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Preface

The objective of this work is to provide an account, with appropriate detail,
of some of the salient features of the development of the theory and
analysis of engineering structures during the nineteenth century. There
seemed to be two possible approaches to the subject: that whereby
emphasis is on personalities and their contributions to the subject, or that
whereby emphasis is primarily on subject development, with due
acknowledgement of personalities and regard to the chronological aspect.
Experience indicates that the former is conducive to some degree of
repetition and confusion concerning the subject matter and, therefore, the
latter approach is adopted (though personal names are used in subheadings
to identify developments). But Chapter 6 is unique in being devoted to
Levy's little-known, though highly-significant work on theory of frame-
works. Free translation of original material is used extensively throughout
the book in order to avoid misrepresentation or serious omission. Also,
original notation for mathematical analyses are preserved as far as
possible.

Chapters 4 and 11 differ from the others in being little more than brief
reviews of topics which, though important, are peripheral to my purpose
herein. The former embraces graphical analysis of simple frameworks
which, together with the vast subject of graphical analysis of engineering
problems generally, has very limited relevance to the features with which
this work is concerned and which have determined the development of
modern theory of structures. Then the Bibliography includes a number of
references, in addition to those consulted, in order to provide as much
guidance as possible to future research workers.

Appendices are devoted to Navier, Culmann and Robison respectively.
The first is the generally acknowledged founder of modern theory of

vii



viii Preface

structures and elasticity; the second, one who exercised enormous influence
on engineering analysis in the latter half of the century but whose
(graphical) methods have fallen into disuse; and the third, an almost
forgotten early contributor.

I am deeply indebted to Mrs Heather Flett and Mrs Margaret Rutherford
for typing the manuscript, to Miss K. M. Svehla, B.Sc. Eng. for assistance
with translation of material from the original German and to Mr Denis
Bain for preparation of diagrams. I am also grateful to colleagues,
especially Professor J. Heyman of the University of Cambridge and Sir
Alfred Pugsley F.R.S., and to Cambridge University Press, for the
encouragement without which the work would never have materialised.

T.M.C. 1981



1
Introduction

Much progress in theory of structures during the nineteenth century has
been ascribed, notably by Clapeyron (1857) in France and Pole (Jeaffreson,
1864) in Britain, to the coming of the railway era. But the state of
knowledge of the subject at the beginning of the century was ripe for rapid
development due, for example, to Coulomb's remarkable research in
applied mechanics. Early in the century Navier began to contribute to
engineering science encouraged by his uncle, M. Gauthey, Inspector
General of bridges and highways in France. Navier was born in 1785 and
orphaned when he was fourteen years of age. He was adopted by Gauthey
whose book on bridges he published (1809) and revised (1832), following
his education at L'Ecole Polytechnique and then at L'Ecole des Ponts et
Chaussees, from where he had become ingenieur ordinaire in 1808. He may
be regarded as the founder of modern theory of elasticity and its
application to structures and their elements. The year 1826 is memorable
for the publication of Navier's celebrated Legons as well as for the
completion of Telford's remarkable wrought iron chain suspension bridge
at Menai (it was also a year of sadness for Navier due to failure,
prematurely, of the Pont des Invalides, a Paris suspension bridge which
he had designed).

There is little doubt that France then led the world in the application
of scientific principles to practical problems, having established, in 1784
and 1747 respectively, those two outstanding places of learning attended
by Navier (l'Ecole Polytechnique was at first directed by Monge who was
later joined by such outstanding figures as Fourier, Lagrange and Poisson:
l'Ecole des Ponts et Chaussees was at first under the direction of Perronet
who was a distinguished bridge engineer; later, Prony was its Director).

It is tempting to assert that the needs of engineering practice generated
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by, say, new materials, led to relevant advances in applied mechanics. Some
major advances were, however, premature, apparently stimulated, at least
in part, by the natural curiosity of individuals. Unfortunately, such
premature advances seem to have received little attention and, being
overlooked by practitioners, were forgotten, only to be rediscovered much
later (and sometimes applied in an inferior manner), for example Navier's
theory of statically-indeterminate bar systems.

Initially, masonry, timber and cast iron were the principal materials of
construction, and their properties dictated the nature of structural forms:
the arch to utilise the compressive strength of masonry or cast iron; the
beam and latticework to utilise both the tensile and compressive strengths
of timber. The manufacture and rolling of wrought iron (strong in tension
and compression) was in its infancy in 1800 but it was to have a profound
effect upon the theory and practice of construction.

In Britain the influence of the Rev. Professor Henry Moseley F.R.S. and
his disciple Pole (later, professor at University College, London) on those
renowned pioneers of railway construction, Robert Stephenson and
Isambard Kingdom Brunei, is especially illuminating. (It shows, moreover,
that contrary to widespread belief and Culmann's critical remarks, noted
below, early outstanding advances in iron bridge construction in Britain
were the result of using advanced scientific principles and experimental
techniques as well as ingenuity of construction.) Moseley was noted for
various contributions to engineering science and was familiar with French
engineering science, especially the work of Coulomb, Navier and Poncelet.
He was a pioneer of engineering education along with others including
Robison, Willis and Rankine; but their influence does not seem to have
been sufficient to achieve, in Britain, an enduring unity of theory and
practice (the subject, incidentally, of Rankine's Inaugural Lecture to the
University of Glasgow in 1856) such as that which was typified in the
Britannia Bridge.

Moseley received his education in France as well as in Britain. He
graduated in mathematics at St John's College, Cambridge and in 1831,
when thirty years of age, he became professor of natural philosophy and
astronomy at King's College, London, where he carried out research in
applied mechanics, a subject which he taught to students of engineering
and architecture 1840-2. In 1843 (the year before he left London to
become, first a Government Inspector of Schools, and then, in 1853, a
residentiary canon of Bristol Cathedral), his book The mechanical prin-
ciples of engineering and architecture, which was based on his lectures, was
published. It is probably the first comprehensive treatise on what might
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be called modern engineering mechanics to appear in English. There are
acknowledgements to Coulomb (especially with regard to arches, earth
pressure and friction), Poncelet (notably on elastic energy) and Navier
(deflexion of beams and analysis of encastre and continuous beams). The
appearance throughout of principles of optimisation (extremum principles
relating to mechanical devices as well as statics) is noteworthy.

Moseley devoted much effort to a rigorous analysis of the stability of
masonry voussoir arches (1835), from which emerged the concepts of line
of pressure and line of resistance and the 'principle of least pressures'. (See
Chapter 3: that principle has not survived but it inspired fruitful research
by Cotterill.) But though his work on arches seems to explain observed
modes of failure, it was to cause more confusion than enlightenment among
British engineers, in spite of the interpretive efforts of Barlow (1846) and
Snell (1846). Heyman has noted (1966) that the theory of the stability of
a masonry arch due to Coulomb (1776) is unsurpassed. It is interesting,
though, that Moseley concluded by vindicating the designs of arches by
Rennie and others, based on the so-called 'wedge theory' of simple statics
neglecting friction. The latter has been variously ascribed to Hooke, De
La Hire, Parent and David Gregory (Charlton, 19766). Indeed, that
elementary theory was used throughout the century, notably by Brunei,
without adverse consequences and independently of the ultimate strength
theories of Coulomb and Villarceau.

It is for the design of continuous tubular wrought iron plate girder
bridges (among the earliest continuous iron bridges in Europe) that
Moseley's work is especially significant. In 1849 the theory of continuous
beams, due to Moseley's teaching of Navier's methods, was used both for
the Britannia Bridge and for the Torksey Bridge of John Fowler. This latter
structure was continuous over three supports and, although it was very
much smaller and altogether less enterprising than the Britannia, it was,
nevertheless, of much interest (as noted in Chapter 2). It was completed
nearly two years before the Britannia Bridge and declared unsafe for public
use by the Government Inspector, Captain Simmons, R.E., in the
atmosphere of suspicion of iron railway bridges which followed the Royal
Commission of 1847-8 to inquire into the application of iron (railway)
structures 'exposed to violent concussions and vibration' (Stokes, 1849).
(That was after the fatal accident at Chester, for which Simmons was
Inspector, when a trussed cast iron girder railway bridge by Stephenson
collapsed while carrying a train.) The matter came to a head when
Fairbairn, patentee of the tubular girder (1846), according to Pole
(Jeaffreson, 1864), read a paper 'On tubular girder bridges' before the
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Institution of Civil Engineers (1850). It was followed by a lively discussion
which concentrated on the safety of the Torksey Bridge. Pole, Captain
Simmons, Wild and Professor Willis were among the leading participants.
Pole described his detailed analysis of the structure (Chapter 2), along with
his results which supported the calculations and experiments of Wild for
Fowler and vindicated the safety of the bridge. The Secretary of the
Institution, Manby, strongly criticised government interference as being
detrimental to progress. The contribution of Willis, Jacksonian Professor
of Natural Philosophy at Cambridge, was concerned with the dynamic
aspect especially. He was a member of the Royal Commission and
distinguished for his experiments on the effect of a load travelling across
a metal beam (1849). (His collaboration with Professor Stokes resulted in
the latter's celebrated paper of 1849 and heralded the beginning of the
precise study of dynamics of structures (Chapter 11), a subject which
attracted Navier's attention with regard to suspension bridges.)

On the continent of Europe, theory of continuous beams (Chapter 2)
was pursued, after Navier, notably by Clapeyron in 1848. Clapeyron, with
Lame, became professor at The Institute of the Engineers of Ways of
Communication in St Petersburg in 1823 and, according to Timoshenko
(1953), had a profound influence on the development of theory of
structures in Russia. (Jourawski of that institute was engineer for the first
railway bridges in Russia and developed theory of trusses as long ago as
1847, as well as exploiting continuous beams.) Among their early works
was a memoir on the analysis of arches (1823), and Chalmers (1881) notes
their work in graphical statics (1826ft). Clapeyron is remembered popularly
for his theorem of the three moments for continuous beams (1857), which
resulted from the construction of the Pont d'Asnieres near Paris. The idea
was published first, though, by Bertot in 1855. Among the other con-
tributors to aspects of continuous beam theory were (Chapter 2) Bresse,
Mohr and Winkler; and it is important to acknowledge the method due
to the elastician Clebsch, given in his celebrated book published in 1862
(and again, in 1883, in French, with annotations by Saint-Venant with
Flamant). Subsequently, graphical methods (due to Mohr and especially
Claxton Fidler) alleviated continuous beam analysis for some engineers.

It is interesting that Moseley and others seemed to overlook Navier's
elegant method of analysing statically-indeterminate systems of bars
(pin-jointed systems), a subject which was to be approached anew by
Maxwell (1864ft) and Mohr (1874a) as the need arose. Also, Clebsch
included it in his book and developed it further. He treated space systems
and introduced stiffness coefficients of linear elasticity with their reciprocal
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property (so, in a sense, establishing priority for the reciprocal theorem
over Maxwell, Betti and Rayleigh, but he did not deal, it seems, with the
physical implication). Another eminent elastician aware of the whole of
Navier's Lecons was, of course, Saint-Venant who was responsible for the
third (1864) edition. It seems that leadership in theory of elasticity and
structures began to pass from France to Germany soon after that.

Navier had also provided the basis for elastic arch theory in his Legons
where the solution of the two-pin (statically-indeterminate) arch appears,
for example. Bresse (1854) is, however, usually credited for this aspect
having regard to his extensive treatment. It was at this time that Bresse
noted and exploited the principle of superposition for linearly elastic
structures (and linear systems generally) with regard to symmetry and
anti-symmetry (Chapter 3). Culmann, Mohr, Winkler and Miiller-Breslau
were among later contributors to arch analysis and, according to W. Ritter
(1907), it is to Culmann that the concept of the elastic centre is due, though
Mohr seemed to identify the device (Chapter 10) with respect to a framed
arch. Winkler's theory of stress in elements of large curvature (such as
crane hooks) is noteworthy and he and Mohr c. 1870 suggested the use
of theory of elasticity for analysing stone or masonry arches.

The economies apparently afforded by lattice girders and trusses in
relation to arch and plate iron structures were being explored in the middle
of the century, by which time mass production of wrought iron sections
had begun. Those economies appeared to be related to the increase in the
length of single, simply supported spans, which was afforded by the
reduction in self-weight per unit length of such construction (in comparison
with conventional beams) and to the inherent convenience of the beam as
such. The flat-strip lattice girder was first known in Britain in the form
of Smart's patent iron bridge, after Smart who, according to O. Gregory
(1825), invented it in 1824. Its design was apparently based on the beam
theory, the latticework being assumed equivalent to a plate web. These
forms of construction were developed enthusiastically in the U.S.A., using
timber as well as iron to build some impressive viaducts. Whipple achieved
fame there for his truss designs based on sound principles, and his book
published in 1847 contains, it is believed, one of the earliest thorough
treatments of the analytical statics of complex frameworks (without
redundant elements). The Russian Jourawski is said by Timoshenko (1950,
1953) to have initiated precise analysis of trusses, while Emmerson (1972)
believes that Robison (professor of natural philosophy at Edinburgh) did
so some fifty years earlier for timber trusses. Robison is also acknowledged
by Cotterill (1884) and Weyrauch (1887) but Straub (1952) dismisses him
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as unsound. Whipple attempted to achieve true pin-jointing of his trusses,
whereas the gusset plate and rivetting was used elsewhere, for example in
Britain.

Both Moseley and Weale omitted the truss from their books (1843),
indicating, apparently, that it was not then being used on a significant scale.
Indeed, the theoretical content of Weale's Theory, practice and architecture
of bridges (1843) deals mainly with masonry arches and suspension bridges
and was contributed by Moseley and his colleague at King's College,
London, W. Hann.

Although, in Britain, lattice girder railway bridges had appeared by 1844
(Hemans, 1844) the earliest truss for bridges seems to have been due to
Captain Warren. According to Pole (Jeaffreson, 1864) it was used first for
a major bridge (London Bridge Station) in 1850. Then in 1852 Cubitt used
it for carrying a branch line of the Great Northern Railway over the Trent
near Newark. The Warren-Kennard girder (de Mare, 1954) was used in
the building of the spectacular Crumlin Viaduct (Ebbw Vale, Monmouth-
shire) in 1857 and also in the Melton Viaduct (Okehampton). At about
that time Bouch, assisted by Bow, was using the now so-called 'double'
Warren girder for viaducts of the South Durham and Lancashire Union
Railway, including the impressive Belah Viaduct. Indeed, Bow notes (1873)
that these projects began in 1855. The viaducts consisted of a number of
simply supported spans, and elementary statics was used for their design.
Whewell's Mechanics applied to the arts (1834) and The mechanics of
engineering (1841) exemplify the sound knowledge of elementary analytical
statics available to engineers. (In the latter work, dedicated to Willis, the
principle of using elastic properties to deal with statical indeterminacy is
described briefly.)

The truss and its design provided impetus for the development of
graphical methods of analysis. Bow (1873) recalls seeing a paper by Wild
in 1854, which gave a complete graphical analysis of a simple truss (Bow,
1873, Fig. 243(0), though he believed the date of the paper to be earlier.
Graphical methods brought truss analysis within the competence of
engineering draughtsmen and their origin is usually ascribed to Rankine
(1858) and Maxwell (1864a), notwithstanding Bow's acknowledgement of
Wild. But the use of graphical analysis in statics was not new. Varignon's
funicular polygon (1725) and Coulomb's celebrated work in respect of
earth pressures and masonry structures (Heyman, 1972) are noteworthy
examples of the use of graphical analysis in the eighteenth century. Early
in the nineteenth century, while he was a prisoner of war, Poncelet's
interest in geometry for analytical purposes resulted in the creation of the
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new (projective) geometry (c. 1813), according to Chalmers (1881). Poncelet
undoubtedly came to be regarded as a creator of modern engineering
mechanics. Later, the initiative for extensive application of graphical
methods was taken by Culmann at Zurich.

Culmann became professor of engineering sciences at the Zurich
Polytechnikum in 1855 after experience in railway construction, and at a
time of heavy demand on knowledge of theory of structures for the design
of novel economical bridges on the truss principle. His highly distinguished
contributions to graphical analysis, culminating in his celebrated book
published in 1866, established his dominance of the new discipline called
graphical statics which embraced engineering analysis generally. He based
much of his work on the 'new geometry' of Poncelet (and Mobius).
Curiously, he denied credit to Maxwell for the concept of reciprocal figures
in framework analysis but Cremona (professor of mathematics at Milan
and later at Rome), to whom he gave credit for it, acknowledged Maxwell's
priority in a particularly lucid account of the subject (1872; see also
Chapter 4).

Culmann's rejection of Maxwell probably reflected his disdain for
British engineering (like Navier he visited Britain and the U.S.A., though
nearly thirty years later, to study advances in bridge engineering which was
at that time mainly related to railways). His opinions in this respect are
recorded by Chalmers (Chapter 4), an ardent admirer of Culmann, who
gives an extensive historical review in the preface of his scholarly book
(1881). He quotes Culmann (from his book of 1866): 'But what is
appropriate to the rich Englishman, who everywhere carries himself about
with great consciousness, " I am in possession of the iron and do not
require to trouble myself about statics", is not so to the poor devils of the
Continent ' He contrasted the differences between the Continent and
Britain with regard to the preparedness for Culmann's powerful methods,
referring to the University and High School system in Germany where
students were familiar with the works of Poncelet, Mobius and Chasles;
while in Britain, the 'modern geometry' received little attention. Chalmers
deplored the failure in Britain to accept the vital need for scientific training
of engineers, thus:

There are, no doubt, among us, a large number who in earlier years have studied
their Pratt, their Navier, their Moseley, or who in more recent years have become
familiar with their Bresse and Rankine, have made themselves familiar with
Clapeyron's Theorem of the Three Moments, even a few to whom Lame is not
unknown but those have done so without hope of reward.

Moreover, Weyrauch is quoted as asserting (1873) 'that continuous
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beams are popular only in countries where engineers can calculate' (a
criticism of Britain which might well have been valid in 1880 but which
neglected the priority attaching to the Britannia Bridge in both science and
technology some thirty years earlier).

In 1881, Culmann died and was succeeded by Wilhelm Ritter, his former
pupil and professor at the Riga Polytechnic Institute. Ritter published a
major work on graphical statics (1888-1907). But his work should not be
confused with that of August Ritter, Culmann's contemporary at Aix-
la-Chapelle, whose book on theory and calculation of iron bridges and
roofs (1862) was translated into English by Captain Sankey. In the course
of that task, Sankey observed that Ritter's so-called method of moments
(or sections) had already been discovered by Rankine (1858) when Ritter's
book first appeared. (Schwedler is sometimes credited with the same idea.)

A distinguished contemporary of Culmann was Levy, in France. A pupil
of Saint-Venant, he made a profound contribution to the modernisation
of graphical statics in France, with his book, published in 1874, which
contained inter alia some original matter of a purely analytical nature with
regard to structures (Chapter 6). Williot's method of finding deflexions of
trusses graphically (1877) is also a significant French contribution.

In Britain the degree of sophistication in graphical statics was less than
on the Continent, as noted by Chalmers. Nevertheless, in addition to the
contributions of Maxwell (1864a), Jenkin (1869), and Bow (1873) who was
famed for his notation for force diagrams of trusses, there were the
distinguished contributions of Claxton Fidler's analysis by 'characteristic
points' of continuous beams (1883) and Fuller's graphical method for
arches (1874). (Moreover, Maxwell was, after Jenkin's encouragement in
1861, also concerned simultaneously with the analysis of statically-
indeterminate frameworks.)

On the Continent, Castigliano in Italy (1873), Levy in France (1874) and
Mohr in Germany (1874a) had achieved priority in various ways of
analysing statically-indeterminate trusses or bar frameworks, in addition
to devoting much attention to graphical analysis where appropriate. Levy,
mindful of Navier's method published in his Legons some fifty years earlier,
suggested an alternative approach, while Mohr appears to have attacked
the problem de novo in a manner essentially the same as that of Maxwell
(the details of these methods are described in Chapters 5 and 6). Castigliano,
with full knowledge of Navier's method (like Levy) sought (as described
in Chapter 8) an alternative based on elastic energy derivations (after
Menebrea's unsuccessful attempt of 1858). Castigliano gives, incidentally,
an account of the method due to Navier in his book published in 1879
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(it seems that Navier's Legons were translated into Italian). Incidentally,
Castigliano, like so many other leaders of structural analysis in Europe
(Clapeyron, Culmann, Jourawski, Engesser, Mohr, Rankine, Jasinsky,
Winkler and Crotti), was concerned with railway construction.

Having (like Mohr and Levy, after Culmann) developed sophisticated
graphical methods for dealing with a wide variety of problems (of which
truss analysis was only one) Miiller-Breslau turned his attention eagerly
to promoting and extending the new analytical methods of Maxwell-Mohr
and Castigliano. (Mohr's very different attitude to both Castigliano and
Maxwell is described in Chapter 10.) Muller-Breslau's major work on
graphical statics (1887Z>) includes much that is not concerned with
graphical or geometrical methods (after the manner of Levy) and adds a
high degree of sophistication and clarity to the analysis of statically-
indeterminate frameworks. Thus, he appears to have introduced uniformity
by the notation of flexibility (influence coefficients) for linearly elastic
structures and so to have relieved the formulation of the solution, for any
type of structure, from any particular method of calculating deflexions
(that is, the flexibility coefficients would be calculated in a manner which
depended upon individual preference). Miiller-Breslau is popularly remem-
bered for the theorem regarding influence lines for forces in elements of
statically-indeterminate structures, which bears his name (Chapter 10). He
is also credited (as is Southwell) with the concept of tension coefficients
for space frame analysis, but the concept is implied by Weyrauch (1884).

In the meantime Engesser, and Castigliano's friend Crotti were adding
to knowledge of energy principles in theory of structures. (Castigliano's
theorems of strain energy, especially his so-called 'principle of least work',
for relieving analysis of statically-indeterminate structures of conceptual,
physical thought, quickly received widespread acclaim on the Continent
and in Britain later, due to Martin (1895) and Andrews (1919).) The origins
of energy methods in theory of structures or practical mechanics may be
traced to Poncelet (Chapter 7) and Moseley. (Part 2 of Castigliano's first
theorem of strain energy was anticipated by Moseley (1843).) Indeed,
Moseley's disciple, the mathematician Cotterill, anticipated the essence of
Castigliano's principle of least work in 1865 in the Philosophical Magazine,
which escaped the notice of engineering scientists in Europe and, later,
Frankel (1882) discovered it independently. Apart from their philosophical
interest, involving speculation regarding economy of Nature, the extremum
principles resulting from research into energy concepts were to be valuable,
mainly for obtaining rapid approximate solutions to certain complicated
problems.
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Castigliano's least work theorem was among the first methods used for
rigidly-jointed frameworks, both with regard to portals and trusses, and
elastic theory of suspension bridges. It featured, for example, notably in
Miiller-Breslau's book Die neueren Methoden (1886&) which represented
a major advance in the literature of theory of structures.

The fear of failure of major bridge trusses, due to the stresses induced
by the rigidity of joints (secondary stresses), stimulated research by a
number of distinguished German engineers after 1877. In that year,
according to Grimm (1908), a prize was offered by the Polytechnikum of
Munich for the solution of that problem. The term Sekunddrspannung
(secondary stress) was, it seems, originated by Professor Asimont of that
institution, to distinguish between the direct and bending-stresses in an
eccentrically loaded column. Asimont formulated the problem with regard
to rigidly-jointed trusses and Manderla's solution (1879) gained him the
prize, it appears. Before the publication of Manderla's solution in 1880,
however, Engesser had published an approximate method. Also, Winkler
indicated, in a lecture on the subject (1881), that he had given attention
to it for some years past. In 1885 Professor Landsberg contributed a
graphical solution which was followed by another analytical solution by
Muller-Breslau in 1886 (1886a). Another graphical solution appeared, it
seems, in 1890, this time from W. Ritter; and then in 1892 a further
analytical solution was contributed by Mohr. Engesser published a book
on the analytical determination of secondary and additional stresses in
1893. These aspects are considered in more detail in Chapter 11.

Although Muller-Breslau used Castigliano's energy method to analyse
a simple (single storey, single bay) rigidly-jointed portal framework, that
kind of structure did not, it seems, attract the degree of attention given
to secondary effects in trusses until the twentieth century. The appearance
of Vierendeel's novel design for open-panel bridge girders in 1897 (according
to Salmon, 1938) posed a formidable analytical problem for which
approximate methods (for example the use of estimated points of contra-
flexure) were used initially.

This review of nineteenth-century structural engineering, with reference
to theory of structures, would be incomplete without mention of the
problems posed by major suspension bridges. In spite of adverse experi-
ence, particularly in Britain, the Americans persevered and in 1855
adopted the suspension principle successfully for a major railway bridge
to Roebling's design, over the Niagara Falls. Although, at that time, theory
of suspension bridges (Chapter 3) was based on simplifying assumptions
to render the problem amenable to statics alone (as, for example, in
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Rankine's theory, 1858) and, moreover, the provision of ties from deck
to towers to supplement the cables was common, it seems the concept of
gravity stiffness was being recognised implicitly, if not explicitly. Thus,
Pugsley (1957, 1968) quotes from a letter Roebling sent to the company
prior to the building of the Niagara Bridge: 'Weight is a most essential
condition, where stiffness is a great object.' Then in 1883 the great
Brooklyn Bridge was built to Roebling's design, judged by Pugsley to be
a triumph of intuitive engineering. The completion of this bridge almost
coincided with the origins of elastic theory to which W. Ritter (1877),
Frankel (1882), Du Bois (1882) and Levy (1886) were early contributors
(Chapters 3 and 9), and in which elastic deflexion of the deck, due to live
load, determined the uniformly distributed reaction provided by the cables,
as dictated by compatibility of displacements. Approximation regarding
small deflexion of the cables was involved and substantial improvement
in this respect, following the introduction of gravity stiffness by Melan
(1888), whereby accurate analysis of bridges with relatively flexible decks
(which depended greatly on that source of stiffness), became possible. The
modern deflexion theory of suspension bridges is due essentially to Melan
and then to Godard (1894).

In conclusion it is interesting to recall Pole's commentary (Jeaffreson,
1864) on iron bridges, with emphasis on British practice. He remarks that
the history of iron bridges commenced in the sixteenth century when such
structures were proposed in Italy and then that an iron bridge was partly
manufactured at Lyons in 1755, but that it was abandoned in favour of
timber in the interests of economy. In the event, however, the first iron
bridge (of cast iron) was erected in Britain, being completed in 1779. The
builder was Abraham Darby and the site was the River Severn at
Coalbrookdale, Shropshire. But Pole notes that as early as 1741 a wrought
iron-chain footbridge was erected over the River Tees, near Middleton,
County Durham. That kind of bridge was later developed by Captain
Samuel Brown (for example the Union Bridge of 1819 near Berwick) who
used long iron bars instead of ordinary link chains. (In the U.S.A., Finlay
built an iron suspension bridge in 1796 at Jacob's Creek, and Seguin's
bridge at Aine was built in 1821.)

Pole notes the impetus to bridge engineering, given by the coming of
railways, and the need to discover an alternative to the arch for a variety
of circumstances. He suggests that the simple beam ('the earliest form of
all') made of iron, afforded the desired economical solution with its
possibilities for development. The 'five great properties' claimed for it
were:
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1 rigidity;
2 convenience with regard to being level or straight (for example

the Britannia Bridge);
3 simplicity of abutment conditions (that is, no horizontal thrust);
4 the ironwork for a beam is less in weight than for an arch of

the same strength and span;
5 convenience of erection and less interference with navigation

during construction over water courses.
Pole summarises iron bridges as belonging to three classes: the iron arch;

the suspension bridge; and the iron girder bridge, with the last of greatest
utility in the eight categories:

1 solid beams;
2 trussed cast iron girders;
3 bowstring girders (cast iron, as in the High Level Bridge by

R. Stephenson at Newcastle; wrought iron at Windsor, by
Brunei);

4 simple T girders;
5 tubular or hollow plate girders (e.g. Britannia Bridge);
6 triangular framed girders (including the Warren girder);
7 lattice girders;
8 rigid suspension girders (Brunei's Chepstow Bridge and Saltash

Bridge).
The remainder of Pole's article is devoted to specific instances of the use
of the various kinds of iron bridge and the failure of some of them, notably
Stephenson's trussed cast iron girder bridge at Chester in 1847.

Notes
Robison contributed articles on applied mechanics to the Encyclopaedia
Britannica (1797) and Brewster (1822) refers to them and to Young's version of
them in the next edition.
Straub (1952) and Timoshenko (1953) provide details of the foundation of
l'Ecole Polytechnique and l'Ecole des Ponts et Chaussees.
Straub (1952) observes that the absence of graphical methods in Navier's
Legons is in contrast with 'modern' text-books, an observation of questionable
validity even thirty years ago.
According to Dempsey (1864), Wild joined Clark as assistant to Robert
Stephenson on the Britannia Bridge.
Rankine's Inaugural Lecture to the University of Glasgow is reproduced in his
Manual of applied mechanics (1858).
Clapeyron and Lame designed iron suspension bridges (1826a) which were
constructed during the years 1824-6 in St Petersburg and were among the first
on the continent of Europe.
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The concept of influence lines seems to have arisen (1868) through Winkler's
work in relation to elastic arches (Chapter 3).
Mosely and Fairbairn were distinguished as the only British Corresponding
Members in Mechanics of the French Academy in 1858, the year of
Clapeyron's election in preference to Saint-Venant and three others, to fill the
vacancy due to Cauchy's death. In the same year the Academy appointed
Clapeyron to a Commission to advise on the Suez Canal project.
Cotterill (1869) brought to the attention of British engineers the use of the
funicular polygon for the graphical calculation of bending moments of simple
beams. He referred to a preliminary version of Culmann's Die graphische
Statik (1866) published in Leipzig in 1864 and to Reuleaux (1865).



2
Beam systems

With the theories of flexure and bending-stress in beams, established in
the eighteenth century by James (Jacob) Bernoulli and Euler (c. 1740) and
Coulomb (1773) respectively, Navier developed the analysis of forces and
deflexions of beams of varying degrees of complexity, with regard to
support and restraint, as part of his extensive and unique researches in
theory of elasticity. In those researches, evaluated by Saint-Venant and
others (1864), he laid the foundations of modern technical theory of
elasticity and anticipated important applications.

It had become well known in carpentry that continuity of beams over
supports and building-in the ends of beams, contributed substantially to
their strength or carrying capacity. Indeed, Robison had considered this
subject in an elementary fashion toward the end of the eighteenth century
(Brewster, 1822). Navier was clearly mindful of the common use of such
statically-indeterminate construction in timber (to judge by the detail of
his illustrations) when he embarked on the precise analysis of systems of
that kind and, in the event, his analysis was timely with regard to the
development of wrought iron beams and structures, which was stimulated
by the needs of railway construction. It was, in fact, the statically-
indeterminate beam (including, especially, the continuous beam) which
dominated the development of the beam in the nineteenth century.

Navier, 1826
The analysis of encastre and continuous beams is believed to have

been published for the first time in Navier's celebrated Legons of 1826
(though Clapeyron refers to earlier lithographed notes). Saint-Venant
claimed (1883) to have given his own version of the analysis of beam
systems in lithographed lectures delivered in 1838, without attempting to
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detract from Navier's priority. Indeed, he edited the third and final edition
of Navier's Legons (1864) to include a resume of the history of elasticity
and strength of materials as well as biographical details and tributes to
Navier by Prony and others.

Having used the differential equation of the elastic line to find the
deflexion of a uniform, simply supported beam for both concentrated
and distributed loads, Navier continues by analysis of the (statically-
indeterminate) propped cantilever and the encastre beam. He remarks (like
Robison) that a uniform encastre beam is twice as strong as the same
beam simply supported for a load at mid-span. Then he turns his attention
to a uniform beam with three or more points of support using the diagram
shown in Fig. 1 (his fig. 50, 1826) for illustration. The precise nature of
his analysis of beams is conveniently illustrated by this example.

Fig. 1. From Navier (1826).

The beam M'M of length 2a is supported at M' and M and its mid-point
A, as shown. There are concentrated loads IT at N, distant a/2 to the right
of A; and IT at N\ a/2 to the left of A. The reactions to these loads are
denoted by /?, q, q' at A, M and M' respectively; and OJ is the consequent
angle of slope at A. For equilibrium with regard to forces:

[(2.1)]

and, by taking moments about A:

n - I T = 2fa-4O [(2.2)]

Assuming the span AM is encastre at A, for the portion AN:

[(2.4)]
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Also, for the portion NM, using the condition that at N, where x = a/2,
dy/dx and y are the same as for AN

€̂ l=-q(a-x) [(2.6)]

e ^ = i a x ^ + n£+e tana i [(2.7)]
dx \ 2 8

Navier then says that the corresponding equations for portions AN' and
N'M' are similar except that IT is written instead of II, q' instead of q
and the sign of tan w is changed. Also, since for both portions y = 0 when
x = a:

a2 „ 5a2

0 = - ? T + n ^ 8 ~ + e t a n w'
a2 5a2

0 = - ? ' —+  IT—-etanw.

[(2.9)]

Finally, by means of these equations and the two equations of equi-
librium, it is found that:

n - I T a2

tan oj = e 32 \ [(2.10)]
22n-22ir

q = 32

q =

[(2.H)]

32
He specifies that rupture will take place first at A, N or N' and, having

expressed the bending moments at those points (ed^/dx2), proceeds to
obtain expressions for the stresses.

The combination of analysis and physical insight of Navier's work is
remarkable. (In his analysis of beams which are statically-indeterminate
he uses conditions of compatibility of deflexion (and slope) for his final
equations, having first made use of the relevant conditions of equilibrium.)
It is worth noting that his method of dealing with a simply supported beam
with a concentrated load is to use the point of application of the load as
origin for dealing with the portions of the beam on either side, as
cantilevers. The constants of integration are arranged so that the condition
for continuity at the load are assumed.
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Moseley, 1843
In his presentation (1843) of Navier's methods (the first in

Britain), Moseley begins by dealing with the theory of bending used by
Navier. It is interesting that he demonstrates the calculation of the second
moment of area of a beam section for a cast iron beam with unequal
flanges: otherwise his illustrations of loaded beams indicate timber loaded
by masonry. Apparently to simplify the mathematical detail, Moseley uses
uniform beams with uniformly distributed loads exclusively (culminating
in a beam supported at its ends and two intermediate points, in article 376),
until he deals with 'conditions of the equilibrium of a beam supported at
any number of points and deflected by given pressures' (the term' pressure'
refers to a concentrated force or load) on p. 521 of his Mechanical principles
of engineering and architecture. He considers a uniform beam CEBDA
(Fig. 2) simply supported at C, B and A with reactions P5, P3 and Pl9 caused

MB

Fig. 2. From Moseley (1843).

by downward loads P4 at E and P2 at D. CB = a2, CE = a2/2; BA = al9

BD = aJ2. Moseley gives the differential equation of the neutral line
between B and D as:

EI% = P2(\al-x)-Pl{a1-x) (568) [(2.12)]

with origin at B and using the same sign convention as Navier for bending
moment; it is noted, however, that now flexural rigidity is denoted by El
instead of e.

Then for the portion DA:

EI^= -Pfa-x) (569) [(2.13)]

Now ' representing by ft the inclination of the tangent at B to the axis
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of the abscissae' and integrating the former equation twice between the
limits 0 and x:

EI^- = iPtfax-x^-Pfax-lx^ + EItaafi (570) [(2.14)]

Ely = \P2{\ax x2 - Jx3) - \Px(ai x2 - &*) + EIx tan ft (571) [(2.15)]
At x = aJ2 (that is, at D) where y = Dx, and representing by y the

'inclination to the horizon' of the tangent at D:
El tan y = \P2a1

2-lPla1
2 + El tan ft (572) [(2.16)]

EID, = ±P2 ax* - ft/> a^ + \Elax tan ft (573) [(2.17)]
Integrating equation (569) between the limits aJ2 and x:

EI^- = -P.ia.x-|JC2) + El tan y +1^a2 [(2.18)]

Eliminating tan y between this equation and equation (572) and simplifying
gives:

^ (574) [(2.19)]

Integrating again between the limits aJ2 and x and using equation (573)
to eliminate Dx gives:

Ely = -^{a^-lx^HEI^n ft^\P2a2)x-i,P2a^ (575) [(2.20)]
Moseley continues: 'Now it is evident that the equation to the neutral

line in respect of the portion Cis of the beam will be determined by writing
in the above equation P5 and P4 for Px and P2 respectively' (and,
presumably, a2 and ax).

