analysis leading to a next level of recursive thinking: the Defender would need
to think about how the Attacker analyzes her problem. This is why we condition
in (3.4) by (the distribution of) D.

In the above, the Defender presumes that the Attacker thinks she is an expected
utility maximizer trying to solve a decision problem like that described in Fig. 3.5.
Therefore, in order for the Defender to assess the required distribution, she will elicit
(UA,PA) from her viewpoint, and assess PA(D) through the analysis of her decision
problem, as thought by the Attacker, mimicking the resolution of problem (3.3) from
the Attacker’s perspective. This reduces the assessment of PA(D) to computing the
distribution

D | A1 ∼ argmax
d∈D

∫ ∫

UD(d,s)PD(S = s | d,a)PD(A
1 = a)dsda,

assuming that the Defender is able to assess PD(A1). A1 represents the Attacker’s
decision within the Defender’s second level of recursive thinking in the nested
decision model used by the Defender to predict the Attacker’s analysis of her deci-
sion problem. To complete the assessment, the Defender should elicit (UD,PD)∼ G,
representing her probabilistic knowledge about how the Attacker may estimate her
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utility function uD(d,s) and her probability pD over S|d,a, when she analyzes how
the Attacker thinks about her decision problem. The elicitation of PD(A1) might
require further recursive thinking from the Defender, see our final discussion.

3.4.2.1 Robustness

Performing a robust analysis for the ARA approach to the simultaneous game would
be similar to what described earlier. Consider a class for (UA(a,s),PA(s|a),PA(d)) ∈
(UA,PA,QA). We use (U,P,Q) to simplify the notation describing the elements in
the classes. Then, for (U,P,Q) satisfying the constraints, replicating the approach
above we could compute pUPQ

D and d∗UPQ
ARA . If d∗UPQ

ARA remains stable with respect to
changes in (U,P,Q), then the problem seems robust and we could apply the ARA
approach with little concern. Otherwise, we could still use a robust solution concept,
like the minimum regret mentioned in Sect. 3.2.

3.5 An Example

As an illustration, we consider a sequential defend-attack security routing problem.
An organization needs to make a trip, either through a safe, but costly, route, or
through a cheaper, but more dangerous, route. In this case, they may invest in sec-
urity, rendering the route less dangerous. See [23] for a case concerning piracy in
Somalia. Table 3.1 displays the consequences, expressed as costs, for various defend
and attack possibilities.

Table 3.1: Loss function in routing problem

Defense Attack Attack result Def. cons. Att. cons.

Dang. prot Attack θ1 cθ1 +K −dθ1 +B
No Attack K 0

Dang. unp Attack θ2 cθ2 −dθ2 +B
No attack 0 0

Safe H 0

The following parameters are used:

• θ1 represents the fraction of assets lost by the organization when attacked but
protected.

• θ2 represents the fraction of assets lost by the organization when attacked and
not protected.

• c is the cost per unit of assets.
• K are the protection costs.
• H is the cost of going through the expensive route.
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• d is the Attacker’s gain per unit of assets lost by the Defender.
• B is the cost of an attack.

The Defender has beliefs for θi, with θi ∼β (ai,bi), i= 1,2. She is risk averse and her
utility function is strategically equivalent to −exp(hx), where x is her cost and h> 0
is her risk aversion coefficient. The Attacker has different beliefs for θi with θi ∼
β (ci,ei), i = 1,2. He is risk prone and his utility function is strategically equivalent
to exp(−mx), where x is his cost and m > 0 is his risk proneness coefficient. Both
agents expect θ1 to be smaller than θ2, but not necessarily. This may be reflected
in the choice of the beta parameters, for example with a1/(a1 +b1)< a2/(a2 +b2),
in the case of the Defender. Table 3.2 provides the expected utilities for both agents
under various interaction scenarios.

Table 3.2: Expected utilities in routing problem

Interaction Eu. def Eu. att

Prot, Att. −∫ eh(cθ1+K) f (θ1|a1,b1)dθ1
∫

em(dθ1−B) f (θ1|c1,e1)dθ1

Prot.,NoAtt. −ehK 1
NoProt.,Att. −∫ eh(cθ2) f (θ2|a2,b2)dθ2

∫

em(dθ2−B) f (θ2|c2,e2)dθ2

NoProt.,NoAtt. −1 1
Safe −ehH 1

The problem may be viewed through the game tree in Fig. 3.7, where d1 means
going through the dangerous route but protected; d2 means going through the dan-
gerous route but unprotected; and, finally, d3 means going through the safe route,
whereas a means attack and ā means no attack.

We are supporting the Defender and assess from her the values c = 200,000,
K = 50,000, H = 100,000, h = 3. We also elicit from her the distributions β (a1,b1),
with mean 0.3 and standard deviation 0.07, leading to a1 = 12.325, b1 = 28.76;
and β (a2,b2), with mean 0.7 and standard deviation 0.18, leading to a2 = 3.815,
b2 = 1.635.

3.5.1 Game Theoretic Approach

Under common knowledge, we assume the Defender knows that d = 30,000,
B = 10,000, m = 5 and the distributions β (c1,e1), with mean 0.313 and standard
deviation 0.16, leading to c1 = 2.272, e1 = 4.978; and β (c2,e2), with mean 0.324
and standard deviation 0.11, leading to c2 = 5.49, e2 = 11.45. We, then, proceed as
follows:

• At node A1, compute max (ψA(d1,a),ψA(d1, ā)) and call the optimal action
a∗(d1). In the example, we have max (1.001,1) = 1.001 and the optimal deci-
sion for the Attacker is a.
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q1 (−29.67,1.001)

A1

(−4.48,1)

q2 (−106.03,1.002)

D A2

(−1,1)
(−20.08,1)

d1

d2

d3

a

ā

a

ā

Fig. 3.7: Game tree for the routing problem

• At node A2, compute max (ψA(d2,a),ψA(d2, ā)) and call the corresponding
action a∗(d2). We have max (1.002,1) = 1.002 and the optimal decision for the
Attacker is a.

• At node D, compute max (ψD(d1,a∗(d1)),ψD(d2,a∗(d2)),ψD(d3)) and call the
optimal action d∗

GT . In our case, max (−29.67,−106.03,−20.08)=−20.08 and
the Nash defense d∗

GT is d3, that is, to choose the safe route.

3.5.2 Robustness of the Game Theoretic Solution

We consider now the robustness of the game theoretic solution. We simplify and
assume that the attack cost B = 10,000 is reasonably well known. Assume that d is
not that well known and we express this through a constraint d ∈ [10000, 50000].
Similarly, suppose that c1 ∈ [0,3], e1 ∈ [1,6], c2 ∈ [2,8] and e2 ∈ [10,14]. We sample
randomly from these intervals 1000 times and repeat the procedure in Sect. 3.5.1.

The three defenses may be Nash, given the constraints. Indeed, based on the
above sampling scheme, we estimate that the probabilities of the three alternatives
being Nash are, respectively, 0.454, 0.236 and 0.31, therefore with no clear winner.
The maximum loss when we implement the defense d∗

GT = d3 is 19.08. This is
deemed large enough and we need to perform an ARA approach.
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3.5.3 ARA Approach

The problem faced by the Defender is described in the decision tree in Fig. 3.8.

q1

A1

q2

D A2

d1

d2

d3

a

ā

a

ā

Fig. 3.8: Decision tree for the Defender in the routing problem

The expected utilities of the first two alternatives have the form

ψD(di) = pD(a|di)ψD(di,a)+ pD(ā|di)ψD(di, ā), i = 1,2.

Thus, we need to assess the attack probabilities p(a|di) given the implemented
defense di.

We illustrate the estimation of pD(a|d1). We assume that d,c1,e1,c2,e2 are uni-
formly distributed over the intervals described in Sect. 3.5.2. Thus, we assume that
d ∼U [10000, 50000], c1 ∼U [0,3], e1 ∼U [1,6], c2 ∼U [2,8] and e2 ∼U [10,14].
Then, we may use Algorithm 1 to estimate the required probability, where ψk

A(d1,x)
designates the expected utility that the Attacker reaches, when the Defender imple-
ments d1 and he implements attack x and the sampled parameters are dk,ck

1,c
k
2,e

k
1,e

k
2.

In our particular case, with N = 10,000, we obtain p̂(a|d1) = 0.406 (and, conse-
quently, p̂(ā|d1) = 0.594). Similarly, p̂(a|d2) = 0.764 and p̂(ā|d2) = 0.236. Then,
we have ψ(d1) =−14.7,ψ(d2) =−81.2 and ψ(d3) =−20.08 and the optimal ARA
defense d∗

ARA is d1, which is different to d∗
GT .
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Algorithm 1: Estimating p(a|d1)

p = 0;
for k ← 1 to N do

Sample dk,ck
1,c

k
2,e

k
1,e

k
2;

if ψk
A(d1,a)≥ ψk

A(d1, ā) then
p = p+1;

p̂(a|d1) = p/N;

3.5.4 Robustness of the ARA Solution

We consider now the robustness of the ARA solution. For that, we consider classes
of beta distributions with the same support than the corresponding parameters. As an
example, for d, we shall assume that d ∼ β [o1,o2] over the interval [10000, 50000],
with o1 ∈ [0.5,1.5], o2 ∈ [0.5,1.5]. Similarly, for the other parameters we use beta
distributions over the previous intervals, with parameters as in Table 3.3, where the
first parameter of the beta distribution is uniform over [LL, LU] and the second
parameter of the beta distribution is uniform over [UL, UU].

We sample 100 times from such distributions and repeat the procedure in
Sect. 3.5.3. Then, the estimated probabilities of each defense being optimal, in the
ARA sense, would be, respectively, p̂(d1) = 1, p̂(d2) = 0 and p̂(d3) = 0. Therefore,
d1 seems clearly the most likely alternative for being optimal.

The regrets when we implement various solutions, are respectively, 0 for d1,
37.91 for d2 and 8.54 for d3. Thus, the minimum regret defense is d1.

Table 3.3: Upper and lower limits for the parameters of the involved beta distribu-
tions

Parameter LL LU UL UU

c1 0.5 1.5 0.5 1.5
c2 0.5 1.5 0.5 1.5
e1 0.5 1.5 0.5 1.5
e2 0.5 1.5 0.5 1.5

3.6 Discussion

Adversarial Risk Analysis is an emergent paradigm when supporting a decision
maker who faces adversaries and such that the consequences are random and depend
on the actions of all participating agents. The prevalent paradigm in this area is
Game Theory. In this chapter, we have provided a framework for robustness analysis
in this area.
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The approach we have followed is:

• Under common knowledge assumptions compute the game theoretic solution.
Perform a robust analysis for such solution. If it is stable, such solution may be
used with confidence and we do not require further analysis.

• Otherwise, perform an ARA. Undertake a robust analysis for the ARA solution.
If it is stable, the ARA solution may be used with confidence and the analysis
stops. Otherwise, gather more data and/or refine the relevant classes, eventually
declaring the robustness of the ARA solution. If not sufficient, move towards
next stage.

• Undertake a minimum regret (or other robust) concept.

We have illustrated it with two simple models, the sequential defend-attack and
the simultaneous defend-attack, but the ideas would extend to more complex ARA
models. Similarly, we have assumed that the attacker was maximising expected util-
ity but the ideas may be translated to other attacker rationalities, as in [21].

There are many other sensitivity analysis questions relevant in ARA. For ex-
ample, we mentioned above the recursive assessment required in the simultaneous
game, which may be expressed as follows, see [17]:

Algorithm 2: Recursive assessment required in the simultaneous game

for i ← 1 to ∞ do
Find ΠDi−1(Ai) by solving

Ai | Di ∼ argmax
a∈A

∑
d∈D

[

∑
s∈{0,1}

Ui
A(a, s) Pi

A(S = s | d,a)

]

ΠAi (Di = d)

with (Ui
A,P

i
A)∼ Fi

Find ΠAi (Di) by solving

Di | Ai+1 ∼ argmax
d∈D

∑
a∈A

[

∑
s∈{0,1}

Ui
D(d, s) Pi

D(S = s | d,a)

]

ΠDi (Ai+1 = a)

with (Ui
D,P

i
D)∼ Gi

i = i+1;

This hierarchy would stop when the Defender lacks the information necessary to
assess the distribution Fi or Gi associated with the decision analysis of Ai and Di,
respectively. At this point, the Defender would assign an unconditional probabil-
ity distribution over Ai or Di, respectively, without going deeper into the hierarchy,
summarizing all the information she might have through the direct assessment of
ΠDi−1(Ai) or ΠAi(Di), as might correspond. Should she have no additional informa-
tion to do so, she could assign a noninformative distribution, see [3].
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However, climbing up one level in the hierarchy entails a lot of effort. We could
question whether this is worth it by using value of information types of computation.
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Chapter 4
From Statistical Decision Theory to Robust
Optimization: A Maximin Perspective
on Robust Decision-Making

Moshe Sniedovich

Abstract As attested by the prevalence of worst-case-based robustness analysis in
many fields, Wald’s maximin paradigm (circa 1940) plays a central role in the broad
area of decision-making under uncertainty. The objective of this chapter is there-
fore twofold. First, to examine the basic conceptual and modeling aspects of this
ostensibly intuitive, yet controversial paradigm, so as to clarify some of the issues
involved in its deployment in decision-making in the face of a non-probabilistic
uncertainty. Second, to elucidate the differences between this paradigm and other
maximin paradigms, such as those used in error analysis and game theory.

We thereby chart the journey of this paradigm from the field of statistical deci-
sion theory to that of modern robust optimization, highlighting its use in the latter,
as a tool for dealing with both local and global robustness. We also look briefly at
the relationship between probabilistic and worst-case-based robustness analysis.

4.1 Introduction

No more than a cursory examination of the literature on the employment of the
apparently immediately intelligible concept robustness in such diverse fields as
statistics, decision theory, control theory, optimization, economics, engineering,
machine learning, and so on, suffices to see that the decision-making models used
in these fields are often minimax, or maximin models.
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This is hardly surprising, considering that the robustness criterion that is often
invoked in these and other fields is based on a worst-case approach to uncertainty
and variability, and that maximin models provide the most obvious formal frame-
work for implementing such an approach in a decision-making environment.

That said, it ought to be emphasized straightaway that maximin models are used
for various other purposes as well. This means that it is important to be clear in what
way, if any, do maximin models used in worst-case-based robustness analysis differ
from maximin models that are used for other ends.

For this reason, we focus in this discussion not only on the mathematical structure
of generic maximin models, but also on their conceptual dimension, that is, on the
conceptual purport of the abstract mathematical objects comprising these models
and on the manner in which they hang together.

Our discussion is thus organized along the following lines. We begin with a brief
informal description of the decision problem that is of concern to us in this discus-
sion, and we explain how the maximin paradigm approaches such problems:

Section 4.2: The fundamental decision problem
Section 4.3: Wald’s maximin paradigm
Section 4.4: Maximin models at a glance
Section 4.5: The Wald factor

Next, we outline the kinds of robustness that are furnished by Wald-type maximin
models and we illustrate some of the issues associated with the use of such models:

Section 4.6: Robustness
Section 4.7: A perspective on robust decision-making

We conclude the discussion with some general comments on Wald’s maximin
paradigm, notably its role and place in robust-decision-making:

Section 4.8: Can Wald’s maximin paradigm save the world?

And so, our first task in charting the maximin paradigm’s journey from statis-
tical decision theory (circa 1940) to modern robust optimization is to examine the
fundamental decision problem that is at the heart of the discussion on this issue.

4.2 The Fundamental Decision Problem

Under consideration in this discussion are situations where the objective is to iden-
tify a decision d ∈ D that is robust against variations in the state of the system,
s ∈ S. By this we mean a decision d ∈ D that performs “well” (relatively to other
decisions) with respect to given performance criteria, in the face of variations in
the value of s ∈ S. We refer to set D as the decision space and to set S as the state
space. We further assume that the decision maker has full control over the value of
the decision variable d, but no control over the value of the state variable, s.
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Of particular interest to us here are situations where the state variable represents
uncertainty, in which case we assume that the value of s is selected from S by Nature
in response to the decision maker selecting a decision d from D. One of the impli-
cations of this is that the decision maker is ignorant as to which value of s will be
realized in response to his/her selection of a decision d from D.

To simplify matters, let us focus on two performance criteria, namely payoff and
feasibility. In this framework the payoff is assumed to be a numeric scalar such that
the larger it is the better; and feasibility amounts to satisfying constraints imposed on
the (decision, state) pairs. Satisfying these constraints is assumed to be preferable to
violating them. Thus, a robust decision is one that (relative to other decisions) yields
a large payoff and satisfies the constraints under consideration over a large subset of
the state space S.

In this framework then, the fundamental decision problem faced by the decision
maker can be stated informally as follows:

• Select a decision d ∈ D that is robust against variations in the value of s over S
with respect to the payoffs and constraints under consideration such that (relative
to other decisions) it yields a large payoff and satisfies the constraints over a large
subset of S .

To render the notation and terminology simple, let O(d,s) denote the outcome
generated by decision d and state s, so in the above simple framework O(d,s) =
(p,c) where p denotes the payoff generated by d and s and c is an indicator stip-
ulating whether the pair (d,s) satisfies the performance constraints. Regarding the
latter, let ∨ indicate that the constraints are satisfied and let × indicate that at least
one of the constraints is violated. To illustrate, consider the situation where d can
take three values, s can take five values, and the respective outcomes are as follows:

O(d,s) s(1) s(2) s(3) s(4) s(5)

d(1) (55,×) (43,∨) (18,∨) (63,∨) (37,×)

d(2) (38,∨) (22,∨) (11,∨) (12,∨) (10,∨)
d(3) (85,∨) (83,×) (23,×) (72,∨) (50,×)

(4.1)

By inspection, decision d(2) performs very well with respect to the constraints
and decision d(3) performs very well with respect to the payoff. The questions nat-
urally arising are therefore these:

• How do we measure robustness in this case?
• How do we determine the best (optimal) decision in this case?

Wald’s maximin paradigm offers a simple (some might argue simplistic) recipe
to deal with questions of this type: assume the worst!
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4.3 Wald’s Maximin Paradigm

Wald’s maximin paradigm exemplifies an approach to dealing with uncertainty and
variability that, however controversial, can arguably be described as natural and
intuitive: in the face of uncertainty . . . assume the worst!

Thus, putting this approach into action, the paradigm prescribes ranking dec-
isions according to their worst performance, whereupon the decision that yields
the best (over decisions) worst (over states) outcome, is deemed the best (optimal)
decision. In other words, the decision rule articulated by this paradigm can be stated
in plain language as follows [34, pp. 152–153]:

The maximin rule tells us to rank alternatives by their worst possible outcomes: we are to
adopt the alternative the worst outcome of which is superior to the worst outcome of the
others.

To illustrate its working, consider how the decision problem whose outcomes are
specified by (4.1) would be handled on grounds of this rule. Central to its imple-
mentation is the supposition of a tradeoff between payoffs and feasibility, where the
underlying idea is, as in optimization theory, that feasibility (constraints satisfac-
tion) takes precedence over payoff. This means that an outcome (p,∨) is superior
to an outcome (p′,×), regardless of the values of the payoffs p and p′. And in this
vein, the worst outcomes (WO) pertaining to the three decisions considered in (4.1)
are as indicated by the last column of the following table:

O(d,s) s(1) s(2) s(3) s(4) s(5) WO
d(1) (55,×) (43,∨) (18,∨) (63,∨) (37,×) (37,×)

d(2) (38,∨) (22,∨) (11,∨) (12,∨) (10,∨) (10,∨)
d(3) (85,∨) (83,×) (23,×) (72,∨) (50,×) (23,×)

(4.2)

The implication is that, according to the precepts of Wald’s maximin paradigm,
the best decision (alternative) is d(2), the second-best decision is d(1) and the third-
best decision is d(3). The respective worst outcomes are (10,∨), (37,×) and (23,×).

While “outcome tables”, such as those displayed above, give an immediate ill-
ustration of the basic ideas informing Wald’s maximin paradigm and the decision
rule it proposes, the full picture of this paradigm’s prowess is brought to light by
its operation in the framework of constrained optimization problems. So, to set the
scene for a discussion of this point, we formulate a generic maximin model, and two
of its instances, that are particularly suitable for this purpose.

As a prelude, we note that for simplicity of exposition, we assume that the opti-
mization problems under consideration are (unless explicitly stated otherwise) well-
behaved in the sense that they possess (global) optimal solutions. With this in mind,
let us examine three generic maximin models.
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4.4 Maximin Models at a Glance

Let f (d,s) denote the payoff generated by decision d ∈ D and state s ∈ S and let
constraints(d,s) denote the list of constraints imposed on (d,s) pairs. Formally, we
can regard f as a real-valued function on D× S. Since in many applications only a
subset of S is relevant with regard to a particular decision, it is instructive to consider
the case where each decision has its own set of states.

Hence, let S(d) denote the set of all the possible/plausible values of s that can
be generated by decision d and let S := ∪d∈DS(d). Then, as feasibility (constraints
satisfaction) has priority over payoffs, an implementation of the maximin decision
rule would yield the following maximin model:

z∗ := max
d∈D

min
s∈S(d)

{ f (d,s) : constraints(d,s),∀s ∈ S(d)}. (4.3)

Note that in this model the ∀s ∈ S(d) clause is a worst-case requirement which
gives expression to the priority of feasibility over payoffs. Thus, granted this prior-
ity, a decision d′ ∈ D that satisfies the constraints for all s ∈ S(d′) is strictly supe-
rior to any decision d ∈ D that violates (at least one of) these constraints for some
s ∈ S(d), regardless of the payoffs generated by d′ and d.

I call maximin models of this type Full Monty maximin models for the obvious
reason that they seek robustness with respect to both payoff and constraints. The
former is represented by the mins∈S(d) operation and the latter by the ∀s ∈ S(d)
requirement.

Now, consider the instance of this model that is characterized by the property that
the payoff f (d,s) is independent of s. In this case, the payoff generated by decision
d is denoted f (d) rather than f (d,s). Note that in this case the operation mins∈S(d)
is superfluous in (4.3). Hence, this instance of (4.3) takes this form:

z∗ := max
d∈D

{ f (d) : constraints(d,s),∀s ∈ S(d)}. (4.4)

I call maximin models of this type state-free-payoff maximin models to under-
score the fact that in these models payoffs are independent of the state variable, and
therefore robustness against variations in the value of s is sought only with respect
to the constraints.

And, to complete this sketch, consider what to many readers probably epitomizes
the maximin paradigm, namely the generic maximin model that is devoid of explicit
constraints on (d,s) pairs. This is the instance of (4.3) where the list constraints(d,s)
is empty. This model has this simple form:

z∗ := max
d∈D

min
s∈S(d)

f (d,s). (4.5)

I call maximin models of this type textbook maximin models. They represents
situations where robustness is sought only with respect to payoffs.
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Having said all that, it should be emphasized that, from a modeling point of view,
these three generic maximin models are interchangeable. That is, each one of these
models can be reformulated so as to assume the format of anyone of the other two.
For instance, the generic Full Monty maximin model can be rewritten as follows:

z∗ := max
d∈D,t∈R

{t : t ≤ f (d,s),constraints(d,s),∀s ∈ S(d)} (4.6)

where R denotes the real-line. Clearly, this is a state-free-payoff maximin model.

4.4.1 Security Levels

In the idiom of decision theory, the worst payoff pertaining to decision d ∈ D,
yielded by the inner minimization problem in a maximin model, is termed security
level. Thus, the security level of decision d is equal to the smallest payoff pertaining
to this decision, assuming that the decision satisfies the worst-case constraints, if
any. Hence, in the context of textbook maximin models the security level of decision
d is defined as follows:

SL(d) := min
s∈S(d)

f (d,s) , d ∈ D. (4.7)

In cases where there are explicit constraints on (d,s) pairs, let D(a) denote the
subset of D whose elements satisfy the constraints for all the states pertaining to the
respective decision, namely define

D(a) := {d ∈ D : constraints(d,s),∀s ∈ S(d)}. (4.8)

Observe that if there are no explicit constraints on the (d,s) pairs, as in the case
of the textbook model, then D(a) = D. Hence, in the context of Full Monty maximin
models, the security level of decision d ∈ D is defined as follows:

SL(d) :=

⎧

⎨

⎩

min
s∈S(d)

f (d,s) , d ∈ D(a)

inadmissible , d /∈ D(a)
, d ∈ D. (4.9)

Needless to say, if all the decisions are inadmissible, namely if D(a) is empty, then
the maximin problem has no feasible, let alone optimal, solution. Also, observe that
if D(a) = D then the constraints are superfluous and therefore can be ignored. For
this reason we focus on cases where D(a) is a non-empty proper subset of D.

Note that in the context of state-free-payoff models, the expression for SL(d)
simplifies to

SL(d) :=

{

f (d) , d ∈ D(a)

inadmissible , d /∈ D(a).
(4.10)
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In all these cases the maximin models can be written as follows:

z∗ := max
d∈D

SL(d). (4.11)

In this setting, the operation maxd∈D ignores inadmissible decisions. So, if all
the decisions are inadmissible, the problem has no optimal solution. Hence, the
formulation of the maximin rule can be fine-tuned as follows:

Maximin rule:
Rank admissible decisions according to their security level: the larger the security
level the better. Hence, select an admissible decision whose security level is the
largest.

4.4.2 Optimal Solutions

To be clear on what constitutes an optimal solution to a maximin problem of the
type examined in this chapter, observe that such a solution is a pair (d∗,s∗) such
that d∗ ∈ D(a), s∗ ∈ S(d∗) and

f (d∗,s∗) = SL(d∗) = max
d∈D

SL(d). (4.12)

Note also that in the case of state-free-payoff maximin models, all the elements
of S(d∗) are optimal with respect to d∗.

And as a final note, to avoid becoming bogged down by technical issues related
to the existence of optimal solutions for maximin problems, this discussion is pred-
icated on the supposition that the maximin problems under consideration have
optimal solutions.

4.4.3 A Constrained Optimization Perspective

As we saw above, Full Monty and textbook maximin models can be written as
state-free-payoff maximin models. The question therefore arising is: what renders
maximin problems different from “conventional” constrained optimization prob-
lems, namely problems seeking the optimization of a real-valued objective function
subject to a finite list of constraints on the decision variable. To address this issue,
let us juxtapose the following two generic optimization problems against each other:

Maximization problem State-free-payoff maximin problem

max
d∈D

{ f (d) : constraints(d)} max
d∈D

{ f (d) : constraints(d,s),∀s ∈ S(d)} (4.13)

where constraints(d) is a list of constraints imposed on the decision variable d
(in addition to the domain constraint d ∈ D).
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Clearly, the two problems are similar in that both require the maximization of a
real-valued objective function subject to constraints imposed on the decision vari-
able. The difference between them is in the structures of their respective constraints.
Thus, while the constraints of the maximization problem apply only to the decision
variable d, the constraints of the state-free-payoff maximin model apply to (d,s)
pairs, what is more, they are required to be satisfied for all s ∈ S(d).

The upshot of this is that in cases where the sets S(d),d ∈ D consist of infi-
nitely many elements, the state-free-payoff maximin problem has infinitely many
constraints. Namely, the maximin problem is a semi-infinite optimization problem
[20, 43]. Furthermore, given the possible interaction between d and s, keep in mind
that constraints that are say linear with respect to d and linear with respect to s,
may not necessarily be linear with respect to (d,s). This means that incorporating
a state variable in a system of linear constraints imposed on the decision variable
d may render the constraints nonlinear (with respect to (d,s) pairs) in the context
of the maximin problem. Similarly, incorporating a state variable in a system of say
convex constraints on the decision variable d, may render the constraints non-convex
(with respect to (d,s) pairs) in the context of the maximin problem.

For these reasons, the state-free-payoff maximin counterpart of a conventional
optimization problem is often far more difficult to solve than the conventional opti-
mization problem.

4.5 The Wald Factor

The fact that the maximin models considered in this chapter are discussed under the
rubric Wald’s maximin paradigm does not in any way imply that the maximin con-
cept, principle, or paradigm, originated in the work of the mathematician Abraham
Wald (1902–1951). Clearly, this is not the case, even if the proliferation, since the
1940s, in the use of maximin and minimax models in applied mathematics and other
fields, might give the impression that maximin, as a concept, is a recent invention.
The fact of the matter is that its use can be traced back at least to error analysis,
namely, at least to Leonhard Euler (1707–1783). Thus, for an idea of the distant roots
of these models, consider for instance the article Origin of the theory of errors by
Sheynin [38] who argues that Johann Heinrich Lambert (1728–1777) “. . . should be
given precedence over Gauss as the originator of the theory of errors . . . ” because,
as [38, p. 1004] points out:

(f) An enunciation of the “minimax” principle (minimization of the maximum residual error
in geodetic adjustments—the minimum being sought among all possible solutions . . . . But
Lambert confessed that he did not know how to use this principle “in a general manner,
without many devious ways” (auf eine allgemeine Art, und ohne viele Umwege). The use
of this principle in a rudimentary form for solving a redundant system of linear algebraic
equations should be credited to Euler. . . .
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In a nutshell, the maximin paradigm under discussion here is the one that was
first introduced by the mathematician Abraham Wald (1902–1950) into statistical
decision theory in 1939, from whence it entered decision theory in the 1950s, and
subsequently many other disciplines, including robust decision-making and robust
optimization.

To be precise, it is the paradigm that was introduced in the seminal article
Contributions to the theory of statistical estimation and testing hypothesis where
[46, p. 305] argued as follows (emphasis added):

There exist in general many systems Ms which are admissible relative to the weight function
given. The question arises as to how can we distinguish among them. Denote by rMs the
maximum of the risk function corresponding to the system Ms of regions and to the given
weight function. If we do not take into consideration a priori probabilities of θ , then it
seems reasonable to choose that system Ms for which rMs becomes minimum.

It therefore must not be conflated with the classical maximin paradigm of zero-
sum 2-person games which became popular with the publication of [45] seminal
book Theory of Games and Economic Behavior.

The importance of Wald’s paradigm was immediately recognized, as indeed
attested, for example, by Morgenstern [28, pp. 355–356]:

In practical and scientific affairs there is always need to decide upon courses of action, as
a rule on the basis of incomplete information. This problem is one of whether to accept or
to reject a particular course, or, more generally, to find the optimum course from a wider
set of possibilities, where a wrong choice results in a loss to be suffered. The best that
can be hoped for is to minimize the maximum loss. This principle of action is known as
the minimax principle. Wald introduced it into statistics and has given it basic importance
for the theory of statistical decision functions. It has been claimed that “it is the only rule
of comparable generality proposed since [that of] Bayes’ was published in 1763.”3 The
minimax principle is central in the theory of games, and, when that theory was published
in its present form in 1944, it attracted Wald immediately. In various papers he set forth
the applicability of the theory of two-person zero-sum games to the theory of statistics and
extended certain game theoretical results, notably generalizing the main theorem to the case
of a denumerably infinite set of strategies.

3Savage [36, p. 59]

For the record, though, it is important to note that no reference whatsoever is
made in [46] to game theory, and the idea of minimizing the maximum risk adv-
anced in this article is not based on any game theoretic concept, or argument. Only 6
years later, in the article Statistical decision functions which minimize the maximum
risk, did [47] discuss the connection between the model proposed in [46] and zero-
sum, 2-person games.

The central difference between Wald-type maximin models and maximin models
associated with zero-sum, 2-person games is that the former do not postulate any
equilibrium conditions. Therefore, a solution to a Wald-type maximin problem is
not required to be a saddle point. To illustrate, consider the following simple case
consisting of 3 decisions, 5 states, and the payoffs are as follows:
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f (d,s) s(1) s(2) s(3) s(4) s(5) SL
d(1) 55 43 48 63 37 37
d(2) 88 92 71 10 20 10
d(3) 85 83 47 72 50 47

(4.14)

The SL column contains the security levels pertaining to the three decisions
where, as we saw above, in the maximin context, the assumption is that the larger
the payoff the better.

Thus, from a Wald’s maximin paradigm standpoint, the optimal solution to the
maximin problem defined by this payoff table is (d∗,s∗) = (d(3),s(3)), yielding a
payoff of 47. But, from a zero-sum, 2-person game standpoint, this pair is not in
equilibrium, that is (d(3),s(3)) is not a saddle point: despite it being the smallest
element in its row, it is not the largest element in its column. Hence, (d(3),s(3)) does
not constitute a solution to the zero-sum, 2-person maximin game defined by this
payoff table. But more than that, this game has no saddle point, it therefore has no
optimal solution that is a pure strategy.

Conceptually, Wald-type maximin and minimax models can be regarded as
games between two players: the decision maker and Nature which embodies the
decision maker’s opponent. Such a game consists of the following moves:

Step 1. The decision maker moves first by selecting a decision d ∈ D.
Step 2. In response, Nature selects a state s ∈ S(d).
Step 3. Then, an outcome O(d,s) is realized.

That is, in this game the decision maker, who “plays” first, seeks the best out-
come, whereas Nature who “plays” second, seeks the worst outcome. So if the
decision maker selects say decision d′ ∈ D, then Nature will select a state s′ ∈ S(d′)
that yields the worst outcome O(d′,s′) over all s ∈ S(d′). In symbols,

z∗ := best
d∈D

worst
s∈S(d)

O(d,s) (4.15)

where the operation bestd∈D determines the best outcome over the set of decisions
available to the decision maker, and the operation worsts∈S(d) determines the worst
outcome over the set of states associated with decision d.

In cases where the outcomes are expressed in terms of payoffs and constraints,
as done in Sect. 4.2, using the term pessimization as the antonym of optimization
(see [4, 7, 12, 24, 30, 31]), enables formulating the following abstract Wald-type
decision-making model:

z∗ := opt
d∈D

pes
s∈S(d)

{ f (d,s) : constraints(d,s),∀s ∈ S(d)} (4.16)

where “pes” denotes the converse of “opt”, namely

opt = min ←→ pes = max (4.17)

opt = max ←→ pes = min . (4.18)
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Observe that the models specified by (4.15) and (4.16) encompass both minimax
(opt=min) and maximin (opt=max) models.

In view of what we have seen thus far, we can now sum up the essential features
that distinguish Wald-type maximin/minimax models from other minimax/maximin
models. In this discussion then the term Wald-type designates maximin/minimax
models where:

• The state variable s represents “non-probabilistic” uncertainty.
• The decision maker “plays” first.
• Nature’s sole goal is to inflict the greatest possible harm on the decision maker.

The phrase “non-probabilistic” is designed to indicate that not only is the unc-
ertainty in the true value of the state variable s not quantified probabilistically, no
measure of “likelihood”, or “chance”, or “plausibility”, or “belief” is associated
with s. The assumption is that all that is known about the (unknown) true value of
s is that it is an element of S(d). Also note that the notation s ∈ S(d) implies that
the uncertainty in the true value of s may be affected by the decision d ∈ D made by
the decision maker in the sense that the set of possible/plausible values of this true
value may depend on d.

As for Nature’s hostile antagonistic stance towards the decision maker, inter-
estingly the upshot of this is that it effectively eliminates the uncertainty as to the
game’s outcome. Namely, if the decision maker selects decision d ∈ D then in the
context of (4.16) there is no uncertainty whatsoever regarding the game’s outcome:
it is certain to be equal to

SL(d) : = pes
s∈S(d)

{ f (d,s) : constraints(d,s),∀s ∈ S(d)} (4.19)

which is the security level of decision d.
The implication is that it is important to distinguish between the following two

cases:

SL(d) =

⎧

⎨

⎩

pes
s∈S(d)

f (d,s) , constraints(d,s),∀s ∈ S(d)

inadmissible , otherwise
, d ∈ D. (4.20)

This means that the generic model specified by (4.16) can be written as follows:

z∗ := opt
d∈D

SL(d) (4.21)

assuming that here the operation optd∈D ignores inadmissible decisions.
And to sum it all up, Wald-type models are maximin and minimax models where

the state variable, s, represents uncertainty, namely it is a parameter of the decision-
making model whose true value is uncertain.
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4.6 Robustness

Before we proceed to examine the kind of robustness that Wald-type maximin mod-
els are concerned with, let us first examine the meaning of the concept “robust-
ness” by considering, albeit very briefly, how this concept functions in a number of
disciples.

A quick scan of publications from various fields suggest that although the concept
“robustness” may be given specific definitions in different disciplines to reflect their
specific concerns and objectives, in essence the meanings that the various definitions
seek to convey build on the purport of the concept “robustness” that is familiar to us
from ordinary language. Thus, definitions of “robustness” from various disciplines
tend to explain “robustness” in terms of “an ability to withstand . . . ”, “resilience
to . . . ”, “insensitivity to . . . ”, and so on. And to illustrate, consider the definitions
articulated in the following publications.

According to [25, p. 126], the Eurocode (EN 1991-7-1 Clause 1.5.14) defines
robustness of structures as follows:

Robustness is the ability of a structure to withstand events like fire, explosions, impact or
the consequences of human error, without being damaged to an extent disproportionate to
the original cause.

And according to [33, p. 183]:

Robustness as a mathematical concept was introduced in a short paper by Andronov and
Pontriagin1 and developed in a later book by Andronov et al.2 The original definition was
of the local type, i.e. it characterized variations in the behaviour of a dynamic system under
small variations in its velocity field. The robustness was interpreted both as a qualitative,
geometrical property (invariance of a topological structure) and as a qualitative, analytical
property (uniform continuity of solutions depending on a parameter characterizing the small
variations).

[1] = Andronov and Pontriagin [1]; [2] = Andronov et al. [2]

And the synopsis of the article Permutation theory in the derivation of robust
criteria and the study of departures from assumption [9, p. 1] asserts the following:

In the practical circumstances in which statistical procedures are applied, little is usually
known of the validity of assumptions such as normality of the error distribution. Procedures
are required which are “robust” (insensitive to changes in extraneous factors not under test)
as well as powerful (sensitive to specific factors under test). Permutation theory, which
provides one method for deriving robust criteria, is discussed and applied to the problem of
comparing variances.

We call attention to the fact that although our main concern in this chapter is
with worst-case-based robustness, it is important to keep in mind that the latter is
rivaled by probabilistic robustness as indicated in the article Probabilistic robust-
ness analysis—risks, complexity, and algorithms [11, p. 2693] where we read the
following:



4 A Maximin Perspective on Robust Decision-Making 71

In recent years, a number of researchers have proposed probabilistic control methods for
overcoming the computational complexity and conservatism of the deterministic worst-case
robust control framework . . .

The philosophy of probabilistic control theory is to sacrifice cases of extreme uncertainty.
Such a paradigm has led to the concept of confidence degradation function (originated by
Barmish, Lagoa, and Tempo [2]), which has been demonstrated to be extremely powerful
for the robustness analysis of uncertain systems.

[2] = Barmish et al. [3]

And with this in mind, let us now examine the robustness that is sought by Wald-
type maximin models.

4.6.1 Worst-Case-Based Robustness

As we noted already, Wald’s worst-case-based maximin paradigm exemplifies a
rather grim, indeed pessimistic view of uncertainty, which however controversial,
can arguably be described as natural and intuitive. Indeed, one might further argue
that such an approach underlies time old adages such as when in doubt assume the
worst! and hope for the best but plan for the worst! And that it is most certainly
reflected in the following stanza from William Shakespeare’s Julius Caesar (Act 5
Scene 1) which serves as an epigraph to Rustem and Howe’s [35] book Algorithms
for Worst-case Design and Applications to Risk Management that is dedicated to
“those who have suffered the worst case”:

The gods to-day stand friendly, that we may,
Lovers in peace, lead on our days to age!

But, since the affairs of men rest still incertain
Let’s reason with the worst that may befall.

To be sure, one might counter that, for all our claimed inclination to “reason with
the worst that may befall”, experience with natural and man-made disasters shows
time and again, that individuals, organizations, societies and nations are very often
ill-prepared for events that are far less extreme than worst-case scenarios such as
say the so-called 100-year flood—let alone Noah’s flood!

This, in large part, is due to the fact that one of the most vexing difficulties posed
by a worst-case-based approach to uncertainty is that its implementation can come
at an exorbitant cost and may demand radical changes in our way of life.

We discuss these and related issues associated with the implementation of worst-
case-based robustness models in the ensuing sections. Prior to that, let us clarify
in broad terms how Wald’s maximin paradigm, as an exponent, indeed the ultimate
exponent, of a worst-case-based approach to uncertainty, quantifies the intuitive con-
cept “robustness”.

Observe then that from the standpoint of Wald’s maximin paradigm, the robust-
ness of decision d is a measure of how well or how poorly does it perform if the
worst state in S(d) is realized. This worst-case performance is quantified by the
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security level of decision d, namely by SL(d), defined in Sect. 4.4.1. In other words,
in the framework of Wald-type maximin models, the robustness of decision d against
the uncertainty in the true value of s is equal to the security level of decision d. In
this framework, the larger the security level the better, hence the optimal decision is
that whose security level is the largest.

In parallel, in the framework of minimax models, the smaller the security level
the better, hence the optimal decision is that whose security level is the smallest.
Hence, it is only natural that, in the context of minimax models, the security level of
decision d would be regarded as a measure of its fragility rather than its robustness.
Minimax models thus rank decisions according to their fragility: the smaller the
fragility the better.

In the next subsection we take up the meaning and practical aspects of the
term worst in the framework of worst-case analysis including Wald-type maximin
models.

4.6.2 How Bad Should Worst Be?

One of the precepts guiding the analysis of a decision’s robustness against uncer-
tainty in the true value of a parameter, is that the values of the parameter that are
considered by the analysis for this purpose ought to give a sound representation of
the parameter’s variability. In the context of a worst-case analysis, this means of
course that the values of the parameter that are examined by the analysis ought to
give a proper representation of the “worst value” of the parameter.

But this, it would seem, is “easier said than done” because, as pointed out by
Hart et al. [21, p. 18], the whole question is:

How worst is “worst-case”? Is the scenario literally the very worst (possible or imaginable?)
case. Or is it a “realistic” (how realistic?) worst case. Or does it represent some known
centile (95th, 99th ?) of a distribution of cases?

To appreciate how this issue comes into play in the context of Wald-type maximin
models, keep in mind that, as explained in Sect. 4.4, S(d) denotes the set of all the
possible/plausible values of s that can be generated by decision d. Therefore, the
question as to how “realistic” is the worst-case analysis conducted by Wald-type
maximin models is intimately connected to the question of how “realistic” are the
sets S(d),d ∈ D.

And this question, one need hardly point out, goes straight to the centrally imp-
ortant issue of mathematical modeling in general, and maximin modeling in partic-
ular. The point is that an answer to this question would in the first place depend on
the analyst, namely on his/her insights, experience and skills in the art of maximin
modeling, not the paradigm itself. Thus, in practice, it would all come down to the
analyst ensuring that the sets S(d),d ∈ D are quantified properly.

We address this issue in Sect. 4.7.2. In the next section we take up a related
matter, which is the ability of Wald’s maximin paradigm to deal with both local and
global robustness.
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4.6.3 Global vs Local Robustness

There are many situations where it is convenient and/or advisable and/or necessary,
to limit the robustness analysis to a relatively small neighborhood of the uncertainty
space under consideration. Hence the distinction between global and local robust-
ness.

Informally, this distinction entails that a global robustness analysis is one that
is conducted over the entire uncertainty space under consideration, whereas a local
robustness analysis is one that is conducted over a relatively small neighborhood
of the uncertainty space. Clearly, this distinction is reminiscent of the familiar dis-
tinction made in optimization theory between local and global optimization. It also
reminds us of the distinctions between a local and a global anesthetic, a local and a
global economy, local and global weather, local and global news, etc.

From a decision-making point of view, this distinction means that the choice of
a robustness model, namely global versus local, should be compatible with, among
other things, the type of uncertainty that we face, or postulate.

To explain this point, consider the situation depicted in Fig. 4.1, where the large
rectangle represents the uncertainty space under consideration, denoted S, and the
small white circle, denoted B, represents a neighborhood of S.

Fig. 4.1: An example of an uncertainty space S and one of its neighborhoods, B

In this case, a global robustness analysis is one that is conducted over the ent-
ire uncertainty space S. In contrast, a robustness analysis that is conducted over a
relatively small neighborhood of S, such as B, is local.

From a robustness perspective, the point to note about the distinction between
S and B is that B is not merely a small subset of S, it is a small neighborhood
of S. The difference between “a small subset of” and “a small neighborhood of” is
profound because by its very nature a small neighborhood of a large set gives only
a local picture of the large set. On the other hand, in the context of Fig. 4.1, a small
subset of S, say a dense grid over S, can give a very good indication of the variability
of s over S.
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Informally then, a global robustness analysis would be appropriate when we seek
robustness against variations in the value of s over S, whereas a local robustness
analysis would be appropriate when we seek robustness against variations in the
value of s over a small neighborhood of S, say the neighborhood B depicted in
Fig. 4.1.

And the implication is that as S denotes the set of all possible/plausible values
of s, the use of a local robustness model needs to be justified. That is, we need to
explain and justify on what grounds do we exclude from the robustness analysis
all the possible/plausible values of s that are outside the neighborhood over which
the local robustness analysis is conducted. Barring such a justification, the local
analysis might be exposed to the valid criticism of lacking any logical foundation
(see Sect. 4.7.3).

And with this as background, let us now examine how the distinction between
a local and a global analysis is manifested in worst-case-based robustness models,
notably maximin models.

In fact our objective is to make it clear that maximin models can, as a matter of
principle, perform both local and global robustness analyses. To this end we need
to recast, indeed extend, the definitions given to the sets S(d),d ∈ S(d). Keeping in
mind then that in Sect. 4.4 we let S(d) denote the set of all the possible/plausible
values of s that are generated by decision d, we now distinguish between three sets
associated with decision d, namely:

S(d) : = set of all possible/plausible states generated by decision d. (4.22)

S(d) : = subset of S(d) used in the robustness analysis of decision d. (4.23)

S(d) : = S(d)\ S(d) (complement of S(d)). (4.24)

Note that, by definition, the robustness analysis of decision d is confined to set

S(d), meaning that it ignores all the states in S(d).
Now consider the maximin model obtained from (4.3) by replacing S(d) with

S(d), namely consider this maximin model:

z∗ := max
d∈D

min
s∈S(d)

{ f (d,s) : constraints(d,s),∀s ∈ S(d)}. (4.25)

The implication is that in view of the above, if S(d) = S(d),∀d ∈ D, then this
maximin model is a model of global robustness. And if for every d ∈ D the set S(d)
is a relatively small neighborhood of S(d), then this maximin model is a model of
local robustness. To illustrate, consider the following robustness model:

ρ(q|ũ) := max
α≥0

{α : stab-con(q,u),∀u ∈U(α, ũ)} , q ∈ Q (4.26)

where Q is some given set, U(α, ũ) is a neighborhood of size α around ũ associated
with some uncertainty space U , ũ ∈U is a nominal value of u, and stab-con(q,u)
is a list of constraints on (q,u) pairs. We refer to ρ(q|ũ) as the radius of stability of
q at ũ.
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In words: the radius of stability of q at ũ, denoted ρ(q|ũ), is equal to the size,
α , of the largest neighborhood U(α, ũ) around ũ all whose elements satisfy the
stability constraints listed in stab-con(q,u). This is illustrated in Fig. 4.2 where the
large rectangle represents the uncertainty set U , the gray area represents the values
of u that violate the stability constraints, and the circles centered at ũ represents
neighborhoods around ũ.

Thus, the radius of stability of system q at ũ is equal to the radius of the largest
circle centered at ũ that is contained in the white area.

Fig. 4.2: Radius of stability of system q at ũ

Such models are used extensively in many fields to model the local stability
and/or robustness of systems to perturbations in a nominal value of a parameter
[23, 26, 50, 51].

In this context, seeking the most robust system entails seeking a system whose
radius of stability is the largest, which amounts to solving this maximin problem:

ρ(ũ) : = max
q∈Q

max
α≥0

{α : stab-con(q,u),∀u ∈U(α, ũ)} (4.27)

= max
q∈Q,α≥0

{α : stab-con(q,u),∀u ∈U(α, ũ)}. (4.28)

Observe then that radius of stability models are (local) maximin models. Specif-
ically, the model specified by (4.26) is that instance of the maximin model that is
specified by (4.25) yielded by setting s = u; d = α; D = [0,∞); S(d) =U(α, ũ); and
constraints(d,s) = stab-con(q,u).

The global counterpart of the radius of stability model specified in (4.26) is
obtained by replacing the neighborhoodU(α, ũ) by a subset of the uncertainty space
U and replacing α by a measure of the size of such a subset. The end result is this
maximin model:
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w(q|ũ) := max
V⊆U

{#(V) : stab-con(q,u),∀u ∈V} , q ∈ Q (4.29)

where #(V ) denotes the “size” of set V . For example, if V consists of finitely many
elements, we can let #(V ) denote the cardinality of V .

In words, according to (4.29), the (global) robustness of q, denoted w(q|ũ), is
equal to the size of the largest subset of U all whose elements satisfy the stability
constraints.

In the idiom of the maximin paradigm, u denotes the state variable in this model,
V the decision variable, and #(V ) the payoff generated by V and u. Clearly, this is a
state-free-payoff maximin model.

The situation depicted in Fig. 4.3 illustrates the difference between the radius of
stability model and its global counterpart.

Fig. 4.3: Local and global robustness of two systems: q′ and q′′. The white areas
represent regions of stability, the gray areas represent regions of instability and
the circles represent the largest neighborhoods around ũ that are contained in the
respective regions of stability

The idea is then, as illustrated in Fig. 4.3, that if we measure the size of subsets of
U by the “area” they take up, then the global robustness of a system would be equal
to the size of the area covered by its region of stability. In this case, the robustness
of the system would be equal to the size of the white area representing the region
of stability of the system. Hence, according to this measure of robustness, in the
context of Fig. 4.3, system q′ is much more robust then system q′′. In contrast, at
ũ, the radius of stability of system q′ is much smaller than the radius of stability of
system q′′. Hence, the implication is that, globally, decision d′ is more robust than
decision d′′ whereas, locally at ũ, decision d′′ is more robust than d′.

The point we want to make then is that, given its innate ability to provide a variety
of measures of robustness, Wald’s maximin paradigm proves an indispensable tool
for robust decision-making.
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4.7 A Robust Decision-Making Perspective

Before we take up the topic of robust decision-making, it is important to make it
abundantly clear that in this discussion, the phrase robust decision-making refers
to the wide-ranging, highly active multidisciplinary field of expertise that is con-
cerned with a variety of theoretical, technical, and conceptual issues pertaining to
robust decision-making, rather than to the specific methodology bearing this name
that was developed at the Rand Corporation (see https://en.wikipedia.org/wiki/Robust

decision-making).
Thus, our main thrust in this section is to examine the role of the worst-case

approach to uncertainty, more specifically that of Wald’s maximin paradigm, as a
tool of thought and as a practical instrument used in robust decision-making, notably
for situations subject to a non-probabilistic uncertainty.

In fact, in certain disciplines, such as robust optimization, this paradigm domi-
nates the scene. For this reason, it is instructive to examine how Wald’s maximin
paradigm came to play this role in this discipline.

4.7.1 Robust Optimization

One of the thorniest difficulties afflicting “conventional” optimization problems is
that optimal solutions to such problems often prove sensitive, sometimes highly sen-
sitive, to perturbations in the values of the problems’ parameters. This fact renders
the identification of “robust solutions” extremely important in optimization theory.
To examine then how this issue arises in this field, let us consider the following
abstract constrained optimization problem:

Problem P : w∗ := max
x∈X

{g(x) : constraints(x)} (4.30)

where g is a real-valued function on some set X and constraints(x) denotes a list of
constraints on the decision variable x. We refer to g as the objective function. Let X∗
denote the set of optimal solutions to this problem.

Now, suppose that both the objective function g and the constraints under con-
sideration depend on a parameter, call it u, and let U denotes the set of all the
values of u under consideration. We can thus deduce from Problem P the following
parametric optimization problem:

Problem P(u) : w∗(u) := max
x∈X

{g(x;u) : constraints(x;u)} , u ∈U (4.31)

where the notation (x;u) is used to highlight the fact that u is a parameter of the
object under consideration. Let X∗(u) denote the set of optimal solutions to this
problem for the specified value of u. Note that for each u ∈ U , Problem P(u) is a
conventional constrained optimization problem.

https://en.wikipedia.org/wiki/Robust_decision-making
https://en.wikipedia.org/wiki/Robust_decision-making


78 M. Sniedovich

Informally, a robust solution to this parametric optimization problem is a solution
x∈X that performs “well” (relatively to other solutions) with respect to the objective
function and the constraints, against the variations in the value of parameter u. The
following definition is therefore self-evident:

Definition. An element of X, say x∗, is said to be a SUPER-ROBUST solution to the
parametric problem (4.31) iff x∗ ∈X∗(u),∀u∈U , that is iff x∗ is an optimal solution
to Problem P(u) for all u ∈U .

There are of course situations where super-robust solutions exist, namely sit-
uations where the optimal solutions recovered for Problem P prove insensitive to
the variation in the optimization problem’s parameters. But such situations are the
exception, rather than the rule.

The question therefore arising is this: what constitutes a “robust solution” to the
parametric optimization problem specified by (4.31) in cases where no super-robust
solutions exist?

If we adopt a worst-case approach to the variability of u over U , then the answer
to this question is as follows:

• A robust solution to the above parametric problem should satisfy the constraints
under consideration for the worst u in U (whatever it is), hence for all u ∈U .

• A robust solution to this parametric problem should yield the best (largest over
all x ∈ X satisfying the worst-case constraints) worst (smallest over u ∈U ) value
of g(x;u).

In short, a worst-case approach to the variability of u overU yields the following
maximin counterpart for the above parametric problem:

Problem RC: w(rc) := max
x∈X

min
u∈U

{g(x;u) : constraints(x;u),∀u ∈U }. (4.32)

In the literature on robust optimization (e.g. Ben-Tal et al. [5]) this maximin prob-
lem is called the robust counterpart problem. Any value of x ∈ X that is an optimal
solution to this maximin problem is regarded a robust solution to the parametric
problem (4.31).

The idea of incorporating the maximin paradigm in the formulation of optimiza-
tion problems so as to obtain solutions that are robust against variations in the val-
ues of the problem’s parameters, goes back to at least the 1960s (e.g., Dorato and
Drenick [15]). The phrase robust optimization became popular in the mid 1990s
(e.g., Mulvey et al. [29]).

Interestingly, although in the broad literature on robust optimization the phrase
robust optimization does not refer exclusively to maximin-based robustness (e.g.,
Mulvey et al. [29]), some scholars hold that robust optimization effectively boils
down to the solution of maximin problems (e.g., Bertsimas et al. [8, pp. 465–466]
and Ben-Tal et al. [7, p. 628]). This position, one need hardly point out, gives ex-
pression to the prominent role that the maximin paradigm has come to play in robust
optimization in recent years.
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In a nutshell, the element distinguishing the field of robust optimization from
other fields where maximin models are used to obtain robust solutions to problems,
is that in robust optimization the focus is on classical mathematical programming
problems such as linear programming problems, quadratic programming problems,
dynamic programming problems, and so on. For an overview of recent advances in
robust optimization see [18].

4.7.2 Conservatism

For obvious reasons, decisions that are based on worst-case-analysis, compared to
decisions that are based on other approaches to uncertainty, may be deemed conser-
vative. Indeed, they might even be labeled paranoid. Because, given our individual
and common experience, it seems safe to say that, while “worst-case scenarios” do
occur, these would typically be “rare events”. Clearly then, the worst-case approach
to uncertainty is not based on evidence that the “worst-case scenario” is a good
“estimate”, or a good “approximation”, of the “true” (unknown) scenario.

The question is then how should we understand the attribute “conservative” as it
is applied to worst-case-analysis-based decisions considering the type of outcomes
they yield.

The answer to that seems to be that this is very much a problem-oriented issue.
The question as to whether a decision is “conservative” may depends on the problem
one deals with, on the context in which it is dealt with, on the objectives one has,
and so on.

The point to keep in mind here is that a decision that fares satisfactorily under a
“worst-case scenario” would not necessarily fare satisfactorily under more “realis-
tic” scenarios, particularly in the sense that it can turn out to be far too costly should
a “realistic”, rather than “worst-case scenario”, be realized. Such a decision may
well be deemed “conservative”.

But, on the other hand, in cases where, for whatever reasons, the declared obj-
ective of an investigation, a project, and so on, is to identify decisions that per-
form well against “worst-case scenarios”, then such decisions will obviously not be
judged “conservative” at all.

And, as pointed out by Gabrel et al. [18, p. 472], the same applies for worst-case-
based robustness:

When uncertainty affects the feasibility of a solution, robust optimization seeks to obtain a
solution that will be feasible for any realization taken by the unknown coefficients; how-
ever, complete protection from adverse realizations often comes at the expense of a severe
deterioration in the objective. This extreme approach can be justified in some engineering
applications of robustness, such as robust control theory, but is less advisable in opera-
tions research, where adverse events such as low customer demand do not produce the
high-profile repercussions that engineering failures—such as a doomed satellite launch or a
destroyed unmanned robot—can have.
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As for the maximin paradigm, the charge of “conservatism” has been leveled at it
ever since its introduction into decision theory in the 1950s. And to illustrate what is
meant by this, consider the maximin problem associated with the following payoff
table:

f (d,s) s(1) s(2) s(3) s(4) s(5) s(6) SL

d(1) 2 2 2 2 2 1 1

d(2) 999 999 999 999 999 0.99 0.99

(4.33)

In this case, the security level (SL) of decision d(1) is larger than the security
level of decision d(1), hence the maximin paradigm, deems decision d(1) superior to
(more robust than) decision d(2).

However, much as decision d(1) performs better than decision d(2) under the
worst-case scenario (state), decision d(2) performs far better than decision d(1) under
all other scenarios (states).

As we pointed out already, the verdict as to whether or not decisions yielded
by the maximin paradigm are “conservative” is a problem-oriented issue. Thus, it
may well apply in cases where one seeks decisions that perform well in relation to
“realistic” rather than “worst-case” scenarios. But . . .

Consider the point raised by Wasserman [49, Sect. 4]:

The claim that minimax theory is driven by the worst case is a more substantial criticism.
I happen to think worst case analysis is a good thing. I want an estimator that does reason-
ably well under any circumstances.

The inference therefore is that the deployment of the maximin paradigm as a
framework for identifying decisions that perform well under “realistic” rather than
“worst-case” scenarios, ought to be reasoned out carefully. It most certainly ought
to be justified, regardless of whether the decisions yielded, for the case considered,
are judged to be “conservative”.

4.7.3 Irresponsible Decision-Making

On the face of it, rendering a worst-case analysis less “conservative” and more “real-
istic” seems to be straightforward. Indeed, all we need to do to this end is to exclude
from the worst-case analysis “unrealistic” scenarios. Thus, in [18, p. 472], we read
the following:

To make the robust methodology appealing to business practitioners, robust optimization
thus focuses on obtaining a solution that will be feasible for any realization taken by the
unknown coefficients within a smaller, “realistic” set, called the uncertainty set, which is
centered around the nominal values of the uncertain parameters. The goal becomes to opt-
imize the objective, over the set of solutions that are feasible for all coefficient values in
the uncertainty set. The specific choice of the set plays an important role in ensuring com-
putational tractability of the robust problem and limiting deterioration of the objective at
optimality, and must be thought through carefully by the decision maker.
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To bring out the distinction between “realistic” and “unrealistic” scenarios (states)
and some of the implications of this distinction, let

S = set of all possible/plausible scenarios (states). (4.34)

S(r) = set of all the “realistic” scenarios in S. (4.35)

S(ur) = set of all “unrealistic” scenarios in S, namely S(ur) := S \ S(r). (4.36)

Clearly, this distinction is similar to that made in Sect. 4.6.3 between the sets
S(d), S(d) and S(d) underlying the distinction between a local and a global analysis.

The implication is then that the proposition to deal with the “conservatism” is-
sue by means of a worst-case analysis over S(r) rather than over S must be thor-
oughly justified. Namely, such a proposition must be accompanied by a cogent argu-
ment justifying the criteria used to distinguish between “realistic” and “unrealistic”
scenarios.

Ben-Tal et al. [6] address a similar distinction between the physically possible
values of the uncertainty parameter and the parameter’s “normal range”, arguing
convincingly that a robustness model that effectively ignores all values of the param-
eter outside the “normal range” represents a ‘. . . somewhat “irresponsible” decision
maker . . . ’.

Along the same line, in the article Severe uncertainty and info-gap decision the-
ory [22, p. 609], point out that in the framework of info-gap decision theory there
is a stark incongruity between the severity of the uncertainty under consideration
and the local orientation of the robustness analysis, implying that, methodologically
speaking, conclusions based on this theory may “. . . have no logical foundation. . . ”.

And in this vein, Sniedovich [39–42] argues that a failure to appreciate the dis-
tinction between local and global robustness and the ramifications of this distinc-
tion, especially with regard to situations subject to a severe uncertainty, may lead to
“voodoo decision-making”, namely to decision-making that is based on unrealistic,
and/or misguided, and/or contradictory, and/or delusional assumptions.

From a “maximin perspective”, this means that the worst-case analysis conducted
by maximin models must be consistent with the quantification of the uncertainty
under consideration and with the type of robustness sought by the decision maker.
Thus, to prevent “irresponsible” decision-making, it is imperative to justify the exc-
lusion of “unrealistic” scenarios from the robustness analysis and the criteria used
to distinguish between “realistic” and “unrealistic” scenarios (states).