Making this substitution in equation (575) and writing —  tan ft for + tan ft in the
resulting equation; then assuming x = ax in equation (575), and x = a2 in the
equation thus derived from it, and observing that y then becomes zero in both,
we obtain:

0 = -MaS+iPtaS + EId! ten ft \ [(

0 = - |P 6 a 2
3 +£P 4 a 2

3 -£ /a 2 tan ft I
Also, by the general conditions of the equilibrium of parallel pressures:

[(2 22)]

Eliminating between these equations and the preceding, assuming a1-\-a2 = a,
and reducing, we obtain:
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<578) I < 2 B ) I

He continues and obtains expressions for deflexions Dx and D2 and the
slopes, and then considers the special circumstances when P2 = P4 and
ax = a2. In a footnote he describes an experiment on a uniform wrought
iron bar on three simple supports, performed by Hatcher at King's College,
London (Fig. 3).

\" sq. iron bar
f~ E B

Fig. 3. Hatcher's continuous beam experiment.

Another topic which Moseley treats (unlike Navier) is the 'work
expended upon the deflexion' of a uniform beam (articles 368, 369 and
385), which is denoted by the symbol U and, moreover, he makes use of
the derivative P = d£//dA (Chapter 7). (It is believed that the concept of
strain energy was not introduced into engineering mechanics until 1831 by
Poncelet, whose profound influence on Moseley is evident in numerous
references.)

Continuous tubular bridges, 1850
The theory of continuous beams was applied significantly and, in

retrospect, uniquely, by British engineers c. 1850 (with the help of Moseley
and Pole and others), especially for the design and erection of the Britannia
Bridge of Robert Stephenson, over the Menai Straits, shown in Fig. 4
(which, according to Todhunter & Pearson (1886, vol. 1, para. 1489) along
with the Conway Bridge comprised' probably the most important problems
to which the Bernoulli-Eulerian theory was ever or ever will be, applied').
Fortunately, details of its design and construction (with that of the
single-span Conway Bridge) are well documented. Thus, Fairbairn pub-
lished 'An account of the construction of the Britannia and Conway
tubular bridges' in 1849 and in the following year Clark published a
two-volume work Britannia and Conway tubular bridges under the super-
vision of his employer and engineer for the bridges, Robert Stephenson.
(Fairbairn was employed by Stephenson for his expertise in wrought iron
construction and design of tubular girders. Before the Britannia Bridge was
finished they quarrelled and Fairbairn hastened to publish a book about
the projects, which, in fact, appeared in the year before the Britannia Bridge
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(a)
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(b)

Fig. 4. (a) Britannia tubular bridge - elevation, (b) Britannia tubular
bridge - section of tube.

was completed.) In so far as theory of structures is concerned, Clark's book
contains an extensive account of the theory of bending of beams using 'the
principles and methods of calculation laid down in Moseley's Mechanical
principles of engineering and architecture'. Thus, in volume 1, chapter 2 is
devoted to the derivation of formulae for the strength of beams; chapter
3 to deflexion of beams; and chapter 4 to the theory of continuous beams
(including reference to the Torksey tubular bridge calculations by Pole).
In chapter 6 there are details of experiments using wooden rods (including
one' communicated by Mr Brunei') to verify the results given by calculation
in chapter 4 for continuous beams on four and five supports (Fig. 5). Then
in volume 2, chapter 3, the strength and deflexion of the Britannia Bridge
is considered in detail, including the method of equalising bending
moments due to self-weight at mid-span and support points. It is this
chapter which is especially significant in the history of theory of structures.
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A 1 2 8 9 # 1213 15 C

Fig. 5. Continuous beam experiment due to Brunei.

Pole, who was Fairbairn's biographer, as well as the leading protagonist
of M oseley's methods and adviser for their application, is believed to be
mainly responsible for it (as for the chapters on beam theory in the first
volume). Two interesting details which emerge are the method used to
observe the surface strains of the tubes at towers; and the assertion that
a gale would cause a force of 20 lb wt per square foot on the side of a tube.
The former consisted simply of measuring change in length by iron rods
(20-50 ft long) attached to the surface.

The method of equalising extreme self-weight bending moment values,
as essential for the safety of the structure in accordance with the design
concept, apparently involved ingenious measurements during erection as
well as calculations using theory of continuous beams (although the text
of Clark's book is somewhat vague in respect of whether the calculations
were carried out subsequently to verify procedures adopted by judgement
at the site, or beforehand: the former seems the more probable). The bridge
had two side spans of 230 ft and two main spans of 460 ft. Indeed, it was
a pair of tubular bridges side by side, each of which was a rectangular tube
through which one of the two parallel railway lines passed. It is sufficient
to consider one complete tube with its four spans. The tube was manufac-
tured in four sections corresponding to the spans, in a construction works
close to the site of the bridge. Each section was raised from pontoons in
the channel by jacking until it was in position, when permanent supporting
stonework was completed. At a stage at which all four sections were in
place on the supports, but before the joints between them over the
intermediate supports had been completed, it was as though a continuous
tube in an unstressed condition had been laid on the five supports and then
severed over the three intermediate supports. This stage is shown in
Fig. 6 which is taken from Clark's book.

The angles of separation between the four sections of the tube were
observed with the aid of plumb lines. In order to achieve the degree of effect
of continuity required, the procedure used was first to raise the end E of
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Fig. 6. From Clark (1850).

the side span DE until the angle of separation at D was almost closed, then
to complete the joint between CD and DE. Next, the section BC was raised
(E having been lowered to its normal level) to partially close the angle of
separation which was observed at C (being less than the original amount,
due to the completion of joint D and lowering of E). Finally, A was raised
by precisely the same amount as E had been raised initially and the joint
at B was completed. Thus the effect was to produce a continuous tube
whose maximum bending moment, due to self-weight, was less than that
for the unstressed continuous tube placed on the five supports. The ideal
sought was equalisation of the bending moment at the central support and
the extreme value within the adjacent main spans (due to self-weight). It
appears that E was raised by an amount corresponding to the slope at D
of the section CD as simply supported, so neglecting the bending, due to
self-weight, of section DE. Raising A by the same amount before completing
the final joint at B, as described by Clark, would apparently result in
over-closure of the angle of separation at B (because it would in any event
be reduced by the making of the joints at D and Q. The effect of that would
be to increase the bending moments at the supports, whereas the intention
was stated as being to reduce them in relation to those which would
correspond with exact closure.

The theoretical investigation confirms the amount by which E was
raised, neglecting bending ofDE, before the joint at D was completed. Then
the rotation at D and the modified angle of separation at C, caused by
lowering E after making joint D, are calculated by considering CDE as a
continuous beam as follows:

span CD: £ / g = ^-ptx [(2.26)]

where / and /i are the second moment of area and weight per unit length
of CD, and p3 is the reaction at C.
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dv
Integrating, and remembering that at the point Z>, where x = 21, —  —  tan /?, we
have-

(LXVII) EI^- = ^x*-?±x2-\}iP + 2p3P + El tan ft [(2.27)]
ax 6 2 3

Integrating again, and substituting in the resulting equation the corresponding
values of x = 2/ and y = 0, we obtain -
(LXVIII) Elton ft = fiP~ip9P [(2.28)]
By a similar process we obtain for the small span -
(LXIX) EI2 tan ft = \Pl\*-\\p2l* [(2.29)]
Now by equality of moments round Z), we have -
(LXX) /71/+2/J2 = 2/>3/+^2/2 [(2.30)]
Eliminating, therefore, between the three last equations, we find the following
values -

px = 53 tons
p3 = 653 tons

tan ft = 0.002 lb
The values obtained relate to 2/ = IDE = CD = 460 ft; fi = 3.38 tons per
ft; pt (for DE) = 2.6 tons per ft; / = 1584 (ft)4; and /2 (for DE) = 962 (ft)4.

It is interesting to note that no account is taken of the fact that in making
the joint at D the original angle of separation was not completely
eliminated, because the bending of DE due to its self-weight was neglected.

The value of the angle of separation at C obtained from this analysis
is used to determine the height through which BC should be raised at B
for complete closure and it is noted that it was actually raised by little more
than half that amount when the joint at C was completed. That was
believed to be satisfactory because ' the strain over the support at C is to
that in the centre of the long span as 6 to 3' if full advantage of continuity
is taken.

Finally,

The third and last junction made was that at B: the calculation of this would be
very complicated, but we are justified in assuming that the tube was made perfectly
continuous at this point... therefore it appears that the tube may be considered
as made continuous at B and Z>, but falling short of perfect continuity at C by a
certain known amount.

That statement is not strictly correct both with regard to the restoration
of the conditions which full continuity would have afforded at B and D
and with reference to the conditions at C being modified by 'a certain
known amount'. The latter seems to have been a judicious estimate.
Having regard, however, to the orders of magnitude involved and strains
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measured, it seems probable that the engineers were justified in their
conclusions. (The achievement of the effect of perfect continuity could
clearly have been attained entirely by site measurement, whereby the angles
of separation would have been eliminated entirely at D, C and B in
succession, by appropriate jacking and rigid-jointing.) Certainly, they seem
to have adopted a sound procedure on a scientific basis to which the long
life of the bridge in increasingly severe conditions is adequate testimony,
in spite of subsequent criticism by Clapeyron (1857) and others.

Clapeyron's method, 1848-1857
It was Clapeyron, however, who generalised and ordered the

analysis of continuous beams to advantage for practising engineers. Thus
Bresse (1859) writes:

Beams on more than two supports have been used often in recent years for bridges
constructed for railways. One of the first examples of this art in France is the bridge
of the West railway over the Seine at Asnieres. For the Asnieres Bridge
M. Clapeyron, Ingenieur en Chef des Mines, member of the Academy of Sciences,
has greatly improved on the methods of verifying the strength of beams or for
determining their proportions.

In a brief discourse to the Academy of Sciences and reported in Comptes
Rendus (1857), Clapeyron reviewed the development of continuous girder
bridges, ascribing it to the immense capital outlay in railway construction
and giving Stephenson's Menai (Britannia) Bridge 'of originality and
grandeur' as a prime example. After outlining briefly the origin of the
theory of continuous beams and applications, with acknowledgement to
a paper by Navier in Bulletin de la Societe Philomathique (1825), and the
subsequent studies of Belanger and Molinos & Pronnier, he described how
he himself became involved in the problem for the first time in 1848 (for
the Ponts d'Asnieres) and his desire to submit his results to the judgement
of the Academy. He then simply quoted the principal result as the
equation:

3) [(2.31)]
where /0 and lx are the lengths of two consecutive spans; Qo, Ql9 Q2 are the
respective bending moments over the three consecutive supports; and p0 and p
respectively, are the uniformly distributed loads on the spans. If the spans are of
equal length the equation is:

Go + 4Gi + G. = J(/>o+/>i) K2.32)]

Thus the 'theorem of the three moments' emerged.
Clapeyron proceeded to describe briefly the results of a study of the
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Britannia ('Meny') Bridge by Molinos & Pronnier 'in which they have
found that the iron bears a stress in the centre of the first span, of
approximately 300 kg per square cm; over an outer pier, of 900 kg per
square cm; at the centre of the second span, 550 kg per square cm; and
860 kg per square cm over the central pier'. Clapeyron remarked: 'This
magnificent structure leaves much to be desired with regard to the
distribution of thicknesses of the plate which seems relatively too thin at
the points of support.'

The remainder of the discourse was devoted to a demonstration of the
use of his equation for a beam of seven equal spans and means of solving
the resulting simultaneous equations.

Clapeyron had apparently made his results known informally after 1848
and, as a consequence, in 1855 Bertot achieved priority in publishing the
theorem of the three moments and, though he acknowledged Clapeyron's
investigation, he was accorded priority by some, including Collignon and
Heppel (as noted below). It is perhaps significant that Clapeyron ignored
Bertot in his discourse before the Academy. In the meantime Jourawski
was developing theory of continuous beams for railway construction in
Russia, with some knowledge of Clapeyron's work, it is believed.

The Belgian, Lamarle (1855), seems to have made a trivial contribution
to theory of continuous beams; then Rebhann (1856) used Navier's
method and, for a uniform beam with equal spans and uniform loading
throughout, derived an equation relating the reactions of any three
consecutive supports (assuming all supports are rigid and at the same level).
Rebhann was, incidentally, among the first to show bending moment
diagrams for beams (Todhunter dismisses his work as insignificant,
however). Kopeke (1856), Belanger (1858, 1862) and Scheffler (1857,
1858ft) considered the effect of difference in level between the supports of
continuous beams. Belanger was Clapeyron's pupil: he considered the
problem of a beam with only two spans which, however, had different
flexural rigidities and uniformly distributed loads. Scheffler's contribution
includes an attempt to establish graphical analysis of uniformly loaded
beams on several supports, by reference to points of contraflexure and
maximum and minimum curvature. Then later (1860), he made an
exhaustive analysis of a three-span beam for various conditions of loading,
as well as of span ratios and support levels. But the most important
developments after Clapeyron seem to be due mainly to Heppel, Mohr,
Winkler, Bresse, Weyrauch and W. Ritter. Also, it is appropriate to
acknowledge the exhaustive account of bridge engineering by Molinos &
Pronnier (1857), with its discussion of experimental and theoretical
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investigations, having regard to results obtained by Hodgkinson and
Fairbairn as well as by Clapeyron and Belanger.

Heppel, 1858
Heppel's theory of continuous beams is contained in two papers:

the first, presented to the Institution of Civil Engineers (1858), deals with
the analysis of beams whose spans have uniformly distributed and central
concentrated loads. He derives a form of Clapeyron's theorem and, in
addition, finds reactions of supports, points of maximum stress and
contraflexure and deflexions. Heppel's second paper (1870), with its
historical survey, is especially interesting, however.

Having remarked on Navier's original method he writes as follows:
'This method, although perfectly exact for the assumed conditions, was

objectionable from the great labour and intricacy of the calculations it
entailed'. Heppel remarks that Molinos & Pronnier explained the method
fully and showed that for a bridge of n spans, 3n + 1 equations are involved
and quoted the example of a bridge of 6 spans requiring 19 simultaneous
equations to find its bending moments. He continues by remarking that
Navier's method was the only one available until about 1849 when
Clapeyron

being charged with the construction of the Pont d'Asnieres, a bridge of five
continuous spans over the Seine, near Paris, applied himself to seek some more
manageable process. He appears to have perceived (and so far as the writer is
informed, to have been the first to perceive) that if the bending moments over the
supports at the ends of any span were known, as well as the amount and
distribution of the load, the entire mechanical condition of this portion of the beam
would become known just as if it were an independent beam.

According to Heppel, Clapeyron found himself obliged to introduce
additional unknowns ('inconnues auxiliaries') into his equations, namely
the slopes of the deflexion curve at the points of support. He was, therefore,
compelled to operate on a number of equations equal to twice the number
of spans. Remarking that Clapeyron' does not appear as yet, to have made
any formal publication of his method', Heppel proceeds to credit Bertot
with the theorem of three moments. It seems, therefore, that he was
unaware of Clapeyron's discourse of 1857.

Heppel acknowledges Bresse for the next major contribution to the
subject and he also mentions Belanger, Albaret, Collignon, Piarron de
Mondesir and Renaudot, as well as Molinos & Pronnier, with regard to
the development of analytical techniques in practice.

With regard to his own experience, Heppel acknowledges Moseley
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Fig. 7. (a) Torksey tubular girder bridge - elevation, (b) Torksey
tubular girder bridge - section of a girder.

(1843) for introducing Navier's method to Britain, and then Pole for
practical applications, especially to the Torksey Bridge in 1849 (Fig. 7) and
the Britannia Bridge (where' some new conditions' were treated successfully
for the first time). Then, in 1858-9, 'being Chief Engineer of the Madras
Railway', Heppel had occasion to investigate the conditions of a bridge
of five continuous spans over the River Palar. After remarking that the
only books available to him were those of Moseley and Clark he wrote
that after many attempts and failures, the same idea occurred to him which
appeared to have struck Clapeyron nine or ten years before, that if the
bending moments over the supports were known, the whole conditions
would become known. Following this clue, he was fortunate enough to
succeed at once in eliminating the other unknown quantities which
Clapeyron had been obliged to retain in his equations for many years after
his original discovery of the method, and thus he was able to arrive at an
equation identical with that which had been first published in France by
Bertot. (Heppel's remarks confirm his ignorance of Clapeyron's discourse
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published in 1857.) He checked what he then believed to be his original
discovery with Pole's results for the Britannia Bridge (in Clark's book,
1850) and in so doing obtained a generalised equation which he subsequently
found to be identical to that of Belanger. Heppel concludes: 'It would
appear, then, that the theory of this subject was independently advanced
to about the same state of perfection in France and in England.'

Bresse, Winkler, Mohr and Weyrauch
In his treatment of continuous beams Bresse (1859) begins by

acknowledging Clapeyron but emphasises that he does not use precisely
the same method for obtaining a similar result. The third part of his Cours
de mecanique (1865) includes an extensive study of continuous beams to
include small differences in level of supports and various load distributions
and span ratios, together with an exhaustive examination of the worst
location of live load. In his construction of diagrams showing variation
of bending moment at various points, as specified loads traversed continuous
beam, he came close to the discovery of influence lines (a concept due to
Winkler, as noted in Chapter 3).

Credit for priority in studying the most unfavourable position of a load
on a continuous beam seems to be due to Winkler (1862), however, who
was also the first to analyse a long beam on a continuous elastic foundation
(1867). He was then concerned with railway construction. His book on
theory of bridges (1872) includes an extensive treatment of continuous
beams and theory of arches. It is, incidentally, important to note that
Winkler and his contemporaries included continuous trussed girders as
well as continuous plate girders in their studies.

Mohr's first article (1860) deals with modification of Clapeyron's
theorem to allow for small differences in level of the supports of a
continuous solid or trussed beam. Also, there is graphical representation
of bending moments and shearing forces as well as a variety of specific
examples. One example is concerned with optimum differences in level of
supports, for various span ratios, with regard to maximum bending
moment, due to specified loading. (Comparison of this method of con-
trolling bending moments in continuous beams with that used for the
Britannia Bridge seems relevant.) Two additional articles under the same
title appeared in 1862 and 1868. The former included analysis of continuous
beams of varying section and the error incurred if uniformity of section
is assumed to simplify calculations. The latter represented a major
contribution to the subject of beam theory in general.
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Mohr begins his third article (1868) with the following interesting
commentary:
Professor Culmann in his book Graphische Statik has set himself the task of using
the new geometry for solving some problems in engineering, which are amenable
to graphical treatment. The very interesting and useful results which this work
presents, would, we are convinced, have already found general acceptance if the
overly academic appertinances of the new geometry had not frightened many
engineers from studying it. We believe that in many cases, and in particular for
those of practical importance, the tools of the old geometry would have sufficed
and we intend to illustrate this by several examples in future. In the present work
we have attempted a graphical treatment of the elastic line theory, a problem which
has hitherto defeated even the new geometry.

(The new geometry is viewed more favourably by Chalmers, as noted in
Chapter 4.)

Mohr provides a comprehensive treatment of theory of beam systems
with novel graphical interpretations and aids to computation, including
graphical solution of continuous beams by properties of the elastic line
(which Love (1892, 1927) describes in detail). Also, he introduces the
concept of influence lines for deflexion of linearly elastic beams, thereby
involving the reciprocal theorem independently of Maxwell (in his book
(1906) on topics in technical mechanics, Mohr acknowledges Winkler's
priority for the actual concept of influence lines). Other important features
of the article are the property of bending moment diagrams known as' fixed
points', and theorems relating the elastic line and bending moment
diagrams of beams. One theorem specifies that the change in slope of the
elastic line between points whose abscissae are xx and x2 is proportional
to the area of the bending moment diagram between those points. Another
specifies that the moment of that area about the origin x = 0 is proportional
to the distance between the intercepts on an axis through the origin of the
tangents to the elastic line at xx and x2. Also, those tangents intersect below
the centre of the area of that portion of the bending moment diagram if
the beam is uniform. Otherwise, the diagram of Ml El must be used, El
being the flexural rigidity (Mohr used the symbol T instead of / ) .

Mohr also introduces the concept of elastic weights in the same article
(a concept used implicitly by Culmann (1866), with reference to elastic
arches), whereby deflexions of beams may be calculated by means of
quasi-bending moments caused by distributed loading of intensity
numerically equal to M/EI, where M is the bending moment caused by
the actual loading of the beam (Fig. 8).

A comprehensive treatment of the theory of continuous beams is given
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\ Bending moment
diagram due to q

Fig. 8

by Weyrauch (1873), who provided perhaps the first exhaustive treatise
on the subject, which achieved the status of an authoritative standard work
for practising engineers. (As noted in Chapter 10, Weyrauch has been
credited with the terminology 'influence line' to describe the well-known
concept due to Winkler and developed in a variety of ways by Mohr and
especially by Miiller-Breslau.)

The subject of continuous beams is an important feature, moreover, in
the second volume of Levy's celebrated book which appeared some twelve
years (1886) after the first volume, and almost simultaneously with his
important article on the elastic theory of suspension bridges (Chapter 3).

Graphical method: Fidler and Miiller-Breslau
The history of theory of continuous beams in the nineteenth

century would be less than adequate without an account of an important
graphical method. Without seeking to belittle the graphical methods of
others, notably Mohr (1868), attention is confined here to the method of
characteristic points due to Fidler (1883), which was improved by Miiller-
Breslau in 1891 and included in his Graphische Statik der Baukonstruktion
(1892, vol. 2, p. 357). Characteristic points for a uniform span of / are
located at abscissae of 1/3 and 2//3 and ordinates determined by:

l-x)dx

and (2.33)
A2 = ^ M'xdx

where Mf is the statically-determinate bending moment due to the load
of the span. These quantities are shown in Fig. 9(b). If there are terminal
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(b)
Fig. 9

couples applied to the span or beam, M1 at x = 0 and M2 at x = /, then
if the supports are rigid at the same level it may be shown that (Salmon,
1938, vol. 1, p. 141):

(2.34)

{ K )

where fa and fa are the slopes due to bending of the beam at x = 0 and
x = /respectively (Fig. 9(a)). Noting that the first two terms in parentheses
(in each of the above equations) represent the ordinates of the bending
moment diagram due to the terminal couples, at x = 1/3 and at x = 2//3
respectively, and denoting them by px and/?2 gives:

(2.35)

where: qx =p1 — h1 and q2 =p2 — h2. The derivations involved are con-
veniently accomplished by so-called moment-area methods to which
Mohr contributed extensively but whose origins can be traced to Saint-
Venant (1864).

For an encastre beam fa = <j>2 = 0 and, therefore, the characteristic
points lie on the straight line of the terminal couple bending moment
diagram so that it is a simple matter to find those couples if the
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(a)

Fig. 10

characteristic points are known. Continuous beams present a more
formidable problem and a graphical procedure by trial and error may be
used. If two uniform adjacent spans are AB and BC (Fig. 10(tf)), enjoying
common conditions at B, and if the slopes are <f>A, <f>B and <f>c over the
supports at A, B and C respectively, then:

(2.36)

where: AB = lx; BC = l2; and q1 and q2 refer to AB; and q3 and ^4 refer
to BC. Thus 0B, being common to both spans, affords a relationship which
is the basis of Fidler's method, that is:

or (2.37)
/i(ft-*,) = - / . ( f t J

when El is constant.
If now, as shown in Fig. 10(6), a straight line is drawn joining the

characteristic points R2 and R3 and if R2J = R3K (where K is chosen on*
that basis), then by using the result derived above it may be shown that
a straight line joining the points Q2 and QB passes through K which is
therefore known as the 'intersection point'. The graphical process consists
essentially of finding the bending moments &tA,B and C, which meet this



Graphical method: Fidler and Muller-Breslau 33

condition as being the statically-indeterminate quantities required of the
solution. It is a trial and error process which can be achieved rapidly with
the aid of a tensioned thread and pins (see Salmon, 1938, vol. 1, p. 144).
In common with the analytical methods, the method of characteristic
points may be developed to take account of differences in level of supports
and non-uniformity.

Soon after Fidler published his graphical method for analysing contin-
uous beams, W. Ritter (1886) published an extension of Mohr's use of the
elastic line to simplify continuous beam analysis.

Clebsch
While railway engineers developed theory of continuous beams,

a significant treatment of the problem was produced by the mathematician
Clebsch (1862) within his researches into theory of elasticity. It does not
seem, however, to have become either well known or advantageous in en-
gineering but it bears some similarity to Scheffler's method (1857; 1858c).

Clebsch's elegant use of the differential equation of bending seemed to
be unknown in Britain until the method was published in 1919 indepen-
dently, it is believed, by Macaulay and subsequently termed 'Macaulay's
method'. A few years before the close of the century, Wilson's so-called
method (1897) for continuous beam achieved popularity in Britain. It is
relevant to Clebsch's method, being concerned with obtaining equations
relating loading and reactions of intermediate, simple supports (redundants)
by determining the conditions for no deflexion at those supports, when the
beam is regarded as supported at its extremities with forces representing
loads and intermediate reactions applied to it. Clebsch's ingenious method
of integration and use of boundary conditions contrasts with Wilson's
physical reasoning.

In article 87 of the translation of Clebsch by Saint-Venant and Flamant
(which has no illustrations), a uniform beam on numerous point supports
is first considered with the beam simply supported with loading, including
point loads Pl9 P2,..., Pn, at intervals /1? /2 , . . . , ln along the span
corresponding to the positions of the intermediate supports. The flexural
rigidity is denoted by EcrA2; the bending moment due to the loads other
than Pl9 P2,..., Pn, by M; the deflexion by w; abscissae by z; and constants
of integration by a and /?.

After thus dealing with the problem of a simply supported uniform beam
with n point loads, Clebsch proceeds to use the same procedure for dealing
with the problem posed by intermediate, simple supports, that is, the
problem of the continuous beam. He simply treats their reactions as
upward loads and obtains sufficient equations for evaluating them by using
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the conditions for zero deflexion of those points. For a uniformly
distributed load of intensity IT with (n— 1) equally spaced intermediate
supports, distant / apart, he obtains simultaneous equations relating the
reactions Ql9 Q2, . . . , Qn-X of those supports, as follows:

[(2.38)]

The similarity of form of these equations and those of Clapeyron's theorem
of the three moments is remarkable.

It is regrettable that Clebsch's method was introduced in the realms of
the mathematician and remained unknown to engineers generally, for
many years. There is no doubt, however, of its status with regard to the
history of the subject.

Notes
Todhunter (1892) presents a confused impression of the principles used to
optimise the dead-load bending moment distribution of the Britannia Bridge. It
is asserted that the objective was to equalise the 'pressures' on the supports
rather than bending moments and also that Clapeyron's (1857) criticism is
inappropriate because the bridge 'is not a continuous beam in the theoretical
sense'. Moreover, it is apparently suggested that Clapeyron's theorem could
have been used to advantage for the design of the bridge, whereas that process
ante-dated the theorem by several years. (Todhunter also criticises Navier
because induced axial tension is omitted from analysis of an encastre beam.)
Jourawski criticised (1856) the Britannia Bridge for lack of shear strength at the
piers with regard to rivet pitch at joints, in the light of his then novel theory of
shear stress distribution in beams (a similar theory was proposed by Rankine
some two years later, in 1858, and Timoshenko (1953, p. 89) refers to
unpublished work on shear stress by Poncelet).
Bell (1872) describes his difficulty in applying Navier's theory to the continuous
girders of the Chepstow Bridge by Brunei in 1849 but records that the results of
his calculations for continuity over five spans were confirmed by experiment.
(He applauds the discovery of the theorem of the three moments with reference
to Heppel (1870).)
Wilson, whose paper on analysis of continuous beams (1897) was
communicated to the Royal Society by Osborne Reynolds, was at that time a
demonstrator at Owen's College, Manchester. At the beginning of the paper he
acknowledges its basis as a principle due to Bresse, which is now known as the
principle of superposition (see also Chapter 10: Notes).
Saint-Venant refers, on p. 104 of his edition (1864) of Navier's Legons, to an
error in theory of flexure in Gauthey's treatise on bridges (1813, edited by
Navier). The error was rectified in the lithographed notes for Navier's course
(1819-20) at l'Ecole des Ponts et Chaussees and is said to be traceable to
James Bernouilli and Mariotte.



Theory of the arch and suspension bridge

At the beginning of the nineteenth century, to which elastic arch theory
belongs, masonry was still the principal structural material. Many major
structures, especially bridges, depended on the arch as a means of
exploiting the strength of stone in compression. The origin of an explicit
theory of the arch is variously ascribed to Hooke, De La Hire, Parent and
David Gregory in the seventeenth century. Robison (Brewster, 1822)
believed that Hooke suggested the inversion of the shape adopted by a
suspended rope or chain, namely the catenary, as the statically correct form
for an arch: others (Straub, 1952) ascribed that concept to David Gregory.
In any event, it appeared to disregard a distribution of load different from
that which would be due to a uniform voussoir arch. Heyman has reviewed
the development of the theory of the arch in detail (1972) and leaves little
doubt that it was highly developed in the eighteenth century. Coulomb's
theory of 1773 (1776) of the distribution of force in loaded stone arches
and their stability (ultimate load carrying capacity) was generally accepted
by Navier, to judge by the contents of his Legons (1826, 1833; in which,
quite separately, elastic theory of the arch rib appears). But those youthful
partners, Lame & Clapeyron rediscovered (while in Russia) the theory of
the ultimate strength of stone arches for themselves (1823), apparently
ignorant of Coulomb's theory (or, indeed, that of Couplet which Heyman
has described (1972)). For practical purposes, since arches carried heavy
dead load, due to superstructure, in comparison with which live load was
small, elementary statics was sufficient to ensure that the distribution of
dead load and arch shape were such that the locus of the resultant of the
total shear force at any section and the horizontal thrust, nowhere passed
outside the masonry.
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Masonry arch
In Britain the process of rediscovery of the theory of the masonry

arch began somewhat later and seems to have been due to the Rev.
Professor Henry Moseley. Thus, in 1835, after an interval of two years since
it was presented, Moseley's paper on the equilibrium of bodies in contact
was published and he observed finally that 'the great arches of late years
erected by Mr Rennie in this country have for the most part been so loaded
as very nearly to satisfy his condition for stability'. That condition
specified that in the absence of friction, the pressure between voussoirs
should be transmitted such that the direction in which it acts at each joint
is at right angles to the surface of contact. Then, in the preface of his book
(1843), Moseley, in referring to his 'memoir' on the stability of bodies in
contact (1835) as the basis for his theory of the arch, remarks that his
principles differ essentially from those on which the theory of Coulomb
is founded but, nevertheless, when applied to similar problems, they give
identical results. He also notes that the theory of Coulomb was unknown
to him at the time his memoir was published and refers to Hann's treatise
(1843) for a comparison of the two theories. Thus it seems that there is
agreement with Coulomb (1776) that, for stability of an arch, the line of
thrust must not pass outside the masonry at any point. On the basis of
his 'new principle in statics' (the principle of least resistance or pressures
(1833 a) he proposed, in addition, that among all lines of thrust for an arch,
which satisfy the primary condition of stability, that which is consistent
with minimum thrust at the crown is correct. (He had, moreover,
illustrated his principle with reference to Euler's problem of a solid resting
on four supports, which is noted in Chapter 7.)

Engineers, including Barlow (1846) and Snell (1846), showed interest in
Moseley's theory, as did Scheffler (1858c) in Europe, who also translated
his book in 1844. There seemed a total lack of awareness, however, which
was to persist to an extent for many years, that the thrust-line (and
therefore the horizontal thrust) for the dominant dead load of a masonry
arch is not unique: this is due, in part at least, to the inevitable lack of
homogeneity of masonry. But stability is assured if it is possible to
construct a thrust-line which does not pass outside the masonry at any
point (Heyman, 1966).

Application of theory of elasticity to masonry arches belongs to the
nineteenth century. It was suggested, notably by Poncelet (1852) in an
extensive critical review of arch theory, which included Navier's theory of
the elastic rib (1826) and Mery's (c. 1840) unsatisfactory version, as well as
Moseley's work continued by Scheffler. Villarceau (1853) also considered
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this approach but Heyman (1966) emphasises his ultimate firm rejection
of it in favour of elementary statics as the basis of his rules for the design
of masonry arch bridges which, according to Heyman, have never been
superceded. Later in the nineteenth century, the emergence (ascribed to
Navier) of the so-called 'middle third rule' for masonry structures was a
consequence of appeal to theory of elasticity for homogenous materials.
The rule is described in some detail by Salmon (1938) who includes Fuller's
graphical analysis of masonry arches (1874), which was based upon it.

Brunei devised a novel numerical method of determining a thrust-line
by elementary statics (Fig. 11), which Owen has described (Pugsley, 1976)

Fig. 11. After Brunei (c. 1840).

and which illustrates a leading practitioner's approach to arch theory.
Taking the origin O at the crown he represented the dead load on the
section between O and y, that is, the shearing force W9 by the polynomial:

W = Ay + By2 + Cy3 + Dy* [(3.1)]
where y is the horizontal distance from the crown and the parameters A,
B, C, D are determined by the values of W calculated for four chosen points
within a half-span using the assumed shape of the arch. Expressing W in
terms of the horizontal component H of the thrust he wrote:

W = Hdx/dy = Ay + By2 + Cy3 + Dyi [(3.2)]
and integrated to obtain:

Hx = Ay2/2 + By3/3 + C//4 + Dy*/5 + K [(3.3)]
as the equation of the thrust-line. The constant of integration K is zero
since x = 0 when y = 0. Now the value of H may be found by choosing
a point (y, x) through which the thrust-line is required to pass and which
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complies with the distribution of shearing force. A safe design is represented
by an arch whose centre line is specified by the equation for x with the
calculated value of H. The fact that the value of H is not unique is
immaterial so long as there is a thrust-line which is accommodated within
the thickness of the arch. Brunei's calculations for several arches are
preserved and Owen (Pugsley, 1976) has given those of the Maidenhead
Bridge.

Elastic arch: Navier, 1826
The development of the metal arch in the nineteenth century

changed the nature of the problem. Structures were now lighter and for
those made of cast iron, for which dead load must predominate, a more
precise distribution of the load was essential in order to ensure that the
thrust-line remained within the arch itself (as for the masonry arch). More
important, the wrought iron arch (which belongs entirely to the nineteenth
century), able to resist both tension and compression, thus demanded
analysis within the theory of elasticity. It was not dependent on dead load
for its stability; on the contrary, the smallest possible dead load was
desirable. Navier had, in fact, provided an appropriate theory in his study
of the strength of elastic ribs, which is contained in article 6 of his Legons
(1826, 1833). He begins (Fig. 12; his Fig. 72) by considering a curved bar

Fig. 12. From Navier (1826).

encastre at its left-hand end A and loaded at its free end M by forces P
and Q vertically and horizontally. The equilibrium of the rib is expressed
by the equation:

^ ^ .y) K3.4)]
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where e is the flexural rigidity and d(j>' — d<j)  is the change of the angle of
curvature (related to the vertical axis) of an element of length ds due to
flexure; a and b are the coordinates of M. Therefore:

y)] [(3.5)]

Navier continues in an unfamiliar manner which is not conducive to
general formulae but rather to providing results for specific shapes. Thus,
having noted that he is concerned with bending, whereby the difference
between <f>' and <j> is small, he writes:

cos <j>' - cos <j> = - - sin 0 f dx / 1 + ( ^ Y [P(a - x) + Q(b -y)]
I ^

1 f / /dv\2

sin ^ ' - s i n <j> = - cos <j> \ dx \+[J-\ [P(a-x) + Q{b-y)]e J V \dxj
then since cos <f> = dx/ds, sin <j> — dy\ds...  :

[(3.6)]

[(3-7)]

equations which, he says, may be integrated to give the displacements of
any point of the rib if its shape is specified. It is interesting to note Navier's
apparent lack of consistency with regard to signs of applied forces, various
instances of which occur in his Lecons, but do not detract materially from
the clarity of his expositions. Thus, in specifying x positive to the right and y
positive downward for the example of a downward curving rib, and having
indicated positive senses of P and Q accordingly, he gives the bending
moment at (x,y) as P(a — x) + Q(b— y),  instead of P(a — x) — Q(b—y) or,
for the alternative convention, —  P(a — x) + Q(b— y).  The former appears
to be appropriate because the rib is shown as having increased curvature
due to the applied forces. Also, there is no system of numbering or
identifying equations in Navier's work.

The first example given by Navier is a rib of parabolic shape for which
y = bx2/a2; dy/dx = 2bx/a2. Substituting in the simplified equations and
replacing the square root by a series:

2 V d x / . . . . r v . -,.~>-y)\% M

he obtains for the horizontal and vertical displacements (h a n d / ) due to
flexure:
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ab2 \ Q(52b b3 \ I

Next he considers such a rib with its ends resting on a smooth surface with
a concentrated load 211 applied to its mid point or crown. He notes that
now P = — IT  and Q = 0 whence:

[(3.10)]
J eV3

the latter representing the vertical deflexion at the load.
Again he considers Fig. 13 (Fig. 74 of Legons), a parabolic rib with a

central vertical load 211 supported at its ends on the same horizontal level

Fig. 13. From Navier (1826).

in such a manner that horizontal movement cannot occur (as in a two-pin
elastic arch). By the condition that h = 0 and noting that P = —  IT, he finds
that:

^ \32b 28a,
Ufa3 23ab2\

*~ eU28 6720 A
Apart from considering distributed loading and ribs of circular shape

Navier does not develop the topic further and proceeds to discuss the
nature of its applications. Subsequently, in article 10 about timber bridges,
there is a section on 'bridges supported by arches' (that is, those which
rely on timber lattice arch ribs as shown in Figs. 14 and 15 (his Figs. 138
and 139)). He uses the principle of the two-pin elastic arch for their analysis
and shows how the thrust within the arch may be found (and in so doing
he comes close to a similar approach for masonry arches). Then he deals
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B c B'

Fig. 14. From Navier (1826).