4.7.4 A Probabilistic Perspective on Worst-Case Analysis

One of the consequences of limiting a worst-case-based robustness analyses to
“realistic” scenarios, is that such an analysis might produce results that would not
be less risky than those produced by a probabilistic analysis that is conducted over
a larger uncertainty space. Indeed, they might even be more risky. And to illustrate,
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consider the following text comprising the abstract of the article Risk analysis in
robust control—making the case for probabilistic robust control ([10]; emphasis
added):

This paper offers a critical view of the “worst-case” approach that is the cornerstone of
robust control design. It is our contention that a blind acceptance of worst-case scenarios
may lead to designs that are actually more dangerous than designs based on probabilistic
techniques with a built-in risk factor. The real issue is one of modeling. If one accepts
that no mathematical model of uncertainties is perfect then a probabilistic approach can
lead to more reliable control even if it cannot guarantee stability for all possible cases. Our
presentation is based on case analysts. We first establish that worst-case is not necessarily
“all-encompassing”. In fact, we show that for some uncertain control problems to have a
conventional robust control solution it is necessary to make assumptions that leave out some
feasible cases. Once we establish that point, we argue that it is not uncommon for the risk
of unaccounted cases in worst-case design to be greater than that of the accepted risk
in a probabilistic approach. With an example, we quantify the risks and show that worst-
case can be significantly more risky. Finally, we argue that the deterministic worst-case
analysis is not necessary more reliable than the probabilistic analysis.

Chen et al. [10]

The idea here is that, while a probabilistic analysis would be conducted over the
entire uncertainty space, a restricted worst-case analysis would leave out values of
the uncertainty parameter that are outside a small subset of the uncertainty set.

Aside from that, it is also important to highlight another aspect of the relation
between a deterministic worst-case analysis and a probabilistic analysis. This is the
fact that certain probabilistic models have obvious deterministic worst-case equiv-
alents, a fact that some scholars regard as remarkable (e.g., Elishakoff and Ohsaki
[16, p. 12, p. 245]). The objective of the brief discussion below is to explain why
this fact is anything but remarkable, observing that it is a direct implication of the
relation between the fundamental probabilistic concepts almost surely and surely.

Recall then that certain probabilistic models are in fact “probabilistic in-name-
only”. That is, such models are not “genuine” probabilistic models but are rather
deterministic models that are dressed (formulated) in a probabilistic garb. Differ-
ently put, they are “degenerate” probabilistic models that have obvious equivalent
deterministic counterparts. Also, bear in mind that surely probabilistic events in-
volving constraints have obvious worst-case deterministic counterparts.

For our purposes it suffices to examine a simple example. Consider then the
following two constraints associated with random variable Y

Probabilistic constraint Deterministic (worst-case) constraint
P(h(Y ) ∈C) = 1 h(y) ∈C,∀y ∈Y

(4.37)

where C is a subset of the real line, y denotes a realization of Y , Y denotes the set
of possible realizations of Y , h is a real-valued function on Y, and P(E) denotes the
probability of event E .

Next, recall the difference between almost surely and surely events: the former
occur with probability 1 and the latter occur “for sure”. To be precise, in the context
of the above constraints,
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surely
︷ ︸︸ ︷

h(y) ∈C , ∀y ∈ Y −→
almost surely

︷ ︸︸ ︷

P(h(Y ) ∈C) = 1 (4.38)

but not necessarily vice versa.
The point is, however, that there are many cases where almost surely events are

also surely events, the implication being that in such cases we have

surely
︷ ︸︸ ︷

h(y) ∈C , ∀y ∈ Y ←→
almost surely

︷ ︸︸ ︷

P(h(Y ) ∈C) = 1 . (4.39)

To illustrate, consider the case where Y and C are closed, bounded intervals of
the real line, say Y = [y,y], and C = [c,c]; h is continuous on Y, and the cumula-
tive distribution function of Y is strictly increasing on Y. Then clearly in this case
P(h(Y ) ∈ C) = 1 entails that h(y) ∈ C , ∀y ∈ Y, hence (4.39) holds and C contains
the set (interval) h(Y) := {h(y) : y ∈ Y}. Observe that this implies that the smallest
interval C satisfying the probabilistic constraint P(h(Y ) ∈C) = 1 is C∗ = h(Y).

For similar reasons, subject to the above assumptions on h and Y , we have the fol-
lowing equivalence between a probabilistic constrained optimization problem and
its deterministic worst-case counterpart:

Probabilistic Problem Deterministic equivalent
opt
x∈X

{ f (x) : P(h(Y ) ∈ H(x)) = 1} opt
x∈X

{ f (x) : h(y) ∈ H(x),∀y ∈ Y} (4.40)

where f is a real-valued function on some set X and H(x) is a bounded interval of
the real-line whose endpoints depend on x. These problems are equivalent in the
sense that they possess the same optimal solutions. Observe that the deterministic
equivalent problem is a state-free-payoff maximin or minimax problem, depending
on whether opt = max or opt = min, respectively.

In sum, there is nothing remarkable, or surprising, about the fact that a determin-
istic worst-case analysis and a probabilistic analysis of constraints associated with
surely events yield the same results.

4.8 Can Wald’s Maximin Paradigm Save the World?

The heading of this closing section paraphrases the apparently tongue in cheek
heading Minimax Theory Saves the World of a post on Prof. Larry Wasserman’s
website entitled Normal Deviate (see Wasserman [49, Sect. 4]), where we read the
following:

Minimax theory is the best thing in statistical machine learning—or the worst—depending
on your point of view.
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and

5. Minimaxity Gets the Last Word?
Minimax theory was important in statistics for a while then it sort of faded. But it had a
revival, partly due to the work of Donoho et al.

But what is really interesting is that I see more and more minimax analyses in ML outlets
such as NIPS, JMLR etc. So perhaps the marketplace of ideas is telling us that minimax
theory is gaining in importance?

where ML = machine learning, JMLR = Journal of Machine Learning Research,
NIPS = Neural Information Processing Systems, Donoho et al. = Donoho et al.
[14], Donoho and Johnstone [13].

An interesting perspective on Wald’s maximin paradigm from the viewpoint of
machine learning can be found in the article Machine Wald [32].

The provocative tone of the above heading and the claims associated with it raise
a number of issues whose clarification should serve as a fitting ending to the discus-
sion in this chapter.

To begin with, consider the observation regarding a revival in the engagement
with this paradigm. Looking at the various literatures in the broad area of decision-
making under uncertainty, it would appear that the growing interest in Wald’s max-
imin paradigm in the past 20 years or so can in fact be attributed to a number of
factors foremost of which is the development of new algorithms for the solution of
large scale maximin problems [5, 8, 18].

But more than that, as much as the popularity of the paradigm may have waned
and waxed over the years in various disciplines, the fact remains that for all the con-
troversy surrounding it, Wald’s maximin paradigm has retained its status as a major
methodological and practical tool for decision-making under (a non-probabilistic)
uncertainty in various areas of engineering, economics, management, operation
research and so on.

It is important therefore to keep in mind that to correctly appreciate its scope
of operation, its capabilities and its limitations, one must never lose sight of the
fact that, methodologically speaking, the paradigm was not introduced as a general
purpose tool for the treatment of non-probabilistic uncertain in a decision-making
environment. Rather it was introduced as an ad hoc approach to such an uncertainty,
where the only justification given [46–48] for its worst-case stance was that in the
face of complete ignorance it is not unreasonable to . . . assume the worst!

And to illustrate, consider the article Statistical decision functions which mini-
mize the maximum risk where we read the following (Wald [47, p. 279]; emphasis
added):

A problem of statistical inference may be interpreted as a zero sum two person game as
follows: Player 1 is Nature and Player 2 is the statistician. The variable r1 is the parameter
point θ the value of which is chosen by Nature. The variable r2 is the statistical decision
function ω(E) which is chosen by the statistician. The outcome K[θ ,ω(E)] of the game is
the risk r[θ |ω(E)] of the statistician. Clearly, the statistician wishes to minimize r[θ |ω(E)].
However, if the statistician is in complete ignorance as to Nature’s choice, it is perhaps
not unreasonable to base the theory of a proper choice of ω(E) on the assumption that
Nature wants to maximize r[θ |ω(E)].
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The point is of course that even if we grant that the idea underlying the max-
imin paradigm is intuitive and comes naturally to us, grounding it on this thought
because “it is perhaps not unreasonable”, leaves it wide open to valid criticism, not
to mention misuse and abuse. Because, strictly speaking, as pointed out by many
scholars, there are no grounds for assuming that Nature is an adversarial opponent
in this setup.

That said, it should be emphasized that the difficulty here is not that it is impos-
sible to axiomatize Wald’s maximin paradigm and to thereby ground it on a solid
foundation, at least for a certain class of decision-making problems. Rather, the
trouble is that such an axiomatization (e.g., Gilboa and Schmeider [19]) requires the
presupposition of highly restrictive assumptions. Obviously, other decision theories
encounter similar difficulties when it comes to axiomatization [17, 27]. But this is
cold comfort.

Finally, we might add that, as intimated by Tintner [44, p. 24], apparently Wald
himself was not fully satisfied with the paradigm and its conservative bent:

Wald advocated the minimax principle in a tentative way and because of certain formal
advantages. I am informed that he was still interested in finding a less conservative and
more satisfactory principle for statistical inference.

And to sum it all up, methodologically and practically, Wald’s maximin paradigm
should be considered a tool that is suitable for decision-making in situations where
it is reasonable (or advisable, or required) to adopt a worst-case approach to uncer-
tainty, or variability. It is not, indeed, never was meant to be, a panacea for dealing
with non-probabilistic uncertainty. Thus, as noted by Savage [37, pp. 578–579]:

Studies of the minimax rule have been stimulating for statistics, and modifications and
outgrowths of the rule may prove of great value, but those of us who, 12 or 13 years ago,
hoped to find in this rule an almost universal answer to the dilemma posed by abstinence
from Bayes’ theorem have had to accept disappointment.

The inevitable conclusion therefore seems to be that, for all its long and dis-
tinguished service since 1939, Wald’s maximin paradigm does not, indeed cannot
“save the world”. It continues, however, to offer an important tool of thought to
decision makers dealing with uncertainty.

Hence, analysts and scholars who doubt the efficacy of this stalwart of robust
decision-making should ask themselves whether when in doubt they would, or
should, . . .

assume the worst!
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Chapter 5
The State of Robust Optimization

Seçil Sözüer and Aurélie C. Thiele

Abstract This survey presents a broad overview of the developments in robust
optimization over the past 5 years, i.e., between 2011 and 2015. We highlight the
advancement of knowledge both with respect to the theory of robust optimization
and application areas. From a theoretical standpoint, we describe novel findings in
static and multi-stage decision making, the connection with stochastic optimization,
distributional robustness and robust nonlinear optimization. In terms of application
areas, we consider inventory and logistics, finance, revenue management and health
care. We conclude with guidelines for researchers interested in immunizing their
problem against uncertainty.

5.1 Introduction

A classical assumption in mathematical programming is that the input data is per-
fectly known; however, in practice this is a rather rare situation and researchers have
attempted to take data uncertainty into account since the seminal work of Charnes
and Cooper [35] on chance-constrained programming. Unfortunately, many settings
in today’s fast-changing environments do not lend themselves to a probabilistic des-
cription of uncertainty. Robust optimization was first proposed in the early 1970s in
order to provide a decision-making framework when probabilistic models are either
unavailable or intractable, and has been the focus of significant research attention
from the 1990s onwards.
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Robust optimization assumes that the uncertain data belongs to a convex and
bounded set, called uncertainty set, and aims to find a solution that would remain
feasible for all possible instances of the data parameters while achieving the best
possible worst-case performance, as measured by the objective for the worst-case
realization of the parameters. The specific choice of the set naturally plays an im-
portant role in terms of tractability and insightfulness of the optimal solution. Key
to the tractability of robust optimization is the ability to optimize this worst-case
criterion efficiently in presence of two conflicting imperatives: (1) a high level of
robustness (protection against uncertainty) (2) the attainment of high-quality objec-
tive values (close to the objective of the nominal problem).

Soyster [107] took the first step toward the attainment of a robust optimization
methodology in 1973. In order to find a solution immune to data uncertainty in lin-
ear programming, he injected the worst-case value of each uncertain parameter into
the mathematical programming model; however, the model was deemed too conser-
vative for practical implementation by many business practitioners. Then, in the late
1990s, significant progress in tackling the issue of over-conservatism was made by
Ben-Tal and Nemirovski [14–16], El-Ghaoui and Lebret [45] and El-Ghaoui et al.
[46]. These papers provided the foundation for modern robust optimization. (Note
that the earlier paper of Mulvey et al. [91] uses a different concept also called robust
optimization that builds upon the stochastic programming problem and optimizes a
weighted combination of the traditional Stochastic Programming (SP) objective and
a feasibility penalty function, which penalizes violations of the control constraints.
This different definition for robust optimization will not be explored here.) The fo-
cus was mainly on constructing models more relevant to practitioners by controlling
the degree of conservatism in uncertain linear problems with ellipsoidal uncertainty
sets centered at the nominal value of the parameters. These problems were reformu-
lated as second-order cone problems [15]. A drawback is that the resulting model
is computationally less efficient than its nominal counterpart due to the added non-
linearity. This makes extensions to integer decision variables challenging from a
computational standpoint.

In a milestone work, Bertsimas and Sim [25] investigated novel ways to decrease
over-conservatism by tackling what they call the Price of Robustness using polyhe-
dral uncertainty sets, which they connect to probabilities of constraint guarantees.
Their approach offers full control on the level of conservatism for each constraint
through a parameter called the budget of uncertainty that is adjusted by the decision
maker. The interpretation of this budget of uncertainty is that it limits the number
of uncertain parameters that can deviate from their nominal value. In this approach,
the robust counterpart of a linear program remains linear, so that the robust model
retains the advantages of a linear optimization model in terms of computational eff-
iciency. Further, it can be readily generalized to discrete optimization, so that the
robust counterpart of a integer linear program remains an integer linear problem.

For a comprehensive book treatment and survey on robust optimization, the
reader is referred to Ben-Tal et al. [18] and Ben-Tal and Nemirovski [17], respec-
tively. Also, Gorissen et al. [56] provide a practical guide to robust optimization that
should be of significant interest to researchers attempting to immunize their prob-



5 The State of Robust Optimization 91

lems against parameter ambiguity. Gabrel et al. [50] present an overview of recent
advances in robust optimization between 2007 and 2012.

The present chapter focuses on studies indexed in Web of Science and published
between 2011 and 2015 included, belonging to the area of Operations Research and
Management Science, and having “robust” and “optimization” in their title. We nar-
rowed the list of papers to over one hundred we deemed most significant by taking
into account the research area, citation number, authors’ track record in robust opti-
mization and the journal’s impact factor. This was necessarily a subjective process
and some recent papers not listed here will certainly go on to have substantial im-
pact on the field; however, we hope that this survey provides a good starting point
into robust optimization today. Related book treatments and milestone works are
also presented for reference. Papers are grouped by theme; within each theme they
are listed in alphabetical order.

5.2 Theory of Robust Optimization

Since robust static (single-objective) linear programming is now well understood,
current research efforts have mostly focused on (1) developing a stronger connection
with stochastic optimization, (2) incorporating robust optimization to ambiguous
probability distributions of random parameters rather than to ambiguous parameters
of unknown but fixed value, (3) studying robust static nonlinear optimization, (4)
considering multiple objective criteria, leading to the theory of robust Pareto effi-
ciency, and (5) investigating robust dynamic decision-making. Note that Sniedovich
[106] cautions against attempts to tackle severe uncertainty, characterized by a poor
point estimate, a likelihood-free quantification of uncertainty and a large uncertainty
space, using local robustness models based on the “radius of stability” concept.

5.2.1 Connection with Stochastic Optimization

In Stochastic Optimization, the uncertain data is assumed to be random. In the sim-
plest case, these random parameters have a known probability distribution, while
in more advanced settings, this distribution is only partially known. While robust
optimization first emerged as a deterministic (worst-case) alternative to stochastic
programming, each arising from different models of uncertainty, in recent years in-
creasing numbers of researchers have strived to connect the robust optimization and
stochastic optimization paradigms so that the models can be best tailored to the
available information.
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5.2.1.1 Foundational Work

The most important developments have led to a greater connection between the
robust and stochastic optimization descriptions of uncertainty. They have been:
(1) an argument that uncertainty sets, approached through robust optimization,
should serve as the primitive for stochastic systems and (2) the design of safe
tractable approximations of chance constraints to obtain guarantees of constraint vi-
olation and their Robust Counterpart representations and (3) a connection between
linear problems with uncertain probabilities and uncertainty sets constructed as con-
fidence sets using phi-divergences, with a size of the uncertainty set being controlled
by the confidence level of the confidence set. Finally, a fourth work tackles robust
nonlinear inequalities and thus develops tractable robust counterparts for new, pre-
viously unstudied classes of optimization problems.

Bandi and Bertsimas [8] investigate tractable stochastic analysis in high dimen-
sions via robust optimization. They propose a new approach for stochastic systems
based on robust optimization, to address the issue of computational tractability that
arises when stochasticity is modeled using probabilities in areas such as queueing
networks or multi-bidder auctions. Their framework relies on replacing the Kol-
mogorov axioms and the concept of random variables as primitives of probability
theory, with uncertainty sets derived from some of the implications of probability
theory like the central limit theorem. Performance analysis of stochastic systems in
this new paradigm leads to linear, semidefinite or mixed integer optimization prob-
lems for which efficient algorithms capable of solving problems in high dimensions
are available. Further, Bandi and Bertsimas [9] develop an optimal design frame-
work for multi-item auctions based on robust optimization where they adopt an
uncertainty set based model instead of using probability distributions.

Nemirovski [93] provides safe tractable approximations of chance constraints
when data uncertainty is incorporated through randomly perturbed constraints. He
reviews several simulation-based and simulation-free computationally tractable ap-
proximations of chance constrained convex programs, primarily, those found in
chance constrained linear, conic quadratic and semidefinite programming, when the
data is affinely parametrized by a random vector of partially known distribution. The
models considered include Conditional Value-at-Risk and Bernstein approximations
of the chance constraint. Robust counterpart representations of the approximations
are also described.

Ben-Tal et al. [21] investigate robust linear optimization problems where the un-
certain parameters with uncertainty regions defined by phi-divergences, which arise
in settings involving moments of random variables and expected utility, and applica-
tions to asset pricing and the multi-item newsvendor problem. Phi-divergences refer
to families of functions that measure “distance” between two vectors. The authors
first derive confidence sets that are only asymptotically valid and then describe ways
to improve the approximation by considering a modified statistic that uses correc-
tion parameters. They finally describe the robust counterpart with phi-divergence
uncertainty and study its tractability. This is a special case of distributional robust
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optimization, which we review in more details below. (The reader is also referred to
Bayraksan and Love [11] for a tutorial on data-driven stochastic programming using
phi-divergences.)

Finally, Ben-Tal et al. [22] present a model to formulate the robust counterpart of
a nonlinear uncertain inequality that is concave in the uncertain parameters, using
convex analysis and in particular Fenchel duality. Hence, robust models can be for-
mulated for new classes of optimization models, for which tractable reformulations
were not previously available. With respect to tractability, the authors further show
that many robust counterparts can be written as linear, quadratic or conic quadratic
constraints, or admit a self-concordant barrier function, which implies that the opti-
mization problem can be solved in polynomial time.

5.2.1.2 Distributionally Robust Optimization and Chance Constraints

Ben-Tal et al. [19] consider chance constrained uncertain classification and inves-
tigate the problem of constructing robust classifiers when the training is plagued
with uncertainty. They also discuss methodologies for classifying uncertain test data
points and error measures for evaluating classifiers robust to uncertain data.

Dupacova and Kopa [42] consider stochastic programs whose set of feasible so-
lutions depends on probability distributions that are not fully known, and adopt a
contamination technique to study the robustness of results to perturbations on the
probabilities. They suggest a robust efficiency test with respect to the second order
stochastic dominance criterion.

With motivation drawn from data-driven decision making and sampling prob-
lems, Xu et al. [115] study the probabilistic interpretations of robust optimization
by showing the connection between robust optimization and distributionally robust
stochastic programming, and utilize this result to construct robust optimization for-
mulations for sampled problems.

Zymler et al. [121] develop tractable approximations based on semidefinite
programming for distributionally robust chance constraints where only the first-
and second-order moments and support of the uncertain parameters are given.
They investigate Worst-Case Conditional Value-at-Risk (CVaR) approximations and
show that the approximation is tight for robust individual chance constraints with
quadratic or concave constraint functions. For joint chance constraints, they show
that the Worst-Case CVaR is provably tighter than two benchmark approximations.
Further, a distributionally robust joint chance constrained optimization model for
the case of the dynamic network design problem under demand uncertainty is devel-
oped by Sun et al. [108]. They propose an approach to approximate a joint chance-
constrained cell transmission model based system optimal dynamic network design
problem with only partial distributional information of uncertain demand.

Wiesemann et al. [113] consider Markov Decision Processes (MDP) with uncer-
tain parameters when an observation history of the MDP is available. They derive a
confidence region that contains the unknown parameters with a prespecified prob-
ability and obtain a policy that attains the best worst-case performance over this
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confidence region, using the solution of conic programming problems of moderate
size. Further, Wiesemann et al. [114] suggest a unifying framework for modeling
and solving distributionally robust convex optimization problems based on standard-
ized ambiguity sets that contain all distributions with prescribed conic representable
confidence sets and encompass many ambiguity sets from the literature as special
cases. They also model information about statistical indicators that have not yet been
considered in the robust optimization literature, such as higher-order moments and
the marginal median. The authors determine sharp conditions under which distribu-
tionally robust optimization problems based on their approach are computationally
tractable, and tractable conservative approximations otherwise.

Alvarez-Miranda et al. [4] presents a note on the Bertsimas and Sim algorithm for
robust combinatorial optimization problems with interval uncertainty, where they
describe a method to solve fewer deterministic problems to obtain a robust solution.
Long and Qi [85] investigate discrete optimization under the distributionally robust
framework where they optimize the Entropic Value-at-Risk, a coherent risk measure
that serves as a convex approximation of the chance constraint. They propose an ap-
proximation algorithm to solve the problem as a sequence of nominal problems and
show in computational experiments that the number of nominal problems required
is small for various distributional uncertainty sets.

Duzgun and Thiele [43] study 0-1 linear programming with uncertain objective
coefficients using a safe tractable approximation of chance constraints, when the
decision maker only knows the first two moments and the support of the random
variables. They obtain a series of 0-1 linear programming problems parametrized
by only one additional variable and show in numerical experiments that their model
solves significantly faster than the benchmark robust model.

Zhen [119] investigates a variant of the task assignment problem under uncer-
tainty based on stochastic programming and robust optimization. He develops both
a stochastic programming model that tackles the issue of arbitrary probability dis-
tributions for the tasks’ random workload requirements, and a robust optimization
model which can cope with limited information about probability distributions.

Further, Duzgun and Thiele [44] bridge descriptions of uncertainty based on
stochastic and robust optimization by considering multiple ranges for each uncer-
tain parameter and setting the maximum number of parameters that can fall within
each range, in a model reminiscent of histograms. The corresponding optimization
problem can be reformulated in a tractable manner using the total unimodularity
property of the uncertainty set and allows for a finer description of uncertainty while
preserving tractability.

5.2.2 Nonlinear Optimization

We have already mentioned the work by Ben-Tal et al. [22], which presents a model
to formulate the robust counterpart of a nonlinear uncertain inequality concave in
the uncertain parameters. In this section, we list additional work pertaining to robust
nonlinear optimization.
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A specific case of nonlinear problems that are linear in the decision variables
but convex in the uncertainty when the worst-case objective is to be maximized
is investigated in Kawas and Thiele [76] in the context of portfolio management
with uncertain continuously compounded rates of return. In that setting, exact and
tractable robust counterparts can be derived. The authors extend their approach to
short sales in [77], where they examine a class of non-convex robust optimization
problems where the decision variables can be negative, leading to a non-convex
problem in the uncertainty.

Ben-Tal and den Hertog [13] immunize conic quadratic optimization problems
against ellipsoidal implementation errors. They prove that the robust counterpart of
a convex quadratic constraint with ellipsoidal implementation error is equivalent to
a system of conic quadratic constraints. They then extend the result to the case in
which the uncertainty set is the intersection of two convex quadratic inequalities and
show that the robust counterpart for this case is also equivalent to a system of conic
quadratic constraints.

Doan et al. [41] build upon the fact that current successful methods for solv-
ing semidefinite programs are based on primal-dual interior-point methods and
they approach robustness from an algorithmic perspective in order to address ill-
conditioning and instability issues. Houska and Diehl [63] present a convex bilevel
programming algorithm for the nonlinear min-max problems in semi-infinite pro-
gramming. A conservative approximation strategy and optimality conditions are
provided along with an analysis about strong global and locally quadratic conver-
gence properties.

Poss [98] develops a robust combinatorial optimization model where the uncer-
tain parameters belong to the image of multifunctions of the problem variables. A
mixed-integer programming reformulation for the problem, based on the dualization
technique is proposed since the feasibility set of the problem is non-convex. Jeyaku-
mar and Li [69] focus on the trust-region problem, which minimizes a nonconvex
quadratic function over a ball, and utilize the properties of the problems such as
semi-definite linear programming relaxation (SDP-relaxation) and strong duality.

Finally, Suzuki et al. [109] investigate surrogate duality for robust nonlinear op-
timization and they prove surrogate duality theorems for robust quasiconvex opti-
mization problems and surrogate min-max duality theorems for robust convex opti-
mization problems. They provide necessary and sufficient constraint qualifications
for surrogate duality and surrogate min-max duality, and give some examples at
which such duality results are used effectively.

5.2.3 Multiple Objectives and Pareto Optimization

A large branch of Robust Optimization focuses on single-objective problems; how-
ever, multiple objectives are sometimes considered as well. Hu and Mehrotra [64]
studies a family of models for multiexpert multicriteria decision making. Those
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models utilize the concept of weight robustness in order to identify a (robust) Pareto
decision that minimizes the worst-case weighted sum of objectives over a given
weight region. The model is then extended to include ambiguity or randomness
in the weight region as well as the objective functions. A multi-objective, multi-
mode, multi-commodity, and multi-period stochastic robust optimization model is
considered by Najafi et al. [92] where the purpose is to achieve the best possible
emergency relief for earthquake response. Their method use hierarchical objective
functions.

Fliege and Werner [49] consider general convex parametric multiobjective robust
optimization problems under data uncertainty. They also present a characterization
of the location of the robust Pareto frontier with respect to its nominal counterpart
and illustrate their approach on a mean-variance problem. Robust optimization for
interactive multiobjective programming with imprecise information is investigated
by Hassanzadeh et al. [61] where there are clashing objectives and uncertainty oc-
curs in both objective functions and constraints. They use an iterative procedure to
capture the tradeoffs between the objectives.

Fang et al. [47] develop a multiobjective robust optimization model in order to
enhance the performance and the robustness simultaneously. The multiobjective par-
ticle swarm optimization (MOPSO) algorithm is utilized for producing a set of non-
dominated solutions over the entire Pareto space for a non-convex problem, which
provides designers with more insightful information. Koebis [79] studied the re-
lation between Scalar Robust Optimization and Unconstrained Multicriteria Opti-
mization with a finite uncertainty set and showed that a unique solution of a robust
optimization problem is Pareto optimal for the unconstrained optimization problem.

Iancu and Trichakis [66] incorporate Pareto efficiency to robust linear optimiza-
tion problems and they present a characterization of Pareto robustly optimal so-
lutions. Specifically, they argue that the classical RO paradigm may not produce
solutions that possess the associated property of Pareto optimality, leading to poten-
tial inefficiencies and they propose practical methods that generate Pareto robustly
optimal solutions by solving optimization problems that are of the same complex-
ity as the underlying robust problems. Their numerical experiments are drawn not
only from portfolio optimization—the best-known application area for Pareto op-
timal solutions—but also inventory management and project management. Hu and
Mehrotra [65] consider robust decision making over a set of random targets or risk-
averse utilities. In their setting, the random target has a concave cumulative distri-
bution function or a risk-averse manager’s utility is concave. Finally, Tong and Wu
[111] investigate robust reward-risk ratio optimization models based on the positive
homogenous and concave/convex measures of reward and risk.

5.2.4 Multi-Stage Decision-Making

While the main focus of robust optimization was static decision making when it was
first investigated in the 1990s (following Soyster’s 1973 work), multi-stage robust
decision making has garnered substantial attention in recent years. In this setting,
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uncertainty is revealed in stages and the decision maker adjusts his strategy based
on the new information. The ability to take recourse action also allows the decision
maker to tackle over-conservatism issues that affect static robust optimization when
applied over multiple time periods. Delage and Iancu [40] provide an excellent tut-
orial on robust multi-stage decision-making.

5.2.4.1 Two Stages

Due to the difficulty inherent in multiple stages, many works have focused on two-
stage robust optimization. The most notable works in this category are Bertsimas et
al. [28], Hanasusanto et al. [60] and Ben-Tal et al. [23].

Bertsimas et al. [28] analyze the performance of static solutions for two-stage
adjustable robust linear optimization problems with uncertain constraint and ob-
jective coefficients. They show that for a fairly general class of uncertainty sets, a
static solution is optimal for two-stage adjustable robust linear optimization, which
is quite counter-intuitive since static policies are generally believed to be conser-
vative. Further, they develop a tight characterization of the adaptivity gap when no
static solution is optimal. Their results lead to new geometric intuition about the
performance of static robust solutions for adjustable robust problems, based on a
certain transformation of the uncertainty set which helps highlight properties of the
set when static robust policies do not perform well. Hence, the paper provides guid-
ance in selecting the uncertainty set such that the adjustable robust problem can be
well approximated by a static solution.

Hanasusanto et al. [60] extends the robust optimization methodology to problems
with integer recourse, by approximating two-stage robust binary programs by their
corresponding K-adaptability problems, in which the decision maker pre-commits in
the first stage to K second-stage policies and implements the best of these policies
once the uncertain parameters are realized. The authors study the quality of their
approximation and the computational complexity of the K-adaptability problem.
Further, they propose two mixed-integer linear programming reformulations that
can be solved with off-the-shelf software.

Ben-Tal et al. [23] develop a method for approximately solving a robust optimiza-
tion problem using tools from online convex optimization, where at every stage a
standard (nonrobust) optimization program is solved. They find an approximate ro-
bust solution using a number of calls to an oracle that solves the original (nonrobust)
problem that is inversely proportional to the square of the target accuracy. Their ap-
proach yields significant computational benefits when finding the exact solution of
the robust problem is a NP-hard problem, for instance in the case of robust support
vector machine with an ellipsoidal uncertainty set.

Additional work includes the following. Minoux [89] introduces a new subclass
of polynomially solvable two-stage robust optimization problems with uncertainty
on the right-hand side coefficients. Remli and Rekik [101] investigate the prob-
lem of combinatorial auctions in transportation services under uncertain shipment
volumes and develop a two-stage robust formulation where they use a constraint
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generation algorithm. Chan et al. [33] propose a computationally tractable and dy-
namic multi-stage decision methodology that can hedge against uncertainty by uti-
lizing information from the previous stage iteratively, with an application to IMRT
(intensity-modulated radiation therapy) treatment planning for lung cancer. Bo and
Zhao [118] solve two-stage robust optimization problems by developing a column-
and-constraint generation algorithm and compare their approach with the existing
Benders-style cutting plane methods.

5.2.4.2 Optimal and Approximate Policies

We have already mentioned Bertsimas et al. [28], where the authors investigate the
performance of static policies in two-stage robust linear optimization. Further, Bert-
simas et al. [27] analyze the effect of geometric properties of uncertainty sets, such
as symmetry, in the power of finite adaptability in multi-stage stochastic and adap-
tive optimization. They investigate finitely adaptable solutions, which generalize the
notion of static robust solutions in the sense that a small set of solutions is specified
for each stage and the solution policy implements the best solution from the set, de-
pending on the realization of the uncertain parameters in past stages. In particular,
they show that a class of finitely adaptable solutions is a good approximation for
both the multistage stochastic and the adaptive optimization problem.

Kuhn et al. [80] consider primal and dual linear decision rule policies in stochas-
tic and robust programming, and compute the loss of optimality due to this pol-
icy. They show that both approximate problems are equivalent to tractable linear
or semidefinite programs of moderate sizes. Shapiro [104] considers the adjustable
robust approach to multistage optimization, derives related dynamic programming
equations and connects the problem to risk-averse stochastic programming. He also
shows that, as in the risk-neutral case, a basestock policy is optimal.

Supermodularity and affine policies in a particular class of dynamic robust op-
timization problems are investigated by Iancu et al. [67]. They aim to provide a
connection between dynamic programming and decision rules, and solve tractable
convex optimization problems. Bertsimas and Goyal [24] consider adjustable robust
versions of convex optimization problems where the constraints and objectives are
uncertain and they show that a static robust solution yields a good approximation
for these problems under general assumptions.

5.3 Application Areas of Robust Optimization

5.3.1 Classical Logistics Problems

5.3.1.1 Newsvendor Problem

The newsvendor problem is the building block of modern inventory theory. While
robust newsvendor problems were first studied long before the time window for
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publication of interest in this review, they continue to be the focus of significant
research. Jiang et al. [71] consider robust newsvendor competition under asymmet-
ric information about future demand realizations. They devise an approach based on
absolute regret minimization and derive closed-form expressions for the robust opti-
mization Nash equilibrium solution for a game with an arbitrary number of players.
Qiu et al. [100] investigate the robust inventory decision-making problem faced by
risk-averse managers with incomplete demand information with ellipsoidal uncer-
tainty in a newsvendor setting. Three basic models are developed: expected profit
maximization, Conditional Value-at-Risk (or CVaR)-based profit maximization, and
a combination of these two.

Finally, Hanasusanto et al. [59] consider multi-item newsvendor problems from
a distributional robust optimization perspective when the demand distributions are
multimodal. The products considered are subject to fashion trends that are not fully
grasped at the time when orders are placed. Spatially separated clusters of probabil-
ity mass lack a complete description. The decision-maker minimizes the worst-case
risk of the order portfolio over all distributions compatible with the modality infor-
mation. The authors show the robust problem admits a conservative, tractable ap-
proximation using quadratic decision rules, which achieves a high level of accuracy
in numerical tests.

5.3.1.2 Combinatorial Optimization Problems

Remli and Rekik [101] study the robust winner determination problem for combi-
natorial auctions in transportation services when shipment volumes are uncertain
and propose a two-stage robust formulation solved using a constraint generation
algorithm.

Poss [98] extends the Bertsimas-and-Sim model for robust combinatorial opti-
mization using variable budgeted uncertainty, which is less conservative than (tradi-
tional) budget of uncertainty for vectors with few non-zero components. The author
uses a mixed-integer programming reformulation for the problem and compare his
approach with that of Bertsimas and Sim on the robust knapsack problem, where
variable budgeted uncertainty achieves a reduction of the price of robustness by an
average of 18 %.

Chassein and Goerigk [36] propose a new bound for the midpoint solution in
minmax regret optimization, which evaluates a solution against the respective opti-
mum objective value in each scenario and aims to find robust solutions that achieves
the lowest worst-case difference between the two. Heuristics with performance guar-
antees have potentially great value in this context because most polynomially solv-
able optimization problems have strongly NP-hard minmax regret counterparts. One
of these approximations is the midpoint solution, obtained when the decision maker
approximates the uncertain parameters by the average of their lower and upper
bound and solves that problem. They derive an instance-dependent performance
guarantee for the midpoint solution of at most 2 and apply their methodology to the
robust shortest path problem.
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5.3.1.3 Scheduling

Robust berth scheduling at marine container terminals where vessel arrival and han-
dling times are uncertain is studied by Golias et al. in [55]. They propose a bi-
objective optimization problem and a heuristic algorithm, and test the results using
simulation.

Varas et al. [112] focus on production scheduling for a sawmill where the uncer-
tainty arises from the supply of logs and the finished product orders. Using a two-
stage adaptive robust optimization approach, Lima et al. [84] investigate weekly
self-scheduling, forward contracting, and pool involvement for an electricity pro-
ducer operating a mixed power generation station.

Che et al. [37] study the cyclic hoist scheduling problem with processing time
window constraints. The uncertainty comes from the perturbations or variations of
certain degree in the hoist transportation times. The authors propose a method to
measure the robustness of a cyclic hoist schedule and develop a bi-objective mixed
integer linear programming model to optimize cycle time and robustness.

5.3.2 Facility Location

Facility location is concerned with the optimal placement of facilities to minimize
the design and transportation costs while considering factors such as customer sat-
isfaction, covering/serving a certain area, or avoiding placing hazardous materials
near housing. Baron et al. [10] applied robust optimization to a capacitated multi-
period fixed-charge network location problem in a network under uncertain demand
over multiple periods. Their goal is to determine the number of facilities, their lo-
cation and capacities, as well as the production amount and allocation of demand to
facilities.

Another network design problem has been studied by Li et al. [83], for the plan-
ning of network infrastructure such as roads, pipelines and telecommunication sys-
tems. Uncertainty originates from the demand, and maintenance related issues such
as operating costs, degradation rates. They propose an efficient and tractable ap-
proach for finding robust optimum solutions to linear and quadratic programming
problems with interval uncertainty using a worst case analysis.

Robust hub location problems are studied in Alumur et al. [2] where the uncer-
tainty arises due to the set-up costs for the hubs and the demands to be transported
between the nodes. The authors analyze the changes in the solutions driven by the
different sources of uncertainty when considered either in isolation or in combina-
tion.

Guelpinar et al. [58] consider a stochastic facility location problem in which
multiple capacitated facilities serve customers with a single product, given uncertain
customer demand and a constraint on the stock-out probability. Robust optimization
strategies for facility location appear to have better worst-case performance than
non-robust strategies.
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Gabrel et al. [51] investigate a robust version of the location transportation prob-
lem with an uncertain demand using a two-stage formulation. The resulting robust
formulation is a convex (nonlinear) program, and the authors apply a cutting plane
algorithm in order to solve the problem exactly. Finally, Ghezavati et al. [53] in-
vestigate the optimization of reliability for a hierarchical facility location problem
under disaster relief situations by a chance-constrained programming, with the aim
of rapidly bringing the appropriate emergency supplies to the affected villages.

5.3.3 Supply Chain Management

Supply chain problems deal with the management of the flow of goods and services
from the producer to the customer. It includes the movement and storage of raw ma-
terials, work-in-process inventory, and finished goods from point of origin to point
of consumption in a way that ensures good service level and high profit. There exists
uncertainty in many parts of a supply chain especially due to demand uncertainty.

A production planning problem in small-size furniture companies has been stud-
ied by Alem et al. [1]. They utilized robust optimization tools to derive robust
combined lot-sizing and cutting-stock models when production costs and product
demands are uncertainty. Their motivation to adopt robust optimization instead of
two-stage stochastic programming was the absence of an explicit probabilistic de-
scription of the input data and the incentive of not having to deal with a large number
of scenarios in robust optimization.

Aouam and Brahimi [6] considered an integrated production planning problem
and order acceptance decisions under demand uncertainty. Orders/customers are
classified into classes with respect to the marginal revenue, quantity they are willing
to buy and reliability assessment. Their model provides flexibility to decide on the
fraction of demand to be satisfied from each customer class and consider production-
related constraints as well as factors such as congestion on production lead times.
An order acceptance strategy allows the decision maker to maintain an appropriate
level of utilization.

Schoenlein et al. [103] investigate the measurement and optimization of the ro-
bust stability of multiclass queueing networks with an application to dynamic supply
chains. Stability of these networks implies that the total number of customers in the
network remains bounded over time. The authors rely on fluid network analysis to
quantify robustness using a single number, called the stability radius.

Qiu and Shang [99] study robust multi-period inventory decisions for risk-averse
managers with partial demand distribution information for products with a short life
cycle. The three inventory models we developed aim respectively to maximize ex-
pected profit, maximize conditional value-at-risk-based profit, and balance between
the two objectives where the corresponding robust counterparts are presented.
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Ashayeri et al. [7] consider a supply chain where a company faces bankruptcy
to fulfill its debt obligation with limited financial resources. The uncertainty arises
from demands and exchange rates. They formulate a MIP model with specific down-
sizing features, which maximizes the utilization of resources through a combined
operation of demand selection and production assets reallocation. A pulp produc-
tion planning and supply chain management has been studied in Carlsson et al.
[32]. They utilize a robust optimization approach to handle the demand uncertainty
and to establish a distribution plan, together with related inventory management.
In this setup, they observe that there is no need for explicit safety stock levels
and they achieve higher profit. Kawas et al. [78] study a game-theoretic setup of
a production planning problem under uncertainty in which a company is exposed
to the risk of failing authoritative inspections due to non-compliance with enforced
regulations.

Finally, Kang et al. [74] investigate distribution-dependent robust linear opti-
mization with applications to inventory control where every element of the con-
straint matrix is subject to uncertainty and is modeled as a random variable with a
bounded support.

5.3.4 Industry-Specific Applications

In this section, we reference papers on three industry-specific logistics-driven appli-
cations that have received substantial attention in the robust optimization literature.

In warehouse management, Ang et al. [5] propose a robust storage assignment
approach in unit-load warehouses facing variable supply and uncertain demand in a
multi-period setting. They assume a factor-based demand model and minimize the
worst-case expected total travel in the warehouse with distributional ambiguity of
demand.

In train timetabling operations, Cacchiani et al. [30] focus on Lagrangian heuris-
tics the application of train time-tabling. Galli [52] describes the models and algo-
rithms that arise from implementing recoverable robust optimization to train plat-
forming and rolling stock planning, where the concept of recoverable robustness
has been defined in Liebchen et al. A survey of nominal and robust train timetabling
problems in its nominal and robust versions is presented in Cacchiani and Toth [29].

In the sawmill planning problem, in addition to previously-mentioned Varas et al.
[112], which focuses on production scheduling for a sawmill where the uncertainty
arises from the supply of logs and the finished product orders, Alvarez and Vera [3]
consider a related formulation where variability affects the yield coefficients related
to the cutting patterns used. Finally, Ide et al. [68] investigate an application of
deterministic and robust optimization in the wood cutting industry with the goal of
attaining resource efficiency.
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5.3.5 Finance

5.3.5.1 General Portfolio Problems

Robust portfolio optimization is studied by Ye et al. [117] in the context of a
Markowitz mean-variance model with uncertainty on mean and covariance matrix.
They formulate the robust problem as a second-order cone programming problem
and show in computational experiments that the portfolios generated by the robust
model are not as sensitive to input errors as the ones given by the classical model.

Nguyen and Lo [94] develop robust portfolio optimization models based on in-
vestors’ rankings of the assets instead of estimates of their parameters such as ex-
pected returns, when the ranking is subject to uncertainty. They solve a robust rank-
ing problem using a constraint generation scheme. Marzban et al. [87] study a multi-
period robust optimization model including stocks and American style options. The
decision maker selects the level of robustness through the length and the type of the
uncertainty set.

5.3.5.2 Risk Measures

Chen et al. [38] considers robust portfolio problems where expected utility is max-
imized under ambiguous distributions of the investment return, while Moon and
Yao [90] investigate robust portfolio management when absolute deviation from the
mean is used as a risk measure, leading to a linear programming problem. The au-
thors test the robust strategies on real market data and discuss performance of the
robust optimization model based on financial elasticity, standard deviation, and mar-
ket condition such as growth, steady state, and decline in trend.

Fertis et al. [48] propose the concept of robust risk measure, defined as the worst
possible of predefined risks when each among a set of given probability measures
is likely to occur. In particular, they introduce a robust version of CVaR and of
entropy-based risk measures, and show how to compute and optimize the Robust
CVaR using convex duality methods.

Kakouris and Rustem [73] consider robust portfolio optimization with copulas,
where copulas are used to describe the dependence between random variables. They
provide the copula formulation of the CVaR of a portfolio and extend their approach
to Worst Case CVaR (WCVaR) though the use of rival copulas exploiting a variety
of dependence structures.

Kapsos et al. [75] investigate the worst-case robust Omega ratio, where the
Omega ratio is a performance measure addressing the shortcomings of the Sharpe
ratio and is defined as the probability weighted ratio of gains versus losses for some
threshold return target. The authors investigate the problem arising from the proba-
bility distribution of the asset returns being only partially known and show that the
problem remains tractable for three types of uncertainty.

In the most recent body of work, Lagos et al. [81] analyzes the characterizations
of the robust uncertainty sets related to coherent and distortion risk measures and
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aim to mitigate estimation errors of the Conditional Value-at-Risk. Maillet et al.
[86] investigate global minimum variance portfolio optimization under some model
risk based on a robust regression-based approach. The robust portfolio corresponds
to the global minimum variance portfolio in the worst-case scenario and it pro-
vides protection against errors in the reference sample covariance matrix. Finally,
Bertsimas and Takeda [26] study optimization over coherent risk measures and non-
convexities where the relation between coherent risk measures and uncertainty sets
of robust optimization is taken into consideration.

5.3.6 Machine Learning and Statistics

The incorporation of Machine Learning and Robust Optimization is a growing field.
The reader is referred to Caramanis et al. [31] for an overview of robust optimization
in machine learning. Ben-Tal et al. [19] focus on the problem of constructing robust
classifiers when the training is subject to uncertainty. The problem is formulated as
a chance-constrained program that is relaxed utilizing Bernstein’s approximation to
yield a second-order cone problem whose solution is guaranteed to be feasible for
the original problem. Xu et al. [116] study robust principal component analysis in
the presence of contaminated data.

Ozmen et al. [96] utilize Conic Multivariate Adaptive Regression Splines
(CMARS) for generalizing the model identification problem including the exis-
tence of uncertainty with the aim to increase the trustworthiness of the solution
in case of data perturbation. Beliakov and Kelarev [12] study global non-smooth
optimization in robust multivariate regression where the objective is non-smooth,
non-convex and expensive to calculate. They analyze the numerical performance of
several derivative-free optimization algorithms with the aim of computing robust
multivariate estimators.

Support vector machine (SVM) classifiers with uncertain knowledge sets via
robust optimization are studied by Jeyakumar et al. [70]. They show how data
uncertainty in knowledge sets can be handled in SVM classification and provide
knowledge-based SVM classifiers with uncertain knowledge sets using convex
quadratic optimization duality.

5.3.7 Energy Systems

Another area that has seen significant growth recently is robust optimization in en-
ergy. An application of robust optimization to renewable energy, specifically wind
energy, is investigated in Jiang et al. [72], with the objective of providing a robust
unit commitment schedule for the thermal generators in the day-ahead market that
minimizes the total cost under wind output uncertainty.
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Classen et al. [39] study a robust optimization model and cutting planes for
the planning of energy-efficient wireless networks under demand uncertainty where
they apply three different cutting plane methods. Goryashko and Nemirovski [57]
study robust energy cost optimization of a water distribution system with uncertain
demand with the aim to optimize daily operation of pumping stations based on the
concept of Affinely Adjustable Robust Optimization.

Lima [84] works on weekly self-scheduling, forward contracting, and pool in-
volvement for an electricity producer under three different scenarios, corresponding
to electricity price forecasts. Sauma et al. [102] adopt a robust optimization ap-
proach to assess the effect of delays in the connection-to-the-grid time of new gen-
eration power plants over transmission expansion planning where the uncertainty
arises from construction times of new power plants. Finally, Zugno and Conejo
[120] work on the energy and reserve dispatch in electricity markets where they
cast the problem as an adaptive robust optimization problem instead of a stochastic
programming problem due to computational efficiency issues.

5.3.8 Public Good

The public good applications aim to improve the health, safety and well-being of the
general public. Two main fields are humanitarian relief and health care applications.
Examples include determining treatment plans in a hospital, patient transportation
among hospitals, patient-doctor scheduling and constructing emergency evacuation
routes during a disaster (fire, tsunami, earthquake).

5.3.8.1 Humanitarian Logistics/Emergency Logistics Planning

After a disaster occurs, humanitarian and state organizations gather resources and
staff to serve a community’s needs in an efficient way. Robust optimization has great
relevance in humanitarian relief supply chains since we face data uncertainty during
disasters.

Ben-Tal et al. [20] investigate a robust logistics plan generation methodology that
can hedge against demand uncertainty. They study the dynamic emergency response
assignment and evacuation traffic flow problems. They apply an affinely adjustable
robust counterpart approach in order to provide better emergency logistics plans. A
multi-objective robust optimization model for logistics planning during earthquake
is proposed in Najafi et al. [92]. This paper propose a multi-objective, multi-mode,
multi-commodity, and multi-period stochastic model to manage the scarce sources
efficiently and they ensure that the distribution plan performs well under the various
situations due to robustness.

Tajik et al. [110] adopt a robust optimization approach for the pollution routing
problem with pickup and delivery under uncertain data where the aim is to reduce
fuel consumption and decrease green house gases emission due to their harmful
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effects on environment and human health. Their study addresses a new time window
pickup-delivery pollution routing problem (TWPDPRP) to deal with uncertain input
data.

The most recent developments in robust humanitarian logistics are the following.
Lassiter et al. [82] consider the flexible allocation of the workforce after a disaster
in order take into account changing (uncertain) needs and volunteer preferences.
They use robust optimization to handle the uncertainty in task demands and derive
Pareto optimality and allocation decisions for any level of conservativeness. Gheza-
vati et al. [53] investigate a hierarchical facility location problem under disaster
relief situations where robust optimization and chance-constrained programming
are applied. Shishebori and Babadi [105] design a robust and reliable medical ser-
vices network under uncertain environment and system disruptions. Finally, Paul
and Wang [97] study the United States Department of Agriculture food aid bid allo-
cations, which aims at providing food aid annually in response to global emergen-
cies and famine.

5.3.8.2 Health Care Applications

Chan et al. [33] consider an adaptive robust optimization approach to IMRT (intensity-
modulated radiation therapy) treatment planning for lung cancer. They propose a
computationally tractable and dynamic multi-stage decision methodology that can
hedge against uncertainty by utilizing the information from the previous stage iter-
atively. Nha et al. [95] develops a new robust design optimization procedure based
on a lexicographical dynamic goal programming approach for implementing time-
series based multi-responses for drug formulations in the pharmaceutical industry.

Holte and Mannino [62] study the problem of allocating scarce resources such as
operating rooms or medical staff to medical staff when the exact number of patients
for each specialty is uncertain and when the allocation is defined over a short period
of time such as a week and subsequently repeated over the time horizon. They adopt
an adjustable optimization approach and develop a row and column generation al-
gorithm to solve it efficiently.

Chan et al. [34] consider a robust-CVaR optimization approach with application
to breast cancer therapy where the loss distribution is dependent on the state of an
underlying system and the fraction of time spent in each state is uncertain. Finally,
Meng et al. [88] investigate a robust optimization model for managing elective adm-
ission in a public hospital, given the priority of emergency patients over elective
ones. They propose an optimized budget of variation approach that maximizes the
level of uncertainty the admission system can withstand without violating the exp-
ected bed shortfall constraint and solve the robust optimization model by deriving a
second order conic programming counterpart of the model.
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5.4 Conclusions and Guidelines for Implementation

We have provided an overview of recent developments in robust optimization over
the past 5 years. As robust optimization is now about 20 years old, it has become a
well-established tool to address decision-making under uncertainty but also remains
a thriving research area. We remind the reader of the practical guide to implement-
ing robust optimization provided in Gorissen et al. [56]. The researcher interested in
implementing robust optimization faces several modeling choices, which will im-
pact the structure of the robust problem, its tractability and the insights the decision
maker can gain into the optimal solution.

First, should the uncertainty be on the problem parameters themselves (leading to
the classical robust optimization paradigm) or their underlying probabilistic distri-
butions (yielding distributionally robust optimization or DRO)? DRO is particularly
suitable if the stochastic programming version of the problem is tractable and the
decision maker feels confident that he knows specific attributes of the family of
probability distributions, such as their first two moments. If the SP version of the
problem suffers from tractability issues, then adding robustness to that formulation
will make the problem at least as computationally demanding; hence, it will then be
more promising to apply robust optimization to the ambiguous parameters.

Second, what is the type of uncertainty set most suitable for the problem at hand?
When the uncertainty is on the ambiguous parameters, the decision maker can then
either use polyhedral uncertainty sets, which do not change the complexity of the
mathematical programming problems considered but lead to additional constraints
and variables in the tractable reformulation, or ellipsoidal uncertainty sets, which do
not require any new variable or constraint but introduce non-linearities. When some
decision variables are integer, polyhedral uncertainty sets thus seem particularly
suitable. When the uncertainty is on the probability distributions, the uncertainty set
may for instance incorporate knowledge of support, mean, covariance, directional
deviations in the manner of Goh and Sim [54].

Third, is it possible to take corrective action after part of the uncertainty is re-
vealed? If yes, adaptive or adjustable robust optimization will be advisable to ad-
dress potential over-conservatism issues and lead to decision rules that are easy to
implement in practice. The choice of those decision rules and the fine-tuning of their
parameters have implications on computational tractability, closeness to optimality
and insightfulness of the optimal solution.

In today’s fast-changing environment, robust optimization presents an appealing
framework that is both intuitive and lends itself to computationally tractable refor-
mulations that either are exact or approximations documented in numerical experi-
ments to perform well against benchmarks. RO is hence expected to keep increasing
in relevance and importance in the arsenal of decision making tools of the operations
research professional. In the future, researchers are likely to continue investigating
improved approaches to multi-stage optimization, and to further connect RO with
SP in order to provide an integrated approach to decision-making under uncertainty.
Cutting-edge areas of interest include, but are not limited to, complex problems
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such as adversarial risk analysis, policy design, performance evaluation, optimiza-
tion with multiple criteria or objectives, alternative models of uncertainty such as
fuzzy optimization, new insights into sensitivity analysis and application-specific
results on topics that remain of prime relevance today such as job-shop scheduling
and portfolio management.
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Chapter 6
Robust Discrete Optimization Under Discrete
and Interval Uncertainty: A Survey

Adam Kasperski and Paweł Zieliński

Abstract In this chapter a review of recent results on robust discrete optimization
is presented. The most popular discrete and interval uncertainty representations are
discussed. Various robust concepts are presented, namely the traditional minmax
(regret) approach with some of its recent extensions, and several two-stage concepts.
A special attention is paid to the computational properties of the robust problems
considered.

6.1 Introduction

In this chapter we will be concerned with a class of discrete optimization prob-
lems defined as follows. We are given a finite set of elements E = {e1, . . . ,en}
and a set of feasible solutions Φ ⊆ 2E . Each element ei ∈ E has a nonnegative
cost ci and we seek a feasible solution X ∈ Φ which minimizes the total cost
f (X) =∑ei∈X ci. This traditional deterministic discrete optimization problem will be
denoted by P . The above formulation encompasses, for instance, an important class
of network problems. Namely, E can be identified with the set of arcs of a network
G = (V,E) and Φ contains some objects in G such as s− t paths, spanning trees,
s− t cuts, perfect matchings, or Hamiltonian cycles. We thus get the well known and
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basic problems such as SHORTEST PATH, MINIMUM SPANNING TREE, MINIMUM

S-T CUT, MINIMUM ASSIGNMENT, or TRAVELING SALESPERSON, respectively.
A comprehensive description of the class of deterministic network problems can be
found, for example, in books [1, 78].

In most cases, P can be alternatively formulated as a 0-1 programming problem.
Indeed, a binary variable xi ∈ {0,1} is associated with element ei ∈ E and so P has
the following formulation:

min ∑n
i=1 cixi

s.t. (x1, . . . ,xn) ∈ ch(Φ),

where ch(Φ) is the set of characteristic vectors of Φ , described in a compact form
by a system of constraints involving x1, . . . ,xn. For example, when we have one con-
straint of the form ∑n

i=1 wixi ≥ p, we obtain the KNAPSACK problem. If, additionally,
wi = 1 for each i ∈ [n] and p is an integer in [n] ([n] denotes the set {1, . . . ,n}), then
we get the SELECTION problem. An optimal solution to this problem can be com-
puted in O(n) time by choosing p elements out of E of the smallest costs. In this
chapter, we will also discuss the following REPRESENTATIVES SELECTION prob-
lem (it is also called WEIGHTED HITTING DISJOINT SET, see, e.g., [17]). Let us
partition the set [n] into u disjoint subsets T1, . . . ,Tu. Then ch(Φ) is described by a
system of constraints of the form ∑i∈Tj

xi = 1 for each j ∈ [u]. Hence, each feasible
solution is composed of exactly one element e j from each Tj. An important char-
acteristic of this problem is the value of rmax = max j∈[u] |Tj|. An optimal solution
to this problem is composed of elements of the smallest costs from each Tj. Both
SELECTION and REPRESENTATIVES SELECTION problems become nontrivial under
uncertainty. We will discuss them later in detail as they allow us to obtain strong neg-
ative complexity results for many robust versions of discrete optimization problems.

In many practical applications the element costs are often uncertain, which means
that their precise values are not known before computing a solution. In this case a
scenario set U , containing all possible realizations of the element costs, is a part
of input. Each particular cost realization (cS

1, . . . ,c
S
n) ∈U is called a scenario. Then

f (X ,S) = ∑ei∈X cS
i is the cost of solution X under scenario S. In this chapter we

will focus on two popular methods of defining set U —discrete and interval un-
certainty representations. For the discrete uncertainty representation [61], scenario
set, denoted by UD, contains K explicitly listed scenarios. This uncertainty repre-
sentation is appropriate when each scenario corresponds to an event which globally
influences the element costs. For example, an uncertain weather forecast can glob-
ally change a system environment, and these uncertain weather conditions can be
modeled by discrete scenarios. For the interval uncertainty representation [15], sce-
nario set, denoted by U �

I is defined as follows. We assume that the cost of element
ei can take any value within the interval [ci,ci + di], where ci is a nominal cost and
di is the maximum deviation of the value of the cost from its nominal value. Then
U �

I is a subset of the Cartesian product of these intervals, under the additional as-
sumption that in each scenario in U �

I , the costs of at most � elements can be greater
than their nominal values. The value of � ∈ [0,n] is fixed and allows us to control
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the degree of uncertainty. When �= 0, then we get a deterministic problem with one
scenario. On the other hand, when � = n, then we get the traditional interval uncer-
tainty representation [61], in which scenario set is equal to the Cartesian product of
all the uncertainty intervals. We will denote this particular special case of scenario
set by UI = U n

I . The scenario set UI models a local uncertainty, i.e. we assume
that the cost of each element may vary independently on the costs of the remaining
elements. For instance, a traveling time of some link is often uncertain and can be
modeled by a closed interval which provides us a bound on the minimum and the
maximum possible value of the traveling time. It is often not possible to measure
some costs precisely and the measurement error can also be expressed as a closed
interval.

In mathematical programming problems some other types of scenario sets, in
particular the ellipsoidal uncertainty or the column-wise uncertainty set, are also
used. In general U can be any set, typically assumed to be convex [14]. In this
chapter we will not be concerned with such more general scenario sets. Some dis-
cussion on them can be found in the recent survey [38]. In robust optimization, also
the set of feasible solutions can be uncertain and may depend on a scenario (see,
e.g. [65]). In the class of problems discussed in this chapter the set of feasible solu-
tions Φ is deterministic, i.e. it remains the same for each scenario in U . Under this
assumption, the discrete and interval uncertainty representations are the easiest and,
in many cases, possess sufficient expressive power.

If no additional information for U (such as a probability distribution) is pro-
vided, then we face a decision problem under uncertainty. In order to choose a
solution we can use some well known criteria used in decision theory under uncer-
tainty (see e.g. [63]). Among them there are the minmax and minmax regret criteria,
which assume that the decision maker is risk averse and seeks a solution minimizing
the cost or opportunity loss in a worst case, i.e under a worst scenario which may
occur. By using the minmax (regret) criterion we obtain the robust minmax (regret)
optimization problem. This traditional robust approach to discrete optimization has
some well known drawbacks, which we will discuss in more detail in Sect. 6.2. By
applying the minmax (regret) criterion we may sometimes get unreasonable solu-
tions (we will show some examples in Sect. 6.2). Furthermore, it is not true that
decision makers are always extremely risk averse. Hence, there is a need to soften
the very conservative minmax (regret) criterion. Also, in many practical applications
decision makers have some additional information provided with U . For example,
a probability distribution in U or its estimation may be available. This information
should be taken into account while computing a solution. In Sect. 6.3 we will present
some recent extensions of the robust approach which take into account both an att-
itude of decision makers towards a risk and an information about the probability
distribution in U .

The minmax approach can be generalized by considering the robust optimization
problem with incremental recourse [72]. This problem can be seen as a zero-sum
game against the nature with the following rules. The decision maker chooses first
a solution X whose cost f (X) is precisely known. Then nature picks a scenario
S from U and the decision maker, chooses the next solution Y after observing S.
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The solution Y has the cost f (Y,S) and must be of some predefined distance from X .
The decision maker wants to minimize the total cost f (X)+ f (Y,S) while the nature
aims to maximize this total cost, i.e. it always picks the worst scenario for solu-
tion X . It is easily seen that the robust optimization problem with incremental re-
course contains the minmax problem as a special case. Indeed, by assuming that the
initial cost of X is always 0 and Y must be the same as X (no modification of X
is allowed) we arrive to the minmax problem. The robust optimization with incre-
mental recourse is similar to robust recoverable optimization [17, 18, 62], because a
limited recovery action is allowed after observing which scenario has occurred. We
will study the robust optimization problems with incremental recourse in Sect. 6.4.

The traditional min-max (regret) approach is a one-stage decision problem, i.e. a
complete solution must be computed before a true scenario reveals. However, many
practical problems have a two-stage nature. Namely, a partial solution is formed in
the first stage, when the costs are precisely known and then it is completed optimally
when a true cost scenario from U occurs. We seek a solution whose maximum
total cost in both stages is minimum. We will discuss the class of robust two-stage
problems in Sect. 6.5.

The aim of this chapter is to present and compare various concepts used in robust
discrete optimization under the discrete and interval uncertainty representations.
A survey of the results in the area of robust minmax (regret) optimization up to
2009 can be found in [5, 40, 61]. In this chapter we present new results and con-
cepts which have recently appeared in the literature. We will pay a special attention
to the computational properties of the problems under study (a recent survey from
the algorithmic perspective can be found in [38]). In Sect. 6.2 we present the tradi-
tional minmax (regret) approach. We also show, in Sect. 6.3, some of its extensions
which allow decision makers to model their attitude towards risk and exploit sce-
nario probabilities. In Sect. 6.4 we examine the robust optimization problems with
incremental recourse. Finally, in Sect. 6.5 we describe the class of robust two-stage
problems.

The class of problems considered in this chapter is rather broad. However, it does
not cover an important class of sequencing problems in which a feasible solution is
represented by a permutation of the elements (typically called jobs). A recent survey
of the results for the minmax (regret) sequencing problems can be found in [50].
Another class of problems, which is not discussed in detail, contains the ones with
the bottleneck cost function. The minmax (regret) versions of such problems were
investigated in [8], where it was shown that their complexity is nearly the same
as the complexity of their deterministic counterparts. An extension of the minmax
bottleneck problems has been discussed in [49]. We also do not mention about the
maximum relative regret criterion. Some properties of this criterion, in particular its
connections with the maximum regret, can be found in [10, 61].
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6.2 Robust Min-Max (Regret) Problems

In this section we discus the traditional robust approach to deal with discrete opti-
mization problems with uncertain costs. We describe the minmax and minmax regret
criteria, which are typically used in the robust optimization framework. We present
the known complexity results for basic problems and show some drawbacks of the
minmax (regret) approach.

6.2.1 Using the Minmax Criterion

This section is devoted to the study of the following minmax problem:

MIN-MAX P : min
X∈Φ

max
S∈U

f (X ,S).

We thus seek a solution minimizing the maximum cost over all scenarios. Minmax
is the most popular criterion used in robust optimization [14, 61]. The minmax prob-
lem can be alternatively stated as follows:

min t
s.t. ∑i∈[n] cS

i xi ≤ t ∀S ∈U
(x1, . . . ,xn) ∈ ch(Φ)
t ≥ 0

(6.1)

The minmax criterion can be extremely conservative and it will be used by pes-
simistic decision makers, or in situations in which it is very important to avoid
bad scenarios. Perhaps, the most serious drawback of the minmax approach is
that it may lead to solutions which are not Pareto optimal. Consider two sample
MIN-MAX SHORTEST PATH problems, shown in Fig. 6.1. All the three paths, dep-
icted in Fig. 6.1a, have the same maximum cost equal to 16. Hence, we can choose
the path {e2,e5} which is weakly dominated by the remaining two paths. When
the number of scenarios becomes large, then the so-called drowning effect may
occur [32], i.e. only one bad scenario is taken into account while choosing a solution
and the information associated with the remaining scenarios is ignored. A similar
situation occurs for the interval uncertainty representation and it is shown in the
sample problem in Fig. 6.1b. Path {e1} is almost always better than path {e2}, but
both can be chosen after applying the minmax criterion. Also, an optimal minmax
solution which is Pareto optimal, can be a questionable choice. Consider again the
sample problem presented in Fig. 6.1a, and change the cost of arc e2 under S3 to 7.
The path {e2,e5} is then an optimal minmax solution which is also Pareto optimal.
However, this path is only slightly better than {e1,e4} under S3 and much worse
under S1 and S2.

The examples given in Fig. 6.1 show that there is a need of modification of the
minmax criterion. If the decision maker is interested in minimizing the total cost,
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then a chosen solution should always be Pareto optimal. Furthermore, an attitude
of decision makers towards a risk should be taken into account, because not all
decision makers are extremely risk averse. In Sect. 6.3.1 we will suggest a criterion
which allows us to overcome both these drawbacks. In the next section, we will
discuss all the known complexity results for MIN-MAX P .

6.2.1.1 Discrete Uncertainty Representation

Consider the discrete uncertainty representation, i.e. when U = UD. The known
complexity results for some basic minmax problems are shown in Table 6.1.

Table 6.1: Complexity results for various MIN-MAX P problems with scenario set
UD

MIN-MAX P Constant K Unbounded K
SHORTEST PATH NP-hard for K = 2 [89], Strongly NP-hard [89],

FPTAS [3] not appr. within O(log1−ε K)
for any ε > 0 [45],
appr. within K [5]

MINIMUM SPANNING TREE NP-hard for K = 2 [61, 88], Strongly NP-hard [61, 88],
FPTAS [3] not appr. within O(log1−ε K)

for any ε > 0 [48],
appr. within O(log2 n)
with high probability [48]

MINIMUM S-T CUT Strongly NP-hard Strongly NP-hard [4],
for K = 2 [4] not appr. within O(log1−ε K)

for any ε > 0 [45],
appr. within K [5]

MINIMUM ASSIGNMENT Strongly NP-hard Strongly NP-hard [2, 84, 90],
for K = 2 [84, 90] not appr. within O(log1−ε K)

for any ε > 0 [45],
appr. within K [5]

SELECTION NP-hard for K = 2 [9], Strongly NP-hard [46],
FPTAS [3] not appr. within any const. γ > 0 [57],

appr. within O(logK/ log logK) [30]
REPR. SELECTION NP-hard for K = 2 [31], Strongly NP-hard [31],

FPTAS [31] not appr. within O(log1−ε K)
for any ε > 0 [59],
not appr. within 2− ε when rmax = 2
for any ε > 0 [28],
appr. within min{K, rmax} [59]

KNAPSACK NP-hard for K = 1 [37], Strongly NP-hard [46, 87],
FPTAS [3] not appr. within any const. γ > 0 [57]

Observe that all these problems become NP-hard or strongly NP-hard, even
when the number of scenarios equals 2. However, if the number of scenarios is
constant then some of them can be solved in pseudopolynomial time (typically a
dynamic programming method is applied) and admit a fully polynomial time app-
roximation scheme (FPTAS). We should point out, here, that the running times of the
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a) b)

Fig. 6.1: (a) A sample MIN-MAX SHORTEST PATH problem with three scenarios
S1 = (2,10,3,1,1), S2 = (1,11,0,5,1), S3 = (8,8,0,8,8). (b) A sample MIN-MAX

SHORTEST PATH problem with interval costs

pseudopolynomial algorithms and the FPTAS’s proposed in the literature are exp-
onential in K and, in consequence, the practical applicability of them is rather lim-
ited. The complexity of the problems become worse when the number of scenarios
is a part of input. In particular, the network problems are then hard to approximate
within O(log1−ε K) for any ε > 0 [45, 48]. A similar result holds for the MIN-MAX

REPRESENTATIVES SELECTION problem [59]. The MIN-MAX SELECTION and
MIN-MAX KNAPSACK problems are then hard to approximate within any constant
factor γ > 0 [57].

If the underlying deterministic problem P is polynomially solvable, then MIN-
MAX P is approximable within K. It is enough to solve the deterministic prob-
lem P for the aggregated costs ĉi = maxS∈UD cS

i (or ĉi = ∑S∈UD
cS

i ), i ∈ [n].
A straightforward proof of this fact can be found, for instance, in [5]. This app-
roximation ratio has been improved for two particular problems. For MIN-MAX

MINIMUM SPANNING TREE a randomized O(log2 n)-approximation algorithm was
constructed in [48] and for the MIN-MAX SELECTION problem a deterministic
O(logK/ loglogK)-approximation algorithm was proposed in [30]. These algo-
rithms are based on the idea of randomized rounding of linear programming pro-
grams, which seems to be a promising tool for establishing stronger approximation
results for the minmax problems, when the number of scenarios is a part of input.

The MIN-MAX P problem can be solved exactly by applying the formula-
tion (6.1). After replacing (x1, . . . ,xn) ∈ ch(Φ) with a system of linear constraints,
we obtain a compact MIP formulation for the problem. Other exact methods for this
problem, such as branch and bound algorithms, can be found in [61].

In some cases, the underlying deterministic problem P is a maximization prob-
lem, i.e. we seek a solution which maximizes the total cost. It is then natural to study
the symmetric MAX-MIN P problem, in which we wish to find a solution maximiz-
ing the minimum cost over all scenarios, i.e. maxX∈Φ minS∈U f (X ,S). Interestingly,
for scenario set UD, MAX-MIN P seems to be harder than the corresponding MIN-
MAX P problem. In [52] it has been shown that MAX-MIN INDEPENDENT SET

problem in interval graphs (this problem was first discussed in [75]), whose deter-
ministic version is polynomially solvable, is not at all approximable when K is a
part of input. A similar fact was observed for MAX-MIN KNAPSACK in [3] (see
also [74]).
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6.2.1.2 Interval Uncertainty Representation

Let us address the interval uncertainty representation, i.e. when U = U �
I . We first

discuss the case UI =U n
I . It is easy to check that the complexity of MIN-MAX P

is then almost the same as P , because it is sufficient to solve the deterministic
problem P for scenario (c1 + d1, . . . ,cn + dn). Consequently, when P is solvable
in O(T (n)) time, then MIN-MAX P is solvable in O(n+T (n)) time. The problem
is more challenging when U =U �

I for a fixed � ∈ [0,n]. An algorithm for this case
was proposed in [15]. We now briefly describe it. Let us number the elements so that
d1 ≥ d2 ≥ ·· · ≥ dn and define dn+1 = 0. Define scenario S j under which the cost of
ei is equal to ci +(di −d j) if i ≤ j and ci otherwise, where j ∈ [n+1]. In [15] it has
been shown that MIN-MAX P with scenario set U �

I is equivalent to the following
problem:

min
j∈[n+1]

(�d j +min
X∈Φ

f (X ,S j)). (6.2)

Observe that (6.2) reduces to solving n+ 1 deterministic problems P for the costs
specified in scenarios S1, . . . ,Sn+1 and, in consequence, when P is solvable in
O(T (n)) time, then MIN-MAX P is solvable in O(nT (n)) time. We thus get a
tractable class of problems under uncertainty. Furthermore, it has been observed
in [15] that this algorithm can be extended to problems P which are NP-hard but
admit an α-approximation algorithm. In this case, that approximation algorithm can
be used to solve the inner problem minX∈Φ f (X ,S j) and the minmax problem is also
approximable within α .

6.2.2 Using the Minmax Regret Criterion

In this section we treat the following minmax regret problem:

MIN-MAX REGRET P : min
X∈Φ

max
S∈U

( f (X ,S)− f ∗(S)),

where f ∗(S) is the cost of an optimal solution under scenario S. The quantity
f (X ,S)− f ∗(S) is called a regret of X under S and it expresses a deviation of
solution X from the optimum under S. We thus seek a solution which minimizes
the maximum regret over all scenarios. The maximum regret criterion is also called
Savage criterion or maximum opportunity loss. The minmax regret problem can be
alternatively stated as follows:

min t
s.t. ∑i∈[n] cS

i xi ≤ t + tS ∀S ∈U
(x1, . . . ,xn) ∈ ch(Φ)
t ≥ 0,

(6.3)
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where tS is the cost of an optimal solution under scenario S. If we apply the minmax
regret criterion to the sample problem presented in Fig. 6.1, then we get the reason-
able paths {e1,e3,e5} in Fig. 6.1a and {e1} in Fig. 6.1b. Observe that the maximum
regret of {e1} equals 0 which means that this path is optimal under each scenario.

It is important to realize that the maximum regret is quite different quantity
than the maximum cost. In the former, the decision maker aims to minimize the
opportunity loss, i.e. the cost of a solution is compared ex-post to the cost of the
best solution which could be chosen. Consider the sample MIN-MAX REGRET

SHORTEST PATH problem depicted in Fig. 6.2a. Both paths {e1} and {e2} have
the same maximum regret equal to 1. However, the maximum cost of path {e1}
is twice the maximum cost of {e2}. Hence, a solution with small maximum regret
may have a large maximum cost in comparison with other solutions. Decision mak-
ers who just want to minimize the solution cost should be careful while using the
minmax regret criterion.

a) b)

Fig. 6.2: Two sample MIN-MAX REGRET SHORTEST PATH problems with scenar-
ios sets UI . (a) An instance with two paths that have the same maximum regret and
different maximum costs. (b) An instance for which the maximum regret criterion
does not satisfy the property of independency of irrelevant alternatives.

Another drawback of the minmax regret criterion is shown in Fig. 6.2b. It is easy
to check that path {e1,e4} has the smallest maximum regret equal to 3 and there is
no path with smaller maximum regret. Suppose that we remove the path (a single
arc) {e5} from the network. Then path {e1,e3} has the smallest maximum regret
equal to 2 and no other path has smaller maximum regret. Observe that the path
{e5} is never optimal since its regret is very large. This example shows that the
maximum regret criterion does not satisfy the property of independency of irrele-
vant alternatives [63], i.e. adding a non-optimal (and thus irrelevant) solution to the
problem can make the optimal solution nonoptimal and vice versa.

It is evident that MIN-MAX REGRET P is NP-hard and not at all approximable
when P is NP-hard. This is true even in the deterministic case when K = 1. It
follows from the fact that it is then NP-hard to compute a solution of the maximum
regret equal to 0. Also, computing the maximum regret of a given solution is, in this
case, NP-hard. This implies, in particular, that MIN-MAX REGRET KNAPSACK is
not at all approximable under both discrete and interval uncertainty representations.

In [64] the following randomized version of MIN-MAX REGRET P has been
proposed. That is, instead of choosing a single solution, a probability distribution
over all solutions is computed and we seek a probability distribution which mini-
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mizes the maximum expected regret. This problem can be seen as a game, in which
the decision maker chooses a probability distribution and an adversary chooses then
the worst scenario, knowing this probability distribution. Notice that in the tradi-
tional minmax regret problem, the decision maker is restricted to choose the solution
deterministically. Interestingly, the best probability distribution can be computed in
polynomial time if P is polynomially solvable. This holds for both discrete and
interval uncertainty representations (see [64] for details).

6.2.2.1 Discrete Uncertainty Representation

Let us now discuss the discrete uncertainty representation, i.e. the case when
U =UD. The known complexity results for the minmax regret versions of some
basic problems P are shown in Table 6.2.

Table 6.2: Complexity results for various MIN-MAX REGRET P problems with
scenario set UD

MIN-MAX REGRET P Constant K Unbounded K
SHORTEST PATH NP-hard for K = 2 [89], Strongly NP-hard [89],

FPTAS [3] not appr. within O(log1−ε K)
for any ε > 0 [45],
appr. within K [5]

MINIMUM SPANNING TREE NP-hard for K = 2 [61, 88], Strongly NP-hard [61, 88],
FPTAS [3] not appr. within O(log1−ε K)

for any ε > 0 [48],
appr. within K [5]

MINIMUM S-T CUT Strongly NP-hard Strongly NP-hard [4],
for K = 2 [4] not appr. within O(log1−ε K)

for any ε > 0 [45],
appr. within K [5]

MINIMUM ASSIGNMENT Strongly NP-hard Strongly NP-hard [2, 84, 90],
for K = 2 [84, 90] not appr. within O(log1−ε K)

for any ε > 0 [45],
appr. within K [5]

SELECTION NP-hard for K = 2 [9], Strongly NP-hard [46],
FPTAS [3] not appr. within any const. γ > 0 [57],

appr. within K [5]
REPR. SELECTION NP-hard for K = 2 [31], Strongly NP-hard [31],

FPTAS [31] not appr. within O(log1−ε K)
for any ε > 0 [59],
not appr. within 2− ε when rmax = 2
for any ε > 0 [28],
appr. within K [5]

KNAPSACK NP-hard for K = 1 [37], Strongly NP-hard [46, 87],
not at all appr. not at all appr.

Similarly to MIN-MAX P , MIN-MAX REGRET P becomes NP-hard or strongly
NP-hard when the number of scenarios equals 2. These negative results can be
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strengthen when the number of scenarios is a part of input and they are the same
as for MIN-MAX P (see Table 6.1). In fact, the proof showing the hardness of
MIN-MAX P can be, in most cases, easily modified to show the same hardness
result for the minmax regret version of P . Typically, it suffices to add a number of
dummy elements and scenarios to the constructed instance.

Observe that there is lack of stronger positive results when the number of sce-
narios is a part of input. The only known and general result states that when P is
polynomially solvable, then MIN-MAX REGRET P is approximable within K. The
idea is to solve the deterministic problem for the average costs ĉi =

1
K ∑S∈UD

cS
i ,

i ∈ [n]. A straightforward proof of this fact can be found in [5].
We can use (6.3) to construct a compact MIP formulation for the minmax regret

problem. However, the underlying problemP must by polynomially solvable, since
we need the costs of the optimal solutions tS for each S ∈UD. Other exact methods
for solving the problem can be found in [61].

6.2.2.2 Interval Uncertainty Representation

We now turn to case when U = UI , i.e. the interval uncertainty representation. In
the existing literature the problem with scenario set UI has been extensively studied.
To the best of our knowledge, more general scenario set U �

I has been not yet inves-
tigated. The known complexity results and solution methods for various problems,
under scenario set UI , are shown in Table 6.3.

The number of scenarios in UI is infinite. It is, however, easy to show that we
can replace UI with the set of extreme scenarios, which is the Cartesian product
Πi∈[n]{ci,ci + di}. It is also not difficult to show (see, e.g. [40, 47]) that the maxi-
mum regret of X equals f (X ,SX)− f ∗(SX), where SX is the extreme scenario under
which the costs of ei ∈ X equal ci+di and the costs of ei /∈ X are equal to ci. Conse-
quently, the maximum regret of a given solution X can be computed in polynomial
time if the underlying deterministic problem P is polynomially solvable. Remark-
able, this is not the case for the minmax regret version of the linear programming
problem with interval objective function coefficients, since it has been shown in [12]
that computing the maximum regret of a given solution is strongly NP-hard.

It turns out (see [11]) that in order to compute an optimal minmax regret solution
it is enough to compute an optimal solution for each extreme scenario and choose
the best one. Consequently, if the number of nondegenerate cost intervals, i.e. such
that di > 0, is bounded by r · logn, then it is sufficient to enumerate at most nr

solutions. This yields a polynomial method for constant r. Obviously, this method
is exponential in general case.

Let us now discuss some general properties of MIN-MAX REGRET P . A solu-
tion X is called possibly optimal if it is optimal under at least one scenario in U and
X is called necessarily optimal if it is optimal under all scenarios in U . Similarly,
an element ei is possibly optimal if it is a part of an optimal solution under at least
one scenario and it is necessarily optimal if it is a part of an optimal solution under
all scenarios. It turns out that under scenario set UI , each optimal minmax regret
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Table 6.3: Complexity results and solutions methods for various MIN-MAX

REGRET P problems with scenario set UI

MIN-MAX REGRET P Complexity Solution methods
SHORTEST PATH Strongly NP-hard [11], MIP [39], B&B [23, 70],

appr. within 2 [41], Benders [69],
NP-hard for planar graphs [91], Enumeration [67],
NP-hard for sp-graphs [42], Other methods [33]
FPTAS for sp-graphs [44]

MINIMUM SPANNING TREE Strongly NP-hard [6, 11], MIP [86], B&B [7, 68],
appr. within 2 [41] B&Cut [81],

Benders [66],
Tabu Search [56],
Simulated Annealing [73],
Other methods [33]

MINIMUM S-T CUT Strongly NP-hard [4], MIP [40]
appr. within 2 [41],
NP-hard for sp-graphs [42, 44],
FPTAS for sp-graphs [44]

MINIMUM ASSIGNMENT Strongly NP-hard [2], MIP [40],
appr. within 2 [41] Benders [79],

Local Search [79], GA [79]

SELECTION Solv. in O(n ·min{n,n− p}) time [24]
REPR. SELECTION Solv. in O(n2) time [31]
KNAPSACK Σ p

2 -hard [27], MIP [36], B&Cut [36],
not at all appr. Local Search [36]

solution is possibly optimal and is entirely composed of possibly optimal elements.
This fact was first observed for the minmax regret versions of SHORTEST PATH and
MINIMUM SPANNING TREE in [39, 86] and it was generalized to all problems P
in [47]. Notice, that this is not the case for scenario set UD, where it is easy to con-
struct a sample problem whose optimal minmax regret solution is not optimal under
any scenario. On the other hand, the maximum regret of a necessarily optimal solu-
tion equals 0, so it must be the optimal minmax regret solution (this is true for any
scenario set U ). It was shown in [47] that when all cost intervals are nondegenerate,
i.e. di > 0 for all i ∈ [n], then there is an optimal minmax regret solution containing
all necessarily optimal elements.

The notions of possibly and necessarily optimal elements can be very useful, as
they allow us to reduce the size of a problem instance before a solution is com-
puted, for example, by using a MIP formulation or a branch and bound algorithm.
Namely, all non-possibly optimal elements can be removed from E and, under the
absence of degeneracy, all necessarily elements can be automatically added to the
solution constructed. Some computational tests (see. e.g. [39, 56]) suggest that for
many instances more than 50 % elements are non-possibly optimal. One can also
expect several elements to be necessarily optimal in each instance. Hence, a partial
solution can be formed before a more complex algorithm is executed. Unfortunately,
detecting possibly and necessarily optimal elements is not an easy task in general.
In particular, the problem of checking whether a given element is possibly optimal,
is strongly NP-hard for the SHORTEST PATH, MINIMUM ASSIGNMENT and MIN-
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IMUM S-T CUT problems [21, 47]. All possibly and necessarily optimal elements
can be detected in polynomial time if P is a matroidal problem [43], in particular,
when P is SELECTION or MINIMUM SPANNING TREE. For the SHORTEST PATH

problem a subset of possibly optimal elements (arcs) can be detected by efficient
algorithms proposed in [20, 39]. Also, when the network is acyclic all necessarily
optimal arcs can be detected in polynomial time [35]

As we can see in Table 6.3, the minmax regret versions of all the basic network
problems are strongly NP-hard for general graphs. Two special cases, namely MIN-
MAX REGRET SHORTEST PATH and MIN-MAX REGRET MINIMUM S-T CUT in
series-parallel multidigraphs can be solved in pseudopolynomial time and admit an
FPTAS [42, 44]. Fortunately, the following positive and general result is known
for all polynomially solvable problems P . Let SM be the midpoint scenario, under
which the cost of ei is equal to ci+0.5di, i ∈ [n]. In [41] it has been shown that if X∗
is an optimal solution under scenario SM, then the maximum regret of X∗ is at most
twice the maximum regret of an optimal minmax regret solution. Consequently, if
P is polynomially solvable, then MIN-MAX REGRET P is approximable within 2.
The 2-approximation algorithm has been extended to a wider class of minmax regret
problems in [25]. We do not know whether there exists an approximation algorithm
with a performance ratio better than 2 (except for some very special cases). Also,
no negative approximation result for MIN-MAX REGRET P is known, when P is
polynomially solvable. So, the existence of an PTAS in this case cannot be excluded.
Observe that this result allows us to detect efficiently a solution with the maximum
regret equal to 0 (i.e. a necessarily optimal solution).

The computational tests (see, e.g. [40, 56]) suggest that the approximation algo-
rithm behaves well in practice. It is often profitable to modify it by considering two
solutions: an optimal solution under the midpoint scenario and an optimal solution
under the pessimistic scenario (c1 + d1, . . . ,cn + dn). The approximation algorithm,
denoted as AMU, returns the better of these two solutions. Algorithm AMU seems
to perform well except for some rather artificial instances [56]. However, it is also
only a 2-approximation algorithm and a sample worst case instance for it (a MIN-
MAX REGRET SHORTEST PATH instance) is depicted in Fig. 6.3. Note that algo-
rithm AMU may return any of the three possible paths. But the maximum regret
of the best path equals 1, while the maximum regret of the worst path equals 2.
A similar example for MIN-MAX REGRET MINIMUM SPANNING TREE can be
found in [56].

Fig. 6.3: A worst case instance for algorithm AMU

In the following we give a brief exposition of the known approaches to deal
with the NP-hard minmax regret problems (see also Table 6.3). For the class



126 A. Kasperski and P. Zieliński

of network problems there exists a compact mixed integer programming (MIP)
formulation [5, 40], which can be solved by means of some available software such
as CPLEX. Another popular approach is to apply the Benders decomposition tech-
nique or a specialized branch and bound (cut) method. The detailed description of
the computational tests for various instances can be found in the references given in
Table 6.3.

The exact methods seem to be particularly efficient for the minmax regret version
of the SHORTEST PATH problem, as they allow us to solve large problems in reason-
able time (see e.g. [69]). The exact methods perform much worse for the minmax
regret version of MINIMUM SPANNING TREE, which is a very interesting problem
still requiring more deep investigation. The largest instances which can be solved
to optimality are composed of networks having up to 40 nodes [56, 81]. For this
problem a local search method seems to be more efficient. There is a very natural
definition of a neighborhood of a given spanning tree. Namely, we get a neighbor X ′
of a spanning tree X by performing the operation X ′ =X∪{e}\{ f}, where e∈E \X
and f ∈ X . We can then apply a simple iterative improvement or more sophisticated
tabu search algorithm to compute a solution. The computational tests performed
in [56] suggest that the obtained solutions are close to the optimum even for large
instances. Interestingly, a local minimum with respect to the specified neighborhood
can also be a factor of 2 away from the global minimum, even when one starts from
a solution computed by AMU (see [56]).

For the minmax regret version of MINIMUM SPANNING TREE another interesting
result has been established in [33]. It turns out that the problem complexity depends
on the number of intersecting intervals. Indeed, an optimal minmax regret spanning
tree can be found in O(2kn logn) time, where k is the maximum number of intervals
that intersect at least one other interval. So, from this point of view, the hardest in-
stances are the ones in which all the cost intervals are the same, for instance equal to
[0,1] (a MIP approach is very poor in this case [56]). This special case is equivalent
to the strongly NP-hard CENTRAL SPANNING TREE problem [6, 16]. Observe that
for this problem algorithm AMU may return any solution and designing an app-
roximation algorithm with a performance ratio better than 2 is an interesting and
important open problem.

In the existing literature some other problems have been also investigated and,
in the following, we briefly describe them. In [71] the minmax regret version of
the TRAVELING SALESPERSON problem with interval costs and in [80] the min-
max regret version of the SET COVERING problem with interval costs have been
studied. Both problems are quite challenging as their deterministic versions are
strongly NP-hard. The solution methods proposed in [71, 80] (a branch and cut
algorithm, Benders decomposition and some heuristics) are general and can easily
be extended to other minmax regret problems with interval data, whose determin-
istic counterparts are NP-hard. In [26] the minmax regret version of the MINIMUM

SPANNING ARBORESCENCE problem with interval costs has been examined. An
arborescence is a subgraph of a given graph G in which there is exactly one path
from a given root node r to any other node of G. For undirected graphs the prob-
lem is equivalent to MINIMUM SPANNING TREE, so its minmax regret version is
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strongly NP-hard. However, for acyclic directed graphs this problem can be solved
in polynomial time [26].

6.3 Extensions of the Minmax Approach

In this section we introduce several extensions of the traditional minmax approach
presented in the previous section. These extensions allow us to overcome some
drawbacks of this approach. Namely, we will be able to model an attitude of de-
cision makers towards risk and take additional information associated with scenario
set into account.

6.3.1 Using the OWA Criterion

In decision making under uncertainty some other criteria for choosing a solution,
such as minmin, Hurwicz, or Laplace (the average), are also used. For an excellent
discussion on their various properties we refer the reader to [63]. It turns out that
most of them are special cases of the criterion called Weighted Ordering Averaging
aggregation (OWA for short) proposed by Yager in [85]. We will now show how to
apply the OWA criterion to problem P under scenario set UD.

Let vvv = (v1, . . . ,vK) be a vector of weights, where v j ∈ [0,1] for each j ∈ [K]
and v1 + · · ·+ vK = 1. Given a feasible solution X ∈ Φ , let σ be a permutation of
[K] such that f (X ,Sσ(1))≥ f (X ,Sσ(2)) ≥ ·· · ≥ f (X ,Sσ(K)). The OWA aggregation
criterion is defined as follows:

OWA(X) = ∑
j∈[K]

v j f (X ,Sσ( j)).

Observe that OWA(X) is a convex combination of the costs f (X ,S1), . . . , f (X ,SK).
Hence its value is always between the minimum and the maximum cost of X over
scenarios in UD. In this section we assume that a vector of weights vvv is specified for
scenario set UD and we consider the following problem:

MIN-OWA P : min
X∈Φ

OWA(X).

By fixing the weights vvv we get some special cases of MIN-OWA P which are listed
in Table 6.4. Observe that OWA generalizes all the basic criteria used in decision
making under uncertainty except for the minmax regret (Savage) criterion.

Since MIN-MAX P is a special case of MIN-OWA P , all the negative results
presented in Table 6.1 remain valid for MIN-OWA P . However, the computational
properties of MIN-OWA P strongly depend on the weight distribution in vvv. For
example, it is easily seen that MIN-MIN P and MIN-AVERAGE P are polynomially
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solvable if P is polynomially solvable. On the other hand, MIN-HURWICZ P is at
least as hard as MIN-MAX P , because it generalizes the latter problem. Table 6.5
summarizes all the known results for the MIN-OWA SHORTEST PATH problem.
Most of these results remain valid for any problem P (see [51] for details).

Table 6.4: Special cases of MIN-OWA P

Problem Weights vvv
MIN-MAX P v1 = 1, v j = 0 for j �= 1
MIN-MIN P vK = 1, v j = 0 for j �= K
MIN-AVERAGE P v j =

1
K for all j ∈ [K]

MIN-QUANT(k) P vk = 1, v j = 0 for j �= k
MIN-MEDIAN P v�K/2�+1 = 1, v j = 0 for j �= �K/2�+1
MIN-HURWICZ P v1 = α , vK = 1−α , v j = 0 for j �= 1,K, α ∈ [0,1]

Table 6.5: Summary of results for the MIN-OWA SHORTEST PATH problem
Problem K = 2 K ≥ 3 constant K unbounded
MIN-OWA Equivalent to NP-hard, Strongly NP-hard,

MIN-HURWICZ P FPTAS appr. within v1K if
the weights are non-increasing,
not at all appr. if
the weights are nondecreasing

MIN-MAX NP-hard, NP-hard, Strongly NP-hard,
FPTAS FPTAS appr. within K,

not appr. within
O(log1−ε K), ε > 0

MIN-MIN Poly. solvable Poly. solvable Poly. solvable
MIN-AVER. Poly. solvable Poly. solvable Poly. solvable
MIN-HURWICZ Poly. solv. if α ∈ [0, 1

2 ) NP-hard if α ∈ (0,1] Strongly NP-hard if α ∈ (0,1],
NP-hard if α ∈ ( 1

2 ,1] FPTAS appr. within
FPTAS if α ∈ ( 1

2 ,1] αK+(1−α)(K −2) if α ∈ [ 1
2 ,1]

K
α if α ∈ (0, 1

2 ),
not appr. within
O(log1−ε K), ε > 0

MIN-QUANT(k) Poly. solvable if k = 2 Poly. solvable Strongly NP-hard
NP-hard if k = 1 for k = K, NP-hard for any k ∈ [K−1],
FPTAS for constant approx. within K for constant k,

k ∈ [K−1], FPTAS not at all appr. if k = �K
2 �+1

The complexity of MIN-OWA P depends on the weight distribution in vvv. In
particular, if the weights model the minimum or the average, then the problem is
polynomially solvable when P is polynomially solvable. On the other hand, when vvv
models the median, MIN-OWA SHORTEST PATH is not at all approximable. Fortu-
nately there is a positive approximation result for the problem when the weights are
non-increasing, i.e. v1 ≥ v2 ≥ ·· · ≥ vK . This important special case will be described
in more detail in the next section.
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6.3.1.1 OWA Criterion and the Robust Approach

The maximum and the average (Laplace) criteria are special cases of OWA. They
form two boundary cases of non-increasing weights, i.e. when v1 ≥ v2 ≥ ·· · ≥ vK .
We get the maximum when v1 = 1, v j = 0 for j �= 1, and the average when v j = 1/K
for all j ∈ [K]. It turns out that for non-increasing weights a general positive approx-
imation result holds. Namely, if P is polynomially solvable, then MIN-OWA P is
approximable within v1K [51]. The idea of the approximation algorithm is to solve
problem P for the aggregated costs ĉi = owavvv(c

S1
i , . . . ,cSK

i ), i ∈ [n]. So, it gen-
eralizes the K-approximation algorithm, well known for the MIN-MAX P prob-
lem. Note that v1 ∈ [1/K,1], so we get the worst approximation ratio when OWA
is the maximum. On the other hand, when v1 = 1/K, i.e. when OWA is the aver-
age, we obtain a polynomial algorithm for the problem. The assumption of non-
increasing weights allows us also to construct more efficient MIP formulations for
MIN-OWA P (see [22, 34, 76]), which makes the problem more tractable.

The non-increasing weights are compatible with the robust approach, because
larger weights are assigned to larger solution costs. Furthermore, the weights allow
risk-averse decision makers to model their attitude towards a risk. The more uniform
is the weight distribution the less risk averse the decision maker is. In particular,
extremely risk averse the decision maker will choose v1 = 1, which leads to the
maximum criterion and the minmax problem discussed in Sect. 6.2. Using the OWA
criterion allows us to overcome another drawback of the minmax approach. When
all the weights in vvv are positive, then the obtained solution must be Pareto optimal.
We can thus reject such solutions as the one presented in Fig. 6.1a, by choosing
positive (even very small) weights.

Fig. 6.4: A sample interpolation function w∗(z) = 1
(1−α) (1 − αz) for α ∈

{10−1,10−2,10−3,10−4}. The weights v1, . . . ,v4 for α = 10−1
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The weights v1, . . . ,vK can be specified explicitly. However, it may be convenient
to obtain them by using an interpolation function w∗ : [0,1] → [0,1], which is as-
sumed to be concave, nondecreasing and satisfies w∗(0) = 0, w∗(1) = 1. Having w∗
we get v j = w∗( j/K)−w∗(( j− 1)/K) for j ∈ [K]. A sample interpolation function
w∗(z) = 1

(1−α) (1−αz), α ∈ (0,1), is shown in Fig. 6.4. Observe that when α tends
to 0, the OWA tends to the maximum. On the other hand, when α tends to 1, the
OWA tends to the average. Thus the decision maker can adjust his attitude towards
a risk by fixing a single value of α ∈ (0,1). The weights obtained for α = 10−1

and K = 4 are also shown in Fig. 6.4. Observe that the more concave is w∗ the less
uniform is the weight distribution in vvv. When w∗ is a straight line, then v1 = · · ·= vK

and OWA is the average. The interpolation function w∗(z) can also be defined for
explicitly listed weights v1 ≥ v2 ≥ ·· · ≥ vK . It is enough to assume that w∗(z) is the
linear interpolation of the points (0,0) and ( j/K,∑i≤ j vi) for j ∈ [K]. Then w∗(z) is
a concave piecewise linear function. We use this fact in the next section, in which
we describe a generalization of the OWA criterion.

6.3.2 Using the WOWA Criterion

One drawback of the OWA criterion is that it does not allow us to exploit any
additional information associated with scenarios. One such important information
is a probability distribution over the set UD. Assume that such a probability distri-
bution is available and let p j be the probability that scenario S j ∈ UD will occur,
j ∈ [K]. Let us examine a sample SHORTEST PATH problem with scenario set UD,
shown in Fig. 6.5.

Fig. 6.5: A sample shortest path problem with four scenarios S1 = (5,6,0,5,0),
S2 = (1,6,4,0,0), S3 = (1,6,6,0,0), and S4 = (2,6,6,0,0). The costs of all three
paths under all scenarios are shown in the table

A natural approach to solve this problem is to choose a solution with the mini-
mum expected cost. Hence, the path X1 = {e1,e4} is then the best choice. However,
X1 may be unreasonable for some risk averse decision makers. Observe that the
probability that the path X1 will have a large cost equal to 10 is equal to 0.5. This
choice may be questionable if path X1 is to be used only once, i.e. when a decision
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is not repetitious in the same environment. On the other hand, path X3 = {e2,e5}
has the smallest maximum cost and should be chosen when the minmax criterion
is used and the probabilities of scenarios are ignored. Notice that the path X3 has
a deterministic cost equal to 6. However, some decision makers may feel that path
X2 = {e1,e3,e5} is better, since the probability that the cost of X2 will be less than 6
equals 0.7 and the probability that X2 will have a large cost, equal to 8, is only 0.1.

The sample problem demonstrates that there is a need of criterion which estab-
lishes a link between the stochastic and robust approach when scenario probabilities
are available. Such a criterion can be proposed by a generalization of OWA. In or-
der to introduce this criterion it is convenient to use the interpolation function w∗(z)
defined in the previous section. Consider a solution X and let σ be a permutation of
[K] such that f (X ,Sσ(1))≥ ·· · ≥ f (X ,Sσ(K)). The permutation σ defines also the or-
der of scenario probabilities pσ(1)≥ ·· · ≥ pσ(K). In particular pσ(1) is the probability
that the worst scenario will occur and pσ(K) is the probability that the best scenario
will occur for X . Define now the weights ω j = w∗(∑i≤ j pσ(i))− w∗(∑i< j pσ(i)),
j ∈ [K] and let

WOWA(X) = ∑
j∈[K]

ω j f (X ,Sσ( j)).

We have thus obtained the Weighted OWA criterion (WOWA for short), first
proposed in [83]. A trivial verification shows that ω j ∈ [0,1] for all j ∈ [K] and
ω1 + · · ·+ωK = 1. The value of ω j can be seen as a distorted probability of sce-
nario Sσ( j). The value of ω j depends on p j and the rank position of scenario Sσ( j)
for solution X , so it is solution dependent. Hence, WOWA(X) can be seen as the
expected cost of solution X with respect to the distorted probabilities. For a more
detailed interpretation of this expectation we refer the reader to [29].

Fig. 6.6: Computing the weights ω1, . . . ,ω4 for path {e1,e4} in Fig. 6.4
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Let us look at the sample problem in Fig. 6.5 again. For path X1 = {e1,e4}
we have σ = (1,4,2,3). The computations of the weights ω1, . . . ,ω4 is shown in
Fig. 6.6. One can see in Fig. 6.6 how scenario probabilities are distorted. For exam-
ple, ω1 > p1 and ω4 < p3, so we assign larger probability to the worst scenario S1

and smaller to good scenario S3. If the probability distribution in UD is uniform,
then WOWA becomes OWA, because ω j = v j for each j ∈ [K]. The uniform proba-
bility distribution results from applying the principle of insufficient reason, i.e. in a
situation under uncertainty, when it is not possible to distinguish more or less prob-
able scenarios [63]. If w∗(z) is a straight line, or equivalently, v1 = v2 = · · · = vK ,
then WOWA becomes the expected value, because ω j = pσ( j) is then just the sce-
nario probability. We thus can see that WOWA is a very general criterion. It contains
both OWA and the expected value as special cases. It allows us to establish a link
between the robust and stochastic approaches.

Since MIN-MAX P is a special case of MIN-WOWA P , all the negative
results shown in Table 6.1 remain true for the latter problem. Fortunately, when
w∗(z) is the linear interpolation function for the nonincreasing weights v1 ≥ v2 ≥
·· · ≥ vK (see Sect. 6.3.1), then the problem is approximable within v1K if P
is polynomially solvable [54]. An idea is to solve P for the aggregated cots
ĉi = wowavvv,ppp(c

S1
i , . . . ,cSK

i ), i ∈ [n]. Note that this approximation ratio is the same
as for MIN-OWA P . For the linear interpolation function w∗(z) a compact MIP
formulation for the problem can also be constructed [54, 77]. Some computational
tests for the MIP formulation and the approximation algorithm were performed
in [54].

6.4 Robust Optimization with Incremental Recourse

In this section we address the adjustable approach to combinatorial optimization
problems with uncertain element costs, introduced in [72], called the robust opti-
mization with incremental recourse. It extends the concept of robustness to deal
with uncertainties by incorporating adjustable actions, after an element cost sce-
nario is realized. Namely, the decision maker chooses first the best initial solution,
taking into account that a worst scenario can happen (the first stage). Then he makes
some incremental changes in the initial solution chosen, subject to a given distance
measure, in order to obtain another one (the incremental recourse stage).

Formally, the robust optimization problem P with incremental recourse can be
stated as follows:

ROIR P : min
X∈Φ

( f (X)+max
S∈U

min
Y∈Φk

X

f (Y,S)),

where f (X) = ∑ei∈X Ci is the cost of an initial solution X and Φk
X = {Y ∈ Φ :

d(X ,Y )≤ k} is the incremental set, i.e. the set of possible solutions in the incremental
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recourse stage, where d(X ,Y ) is a fixed measure of the distance between the initial
solution X and the incremental solution Y . The distance d(X ,Y ) is also called an in-
cremental function bounded by a specified parameter k. Finally, f (Y,S) = ∑ei∈Y cS

i
is the cost of solution Y under scenario S. The most popular distance measures
d(X ,Y ), proposed in literature [17, 18, 72, 82], are: the element inclusion distance
d(X ,Y ) = |Y \X |, the element exclusion distance d(X ,Y ) = |X \Y |, and the element
symmetric difference distance d(X ,Y ) = |X ⊕Y |. It is worthwhile to mention that
for MINIMUM SPANNING TREE the above distance measures are equivalent from
the computational point of view.

The concept of the robustness with incremental recourse is similar in spirit to
the one of the recoverable robustness, proposed in [62] for linear programing under
uncertainty. In the recoverable approach limited recovery actions are permitted after
uncertain parameters reveal. Later, in [17–19] the recoverable robustness, called
k-distance recoverable robustness, has been applied to some classical combinatorial
optimization problems. Yet another interesting concept of recoverable robustness,
proposed in [17, 18], is the rent recoverable robustness in which, in the second
recoverable stage, the number of elements that can be replaced is not limited, but
deviating from previous choice comes at extra cost.

The ROIR P problem contains the following three inner problems. The first one
is the incremental problem:

INC(X ,S∗) P : min
Y∈Φk

X

f (Y,S∗),

where we are given an initial solution X and a cost scenario S∗ revealed. We wish to
make incremental changes in X , subject to the constraint d(X ,Y )≤ k, which lead to
the maximum improvement in the objective function. This problem is a special case
of ROIR P . Indeed, it is sufficient to set U = {S∗}, the initial costs Ci = 0 if ei ∈ X
and M otherwise, where M is a sufficiently large number, for example M ≥ nC,
C = maxei∈E{cS∗

i }. Several incremental versions of network problems have been
investigated in [82]. The second inner problem is the adversarial one:

ADV(X)P : max
S∈U

min
Y∈Φk

X

f (Y,S).

In this problem we seek a scenario S ∈ U that maximizes INC(X ,S) with respect
to a given solution X . The problem ROIR P reduces to ADV(X) P when we set
Ci = 0 if ei ∈ X and Ci = M, otherwise. The last inner problem is MIN-MAX P . We
get this problem after fixing Ci = 0 for each ei ∈ E and k = 0, which implies Φk

X =
{X}. We thus can see that ROIR P generalizes MIN-MAX P . In consequence,
all the negative results for MIN-MAX P remain valid for the robust incremental
version of P .

In the next two sections we will present the known results on ROIR P . We will
show that the complexity of this problem highly depends on both the uncertainty
representation and the distance measure. As we will see, there are a lot of things
to do in this area. In particular, there is lack of approximation algorithms for the
considered problem. The most of presented results are negative ones.
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6.4.1 Discrete Uncertainty Representation

We now give a brief summary of the complexity results on ROIR P under the
discrete scenario uncertainty, i.e. when U = UD. In this case, the only com-
plexity results that exist in the literature are for the element inclusion distance
d(X ,Y ) = |Y \X |. Unfortunately, all of them are negative ones, except for the ro-
bust incremental problems with one scenario (see Table 6.6).

Table 6.6: Complexity results for ROIR P with scenario set UD and the element
inclusion distance
ROIR P Constant K Unbounded K
SHORTEST PATH Strongly NP-hard, not at all appr.

for K = 1 and k ≥ 2 [18]
MINIMUM SPANNING TREE NP-hard in sp-graphs Strongly NP-hard, not at all appr.

for K = 2 and constant k [58] for unbounded k [58]

SELECTION NP-hard for K = 2 and k ≥ 1, Strongly NP-hard, not at all appr.
solv. in O((p− k+1)n2) for any const. k ≥ 1 [53]
for K = 1 [53]

MINIMUM MATROID BASE Poly. solvable for constant k
and for K = 1 [17]

Since MIN-MAX P is a special case of ROIR P , all negative results presented
in Table 6.1 for MIN-MAX P are still true for ROIR P . Hence, Table 6.6 can be
completed by complexity results for other combinatorial problem. One can observe
(see Table 6.6) that ROIR P can be much harder than its minmax counterpart. For
instance, the ROIR SHORTEST PATH problem is strongly NP-hard and not at all ap-
proximable even for one scenario. Notice that MIN-MAX SHORTEST PATH in this
case is a deterministic problem and so it is polynomially solvable. Let us also men-
tion a more general result on KNAPSACK that has been examined in [19], i. e. the
problem under the discrete uncertainty in the objective and the constraint with a dis-
tance measure that takes into account the element inclusion and exclusion distances.
The problem turned out to be inapproximable for unbounded K, but pseudopolyno-
mially solvable for constant K.

We now look into the adversarial problem with scenario set UD. It easily seen
that the complexity of this problem highly relies on the complexity of the incre-
mental problem. Indeed, solving ADV(X) P , for a given initial solution X , boils
down to solving INC(X ,S) P for every S ∈ UD and choosing a scenario which
results in the maximum cost. It turns out (see [82]) that the incremental versions
of SHORTEST PATH and MINIMUM SPANNING TREE, with the element inclusion
distance function, are polynomially solvable, and the incremental version of MIN-
IMUM ASSIGNMENT can be solved in random polynomial time. Unfortunately the
incremental versions of MINIMUM S-T CUT and SHORTEST PATH, with the element
symmetric difference distance function, d(X ,Y ) = |X ⊕Y |, and the incremental ver-
sion of SHORTEST PATH, with the element exclusion distance, d(X ,Y ) = |X \Y |, are
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NP-hard [72, 82]. In consequence, their adversarial and robust incremental versions
are also NP-hard.

6.4.2 Interval Uncertainty Representation

In this section we are concerned with ROIR P under the interval uncertainty repre-
sentation and with three distance measures. We start by showing a few complexity
results for the case U = UI and the element inclusion distance d(X ,Y ) = |Y \X |
(see Table 6.7). To the authors’ knowledge, nothing more has been recorded in the
literature on the robust incremental optimization with recourse under the scenario
set UI .

Table 6.7: Complexity results for ROIR P problems with scenario set UI and the
element inclusion distance

ROIR P Complexity
SHORTEST PATH Strongly NP-hard, not at all appr., poly. solvable in sp-graphs [18]

SELECTION Solvable in O((p− k+1)n2) time [53]
MINIMUM MATROID BASE Poly. solvable for constant k [17]

In the robust incremental optimization with recourse there is a link between the
interval uncertainty representationUI and the discrete oneUD, namely, the ROIR P
problem with scenario set UI can be rewritten as follows:

min
X∈Φ

(∑
ei∈X

Ci +max
S∈UI

min
Y∈Φk

X

∑
ei∈Y

cS
i ) = min

X∈Φ
(∑

ei∈X
Ci + min

Y∈Φk
X

∑
ei∈Y

(ci + di))

= min
X∈Φ

(∑
ei∈X

Ci + INC
(

X ,(ci + di)i∈[n]
)

).

From the above it follows that ROIR P with scenario set UI is equivalent to
ROIR P with only one scenario S = (ci +di)i∈[n]. This property has been exploited
in construction of the algorithms for the SHORTEST PATH, SELECTION and MINI-
MUM MATROID BASE problems with the element inclusion distance [17, 18, 53].
Moreover, using it we can conclude that ROIR KNAPSACK is at least NP-hard. One
can also deduce from the NP-hardness of the incremental versions of SHORTEST

PATH and MINIMUM S-T CUT with the element symmetric difference and exclusion
distances the NP-hardness of their robust incremental counterparts [72, 82] (see
Sect. 6.4.1).

Let us now discuss the interval uncertainty representation which allows us to con-
trol the amount of uncertainty. Following [72], we define two scenario sets. Namely,
given � > 0
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U �
I1 = {S = (cS

i )i∈[n] : cS
i = ci + δi,0 ≤ δi ≤ di, ∑

i∈[n]
δi ≤ �},

U �
I2 = {S = (cS

i )i∈[n] : cS
i = ci + δidi,δi ∈ {0,1}, ∑

i∈[n]
δi ≤ �}.

It easy to see that U �
I1 models the situation where the total amount of deviation in the

element costs is bounded by a specified �. The set U �
I2 is the set of extreme points

(scenarios) of U �
I , here � ∈ [0,n] (for �= n it is the set of extreme points of UI).

We first review of the complexity results on the robust incremental optimization
problems with recourse under the scenario set U �

I1. In this case the adversarial ver-
sion of SHORTEST PATH with the element inclusion distance can be formulated as
a linear program and, in consequence, is solvable in polynomial time [72]. Unfor-
tunately, the robust incremental version of SHORTEST PATH with the same distance
is strongly NP-hard and not approximable within a factor of 2 even for � = k = 1.
The rest of the hardness results for the adversarial and robust incremental versions
of SHORTEST PATH with the element symmetric difference and exclusion distances
presented in [72] follow from the NP-hardness of its incremental versions [82] (see
Sect. 6.4.1). The adversarial version of MINIMUM SPANNING TREE with the ele-
ment inclusion distance is polynomially solvable since it can be also modeled as a
linear program [72]. However, the complexity status of the robust incremental ver-
sion of MINIMUM SPANNING TREE remains open.

The complexity situation under the scenario set U �
I2 is much worse that under

the set U �
I1. The adversarial version of SHORTEST PATH with all three distance

measures considered is NP-hard and not approximable within a factor of 2 [72].
The robust incremental version of SHORTEST PATH with the element inclusion
distance is strongly NP-hard and not approximable within a factor of 2 even for
�= k = 1 [72]. This result improves the one shown in [18], where it has been proved
that the problem is NP-hard for constant k ≥ 1. For the remaining two distance
measures, the robust incremental version of SHORTEST PATH is NP-hard and not
approximable within a factor of 2, due to the hardness of the adversarial counter-
part [72]. The adversarial version of MINIMUM SPANNING TREE with the element
inclusion distance is NP-hard and hence its robust incremental version is NP-hard
as well [72].

6.5 Robust Two-Stage Problems

In many applications, the discrete optimization problem has a two-stage nature.
Namely, a partial solution is formed in the first stage, when the element costs are
precisely known. This partial solution is then completed optimally after a true sce-
nario reveals. Let Ci be the deterministic, first stage cost of element ei ∈ E and let
cS

i be the second stage cost of element ei under scenario S ∈ U . In this section we
study the following problem:



6 Robust Discrete Optimization Under Discrete and Interval Uncertainty: A Survey 137

TWO-STAGE P : min
X⊆E

(∑
ei∈X

Ci +max
S∈U

min
{Y⊆E: X∪Y∈Φ} ∑ei∈Y

cS
i ).

Note that a solution to this problem is determined by a subset X of the elements,
chosen in the first stage. Given X and scenario S we compute Y such that X ∪Y ∈Φ .
It may happen that X cannot be completed to any solution from Φ . In this case we
assume that the cost of X is infinite. Given Φ , let us define set Φ ′ in the following
way: X ′ ∈ Φ ′ if there is X ∈ Φ such that X ⊆ X ′. Hence Φ ⊆ Φ ′ and Φ ′ contains
all solutions from Φ and all the supersets of these solutions. In the one-stage robust
problems described in Sect. 6.2, an optimal solution is the same when we replace Φ
with Φ ′. However, for the examined two-stage model the problems with Φ and Φ ′
may be quite different. Consider the sample TWO-STAGE SHORTEST PATH problem
with two scenarios, shown in Fig. 6.7. If Φ contains two paths {e1,e3} and {e2,e4},
then we can choose either e1 or e2 in the first stage. In both cases the maximum cost
of the obtained path after the second stage equals M + 1. However, if we replace
Φ with Φ ′, then we can choose both e1 and e2 in the first stage and the maximum
cost of the obtained solution after the second stage equals only 3. This example
demonstrates that it may be profitable to add some redundant elements in the first
stage. It is thus justified to explore the complexity of the problem with both Φ
and Φ ′.

Fig. 6.7: A sample TWO-STAGE SHORTEST PATH problem with two scenarios

6.5.1 Discrete Uncertainty Representation

The known complexity results for the TWO-STAGE P problem, when U =UD are
shown in Table 6.8. All the basic problems are NP-hard even for two scenarios. One
exception is the two-stage version of MINIMUM SPANNING TREE, for which no
negative result for constant K has appeared in the literature yet. As usual, the prob-
lems become more complex when the number of scenarios is a part of input (see
Table 6.8). The negative approximation results for the two-stage versions of SHORT-
EST PATH, MINIMUM S-T CUT and MINIMUM ASSIGNMENT have been established
in [55] by showing a cost preserving reduction from the MIN-MAX REPRESENTA-
TIVES SELECTION problem. For the two-stage versions of MINIMUM SPANNING
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TREE, SELECTION, and MINIMUM ASSIGNMENT some approximation algorithms
have been recently proposed [48, 53, 60]. They are based on randomized rounding
of LP programs, which is a promising technique to construct approximation algo-
rithms for robust problems with discrete scenario sets.

Table 6.8: Complexity results for various TWO-STAGE P problems with scenario
set UD

TWO-STAGE P Constant K Unbounded K
SHORTEST PATH NP-hard Strongly NP-hard [55],

for K = 2 [55] not appr. within O(log1−ε K)
for any ε > 0 [55]*,

MINIMUM SPANNING TREE Strongly NP-hard [48],
not appr. within (1− ε) logn
for any ε > 0 [48],
appr. within O(log2 n) with
high probability [48]

MINIMUM S-T CUT NP-hard Strongly NP-hard [55],
for K = 2 [55] not appr. within O(log1−ε K)

for any ε > 0 [55]*,
MINIMUM ASSIGNMENT NP-hard Strongly NP-hard [55],

for K = 2 [55] not appr. within O(log1−ε K)
for any ε > 0 [55]*,
appr. within 1/β , β ∈ (0,1)
to match at least n(1−β ) nodes [60]

SELECTION NP-hard Strongly NP-hard [53],
for K = 2 [13] not appr. within (1− ε) logn

for any ε > 0 [53],
appr. within O(logK + logn) with
high probability [53]

The symbol * means that the negative result holds only for Φ (we do not know if it holds for Φ ′)

6.5.2 Interval Uncertainty Representation

Let us first deal with scenario set UI = Πi∈[n][ci,ci + di]. In this case, the two-stage
problem can be rewritten as follows:

min
{X ,Y⊆E: X∪Y∈Φ}

(∑
ei∈X

Ci + ∑
ei∈Y

(ci + di)). (6.4)

It follows easily that an optimal solution to (6.4) can be obtained by solving the
deterministic problem P for the element costs ĉi = min{Ci,ci + di}, i ∈ [n]. If Z is
an optimal solution to this problem, then for each ei ∈ Z we choose ei in the first
stage when Ci ≤ ci + di and we choose ei in the second stage otherwise.
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Consider now the more general scenario set U �
I . If all the first stage costs Ci,

i ∈ [n], are large enough, then X = /0 and the two-stage problem reduces to a special
case of the adversarial problem, where Φk

X =Φ , (see Sect. 6.4.1), namely:

max
S∈U �

I

min
Y∈Φ ∑

ei∈Y
cS

i . (6.5)

It turns out (see [55]) that (6.5) is strongly NP-hard when P is MINIMUM SPAN-
NING TREE or SHORTEST PATH. This fact immediately implies that the two-stage
versions of both problems, under scenario set U �

I , are strongly NP-hard. It is worth
pointing out that the corresponding MIN-MAX P problem, which can be obtained
by interchanging the min and max operators in (6.5), is polynomially solvable (see
Sect. 6.2.1.2).

There is a number of interesting open questions related to TWO-STAGE P with
scenario set U �

I . We do not know if the problem is NP-hard when � is constant (only
the boundary cases �= 1 and �= n are known to be polynomially solvable). There is
also lack of positive results for this problem, in particular approximation algorithms
with some guaranteed worst case ratio.

6.6 Conclusions

In this chapter we have described a class of robust discrete optimization problems
with uncertain costs. We have discussed two most popular methods of modeling the
uncertainty, namely the discrete and interval uncertainty representations. A lot of
results and new concepts in this area have appeared in literature since 1997, when
the book [61] has been published. In particular, the complexity of basic minmax
(regret) problems, described in [61], has been explored more deeply. Unfortunately,
with a few exceptions, all these problems are NP-hard and solving them is often
a challenging task. There is still a number of important open problems in this area.
One of them is to decide whether the approximation ratio of 2 is the best possible for
the minmax regret problems with interval data. There is also lack of positive results
for the minmax regret problems under the discrete uncertainty representation. The
minmax approach has been recently generalized by using the OWA and WOWA cri-
teria, which allow us to take both the attitude of decision makers towards a risk and
scenario probabilities into account. Some special cases, for instance the problems
with the Hurwicz criterion, still require more deep investigation.

In this chapter we have also reviewed some recent extensions of the minmax
approach, in which computing an optimal solution is a two-stage process. In the
robust incremental recourse approach an initial solution can be modified to some
extent after observing a true scenario. In the two-stage approach a solution is built
in two stages. A part of this solution is constructed in the first stage and the rest is
constructed after a true scenario reveals. Most results, known on both approaches,
are negative and there are many open questions related to their complexity and
approximability.
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45. Kasperski, A., Zieliński, P.: On the approximability of minmax (regret) network optimization
problems. Inf. Process. Lett. 109, 262–266 (2009)
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53. Kasperski, A., Zieliński, P.: Robust recoverable and two-stage selection problems (2015).
http://arxiv.org/abs/1505.06893
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59. Kasperski, A., Kurpisz, A., Zieliński, P.: Approximability of the robust representatives selec-
tion problem. Oper. Res. Lett. 43, 16–19 (2015)

60. Katriel, I., Kenyon-Mathieu, C., Upfal, E.: Commitment under uncertainty: two-stage match-
ing problems. Theor. Comput. Sci. 408, 213–223 (2008)

61. Kouvelis, P., Yu, G.: Robust Discrete Optimization and its Applications. Kluwer Academic
Publishers, Dordrecht (1997)
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Chapter 7
Performance Analysis in Robust Optimization

André Chassein and Marc Goerigk

Abstract We discuss the problem of evaluating a robust solution. To this end, we
first give a short primer on how to apply robustification approaches to uncertain
optimization problems using the assignment problem and the knapsack problem as
illustrative examples. As it is not immediately clear in practice which such robust-
ness approach is suitable for the problem at hand, we present current approaches
for evaluating and comparing robustness from the literature, and introduce the new
concept of a scenario curve. Using the methods presented in this chapter, an easy
guide is given to the decision maker to find, solve and compare the best robust opti-
mization method for his purposes.

7.1 Introduction

Assume you have to solve a real-world optimization problem, which can be mod-
eled, e.g., by an integer linear program. However, an optimal solution to this model
might perform quite poorly in practice, as this first modeling approach neglects
uncertainty in the problem parameters. Thus, some optimization tool that includes
uncertain data is required. You have quite a range of methods to choose from:
Stochastic optimization [12], fuzzy programming [14], interval programming [19],
or robust optimization.
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Assume you have chosen the last option. Again, there is a wide range of robust
optimization concepts you may select: classic (strict) robustness [3], absolute or
relative regret [22], adjustable robustness [6], recoverable robustness [23], light
robustness [16], soft robustness [8], lexicographic α-robustness [20], recovery-to-
optimality [17], or similarity-based robustness [13], to name some.

How to decide which of these approaches is appropriate for the problem at hand?
Furthermore, most approaches are connected with some kind of “robust objective
function” that decides on the degree of robustness. That is, every approach uses
a different measure to decide which solution should be called robust, and which
not. Also, many robust optimization approaches have parameters that control their
“degree of robustness”, but it is unclear in advance how to set them. To decide which
one should actually be put into practice, you need some possibility to compare the
robust solutions of each of these parameters and approaches.

In this chapter, we aim at shedding light on this problem of evaluating a robust
solution from a bird’s eye, or meta-perspective. We define a range of frameworks
that allow to compare the performance of different robust solutions.