Fig. 15. From Navier (1826).

with the topic of timber centring for the construction of voussoir arches
and the forces which it must resist. In footnotes he refers to Rennie, and
to Robison's section on carpentry in his System of mechanical philosophy
(Brewster, 1822). There is, moreover, a footnote (on p. 406) with reference
to the cast iron Pont d'Austerlitz in Paris and the similar bridge at
Sunderland, in relation to similarity to timber construction. (It is a feature
of the earliest iron bridges that in detail they closely resembled timberwork
which provided the only relevant precedent with regard to technique.)

Bresse, 1854
It seems that after Navier it was Bresse to whom further elucidation

and progress regarding the theory of curved elastic bars is due. In 1854
he published Recherches analytiques sur la flexion et la resistance des pieces
courbes, having in the previous year succeeded Belanger as professor of
applied mechanics at l'Ecole des Ponts et Chaussees. He addressed himself
to finding, for an arch rib, the stresses due to specified loads and reactions;
the effects of temperature changes on stress and deflexion; and, for
specified loads and end constraints, the reactions incurred. (Todhunter &
Pearson, (1893, vol. 2(i), p. 352) remark on the extensive tables given by
Bresse to facilitate calculations of the behaviour of ribs of circular form.
Villarceau (1853) is similarly commended for his provision of tables
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Fig. 16. From Bresse (1854).

relating to his differential equation for the 'pressure line' of a rigid arch
to ensure coincidence in the shapes of both.)

Bresse derived equations of the following form for an arched rib, using
the single, somewhat obscure, diagram shown in Fig. 16:

s M
A a - A a o = S —<fo [(3.12)]

So €

with regard to angle of bending from an origin So along the rib at (x0, y0),
where the angle of the tangent is specified by a0; M is the bending moment
at any point; and e is the flexural rigidity:

U-u0 = A^(Y-yo)+ftX-xo) + i\(Y-y)— + ~]ds  [(3.13)]
L 6 6 QS\

for the horizontal deflexion relative to that of the chosen origin of a point
(X, Y) distant S along the rib, and:

V-v0 = -Aao(X-xo)+fi(Y-yo) + I,\ -(X-x)—+-^f-\8s [(3.14)]v0
So

for the vertical deflexion, where ft is a coefficient of elasticity and s is the
distance of any point (x, y) between So and S.

In the last two equations the first term of each refers to deflexion due
solely to rotation of the chosen origin; the second to stretch of the rib due
to causes other than loading, for example temperature change; the third
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to deformation by the loading manifest by axial force N and bending
moment M at any point (X, Y). Displacements are assumed to be small
and consistent with the assumption of constant geometry of an arch.

Bresse gives practical applications including those to a uniformly loaded,
uniform rib of circular form and, of special interest, to the circular rib of
a cast iron railway bridge at Tarascon over the Rhone, where measurements
were taken on the rib before and after erection, it seems. Bresse's value
of deflexion by calculation was apparently only 0.0008 m less than the
measured value of 0.0650 m.

The possible circumstances of statical indeterminacy are examined with
regard to terminal conditions, and their use in the deflexion equations are
described for the purpose of achieving a solution. He does not confine
attention to single arches but deals as well with combinations of ribs and
the conditions for compatibility of displacements at junctions (necessary
to the study of their resistance to loading and temperature variations). The
multiple arch iron bridge at Vergnais is used to illustrate these aspects.

Principle of superposition: symmetry and anti-symmetry
The final part of Bresse's third chapter ' Remarques et theoremes

concernant la maniere dont les forces exterieures entrent dans les formules
de la flexion' is of special interest and importance for its exploitation of
the principle of superposition to facilitate analysis where multiple loads
are involved, and particularly for the powerful device of symmetry and
anti-symmetry which follows therefrom. Thus, if an arch is symmetrical
(in respect of both shape and elasticity) about, say, a vertical axis, and it
carries a concentrated load II acting parallel to that axis (Fig. 17) thereby
causing horizontal reactions at its extremities Qx and —  Qx (since, in the
absence of other than vertical loading there cannot be a resultant horizontal
force applied to the arch), then if the load is reversed to become —II it will
cause reactions —Q x and Qx respectively. Again, equal loads of II applied
symmetrically with regard to the vertical axis will clearly cause horizontal
reactions Q2 = Qi + Qi = 2QX and —  Q2 = —Q 1 — Q1= — 2QY respectively
(viewing from back and front of the arch verifies this), while equal and
opposite loads so applied will cause reactions Qi — Qi = 0 and
~ Qi + Q\ —  0 respectively. It follows therefore that a single force of 211
will cause horizontal reactions of 2QX and —  2Ql9 precisely as if two loads
II were applied symmetrically. The principle of superposition and its
related device of symmetrical and anti-symmetrical components became
powerful aids, together or individually, for the analysis of every kind of
structure with linear characteristics.
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Fig. 17

The remainder of Bresse's work on arches (chapters 4 and 5) is
concerned with what are, in the present context, matters of detailed
calculation. For example, the final chapter investigates the most severe
effects of distributed loading of a railway arch and optimum arch sections
in relation to the ratio of rise to span for circular arches (on which Bresse
concentrates throughout his calculations). His wider studies in applied
mechanics embraced fluid mechanics (Rouse & Ince, 1957).

The elastic centre
The concept of the elastic centre of a solid curved elastic bar (the

elastic arch) is probably due, in the first place, to Culmann (1866).
Chalmers (1881) reproduces Culmann's analysis of an elastic arch, including
Fig. 200 (Fig. 18) of his celebrated book. The equations for the deflexion,
due to bending of the free end of an arch, encastre at the opposite end and
loaded such that there is a bending moment Af, at any element of length
ds and flexural rigidity El, whose location is defined by coordinates y, z
with reference to the free end, are given as follows:
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r66\
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Fig. 18. After Culmann (1866).

• " • %

[(3.15)]

If now U is the resultant of the forces acting on the arch and causing
bending moments M, and the perpendicular distance from its line of
action to an element ds is w; while that to the centre of gravity G of the
arch with respect to E As I El = S is ug, then:

0=Ulu ds/EI = Uug S [(3.16)]

Thus the resultant of the forces is equivalent to a couple Uug = Mg,
together with a force U through the elastic centre G, and the total angle
of elastic bending $ depends only on that couple.

It may further be deduced from Culmann's concept that the displacements
of the orthogonal components of the force U, with reference to the elastic
centre, may be identified independently. If the arch is completely
symmetrical so that its principal axes, with respect to Z ds/EI through G,
are parallel to the axis of y and z, then those components of elastic
displacement are:

,<fa. f(3-17)]

El'
Uy and Uz being the components of (/in they and z directions respectively;
and yg and zg the coordinates of G. Hence A'y depends only on Uy and
Az' only on t/2.

The use of the elastic centre as the point of reference for the resultant
force on an arch in the manner described, together with the principal axes
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of'elastic weight' (T,ds/EI), affords a very convenient means of analysing
symmetrical statically-indeterminate arches and similar structures. For an
encastre arch the resultant of the reactions at one abutment is equal and
opposite to the resultant of the other forces acting on the arch. Since the
deflexion, including rotation, at the abutments is zero, the deflexion of the
resultant and its reaction (referred to the elastic centre) is also zero and
the three equations which specify that condition are independent, each
containing one component of the three which together comprise the
resultant or total reaction.

The benefits conferred by the elastic centre were sought for framed
structures and arches by Mohr and Miiller-Breslau, as noted in Chapter
10; the underlying general concept being to choose the statically-
indeterminate variables in such a manner that the relevant equations of
compatibility of deflexion (strain) are simple ('normal'). Each equation
then contains only one unknown.

Elastic analysis of rigid arches
Winkler (1867) and Mohr (1870) seem to have followed Poncelet

(1852) in proposing theory of elasticity for the analysis of masonry arches
as well as metal arches. In the light of subsequent research, notably by
Heyman (1966), it seems as though they were mistaken, however (in spite
of the popularity of the theory of elasticity of masonry arches ever since).
But an approach whereby a masonry arch is regarded as a two-pin arch
and its shape determined by successive approximation until it is identical
with the bending moment due to the dead load, would appear to be valid
(Fig. 19). It would, moreover, meet Winkler's extremum principle (1879a)

w/unit span
I

Fig. 19. After Navier (1826).
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which is discussed below, since then the thrust-line would coincide with
the centre line of the arch, provided that live loads are small in comparison
with dead load.

In Britain, Bell, sometime assistant to Brunei, seemed abreast with
developments in theory of arches on the continent of Europe when he
presented his paper on stresses of rigid arches, continuous beams and
curved structures to the Institution of Civil Engineers (1872). He derived
the equations for the terminal deflexions of an elastic arch rib, due to
bending, in accordance with the principles used by Navier and Bresse. Then
he sought to simplify arch analysis for the engineer by graphical methods
based on statics alone, and by the use of successive approximation to
determine thrust-lines, such that the bending moments for a uniform
encastre or rigid arch approximately satisfied the abutment conditions:

i
for slope %MSs = 0

i
for horizontal deflexion J.MySs = 0

0
I

for vertical deflexion £ Mx Ss = 0
o

[(3.18)]

The coordinates x, y, of an element of arch Ss long, are measured from
an origin at an abutment and the length / is the total length round the curve
of the arch. He was, in fact, advocating theory of elasticity for masonry
as well as iron arches. Thus, Professor E. Collignon said in the' Discussion'
that in applying the method to the masonry arch of the Pont-y-tu-Prydd:
'The great lightness of this arch, by rendering it sensible to the influence
of accidental loading, made it a natural introduction to the study of
metallic arches in which the action of external loads preponderated.' Clerk
Maxwell and Fleeming Jenkin also contributed to the 'Discussion' which
ranged widely within the scope of the title of the paper.

Mohr and Winkler: influence lines
In 1870 Mohr proposed an elegant graphical device of arch

analysis. With reference to the two-pin arch shown in Fig. 20, it is noted
that in the absence of horizontal restraint at C the bending of an element
of length Ss at (JC, y) causes a horizontal displacement at the abutment of
My Ss/EI. If the bending is due to unit load at any distance x = q from
the origin at A, then the total horizontal displacement of the abutment
would be:

Cl Myds [Qx(l—q)yds [ l q{l—x)yds
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(a)

(b)

Fig. 20. After Mohr (1870).

which is of precisely the same form as that of the bending moment at a
distance q along a simply supported beam of span AC with distributed
loading whose intensity at any element x from A is yds/El. Since the
magnitude of the horizontal thrust at the abutment to prevent horizontal
displacement, due to the unit load, is directly proportional to the value
of h, Mohr concluded that the bending moment diagram of a simply
supported beam, due to distributed loading, whose intensity varies as
y Ss/EI, represents the influence line for abutment thrust of the arch. This
is because the expression for h is the same for any value of q, or position
of unit load on the arch.

Winkler introduced the concept of influence lines, initially for arches,
as early as 1868 but the terminology 'influence line' is believed to be due
to Weyrauch who made extensive studies of the theory of elastic arches
in relation to bridge design (1878, 1896). Then, in 1879, Winkler (1879a)
proposed the principle which bears his name and specifies that the correct
line of thrust for an elastic arch is that which being statically admissible,
is closest to the centre line of the arch. Being, at the time, evidently
unaware of valid energy principles, including Castigliano's work (which
he discovered after 1880), the precise justification for Winkler's theory is
unclear. It is probable that its origin is belief in the concept of economy
in Nature and the theorem of minimum energy for flexure, by D. Bernoulli
and Euler, which Mtiller-Breslau (1886&) noted (Chapter 10). Frankel
(1882) gives details of Winkler's treatment, as described in Chapter 9.
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Suspension bridges
The availability of wrought iron, strong in tension, toward the end

of the eighteenth century, also led to the development of the suspension
bridge as the inversion of the arch bridge. The suspension chains usually
consisted of wrought iron bars pin-jointed together, with the deck
supported from them by vertical rods. Deck structures were originally
assumed to make no contribution to the strength of the structure and were
so flexible that the chains withstood all the live load as well as the dead
load of the structure itself. Those early suspension bridges were, in fact,
very flexible and notorious for excessive oscillation, due to live loads and
cross-winds. Moseley (1843) was aware of his phenomenon (Chapter 11):
he refers to the collapse of Broughton Bridge near Manchester, which was
due to the measured tread of soldiers; and he also mentions Navier's
remarks on the problem. Navier's treatise on suspension bridges (1823)
included the theory of the economical design of suspension chains, which
was based on the elementary statics of a loaded hanging chain. This
represented the theory of suspension bridges (as also exemplified by Lame
& Clapeyron (1826tf)) until Rankine's theory of 1858. Thus, Telford's
Menai Bridge (completed in 1826), and Brunei's design of 1829 for the
Clifton Suspension Bridge, depended upon that theory, as Brunei's
calculations clearly indicate (Charlton: Pugsley, 1976). Navier visited
Telford's bridge during construction (while in Britain to study metal bridge
construction on behalf of the French government) which was completed
in the same year that his own suspension bridge over the Seine in Paris
was abandoned (Appendix I).

The contribution of the gravity stiffness of a loaded chain or cable as
the most significant factor in suspension bridge behaviour was not the
subject of precise analysis until 1888. The effect was, however, observed
by the middle of the century, for example by Roebling in 1855 at the time
of the construction of his highly stiffened suspension bridge for carrying
a railway over the Niagara (Pugsley, 1957). Also, the concept is suggested
in an anonymous article (1860) within a detailed discussion of suspension
bridge behaviour, including comparison with other kinds of bridge.
Results of experiments on models are given, and in examining the results
the author states: 'The other element of difference lies in the resistance of
the chain itself to a change of position, a resistance very noticeable in a
heavily weighted model. Verification is provided by quoting a one-third
reduction in deflexion due to a concentrated load at a one-quarter-span
point of a model if a distributed dead load, of rather more than three times
the concentrated load, is present. Roebling's Niagara Bridge seemed to
have provoked the article (and various others in favour of such bridges),



50 Theory of the arch and suspension bridge

for that bridge was the subject of introductory remarks which seemed to
be directed at emphasising how untypical of suspension bridges it was, due
to its very stiff girders and restraining chains. (It also stimulated letters
from Rankine on suspension bridge theory.) Another anonymous article
on suspension bridges appeared nearly two years later (1862), in which
there is an attempt to quantify the gravity effect analytically. It seems likely
that it was by the same author because the original article contained
analysis of deflexion of a chain of constant length.

The first attempt at precise analysis of the composite behaviour of chain
or cable system and deck with stiffening girders seems, then, to be due to
Rankine (1858). His theory is well known and is part of elementary courses
in theory of structures. It is based on the assumptions that the chain or
cable is parabolic due to uniformly distributed dead loading of the deck
structure, that the deck girders are unstressed in the absence of live load,
and that live load is distributed in its entirety (but uniformly, regardless
of its precise nature) by the deck girders to the cable through vertical
suspension bars. Thus, if the deck girders are continuous, the live load
intensity on the cable is simply the magnitude of that load, whenever
situated on the deck, divided by the span. Thus the deck sustains the actual
live load, together with reactions at each end of the span and the uniformly
distributed reaction from the cable system, as shown in Fig. 21. If the deck

I X

Fig. 21

girders have a central hinge, however, the magnitude of the live load, as
uniformly distributed, may be determined by statics. Claxton Fidler
followed Rankine in contributing to the theory of suspension bridges
(1878) with reference to means of stiffening.

The elastic theory of suspension bridges
The effect of the relative elasticities of the cable and deck systems

upon the intensity of uniform distribution of live load to the cables was
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explored as early as 1877 by Professor W. Ritter (1877) of the Riga
Polytechnical Institute, and A. Ritter (1862, 1879) indicates the principles
involved. This elastic theory of suspension bridges implies small displace-
ments and, therefore, high girder stiffness. Such high stiffness was regarded
as essential to the avoidance of dangerous oscillation and became a feature
of major suspension bridges generally, as the century came to an end. For
these bridges the elastic theory provides a satisfactory basis of design.
Frankel acknowledges Muller-Breslau's contribution to the elastic theory
(1881,18866); and his own treatment (1882), using the least work principle,
is especially noteworthy. It is described in detail in Chapter 9.

Levy's version (1886) of the elastic theory is perhaps the most exhaustive.
Apparently ignorant of the efforts of W. Ritter, Miiller-Breslau and
Frankel, he begins with a critical examination of the then well-known
Rankine theory. Then he proceeds by analysing the relationship of small,
vertical deflexions of a suspension cable or chain to its overall length,
having regard to small changes due to elastic strain and variation in
temperature. After neglecting what he believes to be small quantities of
the second and higher orders, he obtains the equation of compatibility of
vertical deflexions of the chains with those of the deck or stiffening girders
in bending, having regard to the configuration shown in Fig. 22 (his
Fig. 1). That equation and the nature of the subsequent analysis is given
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Fig. 22. From Levy (1886).

below: it is a matter for regret that Levy and Frankel did not compare
final results, for the latter seems to have achieved the same objective with
relatively little effort. Thus, Levy writes:

^ ) [ (3-2O) I
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where :
E, Eo are the moduli of elasticity of the deck and cables respectively;
x, x19 x0 are abscissae, the subscripts denoting the opposite ends of the
relevant span distant / apart;
z, zl9 z0 are ordinates of the cables with subscripts denoting terminal
points;
y is vertical deflexion of cables and deck;
M is bending moment in the deck;
Q, So are horizontal components of cable tension and cable cross-sectional
area respectively;
3, T are coefficient of linear expansion and change of temperature
respectively, for the cables.
Noting that z0 = zx = 0 if the origin is chosen appropriately,

Levy writes:

K3.21)]
Jo l

and if strain changes due to changes in cable tension are negligible:

IT [(3.22)]

In order to use equation (3.22) to determine the magnitude of the
distributed reaction to live loads provided by the cables, Levy expresses
the deck bending moment:

M = Ms-qm [(3.23)]
and substitutes in equation (3.22) to find q which represents the uniform
intensity of the cable reaction. The other quantities represented are Ms,
the bending moment in the deck as a simply supported beam, due to the
live load; and the bending moment in the deck as a simply supported beam
over span /, due to a uniformly distributed upward force (reaction) of unit
intensity. Thus if / is uniform and there is no significant temperature
variation, r = 0 and equation (3.22) may be written:

[ (Ms-qm)zdx = 0 [(3.24)]

whence:

Mazdx

mz
Jo

[(3.25)]
dx

For a concentrated live load P distant a from the left and assuming the
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shape of the cables with dip/ is parabolic, such that z = 4fx(l-x)/l2, Levy
gives:

( ) K £ )
When a = 1/2 he notes that q = 25P\16/, which is substantially greater than
the value of P/l used by Rankine for all positions of live load. Then at the
other extreme when a is small, q <̂  P/l. But the two theories agree for live
load uniformly distributed over the whole span. Levy provided a theory
which is inter alia appropriate for the interaction of inelastic cables with
an elastic deck system on the basis that deflexions of the latter are small
and, therefore, the cable shape is sensibly constant (that is, small deflexion
of the cables without change in length).

A little-known but important contribution to the elastic theory of
suspension bridges was made prior to Levy by Du Bois (1882), in the
U.S.A., who makes no reference to any earlier attempts to solve the
problem. After criticising Rankine's theory he continues 'we maintain in
our present discussion that the curve of the cable does not remain parabolic
but takes the curve of equilibrium due to the loading. We thus claim to
obtain a more accurate, rational and scientific theory of the stiffening
truss.' He said that the suspension system is appropriate for very long
spans where the cable 'carries the dead weight in the most advantageous
manner and, by reason of its own very considerable weight in such cases,
resists in some degree the deforming action of partial loads'. He thus
recognised gravity stiffness but neglected it subsequently. His approach is
illustrated by Fig. 23 and is similar to that of Levy except for the terminal
conditions of the truss. Those used by Levy are shown in Fig. 22 (effectively
simply supported between the stiffening stays), while Du Bois believed that
they should be encastre for increased stiffness.

H

Fig. 23. From Du Bois (1882).
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Ultimately, the important contribution from gravity stiffness which had
been recognised in principle, implicitly to some extent since 1855, was taken
into account by Melan (1888) and Godard (1894) and the deflexion theory
of suspension bridges came into being. It appears that the true distribution
of live load to the cable system is governed by the non-linear equation:

where q is the (varying) intensity of that part of the total distributed load
on the cable, due to the live load at a point x from the pier; k2 = (H+h)/EI,
where H is the horizontal component of the tension in the cables, due to
the dead load; and h is the increment caused by the live load; while El
is the flexural rigidity of the truss. The solution gives results which agree
with those of Levy when / is infinitely large or when deflexions are
negligible and the number l^iH/EI) is zero. Also, it seems that the elastic
theory gives acceptable approximate solutions as long as that number does
not exceed 5, where / is the span. Owing to the complexity of the theory,
its development for practical utility belongs to the twentieth century,
although Godard explored a variety of solutions and provided data and
tables for design purposes.

Melan (1888) was also concerned with the theory of arches to allow for
deflexion when the span is great and the arch is such that deformation,
due to axial force and bending, cannot be neglected for purposes of design.
Indeed, he considered the deflexion theories of the suspension bridge and
the elastic arch as complementary. Useful descriptions of these theories are
given by Am Ende (1898) and Balet (1908), the latter acknowledging the
assistance of Melan. (Am Ende also describes the elastic theory using the
least work method.)

Notes
Concerning the practical stability of arches, Moseley writes in his book (1843,
p. 465):
So great is the limiting angle of resistance in respect to all the kinds of stone
used in the construction of arches, that it would perhaps be difficult to construct
an arch, the resultant pressure line upon any of the joints of which above the
springing should lie without this angle, or which should yield by the slipping of
any of its voussoirs.
The paper by Martin (1879) is remarkable as an example of an early British
contribution (after Bell) to establish the elastic theory as a means of obtaining
thrust-lines of arches. It is the more so because the author was a student of the
Institution of Civil Engineers at the time and later, as a member of the staff of
the journal Engineering, he helped to popularise Castigliano's least work
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principle (1895) and became an acknowledged authority on the theory of the
steam turbine.
A. E. Young (1898) acknowledges that the theory of the elastic arch has been
'completely investigated', referring notably to Castigliano's celebrated book
(1879) and the paper by Martin (1879). His objective is to examine Rankine's
version of the theory (1861) with its complexity and minor inaccuracy.
It is useful to compare the equations of the elastic theory of suspension bridges
derived by Levy with those of Frankel (Chapter 9) using the strain energy
method. The similarity is evident especially if the cables are inextensible.
Fidler (1878) in a paper read in 1874, before the Royal Scottish Society of Arts,
described the difficulty of realising the economic advantages of suspension
bridges for long spans because of their liability to dangerous oscillation and
their consequent unsuitability for railways. He refers to American success,
however, and suggests means of stiffening without undue increase in self-weight.
Rankine's theory is mentioned and Jenkin's method (1873) of dealing with
statical indeterminacy is quoted in relation to the analogy between suspension
bridges and arches. But earlier P. W. Barlow advocated the suspension system
for railway bridges, making adverse comparison between the economy of the
Niagara Bridge and the Britannia tubular bridge (1858, 1860). (See also
Chapter 11.)



Elementary theory of frameworks: graphical
statics

Bar frameworks for bridges and roofs, with timber as the material of
construction, are of ancient origin. Indeed, the illustrations of such
structures in early nineteenth-century works on theory of structures, for
example Navier's Legons (1826), include them within the scope of carpentry,
and pictorial illustrations clearly indicate timberwork. The widespread
adoption of iron framework for roof trusses, arches and bridge girders,
coincided with the construction of railways (a direct consequence of the
new iron age) and an urgent need for numerous bridges and large
buildings. The first major iron lattice girder bridges as an alternative to
solid and plate girders (by virtue of the economy afforded by reduction
in self-weight) appeared, it is believed, soon after 1840. Dempsey (1864)
gives an interesting account of the history of cast and wrought iron
construction, noting that the first iron vessels (boats) were made in 1820-1
by Manby of Tipton. He believed that the rolled' I ' section was introduced
by Kennedy and Vernon of Liverpool in 1844, angle section being of earlier
origin, and that Fairbairn made plate girders as long ago as 1832.

Dempsey credits Smart with the invention of the diagonal lattice girder,
referred to as the 'patent iron bridge', in 1824 but seems to believe that
it was first used for a major railway bridge after 1840, on the Dublin and
Drogheda Railway. That bridge was described by Hemans (1844). The
lattice girder did not at first receive the approval of some leading engineers,
including Brunei and Robert Stephenson. It was advocated, notably by
Doyne (1851), in a paper which drew adverse criticism from the learned
Wild (assistant to Stephenson for the Britannia Bridge).

The invention (in various instances) in the U.S.A., of the rational bridge
truss, by Howe, Jones, Linville, Whipple and others; along with
Warren's invention of it in Britain (c. 1846), established the open framework
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for bridge construction with economy and safety. Bouch, with the help of
Bow, used the so-called 'double Warren framework' for railway bridges
in Britain from 1854 (Bow, 1855, 1873). Also, according to Heinzerling
(c. 1873) and Straub (1952), the Belgian, Neville, used iron trusses with
equilateral triangulation as early as 1845.

Theory of frameworks: Navier, 1826
The statics of frameworks was understood in time for the

introduction of the iron truss for major structures. Thus, in Navier's Lecons
the problems of equilibrium and deflexion of bar structures are illustrated

in simple terms. Using Navier's method (and notation) for the plane two-bar
structure shown in Fig. 24, first for the equilibrium of joint C at the apex:

p cos a+p' cos OL = IT |

p sin a +p' sin OL = 0 J
where p and p' are the forces (assumed compressive) in the bars AC and
A'C respectively. Then the elastic small changes in length of the bars:

for AC\ f cos oi — h sin a 1

for AC: f cos OL — h sin  OL)

are found by resolving the orthogonal components of deflexion h and /
of Cin the directions of the axes of the bars. By using the law of elasticity,
relating the forces in the bars to their consequent changes in length, the
deflexions h a n d / m a y be found, therefore, by these equations.

The necessary conditions for statical determinacy of a pin-jointed bar
framework are implicit in Navier's analysis, but the underlying theory was
considered explicitly by Mobius (1837), Maxwell (1864a), Levy (1874) and
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others and resulted in the well-known criteria of 2 « - 3 bars and 3w-6
respectively, bars for plane and space frameworks having n joints.

In Britain, Robison (Brewster, 1822) and, more especially, Whewell,
were notable among contributors to the subject in the early years of the
nineteenth century. (At this time Poncelet was professor of mechanics at
the military academy of his native city of Metz.) Whewell, mathematician
and sometime Master of Trinity College, Cambridge, included the appli-
cation of elementary analytical statics to simple frameworks, in his book
(1834) addressed to the needs of engineering. He discussed, incidentally,
the problem of the king post truss and the means of overcoming statical
indeterminacy when, as usual, the king post force is resisted by bending
of the tie beam. Others engaged in engineering, especially Whipple (1847)
in the U.S.A., Jourawski (1850), Culmann (1851) and Schwedler (1851) in
Europe, contributed extensively to the analysis of frameworks, using
algebra and arithmetic; and it is said that Michon, Poncelet's successor
at Metz, lectured on truss analysis c. 1848. Graphical analysis was to be
accepted as an advance on those methods. Drawing and graphical display
was congenial to engineers, especially by virtue of ready observation of
errors or defects of design. Winkler's opinions in this respect are recorded
by Timoshenko (1953, p. 316) and Mohr mentions graphical methods for
framework analysis in his article on theory of wood and iron structures
(1860).

Graphical analysis: Poncelet, Rankine, Maxwell and Culmann
Such was the enthusiasm for graphical analysis during the latter

half of the century that Chalmers (1881) suggested that an ideal course of
engineering mechanics would begin with projective geometry, the 'modern
geometry', as founded by Poncelet in 1813 (1822), to be followed by
geometrical statics due to Mobius, Cousinery's 'calcul par le trait' and the
funicular polygon of Varignon (1687), as interpreted and developed by
Culmann (which Mohr applied to the elastic line with regard to deflexion
of structures). Chalmers also emphasised the underlying geometric concept
of engineering designs, remarking that structures are geometric forms
whose forces, governed by the laws of statics, act along geometric lines.
Of the engineer he said, accordingly, 'it is natural that he strove to follow
a train of geometric thought'. Indeed, Chalmers believed that geometric
methods possess a much higher value than analytical methods in expanding
the intellectual powers, a belief which was evidently shared by Favaro
(1879).

Chalmers acknowledged the priority of Rankine (1858) and Maxwell
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(1864a) with regard to the graphical analysis of framework structures, but
he believed that their methods were traceable to the teaching of Mobius.
Moreover, he said that: ' These two developments require, however, to be
supplemented by Culmann's method of obtaining the two reacting forces,
in the case of ordinary frames, more especially when the impressed forces
are not parallel. By themselves they remained comparatively unfruitful.'
It is impossible to avoid the impression that Chalmers was prejudiced.

Thus, it was not long after the adoption of the metal framework
(including trusses) for structures that powerful graphical methods of
analysis were developed on the basis of the triangle and polygon of forces.
Bow (1873) quotes an example of a force diagram for a truss (Fig. 25; his
Fig. 342(i)) 'by the late Mr C. H. Wild, C.E., which was shown to me in
the year 1854 but was of much earlier date'. Rankine (1870) claimed

\

(c)

Fig. 25. From Bow (1873).
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publication of force diagrams for frameworks, in lithographed notes for
students at Glasgow University in 1856. Maxwell contributed his celebrated
paper on 'reciprocal figures' regarding force diagrams in 1864 and
Fleeming Jenkin (1869) gave a particularly lucid review of the subject and
its origins. On the Continent, A. Ritter (1862), Cremona (1872) and Levy
(1874), were also outstanding for their work in graphical statics of
structures. But it is curious that Maxwell's important general paper on the
subject (1870Z>), which included his theorem of least weight of frameworks
(Charlton, 1963), was generally overlooked; a notable exception being
Cotterill (1884).

It is interesting that innovation in graphical analysis of structures
coincided with the beginning of intense activity in mathematical analysis
which included analysis of statically-indeterminate bar frameworks, using
the mathematical theory of elasticity. Indeed Levy's La statique graphique
(1874) contains sophisticated treatments of both aspects of structural
analysis. Also, A. Ritter's book (1862) was mainly concerned with the now
well-known analytical device of the so-called 'method of moments'
(method of sections) for statically-determinate frameworks and trusses.
Attribution of the method to Ritter was (in the strictest sense) incorrect,
for it had been published in principle by Rankine in 1858, as noted by
Sankey who translated Ritter's book and who referred to 'Rankine's
method of sections'! Thus, it would be erroneous to believe that graphical
methods entirely displaced methods derived from classical analytical
statics at any time.

Cremona's account of the development of graphical analysis (which
includes the methods of Mobius) is especially valuable for its generality
and historical review. He later referred to it as 'my little work', Lefigure
reciproche nella statica grafica, published in Milan in 1872. He states that
the origins of the theory are the polygon of forces, whose sides represent,
in magnitude and direction, a system of concurrent forces in equilibrium,
and the geometrical constructions based on the plane funicular polygon
due to Varignon (1725, Nouvelle mecanique ou statique, dont le projet fut
donne en 1687. Paris). Then Cremona credits Rankine as being the first to
apply the theory to framework structures, quoting the theorem

If lines radiating from a point be drawn parallel to the lines of resistance of the
bars of a polygonal frame, then the sides of any polygon whose angles lie in these
radiating lines will represent a system of forces, which, being applied to the joints
of the frame, will balance each other; each such force being applied to the joint
between the bars whose lines of resistance are parallel to the pair of radiating lines
that enclose the side of the polygon of forces, representing the force in question.
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Also, the lengths of the radiating lines will represent the stresses along the bars
to whose lines of resistance they are respectively parallel.

It is noted that Rankine later (1864) published an analogous theorem for
a system of polyhedral frames.

Cremona (1872) credits Maxwell with the geometrical theory of reciprocal
diagrams. Maxwell, he said, defined them generally, and obtained them
from the projections of two polyhedra which are reciprocal in respect of
a paraboloid of revolution, in the manner of Poncelet's (or Monge's) theory
of reciprocal polar figures. Cremona also notes that the practical appli-
cation of the method of reciprocal figures was the subject of a memoir by
Fleeming Jenkin, communicated in March 1869 to the Royal Society of
Edinburgh.

Then Cremona acknowledges Culmann as 'the ingenious and esteemed
creator of graphical statics' and notes that numerous questions on
theoretical statics and other problems which relate to branches of practical
science, are solved by his using a simple and uniform method which reduces
itself in substance to the construction of two figures which he calls
Krdftepolygon and Seilpolygon (polygon of forces and funicular polygon
respectively). Cremona believed that Culmann did not consider these
figures as reciprocal in Maxwell's sense but nevertheless they are substan-
tially so; the geometrical constructions given by Culmann with regard to
forces in frameworks almost invariably coincide with those derived by
Maxwell's methods.

It is profitable here to quote Levy (1874):

It is, after all, it seems, a practitioner who had this first idea: M. Taylor, a simple
mechanic of the English construction firm of J. B. Cochrane: but there are the
works of Rankine (1857) and, above all, those of Clerk Maxwell (1864) on the
theory of reciprocal figures which have given to Taylor's procedure the status of
a precise and reliable method. As we write these lines we have from the family
of M. Macquorn Rankine a letter telling of the death of the eminent professor of
Glasgow University. That enables us to offer here our tribute and regret. His loss
will be felt not only by men of science, but also by engineers and builders, for his
researches have above all been of practical utility. His Manual of applied mechanics
especially is the worthy successor of Lecons sur mecanique industrielle by Poncelet.

He who, with Rankine, Taylor and Maxwell, has contributed most to the
development of graphical statics is Culmann by his teaching at l'Ecole Polytechnique
de Zurich and by his major work, Die Graphische Statik of 1866.

Culmann did not exactly employ the theory of reciprocal figures of Maxwell:
his figures are not always reciprocal and, for that reason, it may be feared that
his methods were not used in so successful a fashion by his followers as by
himself- by way of compensation, Culmann could treat certain problems to which
reciprocal figures were not applicable.
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Levy acknowledged Cremona's tract (1872) as presenting the theory of
reciprocal figures, in a novel and elegant manner, as projections of
reciprocal polyhedrals by Mobius' method for compounding forces in
space. He suggested, moreover, that Maxwell's reciprocal figures are a
direct consequence of a theorem due to Chasles. Then he names Poinsot,
Coriolis, Binet, Dupin, Navier, Prony, Poncelet, Cauchy and Lame as
being equally distinguished in their use of geometrical methods in mechanics
and that, contrary to popular belief, graphical statics is not of German
origin. It was adopted there (toward 1870) but it seems that its initially slow
development was probably due to the sophisticated approach used in
presenting the new geometry (notably by Staudt) as a preliminary.

Levy gives particular credit to Bauschinger, professor at the Munich
Polytechnikum, for his book published in 1871; and he also acknowledges
Winkler, professor at Vienna, for his numerous papers on graphical statics.
Emphasising the ease and rapidity of graphical methods in comparison
with conventional methods, it is observed that while they might be lacking
in decimal accuracy they are not subject to the gross errors of lengthy
calculation 'where no aspect is readily visible' (Jenkin and Cremona make
similar comments, as noted below).

But Mohr (1868) was sceptical about the value of graphical statics,
having regard to the emergence of complicated structures and the prospects
for the future (Chapter 2).

Maxwell, Jenkin and reciprocal figures
It is appropriate that Maxwell's contributions receive attention in

some detail here. Thus, Jenkin's (1869) account includes the definition of
reciprocal plane figures:

Two plane figures are reciprocal when they consist of an equal number of lines,
so that corresponding lines in the two figures are parallel, and corresponding lines
which converge to a point in one figure form a closed polygon in the other. If forces
represented in magnitude by two lines of a figure be made to act between the
extremities of corresponding lines of the reciprocal figure, then the points of the
reciprocal figure will all be in equilibrium under the action of these forces.

Jenkin continues:

Few engineers would, however, suspect that the two paragraphs quoted put at their
disposal a remarkably simple and accurate method of calculating the stresses in
framework; and the author's attention was drawn to the method chiefly by the
circumstance that it was independently discovered by a practical draughtsman, Mr
Taylor, working in the office of the well-known contractor, Mr J. B. Cochrane. The
object of the present paper is to explain how the principles above enunciated are
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to be applied to the calculation of the stresses in roofs and bridges of the unusual
forms.