This work is not intended as a survey on robust optimization, for which we
refer to [1, 7, 18] and [11]. Instead, having introduced some necessary notation in
Sect. 7.2, we present a walk-through on the application of some of the most popular
robust optimization approaches using an uncertain assignment problem as an exam-
ple in Sect. 7.3. We discuss ways to evaluate a robust solution in Sect. 7.4, using an
additional uncertain knapsack problem as an example. These evaluation frameworks
are then illustrated using experimental data in Sect. 7.5.

7.2 Notations and Definitions

We first introduce the notation we use in this chapter to denote a general optimiza-
tion problem. Additionally, we present two academic test problems we use to apply
and to compare different robustness concepts. It is a common approach to use well
studied academic test problems to compare new algorithms or concepts. On the one
hand, these problems have an easy structure and are, therefore, easy to understand.
On the other hand, it turns out that many real world problems are closely related
variants of these problems.

7.2.1 General Notation

Consider the general minimization problem

min f (x)

s.t. g(x)≤ 0

x ∈X .
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In robust optimization it is assumed that the parameters ξ that describe the objec-
tive function or the constraints of the problem are not known exactly; instead, one
assumes to know only a set U to which the parameters must belong to. These sets
are called uncertainty sets.

We informally write the uncertain problem as

“min” f (x,ξ )
s.t. “g(x,ξ )≤ 0”

x ∈X .

As there exists no unique interpretation of the uncertain objective function and the
uncertain constraints, it is not obvious how the robust problem should be solved.
Different interpretations have been made, resulting in different robustness concepts.
Some of these concepts are presented in Sect. 7.3.

The uncertainty set U can either be a finite list of different scenarios, which
is denoted by finite uncertainty set, or a continuous sets. Continuous uncertainty
sets are typically hyper-boxes, polytopes, or ellipsoids. A hyper-box uncertainty set
is also called interval uncertainty set as it defines intervals for the different param-
eter values. We focus in this chapter mainly on finite and interval uncertainty sets.
For the discussion of more advanced uncertainty sets we refer to [18].

We use the following notation for the uncertainty sets. Finite uncertainty sets are
given by a list of scenarios UF = {ξ 1,ξ 2, . . . ,ξN} and interval uncertainty sets are

stated as UI =
{

ξ : ξ j ∈ [ξ
j
,ξ j]
}

.

7.2.2 The Uncertain Assignment Problem

The assignment problem is defined by a complete bipartite graph with node sets V
and W , |V | = |W | = n, and edge costs ci j for all i, j ∈ [n] := {1, . . . ,n}. A feasible
assignment is a subset of edges such that every node from V is connected to exactly
one node from W (and vice versa). The problem is to find a feasible assignment that
minimizes the sum of edge costs.

Written as an integer linear program (IP), the assignment problem can be
stated as:

(P) min ∑
i∈[n]

∑
j∈[n]

ci jxi j (7.1)

s.t. ∑
i∈[n]

xi j = 1 ∀ j ∈ [n] (7.2)

∑
j∈[n]

xi j = 1 ∀i ∈ [n] (7.3)

xi j ∈ {0,1} ∀i, j ∈ [n] (7.4)
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Variable xi j equals to 1 if and only if edge (i, j) is part of the assignment.
Constraints (7.2) and (7.3) ensure that the assignment is feasible. That means that
every element from V must be mapped to exactly one element of W , and vice versa.
As the constraint matrix is totally unimodular, the integrality constraint (7.4) is
equivalent to its relaxed version xi j ∈ [0,1] ∀i, j ∈ [n]. The resulting problem is a
linear program (LP). Thus, problem (P) can be solved in polynomial time.

In the uncertain optimization problem the exact knowledge of all edge costs ci j

is not given. Instead, we assume that these values are the result of some uncertain
process. The set of all possible outcomes of c define the uncertainty set U . As in
Sect. 7.2.1, we use the following notation for finite and interval uncertainty sets:
UF = {c1, . . . ,cN}, and UI =×i, j∈[n][ci j,ci j]. The midpoint of UI is denoted by
ĉ = 0.5(c+ c). We write P(c) to denote the assignment problem with respect to the
costs c ∈U .

Note that in this problem only the objective function is affected by uncertainty.
If an assignment is feasible, it is feasible for all possible scenarios that might occur.
This does not hold for the uncertain knapsack problem, which we explain in the
following.

7.2.3 The Uncertain Knapsack Problem

The knapsack problem is defined by a set I of n items and a fixed budget B. Each
item i ∈ I is described by a positive weight wi and a profit pi. A packing is a subset
of all items. A packing is feasible if the sum of weights of all items contained in this
packing does not exceed the budget B. The problem is to find a feasible packing that
maximizes the sum of all the profits, and can be stated as an integer program (IP):

max ∑
i∈[n]

pixi (7.5)

s.t. ∑
i∈[n]

wixi ≤ B (7.6)

xi ∈ {0,1} ∀i ∈ [n] (7.7)

Variable xi equals to 1 if and only if item i is part of the packing. Constraint (7.6)
ensures that the budget capacity B is not exceeded. Being NP-complete, the compu-
tational complexity of this problem is harder than for the assignment problem (for a
general survey on the knapsack problem, see [21]).

In the uncertain version of this problem we assume that both item weights and
item profits are affected by uncertainty. The uncertainty set U contains all pos-
sible combinations of weights and profits (p,w). We use the following notation
for finite and interval scenarios sets: UF = {(p1,w1),(p2,w2), . . . (pN ,wN)} and
UI = (×i[pi

, pi])× (×i[wi,wi]).
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Note that in this problem not only the objective function but also the constraints
are affected by uncertainty. Hence, it is possible that packings are only feasible for
some but not for all scenarios.

7.3 Approaches to Robust Optimization

In this section we present different robustness concepts that are compared in
Sect. 7.4. The concrete solution of a robustness concepts needs the solution of
a robust counterpart. The structure and the complexity of the robust counterpart
depend greatly on the underlying uncertainty set that is used to describe the uncer-
tainty. We use the assignment problem to illustrate the different concepts and the
corresponding counterparts.

7.3.1 Strict Robustness

Also called min-max robustness or classical robustness, this is the most conservative
way to solve an uncertain optimization problem (see [7]). This concepts asks for a
solution that is feasible under all possible scenarios and gives the best performance
guarantee, i.e. it optimizes the performance of the worst scenario for the chosen
solution. This yields the following interpretation of the general robust optimization
problem

minmax
ξ∈U

f (x,ξ )

s.t. g(x,ξ )≤ 0 ∀ξ ∈U

x ∈X .

7.3.1.1 Finite Uncertainty

In the case of a finite uncertainty set UF , the general optimization problem attains
the form

min max
k∈[N]

f (x,ξ k)

s.t. g(x,ξ k)≤ 0 ∀k ∈ [N]

x ∈X .

It turns out that this uncertainty can lead to very difficult robust counterparts. Several
negative complexity results are shown even if U consists of only two scenarios and
the underlying problems are very basic [1]. Nevertheless, the robust counterpart can
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be formulated in most cases as a mixed integer programming (MIP) problem. We
showcase this in the following for the assignment problem.

min z (7.8)

s.t. ∑
i∈[n]

∑
j∈[n]

ck
i jxi j ≤ z ∀k ∈ [N] (7.9)

∑
i∈[n]

xi j = 1 ∀ j ∈ [n] (7.10)

∑
j∈[n]

xi j = 1 ∀i ∈ [n] (7.11)

xi j ∈ {0,1} ∀i, j ∈ [n] (7.12)

z ≥ 0 (7.13)

Constraint (7.9) ensures that variable z is equal to the worst performance of solution
x for all possible scenarios c1, . . . ,cN in an optimal solution. This additional con-
straints destroys the total unimodularity of the constraint matrix. Hence, one cannot
relax the integrality constraints anymore; in fact, one can show that this problem is
NP-complete already for two scenarios [22].

7.3.1.2 Interval Uncertainty

In the case of interval uncertainty UI the robust counterpart can be stated as a semi-
infinite program, which is an optimization problem with finitely many variables and
infinitely many constraints.

min z

s.t. f (x,ξ ) ≤ z ∀ξ ∈UI

g(x,ξ )≤ 0 ∀ξ ∈UI

x ∈X .

In special cases this problem can be greatly simplified. If x is always positive and
the objective function has the form f (x,ξ ) = ξ tx, the infinitely many constraints
describing the objective function can be replaced by one. It suffices to consider
f (x,ξ )≤ z, as the worst scenario that might happen for any solution is scenario ξ .

The presented assignment problem fulfills these properties. In the worst case
scenario the edge costs are given by c. Hence, the robust counterpart reduces to the
problem P(c). As this problem has the structure of the original, certain problem, it
can be solved with the same algorithms in polynomial time.

The following two approaches rely on the idea to reduce the size of the uncer-
tainty sets. An illustration of both approaches is given in Fig. 7.1.
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Fig. 7.1: Cutting unlikely corners. The rectangle represents the complete interval
uncertainty set. The bounded uncertainty (see Sect. 7.3.2) set is shown as the blue
polytope, the ellipsoidal uncertainty set (see Sect. 7.3.3) is represented by the green
ellipsoid

7.3.2 Bounded Uncertainty

This approach was introduced by Bertsimas and Sim [10]. They motivate their
approach with the observation that the strict robustness concept with interval unc-
ertainty is very pessimistic, as it assumes that all parameters attain their worst pos-
sible value at the same time. As this seems to be an unrealistic assumption for many
real-world situations, they suggest to introduce another uncertainty set that bounds
the deviation of the parameters.

We present this idea using the assignment problem. For integral values of Γ , the
resulting uncertainty set for the assignment problem has the following form:

UI(Γ ) =
{

c ∈UI :
∣

∣

{

(i, j) : ci j > ĉi j
}∣

∣≤ Γ
}

i.e., the number of coefficients that are larger than in the midpoint scenario is
bounded by the parameter Γ . The concept can also be generalized to non-integralΓ
values.

Using this uncertainty set the robust counterpart of the assignment problem is
given by the following mixed integer program (MIP).

min ∑
i∈[n]

∑
j∈[n]

ĉi jxi j +Γπ+ ∑
i∈[n]

ρi j (7.14)

s.t. ∑
i∈[n]

xi j = 1 ∀ j ∈ [n] (7.15)

∑
j∈[n]

xi j = 1 ∀i ∈ [n] (7.16)
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π+ρi j ≥ (ci j − ĉi j)xi j ∀i, j ∈ [n] (7.17)

xi j ∈ {0,1} ∀i, j ∈ [n] (7.18)

ρi ≥ 0 ∀i ∈ [n] (7.19)

π ≥ 0 (7.20)

Additional to x, variables π and ρ are introduced. If Γ is chosen as large as the
number of x-variables (i.e., Γ = n2), then π is equal to 0 in an optimal solution.
In this case ρi j is equal to (ci j − ĉi j)xi j, which is guaranteed by Inequality (7.17).
Replacing ρi j accordingly in the objective function, only ctx remains, i.e. the worst
case objective function. This was expected as for such a large value ofΓ the bounded
uncertainty set is equal to the original uncertainty set, hence, the model reduces to
the strict robust counterpart.

Contrary, if Γ is set to 0, π can be made arbitrary large in an optimal solution.
Inequality (7.17) is superfluous and ρi j can be set to 0. The objective function red-
uces to ĉt x. Also this was expected, as for Γ equal to 0, only ĉt x is contained in the
bounded uncertainty set. In [9, 10] it is explained in detail how this formulation can
be derived. There, it is also shown that the resulting robust problem is solvable in
polynomial time. Note that this concept is also applicable if constraints are affected
by uncertainty.

7.3.3 Ellipsoidal Uncertainty

The use of ellipsoidal uncertainty sets can be motivated from two different reasons.
The first one is that many uncertainty sets are already ellipsoidal in practice, e.g.,
when stemming from a normal data distribution. The second one follows the idea of
bounded uncertainty. Even if you have given an interval uncertainty set it can be a
good idea to use an ellipsoidal uncertainty set to cut off unlikely corners.

For more information about ellipsoidal uncertainty sets we refer to the papers
of Ben-Tal and Nemirovski [4, 5]. We use again the assignment problem to present
the resulting robust counter part if an ellipsoidal uncertainty set is used to cut off
unlikely corners of the interval uncertainty set UI . As before, the midpoint of UI is
denoted by ĉ.

min ∑
i∈[n]

∑
j∈[n]

ci jxi j − ∑
i, j∈[n]

(ci j − ĉi j)pi j +Ωq (7.21)

s.t. ∑
i, j∈[n]

(ci j − ĉi j)
2 p2

i j ≤ q2 (7.22)

0 ≤ pi j ≤ xi j ∀i, j ∈ [n] (7.23)

0 ≤ q (7.24)
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∑
i∈[n]

xi j = 1 ∀ j ∈ [n] (7.25)

∑
j∈[n]

xi j = 1 ∀i ∈ [n] (7.26)

xi j ∈ {0,1} ∀i, j ∈ [n] (7.27)

Ben-Tal and Nemirovski explain in [4] how to derive this problem formulation. The
parameter Ω controls the size of the ellipsoid that is used to approximate UI . If
Ω is set to 0 the ellipsoid consists of the single point ĉ. In this case the robust
counterpart reduces to P(ĉ). On the other hand, if Ω is large enough, the problem
becomes the strict robust problem P(c). Note that the problem formulation contains
a quadratic constraint. Therefore, it can not be solved anymore using mixed inte-
ger programming. Nevertheless, if the integer constraints are relaxed one obtains a
convex program that can be solved efficiently.

7.3.4 Regret Robustness

To apply the regret robustness concept it is assumed that only the objective func-
tion is affected by uncertainty and the constraints are certain. In strict robustness
the evaluation of a solution depends solely on the performance under one special
scenario. It is neglected that this special scenario might also be bad for all other
possible solutions. Hence, it could be meaningful to take into account the best pos-
sible performance that could be achieved for this special scenario. This idea is used
in regret robustness. For a fixed scenario, the regret of a solution is computed using
both the objective function of the solution and the best possible objective value.
There exist different methods to compute the regret of a solution. We present three
in the following.

7.3.4.1 Absolute Regret

In absolute regret robustness, one adds some normalization to the robust objective
value, so that taking the maximum over all scenarios becomes “more fair”. Specifi-
cally, we consider the robust objective function

reg(x) = max
ξ∈U

f (x,ξ )− opt(ξ )

where opt(ξ ) denotes the best possible objective value for the problem that is
described by parameter ξ .

This objective function yields to a different interpretation of the general robust
optimization problem.
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minmax
ξ∈U

f (x,ξ )− opt(ξ )

s.t. g(x)≤ 0

x ∈X .

Finite and interval uncertainty sets lead again to different robust counterparts. We
present this with the assignment problem.

For a finite set of scenarios UF of polynomial size, the optimal objective values
can be precomputed in polynomial time. The resulting robust counterpart is very
similar to the strict robust counterpart:

min z (7.28)

s.t. ∑
i∈[n]

∑
j∈[n]

ck
i jxi j − opt(ck)≤ z ∀k ∈ [N] (7.29)

∑
i∈[n]

xi j = 1 ∀ j ∈ [n] (7.30)

∑
j∈[n]

xi j = 1 ∀i ∈ [n] (7.31)

xi j ∈ {0,1} ∀i, j ∈ [n] (7.32)

z ≥ 0 (7.33)

Again, variable z is introduced to monitor the robust objective function. Con-
straint (7.29) ensures that z equals to the maximum regret in an optimal solution.
Specialized algorithms such as branch and bound algorithms can be applied to this
problem formulation. However, this is quite different for interval-uncertainty sets,
where it is not possible to compute all values opt(c) in advance. Nevertheless, it is
possible to formulate the resulting robust counterpart as:

min ∑
i∈[n]

∑
j∈[n]

ci jxi j − ∑
i∈[n]

(αi +βi) (7.34)

s.t. αi +β j ≤ ci j +(ci j − ci j)xi j ∀i, j ∈ [n] (7.35)

∑
i∈[n]

xi j = 1 ∀ j ∈ [n] (7.36)

∑
j∈[n]

xi j = 1 ∀i ∈ [n] (7.37)

αi,βi ≷ 0 ∀i ∈ [n] (7.38)

xi j ∈ {0,1} ∀i, j ∈ [n] (7.39)

where x, α , and β are variables. To derive this problem formulation it is used that
the scenario that maximizes the regret of a solution is described by the following
rule: All elements that are chosen by the solution x are as expensive as possible,
and all other elements as cheap as possible. The recipe that was used to derive this
MIP formulation can be applied to any combinatorial optimization problem with
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uncertainty in the costs, and for which the nominal problem (P) can be solved by
using its linear relaxation. For more information about the derivation of the robust
counterpart that arises from the absolute regret concept we refer to [25].

7.3.4.2 Relative Regret

The previous absolute regret approach aims at a normalization of objective values
by using the difference to the best possible objective value in any scenario. However,
this normalization may not be appropriate for some applications. The relative regret
normalizes the absolute regret by dividing it with the best possible objective function
under a scenario. The relative regret objective function has the following form for a
general optimization problem.

rreg(x) = max
ξ∈U

f (x,ξ )− opt(ξ )
opt(ξ )

The relative regret concept breaks down to the absolute regret concept for finite
uncertainty sets with a different scaling of scenarios. But for interval uncertainty sets
this does not hold. For this case, we present a possible formulation of the relative
regret robust counterpart for the assignment problem.

min μ (7.40)

s.t. ∑
i∈[n]

∑
j∈[n]

ci jxi j ≤ ∑
i∈[n]

(αi +βi) (7.41)

αi +β j ≤ μci j +(ci j − ci j)xi j ∀i, j ∈ [n] (7.42)

∑
i∈[n]

xi j = 1 ∀ j ∈ [n] (7.43)

∑
j∈[n]

xi j = 1 ∀i ∈ [n] (7.44)

xi j ∈ {0,1} ∀i, j ∈ [n] (7.45)

α,β ,μ ≷ 0 (7.46)

Deriving this formulation of the problem is more involved than in the case of abso-
lute regret, but solving it seems to be almost of the same computational complexity.
An additional variable μ is introduced that represents the ratio of objective func-
tion and optimal objective value. In [2] one can find the detailed derivation of this
problem formulation.

7.3.4.3 Alpha Regret

For discrete uncertainty sets there exist another approach to interpret how the
regret of a solution should be calculated. The alpha regret concept is similar to
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the concept of absolute regret, but extends it by the notion of anonymization.
The idea is to compare the realized solution not with the optimal solution that
could be realized in the same scenario. Instead, the vector of solution values
V (x) =

(

f (x,ξ 1), f (x,ξ 2), . . . , f (x,ξN)
)

and the vector of optimal solution values
V ∗ =

(

opt(ξ 1),opt(ξ 2), . . . ,opt(ξN)
)

are both sorted and then compared in each
component. The maximum difference is called the alpha regret. By comparing the
solution of the kth best scenario with the kth best optimal solution, the scenarios are
made anonymous. This is plausible if it is not known in advance, which scenario
will happen or is more likely to happen. Formally, the alpha regret of a solution can
be computed as

αreg(x) = min
π∈σ(N)

max
i∈[N]

f (x,ξ i)− opt(ξπ(i)),

where σ(N) denotes the set of all permutations of the set [N]. Hence, the resulting
formulation for the general optimization problem looks as follows

min z

s.t. f (x,ξ i)− f ∗(ξπ(i))≤ z ∀i ∈ [N]

g(x)≤ 0

x ∈X

π ∈ σ(U )

To give a concrete example we use again the assignment problem.

min z (7.47)

s.t. ∑
i∈[n]

∑
j∈[n]

c�i jxi j −
N

∑
k=1

pk�opt(ck)≤ z ∀� ∈ [N] (7.48)

∑
k∈[N]

pk� = 1 ∀� ∈ [N] (7.49)

∑
�∈[N]

pk� = 1 ∀k ∈ [N] (7.50)

∑
i∈[n]

xi j = 1 ∀ j ∈ [n] (7.51)

∑
j∈[n]

xi j = 1 ∀i ∈ [n] (7.52)

xi j ∈ {0,1} ∀i, j ∈ [n] (7.53)

pk� ∈ {0,1} ∀k, � ∈ [N] (7.54)

The variables pk� are used to represent the possible permutations of the scenarios.
Variable pk� is set to 1 if the kth scenario is sorted to position �, i.e. if π(k) = �. The
alpha regret concept is introduced in [20].



7 Performance Analysis in Robust Optimization 157

7.3.5 Recoverable Robustness

In the previous approaches, we are interested in finding a single solution, that is
supposed to perform well under all possible scenario outcomes. It is not possible
to modify this solution, once the actual scenario becomes known. In two-stage ap-
proaches to robust optimization (see also the approach of adjustable robustness), this
possibility is included in the model. Once the scenario is revealed, we can do some
modifications to our solutions. Naturally, if we could change the complete solution,
we could simply recover to an optimal solution in any scenario. Thus, the amount of
modifications that we can perform is usually bounded. Typically, one considers the
min-max objective over all scenarios in this setting; however, any other objective
function such as absolute or relative regret would also be conceivable. For the gen-
eral uncertain optimization problem this yields an infinite program with infinitely
many variables and constraints.

min z

s.t. f (xξ ,ξ )≤ z ∀ξ ∈U

g(xξ ,ξ )≤ 0 ∀ξ ∈U

dist(x,xξ )≤ D ∀ξ ∈U

xξ ∈X

x ∈X

The solution to the recovery robust problem is given by x. For each possible scenario
ξ a variable xξ is introduced. Each solution xξ must itself be feasible and close to
the solution x. The function dist is used to measure how close two solutions are. The
maximum allowed distance is given by parameter D.

For the assignment problem with finite uncertainty sets the problem can be writ-
ten as a MIP. We assume that we are allowed to modify up to 2K variables xi j once
the scenario is known, i.e. we can remove K choices, and add K new choices to our
solution. The resulting problem is given as

min z (7.55)

s.t. ∑
i∈[n]

∑
j∈[n]

ck
i jx

k
i j ≤ z ∀k ∈ [N] (7.56)

∑
i∈[n]

xi j = 1 ∀ j ∈ [n] (7.57)

∑
j∈[n]

xi j = 1 ∀i ∈ [n] (7.58)

∑
i∈[n]

xk
i j = 1 ∀ j ∈ [n],k ∈ [N] (7.59)

∑
j∈[n]

xk
i j = 1 ∀i ∈ [n],k ∈ [N] (7.60)
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− yk
i j ≤ xi j − xk

i j ≤ yk
i j ∀i, j ∈ [n],k ∈ [N] (7.61)

∑
i∈[n]

∑
j∈[n]

yk
i j ≤ 2K ∀k ∈ [N] (7.62)

xi j ∈ {0,1} ∀i, j ∈ [n] (7.63)

xk
i j ∈ {0,1} ∀i, j ∈ [n],k ∈ [N] (7.64)

yk
i j ∈ {0,1} ∀i, j ∈ [n],k ∈ [N] (7.65)

We use variables x to model the first-stage solution, and variables xk for every sce-
nario k ∈ [N], to model the second-stage (adapted) solutions. The auxiliary vari-
ables yk are used to measure the difference between x and xk. In Constraints (7.57)
and (7.58), we ensure that our first-stage solution x is a feasible assignment, while
Constraints (7.59) and (7.60) ensure the same for each scenario. Constraints (7.61)
and (7.62) bound the difference between first- and second-stage solutions. More
about recovery robust optimization can be found in [23].

7.3.6 Summary

We discussed numerous different concepts for robust optimization—still, the pre-
sented list of concepts is not exhaustive. Other interesting concepts can be found for
example in [18], and in Sect. 7.1 of this chapter.

In this section we provide a short overview about all presented concepts. In
Table 7.1 we highlight under which uncertainty contexts the different concepts are
applicable.

Cons & Obj Obj
UF UI UF UI

Strict robustness � � � �
Bounded uncertainty − � − �
Ellipsoid uncertainty a) � a) �
Regret robustness

Absolute regret − − � �
Relative regret − − b) �
Alpha regret − − � −

Recoverable robustness � � � �

Table 7.1: This table shows under which uncertainty context the different robust-
ness concepts are applicable. The columns with the label Cons & Obj refer to the
case where both the constraints and the objective function are affected by uncer-
tainty. The columns with the label Obj refer to the case where only the objective
function is affected by uncertainty. a) An ellipsoid can be computed that contains
all point from the discrete set. This will guarantee a safe approximation of the orig-
inal problem. b) The concept of relative regret reduces to the concept of absolute
regret for finite uncertainty sets
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7.4 Frameworks to Evaluate Robust Solutions

Every robustness concept is motivated from a different perspective and has its own
benefits and drawbacks. Therefore, it is unclear how these different concepts per-
form in comparison to each other. To make two concepts comparable one has to
define a framework in which the quality of the solutions that are produced by the
different concepts can be measured. In this section we give a short introduction
to some of these frameworks. We discuss them in more detail in the experimental
Sect. 7.5.

Two robustness concepts can only be compared if the used uncertainty context is
applicable for both (see Table 7.1). Hence we define different kind of frameworks
for different uncertainty contexts.

For some frameworks we assume the knowledge of an average case scenario,
also called nominal scenario. The performance of the solution under the nominal
scenario is an important indication for the overall quality of the solution.

If we want to speak about feasibility probability we have to make assumptions
on the underlying probability structure of the problem.

What is assumed to be known for the different frameworks is given in Table 7.2.

Framework Nominal scenario Probability distribution
Price of robustness � �
AC-WC curve � −
Scenario curve − −
Sampled scenario curve − �
Scenario curve with recovery � −

Table 7.2: Assumptions for the different frameworks

7.4.1 The Price of Robustness

This framework is applicable if constraints are affected by uncertainty. Stemming
from the seminal paper carrying the same name [10], the price of robustness (PoR)
is defined as “the tradeoff between the probability of violation and the effect to the
objective function of the nominal problem”. This idea can be used to measure the
quality of a solution. First, all solutions that have to be compared are evaluated with
respect to their nominal performance. Next, simulation can be used to compute the
probability of violation. The solutions are compared by drawing them into a two
dimensional coordinate system. The y-axis defines the nominal performance of a
solution and the x-axis gives the violation probability.

We note that the term “price of robustness” is also used differently, see, e.g., [24].
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7.4.2 The AC-WC Curve

This framework is only applicable if the objective function is affected by uncer-
tainty. If constraints are not affected by uncertainty, solutions are feasible for all
scenarios; hence, it is not meaningful any more to speak about probability of viola-
tion. Instead, one can use the performance in the worst case to compare solutions.
Solutions that need to be compared are drawn into a two dimensional coordinate
system. The x-axis gives the nominal performance guarantee of a solution and the
y-axis gives the performance in the worst case scenario.

We call a solution non-dominated if there exist no other solution that has both a
better average and worst case performance. The set of all non-dominated solutions
is defined as the AC-WC curve. The AC-WC curve can be computed effectively if
the feasibility set of the problem is convex and some further technical assumptions
are fulfilled. For more information about the AC-WC curve we refer to [15].

7.4.3 The Scenario Curve

For this framework it is assumed that the objective function is affected by uncer-
tainty and the uncertainty set is finite. As the uncertainty set is finite the perfor-
mance of a solution can be evaluated for each possible scenario to obtain the vector
F(x) =

(

f (x,ξ 1), . . . , f (x,ξN)
)

. Next we use the idea of anonymization: Similar to
the concept of alpha regret, the vector F(x) is sorted from good to bad performance.
The sorted version of F(x) is denoted by Fs(x). To compare two different solutions x
and x′ the vectors Fs(x) and Fs(x′) are drawn into a two dimensional coordinate sys-
tem. The kth component of vector Fs(x) is represented by the point (k,(Fs(x))k). The
leftmost point corresponds to the performance under the best scenario and the right-
most point corresponds to the performance under the worst scenario. The sorting of
the different solutions leads to a better visualization of the solution quality.

Additionally, the vector F∗ =
(

opt(ξ 1), . . . ,opt(ξN)
)

can be computed and the
sorted version of this vector is drawn into the same plot. This creates an optimal
benchmark curve, that can be used for comparison.

7.4.4 The Sampled Scenario Curve

Using a sampling procedure the concept of the scenario curve can be transferred to

arbitrary uncertainty sets. One needs to be able to sample a set S =
{

ξ̃ 1, . . . , ξ̃K
}

of possible parameter realizations. The sampled scenarios are then used to draw the
sampled scenario curve.
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If a solution is infeasible for a certain scenario, a “bad” value is assigned to this
solution. This value must be considerably worse than the worst value of all feasible
solutions (e.g., a profit of 0 for the knapsack problem).

7.4.5 The Scenario Curve with Recovery

We now discuss a second extension of the scenario curve approach from Sect. 7.4.3
to optimization problems with uncertainty in the constraints. To this end, we use the
uncertain knapsack problem as an illustrative example again.

In these circumstances, it may happen that the robust solution we would like
to evaluate is not feasible for some scenarios. We therefore assume that a recovery
action is available: By changing up to K many items, we can manipulate our solution
for every scenario. For every such recovery distance K, we can calculate a scenario
curve as before, which results in a 2-dimensional scenario curve overall.

More precisely, we suggest the following approach to evaluate a solution x. We
calculate optimal objective values for every scenario in the uncertainty set and sort
these values. For every possible recovery distance K = 1, . . . ,Kmax we do the follow-
ing: We calculate the best possible objective value of x for every scenario after the
recovery action. Next we sort these values and normalize them using the sorted vec-
tor of optimal solutions. In this way we generate Kmax scenario curves for solution x.
We plot all these curves in one plot using a heat map.

On the horizontal axis is the recovery distance, and on the vertical axis are the
sorted scenarios. Bright colors mean that the solution is close to the optimal solution
after the recovery. A black field means that the solution could not be recovered to a
feasible solution in this scenario for the given recovery budget.

7.5 Experiments

In this last section we use the uncertain assignment problem and the uncertain knap-
sack problem to illustrate the different frameworks. We use two different uncertainty
setups for the assignment problem and four for the knapsack problem. We consider
finite and interval uncertainty for the assignment problem and for the knapsack prob-
lem. For the knapsack problem we consider either profit uncertainty or profit and
weight uncertainty.

Please keep in mind that all figures show the performance of the different con-
cepts only for specific instances. Therefore, we avoid to make general statements
about the different concepts. Instead, we want to explain how the different frame-
works can be used to chose the best solution for the specific instances. Beside the
different robustness concepts, we also compute the naive solution of the nominal
scenario for comparison. This solution is called the average case solution.
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7.5.1 Assignment Problem

We use an assignment instance with 40 nodes, 20 nodes on each side. For the finite
uncertainty set we sample 10 different costs for each edge. The costs of an edge are
chosen uniformly at random from the interval [50,150] for each scenario. The nom-
inal scenario is chosen to be the average of the 10 sampled scenarios. In the case
of interval uncertainty the midpoint of each interval is chosen uniformly at random
from the interval [100,150] and the length of the interval is also chosen randomly
such that edges that are cheap on average tend to have longer intervals.

7.5.1.1 Finite Uncertainty

We apply the following robustness concepts for this setting: Strict robustness,
absolute/relative/alpha regret, and recoverable robustness. The recovery budget for
recoverable robustness was set to 2. We present the scenarios curve in Fig. 7.2.
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Fig. 7.2: Scenario curve of an assignment instance with 40 nodes an 10 cost sce-
narios

On the left side, the worst scenario for all solutions is compared, and on the right
side, the best one (as this is a minimization problem, smaller values indicate better
performance). As expected, strict robustness generates the solution that performs
at best if the worst may happen. The other robustness concepts perform relatively
similar in their worst scenario.
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Let us compare the performance of the strict robust solution and the average
case solution in more detail to highlight some aspects of robust optimization. The
performance of the strict solution shows only little deviation among the different
scenarios, whereas the average case solution has the largest performance deviation
of all compared solutions. The average case solution is better in all but one scenario
compared to the strict robust solution. If one is willing to accept the risk of bad per-
formance in few scenarios, the average case solution may be an appropriate choice.
But if this risk cannot be taken, one should rely on a robust solution.

For this instance, an interesting alternative to the strict robust solution is given
by the alpha regret solution. It performs better in all but the worst scenario. Further,
the performance in the worst scenario is still relatively close to the performance of
the strict robust solution.

7.5.1.2 Interval Uncertainty

We apply the following robustness concepts for this setting: Strict robustness,
bounded uncertainty, ellipsoidal uncertainty, absolute and relative regret. The
parameter Γ describing the bounded uncertainty concept is chosen from the set
{1,2, . . . ,10}. The parameter Ω defining the size of the ellipsoid used in the elli-
psoidal uncertainty concept is chosen from the set {0.5,1.0,1.5,2.0}. Figure 7.3
shows the AC-WC curve of the instance.
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Fig. 7.3: The AC-WC curve of an assignment instance with 40 nodes and inter-
val uncertainty. The solution of the Strict Robustness, Absolute and Relative regret
concept coincide
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For this instance strict robustness, absolute and relative regret generate the same
solution. Nevertheless, it is interesting to compare the solutions of bounded and
ellipsoidal uncertainty for different parameter choices. Small values of Γ resp. Ω
produce solutions that are closer to the average case solution and larger values lead
to solutions close to the strict solution. The AC-WC curve enables us to visualize
the exact trade-off for moving from average to worst case optimization. For this
instance, the bounded uncertainty concept generates solutions that are often domi-
nated by solutions from the ellipsoidal uncertainty concept.

7.5.2 Knapsack Problem

The capacity of the knapsack is set to 500 in all instances. The following setup is
used for finite uncertainty. If both weights and profits are affected by uncertainty,
we use an instance with 50 items. For each scenario, the profit of an item is cho-
sen uniformly at random from the interval [50,150] and the weight from the inter-
val [15,25]. If only the profits are affected by uncertainty, we use an instance with
200 items, where the weight of each item is chosen uniformly at random from the
interval [15,25]. The profits are generated as before. In both cases, we sample 10
scenarios.

For interval uncertainty we use 500 items. In this case we sample the average
profit of an item uniformly from the interval [60,140] and the average weight from
the interval [12,28]. The length of the intervals is chosen randomly proportional
to the midpoint of the interval. If the weights are not affected by uncertainty, the
interval length is set to 0.

7.5.2.1 Finite Profit Uncertainty

We apply the following robustness concepts for this setting: Strict robustness, abso-
lute/relative/alpha regret, and recoverable robustness. The recovery budget is set to
2. The scenario curve is shown in Fig. 7.4.

Again the performance in the worst scenario is shown on the left and the per-
formance in the best on the right (as this is a maximization problem, larger values
indicate better performance). As expected, the strict robust solution is the best in
the worst case. Interestingly, this is not only true for the worst but also for the three
worst scenarios, for this instance. Again the average case solution shows the largest
performance deviation of all solutions. If we compare the absolute and the relative
regret solution, none of them is clearly preferable. The absolute regret solution is
preferable for good scenarios and the relative regret solution is preferable for bad
scenarios. It is interesting to note that the strict robust solution performs unexpect-
edly well for its best scenario.
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7.5.2.2 Finite Uncertainty

We apply the following robustness concepts for this setting: Strict robustness and
recoverable robustness. The recovery budget is set to 10. The scenario curves with
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Fig. 7.4: The scenario curve of an knapsack problem with 200 items and 10 profit
scenarios

recovery are shown in Fig. 7.5 for both solutions. Values are normalized with respect
to the optimal benchmark curve, where yellow indicates good performance, and
darker colors indicate worse performance.
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Fig. 7.5: The scenario curve with recovery of an knapsack problem with 50 items
and 10 profit and weight scenarios. The left figure represents the strict robust solu-
tion, the right figure the solution generated by the recovery robust concept
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The strict robust solution is ensured to be feasible for all scenarios. Hence, no
black boxes can occur in the left figure. The recovery robust solution only guaran-
tees feasibility within the recovery budget that was used for the computation. In this
case we used a recovery budget of 10. This means that black boxes may occur in
columns 0–9, which is indeed the case on the right figure. Note that the recovery
robust solution is not feasible for a single scenario if recovery is not allowed. But,
if a recovery budget of 10 is allowed, the recovery robust solution performs con-
siderably better as the worst case solution in the worst case. This can be seen by
comparing row 1 of both figures. If the allowed recovery budget is large enough,
the originally chosen solution becomes irrelevant as recovery to the optimal solu-
tion is possible for each scenario. This explains the bright right side of both fig-
ures. Observe that the strict robust solution optimizes purely the worst case without
recovery. Therefore this solution has the best value in the field corresponding to
scenario 1 and a recovery budget of 0 compared to all other solutions. Whereas the
recovery robust solution optimizes the worst case performance if a recovery budget
of 10 is allowed. Hence, it has the best value in the field corresponding to scenario
1 and a recovery budget of 10 in comparison with all other solutions.

7.5.2.3 Interval Profit Uncertainty

We apply the following robustness concepts for this setting: Strict robustness,
bounded uncertainty and ellipsoidal uncertainty. We chose Γ = 15 and Ω = 4. We
use this instance to present the sampled scenario curve. We sampled 1000 scenarios.
Remember that the profits of the items are defined by intervals. In each scenario that
we sample the profit of an item is equally likely one of the endpoints of the interval.
The sampled scenario curve is shown in Fig. 7.6.

We also show the “optimal curve” that can be used for comparison. We separately
solve each of the 1000 sampled scenarios. The resulting vector of performances is
sorted and plotted in the figure. It is clear that no solution can generate a point
that lies above the optimal curve. The sampled scenario curve visualizes the conser-
vatism of the strict robust solution for interval uncertainty. For all sampled scenarios
the solutions from the bounded and the ellipsoidal uncertainty concept perform bet-
ter. Only the average case solution performs worse for some scenarios. The sampled
scenario curve shows clearly the benefit of the bounded and ellipsoidal uncertainty
approach, as very unlikely scenarios that will never happen in practice are ignored.
It is interesting to note how similar the solutions generated by the bounded and el-
lipsoid uncertainty concept are, if the describing parameters are chosen accordingly.

7.5.2.4 Interval Uncertainty

We apply the following robustness concepts for this setting: Strict robustness,
bounded uncertainty and ellipsoidal uncertainty. The parameter Γ describing the
bounded uncertainty concept is chosen from the set {1,2, . . . ,10}. The parameter Ω
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Fig. 7.6: The sampled scenario curve of an knapsack instance with 200 items and
interval profit uncertainty. To generate the scenario curve, 1000 scenarios are sam-
pled

defining the size of the ellipsoid used in the ellipsoidal uncertainty concept is chosen
from the set {0.5,1.0,1.5,2.0}. We present the price of robustness in Fig. 7.7 and
the sampled scenario curve in Fig. 7.8.

We first consider Fig. 7.7. The strict robust solution is calculated under the as-
sumption that every item has it highest possible weight. Hence, this solution is
feasible for all possible parameter realizations, i.e. with 100%. The average case
solution, on the other hand, assumes that every item attains its average weight.
Therefore, in almost 50% of all parameter realizations the average case solution is
infeasible, as the budget constraint is violated. Again, similar to the AC-WC curve
the bounded and ellipsoidal uncertainty concepts generate interesting compromise
solutions between worst and average case. The indicated curve is steep near the
strict robust solution, which shows the fact that a small relaxation of the feasibility
requirement can lead to a big improvement in the average case performance.

We now consider Fig. 7.8. For clarity we only show two solutions of the bounded
and ellipsoidal uncertainty set, one for the smallest and one for the largest parameter
used in the computation. The performance of an infeasible solution is set to 0. The
first look at the average case solution reveals directly that the solution is feasible
for about 50% of the parameter realizations. Allowing infeasibility for few scenar-
ios yields a significant improvement for all most all scenarios if the bounded or
ellipsoidal uncertainty concept is used. If the parameter values of these concepts are
chosen small, solutions are found that perform similar as the average case solution,
but are feasible for more scenarios.



168 A. Chassein and M. Goerigk

 3000

 3200

 3400

 3600

 3800

 4000

 4200

 4400

 4600

 4800

50 60 70 80 90 100

A
ve

ra
ge

 P
ro

fit

Feasibility

Strict Rob.
Bounded U.
Ellipsoid U.

Average

Fig. 7.7: Price of robustness for a knapsack problem with 200 items and interval
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Chapter 8
Robust-Soft Solutions in Linear Optimization
Problems with Fuzzy Parameters

Masahiro Inuiguchi

Abstract Linear optimization problems with fuzzy parameters were studied deeply
and widely. Many of the approaches to fuzzy problems generate robust solutions.
However, they were based on satisficing approaches so that the solutions do not
maintain the optimality or suboptimality against the fluctuations in the coefficients.
In this chapter, we describe a robust solution maintaining the suboptimality against
the fluctuations in the coefficients. We formulate the problem as an extension of
the minimax regret/maximin achievement rate problem and investigate a solution
procedure based on a bisection method and a relaxation method. It is shown that
the proposed solution procedure is created well so that both bisection and relaxation
methods converge simultaneously.

8.1 Introduction

Due to the limit of available information, decision making problems often involve
uncertainties. Traditionally two kinds of decision making problems under uncer-
tainty have been studied: decision making problems under strict uncertainty and de-
cision making problems under risk (see for example, [5]). In the former problems,
the uncertainty is modelled by a set of possible situations where we do not know
which situation is more probable than the others. In the latter problem, the uncer-
tainty is modelled by a probability distribution. As an optimization technique under
uncertainty, stochastic programming [18–20] were investigated. It treats decision
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making problems under risk. However, recently, robust optimization [2] treating a
kind of decision making problems under strict uncertainty is proposed and getting
popular. In robust optimization, a solution which maintains the feasibility or the sub-
optimality against the parameter fluctuation in the given range is computed. Because
of this property, the solution is considered a safe decision.

As a non-traditional model of uncertainty, fuzzy set theory [4, 21] was proposed
and introduced into various fields. By fuzzy set theory, we can treat the vague re-
striction and goals of the decision maker (DM) on constraints and objectives as well
as ambiguous coefficients in optimization problems [10, 19]. As we may treat the
plausibility degree of a state of nature by a fuzzy set, we can formulate intermediate
problems between decision making problems under strict uncertainty and decision
making problems under risk. Fuzzy mathematical programming problems [10, 19]
have been formulated so as to find a solution balanced between DM’s aspiration and
the robustness. Those formulations are based on a satisficing approach. Namely, the
solution satisfies the given constraints and goals with a certain level of parameter
fluctuation and is one of the best solutions in the balance between the robustness of
given constraints and the possibility of achieving goals. However, the robustness in
the sense that its objective function value is kept close to the optimal value against
parameter fluctuation is not always high.

In this chapter, we describe optimizing approaches to linear programming prob-
lems with fuzzy objective function coefficients. An optimizing approach implies the
formulations and solution methods obtaining robust solutions in the sense that their
objective function values are kept close to the optimal value against parameter fluc-
tuation. We introduce mainly two robust optimization approaches under softness:
minimax regret type and maximin achievement rate type.

This chapter is organized as follows. In next section, blind spots in fuzzy pro-
gramming approaches are shown by simple numerical examples. Two optimal so-
lution concepts are given. We describe the weakness of those optimal solution
concepts. In Sect. 8.3, solution concepts based on optimization approaches are de-
scribed. Robust-soft optimal solutions maintaining suboptimality against the fluctu-
ation in coefficients are defined in two ways. Solution algorithm under given fuzzy
goals is investigated in Sect. 8.4. An acceleration technique in solving the subprob-
lem is described in Sect. 8.5. In Sect. 8.6, a simpler solution algorithm is shown
when fuzzy goals are not specified. Finally, in Sect. 8.7, we give some concluding
remarks.

8.2 Blind Spots in Fuzzy Programming Approaches

8.2.1 Linear Program with Fuzzy Objective Function Coefficients

We treat the following linear programming problems with fuzzy objective function
coefficients:

maximize c�x, subject to x ∈ F, (8.1)
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where F = {x ∈ R
n | Ax ≤ b} is bounded. A = (ai j) is an m× n constant matrix

and b = (b1, . . . ,bm)
�. x = (x1, . . . ,xn)

� is a decision variable vector. On the other
hand, objective coefficient vector c = (c1,c2, . . . ,cn)

� is not known precisely but
imprecisely. Namely, c takes a value in a possible range expressed by a bounded
fuzzy set Γ of Rn with a membership function,

μΓ (r) = min
j=1,2,...,p

μΓj (d
�
j r). (8.2)

r ∈R
n, Γj is a fuzzy number, i.e., a normal (∃r j, μΓj (r j) = 1), convex (μΓj is quasi-

concave) and bounded fuzzy set on real line (limr j→∞ μΓj (r j) = limr j→−∞ μΓj (r j) =
0) with upper semi-continuous membership function μΓj . d j ∈ R

n is a constraint
vector. The boundedness of Γ implies p ≥ n, in other words, rank{d1,d2, . . . ,dp}=
n. Membership grade μΓ (r) can be understood as the possibility degree that c = r.

We define h-level sets and strong h-level sets by

[Γ ]h = {r ∈ R
n | μΓ (r)≥ h}, [Γj]h = {r ∈ R | μΓj (r)≥ h}, j = 1,2, . . . , p, (8.3)

(Γ )h = {r ∈ R
n | μΓ (r)> h}, (Γj)h = {r ∈ R | μΓj (r)> h}, j = 1,2, . . . , p. (8.4)

We have

[Γ ]h =
{

r ∈ R
n | d�

j r ∈ [Γj]h, j = 1,2, . . . , p
}

=
{

r ∈ R
n | inf[Γj]h ≤ d�

j r ≤ sup[Γj]h, j = 1,2, . . . , p
}

, (8.5)

cl(Γ )h =
{

r ∈ R
n | d�

j r ∈ cl(Γj)h, j = 1,2, . . . , p
}

=
{

r ∈ R
n | inf(Γj)h ≤ d�

j r ≤ sup(Γj)h, j = 1,2, . . . , p
}

, (8.6)

where clX is the closure of a set X ⊆ R
n. An h-level set [Γ ]h is depicted in Fig. 8.1.

Given a solution x �= 0, by the extension principle, its objective function value is
given as a fuzzy set Y (x) having the following membership function μY (x):

μY (x)(y) = sup
c
{μΓ (c) : c�x = y}. (8.7)

Note that we have Y (0) = {0}.

8.2.2 Solution Comparison by Objective Function Values

To treat linear programming problems with fuzzy coefficients, necessity measure N
and possibility measure Π of a fuzzy set S are defined by

NQ(S) = inf
r

max(1− μQ(r),μS(r)), ΠQ(S) = sup
r

min(μQ(r),μS(r)), (8.8)
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Fig. 8.1: h-Level set [Γ ]h

where μS and μQ are membership function of S and Q, respectively. NQ(S) and
ΠQ(S) evaluate to what extent the vague event expressed by fuzzy set S is necessary
(certain) and possible under the possible range expressed by fuzzy set Q, respec-
tively.

There are various ways to compare two fuzzy numbers Z1 and Z2 ⊆ R. The fol-
lowing two indices are often used in the literature:

POS(Z1 ≥ Z2) = sup
r1,r2

{min(μZ1(r1),μZ2(r2)) : r1 ≥ r2}, (8.9)

NES(Z1 ≥ Z2) = 1− sup
r1,r2

{min(μZ1(r1),μZ2(r2)) : r1 < r2}. (8.10)

where μZ1 and μZ2 are membership functions of Z1 and Z2, and Z1 and Z2 are
considered possible ranges of ambiguous numbers ζ1 and ζ2. Namely, we have
a fuzzy set Z1 × Z2 ⊆ R

2 showing the possible ranges of (ζ1,ζ2) defined by a
membership function μZ1×Z2(r1,r2) = min(μZ1(r1),μZ2(r2)). As an event we con-
sider “ζ1 is not smaller than ζ2” which can be represented by a set (a binary re-
lation) ≥= {(r1,r2) ∈ R

2 | r1 ≥ r2}. Then we have POS(Z1 ≥ Z2) = ΠZ1×Z2(≥)
and NES(Z1 ≥ Z2) = NZ1×Z2(≥). Namely, possibility degree POS(Z1 ≥ Z2) shows
to what extent Z1 is possibly larger than or equal to Z2. Similarly, Necessity degree
NES(Z1 ≥ Z2) shows to what extent Z1 is necessarily larger than or equal to Z2.

When Z1 and Z2 are closed intervals [zL
1 ,z

R
1 ] and [zL

2 ,z
R
2 ], respectively, we have

POS(Z1 ≥ Z2) = 1 ⇔ zR
1 ≥ zL

2 , NES(Z1 ≥ Z2) = 0 ⇔ zL
1 < zR

2 . (8.11)

Those equivalences remarkably show their meanings and difference.
A comparison index between two fuzzy numbers is often applied to the compari-

son of fuzzy objective function values discarding their interaction in literature. Next
example demonstrates the inadequacy caused by the desertion of the interaction.
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Example 1. Let n = 2 and Γ = [1,2]× [−2,−1]. Namely, we consider a case
when each objective function coefficient is given by a closed interval. Consider
two feasible solutions x1 = (2,1)� and x2 = (3,1)�. We have Y (x1) = [0,3] and
Y (x2) = [1,5].

Let us apply the first equation of (8.11) discarding the interaction between Z1 =
Y (x1) and Z2 =Y (x2). We obtain POS(Z1 ≥ Z2)= 1 which implies that the objective
function value of x1 can be larger than or equal to that of x2. On the other hand, we
have

c�x1 = 2c1 + c2 < 3c1 + c2 = c�x2, ∀c1 ∈ [1,2], ∀c2 ∈ [−2,−1]. (8.12)

This insists that the objective function value of x1 can never be larger than or equal
to that of x2. Because the realized values of c1 and c2 are common independent
on the selection of a feasible solution of Problem (8.1), the latter result is correct.
Therefore, the direct application of index POS(Z1 ≥ Z2) is not adequate for the
problem setting.

Similarly, from the second equation of (8.11), we obtain NES(Z2 ≥ Z1)= 0. This
implies that there exists (c1,c2)

� ∈ Γ such that the objective function value of x2

is less than that of x1. However, this is neither true. As is shown in (8.12), for all
(c1,c2)

� ∈ Γ , the objective function value of x2 is larger than that of x1.

Now we emphasize the reason why indices defined by (8.9) and (8.10) do not
work in the case of Example 1. Let ζ1 and ζ2 be variables taking values in Z1 and Z2,
respectively. In the indices defined by (8.9) and (8.10), it is implicitly assumed that
the possible range of ζ2 does not depend on the realization of ζ1 and also possible
range of ζ1 does not depend on the realization of ζ2.

In Example 1, we set Z1 = Y (x1) and Z2 = Y (x2). Namely, they are possible
ranges of ζ1 = c�x1 and ζ2 = c�x2, respectively. Both ζ1 and ζ2 depend on the re-
alization of variable vector c taking a vector value in Γ = [1,2]× [−2,−1]. Because
of this fact, the implicit assumption in (8.9) and (8.10) does not hold. For example,
when ζ1 = c�x1 = 0, the possible realizations of c ∈ Γ are in

{(c1,c2)
� ∈R

2 : 2c1 + c2 = 0,1 ≤ c1 ≤ 2,−2 ≤ c2 ≤−1}= {(1,−2)}. (8.13)

Namely, from the information ζ1 = 0, in this case, we know the realization of c
uniquely as (1,−2)�. It implies that ζ2 is also uniquely known as ζ2 =(1,−2)�x1 =
1. Generally, when ζ1 = q, the possible range of ζ2 is given by

{3c1 + c2 : 2c1 + c2 = q, 1 ≤ c1 ≤ 2, −2 ≤ c2 ≤−1}. (8.14)

This varies depending on ζ1’s realization q. Therefore, ζ2 interacts with ζ1. Simi-
larly, ζ1 interacts with ζ2.

Since the implicit assumption of (8.9) and (8.10) does not hold, indices defined
by (8.9) and (8.10) cannot be applied directly to the comparison between fuzzy ob-
jective function values. For the comparison between fuzzy objective function values,
the following modified indices [7, 9] are adequate:
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POS(c�x1 ≥ c�x2) = sup
r
{μΓ (r) : r�x1 ≥ r�x2}, (8.15)

NES(c�x1 ≥ c�x2) = 1− sup
r
{μΓ (r) : r�x1 < r�x2}. (8.16)

In literature, such desertion often appears when a fuzzy objective function is
treated by a comparison of fuzzy numbers. Moreover, we note that under other in-
terpretations of fuzzy coefficients, this discussion about the inadequacy is not valid.
For example, when a fuzzy objective function is regarded as a collection of objective
functions, e.g., a collection of utility functions of many decision makers, the above
discussion cannot be applied.

Using POS(c�x1 ≥ c�x2) and NES(c�x1 ≥ c�x2) of (8.15) and (8.16), we can
define fuzzy sets of necessary and possible non-inferior solutions by the following
membership functions:

μNnS(x2) =

{

1− sup
x1∈F

POS(c�x1 ≥ c�x2), if x ∈ F,

0, if x �∈ F,
(8.17)

μΠnS(x2) =

{

1− sup
x1∈F

NES(c�x1 ≥ c�x2), if x ∈ F,

0, if x �∈ F.
(8.18)

We note that necessary non-inferior solution set NnS is defined by POS(c�x1 ≥
c�x2) while possible non-inferior solution set NnS is defined by NES(c�x1 ≥
c�x2).

8.2.3 Necessity and Possibility Measure Optimization

When fuzzy goals G1 and G2 showing vaguely the required and desirable levels of
objective function value are given, for example, Problem (8.1) can be treated as the
following biobjective programming problem (see [10]):

maximize
(

NY (x)(G1),ΠY (x)(G2)
)

, subject to x ∈ F. (8.19)

We assume that membership functions of G1 and G2 are non-decreasing.
When Γ is crisp and membership functions of G1 and G2 are increasing, Prob-

lem (8.19) is reduced to

maximize

(

min
c∈Γ

c�x,max
c∈Γ

c�x
)

, subject to x ∈ F. (8.20)
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Completely optimal solutions to Problems (8.19) and (8.20), which maximize the
both objective functions at the same time, have been regarded as the best solutions.
However, as exemplified in the next example, such a complete optimal solution is
not always the best solution.

Fig. 8.2: The problem of Example 2

Example 2. Let us consider the following linear programming problem with uncer-
tain objective coefficients:

maximize c1x1 + c2x2,
subject to x1 + x2 ≤ 12, 3x1 + x2 ≤ 24,

x2 ≤ 9, −x1 ≤ 0, −x2 ≤ 0,
(8.21)

where c = (c1,c2)
� is restricted by

Γ = {(c1,c2,)
� | −4 ≤ 7c1 − 5c2 ≤ 4,

2 ≤−3c1 + 5c2 ≤ 9, 0 ≤ c2 ≤ 2, 1 ≤ c1 ≤ 3}. (8.22)

For every r = (r1,r2) ∈ Γ , we have (1,1)� ≤ r ≤ (2,2)�, (1,1)� ∈ Γ and
(2,2)� ∈ Γ . The biobjective programming problem becomes

maximize(x1 + x2, 2x1 + 2x2), subject to x = (x1,x2)
� ∈ F. (8.23)

This problem has a completely optimal solution x∗ = (6,6)�.
The solution is illustrated in Fig. 8.2. The shaded area of Fig. 8.2 is the set of

c ∈ Γ which makes (6,6)� optimal. This shaded area is small relatively to Γ . From
the viewpoint of optimality, (6,6)� is not very robust because it easily fails to be
optimal. However, this solution is robust in the sense that the objective function
value is never less than 6+ 6 = 12 as far as c fluctuates in [1,2]× [1,2].
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8.3 Optimization Approaches

8.3.1 Possible and Necessary Optimal Solutions

Let P(x) = {r | r�x = maxy∈F r�y}. Possibly optimal solution set ΠS and neces-
sarily optimal solution set NS are proposed for Problem (8.1) (see [11]). They are
defined as fuzzy sets with the following membership functions, respectively:

μΠS(x) =

{

sup
r∈P(x)

μγ (r), if x ∈ F,

0, if x �∈ F,
(8.24)

μNS(x) =

{

sup
r�∈P(x)

1− μΓ (r), if x ∈ F,

0, if x �∈ F.
(8.25)

We have μNS(x) > 0 ⇒ μΠS(x) = 1. μΠS(x) and μNS(x) are called the possible
optimality degree and necessary optimality degree of solution x, respectively.

When a feasible solution is given, we will be interested in the degrees of μΠS and
μNS. This topic is studied in [11] when p = n and d j = e j, where e j is a unit vector
whose j-th component is one. The method is easily extended to the general case.

A solution such that μNS(x)> 0 (resp. μΠS(x)> 0) is called a necessarily (resp.
possibly) optimal solution. In Example 2, the solutions on the line segment from
(6,6)� to (3,9)� are possibly optimal solutions and there is no necessarily optimal
solution. Generally, a necessarily optimal solution does not always exist but usually
there are a lot of possibly optimal solutions. If a necessarily optimal solution exists,
the solution is the most rational solution. Since F and Γ are bounded, any possi-
bly optimal solution can be expressed as a convex combination of possibly optimal
basic solutions. The number of possibly optimal solutions are finite because of the
boundedness of F . An enumeration method of all possible optimal basic solutions
together with possible optimality degrees μΠS is proposed in [8].

We note that the possibly and necessary optimal solutions sets equal to possibly
and necessary non-inferior solution sets, i.e., we have ΠS =ΠnS and NS = NnS.

8.3.2 Robust-Soft Optimal Solutions

Since in many cases no solution with positive necessary optimality degree exists,
let us weaken the concept of the necessary optimality. To this end, we introduce the
concept of soft optimality. If the objective function value of a feasible solution is
slightly smaller than the optimal value, the solution can be regarded as a suboptimal
solution. From this point of view, we define a suboptimal solution set T (c) to a
linear programming problem with an objective function vector c as a fuzzy set with
a membership function,
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μT (c)(x) =

⎧

⎨

⎩

μDi f

(

max
y∈F

c�y− c�x
)

, if x ∈ F,

0, if x �∈ F,
(8.26)

or

μT (c)(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

μRat

⎛

⎝

c�x

max
y∈F

c�y

⎞

⎠ , if x ∈ F,

0, if x �∈ F,

(8.27)

where μDi f is assumed to be upper semi-continuous and non-increasing. μRat is
assumed to be upper semi-continuous, and non-decreasing if maxy∈F c�x > 0 and
non-increasing if maxy∈F c�x < 0. While (8.26) is useful whenever the decision
maker takes care of the difference from the optimal value, (8.27) is useful when
maxy∈F c�x �= 0 and the decision maker takes care of the achievement rate based on
the optimal value.

Using T , the necessarily soft optimal solution set NT is defined by

μNT (x) = inf
c

max
(

1− μΓ (c),μT (c)(x)
)

. (8.28)

It should be noted that NT with T (c) defined by (8.27) is useful only when there
exists y ∈ F such that minc∈cl(Γ )h

c�y > 0 for all h ∈ [0,1) or when maxy∈F c�y < 0
for all c ∈ (Γ )0. When we define a fuzzy set V (x) of c∈R

n for x∈R
n by μV (x)(c) =

μT (c)(x), we obtain μNT (x) = NΓ (V (x)), i.e., the necessarily soft optimal solution
set NT is defined by using a necessity measure.

When μDi f (r) takes 1 for r ≤ 0 and 0 for r > 0, fuzzy set NT is reduced to NS.
Similarly, in the case of maxy∈F c�x > 0, when μRa(r) takes 1 for r ≥ 1 and 0 for
r < 1, fuzzy set NT is reduced to NS. In the case of maxy∈F c�x < 0, when μRa(r)
takes 1 for r ≤ 1 and 0 for r > 1 , fuzzy set NT is reduced to NS.

8.4 Solution Algorithms Under Given Fuzzy Goals

When μDi f or μRat is given by the decision maker, the best solution among NT is
a solution with highest necessary soft optimality degree μNT (x). This problem is
formulated as

maximize μNT (x). (8.29)

This formulation was already proposed in [13]. While the objective function val-
ues of a solution x are independent of F in Problem (8.19), the objective function
value depends on F in Problem (8.29). In this sense, both objective function values
of Problem (8.19) are independent from other feasible solutions but the objective
function value of Problem (8.29) is depends on others. Let x̂ and ĥ be an optimal
solution and the optimal value of Problem (8.29). Then we have

∀c ∈ (Γ )1−ĥ, μT (c)(x̂)≥ ĥ. (8.30)
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This implies that the suboptimality degree is guaranteed as at least ĥ as far as c takes
a value in (Γ )1−ĥ. In this sense, Problem (8.29) produces a solution which is robust
in suboptimality.

When T (c) is defined by (8.26) and d j = e j, j = 1,2, . . . , p = n, the equivalent
problem and a solution algorithm based on bisection and relaxation methods are
shown in [13]. In this chapter, we describe the result when d j, j = 1,2, . . . , p are
general.

For the sake of simplicity, we consider the following three cases:

Case (I): T (c) is defined by (8.26),
Case (II): T (c) is defined by (8.27) under the assumption that there exists y ∈ F

such that minc∈(Γ )h
c�y > 0 for all h ∈ (0,1],

Case (III): T (c) is defined by (8.27) under the assumption that maxy∈F c�y < 0
for all c ∈ (Γ )0

The procedure is the same among those three cases but subproblems are different.
We note that in cases (II) and (III) we implicitly assume that (Γ )0 is bounded.