Cremona actually quoted these remarks (with the exception of the final
sentence) and also from the penultimate paragraph of Jenkin's paper
which continues:

When compared with algebraic methods, the simplicity and rapidity of execution
of the graphic method is very striking; and algebraic methods applied to frames
such as the Warren girders, in which there are numerous similar pieces, are found
to result in frequent clerical errors, owing to the cumbrous notation which is
necessary, and especially owing to the necessary distinction between odd and even
diagonals.

The remainder of the paragraph remarks on the particular value of the
graphic method when the loads are not symmetrical, and when they are
inclined, as well as in cases such as the framed arch and suspension bridge.
It also points out that the diagram, once drawn, acts as a sort of graphic
formula for the strain on every part of a bridge or roof, and is a formula
which can hardly be misapplied.

Jenkin notes that the construction of a reciprocal figure for any frame
requires the exercise of a little discrimination and seeks to explain the
method by examples: 'those frames only being considered which are so
braced as to be stiff, but have not more members than is sufficient for this
purpose'. His first example is that of a triangle loaded in the middle, and

c
Fig. 26. From Jenkin (1869).

supported at the two ends, as shown in Fig. 26, and he describes the
construction of the reciprocal diagram of forces shown in Fig. 27.

Rankine (1872) provides a particularly concise and lucid account of
Maxwell's reciprocal figures which (he says) were devised in 1857, with
reference to some roof trusses, as shown in Fig. 28, and mentions his own
contribution (1858).

Examples treated by Jenkin are shown in Figs. 29 and 30. That shown in
Fig. 30 is especially interesting, being essentially a statically-indeterminate
framework, about which, he says, more members are used than suffice to
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o

Fig. 27. From Jenkin (1869).

(b)

Fig. 28. From Rankine (1872).
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Fig. 29. From Jenkin (1869).
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Fig. 30. From Jenkin (1869).

render the frame stiff, the stresses are indeterminate and the frame may
be self-strained. He notes that:

If, however, the verticals be alone suited to resist the compression, the diagonals
being fit to sustain tension only, the stresses become determinate, half the diagonals
being with any given loading wholly inoperative. The reciprocal figure can be used
to discover which are the active members, as they may be called, and what are the
strains upon them.

On this basis Jenkin gives the reciprocal figure for a uniformly distributed
load on the framework, together with the component polygons for that
figure (he disregards the inactive diagonal members by omitting his
customary numerals of designation).

(a)

(b)
+

Fig. 31
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Fig. 32

He observes that the lines representing the external forces acting on a
rigid frame in equilibrium must, in the reciprocal figure, form a closed
polygon, and when these lines are parallel, as for loads only, the polygon
becomes infinitely thin, and is represented by a single straight line,
subdivided into parts proportional to the forces.

It is appropriate to take note here of similar treatment of another
inherently statically-indeterminate framework (favoured particularly by
Bouch) described clearly by Weyrauch (1888) and by Salmon (1938). The
framework and method (which is approximate and depends upon symmetry
and superposition (and is believed to be due to Jourawski, c. 1850), is
illustrated in Fig. 31. The structure became commonly known as the
'double Warren girder'. For complete symmetry in respect of the pro-
portions of bars and symmetrical loading, the approximate treatment
illustrated is acceptable and is indeed accurate if the vertical bars at each
end of the girder are rigid (or of very high axial stiffness in comparison
with the other bars). It is interesting that the variant shown in Fig. 32 is
a mechanism if the joints are pinned instead of being rigid.

Mohr, Muller-Breslau, Henneberg
Reference to A. Ritter's book (1862) and the method of moments

(sections) is made earlier in this chapter. It is, as noted, essentially an
analytical device rather than a graphical method and, in the sense that it
enables the forces in selected bars to be found, it is closely related to the
device of virtual work. Mohr (1874a), and Miiller-Breslau (1887a) used the
latter to great effect, including for dealing with instances (usually
hypothetical, for example the framework shown in Fig. 33, and similar to
that which Timoshenko (1953) cited) in which other methods are
unsuitable.

The structure shown in Fig. 33 fulfils the condition for the statical
determinacy of a pin-jointed plane framework (the number of bars is equal
to In — 3)  but, even so, analysis by resolution of forces, graphically or
analytically, is ineffective (illustrating, in fact, that the aforementioned
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Fig. 33. After Henneberg (1886).

condition for statical determinacy is necessary but insufficient by itself).
If any bar is removed, however, the system is transformed into a collection
of four-bar chain mechanisms since there are, ex hypothesis, no joints where
bars cross over one another (those crossings being assumed perfectly free).
The virtual work method consists, therefore, in removing a bar and
substituting the forces which it would supply at its terminal joints to
maintain the resulting (loaded) mechanism in equilibrium. Considering a
small compatible displacement of the system, involving the actual loads
and the forces substituted for the missing bar, provides the work equation
whereby the latter may be found. The remaining bar forces may then be
found by elementary statics. The particular contributions of Muller-Breslau
appear to be related to the treatment of the kinematics of the system,
having selected a bar for removal and determining its force by virtual work.

Henneberg's method (1886) of dealing with structures of the kind shown
in Fig. 33 is especially ingenious. It depends upon the device of varying
the arrangement of bars within the overall pattern defined by the positions
of the joints; for example by temporarily removing one bar and introducing
another elsewhere to prevent the system from becoming a mechanism
(Fig. 34(tf)). Having done that, the modified system is analysed for the
specified loading and the forces in every bar are determined. The loading
is then removed while unit forces are applied across the gap (Fig. 34(Z>))
caused by the removed bar, and the resulting forces in the bars are
calculated. A multiplying factor may then be calculated for the latter
analysis in order to make the force in the substitute bar equal and opposite
to the force induced in it by the original or specified loading of the
structure. Superposition of the two analyses gives the forces in the bars
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(c)

Fig. 34. After Henneberg (1886).

of the specified or original structure and loading as shown in Fig. 33.
According to Timoshenko (1953), Saviotti (1875, 1888) and Schur (1895)
provided other general methods of solving frameworks of this kind.

Space frameworks
Mobius (1837) is believed to have been the earliest contributor to

the rigorous analysis of space frameworks (including general conditions
of rigidity, for example that the determinant of the equations of equilibrium
is non-zero), and his work seemed to be overlooked by engineers. Also,
the mathematician Clebsch (1862) includes a space framework in his
analysis of elastic systems (described in detail in Chapter 5). But A. Foppl
seems to have been distinguished for being among the first engineers to
deal with this aspect in general terms, while expressing surprise that the
general theory of space frameworks should be unknown (to engineers) in
1891. Schwedler's cupola, a particular space framework, was, however,
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known in 1866 and is among the structures considered by Foppl in his
book (1892) which was concerned mainly with trusses and the design of
metal bridges.

The device of tension coefficients for space frameworks, so apparent and
yet elusive, did not become well known in Britain until the twentieth
century, though it is believed to have been used by Miiller-Breslau (1892)
in the first instance. The concept of tension coefficients may be deduced
from Clebsch's equations (1862) for the equilibrium of a joint of a space
framework. Thus, with external orthogonal forces or loads Xt, Yt and Zt

applied to the ith joint of the framework:

[(4.3)]

where Ttj is the force (tension) in any bar connecting the particular joint
to any other joint denoted byy; rtj is the length of that bar and xi9 Xj; yi9 y$;
zi9 Zj are the coordinates of the joints i a n d / Defining Ty/r^ as the tension
coefficient ttj, the equations may be rewritten:

Xi+XtiJ(xJ-xt)

(4.4)

and having found the values of the tension coefficients for a statically-
determinate framework by using these equations, the force in any particular
bar may be found simply by multiplying the relevant coefficient by the
length of the bar. It is, therefore, necessary to calculate only the lengths
of those bars whose forces are required and that may well result in
substantial saving of labour for a complicated space structure.

Deflexion of frameworks: Williot, Mohr
The theory of the calculation of the deflexion of joints of

frameworks was clearly embodied in Navier's elegant method of analysis
(1826), as described briefly above. But it was not until the development
of major metal structures (which called for a solution to the problem of
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statical indeterminacy in frameworks) that the subject was attacked by
Maxwell, Mohr and others (after 1864). The lead which had been provided
by Navier had been disregarded (except perhaps by Levy) and the elastic
energy theory, as well as the principle of virtual work (virtual velocities),
had been used instead to develop special methods. They had the advantage
of enabling the deflexions of selected joints to be found individually and
are described in Chapters 5 and 8, the latter being devoted to energy con-
cepts and methods in theory of structures. Mohr's method of finding the
deflexion of joints of chords of bridge trusses, by analogy with bending
moments in a simply supported beam, is also noteworthy and is described
in Chapter 10. But the method which, perhaps, achieved the greatest
popularity for estimating the deflexions of frameworks, is the well-known
graphical method due to the French engineer Williot (18776), which
featured in standard texts on theory of structures (for example Salmon,
1938). By its very nature it is complementary to graphical analysis of
forces in frameworks. Indeed, it is the graphical interpretation of the
equations of Navier relating deflexions of joints with the small elastic
changes in the length of the bars of a framework, on the basis of constant
geometry. The method is explained in Williot's words by Krohn (1884),
using Figs. 35 and 36, in an article devoted to an elegant application of

c

Fig. 35. From Krohn (1884).

the law of reciprocal displacements for analysing a two-pin framed arch.
Assuming that displacements are referred to the line AB for the framework
shown in Fig. 35, with A as the fixed point, the vector diagram of
displacements of joints compatible with small changes in length
Atf, Ab, Ac, . . . , of the bars is constructed as shown in Fig. 36. The solid
lines represent those changes in length and the broken lines represent the
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Fig. 36. From Krohn (1884).

effect of consequential small rotations of bars. (The diagram is incomplete:
joints E and F are not represented.)

Mohr (1887) supplemented Williot's method by providing a graphical
device for referring displacements to a fixed datum rather than one
determined at the conclusion of the graphical analysis. Thus, with regard
to vertical deflexions of frameworks supported simply at two opposite
ends, the Williot diagram used a point datum at one end of the structure
and it is found that vertical deflexion of the opposite end is implied by the
diagram. In fact, the vertical deflexion of the intermediate points of
the structure are determined by a line between the fixed support point and
the position of the other support implied by the diagram. Mohr provided
a graphical means of referring all such deflexions to a horizontal datum
and when this is applied the complete deflexion diagram is known as the
Williot-Mohr diagram.

An important aspect of the design of statically-determinate frameworks
concerns the matter of arrangement of bars (that is, the general form of
a framework) for a specified function, so that the least amount of material
is necessary. This is particularly relevant for major bridge structures, both
in the interests of elementary economy and the very significant factor of
self-weight which is indeed dominant in many bridge projects. Levy
included a very useful study of this subject in his celebrated book (1874)
and showed (Chapter 6) that for a specified loading and parallel chords,
the truss consisting of equilateral triangles (Warren girder) is potentially
the best.
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Notes
Jourawski used analytical statics for the design of railway bridge trusses as long
ago as 1844, according to Timoshenko (1953), with particular reference to the
Howe truss. It is believed that he originated the use of superposition of
constituent statically-determinate systems, by symmetry, for the analysis of such
trusses with supernumary bars, a technique which became established and was
used to advantage, notably by Weyrauch (1887).
Weyrauch made a thorough study and appraisal of statically-determinate
systems for bridges (1887, 1888) at a time when others were preoccupied with
the theory of statically-indeterminate structures.
The use of kinematics to facilitate framework analysis is explained in detail by
Land (1888) in an article on the subject.
A. Jay Du Bois (1875-7) seems to share with Chalmers (1881) the distinction
of providing the English speaking world with a comprehensive account of the
German development of the major discipline of graphical statics, embracing,
inter alia, the 'elastic line' and continuous beam theory. Its limited development
in Britain and France for statics, in the strictest sense only, is noted. There are
comprehensive bibliographies, with annotations, and Weyrauch's (1874a)
history is reproduced, noting the controversy over the value of von Staud's
'modern geometry'.



Theory of statically-indeterminate
frameworks: the reciprocal theorem

The precise analysis of statically-indeterminate systems of bars, including
trusses and pin-jointed frameworks generally, seems to be due to the
famous French engineer, Navier. It was included in his lectures at l'Ecole
des Ponts et Chaussees, which appeared in the form of his celebrated
Legons in 1826. According to Saint-Venant (Navier, 1864, p. 108) the
method was part of the course as early as 1819. It was elaborated (1862)
by the mathematician Clebsch in Germany; while, in Britain, Maxwell
(1864Z?) who, it seems, was unaware of Navier's elegant and general
method, published an original method of solving the problem. Levy, who
was apparently aware of Navier's work, published a novel method in 1874
(Chapter 6). But it was not really until the German engineer, Mohr,
published his analysis in the same year that the subject began to be
appreciated by engineers (on the Continent at first and much later in
Britain).

This chapter is concerned with those original contributions, in principle
only: various sophistications and devices to increase their utility in
engineering are considered in Chapters 8 and 10.

Navier, 1826
Navier's contribution to the analysis of statically-indeterminate

pin-jointed systems is to be found essentially in the two articles of his
Legons (1826, art. 632, p. 296; 1833, art. 533, p. 345). There he states:
'When a load is supported by more than two inclined bars in the same
vertical plane or by more than three inclined bars not in the same plane,
the conditions of equilibrium leave undetermined, between certain limits,
the forces imposed in the direction of each of the bars.' He continues with
a discussion of the determination of the limits between which the member
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A" A' A

Fig. 37. From Navier (1826).

forces would lie, on the basis that the bars are rigid. Navier suggests that
this be done by considering two bars to be effective at one time in the plane
system and three at one time in the three-dimensional system. He then goes
on to say that, in fact, bars are capable of deformation in a way dictated
by the elasticity of their material and that, if account is taken of such
deformation, the distribution of load between the bars is no longer
indeterminate. Then, with reference to Fig. 37 (his Fig. 112), he says:

To give an example, suppose the weight II is supported by three inclined bars
AC, A'C, A"C in the same vertical plane, and that we call a, ad OL" the angles formed
by the directions of the three bars with the vertical cord CTT; p,p\ p" the forces
exerted, due to the action of the weight II, in the directions of the bars; F, F\ F"
the elastic forces of the three bars; a the height of the point C above the horizontal
line AA"\ h,f the amounts by which the point C is displaced, horizontally and
vertically (down), by the effect of the simultaneous compression of the three bars.

(Denoting the elastic force of the bar AC by F, means that it would need
a force of Fto elongate or shorten this bar by an amount equal to its actual
length, and similarly for the other bars.) Navier then writes the equations
of equilibrium:

p cos OL+P' cos a' +p" cos a" = II \
[(5-1)]

p sin a +p' sin a' +p" sin a" = 0 /

and the changes in length of AC, A'C and A"C as / c o s OL — h  sin a;
/ c o s a ' - A sin a'; / c o s a"-A sin a"; assuming them to be very small.
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Noting that the lengths of the bars are:

a/ cos a \
a/ cos a! \ [(5.2)]
a/ cos OL" )

respectively, he writes the fractions of their lengths represented by their
compression as:

(/cos2 OL — h  sin OL cos a)/a

(/cos2 OL — h  sin OL COS a')/a } [(5.3)]

(/cos2 OL — h  sin a" cos ot")/a

Finally, he writes the expressions:

p = F(f cos2 OL — h  sin a cos a)/a

p' = F'(f cos2 OL -h sin ar cos ar)/« ) [(5.4)]

p" = F'\f cos2 OL"' — h  sin a" cos a"

and says: 'which, together with the two equations above, will give the
values of the displacements h and/ , and the forces /?, p' and p" \

It is noteworthy that, assuming the forces p, p' and p" are compressive,
the first of Navier's equilibrium equations is correct but there is an error
of sign in the second. Thus the term relating to/? should be negative. This
does not, however, detract from the elegance and clarity of Navier's
exposition as a whole.

Clebsch, 1862
Clebsch, adopting Navier's approach, treats frames (systems of

bars) with linear elasticity, in the final chapter of his book (1862) on the
theory of elasticity of solid bodies; in fact, for this reason, it seems to end
on a diminutive note after the welter of complicated mathematics of the
earlier chapters - and without a single diagram! Thus article 90 of
Clebsch's book is concerned with 'Systems of bars without bending'.

In this article he derives the following general equations for the
equilibrium of the ith joint of any freely jointed space framework:

Xt + 1 Etj o-ijPijixj - x^/rlj = 0

= 0

[(5.5)]
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where Xi9 Yi9 Zx are the loads applied to the joint; Etj is the modulus of
elasticity of the bar connecting any joint j to the particular joint i; rtj is
the unstrained length of the bar; o-tj is the cross-sectional area of the bar;
x, y, z, with appropriate subscripts, are the cartesian coordinates of joints
of the framework; and ptj is the small change in length of the bar (elastic
deformation), which may be expressed in terms of the elastic displacements
ui9 vt, wt; Up Vj, Wj of the joints / and j respectively, as:

Pa = i(xi ~ XJ) (»i ~

Clebsch notes that if there are n joints in the framework, 3« equations
are obtained, which are sufficient for the determination of the 3« unknowns
M, v and w (from which the forces in the bars can be found). Clebsch goes
on to treat the simple example of a force acting upon the common joint
of a number of bars, the other ends of which are fixed. He takes the origin
of the cartesian coordinates at the common joint and for theyth member
writes for its small change in length:

p. = - (UXj + vyi + wzj)/^ [(5.7)]
He proceeds to express the three equations of equilibrium of the system
as follows:

[(5.8)]

and defines the coefficients as:

[(5.9)]

The complete solution of the problem is given by the equations:

v = (AyxX+AyyY+AygZ)/A [(5.10)]

w = (AtxX+A,yY+AtgZ)/A
It is interesting to note the generality of Clebsch's approach for linear
systems, including his systematisation of the analysis by introducing
(stiffness) coefficients of elasticity of a structure and their determinants A
(he noted the reciprocal property some two years before the publication
of Maxwell's statement of the reciprocal theorem). In fact, he (and Navier)
adopted that very approach, the 'equilibrium approach' (the inverse of
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that used later by Maxwell and Mohr) which has been found so convenient
for the complete programming of structural analysis.

Maxwell and Jenkin, 1864-1870
In essence Navier proposed (as did Clebsch) a general method for

the resolution of statically-indeterminate structures, based upon the
necessary conditions of equilibrium of forces and compatibility of defor-
mations, and the law of elasticity. However, it seems that he did not pursue
its general possibilities; and though it was to be rediscovered and widely
used in the twentieth century (by virtue of the nature of much modern
construction technology), it seems to have made little or no impression
during the nineteenth century, for it was apparently unknown to Jenkin
and Maxwell in Britain, and to Mohr in Germany. Among its features is
one whereby the number of equations to be solved finally depends upon
the number of independent components of displacements of joints (' degrees
of freedom') that are necessary to specify the deflexion of a structure
caused by specified loads. Whereas in those modern structures with rigid
connections there are usually many more statically-supernumerary (redun-
dant) elements (including connections as well as bars) than degrees of
freedom of deflexion, the converse is the rule for triangulated frame
construction which predominated in the times of Maxwell and Jenkin.
Thus, in any event, Navier's method tended to be unduly laborious for the
latter kind of construction and, among engineers, Mohr became the
acknowledged leader in the field, with his method which was similar in
principle to Maxwell's, but was devised independently some ten years later.

In 1861, in his capacity as a consulting engineer, Jenkin had occasion
to study the structural problem of bridge design. Thus, in 1869, he wrote
concerning the problem of an arch rib or braced chain connected to
abutments by pin-joints:

The direction of the thrust at the abutments is indeterminate until we have taken
into account the stiffness of the rib and yield of the abutments... No stress in nature
is, however, really indeterminate, and a method of calculation introduced by
Professor Clerk Maxwell enables us to solve this problem, and the solution has
led to remarkable conclusions.

The author in 1861 perceived that the true form of a stiff rib or chain would be
that in which two members should be braced together as in the girder; but whereas
in the girder one member was in compression and the other in tension, in the braced
arch both members might be compressed, and in the suspension bridge both
extended. The only effect of varying the distribution of load on such structures
would be, that the thrust would at one time be such as to throw the chief strain
on the upper, and at another time on the lower member. In this way a stiff frame
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could be produced which was essentially an arch or suspension bridge, differing
from the girder, which essentially contains one member which shall be extended
and one which shall be compressed.

He found, however, that he was unable to calculate, except on unproved
assumptions, the true distribution of strains on the framework, being unable to
determine the resultant thrust; but having drawn Professor Maxwell's attention
to the problem, he [Maxwell] discovered and published, in the Philosophical
Magazine in May 1864 a method by which the resultant and all stresses in framed
structures could be positively determined.

Maxwell's paper (18646) is remarkable for the physical insight displayed,
its brevity (without diagrams), breadth and originality. It begins:
The theory of the equilibrium and deflections of frameworks subjected to the action
of forces is sometimes considered as more complicated than it really is, especially
in cases in which the framework is not simply stiff, but is strengthened (or weakened
as it may be) by additional connecting pieces.
Maxwell appears to assume it will be understood that he is addressing
himself to the problem of frameworks in which the bars ('pieces', in
Maxwell's terminology) are pin-jointed together to form connected trian-
gular shapes that are capable of sustaining simple axial force only. Having
said ' I have therefore stated a general method of solving all such questions
in the least complicated manner', he mentions that his method is derived
from the well-known principle of conservation of energy referred to by
Lame (1852) as 'Clapeyron's Theorem' (Chapter 7). Then Maxwell
discusses, in very brief and general terms, the necessity of 'equations of
forces', 'equations of extensions' and 'equations of elasticity' for the
solution of the general problem in three dimensions, and for the geometrical
definition of a frame. Subsequent revelation of the details of his approach
to the problem demonstrates an ingenious physical concept of matching
the deformations of the simply-stiff (statically-determinate) framework to
those of its supernumerary (redundant) bars which result from the
application of external forces. That process, in which equilibrium of forces
is satisfied at each stage, finally provides equations of deformation. These
are as numerous as those bars which are additional to the requirements
of statics.

In order to determine deformations of the simply-stiff framework,
Maxwell (18646) applies the law of conservation of energy (Clapeyron's
theorem) to the work done against elasticity, and assumes linearly elastic
behaviour. At first he states the following theorem which apparently refers
to a hypothetical framework:

If p be the tension of the piece A due to a tension-unity between the points B
and C, then an extension-unity taking place in A will bring B and C nearer by a
distance p.
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For let X be the tension and JC the extension of A, Y the tension and y the
extension of the line BC; then supposing all other pieces inextensible, no work will
be done except in stretching A, or

\Xx + \Yy = 0 [(5.11)]
But X = pY, therefore y = -px, which was to be proved.

An interesting reciprocal property of linearity thus emerges. Maxwell's
reasoning, however, clearly refers to a simply-stiflF linearly elastic framework
(Fig. 38(tf)), otherwise it would break down with the assumption that all
pieces are inextensible except A.

Fig. 38

Then he proceeds to consider the problem of the effect of a tension
applied between the points B and C of a simply-stiflF framework (such as
that shown in Figure 38(a)) in respect of the extension of the line between
two other points D and E if all bars except A are inextensible. Having found
the tension in each bar due to unit tension between B and C and
designating that in A by /?, the process is repeated for unit tension between
D and E, designating that in A by q. Then if the tension between B and
C is F, the tension in A is Ep, and if the flexibility of that bar is e, its
extension is eFp and by the previous theorem the corresponding extension
of the line DE\s —Fepq. Maxwell notes that if all bars of the framework
are extensible then the result is — FI,(epq), while for the special case of the
line BC the extension of that line is -FI(e/? 2). These summations would
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nowadays be identified as the flexibility coefficients a^BC){DE) and
a(BC)(BC)- Subsequently he remarks 'that p and q always enter into the
equations in the same way, so that we may establish the following general
theorem: the extension in BC, due to unity of tension along DE, is always
equal to the tension (extension) in DE due to unity of tension in BC\ This
is, in fact, the statement of the reciprocal theorem for linear systems, which
bears Maxwell's name.

The second problem which Maxwell considers relates to the extension
between D and E due to a tension F between B and C when the framework
is not simply stiff but has additional bars R, S, T, ..., whose elasticities
are known (Fig. 38(Z>)). He proceeds to let p and q be the tensions in the
(typical) bar A of the simply-stiff frame, which are due to unit tensions
in BC and DE (as before in the absence of the additional bars R, S,T, ...,)
and to let r, s, t, . . . , be the tensions in A due to the respective unit tensions
in R, S, T, . . . , and also to let R, S, T, be the respective tensions ofR, S, T,
and their extensibilities (flexibilities) be p, or, r. Then he states that:

the tension of A is Fp + Rr + Ss + 77+ ... ^
the extension of A is e(Fp + Rr + Ss+Tt+ ...) \
the extension of R is -FI,epr-RIter2-SZers-TItert+ ... = Rp J

[(5.12)]

(by the first theorem stated above, whereby extension-unity of any piece
A will shorten the line R by r in the absence of bars R, S, T, . . . , and where
the summations include all bars such as A but exclude bars R, S,T, ...9

both of which features Maxwell did not explain); similarly the extension

of Sis -FZeps-RI,ers-SI,es2-Ti:est+... = Sa\
of Tis -Flept-RXert-SXest-TXet2+... = TT \ [(5.13)]

of DE is -F!epq-RIteqr-S2eqs-TI,eqt+ ... = x J
noting that there are sufficient equations, first to determine the unknown
quantities R,S,T,...9 and then to find the required extension between D
and E.

Here the flexibility coefficients of linear elasticity may be identified and
their reciprocal property noted, that is, Her2 = arr; Hers = ars = asr; . . . ,
though Maxwell did not develop his definitions and notation to that extent.

Finally, Maxwell proposes:

In structures acted on by weights in which we wish to determine the deflexion of
any point, we may regard the points of support as the extremities of pieces
connecting the structure with the centre of the earth; and if the supports are capable
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of resisting a horizontal thrust, we must suppose them connected by a piece of
equivalent elasticity. The deflexion is then the shortening of a piece extending from
the given point to the centre of the earth.

Though the kind of approach adopted by Maxwell had, it seems, been
used by others for particular problems, such as beams on several rigid
supports and curved bars restrained at each end (Navier, 1826 and Bresse,
1854), the more difficult and general problem posed by the statically-
indeterminate framework had not hitherto been treated in that particular
way.

Due perhaps to its brevity, absence of pictorial illustration and a number
of clerical errors, Maxwell's paper did not, it seems, attract much attention
at first. The publication in 1873, however, of Jenkin's contribution of 1869
to the subject, related as it was to specific practical problems, probably
stimulated the interest of some engineers, for at that time Jenkin was the
first incumbent of the Regius Chair of Engineering at the University of
Edinburgh, having been appointed in 1868. (Maxwell occupied the Chair
of Natural Philosophy at King's College, London in 1864 when his paper
appeared.)

Jenkin, 1869
The importance of Jenkin's paper resides mainly in his introduction

to the subject of structural analysis of a way of using the concept of
conservation of energy to calculate deflexions, whether due to elasticity or
otherwise, namely, the ancient principle of virtual work (' virtual velocities',
as it was then called, as noted in Chapter 7). Indeed, Jenkin said with
reference to Maxwell's method:' The following is an abstract of the method
and of the reasoning by which it is established, put into a form in which
it will be more readily understood and applied by practical men.' The
particular application which Jenkin considered was a symmetrical arch
constructed as a triangulated frame which is connected by pin-joints to
rigid, in-line abutments, whereby the horizontal component of the thrust
of an abutment, due to loading of the structure, was statically-indeterminate.
He noted that the single equation of compatibility of deformation, which
enabled that thrust to be found, specified zero horizontal deflexion of the
frame in the line of the abutments. In the paper Jenkin uses the principal
of virtual velocities and so first derives an expression for that horizontal
deflexion which is due to a small change in length, or strain, in a single
bar. Thus, denoting the force in that bar, due to unit horizontal force acting
on the frame at an abutment O9 by q (Fig. 39(a)); a small change in length
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(b)

Fig. 39. After Jenkin (1873).

of the bar by x; and the corresponding horizontal deflexion of the frame
in the line of the abutments by y, he writes:

\y = qx [(5.14)]
He then specifies that unit vertical force acting upward at an abutment,
as the result of a certain load (Fig. 39(6)) on the frame, corresponds with
a contribution p to the force in the chosen single bar so that, for horizontal
and vertical forces H and V acting on the frame in equilibrium at an
abutment, the force in the bar is pV+qH. Thus if e is the extension or
compression of the bar due to unit force in it, then the value of x due to
V and H is

x = e(pV+qH) [(5.15)]

and, by the principle of virtual velocities, the corresponding value of y is

y = epqV+eq2H [(5.16)]

If now all bars of the frame are capable of deformation, the total horizontal
deflexion in the line of the abutments associated with V and H is

ly= VXepq + HXeq2 [(5.17)]
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and if the abutments are rigid £y —  0, whence:

H = VI epq/1 eq2 numerically [(5.18)]

As V is determined by statics, the problem of finding H is solved, though
a specific sign convention is necessary for a numerical calculation.

Jenkin proceeds to consider both the effect of elastic yield of abutments
and of thermal expansion, and finally gives details of numerical calculations
for a specific frame, set out systematically in tabular form, as part of the
study of weight saving with which the paper is mainly concerned.

Unfortunately, there is no evidence to show that Jenkin's efforts to
simplify Maxwell's method by introducing the principle of virtual velocities
appealed to 'practical men'. It was, however, with the aid of that device
that Mohr developed his method of framework analysis, which was
identical in principle to Maxwell's. In Britain, the enormous value of the
principle of virtual work in theory of structures has been appreciated
widely but only comparatively recently. As may be judged from Jenkin's
work, it is independent of appeal to any law of elasticity, being concerned
solely with systems of forces in equilibrium and with systems of displace-
ments compatible with the geometry of the force systems.

Mohr, 1874
In 1874 Mohr addressed himself to the problem of the linearly

elastic structure shown in Fig. 40 (Figs. 1 and 2 of his article, 1874a), which
is practically identical to that which Jenkin chose to solve, using Maxwell's

x = a

P ^ \

/

= zP

Fig. 40. From Mohr (1874a).

method simplified by introducing the principle of virtual work. Mohr dealt
with the statics of the problem by A. Ritter's methods taken (as he
acknowledged) from the book Elementare Theorie der Dach- undBrucken-
Konstructionen (1862), but first he noted that the problem could be
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I a

Fig. 41. From Mohr (1874a).

C

Fig. 42. From Mohr (1874a).

simplified by virtue of symmetry and superposition, as shown in Fig. 41.
Having dealt with the preliminaries in detail, Mohr introduced the
principle of virtual work. Thus, with reference to Fig. 42 (his Fig. 21), if
CD is the only bar capable of deformation and if the force in that bar
caused by an abutment thrust H is uH, by using the compatible elastic
displacements As between the abutments and A/ of CD:

-HAs = uHAl]
or [(5.19)]

-As = uAl )

to provide a relationship whereby the small change of length of any bar
may be related to a consequential small change in the span s. This
relationship is used in the equation which specifies that As is zero when
the abutments are rigid; and thereby, the value of z which is the horizontal
thrust due to a load P = 1, is obtained as follows:

5/2 a S/2
0 =

or
s/2

[(5.20)]
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where r = l/EF; and v and w are the forces in the bars when P = 1 (v being
for those bars between x = 0 and x = a, and w for those bars between x = a
and x = 1/2, while F is bar cross section).

In the first part of the second of Mohr's articles on the analysis of
statically-indeterminate structures (18746) he deals with bar frameworks
with more than one redundant (supernumerary) bar, with regard to the
requirements for equilibrium. For the sake of illustrating the nature of the
problem he uses the framework shown in Fig. 43. He denotes the forces

®
Fig. 43. From Mohr (18746).

in the bars of the framework without the redundant bars shown, by U1

when unit tension is applied in the line formerly occupied by redundant
bar 1; and by U2 when unit tension is applied instead in the line formerly
occupied by redundant bar 2; similarly for U3 (and any other redundant
bars in general). Then, using r to denote the extension of a bar, due to unit
tension, he uses the principle of virtual work to express the deflexions, due
to the unit tensions in the lines formerly occupied by the redundants, as:

line 1: 2 U2r\ line 2: 2 U2 Uxr\ line 3: 2 Uz Uxr
for unit tension in line 1. Then:

line \\yLUlU2r\ line 2: 2 U2r\ line 3: 2 UzU2r
for unit tension in line 2 and:

line 1: 2 Ux Uzr; line 2: 2 £/2 C/3r; line 3: 2 Uz
2r

for unit tension in line 3.
For the changes in length of lines 1, 2 and 3 respectively, due to the

external loading, Mohr writes by virtual work, 2 U1 Gr, 2 U2 Gr and
2 U3 Gr, where G is the force in a bar caused by the loading. Then the
equations for the compatibility of the strains (deflexions and changes in
length) of the statically-determinate system and the redundant bars are:

(line 1) 0 = 2 U1Gr + S1T 11^+ S2T. U1U2r + SzIt f/1(/3r+ .. \
(line 2) 0 = 2 U^r + S^ U2*V + S22 £/22r + S32 U2Uzr+ ... \ [(5.21)]
(line 3) 0 = 2 UzGr-\-Sx 2 Uz U1r + S2I.Uz £/2r+S32 Uz

2r+ ... J
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(where Sl9 S2, S3 are the forces in the redundants and the summations
I Ux

2r, Z U2
2r and X U3

2r include the respective redundant bar).
Mohr proceeds to deal with the inclusion of temperature effects and

concludes by considering certain popular forms of a symmetrical bridge
girder (truss). He includes the cross-braced girder, statically-indeterminate
because of the cross-bracing of the quadrilateral panels, and notes the
expedient used in practice whereby, for symmetrical loading, the structure
is considered as consisting of two statically-determinate forms. Both
contain the booms and vertical bars but they differ in that one has a set
of diagonal bars which is different from the other. Half the loading is
considered as applied to each structure at the same points and the two
structures are analysed by statics alone, the results being combined to give
the forces in the bars of the complete structure. He discusses the
approximation implicit in the method.

Typical of later development of the method is the analysis of a
continuous bridge truss of the Warren type shown in Fig. 44 (Mohr's

Fig. 44. From Mohr (1875).

Fig. 20) of the second part of his second article ' Beitrag zur Theorie des
Fachwerks' (18746,1875). Choosing the statically-indeterminate quantities
(forces in the elements supernumerary to the requirements of statics) as the
forces in the bars connecting the spans over each intermediate support, he
gives the first three (of n if there are n+1 spans) equations of compatibility
of strain relating to those bars as:

(18) [(5.22)]

where the first terms, obtained by virtual work represent deflexions in the
lines 1, 2 and 3 respectively, caused by the loading applied to the structure
without bars in those lines; while the other terms relate to the effects of
the forces Sl9 S2 and S3 (statically-indeterminate quantities) in bars
occupying the lines 1, 2 and 3.

Further details are apparent from Mohr's derivation (in a footnote) of
the analogy between these equations and those of Clapeyron's (theorem
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of the three moments, Chapter 2) for a uniform continuous beam, which
Mohr illustrates with reference to the second of his equations (18) above
and which he finally puts in the form:

M, s2 + M2(s2 + j8) + M3 s3 = \{q2 s2* + qz s3
3). [(5.23)]

where 2̂ and s3 are the respective spans and q2 and q3 the intensities of
distributed load, with couples Ml9 M2 and M3 over (redundant) supports
1, 2 and 3 respectively, in accordance with Clapeyron's theorem for
uniform continuous beams.

The remainder of Mohr's article, from which this example is taken, is
devoted to notable devices for facilitating the calculation of deflexion of
frameworks, especially bridge trusses, by graphical and analytical methods
(which are considered in Chapter 10).

Levy, 1874
Levy's contribution (1874), simultaneous with that of Mohr, is

quite different. Because it is part of a broad study of the nature and
economy of bar frameworks, which is unique in some important respects
and little known, it is considered in detail in Chapter 6. But the following
example (shown in Fig. 45) is sufficient to give the essence of his method

Fig. 45

of analysing statically-indeterminate frameworks: it has one redundant bar
or member which is supernumerary to the requirements of statics. If the
members of the plane, pin-jointed framework shown have an elastic
extension (or compression) per unit length of a then, assuming that all such
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elastic changes in length caused by the load F are small, so that there is
negligible change in geometry of the structure:

( 5 2 4 )

that is, if the small extensions of the bars are denoted by el9 e2, . . .

Also:

BD> = BV + CD>\ ( 5 2 6 )

or
(2/+e)2 = (/+e2)2 + (/+e3)2j ( 5 2 7 )

After adding the four relationships obtained above and simplifying,
including the elimination of second-order small quantities, the following
equation of compatibility of strains emerges:

2l(e, + e5) = l(ex + e3) + l(e2 + 0) (5.28)

and since ex = alTx\ e2 = alT2\ es = alT^\ e4 = 2alT±, eh — 2alT5:

(5.29)

which is the additional equation needed to supplement the four independent
equations afforded by statics to relate the forces in the bars and the load.

A noteworthy feature of Levy's approach is that it is unnecessary to
identify the redundant bar at the outset or, indeed, at any stage of the
analysis. It bears a strong resemblance to Navier's method in the sense of
conceptual simplicity. But whereas Navier's method deals in terms of
resolution of both forces and elastic displacements, and is readily applicable
to any kind of bar framework, Levy's method, even with its unsophisticated
use of statics and geometry, does not lend itself to the same ease of
application in all circumstances. Since Levy refers to Navier, it is likely
that he was attempting to improve on the latter's exposition and, at the
same time, arrange the analysis in terms of bar forces, tensions and loads,
rather than displacements of joints. It is noteworthy that while the methods
of Navier (and Clebsch) established a particular general approach to
structural analysis (which is independent of the type of structure), whereby
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equations of equilibrium of joints are formulated finally in terms of
deflexions of joints, the method of Maxwell and Mohr, on the other hand,
results in final equations of compatibility of strain in terms of the forces
in the redundants (supernumerary elements). The former has been described
as the 'equilibrium approach' (or the 'displacement method') for the sake
of brevity (though both descriptions are clearly inadequate): the latter has
been described (also inadequately) as the 'compatibility approach' (or the
'force method'). Each approach is represented in an energy principle, as
described in Chapter 8. But Levy's method belongs to neither of the two
systematic approaches: it possesses the feature, however, that no choice
is necessary a priori with regard to the designation of redundants, a
commendable feature in common with Navier's method.

Mohr's claim to priority
It is revealing here to recall Mohr's discussion of the origin of his

method of analysing statically-indeterminate frameworks. In his article
(1885) he claimed that the short but important article, 'On the calculation
of the equilibrium and stiffness of frames',

which Professor Maxwell published in the Philosophical Magazine as early as 1864,
has been unknown in Germany until recently.. .Since that journal is not received
in the library at Dresden, I first became aware of the article through a paper by
Swain, 'On the application of the principle of virtual velocities to the determination
of the deflection and stresses of frames' in the Journal of the Franklin Institute for
1883.

Mohr noted that Maxwell had not used the principle of virtual velocities.
Rather, Mohr said, he used Clapeyron's theorem in order to prove the
principle of reciprocity of deflexions, first for the determinate and then for
the statically-indeterminate framework; thus, by this means, Maxwell had
determined the forces in the supernumerary bars when the forces in the
framework are due to external forces only, and that he had obtained this
in a similar form to that which Mohr himself proposed (1874a, 1874ft).

Mohr seemed to be unaware of Jenkin's priority (1869) with regard to
the use of virtual work instead of Clapeyron's theorem, to obtain
Maxwell's equations. He must, therefore, have ignored Swain's reference
(1883) to Jenkin. It is, moreover, a little surprising that Mohr did not
comment on Swain's blatant misuse (or even misunderstanding) of the
description 'principle of virtual velocities' in describing his method which
involved merely the direct use of the law of conservation of energy
(manifest in Clapeyron's theorem!). Mohr's attitude to other contempor-
aries is considered in Chapter 10. But Mohr must have been gratified by
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the acknowledgement of the distinguished Regius Professor Winkler of
Berlin. Having discussed principles using Levy's approach in his celebrated
theory of bridges (18816, vol. 2), Winkler proceeded to commend Mohr's
novel method for statically-indeterminate frameworks. (Indeed, Winkler
makes liberal references, throughout his exhaustive treatise, to analytical
devices by Mohr). It is noteworthy that Maxwell (18646) is included in
Winkler's (18816) bibliography, but Winkler seemed unaware of Castigliano
(1879).

The reciprocal theorem
An important property of linearly elastic structures, which emerged

from the researches of Clebsch, Maxwell and Mohr, is the reciprocal
theorem. It was apparently also discovered, independently, by Betti and
Rayleigh (the former used the principle of virtual work in an approach
which is especially interesting with regard to theory of structures). It is
interesting that opinions seem to have varied, however, regarding the
origin of the theorem. For example, Love, the distinguished British
elastician attributed (1927) the theorem to Betti (1872) but said that it is
embodied in a more general theorem due to Lord Rayleigh (1873).
Rayleigh, however, acknowledged (1894) Betti as the originator of the
reciprocal theorem. Neither Rayleigh nor Love mentioned Maxwell's
version (18646). Also, although Rayleigh and Love quoted Clebsch's
contributions to theory of elasticity from his celebrated book (1862), that
part of his work (Chapter 8 on systems of bars) which exhibits the
reciprocal property of linearly elastic systems, apparently escaped their
attention. For some time Mohr believed that credit for the observation of
the reciprocal property of linear structures belonged to him (for he first
published an article about it in 1868), but eventually he recognised Betti
(to judge, for example, from the contents of his book (1906) of collected
topics in technical mechanics).

It is appropriate and interesting to recall the nature of Betti's derivation
of his theorem which described the reciprocal property of linearly elastic
systems. If a system consists of an assemblage of elastic bars pin-jointed
together to form a load-bearing structure, and if loads Fl9 F2, . . . , Fn are
in equilibrium with forces Tx, T2, . . . , 7^ in the bars, and small deflections
A1? A2, . . . , An occur in the lines of action of those loads, which are
compatible with small changes in length el9 e2, ...,eN of the bars (directly
proportional to the forces T), then a different condition of loading
Fx\ F2 . . . , Fn' is associated with bar forces Tx\ T2, . . . , TN' and compatible
small elastic displacements A/, A2', . . . , An' and ex\ e2, . . . , eN\ It is
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assumed that n represents the total number of points at which loads may
be applied and that loads may be applied in any direction at any point.
Now, for the purpose of applying the principle of virtual work to the two
specified systems of forces in equilibrium, Betti observed that either set of
compatible displacements associated with those force systems may be used
as virtual displacements. Thus, by the principle of virtual work:

= S7J<?/ (5.30)
or

£/?'A, = S7J'e, (5.31)

provided that A/ is the component in the line of action of Ft and At is the
component in the line of action of Ft'. Since e^ = a^ Tj and e/ = a^ T/, where
cij is the elastic coefficient of they'th bar:

(5.32)

and
iU'A, = E^7;7J' (5.33)

whence

£/?A,' = £/?'A, (5.34)

Betti's own proof was more sophisticated and referred to an elastic solid
(see Notes). The physical significance of the result is not immediately
apparent and it is hardly surprising that the simple exposition of Maxwell,
some eight years earlier, has earned him widespread credit, such that
Maxwell's reciprocal theorem is the usual manner of its description.

Influence lines for deflexion
Mohr, it seems, was aware of the reciprocal property of linearly

elastic systems almost as soon as were Clebsch and Maxwell. In an article
(1868) he considered the deflexion of a uniform simply supported beam
whose material obeyed Hooke's law and showed that its deflexion, due to
a concentrated vertical load Po at any point C, is such that the deflexion
at any other point B is the same as the deflexion at C when the load is
applied at B. He concluded, moreover, that the curve of elastic deflexion,
due to the load at C, represents the variation of deflexion at C as a
concentrated load traverses the beam. Indeed, he described the curve as
representing the influence line for the deflexion of C. Fig. 46 shows Mohr's
illustration of the principle in his collection of topics on technical



92 Theory of statically-indeterminate frameworks

Fig. 46. After Mohr (1875).

mechanics (1914, 2nd edn, chapter 10). When a train of loads Pl9 P2, P3

is in the position shown, the deflexion of C is:

y = UPiyi+ P*y*+P*yJ [(5.35)]

That is, the curve ACJ) is the influence line as specified.
Finally, it is appropriate to recall the article by Professor Krohn of the

Aachen Polytechnikum under the title of 'The law of reciprocal displace-
ments and its use in analysing statically-indeterminate frameworks' (1884).
There he demonstrates the principle, first by using displacement diagrams
to calculate deflexions of a simple bar framework, then he proceeds to use
it for analysing a two-pin framed arch where the abutment thrust
represents the single degree of statical indeterminacy. Reference is made
to the work of Williot (1877a, 1877ft) with regard to displacement
diagrams.

Notes
Under the title ' Teorema generale intorno alle deformazioni che fanno equilibro
a forze che agiscono soltanto alle superficie' (1872), E. Betti derived the
following equation of virtual work for a linearly elastic body:

- J 1
with regard to applied forces L\ M', N' causing elastic deflexions in their lines
of action of u\ v\ W and, alternatively, L", M", N" with deflexions w", v", w".
He then gave the theorem (which, he said, was a consequence of that equation)
as follows:
If a homogeneous elastic solid body is in equilibrium for two separate systems
of applied forces, the sum of the products of the components of the first system
of forces and the components of deflexion of the second system of forces is
equal to the sum of the products of the components of the second system of
forces and the components of deflexion of the first.
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Muller-Breslau (18876: vol. 2, 1892) remarks with reference to Mohr's article
(18746: part 3, 1875), that 'here for the first time the elastic line of a truss is
treated as a link polygon'.
It is noteworthy that Mohr (1875) treats continuous trussed girders as
statically-indeterminate frameworks, whereas, in his earlier work on continuous
beams (1860-8), he avoided the difficulty by using the concept of equivalent
solid sections (Chapter 2).



Levy's theory of frameworks and bridge
girders

In his book La statique graphique of 1874, Maurice Levy, Ingenieur des
Ponts et Chaussees and former pupil of Saint-Venant, provides a detailed
study of the equilibrium, stiffness and economy of bar frameworks and
girders, which merits particular attention, especially because it seems to
have been generally overlooked. It is contained in note 2 of the book, which
covers some ninety pages of analysis and results and which is largely
unrelated to the title of the book as a whole or to its other contents.

He is especially concerned with demonstrating that statical indeterminacy
within a framework affords no advantage with regard to stiffness or
economy in respect of quantity of material. But it is implicitly acknowledged,
for example by his Fig. 120 (shown in Fig. 47) that continuity over

r2i _ x At

Fig. 47. From Levy (1874).

numerous supports of an otherwise statically-determinate bar-frame girder
is advantageous in certain circumstances.

Having acknowledged Navier and others with regard to the general
analysis of statically-indeterminate frameworks and structures, Levy gives
a theory and method of analysing such frameworks, which is essentially
a sophisticated and instructive inversion of Navier's original method.

In the introduction to his book (1874, para. 10), Levy writes:

In note 2 we expound a very simple general method for determining, by means
of mathematical theory of elasticity, the tensions in the bars of an elastic system
which is indeterminate by statics alone.
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It is a resume of a memoir which we have recently presented to the Academy
of Sciences {Comptes rendus des seances deVAcademie des Sciences, 28 April 1873).
It is written in a manner which makes it independent of the rest of the book. We
believe it contains some novel results, interesting by themselves and useful in
structural mechanics. One discovery is that those systems of bars which are
amenable to graphical statics can be constructed so that bars in either tension or
compression carry the same force per unit area of section. They are then the most
economical and desirable and show that our researches in this field, undertaken
with the aim of exposing, by the mathematical theory of elasticity, the shortcomings
of graphical statics, have led to an unforeseen feature, a new and important
property of this latter science.

Then the beginning of note 2 of the book (1874, pp. 236-9) reads as
follows:

Memoir on research into forces in the bars of elastic systems and those systems which,
for the same {or a given) volume of material, provide the greatest possible stiffness.
Objective and Main Results of this Memoir.

Systems of bars or elastic lines will be considered whose joints are either pinned
or spherical: pinned if the bars are all in one plane; spherical otherwise.

Forces are supposed to be applied externally to the system at the joints. It is
proposed to find methods whereby the forces in the bars of a system may be
calculated.

Sometimes statics alone is sufficient to solve this problem: but frequently it is
insufficient and, for the purpose of finding solutions, it is necessary in addition to
appeal to the elastic properties of the material or the materials of which the bars
are made.

Later, Levy finds that, for a system of bars arranged in any way in one
plane or in space, in equilibrium under the influence of given forces, a
condition which must be satisfied in order that the forces in the bars may
be found by statics alone, is that the geometrical figure formed by the bars
must not contain supernumerary lines, that is, no more lines than are
necessary to define the overall form of the system.

Having suggested that the most important problem, from the viewpoint
of practical application, consists in determining the cross-sections of a
system of bars forming a given shape and subjected to specified forces; then,
in order that all the bars in tension bear the same stress and all the bars
in compression bear the same stress, he proposes:

1. In order that a system consisting of m bars in equilibrium under the
action of specified forces, may be constructed as a solid of uniform
resistance or strength, it is generally necessary and always sufficient that
the shape formed by the axes of the bars does not contain supernumerary
lines.

2. The number of ways that a shape formed by m lines and containing
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k supernumerary lines can be made into a solid of uniform strength is A>fold,
that is to say, one can in this case choose arbitrarily (between certain limits)
the sections of fc-bars and, provided that the sections of the m — k
remaining bars are suitably chosen, all of the bars perform the same duty.

On the basis of these propositions it is concluded that the best
constructions, those which use the least material, are, in general, the most
simple.

'This conclusion gives, we suggest, a new importance to graphical
statics, whereby simple procedures and devices replace so advantageously
calculations in ordinary statics which are laborious and often intractable.'
He believes that, in the U.S.A., major bridges which use the principle of
articulation are designed on this basis.

Levy goes on (1874, p. 239) to discuss the possibility of a framework
of uniform strength with supernumerary bars, which requires no more
material for the same specified loading than a framework for the same duty
without supernumerary bars. He discusses the consequential variety of
ways of arranging supernumerary bars and their dimensions, and proposes
the theorem:

When a system of bars contains supernumerary members and satisfies the
conditions which make it possible in one way (and, therefore, in a variety of ways)
to make it a body of uniform strength, a system necessarily exists which consists
of some of those bars, but without supernumerary members, being a system of
uniform strength and having the same volume of material as the original system.

In a footnote Levy considers circumstances where supernumerary
members are essential, thus:

We do not pretend that in practice supernumerary members can always be
eliminated; but we suggest the following approach which we believe to be both
sensible and scientific: the basis of a structure in wood or metal may be a
configuration without supernumerary members whose dimensions are determined
strictly by theoretical principles and such that the interaction of the bars is
determined by the joints between them only. If, however, among those elements
in compression there are some which are so long that they are liable to bend out
of line under their working load, it becomes necessary to restrain them by
additional elements which, though occupying supernumerary lines, may be of very
small cross-section, being merely to stabilise main members [bars] and not to
contribute to the stiffness of the structure of themselves. It is emphasised that it
is essential that such secondary elements are not made of substantial proportions:
for, if they are, the force distribution within the framework can be altered and the
dimensions, calculated originally for the principal elements, may be invalidated.

A remarkable work where, we believe, these precepts have been observed, is the
Pont d'Arcole. The arch is taken to the crown by simple triangles. Only the very
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long sides of these triangles are restrained by very slender secondary members; and
it is precisely because this work is designed in such a rational way that it combines
great strength with great elegance.

Levy urges simple configurations for structures and says that a simple
triangulated girder is preferable to one which takes the form of the cross
of St Andrew but this latter, in its turn, is preferable to a lattice girder,
and so on. He suggests that to explore the configurations to support
specified loads, using the least volume of material for uniform strength,
it is only necessary to consider those without supernumerary bars. This
he has done with particular reference to the configurations of girders in
common use in Europe and the U.S.A., with the help of his friend Brune,
former pupil of l'Ecole Polytechnique and l'Ecole des Beaux-Arts and
professor at the latter. The results are tabulated to provide comparison
of the volumes of material necessary for resisting dead load, live load and
combinations of those loads for various kinds of triangulated girders. He
observes that, generally, the newer American girders, though of attractive
appearance, are unlikely to be the most economical and that the most
simple triangular forms, little known in France, but for a long time
common in England by the name of Warren girders, are distinctly
preferable. He concludes that, in principle, simply-triangulated girders are
best and accord with the precepts of the theory; the tabulated data
obtained from his calculations show that the economies afforded are not
trivial but very substantial (as noted below).

After thus explaining the objective of note 2, Levy proceeds to state and
justify certain theorems; first 1, 2 and 3 (pp. 243-7) and subsequently,
theorems 4, 5 and 6 (pp. 255-76). They are as follows:

Theorem 1
In order that statics may be able to furnish the forces in a system

of bars, it is necessary and sufficient for the geometrical figure formed by
the axes of the bars to be such that it may be constructed by giving,
arbitrarily, the lengths of all its sides. (It is noteworthy that Levy uses the
principle of virtual velocities concerning this theorem and discusses that
principle at some length.)

Theorem 2
Whenever the geometrical figure formed by a system of bars

contains k supernumerary lines, statics furnishes k equations fewer than
necessary to define the forces in the bars and, inversely, if statics furnishes
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k equations too few to define the forces in a system of bars, one may be
sure that the geometrical figure which they form contains k supernumerary
lines.

Theorem 3
If it is possible to construct, by taking arbitrary lengths of all its

sides, a figure formed by m bars, without violating the conditions of
connection of the bars, then statics will enable the forces in all the bars
to be found, together with the reactions of their supports. But if, in respect
of the conditions whereby the joints are determined, knowledge of m—k
of m sides of the figure is sufficient, then statics provides k equations too
few for finding the tensions in the bars and the reactions of the supports.

Theorem 4
In order that a system of bars in equilibrium under the action of

given forces may be regarded as a body of uniform strength, it is necessary
in general, and always sufficient that it contains no supernumerary lines.

In an exceptional case in which a system contains supernumerary lines,
achievement of uniform strength is possible in an infinite number of ways,
that is to say there are an infinite number of ways of modifying the sections
of the bars to achieve uniform strength.

Lemma
If a figure with k supernumerary lines is so constructed that it is

possible, in one way (or, consequently, in an infinite number of ways), to
arrange the sections of the bars so that a system of uniform strength is
obtained relative to given external forces, one can always, by leaving out
some of the bars, form a system of uniform strength without supernumerary
lines, which, with respect to the same forces, deforms elastically in a
manner identical to the original system.

Theorem 5
When a system containing k supernumerary lines and made of

bars of the same material is such that it is possible, in any one way (or,
consequently, in an infinite number of ways), to be made into a system
of uniform strength with regard to specified external forces, then there is
always a system, without supernumerary bars, capable of resisting the same
forces, with the same amount of material.
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Theorem 6
When a system, containing k supernumerary lines and such that

it can, in one way (and, in consequence, in an infinite number of ways),
be a system of uniform strength, relative to specified forces acting upon
it, there always exists a system, without supernumerary lines, capable of
resisting the same forces and such that the sum of the products of volumes
of bars and their coefficients of elasticity respectively, is the same for that
system and the given system.

Theorem 5 may be justified (with reference to the Lemma preceding) on
the basis of a structure of uniform strength which, by definition, regardless
of the presence of supernumerary bars, must always be of the same stiffness
with respect to a specified function and loading if the limiting stress is
invariable (and, by definition of uniform strength, exists in every part of
the structure).

Using Levy's notation, if e is the limiting value oft/coe throughout, where
/ is the tensile or compressive force in a bar and (oe the product of
cross-sectional area and modulus of elasticity, then the strain energy T of
the structure, being equal to the work done by the specified loading, is:

T = ^aiojiei [(6.1)]

the summation including all bars, where at is the length of a bar. Then if
e is the same for the whole structure:

or

ee*

(Levy's equation 31) [(6.2)]

Therefore, since 1Laioji is the volume of material in the structure and since
IT fee2 is the same for all structures of uniform strength which fulfil the
specified conditions, the theorem is verified.

After theorem 3 there is section 2 of note 2 headed 'General method
for finding the tensions in a system of elastic bars when statics leaves the
problem unsolved'. Having briefly discussed the value of the principle of
virtual velocities with regard to the conditions of equilibrium within bar
frameworks (during which he specifically refers to compatible virtual
elongations of the bars), he proceeds to define k geometrical relationships
which must be used if these are in elastic bars, but only m — k equations
of statics for the system. Thus, he postulates that there are k relationships
of the kind:
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F{al + cLl, a2 + oc2, . ..,am + am) = 0 ]
where I [(6.3)]

ai = aitjeioji )

if tt is the force (or tension); a)t the section; and ei the coefficient of elasticity
of the /th bar.

In order to make those relationships linear it is noted that OLX =
a2 = . . . = am must be zero when

F{a1,a1,...,am) = 0 [(6.4)]

and that each of k such relationships must be valid also when oct is small,
in accordance with the ' usual assumptions in the mathematical theory of
elasticity'.

If, for the sake of brevity, F(ax, a2, . . . , am) is denoted simply by F, then:

-7-*!+ — a 2 + . . . + - —  ocm = 0 [(6.5)]
da1 da2 dam

(that is, if F= 0 then SF=0 because ax = Sal9 . . . ) and, since at =
<*iU/eiVi>

dF tx dF t2 dF tm _ r / , ,. _
T - f l 1 - - i - + ^ — a 2 — ? -  + . . . + j — a m — = 5 - = 0 [(6.6)]
dax eiu)i da2 e2(o2 dam emojm

followed by the remark ' such are the k relationships to supplement those
furnished by statics to determine the bar forces tt\ Then Levy notes as
follows:

Remark 1. All the equations which furnish the 'tensions' being linear, one notes
that, if two systems of forces are applied simultaneously, at different points of a
framework, the tensions which they cause in the various bars are the same as those
obtained respectively by adding the effect of each of the two systems of applied
forces acting alone. (Thus, he states the principle of superposition.)
Remark 2. When statics by itself suffices to determine the tensions in a system of
bars, those tensions depend only on the geometry of the figure formed by the axes
of the bars: but when statics leaves some tensions undetermined and where, for
the purpose of evaluating them, it is necessary to appeal to elastic properties, the
tensions depend not only on the geometry of the system but also on the sections
u)i and the coefficients of elasticity ei of the bars. In the first instance, if the sections
of the bars are changed then their tensions remain unchanged, while only their
elongations vary; in the second instance it is possible in an infinity of ways to alter
the tensions of the various bars by changing their sections appropriately.

Levy demonstrates the application of his method to the plane framework
shown in Fig. 48 (his Fig. 116 where points a0, al9 a2, a3 are distant a apart
respectively) for the loading shown. There are clearly four bar tensions to
be found and since there are only two independent equations of statics,
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r
Fig. 48. From Levy (1874).

two equations must be obtained by appeal to the geometry of elastic
deformation and the law of elasticity. Use of the theorem of Pythagoras
enables these latter to be obtained, for example:

- V + V - " (0 j [(67)]
V - V = *2 (ii)J

Multiplying (ii) by two and subtracting from (i) gives:

[(6.8)]

which Levy quoted without proof in the general form:

bt* + bi+1* = 2bi+1* + 2a* [(6.9)]
which is relevant when the system has any number of bars. He denotes
the (small) elongation of the /th bar by fa and writes:

(bi+flty + Qto+fii+J* = 2ibi+1+fii+1)* + 2a* [(6.10)]

whence, if second-order small quantities are neglected,

bifii + bMfiM = 2bMfiM [(6.11)]

and, since fa = b^^e^i,

V + * 8 t t L 2 f t l + 1 » - ^ - [(6.12)]
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whence, 'The product of the tension of a bar per unit section and unit
coefficient of elasticity, multiplied by its length, is the mean of the similar
products of the two adjacent bars.' He then notes that the (two) additional
equations required to solve the kind of framework shown are thus
available.

Levy's second example uses the framework shown in Fig. 49 (his Fig.
115), a framework formed by a rectangle and its two diagonals. Again he

C a D

Fig. 49. From Levy (1874).

does not solve the problem completely, concentrating only on the derivation
of the condition of compatibility of strain which is required in this instance
to supplement the five independent equations of statics relating the
tensions and external forces which are applied externally at the corners A,
B, C and D of the framework to maintain it in equilibrium.

Levy specifies forcesfl9f29f9,fA acting respectively at the four corners
of the rectangular framework and in its plane, and notes that a total of
eight equations of statics may be obtained regarding the equilibrium of
those joints, though because the four applied forces must satisfy three
equations of equilibrium of the framework as a solid body, only five
independent equations remain to determine the tensions in the bars. He
then states that since there are six unknown tensions, there is evidently a
geometric relationship between the elastic elongations. That relationship,
which he suggests is 'very easy' to obtain, is:

flfa + aJ + ̂ + A ) = cfr + yj [(6.13)]
where a, b, c are the original lengths of the pairs of similar bars (c being
the length of the diagonals), and a and ax; /? and fix\ y and yx their
respective elongations. It is, however, believed to be worthy of proof, as
follows:
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being four possible equations, by the theorem of Pythagoras, if the
elongations are small and insufficient to change the essential geometry of
the framework. Addition of these equations gives:

(6.15)

whence, neglecting small quantities of the second order,

a(a + a i ) + £(/?+A) = c(y + 7l) (6.16)

Substitution of, say,

* = a-±-; ax = a-^; ft = b^-; & = b-±-;
ed) eo) eo) ew

provides the required sixth relationship between the tensions.
Next Levy briefly discusses the analysis of the frameworks shown in Figs.

50 and 51 (his Figs. 117 and 121). Concerning the former he notes that
statics alone enables the reactions of the supports and the tensions in the
four end bars to be found, after which the method described above may

Fig. 50. From Levy (1874).

Fig. 51. From Levy (1874).
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be used to enable the tensions in the other bars to be found. The latter,
in which the panels are in the form of the cross of St Andrew, requires
three equations of compatibility of strains (one for each of the three panels)
to supplement the equations provided by statics and, again, the type of
equation derived above is sufficient.

The final section (4) of note 2 of Levy's book, consisting of some forty-six
pages is headed ' Comparison between the principal girders used in Europe
and the U.S.A., from the point of view of the volume of material required
to support dead or live loads'. The general conclusions are given in section
1, as described above, and are repeated at the beginning of section 4 by
way of introduction. Then it is interesting that, later, Levy indicates that
his study was influenced by a directive issued by the Minister of Public
Works on 15 June 1869, in which an earlier requirement, whereby specified
dead loading only was a sufficient criterion for the strength of bridges, was
supplemented by one which specified criteria with regard to live loading
as well. The reason, according to Levy, was an accident involving the
failure of a bridge.

Also, in the introductory remarks, Levy is severely critical of American
practice involving girders with supernumerary bars: he mentions those of
Jones, Murphy-Whipple, Linville and Post and asserts that, owing to the
inadequacy of statics alone for these structures, they are designed by
semi-empirical methods which are often defective!

Finally, Levy summarises his investigations (which concerned four types
of girder) and tables of results, as follows:

(a) For a uniformly distributed dead load only, the volumes of material
are:

Fink

Bollman

Isosceles triangles

Right-angled triangles

5.33

5.12

3.61

3.67

PL
~^
PL
~R
PL
~R
PL

if the ratio of depth h of girder to span L is 1/12; P is the total load over
the whole of the span L; and R is the limiting stress of the material which
is assumed to be the same in tension and compression.

(b) For a live load of Q applied so as to cause the most severe conditions
and a ratio of depth to span of 1/12, the volumes of material for that load
alone are:
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Fink

Bollman

Isosceles triangles

12.87 f

163.84f

8,4f
Right-angled triangles 8.48 =—

If, however, the proportions of each girder may be chosen for least
volume of material (though of constant height throughout, or parallel
chords for the triangulated girders) then the corresponding results are:

Fink

Bollman

Isosceles triangles

Right-angled triangles

, 3 0 -

1.57—,

2.36—,

2 . 4 1 ^ ,

with

with

with

with

8

8

8

8

_h
~ L

h

h

h

= 0.28

= 0.42

= 0.14

= 0.15

But Levy notes that the apparent advantage of the Bollman girder is purely
theoretical because a ratio of depth to length of 42/100 is inadmissible for
all except the shortest spans. Thus, the girder of isosceles triangles (the
Warren girder) is again that of least volume of material and, with the
smallest ratio of depth of girder to span:

Fink

Bollman

Isosceles triangles

Right-angled triangles

8 . 3 6 ^ ,

25.12f,

5 . 6 6 ^ ,

with

with

with

with

8 =

8 =

8 =

8 =

h

h

h
Z
h
I

= 0.13

= 0.42

= 0.13

= 0.13

Levy ends his book by confirming that (within the bounds of his study)
the Warren girder, or to use his terminology 'the triangulated system', is
superior from the viewpoint of economy to that of Fink and much more
so to that of Bollman. Also, it is based on the general theory of systems
involving the cross of St Andrew and latticework and, therefore, on those
of Jones, Linville, Murphy-Whipple etc., being derivatives of the lattice
girder or cross of St Andrew and having supernumerary bars. Thus,
elementary statics is sufficient for designing the most economical girders
and for that purpose Levy asserts that graphical statics is expeditious.



Early developments of energy principles
relating to theory of structures

This chapter is concerned primarily with principles involving energy
concepts, which were revived or formulated early in the nineteenth century
within the science of statics and the theory of elastic structures. Principles
relating to energy, which were implicitly available at the beginning of the
century, included the principle of virtual work (known then as the principle
of virtual velocities) and the supreme law of conservation of energy.

Early history
According to Dugas (1955), the use of the principle of virtual

velocities can be traced to Jordanus of Nemore in the thirteenth century
(and to Aristotle's law of powers of the fourth century B.C.). A revealing
account of the principle is provided by Mach (1883) and it is remarkable
that the principle, and its use, preceded explicit recognition of conservation
of energy. Mach discusses the meaning of the terminology at some length:
he ascribes it to John Bernoulli and notes that the word 'virtual' is used
in the sense of something which is physically possible. Bernoulli's definition
of vitesse virtuelle is said by Mach to be incorporated in Thomson & Tait's
wording:' If the point of application of a force be displaced through a small
space, the resolved part of the displacement in the direction of the force
has been called its virtual velocity.' It is believed that the truth of the
principle was first noted explicitly by Stevinus, at the close of the sixteenth
century, in connection with his research into the equilibrium of systems
of pulleys. Galileo is said to have recognised the validity of the principle
in studying the problem of the inclined plane, but it seems that the
universality of the principle was first recognised by John Bernoulli and
communicated to Varignon in his letter of 26 January 1717.

Mach described the various deductions of the principle, including that
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of Lagrange, and the consequential discovery by Maupertuis of the loi de
repos concerning equilibrium, which (according to Mach) he communicated
to the Paris Academy in 1740 and which was discussed in detail by Euler
in 1751 in the proceedings of the Berlin Academy. Maupertuis seems to
have observed that equilibrium implies maximum or minimum energy
('work') of a system and, therefore, originated implicitly the powerful
principle of minimum potential energy for stable equilibrium, a principle
which, surprisingly, seemed to escape the attention of engineers concerned
with theory of structures in the last century (and which was implied in the
Bernoulli-Euler principle of vis viva potentialis for elastic bending beams
c. 1740). According to Mach, Maupertuis then enunciated a principle
which he called the 'principle of least action' in 1747 and declared that
it accorded eminently with the wisdom of the Creator. But Mach believed
that the derivation of the principle was based on an unclear mingling of
his ideas of vis viva (energy) and the principle of virtual velocities. He
described Euler's approach to the principle of least action and its
satisfactory outcome, having discarded the metaphysical aspect of the
principle as enunciated by Maupertuis. The principle of least action is not,
however, believed to be relevant to the present study; neither is the later
principle of least constraint which Mach attributes to Gauss (1829).

The principle of vis viva is strongly related, it seems, to the important
concept of conservation of energy, which took so long to emerge in explicit
terms. According to Mach, Huygens was the first to apply the principle
in the seventeenth century and he was followed by John and Daniel
Bernoulli in the eighteenth century, while in 1847 Helmoltz published his
interpretation of it. (Maxwell (1877) refers to Helmoltz's 'celebrated
memoir on conservation of energy' while Tait (1868) regarded him as one
of the most successful of the 'early promoters of the science of energy on
legitimate principles', who based the whole subject on Newton's principles
and who embraced electrical and chemical theory. But, as early as 1842,
Mayer, it seems, had suggested the equivalence of mechanical work and
heat.) It is appropriate here to recall Clerk Maxwell's 'History of the
doctrine of energy' from his book Matter and motion (1877). There is also
an interesting communication by Tait to the Philosophical Magazine, dated
13 December 1864, under the title of 'A note on the history of energy',
which is in accordance with Maxwell's account and includes the
statement:

The opinion of James Bernoulli on a question of this nature would undoubtedly
be valuable, but he seems not to have noticed Newton's remark. But I must protest
against allowing any weight to that of John Bernoulli who, while inferior to his
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brother as a mathematician, was so utterly ignorant of the principle in question
as seriously to demonstrate the possibility of a perpetual motion, founded on the
alternate mixing of two liquids and their separation by means of a filter.

Maxwell writes:

The scientific importance of giving a name to the quantity which we call kinetic
energy seems to have been first recognised by Leibnitz, who gave to the product
of the mass by the square of the velocity the name vis viva. This is twice the kinetic
energy.

Newton, in the Scholium to the laws of motion, expresses the relation between
the rate at which work is done by the external agent, and the rate at which it is
given out, stored up, or transformed by any machine or other material system, in
the following statement, which he makes in order to show the wide extent of the
application of the third law of motion:

' If the action of the external agent is estimated by the product of its force into
its velocity, and the reaction of the resistance in the same way by the product of
the velocity of each part of the system into the resisting force arising from friction,
cohesion, weight, and acceleration, the action and reaction will be equal to each
other, whatever be the nature and motion of the system.' That this statement of
Newton's implicitly contains nearly the whole doctrine of energy was first pointed
out by Thomson & Tait [Thomson & Tait, 1879, Treatise on natural philosophy,
vol. 1, para. 268: in their preface they referred to the grand principle of the
conservation of energy]. The words Action and Reaction as they occur in the
enunciation of the third law of motion are explained to mean forces, that is to say,
they are the opposite aspects of one and the same stress.

In the passage quoted above a new and different sense is given to these words
by estimating Action and Reaction by the product of a force into the velocity of
its point of application. According to this definition the Action of the external agent
is the rate at which it does work. This is what is meant by the Power of a steam-engine
or other prime mover. It is generally expressed by the estimated number of ideal
horses which would be required to do the work at the same rate as the engine, and
this is called the Horse-Power of the engine.

When we wish to express by a single word the rate at which work is done by
an agent we shall call it the Power of the agent, defining the power as the work
done in the unit of time.

The use of the term Energy, in a precise and scientific sense, to express the
quantity of work which a material system can do, was introduced by Dr Young
{Lectures on Natural Philosophy, 1807, Lecture VIII).

In their interpretation, which includes aspects treated by Mach, notably
with regard to Euler and the Bernoullis, Todhunter & Pearson (1886, vol.
1, paras. 33-55) suggest that Jacopo Riccati, pupil of Euler, has priority
for the use of conservation of energy in connection with elastic strain (some
time before 1754, since that is the year of Riccati's death). His work was
apparently not published until 1761 {Opera Conte Jacopo Riccati, 1,
Lucca). Also, he is quoted as associating forza viva {vis viva) with energy.
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Todhunter & Pearson also suggest that the concept of conservation of
energy can be detected in Euler's Methodus inveniendi tineas curvas maximi
minimive proprietate gaudentes (1744). This is said, moreover, to exhibit
the theologico-metaphysical tendency of mathematical investigations in
the seventeenth and eighteenth centuries, which probably led to the
principles of least action and (in addition) to the principle of least
constraint which was subsequently established on a sound basis. (Euler
apparently referred to Daniel Bernoulli's letter of October 1742 as
including the proposition that the elastic curve adopted by a bar is such
that is vis potentialis (potential energy) is a minimum.) But it is to Poncelet
that the introduction of conservation of energy into applied or practical
mechanics appears to be due (1831). (Bresse refers to General Poncelet in
his Mecanique appliquee of 1859.) In Britain, Robison's reference to the
'power of strain' in his treatise on practical mechanics (Brewster, 1822)
seems trivial.

Lame and Clapeyron
Perhaps the earliest major contribution to the use of energy in

theory of structures and elasticity is due to Clapeyron (Lame & Clapeyron,
1831). Apparently Clapeyron's original memoir on the subject (c. 1826)
was never published, but eventually (1858), a memoir on the work of elastic
forces in an elastic solid deformed by the action of external forces
appeared. It was not until the publication of Lame's Legons (1852) on
theory of elasticity, however, that Clapeyron's theorem (as Lame called
it) became known (except to a few, including Saint-Venant, who refers to
its history on p. 871 of his annotated edition (1883) of Clebsch's celebrated
book). Essentially, it is merely a statement that the work done by the
external forces on an elastic solid is equal to the strain energy of the solid,
due to those forces, that is, that energy is conserved, a general concept as
yet unrecognised by Clapeyron. The highly significant feature is Clapeyron's
use of actual displacements as virtual displacements, for the purpose of
deriving the theorem by the principle of virtual work, a principle which
implies conservation of energy! He obtained, in fact, an equation which
specified that twice the work done by the external forces is equal to twice
the strain energy associated with the stresses in the elastic solid, due to those
forces. It was the use of actual elastic displacements as virtual
displacements, in this manner, which provided the basis for much of
Mohr's outstanding work on analysis of statically-indeterminate elastic
frameworks (Chapter 5) and which has become perhaps the single most
powerful device in structural analysis. Soon afterwards there was what
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Love (1892, 1927) referred to as the 'revolution' effected by the math-
ematician Green (1839) on the basis of vis viva or what is now known as
the 'principle of conservation of energy' which Crotti (1888) also acknow-
ledges (Chapter 10). Green stated the following principle:

In whatever way the elements of any material system may act upon each other,
if all the internal forces exerted be multiplied by the elements of their respective
directions, the total sum for any assigned portion of the mass will always be the
exact differential of some function. But this function being known, we can
immediately apply the general method given in the Mecanique analytique, and
which appears to be more especially applicable to problems that relate to the
motions of systems composed of an immense number of particles mutually acting
upon each other. One of the advantages of this method, of great importance, is
that we are necessarily led by the mere process of the calculation, and with little
care on our part, to all the equations and conditions which are requisite and
sufficient for the complete solution of any problem to which it may be applied.