We investigate (8.29) when T (c) is defined by (8.26) and (8.27). Introducing
an auxiliary variable h, from the upper semi-continuity of μRat , Problem (8.29) is
reduced to
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⎪
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⎨
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⎪
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⎪

⎪

⎪

⎪

⎩

maximize h, subject to x ∈ F, μDi f

⎛

⎜

⎝ max
c∈cl(Γ )1−h

y∈F

(c�y− c�x)

⎞

⎟

⎠≥ h,

in case (I),

maximize h, subject to x ∈ F, μRat

⎛

⎜

⎝ min
c∈cl(Γ )1−h
y∈F, c�y>0

c�x
c�y

⎞

⎟

⎠≥ h, in case (II),

maximize h, subject to x ∈ F, μRat

⎛

⎜

⎝ max
c∈cl(Γ )1−h

y∈F

c�x
c�y

⎞

⎟

⎠≥ h, in case (III).

(8.31)

As h increases, cl(Γ )1−h enlarges and thus, (1) the maximum value of (c�y−
c�x) under c ∈ cl(Γ )1−h and y ∈ F increases, (2) the minimum value of c�x/c�y
under c ∈ cl(Γ )1−h, y ∈ F and c�y > 0 decreases and (3) the maximum value of
c�x/c�y under c ∈ cl(Γ )1−h and y ∈ F increases. Therefore, Problem (8.31) can be
solved by a bisection method with respect to h with checking
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⎪

⎪

⎪

⎪

⎩

μDi f

⎛

⎜

⎝min
x∈F

max
c∈cl(Γ )1−h

y∈F

(c�y− c�x)

⎞

⎟

⎠≥ h, in case (I),

μRat

⎛

⎜

⎝max
x∈F

min
c∈cl(Γ )1−h
y∈F, c�y>0

c�x
c�y

⎞

⎟

⎠≥ h, in case (II),

μRat

⎛

⎜

⎝
min
x∈F

max
c∈cl(Γ )1−h

y∈F

c�x
c�y

⎞

⎟

⎠
≥ h, in case (III),

(8.32)

If (8.32) is satisfied, we know that the optimal value of Problem (8.31) is not less
than h, and examine (8.32) again with an increased h. Otherwise, we know that
the optimal value of Problem (8.31) is less than h and examine (8.32) again with
a decreased h. Repeating this procedure, the possible range of the optimal value of
Problem (8.31) reduced and we stop the procedure when the range becomes small
enough.

In order to check the validity of (8.32), we should solve the min-max or max-min
problem included in (8.32). Let us look into a solution method for these min-max
and max-min problems.

Let c j : (0,1]→ (Γ )0, j = 1,2, . . . ,k be vector functions such that c j(h)∈ cl(Γ )h,
for all h ∈ [0,1). These vector functions are generated through the algorithm pro-
posed later in this chapter. Each of these function values is usually obtained at a ver-
tex of cl(Γ )h by solving a linear programming problem defined by an index set Q j =
{q j1,q j2, . . . ,q jn} ⊆ P = {1,2, . . . , p} and a 0-1 vector B j = (β j1,β j2, . . . ,β jn)

� ⊆
{0,1}n. We assume that q j1 < q j2 < · · · < q jn. Namely, given h ∈ (0,1], the func-
tion value is obtained as c-value of an optimal solution (c�,δ1,δ2, . . . ,δn)

� to the
following linear programming problem:

minimize
n

∑
i=1

δi,

subject to inf(Γq ji)h + δi = d�
q ji

c ≤ sup(Γq ji)h, for i ∈ N such that β ji = 0,
inf(Γq ji)h ≤ d�

q ji
c = sup(Γq ji)h − δi, for i ∈ N such that β ji = 1,

inf(Γq)h ≤ d�
q c ≤ sup(Γq)h, q ∈ P\Q j

δi ≥ 0, i = 1,2, . . . ,n,

(8.33)

where N = {1,2, . . . ,n}.
When y j ∈ F , j = 1,2, . . . ,k are given under fixed h ∈ (0,1], a relaxation prob-

lem of the min-max/max-min problem in (8.32) is obtained as the following linear
programming problem:
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minimize r, subject to x ∈ F, c j(1− h)
�y j − c j(1− h)

�x ≤ r, j ∈ K,
in case (I),

maximize r, subject to x ∈ F,
c j(1− h)

�x

c j(1− h)�y j
≥ r, j ∈ K, in case (II),

minimize r, subject to x ∈ F,
c j(1− h)

�x

c j(1− h)�y j
≤ r, j ∈ K, in case (III),

(8.34)

where K = {1,2, . . . ,k} and the given solution y j ∈ F satisfies c j(1− h)
�y j > 0

when T (c) is defined by (8.27) and maxy∈F c�y > 0 for all c ∈ (Γ )0. Note that
the number of possible Q j’s is at most pCn = n!/(p!(n− p)!) and that the num-
ber of possible B j’s is 2n. The value of c j(h) is determined by solving Prob-
lem (8.33) for a given h ∈ (0,1]. Then the number of all possible vector func-
tions c j is 2nn!/(p!(n− p)!). Because cl(Γ )1−h is a polytope for each h ∈ (0,1],
any element c ∈ cl(Γ )1−h can be represented by a convex combinations of the
vertices of cl(Γ )1−h. Let V (cl(Γ )1−h) be the set of vertices of cl(Γ )1−h. Then
we have V (cl(Γ )1−h) = {c j(1− h), j = 1,2, . . . ,2nn!/(p!(n− p)!)}. Hence, when
k = 2nn!/(p!(n− p)!), Problem (8.34) is equivalent to the min-max/max-min prob-
lem in (8.32).

Let x0 and r0 be an optimal solution and the optimal value of Problem (8.34),
respectively. Since Problem (8.34) is a relaxed problem, we should examine whether
x0 is an optimal solution to the min-max/max-min problem in (8.32) or not under
the fixed h ∈ (0,1]. This can be done by checking whether the optimal value of the
following problem is not less than r0:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

maximize c�y− c�x0, subject to c ∈ cl(Γ )1−h, y ∈ F, in case (I),

minimize
c�x0

c�y
, subject to c ∈ cl(Γ )1−h, y ∈ F, c�y > 0, in case (II),

maximize
c�x0

c�y
, subject to c ∈ cl(Γ )1−h, y ∈ F, in case (III),

(8.35)

where we note that constraint c ∈ cl(Γ )1−h is represent by a system of linear in-
equalities because we have

c ∈ cl(Γ )1−h if and only if inf(Γq)1−h ≤ d�
q c ≤ sup(Γq)1−h, q ∈ P. (8.36)

If the optimal value of Problem (8.35) is not greater/less than r0, x0 is an op-
timal solution to the min-max/max-min problem in (8.32). Otherwise, we add
ck+1 : (0,1]→ (Γ )0 which satisfies
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ck+1(1− h)
�

y j − ck+1(1− h)
�

x > r0, ∃ j ∈ K, in case (I),

ck+1(1− h)
�

x

ck+1(1− h)�y j
< r0, ∃ j ∈ K, in case (II),

ck+1(1− h)
�

x

ck+1(1− h)�y j
> r0, ∃ j ∈ K, in case (III),

(8.37)

for the fixed h ∈ (0,1] and update k = k + 1. Such function ck+1 can be deter-
mined by using an optimal solution to Problem (8.35). Namely, there exists an op-
timal solution c to Problem (8.35) which has at least n independent dq such that
d�

q c = inf(Γq)1−h or d�
q c = sup(Γq)1−h. This implies that we can find Qk+1 and

Bk+1 corresponding to ck+1 whose function value is obtained by solving (8.33) with
substitution j = k+ 1.

From the above discussion, we obtain the following solution algorithm based on
the bisection method and the relaxation procedure with an admissible error ε > 0.

Algorithm 1

Step 1. Select Q1 and B1 arbitrarily in order to define c1 : (0,1]→ (Γ )0. Let y1 be
an optimal solution to the following linear programming problem:

maximize c1(0.5)�y, subject to y ∈ F. (8.38)

Step 2. Set hL = 0, hU = 1, k = 1 and x0 = y1.
Step 3. Set h = 1

2 (h
L + hU) and let yk+1 and rk be an optimal solution and the

optimal value of Problem (8.35), respectively.
Step 4. If μDi f (rk)≥ h or μRat(rk)≥ h then update hL = h and return to Step 3.
Step 5. If hU − hL ≤ ε then terminate the algorithm. If hU ≤ ε then there is no

feasible solution x such that μNT (x) > ε and otherwise the optimal solution is
obtained as x0.

Step 6. Construct ck+1 from a pair (Qk+1,Bk+1) corresponding to an optimal so-
lution of the latest problem solved at Step 3. If there is no j ∈ {1,2, . . . ,k} such

that c j = ck+1 and c j(1− h)
�y j = ck+1(1− h)

�
yk+1 then update k = k+ 1.

Step 7. Set h = 1
2(h

L + hU). In cases (I) and (III), obtain an optimal solution
(x∗,r∗) to Problem (8.34) and go to Step 8. In case (II), update y j as an opti-

mal solution to maximizey∈F c j(1− h)
�y.

Step 8. If μDi f (r∗) < h or μRat(r∗) < h, then set hU = h and return to Step 7.
Otherwise, set x0 = x∗ and return to Step 3.

In this algorithm, we use μDi f in case (I), and μRat in cases (II) and (III). In case

(II), we update y j at Step 7 so that we have c j(1− h)
�y j > 0, j = 1,2, . . . ,k. The

existence of such y j ∈ F is guaranteed by the assumption described in case (II). Fur-
thermore, we do not solve the max-min problem in (8.32) at each fixed h but solve
it simultaneously with optimizing h so as to obtain a solution of Problem (8.31).
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To prove the convergence of Algorithm 1, we use the following proposition.

Proposition 1. If hL is not updated at Step 4 in iteration k ≥ 2, for the pair
(ck+1,yk+1) obtained by solving Problem (8.35) at Step 3, there is no l ≤ k such

that cl = ck+1 and c j(1− h)
�y j = ck+1(1− h)

�
yk+1.

Proof. Assume there exists l ≤ k such that cl = ck+1 and c j(1− h)
�y j =

ck+1(1− h)
�

yk+1 for the pair (ck+1,yk+1) corresponding to Problem (8.35) solved
at Step 3 when hL is not updated at Step 4 in iteration k ≥ 2. Since hL is not updated
at Step 4, rk satisfies μDi f (rk) < h in case (I), and μRat(rk) < h in cases (II) and
(III). On the other hand, because k ≥ 2, it has returned to Step 3 from Step 8 and
thus r∗ of the optimal solution (x∗,r∗) obtained at the last visit of Step 7 satisfies
μDi f (r∗)≥ h in case (I), and μRat(r∗)≥ h in cases (II) and (III). Therefore, we have

μDi f (r
k)< μDi f (r

∗) in case (I) and μRat(r
k)< μRat(r

∗) in cases (II) and (III).
(∗)

If we fix y at a feasible solution in Problem (8.35), the problem becomes a linear
programming problem or a linear fractional programming problem with a decision
variable vector c. From the theories of linear and linear fractional programming [1,
3], the optimal solution c exists at an extreme point of cl(Γ )1−h. Together with this

fact, the assumption of the existence of l ≤ k such that cl = ck+1 and c j(1− h)
�y j =

ck+1(1− h)
�

yk+1 implies

rk = ck+1(1− h)�yk+1 − ck+1(1− h)�x0 = cl(1− h)�yl − cl(1− h)�x0.

Because r∗ is the optimal value of Problem (8.34), we have rk ≤ r∗ in cases (I)
and (III), and rk ≥ r∗ in case (II). This implies

μDi f (r
k)≥ μDi f (r

∗) in case (I) and μRat(r
k)≥ μRat(r

∗) in cases (II) and (III).

This contradicts (∗). ��
From Proposition 1, in every iteration, hL is updated or a new pair (ck+1,yk+1) is

added. The update of hL reduces the difference hU − hL to half or to less than half.
The number of pairs (c j,y j) is finite because the number of pairs (Q j,B j) is finite
and F is bounded. Hence Algorithm 8.4 terminates in a finite number of iterations.

8.5 Solving the Subproblem

In Algorithm 1, all problems other than Problem (8.35) are linear programming
problems and solved easily. However, Problem (8.35) is neither a linear program-
ming problem nor a concave/convex programming problem but a convex maxi-
mization/concave minimization problem. To solve this problem, several approaches
such as two-phase method, outer approximation method, cutting hyperplane method
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and so on were proposed (see [12, 14, 15, 17]) when Γ is a crisp set. In two-
phase method, all possibly optimal extreme points zl ∈ F , l = 1,2, . . . ,q such that
μΠS(zl) > 0 are enumerated before the execution of Algorithm 1 and at Step 3 of
Algorithm 1 we solve q linear programming problems/linear fractional program-
ming problems (8.35) with fixing y = zl , l = 1,2, . . . ,q. In case 1, we may apply
a post optimality technique of linear programming for the change of objective co-
efficient vector when we solve q linear programming problems (8.35) with fixing
y = zl , l = 1,2, . . . ,q. Therefore, those q problems are solved sequentially without
reinitialization of simplex tableau.

On the other hand, in cases (II) and (III), we cannot apply this technique directly.
In case (III), because we have c�x0 < 0 and c�y < 0 for any y ∈ F , we obtain

min
c∈cl(Γ )1−h

y∈F

c�y
c�x0 =

1

max
c∈cl(Γ )1−h

y∈F,

c�x0

c�y

. (8.39)

Applying the linear fractional programming technique, the minimization problem in
the left-hand side of (8.39) is reduced to

minimize ĉ�y, subject to ĉ�x0 =−1, y ∈ F,
ĉ
t
∈ cl(Γ )1−h, t ≥ 0. (8.40)

To this reduced problem, we can apply the post optimality technique and thus q
linear fractional programming problems are solved efficiently. We note an optimal
solution to Problem (8.35) is obtained as (ĉ/t,y) from the obtained optimal solution
(ĉ,y, t) to Problem (8.40).

In case (II), we cannot obtain a similar result to (8.39). This is because there is no
guarantee that we have c�x0 > 0 for all c ∈ cl(Γ )1−h at Step 3. However, because
of the assumption described in case (II), we have a solution y ∈ F such that c�y > 0
for all c ∈ cl(Γ )1−h. In order to ensure c�x0 > 0 for all c ∈ cl(Γ )1−h , we can add

ck+1 ∈ cl(Γ )1−h such that ck+1�x0 < 0, iteratively at Step 6 with the replacement of
Step 3 by the following step:

Step 3’. Set h= 1
2 (h

L+hU) and solve the following linear programming problem:

minimize x0�c, subject to c ∈ cl(C)1−h. (8.41)

If the optimal value is negative, let c̄ be the obtained optimal solution and yk+1

an optimal solution to

maximize c̄�y, subject to y ∈ F, (8.42)

and then go to Step 6. Otherwise, let yk+1 and rk be an optimal solution and the
optimal value of Problem (8.35), respectively.

Because F is bounded, we obtain some x0 such that c�x0 > 0 for all c ∈ cl(Γ )1−h

in a finite iterations. If c�x0 > 0 for all c ∈ cl(Γ )1−h is ensured, we have
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max
c∈cl(Γ )1−h
y∈F,c�y>0

c�y
c�x0 =

1

min
c∈cl(Γ )1−h
y∈F, c�y>0

c�x0

c�y

, (8.43)

Applying a linear fractional programming technique, the maximization problem in
the left-hand side problem of (8.43) is reduced to a bilinear programming problem,

maximize ĉ�y,

subject to ĉ�x0 = 1, y ∈ F,
ĉ
t
∈ cl(Γ )1−h.

(8.44)

Let (ĉ,y, t) be an optimal solution to Problem (8.44). Then solution (ĉ/t,y) is an
optimal solution to Problem (8.35). The post optimality technique of linear pro-
gramming problem can be applied to the reduced problem (8.44).

The transformations of the fractional programming problems in cases (II) and
(III) are useful when the outer approximation method is used for solving Prob-
lem (8.35). By the numerical experiments reported in [14], the outer approxima-
tion method solves Problem (8.35) efficiently. An outer approximation algorithm is
shown as follows.

Algorithm 2

Step 1. Initialize p = 0 and obtain a polytope Y0 such that F ⊆ Y0.
Step 2. Enumerate all elements of ΠB(Yp).
Step 3. Calculate f (y) for all y ∈ΠB(Yp).

In case (I): let yp be a solution which maximizes f (y) subject to y ∈ΠB(Yp).
Moreover, let c̄p be a c ∈ Γ such that f (yp) = cT(yp − x0).

In case (II): In case (II) let yp be a solution which minimizes f (y) subject to
y ∈ΠB(Yp). Moreover, let c̄p be a c ∈ Γ such that f (yp) = cTyp/c�x0.

In case (III): let yp be a solution which maximizes f (y) subject to y∈ΠB(Yp).
Moreover, let c̄p be a c ∈ Γ such that f (yp) = cTyp/c�x0.

Step 4. In cases (I) and (III) if f (yp) ≤ r0, terminate the algorithm with setting
rk = r0. In case (II) if f (yp)≥ r0, terminate the algorithm with setting rk = r0.

Step 5. If yp ∈ F , terminate the algorithm with setting ck = c̄p, zk = yp and rk =
f (yp).

Step 6. Solve a linear programming problem,

maximize
y∈F

c̄pTy, (8.45)

and let wp be an optimal solution. Let Z be a set defined by constraints whose
corresponding slack variables are nonbasic at the optimal solution wp.

Step 7. Update Yp+1 = Yp ∩Z and p = p+ 1. Return to Step 2.

In the algorithm above, ΠB(Yp) is the set of all possibly extreme points with positive
possible optimality degrees of Problem (8.1) where F is replaced with Yp. f (y) is
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defined by

f (y) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

max
c∈Γ

(c�y− c�x0), in case (I),

min
c∈Γ

c�x0

c�y
, in case (II),

max
c∈Γ

c�x0

c�y
, in case (III).

(8.46)

Extreme points of ΠB(Yp+1) can be obtained easily from extreme points of ΠB(Yp)
(see [14]).

In [14], the outer approximation method and other possible solution methods
for Problem (8.35) are described in case (I). Moreover the results of numerical ex-
periments in comparison among possible solutions methods for Problem (8.35) are
explained in [14].

8.6 Solution Algorithms Under Unknown Goals

The determination of μDi f or μRat can be difficult in some situations. Instead of
giving μDi f or μRat , the decision maker may tell to what extent the fluctuation of
coefficients should be taken care of. In this situation, the decision maker specifies
h0 ∈ (0,1] so that we consider all c ∈ (Γ )1−h0 . Under such a situation, we consider

{

minimize qDi f , subject to μNT (x)≥ h0, in case (I),
minimize |qRat − 1|, subject to μNT (x)≥ h0, in cases (II) and (III),

(8.47)

where we define

μDi f (r) =

{

1, if r ≤ qDi f ,
0, if r > qDi f ,

μRat(r) =

{

1, if r ≤ |qRat − 1|,
0, otherwise.

(8.48)

Those problems produce a robust solution. Let x̂ and q̂ be an optimal solution and
the optimal value of Problem (8.47). Then we have

⎧

⎨

⎩

∀c ∈ (Γ )1−h0 , ∀y ∈ F, c�y− c�x̂ ≤ q̂, in case (I),

∀c ∈ (Γ )1−h0 , ∀y ∈ F,

∣

∣

∣

∣

c�x̂
c�y

− 1

∣

∣

∣

∣

≤ q̂, in cases (II) and (III).
(8.49)

In this section, we show a simpler solution procedure to Problem (8.47). Prob-
lem (8.47) is reduced to

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

minimize max
c∈cl(Γ )1−h0

y∈F

(c�y− c�x), subject to x ∈ F, in case (I),

maximize min
c∈cl(Γ )1−h0

y∈F, c�y>0

c�x
c�y

, subject to x ∈ F, in case (II),

minimize max
c∈cl(Γ )1−h0

y∈F, c�y>0

, subject to x ∈ F, in case (III).

(8.50)
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In each case, this problem is the same as the min-max or max-min problem appeared
in the argument of the membership function in (8.32). Thus, the discussion in Sec-
tion 4 is valid also for Problem (8.50). Because h0 is fixed, Problem (8.50) is easier
than Problem (8.31). Based on the relaxation procedure, we have the following al-
gorithm.

Algorithm 3

Step 1. Select c1 : (0,1]→ (Γ )0. Let y1 be an optimal solution to a linear program-
ming problem,

maximize c1�y, subject to y ∈ F. (8.51)

Set k = 1, x0 = y1, and r0 = 0 in case (I) and r0 = 1 in cases (II) and (III).
Step 2. Let (ck+1,yk+1) and rk be an optimal solution and the optimal value of Prob-

lem (8.35) with h = h0, respectively.
Step 3. If rk ≤ r0 + ε in cases (I) and (III) and if rk ≥ r0 − ε in case (II) then termi-

nate the algorithm. The optimal solution is obtained as x0.
Step 4. Update k = k+ 1. Update (x0,r0) with an optimal solution to the following

problem:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

minimize r, subject to x ∈ F, c j�y j − c j�x ≤ r, j ∈ K,
in case (I),

maximize r, subject to x ∈ F,
c j�x

c j�y j
≥ r, j ∈ K, in case (II),

minimize r, subject to x ∈ F,
c j�x

c j�y j
≤ r, j ∈ K, in case (III).

(8.52)

Return to Step 2.

Example 3. Let us apply the approach under unknown goal to the problem of Exam-
ple 2 with h0 = 0.5. We define T (c) by (8.27). In the problem, we can confirm that
minc∈(Γ )0

c�y > 0, for any y ∈ F . Namely, we consider case (II). Since Γ is crisp in
this problem, there is no difference by the choice of h0 ∈ (0,1]. Setting ε = 0.00001,
we applied Algorithm 3. The computation process is shown in Table 8.1. The ob-
tained solution is

(x1,x2)
� = (3.6,8.4)�, (8.53)

and its location is shown in Fig. 8.2. As shown in Fig. 8.2, reflecting the shape of Γ ,
i.e., the fact that Γ has a small right lower part, the obtained solution is located near
an extreme point (x1,x2) = (3,9) rather than (x1,x2) = (6,6).

In order to see the correspondences between ci ∈ cl(Γ )h and pair (Qi,Bi) which
are used in Algorithm 1, we note that c1 = (1.5,1.3)� is a solution to Problem (8.33)
with Q1 = {1,2} and B1 = (1,0) and c2 = (1,2) is a solution to Problem (8.33) with
Q2 = {3,4} and B2 = (1,0).



8 Robust-Soft Solutions in Linear Optimization Problems with Fuzzy Parameters 189

Table 8.1: Computation process

Step 1 We select c1(h0) = (1.5,1.3)�. We obtain y1 = (6,6)�. Set k = 1, x0 = y1 and r0 = 1.
Step 2 Solve Problem (8.35) with h = h0. We obtain (c2,y2) = ((1,2)�, (3,9)�) and r1 =

0.857143.
Step 3 r1 = 0.857143 < r0 − ε = 1−0.00001. Continue.
Step 4 We update k = 2. We obtain x0 = (3.6,8.4)� and r0 = 0.971429. Return to Step 2.
Step 2 Solve Problem (8.35) with h = h0. We obtain (c3,y3) = ((1.5,1.3)�, (6,6)�) and r1 =

0.971429.
Step 3 r1 = 0.971429 ≥ r0 − ε = 0.971429 − 0.00001. Terminate the algorithm. The optimal

solution is x0 = (3.6,8.4)�

8.7 Concluding Remarks

In this chapter, we described robust optimization approaches to linear programming
problems with fuzzy parameters. We explained the necessary care of the interaction
between objective function values of two solutions when they are compared. The in-
sufficiency of satisficing approaches is exemplified by a simple example. Two opti-
mal solution sets are defined and their properties are briefly described. To overcome
the weak points of two optimality concepts under uncertainty, robust-soft optimal-
ity concept is introduced. The necessarily soft optimal solution set is defined. Two
suboptimal solution sets are considered and then solution approaches to two nec-
essarily soft optimal solution sets are investigated. Both cases use the same main
solution procedure although the subproblems are different. The solution procedure
is based on a bisection method and a relaxation method and combined successfully
so that both methods converge simultaneously. Nevertheless, the solution procedure
is generally much more difficult than that by the satisficing approach. When fuzzy
goals are unknown, we do not need to use the bisection method and the solution
procedure becomes simpler. However, the reduced problem is still a non-convex
optimization problem. We hope that global optimization techniques [6, 16] as well
as computer technologies would be developed so that problems in optimization ap-
proaches would be solved in a practically acceptable computation time.
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Chapter 9
Robust Machine Scheduling Based on Group
of Permutable Jobs

Christian Artigues, Jean-Charles Billaut, Azzedine Cheref, Nasser Mebarki,
and Zakaria Yahouni

Abstract This chapter presents the “group of permutable jobs” structure to represent
set of solutions to disjunctive scheduling problems. Traditionally, solutions to dis-
junctive scheduling problems are represented by assigning sequence of jobs to each
machine. The group of permutable jobs structure assigns an ordered partition of
jobs to each machine, i.e. a group sequence. The permutation of jobs inside a group
must be all feasible with respect to the problem constraints. Such a structure pro-
vides more flexibility to the end user and, in particular, allows a better reaction to
unexpected events. The chapter considers the robust scheduling framework where
uncertainty is modeled via a discrete set of scenarios, each scenario specifying the
problem parameters values. The chapter reviews the models and algorithms that
have been proposed in the literature for evaluating a group sequence with respect
to scheduling objectives for a fixed scenario as well as the recoverable robust op-
timization methods that have been proposed for generating robust group sequence
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against scenario sets. The methods based on group sequences are compared with
standard robust scheduling approaches based on job sequences. Finally, methods for
exploiting group sequences in an industrial context are discussed and an experiment
for human decision making in a real manufacturing system based on groups is
reported.

List of Notations

• J set of jobs {Jj} j=1,...,n

• M set of machines {Mk}k=1,...,m
• pk, j duration of job Jj ∈J on machine Mk ∈M
• p j duration of job Jj ∈J (one machine case)
• Ck, j completion time of job Jj ∈J on machine Mk ∈M
• Cj completion time of job Jj ∈J (one machine case or Cj = maxMk∈M Ck, j).
• r j release date of job Jj ∈J
• d j due date of job Jj ∈J
• Lj =Cj − d j lateness of job Jj ∈J
• Cmax = maxJj∈J Cj makespan
• Lmax = maxJj∈J Lj maximum lateness
• σERD sequence of jobs according to the earliest release date rule
• σEDD sequence of jobs according to the earliest due date rule
• S set of uncertainty scenarios
• rs

j release date of job Jj ∈J under scenario s ∈S
• ds

j due date of job Jj ∈J under scenario s ∈S
• ps

j duration of job Jj ∈J under scenario s ∈S (one machine case)
• ps

k, j duration of job Jj ∈J on machine Mk ∈M in scenario s ∈S
• rs

k, j release date of job Jj ∈J on machine Mk ∈M in scenario s ∈S
• ds

k, j due date of job Jj ∈J on machine Mk ∈M in scenario s ∈S
• C s set of feasible schedules for scenario s ∈S
• Ck, j completion time of job Jj ∈J on machine Mk ∈M
• πk

j index of the machine that precedes machine Mk in job Jj routing

• Ω k
j index of the machine that follows machine Mk in job Jj routing.

• Ls
max(C) maximum lateness in scenario s ∈S of a schedule C ∈ C s

• σ k
i index of the job at position i on machine Mk ∈M in job sequence σ

• C s(σ) set of feasible schedules compatible with job sequence σ in scenario s
• ECs(σ) earliest feasible schedule compatible with job sequence σ in scenario s
• Ls

max(σ) maximum lateness of ECs(σ) in scenario s
• Σ set of feasible job sequences (scenario independent)
• G group sequence (ordered partition of jobs on each machine)
• νk number of groups on machine Mk ∈M
• Gk

i ith group on machine Mk ∈M
• G the set of (scenario-independent) feasible group sequences
• Σ(G) set of job sequences compatible with group sequence G
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• C s(G) set of schedules compatible with group sequence G in scenario s
• E C s(G) set of earliest schedules compatible with group sequence G in scenario s
• gk

j position of the group containing Ok, j

• θk, j lower bound for the earliest starting time of Ok, j in a group sequence (head)
• χk, j lower bound on the earliest completion time of Ok, j in a group sequence
• θ ′

k, j lower bound on the time between Ck, j and Cmax (tail)
• γ(G) lower bound on the completion time of group G
• τk, j largest earliest start time of Ok, j in a group sequence
• Ck, j largest earliest completion time of Ok, j in a group sequence
• τk, j smallest latest start time of Ok, j in a group sequence
• Ck, j smallest latest start time of Ok, j in a group sequence
• Precs

j set of jobs that precede Jj according to the ERD rule in scenario s
• Succs

j set of jobs that succeed to Jj according to the ERD rule in scenario s
• y j,q binary variable equal to 1 if job Jj is in the group at position q in the group

sequence
• x j,q binary variable equal to 1 if job Jj is at position q in the job sequence
• μ , α , β , ω parameters for instance generation
• mseq(Ok, j) free sequential margin of an operation Ok, j in a group sequence
• msn(Ok, j) net margin of an operation Ok, j in a group sequence
• msg(Ok, j) group margin of an operation Ok, j in a group sequence

9.1 Introduction to Scheduling and Robust Scheduling

In this section, disjunctive scheduling problems are defined and notations are intro-
duced. The standard solution representations based on job sequences and disjunctive
graphs are reviewed. Robustness definitions are given and the ways robustness can
be tackled are also presented.

9.1.1 Scheduling Problems

A scheduling problem consists in defining a set of a start times for a set of tasks
that share common resources, taking into account specific time constraints (such as
deadlines), and with the aim to optimize an objective function. Sometimes, one also
has to decide which resources will perform each task. A schedule is a solution to a
scheduling problem (see [8] for a global overview of scheduling problems).

Scheduling problems can be found in all types of organizations or systems.
The most famous application domain is the production industry, where scheduling
problems take an important place for the production management. Other classical
scheduling problems are encountered in computer systems, project management,
timetabling, etc. More recent application domains appear, particularly for treat-
ing requests in big data environment [4, 5], in hospital environments [14], in rail
companies [11], etc.
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The theory of scheduling was developed together with the theory of complexity.
The methods for solving scheduling problems come from the field of combinatorial
optimization, with exact solution methods for finding one optimal solution to the
problem and approximate solution methods for finding solutions that are as good as
possible.

We denote by J the set of n jobs to schedule. A job is either a single opera-
tion, or is composed by several operations. In this case, a graph allows to define
the precedence relations between the operations. In the case of a shop scheduling
problem, this graph is called the route or the routing of the job, and it is generally a
chain. A set M of m resources is available for performing the operations. Each re-
source (called machine in the case of a shop scheduling problem) is supposed to be
ready at time 0, and can perform at most one operation at a time. To each operation
is associated a performing resource in M and a processing time, denoted by pk, j for
processing time of job Jj on machine Mk (index k is omitted when there is only one
resource). It is assumed that the operations are performed without interruption, and
that preemption is not allowed.

A schedule is completely characterized by the definition of a vector of start-
ing times, or equivalently by a vector of completion times. We denote by Cj =
maxMk∈M Ck, j the completion time of the last operation of job Jj, Ck, j denoting the
completion time of job Jj on machine Mk.

The quality of a schedule is given by a performance measure, based on the jobs
completion times. The most common objective function is the makespan, denoted
by Cmax and defined by Cmax = maxJj∈J Cj. If the job Jj is supposed to be finished
at date d j, called the due date of Jj, we define by Lj the lateness of Jj, with Lj =Cj−
d j, and Lmax = maxJj∈J Lj, also called the maximum lateness, is another important
performance measure for a schedule. Other performance measures can be defined
for a schedule, please refer to [8] or [7] for a complete overview of scheduling
problems.

In the rest of this chapter, we will consider only two scheduling problems: a
scheduling problem with the environment composed by a single machine, and a
scheduling problem with a shop environment, where the routes of the jobs are dif-
ferent (also called a job shop environment). These two problems are illustrated in
the following example.

Example 1: Single Machine Environment

Let consider a single machine environment, and n = 5 jobs to schedule. To each job
Jj is associated a processing time p j, a due date d j, and a release time r j, which is a
date before which a job cannot start. The objective is to schedule these jobs so that
the maximum lateness Lmax is as small as possible. The data set is given in Table 9.1.

Suppose that the jobs are scheduled in the non decreasing order of the release
times. We obtain sequence σERD. Suppose that the jobs are scheduled in the non
decreasing order of the due dates (also called EDD rule for Earliest Due Date first),
we obtain sequence σEDD. The sequences and their evaluations are given in Fig. 9.1.
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Table 9.1: Instance for the single machine problem

Jj J1 J2 J3 J4 J5

r j 0 7 3 4 3
p j 3 4 1 2 4
d j 3 14 4 6 10

Notice that this problem is NP-hard in the strong sense, i.e. no polynomial
time algorithm can be proposed for solving the problem to optimality, unless
P = NP [13].

Example 2: Job Shop Environment

Let consider now a job shop environment, and n = 3 jobs to schedule on m = 3
machines and the data given in Table 9.2. To each job Jj are associated exactly
3 operations (one per machine). The objective is to schedule the jobs so that the
makespan Cmax is as small as possible.

Table 9.2: Instance for the job shop problem

Machine (duration)

J1 M1(6) M2(3) M3(7)
J2 M3(8) M1(6) M2(4)
J3 M1(5) M3(5) M2(6)

0 2 4 6 8 10 12 14 16 18 20

Sequence sEDD

J1 J3 J5J4 J2

Lmax(sEDD) =max(0,0,0,0,0) = 0

0 2 4 6 8 10 12 14 16 18 20

SequencesERD

J1 J3 J5 J4 J2

Lmax(sERD) =max(0,0,0,4,−2) = 4

Fig. 9.1: Gantt representation of sequences σERD and σEDD and their evaluations
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Figure 9.2 represents a feasible solution of the problem with a makespan equal
to 27. Note that the sequences of the jobs on each machine can be different from
each other.

9.1.2 Robustness in Scheduling

Robustness considerations receive more and more attention in the literature [6] be-
cause in real life situations, unexpected events and uncertainty of the data are chal-
lenging the expected plans, making then unusable, sometimes very quickly. This is
the reason why a lot of practitioners prefer a robust solution with a lower quality to
a vulnerable solution with optimal quality.

Several definitions of the robustness can be found in the literature. We refer to
the book by Kouvelis and Yu [15], where a chapter is devoted to robust scheduling
problems. As in [15], we consider that there is a significant data uncertainty and the
aim is to propose an algorithm returning a solution that hedges against the worst
contingency that may arise. Such an approach is called a robust approach.

A scenario based approach is used to model the data uncertainty. Each scenario
is a data set corresponding to a potential realization. Several scenarios are defined.
More formally, let us denote by S the set of scenarios and s one scenario in S .

We now informally illustrate the concept of robustness on the two scheduling
problems that we consider.

Example 1: Single Machine Environment

Let us consider the single machine scheduling problem. We denote by rs
j , ps

j and
ds

j the release time, the processing time and the due date of Jj under scenario s. We
assume that the previous data set is scenario number 1, and we add a new scenario.

M1

M2

M3

J1

J1

J1

J2

J2

J2

J3

J3

J3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Fig. 9.2: Gantt representation of a solution to the job shop problem
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The data set is now given in Table 9.3. Figure 9.1 presents the solutions for the
first scenario, we present the sequences σERD and σEDD for the second scenario in
Fig. 9.3.

Table 9.3: Instance for the single machine problem with two scenarios

s = 1 J1 J2 J3 J4 J5

r1
j 0 7 3 4 3

p1
j 3 4 1 2 4

d1
j 3 14 4 6 10

s = 2 J1 J2 J3 J4 J5

r2
j 3 3 0 1 7

p2
j 2 5 1 3 3

d2
j 6 11 2 5 14

0 2 4 6 8 10 12 14 16 18 20

Sequence sERD and sequence sEDD

J1J3 J5J4 J2

Lmax(sERD) = Lmax(sEDD) =max(0,0,−1,−1,0) = 0

Fig. 9.3: Gantt representation of sequences σERD and σEDD and their evaluations
for the second scenario

We can see that for the second scenario, sequences σERD and σEDD are the same:
(J3,J4,J1,J2,J5). We can say that sequenceσEDD is more robust than sequenceσERD

because the worse evaluation of σEDD is 0 and the worse evaluation of σERD is 4.

Example 2: Job Shop Environment

A second scenario is considered for the job shop problem. The two scenarios are
presented in Table 9.4. Only the jobs durations are changed, not the routing of the
jobs. Let ps

k, j denote the duration of job Jj on machine Mk in scenario s. If we keep
the same sequence on each machine as before and schedule the operations as early
as possible, we now obtain the solution represented in Fig. 9.4. The makespan is
now equal to 29, which is the worst case makespan on the job sequences.

Table 9.4: Instance for the job shop problem to do

s = 1 performing machine (duration)

J1 M1(6) M2(3) M3(7)
J2 M3(8) M1(6) M2(4)
J3 M1(5) M3(5) M2(6)

s = 2 performing machine (duration)

J1 M1(8) M2(2) M3(5)
J2 M3(10) M1(6) M2(5)
J3 M1(6) M3(5) M2(4)
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Fig. 9.4: Gantt representation of the same solution to the job shop problem with
scenario s = 2

9.1.3 Feasible Schedules and the Absolute Robustness Problem

We consider in this section an integration of the job shop scheduling problem and
of the single machine problem by defining operation release dates and due dates in
the job shop model. More precisely, rs

k, j ≥ 0 is the release date of the operation of
job Jj on machine Mk in scenario s and ds

k, j is the due date of the operation of job Jj

on machine Mk in scenario s.
For a scenario s ∈S , a feasible solution is a feasible schedule, given by a com-

pletion time Ck, j of each job Jj on each machine Mk that satisfies:

• Operations release date constraints:

Ck, j ≥ rs
k, j + ps

k, j ∀Jj ∈J ,∀Mk ∈M (9.1)

• Jobs routing constraints:

Ck, j ≥Cs
πk

j , j
+ ps

k, j ∀Jj ∈J ,∀Mk ∈M ,πk
j �= 0 (9.2)

where πk
j denotes the machine that precedes machine Mk in job Jj routing, with

πk
j = 0 indicating that machine Mk is the first machine in the routing of job Jj,

• Non-overlapping (also called disjunctive) constraints:

Ck, j ≥Ck,i + ps
k, j ∨ Ck,i ≥Ck, j + ps

k,i ∀Ji,Jj ∈J , i < j,∀Mk ∈M (9.3)

We denote by C s the set of feasible schedules for scenario s, i.e. the set of vectors
(Ck, j)Mk∈Mk ,Jj∈J that satisfy constraints (9.1)–(9.3). The maximum lateness of a
schedule C ∈ C s is given by

Ls
max(C) = max

Jj∈J
Ck, j − ds

k, j. (9.4)
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The standard absolute robustness problem (AR) as defined in [15] can now be
stated as

(AR) min
C∈∩s∈S C s

max
s∈S

Ls
max(C) (9.5)

9.1.4 The Standard Solution Representation for (Robust)
Disjunctive Scheduling

We note that a schedule may be feasible for a scenario and infeasible for another
one. In robust scheduling, it is convenient to consider the concept of job sequence
that allows to represent compactly for each scenario a family of feasible sched-
ules. The determination of the feasibility of a job sequence and the computation of
the scenario-dependent schedules can be both supported by the classical disjunctive
graph representation of the problem [22], defined as follows.

The disjunctive graph has the same vertices and arcs for all scenario but the
weights of the arcs are scenario dependent. The disjunctive graph has nm+ 2 ver-
tices, with a vertex jk per operation , for j = 1, . . . ,n and for k = 1, . . . ,m plus
dummy start and end vertices 0 and nm+ 1. The disjunctive graph is a 2-graph that
contains precedence arcs and disjunctive arcs. For a scenario s, we define a prece-
dence arc (0, jk) between vertex 0 and vertex jk valuated by rs

k, j for each release

date constraint (9.1). We define a precedence arc between vertex jπk
j and jk, val-

uated by ps
k, j for each precedence constraint (9.2). For each disjunctive constraint

(9.3), we define two opposite disjunctive arcs, one from node ik to node jk valuated
by ps

k, j and one from node jk to node ik valuated by ps
k,i. Last we have an arc from

each node jk such that � ∃k′,πk′
j = k and node nm+ 1 valuated by ps

k, j − ds
k, j.

A complete selection of the disjunctive graph is, for each pair of disjunctive arcs,
the selection of a single arc (and the removal of the opposite one). A complete se-
lection is acyclic if there is no cycle in the graph issued from the selection. Once
an acyclic selection is obtained, it defines m total orders of the set of jobs via the
selected disjunctive arcs. Hence an acyclic selection can be associated with a job se-
quence σ = (σ k

i )
k=1,...,m
i=1,...,n where σ k

i gives the index of the job sequenced at position
i on machine Mk. Notice that in the job shop problem a “job sequence” designates
in fact a set of job sequences (one per machine). There is a one-to-one mapping be-
tween the acyclic selections and the feasible job sequences. Note that in the single
machine problem, all job sequences are feasible, which yields to n! job sequences.
For the job shop problem, only a subset of job sequences are feasible due to prece-
dence constraints, so we have at most mn! feasible job sequences.

An acyclic complete selection/job sequenceσ represents for each scenario a fam-
ily of feasible schedules C s(σ) given by the infinite set of potentials in the graph
issued from the selection. In this family, a dominant schedule with respect to the
Lmax objective function is the earliest schedule ECs(σ) such that ECs

k, j(σ) is the
length of the longest path from vertex 0 to vertex k j in the graph issued from the
selection , the corresponding Ls

max(σ) is the longest path between 0 and nm+ 1.
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Note that given a complete selection, the earliest schedule as well as the cycle de-
termination can be computed in O(nm) by topological sorting and Bellman-Ford
algorithm.

Let Σ denote the set of feasible job sequences, which is independent of the sce-
narios. For a fixed scenario s the standard job shop scheduling problem can be de-
fined as

min
σ∈Σ

Ls
max(σ)

Similarly the absolute robust job shop scheduling problem can be defined as the
search for a feasible job sequence that minimizes the worst case maximum lateness

(AR)min
σ∈Σ

max
s∈S

Ls
max(σ)

In terms of robust scheduling, the job sequence σ represents the first stage de-
cision variables that can be taken in advance without knowledge of the realized
scenario, while the completion times are the second-stage decision variables that
are adjusted according to the realized scenario by picking a schedule in set C s. In
case of an objective function defined as the sum or the maximum of non decreas-
ing job individual functions of the completion time (also called a regular objective
function), the earliest schedule ECs(σ) dominates all other schedules of C s.

Example 1: Single Machine Environment

In Fig. 9.5, we give the disjunctive graph representation of the one-machine problem
instance. Because there is no routing constraint between the jobs, the disjunctive
arcs form a clique. In Fig. 9.6 we give the conjunctive graph corresponding to the
feasible job sequence given by σERD for scenario s = 2.

Fig. 9.5: Disjunctive graph
of the single machine schedul-
ing problem
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Fig. 9.6: Conjunctive graph corresponding of the solution to the single machine
scheduling problem for scenario s = 2

Example 2: Job Shop Environment

In Fig. 9.7 we give the disjunctive graph representation of the job shop instance. The
conjunctive graph of the complete selection that gives the schedule represented in
Fig. 9.2 with scenario s = 1 is given in Fig. 9.8.

O1,1 O2,1 O3,1

O3,2 O1,2 O2,2

O1,3 O3,3 O2,3

0

1 2 3

4 5 6

7 8 9

10

6 3

7

8 6 4

5 5
6

0

0

0

Fig. 9.7: Disjunctive graph corresponding to the instance of the job shop scheduling
problem

9.2 Groups of Permutable Jobs: A Solution Structure
for Robust Scheduling

This sections present the groups of permutable jobs structure for disjunctive schedul-
ing. Then, it reviews combinatorial optimization problems that have been studied
and solved on the group of permutable jobs solution structure.
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Fig. 9.8: Conjunctive graph corresponding to the solution of the job shop schedul-
ing problem presented for scenario s = 1

9.2.1 Groups of Permutable Jobs: A Flexible Solution
Representation

A sequence of groups of permutable jobs on a machine Mk is defined as an ordered
set partition of the set of jobs J on machine Mk. An element of each partition is
called a group of permutable operations. As for the job sequence, the term “group
sequence” is used to name a set of group sequences (one on each machine). This
structure was proposed by François Roubellat in the early 1980s [17].

A group sequence G = (Gk
i )

k=1,...,m
i=1,...,νk

with ∩νk
i=1Gk

i = /0 and ∪νk
i=1Gk

i = J repre-
sents a partial job sequence to a disjunctive scheduling problem that specifies on
each machine Mk a sequence of νk groups of permutable operations, such that Gk

i
is the ith group on machine Mk and such that all operations inside a group can be
permutated without violating the feasibility of the sequence.

Example 1: Single Machine Environment

Let consider the group sequence presented in Fig. 9.9. This sequence is composed
of one group composed by jobs {J1,J3} and of group composed by jobs {J2,J4,J5}.
Of course, the first group starts at time 3 because J3 cannot start before date 3. The
duration of the group is the sum of the durations of the jobs. One can see easily that
whatever the order of the jobs in the first group, the jobs of the second group can
be executed at time 7 (or earlier if one starts with job J1). One can also see that the
flexibility provided by this group sequence (12 sequences are characterized) has a
price, since the makespan is now equal to 17 instead of 14 before.
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J1 J3 J5J4J2

Fig. 9.9: Gantt representation of a group sequence for the single machine problem

Example 2: Job Shop Environment

In Fig. 9.10, two groups of permutable operations are proposed. The first one is
composed by the operations of J1 and J3 performed on the first machine. The second
is composed of the operations of the same jobs on the third machine. One can see
that whatever the order of the operations inside each group, the sequence remains
feasible. Of course, this flexibility has a price since the makespan is now equal to 32.
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0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Fig. 9.10: Gantt representation of a group sequence for the job shop scheduling
problem

In terms of disjunctive graph, a group sequence matrix corresponds to an incom-
plete selection that has a particular structure representing the group sequences. Each
group is a strongly connected component (via unselected disjunctive arcs) and the
selected disjunctive arcs define m totally ordered group sets. We denote by G the set
of (scenario-independent) feasible group sequences.

Given a group sequence G ∈ G , we denote by Σ(G) the set of job sequences
that can be obtained from G, and by C s(G) the set of schedules issued from the
represented job sequences, i.e.:

C s(G) = ∪σ∈Σ(G)C
s(σ)

For regular objective function, we are interested in the set of earliest schedules that
can be issued from a group sequence on a scenario:

E C s(G) = ∪σ∈Σ(G){ECs(σ)}
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It follows that for a group sequence, there is a non unique dominant schedule
for a given scenario. Consequently, as a solution representation, a group sequence
provides (much) more flexibility. Indeed a group sequence represents Π k=1,...,m

i=1,...,νk
|Gk

i |
different job sequences and earliest schedules.

In turn, there is a much bigger number of feasible group sequences. The number
of different weak orders on set J is equal to

bn =
n

∑
k=0

k

∑
j=0

(−1)k− j
(

k
j

)

jn.

Then, for the single machine problem we have |G |= bn. For the job shop problem,
since not all job sequences are feasible, neither are all group sequences and the
number of group sequences is bounded by |G | ≤ mbn.

Finally, we have to remark that the set of feasible job sequences maps the set of
feasible group sequences such that each group has a single job.

9.2.2 Combinatorial Optimization Problems on Group Sequences

Several combinatorial optimization problems can be defined on the group sequence
solution representation and have been studied in the literature. We restrict to the case
where earliest schedules are dominant, which corresponds to regular scheduling ob-
jective functions. As a given group sequence G represents in general an exponential
number of feasible earliest schedules, given a scenario, a question arises on how
to select one schedule among the represented ones. In a robust optimization frame-
work, we assume that, given a disjunctive scheduling problem and a scenario set,
a group sequence G is computed as a first-stage decision set. In a second stage de-
cision setting, once the scenario is revealed, we assume that one of the represented
job sequence (and its corresponding earliest schedule) is selected with algorithm
A(G,s). A typical example would be to define A(G,s) as a list scheduling algorithm
that selects an order inside each group according to a priority rule. In fact, we can
identify the set of list scheduling algorithms compatible with G and the set of job
sequences represented by G. This gives rise to several combinatorial optimization
problems.

9.2.2.1 Best Earliest Schedule Within a Fixed Group Sequence
for a Fixed Scenario

The objective of the second stage algorithm A(G,s) is naturally to obtain the best
schedule according to the realized scenario, which yields problem (GP1). This gives
a lower bound on the performance that an algorithm A(G,s) can reach.
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(GP1) min
σ∈Σ(G)

Ls
max(σ)

As we can define a group sequence G such that |G|= 1 for the one machine prob-
lem, finding the best schedule in this sequence amounts to solve the one-machine
problem itself (denoted by 1|ri|Lmax), which is an NP-hard problem).

Methods that explicitly solve problem (GP1) for shop problems in an exact or
approximated way can be found in [20, 24]. We illustrate these methods for the
makespan objective (by considering that all dk, j are equal to 0). These methods rely
on the computation for each operation Ok, j of the head of the operation, noted θk, j ,
i.e., a lower bound for the earliest starting time, and a tail of the operation, noted
θ ′

k, j, i.e., a lower bound of the time between the operation’s latest completion time
(Ck, j) and the end of the schedule (Cmax).

Heads and tails, which are classical notions in shop scheduling, are adapted for
groups of permutable operations. The computation of θk, j involves the computation
of a lower bound for the earliest completion time for each predecessor of operation
Ok, j: the predecessor operation in job routing (Oπk

j , j
) and the predecessor group on

the same machine
Let gk

j the position of the group containing operation Ok, j on machine Mk. Then,

Gk
gk

j−1
(resp. Gk

gk
j+1

) is its predecessor (resp. successor) group on machine Mk. γ(G)

denotes a lower bound of the completion time of group G. The computation of γ(G)
is based on a one-machine relaxation by making the assumption that each machine
has an infinite capacity [20, 24]. Below, a lower bound for the earliest completion
time of operation Ok, j is denoted χk, j.

For an operation Ok, j, its head is computed as follows:

θk, j = max(rk, j ,γ(Gk
gk

j−1
),χπk

j , j
) (9.6)

γ(Gk
i ) =Cmax of 1|rk, j|Cmax with rk, j = θk, j, ∀Ok, j ∈ Gk

i

χk, j = θk, j + pk, j

Because of the symmetry of heads and tails, tails can be computed as heads
using a reversed version of Eq. (9.2.2.1): rather than starting the computation at the
beginning of the scheduling problem, the computation begins at the end. We use
below symmetrical intermediate values γ ′

(G) and χ ′
k, j to compute the tail θ ′

k, j.

Ω k
j denotes the machine that follows machine Mk in job Jj routing.

θ
′
k, j = max(γ

′
(Gk

gk
j+1

),χ
′
Ω k

j , j
)

γ
′
(Gk

i ) =Cmax of 1|rk, j|Cmax with rk, j = θ
′
k, j, ∀Ok, j ∈ Gk

i

χ
′
k, j = θ

′
k, j + pk, j
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These heads and tails can be directly used for the computation of a valid lower
bound for any regular objective. For example, for the makespan objective, a lower
bound is :

max
k∈M

max
i=1,...,νk

(γ(Gk
i ))

For the makespan, this lower bound can be improved using the one-machine re-
laxation proposed by Carlier and Chretienne [10] also based on the computation of
heads and tails. In our case the relaxation is made on the groups instead of machines;
for each group a lower bound is computed using the exact method of [9]. The max-
imum value for all groups represents an improved lower bound for the makespan.

In [20], it was shown that the computation of a lower bound for the best earliest
schedule has a complexity of O(n logn) for any regular objective.

9.2.2.2 Worst Earliest Schedule Within a Fixed Group Sequence
for a Fixed Scenario

This problem, denoted (GP2) seeks to determine the worst performance that any
algorithm A(G,s) can achieve on a given scenario. This gives an upper bound on
the performance of the second stage algorithm. In conjunction with problem (GP1),
we may obtain a lower and an upper bound of the performance of any second stage
algorithm compatible with G on a given scenario.

(GP2) max
σ∈Σ(G)

Ls
max(σ)

As for the preceding problem, a limit case is to consider a single group of n jobs for
the one-machine problem. In this case, we obtain maximization one-machine prob-
lems, which are in general easier than their minimization counterpart as shown in
[3] that provide polynomial algorithms and complexity proofs for several cases. Fur-
thermore, in [2], it was shown that (GP2) is polynomial for any disjunctive schedul-
ing problem. The calculation of this worst earliest schedule relies on the compu-
tation of the worst earliest starting time and the worst earliest completion time for
each operation denoted τk, j and Ck, j respectively.

The computation of τk, j corresponds to executing this operation at its worst po-
sition where all its predecessors are placed at their worst latest time. This problem
can be formulated as follows :

τk, j = max(rk, j ,Cπk
j , j
, max

Ok,l∈Gk
gk

j−1

Ck,l) (9.7)

To compute Ck, j, either the worst earliest completion time of operation Ok, j does
not depend on another operation of the same group, in this case the first term of the
following formula is used. Otherwise, in the worst case, the operation ends last in
its group and the second term is used.
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Ck, j = max(τk, j + pk, j, max
Ok,l∈Gk

gk
j
,l �= j

τk,l + ∑
Ok,l∈Gk

gk
j

pk,l) (9.8)

The computation of τk, j and Ck, j can be performed efficiently by longest path
computation in a special conjunctive graph, as described in [2]. We do not describe
this graph here for sake of conciseness.

Finally, maxJi∈J ,Mk∈M (Ck, j − d j) represents the worst case evaluation for the
groups of permutable operations for the Lmax objective. More generally, the worst
case evaluation can be computed in polynomial time for regular min-max objectives.

This calculation can also be used as an upper bound for min-sum regular objec-
tives.

9.2.2.3 Worst Latest Schedule Within a Fixed Group Sequence
for a Fixed Scenario

This problem, denoted (GP
′
2) is similar to (GP2) with due dates for the jobs (dk, j).

It seeks to determine the worst performance that any algorithm A(G,s) can achieve
on a given scenario such that there is no late schedule described by the groups of
permutable operations.

For this, it needs the computation of the worst latest starting time τk, j and the
worst latest completion time Ck, j of an operation Ok, j which is similar to the com-
putation of τk, j and Ck, j. A reverse version of Eqs. (9.7) and (9.8) can be used.
Rather than starting from the beginning, the computation starts from the end using
the due dates of jobs as explained in [19, 23].

τk
j and C

k
j can be expressed as follows:

Ck, j = min(dk, j,τΩ k
j , j
, min

Ok,l∈Gk
gk

j+1

τk,l)

τk, j = min(Ck, j − pk, j, min
∀Ok,l∈Gk

gk
j
,l �= j

Ck,l − ∑
∀Ok,l∈Gk

gk
j

pk,l) (9.9)

9.2.2.4 Flexibility Maximization with a Bounded Objective
for a Fixed Scenario

Without any assumption on the second stage algorithm A(G,s), a question arises to
maximize a flexibility measure of the group sequence G, denoted f lex(G), while
ensuring an upper bound UB on the objective. Intuitively, this allows to propose
a group sequence such that the largest number of represented job sequences (or
with an alternative view, the largest number of compatible second stage algorithms)
satisfy the upper bound.This yields problem (GP3):
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(GP3) max
G∈G

f lex(G) s.t. Ls
max(σ)≤UB,∀σ ∈ Σ(G)

As an outcome, we obtain a performance guarantee on the worst earliest schedule for
the considered scenario but we have no indication of the best achievable objective,
which would require to solve (GP1). As problem (GP1) is generally NP-hard, an
alternative from computing the best schedule represented by a group sequence is to
ask that the group sequence represents a fixed sequence σ0, which yields

(GP4) max
G∈G

f lex(G) s.t. σ0 ∈ Σ(G),Ls
max(σ)≤UB,∀σ ∈ Σ(G)

Provided that σ0 is selected as the optimal solution for scenario s, then solving
(GP4) gives for a given scenario a group sequence G of maximal flexibility such
that any job sequence σ issued from G (or any list scheduling algorithm compatible
with G) verifies Ls

max(σ0)≤ Ls
max(σ)≤UB.

Several flexibility measures are available from the literature. The most natural
one is the number of represented job sequences/earliest schedules

f lex1(G) = |Σ(G)|

In [2], a surrogate flexibility measure is used, as the number of groups. Indeed it
holds intuitively that generating less groups yield more flexibility. We define this
measure as

f lex2(G) = |G|
To normalize this criterion, for a disjunctive problem with m machines we can de-
fine.1

f lex3(G) =
mn−|G|
mn−m

In case of full flexibility, we have m groups and f lex3 = 100%. In case of no flexi-
bility we have mn groups and f lex3 = 0%.

In [2], an O(n3) algorithm has been proposed to solve problem (GP3) with f lex1

for the one-machine problem without release dates, and in the case where the due
dates are agreeable, i.e. for any two jobs i, j ∈ J , pi ≤ p j ⇔ di ≤ d j. The same
algorithms solves also (GP4) with f lex1 for the same problem, but without the re-
striction of agreeable due dates. In the same context, (GP3) is solved with f lex2 by a
simpler O(n logn) algorithm. Adding now release dates, (GP4) is solved with f lex1

by an O(n7) algorithm and with f lex2 by an O(n4) algorithm. Hence f lex2 yields
generally simpler problems than f lex1.

By varying UB, different compromise solutions can be found between the flexi-
bility criterion and the represented schedule performance. This was illustrated for a
job in [2], where a (GP4) was heuristically solved with f lex2. The represented job
sequence σ0 was set to the optimal job shop solution and UB was set to different
values above Ls

max(σ0). In [12], the two-machine flow-shop, open-shop and job shop

1 This was initially proposed in [12] for m = 2.
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problems are studied. A problem dual to (GP3) with f lex2 is also considered, in the
sense that it consists in minimizing the makespan while the number of groups is
bounded.

(GP5) min
G∈G ,σ∈Σ(G)

Ls
max(σ) s. t. k1 ≤ |G| ≤ k2

For the 2-machine flow shop problem (GP3) and (GP5) with f lex2 are both NP-
hard in the strong sense. However, for any integer 1 ≤ k ≤ n the authors propose
a heuristic to build a group sequence G such that |G| = k a job sequence σ such

that Cs
max(σ)

Cs
max(σ∗) ≤ |G|+1

|G| , where σ∗ is the job sequence that minimizes the makespan
with no restriction on the number of groups. This is a theoretical bound on the
makespan increase when the flexibility is increased. They also propose a heuristic
for (GP4) with f lex2. Complexity results are also given for (GP5) and f lex2 for the
two machine job shop and flow shop problems.

9.2.2.5 Recoverable Robust Optimization for a Fixed List Scheduling
Algorithm on a Scenario Set

If we consider now a fixed list scheduling algorithm A(G,s) that outputs a job se-
quence that is both compatible with group sequence G and feasible for scenario s,
we may seek the group sequence that maximizes the robustness of the earliest sched-
ule selected by the list scheduling algorithm according to the realized scenario. We
obtain problem (GP6).

(GP6) min
G∈G

max
s∈S

Ls
max(A(G,s))

Note that compared with the job sequence representation, the group sequence
representation introduces a third decision level. The first decision level builds the
group sequence. The second decision level selects the job sequence. The third deci-
sion stage selects the schedule. In Sect. 9.3 we present a method to solve (GP6) for
the single machine problem that we compare with the standard robust scheduling
method.

9.3 Solution Methods: A Recoverable Robust Approach Based
on Groups of Permutable Operations

Using the concept of recoverable robustness (GP6) proposed in Sect. 9.2, we present
in this section a mixed integer linear program (MILP) and a heuristic method for
the maximum lateness minimization on the single machine problem. Given a group
sequence and according to the realized scenario, the A(G,s) algorithm schedules the
jobs inside a group following the Earliest Release Date (ERD) rule. To evaluate the
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interest of the recoverable robust approach, a MILP model as well as a tabu search
algorithm are proposed for standard robust scheduling method. Experimental tests
are performed and comparisons are given.

9.3.1 MILP Formulation

In order to simulate the ERD rule, a list of predecessors and successors denoted
Precs

j and Succs
j are defined for each job Jj and each scenario s as follows:

Precs
j = {Ji ∈J /(rs

i < rs
j) or (rs

i = rs
j and i < j)}

Succs
j = {Ji ∈J /(rs

i > rs
j) or (rs

i = rs
j and i > j)}

We define binary variables y j,q equal to 1 if job Jj is in group Gq (i.e. the group
at position q), and 0 otherwise. Cs

j ≥ 0 is the completion time of job Jj in scenario s.

• Assignment constraints: assign each job to exactly one group

n

∑
q=1

y j,q = 1, ∀ j ∈ {1, . . . ,n} (9.10)

• Non-overlapping constraints: for a given sequence, the completion time of a job
Jj is at least equal to the release date of Ji plus the duration of the jobs that are
between Ji and Jj in the sequence, including these two jobs. The following two
constraints compute the minimum value of the job completion time under each
scenario as set by the list scheduling algorithm. The case were Ji and Jj are in
the same group is considered by constraints (9.11), whereas constraints (9.12)
consider the case where these two jobs are not in the same group.

rs
i + ps

i + ∑
l∈(Succs

i∩Precs
j)

ps
l yl,q + ps

j −M(2− yi,q− y j,q)≤Cs
j,

∀i, j,q ∈ {1, . . . ,n}, j ∈ Succs
i ,∀s ∈S (9.11)

According to the ERD rule, the expression ∑l∈(Succs
i∩Precs

j)
ps

l yl,q computes the
total duration of the jobs between Ji and Jj except pi and p j.

rs
i + ps

i + ∑
l∈Succs

i

ps
l yl,q +

q′−1

∑
f=q+1

n

∑
l=1

ps
l yl, f + ∑

l∈Precs
j

ps
l yl,q′ + ps

j

−M(2−yi,q −y j,q′)≤Cs
j, ∀i, j,q,q′ ∈ {1, . . . ,n},q′ > q,∀s ∈S (9.12)

The total duration between the jobs Ji and Jj is represented by the expres-

sion ∑l∈Succs
i

ps
l yl,q+∑q′−1

f=q+1 ∑
n
l=1 ps

l yl, f +∑l∈Precs
j
ps

l yl,q′ . Given a scenario s and
according to the ERD rule, expressions ∑l∈Succs

i
ps

l yl,q and ∑l∈Precs
j
ps

l yl,q′ com-
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pute the total duration of Ji successors and the total duration of Jj predecessors,

respectively. The remaining expression ∑q′−1
f=q+1 ∑

n
l=1 ps

l yl, f compute the total du-
ration of groups between those including the two jobs.

• The maximum lateness of a schedule

Lmax ≥Cs
j − ds

j, ∀ j ∈ {1, . . . ,n},∀s ∈S (9.13)

• Objective function
min Lmax

This model contains n2 binary variables, n|S |+ 1 continuous variables and
O(n4|S |) constraints.

9.3.2 Tabu Search Algorithms

The proposed MILP can only be used to solve small problem instances. To over-
come the difficulty of solving large instances, we propose a tabu search heuristic to
solve larger instances. The metaheuristic works as follows. Starting from an initial
solution and defining the neighborhood structure, the procedure selects the best ap-
propriate neighbor solution. The selected solution can be chosen if it is not in the
tabu list. Otherwise this solution is rejected and the procedure seeks another neigh-
bor solution. The process is repeated if the global stopping condition is not reached.

• Step 1. Initial solution: the initial sequence of groups is obtained by sorting the
jobs in their due dates increasing order over the first scenario s = 1. From this
sequence, n groups are created, by assigning each job to one group.

• Step 2. Selection of the best neighbor: starting with the current group sequence
solution, each neighbor is evaluated and the best non tabu is kept.

• Step 3. Stopping condition: the algorithm stops when a global time limit, fixed to
30 s, is reached.

In the following, the implementation of the encoding, neighborhood structure
and tabu list for the proposed algorithm are respectively described.

9.3.2.1 Encoding

Because the group sequence and the composition of groups do not depend on the
scenario, a solution of the problem can simply be encoded by a vector of size n.
Let v be the used vector for encoding a solution and g j the index of the group to
which job Jj is assigned on the solution sequence. A complete solution is encoded
by assigning a value g j to vector v for each j, 1 ≤ j ≤ n.
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9.3.2.2 Neighborhood Definition

We denote by |G| the number of groups. Four neighborhood are defined as follows:

• Groups swap: let v j the position to swap, select vk and swap the values v j and vk.
This neighborhood swaps the groups assigned to jobs Jj and Jk.

• Group insert: insert a job Jj of group v j to an existing group vk.
• Group split: split a group into two groups. The fact that the sequence inside the

group depends on the realised scenario makes the split infeasible. To rectify it,
we order the jobs inside a group in increasing order according to the average due
dates of the jobs over the scenarios.

• Groups fusion: merge two consecutive groups into one.

9.3.2.3 Tabu List

The tabu list contains solutions that are recently selected and prevents to choose
them again. The experiment analysis do not really show the contribution of a tabu
list. Therefore, we have fixed a size of 10n for the Tabu list, which gives relatively
better results.

9.3.3 Solution Algorithms for the Standard Robust
Scheduling Method

To evaluate our algorithms for the recoverable robust approach based on groups of
permutable jobs, the algorithms presented above are compared with those of the
standard robust scheduling method (without groups of permutable operations). In
order to do that, we propose a mixed integer linear program (MILP) and a tabu
search heuristic for the standard robust scheduling method. The MILP as well as the
tabu search proposed algorithms are briefly presented.

Positional variables x j,k ∈ {0,1} are defined for this model and Lmax is a contin-
uous variable to minimize. Variable x j,k takes value 1 if the job Jj is in position k,
and 0 otherwise.

• Assignment constraints: assign one job at each position, and one position to each
job

n

∑
j=1

x j,k = 1, ∀k ∈ {1, . . . ,n}
n

∑
k=1

x j,k = 1, ∀ j ∈ {1, . . . ,n}

• Guarantee that the worst earliest schedule Lmax is larger than the maximum late-
ness of each scenario
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Lmax ≥
n

∑
j=1

rs
jx j,k +

k′

∑
q=k

n

∑
j=1

ps
jx j,q −

n

∑
j=1

ds
jx j,k′ ,

∀k,k′ ∈ {1, . . . ,n},k ≥ k′,∀s ∈S

• Objective
min Lmax

This model contains n2 binary variables, one continuous variable and O(n2|S |)
constraints.

To make a fair comparison of the two robust solution paradigms, the proposed
tabu search algorithm is based on the same principles as before and starts with the
same initial solution. In the following, we describe the implementation of the en-
coding and the neighborhoods structure, without changing the rest of the algorithm.

A vector v′ of size n is used to encode a solution in which v′j represents the
position of job Jj in the schedule. The two used neighborhoods are the following:

• Position swap: This neighborhood performs an exchange of the positions of two
jobs. Let v j be the position to swap, select v′k and swap the values v′j and v′k.

• Position insert: insert a job at position v′j to position v′k. The jobs between v′j and
v′k will be shifted.

9.3.4 Computational Experiments

The algorithms have been evaluated on randomly generated instances using the
following scheme. We first generate (p1

j ,r
1
j ,d

1
j ) for the scenario s = 1 which is

called “reference scenario”, then for each s ∈ S , s �= 1, uncertainty was gen-
erated from the data (p1

j ,r
1
j ,d

1
j ). Processing times p1

j were uniformly generated

in the interval [1,50] and we denote by P = ∑n
j=1 p1

j the total processing times
on the reference scenario. Release and due dates were generated in the intervals

[1,μP] and
[

α− β
2 P,α+ β

2 P
]

, respectively. For modelling the uncertainty on the

data, for each scenario s ∈ S , s �= 1, (ps
j,r

s
j,d

s
j) are generated uniformly from

the “reference scenario” by taking values from the intervals
[

1−ω p1
j ,1+ω p1

j

]

,
[

1−ωr1
j ,1+ωr1

j

]

and
[

1−ωd1
j ,1+ωd1

j

]

, respectively. Parameters μ , α and β
take a fixed value {0.5}, {1} and {1}, respectively. The last parameter ω takes val-
ues from the set {0.2,0.4,0.6}. For each couple (n,s) ten instances are generated in
which n ∈ {10,25,40,100} and S ∈ {2,5,10}. The experiments have been run for
the 360 instances on an Intel i7-4770 CPU 3.40 GHz computer with 8 GB.

We evaluated and compared the performance of the solutions obtained by the
MILP models and the tabu search algorithms. We call RRA the recoverable robust
approach and SRA the standard robust approach. Let zE(A) and zH(A) denote the
objective value of the algorithm A∈ {RRA,SRA} returned respectively by the exacts
methods given by MILPs and the heuristic one given by the tabu search algorithm.
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In Table 9.5, we provide the aggregate results for each n. The statistics take
account of the average CPU times ttb needed to reach the best solution for both
tabu search algorithms. The average gap between the exact solution found and
the tabu search solution are given by gap columns. gap takes value (zH(SRA)−
zE(SRA))/zH(SRA) in the SRA case and (zH(RRA)− zE(RRA))/zH(RRA) in the
RRA one. The last column Δ = (zH(SRA)− zH(RRA))/zH(SRA) gives the average
gap between the two tabu search algorithms.

Table 9.5: Experimental comparisons
SRA RRA

n ttb(s) gap ttb(s) gap Δ
10 0.01 1.7 % 0.01 0 % 24.79 %
25 0.14 2.3 % 0.15 – 17.28 %
40 0.39 – 0.52 – 16.83 %
100 3.21 – 12.58 – 13.71 %

The experiments show the limits of MILP models, especially for the recoverable
robust approach. In ttb columns, one can see that the RRA tabu search algorithm has
a faster growth than the one for SRA. However, the difference remains not very sig-
nificant and both algorithms have comparable CPU times for considered instances.
As expected finally, column Delta reveals the benefits of the recoverable robust ap-
proach to obtain better worst case maximum lateness values. This is due to the fact
that the RRA can react to the realized scenario thanks to the group structure.

9.4 Using Groups of Permutable Operations in an Industrial
Context

As mentioned in Sect. 9.2.2 robust machine scheduling based on groups of per-
mutable operations is composed of three decisions stages. The second stage decision
set consists, once the scenario is revealed, in selecting a job sequence and we assume
in this chapter that the earliest schedule is selected from a given job sequence. In an
industrial context the selection of a job sequence has to be made in a very short time.
In order to fulfill this timing constraint, either heuristics adapted to groups of per-
mutable operations may be used (as the ERD list scheduling algorithm used in the
previous section) or the selection may be done by a human operator during the ex-
ecution of the schedule. This section describes several alternative ways of selecting
job sequence from a group sequence on a realized scenario (index s is consequently
dropped), keeping industrial requirements in mind.
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9.4.1 Heuristics for the Reactive Phase of Groups
of Permutable Operations

To solve the job shop scheduling problem one of the most common approaches is
the use of heuristics based on priority dispatching rules (PDR), which are rules used
to select the next job to process from jobs awaiting service on a resource. The lower
bounds presented in Sect. 9.2.2 are used to build PDRs for groups of permutable
operations when the objective is to minimize the makespan.

First a PDR based on the operation’s tail is proposed. The idea is to give more
priority to an operation which exhibits a large tail. As the tails of different operations
may be equal, the rule Shortest Processing Time (SPT), which aims at selecting the
operation with the shortest imminent processing time, is used to break the ties. This
heuristic named SQUTAIL (Square Tail) is formulated as:

min(pk, j −θ
′
k, j)

From the lower bounds another PDR is proposed, with the following behavior:

1. For each operation waiting in the queue, a partial group of operations is generated;
2. The lower bound for the makespan is computed for these partial generated

schedules;
3. The operation with the lowest lower bound is then chosen.

To break the ties, this rule, named LB (Lower Bound), is combined with ei-
ther rule SQUTAIL or the PDR Most Work Remaining (MWR) which selects the
operation with the highest remaining processing time. The use of MWR together
with LB is named LB+MWR and the use of SQUTAIL together with LB is named
LB+SQUTAIL.

Another heuristic, which is not based on the lower bounds, is also proposed.
Shifting Bottleneck (SB) heuristic, described in [1], is a very effective heuristic in
job shop scheduling for the makespan. In order to adapt the shifting bottleneck for
groups of permutable operations, the relaxation in one-machine problem, is used.
In our case, the algorithm is not applied to the machines but to the groups. As the
number of re-optimizations is higher than with the classical SB, better performances
are expected as well as higher computation time. Another benefit of the relaxation
applied to the groups is that all the computed schedules are feasible contrarily to
the classical SB which may give schedules that are not feasible. This heuristic is
named SB.

In [19], these heuristics have been evaluated on a well-known benchmark for
job shop scheduling, the Lawrence’s instances composed of 40 instances of 8 dif-
ferent sizes [16]. They show that these heuristics are very effective to evaluate the
makespan with the following ranking:

• SQUTAIL is the less efficient (in average a deviation of 13.7 % from the optimal)
but the fastest (less than 0.13 s in average with a maximum of 0.46 s),
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• LB+MWR and LB+SQUTAIL are quite similar in performance (an average of
3.6 % from the optimal) and computing time (an average of 0.94 s with a maxi-
mum of 3.8 s),

• SB is the most effective, giving the optimal for 17 instances (in average a de-
viation of 1.5 % from the optimal and a maximum of 3.2 %). It is also more
time-consuming (an average of 3.7 s with a maximum of 10.74 s).

Each heuristic has specific strengths and weaknesses. To give in a very short
time a solution, SQUTAIL is a good compromise, SB is a very effective heuristic in
regards with the performance, LB+MWR and LB+SQUTAIL are in between.

9.4.2 A Multi-Criteria Decision Support System (DSS)
for Groups of Permutable Operations

Another approach to select a job sequence is to let a human operator choose in
real-time the next operation to process within a group of permutable operations, ac-
cording to the operator’s knowledge of the context. In order to make his choice, the
operator needs criteria adapted to groups of permutable operations. In Sect. 9.2.2 a
best earliest schedule and a worst earliest schedule evaluation for any regular ob-
jective within a group sequence for a fixed scenario have been presented. In [23] an
adaptation of the free margin to the groups of permutable operations is presented.
The so-called free sequential margins allows to evaluate during the execution of the
schedule, the schedule lateness.

9.4.2.1 Free Sequential Margin

The free sequential margin computes for an operation according to its earliest exe-
cution, the maximum tardiness which ensures that all schedules enumerated in the
group sequence will present no tardiness.2 The free sequential margin of an opera-
tion mseq(Ok, j) has two components:

• the operation’s net margin msn(Ok, j), which is related to the operation itself re-
gardless the other operations of the group.

• the operation’s group margin msg(Ok, j), which is related to the other operations
of the group.

The computation of the proper free sequential margin of Ok, j corresponds to
the difference between its worst latest starting time τk, j (9.9) and its worst earliest
starting time τk, j (9.7).

Using the worst case earliest starting time and the worst case latest completion
time, the free sequential margin can be expressed as follows :

2 Positive lateness.
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mseq(Ok, j) = min(msn(Ok, j),msg(Ok, j))

msn(Ok, j) =Ck, j − pk, j − τk, j

msg(Ok, j) = min∀Ok,l∈Gk
gk

j
,l �= j Ck, j −∑∀Ok,l∈Gk

gk
j

pk,l − τk, j

For a given group of permutable operations, several situations may occur:

• All the free sequential margins of the current group are positive or zero, in that
case whatever the chosen operation, all possible permutations on the group will
give schedules with no tardiness. Nevertheless, choosing the operation with the
highest group margin permits to maximize the margins.

• There is at least one operation in the group which presents negative free sequen-
tial margin. In that case, there may be sequences in this group which give tardi-
ness, but it is also possible to have sequences with no tardiness:

• If all net margins are positive then there may be sequences on this group with
no tardiness. It is recommended to execute the operation with the highest group
margin in order to increase the negative margins, trying to make them become
positive.

• If there is at least one operation with a negative net margin then all possible
permutations on the group will give late schedules.

An industrial manufacturing scheduling software named ORDO have been de-
veloped in France, based on the concept of groups of permutable jobs and using
the free sequential margin indicator at the shop floor. At the early 2000s ORDO
was used in more than 70 make-to-order manufacturing companies. The software is
described in [21] and more references can be found in the book [17].

9.4.2.2 Multi-Criteria DSS

The free sequential margin is the only criterion used in an industrial context (ORDO
software) to help the operator choose an operation within a group of permutable
operations. However, with only one criterion at his disposal, the operator has little
choice to make his decision.

An experiment conducted at the University of Nantes has tried to evaluate if a
DSS composed of several criteria could be more efficient [18]. This experiment was
realized on a real manufacturing system that can be represented by a six machines
job shop problem. During the first stage decision set, groups of permutable opera-
tions with a fixed scenario were computed. In the second stage, 18 students at the
end of their bachelor degree in production management studies have played the role
of the operator. Each student was asked to schedule in real time a single workstation
(the same for each student), by choosing an operation within a group. The objective
given to the students was to minimize the tardiness, measured by the Lmax.
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The students were separated in two equal groups. The first one has only the free
sequential margin at his disposal while the second group has five different criteria
to make his choice:

• The best earliest schedule evaluation, which gives the best predictable quality of
the schedule if the operation is chosen

• The worst earliest schedule evaluation, which gives the worst predictable quality
of the schedule if the operation is chosen

• The operation’s free sequential margin,
• The operation’s sequence in the routing,
• The operation’s processing time

For the second group, students have to explicitly query for each criterion, one by
one. Thus, the criteria used to help the operator for taking his decision are registered.

The performance of the human-machine system is measured through the qual-
ity of the decision process and not through the scheduling performance. Indeed,
it would only take one “bad” decision to downgrade the scheduling performance.
The quality of the decision making process is evaluated through the proportion of
“good solutions” taken by the operator. A solution is considered “good” if it is not
dominated by another potential choice considering the Lmax.

The results, presented in form of Boxplots (Fig. 9.11), show that with a multi-
criteria DSS, the proportion of good solutions increases, and this effect is significant.
Using the multi-criteria system the mean proportion of good solutions is 0.86 while
it is 0.78 using only the free sequential margin. However, Fig. 9.12 shows that the
free sequential margin remains the most used criterion, the best and the worst case
evaluation are the less used.

This experiment indicates that with a multi-criteria DSS the quality of the deci-
sion process is better. Concerning the criteria, the free sequential margin remains the
dominating criterion. This is not surprising because the instruction was to minimize
the tardiness and this criterion measures the capacity to absorb expected delays. The
best and the worst earliest schedules are less used. This can be explained by the fact
that they have a great anticipation effect contrarily to the operation’s sequence and
the operation’s processing time. These two criteria give direct information on the
operation and thus are better understood by the operator.

Free

sequential margin

Multi-criteria

system

40% 100%60%20% 80%

Fig. 9.11: Proportion of good solutions
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Fig. 9.12: Average proportion of queries by criterion
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Chapter 10
How Robust is a Robust Policy? Comparing
Alternative Robustness Metrics for Robust
Decision-Making

Jan H. Kwakkel, Sibel Eker, and Erik Pruyt

Abstract Nowadays, decision-makers face deep uncertainties from a myriad of
external factors such as climate change, population growth, new technologies, and
economic developments. The challenge is to develop robust policies, which perform
well across all possible resolutions of the uncertainties. One approach for achiev-
ing this is to design a policy to be adapted over time in response to how the future
actually unfolds. A key determinant for the efficacy of such an adaptive policy is
the specification of when and how to adapt it. This specification depends on how
robustness is being operationalized. To date, there is little guidance for selecting
an appropriate robustness metric. In this chapter we address this problem, using
a case study of designing a policy for stimulating the transition of the European
energy system towards more sustainable functioning using five different robustness
metrics. We compare the policies as identified by each metric and discuss their rel-
ative merits. We highlight that the different robustness metrics emphasize different
aspects of what makes a policy robust. More specifically, measures that separate dis-
persion and the mean, effectively doubling the number of objectives, provide very
valuable information on the trade-offs between the mean performance of the policy
and dispersion around this mean. We also discuss, based on our case, why analysts
should use multiple robustness metrics.
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10.1 Introduction

In many planning problems, planners face major challenges in coping with uncertain
and changing physical conditions, and rapid unpredictable socio-economic develop-
ment. How should society prepare itself for this confluence of uncertainty? Given
the presence of irreducible uncertainties there is no straightforward answer to this
question. Effective decisions must be made under unavoidable uncertainty [10, 23].
The acceptance of uncertainty as an inevitable part of long-term decision-making
has given rise to the development of new tools and approaches (see Walker et al.
[36] for a review).

Robust decision making is a paradigm example of the new approach to model-
based decision support in the face of deep uncertainty [13, 22]. In this approach, a
very large ensemble of plausible futures spanning the various key uncertain factors
is created [20]. This ensemble serves as a test bed for candidate policies. Through
scenario discovery, the key vulnerabilities and opportunities of a candidate policy
are identified [6]. In light of this, an iterative process of (re)design of candidate
policies takes place, aimed at improving the overall robustness of the policy.

Typically, the iterative redesign of candidate policies involves the inclusion of
actions whose implementation is conditional on how the future unfolds [13]. The
challenge here is to avoid implementing these actions either too early or too late.
Very recently, robust multi-objective optimization has been suggested as a technique
for supporting the search for finding the right conditions [14]. However, a variety of
alternative operationalizations of robustness have been used within a multi-objective
optimization framework (e.g., [13, 15, 17, 21, 22]). In these various operationaliza-
tions, robustness is understood either as reducing the uncertainty about the expected
consequences of a given policy. So no matter how the future plays out, the policy
performance falls in a narrow bandwidth. Or, alternatively, robustness is understood
as minimizing the undesirable outcomes. So, no matter how the future unfolds, pol-
icy performance will be satisfactory. This raises the question how the choice of the
robustness metric affects the final design of an adaptive policy or plan. It also raises
the question whether some robustness metrics always outperform other robustness
metrics. Therefore, insight into the consequences of different robustness metrics
can help analysts in choosing a (set of) metric(s) that is appropriate for the case at
hand, and improve awareness regarding the relative merit of alternative robustness
metrics.

In this chapter, we apply five different robustness metrics to the same case, all-
owing us to compare the results and providing insight into the relative merits of
each of these five metrics. We start from the European energy transition case studied
by Hamarat et al. [14]. This case focuses on finding an adaptive plan, built on the
European emission-trading scheme that maximizes the potential of achieving the
emission reduction targets set out by the European Commission. A variety of actions
can be taken to help in achieving the emission reduction targets. The key question
is to identify the conditions under which a given action should be taken. This can
be formulated as a robust multi-objective optimization problem. In this chapter, we
explore the consequences of alternative robustness metrics using this case.
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The chapter is structured accordingly. In Sect. 10.2 we introduce the alternative
robustness metrics. Section 10.3 provides additional details on the multi-objective
optimization formulation and the approach for solving this problem, and briefly
introduces the simulation model of the European energy system, the key uncertain
factors that need to be accounted for, and the case specific formulation of the robust
multi-objective optimization problem. Section 10.4 contains the results for each of
the five robustness metrics and their comparison. A discussion of the results and
their implications is presented in Sect. 10.5.

10.2 Measuring Robustness

Robust optimization methods aim at finding, in the presence of uncertainty about
inputs, optimal outcomes that are not overly sensitive to any specific realization
of the uncertainties [1, 3–5, 19]. In robust optimization, the uncertainty that exists
about the outcomes of interest is described through a set of scenarios [25]. Robust-
ness is then defined over this set of scenarios. This definition differs from worst-
case formulations such as minimax, which can produce very costly and conservative
solutions [25].

The way in which robustness is defined over the scenario set can affect the sol-
utions that are being found. A careful choice of the robustness metric(s) is thus
paramount. Three families of metrics are available: regret, satisficing, and statistical.
Regret based metrics are comparative in character. They compare the performance
of a policy option in a given scenario with some performance measure in the same
scenario. Regret-based metrics originate from Savage [30]. Savage defines regret as
the difference between a given policy’s performance in a specific possible future and
the performance of the best performing policy option in that specific possible future.
A robust policy is the one that minimizes the maximum regret across all alternative
possible futures. Alternative regret metrics use some type of baseline performance
for a given scenario instead of best performing option [17, 22, 26]. In this chapter,
we will not further consider regret-based metrics, for they are very hard to embed
efficiently within an optimization routine.

Satisficing metrics aim at maximizing the number of scenarios, which meet a
minimum performance threshold. They thus rely on the upfront specification of
this performance threshold. A well-known example of this is the domain criterion
[31, 32], which focuses on the fraction of the space where a given performance
threshold is met; the larger this space, the more robust the policy. Often, this is sim-
plified to looking at the fraction of scenarios, rather than the volume of the space.
Recently, the domain criterion made a resurgence under the label of info-gap deci-
sion theory [2]. Because of their reliance on a user specified performance threshold,
satisficing criteria introduce a new source of uncertainty into the analysis. In part
because of this, we ignore these criteria in this chapter.

The third family of robustness metrics are statistical or density based. That is,
they look at the distributional character of the outcomes of interest. The basic in-
tuition of these metrics is that a robust policy leaves little uncertainty about the
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expected outcomes. That is, the more peaked the distribution of expected outcomes,
or the more skewed towards the desired region of outcomes, the more robust the pol-
icy. In this chapter, we focus our analysis on this family of metrics and we highlight
several exemplary metrics.

For comparative purposes, we include the conservative maximin (or minimax)
criterion as our first metric. It is the most conservative and focuses only on the
worst case and making this worst case as good as possible

fi(x) =

{

max(xi), minimization

min(xi), maximization
(10.1)

where xi is a vector of the performance of outcome indicator i in each scenario.
In case of minimization, the worst case is the maximum performance. In case of
maximization, the worst case is the minimum performance. Note that we take the
maximum or minimum over the performance across the set of scenarios, rather than
use an optimization for finding the globally worst case. Since this metric only con-
siders the worst case, it is expected to result in conservative and costly solutions.
The second metric is based on the intuition that a robust solution will have a good
average result with very limited dispersion around it. In mathematical form

fi(x) =

{

(μi + 1)(σi + 1), minimization

(μi + 1)/(σi+ 1), maximization
(10.2)

where μi is the mean over the set of scenarios for outcome indicator i and σi is the
standard deviation. The +1 is included to handle situations where either μi or σi

is close to zero. This metric is essentially a signal to noise ratio, or a form of risk
discounting. There are three downsides to this first metric. First, it does not provide
insight into the trade-off between improving the mean and reducing the standard
deviation. Second, functions that combine the mean and variance are not always
monotonically increasing [28]. Third, by using the standard deviation, good and bad
deviations from the mean are treated equally [34]. In many cases, however, robust-
ness is understood as minimizing the undesirable deviations from the mean. These
problems can be solved in various ways. In this chapter we consider three alterna-
tive approaches. Common to these approaches is that they have separate objectives
for the mean and some measure of the deviation from this, effectively doubling the
number of objectives in the eventual optimization problem.

The third metric is a variant of the approach used by Takriti and Ahmed [34],
where we measure the mean and the undesirable deviations away from some target
value as separate objectives

fi(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−μi,
k

∑
k=1

(xk − q50)
2[xk > q50], minimization

μi, −
k

∑
k=1

(xk − q50)
2[xk < q50], maximization

(10.3)
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where q50 is the median performance, k is a scenario, xk is the score for the i-th
outcome indicator in scenario k, and the sum is only taken over the cases that meet
the specified condition. So, we are taking the sum of squared differences from the
median in the undesirable direction. Effectively, this metric uses the sum of squared
differences as proxy for the skewness of the distribution.

The fourth metric offers an alternative way of measuring the skewness of the
distribution of outcomes, using a quantile-based definition following Voudouris et
al. [35]. This quantile-based definition is motivated by the potential unreliability of
moment-based definitions of skewness if the density estimate is fat-tailed [8], i.e. if
there are many scenarios (data points) in the tail regions.

fi(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−μi,
(q90 + q10)/2− q50

(q90 − q10)/2
, minimization

μi,
(q90 + q10)/2− q50

(q90 − q10/2
, maximization

(10.4)

where q10, q50, and q90, are the 10th, 50th, and 90th quantile respectively or the
distribution of outcomes for outcome indicator i. The more positive the values of this
metric, the more skewed the density estimate is towards the right (higher values).
The more negative this value is, the more skewed the distribution is towards the left
(lower values). Therefore, for outcome indicators to be maximized, the policy option
with higher skewness is preferred, whereas for outcome indicators to be minimized,
lower skewness is preferred.

Instead of considering the skewness of the distribution, one can consider the
peakedness. Kurtosis is a well-known measure, established originally to describe
peakedness. Among several formulations of kurtosis [16], following Voudouris et al.
[35], a simple quantile-based metric is adopted here

fi(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−μi,
q90 − q10

q75 − q25
, minimization

μi,
q90 − q10

q75 − q25
, maximization

(10.5)

where q10, q25, q75, and q90, are the 10th, 25th, 75th, and 90th quantile, respectively,
of the distribution of outcomes for outcome indicator i. The higher this metric, i.e.
the smaller the inter-quartile range compared to the interval between 90th and 10th
quantiles, the more peaked the density estimate is around the mean.

10.3 Case

The European Union (EU) has targets for the reduction in carbon emissions and
the share of renewable technologies in the total energy production by 2020 [7]. The
main aim is to reach 20 % reduction in carbon emission levels compared to 1990
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levels and to increase the share of renewables to at least 20 % by 2020. In order
to meet the 2020 goals, the EU adopted the European Emissions Trading Scheme
(ETS) for limiting the carbon emissions [7]. ETS imposes a cap-and-trade principle
that sets a cap on the allowed greenhouse gas emissions and an option to trade al-
lowances for emissions. However, current emissions and shares of renewables show
a fragile progress of reaching the 2020 targets. Moreover, the energy system in-
cludes various uncertainties related to e.g. technology lifetimes, economic growth,
costs, learning curves, and investment preferences. Whether the policy will achieve
its targets is at least partly contingent on how these various uncertainties play out.

10.3.1 Model

In this study, a System Dynamics [11, 27, 33] model is used for simulating plausible
futures of the EU electricity system. The model represents the power sector in the
EU and includes congestion on interconnection lines by distinguishing seven dif-
ferent regions in the EU. These are United Kingdom, Ireland, Italy, and northwest,
northeast, middle, southwest, and southeast Europe. Nine power generation tech-
nologies are included. These are: wind, PV solar, solid biomass, coal, natural gas,
nuclear energy, natural gas with Carbon Capture and storage (CCS), coal gasifica-
tion with CCS, and large scale hydro power. The model includes endogenous mech-
anisms and processes related to the competition between technology investments,
market supply-demand dynamics, cost mechanisms, and interconnection capacity
dynamics.

Figure 10.1 shows the main sub-models that constitute this model at an aggregate
level. These are installed capacity, electricity demand, electricity price, profitability
and levelised costs of electricity. At an aggregated level, there are two main factors
that drive new capacity investments: electricity demand and expected profitability.
An increase of the electricity demand leads to an increase in the installed capacity,
which will affect the electricity price. This will cause a rising demand, in turn result-
ing in more installed capacity. On the other hand, decreasing electricity prices will
lead to lower profitability and less installed capacity, which will result in electric-
ity price increases. Each sub-model has more detailed interactions within itself and
with the other sub-models and exogenous variables and these causal relationships
drive the main dynamics of the EU electricity system. More detail on the model
can be found in Loonen [24], including a detailed description of all equations and
variables.

We are interested in exploring and analyzing the influence of a set of deeply
uncertain input variables on the key output variables. In order to explore this un-
certainty space, not only parametric but also structural uncertainties are included.
For exploring structural uncertainties, several alternative model formulations have
been specified and a switch mechanism is used for switching between these alter-
native formulations. Parametric uncertainties are explored over pre-defined ranges.
Table 10.1 provides an overview of the uncertainties, 46 in total.
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In many scenarios, the ETS policy alone will not be sufficient to achieve the
stated CO2 emission reduction targets. It thus needs not be complemented with add-
itional actions. The reasons for not achieving the reduction targets differ from one
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Fig. 10.1: The main causal loops in the EU energy model

scenario to the next. Therefore, the additional actions are scenario dependent. We
consider three possible additional actions:

1. Obligatory phase out of older energy generation technology.
2. Subsidy for sustainable energy generation technology. The amount of the sub-

sidy is conditioned on the differences in marginal costs between sustainable and
non-sustainable technology.

3. Obligatory decommissioning of non renewable technologies to maintain the
achieved fraction of renewable technologies.

Each of these actions is good only in some scenarios. For example, the third action
is aimed at scenarios where the use of renewable energy collapses after a quick
uptake. To address this, the challenge is to specify up front the conditions under
which each of these actions should be implemented. We address this problem using
multi-objective robust optimization.
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Table 10.1: Specification of the uncertainties to be explored

Name Description

Economic lifetime For each technology, the average lifetime is not known precisely.
Different ranges for the economic lifetimes are explored for each
technology.

Learning curve For each technology, the extent to which costs will decrease with
increasing experience is uncertain. Different progress ratios are
explored for each technology.

Economic growth It is deeply uncertain how the economy will develop over time. Six
possible developments of economic growth behaviors are
considered.

Electrification rate The rate of electrification of the economy is explored by means of
six different electrification trends.

Physical limits The effect of physical limits on the penetration rate of a technology
is unknown. Two different behaviors are considered.

Preference weights Investor perspectives on technology investments are treated as being
deeply uncertain. Growth potential, technological familiarity,
marginal investment costs and carbon abatement are possible
decision criteria.

Battery storage For wind and PV solar, the availability of (battery) storage is difficult
to predict. A parametric range is explored for this uncertainty.

Time of nuclear ban A forced ban for nuclear energy in many EU countries is expected
between 2013 and 2050. The time of the nuclear ban is varied
between 2013 and 2050.

Price demand elasticity A parametric range is considered for price demand elasticity factors.

10.3.2 Formulating the Problem

The general optimization problem we are solving is

minimize F(L) = [ fcosts,− frenewables,− freduction]

where L = [ld f , lad , ls f , lsd , lpr, ldc f , l f th, ltr]

subject to 0.5 ≤ cd f ≤ 1,
0.0 ≤ cad ≤ 0.75
0.0 ≤ cs f ≤ 0.5
0.0 ≤ csd ≤ 20.0
1.0 ≤ cpr ≤ 2.0
0.0 ≤ cdc f ≤ 0.5
0.0 ≤ c f th ≤ 1.0
10 ≤ ctr ≤ 40

Table 10.2 offers an explanation of each policy leaver l, and the meaning of the
subscripts for both li and Ci. fcosts, frenewables, and freduction are the costs of the
policy, the fraction of renewables at the end of the simulation, and the reduction
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of emissions of green house gases respectively. The constraints ci are taken from
Hamarat et al. [14] and are based on common sense and case specific considerations.

Various approaches exist for solving multi-objective optimization problems.
Over the last decade, substantial advances have been made through the use of gen-
etic algorithms (GA). GA use a population of solutions, which are evolved over the
course of the run of the algorithm. This population can be evolved in such a way that
it maintains diversity, while continuallymoving towards the Pareto frontier. In this

Table 10.2: List of triggers and their descriptions

Trigger Brief description

Action 1 Desired fraction (d f ) Desired fraction of renewable technologies.
Additional decommissioning (ad) Additional fraction of non-renewable

technologies to be decommissioned.
Action 2 Subsidy factor (s f ) Additional fraction of subsidy for renewables.

Subsidy duration (sd) Duration for how long the subsidy for the
renewables will be active.

Proximity (pr) Proximity of cost to the cost of the most
expensive non-renewable technology.

Action 3 Decommissioning factor (dc f ) Fraction to be decommissioned for
non-renewables when the gap between desired
and forecasted fraction for renewables is above
the Trigger.

Forecast time horizon ( f th) Time horizon over which the forecast for the
level of renewable fraction is done.

Trigger (tr) Proximity of the forecasted renewable fraction
to the desired fraction.

way, multiple Pareto front solutions can be found in a single run of the algorithm [9].
Currently, a wide variety of alternative multi-objective evolutionary algorithms are
available for solving multi-objective optimization problems [12, 18]. In this study,
we use Borg, a state of the art GA where the evolutionary operators co-evolve
with the search [12]. In various comparisons, Borg has been demonstrated to be
among the best available genetic algorithms for solving multi objective optimiza-
tion problems [12, 29].

10.4 Results

Figure 10.2 shows the ε-progress of the genetic algorithm for each of the five alter-
native robustness metrics (10.1)–(10.5). ε-Progress measures how often the genetic
algorithm has been able to find a substantially better solution. Over the course of
the optimization, this will occur less frequently. As a result, ε-progress stabilizes,
indicating that the algorithm has converged. The number of function evaluations
required to achieve a stable set of solutions differs from one robustness metric to
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the next. For example, the second robustness metric stabilized very quickly, while
the third and fourth robustness metrics require a substantially larger number of func-
tion evaluations. A first reason for this is that the ε values are different for non-
comparative metrics. A second explanation is the fact that the first two robustness
metrics use a single metric, while metrics three, four and five use two metrics. This
effectively doubles the solution space.

Figure 10.3 shows the values for the decision variables for all of the solutions,
grouped by metric. In this figure, each line represents a solution, and the intersection
point of this line with a vertical axis shows the value of the corresponding decision
variable in this solution. We observe several things. First, virtually all metrics use
the edges of the solutionspace for several of the decision variables. Second, many of

Fig. 10.2: ε-Progress for the five objective functions (robustness metrics)

the metrics go to the upper extreme of the decommissioning factor. This means that
obligatory additional decommissioning of fossil-based energy generation is effec-
tive across metrics. We also see that virtually all solutions combine this with a low
value for the trigger. This means that even if there are small differences between the
desired and forecasted fraction of renewables, the various robustness metrics favor
aggressive decommissioning. On the other levers, the pattern is less clear. Still, we
observe that for example metric 1 uses the upper extreme of the desired fraction of
renewables in combination with aggressive additional commissioning of sustainable
energy generation technologies. Metric 1 aims at minimizing the worst case, so to
minimize the worst case, very aggressive promotion of sustainable energy should be
pursued. Similar observations can be made for the other metrics.
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Solving the multi-objective optimization problem for each of the metrics pro-
duces a set of solutions that are non-dominated. Figure 10.3 shows the values for
the decision variables for each solution per robustness metric. There are clear dif-
ferences in this, but how does this translate to differences in outcomes? To analyze
this, we look at the cumulative distribution of the terminal values for the outcomes
of interest. This is shown in Fig. 10.4. We see that the shape of the distribution is
quite similar for all solutions found by each of the five metrics, but some metrics
produce better results than others. For example, if we look at the fraction of renew-
ables (Fig. 10.4a),we see that robustness metric 5 produces a set of solutions that all

Fig. 10.3: Values for policy levers for all solutions, colored by objective function
(robustness metric) used

result in a high fraction of cases with substantial adoption of renewables. In contrast,
metrics 3 and 4 produce a set of solutions with a wider spread of results.

In order to get sharper insight into how different the results are for all of the
solutions, we calculate the distance between all cumulative distributions using the
Kolmogorov-Smirnov statistic. The result for each of the three outcome indicators
is shown in Fig. 10.5a–c. Each of these figures shows a matrix, and each cell is
colored according to the difference between the cumulative distributions of the two
solutions in the row and column of this cell. Here, we can see that the one solution
found by using metric number 2 (marked as obj 2–1) is equal to or better than
all other solutions. The second best set of solutions is produced by metric 5 where
almost all solutions are very close to the solution found by metric 2. This observation
is true for all three indicators. So both metric 2 and 5 produce solutions that are
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both relatively cheap, and effective in reducing CO2 emissions and increasing the
adoption of sustainable energy generation technologies.

So far, we have focused on the individual outcomes of interest. A major advan-
tage of the multi-objective optimization approach is that we can get insight into the
trade-offs between the various outcomes of interest. To this end, we created a set of
pair-wise scatter plots for each of the five robustness metrics, with Gaussian kernel
density estimates on the diagonal. The resulting set of figures is shown in Fig. 10.6.
We observe that irrespective of the robustness metric, the solutions with a high adop-
tion of sustainable energy generation also tend to be cheaper across virtually all sce-
narios. This is explained by the fact that pursuing high adoption requires aggressive
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Fig. 10.4: Cumulative distributions of the terminal values of the three performance
indicators across all solutions. (a) The fraction of renewables. (b) The fraction of
emission reduction. (c) The costs of the policy

strategies in the short term which result in learning effects, in turn lowering the price
and increasing the efficiency of sustainable energy generation technologies.

Figure 10.6 also highlights some of the key differences between the various met-
rics. For example, metric 1, which focuses on the worst case only, performs poorly
across the range of scenarios even though its worst case is the least worst case pos-
sible. Metrics 3, 4, and 5 which include both the average performance as well as a
metric related to the deviation from this average produce a larger set of solutions. For
example, metric 4 offers some examples of solutions that appear to have a slightly
lower average performance, but are more reliable with respect to their expected per-
formance, or at least have a less wide range of downside outcomes. This is most
clearly observable for the fraction of renewables.
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10.5 Discussion

Comparing the results identified by the five different robustness metrics, we observe
several things. First, metric 1 focuses on minimizing the worst case, but at the exp-
ense of the performance in all other scenarios. A worst case approach should thus
be used only in very specific circumstances. Second, metrics 2 and 5, both of which
focus on the peakedness of the distribution appear to produce the best sets of solu-
tions. For this case, there appears to be little benefit to using a metric that focuses
on the downside risk of outcomes instead of the overall distribution of outcomes.
Still, both metric 3 and 4, which do this, can produce results on par with metrics 2
and 5. We see in Fig. 10.5 that both solution 4–11 and 3–16 are on par with the best
solutions produced by metrics 2 and 5.

Fig. 10.5: Distances between cumulative distributions of the terminal values for the
three outcome indicators as measured by the Kolmogorov-Smirnov statistic. (a) The
fraction of renewables. (b) The fraction of emission reduction. (c) The costs of the
policy
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Fig. 10.6: Pairwise scatter plots for each solution across all scenarios for all five
robustness metrics. (a) Metric 1, (b) metric 2, (c) metric 3, (d) metric 4, (e) metric 5
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The results suggest that there is no single best robustness metric. Metric 1 is
useful if the worst case is the sole concern. Metric 2 and 5 are useful if one is int-
erested in reducing the uncertainty about expected outcomes but one is indifferent
with respect to upside and downside deviations. Metrics 3 and 4 are useful if one is
primarily concerned about negative deviations from the average performance. Met-
rics 3, 4, and 5 produce insight into the trade-offs between average performance
and the deviations from this average. This can be very useful decision support infor-
mation, but it doubles the solution space. In the present chapter, we have used the
same robustness metric for all outcome indicators. Evidently a mixed approach can
be pursued. For example, users might prefer certainty about costs, while being con-
cerned about negative deviations for adoption of sustainable energy generation. In
this case either metric 2 or 5 can be used for costs, while either metric 2 or metric 3
would be used for the fraction of renewables. In short, case specific considerations
and system characteristics should be considered in choosing statistical robustness
metrics.

The results are based on a single run of the optimization algorithm for each met-
ric. It is good practice to assess the adequacy of solutions found through genetic
algorithms by performing several replications. Genetic algorithms exploit stochas-
ticity for effective searching, but this also introduces some randomness in the algo-
rithm. Performing several replications with different random seeds can enhance the
confidence that the identified solutions are indeed good approximations of the true
Pareto front.

Robust optimization requires evaluating the performance of a given solution over
a set of scenarios. This creates substantial runtime concerns. In the case reported
here, we evaluated the robustness over a set of 500 scenarios. Each of these scenarios
requires the running of the simulation model, which takes a few seconds. Finding
effective ways of reducing the size of the set of scenarios needed for calculating the
robustness metric can help in substantially reducing the calculation time. If we are
able to reduce the size of the set from a 500 to 250, the runtime would be halved.

In this chapter, we focused on five examples of statistical robustness metrics. We
have not considered satisficing or regret based metrics. It will be quite interesting to
extent the presented analysis to also include examples of both families of robustness
metrics. This would offer a more comprehensive insight into the merits of examples
of all three families of robustness metrics.

The implication of the results presented in this chapter is twofold. First, there is
no clearly superior single robustness metric. Case specific consideration and system
characteristics affect the merits of the various robustness measures. This implies
that an analyst has to choose carefully which robustness measure is being used and
assess its appropriateness. Second, because of the different insights generated by the
different robustness metrics, it is advised to consider multiple robustness measures
simultaneously and explore their joint implications for decision-making. For exam-
ple, in this case, all metrics favor aggressive additional decommissioning of existing
fossil fuel based energy generation. This might be a strong argument for including
this action as part of the overall strategy. In short, when deciding on robustness
metrics, use multiple and choose with care.
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Chapter 11
Developing Robust Climate Policies: A Fuzzy
Cognitive Map Approach
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Abstract Climate change has been considered one of the most significant risks for
sustainability in our century; in order to move towards low-carbon and climate res-
ilient economies, fundamental changes must take place. In this direction, the Euro-
pean Union has set ambitious goals regarding the transition of its Member States to
low carbon societies, but the policy strategies to promote this transition must be soc-
ially acceptable and supported. So far, climate policies have been evaluated using
quantitative methods, including general equilibrium and integrated assessment mod-
els but, despite their undoubted contribution to climate modeling, both the quantita-
tive frameworks used for studying climate change and its impacts and those aiming
at policy optimization or evaluation feature significant uncertainties and limitations.
In order to overcome these issues, a Fuzzy Cognitive Map based approach is pro-
posed, aiming to directly involve stakeholders and assess human knowledge and
expertise. The suggested methodological framework can significantly support cli-
mate policy making, by supplementing quantitative models and exploring impacts
of selected sets of policies, based on qualitative information deriving from a struc-
tured stakeholder engagement process. Finally, an innovative approach of incorpo-
rating the concept of time into the methodology is proposed and evaluated, in the
aim of enhancing the robustness of transition pathways.
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11.1 Introduction

Climate change has long been considered one of the most prominent sustainability
problems [70] as well as among the most significant systematic risks for global soci-
ety [24] of this century. In this respect, the European Union has set ambitious goals
with regard to the necessary transition of Member States to low carbon economies.
The European Council has, in fact, recently mapped its envisioned requirements of
a 80–95 % cut on emissions by 2050 [17], taking into account that in order to tackle
the global challenge for building a sustainable future that is climate change [34] the
global temperature increase should be controlled: until recently, a global average
temperature increase of no more than 2 ◦C compared to pre-industrial levels until
2100 had been considered relatively [28, 61] safe in order for the most significant
consequences to be avoided [67], although the pursuit of a newer and stricter goal of
1.5 ◦C was discussed and agreed upon during the latest United Nations conference
on climate change [68].

It is obvious that the desired transitions cannot be achieved immediately, but
require specific courses of action that can adapt to the reference concentration (and
corresponding emission) trajectories, i.e. pathways, studied by the Intergovernmen-
tal Panel on Climate Change [63]. Furthermore, these transitions require radical and
rapid implementation of policies that are socially and politically supported [76]. To
this end, the European Union has been looking at cost-efficient ways to cut most
of its greenhouse gas emissions by identifying the key sectors in this direction, as
well as corresponding sectoral goals by the end of every decade until 2050, so as
to achieve greater depth on costs, trade-offs and uncertainty when examining policy
options [16].

So far, climate mitigation has been mostly studied through the use of quantitative
methodologies. These include computable general equilibrium models that can eval-
uate impacts of policy reforms on the economy, revolving around the economic im-
pacts of mitigation policies (e.g., [72]) or studied alongside climate-specific models
(e.g., [40]); advanced econometric models with strong empirical background [4, 59];
dynamic stochastic general equilibrium models that emphasize economy dynamics
over time, used as climate mitigation assessment tools [13, 14]; and energy-specific
scenario frameworks, such as the LEAP framework [29, 42]. These models can
greatly help explore implications of various scenarios in relation to climate mitiga-
tion pathways and identify effective policy drivers in quantitative terms; however,
they may limit their scope to the economics of climate change, feature significant
uncertainties, or fail to study all sectors in need of policy reform, and usually ignore
the socio-economic dimensions of climate change.

In order to deal with the above weaknesses, integrated assessment models, that
is models that draw on knowledge from multidisciplinary research [75], have been
receiving increasing attention (e.g., [23, 46, 49]). These models combine economic
and scientific aspects of climate change and have been proven to address issues such
as evaluating climate change control policies, integrating multiple disciplines in the
same framework and studying climate change in the context of both other environ-
mental and non-environmental problems, but the degree to which their results have
supported policy making is unclear [37].
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Despite their undoubted contribution, all of the aforementioned quantitative mod-
els involve assumptions and simplifications [73] and, although their level of detail is
limited by computing power and the need to avoid becoming too complex [47], they
eventually tend to be technically too complex to construct or understand [1]. As a
result, policy makers may view these models as too complicated to transform their
findings into policies or as black boxes and be reluctant to trust their results [37].

It is therefore of vital importance that methods able to successfully model com-
plex systems and at the same time easy to build by utilizing existing knowledge
and experience be used. Such methods should allow for both feasible and successful
policy pathways to be determined and studied, taking into account the national con-
text and sectoral specificities of a country as well as incorporating the knowledge of
experts around uncertainties and risks where quantitative data are not available or
too costly.

In this study, Fuzzy Cognitive Maps (FCMs) are proposed as one such method-
ology, for modeling the complex system that is climate mitigation policy in the
European Union. FCMs are fuzzy structures that strongly resemble neural networks
and are often used as a useful tool for modeling complex systems [35]. Once con-
structed, the FCM model allows performing qualitative simulations of a system and
experimenting with the model [2]. FCM simulations thus allow decision makers to
examine information dynamics and uncertainty, as well as identify critical system
elements and assess different decision alternatives by comparing their outcome in a
holistic manner [33].

Özesmi and Özesmi [51] extensively discuss the reasons for choosing FCMs
when dealing with environmental problems over other modeling methods, such as
system dynamics models, multiple criteria decision analysis methodologies, expert
systems and structural equation models. Most importantly though and compared to
quantitative models in particular, FCMs do not depend on data availability: their
robustness does not depend on any training procedures that are biased to the size of
the available data sets [53]. Moreover, given the fact that they are built on human
expertise and knowledge alone, they are highly flexible and easy to include social
effects [69].

The following section introduces the origins and structure of Fuzzy Cognitive
Maps. Section 11.3 presents the proposed FCM-based methodological framework
for modeling climate policy pathways. The aim of the framework is to visualize the
system dynamics deriving from both the results of other modeling methods and an
effective stakeholder participatory process; quantify the knowledge and experience
of the experts with regard to the success of the various transition pathways; and use
all available information to simulate the impacts of the chosen policies on the res-
pective systems, in order to gain new insight. Finally, Sect. 11.4 focuses on the ass-
essment of simulation results, and Sect. 11.5 discusses key aspects of the proposed
methodological framework.
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11.2 Fuzzy Cognitive Maps

Cognitive mapping is a qualitative technique that aims to capture a person’s percep-
tion of a particular issue in a diagrammatic format [20]. It provides both the analyst
and the interviewee with a process that is not constrained by formal structure and
through which additional insight can be gained [12]. In this context, a map focuses
on the individual’s values, beliefs and assumptions about a certain domain and rev-
eals how these relate to each other, providing information about how the change of
one issue can affect the others. Therefore, a cognitive map [3] can be defined as the
graphical representation of a system, in which nodes represent concepts and arcs
represent the perceived relationships between these concepts (Fig. 11.1).

Fig. 11.1: Example of a cognitive map

Every cognitive map features a unique adjacency matrix A = [ai j] that pro-
vides information with regard to its structure, i.e., how concepts are linked to each
other [27]. The adjacency matrix is a square matrix that includes all concepts listed
on both the vertical and the horizontal axis; when a causal connection from concept
ci to concept c j exists, then ai j = 0, otherwise ai j = 1. In other words, if ai j = 1,
then concept ci is considered a cause of concept c j, and concept c j is considered
an effect of concept ci. The adjacency matrix for the cognitive map in Fig. 11.1 is
shown in Table 11.1.

Cognitive maps work as a transitional object applied by members in the aim of
expressing and understanding their knowledge contents with regard to certain prob-
lem domains, as well as their structure [6]. They can be used for assessing attention,
association and importance in order to identify mental connections between strategic
themes; showing dimensions of categories and cognitive taxonomies in order to det-
ermine hierarchical relationships and frame the competitive environment; exploring
influence, causality and system dynamics; delving into the structure of arguments
and conclusion; and specifying schemas and frames [31].
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Table 11.1: The adjacency matrix of the example cognitive map

C1 C2 C3 C4 C5

C1 0 1 0 0 1
C2 0 0 1 0 1
C3 0 0 0 1 0
C4 1 0 0 0 1
C5 0 0 1 0 0

Kosko [39] was the first to introduce the notion of Fuzzy Cognitive Maps
(FCMs), by suggesting that cognitive maps are too binding for knowledge-base
building because causality is fuzzy, admits of vague degrees and thus cannot be fully
described by arcs that connect concepts with one another. Among Huff’s five types
of cognitive maps, FCMs fall under the third category: they are fuzzy-graph struc-
tures for representing causal reasoning and consist of concepts that interact with
each other, enabling the mapper to show the dynamics of a particular system [25].
The main difference between FCMs and cognitive maps lies in the fact that causal
relation values are also defined and quantified, meaning that links between concepts
are weighted.

As a result, a fuzzy cognitive map does not have only a unique adjacency matrix
but a weight matrix W = [wi j ] as well. Entries in an FCM weight matrix are not
of binary form (either 0 or 1), but can be of any numerical value within the inter-
val [−1,1]. If there exists a causal connection from concept ci to concept c j, then
[wi j ∈ (0,1] if a positive change in concept ci leads to an increase in concept c j, or
[wi j ∈ [−1,0) if a positive change in concept ci leads to a decrease in concept c j;
otherwise, if no connection exists between the two concepts then wi j = 0.

A causal map, and therefore a fuzzy cognitive map as well, includes concepts
that can be one of three types: transmitters, receivers and ordinary concepts [21].
A transmitter is a concept that can be perceived only as a cause to other elements
within the system under examination; a receiver is a concept that can be perceived
only as an effect of other elements; and ordinary concepts are those elements that
have both at least one cause and at least one effect relationship. These three types
can also be defined by their indegree and outdegree functions. The indegree or gen-
eralized indegree of a node is the number of paths leading to this particular node
from others, while the (generalized) outdegree of a node is the number of paths
leading from this node to others [9]. As a result, a transmitter is a concept with zero
indegree and non-zero outdegree; a receiver is a concept with non-zero indegree
and zero outdegree; and an ordinary concept is a concept with both indegree and
outdegree non-zero [50]. An example of these structural criteria can be viewed in
Fig. 11.2, which is inspired by the work of Lopolito et al. [45].

Other than assessing the structure of a map, the indegree and outdegree func-
tions can also contribute to drawing comparisons between FCMs, as they are used
to calculate centrality of concepts, which is the summation of their indegree and
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Fig. 11.2: Transmitter, receiver and ordinary variables of a causal map, based on
Lopolito et al. [45]

outdegree [27], as well as complexity, which is defined as the ratio of number of
receivers to the number of transmitters [51].

In a fuzzy cognitive map, concepts represent key factors and stand for events,
goals, inputs, outputs, states, variables and trends of the modeled system [25]. For
example, in the context of developing robust mitigation policy pathways, these can
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be events, policy-defined goals, system trends, transition drivers and barriers (such
as risks and uncertainties) and other variables acting within each national (or sec-
toral) system.

After a fuzzy cognitive map has been drawn, using techniques from neural net-
works, the systematic causal propagation [39] of the map can be analytically traced
through a simulation process [52]. Using a simulation driver function, the value of
a concept during each iteration depends on its value at the beginning of the current
step and the values of the concepts that causally point to it, as well as the causal
weights of the respective interconnections. At the end of each iteration, new values
are normalized within the interval [0,1] using a transfer function (also known as
threshold or transformation function). Simulations may converge to a steady state
vector (fixed point), a limit cycle where the concept values fall into a loop of num-
erical values, a limit torus, or a highly unstable strange (chaotic) attractor in the
fuzzy cube [19], where concept values randomly reach varying values. The result to
which the simulated system will converge depends on the initial state vector, given
a fixed model structure.

This analysis allows the modeler to explore what-if scenarios, by performing
simulations of the FCM for various initial state vectors, i.e., for different sets of ac-
tivated policies or different levels of activation of certain policies. Comparisons be-
tween the results can be used to support decision making or scenario building [62].

It is noteworthy to mention that there exist many applications of Fuzzy Cognitive
Mapping in literature, with regard to climate change and environmental planning
and assessment, among which many focus on improving the methodological process
as well, while others aim to either stress the participatory methodology or exploit
the FCM methodology for building scenarios [48].

11.3 The Methodological Framework

Regardless of how FCM simulation results have been evaluated and supported deci-
sion and policy making, FCMs have so far been used to model and simulate various
systems from different disciplines, in problems that feature significant uncertainties
linked to the social factor to some (e.g., [2, 45, 52, 78]), great (e.g., [8]) or no extent
at all (e.g., [43, 64]). When considering the many risks and uncertainties associated
with climate change policy [22] as well as issues concerning public acceptance of
low-carbon technologies and policies, one can understand the logic behind using
fuzzy cognitive mapping in this context. However, as already discussed and unlike
many of the domains in which FCMs have previously been used, there exist a large
number of quantitative frameworks that can support climate mitigation policy mak-
ing and that have, to some degree, tackled many uncertainty issues.

The aim of this approach, therefore, is not to avoid the necessary quantita-
tive models used for optimizing, evaluating and selecting policies that can deliver
the desired transition goals, but rather supplement quantitative methodologies, by
linking them to qualitative, experience-driven modeling. Fuzzy cognitive mapping
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does not provide any real-value estimations [52]: FCM simulation is based on purely
qualitative information and is therefore not intended for forming exact quantitative
values [6], nor should it be perceived as such, but rather as a means of exploring
which of the proposed policies or sets of policies are believed to perform better in
the examined systems.

Using fuzzy cognitive maps for linking stakeholder input and quantitative mod-
eling frameworks has been explored in the past [69], in the aim of enabling the
quantification and integration of narrative storylines, i.e. participatory output, into
the models. This approach assumes the need for the opposite sequence: after hav-
ing determined a number of policy pathways that according to quantitative models
results are sufficient to achieve the required transitions, FCMs can help select the
optimal pathways, by utilizing expert knowledge and experience as to the feasibil-
ity and applicability of the different sets of policies. This is similar to the process
Hobbs et al. [30] suggested undertaking in the Lake Erie Lakewide Management
Plan project, following a fuzzy set theory approach, before considering the FCM
alternative.

The proposed framework consists of the following steps, presented below:

• Step 1. Determining the group of stakeholders
• Step 2. Designing the cognitive map
• Step 3. Inferring causal relation weights
• Step 4. Exploring the time dimension
• Step 5. Quantifying concepts
• Step 6. Selecting configuration parameters
• Step 7. Running simulations

11.3.1 Determining the Group of Stakeholders

For the purpose of evaluating potential climate mitigation policy pathways within
each country, experts from the following groups are to participate in the process:

– Government departments
– Private and public sector industries, associations and distributors
– Policy makers
– Research institutes
– Non-Governmental Organizations (NGOs) representing various societal groups,

such as consumers and environmental protection activists
– Labor unions
– International organizations
– Electric utilities and regulators
– Media
– Communities and households
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All country-specific stakeholders take part in the framework in the same way,
responding to common surveys, questionnaires and workshops; however, they are
nevertheless grouped into respective categories, in order to better assess the qualita-
tive information they contribute.

11.3.2 Designing the Cognitive Map

This second step of the framework is the most challenging one. Normally, this step
starts from scratch with experts being asked to either help the analysts design the
map or draw the map themselves. Özesmi and Özesmi [51] discuss most of the
existing ways in which cognitive maps can be obtained.

The most common way of doing that, in FCM literature, has been the use of
questionnaire-oriented interviews or meetings, through which experts express their
perceptions of concepts that are important with regard to the problem domain under
examination. Roberts [57] explains that a list of variables is initially created and then
refined, by selecting the most important ones to be included in the cognitive map.
Isak et al. [32] present an analytical framework in which interviews can be con-
ducted. Instead of separate interviews, collaborative determination of key concepts
can be conducted, by organizing workshops [41].

Another commonly found process for visualizing expert input into maps has been
that of experts directly drawing their cognitive maps. Özesmi [50], after enabling
interviewees to express their views on the important variables of the system, had
them draw lines with arrows bearing positive or negative signs between variables,
showing causal increase or decrease respectively. A detailed description of an in-
dicative framework for achieving this can be found in Özesmi and Özesmi[51],
where stakeholders were guided along the whole procedure by using engaging ques-
tions. Papageorgiou and Kontogianni [52] too, after explaining the process of con-
structing fuzzy cognitive maps, asked each of their interviewees to draw their map.

Other methods include coding cognitive maps from implicit or explicit descrip-
tions found in experts’ narratives [77] and extracting cognitive maps from existing
numerical measurements [60].

The proposed approach assumes that key concepts have been a priori determined,
which however do not capture the whole picture nor include several uncertainties
and insights that only experts are able to provide. Policies and transition drivers are
identified in extensive case studies of the national systems of innovation [5, 58, 71]
with regard to one or more sectors of interest and for each of the examined countries,
while other key concepts can be extracted from the results of quantitative frame-
works used for evaluating these policies onto the examined national and sectoral
systems, as previously discussed. To complete the initial set of concepts, the most
important risks and uncertainties, which are identified after a detailed literature re-
view and prioritized using Multiple Criteria Decision Analysis methods, are added.

Given the large number of systems to be modeled, we select the first option pre-
sented: after determining the sets of policies to be examined, i.e. those that are able
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to achieve the transitions to low carbon societies as per models results, as well as
other key concepts, stakeholders are asked to provide their input during interviews.
The research question that needs to be addressed at this stage is “what does the in-
formant perceive as important concepts in the problem domain, given the initial set
of key concepts?”. By following this approach, stakeholders’ opinions are taken into
account in order to facilitate the development of the FCMs, while also minimizing
their bias with regard to their suggestions [36]. Their liberty to add concepts is not
limited but encouraged, as long as they include the predefined key concepts or, even
better, are driven by the latter when listing their perceived concepts of significance.
In countries where such an option exists, time-effective workshops are preferred.