It relates in fact to the potential energy, of a strained elastic body,
expressed in terms of strains; the differential coefficients of those strains
being the components of stress. Green believed the function to be capable
of expression in terms of powers and products of components of strain.
He used the principle to deduce the equations of elasticity of a solid body
for the general case involving twenty-one constants.

W. Thomson (Lord Kelvin) argued (1857) the validity of Green's strain
energy function on the basis of the first and second laws of thermodynamics,
whereby Thomson deduced that, in the absence of temperature change,
the components of stress of a solid body are the differential coefficients
of a function of the components of strain with respect to these components
severally.

It seems that Clapeyron (1858) applied his theorem for the purpose of
showing that, for a framework whose bars (of the same material) have
cross-sections which are proportional to maximum stress sustained, being
either in direct tension or compression, and if a load P causes that
maximum (safe) stress Tin all bars and deflexion/:

Pf=EVT* [(7.1)]

where V is the total value of material in the framework and E is the
modulus of elasticity. Lame considered this kind of application of the
theorem in some detail and Moseley (1843), ascribing the equation to
Poncelet (1831), criticises it for a numerical error.

The seventh 'Le9on' of Lame (1852) is devoted to elastic energy ('work
of elastic forces') with particular reference to Clapeyron's theorem, its
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derivation and its uses. Thus, in the paragraph 'Application to structures',
Lame considers frameworks made of bars of wood or iron and, applying
Clapeyron's theorem, writes:

(9) Ua = -F*l+^7F'*l' + I^F"*l"+... [(7.2)]

where II is the load applied to the framework and a the deflexion in its
line of action; E, E\ E", . . . , the moduli of elasticity of the various bars;
(7, <r', a", . . . , the cross-sectional areas; and /, /', /", . . . , the lengths of those
bars; F, F\ F'\ ..., the forces sustained by the bars due to the load II.
Thus, since linear elasticity is involved, Lame's equation (9) of his seventh
'Le9on' is a statement of Clapeyron's discovery that, for such elasticity,
twice the work done by the loading is twice the elastic energy which that
loading engenders in the elastic solid or structure. The possible value of
the theorem with regard to economy of material is first discussed then
demonstrated by the example of a simple triangular bar framework.

Lame considers a framework ABC made of two similar inclined wooden
bars AB and ~AC and a horizontal bar 5C connecting them. The three bars
have the same modulus of elasticity E. A vertical load II is applied at the
apex A and the deflexion of the framework there in its line of action is a.
Each of the inclined bars sustains an axial force F such that II = IFcos a
if a is half the angle between those bars at A, so that F = II/2 cos a; the
horizontal bar sustains a tension of F sin a = II sin a/2 cos a. If the bars
have the same cross-sectional area a and the length of 5C is L so that the
length of ~AB and ~AC is / = L/2 sin a then, by his equation (9):

a L
whence

\sinacos2a/
Lame then proceeds to consider the value of a for a to be a minimum

for the specified load II and concludes that the condition is that ABC is
an equilateral triangle. But he then suggests that if the various bars are
to carry the same intensity of load (stress), then their cross-sectional areas
should be proportional to their axial forces; then, if the cross-section of
the inclined bars is a, that of the horizontal bar should be sin a and
equation (9) gives:

a = ̂ (2±^\ [t7.5H
4(7 \sinacos2a/

Ascribing the limiting stress the value Q, then F/a = Yl/2ar cos a = Q



112 Early developments of energy principles

whence Yl/o- = 2H cos a, giving an expression for the limiting value of a
as being:

a = B*(¥**JL) [(7.6)]
2 Vsinacosa/

If now it is desired that a is such that a is a minimum, it is found, on
equating da/da to zero, that tan a = 1/V2; 'that is to say that the height
of the triangle ABC becomes half the diagonal of the square whose side
is of length L; also the limit of II, or of 2Q cos a is 2\/%Q; that of a becomes
2EQh\
Review and conclusions. It is easy to treat complex assemblies of bars of wood or
iron in the same way... In all those various examples the best design of the
structure may be determined by Clapeyron's theorem, being a form of the principle
of work of elastic forces. I believe that there has never been such a close approach
to the general solution of the famous problem of solids of uniform strength, which
concerned Girard, and of which nature has provided such remarkable examples.
We can make use of the principle of work of elastic forces for a variety of problems
of equilibrium of elasticity. The principle is clearly related to the well-known
principle of vis viva in rational mechanics. Moreover, the two principles are equally
useful... the new concept is a transformation rather than an extension of the
original. The procedure used by M. Clapeyron to establish his theorem supports
this interpretation in a striking manner.

Adopting Navier's method, Glapeyron reproduced the general and unique
equation of the internal equilibrium of elastic solids using the principle of
virtual velocities; then he substituted in the equation provided by that
principle, the actual elastic displacements (u, v, w) as possible virtual
displacements instead of (3u, Sv, Sw).

Later, Lame remarks in conclusion:
The contents of this Le9on actually lead to reflection and observation that
Clapeyron's theorem does not embody a new principle, it is essentially an
extension, a transformation of the principle of vis viva or, in modern parlance, of
the principle of work. This extension is, moreover, an additional source of
illumination to a principle which is already rich in potentialities. Does it, however,
introduce as a possible consequence the abandonment or neglect of basic methods
of rational mechanics? That would imply abandoning the creative instrument in
favour of that which is created, being without status of its own. It is typical of the
contributions of Navier, Coriolis and Clapeyron: geometers before engineers, who
had recourse to mathematical analysis, to the original methods of rational
mechanics, in order to solve the problems which they studied and publicised and
used in the course of their daily work.

Lame thus apparently acknowledged that Clapeyron's theorem was
essentially the law of conservation of energy as applied to the behaviour
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of elastic solids or structures. That law or principle seemed to lack explicit
recognition when Clapeyron appealed to the principle of virtual velocities
for the solution of the particular problem from which, according to
Saint-Venant (in his translation (1883) of Clebsch's book of 1862), his
so-called theorem was identified. Indeed, it seems as though the wider
implication of the principle of virtual velocities as indicative of a natural
law of conservation, embracing energy in all forms, was hardly recognised
as late as the middle of the century. Saint-Venant, in describing (1883) the
origin of Clapeyron's theorem, dismisses, as trivial, Lame's application of
it to structures, having regard to the availability of the convenient and
general formal methods of Navier and Clebsch for the analysis of elastic
structures, irrespective of their degree of statical indeterminacy. Indeed,
he apparently believed that the theorem was of very limited value by itself,
a conclusion which is entirely in accordance with modern knowledge.

Moseley
Some ten years after Clapeyron derived his energy theorem,

Moseley's book appeared (1843), in which it is evident that he was deeply
interested in exploiting energy concepts. Indeed, he had come close to
energy theorems in his attempts to establish new statical extremum
principles (1833#, b) in which he discussed Euler's earlier attempt (1774)
with reference to the problem of statical indeterminancy (in the nature of a
solid with supernumerary supports). Moseley's book, based on lectures to
engineering and architecture students at King's College, London, contains
generous acknowledgement of Poncelet with regard to the calculation of
the internal work (energy) of an elastic beam for a specific deflexion and
the equality of that energy with the work done by the load which caused
it. He quotes Poncelet's celebrated book (1831). Moseley's articles 368 and
369 are devoted to calculation of the internal work (strain energy) of beams
and the results are in the form:

using his notation, where U denotes work; P is pressure (load); and El
is flexural rigidity. K is a constant which depends upon the precise nature
of the problem and is introduced here for the sake of brevity. (Moseley's
notation has clearly been retained to this day.)

In article 370 he considers the deflexion of a simply supported beam with
linear elasticity caused by a single 'deflecting pressure'. The procedure
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adopted seems curious in retrospect. Thus he notes that if D is the deflexion
under pressure P:

(a result for which Castigliano is commonly accorded priority); then he
writes:

AD dPdD U "
and noting U = K Pi/EI, puts dU/dP = 2K P/EI to give:

P 2K [ ( 7 1 0 ) 1

or

finally, he integrates to obtain the form:

D = 2Kjj [ ( 7 1 2 ) ]

But the required result could have been obtained simply by direct
application of conservation of energy (of which Moseley was clearly aware,
in view of his comments on Poncelet's work) thus:

-V = K—  [(7.13)]

whence

for Moseley's method, as presented, was not capable of generalisation.
Moseley's apparent leaning toward the use of energy derivatives is

impressive, the more so when it is recalled that he proposed what he called
the principle of'least resistance' in (1833a). Reference to this principle is
made by Cotterill, whose contribution to energy theory is also highly
significant and seems due to his knowledge of Moseley's work.

Menabrea
Before CotterilPs research (1865) into the use of energy methods

in structural analysis, a formidable contribution was made in Italy by
General L. F. Menabrea. Thus, in 1858, he communicated what he
described as a 'New principle on the distribution of forces in elastic
systems' to the French Academy, which was published under the heading
of 'Correspondence' in the Comptes Rendus (vol. 46, p. 1056). The
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following is the substance of a translation of Menabrea's memoir which
has hitherto been generally dismissed, with the notable exceptions of Mohr
(chapter 10) and Cotterill (1892, who, surprisingly, accorded all credit to
Menabrea in retrospect). It provoked others, notably Castigliano, to
pursue the same objective. It is believed, however, to merit careful
attention within the scope of the history of theory of structures. Thus,
Menabrea writes:

This is the announcement of a new principle which I have called the Principle of
elasticity: Whenever an elastic system assumes a state of equilibrium under the
influence of external forces, the work due to the effect of the tensions or
compressions of bars which connect the various nodes of the system is a minimum.
The differential equation which expresses this minimum would be known as the
equation of elasticity, it would be useful for the determination of tensions.

I will give in what follows a concise demonstration of this principle. We will
consider the most general case, and let n be the number of nodes of the system
connected by m elastic bars. Each individual joint or node is in equilibrium under
the influence of the external forces applied to it and the tensions of the bars which
meet there. The number of equations of equilibrium for n joints will be 3«: if p
is the number of those equations relating the external forces, regardless of the
tensions, the number of equations which must contain the tensions reduces to
3n—p. Also, in the event of m being > 3n—p, the foregoing equations are
insufficient for determining all the tensions.

It would be the same if the system had a certain number of fixed points. This
indeterminacy signifies that there would be an infinite variety of values of tensions
which, together with specified external forces, are appropriate to keep the system
in equilibrium. The values of the actual tensions depend on the elasticities of the
respective bars, and when they are specified, so also are the tensions.

Since, in the case we are considering, the tensions may vary without destroying
equilibrium, it must be allowed that such variations could take place independently
of the total work of the external forces; they are always associated with elongations
or contractions of the relevant bars, which take place in each of them, with
development of work. The changes of length of bars considered, must be assumed
to be very small and unaccompanied by deflexion of the joints. But because, during
the small internal displacement, equilibrium is maintained and the work of the
external forces is zero, it follows that the summation of the increments of work
of the tensions is also zero.

In order to express this conclusion, suppose T the tension of any bar; 81 the
element of variation of its length: the work consequential on variation of tension
which causes that change of length would be T81, and so for the complete system
we have:

(1) I7W = 0 [(7.14)]

letting / be the total extension or contraction which occurs originally, due to the
tension T, we have, regardless of sign:
(2) T=el [(7.15)]
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where e is a coefficient which I will call the 'relative coefficient of elasticity', and
which is a function of the modulus of elasticity, the cross-section and length of
the bars.

The work developed to cause this variation of length / will be equal to Je/2, and
hence the total work of the system will be equal to JXe/2.

But by virtue of equations (1) and (2) we have:
(3) lT8l = XelSl = 8lleP = 0 [(7.16)]
this being the proof of the principle stated, concerning which we can again bring
other considerations. It is equally possible to express it in an alternative manner
because we have:

(4) I7W = I - 7 t f r = ^ I - r 2 [(7.17)]
e e

Also, the sum of the squares of the tensions divided by their relative coefficients
of elasticity is a minimum. It is easy to prove that equations (3) and (4) correspond
to a minimum and not a maximum.

The equation

(5) l-T8T=0 [(7.18)]

is that which I describe by the name Equation of elasticity'. We will proceed using
this terminology.

The n joints of the system provide, as already stated, 3n—p equations of
equilibrium containing the tensions. For the infinitesimally small variations of the
tensions which are compatible with equilibrium, we would be able to identify, by
reference to various values of T, the 2>n —p equations which provide a means of
eliminating an equal number of variations, SThom the equation of elasticity (5).
We would equate to zero the coefficients of various variations 8T remaining in
equation (5). These coefficients, being functions of the external forces and the
tensions themselves, the new equations, together with those of equilibrium, would
be equal in number to those of the tensions to be found.

In substance, Menabrea is identifying virtual displacements within a
structure, such that points of application of loads remain undisplaced (and
accordingly he is simply dealing with equilibrium), a valid procedure which
he proceeds to misuse in his attempt to identify a minimum elastic work
theorem. The nature of his error becomes apparent when one refers to
Frankel's later work (1882). Menabrea quotes Vene and Dorna as
subscribers to the principle which he believes he has succeeded in proving.
It is interesting that Menabrea finally returned to the subject some
twenty-six years later following controversy involving Castigliano, Cerruti
and Sabbia. Bertrand indicated a correct proof (1869): Donati reviewed
Menabrea's work in detail (c. 1890).

Finally, it is appropriate to note the interest which was apparent
(immediately prior to Menabrea's paper) in the problem of solids with
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more than three points of support. Thus, in 1850, a paper by Francesco
Bertelli, which dealt with the problem, appeared in the Memoirs of the
Academy of Sciences of Bologna. The paper was in two parts, the first dating
from 1843 and the second from 1844. In addition to a history of attempts
to solve the problem, which includes Euler's attempt of 1774, Bertelli also
suggests (as a novelty) that the theory of elasticity is an essential ingredient
of a solution, and he describes an experimental device for studying the
problem. Then, in the Memoirs of the Academy of Sciences of Turin, 1857,
a paper by Dorna appeared on the same subject and this did, in fact, make
a direct appeal to the theory of elasticity. Dorna's attempt at precise
analysis was marred by the assumptions (hypotheses) which he introduced.
It represented, however, a fundamental departure from the type of
metaphysical approach which had been used as late as 1852 by G. Fagnoli
and published in the Memoirs of the Academy of Sciences of Bologna
(Todhunter, 1893).

Notes
Appreciation of the true nature of the law of conservation of energy seemed to
take place after 1840 with the abandonment of the caloric theory and the
reappraisal of Carnot's theory which culminated in the monumental work of
Clausius on the mechanical theory of heat (c. 1850). Tait (1868) gives a useful
historical survey which includes what has been called the 'Mayer-Joule
controversy', with regard to the equivalence of mechanical work and heat.
Apparently Mayer deduced it theoretically (c. 1842), while Joule determined it
by experiment some six years later. Tait is critical of Mayer's claim but quotes
the remarks of Helmoltz in support of it. Clapeyron's interest in Carnot's
theory of heat and work (c. 1834) is recalled, and his reputation in the field of
thermodynamics was such that after 1844 he became professor of steam engines
at l'Ecole des Ponts et Chaussees. Then, some forty years later, Weyrauch
published an appreciation of Mayer's work.
According to Todhunter (1886), the subject of virtual velocities was chosen by
the Turin Academy of Sciences for a prize essay (J. F. Servois was the
successful candidate).
According to Saint-Venant (1883, footnote, p. 871) Clapeyron derived his
so-called theorem relating to elastic energy 'toward 1840 on the occasion of
research in dynamics relating to the dissipation of the energy of wagon springs'.
Saint-Venant remarks that Navier obtained essentially the same result in 1821
and that it is nothing more than an application of conservation of energy.
Menabrea finally attempted to justify his principle by seeking to show that it is
in accordance with Levy's method (1874) as well as with the principle of least
work which was deduced, he said, by Euler and which applied to the
determination of the elastic curve. This he did in a note (1884) to the French
Academy (whose Perpetual Secretary, Bertrand, seemed sympathetic to him).
Menabrea published a note on Babbage's calculating machine in Comptes
Rendus (1884, vol. 99, pp. 179-81) and quoted a letter written by Babbage on
23 August 1843, which mentions Lady Lovelace, the only daughter of Byron.



8
The later development and use of energy
principles

Exploitation of the doctrine of energy, using energy functions and their
derivatives in theory of structures, seems to have begun in earnest on the
continent of Europe (by coincidence) soon after CotterilPs three important
articles appeared in 1865. It was primarily due to the researches and
principles of the Italian railway engineer Castigliano (1873, 1879), after
Menabrea (1858). The implicit objective was to remedy deficiencies of
statics by means of conditions of compatibility of elastic strain. Indeed,
Castigliano's so-called principle of least work (terminology of Menabrea,
1884) was to become perhaps the best-known general method of structural
analysis toward the end of the century. The contributions of Frankel,
Crotti and Engesser to the energy approach are, however, significant. But,
in restrospect, CotterilPs priority over Castigliano and others seems
unquestionable after careful study of his original articles. His obscurity,
until comparatively recently, is undoubtedly due to the fashion in Britain
to publish original work in both pure and applied science in journals
devoted to natural philosophy, outstanding among which is the Philo-
sophical Magazine in which Moseley and Maxwell, as well as Cotterill,
published their contributions to theory of structures. Originally, like
Moseley, a Cambridge mathematician of St John's College, Cotterill (who
lived from 1836 until 1922) became professor of applied mathematics at
the Royal Naval College.

Cotterill, 1865
Cotterill appeared to seek to rationalise and utilise the concept of

natural economy which was apparently manifest in the condition for
minimum strain energy of elastic systems; while also recognising that the
approach he adopted identified those conditions with compatibility of
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strains (as distinct from conditions of equilibrium). His various applications
included those to arch ribs and thick cylinders (where he noted that he
obtained results similar to those of Lame and Rankine), and he used
Lagrange's method for minimising integrals. He noted, moreover, that
Daniel Bernoulli (Chapter 7) had prescribed minimum elastic energy, in
the same form, with regard to the behaviour in bending of a thin elastic
strip (seemingly on a purely theologico-metaphysical basis, that is, an
unqualified belief in natural economy). The essence of CotterilPs contri-
bution is to be found in the first two of his three articles.

He published, first, an article 'On an extension of the dynamical
principle of least action' (1865a) and the essential features of his
proposition are contained in the following quotation which refers to
Moseley's early article (1833a):

Now Mr. Moseley has shown that if any number of pressures are in equilibrium,
some of which are resistances, then each of these resistances is a minimum, subject
to the conditions imposed by the equilibrium of the whole - a principle which he
has called the principle of Least Resistance; let us assume this principle, and let
us further suppose, for the present, that it is generalised so as to include the case
of resisting forces generated, as above described (by elastic displacements); then
each of those resisting forces is a minimum, subject to the general conditions stated
above; and, further, the relative displacements which are the cause of those forces
must also be the least possible, and the work done the least possible. Thus in the
assumption mentioned, to which I shall return in the sequel, it appears that
the work done is a minimum, subject to the law of conservation of energy and the
statical conditions of equilibrium; and this principle, analogous to the dynamical
principle of Least Action, it is the object of this article to consider and apply.

If the work done be expressed in terms of the resisting force at all points of the
system, or some of them, then, the law of conservation of energy being implicitly
satisfied, we have simply to make the work done a minimum, subject to the statical
conditions of equilibrium.

Cotterill demonstrates his proposition by first considering a uniform
beam loaded by a distributed load of uniform intensity w over its length
and subjected to restraining couples Mx and M2 at its ends. If 2c is the
span, the strain energy U of the loaded beam is given as:

Considering the problem of determining the values of Mx and M2 which
would cause the ends of the beam to be fixed horizontally, Cotterill
proceeds by asserting that the values of Mx and M2, which cannot be found
by statics alone, must be such that U is a minimum, that is:

2MX + M2 - we2 = 0; 2M2 + Mx - we2 = 0 [(8.2)]
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whence
Mx = M2 = \wc* [(8.3)]

which result, he remarks,

agrees exactly with that given by the ordinary method... the reason of which will
be seen from what follows. Let i19 i2 be the slopes at the extremities of a beam acted
on by Ml9 M2 at its extremities, and by the uniform load w; then U being, as shown
above, an homogeneous quadratic function of Ml9 M2, we have:

but by the law of conservation of energy:
2U=Mli1 + M2ii + wu [(8.5)]

Where u is the 'area of deflexion' of the beam; and, comparing these expressions,
we see that:

dU dU dU r /o X1
/ ^ [ ( 8 6 ) ]

but the ordinary method is founded on the consideration that the beam is
horizontal at its extremities, in other words, that ix = 0, /2 = 0; so that the two
methods lead to the same result by the same equations. And this will be the case
in all questions concerning continuous beams; but the present method enables us
to obtain the requisite equations by differentiation of a single function.

Toward the end of his article, Cotterill proceeds as follows:

Having briefly indicated the mode of applying the principle of Least Action to
various problems, I return to its demonstration.

From the description given of the process by which equilibrium is attained, it
is apparent that if the principle of Least Resistance be given, the principle of Least
Action follows, and vice versa; and since the principle of Least Resistance is well
known, I have assumed it. But inasmuch as that principle has perhaps never been
satisfactorily proved, at least in its general form, it will be well to give a direct
demonstration of the principle of Least Action in the case where the body is
perfectly elastic.

Let X, Y, Z be the components of one of the forces acting on a free perfectly
elastic body; w, v, w the displacements of its point of application parallel to three
rectangular axes; U the work done in the body, then:

2U = Z(Xu + Yv + Zw) [(8.7)]
but U may be expressed as a homogeneous quadratic function of the forces;
therefore:

comparing expressions U, we see that:

% - • % - '
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Now conceive the body, instead of being free, to be immovably attached at certain
points to some fixed object, then we shall have for these points:

S-* £ - * Si -
that is, the variation in U, due to a change in the resisting force at the fixed
boundaries of the system, is zero. And the same is true for a change in the resisting
force anywhere within the mass; for conceive the body to be divided into two parts
by a surface of any form passing through the point, and let Ul9 U2 be the works

&UX dU2
done in the two portions, then -—7 and —7 are evidently equal and of opposite

dX dX
dU

sign, that is, —- = 0 as before. Since, then, the change in U, consequent on any
dX

possible change in the resisting forces, is zero, U must be a minimum (the other
two possible hypotheses being easily seen to be inadmissible), and the principle is
proved for a perfectly elastic body or system of bodies.
Cotterill appears to recognise that his minimisation of ̂ /provides conditions
of compatibility of deformations.

Being apparently dissatisfied with his justification of the energy method,
Cotterill returns to the matter at the end of his second article (18656) 'On
the equilibrium of arched ribs of uniform section', where he writes:

In my former article I endeavoured to show that if X, Y, Z be components of one
of the forces acting on a perfectly elastic body; u, v, w the displacements of its point
of application produced by the action of the forces on the body, then:

dU/dY=v I [(8.11)]
dU/dZ= wJ

But the reasoning is not so conclusive as the following. Since
2U = l(Xu+Yv + Zw) [(8.12)]

then

28U = X(X8u + Ydv + Z8w) + J:(u8X+vdY+wdZ) [(8.13)]
but £ (X8u+ Y8v + Z8w) is the increment of the energy expended, by which the law
of conservation of energy is equal to 8U the increment of work done, therefore,
we have also:

8U = I (u8X+ v8Y+ w8Z) [(8.14)]
whence the above equations (8.11) follow.

He also notes that dU/du = X; dU/dv = Y\ d£//dw = Z (the energy
derivative obtained by Moseley in his book, 1843). Equation (8.14) is the
basis of the true justification of the use of strain energy to derive defor-
mations, being actually the expression for the variation of complementary
energy which was introduced explicitly by Engesser (1889). There is some
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essential degree of similarity of Cotterill's derivations with those of
Castigliano, including the principle in question (so-called least work) as
is evident in the following paragraphs.

Castigliano, 1873
In the preface to his book (1879), Castigliano writes as follows:

In the year 1818 Captain Vene of the French Engineer Corps enunciated a principle
which was absolutely incorrect under the conditions to which he wished to apply
it, but which, by one of those peculiar combinations of circumstances of which
science presents several examples, was destined to lead later to the discovery of
the theorem of least work.

After this first step, the distinguished scientists Messieurs A. Cournot, Pagani,
Mossotti, A. Dorna, and General L. F. Menabrea investigated the question. The
last-mentioned gave the name 'principle of elasticity' to the theorem of least work,
and made it the subject of his researches, in a first memoir presented in 1857 to
the Academy of Science of Turin, later in a second presented in 1858, to the
Academy of Science of Paris, and again in a third submitted in 1868 in the Turin
Academy. Since, however, the proofs given by M. Menabrea were not exact, the
'principle of elasticity' was not accepted by the greater number of the authorities,
and some of them published memoranda to show the fallacy of it. It was not until
1873 that we gave, in our above-mentioned thesis, the first rigorous proof, in a
form which appeared to us clear and exact, of the theorem of least work.

Castigliano nobly conceals his dispute (in published correspondence)
with Menabrea, which involved the then President of the Turin Academy,
Professor Cremona.

This book (1879) is a substantial work and includes aspects of theory
of elasticity as well as theory of bar frameworks and arches. (It is, in-
cidentally, evident that Castigliano knew of Navier's method for statically-
indeterminate bar frameworks.) In chapter 1 of Andrews' translation
(1919) the work equation (15) is:

WJ = JIFprp [(8.15)]
where Wt is described as the internal work of a linearly elastic structure and
Fv and rp respectively, are applied load and associated deflexion in its line
of action. He had, in fact, obtained an expression for the internal work
of such a structure, as a function of the external forces, having calculated
the corresponding expression in terms of forces in the members (of a
pin-jointed framework, in fact). Castigliano's procedure here seems unduly
complex and rigorous in the absence of simple application of the law of
conservation of energy (which he quotes elsewhere).

His progress toward the 'theorem of least work' embraces his theorem
of the differential coefficients of the internal work, part 1 of which is:
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[(8.16)]

(already noted by Moseley) while part 2 is:

Proof of the former is trivial but to obtain the latter he considers the
differential of equation (8.15):

dW< = ^Z/pdrpH-JZrp dip [(8-18)]

1FV drp = JIFp drp+|Irp dFp [(8.19)]
whence, he concludes

I^)drp = 2:rpdip [(8.20)]
and since

d ^ _ ^ fF,= IrpdFp [(8.21)]
U / P "then

After some further attention to the theorem of the differential coefficients
of internal work, Castigliano addresses himself to the theorem of least
work. First, he specifies that Wi is the internal work of a frame which is
reduced to contain only its essential bars and that it is a function of the
external forces and of the forces in the omitted (redundant) bars. Then if
Np and Nq are two joints connected by one of the latter and Tpq is the
tension in it, it follows that the differential coefficient of Wx with regard
to Tvq expresses the amount by which the nodes approach each other.
Again, that bar extends by an amount Tpq/epq (where ePQ = ApqEpq/Lpq)
so that:

^ ^ K8-23)]

^ 0 [(8.24)]
dTpq epq

Noting there will be a similar equation for each of the omitted bars,
sufficient equations will be obtained in the unknowns Tpq. Since the
internal work of the original structure (with all bars present) is given by
the formula:

] [(8.25)]

the equations derived, which express the geometrical conditions which the
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strains must satisfy, are the equations to zero of the differential
coefficients of the internal work for the whole structure: therefore the
stresses which occur after strain are those which make this work a
minimum.

There is little doubt that Castigliano's least work principle is among the
best-known aspects of theory of structures. He extended the method to take
account of self-straining, including thermal effects, and showed that if such
an effect is equivalent to an initial lack of fit (shortness) of a redundant
bar in line pq of Apq, then for the whole structure the function:

pqpq [(8.26)]
\ epq /

is a minimum.
It is clear, however, that Cotterill anticipated Castigliano (by eight years)

with regard to the differential coefficients of the internal work (strain
energy) of a structure. Also, there is a certain similarity in the approaches
which each used. Their treatment of the minimum strain energy theorem
is different, however, although the nature of the equations obtained by
means of the theorem (equations of compatibility of strain) seemed clear
to both. Linearity of elasticity of structures and their bars was assumed
by Cotterill and Castigliano, thus implying constancy of the geometry of
structures (that is, small deformations) and materials of construction which
obey Hooke's law. It is, incidentally, noteworthy that, prior to energy
concepts in his book, Castigliano discoursed on the explicit use of
conditions of equilibrium and compatibility of strains, together with the
law of elasticity, for dealing with statically-indeterminate frameworks.

Crotti, 1888
Francesco Crotti was apparently Castigliano's friend and col-

league. His book on theory of elasticity, including fundamental principles
and application to structures, appeared in 1888 (although in the book he
refers to lectures given at Milan in 1883). It is mathematically sophisticated
by comparison with the writings of Cotterill, Castigliano or Engesser.
Indeed, having specified perfect (linear) elasticity, results of theorems
(including the reciprocal theorem and elastic coefficients) are derived by
mathematical techniques and devices: the relevant terminology and
concepts are in the language of the mathematician rather than that of the
natural philosopher. But there are applications of the theorems to practical
problems and at the beginning of the book there is a useful survey of the
historical development of theory of elasticity, together with an account
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which is similar to Love's account (1892) of Green's contribution to the
doctrine of energy. Crotti also gives much credit to Navier generally. The
mathematical rigour and use of variational techniques is impressive: the
duality principle (ascribed to Helmoltz) is noted, and theory of stability
of equilibrium is considered. Attention here is confined to only the essential
features of Crotti's treatment of energy concepts: other aspects of his work
are considered in Chapter 10.

Crotti gives alternative expressions for the work (L) by forces applied
to an elastic structure:

L = <j>(f1J2,...Jn) P.27)]
and

L = ^(Fl9F2,...,Fn)
where jFis an individual force a n d / i s the elastic deflexion in the line of
action of that force. Subsequently, Crotti states that the first differential
of work is:

/Jd/1 + /5d/ ;+. . . [(8.28)]
whence

£-*£-*- «82*>
Then he proposes a quantity:

. . . - L [(8.30)]
whence

dA=/1di^/2dF2+. . .+(F1d/1 + F2d/2+. . .-dL) [(8.31)]
or since, by conservation of energy, the quantity in parentheses is zero:

dA=/1dF1+/1dF1+... [(8.32)]
which gives

£=/,. ^ =/.-. K8.33)]
Crotti subsequently notes that the assumption of linear elasticity and
behaviour implies that:

2L = I / F [(8.34)]
and since, by definition, L + A = I*fF, then A = L. He proceeds to discuss
the implications and states without further proof, that A may be substituted
for L in Castigliano's theorem of least work and suggests that the theorem
is then applicable when elasticity is non-linear.
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Engesser, 1889
Engesser's article on the proposed method of complementary

energy was published in a journal addressed to engineers. He had become
professor at the Karlsruhe Polytechnikum in 1885 when he was thirty-seven
years of age and became distinguished for his work on non-linear
phenomena, including buckling. He wrote:

The following considerations refer to the behaviour of statically-indeterminate
frames with optional deflexion laws. The theorem of virtual work is the safest and
most convenient way of solving frame problems for which the theorem of least
work, whose validity is restricted to the case of specified deflexion laws, is
inadequate. The universal theorem of minimum complementary energy will be
introduced instead of this.

The essence of Engesser's derivation is given below, using his notation and
giving his equation numbering on the left.

If the deflexions are assumed to be small so that the geometry of the
deflected structure does not differ materially from the original, the
principle of virtual work gives:

(1) IPv = I&> + S:Cc [(8.35)]
Here: load = P \ v

reaction = C ) and corresponding deflexions c
bar force = S ) e

The bar forces and reactions in a statically-indeterminate structure with
m redundants, represented by X\ X",..., Xm, are given by:
(2) S = S' + • X'+sT X" + ... + j~ Xm

 [(8

C = C' + c' X' + c" X"+ ... +cm Xm

where
S' is the force in a bar when redundants are removed, produced
by P
s' is the force in a bar when redundants are removed, produced
by X' = 1
sm is the force in a bar when redundants are removed, produced
by Xm = 1

and
C, c\ cm are corresponding quantities for a reaction or support.

After considering a variety of analytical details Engesser considers a
general relationship between strain e and stress a of a bar, whereby
e =J[or), so that when a bar of length s and cross-sectional area F is
subjected to a force S:

e = se = sAcr) = sJ{S/F) [(8.37)]
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and if the temperature of the bar is simultaneously raised by / degrees:
e = (e + oct)s = {J[S/F) + oct}s [(8.38)]

Also, the effect of lack of fit A of a bar may be equivalent to a small
extension or rise of temperature t = A/ocs.

Having given further analytical details regarding 'self-straining',
Engesser makes the important statements:

The theorem of minimum strain energy derived by Castigliano and Frankel, on the
assumption that Hooke's law, e = a/E, is obeyed, is not valid for the optional
deflexion law e =J{(T).

re
As the bar force increases steadily from 0 to S [Fig. 52] the work a = Sde and

Jo
so the work of all the bars is:

A = Za = j : [ Sde [(8.39)]
Jo

0 e

Fig. 52. From Engesser (1889).

If the bar force S were to traverse the distance with constant magnitude, then
the work performed, which may be called the virtual work is aw = Se and the total
virtual work Ay = I av = I Se.

The difference between the virtual work Av and the real work A can be called
the 'complementary work' designated by the symbol B. We then have:

B = AV-A = I a v - I f l = 2Z> = E edS [(8.40)]
Jo

It is also noted (by Engesser) that, since Av = 2 Pv, then SAV =
ZPSv+ZvSP = SA + SB, and that dB/dP = v, the deflexion of load P;
while with regard to a force X, due to a redundant bar, dB/dX = 0, so that
Engesser is able to write:
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The differential coefficients of B with regard to X, in turn, are set equal to zero,
giving equations of the form:

Equation (8.41) 'is the condition for the minimum value of B as a
function of the quantities X. The resulting values of X correspond with
the minimum of complementary energy B\

The complementary energy b for a single bar subjected to a load and

Fig. 53. From Engesser (1889).

temperature change is shown in Fig. 53. If the work curve is a straight line,
following Hooke's law, then with an arbitrary temperature rise, t:

B = Xb = I

which is the same as what Miiller-Breslau (18866, Die neueren Methoden,
pp. 185ff) called the ideal strain energy Ax. The theorem of the minimum
value of the ideal strain energy is therefore a special case of the theorem
of minimum complementary energy.

If the strain curve is a parabola e = (l/C)orn, then with / = 0

[ ( 8 4 3 ) ]

A =If l = S-^-r Ses =
n+1

If A and B reach their minimum values simultaneously, then the condition
min A can be used in place of min B as in the earlier derivation.

Elegant, illustrative examples of the use of the minimum energy principle
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(in the manner of Castigliano, as well as of Crotti and Engesser, if elasticity
is linear throughout) are given in the celebrated article by Mohr's colleague
at Dresden, Frankel (1882), to which reference is made in Chapter 3, with
regard to his analysis of arches and suspension bridges. These examples
are described in Chapter 9.

Frankel, M iiller-Breslau, Weyrauch
Frankel derived the minimum energy principle of 'least work'

independently of Castigliano (as noted by Engesser, 1889), for in his article
he acknowledges Winkler's advice with regard to Castigliano's priority
(received only after his manuscript had gone to the printer!). It seems,
moreover, that Frankel's article (1882) made Miiller-Breslau aware of
Castigliano's principle. Frankel's derivation is significantly different from
that of Castigliano: indeed, it bears some conceptual resemblance to
Menabrea's derivation. Having remarked on the evidence for extremum
principles, for example, Winkler's principle for arches, he considers small
changes in the forces in the bars of a structure, which satisfy the conditions
of equilibrium if there are no changes in the loads or forces applied to the
structure and, in particular, the variation of work (virtual work) if
compatible displacements, identical to those caused by the loads, are
introduced at the same time. Since there are no changes in the loads, that
equation specifies that the sum of the actual elastic changes in length of
the bars, multiplied by the small changes in bar forces, is zero. Expressing
those elastic changes in length in terms of the bar forces, he examines the
number of additional equations which may then be derived to supplement
the conditions of equilibrium when the framework is statically-
indeterminate and concludes that it is sufficient to enable analysis of the
structure to be achieved (though without referring specifically to the
physical implication of compatibility of strain). It is now known that
Bertrand suggested to Menabrea (in a letter, 1869) similar details for the
purpose of validating his principle but, apparently, this was unknown to
Frankel.