After putting together a large list of concepts for a particular system, it is imp-
erative that only a global and concise map be created. There exist various ways of
refining concepts, by reducing their number to those that appear to be most criti-
cal. Lopolito et al. [45] pursued consensus over a compromise between the required
preciseness and the unavoidable vagueness that the human language features as well
as over the selection of the final set of concepts, during their discussion with stake-
holders. Other scholars have taken advantage of structured communication method-
ologies in order to achieve consensus, such as the Delphi method [7]. Given the
large number of different systems to be examined, our aim is to avoid a long, itera-
tive process for each country and limit the stages of stakeholder engagement for the
purpose of creating cognitive maps. To this end, the task of reducing the number of
concepts is entirely up to the analysts. At first, all identified concepts are reviewed in
case groups of two or more should be semantically merged and, then, the remaining
concepts are prioritized by number of occurrences among stakeholders, so that con-
cepts (including merged ones and their cumulative number of mentions) that rank at
the bottom may be omitted.

Afterwards, a second round of stakeholder engagement revolves around the res-
earch question “which of the other concepts does each concept affect, either pos-
itively or negatively?”. Experts only need to specify which of the other concepts
each concept has a causal relationship with; a structured way to achieve this is to
enumerate all concepts and have experts note the numbers of variables of which each
concept can be considered a cause, or ideally provide them with an empty adjacency
matrix and have them fill it in.

After having obtained the adjacency matrix of this refined set of concepts, more
techniques are available to the analysts for obtaining a final and concise cognitive
map. A popular technique in the literature has been that of replacing subgraphs
with a single concept, which is called condensation [27] or aggregation [51]. For
example, Papageorgiou and Kontogianni [52] describe how they managed to cluster
52 variables into 26 high-level concepts. It should be noted that the goal is not to
alter the derived model but rather simplify it and optimize its complexity; according
to Özesmi and Özesmi [51], when the number of variables exceed the number 30
the map starts being counterproductive for gaining insights.

The whole process of designing the cognitive map can be viewed in Fig. 11.3.
At this point, it should be noted that, as far as receiver and ordinary variables

are concerned, only concepts that feature a cause and/or effect relationship with the
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Fig. 11.3: Flow chart of Step 2 of the framework: designing the cognitive map

respective system should be included in the final map, while transmitter variables
should exclusively be policies, as it is the policies’ effect on the system that we aim
to explore. For example, although “population growth” is a concept that may have
direct impact on a number of variables within a system, it should not be included in
the map as the objective is to explore how the system reacts to certain policies every
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time and draw comparisons, while “population growth” exists in every possible set
of policies; however, if any concept of the system affects “population growth” in
any way, then it should be included as well.

11.3.3 Inferring Causal Relation Weights

This stage calls for the third and final stakeholder engagement process which rev-
olves around the research question “given the cognitive map, as well as the national
context, how strongly does each concept affect the others?” and the purpose of which
is to establish the grade of causality between concepts. In literature, these weights
can be of binary form {0,1} depending on whether two concepts are directly related
or not (e.g., [1]), take any value within the interval [0,1] (e.g., [7]), or take any
value within the interval [−1,1] (e.g., [8]), which is also the case in our proposed
framework. The sign expresses whether the causal concept has a positive or negative
impact on the effect concept, and the value shows how much impact the former has
on the latter.

There exist many different approaches for extracting the required information
from experts. Özesmi and Özesmi [51], after having the stakeholders draw their
own cognitive maps, asked their interviewees to directly assign numerical weights
between −1 and +1 to the perceived interconnections. Papageorgiou and Konto-
gianni [52] proposed using if-then rules that infer a fuzzy linguistic variable from a
given set of thirteen variables; alternatively, experts could directly assign fuzzy lin-
guistic weights from the same set. In the same context, Lopolito et al. [45] used only
three linguistic values for describing the grade of causality for the concept intercon-
nections (namely weak, moderate and strong) and assigned these linguistic values to
numerical weights: 0.33, 0.67 and 1, respectively. Other approaches include using
structured communication techniques: for example, Biloslavo and Dolinšek [6] used
an iterative approach with feedback based on the Delphi method [18] and the Mul-
tiple Criteria Decision Analysis method called Analytical Hierarchy Process [66]
for calculating weights; Olazabal [48] used the Q-methodology [11] in order to sup-
port the whole stakeholder engagement process, including inferring weights. Last
but not least, other researchers proposed iterative, penalization-based stakeholder
engagement algorithms using a credibility factor [25].

Given the need to limit stakeholder engagement to the least possible number of
stages, as dictated by the very large number of systems to be examined as well as
the fact that this methodological framework presupposes the use of other models
beforehand (Fig. 11.3), we propose that every stakeholder be free to choose among
the 13 linguistic values of the following set [52]:

{negatively very very strong, negatively very strong, negatively strong, negatively
medium, negatively weak, negatively very weak, zero, positively very weak,
positively weak, positively medium, positively strong, positively very strong,

positively very very strong}
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These values, however, are directly assigned to the following numerical set:

{−1,−0.83,−0.67,−0.5,−0.33,−0.17,0,+0.17,+0.33,+0.5,+0.67,+0.83,+1}

After individual weights have been inferred, all numerical values are aggregated
using either the mean or the weighted mean of all weights for each causal relation;
this depends on whether the analyst chooses to assign different weights to different
stakeholders, as identified and grouped in Step 1 of the framework and based on
the level and nature of expertise each stakeholder group has. For example, members
of the media, consumers or community representatives are not as knowledgeable
about every identified concept or policy as experts from research institutes or policy
makers. For our purpose and given an appropriate sampling of experts, a mean value
is considered adequate for aggregating causal relation weights. Finally, the weight
matrix is filled in using the aggregated weight values.

11.3.4 Exploring the Time Dimension

A very weak point of Fuzzy Cognitive Mapping, as applied so far, has been that
of appropriately defining and incorporating time [69]. The output of an FCM sim-
ulation can be used to assess how key factors play out after a number of iterations,
when certain policies or sets of policies are at play, but this output cannot be dir-
ectly translated into time. However, this can be overcome to some extent, by only
including causal relations that are meaningful in the same time scale [38].

Hagiwara [26] was the first researcher to acknowledge the lack of the concept of
time in FCMs, along with the need for conditional and non-linear causal relation-
ships; he therefore proposed an extended FCM framework that is able to incorporate
time delays, non-linear weights and conditional relations. However, this approach
not only requires an extensive, time-consuming stakeholder engagement framework
that assumes experts’ knowledge and expertise is adequate for offering insight into
all of the required information, but also significantly enhances the complexity of the
FCM methodology.

In order to incorporate time relationships into Fuzzy Cognitive Mapping, Park
and Kim [56] suggested collecting information on the time delay that every relation-
ship between concepts features and then translating the original FCM into a fuzzy
time cognitive map (FTCM) in which all causal relations apply in the same time
unit. In order to achieve this, they proposed a framework that introduces dummy
nodes between concepts and calculates the sign and value of individual weights that
compose each original causal weight. Although this approach serves our purpose,
in larger FCMs (such as the ones we anticipate to have to deal with, with regard to
climate mitigation policies) there is significant increase in the FCM complexity and
the visual outcome is hard to produce, supervise and gain insight from. This is partly
why the proposed FTCMs only incorporate time lags of two or three time units and
no more, but this poses another limitation since causal relations may potentially
feature larger delays.
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Other approaches include the expression of the implicit time delay of every
relation and the selection of a base time in Rule-Based Fuzzy Cognitive Maps [15];
the use of Fuzzy Time Cognitive Maps for analyzing trust dynamics in virtual en-
terprises [74]; the agent-based FCM methodological framework developed by Lee
et al. [44], in an effort to better address the drawbacks identified by Hagiwara [26]
and further analyzed by Schneider et al. [60], which was applied in industrial mar-
keting planning; and a significantly more complex version of timed fuzzy cogni-
tive maps that requires the determination of linguistically-expressed time-dependent
weights [10].

In our approach, all causal relations are assumed to be yearly and stakeholders are
asked to evaluate how many time units (i.e., years) it takes for each cause concept
to have an impact on its effect concept(s). The research question that needs to be
addressed at this stage is “how long does it take for a change in each concept to
have an effect on its adjacent concepts?”. This process does not necessarily require
an extra stakeholder engagement step, as it can be done in parallel with the weight
inference stage (Step 3). After extracting this information, again an average value is
calculated for each causal relation, as in Step 3.

Time lags are incorporated in the way new concept values are calculated, as des-
cribed in Step 6. As discussed in Sect. 11.4, this approach does not provide different
numerical results from what the FCM simulations would produce without integrat-
ing time lags, but offers new insight with regard to how soon each policy or set of
policies can produce the calculated results.

This step concludes the stakeholder engagement process, which can be viewed
in Fig. 11.4.

11.3.5 Quantifying Concepts

As explained in Sect. 11.2, all concept nodes are assigned a numerical value, which
is usually within the interval [0,1] or [−1,1], depending on which threshold function
is selected (Step 6). Certain researchers have proposed different approaches; for ex-
ample, when suggesting an FCM-based approach for robust scenario planning with
regard to wind energy development, Amer et al. [2] used concept values of binary
form, i.e. {0,1}, depending on whether a concept is clamped or not. Although such
an approach could be applied for developing scenarios emerging from policies or
sets of policies that greatly differ from one another, it would not allow for adequate
comparisons in cases where policies have different effects on the same variables or
where policies or sets of policies are clamped to a different extent among alterna-
tives. In our approach, concepts are able to take values within the interval [−1,1],
so as not to limit our methodology to a specific threshold function.

A major issue that has never really been addressed or elucidated in the FCM
literature is that of clarifying which of the concepts should be modeled as constants
and which ones as variables. Since a Fuzzy Cognitive Map model is simulated over
and over again using a particular threshold function and until it converges to a steady
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Fig. 11.4: The three stages of the proposed stakeholder engagement process
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state vector, if all concepts were modeled as variables this final state vector would
depend entirely on the FCM structure: set of concepts, adjacency matrix and weight
matrix. In order for each simulation to depend on the initial state vector and thus be
meaningful (given a fixed set of concepts, interconnections and weights), concepts
that differentiate each alternative should be unaffected by the selected threshold
function. As a result, policy (transmitter) concepts should be modeled as constants,
while all other (ordinary and receiver) concepts should be modeled as variables.

Therefore, the initial state vector should be carefully selected for each alterna-
tive option considered and modeled. In most cases, different policies are examined
and activated (i.e. 0 if unclamped and 1 if clamped) every time but this should not
necessarily be the case; for example, Papageorgiou and Kontogianni [52] examined
two different scenarios for future prospects and risks of the Black Sea marine en-
vironment, by attributing different, non-zero initial values to all concepts in each
scenario.

11.3.6 Selecting Configuration Parameters

One simulation driver function that has almost exclusively been used in FCM app-
lications calculates the value of a concept at the end of an iteration as the sum of
contributions of its causal concepts at the beginning of the iteration:

C(t)
j = f

(

n

∑
i=1

C(t−1)
i wi j +C(t−1)

j

)

where C(t)
j is the value of concept j at the end of the iteration, C(t−1)

j is the value

of concept j at the beginning of the iteration, C(t−1)
i is the value of concept i at the

beginning of the iteration , and f is a threshold function.
Depending on the notion of auto-correlation that we will be using, the second

term (C(t−1)
j ) can be omitted; functions of this form assuming no auto-correlation

have been used in FCM literature. Of course, both functions can be considered
identical, depending on whether the weight matrix includes auto-correlation: by
assigning ones on the main diagonal of the weight matrix, i.e. wi j = 1, then auto-
correlation is implied and included in the first term and the second term should be
omitted.

Stylios and Groumpos [65] proposed a slightly modified approach for calculating
new concept values at the end of every iteration, by introducing two coefficients k1

and k2, depending on how strongly auto-correlation affected each concept compared
to the contribution of its causal concepts:

C(t)
j = f

(

k j
1

n

∑
i=1

C(t−1)
i wi j + k j

2C(t−1)
j

)
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However, this approach too requires significantly more information from the
stakeholder engagement process, since stakeholders should not only know but also
be able to offer insight into the extent to which each and every single concept
depends on its previous value compared to the contributions of its causes.

Another approach was introduced by Papageorgiou and Kontogianni [52], acc-
ording to which limitations presented by the sigmoid threshold function, when initial
values are 0 or 0.5 or the initial state cannot be efficiently described [54], can be
addressed:

C(t)
j = f

(

n

∑
i=1

(

2C(t−1)
i − 1

)

wi j + 2C(t−1)
j − 1

)

Finally, Papaioannou et al. [55] suggested an interesting simulation driver func-
tion that, given a preliminary process of adjusting and greatly reducing weights
depending on the number of iterations at which the system is expected to converge,
requires no transformation function:

C(t)
j =

n

∑
i=1

(

C(t−1)
i −C(t−2)

i

)C(t−1)
j

C(t−2)
i

wi j +C(t−1)
j

In the proposed framework, however, we will be using a different simulation
driver function, based on the originally presented and most frequently used one, so
as to incorporate the notion of time delays. This is done by multiplying the weight
of a relation between causal node i and effect node j with the value of concept i at
time t minus the time delay lagi j of the respective impact:

C(t)
j = f

(

n

∑
i=1

C
(t−lagi j)
i wi j +C(t−1)

j

)

Finally, a threshold function must be selected and applied, in order to normalize
new concept values within the interval [−1,1] at the end of every iteration. As in
neural networks, there exist many different threshold functions, such as logistic,
linear threshold or step functions [51]. However, the most frequently used threshold
functions in the FCM literature are the sigmoid function and the hyperbolic tangent
function.

When concept values can only be positive, i.e. belong to the interval [0,1], the
unipolar sigmoid function (λ > 0) is usually used as a threshold function (e.g., [45]):

f (x) =
1

1+ e−λ x

If concept values can be negative as well, meaning that they can take values
within the interval [−1,1], the hyperbolic tangent function can be used instead [25]:

f (x) = tanh(x)
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Having quantified concepts in the interval [−1,1], both threshold functions can
be applied to our approach. The non-negative transformation of the sigmoid func-
tion allows for better understanding of concept activation levels [51]. Furthermore,
given that it squashes values into a stricter interval, it usually converges faster than
the hyperbolic tangent function. However, the latter allows for more realistic repre-
sentation of the causal output and requires no calibration. For example, if the value
of a certain concept can only decrease, the sigmoid function will still produce a pos-
itive outcome in the final state vector, which must then be compared to the inaction
model in order to draw conclusions for a single scenario; of course, when dealing
with a number of alternatives, comparisons between alternatives can still be drawn
without comparing them to the inaction scenario, using the sigmoid function.

11.3.7 Running Simulations

After the FCM model has been developed and all configuration parameters have
been selected, simulations can begin for each country case study and respective
sector; for every simulation and as discussed in Sect. 11.2, causal propagation takes
place in every iteration until the system converges; this happens when no change
occurs in any of the concept values after a certain point, the concept vector at which
is called the final state vector.

11.4 Assessing Results

After having simulated the derived model for every possible policy strategy, com-
parisons between the final state vectors of the alternatives should be drawn in order
to assess to what extent the desired transition has been promoted by activating each
set of policies. The larger the value of the goal concept is at the end of the simula-
tion, the better the selected policies are considered by the stakeholders. Of course,
the analysts must define which of the concepts included in the FCM should be taken
into account when comparing the various alternatives, as well as how important
each of these concepts are. For example, Lopolito et al. [45] defined the concept
representing the policy objective and distinguished five other concepts to negatively
contribute to the alternative pathways’ score, as equally undesired effects of the
policies. Özesmi [50] proposed a different approach: different objectives were ac-
knowledged for each of the stakeholder groups, leading to different conclusions for
each group’s perspective. On the other hand, when comparing scenarios with strict
activation thresholds and values of binary form, all of the final state vector values
are taken into account in order to produce sound narratives (e.g., [2]).

Other than the final state vector and given the integration of the time dimension
into the proposed framework, another significant criterion to be taken into consid-
eration when comparing the examined alternatives is how fast convergence has oc-
curred.
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As an example, simulations were run for the fuzzy cognitive map presented
in Fig. 11.2, with and without time delays, and using the original weight matrix.
When activating the first policy option, i.e. enhancing public information on the
bio-refinery industry, all concept changes (including the desired transition) appear
to slightly delay when very little time lag is introduced in certain interconnections,
compared to a no-lag model (Fig. 11.5). It should be pointed out that the sigmoid
threshold function was used.

In order to achieve a better understanding and more detailed examination of
the time lags’ effects, the same model was simulated using the hyperbolic tangent
threshold function, using both of the options previously considered and adding a
third one with a slightly increased time lag. The impact of both time delays on the
goal concept, which is the development of the bio-refinery industry, can be viewed
in Fig. 11.6.

Looking at both figures, it is safe to conclude that time delays do not alter the
values of the final state vector, as produced without integrating time lags in the
first place, but nevertheless offer new insight into how fast changes take place. As
previously discussed, the final state vector depends solely on the FCM structure,
including its concepts, interconnections and weights, as well as the initial values of
the considered transmitter (policy) concepts. As a result, time delays introduced in
the proposed manner cannot change the results, unless a certain delay is perceived
to be so prolonged that the respective causal relation’s impact is not observed be-
fore the system converges; this is a negative feature of the proposed approach that
could potentially lead to false results, but which can easily be addressed by either
comparing results with the respective no-lag model’s results or introducing stricter
convergence criteria, such as requiring zero numerical changes in the state vector
for a number of iterations equal to the largest time lag included.

As expected, the observed delay had an impact on convergence as well: using
the sigmoid threshold function and introducing low time lag resulted in a delay in
the convergence by five iterations, while using the hyperbolic tangent function and
introducing both the low time lag and a slightly higher one resulted in a delay in the
convergence by four and six iterations respectively.

It should be noted, though, that iterations in a Fuzzy Cognitive Map simulation
and real time units are not the same thing, and results should not be directly trans-
lated into time; this, however, can be partly overcome when causal relations are
meaningful in the same time scale, as suggested by Kok [38]. In the same way that
FCM results should not be used as real-value estimations [6, 52] but provide qual-
itative insight into the effectiveness of a set of policy strategies, the rate of causal
propagation and eventually convergence too can provide qualitative insight into the
rate of transition, without necessarily translating each simulation step into a time
unit.

Given the need to limit global temperature increase within a strictly defined time
frame in order to avoid the most significant and irreversible impacts, the introduction
of the notion of time delays is of vital importance from a climate mitigation policy
perspective.
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Fig. 11.5: Concept activation levels of the example FCM, using the sigmoid thresh-
old function, (a) without time lag and (b) with slight time lag

11.5 Conclusions

The proposed methodological framework for selecting effective climate policies for
low carbon transitions is based on the Fuzzy Cognitive Mapping method, and builds
on the output of previously run quantitative models, an extensive literature review of
potential risks and uncertainties, as well as country case studies of technological in-
novation systems, as part of a complete, analytical framework for developing robust
transition pathways. This chapter, therefore, aims to present an innovative approach
that takes advantage of the qualitative insight that Fuzzy Cognitive Maps can offer,
suggesting however that the FCM technique cannot stand on its own when explor-
ing alternative climate policy strategies but rather supplement existing quantitative
methodologies, by linking them to experience-driven modeling.
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Fig. 11.6: Value increase in the goal concept, due to various time delays, using the
hyperbolic tangent threshold function

Another key aspect of the presented approach lies in the simplification of the
FCM model construction, from the experts’ perspective. Although the required
qualitative input is extended in order to include time-related issues, stakeholder
engagement is limited to a clearly-defined and structured three-stage process. In
this direction, extensive literature review on the various approaches of stakeholder
engagement in fuzzy cognitive maps has been conducted, and specific research ques-
tions and steps have been determined, so as to reduce the method’s complexity while
at the same time not compromising the added value of the derived conclusions.

Last but not least, the proposed method introduces an ill-defined aspect of FCMs,
which is the notion of time. By including causal relationship impacts that are defined
in the same time unit, to the extent experts can offer such knowledge, and integrating
potential time delays of these impacts into the model, the fuzzy cognitive maps
of the examined systems become more dynamic, and new insight can be explored
and gained with regard to each considered alternative, in an attempt to enhance the
robustness of the resulting climate policy strategies.
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Chapter 12
Robust Optimization Approaches to Single
Period Portfolio Allocation Problem

Nalân Gülpınar and Zhezhi Hu

Abstract Portfolio management is one of the fundamental problems in financial
decision making. In a typical portfolio management problem, an investor is con-
cerned with an optimal allocation of the capital among a number of available
financial assets to maximize the return on the investment while minimizing the risk.
This problem was formulated in the mean-variance portfolio management frame-
work proposed by Markowitz in 1952. Since then, it has been widely studied by
researchers and the practitioners. However, the solution is sensitive to model par-
ameters due to data uncertainty. In this chapter, we review robust approaches to
deal with data uncertainty for a single-period portfolio allocation problem. We first
introduce the main ideas of robust optimization using symmetric and asymmetric
uncertainty sets where the uncertain asset returns belong to. We then focus on data
driven and distributionally robust optimization approaches.

12.1 Introduction

In financial portfolio management, a rational framework for investment decisions is
provided by the maximization of expected portfolio return for an acceptable level of
risk. The single-period mean-variance portfolio management framework is a funda-
mental example introduced by Markowitz [51]. Since then, various stochastic pro-
gramming approaches have been developed to solve the underlying optimization
problem.

The single-stage model of Markowitz considers a portfolio to be constructed by
M risky assets with random rates of return r̃1, · · · , r̃M . Note that vectors and matrices
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are represented in bold and prime (∗)′ refers to transpose operation. For instance,
r̃ = (r̃1, · · · , r̃M)′ is a vector of rates of returns. Let x = (x1, · · · ,xM)′ represent the
vector of asset weights. We assume that short-selling is not allowed; thus, x ≥ 0.

The initial budget is normalized to 1; that is e′x = 1 where e = (1, · · · ,1)′. The
portfolio return is computed as r̃p = r̃′x.

Given a probability distribution P of random rates of the asset returns r̃, one can
compute the expected portfolio return μμμ = EP[r̃] and expected portfolio risk that is
defined as the variance of portfolio return, Σ = EP[(r̃− μμμ)′(r̃− μμμ)]. Then the sin-
gle stage mean-variance portfolio allocation problem is equivalent to the following
deterministic convex quadratic programming problem:

max
x∈X

λμμμ ′x− (1−λ )x′Σx, (12.1)

where X = {x | e′x = 1, x ≥ 0} is the feasible region.
The scaling constant λ ∈ [0,1] determines the level of risk aversion. By vary-

ing λ from 0 (total risk aversion) to 1 (total risk-seeking), the investor can adjust
the trade-off between the portfolio return and risk preferred. Thus, the entire range
of efficient investment strategies is determined. The efficient frontier displays all
possible portfolios in risk-return space.

Although the mean-variance portfolio allocation model has been widely used by
both academics and practitioners, it has been criticized for several reasons. One of
the main drawbacks is that the optimal asset allocation is very sensitive to model
parameters. The true distribution of the asset returns is not known precisely, but has
to be estimated from the available data, which might be insufficient to identify the
unique distribution. Imprecise forecasts and inaccurate estimated model parameters
involve some errors. Such estimation errors have serious consequences in the opt-
imal investment portfolio obtained from the model; for instance see [48, 52]. The
empirical studies showed that the portfolio weights were extremely sensitive to the
estimation errors in mean asset returns [15, 22]. Moreover, Ceria and Stubbs [19]
argued that the mean-variance model has the error-maximization property. Bertsi-
mas et al. [13] also debated that such parameter uncertainty may result in subopti-
mal and infeasible solution since the solution quality highly relies on the estimation
accuracy of these parameters.

Stochastic programming models describe underlying uncertainties in financial
optimization problems in view of expected value decision criteria. They assume that
the uncertain parameters in the optimization problems follow a known distribution.
There are different methods to deal with uncertain data such as scenario-based
stochastic programming and chance-constrained optimization. A scenario-based
stochastic programming approach takes into account a finite number of realizations
of the random variables and specifies the optimal decisions in view of these sce-
narios [23]. Chance-constrained stochastic programming involves probabilistic con-
straints to control risk in decision making under uncertainty. The reader is referred to
[16, 46, 58] for more information on other applications of stochastic programming
in different sectors.
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It is worthwhile to mention that there are alternative stochastic optimization tech-
niques based on dynamic programming algorithms that require specific modeling
skills using states and actions that correspond to random paths and decisions in
the multistage stochastic programming setting. However, these models also suffer
from the curse of dimensionality in the state and action spaces. To deal with this,
simulation-based dynamic programming approaches have been developed to solve
the underlying problem approximately using forward dynamic programming algo-
rithms. They have also been successfully applied to real life applications. The reader
is referred to [57] for an overview and various applications of approximate dynamic
programming.

Worst-case analysis is used as an alternative approach to protect against the
risk of inaccurate estimations. Rustem et al. [61] and Gulpinar and Rustem [38]
considered many possible rival return scenarios and covariance matrices within
mean-variance portfolio management framework. They applied a min-max frame-
work to find the best action (i.e. investment portfolio) under the worst-case rival
scenarios. It is shown that the optimal investment decision in view of different rival
scenarios is robust to the parameter uncertainty. While the multiple rival estimates
can be regarded as a discretized description of the parameter uncertainty, a more
general approach in the continuous case is to assume the random variable belongs
to an uncertainty set. Such uncertainty set usually contains an infinite number of
possible realizations around the estimated value of the random variable and can be
regarded as the decision maker’s confidence about the estimated value. This app-
roach is referred to as robust optimization that is the main subject of this chapter.
Moreover, since the true distribution of the random variable is not known exactly,
one can also consider a distribution set to describe the uncertainty of the underlying
probability distribution. This approach is referred to as distributionally robust opti-
mization, that will be also covered in this chapter. We aim to review different robust
optimization approaches in the context of portfolio management problems.

The remaining of this chapter is organized as follows. We describe the robust
portfolio management model in Sect. 12.2. Section 12.3 focuses on how to define
an uncertainty set. The robust counterparts of the portfolio allocation problem are
then derived in view of symmetric and asymmetric uncertainty sets in Sect. 12.4.
Based on recent developments in data-driven robust optimization, we show how
to construct data-driven uncertainty sets in Sect. 12.5. Section 12.6 introduces the
application of distributionally robust optimization for robust portfolio management
problems. We also present the connections between robust optimization and risk
measures in Sect. 12.7. A brief summary of the chapter and future research direc-
tions are presented in Sect. 12.8.

12.2 Robust Portfolio Management Model

Robust optimization deals with data uncertainty using the worst-case analysis for
a pre-specified uncertainty set. The use of uncertainty set in describing parame-
ter uncertainty was first suggested by Soyster [22]. After being neglected for a
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while, robust optimization was extended by Ghaoui and Lebret [16] and Ben-Tal
and Nemirovski [4]. Since then, it has been applied for solving various practical
problems in different areas. The robust optimization approach assumes that the
uncertain parameter arising in the optimization problem belongs to an uncertainty
set that can be constructed from the probability distributions of uncertain factors.
A robust counterpart of the original problem is then derived in such a way that the
optimal solution to the optimization problem remains feasible for all realizations of
the stochastic data within the pre-specified uncertainty sets, including the worst-case
values. Depending on the specification of the uncertainty sets, the robust counterpart
of the original optimization problem can be formulated as a tractable optimization
problem with no random parameter. For further information on robust optimization
and recent developments, the reader is referred to [8].

In terms of financial applications, robust optimization has been mainly used for
the portfolio management problems. Ben-Tal and Nemirovski [5] provided tractable
robust formulations for a single-period portfolio management problem using an ell-
ipsoidal uncertainty set. Goldfarb and Iyengar [36] developed a robust factor model
and showed how to derive the uncertainty set by statistical procedures. Ghaoui et al.
[33] introduced tractable formulation for worst-case value-at-risk in robust portfo-
lio optimization. Tutuncu and Koenig [64] used interval uncertainty sets for robust
mean-variance model. Natarajan et al. [53] studied a robust portfolio optimization
problem using asymmetric distributional information in random variables. Zhu and
Fukushima [66] used worst-case conditional value-at-risk in robust portfolio opti-
mization under box and ellipsoidal uncertainty sets. Delage and Ye [24] developed
a distributional robust approach for single-period portfolio management problem.
Gulpinar et al. [39] considered robust portfolio allocation problem in view of dis-
crete asset choice constraints.

Mathematically, the robust optimization provides a different description of the
portfolio management problem compared to the classical stochastic mean-variance
model. It assumes that the uncertain asset returns r̃ belong to an uncertainty set Ur̃
Instead of maximizing the expected portfolio return EP[r̃], we optimize the worst-
case portfolio return in view of the uncertainty set Ur̃. In other words, an investor
is concerned with a robust investment decision x such that the worst-case portfolio
return is maximized. This can be formulated as the following max-min problem:

max
x∈X

min
r̃∈Ur̃

r̃′x. (12.2)

We now introduce an auxiliary variable γ , and rewrite (12.2) as:

max
x∈X,γ

γ

s.t. min
r̃∈Ur̃

r̃′x≥ γ.
(12.3)

The choice of uncertainty sets plays an important role on the investment deci-
sions. Once the uncertainty sets are specified, the inner minimization problem is
solved to derive the corresponding robust counterpart. The robust counterpart of the
linear constraint in view of the chosen uncertainty set leads a tractable deterministic
problem.
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12.3 Defining Uncertainty Sets

Different uncertainty sets lead to different robust counterparts of the original con-
straint with different computational burdens. Bertsimas et al. [14] described two
main criteria to be satisfied when we define an uncertainty set Ur̃:

• min
r̃∈Ur̃

r̃′x ≥ γ is computationally tractable.

• If min
r̃∈Ur̃

r̃′x ≥ γ , then Prob(r̃′x ≥ γ)≥ 1− ε .

The first criterion ensures the computational tractability of the original optimiza-
tion problem that depends on the type of the uncertainty sets. There are various
symmetric and asymmetric uncertainty sets that have been used for various applica-
tions of robust optimization. The shape of the uncertainty set defines a risk measure
on the constraints with uncertain coefficients [54]. In practice, the shape is selected
to reflect the modeler’s knowledge of the probability distributions of the uncertain
parameters, keeping in mind that, ideally, the robust counterpart problem should be
efficiently solvable if the uncertainties are assumed to belong to that uncertainty
set. The ellipsoidal uncertainty set, for example, defines a standard-deviation-like
risk measure on the constraint with uncertain parameters, and in the case of linear
optimization, results in a robust counterpart to the original problem that is a second
order cone problem (that is a tractable optimization problem).

When solving optimization problems with uncertain parameters using the robust
optimization approach, the size of the specified uncertainty set is often related to
guarantees on the probability that the constraint with uncertain coefficients will not
be violated (see, for example, [12]). The second criterion shows that for given prob-
ability ε ≥ 0, the uncertainty set Ur̃ should imply a probability guarantee for the
true distribution P

∗ of random variable r̃. If we seek for a higher probability guar-
antee for P∗ (i.e. ε is closer to 0), then Ur̃ should be larger to include more possible
realizations of r̃. Since we then optimize against the worst-case value within Ur̃, the
robust solution is more conservative. Bertsimas and Sim [12] showed that there is
always a trade-off between solution optimality and conservativeness when choosing
uncertainty sets. By changing the size of the uncertainty set, one can flexibly adjust
the level of conservativeness of robust solutions according to the investor’s prefer-
ence. Furthermore, recent development in data-driven optimization has shown that
one can construct a less conservative uncertainty set by incorporating additional in-
formation from historical data, where such uncertainty set can still imply the same
probability guarantee as before. These issues will be explained further in details in
Sect. 12.5.

12.4 Derivation of Robust Counterpart

Next, we derive the robust counterpart of the portfolio allocation model using dif-
ferent discrete and continuous uncertainty sets and discuss their computational
burdens. The discrete uncertainty set involves a finite number of risk and return
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realizations while the continuous sets consist of an infinite number of future obser-
vations with symmetric and asymmetric structures. The symmetric and asymmetric
shapes of the uncertainty sets should allow us to map the uncertainty sets better to
uncertain parameters with symmetric and skewed distributions, respectively.

Scenario-Based Uncertainty Sets Suppose we have generated different return sce-
narios and estimated different covariance matrices. Let I and K be a number of rival
return and risk scenarios, respectively. A discrete uncertainty set is

Ud = {r̃ ∈ {r1,r2, · · · ,rI}, Σ̃ ∈ {Σ1, · · · ,ΣK}}.

A robust mean-variance portfolio allocation problem can be formulated in a min-max
compact form as follows:

min
x∈X

{

(1−λ ) max
k=1,··· ,K

x′Σkx−λ min
i=1,··· ,I

x′ri

}

.

In order to find the worst-case investment decision, we introduce free decision vari-
ables ν1 and ν2 to represent the inner optimization problems. The corresponding
robust formulation of the problem can be reformulated as a quadratically constrained
mathematical problem:

min
x∈X,ν1,ν2

(1−λ )ν1 −λν2

s.t. x′Σkx ≤ ν1, k = 1, · · · ,K
x′ri ≥ ν2, i = 1, · · · , I.

Symmetric Uncertainty Sets Consider symmetric (ellipsoidal) uncertainty sets
involving the uncertain future asset returns r̃i for i = 1, · · · ,M. The uncertainty set
is specified in terms of estimated mean vectors μ̂ and the covariance matrices Σ̂ of
the vectors of random variables r̃ in the set of constraints with uncertain coefficients
as follows:

Ur̃ = {r̃ : ‖Σ̂− 1
2 (r̃− μ̂)‖2 ≤Ω},

where ‖ · ‖2 represents the Euclidean norm and Ω is the budget of robustness
predefined to adjust the size of ellipsoidal uncertainty set.

Ben-Tal and Nemirovski [6] and Bertsimas and Sim [12] showed that
Ω =

√−2lnε implies a probability guarantee Prob(r̃′x ≥ γ)≥ 1− ε . If ε is close
to 0, which means r̃′x ≥ γ should be guaranteed with a very high probability (hard
constraint), then Ur̃ is chosen as extremely large set since Ω goes to infinity. In
contrast, if ε = 1, then Ur̃ becomes a singleton {μ̂} and the estimation error of μ̂
is ignored. In order to derive the robust counterpart of (12.2) in view of ellipsoidal
uncertainty set, we need to solve the inner minimization problem min

r̃∈Ur̃
r̃′x that can

be rewritten as
min

r̃
x′r̃

s.t. ‖Σ̂− 1
2 (r̃− μ̂)‖2 ≤Ω .
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Let’s introduce Lagrangian multiplier η ≥ 0 for the constraint of the optimization
problem. The Lagrangian function is:

L (r̃,η) = x′r̃+η
(

‖Σ̂− 1
2 (r̃− μ̂)‖2 −Ω

)

.

Applying the first order optimality and complementarity conditions, we can find

the optimal value of r̃ within the uncertainty set Ur̃ as r̃ = μ̂+
(

−Ω
η

)

Σ̂x. In addi-

tion, the optimal value of the Lagrangian multiplier is obtained as η =
√

x′Σ̂x. The
objective function value of the inner minimization problem becomes:

x′r̃ = μ̂ ′x−Ω
√

x′Σ̂x.

The robust counterpart of (12.2) can be derived as the following second order
conic programming model:

max
x∈X

μ̂ ′x−Ω
√

x′Σ̂x. (12.4)

Notice that (12.4) is quite similar to the mean-variance portfolio allocation prob-
lem in (12.1). Both models take into account the trade-off between portfolio return
and portfolio risk. The main difference between these models in (12.1) and (12.4) is
that portfolio covariance (x′Σx) is replaced by its standard deviation (

√
x′Σx) and

the risk averse parameter λ is replaced by Ω . Zymler et al. [67] stated that for each λ
in (12.1) there is one Ω such that (12.1) and (12.4) have the same optimal solution.

Asymmetric Uncertainty Sets A symmetric uncertainty set (such as ellipsoidal)
can represent the underlying uncertainty well when it follows a symmetric prob-
ability distribution such as the normal distribution. Theoretically, the assumption
that asset returns follow normal distributions is not unreasonable because the Cen-
tral Limit Theorem implies that over the long horizon, returns should be approxi-
mately Gaussian as long as short-horizon returns are sufficiently independent (see,
for example, [18]). Empirically, however, there is evidence that both short- and
long-horizon stock returns can be skewed and highly leptokurtic (see, for example,
[25, 30]). In fact, asset returns are asymmetrically distributed due to time depen-
dence [27], market driven [29] and different structural features such as skewness
and kurtosis [28, 50]. In these cases, using a symmetric uncertainty set may result
in too conservative results.

In order to overcome the drawback of symmetric uncertainty set, Chen et al. [21]
introduced forward and backward deviations to incorporate asymmetric distribu-
tion information of random variables when defining uncertainty sets. This idea was
then applied in a single-period robust portfolio management problem by Natarajan
et al. [53]. They assumed that random asset return is generated by the following
factor model:

r̃ = μ̂+ Σ̂1/2z̃,
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where the vector z̃ can be regarded as the normalized asset return which has zero
mean and consists of independent factors. Moreover, the vector of random variables
z̃ is decomposed into two vectors of random variables g̃ and h̃ such that z̃ = g̃− h̃
where g̃ = max{z̃,0} and h̃ = max{−z̃,0}. Let p j > 0 and q j > 0 represent the for-
ward and backward deviations of the random variable z̃ j for
j = 1, · · · ,M respectively. Let’s define diagonal matrices P = diag(p1, · · · , pM) and
Q = diag(q1, · · · ,qM). An asymmetric uncertainty set is described as:

Uz̃ = {z : ∃g,h ∈R
M, z = g−h, ‖P−1g+Q−1h‖ ≤ Γ , z ≤ z ≤ z},

where z̃ is assumed to have a support as [z,z] to ensure p(z̃) and q(z̃) to be finite.
Note that Γ represents the desired degree of robustness. In the case of a symmet-
ric distribution, the uncertainty set above is ellipsoidal and we have p(z̃) = q(z̃).
In other words, this asymmetric uncertainty set includes the ellipsoidal uncertainty
set as a special case. If the factors z̃ are independent and Γ is selected so that
Γ ≥√−2lnε, then (as in the case of the ellipsoidal uncertainty set) the constraint
will be satisfied with probability of at least 1− ε [53].

For a general case, we have p(z̃) �= q(z̃). Moreover, P−1g and Q−1h normalize
the positive and negative deviations of z respectively, which are used to form an
uncertainty set with budget Γ . Thus, Uz̃ actually consists of a box uncertainty set
{z : z ≤ g−h ≤ z} and an ellipsoidal uncertainty set {z : ‖P−1g+Q−1h‖ ≤ Γ }.

The robust counterpart of the portfolio management problem (12.2) using the asym-
metric uncertainty set Uz̃ can be formulated as the following optimization problem:

max
x∈X

μ̃ ′x+ min
z̃∈Uz̃

(Σ̂1/2z̃)′x.

The inner minimization problem can be rewritten as:

min
g,h

(Σ̂1/2x)′(g−h)

s.t. ‖P−1g+Q−1h‖ ≤ Γ
g−h ≤ z
g−h ≥ z
g,h ≥ 0.

Using duality theory, the robust counterpart of (12.2) is derived as a second order
conic programming model:

max
x∈X,θ ,α ,β ,δ

θ

s.t. μ̂ ′x+θ ≥ Γ ‖δ‖+α ′z+β ′z
δi ≥ pi

(

e′i(Σ̂
1/2)′x+α j −β j

)

, i = 1, . . . ,M

δi ≥−qi

(

e′i(Σ̂
1/2)′x+α j −β j

)

, i = 1, . . . ,M

α,β ≥ 0.
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So far, we have introduced symmetric and asymmetric uncertainty sets. All sym-
metric uncertainty sets are chosen based on some priori assumptions about certain
structural features of P∗. For example, one firstly assumes that the uncertainty set U
is ellipsoidal. Then by estimating the first two moments of the random variable, the
robust counterpart of the original problem is derived. Also, the budget of robustness,
which is an important factor to adjust the size of the uncertainty set, is predefined.

Similarly, for asymmetric uncertainty sets, the historical data can be used to inc-
orporate asymmetric distribution information (i.e. to estimate forward and backward
deviation) about the random variable. But the structure of the uncertainty set is still
based on priori assumption (i.e. an ellipsoid). Both Chen et al. [21] and Natarajan
et al. [53] found that asymmetric sets can provide less conservative solutions than
symmetric ones. These studies also showed the potential benefit of using data when
building uncertainty sets, which leads to a unified approach called data-driven robust
optimization.

12.5 Data-Driven Robust Optimization

In data-driven robust optimization methods, the uncertainty sets are constructed with
certain structures and sizes that accord with the data. These sets still satisfy the
two criteria introduced in Sect. 12.3. In order to make sure that the data-driven sets
can imply a similar probability guarantee as non data-driven sets (i.e. those intro-
duced in Sect. 12.4), it is natural to link them with confidence regions. For a detailed
discussion on the use of data-driven robust optimization approaches to construct
uncertainty sets based on confidence regions, the reader is referred to [14].

From a portfolio management perspective, investors may consider the historical
data (asset returns) when making investment decisions. It is reasonable that such
“big data” can help investors construct uncertainty sets and yield less conserva-
tive robust investment decisions. The use of data in constructing uncertainty sets
has been proposed in several studies. Goldfarb and Iyengar [36] considered market
data to estimate parameters of a return factor model through linear multivariate re-
gression. They built confidence regions around these estimated parameters and used
them to construct uncertainty sets for any desired confidence level. Ben-Tal et al. [9]
discussed how to construct uncertainty sets using statistical confidence region based
on φ -divergences. They showed the tractability of the robust counterpart using these
uncertainty sets and applied them to an asset pricing problem. Bertsimas et al. [14]
introduced several kinds of uncertainty sets constructed by different hypothesis tests
and applied them for a single-stage robust portfolio management problem. The em-
pirical results confirmed that the data-driven uncertainty sets perform better than
that constructed by traditional techniques (no data driven).

Next we will briefly summarize how to construct a data-driven uncertainty set by
a confidence region based on the work of Goldfarb and Iyengar [36]. We assume
that the vector of asset returns r̃ is generated by a vector autoregression VAR(1)
process:

r̃t = c+Ar̃t−1 + ε̃t ,
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where ε̃t represents the random residuals which is assumed to be independent
among different time periods t and follows a multivariate normal distribution:
ε̃t ∼ N (0,σ2). More precisely, we can write VAR(1) process for each asset i at
time t as:

r̃i,t = ci + air̃t−1 + ε̃i,t , f or i = 1, . . . ,M,

where ci is the i-th element of intercept vector c and ai is the i-th row of matrix A
that consists of the slope coefficients and ε̃i,t ∼N (0,σ2

i ).
Given the historical data of all M asset returns for past N months, our goal

is to construct an uncertainty set for the random asset return in the next months.
Let B = [1,r1,r2, . . . ,rN−1] ∈ R

(N−1)×(M+1) and yi = [ri,2,ri,3, . . . ,ri,N ] ∈ R
N−1 rep-

resent the known data parameters. We denote a vector of all coefficients in VAR(1)
process as wi = [ci,ai] ∈R

M+1.
For the vector of error terms ũi = [ε̃i,2, ε̃i,3, · · · , ε̃i,N ] ∈ R

N−1, the VAR(1) process
for each asset i becomes

yi = Bwi + ũi, f or i = 1, . . . ,M.

Goldfarb and Iyengar [36] showed that the model parameters can be estimated using
the least squares method as follows:

ŵi = (B′B)−1B′yi, f or i = 1, · · · ,M.

Moreover, the estimation error wi follows a multivariate normal distribution:

ŵi −wi = (B′B)−1B′ũi ∼N (0,σ2
i (B

′B)−1)

that implies
1

σ2
i

(ŵi −wi)
′(B′B)(ŵi −wi)∼ χ2

j+1,

where rank(B) = j+ 1. Although the true residual variance σ2
i is not known, it can

be estimated from historical data as:

σ̂2
i =

‖yi −Bŵi‖
N − j− 1

.

Using the relationship between χ2 and F distributions (see for instance, [1, 37]), we
can observe that the resulting random variable:

1

( j+ 1)σ̂2
i

(ŵi −wi)
′(B′B)(ŵi −wi)

also follows a F distribution. Thus, for a given confidence level κ and critical value
c j+1(κ), we can construct a confidence region of wi as

Uw̃i = {wi : (ŵi −wi)
′(B′B)(ŵi −wi)≤ ( j+ 1)c j+1(κ)σ̂2

i }.
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Note that this can be regarded as an uncertainty set for the coefficients of VAR(1)
process. For a non data-driven uncertainty sets (such as symmetric and asymmetric
uncertainty sets introduced in previous section), the price of robustness Ω is set as
a priori assumption. However, in the data-driven uncertainty set, the size is not only
influenced by priori assumption (confidence level κ), but also the estimated residual
variance σ̂2

i from the data.

12.6 Distributionally Robust Optimization

In robust optimization, the uncertainty of random variables is described by deter-
ministic sets rather than probability distributions as in stochastic programming.
Worst-case values are chosen within the sets to imply a high probability guaran-
tee that the solution is robust to randomness. From the previous section, we notice
that by exploring historical data to get additional information about the probability
distribution of random variables, we can construct the uncertainty sets that fit better
with the data. So a reasonable extension to the robust optimization is to combine
the ideas of using probability distributions and deterministic sets and find a unified
approach to solve robust portfolio management problems.

Distributionally robust optimization is such a technique that tries to bridge the
gap between robust optimization and stochastic programming [34]. It assumes that
although the true distribution of random variable is unknown, we can define an unc-
ertainty set for the distribution as we do for the random variable in the classical
robust optimization. In other words, we consider a distribution set for the unknown
distribution of random variable and try to find the solution that is robust to all feasi-
ble distributions in that set.

The primary work of distributionally robust optimization was done by Scarf [62]
who suggested a robust formulation for inventory problems based on stochastic pro-
gramming. In particular, Scarf considered a set of possible distributions of random
inventory demand and found the solution with respect to the worst-case of expected
cost. In recent years, with the explosive growth in robust optimization, distribution-
ally robust optimization is reemphasized and extensively studied.

Similar to the classical robust optimization, the choice of distribution set is very
important in distributionally robust optimization. According to Gabrel et al. [31]
and Hanasusanto et al. [40], a large group of distribution sets is based on moment
information, which either gives bounds for the moments or is the collection of all
distributions with the same first two moments. For detailed information about dif-
ferent kinds of distribution sets, the reader is referred to [26, 40].

Compared to classical robust optimization, generally it is not easy to derive the
robust counterparts using distribution sets due to their complex structures [40]. The
recent studies focus on finding tractable reformulations or unified frameworks to
solve distributionally robust problems. Calafiore and Ghaoui [17] studied a set of
radial distributions and showed that distributionally robust problems can be for-
mulated as second order cone problems. Goh and Sim [34] suggested linear and
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piece-wise linear decision rules and used distributionally robust bounds to refor-
mulate stochastic linear programs into deterministic convex programs. Wiesemann
et al. [65] introduced standardised distribution sets and provided tractable approxi-
mations. Hanasusanto et al. [40] proposed a unified framework to solve a standard
distributionally robust problem using different distribution sets.

In terms of portfolio management, Popescu [56] studied a robust portfolio man-
agement problem to maximize the worst-case expected utility of the portfolio return
(u(r̃,x)) and modeled the distribution uncertainty as a set of distributions with fixed
first and second moments (P∼ (μμμ ,Σ)). In order to maintain the consistency of this
chapter, here we consider the simplest utility function u(r̃,x) = r̃′x that results in
the following max-min problem:

max
x∈X

min
P∼(μμμ,Σ)

EP[r̃
′x]. (12.5)

Popescu [56] showed that the inner minimization problem in (12.5) is equivalent to
an univariate moment problem:

min
P∼(μμμx,σ2

x )
EP[r̃

′x],

where μμμx = μμμ ′x and σ2
x = x′Σx. Delage and Ye [24] argued that the assumption

of fixed first and second moments would result in sensitive solutions to the noise
of data. Alternatively, they considered a general distribution set which takes the
estimation error of the first two moments into account:

P ∈D(Ur̃, μ̂μμ, Σ̂ ,ϒ1,ϒ2) =

⎧

⎪

⎨

⎪

⎩

r̃ ∈Ur

(E[r̃]− μ̂μμ)′Σ̂−1(E[r̃]− μ̂μμ)≤ϒ1

E[(r̃− μ̂μμ)(r̃− μ̂μμ)′]�ϒ2Σ̂

⎫

⎪

⎬

⎪

⎭

, (12.6)

where μ̂μμ and Σ̂ are estimated mean and covariance of r̃, ϒ1 and ϒ2 are some prede-
fined parameters used to adjust the size of the set (can be regarded as the budget of
robustness). Notice that the uncertainty set in (12.6) contains all distributions with
similar (not required to be exactly the same) first two moments to some degrees ϒ1

andϒ2. Hence, the inner minimization problem of (12.5) becomes:

min
P∈D

E[r̃′x]

s.t. (E[r̃]− μ̂μμ)′Σ̂−1(E[r̃]− μ̂μμ)≤ϒ1

E[(r̃− μ̂μμ)(r̃− μ̂μμ)′]�ϒ2Σ̂
r̃∈Ur̃.

(12.7)

Delage and Ye [24] showed that using the definition of a probability distribution
P, (12.7) can be written as a semi-infinite programming problem.

Recently, distributionally robust optimization has also been applied in portfolio
optimization with ambiguous utility functions. Since only limited information about
investor’s risk preference is available when investment decisions are made (e.g. col-
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lected from questionnaire), the ‘true’ utility function of the investor cannot be known
exactly [10]. Alternatively, the ‘true’ utility function is assumed to belong to a set
of utility functions (e.g. [42]). Then the investment decision is chosen with respect
to the worst-case utility function in this set. In this case, the decision is robust to the
ambiguity of the ‘true’ utility function.

Specifically, Hu et al. [42] suggested an utility function set described by bound-
ary constraints and solved a robust portfolio management problem which maxi-
mized the worst-case expected utility within the set. Bertsimas and O’Hair [10]
developed a robust and integer optimization approach to learn preferences under
data noise and showed that the size of this utility function sets can be reduced when
new information comes. Haskell et al. [41] used a distributional robust approach to
incorporate ambiguities in both risk preferences and underlying probability distri-
bution of uncertain variables. Armbruster and Delage [2] also introduced a distribu-
tional robust approach to find the worst-case utility under incomplete information.

12.7 Robust Risk Measures

The mean-variance portfolio management problem applies a moment-based risk
measure that is the variance of portfolio return [54]. One of the main criticisms on
the variance risk measure is that it treats both downside and upside movements of
asset returns equally. However, the investors may be concerned with the downside
risk (capital loss) and the uptrend (capital gain) differently. The empirical studies
show that such a risk preference cannot be captured by the variance of portfolio
return. Quantile-based risk measures (such as value-at-risk and conditional value-
at-risk) consider the probability of loss rather than the gain. It displays some advan-
tages over the moment-based risk measure. In this section, we briefly describe the
robust formulations of quantile-based risk metrics.

Robust Value-at-Risk The Value-at-Risk (VaR) measure considers the probabil-
ity of losses. It is defined as the minimal level ζ such that the probability that the
portfolio loss (−r̃′x) exceeds ζ is below ε (see for instance, [49]). This can be math-
ematically formulated as:

VaRε(x) =
{

min ζ s.t. Prob(ζ ≤−r̃′x)≤ ε
}

,

where the loss probability level is ε ∈ (0,1].
In terms of robust portfolio management, Ghaoui et al. [33] provided a tractable

formulation of the worst-case VaR (labeled as WVaR). We now briefly summarize
their formulation in this section. Assume that the distribution P of random asset
returns r̃ is partially known. It belongs to a distribution set P that contains many
possible distributions. Then, the worst-case VaR (WVaR) with respect to the set of
probability distributions is defined as:

WVaRε(x) =
{

min ζ s.t. sup
P∈P

Prob(ζ ≤−r̃′x)≤ ε
}

.
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The robust portfolio optimization problem that minimizes the worst-case VaR is
formulated as:

min
x∈X

WVaRε(x).

Ghaoui et al. [33] derived the robust model in view of a set of probability distribu-
tions with known first two moments μ̂ and Σ̂ of asset returns r̃ using a semidefinite
programming problem. This problem was then extended by other researchers by tak-
ing into account realistic factors. For instance, Huang et al. [43] considered a WVaR
minimization problem with random investment horizon by incorporating the uncer-
tainty in the distribution of exit time into the model. This idea was used later in the
conditional value-at-risk context by Huang et al. [44]. Unlike the classical portfolio
management problems where the investment horizon is fixed (e.g. 1 month), Huang
et al. [44] argued that in reality, the investor can flexibly decide the time to exit
the market due to unexpected events in the market or personal reasons. Natarajan
et al. [53] developed an asymmetry-robust VaR problem in view of the asymmetric
uncertainty set. Goh et al. [35] introduced the so-called partitioned Value-at-Risk
measure, which was also motivated by asymmetric property of asset return. Their
results showed that the investment portfolio can perform better when the random
asset returns are asymmetrically distributed.

Robust Conditional Value-at-Risk Conditional Value-at-Risk (CVaR) is an alter-
native risk metric to measure a loss distribution and possesses superior mathematical
properties comparing to VaR. It is defined as the conditional expectation of all pos-
sible losses above VaR [3]. According to Rockafellar and Uryasev [59], CVaR is
mathematically formulated as follows:

CVaRε(x) =
1

1− ε

∫

−r̃′x≥VaRε(x)
(−r̃′x) f (r̃)dr̃,

where f (r̃) is the probability density function of r̃.
Pflug [55] proved that CVaR as a coherent risk measure satisfies four axioms:

translation invariance, subadditivity, positive homogeneity and monotonicity. For a
detailed description of coherent risk measures, the reader is referred to [3]. These
four axioms ensure that the CVaR minimization problem is a convex programming
problem. Rockafellar and Uryasev [60] showed that the CVaR minimization prob-
lem can be formulated as a linear programming problem where each continuous
distribution P is approximated by a discrete distribution. Then a sampling technique
can be used to generate a sample space with certain probabilities.

For random asset return r̃, let’s consider J realizations r1, · · · ,rJ with the associ-
ated probabilities pi such that ∑J

i=1 pi = 1. The CVaR formulation can be approxi-
mated by

CVaRε(x) = min
ζ

{

ζ +
1

1− ε
EP

[

max{−r̃′x− ζ ,0}]
}

= min
ζ

{

ζ +
1

1− ε

J

∑
i=1

pi
[

max{−r′ix− ζ ,0}]
}

.
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The worst-case CVaR (WCVaR) can be defined as:

WCVaRε(x) = sup
p∈P

CVaRε(x).

Zhu and Fukushima [66] proved that this problem is equivalent to the following
min-max problem:

WCVaRε(x) = min
ζ

max
p∈P

{ζ +
1

1− ε

J

∑
i=1

pi[max{−r′ix− ζ ,0}]}.

By introducing auxiliary variables si = max{−r′ix − ζ ,0} for i = 1, . . . ,J, the
WCVaR minimization problem can be formulated as a standard linear robust opt-
imization problem:

min
ζ

max
p∈P

ζ +
1

1− ε

J

∑
i=1

pisi

s.t. si ≥−r′ix− ζ , i = 1, . . . ,J
si ≥ 0, i = 1, . . . ,J
e′x = 1, x ≥ 0.

In order to derive the robust CVaR formulation, we need to solve the inner maxi-
mization problem in view of an uncertainty set that is constructed by a factor model.
For a scaling matrix G of the probability distribution, let’s consider the following
uncertainty set

P = {p : p = p0 +Gξ , e′Gξ = 0, p0 +Gξ ≥ 0, ‖ξ‖ ≤ 1}.

The the inner maximization problem becomes

max
p∈P

ζ +
1

1− ε
p′s = ζ +

1
1− ε

(

p′
0s+ max

e′Gξ=0, p0+Gξ≥0, ‖ξ‖≤1
s′Gξ

)

.

Let’s assign dual variables ς , σ and τ corresponding to constraints e′Gξ = 0,
−Gξ ≤ ϖ0 and ‖ξ‖ ≤ 1, respectively. Using the duality theory, the robust CVaR
formulation can be derived as the following deterministic second order conic pro-
gramming problem:

min
x,ζ ,s,ς ,π ,τ,υ

ζ +
1

1− ε
(

p′
0s−υ+p′

0π
)

s.t. si≥−r′ix− ζ , si ≥ 0, i = 1, . . . ,N
G′s= G′eς + τ−G′π
e′x= 1, ‖τ‖ ≤ υ

x,π≥ 0.

The reader is referred to Kim et al. [47] for further information on derivation of the
robust counterparts of value-at-risk and conditional value-at-risk problems.
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Recently, Huang et al. [45] introduced a new risk measure called relative robust
CVaR based on relative robust optimization. Unlike the classical robust optimiza-
tion, the relative robust optimization minimizes the difference between the perfor-
mance of the solution and relative solutions (e.g. solutions from benchmarks and
market competitors).

12.8 Concluding Remarks

In this chapter, we review robust optimization approaches in the context of single-
period portfolio allocation problem. We address several issues in robust optimization
such as constructing an uncertainty set and derivation of the robust counterpart of the
portfolio and risk management problems. We also summarize recent developments
in the data-driven and distributional robust optimization approaches and discuss the
applicability of these approaches to the single-period portfolio allocation problem.
In addition, the robust formulations based on risk metrics such as Value-at-Risk and
Conditional Value-at-Risk are presented.

Although the main focus of this chapter is the single stage investment decisions,
in practice an asset allocation must be revised at certain time periods and the port-
folio needs to be rebalanced over an investment horizon. This requires an extension
of the single stage portfolio allocation problem into the multistage and dynamic
decision-making framework in which impact of endogenous and/or exogenous unc-
ertain data is taken into account.

The multi-period stochastic programming approaches possess several drawbacks
due to existence of inherent inaccuracy and estimation errors as well as compu-
tational burdens [38]. It is crucial to develop tractable robust portfolio allocation
models in view of more realistic uncertainty sets. Although there exist several app-
lications of robust optimization for the multi-period portfolio allocation problems
(see, for instance [7, 11], the data-driven and distributionally robust optimization
approaches for the multi-period stochastic programming problems have not been
well established. In particular, multi-period robust risk measures for the portfolio
selection models are needed. As Chen and Liu [20] has recently stated, there is
still gaps in the literature how to ensure the time consistency property when using
different risk measures in multi-period problems.
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Chapter 13
Portfolio Optimization with Second-Order
Stochastic Dominance Constraints
and Portfolios Dominating Indices

Neslihan Fidan Keçeci, Viktor Kuzmenko, and Stan Uryasev

Abstract Portfolio optimization models are usually based on several distribution
characteristics, such as mean, variance or Conditional Value-at-Risk (CVaR). For
instance, the mean-variance approach uses mean and covariance matrix of return
of instruments of a portfolio. However this conventional approach ignores tails of
return distribution, which may be quite important for the portfolio evaluation. This
chapter considers the portfolio optimization problems with the Stochastic Domi-
nance constraints. As a distribution-free decision rule, Stochastic Dominance takes
into account the entire distribution of return rather than some specific characteristic,
such as variance. We implemented efficient numerical algorithms for solving the
optimization problems with the Second-Order Stochastic Dominance (SSD) con-
straints and found portfolios of stocks dominating Dow Jones and DAX indices.
We also compared portfolio optimization with SSD constraints with the Minimum
Variance and Mean-Variance portfolio optimization.
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13.1 Introduction

Standard portfolio optimization problems are based on several distribution charac-
teristics, such as mean, variance, and Conditional Value-at-Risk (CVaR) of return
distribution. For instance, Markowitz [12] the mean-variance approach uses esti-
mates of mean and covariance matrix of return distribution. Mean-variance portfolio
theory works quite well when the return distributions re close to normal.

This chapter considers portfolio selection problem based on the stochastic
dominance rule. Stochastic dominance takes into account the entire distribution of
return, rather than some specific characteristics. Stochastic dominance produces a
partial ordering of portfolio returns and identifies a portfolio dominating some other
portfolios [11].

Hadar and Russell [8] demonstrated that a diversified portfolio can dominate a
benchmark portfolio in the sense of the Second Order Stochastic Dominance (SSD).
Several applications of stochastic dominance theory to portfolio selection are con-
sidered by Whitmore and Findlay [16]. Dentcheva and Ruszczynski [3] developed
an efficient numerical approach for the portfolio optimization with SSD using partial
moment constraints. Roman et al. [14] suggested a portfolio optimization algorithm
for SSD efficient portfolios. They used SSD with a multi-objective representation
of a problem with CVaR in objective. Kuosmanen [10] and Kopa and Chovanec [9]
described SSD portfolio efficiency measure for diversification.

Rudolf and Ruszczynski [15] and Fabian et al. [5, 6] considered cutting plane
method to solve optimization problem with SSD constraints. This chapter imple-
mented an algorithm similar to the Rudolf and Ruszczynski [15]. We concentrated
on numerical aspects of portfolio optimization with SSD constraints and conducted
a case study showing that our algorithm works quite efficiently. We used Portfolio
Safeguard (PSG) optimization package of AORDA.com, which has precoded func-
tions for optimization with SSD constraints. We solved optimization problems for
stocks in Dow Jones and DAX Indices and found portfolios which SSD dominate
these indices. We also compared these portfolios with the Mean-Variance portfolios
based on constant and time varying covariance matrices.

13.2 Second Order Stochastic Dominance (SSD)

Let denote by FX(t) the cumulative distribution function of a random variable X .
For two integrable random variables X and Y , we say that X dominates Y in the
second-order, if

∫ η

−∞
FX(t)dt ≤

∫ η

−∞
FY (t)dt, ∀η ∈ R (13.1)

In short we say that X dominates Y in SSD sense and denote it by X �2 Y [7]. With
the partial moment of a random variable X for a target value η , the SSD dominance
is defined as follows
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E([η−X ]+)≤ E([η−Y ]+), ∀η ∈ R (13.2)

where, [η−X ]+ = max(0,η−X) [13].

13.2.1 SSD Constraints for a Discrete Set of Scenarios

Suppose that Y has a discrete distribution with outcomes, yi, i = 1,2, . . . ,N. Then
the condition (13.2) can be reduced to the finite set of inequalities [13],

E([yi −X ]+)≤ E([yi −Y ]+), i = 1, ,2, . . . ,N (13.3)

We use inequalities (13.3) for obtaining a portfolio X dominating benchmark Y .

13.2.2 Portfolio Optimization Problem with SSD Constraints

Let us denote:

wj = portfolio weight of the instrument j, j = 1, . . . ,n.
pi = probability of scenario i, i = 1, . . . ,N,
r ji = return of instrument j on scenario i,
c j = cost of investing in instrument j = 1, . . . ,n (estimated return of an instrument
is interpreted as negative cost −c j),
w = vector of portfolio weights, w = (w1,w2, . . . ,wn)

�,
r(w) = portfolio return as a function of portfolio weights w,
c(w) = portfolio cost as a function of portfolio weights w.

Portfolio return on scenario i equals:

ri(w) =
n

∑
j=1

wjr ji, i = 1,2, . . . ,N

Portfolio cost equals:

c(w) =
n

∑
j=1

c jwj

The benchmark portfolio Y has a discrete distribution with scenarios yi, i =
1,2, . . . ,N. We want to find a portfolio SSD dominating the benchmark portfolio
Y and having minimum cost c(w). We do not allow for shorting of instruments. Let
us denote by W the set of feasible portfolios:

W = {w ∈ R
n : wj ≥ 0, j = 1,2, . . . ,n}



288 N.F. Keçeci et al.

The optimization problem is formulated as follows:

minimizew c(w)
subject to: r(w)�2 Y

w ∈W
(13.4)

Since the benchmark portfolio has a discrete distribution, with (13.3) we reduce
the portfolio optimization problem (13.4) to:

minimizew

n

∑
j=1

c jwj

subject to: E([yi − r(w)]+)≤ E([yi −Y ]+), i = 1, . . . ,N
wj ≥ 0, j = 1, . . . ,n

(13.5)

A solution of the optimization problem (13.5) yields a portfolio dominating Y .
The number of scenarios (which can be quite large) determines the number of SSD
constraints in this optimization problem. Further, we suggest a procedure for elimi-
nation redundant constraints in (13.5).

13.3 Algorithm for Portfolio Optimization Problem
with SSD Constraints

This section describes cutting plane algorithm for solving problems with SSD con-
straints in this study. An overview of the cutting-plane methods for SSD problems
can be found in [5, 6, 15]. We start the description of the algorithm with the proce-
dure for removing redundant constraints.

13.3.1 Removing Redundant Constraints

Let us consider benchmark scenarios yi1 and yi2 with indices i1 and i2 and denote
the right hand side values of the constraints for scenarios in problem (13.5) by Ci1 =
E([yi1 −Y ]+) and Ci2 = E([yi2 −Y ]+). If yi1 ≤ yi2 and Ci1 ≥ Ci2 , for scenarios i1
and i2, then constraint i1 is redundant and it can be removed from the constraint set.
This procedure dramatically reduces the number of constraints in the optimization
problem (13.5).

13.3.2 Cutting Plane Algorithm

Here are the steps of the algorithm for solving optimization problem (13.5). We
denote by s the iteration number.
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Step 1. Initialization: s = 0. Assign an initial feasible set

W0 = {w ∈ R
n : wj ≥ 0, j = 1,2, . . . ,n}

Assign an initial verification set

V0 = {w ∈ R
n : E([yi − r(w)]+)≤ E([yi −Y ]+), i = 1,2, . . . ,N}

Step 2. Solve the optimization problem

minimizew

n

∑
j=1

c jwj

subject to: w ∈Ws

(13.6)

If all constraints defining the set Vs are satisfied, then the obtained point is optimal
to problem (13.5). Otherwise, go to Step 3.
Step 3. Find constraint in Vs with the largest violation and remove it from Vs.
Denote this new set of constraints by Vs+1 (after removing the constraint with the
largest violation). Add removed constraint to the constraints defining set Ws and
denote it by WS+1. Increase the iteration counter s = s+1 and go back to Step 2.

13.3.3 PSG Code for Optimization with SSD Constraints

The problem (13.5) can be directly solved with the Portfolio Safeguard (PSG) with-
out any additional coding. Here is the code, which can be downloaded from this
link.1

maximize
avg g(matrix sde)

Constraint:= 1
linear(matrix budget)

MultiConstraint: <= vector ubound sd
pm pen (vector benchmark sd, matrix sde)

Box: >= 0, <= 1

We have done the case study in PSG MATLAB Environment running many opt-
imizations iteratively. However, here we provided just one code in PSG Run-File
format to show that the SSD constrained problems can be easily coded and solved.

1 Three example problems containing input data and solutions in PSG format are at the following
link (see, Problem 1, Dataset 1, 2, 3): http://goo.gl/Fooals.

http://goo.gl/Fooals
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13.4 Case Study

We solved problem (13.5) with two data sets. The first dataset includes stocks from
the Dow Jones (DJ) index and DJ index is considered as a benchmark. Similar, the
second dataset includes stocks from the DAX index and the DAX index is used
as a benchmark. The data were downloaded from the Yahoo Finance (http://finance.
yahoo.com) and include 2500 historical daily returns of stocks from March 24, 2005
to Feb 27, 2015 for DJ index and from April 25, 2005 to Feb 27, 2015 for DAX
index. The lists of stocks in indices are taken on March 2, 2015. Therefore, we
considered only 29 stocks from the DJ index and 26 stocks from the DAX Index
(the appendix contains the list of the stocks selected for this chapter). The stock
returns on daily basis (r ji) were calculated using logarithm of ratio of the stock
adjusted closing prices ( fi),

r ji = ln( fi/ fi−1)

We adjusted the stocks prices of four companies from DAX Index.2 Daily returns
are considered as equally probable scenarios in the study.

The optimization problem with SSD constraint (in this case study) finds a portfo-
lio SSD dominating the benchmark and having maximum expected portfolio return.
Shorting is not allowed. The sum of portfolio weights is equal to 1,

n

∑
j=1

wj = 1, wj ≥ 0, j = 1,2, . . . ,n

We compared performance of the SSD based portfolios with Equally Weighted,
Minimum Variance and Mean-Variance portfolios with the constant and time-
varying covariance matrices. Here is a brief description of portfolios:

1. Equally Weighted (EW): All stocks in the portfolio are equally weighted. Every
stock has same weight (1/n), where n is the number of stocks in the portfolio.

2. Minimum Variance (MinVar): Minimum Variance portfolio has minimum vari-
ance without any constraint on portfolio return. Shorting is not allowed and the
sum of the portfolio weights is equal to 1.

3. Mean-Variance (Mean-Var): Mean-variance portfolio [12] uses mean return and
the variance of the stock returns. The approach finds efficient portfolios having
minimum variance for a desired level of portfolio return or equivalently having
maximum portfolio return for a given variance. We considered Mean-Var prob-
lems having variance in the objective function and the expected portfolio return
12 % per year in the constraint, and 0.2 upper bound constraint on the positions.
Shorting is not allowed and the sum of the portfolio weights is equal to 1.

The classical Mean-Variance model considers the constant covariance matrix. We
also considered the time dependent covariance matrix using DCC-GARCH model
in MinVar and Mean-Var approaches. Further, we briefly describe the estimation
procedure for the time-dependent covariance matrix.

2 DB1.DE, FRE.DE, IFX.DE and MRK.DE stock prices are adjusted for splits.

http://finance.yahoo.com
http://finance.yahoo.com
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13.4.1 Estimation of Time-Varying Covariance Matrix

We considered a dynamic conditional correlation DCC-GARCH (DCC) model for
the estimation of large time-dependent covariance matrices [4]. We estimated the
time dependent covariance matrix using DCC-GARCH model (assuming that cor-
relations may change over time). The time-dependent covariance matrix Ht is ext-
racted from the DCC-GARCH model, where Ht = DtRtDt . Here, Dt is the diagonal
matrix from a univariate GARCH model and Rt is the time dependent correlation
matrix. This chapter assumes the simplest conditional mean return equation where
r j = N−1 ∑N

i=1 r ji is the sample mean and the deviation of returns (rt − r) is condi-
tionally normal with zero mean and time-dependent covariance matrix Ht [2]. We
consider the time-dependent covariance matrix Ht in a simple DCC(1,1)-GARCH
model. We used Ht in MinVar and Mean-Var problems.

The next Sect. 13.4.2 compares SSD constrained optimization with the MinVar
and the Mean-Var approaches for all available historical data in a static setting.
The code was implemented with MATLAB R2012b. We have used PSG riskprog
function in MATLAB environment to solve MinVar and Mean-Variance portfolio
problems. For the estimation of the time-dependent covariance matrix we have used
MFE Toolbox3. The Sect. 13.4.3 we compares out-of-sample performance of port-
folios in time series framework. The calculations were performed on a computer
having 3.4 GHz CPU and 8 GB of RAM.

13.4.2 Comparing Numerical Performance
of Various Portfolio Settings

We benchmarked the cutting plane algorithm described in Sect. 13.3.2 with the
direct PSG code described in Sect. 13.3.3. We got the same results with both app-
roaches. Further in tables we report performance of the direct PSG code. The dataset
includes 2500 historical daily stock returns. Firstly we optimized portfolios with all
approaches using available 2500 historical daily returns.

Table 13.1 shows the expected yearly returns of portfolios for all considered
approaches.

The SSD dominating portfolios can be used for actual investments. At least in
the past, these portfolios SSD dominated the corresponding indices. Moreover, the
expected yearly return of the portfolio SSD dominating the DJ index equals 0.10029
and significantly exceeds the DJ index return in this period. Similar observations are
valid for the portfolio of DAX index; the expected yearly return of portfolio SSD
dominating the benchmark equals 0.14894.

We compared solving times of SSD constraint optimization problem (using direct
PSG optimization) with the MinVar and Mean-Var approaches (using PSG riskprog

3 DCC-GARCH models are estimated with Kevin Sheppard’s (Multivariate GARCH) MFE Tool-
box. http://www.kevinsheppard.com/MFE Toolbox

http://www.kevinsheppard.com/MFE_Toolbox
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Table 13.1: Expected yearly returns of portfolios

Portfolios DJI DAX

EW 0.09617 0.10179
MinVar 0.08668 0.14135
Mean-Var 0.12693 0.12693
DCC MinVar 0.09034 0.13466
DCC Mean-Var 0.12693 0.12693
SSD 0.10029 0.14894
Benchmark 0.05682 0.10484

subroutine). Data loading and solving times are given in Table 13.2. The optimiza-
tion is done almost instantaneously and data loading takes some fraction of a second.
The time-dependent covariance matrix estimation with MFE Toolbox additionally
takes about 30 s (for MinVar and Mean-Var optimization).

Table 13.2: Loading and solving times (in seconds) with PSG in MATLAB Envi-
ronment

DJ DAX
Problem Loading Solving Loading Solving

SSD constrained (PSG code) 0.24 0.01 0.23 0.01
MinVar (PSG riskprog) 0.22 0.01 0.23 0.01
Mean-Var (PSG riskprog) 0.31 0.01 0.32 0.01

13.4.3 Out-of-Sample Simulation

Secondly, we have evaluated the out-of-sample performance of considered ap-
proaches. We considered a time series framework where the estimation period (750
and 1000 days) is rolled over time. Portfolios are re-optimized on every first busi-
ness day of the month using the recent historical daily returns (750 or 1000). We kept
constant positions during the month. Regarding the return constraint in the Mean-
Var problem, if the expected return 12 % per year is not feasible (in the beginning
of the month), than we set 6 % expected return constraint and if we still do not have
feasibility, we reduce the expected return to 3 %, and then to 0 %. A difficulty in es-
timation of the covariance matrices with DCC model is that the time-dependent con-
ditional correlation matrix has to be positive definite for all time moments [1]. We
observe that with a small in-sample time intervals (such as 250 days) the variance-
covariance matrix may not be positive-definite. Therefore, we have used 750 and
1000 days in-sample periods.

Table 13.3 shows out-of-sample total compounded returns of considered port-
folios. In particular, we observe that the SSD constrained portfolio for DJ stocks
with 750 days in-sample and DAX stocks with 1000 days in-sample, have highest
compounded returns among all portfolios.



13 Portfolio Optimization with SSD Constraints 293

Table 13.3: Out-of-sample total compounded returns of the portfolios

DJ DAX
Portfolios 750 1000 750 1000

EW 1.6698 2.7560 1.2120 1.9022
MinVar 1.4787 2.0035 1.6186 2.4410
Mean-Var 1.6715 2.1487 1.4912 2.6219
DCC MinVar 1.3876 2.0463 1.7763 2.2062
DCC Mean-Var 1.6499 2.2556 1.4344 2.3435
SSD 1.8817 2.1692 1.3987 2.8827
Benchmark 1.2729 2.2275 1.3399 1.8674

Figures 13.1, 13.2, 13.3, and 13.4 show the out-of-sample compounded daily
returns of the portfolios.

Fig. 13.1: Compounded (on daily basis) returns of portfolios including DJ stocks,
t = 750

The out-of-sample performances of portfolios are represented in Tables 13.4,
13.5, 13.6, and 13.7. The tables include yearly compounded portfolio returns for
2009–2014 years, the total compounded portfolio return (TR) and Sharpe Ratio (ShR).

• Table 13.4 (DJ stocks, t = 750). SSD constrained portfolio has the highest Total
Compounded Return (1.8817) and Sharpe Ratio (0.7906).

• Table 13.5 (DJ stocks, t = 1000). SSD constrained portfolio has Sharpe Ratio
(1.2771) higher than the all considered portfolios except Equally Weighted port-
folio.
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Fig. 13.2: Compounded (on daily basis) returns of portfolios including DJ stocks,
t = 1000

Fig. 13.3: Compounded (on daily basis) returns of portfolios including DAX stocks,
t = 750

• Table 13.6 (DAX stocks, t = 750). SSD constrained portfolio has Sharpe Ratio
(0.2732) and Total Compounded Return (1.3987) higher than the Benchmark and
Equally Weighted portfolios.

• Table 13.7 (DAX stocks, t = 1000). SSD constrained portfolio has the highest
Total Return (2.8827) and Sharpe Ratio (1.3523).

Table 13.8 shows weights of SSD constrained portfolios at the last month of the
out-of-sample period. Also, the table shows SSD dominating portfolios over all
in-sample 2500 days. The table shows only stocks with non-zero positions.
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Fig. 13.4: Compounded (on daily basis) returns of portfolios including DAX stocks,
t = 1000

Table 13.4: Yearly compounded returns, total compounded return (TR), Sharpe ratio
(ShR) for DJ stocks (t = 750)

Portfolios 2009 2010 2011 2012 2013 2014 TR ShR

EW 1.2257 1.1256 1.0467 1.1249 1.3063 1.1029 1.6698 0.5533
MinVar 1.0903 1.0282 1.1259 1.1158 1.1814 1.0451 1.4787 0.4584
Mean-Var 1.0618 1.0993 1.1424 1.1399 1.2220 1.0473 1.6715 0.7034
DCC MinVar 1.0277 1.0119 1.1513 1.0612 1.1574 1.1090 1.3876 0.4025
DCC Mean-Var 1.0405 1.0865 1.1864 1.1041 1.2104 1.0678 1.6499 0.6835
SSD 1.0931 1.0493 1.1495 1.0443 1.2089 1.1498 1.8817 0.7906
Benchmark 1.154 1.0958 1.0321 1.0652 1.2584 1.0688 1.2729 0.2239

Table 13.5: Yearly compounded returns, total compounded return (TR), Sharpe ratio
(ShR) for DJ stocks (t = 1000)

Portfolios 2010 2011 2012 2013 2014 TR ShR

EW 1.1256 1.0467 1.1249 1.3063 1.1029 2.7560 1.2902
MinVar 1.0294 1.1109 1.1349 1.1852 1.0593 2.0035 0.9230
Mean-Var 1.1241 1.1129 1.0920 1.1993 1.0736 2.1487 1.1965
DCC MinVar 1.0437 1.1064 1.0530 1.1702 1.1321 2.0463 0.9803
DCC Mean-Var 1.1207 1.1548 1.0866 1.1822 1.0899 2.2556 1.2653
SSD 1.0721 1.1327 1.0525 1.2078 1.1153 2.1692 1.2771
Benchmark 1.0958 1.0321 1.0652 1.2584 1.0688 2.2275 1.0165
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Table 13.6: Yearly compounded returns, total compounded return (TR), Sharpe ratio
(ShR) for DAX stocks (t = 750)

Portfolios 2009 2010 2011 2012 2013 2014 TR ShR

EW 1.2890 1.1677 0.8119 1.2526 1.2034 1.0217 1.2120 0.1245
MinVar 1.1609 1.0742 1.1485 1.1590 1.1537 1.0698 1.6186 0.5457
Mean-Var 0.9763 1.1691 1.0700 1.1896 1.2448 1.0740 1.4912 0.4635
DCC MinVar 1.1231 1.0966 1.1853 1.1346 1.0468 1.0436 1.7763 0.6348
DCC Mean-Var 0.9799 1.1565 1.0793 1.1612 1.1282 1.0789 1.4344 0.3939
SSD 1.0284 1.1304 1.0950 1.2322 1.2031 1.0885 1.3987 0.2732
Benchmark 1.1891 1.1411 0.8181 1.2671 1.2414 1.0123 1.3399 0.2279

Table 13.7: Yearly compounded returns, total compounded return (TR), Sharpe ratio
(ShR) for DAX stocks (t = 100)

Portfolios 2010 2011 2012 2013 2014 TR ShR

EW 1.1677 0.8119 1.2526 1.2034 1.0217 1.9022 0.6784
MinVar 1.0714 1.1479 1.1541 1.1371 1.0746 2.4410 1.1886
Mean-Var 1.2238 1.0407 1.1562 1.2211 1.0962 2.6219 1.3164
DCC MinVar 1.1033 1.1825 1.1501 1.0282 1.0606 2.2062 1.0335
DCC Mean-Var 1.2547 1.0542 1.1593 1.0626 1.0867 2.3435 1.0169
SSD 1.1452 1.0343 1.2235 1.2323 1.1425 2.8827 1.3523
Benchmark 1.1411 0.8181 1.2671 1.2414 1.0123 1.8674 0.6676

Table 13.8: SSD constrained portfolios (table shows only selected stocks)

DJ Weights DAX Weights

Code 750 days 1000 days 2500 days Code 750 days 1000 days 2500 days
BA 0.06984 0.00808 0.00243 ADS 0.00000 0.00000 0.01287
DIS 0.34832 0.10397 0.00000 BAYN 0.00000 0.00000 0.02686
HD 0.19280 0.19317 0.00000 BEI 0.00000 0.02238 0.20000
IBM 0.00000 0.00000 0.01959 CON 0.33042 0.04653 0.00000
JNJ 0.00000 0.22105 0.20000 DPW 0.06556 0.12844 0.00000
KO 0.00000 0.00000 0.16569 DTE 0.02086 0.00000 0.00000
MCD 0.00000 0.00000 0.20000 FME 0.00000 0.00000 0.20000
MMM 0.08726 0.00000 0.00000 FRE 0.31189 0.43899 0.12149
MRK 0.07009 0.15284 0.00000 LIN 0.00000 0.00000 0.10719
NKE 0.05919 0.05844 0.01776 MRK 0.27127 0.36366 0.12265
PG 0.00000 0.02058 0.19368 MUV2 0.00000 0.00000 0.08076
T 0.00000 0.00000 0.01456 SAP 0.00000 0.00000 0.12819
TRV 0.08155 0.00000 0.00000
UNH 0.09096 0.08374 0.00000
VZ 0.00000 0.00000 0.05402
WMT 0.00000 0.15814 0.13226
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13.5 Conclusions

In this chapter we tested algorithms for portfolio optimization with SSD constraints.
The algorithms are very efficient and solve optimization problems nearly instanta-
neously (solution times less than 0.01 s for the considered cases).

We have done out-of-sample simulations and compared SSD constrained portfo-
lios with the minimum variance and mean-variance portfolios. The portfolios were
constructed from the stocks of DJ and DAX indices. SSD constrained portfolio
demonstrated quite good out-of-sample performance and in some cases had highest
compounded return and Sharpe ratio (among all considered portfolios).

Appendix: Company Codes and Names

DAX DJ
code Name code Name

1 ADS Adidas AG AXP American Express Company
2 ALV Allianz SE BA The Boeing Company
3 BAS BASF SE CAT Caterpillar Inc.
4 BAYN Bayer AG CSCO Cisco Systems, Inc.
5 BEI Beiersdorf AG CVX Chevron Corporation
6 BMW Bayerische Mot. Werke Aktienges. DD E. I. du Pont de Nemours and Company
7 CBK Commerzbank AG DIS The Walt Disney Company
8 CON Continental Aktiengesellschaft GE General Electric Company
9 DAI Daimler AG GS The Goldman Sachs Group, Inc.

10 DB1 Deutsche Boerse AG HD The Home Depot, Inc.
11 DBK Deutsche Bank AG IBM Int. Business Machines Corporation
12 DPW Deutsche Post AG INTC Intel Corporation
13 DTE Deutsche Telekom AG JNJ Johnson & Johnson
14 EOAN E.ON SE JPM JPMorgan Chase & Co.
15 FME Fres. Med. Care AG & Co. KGAA KO The Coca-Cola Company
16 FRE Fresenius SE & Co KGaA MCD McDonald’s Corp.
17 HEI HeidelbergCement AG MMM 3M Company
18 IFX Infineon Technologies AG MRK Merck & Co. Inc.
19 LHA Deutsche Luft. Aktiengesellschaft MSFT Microsoft Corporation
20 LIN Linde Aktiengesellschaft NKE Nike, Inc.
21 MRK Merck KGaA PFE Pfizer Inc.
22 MUV2 Münchener R. G. A. PG The Procter & Gamble Company
23 SAP SAP SE T AT&T, Inc.
24 SDF K+S Aktiengesellschaft TRV The Travelers Companies, Inc.
25 SIE Siemens Aktiengesellschaft UNH UnitedHealth Group Incorporated
26 TKA ThyssenKrupp AG UTX United Technologies Corporation
27 VZ Verizon Communications Inc.
28 WMT Wal-Mart Stores Inc.
29 XOM Exxon Mobil Corporation
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Chapter 14
Robust DEA Approaches to Performance
Evaluation of Olive Oil Production Under
Uncertainty

Kazım Barış Atıcı and Nalân Gülpınar

Abstract In this chapter, we are concerned with performance evaluation of olive oil
production using Data Envelopment Analysis (DEA) under uncertainty. In order to
measure production efficiency of olive-growing farms, we first apply an imprecise
DEA approach by taking into account optimistic and pessimistic perspectives on un-
certainty realized in olive oil production yield. We then consider robust optimization
based DEA under an uncertainty set where the random data belong. The robust DEA
model enables to adjust level of conservatism that is defined by the price of robust-
ness of the uncertainty set. The performance of imprecise and robust DEA models is
illustrated via a case study of olive-growing farms located in the Aegean Region of
Turkey. The numerical experiments reveal that the efficiency scores and efficiency
discriminations dramatically depend on how the uncertainty is treated both in imp-
recise and robust DEA modeling. There exists a trade-off between the protection
level and conservatism of the efficiency scores.

14.1 Introduction

Data Envelopment Analysis (DEA) is a well-established non-parametric approach
for identifying relative efficiency of organizations or organizational units that are
producing multiple outputs through the use of multiple inputs [13, 23]. The DEA
approach has been widely applied for the performance evaluation of different
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aspects of business practices in various industries. Together with banking, health-
care, transportation and education, agriculture is one of the top-five industries that
DEA has been applied [18]. In particular, DEA and related methodologies have been
used for identifying relative technical efficiency of various types of agricultural est-
ablishments (for recent examples see [1, 2, 9, 15]).

The standard DEA methodology requires perfect information about data. In other
words, multiple input and output parameters for each decision making unit are
assumed to be known exactly. However, in various real world applications, some
or all parameters involve uncertainty. Often little is known about the specific distri-
butions of future uncertainties, and little data are available for estimating the prob-
ability distributions of these uncertainties. In many cases, it may be preferable to
provide general information about the uncertainties, such as means, ranges, and dir-
ectional deviations, rather than generating specific scenarios. In this case, they may
be represented in the forms of ordinal or bound data.

The standard (deterministic) DEA approach was extended to Imprecise Data
Envelopment Analysis (IDEA) to handle data uncertainty by Cooper et al. [11, 12].
The production efficiency of decision-making units is determined in view of such
uncertain parameters that are assumed to take either optimistic or pessimistic per-
spectives. The reader is referred to Zhu [24, 25] and Park [19] for various applica-
tions of IDEA.

As we will discuss in more detail later, robust optimization is a technique for dec-
ision making under uncertainty that is concerned with finding the optimal solution
when uncertain parameters in the problem take their worst-case values in pre-
specified uncertainty sets. Robust optimization was independently developed by
Ben-Tal and Nemirovski [4] and Ghaoui and Lebret [16], and has experienced
tremendous growth in the last decade mainly because of computational tractabil-
ity and practical implementation (for example, see [5, 7, 8]).

Robust optimization has also been adopted to DEA for handling data uncertainty
arising in input and output parameters. However, the robust DEA framework has not
been yet widely applied in practice. Sadjadi and Omrani [20] considered robustify-
ing uncertainty on output parameters for the performance assessment of electricity
distribution companies. Shokouhi et al. [21] proposed a tractable robust approach
for imprecise DEA where both input and output parameters are constrained within
an uncertainty set. They applied a Monte-Carlo simulation to illustrate performance
of the robust DEA model using a small example.

This chapter focuses on an agricultural performance evaluation problem under
uncertainty using DEA. More precisely, the imprecise and robust DEA models are
developed to measure technical efficiency of olive growing farms. To the best of our
knowledge, this research is the first attempt to model olive oil production problem
under uncertainty using the IDEA and robust DEA approaches. It is worthwhile to
mention that imprecise DEA is applied to the olive oil production problem rather
than standard (deterministic) DEA due to stochastic nature of output parameters
associated with farms’ olive oil yields. Uncertainty is represented as in the form of
bound data varying dependently on the olive production. We apply both optimistic
[11] and pessimistic [19] perspectives for data uncertainty within the imprecise DEA
framework.
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We also apply the robust DEA approach to find the worst-case production effi-
ciency of olive-growing farms in view of uncertain olive oil production level vary-
ing within a pre-specified uncertainty set. A tractable robust DEA model is derived
using an uncertainty set, introduced by Bertsimas and Sim [7], for random output
parameters. This model enables to adjust the level of conservatism that is defined by
the price of robustness of the uncertainty set.

We consider a real world case study of olive oil producing farms located in the
Aegean Region of Turkey in order to illustrate performance of imprecise and robust
DEA models. The production performance of those farms is measured in terms of
efficiency scores under data uncertainty. We study how efficiency scores change
between imprecise and robust DEA modeling. In addition to the comparison of effi-
ciency scores in robust and imprecise DEA models, we also investigate the impact of
the size of uncertainty sets and model parameters on the robust and imprecise DEA
scores of smaller groups of farms via simulating the estimated olive oil production
and its deviations.

The rest of this chapter is organized as follows. Section 14.2 provides an insight
on imprecise DEA models. In Sect. 14.3, we present a brief introduction to robust
optimization modeling of DEA and derive mathematical formulations of robust
DEA models. Section 14.4 focuses on the case study and describes the data set
in terms of input and output variables. Section 14.5 presents the numerical results of
relative production efficiency obtained through imprecise and robust DEA
approaches. Finally, Sect. 14.6 summarizes our findings.

14.2 DEA Modeling

This section is a brief introduction to deterministic and imprecise DEA modeling.
We consider imprecise DEA as a benchmark approach for the olive oil production
problem under uncertainty. Before formulating the imprecise DEA model, let us
describe a standard DEA linear program since it is a fundamental model for both
imprecise and robust DEA approaches.

14.2.1 Deterministic DEA Model

As mentioned before, DEA is used to measure relative efficiency of a decision mak-
ing unit with respect to other units producing multiple outputs through the use of
multiple inputs. The fundamental model (referred to the CCR DEA model) was
introduced by the original work of Charnes et al. [10]. The CCR DEA model basi-
cally builds on the idea of maximizing the ratio of weighted combination of outputs
to weighted combination of inputs.

Let us consider N decision making units. We assume that each decision making
unit j (for j = 1, · · · ,N) uses M different inputs xi j (for i = 1, · · · ,M) and produces S
different outputs yr j (for r = 1, · · · ,S). Let μr and wi denote the weights (or decision
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variables) corresponding to output r and input i, respectively. The CCR DEA model
calculates the efficiency score for the decision making unit o under consideration by
solving the following linear problem:

max
S

∑
r=1

μryro

s.t.
M

∑
i=1

wixio = 1

S

∑
r=1

μryr j −
M

∑
i=1

wixi j ≤ 0, j = 1, · · · ,N
μr,wi ≥ 0, i = 1, · · · ,M, r = 1, · · · ,S.

(14.1)

Notice that the standard DEA model (14.1) is constructed by using exact (determin-
istic) data values for input and output parameters for each decision making unit.
However, it is not always possible to have perfect information about the data related
to input and/or output values of decision making units. The gathered data may in-
volve inaccuracy due to estimation error, and even data uncertainty may exist due to
the nature of the underlying problem.

For these cases, Cooper et al. [11] first introduced the concept of imprecise data
into the DEA framework. The term “imprecise data” reflects the situation where
some of the input and output data are only known to lie within bounded intervals
[14]. Thus, Imprecise Data Envelopment Analysis (IDEA) permits the incorporation
of bounded or ranked data into the DEA models.

14.2.2 Imprecise DEA Model

Let D+
r and D−

i denote sets for the input and output parameters including both imp-
recise and exact data. The values of yr and/or xi are not known exactly, but need to
be determined in sets D+

r and D−
i . Then the IDEA model based on the CCR DEA

formulation is stated as follows.

max
S

∑
r=1

μryro

s.t.
M

∑
i=1

wixio = 1

S

∑
r=1

μryr j −
M

∑
i=1

wixi j ≤ 0, j = 1, · · · ,N
yr = (yr j) ∈ D+

r r = 1, · · · ,S
xi = (xi j) ∈ D−

i i = 1, · · · ,M
μr,wi ≥ 0, i = 1, · · · ,M, r = 1, · · · ,S,

(14.2)

where the decision variables μr and wi represent weights corresponding to output
and input data as defined before.
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For the deterministic DEA model, the exact values of yr and/or xi taken from sets
D+

r and D−
i are simply substituted in (14.2). This leads to a linear program as stated

by the standard DEA model (14.1). However, the IDEA model (14.2) becomes a
nonlinear optimization problem. In order to solve the nonlinear programming prob-
lem, Cooper et al. [11] and Kim et al. [17] converted the nonlinear model into a
linear program via scale transformations and variable alterations. Cooper et al. [12]
then applied the IDEA model (where an imprecise output parameter for all units
is defined in the form of intervals) to measure performance efficiency of a mobile
telecommunication company in Korea. Zhu [25] also considered the IDEA model
for the same telecommunication problem, but solved it as a standard DEA prob-
lem. He showed that the same efficiency scores as in Cooper et al. [12] can be
obtained by simply substituting the output parameter of the unit under evaluation to
its upper bound while fixing the output parameters of the remaining units to their
lower bounds of the corresponding intervals. Therefore, the unit under evaluation
is assumed to perform at its best (as fixed at the upper bound of the corresponding
interval of the output parameters) while the other units are assumed to perform at
the worst-case (as fixed at the lower bounds of the interval of output parameters).

Park [19] proved that the IDEA formulation (introduced by Cooper et al. [11])
in fact produces an “optimistic” strategy since the efficient score is evaluated at the
best scenario (selected within pre-specified imprecise data interval) available for the
underlying decision making unit. Therefore, the objective function for the IDEA
model to achieve the optimistic strategy can be formulated as follows:

max
yr∈D+

r ,xi∈D−
i

max
μ,w

S

∑
r=1

μryro

Similarly, a “pessimistic” strategy within the IDEA context is achieved by the fol-
lowing min-max objective function

min
yr∈D+

r ,xi∈D−
i

max
μ,w

S

∑
r=1

μryro

The IDEA model with the min-max objective transforms the bounded data to exact
data so that the model seeks to evaluate the unit under evaluation in the worst sce-
nario possible. In other words, the unit under consideration is evaluated by the worst
scenario possible (specified at the lower bound of the interval of the imprecise pa-
rameter) while the other units perform at their best scenario (specified at the upper
bound of the interval of the imprecise parameter). Therefore, the solution of the-
min-max optimization problem provides a conservative (worst-case) efficient score
for the underlying unit.

If any unit is determined as efficient by both optimistic and pessimistic perspec-
tives within IDEA approach, then it is declared as “perfectly efficient”. On the other
hand, it is called “potentially efficient” when it is efficient under the optimistic
strategy and inefficient under the pessimistic strategy [19].
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Following the transformations introduced by Soyster [22], the IDEA model in
view of the pessimistic perspective is formulated in a general form as follows;

max ∑S
r=1 μr inf{yro | yr ∈ D+

r }
s.t.

M

∑
i=1

wi sup
{

xio | xi ∈ D−
i

}

= 1

S

∑
r=1

μr inf
{

yro | yr ∈ D+
r

}−
M

∑
i=1

wi sup
{

xio | xi ∈ D−
i

}≤ 0, (14.3)

S

∑
r=1

μr inf
{

yr j | yr ∈ D+
r

}−
M

∑
i=1

wi sup
{

xi j | xi ∈ D−
i

}≤ 0, j = 1, · · · ,N, j �= o

μr,wi ≥ 0, i = 1, · · · ,M, r = 1, · · · ,S

where the ‘sup’ and ‘inf’ are replaced by ‘max’ and ‘min’, respectively, when D+
r

and D−
i are closed and bounded sets. The reader is referred to Park [19] for further

information on the generalized linear program.

14.3 Robust DEA Approach

As mentioned in the introduction, the robust optimization approach to solving an op-
timization problem with uncertain data involves specifying appropriate uncertainty
sets for the uncertain coefficients, and finding a solution that guarantees feasibility
even if the uncertain coefficients take their worst-case values within the uncertainty
sets. A brief introduction to the main ideas of robust linear optimization (the type
of problem with which we are dealing in this chapter) is provided next; for further
information, the reader is referred to Ben-Tal and Nemirovski [4, 5] as well as Ben-
Tal et al. [6]. We then derive the robust DEA model that is to be applied for the case
study of olive oil production problem described in Sect. 14.4.

14.3.1 Robust Linear Optimization

Consider, for example, a linear program

max

{

c′x |
n

∑
j=1

ã jx j ≤ b, x ∈V

}

where c ∈ Rn×1, and V consists of all constraints whose parameters are certain.
x ∈ Rn×1 represents a vector of decision variables and ã ∈ Rn×1 is a vector of
uncertain parameters. Let Ua denote an uncertainty set specified by the modeler.
Robust optimization solves an optimization problem assuming that the uncertain
data belong to an uncertainty set, ã ∈ Ua. It looks for an optimal solution that
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remains feasible if the uncertainties take any values within that uncertainty set. This
reformulation of the problem is referred to as the robust counterpart of the original
optimization problem. In some special cases, the robust counterpart of the original
problem involves the worst-case outcome of the stochastic data within the uncer-
tainty set, and is a tractable optimization problem with no random parameters.

The robust counterpart of the underlying linear program is formulated as

max
x

min
ã

{

c′x |
n

∑
j=1

ã jx j ≤ b, ã ∈Ua, x ∈V

}

.

The size of the uncertainty set is often related to guarantees on the probability
that the constraint involving uncertain coefficients will not be violated. There is
a trade-off between the amount of protection against uncertainty that is desired and
optimality—the smaller the probability that the constraint will be violated, the more
the modeler gives up in terms of optimality of the robust solution relative to the
solution to the original optimization problem.

Ellipsoidal, box and polyhedral are the most commonly used uncertainty sets, but
more recently, asymmetric uncertainty sets have been used as well in order to capt-
ure the probability distribution characteristics of the uncertainties better. In practice,
the shape is selected to reflect the modeler’s knowledge of the probability distri-
butions of the uncertain parameters, while at the same time making the robust coun-
terpart problem efficiently solvable. Further results on probability bounds related to
the size and the shape of uncertainty sets can be found, for example, in Bertsimas
and Sim [7] and Bertsimas et al. [8].

For the robust DEA model, we apply an uncertainty set introduced by Bertsimas
and Sim [7]. A brief description to this uncertainty set and its adaptation to the DEA

modeling is presented next. Let’s consider the constraint
n

∑
j=1

ã jx j ≤ b where the un-

certain parameter ã j will be robustified. Assume that each entry ã j is modeled by a
symmetric and bounded random variable that takes values in [a j − â j, a j + â j]. The

random variable η j =
ã j−â j

â j
which obeys an unknown but symmetric distribution

and takes values from an interval [−1,1]. Then the robust counterpart of the linear
constraint is derived by a set of the following constraints

{ n

∑
j=1

â jx j + zΓ +
n

∑
j=1

p j ≤ b, z+ p j ≥ â jt j,

− t j ≤ x j ≤ t j, t j ≥ 0, p j ≥ 0, z ≥ 0, j = 1, · · · ,n
}

where the parameter Γ adjusts the robustness of the model against the level of con-
servatism of the solution. It takes values in the interval [0,n], not necessarily integer.
It is crucial to decide the sufficient level where the some parameters are protected to
get their worst-case values. When Γ is selected as 0, there is no protection against
uncertainty (i.e. uncertainty is ignored). If Γ = n, then the constraint is completely
protected against uncertainty.
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14.3.2 Robust DEA Model

Assume that uncertain output parameters, ỹr j for r = 1, · · · ,S, and j = 1, · · · ,N,
belong to an uncertainty set Uy. The robust counterpart of the DEA model can be
formulated as follows;

max
μ,w

min
ỹro∈Uy

S

∑
r=1

μrỹro

s.t.
M

∑
i=1

wixio = 1

min
ỹr j∈Uy

S

∑
r=1

μrỹr j −
M

∑
i=1

wixi j ≤ 0, j = 1, · · · ,N, j �= o

μr ≥ 0, wi ≥ 0, i = 1, · · · ,M, r = 1, · · · ,S,

(14.3)

Let θ be a free variable representing the inner minimization problem in the objective
function. Then the objective function can be transformed into a constraint

min
ỹro∈Uy

S

∑
r=1

μrỹro −θ ≥ 0.

Next, to derive the robust counterpart of the DEA model (so-called as the robust
DEA model) using the uncertainty set introduced by Bertsimas and Sim [7], both
inner minimization problems in the constraints are first solved using dual linear
programs. Then the corresponding robust counterparts are reinjected into the corre-
sponding constraints. The robust DEA model can be stated as

max θ

s.t.
M

∑
i=1

wixio = 1

S

∑
r=1

μrŷro −θ − zoΓo −
S

∑
r=1

pro ≥ 0

M

∑
i=1

wixi j −
S

∑
r=1

μrŷr j −θ − z jΓj −
S

∑
r=1

pr j ≥ 0, j = 1, · · · ,N, j �= o

z j + pr j ≥ ŷr jtr, pr j ≥ 0, z j ≥ 0 j = 1, · · · ,N, r = 1, · · · ,S
−tr ≤ μr ≤ tr, tr ≥ 0, r = 1, · · · ,S
μr ≥ 0, wi ≥ 0, i = 1, · · · ,M, r = 1, · · · ,S.

(14.4)

where Γo and Γj represent are the price of robustness of the uncertainty sets defined
for the uncertain parameters in the objective function and the constraints, respec-
tively. As explained in detail by Bertsimas and Sim [7] and Sadjadi and Omrani
[20], the sufficient level for Γj parameter is determined as Γj = 1+φ (−1)(1−e j)

√
N

where e j represents the probability that the constraint j is to be violated, φ is the
cumulative distribution of standard Gaussian variable. It is also worthwhile to note
that the robust DEA model has more variables and constraints than the IDEA model
has. On the other hand, it still remains as a tractable linear program.
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14.4 Case Study: Performance of Olive Oil Growing Farms

In this study, we consider a real case of olive oil production problem to apply the
imprecise and robust DEA models introduced in Sects. 14.2 and 14.3. A sample
that consists of 89 olive oil growing farms (labeled as 1–89) in the Aegean region
of Turkey is selected to perform an efficiency analysis. The farms are located in
the same agricultural area in Izmir; therefore, possible effects of geographical and
weather conditions on the oil production are eliminated.

The data were gathered from Taris Olive Oil company, which was established in
2001 by the Union of Taris Olive and Olive Oil Cooperatives. Currently, 33 coop-
eratives are affiliated with the Union. The company is responsible for the trading
of olives cultivated by the olive producing farms located in the Aegean region of
Turkey. According to International Olive Council, Turkey produces 4.9 % of world
production of olive oil and takes the sixth place in the world olive oil production
league (http://www.internationaloliveoil.org/).

Taris has recently started gathering data in order to keep record of the suppliers’
performance. The farmers are requested to fill a questionnaire about specifications
of farms as well as their performance during the year. For the computational ex-
periments, we use the raw data (relevant to specifications of the farms) that were
collected in 2011. Thus, the data set basically reflects the performance of olive oil
(not table olives) producers in 2010.

Following to most studies in the literature [3], we also consider total olive land
utilized by each farm, cultivation cost, labor as inputs to the DEA models. Land is
measured by decares (1 decare = 1000 m2). Cultivation cost represents the aggre-
gated monetary value in Turkish Liras for cultivation and miscellaneous costs (such
as fertilizer, pesticides or fuel costs) spent by the farm in order to operate during a
year. We determine labor as the number of workers employed to process the har-
vesting rather than the monetary terms. Apart from land, cost and labor, we also
consider number of olive trees as the fourth input parameter [2]. Although Land is
an input factor, because of the different densities of trees in the given land areas, we
also consider number of trees as an input parameter.

As an output parameter, olive oil yield is chosen. The olive oil production for each
farm depends on the total olive production and is assumed to be uncertain. The other
factors such as weather and age of olive trees that might affect the olive production
are not taken into account in this study. Since there is no exact measurement for
the olive oil production, we consider an expert knowledge in designing the output
parameter as the projection of olive production of each farm. Recall that Taris is
interested in the olive oil yield rather than the olive production itself.

In current practice, nominal value of olive oil yield for each farm is estimated as
20 % of the olive production. For instance, for a farm that is producing 15,000 kg
olives in a year, the nominal olive oil production is expected to be 3000 kg. How-
ever, as confirmed by the experts, this value in reality fluctuates within the range
of 25 % of the oil production. In this case, the annual olive oil yield varies be-
tween 2250 and 3750 for the farm with 3000 kg of nominal olive oil production.
Therefore, we develop the imprecise and robust DEA models to evaluate relative

http://www.internationaloliveoil.org/
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production performance of those olive-growing farms with multiple (determinis-
tic) input parameters (land, cost, labour and number of olive trees) and uncertain
output parameter (olive oil production). The deterministic DEA model is used as
a benchmark to compare relative performance of those farms using the imprecise
and robust DEA models. The DEA models (described in Sects. 14.2 and 14.3) are
implemented using General Algebraic Modeling System (GAMS) and solved by a
linear programming algorithm.

14.5 Computational Results

We conducted a series of computational experiments to investigate the performance
of the imprecise and robust DEA models. Specifically, the experiments aim to an-
swer the following questions:

• How do deterministic, imprecise and robust DEA models perform for the olive
oil production problem?

• What are the impact of size and shape of the symmetric uncertainty sets on the
robust relative efficiency of olive growing farms?

• How do the robust and imprecise DEA models respond to the changes in size of
uncertainty ranges and sample sizes?

In order to measure the relative performance of olive growing farms, we apply
the DEA approach. The efficiency scores of farms are computed by solving the
linear programs corresponding to the DEA models presented in Sects. 14.2 and 14.3.
There is no consensus in the farm efficiency literature on deciding the returns-to-
scale assumption. Since all of our farms are located in a small specific region and
operate in a similar scale size, constant returns-to-scale is assumed. In summary, we
consider the following DEA models;

• Nominal (deterministic) model applies the standard DEA approach and uses cer-
tain data values of input and output variables. The olive oil production of each
farm is calculated as 20 % of the actual olive production.

• Imprecise DEA approach considers optimistic and pessimistic views by fixing
the upper and lower bounds of the corresponding intervals for the output values
in the IDEA model.

• The robust DEA models require another input parameter that measures the level
of robustness (the price of robustness to use the term from Bertsimas and Sim
[7]). The level of robustness varies from 0 to 1.0 and the corresponding DEA
models are labelled as R(0.0),R(0.1), · · · ,R(1.0), respectively. In particular, the
robust DEA model at zero price of robustness, R(0.0), corresponds to the deter-
ministic (nominal) DEA model.

As mentioned in Sect. 14.3, the robust DEA model requires to specify param-
eter Γ . In the olive oil production problem, there exists only one uncertain data
point at each constraint. The protection level against uncertainty Γ is defined to
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vary within interval [0,1]. Since Γ is not necessarily integer, we test the robust
DEA model at different protection levels by fixing it at any value within the range
[0, 1]. The state Γ = 0 represents no protection for uncertainty, which corresponds
to the nominal model. On the other hand, Γ = 1 describes a full protection against
uncertainty.

14.5.1 Performance Comparison of Imprecise
and Robust DEA Approaches

We are first concerned with performance comparisons of all DEA models in terms
of relative production efficiency of the farms. Table 14.1 presents the optimal effi-
ciency scores obtained by the deterministic DEA and imprecise DEA approaches
in view of optimistic and pessimistic perspectives. In Table 14.2, the results of the
robust DEA approach with various level of robustness (at 0.2, 0.4, 0.5, 0.6, 0.8 and
1.0) are summarized in terms of worst-case efficiency scores of farms. The farms
taking place on the efficient frontier possess an efficiency score of 1.0 (and high-
lighted in bold). Notice that the inefficient farms have efficiency scores less than 1.0.
Table 14.3 summarizes the statistics of efficiency scores obtained by deterministic,
imprecise and robust DEA models in terms of average, minimum and maximum as
well as the number of efficient and inefficient farms.

From the results presented in Tables 14.1, 14.2 and 14.3, we can make the fol-
lowing observations;

• The DEA models show different characteristics in terms of the number of effi-
cient farms. The optimistic (pessimistic) strategy obtained by IDEA provides 32
farms efficient while the deterministic DEA produces only 8 efficient farms. On
the other hand, no farm is declared as efficient according to the robust DEA strat-
egy. Only farm 42 (see Table 14.2) is determined as perfectly efficient since it is
declared as efficient by all nominal, optimistic and pessimistic imprecise DEA
models.

• The IDEA model with optimistic approach seems the least conservative way of
evaluation in the presence of uncertain data in the form of bounds. The efficiency
scores obtained by the optimistic model are consistently greater than or equal to
the efficiency scores produced by the nominal DEA and pessimistic IDEA mod-
els. As mentioned in Sect. 14.2, the IDEA in view of an optimistic perspective
assumes that a farm under consideration performs at its best production whereas
the rest of farms perform at their worst production efficiency. The highest aver-
age efficiency score is achieved by the optimistic IDEA as 74.4 %. As expected,
it outperforms the deterministic DEA strategy that, in average, provides 52.4 %
of overall scores.

• On the other hand, the IDEA model with pessimistic perspective is seen the most
conservative way of finding efficiency scores of olive growing farms as it pro-
duces the lowest efficiency scores comparing with the nominal DEA and the
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Table 14.1: Efficiency scores obtained by the deterministic and imprecise DEA
models

Deterministic IDEA Deterministic IDEA
Farms DEA Optimistic Pessimistic Farms DEA Optimistic Pessimistic

1 1.00 1.00 0.63 46 0.25 0.41 0.15
2 0.22 0.36 0.13 47 0.27 0.44 0.16
3 0.42 0.70 0.25 48 0.27 0.45 0.16
4 0.07 0.11 0.04 49 0.16 0.27 0.10
5 1.00 1.00 0.77 50 0.26 0.43 0.16
6 0.34 0.57 0.20 51 0.21 0.35 0.13
7 0.45 0.75 0.27 52 0.48 0.80 0.29
8 0.20 0.34 0.12 53 0.38 0.64 0.23
9 0.24 0.41 0.15 54 0.35 0.58 0.21
10 0.10 0.16 0.06 55 0.59 0.99 0.36
11 0.50 0.83 0.30 56 0.21 0.36 0.13
12 0.56 0.93 0.33 57 0.79 1.00 0.48
13 0.52 0.87 0.31 58 0.37 0.62 0.22
14 0.34 0.57 0.21 59 0.42 0.70 0.25
15 0.12 0.20 0.07 60 0.66 1.00 0.39
16 1.00 1.00 0.91 61 0.37 0.62 0.22
17 0.72 1.00 0.43 62 0.38 0.64 0.23
18 0.67 1.00 0.40 63 0.47 0.79 0.28
19 1.00 1.00 0.99 64 0.90 1.00 0.54
20 0.73 1.00 0.44 65 0.76 1.00 0.46
21 0.65 1.00 0.39 66 0.50 0.83 0.30
22 0.67 1.00 0.40 67 0.71 1.00 0.43
23 0.50 0.83 0.30 68 0.58 0.97 0.35
24 1.00 1.00 0.75 69 0.81 1.00 0.49
25 0.33 0.54 0.20 70 1.00 1.00 0.85
26 0.56 0.94 0.34 71 0.76 1.00 0.46
27 0.97 1.00 0.58 72 0.51 0.86 0.31
28 0.10 0.16 0.06 73 0.59 0.98 0.35
29 0.58 0.96 0.35 74 0.75 1.00 0.45
30 0.74 1.00 0.45 75 0.55 0.91 0.33
31 0.19 0.31 0.11 76 0.31 0.52 0.19
32 0.34 0.56 0.20 77 0.37 0.62 0.22
33 0.99 1.00 0.59 78 0.95 1.00 0.57
34 1.00 1.00 0.82 79 0.44 0.74 0.27
35 0.19 0.32 0.11 80 0.31 0.51 0.18
36 0.19 0.31 0.11 81 0.66 1.00 0.40
37 0.71 1.00 0.43 82 0.82 1.00 0.49
38 0.08 0.13 0.05 83 0.50 0.83 0.30
39 0.42 0.69 0.25 84 0.30 0.49 0.18
40 0.56 0.93 0.34 85 0.58 0.97 0.35
41 0.51 0.86 0.31 86 0.47 0.79 0.28
42 1.00 1.00 1.00 87 0.80 1.00 0.48
43 0.14 0.23 0.08 88 0.60 1.00 0.36
44 0.64 1.00 0.38 89 0.69 1.00 0.42
45 0.32 0.53 0.19
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optimistic IDEA models. This case also confirms the findings in [19]. The aver-
age efficiency score is 33.6 % for the pessimistic model and 88 farms are found
to be inefficient. The discrimination of efficiency scores exhibits a noticeable
change between optimistic to pessimistic modeling.

• Under the full protection against uncertainty, the average efficiency score for the
farms is obtained as 31.5 %. This is slightly lower than the average score for the
pessimistic IDEA model, which yields 33.6 % average efficiency. Note that 81
out of 89 farms have protected their efficiency scores at the same level with the
pessimistic IDEA model. On the other hand, in case of no protection against un-
certainty, not surprisingly, the model produces the same efficiency scores with
the nominal (deterministic) model (an average of 52.4 %). This verifies the effi-
ciency scores obtained by the deterministic model.

Table 14.3: Statistics of efficiency scores

Deterministic Imprecise DEA Robust DEA

DEA Optimistic Pessimistic R(0.2) R(0.4) R(0.5) R(0.6) R(0.8) R(1.0)

Efficiency scores (%)

Average 52.4 74.4 33.6 47.4 42.9 40.8 38.8 35.0 31.5
Min 6.8 11.3 4.1 6.1 5.5 5.3 5.0 4.5 4.1
Max 100 100 100 90.5 81.8 77.8 73.9 66.7 60.0

Number of efficient and inefficient farms

Efficient 8 32 1 0 0 0 0 0 0
Inefficient 81 57 88 89 89 89 89 89 89

• No farm is reported as efficient by the robust DEA approach. For instance, the
robust DEA model with 50 % protection against the uncertainty produces the
maximum efficiency score as 77.8 % and the average efficiency score is 40.8 %.
Using this reference efficiency score obtained by robust DEA model (at 0.5 price
of robustness for all constraints), we can compare the relative production perfor-
mance of the DEA models. We observe that

– The efficiency scores of all farms obtained by the robust DEA (ER(0.50)) are
always lower than those scores achieved by the nominal model (EN) and the
robust DEA model with no protection (ER(0.0)).

– Their efficiency scores (ER(0.50)) are persistently larger than those achieved
by the pessimistic imprecise DEA (Epes) and the robust DEA model with full
protection against uncertainty (ER(1.0)).

– On the other hand, the imprecise DEA scores under the optimistic view (Eopt)
are grater than the scores of all other DEA approaches.

As a result, we can state the following relationship between the efficiency scores
of all farms obtained by various DEA approaches as

ER(1.0) ≤ Epes ≤ ER(0.50) ≤ EN = ER(0.0) ≤ Eopt .
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• Finally, we can comment on the impact of level of conservatism on the average
efficiency scores obtained by the robust DEA models at various price of robust-
ness. As the level of conservatism increases from no-protection to full-protection
against uncertainty (i.e. varying price of robustness within [0, 1]), the average ef-
ficiency scores for the sample decline from 52.4 to 31.5 %. Similarly, the lowest
(highest) average efficiency scores decrease from 6.8 (100) to 4.1 % (60 %). This
basically shows a trade-off between the level conservatism and the production
efficiency level that a decision maker needs to take into account.

14.5.2 Impact of Model Parameters

We also investigate possible impact of the model parameters and the size of future
uncertainty on imprecise and robust production performance of olive oil producing
farms. We adopt the simulation framework suggested by Shokouhi et al. [21] for
the case study. The olive-growing farms are clustered into smaller groups according
to their efficiency scores obtained by the nominal DEA approach. In this chapter,
due to the length restriction, we only present the results of three groups each of
whom consists of eight farms with the same or similar nominal performance. The
farms in Group 1 are all declared as efficient whereas Group 2 consists of the least
efficient farms according to the nominal DEA approach. Group 3 involves such
farms showing medium level (around 50 %) of efficiency.

We design two experiments, labeled as Experiment I and Experiment II, with
different size of uncertainty levels for the output parameters. More precisely, Exper-
iment I assumes the initial range for the uncertain olive oil yield of a farm where the
olive oil production of a farm deviates from its nominal production by 1/4 (25 %).
On the other hand, Experiment II is designed to observe the impact of the interval
size on results by considering narrower ranges for olive oil yields of the farms where
the olive oil production of a farm is assumed to deviate from its nominal production
by 1/6 (approximately 16 %) rather than 1/4.

A brief description of the simulation procedure is as follows. First, we calculate
the optimal weights associated with each farm using the nominal values of input
and the estimated output parameters within the imprecise and robust DEA mod-
els (given the price of robustness). Secondly, we randomly generated 1000 nominal
values of olive oil production levels (using uniform distribution) for the uncertain
output parameters. Thus, the corresponding intervals for each simulated point within
the ranges of 25 and 16 % olive production are then determined. Finally, the optimal
weights (obtained with the estimated oil production level) and oil olive production
intervals at each generated random points of the output parameters are then used to
find the robust efficiency scores by solving the robust DEA models. The same pro-
cedure is repeated with 1000 output intervals in the same manner. We then analyse
the statistics of 1000 efficiency scores associated with each farm within three groups
in terms of average and standard deviation of scores.
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Table 14.4 illustrates the simulation results for Experiment I (top) and Experi-
ment II (bottom) using three groups of farms in terms of average efficiency scores
obtained at various price of robustness with robust DEA and IDEA with optimistic
(IDEA-O) and pessimistic (IDEA-P) approaches. These results basically show, on
average, how the olive oil production performance of each farm changes under im-
precise and robust DEA when the range of uncertainty varies.

From the simulation results in Table 14.4, we observe that

• The average efficiency scores in Experiment II are always higher than those in
Experiment I regardless the choice of models (imprecise and robust DEA at each
price of robustness). This implies that as the size of intervals for the random pa-
rameters decreases (i.e. random parameter approaches to the estimated nominal
value), the average efficiency score increases.

• As the simulation results confirm, the imprecise DEA with optimistic view pro-
duces the highest average efficiency scores (labelled as SE), obtained out of 1000
simulated points for all farms. In both Experiments I and II, as the price of ro-
bustness varies between 0 and 1, the average efficiency score decreases. As a
result, we can state the following relationship between the efficiency scores of
all farms obtained by various DEA approaches as

SER(1.0) ≤ ·· · ≤ SER(0.0) ≤ SEopt .

• On the other hand, the IDEA approach with pessimistic view produces the low-
est average efficiency scores (obtained by the simulation experiments) for most
farms in three groups. The lowest scores are indicated in bold in Table 14.4.
Therefore, SE pes ≤ SER(1.0). Notice that the order (between the IDEA approach
with pessimistic view and the most conservative robust optimization approach)
that was already established from Tables 14.1 and 14.2 has changed. For these
cases, IDEA apparently becomes more conservative than robust DEA. This
result leads us to conclude that for such homogeneous smaller samples of
farms (in groups 1, 2 and 3) with similar nominal performance, the pessimistic
IDEA approach produces more conservative scores than the robust DEA model
with full protection no matter which uncertainty range (25 or 16 %) is cho-
sen. However, for more diversified sample of farms, the robust DEA strat-
egy is more conservative than IDEA with pessimistic view as illustrated in
Tables 14.2 and 14.3.

• In order to illustrate the overall performance (labeled as “AverGP” in Table 14.4)
of each farm within the three different groups, we compute the average of the
efficiency scores obtained by the robust DEA at eleven values of price of ro-
bustness (0,0.1,0.2, · · · ,1.0). One can easily see that all farms in both Groups
1 and 3 exhibit average performance around 80 and 85 % in Experiments I and
II, respectively. However, farms in Group 2 show different average performance
varying from 42 to 81 % in Experiment I (and similarly, 45–85 % in Experiment
II). Recall that these farms are reported as the least efficient by the deterministic
DEA model.
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14.6 Conclusions

In this study, we are concerned with performance evaluation of olive oil production
using DEA under uncertainty. In particular, we study the sensitivity of efficiency
scores obtained through imprecise and robust optimization based DEA approaches
in a real world agricultural problem. The olive oil production problem involves the
efficiency assessment of a sample of farms located in a specific region in Turkey.
The only output factor (olive oil yield of the farm) is uncertain varying between
bounds that depend on the olive production. For computational experiments, we
implement two basic approaches of imprecise DEA and robust optimization based
DEA models.

The results indicate that the optimistic model yields higher levels of efficiency
for the farms, whereas the pessimistic model scores are way below than the opti-
mistic and nominal models as expected. The discrimination of the scores is con-
siderably worse in the pessimistic model where only one farm remains efficient. In
robust DEA modeling, as the level of conservatism increases from no-protection to
full-protection against uncertainty, the average, minimum and maximum efficiency
scores for the sample decline. This indicates a trade-off between the level conser-
vatism and the efficiency levels.

We compare the efficiency scores of the DEA models in order to establish perfor-
mance ranking of deterministic, imprecise and robust DEA approaches. The IDEA
with optimistic view yields considerably higher levels of efficiency than any other
DEA models considered in this study. When no robustness is assumed, the efficiency
scores are exactly the same with those of the nominal model. Under full robustness,
the efficiency scores of robust DEA are less than or equal to the scores of the IDEA
with pessimistic view. Therefore, it can be stated that the most conservative robust
DEA model can yield lower efficiency scores than the most pessimistic imprecise
DEA model.

In order to measure sensitivity of different DEA approaches to changing unc-
ertainty ranges and parameters, we perform simulation based experiments using ho-
mogeneous groups of farms. The simulation results reveal that when the uncertainty
ranges are close to the estimated nominal values, the average efficiency scores in-
crease. In addition, when the level of conservatism increases from no-protection to
full-protection against uncertainty, the average efficiency scores for the sample de-
cline. Therefore, we can conclude that the choice of price of robustness and size
of intervals play an important role on the performance of the robust DEA models.
As future research directions, one may investigate model behavior in cases where
uncertainty is observed in both input and output parameters simultaneously. In par-
ticular, data driven uncertainty sets would be worthwhile to investigate.
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