A few years after Frankel's paper appeared, Weyrauch's treatment of
the doctrine of energy, in his book (1884) on theory of elasticity, included
reference to the work of Clapeyron, Castigliano and Frankel and,
moreover, implicitly identified the quantity, complementary energy, but
did not exploit its analytical value. Thus, he considers the virtual work
represented by the sum of products of impressed forces and the relevant
elastic displacements of a solid, denoting it by D. Then he considers the
total variation of that quantity and concludes that:

[(8.44)1
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where SVD is an element of what is now known as complementary energy,
and SSD is an element of strain energy. Weyrauch's treatment of energy
is of substantial general interest because it includes thermodynamic
aspects, on the one hand, and application of Castigliano's principle to
framework analysis in comparison with Mohr's method, on the other.

Weyrauch, with Frankel, Miiller-Breslau and others, participated in a
protracted controversy with Mohr about the value of Castigliano's
principle. Apparently this was one aspect of the differences between Mohr
and Miiller-Breslau, which is discussed in Chapter 10. (Mohr plainly
accorded priority to Menabrea in an article published in 1883 and
mentioned Castigliano only some time later.)

All of the energy principles considered herein have the common implied
objective of deriving deflexions and, for statically-indeterminate systems,
conditions for compatibility of strains. Those strains may be due to
thermal effects in addition to applied loads. They are, in fact, alternative
methods of obtaining precisely the same kind of equations as those which
Maxwell and Mohr derived (with the aid of 'Clapeyron's theorem' and
virtual work respectively) and, moreover, they avoid the intellectual effort
required for Levy's method. But they are concerned with a different
approach from that which Navier adopted for statically-indeterminate
systems of bars. It is strange to note that the energy theorem relevant to
his approach already existed (as noted above) in classical mechanics,
namely the principle of minimum potential energy for equilibrium. It
seemed to be overlooked with regard to theory of structures, for a variety
of reasons including, perhaps, those for which Navier's method remained
obscure during the nineteenth century. Thus the nature of the structural
forms then in use was such that the degrees of freedom of deflexion of joints
were far more numerous than the supernumerary (redundant) elements
(bars or joints), so that the method might seem invalid. That principle was
to emerge in the twentieth century, largely as a means of obtaining rapid
approximate solutions to certain types of complex continuous structures.
But careful study of Crotti's work (1888) indicates that he was aware of
the principle of minimum potential energy and, indeed, discusses it in
relation to the problem of stability of equilibrium of systems. Having
regard to his explicit recognition of the duality aspect, including, for
example, the use on the one hand of flexibility coefficients and, on the other,
of stiffness coefficients, with regard to the behaviour of linearly elastic
structures, it is tempting to conclude that he simply saw no advantage in
applying the principle of minimum potential energy to structural analysis.
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Notes
It is surprising that Cotterill seemed to lack confidence in his contribution to
energy principles (1865) to the extent that, when he eventually became aware of
Menabrea's contribution, he accorded (1892) all credit to him.
The introductory remarks of Frankers article are interesting: he comments on
the practice of avoiding (in cases where statics proves insufficient) the use of
theory of elasticity by attempting to replace it with an appeal to principles
'more or less theoretical', which depend upon some principle of minimum
force.
Frankel (1882) actually used the concept of elastic energy and work rather than
the principle of virtual work.



Applications of the least work principle.
elastic theory of suspension bridges

This chapter deals with the elegant and especially significant applications
of the least work principle described by Frankel (1882). These applications
almost certainly originate from his friendship and collaboration with
Winkler. Thus, he begins with the relatively difficult problems of the elastic
arch and suspension bridge. In so doing, it seems that he was mindful of
Winkler's principle (Chapter 3) for the thrust-line of an arch (1879a).
Indeed, that principle probably led to his search for a means of establishing
a principle of least work for elastic structures generally, the successful
outcome of which was marred by the discovery, just as his work was poised
for publication, that he had been anticipated by Castigliano. Thus he
acknowledges Winkler for that information and it may be judged by the
fact that Winkler himself had then only recently become aware of
Castigliano's work through the French (1880) edition of the original
work.

It will be noted that, throughout application of the least work principle
to an arch, Frankel contrasted the results with those derived by Winkler.
Having thus discussed the principle in relation to what he termed 'the
elegant work' of Winkler, he turned his attention to what he identified as
the closely related problem of the stiffened suspension bridge (incorporating
inversion of the arch) and succeeded in determining the elastic theory in
advance of Levy's celebrated treatment (Chapter 3). Details of these two
applications are given herein as being little known and of substantial
historical interest in addition to being generally instructive.
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Elastic arch
Having derived the formula for the strain energy A of an elastic

arch of flexural rigidity EJ due to a bending moment M, as:
I CAPds
2} EJ

where ds is an element of length, Frankel considers Winkler's problem of
an arch of shape defined by ordinates y, subjected to a uniformly
distributed load of intensity q per unit horizontal length of span. The line
of thrust is defined by ordinates rj while the horizontal thrust at any section
is designated by H. Having specified that d2y/dx2 = q/H for the arch, and
noting that rj is the variable in respect of y, Frankel suggests that by
integration of that equation:

v = B+Cx+—  [(9.2)]

where B and C are constants of integration. It is specified next that the
bending moment at a point (x, y) is:

M = H(v-y) = HIB+CXJ^-J) [(9.3)]

and that for a uniform arch the strain energy is represented by:

S= (Vds = [lP(7j-y)2ds

= \(BH+ CHx +/(*) - Hyfds = minimum [(9.4)]

Then, in parentheses, it is remarked that Winkler's principle specifies that
(V ~~y)2ds —  minimum. The necessary conditions for equation (9.4) to be

/ •
a minimum are given as:

dS = 2jIP(vy)ds = 0 or

= 0 or ^y-y)xds = 0 [(9.5)]

or

having regard to equations (9.3) and (9.4).
Also, if the arch is not uniform then the least work condition is that:

CAPdsJ- = minimum

or, according to Winkler's principle

-L——ds  = minimum [(9.6)]
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It is to be noted here that Straub (1952) incorrectly gives the date of
Winkler's principle as 1867 and that Timoshenko's (1953) account of it
is different from the original version.

The principle of least work is thus taken to indicate that, ideally, the
thrust-line of an arch should be identical with the locus of the centroids
of its cross-section, so that the bending moment everywhere is zero. Where
dead load is dominant the free bending moment would, therefore,
determine the shape of the arch, and the necessary abutment condition is
that horizontal deflexion is prevented.

In his paper on the elastic arch (1898) Young applies Castigliano's least
work principle (with acknowledgement) but he seems unaware of the
contributions of Winkler and Frankel. However, the application of the
energy method on the continent of Europe was commonplace by this time.

Stiffened suspension bridges
Frankers energy analysis of the elastic behaviour of suspension

bridges, which seemed to escape the attention of Levy (1886) (who adopted
an approach from first principles), is preceded by a diagram (Fig. 54; being

H A

Fig. 54. From Frankel (1882).

Fig. 5 of Frankel's article). In the diagram H is the horizontal component
of tension in the elastic cable, caused by live loading applied to the deck,
and indicated by a shaded area (dead load is assumed to cause no bending
of the deck because the suspension bridge concept is that the self-weight
(dead load) is transferred entirely to the cable system). By ingenious
analogy with an arch, the difference between the actual shape of the cable
system AEB and the curve ADB is assumed to be proportional to the
bending moment in the deck girders caused by the live load. At a distance
x from the origin A, the ordinate of the former is y and that of the latter



Stiffened suspension bridges 135

is rj. The tangent of the curve AEB subtends angle r to the horizontal axis
at any point along the curve, distant s from the origin A. The elastic energy
of the cable, due to the live load, is written:

11H sec TH sec r , f2l (H sec r)2
 J

ds = OPE. d* K9-7)]2 £ F
where 2/ is the span; E the modulus of elasticity; and F the cross-sectional
area of the cables or chains; while the strain energy of the deck structure
(flexural rigidity E1J1), due to the live load, is:

M2 .

Thus the total strain energy, due to the live load, is:

Then, by means of the arch analogy, Frankel says that by definition
M = H(rj—y) and writes  as his equation (18):

and if

V = B+Cx+^ [(9.11)]

then
(V-y)H=BH+CHx+f(x)-Hy [(9.12)]

By the condition that rj = 0 at x = 0 and at x = 21:

and [(9.13)]

H
therefore

and [(9.14)]
/(0)_y
/// HI

Here it should be noted that Frankel made an error in substituting for
x = 2/ in equation (9.11), for it seems as though the second of equations
(9.13) should, in fact, read:

H
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Frankel substituted for H(rj—y) in equation (9.10) using the expression
for rj of equation (9.11) including the values of B and C as in equations
(9.14) to obtain:

[(9.15)]
and then by his least work principle:

[(9.16)]
so that:

But the bending moment of the deck structure as a simply supported beam
is M' = Hrj due to the live loading, and Frankel writes (his equation (19)):

Next he specifies y in the parabolic form:

, = * ^ [(9.19)]

where h is the dip at the centre of the cable. Also, he expresses the
cross-sectional area F of the cable at any point as f = F0(ds/dx) and
specifies E1J1 as constant, hence:

or

If, for example, the live load is a single concentrated load P, distant a from
C (Fig. 54), then

when x < a:

and when x > a:

M' = ̂ ^-P(x-a) [(9.22)]

so that substitution in equation (9.21) gives:
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64 „ , ( , 15 £ , / / 4/i2\l U "

(Frankel refers here to ' Miiller-Breslau, Theorie der Durch einen Balken
versteiften Kette auf S. 61 des Jahrg. 1881 dieser Zeitschrift').

Having found H, the bending moment in the deck girders due to live
load, p may be found because M — H{rj—y). Comparison of equation
(9.23) with the results of Levy's later investigation (Chapter 3), using first
principles, is readily accomplished if the cables are inextensible. Then
EF0 = oo and H and M are independent of ElJ1 and in agreement with
Levy's theory.

Frankel's suspension bridge analysis by the elastic theory, using the
so-called least work principle, avoids much tedious (though instructive)
detail, as study of the investigations of both Levy and Du Bois indicates,
in specifying the necessary condition of compatibility of deflexion of the
cables and deck. It is especially interesting that he seemed to be so
concerned with demonstrating the versatility of a novel (general) principle
that he overlooked the possibility of priority in respect of an elastic theory
of suspension bridge behaviour.

In passing, it is worthwhile to recall the contents of the note, appended
to CotterilFs article (18656), on the equilibrium of arched ribs by his energy
method (Chapter 8). He says in that note: 'The general problem of the
stiffened suspension bridge is a particular case of this more general
problem. The elasticity of the chains can be taken into account by
estimating the work done in them in terms of 7/0'.' (The horizontal
component of tension in the chains, which Cotterill required to be a
minimum is 7/0'.) In fact, Cotterill chose the suspension bridge to illustrate
the application of his principle in his earlier article (1865a). Having
neglected the elasticities of chains, bars and piers of the complete structure,
he arrived at results which, he says, 'agree exactly with those obtained by
a writer in Civil Engineer and Architect's Journal for 1860, and differ
slightly from those given by Professor Rankine in his work on applied
mechanics'. (The publication to which he refers is considered in Chapter 3).
Cotterill, moreover, mentions in general terms the possibility of taking
account of the elasticities of suspension chains and bars in the analysis.

Miiller-Breslau is notable among those who followed Winkler and
Frankel in exploitation of the least work principle, with particular
acknowledgement to Castigliano and application to arches and suspension
bridges.

Unfortunately, the later, more precise, theory of suspension bridge
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behaviour, namely the deflexion theory which was due initially to Melan
(1888), seemed to defy a convenient approach by energy. It is necessary
only to compare the effort expended by Levy with that involved in the
derivation of Frankel's energy approach to the elastic theory, to appreciate
the expectations generated by the energy device. It is, however, worth

4

Fig. 55. From Frankel (1882).

Fig. 56. From Frankel (1882).

Fig. 57. From Frankel (1882).
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emphasising that the elastic theory remains relevant to suspension bridges
if deck girder stiffness is great.

Frankel finally demonstrates the use of the energy method for bar
frameworks and continuous beams, with reference to the examples shown
in Figs. 55, 56 and 57, where K is bar force and r\ (Fig. 57) is the resultant
bending moment. In the analysis rj is expressed as a function of the reaction
of the intermediate support, npl, where n is a fraction of the distributed
load pi.
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Aspects of the further development of theory
of structures

After the theory of statically-indeterminate frameworks was established in
Europe c. 1875, theory of structures advanced rapidly, especially by virtue
of the property of a linear relationship between 'cause' and 'effect', which
characterised engineering structures and which afforded the principle of
superposition (Chapter 3) and the reciprocal theorem (Chapter 5).
Dominant among the contributors to these advances were Mohr and
Miiller-Breslau in Germany, and much of this chapter is concerned with
them and their work. Also, the Italian railway engineer, Crotti, deserves
special mention for his unique contribution to the development of a general
theory of elastic structures.

Mohr and Miiller-Breslau
Mohr, born in 1835, was some sixteen years older than Miiller-

Breslau but nevertheless there seems to have been antagonism and rivalry
between them, to judge, especially, from published comment by the latter,
which is illuminating in various respects and is therefore included in this
chapter. Miiller-Breslau died in 1925, only seven years after Mohr. His
later work was arranged for publication by his son who was a professor
at the Breslau Polytechnikum. The final edition of part of his monumental
work Graphische Statik der Baukonstruktionen anticipated important
developments in theory of structures in the present century.

At the age of thirty-three, Mohr became professor of engineering
mechanics at Stuttgart, having spent the early years of his career in railway
construction in common with many distinguished civil engineers of the
nineteenth century. Then in 1873 he became professor of structural
engineering at the Dresden Polytechnikum where he remained until 1900.
He had the reputation of being an excellent teacher and is still widely
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known for his elegant graphical methods, especially the circle diagrams for
complex stress and strain. His equally elegant analytical approach to the
analysis of statically-indeterminate frameworks seems to have been first
published in English by Swain (1883) who had made known Mohr's
graphical construction for earth pressures (1882). (Indeed, Swain contrib-
uted greatly to the introduction of important German works to the English
speaking world at this time, including those of Winkler and the analysis
of two-pin framed arches by Schultze in 1865 and Frankel in 1875.)

Muller-Breslau was docent and then professor at the Hannover Poly-
technikum for five years before he succeeded to the professorial chair -
of bridge engineering - at Berlin in 1888 on the death of Winkler. While at
Hannover he published his celebrated book Die neueren Methoden (18866).
He was probably unique among the giants of nineteenth-century theory
of structures, in making such important contributions to the design and
testing of aircraft and rigid airship structures that he received the Iron
Cross during the First World War.

The ill-feeling between Mohr and Muller-Breslau seems to have arisen
from their respective attitudes to the work, in theory of structures, of
Maxwell and Castigliano. Muller-Breslau, the younger man, seemed to be
thoroughly up to date with regard to his appreciation of contemporary
research in Europe. He readily (perhaps too readily for Mohr) acknowledged
Maxwell's priority with regard to the principle involved in the particular
approach to the analysis of statically-indeterminate frameworks, which
Mohr discovered in 1874. But there seem good grounds for doubting the
assertion by Niles (1950) that Muller-Breslau regarded Mohr as a 'mere
copyist' since he seemed to give generous acknowledgement to Mohr
whenever appropriate.

Mohr, on the other hand, seemed to care little for the work of his
contemporaries. His first reference to the work of Maxwell and Castigliano
seems to have been in an article published in 1885 (Chapter 5). In a review
of then current technical literature in his book of collected topics in
technical mechanics (1906) he mentions the article of 1885, claiming that
it gives a summary of previous articles about the advantages of the
principle of virtual work, including Clapeyron's derivation of his theorem,
together with discussion of the alternative methods of Maxwell and
Castigliano. He emphasises that his own approach, using virtual work,
affords the solutions to all problems in theory of structures! It is, moreover,
significant that in the book (1906) he credits Menabrea as the author of
the principle of least work, and Castigliano merely with the theorem that
the partial derivative of the strain energy of a linearly elastic structure, with
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respect to an external force, gives the deflexion in the line of action of that
force.

Muller-Breslau provided an interesting and revealing commentary on
Mohr's attitude in a footnote of Die neueren Methoden (18866, p. 188),
where he says:
We cannot avoid mentioning at this point the derogatory verdict of Professor Mohr
in his article (1885) concerning Castigliano's principles and which is based on the
assertion that there is an implicit error in those principles (although they will
provide correct results) in that the statically-indeterminate values X are treated as
independent variables of the work A so that it follows ultimately that the principle

— = 8 does not produce a profitable result for a statically-indeterminate frame-
work, even though it is of itself a correct statement. Mohr overlooks the fact that
if A is taken for the whole framework and X a function of the loading, it is only
necessary to consider the conditions that X must fulfil, in performing the
differentiation, to see at once that the value of 8 is independent of the differential
quotients of the quantities X which depend on P. It also seems to have escaped
Mr Mohr's attention that the principle in question holds true for any individual
part of the framework, such as, for example, the statically-determinate 'main
network' on which the forces in redundants act as external loads... In this way
dA
— can be used to obtain strain compatibility equations of elasticity and,
subsequently, the deflexions.

Miiller-Breslau's own attitude is revealed in his historical survey of
principles relating to the analysis of statically-indeterminate frameworks,
near the end of his book of 1886. He begins by remarking that the first
use of energy devices for elastic structures is to be found in the work of
Clapeyron who used the general condition for equilibrium based on virtual
work 'as developed by Navier'. Also, he noted that Clapeyron used elastic
displacements as virtual displacements to derive what (he said) Lame
described as 'Clapeyron's Law'. Then, credit is given to Maxwell for his
method of analysing statically-indeterminate frameworks (but Navier's
method is not mentioned). Muller-Breslau continues by saying that the first
comprehensive account of the theory of statically-indeterminate frame-
works was based on the principle of virtual work and was given by Mohr
(1874a, 18746) and included derivation of 'Maxwell's theorem' and
influence lines for deflexions of joints of structures. He said that Mohr also
obtained the elastic line of a beam and the deflexion pattern of a framework
by means of the link (funicular) polygon.

Muller-Breslau thought that mechanics of materials and, in particular,
the theory of statically-indeterminate structures was advanced extensively
by the ' brilliant work of the Italian engineer Castigliano who tragically
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died so young'. (Indeed, in his Graphische Statik (1892, vol. 2), he states
his belief that Castigliano's contribution is greater than that of Maxwell,
which, he said, was limited to consideration of a plane framework.) He
quotes especially the principle of least work, saying that the principle 'had
been stated by Menabrea in an earlier work (1858) and independently by
Frankel (1882)'. In addition he wrote:

It is also noteworthy that Daniel Bernoulli also formulated a principle of least
energy of deformation of straight bars and this was mentioned in correspondence
with Euler. Euler made use of this in his famous works Methodus inveniendi curvas
maximi minimive proprietate gaudentes and De curvis elasticis, in which he starts
the investigation of the elastic line of a uniform straight bar: 'ut inter omnes curvas
ejusdem longitudinis, quae non solum per puncta A et B transeant, sed etiam in
his punctis a rectis positione datis tangantur, definiatur ea in qua sit valor hujus

Cds
expressionis — minimus'. Here ds is an element of the arc and R the radius of

curvature. Since —  = — , it may be concluded, EJ being constant, that —ds is
J\ EJ J EJ

Cds
a minimum. Bernoulli called the integral: I— the *vispotentialis\

Mohr's method for deflexion of frameworks
Mohr's dexterity and insight into the theory of beams in bending

led him to an elegant device for calculating the deflexions of the joints of
a pin-jointed bar framework (bridge truss) which he included in the final
section of his article 'Beitrag zur Theorie des Fachwerks' (1875). He
showed that the vertical deflexion of the joints of a chord (boom) of such
a truss, due to the change in length of any bar of the chord, may be
represented by the bending moment diagram for a simply supported beam,
due to a concentrated load. The details of the method are shown in Fig.
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58 (Fig. 30 of Mohr's article 1875) with reference to the framed girder
shown. In order to determine the deflexion due to bar CD which extends
by amount A/, due to the loading applied to the girder, and regarding all
other bars as inextensible (or incompressible), it is necessary to consider
the effect of the rotation about / of the two sections of the girder adjacent
to CD through the small angle Al/a (if a is the distance from / to CD as
shown). The consequent vertical deflexions of points along the chords of
the girder may be shown by simple geometry to be given by the values of
the bending moment, in a simply supported beam of the same length as the
girder, due to a load numerically equal to Al/a, at a point corresponding
to /. Mohr also showed that the effect of the small change in length of
any diagonal bar on the deflexions of the girder, may be described in a
similar manner. Thus, by sketching such a diagram for each bar and having
constructed the influence line for the change in length of each bar, vertical
deflexions of the girder, due to any specified loading, may be determined
by a simple numerical process. (Winkler showed (18816) that the deflexions
of the joints of one chord of a girder may be determined simply by
considering the behaviour of the members of that chord.)

Mohr's elastic centre of frameworks
A particularly elegant contribution to the analysis of statically-

indeterminate structures was made by Mohr in 1881. He considered the
analysis of framed arches with three degrees of statical indeterminacy, as
for an encastre arched rib, and showed how the three simultaneous
equations of compatibility of deformation, relating the statically-
indeterminate forces, can be transformed to three independent equations,
each containing only one quantity relating to those unknowns. Indeed, it
was essentially the transformation to the relevant normal coordinates and
it may be identified with the device of the elastic centre which was defined
originally, it is believed, by Culmann (1866).

Thus, in his article 4On the theory of framed arches' (1881), Mohr sets
out to show how to specify the redundants of a framed arch which is
symmetrical about a vertical axis, so that each redundant features in only
one of the equations of compatibility of strain, which are necessary for the
purpose of finding the redundants. With reference to the structure shown
in Fig. 59 (Mohr's Fig. 1), which is pin-jointed and pinned to rigid abutments
dXA,B, C, D, Mohr considers the abutments to be replaced by a framework
whose bars are rigid or incapable of strain (shown by broken lines) and,
having regard to symmetry, chooses the forces Sl9 S2, S3, in the three bars
shown, as the three redundants of the total ring framework. He specifies
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Fig. 59. From Mohr (1881).

that the distance of the lines of action of Sx and S3 from the line AD are
yx and yz respectively, and are positive or negative depending upon whether
they are below or above AD. With reference to his earlier articles (1874a,
18746) he gives the strain compatibility equations in terms of the unknown
redundants as:

0 = T
(1) 0 = 2u2Gr + lu2ldt + S1Itu1u2r + S2I,u2

2r+S3I,u2Uzr \ [(10.1)]
u^r + SsI,uj

where the summations include the bars of the actual framework only, since
the temperature effects and elasticities, r = l/EF, of those of the imaginary
foundation framework are zero; / being the length; EF the product of
modulus of elasticity and cross-sectional area; and 8t is any temperature
variation. The quantities ul9 u2, w3 are the forces in the bars of the actual
framework due to Sx = 1, S2 = 1, Ss = 1 respectively; and G is the force
in a bar due to any specified external loading.

From considerations of symmetry of the framework considered, Mohr
notes that E w ^ r and Iw2M3r are zero: however, Y*uxu3r is not zero but
by judicious choice of yx and y3 (the 'levels' of Sx and S3 respectively) it
can become zero. It is the method of making that judicious choice which
completes Mohr's task because then equations (10.1) are reduced to three
independent equations in the unknowns Sl9 S29 S3. Mohr proceeded by
specifying u0 and u as the typical tractions which appear in the framework
when the redundants are removed and it is loaded by Po = 1 through D,
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to the left (as shown in Fig. 59), together with a unit clockwise couple. Also,
a force Px = 1 acting, as shown, in the line of St can be expressed as the
sum of Po = 1, together with a clockwise couple yxP0 (Po = 1) due to which,
bar forces w0 and yx u appear in any individual bar of the actual framework.

Thus, for each bar, when a load Po= 1 is applied through D:
(2) Ul = u0+yiu [(10.2)]
and similarly:
(3) uz = u0+y3u [(10.3)]
Now for these values of ux and w3:

lulUsr = Itu0*r + (y1+y3)Xim0r+y1y3Xu*r [(10.4)]
and if this is to be zero, yx must satisfy the condition:

Among the infinite number of pairs of values of yx and y3 which satisfy
this condition, Mohr asserts that those in which either yx or y3 is very large
have some advantage. If y3 is very large in relation to all other quantities,
then by equation (10.5):

(5) * = | S
and
(6) u3=y3u [(10.7)]
Finally, then, subject to this condition and having regard to the zeros
observed by symmetry, equations (10.1) become:

(7) *.—*«%£«» [(10.8)]

y,S.-M--

The product ys S3 = M is the moment of a small force Sz 2X a large distance
from the line AD or, quite simply, the couple due to 53. Thus, the couple
acting at the right-hand side of the framed arch in the absence of Sx and
S2 is clockwise or anti-clockwise, depending on whether M is positive or
negative.

By the highly ingenious method of reasoning described, Mohr had, in
effect, located the elastic centre of a symmetrical framed arch. Thus (as
shown in Fig. 60) forces Sx and 52, acting through a point on the vertical
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Fig. 60. After Mohr (1881).

axis of symmetry at a distance yx below the level of Z>, together with a
couple M, are equivalent to the three forces at the abutment CD, which
provide complete restraint there. In fact, it is as though they acted on the
structure through the medium of a rigid arm, as shown, which is simply
another way of regarding the foundation structure of rigid bars, which
Mohr introduced to deduce his method. He showed that yx is likely to be
negative, so that the elastic centre is above, rather than below, D. Indeed,
it is because of the location of rigid foundation structure, shown by him,
that the article (at first sight) is unfamiliar, though his is the obvious choice
without prior knowledge.

Mohr proceeded to describe an elegant device for the expeditious
determination of the effect of external loads, which is compatible with the
concepts he introduced for his earlier derivation. Such devices for facilitating
computation are typical of the development of structural analysis in
Germany, especially by Mohr, Miiller-Breslau and Winkler; they are the
result of profound appreciation of principles and close attention to detail.

Miiller-Breslau's methods
Miiller-Breslau also gave a lot of attention to simplifying the

simultaneous equations of statically-indeterminate structures, by choosing
the forces representing the redundants in such a way that, at best, each
of those forces appeared in one equation only. Like Mohr, he seems to
have concentrated at first on framed arches for this purpose, as is evident
in his comprehensive article (1884c), 'Vereinfachung der Theorie der
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Fig. 61. From Miiller-Breslau (1892).

Statisch unbestimmten Bogentrager'. He is, indeed, sometimes credited
with priority in the solution of the problem (for example by Pippard &
Baker (1957)). It is interesting to contrast his approach with that of Mohr,
which comparison of Fig. 61 (from Miiller-Breslau's Graphische Statik,
1892, vol. 2) with Fig. 59 indicates. It was, moreover, not long before
Miiller-Breslau simplified conceptual thought in the analysis of statically-
indeterminate structures by introducing the principle of influence or
flexibility coefficients (probably first used by the mathematician Clebsch,
as noted in Chapter 5, but apparently unknown to engineers). Thus,
coefficients of the forces in redundants, such as Z u^r in Mohr's equations
of compatibility of strain, become, in Miiller-Breslau's notation, simply atj

or Stj. Moreover, the method used for their determination then ceases to
overshadow the analytical process.

In his earlier book (18866), Miiller-Breslau expresses the equations of
compatibility of strain in terms of forces in redundants Z and deformations
c caused by external loading, as:
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•..•+aliZi = c1

...+a2iZi = c2 [ ( 1 Q 9 ) ]

while in his later book (1892) he uses the notation:

Thus, not only is 8 used instead of a, but Z replaces c to denote
deformations caused by loads (and temperature effects) and instead of i
redundants with forces Z, there are n redundants with forces X. Moreover,
he specifically defines Zi as I Pm8mi, using the symbol P to denote external
load, and introduces a term for temperature strain. Also, he defines the
n x n matrix of the flexibility coefficients and observes that 8tj = 8jf (in
accordance with the reciprocal theorem) so that the matrix is symmetrical
about the leading diagonal (Hauptdiagonale).

Miiller-Breslau gives the inversion of the equations (10.9) of which the
ith is:

^ = A1Z1+^2Z2+^3Z34-.. .-f/? i iZi+.. .+AwZn [(10.11)]
in the revised notation, and notes that again, the coefficients ft (stiffness
coefficients) of the deformations Z are embodied in a symmetric square
matrix.

Although Miiller-Breslau generalised framework analysis by taking the
fullest advantage of the properties of linearity and enabled the subject to
be placed above controversy over the relative merits of virtual work,
Clapeyron's theorem or Castigliano's theorems for detailed computations,
it is apparent that the rigidly-jointed portal framework was not then a
matter of primary concern. Thus, he apparently did not pursue the
implications of equations (10.11), no doubt because, for lattice frameworks,
they appeared of academic interest, being concerned with displacements
in the lines of redundants rather than of joints. The fact that his early
(1886ft) accounts of the analysis of portal frameworks are confined to
simple forms and his use of Castigliano's least work method (and later the
Maxwell-Mohr method) tend to confirm this impression. Like his
contemporaries he used only the approach whereby the forces in redundants
are the unknowns. The alternative was to await the attention of Ostenfeld
early in the present century.

Muller-Breslau investigated the conditions necessary to render coeffici-
ents, such as 8fj of the chosen basic (statically-determinate) system, zero
for a variety of structures in addition to framed arches. For example Fig.
62 shows a structure for which he chose (1892) two components of reaction
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Fig. 62. From Miiller-Breslau (1892).

at A as redundants and, denoting them by Xa and Xb, proceeded to find
their lines of action so that:

Xa = ^ and Xb = ^ [(10.12)]
daa dbb

Reduction method for deflexions
Curiously, a very elegant device for finding the deflexion of a

particular joint of a complicated bar structure, which Miiller-Breslau gave
in his Die neueren Methoden(l$%6b), seemed to be unknown in Britain until
comparatively recently. It is illustrated in Fig. 13 of that book (shown here
in Fig. 63). The problem is to find the deflexion at m9 the mid-point of the
lower chord of the continuous framed girder Co Cx C2 C3 shown, due to any
specified live loading. It is necessary, first of all, to calculate the forces in
the bars of the complete structure, due to the specified loading (by the
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Fig. 63. From Miiller-Breslau (18866).

Maxwell-Mohr method which is appropriate for such structures and
depends upon equations relating the forces in the chosen redundants and
the loading, based upon compatibility of elastic displacements) and then
to find the corresponding changes in length of all of the bars which are
relevant. Thus, it is the span Cx C2 alone which is relevant, as shown in
Fig. 63(6), with unit force applied at m and bar forces S\ because:

1*W = I V A . [(10.13)]
Ci

That is, the actual small displacements Sm of m and As of a bar, found
by the analysis of the complete structure for the specified loading, are a
possible compatible set with regard to any system of forces in equilibrium
in the structure Cx C2 by itself, in particular that caused by unit load at
m, whereby Sm is determined by equation (10.13). It is likely that this device
(Reducktionsdtz) was well known to Mohr as a protagonist of the principle
of virtual work in theory of structures.

Miiller-Breslau's principle
The contribution to theory of structures for which Miiller-Breslau's

name is perhaps best known nowadays, is concerned with influence lines
for statically-indeterminate structures, a topic which clearly attracted a
great deal of his attention. In 1883 he published an article on influence lines
for continuous structures with three supports, which was repeated in
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(a)

F

Fig. 64. From Miiller-Breslau (18846).

substance in 1884 (also in Die neueren Methoden, 18866, his Fig. 97). The
important feature is apparent from the outset. Thus, his Figs. 1 and 3 of
the second article (1884) are shown in Fig. 6A(a) and (b) respectively; the
former shows a beam 012 on three simple supports at 0, 1 and 2, with live
loads Px and P2. In Fig. 64(6) the curve ACB, with ordinates / in the line
of action of Pv and y" in the line of action of P2, represents the effect of
introducing a small arbitrary displacement c in the line of action of the
reaction C of the intermediate support to those loads. On the basis of the
reciprocal theorem, Muller-Breslau shows that the reaction C is given by:

C = !(/>,/ + />/') [(10.14)]
c

and that the curve ACB represents the influence line for C. Thus the
influence line for the force in any element of a structure is represented by
the deflexion pattern produced by the introduction of a small deflexion in
the line of action of the force in the chosen element. This is usually called
'Miiller-Breslau's principle'. It is clearly related to Mohr's theorem
concerning influence lines for deflexion of linearly elastic structures
(Chapter 5) but it is more general in that it is also relevant to statically-
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determinate structures. (Other structures considered by Muller-Breslau in
his article include bar frameworks on three simple supports.)

Miiller-Breslau's contribution to the analysis of frameworks with rigid
joints, was concerned especially with secondary stresses in bridge trusses
(1886a), as noted in Chapter 11, though he was among the first (1886) to
analyse rigidly-jointed, portal frameworks.

Frankel and Winkler
Frankel and Winkler also made profound contributions to the

further development of structural analysis in the nineteenth century.
Frankel, born in 1811, was the senior of the distinguished German school
which established leadership in theory of structures during the century,
while Winkler was Mohr's contemporary; they were both born in 1835,
some sixteen years earlier than Muller-Breslau. Both Frankel and Winkler
were railway engineers at first; the former became docent and professor
at the newly founded Polytechnikum of Dresden (where he was subsequently
joined by Mohr), the latter became professor of bridge and railway
engineering at Prague, then Vienna and finally Berlin, where he died in 1877
at the age of fifty-three and was succeeded by Muller-Breslau.

Their close collaboration is revealed in the comprehensive treatment of
influence lines by Frankel (18766), following Winkler's discovery of the
concept (1868) almost simultaneously with Mohr (Chapter 5), and by
Frankel referring the manuscript of his celebrated paper (1882) on a
proposed energy principle, to Winkler for the latter's approval. (Frankel's
action resulted in Winkler's advice, as noted in Chapter 8, that he had been
anticipated in principle by Castigliano several years earlier.) The out-
standing merit of that paper is the originality and variety of the examples
of application of the principle, including a novel approach to the elastic
theory of suspension bridges (Chapter 9). Frankel is also widely believed
to have originated the reduction method with virtual work for calculat-
ing deflexions of structures in the manner described by Muller-Breslau
(18866).

Both contributed extensively to application of the new analytical devices
to bridge design and both contributed to the analysis of secondary stresses
in bridge trusses - Frankel, by devising an extensometer (1881) and in situ
measurements on railway bridges; and Winkler by an analytical method
(Chapter 11). But Winkler is probably best known nowadays, for his theory
of bending of thick curved elements, including crane hooks (1858), theory
of beams on elastic foundations and continuous beams.
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Crotti
An important later contribution is due to Crotti, one aspect of

which is considered in Chapter 8. In the introductory chapter of his
celebrated monograph (1888), he reviews the development of theory of
elasticity and mentions especially, Galileo, Hooke, Mariotte, Coulomb and
Navier. Thus, he credits Coulomb with having correctly determined the
position of the neutral axis of an elastic beam, and remarks on the error,
in that respect, in Navier's course of lectures of 1819, which was corrected
in his lithographed notes of 1824. But Crotti subscribes to the belief that
modern theory of elasticity is due to Navier. Having turned his attention
at some length to Green and his theorem and its application to energy
devices, he pays tribute to Saint-Venant and then to Clapeyron for his
theorem of the three moments for continuous beams. He accords warm
acclaim to Lame's Legons (1852) and notes an indirect similarity of
approach to that of Green (1839) in some important respects. The
'brilliant' contribution, due to the genius of Helmoltz (1847), is noted with
regard to general application of the doctrine of energy and the revelation
of the principle of duality ' which always exists between displacement and
force' (Chapter 7).

Crotti's approach (1888) to the theory of elastic structures is abstract
in nature and he does not concern himself with application to other than
trivial problems, to the detriment of the appeal of his work to engineers.
His derivations are based on energy functions, including elastic energy
(work) which he denotes by the symbol L. He apparently neither mentions
nor uses the principle of virtual work, however. Denoting force by F and
displacement in its line of action by / , he shows that for any two forces
Fr and Fs acting upon an elastic solid or structure, causing displacements
fr and/ s respectively:

F F

by partial differentiation. By partially differentiating the first with respect
t o / s , and the second with respect t o / r , he concludes:

which is tantamount to a statement of the reciprocal theorem. Indeed,
Crotti later uses the designation asr for dFr/dfs, and ars for dFs/dfr and he
expresses forces and loads in terms of linearly elastic displacements as:
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Then he expresses the displacements in terms of the forces as:

F,+ ... [(10.18)]
J2 = ^21 M ' "^22^2 '

where Ars = Asr (that is, the flexibility coefficients (Ay), as well as the
stiffness coefficients (atj), possess the property of reciprocity).

Crotti also showed that for a quantity SA = ZfSF: dA/dFr =
fr:dA/dFs = / , : . . . , and thence that d/r/dFs = dFJdFr.

Explicit recognition and demonstration of the principle of duality, with
regard to the forces and displacements of elastic systems, is a unique
feature of Crotti's work, in comparison with that of his contemporaries.

Weyrauch
Finally, the contributions of Weyrauch (1845-1917), professor at

the Polytechnikum of Stuttgart (after his experience as a railway engineer)
are significant. He wrote several important and comprehensive books on
theory of elasticity (1884, 1885); bridge structures, including continuous
beams (1873, 1888); and elastic arch structures (1896). He is, moreover,
widely credited for his early application of influence lines to bridge design
(including the terminology). At the end of the century he wrote an article
(published 1901) on the history of bridge building, in which he calculates
the limiting span of a steel suspension bridge as 3730 m, assuming a dip
of one-third of the span and a safety factor of three.

Two of his books (1887, 1888) are of unique interest, being devoted to
the analysis and design of continuous structures which retain statical
determinacy, including a very detailed account of methods of analysis. He
seems intent on demonstrating that a judicious approach to the economic
design of bridge structures renders statical indeterminacy unnecessary, and
that in circumstances where it is allowed to occur (such as the so-called
'double Warren girder'), use of the device of superposing two symmetrical
statically-determinate systems suffices for design purposes. Indeed, he
developed statical determinacy to a remarkable extent (see also Chapter
4).

Weyrauch was especially interested in the doctrine of energy, including
energy derivatives and he embraced thermodynamics as well as elasticity
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(as his first book on theory of elastic solids (1884) indicates, in spite of its
title; for there, he was concerned to retain a broad approach, to the extent
of including intermolecular aspects of energy). He derived (1884) the
variation of what became known as the complementary energy of an elastic
solid but, unlike Crotti, did not develop it, though he referred to the energy
method of Frankel, as well as to that of Castigliano with application to
frameworks. In the same work (like Miiller-Breslau) he derived what is
commonly known as the device of 'tension coefficients' for dealing with
the equilibrium equations of space frameworks.

His paper on energy theory and statically-indeterminate systems (1886)
is noteworthy (as is his article on Mayer's work on thermodynamics).
Weyrauch was indeed an accomplished scientist generally, as well as an
outstanding contributor to the further development of theory of structures,
with particular reference to bridge engineering.

Notes
Wilson (1897) seems to have been among the first to use the concept of
influence or flexibility coefficients in Britain, in his investigation of continuous
beams. His notation is unique but somewhat tedious.
Weyrauch contributed significantly to theories of ultimate working strength of
materials for design purposes (1880) and to a new theory of retaining walls
(Erddruckes) in Zeitschrift fur Baukunde (1878).



11
Secondary effects in structures

For the purpose of this chapter, secondary effects are understood to
include dynamic stresses as well as those which arise from the nature of
construction details, especially the rigidity of joints (connections) in
triangulated trusses (bridge girders). The term secondary stress is usually
associated with these latter, following the initiative of Professor Asimont
of the Munich Polytechnikum in 1877. In that year a prize was offered by
the Polytechnikum (as noted in Chapter 1) for a method of calculating
those stresses in trusses (termed Sekundarspannung by Asimont, to distin-
guish them from the stresses due to the axial or primary forces in the bars,
that is, Hauptspannung). Dynamic stresses, on the other hand, became the
subject of research in the nineteenth century, due to the failure of a number
of iron railway bridges, which were caused by the passage of trains.

Secondary stresses
According to Grimm (1908), Asimont formulated the problem of

secondary stresses in rigidly-jointed trusses and suggested that, since the
resultants no longer pass through the panel points, a solution might be
afforded by 'Euler's equation of the elastic line'. In the event, the prize
was awarded in 1879 to Professor Manderla and his solution was published
soon afterwards (1880), although an approximate solution by Engesser in
which chords were treated as continuous and web members as pin-jointed,
appeared a year earlier (1879). Manderla's solution also contained the
principles of analysing frameworks with rigid joints, whose bars resist
loads, primarily by bending; and it included the relationships between
terminal bending couples and the slopes and deflexions of bars.

Soon after Manderla's solution was published, the substance of a lecture
in Berlin, by Winkler, on secondary stresses appeared (18816) in which he
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remarked that for some years past he had been investigating the subject.
Then Landsberg (1885) contributed a graphical solution based on an
assumption which was similar to that of Engesser, whereby the joints of
a truss provide continuity of the chords only. In view of the complexity
of Manderla's method, analytical solutions were contributed by Miiller-
Breslau (1886a) and Mohr (1892), in order to ease the process of analysis;
and W. Ritter (1890, vol. 2) introduced a graphical aid to the analytical
process. Engesser's celebrated book (1892) on secondary stresses, provided
a comprehensive treatment of stresses, other than primary stresses, in
bridge trusses and it seemed to be adopted as the standard work of
reference. But Winkler's masterpiece Theorie der Briicken (1881a, vol. 2)
contains an extensive and impressive treatment of secondary stresses in
bridge trusses.

The researches of Manderla, Winkler, Mohr, Miiller-Breslau and Ritter,
included the assumption that the rigidity of joints of trusses had a
negligible effect on the deflexions of joints, due to imposed loads. (Indeed,
since the rigidity of joints would be expected to reduce deflexions slightly,
this assumption erred on the side of safety, it seemed.) The first step in
calculating secondary stresses consisted, therefore, in finding the deflexions
of joints by analytical or graphical means, on the basis of a pin-jointed
framework. Then the bending of the rigidly-jointed bars was analysed for
compatibility with the calculated deflexions, and the secondary stresses
were evaluated. Manderla's investigation of the bending of the bars was
very detailed and included the effect of change in bending stiffness, due
to the axial or primary forces. When that effect is neglected, his analysis,
like that of Winkler, revealed the equations:

[(11.1)]

(in Winkler's notation r' = (2m' — m")a/6EI and r" = —(2m" — m')al6EI)
for a bar of length / (or a) and flexural rigidity El, due to terminal couples
Mx (or m') and M2 (or m") (Fig. 65) where <j>x (or r') and <f>2 (or r") are
the changes in slope of the ends of the bar, due to those couples.

Miiller-Breslau's attempt to simplify the analysis suffered from a surfeit
of equations for all except the simplest framework. He neglected the effect
of the primary forces in bars on their stiffness in bending, presumably on
the frequently justifiable assumption that the bars would be of substantial
section before secondary stresses merited investigation. Then, having
determined the geometrical consequences for individual panels of deflexions
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M

Fig. 65

of joints, due to primary stresses, he obtained relationships in terms of
terminal bending moments of bars to satisfy the condition that each joint
rotated as a whole without change of the angles between the connected
bars. Having introduced the condition of zero resultant couple at each
joint, sufficient equations emerged to enable all bending moments to be
found, and thence the determination of the secondary stresses. Miiller-
Breslau further developed the application of his method to obtain influence
lines for bending moments in the individual bars of a truss. Grimm (1908)
gives a concise account of the method.

While differing from Miiller-Breslau's method in conceptual detail,
Ritter's method also concentrates on the terminal bending moments of bars
as unknowns, but the equations to be solved simultaneously are arranged
in a manner whereby a graphical analogy, using the funicular polygon,
alleviates tedious computation.

Like Winkler but in contrast with some earlier investigators of secondary
stresses, Mohr prudently chose the angles of rotation of joints of a truss,
caused by secondary bending of bars, as unknowns, since they are related
to the terminal bending moments of a bar by the inverse of equations (11.1).
Thus, for any bar ij connecting joints / andy (Fig. 66):

Mt = ̂ (2^ + 4,

where: Mt is the bending couple at the end of the bar at which it is
connected to joint /; and M; is the bending couple at the other end of the
bar; fa and fa are the (small) rotations of joints / andy of the truss; and
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i/rfj is the small angular rotation of a straight line through those joints;
El and /y are the flexural rigidity and length of the bar ij. The quantities
\Jftj may be calculated with sufficient accuracy from the primary or axial
strains of the bars, and this Mohr achieved by using the principle of virtual
work. There then remain the equilibrium conditions, that for each joint:

IM, = 0 [(11.3)]

since there is no resultant couple at a joint and these equations are clearly
as numerous as the unknowns <f>{ (representing joint rotations and changes
of slope of the ends of bars which are rigidly connected together at
individual joints). With the values of x/r^ known, they are sufficient to
complete the solution. Subsequently, the bending moments (and thence the
secondary stresses in bars) are found by equations of the kind (11.2).

Mohr also considered means of alleviating the labour in the solving of
simultaneous equations of the type (11.3), including aspects of symmetry,
wherever possible, and successive approximations.

The slope-deflexion method for rigidly-jointed frameworks in general,
was clearly foreshadowed by the solution of the problem of secondary
stresses, especially by Manderla, Winkler and Mohr.

Dynamic effects
The study of the dynamics of structures was stimulated, it seems,

mainly by the effect on iron railway bridges of the heavy loads moving at
speed. But the failure of iron-chain bridges due to violent oscillation had
also aroused the interest of scientific investigators who concentrated
initially on the problem of the dynamic behaviour of an inelastic suspension
chain (Rohrs, 1851; 1856). Then Tellkampf (1856), in his review of the
practical theory of suspension bridges, includes an elementary approach to
the problem of their oscillations, which is based on the theory of impact.
Indeed, the problem is mentioned by Moseley (1843) within his account
of the theory of resilience and impact, for which he acknowledges
Poncelet's influence, especially with regard to the use of energy in the study
of the dynamics of elementary elastic systems (such as an elastic rod
subjected to a load suddenly applied to its extremity). Thus, Moseley refers
to the fracture of the chains of suspension bridges due to oscillations caused
by the 'measured tread of soldiers' and in a footnote (p. 496) he quotes
the example of the Broughton Suspension Bridge, near Manchester. In the
same footnote he quotes Navier (from his Traite desponts suspendus, 1823)
as showing that the duration of oscillations of the chains of a suspension
bridge may extend to nearly six seconds, and he continues: 4 there might
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easily, in such cases, arise that isochronism at each interval, or after any
number of intervals, between the marching step of the troops and the
oscillations of the bridge, whence would result a continually increasing
elongation of the suspending chains'. The latter aspect refers to his
elementary treatment (in the same chapter) of the phenomenon which later
came to be known as 'fatigue of metal', due to repeated variations of load,
being the ultimate reason for the fracture of suspension chains and
consequent collapse of the bridges. The true complexity of the dynamic
behaviour of suspension bridges was not, however, to be understood until
the twentieth century, but safety was achieved (notably for the Niagara
Bridge, 1855) by the adoption of systems of auxiliary stays and girders of
relatively high stiffness. Incidentally, it is noteworthy that by 1857 Cubitt
and Vignoles were advocating the stiffened suspension bridges as an
economical and safe form for railway purposes. This they*apparently did
at the Dublin meeting of the British Association for the Advancement of
Science (Todhunter, 1893), quoting the successful Niagara railway bridge
and emphasising the saving in weight of material with regard to the
economy afforded by this form of bridge construction.

Homersham Cox (1848) followed Moseley in applying Poncelet's treat-
ment of resilience, in an article on the dynamical deflexion of railway
bridges (presumably he was stimulated by the circumstances relating to the
Royal Commission of 1847, noted in Chapter 1). Using the law of
conservation of energy in the form of the principle of vis viva, with
simplifying assumptions involving neglect of the kinetic energy associated
with actual horizontal motion of the travelling load causing the deflexion,
Cox deduces that the maximum statical deflexion which that load would
produce cannot be more than doubled when motion takes place at any
velocity. This conclusion is criticised by Stokes (1849) at some length, who
nevertheless writes that Cox treats the subject in 'a very original and
striking manner'.

Later (1849), Cox addresses himself to the problem of the deflexion of
a uniform elastic beam when it is struck at its mid-point by a mass, in the
form of a ball, moving horizontally in a direction normal to the axis of
the beam, assuming inter alia that after the collision the ball becomes
attached to the beam. For this purpose he derives the equivalent mass of
the beam, with reference to its mid-point, by considering its kinetic energy
in an assumed mode of dynamic deflexion. Then he uses the equation of
conservation of momentum to determine the velocity of the mid-point after
impact, in terms of the initial velocity of the ball, and finally he uses the
equation of conservation of energy to calculate the resulting maximum
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elastic deflexion of the beam. According to Todhunter (1886) Cox's result
is in general agreement with an experimental study of the problem by Eaton
Hodgkinson. It is noted that Navier (1823) considered the problem of
longitudinal impact of elastic bars, a problem which attracted the attention
of his pupil, Saint-Venant (1867) who earlier (1857) had attacked the
problem of transverse impact on an elastic beam (and its resulting
vibration) in a more sophisticated manner than that adopted by Cox.
(Saint-Venant's work on longitudinal shock and vibration was reported
in Britain by Rankine in 1867 in a short article in The Engineer.)

It was the Royal Commission, appointed on 27 August 1847, 'for the
purpose of inquiring into the conditions to be observed by engineers in
the application of iron in structures exposed to violent concussion and
vibration', following the fatal accident when an iron railway bridge at
Chester collapsed (as noted in Chapter 1), that stimulated perhaps the
most significant research of the century into dynamics of structures. The
Rev. Robert Willis, Jacksonian Professor of Natural Philosophy at
Cambridge and a member of the Royal Commission, undertook an
extensive experimental investigation of the effect of travelling loads on
metal structures, using facilities for large-scale experiments at the Royal
Dockyard at Portsmouth. In this work he was assisted by Captain Henry
James, R.E., F.R.S. and Lieutenant Douglas Galton, R.E. The results of
their study are contained in appendix B of the' Report of the commissioners'
of 1849. At the same time, Willis attempted mathematical analysis and
obtained a differential equation, for the solution of which he consulted
Stokes whose paper (1849) on the subject contains an extensive analytical
investigation of the whole problem, including, as noted above, comments
on the work of Homersham Cox. It was assumed at first that the mass of
the travelling load is large in comparison with that of the structure but,
subsequently, Stokes examined the other extreme when the mass of the load
is negligible and found that the effect is produced essentially by a constant
force traversing the structure.

The Portsmouth experiments indicated that dynamical deflexion, of as
much as three times the statical value, is likely at higher speeds of the load,
but measurements on actual bridges did not appear to confirm that speed
had such a marked effect. Willis accordingly investigated (at Cambridge)
the discrepancy, using an extremely simple experiment, and he found that
the effect when large deflexions are induced is due to forces associated with
the trajectory of the load. Stokes provided an analytical solution in support
of these findings but succeeded in obtaining only an approximate solution
of what emerged as the more relevant problem of the moving load whose
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mass is much less than that of the structure. He showed that, then, the
dynamical deflexion depends upon the ratio of the periodic time of the
fundamental mode of vibration of the structure to the time taken for
the passage of the load over the span.

Poiree (1854) gives details of experiments on arched ribs to determine
deflexion, due to various effects, including impact and travelling loads such
as railway trains. He obtains some measure of agreement with the results
of the researches of Willis and Stokes.

Willis and Stokes were followed by Phillips (1855), Mallet (1860),
Winkler (1860), Renaudot (1861) and Kopytowski (1865). Ultimately,
Saint-Venant's treatment (1883) of the problem was published, which
included his corrections to the work of those earlier investigators, including
Willis and Stokes. But the essential value of the results of Willis and Stokes,
in relation to the behaviour of iron railway bridges, remained unimpaired:
otherwise, Saint-Venant's work alone represented a significant improve-
ment in principle.

Mallet (1860) proposes a simple method of determining the deflexion
of bridges, due to travelling loads, similar to that of Cox (1849), though
he quotes Morin (1853). Also, Mallet applauds the work of Willis, Stokes
and Phillips but regards that of the first as too sophisticated for practical
men and does not appear to acknowledge that acceptance of their findings
is at variance with his own theory.

Winkler's treatment of the problem of travelling loads, contained in his
memoir of 1860, is inexact and reminiscent of Homersham Cox whose
work, like that of Stokes and Phillips, seems to have been unknown to him.

Renaudot (1861) concerned himself with the effect of a rapidly travelling
continuous load, a problem which was investigated by Kopytowski (1865)
who used similar assumptions and an approach closely related to that of
Phillips. Kopytowski also refers to Willis and Stokes, but his main
objective is to extend Renaudot's work in detail. The value of his research
is limited by the same errors as those made by Phillips and Renaudot.
Indeed, all these researches are of somewhat trivial historical interest
nowadays, with the exception, of course, of those of Stokes and Saint-
Venant, which have an enduring quality. Todhunter (1893) reviews them
all in some detail.

Toward the end of the century, the study of the dynamic aspect of
structural behaviour was greatly enhanced by the work of Rayleigh and,
especially, by his Theory of sound (1877). Indeed, it may be said that
Rayleigh's work heralded the modern era of dynamics of elastic systems
including, especially, engineering structures.



Appendix I
A note on C. L. M. H. Navier

The following is an abridged version of the author's free translation of
Navier's Obituary Notice of 1837, by Prony, which is included in the 1864
edition of Navier's Legons, edited and with additional notes by
Saint-Venant.
Louis-Marie-Henri Navier, officier de la Legion d'Honneur, member of l'lnstitut
Royale de France and Divisional Inspector of le Corps Royale des Ponts et
Chaussees, was born in Dijon on 15 February 1785. His father was a lawyer of
distinction and died at an early age as a result of the excesses of the revolutionaries.

Navier, orphaned at fourteen years of age, had the good fortune to find a second
father in an uncle, numbered with reason among the notables of le Corps des Ponts
et Chaussees, M. Gauthey, who, having been an engineer for the region of
Bourgogne, became Inspector General of bridges and highways following the
departmental organisation of France; he died 14 July 1807, after having designed
and accomplished works of the greatest importance including the remarkable
constructions mentioned later in this notice.

Navier's education, supervised by Gauthey, had (not surprisingly) that emphasis
on scientific culture which would be familiar to an engineer; the progress of the
young pupil was such that in 1802 he presented himself for examination for
admission to l'Ecole Polytechnique and was among the highest in order of merit;
after a brilliant record there, he entered l'Ecole des Ponts et Chaussees in 1804,
and in 1808 obtained the qualification of ordinary engineer.

Following Navier's courses at l'Ecole Polytechnique and l'Ecole des Ponts et
Chaussees, Gauthey devoted what little amount of leisure time his last four or five
years allowed to interesting his nephew in those aspects of his own work which
would be useful to the young student. The result of that association was the attitude
and outstanding facility acquired by Navier for dealing with problems wherein
theory and practice are intertwined, a facility which had tremendous influence for
good on his later work. With such a background he found himself able to make
the best use of his ability, in an epoch of life in which the majority of those who
had inclinations to the sciences were denied facilities for instruction. His first major
publications were acclaimed and his scientific career began. At the time of his death,
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Gauthey had nearly completed his accounts of bridges and canals and these were
eagerly awaited: Navier, who did not inherit his uncle's fortune, made great
sacrifices to obtain the rights of those manuscripts and complete them for
publication.

The Traite des ponts appeared in 1813 [Author's Note: here Prony appears to
have overlooked the fact that the first volume appeared in 1809] and consisted of
two large volumes. (The first volume was reprinted in 1832 with substantial
annotations and additions.) This treatise, the most complete of all to have been
published on the same subject was, above all, noteworthy for the improvement
which it afforded in the actual level of knowledge, and for Navier's addition of
a large number of notes which, in themselves, provided a very instructive separate
work.

The first volume contained historical details and descriptions of bridges (both
ancient and modern) which are, in themselves, of much interest, not only to
engineers, but also to those who, while not possessing scientific knowledge about
them, are simply interested in the history of their art. Navier provided, at the
beginning of this volume, a biographical note about his uncle.

Though this treatise on bridges first appeared in 1813, it would probably have
appeared earlier, if Navier had not been interrupted by a mission to Rome on the
instructions of M. le comte Mole (Director General of bridges and highways) to
undertake important projects: namely the reconstruction of the bridge of Horatius
Codes, numerous quays throughout Rome and ways of protecting the holy city
from encroachment of the Tiber.

The writer had the satisfaction of being in Rome when Navier was working on
those important projects which are now in abeyance due to well-known political
events.

A third volume of the works, left in manuscript by Gauthey, and published by
Navier, deals with navigable channels. This volume, date 1816, gives a collection
of seven memoirs containing (independent of general matters concerning construc-
tion of canals) very detailed notes on the main canals of France, as constructed
rather than planned, and particularly the Canal du Charolais, which has sub-
sequently taken the characteristic name of the ' Central Canal' and which was
described by Gauthey who also supervised its construction.

Navier, in publishing his uncle's manuscripts, had fulfilled a heart's desire. Love
of science alone also made him undertake the republication of two other
commendable works, by Belidor, which had been rewritten and brought up to date
during the first part of the last century, namely La science des ingenieurs dans la
conduite des traveaux des fortifications d'architecture civile (1729) and Architecture
hydraulique (1737, vol. 1). Navier's edition (1813) of Belidor's book of 1729 is
enriched with numerous notes and additions among which are those concerning
earth pressures, the form and dimensions of retaining walls, and the theory of
arches. Volume 1 of Belidor's later work (1837) is a treatise on mechanics in
which the theories of equilibrium and motion of solid bodies and fluids are
presented with their applications in engineering practice.

In addition to scientific work, Navier was concerned with the construction of
three bridges over the Seine: the bridges of Choisy, Asnieres and Argenteuil, which
consisted of circular stone arches. The interest of the Government in suspension
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bridges and railways caused the Directorate General of bridges and highways to
give every facility to enable French engineers to complete their studies by becoming
familiar with these new kinds of construction; and Navier, having been sent to
England and Scotland several times, was charged with the task of providing the
information and documentation for that purpose.

The memoir prepared by Navier on suspension bridges, which he published in
1823 (after his first two visits), has been judged a very complete and original
account of the subject. Its formal recognition by the Academy of Sciences followed
a report on it by Messieurs Prony, Fourier, Fresnel, Molard and Charles Dupin;
the author, by his recording and evaluation of existing knowledge of suspension
bridges, being credited with originality and depth of understanding of theoretical
and practical mechanics.

From this time, Navier was consulted widely regarding the engineering of
structures in France and abroad.

Soon after, Navier was named a member of l'Academie Royale des Sciences and
this reward, at so early an age, surpassed his greatest hopes. Unfortunately, it was
the destiny of this distinguished engineer to provide a fresh example of the hazards
which, from time to time, upset the lives of the most talented. Navier was at the
peak of his career when he had to suffer an unjust and cruel injury to his reputation
as an engineer: it will be obvious that I am referring to the Pont des Invalides.

This bridge, of 155 m span, was nearly equal in length to that of Telford across
the Menai Straits.

For the purpose of understanding the merit of the theoretical and experimental
research which had been done with regard to finding the forces on the various
elements of the Pont des Invalides, it suffices to recall that the chains were to
withstand forces of four-and-a-half times greater than those of the bridge built in
1820 over the River Tweed by Captain Brown, a bridge which was then the largest
available for study.

Paris had looked forward to the monumental spectacle of this huge curve with
four Egyptian columns; engineers themselves were eager to inspect the novel
structural features and details of this great structure, devised by Navier for a load
of 67000 kg (the weight of nearly one thousand men).

The bridge was practically finished when a slight movement appeared in the chain
anchorage pits: this movement was aggravated on the Champs-Elysees side by the
fracture, during the night of 6-7 September 1826, of one of the city's water
conduits, which had a diameter of 0.32 m. The resulting torrent of water (under
a head of 30 m) from the Chaillot reservoirs formed a pool alongside incomplete
excavations and led to infiltration of earthworks which were already finished.

It was necessary from that time to put the structure on scaffolding; the season
was late, there was dread that the temporary works would not be dismantled before
the extreme high tides and winter frosts; moreover, a paltry matter of money
delayed the beginning of the emergency work which was necessary to consolidate
the anchorages of the suspension chains, and it was decided to adjourn repairs till
the following season and to dismantle the deck and the chains.

Sadly, it must be recorded that national pride in progress was severely deprived
because the work of the Pont des Invalides was never made good. On the contrary,
work that had been completed was demolished and no trace was left of this great
and beautiful enterprise.
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The demolition of the Pont des Invalides seems to have been due to three factors:
1. opposition by the City of Paris to the construction of a road crossing the

Champs-Elysees to reach the bridge;
2. disagreement between the company and administration, concerning payment

for the work of reinforcing the foundations;
3. the transaction, over and above these difficulties, by which the company

became obliged to give up the Pont des Invalides in order to retain concessions
relating to the construction of three other bridges over the Seine.

These details about the Pont des Invalides were published at the time by order
of the administration (Monitem, 29 February 1828) and reproduced with very
interesting elaborations by Navier, in the 1830 edition of his memoir on suspension
bridges, under the heading * Notice sur le Pont des Invalides'.

On his first tour of Britain, Navier gave attention to the excellent roads in that
country and reported to the administration in 1822 regarding the Macadam
process, as published in Annales des Fonts et Chaussees (1832, 1st semester). This
study was concerned as much with the remarkable consequences of the method
of construction as with the details of the method, namely:

1. improved drainage.
2. foundations to eliminate irregularities of the ground.
Later, Navier's collaboration with leading British engineers and his multifarious

researches on matters arising from his report on roads, including the usage and
the legislation governing them, led to the publication of his memoir on road traffic.
His opinions were controversial but the outcome of public opinion and discussions
increased his standing among engineers.

A new tribute was to be paid to Navier's special studies concerning such matters :
a commission had been formed by the Director General of bridges and highways
to produce regulations for road traffic on the basis of that knowledge and Navier
was chosen by the administration to serve on the commission and was unanimously
elected by his colleagues to be the secretary and reporter of its work.

Navier was also among several engineers sent to Britain to study railways, and
the remarkable report of those engineers, in Annales des Ponts et Chaussees, was
due to his observations and combination of practical and scientific knowledge: the
report was used as the basis for the construction of the main railway line from Paris
to Strasbourg.

Navier was awarded la Croix de la Legion d'Honneur in recognition of his
indefatigable services.

As well as leading in practical engineering projects, Navier excelled also as a
professor and as an academician.

Appointed (in 1819) supervisory professor of applied mechanics at l'Ecole
Royale des Ponts et Chaussees, and titular professor in 1831, he discharged his
duties to the great advantage of both his pupils and science. His lectures
(lithographed and distributed to the students who had attended his courses and,
in general, widely circulated among engineers) afforded the Corps that instruction
which was increasingly necessary for the greatest advantage to be taken of scientific
principles in practice.

A vacancy for a professor of analysis and mechanics at l'Ecole Royale
Poly technique occurred at the end of 1831, Navier was appointed and filled the
office for the last six years of his life. He is renowned in this famous school for
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his methods and the clarity of his work and he performed a great service in
lithographing his lectures, the whole of which formed four volumes (two for the
first year and two for the second year), one volume of each pair containing analysis
and the other, mechanics.

Navier was distinguished within FAcademie Royale des Sciences, to which he
was elected 26 January 1824, for his outstanding services to that learned body,
including the numerous reports on works that he submitted to it.

On 23 August 1836 an illness carried Navier away unexpectedly from the sciences
and his numerous friends and colleagues; I say his numerous friends because he
could count among them, all those with whom he associated frequently. Although
by nature a little stolid, he was none the less given to sincere and durable
friendships, and with this disposition were other qualities with which he was
endowed in high degree; the details of his private life are as honourable as his public
life and commensurate with his talent.

A cortege of engineers and of pupils accompanied Navier's funeral procession:
three engineers, Messieurs Emmery, Coriolis and Rancourt gave addresses at the
time of burial and their brief but meaningful speeches were heard with close
attention.
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A note on Carl Culmann

Carl Culmann was born 10 July 1821 in Bergzabern, Rheinpfalz, and died
in Zurich, 9 December 1881.

After completing his studies in Karlsruhe he 'worked on railway
construction in mountainous country and later (1848) was transferred to
the office of the Royal Railways Commission in Munich.

In the summer of 1849 the Railways Commission sent him on a two-year
study tour of the British Isles and the U.S.A. The period of this tour
coincided with the completion of the wrought iron Britannia (tubular)
Bridge by Robert Stephenson and with the end of a phase of intensive
development of wooden bridge construction in the U.S.A. The substance
of Culmann's report of the tour was published in Allgemeine Bauzeitung
in 1851 under the title 'A description of the latest advances in bridge,
railway and river-boat construction in England and the United States of
North America'. It aroused great interest and established Culmann's
reputation as a young engineer with outstanding qualities of perception.
Indeed, it seems to have been a material factor in his leaving the railway
industry in 1855 to teach at the newly established Federal Polytechnic
Institute at Zurich, where he believed he would have greater opportunities
for combining theory and practice of engineering.

Culmann clearly recognised the urgent need to develop Navier's methods
for application to the design of railway bridges and his report emphasised
methods of calculating the forces in the new bridge forms to enable them
to be exploited with confidence in their safety.

Culmann was not alone in recognising the need for precise theory or in
attempting to revolutionise the teaching of construction statics of his time
for, in the same year (1851) that his report was published, Schwedler
published a report on his own investigation, with essentially the same
conclusion. If, later, Culmann's work is to be regarded as more significant,
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this is to be attributed more to the great regard in which his later
achievements were held than to any superiority of his findings over those
of Schwedler.

Timoshenko (1950) has shown that, before Schwedler and Culmann,
structures had been accurately analysed by Jourawski, in Russia, and even
before him by Whipple, in the U.S.A., who had published a book entitled
An essay on bridge-building (1847), which contained such structural
analysis. It is astonishing that Culmann - to judge from his report - did
not know of this book. Perhaps he paid little heed to earlier analysis (after
the fashion for failure to mention earlier work) because he felt himself
capable of carrying out the investigations alone and independently.

The almost simultaneous development of a theory of structures by four
different engineers, whose individual independence is scarcely to be
doubted, probably had its origin, not only in a strong demand from the
world of engineering of that time, but also in the existence of those
elements of the theory, which invited development.

But Culmann was unique in his insight into the power of graphical
techniques of analysis. French engineers, like Poncelet and Cousinery, had
indeed already sought graphical solutions, but they were merely either
substituting drawn constructions for certain computational steps, or were
translating former methods into the language of drawing.

Culmann's goal was more revolutionary: he sought to derive geometri-
cally, the relationships occurring in the theory of structures. His employ-
ment of the newer geometry, the 'geometry of situation', afforded him
insight into important structural relationships and led him, by clearly
arranged and vivid ways, into the graphical language of the engineer.

Of even greater significance than its practical application, graphical
statics appears to have influenced the development of structural analysis
generally. In 1875 Culmann had, in a second edition of his book (1866),
published (in a much extended form) the general foundations of his
teachings; he was not to be allowed, however, to complete his intended
second volume which was to include applications. His pupil and successor,
at Zurich, Wilhelm Ritter, continued the work instead (1888-1907).

In the foreword to his second edition, Culmann is enthusiastic about the
advances in graphical statics since the appearance of the first edition, for
he is quoted by Stussi (1951) as saying with regard to the reception of his
theories:

In Italy they found indisputably the most favourable ground. Cremona has
introduced them at the Milan Polytechnic and, indeed, in an advanced form: he
does not view them simply as a practical aid just to avoid a few calculations in
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certain cases, but as the completion of the geometric-statics-education of the young
engineer.

In a short comparison of the reciprocal figures of Maxwell with those of
Cremona, he writes: 'And this introduction of the null-system is the work
of Cremona and not Maxwell; also from Cremona stem all the applications.
More than anywhere else the gulf between the theoretician and the
practitioner yawns in England.'

Culmann appears equally pleased with the dissemination of his methods
in France, for he mentions most favourably the textbook by Levy (1874).
He rejects, on the other hand, the corresponding efforts in Germany - to
the point where he could be argumentative and unfriendly about them. He
was especially critical of Bauschinger of Munich, whose book (1871)
purported to be based on Culmann's work. In the event, however, the later
intense development of graphical methods of analysis took place in
Germany and included the elegant and fruitful use of the elastic line for
structures by Otto Mohr.

One of the most noteworthy engineering achievements of the Culmann
school was, incidentally, the Eiffel Tower in Paris, built for the Paris
Exhibition of 1889 and for which the design and calculations were carried
out by Culmann's pupil Maurice Koechlin (1889a).

The calculations for this structure (which was, for its time, unbelievably
bold) are classical applications of the Culmann graphical statics. They are,
incidentally, described in full detail in a monumental luxury volume (1890)
by the constructors. Maurice Koechlin has also rendered valuable service
to the dissemination of Culmann's teaching in a textbook (1889a).
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A note on John Robison

The state of knowledge of applied mechanics in Britain at the beginning
of the nineteenth century is probably reflected in David Brewster's
Robison's Mechanical Philosophy (1822) which is based mainly upon
articles published by John Robison, professor of natural philosophy at
Edinburgh University, in the fourth edition of the Encyclopaedia Britannica
(1797). The first of the four volumes includes chapters on strength of
materials, carpentry, roofs, construction of arches and construction of
centres for bridges. With regard to strength of materials Robison refers
(in general terms) to the experiments of Couplet, Pitot, De La Hire and
Duhamel in relation to cohesion. He also refers specifically to elasticity and
ductility and mentions plastic substance and properties. Robison is much
concerned with cohesion in terms of attraction between particles, referring
to the theories of Newton and Boscovich. Then he suggests that ' connecting
forces are proportional to the distances of the particles from their
quiescent, neutral or inactive positions'. This 'seems to have been first
reviewed as a law of nature by the penetrating eye of Dr Robert Hooke'.
Robison quotes what he describes as Hooke's cipher, ceiiinosssttu, for the
law of elasticity (ut tensio sic vis) which bears his name and he records
Hooke's anticipation - and rejection - of the facts used by John Bernoulli
in support of Leibnitz's doctrine of vires vivae. Then, Robison considers
James Bernoulli's observation of the relationship between strain and
curvature of a bar (the elastic curve) and applauds the elegance of his
mathematical treatment of the problem as published in 1694 and 1695
(Ada Lipsiae). He goes on to credit Daniel Bernoulli, nephew of James,
with an elegant contribution to the same problem.

Among the other names mentioned by Robison concerning strength
of materials are Muschenbroek, Euler, Parent, Gauthey, Mariotte and
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Varignon. In emphasising Hooke's priority (Proceedings of the Royal
Society, 1661) with regard to the linearity of the elasticity of common
materials, he asserts:

Mariotte indeed was the first who expressly used it for determining the strength
of beams: this he did about 1679, correcting the simple theory of Galileo. Leibnitz
indeed, in his dissertation de Resistentia Solidorum, in the Acta Eruditorum (1684)
introduces this consideration, and wishes to be regarded as the discoverer; and he
is always acknowledged as such by the Bernoulli's and others who adhered to his
peculiar doctrines! But Mariotte had published the doctrine in the most express
terms long before; and Bulfinger, in the Commentarri Academiae Scientiarum
Imperialis Petropolitanae, 1729, vindicates his claim.

In drawing attention to errors in Bulfinger's dissertation of 1729, in respect
of the fibres in beams, Robison says: 'We recommend to the reader's
perusal the very minute discussions in the memoirs of the Academy of Paris
for 1702 by Varignon, the memoirs for 1708 by Parent, and particularly
Coulomb (1776).'

Robison discusses Euler's theory of the strength of columns, ascribing
priority to him; but he does not enter into mathematical detail, nor does
he associate the problem with tottering equilibrium, a concept which he
introduces in his chapter on arches. He says, however:

Fortunately the force requisite for crippling a beam is prodigious, and a very small
lateral support is sufficient to prevent that bending which puts the beam in
imminent danger. A judicious engineer will always employ transverse bridles... to
stay the middle of long beams, which are employed as pillars, struts or truss beams,
and are exposed, by their position, to enormous pressures in the directions of their
lengths.

He also quotes the practice of Perronet, and Belidor's Science des
Ingenieurs (1729) in this respect.

Robison's theory of bending of beams contains the error of his times
regarding the position of the neutral axis. But it is noteworthy that he
argues correctly that the strength of an encastre beam is twice that of a
simply supported beam and is at some pains to describe the conditions
necessary for provision of a truly encastre state (including full continuity,
for example).

In addition to strength of materials (especially bending and rupture of
beams) in which he mentions the 'power' of strain with regard to the work
of straining forces, Robison deals with the elementary statics of (timber)
framework and masonry arches (crediting Hooke with the concept of the
inverted hanging chain for the shape of an arch). He illustrates a variety
of timber frameworks, especially roof trusses, including one consisting of
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three equilateral triangles, which was precisely the same as that which
came to be known as the Warren girder. The other timber framework
relates to centring for construction of masonry arches. The work as a
whole is primarily descriptive: there is some elementary analysis concerning
equilibrium of systems of bars and straining of beams as well as that
relating to arches but (although he refers to original researches, for
example of Euler, concerning columns) he does not reproduce the relevant
analytical matter.
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